
Oracle® Solaris Dynamic Tracing Guide

Part No: E22973
November 2011 E22973_02

Copyright © 2011, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés.Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon sont des marques ou
des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques déposées de SPARC
International, Inc. UNIX est une marque déposée concédé sous license par X/Open Company, Ltd.

120305@25097

Contents

Preface ...13

1 About DTrace ..17
Getting Started ... 17
Providers and Probes .. 19

2 D Programming Language ...23
D Program Structure ... 23

Probe Clauses and Declarations ... 23
Probe Descriptions .. 24
Predicates .. 25
Actions .. 26
Order of Execution .. 26
Use of the C Preprocessor ... 26

Compilation and Instrumentation .. 27
Variables and Arithmetic Expressions .. 28
Predicates ... 31
Output Formatting .. 34
Arrays .. 37
External Symbols and Types .. 39
Types, Operators, and Expressions ... 40

Identifier Names and Keywords ... 40
Data Types and Sizes ... 41
Constants .. 43
Arithmetic Operators .. 44
Relational Operators .. 45
Logical Operators ... 46

3

Bitwise Operators ... 47
Assignment Operators .. 48
Increment and Decrement Operators ... 48
Conditional Expressions ... 49
Type Conversions .. 50
Precedence .. 51

Variables ... 52
Scalar Variables .. 53
Associative Arrays .. 54
Thread-Local Variables ... 55
Clause-Local Variables .. 58
Built-in Variables ... 60
External Variables .. 62

Pointers and Arrays ... 63
Pointers and Addresses ... 63
Pointer Safety .. 64
Array Declarations and Storage ... 66
Pointer and Array Relationship .. 67
Pointer Arithmetic ... 68
Generic Pointers ... 68
Multi-Dimensional Arrays ... 69
Pointers to DTrace Objects ... 69
Pointers and Address Spaces .. 70

Strings ... 71
String Representation .. 71
String Constants ... 72
String Assignment .. 72
String Conversion .. 72
String Comparison .. 73

Structs and Unions .. 74
Structs .. 74
Pointers to Structs .. 76
Unions ... 79
Member Sizes and Offsets ... 82
Bit-Fields ... 83

Type and Constant Definitions .. 84

Contents

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_024

typedef ... 84
Enumerations ... 84
Inlines .. 86
Type Namespaces ... 87

3 Aggregations ..89
Aggregating Functions .. 89
Aggregations .. 90
Printing Aggregations ... 98
Data Normalization .. 98
Clearing Aggregations .. 102
Truncating aggregations ... 102
Minimizing Drops ... 104

4 Actions and Subroutines ..105
Actions .. 105
Default Action .. 105
Data Recording Actions .. 106

trace ... 106
tracemem ... 107
printf ... 107
printa ... 107
stack ... 108
ustack ... 109
jstack ... 113
uaddr ... 113
usym .. 114

Destructive Actions ... 114
Process Destructive Actions ... 114
Kernel Destructive Actions ... 117

Special Actions ... 120
Speculative Actions .. 120
exit .. 120

Subroutines .. 120
alloca ... 120

Contents

5

basename ... 121
bcopy ... 121
cleanpath ... 121
copyin ... 121
copyinstr ... 122
copyinto ... 122
dirname ... 122
inet_ntoa ... 122
inet_ntoa6 ... 123
inet_ntop ... 123
msgdsize ... 123
msgsize ... 123
mutex_owned ... 124
mutex_owner ... 124
mutex_type_adaptive .. 124
progenyof ... 124
rand .. 124
rw_iswriter ... 125
rw_write_held ... 125
speculation ... 125
strjoin ... 125
strlen ... 125

5 Buffers and Buffering ..127
Principal Buffers .. 127
Principal Buffer Policies .. 127

switch Policy .. 128
fill Policy .. 128
fill Policy and END Probes ... 129
ring Policy .. 129

Other Buffers .. 130
Buffer Sizes ... 130
Buffer Resizing Policy ... 131

Contents

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_026

6 Output Formatting ..133
printf ... 133

Conversion Specifications .. 134
Flag Specifiers ... 134
Width and Precision Specifiers .. 135
Size Prefixes .. 135
Conversion Formats .. 136

printa ... 139
trace Default Format ... 140

7 Speculative Tracing ...141
Speculation Interfaces ... 142
Creating a Speculation .. 142
Using a Speculation ... 142
Committing a Speculation ... 143
Discarding a Speculation .. 143
Speculation Example ... 144
Speculation Options and Tuning .. 148

8 dtrace(1M) Utility ..149
Description ... 149
Options ... 150
Operands .. 156
Exit Status ... 156

9 Scripting ... 157
Interpreter Files ... 157
Macro Variables ... 158
Macro Arguments ... 160
Target Process ID .. 161

10 Options and Tunables ...163
Consumer Options .. 163
Modifying Options .. 165

Contents

7

11 Providers .. 167
dtrace Provider ... 167

BEGIN Probe .. 167
END Probe .. 168
ERROR Probe .. 169
Stability .. 170

lockstat Provider .. 171
Overview ... 171
Adaptive Lock Probes .. 171
Spin Lock Probes .. 172
Thread Locks .. 173
Readers/Writer Lock Probes .. 173
Stability .. 174

profile Provider ... 175
profile- n probes ... 175
tick- n probes .. 177
Arguments .. 177
Timer Resolution ... 178
Probe Creation ... 179
Stability .. 179

cpc Provider ... 180
Probes .. 180
Arguments .. 181
Probe Availability ... 182
Probe Creation ... 182
Co-existence With Existing Tools ... 182
Examples ... 183
Stability .. 184

fbt Provider ... 185
Probes .. 185
Probe arguments .. 186
Examples ... 186
Tail-call Optimization ... 191
Assembly Functions ... 193
Instruction Set Limitations ... 193
Breakpoint Interaction .. 193

Contents

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_028

Module Loading ... 194
Stability .. 194

syscall Provider ... 194
Probes .. 195
Arguments .. 197
Stability .. 198

sdt Provider ... 198
Probes .. 198
Examples ... 199
Creating SDT Probes ... 202
Stability .. 203

mib Provider ... 204
Probes .. 204
Arguments .. 218
Stability .. 219

fpuinfo Provider ... 219
Probes .. 219
Arguments .. 221
Stability .. 221

pid Provider ... 222
Naming pid Probes .. 222
Function Boundary Probes ... 223
Function Offset Probes .. 223
Stability .. 224

plockstat Provider .. 224
Overview ... 224
Mutex Probes .. 225
Reader/Writer Lock Probes .. 226
Stability .. 226

fasttrap Provider .. 227
Probes .. 227
Stability .. 227

sysinfo Provider ... 227
Probes .. 227
Arguments .. 230
Example ... 234

Contents

9

Stability .. 235
vminfo Provider ... 236

Probes .. 236
Arguments .. 238
Example ... 239
Stability .. 242

proc Provider ... 242
Probes .. 242
Arguments .. 244
lwpsinfo_t ... 245
psinfo_t ... 248
Examples ... 249
Stability .. 254

sched Provider ... 255
Probes .. 255
Arguments .. 258
cpuinfo_t ... 258
Examples ... 259
Stability .. 284

io Provider ... 284
Probes .. 284
Arguments .. 285
bufinfo_t structure .. 286
devinfo_t ... 287
fileinfo_t ... 288
Examples ... 289
Stability .. 299

Protocols ... 300
ip Provider .. 300
iscsi Provider ... 308
nfsv3 Provider ... 314
nfsv4 Provider ... 324
srp Provider .. 336
tcp Provider .. 343
udp Provider .. 355

Contents

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0210

12 User Process Tracing ..361
copyin and copyinstr Subroutines .. 361

Avoiding Errors .. 362
Eliminating dtrace(1M) Interference .. 363
syscall Provider ... 363
ustack Action .. 364
uregs[] Array .. 366
pid Provider ... 368

User Function Boundary Tracing .. 368
Tracing Arbitrary Instructions ... 370

13 Statically Defined Tracing for User Applications .. 373
Choosing the Probe Points ... 373
Adding Probes to an Application ... 374

Defining Providers and Probes ... 374
Adding Probes to Application Code .. 375
Building Applications with Probes .. 375

14 Security ... 377
Privileges ... 377
Privileged Use of DTrace .. 378
dtrace_proc Privilege .. 378
dtrace_user Privilege .. 379
dtrace_kernel Privilege .. 380
Super User Privileges .. 380

15 Anonymous Tracing ...381
Anonymous Enablings ... 381
Claiming Anonymous State ... 382
Anonymous Tracing Examples ... 382

16 Postmortem Tracing ..385
Displaying DTrace Consumers ... 385
Displaying Trace Data .. 386

Contents

11

17 Performance Considerations ...389
Limit Enabled Probes .. 389
Use Aggregations ... 390
Use Cacheable Predicates ... 390

18 Stability .. 393
Stability Levels ... 393
Dependency Classes .. 395
Interface Attributes ... 396
USDT Interfaces .. 397
Stability Computations and Reports ... 397
Stability Enforcement ... 400

19 Translators ... 401
Translator Declarations .. 401
Translate Operator .. 403
Process Model Translators ... 404
Stable Translations .. 405

20 Versioning .. 407
Versions and Releases ... 407
Versioning Options ... 408
Provider Versioning .. 409

Contents

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0212

Preface

The Oracle Solaris Dynamic Tracing Guide describes how to use DTrace. It also describes the
DTrace providers in detail. Most of the information present in this document is generic to all
releases of the Oracle Solaris operating system.

Note –

■ This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures: UltraSPARC, SPARC64, AMD64, Pentium, and Xeon EM64T. The
supported systems appear in the Oracle Solaris 10 Hardware Compatibility List at
http://download.oracle.com/docs/cd/E19253-01/816-2419/index.html. This
document cites any implementation differences between the platform types.

■ In this document the term x86 refers to 64–bit and 32–bit systems manufactured using
processors compatible with the AMD64 or Intel Xeon/Pentium product families. For
supported systems, see the Oracle Solaris 10 Hardware Compatibility List.

■ This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures: UltraSPARC, SPARC64, AMD64, Pentium, and Xeon EM64T. The
supported systems appear in the Oracle Solaris 10 Hardware Compatibility List at
http://download.oracle.com/docs/cd/E19253-01/816-2419/index.html. This
document cites any implementation differences between the platform types.

■ In this document the term x86 refers to 64–bit and 32–bit systems manufactured using
processors compatible with the AMD64 or Intel Xeon/Pentium product families. For
supported systems, see the Oracle Solaris 10 Hardware Compatibility List.

Who Should Use This Book
This book is for any one who needs to understand the behavior of your system. DTrace allows
you to explore your system to understand how it works, track down performance problems
across many layers of software, or locate the cause of aberrant behavior.

DTrace allows all Oracle Solaris users to:

■ Dynamically enable and manage thousands of probes
■ Dynamically associate logical predicates and actions with probes

13

http://download.oracle.com/docs/cd/E19253-01/816-2419/index.html
http://download.oracle.com/docs/cd/E19253-01/816-2419/index.html

■ Dynamically manage trace buffers and buffer policies
■ Display and examine trace data from the live system or a crash dump

DTrace allows Oracle Solaris developers and administrators to:
■ Implement custom scripts that use the DTrace facility
■ Implement layered tools that use DTrace to retrieve trace data

This guide will teach you everything you need to know about using DTrace. Basic familiarity
with a programming language such as C or a scripting language such as awk(1) or perl(1) will
help you learn DTrace and the D programming language faster, but you need not be an expert
in any of these areas.

How This Book Is Organized
The DTrace User Guide contains the following topics:
■ Chapter 1, “About DTrace,” provides an overview of DTrace.
■ Chapter 2, “D Programming Language,” explains the D programming language.
■ Chapter 3, “Aggregations,” explains how to aggregate the data provided by the probes.
■ Chapter 4, “Actions and Subroutines,” describes the actions and subroutines supported by

DTrace.
■ Chapter 5, “Buffers and Buffering,” describes the data buffering and management service

provided by DTrace.
■ Chapter 6, “Output Formatting,” explains how to format the output of D programs.
■ Chapter 7, “Speculative Tracing,” describes the speculative tracing facility provided by

DTrace.
■ Chapter 8, “dtrace(1M) Utility,” describes the options supported by the dtrace command.
■ Chapter 9, “Scripting,” explains how to create interpreter files by using D programs. The

interpreter files are similar to shell scripts that you can install as reusable interactive DTrace
tools.

■ Chapter 10, “Options and Tunables,” explains the options and tuning parameters supported
by the dtrace command.

■ Chapter 11, “Providers,” describes the providers supported by DTrace.
■ Chapter 12, “User Process Tracing,” explains how to use DTrace to understand the behavior

of user processes.
■ Chapter 13, “Statically Defined Tracing for User Applications,” explains how to develop

customized probes.
■ Chapter 14, “Security,” describes the security aspects of DTrace.
■ Chapter 15, “Anonymous Tracing,” describes anonymous tracing.

Preface

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0214

■ Chapter 16, “Postmortem Tracing,” explains how to extract and process the in-kernel data
after a system failure.

■ Chapter 17, “Performance Considerations,” explains the performance considerations that
you need to understand when using DTrace.

■ Chapter 18, “Stability,” describes the concepts related to stability in the context of D
programs.

■ Chapter 19, “Translators,” describes the translators supported in D programs.
■ Chapter 20, “Versioning,” explains the concepts related to versioning in the context of

DTrace.

Related Books
These books and papers are recommended and related to the tasks that you need to perform
with DTrace:

■ Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language. Prentice Hall,
1988. ISBN 0–13–110370–9

■ Vahalia, Uresh. UNIX Internals: The New Frontiers. Prentice Hall, 1996. ISBN
0-13-101908-2

■ Mauro, Jim and McDougall, Richard. Oracle Solaris Internals: Core Kernel Components.
Sun Microsystems Press, 2001. ISBN 0-13-022496-0

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Preface

15

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

TABLE P–1 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0216

About DTrace

DTrace is a comprehensive dynamic tracing facility that is built into Oracle Solaris that can be
used by administrators and developers on live production systems to examine the behavior of
both user programs and of the operating system itself. DTrace enables you to explore your
system to understand how it works, track down performance problems across many layers of
software, or locate the cause of aberrant behavior. DTrace lets you create your own custom
programs to dynamically instrument the system and provide immediate, concise answers to
arbitrary questions you can formulate using the DTrace D programming language.

Getting Started
DTrace helps you understand a software system by enabling you to dynamically modify the
operating system kernel and user processes to record additional data that you specify at
locations of interest, called probes. A probe is a location or activity to which DTrace can bind a
request to perform a set of actions, like recording a stack trace, a timestamp, or the argument to
a function. Probes are like programmable sensors scattered all over your Oracle Solaris system
in interesting places. If you want to figure out what's going on, you use DTrace to program the
appropriate sensors to record the information that is of interest to you. Then, as each probe
fires, DTrace gathers the data from your probes and reports it back to you. If you don't specify
any actions for a probe, DTrace will just take note of each time the probe fires.

Every probe in DTrace has two names: a unique integer ID and a human-readable string name.
We're going to start learning DTrace by building some very simple requests using the probe
named BEGIN, which fires once each time you start a new tracing request. You can use the
dtrace(1M) utility's -n option to enable a probe using its string name. Type the following
command:

dtrace -n BEGIN

1C H A P T E R 1

17

DTrace tells you that a probe was enabled and you will see a line of output indicating the BEGIN
probe fired. Once you see this output, dtrace remains paused waiting for other probes to fire.
Since no other probes are enabled and BEGIN only fires once, press Control-C in your shell to
exit dtrace and return to your shell prompt:

dtrace -n BEGIN

dtrace: description ’BEGIN’ matched 1 probe

CPU ID FUNCTION:NAME

0 1 :BEGIN

^C

#

The output tells you that the probe named BEGIN fired once and both its name and integer ID, 1,
are printed. By default, the integer name of the CPU on which this probe fired is displayed. In
this example, the CPU column indicates that the dtrace command was executing on CPU 0
when the probe fired.

DTrace requests can be constructed using arbitrary numbers of probes and actions. Let's create
a simple request using two probes by adding the END probe to the previous example command.
The END probe fires once when tracing is completed. Type the following command, and then
again press Control-C in your shell after you see the line of output for the BEGIN probe:

dtrace -n BEGIN -n END

dtrace: description ’BEGIN’ matched 1 probe

dtrace: description ’END’ matched 1 probe

CPU ID FUNCTION:NAME

0 1 :BEGIN

^C

0 2 :END

#

Pressing Control-C to exit dtrace triggers the END probe. dtrace reports this probe firing
before exiting. In addition to constructing DTrace experiments on the command line, you can
also write them in text files using the D programming language. In a text editor, create a new file
called hello.d and type in your first D program:

EXAMPLE 1–1 hello.d: Hello, World from the D Programming Language

BEGIN

{

trace("hello, world");
exit(0);

}

After you have saved your program, you can run it using the dtrace -s option. Type the
following command:

dtrace -s hello.d

dtrace: script ’hello.d’ matched 1 probe

CPU ID FUNCTION:NAME

0 1 :BEGIN hello, world

#

Getting Started

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0218

dtrace printed the same output as before followed by the text ”hello, world”. Unlike the
previous example, you did not have to wait and press Control-C, either. These changes were the
result of the actions you specified for your BEGIN probe in hello.d. Let's explore the structure
of your D program in more detail in order to understand what happened.

Each D program consists of a series of clauses, each clause describing one or more probes to
enable, and an optional set of actions to perform when the probe fires. The actions are listed as a
series of statements enclosed in braces { } following the probe name. Each statement ends with a
semicolon (;). Your first statement uses the function trace to indicate that DTrace should record
the specified argument, the string ”hello, world”, when the BEGIN probe fires, and then print it
out. The second statement uses the function exit to indicate that DTrace should cease tracing
and exit the dtrace command. DTrace provides a set of useful functions like trace() and
exit() for you to call in your D programs. To call a function, you specify its name followed by a
parenthesized list of arguments. The complete set of D functions is described in Chapter 4,
“Actions and Subroutines.”

By now, if you're familiar with the C programming language, you've probably realized from the
name and our examples that DTrace's D programming language is very similar to C. Indeed, D
is derived from a large subset of C combined with a special set of functions and variables to help
make tracing easy. You'll learn more about these features in subsequent chapters. If you've
written a C program before, you will be able to immediately transfer most of your knowledge to
building tracing programs in D. If you've never written a C program before, learning D is still
very easy. You will understand all of the syntax by the end of this chapter. But first, let's take a
step back from language rules and learn more about how DTrace works, and then we'll return to
learning how to build more interesting D programs.

Providers and Probes
In the preceding examples, you learnt to use two simple probes named BEGIN and END. DTrace
probes come from a set of kernel modules called providers, each of which performs a particular
kind of instrumentation to create probes. When you use DTrace, each provider is given an
opportunity to publish the probes it can provide to the DTrace framework. You can then enable
and bind your tracing actions to any of the probes that have been published. To list all of the
available probes on your system, type the command:

dtrace -l

ID PROVIDER MODULE FUNCTION NAME

1 dtrace BEGIN

2 dtrace END

3 dtrace ERROR

4 lockstat genunix mutex_enter adaptive-acquire

5 lockstat genunix mutex_enter adaptive-block

6 lockstat genunix mutex_enter adaptive-spin

7 lockstat genunix mutex_exit adaptive-release

... many lines of output omitted ...

#

Providers and Probes

Chapter 1 • About DTrace 19

It might take some time to display all of the output. To count up all your probes, you can type
the command:

dtrace -l | wc -l

30122

You might observe a different total on your machine, as the number of probes varies depending
on your operating platform and the software you have installed. As you can see, there are a very
large number of probes available to you so you can peer into every previously dark corner of the
system. In fact, even this output isn't the complete list because, as you'll see later, some providers
offer the ability to create new probes on-the-fly based on your tracing requests, making the
actual number of DTrace probes virtually unlimited. Now look back at the output from dtrace

-l in your terminal window. Notice that each probe has the two names we mentioned earlier, an
integer ID and a human-readable name. The human readable name is composed of four parts,
shown as separate columns in the dtrace output. The four parts of a probe name are:

Provider The name of the DTrace provider that is publishing this probe. The provider name
typically corresponds to the name of the DTrace kernel module that performs the
instrumentation to enable the probe.

Module If this probe corresponds to a specific program location, the name of the module in which
the probe is located. This name is either the name of a kernel module or the name of a
user library.

Function If this probe corresponds to a specific program location, the name of the program
function in which the probe is located.

Name The final component of the probe name is a name that gives you some idea of the probe's
semantic meaning, such as BEGIN or END.

When writing out the full human-readable name of a probe, write all four parts of the name
separated by colons like this:

provider:module:function:name

Notice that some of the probes in the list do not have a module and function, such as the BEGIN
and END probes used earlier. Some probes leave these two fields blank because these probes do
not correspond to any specific instrumented program function or location. Instead, these
probes refer to a more abstract concept like the idea of the end of your tracing request. A probe
that has a module and function as part of its name is known as an anchored probe, and one that
does not is known as unanchored.

By convention, if you do not specify all of the fields of a probe name, then DTrace matches your
request to all of the probes that have matching values in the parts of the name that you do
specify. In other words, when you used the probe name BEGIN earlier, you were actually telling
DTrace to match any probe whose name field is BEGIN, regardless of the value of the provider,
module, and function fields. As it happens, there is only one probe matching that description, so

Providers and Probes

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0220

the result is the same. But you now know that the true name of the BEGIN probe is
dtrace:::BEGIN, which indicates that this probe is provided by the DTrace framework itself
and is not anchored to any function. Therefore, the hello.d program could have been written
as follows and would produce the same result:

dtrace:::BEGIN

{

trace("hello, world");
exit(0);

}

Now that you understand where probes originate from and how they are named, we're going to
learn a little more about what happens when you enable probes and ask DTrace to do
something, and then we'll return to our whirlwind tour of D.

Providers and Probes

Chapter 1 • About DTrace 21

22

D Programming Language

D is a systems programming language that allows you to interface with the operating system
API's and with the hardware.

D Program Structure
D programs consist of a set of clauses that describe probes to enable and predicates and actions
to bind to these probes. D programs can also contain declarations of variables, as described in
“Variables” on page 52, and definitions of new types, described in “Type and Constant
Definitions” on page 84. This chapter formally describes the overall structure of a D program
and features for constructing probe descriptions that match more than one probe. We'll also
discuss the use of the C preprocessor, cpp, with D programs.

Probe Clauses and Declarations
As shown in our examples so far, a D program source file consists of one or more probe clauses
that describe the instrumentation to be enabled by DTrace. Each probe clause has the general
form:

probe descriptions

/ predicate /

{

action statements

}

The predicate and list of action statements may be omitted. Any directives found outside probe
clauses are referred to as declarations. Declarations may only be used outside of probe clauses.
No declarations inside of the enclosing { } are permitted and declarations may not be
interspersed between the elements of the probe clause shown above. Whitespace can be used to
separate any D program elements and to indent action statements.

2C H A P T E R 2

23

Declarations can be used to declare D variables and external C symbols as discussed in
“Variables” on page 52, or to define new types for use in D, as described in “Type and Constant
Definitions” on page 84. Special D compiler directives called pragmas may also appear
anywhere in a D program, including outside of probe clauses. D pragmas are specified on lines
beginning with a # character. D pragmas are used, for example, to set run-time DTrace options;
see Chapter 10, “Options and Tunables,” for details.

Probe Descriptions
Every D program clause begins with a list of one or more probe descriptions, each taking the
usual form:

provider:module:function:name

If one or more fields of the probe description are omitted, the specified fields are interpreted
from right to left by the D compiler. For example, the probe description foo:bar would match a
probe with function foo and name bar regardless of the value of the probe's provider and
module fields. Therefore, a probe description is really more accurately viewed as a pattern that
can be used to match one or more probes based on their names.

You should write your D probe descriptions specifying all four field delimiters so that you can
specify the desired provider on the left-hand side. If you don't specify the provider, you might
obtain unexpected results if multiple providers publish probes with the same name. Similarly,
future versions of DTrace might include new providers whose probes unintentionally match
your partially specified probe descriptions. You can specify a provider but match any of its
probes by leaving any of the module, function, and name fields blank. For example, the
description syscall::: can be used to match every probe published by the DTrace syscall
provider.

Probe descriptions also support a pattern matching syntax similar to the shell globbing pattern
matching syntax described in sh(1). Before matching a probe to a description, DTrace scans
each description field for the characters *, ?, and [. If one of these characters appears in a probe
description field and is not preceded by a \, the field is regarded as a pattern. The description
pattern must match the entire corresponding field of a given probe. The complete probe
description must match on every field in order to successfully match and enable a probe. A
probe description field that is not a pattern must exactly match the corresponding field of the
probe. A description field that is empty matches any probe.

The special characters in the following table are recognized in probe name patterns:

TABLE 2–1 Probe Name Pattern Matching Characters

Symbol Description

* Matches any string, including the null string.

D Program Structure

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0224

TABLE 2–1 Probe Name Pattern Matching Characters (Continued)
Symbol Description

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by - matches any
character between the pair, inclusive. If the first character after the [is !, any character not
enclosed in the set is matched.

\ Interpret the next character as itself, without any special meaning.

Pattern match characters can be used in any or all of the four fields of your probe descriptions.
You can also use patterns to list matching probes by using the patterns on the command line
with dtrace -l. For example, the command dtrace -l -f kmem_* lists all DTrace probes in
functions whose names begin with the prefix kmem_.

If you want to specify the same predicate and actions for more than one probe description or
description pattern, you can place the descriptions in a comma-separated list. For example, the
following D program would trace a timestamp each time probes associated with entry to system
calls containing the words “lwp” or “sock” fire:

syscall::*lwp*:entry, syscall::*sock*:entry

{

trace(timestamp);

}

A probe description may also specify a probe using its integer probe ID. For example, the clause:

12345

{

trace(timestamp);

}

could be used to enable probe ID 12345, as reported by dtrace -l -i 12345. You should
always write your D programs using human-readable probe descriptions. Integer probe IDs are
not guaranteed to remain consistent as DTrace provider kernel modules are loaded and
unloaded or following a reboot.

Predicates
Predicates are expressions enclosed in slashes / / that are evaluated at probe firing time to
determine whether the associated actions should be executed. Predicates are the primary
conditional construct used for building more complex control flow in a D program. You can
omit the predicate section of the probe clause entirely for any probe, in which case the actions
are always executed when the probe fires.

Predicate expressions can use any of the previously described D operators and may refer to any
D data objects such as variables and constants. The predicate expression must evaluate to a

D Program Structure

Chapter 2 • D Programming Language 25

value of integer or pointer type so that it can be considered as true or false. As with all D
expressions, a zero value is interpreted as false and any non-zero value is interpreted as true.

Actions
Probe actions are described by a list of statements separated by semicolons (;) and enclosed in
braces { }. If you only want to note that a particular probe fired on a particular CPU without
tracing any data or performing any additional actions, you can specify an empty set of braces
with no statements inside.

Order of Execution
Each clause is represented by its predicate, if any, and the clause's actions. When an enabled
probe fires, its actions will execute if the predicate evaluates to true or if no predicate is given.
Program order determines the order in which actions are executed. Two or more clauses that
enable the same probe will also execute in program order.

Use of the C Preprocessor
The C programming language used for defining Solaris system interfaces includes a
preprocessor that performs a set of initial steps in C program compilation. The C preprocessor is
commonly used to define macro substitutions where one token in a C program is replaced with
another predefined set of tokens, or to include copies of system header files. You can use the C
preprocessor in conjunction with your D programs by specifying the dtrace -C option. This
option causes dtrace to first execute the cpp(1) preprocessor on your program source file and
then pass the results to the D compiler. The C preprocessor is described in more detail in The C
Programming Language.

The D compiler automatically loads the set of C type descriptions associated with the operating
system implementation, but you can use the preprocessor to include other type definitions such
as types used in your own C programs. You can also use the preprocessor to perform other tasks
such as creating macros that expand to chunks of D code and other program elements. If you
use the preprocessor with your D program, you may only include files that contain valid D
declarations. Typical C header files include only external declarations of types and symbols,
which will be correctly interpreted by the D compiler. The D compiler cannot parse C header
files that include additional program elements like C function source code and will produce an
appropriate error message.

D Program Structure

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0226

Compilation and Instrumentation
When you write traditional programs in Oracle Solaris, you use a compiler to convert your
program from source code into object code that you can execute. When you use the dtrace
command you are invoking the compiler for the D language used earlier to write the hello.d
program. Once your program is compiled, it is sent into the operating system kernel for
execution by DTrace. There the probes that are named in your program are enabled and the
corresponding provider performs whatever instrumentation is needed to activate them.

All of the instrumentation in DTrace is completely dynamic: probes are enabled discretely only
when you are using them. No instrumented code is present for inactive probes, so your system
does not experience any kind of performance degradation when you are not using DTrace.
Once your experiment is complete and the dtrace command exits, all of the probes you used
are automatically disabled and their instrumentation is removed, returning your system to its
exact original state. No effective difference exists between a system where DTrace is not active
and one where the DTrace software is not installed.

The instrumentation for each probe is performed dynamically on the live running operating
system or on user processes you select. The system is not quiesced or paused in any way, and
instrumentation code is added only for the probes that you enable. As a result, the probe effect
of using DTrace is limited to exactly what you ask DTrace to do: no extraneous data is traced, no
one big “tracing switch” is turned on in the system, and all of the DTrace instrumentation is
designed to be as efficient as possible. These features enable you to use DTrace in production to
solve real problems in real time.

The DTrace framework also provides support for an arbitrary number of virtual clients. You
can run as many simultaneous DTrace experiments and commands as you like, limited only by
your system's memory capacity, and the commands all operate independently using the same
underlying instrumentation. This same capability also permits any number of distinct users on
the system to take advantage of DTrace simultaneously: developers, administrators, and service
personnel can all work together or on distinct problems on the same system using DTrace
without interfering with one another.

Unlike programs written in C and C++ and similar to programs written in the Java
programming language, DTrace D programs are compiled into a safe intermediate form that is
used for execution when your probes fire. This intermediate form is validated for safety when
your program is first examined by the DTrace kernel software. The DTrace execution
environment also handles any run-time errors that might occur during your D program's
execution, including dividing by zero, dereferencing invalid memory, and so on, and reports
them to you. As a result, you can never construct an unsafe program that would cause DTrace to
inadvertently damage the Oracle Solaris kernel or one of the processes running on your system.
These safety features allow you to use DTrace in a production environment without worrying
about crashing or corrupting your system. If you make a programming mistake, DTrace will
report your error to you, disable your instrumentation, and you can correct your mistake and
try again. The DTrace error reporting and debugging features are described later in this book.

Compilation and Instrumentation

Chapter 2 • D Programming Language 27

The following diagram shows the different components of the DTrace architecture, including
providers, probes, the DTrace kernel software, and the dtrace command.

Now that you understand how DTrace works, let's return to the tour of the D programming
language and start writing some more interesting programs.

Variables and Arithmetic Expressions
Our next example program makes use of the DTrace profile provider to implement a simple
time-based counter. The profile provider is able to create new probes based on the descriptions
found in your D program. If you create a probe named profile:::tick- n sec for some integer
n, the profile provider will create a probe that fires every n seconds. Type the following source
code and save it in a file named counter.d:

/*

* Count off and report the number of seconds elapsed

*/

Variables and Arithmetic Expressions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0228

dtrace:::BEGIN

{

i = 0;

}

profile:::tick-1sec

{

i = i + 1;

trace(i);

}

dtrace:::END

{

trace(i);

}

When executed, the program counts off the number of elapsed seconds until you press
Control-C, and then prints the total at the end:

dtrace -s counter.d

dtrace: script ’counter.d’ matched 3 probes

CPU ID FUNCTION:NAME

0 25499 :tick-1sec 1

0 25499 :tick-1sec 2

0 25499 :tick-1sec 3

0 25499 :tick-1sec 4

0 25499 :tick-1sec 5

0 25499 :tick-1sec 6

^C

0 2 :END 6

#

The first three lines of the program are a comment to explain what the program does. Similar to
C, C++, and the Java programming language, the D compiler ignores any characters between
the /* and */ symbols. Comments can be used anywhere in a D program, including both inside
and outside your probe clauses.

The BEGIN probe clause defines a new variable named i and assigns it the integer value zero
using the statement:

i = 0;

Unlike C, C++, and the Java programming language, D variables can be created by simply using
them in a program statement; explicit variable declarations are not required. When a variable is
used for the first time in a program, the type of the variable is set based on the type of its first
assignment. Each variable has only one type over the lifetime of the program, so subsequent
references must conform to the same type as the initial assignment. In counter.d, the variable i
is first assigned the integer constant zero, so its type is set to int. D provides the same basic
integer data types as C, including:

char Character or single byte integer

Variables and Arithmetic Expressions

Chapter 2 • D Programming Language 29

int Default integer

short Short integer

long Long integer

long long Extended long integer

The sizes of these types are dependent on the operating system kernel's data model, described in
“Types, Operators, and Expressions” on page 40. D also provides built-in friendly names for
signed and unsigned integer types of various fixed sizes, as well as thousands of other types that
are defined by the operating system.

The central part of counter.d is the probe clause that increments the counter i:

profile:::tick-1sec

{

i = i + 1;

trace(i);

}

This clause names the probe profile:::tick-1sec, which tells the profile provider to create
a new probe which fires once per second on an available processor. The clause contains two
statements, the first assigning i to the previous value plus one, and the second tracing the new
value of i. All the usual C arithmetic operators are available in D; the complete list is found in
“Types, Operators, and Expressions” on page 40. Also as in C, the ++ operator can be used as
shorthand for incrementing the corresponding variable by one. The trace function takes any D
expression as its argument, so you could write counter.d more concisely as follows:

profile:::tick-1sec

{

trace(++i);

}

If you want to explicitly control the type of the variable i, you can surround the desired type in
parentheses when you assign it in order to cast the integer zero to a specific type. For example, if
you wanted to determine the maximum size of a char in D, you could change the BEGIN clause
as follows:

dtrace:::BEGIN

{

i = (char)0;

}

After running counter.d for a while, you should see the traced value grow and then wrap
around back to zero. If you grow impatient waiting for the value to wrap, try changing the
profile probe name to profile:::tick-100msec to make a counter that increments once
every 100 milliseconds, or 10 times per second.

Variables and Arithmetic Expressions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0230

Predicates
One major difference between D and other programming languages such as C, C++, and the
Java programming language is the absence of control-flow constructs such as if-statements and
loops. D program clauses are written as single straight-line statement lists that trace an optional,
fixed amount of data. D does provide the ability to conditionally trace data and modify control
flow using logical expressions called predicates that can be used to prefix program clauses. A
predicate expression is evaluated at probe firing time prior to executing any of the statements
associated with the corresponding clause. If the predicate evaluates to true, represented by any
non-zero value, the statement list is executed. If the predicate is false, represented by a zero
value, none of the statements are executed and the probe firing is ignored.

Type the following source code for the next example and save it in a file named countdown.d:

dtrace:::BEGIN

{

i = 10;

}

profile:::tick-1sec

/i > 0/

{

trace(i--);

}

profile:::tick-1sec

/i == 0/

{

trace("blastoff!");
exit(0);

}

This D program implements a 10-second countdown timer using predicates. When executed,
countdown.d counts down from 10 and then prints a message and exits:

dtrace -s countdown.d

dtrace: script ’countdown.d’ matched 3 probes

CPU ID FUNCTION:NAME

0 25499 :tick-1sec 10

0 25499 :tick-1sec 9

0 25499 :tick-1sec 8

0 25499 :tick-1sec 7

0 25499 :tick-1sec 6

0 25499 :tick-1sec 5

0 25499 :tick-1sec 4

0 25499 :tick-1sec 3

0 25499 :tick-1sec 2

0 25499 :tick-1sec 1

0 25499 :tick-1sec blastoff!

#

This example uses the BEGIN probe to initialize an integer i to 10 to begin the countdown. Next,
as in the previous example, the program uses the tick-1sec probe to implement a timer that
fires once per second. Notice that in countdown.d, the tick-1sec probe description is used in

Predicates

Chapter 2 • D Programming Language 31

two different clauses, each with a different predicate and action list. The predicate is a logical
expression surrounded by enclosing slashes / / that appears after the probe name and before
the braces { } that surround the clause statement list.

The first predicate tests whether i is greater than zero, indicating that the timer is still running:

profile:::tick-1sec

/i > 0/

{

trace(i--);

}

The relational operator > means greater than and returns the integer value zero for false and one
for true. All of the C relational operators are supported in D; the complete list is found in
“Types, Operators, and Expressions” on page 40. If i is not yet zero, the script traces i and then
decrements it by one using the - operator.

The second predicate uses the == operator to return true when i is exactly equal to zero,
indicating that the countdown is complete:

profile:::tick-1sec

/i == 0/

{

trace("blastoff!");
exit(0);

}

Similar to the first example, hello.d, countdown.d uses a sequence of characters enclosed in
double quotes, called a string constant, to print a final message when the countdown is
complete. The exit function is then used to exit dtrace and return to the shell prompt.

If you look back at the structure of countdown.d, you will see that by creating two clauses with
the same probe description but different predicates and actions, we effectively created the
logical flow:

i = 10

once per second,

if i is greater than zero

trace(i--);

otherwise if i is equal to zero

trace("blastoff!");
exit(0);

When you wish to write complex programs using predicates, try to first visualize your
algorithm in this manner, and then transform each path of your conditional constructs into a
separate clause and predicate.

Now let's combine predicates with a new provider, the syscall provider, and create our first
real D tracing program. The syscall provider permits you to enable probes on entry to or
return from any Oracle Solaris system call. The next example uses DTrace to observe every time
your shell performs a read(2) or write(2) system call. First, open two terminal windows, one to

Predicates

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0232

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2write-2

use for DTrace and the other containing the shell process you're going to watch. In the second
window, type the following command to obtain the process ID of this shell:

echo $$

12345

Now go back to your first terminal window and type the following D program and save it in a
file named rw.d. As you type in the program, replace the integer constant 12345 with the
process ID of the shell that was printed in response to your echo command.

syscall::read:entry,

syscall::write:entry

/pid == 12345/

{

}

Notice that the body of rw.d's probe clause is left empty because the program is only intended to
trace notification of probe firings and not to trace any additional data. Once you're done typing
in rw.d, use dtrace to start your experiment and then go to your second shell window and type
a few commands, pressing return after each command. As you type, you should see dtrace
report probe firings in your first window, similar to the following example:

dtrace -s rw.d

dtrace: script ’rw.d’ matched 2 probes

CPU ID FUNCTION:NAME

0 34 write:entry

0 32 read:entry

0 34 write:entry

0 32 read:entry

0 34 write:entry

0 32 read:entry

0 34 write:entry

0 32 read:entry

...

You are now watching your shell perform read(2) and write(2) system calls to read a character
from your terminal window and echo back the result! This example includes many of the
concepts described so far and a few new ones as well. First, to instrument read(2) and write(2) in
the same manner, the script uses a single probe clause with multiple probe descriptions by
separating the descriptions with commas like this:

syscall::read:entry,

syscall::write:entry

For readability, each probe description appears on its own line. This arrangement is not strictly
required, but it makes for a more readable script. Next the script defines a predicate that
matches only those system calls that are executed by your shell process:

/pid == 12345/

Predicates

Chapter 2 • D Programming Language 33

The predicate uses the predefined DTrace variable pid, which always evaluates to the process ID
associated with the thread that fired the corresponding probe. DTrace provides many built-in
variable definitions for useful things like the process ID. Here is a list of a few DTrace variables
you can use to write your first D programs:

Variable Name Data Type Meaning

errno int Current errno value for system calls

execname string Name of the current process's executable file

pid pid_t Process ID of the current process

tid id_t Thread ID of the current thread

probeprov string Current probe description's provider field

probemod string Current probe description's module field

probefunc string Current probe description's function field

probename string Current probe description's name field

Now that you've written a real instrumentation program, try experimenting with it on different
processes running on your system by changing the process ID and the system call probes that
are instrumented. Then, you can make one more simple change and turn rw.d into a very
simple version of a system call tracing tool like truss(1). An empty probe description field acts
as a wildcard, matching any probe, so change your program to the following new source code to
trace any system call executed by your shell:

syscall:::entry

/pid == 12345/

{

}

Try typing a few commands in the shell such as cd, ls, and date and see what your DTrace
program reports.

Output Formatting
System call tracing is a powerful way to observe the behavior of most user processes. If you've
used the Oracle Solaris truss(1) utility before as an administrator or developer, you've probably
learned that it's a useful tool to keep around for whenever there is a problem. If you've never
used truss before, give it a try right now by typing this command into one of your shells:

$ truss date

Output Formatting

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0234

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1truss-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1truss-1

You will see a formatted trace of all the system calls executed by date(1) followed by its one line
of output at the end. The following example improves upon the earlier rw.d program by
formatting its output to look more like truss(1) so you can more easily understand the output.
Type the following program and save it in a file called trussrw.d:

EXAMPLE 2–1 trussrw.d: Trace System Calls with truss(1) Output Format

syscall::read:entry,

syscall::write:entry

/pid == $1/

{

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

}

syscall::read:return,

syscall::write:return

/pid == $1/

{

printf("tt = %dn", arg1);

}

In this example, the constant 12345 is replaced with the label $1 in each predicate. This label
allows you to specify the process of interest as an argument to the script: $1 is replaced by the
value of the first argument when the script is compiled. To execute trussrw.d, use the dtrace
options -q and -s, followed by the process ID of your shell as the final argument. The -q option
indicates that dtrace should be quiet and suppress the header line and the CPU and ID
columns shown in the preceding examples. As a result, you will only see the output for the data
that you explicitly traced. Type the following command (replacing 12345 with the process ID of
a shell process) and then press return a few times in the specified shell:

dtrace -q -s trussrw.d 12345

= 1

write(2, 0x8089e48, 1) = 1

read(63, 0x8090a38, 1024) = 0

read(63, 0x8090a38, 1024) = 0

write(2, 0x8089e48, 52) = 52

read(0, 0x8089878, 1) = 1

write(2, 0x8089e48, 1) = 1

read(63, 0x8090a38, 1024) = 0

read(63, 0x8090a38, 1024) = 0

write(2, 0x8089e48, 52) = 52

read(0, 0x8089878, 1) = 1

write(2, 0x8089e48, 1) = 1

read(63, 0x8090a38, 1024) = 0

read(63, 0x8090a38, 1024) = 0

write(2, 0x8089e48, 52) = 52

read(0, 0x8089878, 1)^C

#

Now let's examine your D program and its output in more detail. First, a clause similar to the
earlier program instruments each of the shell's calls to read(2) and write(2). But for this
example, a new function, printf, is used to trace data and print it out in a specific format:

Output Formatting

Chapter 2 • D Programming Language 35

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1date-1

syscall::read:entry,

syscall::write:entry

/pid == $1/

{

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

}

The printf function combines the ability to trace data, as if by the trace function used earlier,
with the ability to output the data and other text in a specific format that you describe. The
printf function tells DTrace to trace the data associated with each argument after the first
argument, and then to format the results using the rules described by the first printf argument,
known as a format string.

The format string is a regular string that contains any number of format conversions, each
beginning with the % character, that describe how to format the corresponding argument. The
first conversion in the format string corresponds to the second printf argument, the second
conversion to the third argument, and so on. All of the text between conversions is printed
verbatim. The character following the % conversion character describes the format to use for the
corresponding argument. Here are the meanings of the three format conversions used in
trussrw.d:

%d Print the corresponding value as a decimal integer

%s Print the corresponding value as a string

%x Print the corresponding value as a hexadecimal integer

DTrace printf works just like the C printf(3C) library routine or the shell printf(1) utility. If
you've never seen printf before, the formats and options are explained in detail in Chapter 6,
“Output Formatting.” You should read this chapter carefully even if you're already familiar with
printf from another language. In D, printf is provided as a built-in and some new format
conversions are available to you designed specifically for DTrace.

To help you write correct programs, the D compiler validates each printf format string against
its argument list. Try changing probefunc in the clause above to the integer 123. If you run the
modified program, you will see an error message telling you that the string format conversion
%s is not appropriate for use with an integer argument:

dtrace -q -s trussrw.d

dtrace: failed to compile script trussrw.d: line 4: printf()

argument #2 is incompatible with conversion #1 prototype:

conversion: %s

prototype: char [] or string (or use stringof)

argument: int

#

To print the name of the read or write system call and its arguments, use the printf statement:

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

Output Formatting

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0236

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1printf-1

to trace the name of the current probe function and the first three integer arguments to the
system call, available in the DTrace variables arg0, arg1, and arg2. For more information about
probe arguments, see “Variables” on page 52. The first argument to read(2) and write(2) is a file
descriptor, printed in decimal. The second argument is a buffer address, formatted as a
hexadecimal value. The final argument is the buffer size, formatted as a decimal value. The
format specifier %4d is used for the third argument to indicate that the value should be printed
using the %d format conversion with a minimum field width of 4 characters. If the integer is less
than 4 characters wide, printf will insert extra blanks to align the output.

To print the result of the system call and complete each line of output, use the following clause:

syscall::read:return,

syscall::write:return

/pid == $1/

{

printf("tt = %dn", arg1);

}

Notice that the syscall provider also publishes a probe named return for each system call in
addition to entry. The DTrace variable arg1 for the syscall return probes evaluates to the
system call's return value. The return value is formatted as a decimal integer. The character
sequences beginning with backwards slashes in the format string expand to tab (\t) and
newline (\n) respectively. These escape sequences help you print or record characters that are
difficult to type. D supports the same set of escape sequences as C, C++, and the Java
programming language. The complete list of escape sequences is found in “Types, Operators,
and Expressions” on page 40.

Arrays
D permits you to define variables that are integers, as well as other types to represent strings and
composite types called structs and unions. If you are familiar with C programming, you'll be
happy to know you can use any type in D that you can in C. If you're not a C expert, don't worry:
the different kinds of data types are all described in “Types, Operators, and Expressions” on
page 40. D also supports a special kind of variable called an associative array. An associative
array is similar to a normal array in that it associates a set of keys with a set of values, but in an
associative array the keys are not limited to integers of a fixed range.

D associative arrays can be indexed by a list of one or more values of any type. Together the
individual key values form a tuple that is used to index into the array and access or modify the
value corresponding to that key. Every tuple used with a given associative array must conform
to the same type signature; that is, each tuple key must be of the same length and have the same
key types in the same order. The value associated with each element of a given associative array
is also of a single fixed type for the entire array. For example, the following D statement defines a
new associative array a of value type int with the tuple signature string, int and stores the
integer value 456 in the array:

Arrays

Chapter 2 • D Programming Language 37

a["hello", 123] = 456;

Once an array is defined, its elements can be accessed like any other D variable. For example, the
following D statement modifies the array element previously stored in a by incrementing the
value from 456 to 457:

a["hello", 123]++;

The values of any array elements you have not yet assigned are set to zero. Now let's use an
associative array in a D program. Type the following program and save it in a file named
rwtime.d:

EXAMPLE 2–2 rwtime.d: Time read(2) and write(2) Calls

syscall::read:entry,

syscall::write:entry

/pid == $1/

{

ts[probefunc] = timestamp;

}

syscall::read:return,

syscall::write:return

/pid == $1 && ts[probefunc] != 0/

{

printf("%d nsecs", timestamp - ts[probefunc]);

}

As with trussrw.d, specify the ID of shell process when you execute rwtime.d. If you type a few
shell commands, you'll see the amount time elapsed during each system call. Type in the
following command and then press return a few times in your other shell:

dtrace -s rwtime.d ‘pgrep -n ksh‘
dtrace: script ’rwtime.d’ matched 4 probes

CPU ID FUNCTION:NAME

0 33 read:return 22644 nsecs

0 33 read:return 3382 nsecs

0 35 write:return 25952 nsecs

0 33 read:return 916875239 nsecs

0 35 write:return 27320 nsecs

0 33 read:return 9022 nsecs

0 33 read:return 3776 nsecs

0 35 write:return 17164 nsecs

...

^C

#

To trace the elapsed time for each system call, you must instrument both the entry to and return
from read(2) and write(2) and sample the time at each point. Then, on return from a given
system call, you must compute the difference between our first and second timestamp. You
could use separate variables for each system call, but this would make the program annoying to
extend to additional system calls. Instead, it's easier to use an associative array indexed by the
probe function name. Here is the first probe clause:

Arrays

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0238

syscall::read:entry,

syscall::write:entry

/pid == $1/

{

ts[probefunc] = timestamp;

}

This clause defines an array named ts and assigns the appropriate member the value of the
DTrace variable timestamp. This variable returns the value of an always-incrementing
nanosecond counter, similar to the Oracle Solaris library routine gethrtime(3C). Once the entry
timestamp is saved, the corresponding return probe samples timestamp again and reports the
difference between the current time and the saved value:

syscall::read:return,

syscall::write:return

/pid == $1 && ts[probefunc] != 0/

{

printf("%d nsecs", timestamp - ts[probefunc]);

}

The predicate on the return probe requires that DTrace is tracing the appropriate process and
that the corresponding entry probe has already fired and assigned tsprobefunc a non-zero
value. This trick eliminates invalid output when DTrace first starts. If your shell is already
waiting in a read(2) system call for input when you execute dtrace, the read:return probe will
fire without a preceding read:entry for this first read(2) and tsprobefunc will evaluate to zero
because it has not yet been assigned.

External Symbols and Types
DTrace instrumentation executes inside the Oracle Solaris operating system kernel, so in
addition to accessing special DTrace variables and probe arguments, you can also access kernel
data structures, symbols, and types. These capabilities enable advanced DTrace users,
administrators, service personnel, and driver developers to examine low-level behavior of the
operating system kernel and device drivers. The reading list at the start of this book includes
books that can help you learn more about Oracle Solaris operating system internals.

D uses the backquote character (‘) as a special scoping operator for accessing symbols that are
defined in the operating system and not in your D program. For example, the Oracle Solaris
kernel contains a C declaration of a system tunable named kmem_flags for enabling memory
allocator debugging features. See Oracle Solaris Tunable Parameters Reference Manual for more
information about kmem_flags. This tunable is declared in C in the kernel source code as
follows:

int kmem_flags;

To trace the value of this variable in a D program, you can write the D statement:

trace(‘kmem_flags);

External Symbols and Types

Chapter 2 • D Programming Language 39

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SOLTUNEPARAMREF

DTrace associates each kernel symbol with the type used for it in the corresponding operating
system C code, providing easy source-based access to the native operating system data
structures. Kernel symbol names are kept in a separate namespace from D variable and function
identifiers, so you never need to worry about these names conflicting with your D variables.

You have now completed a whirlwind tour of DTrace and you've learned many of the basic
DTrace building blocks necessary to build larger and more complex D programs. The following
chapters describe the complete set of rules for D and demonstrate how DTrace can make
complex performance measurements and functional analysis of the system easy. Later, you'll see
how to use DTrace to connect user application behavior to system behavior, giving you the
capability to analyze your entire software stack.

Types, Operators, and Expressions
D provides the ability to access and manipulate a variety of data objects: variables and data
structures can be created and modified, data objects defined in the operating system kernel and
user processes can be accessed, and integer, floating-point, and string constants can be declared.
D provides a superset of the ANSI-C operators that are used to manipulate objects and create
complex expressions. This chapter describes the detailed set of rules for types, operators, and
expressions.

Identifier Names and Keywords
D identifier names are composed of upper case and lower case letters, digits, and underscores
where the first character must be a letter or underscore. All identifier names beginning with an
underscore (_) are reserved for use by the D system libraries. You should avoid using such
names in your D programs. By convention, D programmers typically use mixed-case names for
variables and all upper case names for constants.

D language keywords are special identifiers reserved for use in the programming language
syntax itself. These names are always specified in lower case and may not be used for the names
of D variables.

TABLE 2–2 D Keywords

auto* goto* sizeof

break* if* static*

case* import*+ string+

char inline stringof+

const int struct

Types, Operators, and Expressions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0240

TABLE 2–2 D Keywords (Continued)
continue* long switch*

counter*+ offsetof+ this+

default* probe*+ translator+

do* provider*+ typedef

double register* union

else* restrict* unsigned

enum return+ void

extern self+ volatile

float short while*

for* signed xlate+

D reserves for use as keywords a superset of the ANSI-C keywords. The keywords reserved for
future use by the D language are marked with “*”. The D compiler will produce a syntax error if
you attempt to use a keyword that is reserved for future use. The keywords defined by D but not
defined by ANSI-C are marked with “+”. D provides the complete set of types and operators
found in ANSI-C. The major difference in D programming is the absence of control-flow
constructs. Keywords associated with control-flow in ANSI-C are reserved for future use in D.

Data Types and Sizes
D provides fundamental data types for integers and floating-point constants. Arithmetic may
only be performed on integers in D programs. Floating-point constants may be used to
initialize data structures, but floating-point arithmetic is not permitted in D. D provides a 32-bit
and 64-bit data model for use in writing programs. The data model used when executing your
program is the native data model associated with the active operating system kernel. You can
determine the native data model for your system using isainfo -b.

The names of the integer types and their sizes in each of the two data models are shown in the
following table. Integers are always represented in twos-complement form in the native
byte-encoding order of your system.

TABLE 2–3 D Integer Data Types

Type name 32–bit Size 64–bit Size

char 1 byte 1 byte

short 2 bytes 2 bytes

Types, Operators, and Expressions

Chapter 2 • D Programming Language 41

TABLE 2–3 D Integer Data Types (Continued)
Type name 32–bit Size 64–bit Size

int 4 bytes 4 bytes

long 4 bytes 8 bytes

long long 8 bytes 8 bytes

Integer types may be prefixed with the signed or unsigned qualifier. If no sign qualifier is
present, the type is assumed to be signed. The D compiler also provides the type aliases listed in
the following table:

TABLE 2–4 D Integer Type Aliases

Type Name Description

int8_t 1 byte signed integer

int16_t 2 byte signed integer

int32_t 4 byte signed integer

int64_t 8 byte signed integer

intptr_t Signed integer of size equal to a pointer

uint8_t 1 byte unsigned integer

uint16_t 2 byte unsigned integer

uint32_t 4 byte unsigned integer

uint64_t 8 byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

These type aliases are equivalent to using the name of the corresponding base type in the
previous table and are appropriately defined for each data model. For example, the type name
uint8_t is an alias for the type unsigned char. See “Type and Constant Definitions” on page 84
for information on how to define your own type aliases for use in your D programs.

Note – Note: The predefined type aliases cannot be used in files included by the preprocessor.

D provides floating-point types for compatibility with ANSI-C declarations and types.
Floating-point operators are not supported in D, but floating-point data objects can be traced
and formatted using the printf function. The floating-point types listed in the following table
may be used:

Types, Operators, and Expressions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0242

TABLE 2–5 D Floating-Point Data Types

Type Name 32–bit Size 64–bit Size

float 4 bytes 4 bytes

double 8 bytes 8 bytes

long double 16 bytes 16 bytes

D also provides the special type string to represent ASCII strings. Strings are discussed in more
detail in “Strings” on page 71.

Constants
Integer constants can be written in decimal (12345), octal (012345), or hexadecimal (0x12345).
Octal (base 8) constants must be prefixed with a leading zero. Hexadecimal (base 16) constants
must be prefixed with either 0x or 0X. Integer constants are assigned the smallest type among
int, long, and long long that can represent their value. If the value is negative, the signed
version of the type is used. If the value is positive and too large to fit in the signed type
representation, the unsigned type representation is used. You can apply one of the following
suffixes to any integer constant to explicitly specify its D type:

u or U unsigned version of the type selected by the compiler

l or L long

ul or UL unsigned long

ll or LL long long

ull or ULL unsigned long long

Floating-point constants are always written in decimal and must contain either a decimal point
(12.345) or an exponent (123e45) or both (123.34e-5). Floating-point constants are assigned
the type double by default. You can apply one of the following suffixes to any floating-point
constant to explicitly specify its D type:

f or F float

l or L long double

Character constants are written as a single character or escape sequence enclosed in a pair of
single quotes ('a'). Character constants are assigned the type int and are equivalent to an

Types, Operators, and Expressions

Chapter 2 • D Programming Language 43

integer constant whose value is determined by that character's value in the ASCII character set.
You can refer to ascii(5) for a list of characters and their values. You can also use any of the
special escape sequences shown in the following table in your character constants. D supports
the same escape sequences found in ANSI-C.

TABLE 2–6 D Character Escape Sequences

\a alert \\ backslash

\b backspace \? question mark

\f formfeed \’ single quote

\n newline \" double quote

\r carriage return \0oo octal value 0_oo_

\t horizontal tab \xhh hexadecimal value 0x_hh_

\v vertical tab \0 null character

You can include more than one character specifier inside single quotes to create integers whose
individual bytes are initialized according to the corresponding character specifiers. The bytes
are read left-to-right from your character constant and assigned to the resulting integer in the
order corresponding to the native endian-ness of your operating environment. Up to eight
character specifiers can be included in a single character constant.

Strings constants of any length can be composed by enclosing them in a pair of double quotes
("hello"). A string constant may not contain a literal newline character. To create strings
containing newlines, use the \n escape sequence instead of a literal newline. String constants
may contain any of the special character escape sequences shown for character constants above.
Similar to ANSI-C, strings are represented as arrays of characters terminated by a null character
(\0) that is implicitly added to each string constant that you declare. String constants are
assigned the special D type string. The D compiler provides a set of special features for
comparing and tracing character arrays that are declared as strings, as described in “Strings” on
page 71.

Arithmetic Operators
D provides the binary arithmetic operators shown in the following table for use in your
programs. These operators all have the same meaning for integers as they do in ANSI-C.

TABLE 2–7 D Binary Arithmetic Operators

+ integer addition

- integer subtraction

Types, Operators, and Expressions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0244

TABLE 2–7 D Binary Arithmetic Operators (Continued)
* integer multiplication

/ integer division

% integer modulus

Arithmetic in D may only be performed on integer operands, or on pointers, as discussed in
“Pointers and Arrays” on page 63. Arithmetic may not be performed on floating-point
operands in D programs. The DTrace execution environment does not take any action on
integer overflow or underflow. You must check for these conditions yourself in situations where
overflow and underflow can occur.

The DTrace execution environment does automatically check for and report division by zero
errors resulting from improper use of the / and % operators. If a D program executes an invalid
division operation, DTrace will automatically disable the affected instrumentation and report
the error. Errors detected by DTrace have no effect on other DTrace users or on the operating
system kernel, so you don't need to worry about causing any damage if your D program
inadvertently contains one of these errors.

In addition to these binary operators, the + and - operators may also be used as unary operators
as well; these operators have higher precedence than any of the binary arithmetic operators. The
order of precedence and associativity properties for all the D operators is presented in
Table 2–8. You can control precedence by grouping expressions in parentheses ().

Relational Operators
D provides the binary relational operators shown in the following table for use in your
programs. These operators all have the same meaning as they do in ANSI-C.

TABLE 2–8 D Relational Operators

< left-hand operand is less than right-operand

<= left-hand operand is less than or equal to right-hand operand

> left-hand operand is greater than right-hand operand

>= left-hand operand is greater than or equal to right-hand operand

== left-hand operand is equal to right-hand operand

!= left-hand operand is not equal to right-hand operand

Relational operators are most frequently used to write D predicates. Each operator evaluates to
a value of type int which is equal to one if the condition is true, or zero if it is false.

Types, Operators, and Expressions

Chapter 2 • D Programming Language 45

Relational operators may be applied to pairs of integers, pointers, or strings. If pointers are
compared, the result is equivalent to an integer comparison of the two pointers interpreted as
unsigned integers. If strings are compared, the result is determined as if by performing a
strcmp(3C) on the two operands. Here are some example D string comparisons and their
results:

"coffee" < "espresso" ... returns 1 (true)

"coffee" == "coffee" ... returns 1 (true)

"coffee" >= "mocha" ... returns 0 (false)

Relational operators may also be used to compare a data object associated with an enumeration
type with any of the enumerator tags defined by the enumeration. Enumerations are a facility
for creating named integer constants and are described in more detail in “Type and Constant
Definitions” on page 84

Logical Operators
D provides the following binary logical operators for use in your programs. The first two
operators are equivalent to the corresponding ANSI-C operators.

TABLE 2–9 D Logical Operators

&& logical AND: true if both operands are true

|| logical OR: true if one or both operands are true

^^ logical XOR: true if exactly one operand is true

Logical operators are most frequently used in writing D predicates. The logical AND operator
performs short-circuit evaluation: if the left-hand operand is false, the right-hand expression is
not evaluated. The logical OR operator also performs short-circuit evaluation: if the left-hand
operand is true, the right-hand expression is not evaluated. The logical XOR operator does not
short-circuit: both expression operands are always evaluated.

In addition to the binary logical operators, the unary ! operator may be used to perform a
logical negation of a single operand: it converts a zero operand into a one, and a non-zero
operand into a zero. By convention, D programmers use ! when working with integers that are
meant to represent boolean values, and == 0 when working with non-boolean integers,
although both expressions are equivalent in meaning.

Types, Operators, and Expressions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0246

The logical operators may be applied to operands of integer or pointer types. The logical
operators interpret pointer operands as unsigned integer values. As with all logical and
relational operators in D, operands are true if they have a non-zero integer value and false if they
have a zero integer value.

Bitwise Operators
D provides the following binary operators for manipulating individual bits inside of integer
operands. These operators all have the same meaning as in ANSI-C.

TABLE 2–10 D Bitwise Operators

& bitwise AND

| bitwise OR

^ bitwise XOR

<< shift the left-hand operand left by the number of bits specified by the right-hand operand

>> shift the left-hand operand right by the number of bits specified by the right-hand operand

The binary & operator is used to clear bits from an integer operand. The binary | operator is
used to set bits in an integer operand. The binary ^ operator returns one in each bit position
where exactly one of the corresponding operand bits is set.

The shift operators are used to move bits left or right in a given integer operand. Shifting left fills
empty bit positions on the right-hand side of the result with zeroes. Shifting right using an
unsigned integer operand fills empty bit positions on the left-hand side of the result with zeroes.
Shifting right using a signed integer operand fills empty bit positions on the left-hand side with
the value of the sign bit, also known as an arithmetic shift operation.

Shifting an integer value by a negative number of bits or by a number of bits larger than the
number of bits in the left-hand operand itself produces an undefined result. The D compiler will
produce an error message if the compiler can detect this condition when you compile your D
program.

In addition to the binary logical operators, the unary ~ operator may be used to perform a
bitwise negation of a single operand: it converts each zero bit in the operand into a one bit, and
each one bit in the operand into a zero bit.

Types, Operators, and Expressions

Chapter 2 • D Programming Language 47

Assignment Operators
D provides the following binary assignment operators for modifying D variables. You can only
modify D variables and arrays. Kernel data objects and constants may not be modified using the
D assignment operators. The assignment operators have the same meaning as they do in
ANSI-C.

TABLE 2–11 D Assignment Operators

= set the left-hand operand equal to the right-hand expression value

+= increment the left-hand operand by the right-hand expression value

-= decrement the left-hand operand by the right-hand expression value

*= multiply the left-hand operand by the right-hand expression value

/= divide the left-hand operand by the right-hand expression value

%= modulo the left-hand operand by the right-hand expression value

|= bitwise OR the left-hand operand with the right-hand expression value

&= bitwise AND the left-hand operand with the right-hand expression value

^= bitwise XOR the left-hand operand with the right-hand expression value

<<= shift the left-hand operand left by the number of bits specified by the right-hand expression value

>>= shift the left-hand operand right by the number of bits specified by the right-hand expression value

Aside from the assignment operator =, the other assignment operators are provided as
shorthand for using the = operator with one of the other operators described earlier. For
example, the expression x = x + 1 is equivalent to the expression x += 1, except that the
expression x is evaluated once. These assignment operators obey the same rules for operand
types as the binary forms described earlier.

The result of any assignment operator is an expression equal to the new value of the left-hand
expression. You can use the assignment operators or any of the operators described so far in
combination to form expressions of arbitrary complexity. You can use parentheses () to group
terms in complex expressions.

Increment and Decrement Operators
D provides the special unary ++ and -- operators for incrementing and decrementing pointers
and integers. These operators have the same meaning as in ANSI-C. These operators can only
be applied to variables, and may be applied either before or after the variable name. If the

Types, Operators, and Expressions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0248

operator appears before the variable name, the variable is first modified and then the resulting
expression is equal to the new value of the variable. For example, the following two expressions
produce identical results:

x += 1; y = ++x;

y = x;

If the operator appears after the variable name, then the variable is modified after its current
value is returned for use in the expression. For example, the following two expressions produce
identical results:

y = x; y = x--;

x -= 1;

You can use the increment and decrement operators to create new variables without declaring
them. If a variable declaration is omitted and the increment or decrement operator is applied to
a variable, the variable is implicitly declared to be of type int64_t.

The increment and decrement operators can be applied to integer or pointer variables. When
applied to integer variables, the operators increment or decrement the corresponding value by
one. When applied to pointer variables, the operators increment or decrement the pointer
address by the size of the data type referenced by the pointer. Pointers and pointer arithmetic in
D are discussed in “Pointers and Arrays” on page 63.

Conditional Expressions
Although D does not provide support for if-then-else constructs, it does provide support for
simple conditional expressions using the ? and : operators. These operators enable a triplet of
expressions to be associated where the first expression is used to conditionally evaluate one of
the other two. For example, the following D statement could be used to set a variable x to one of
two strings depending on the value of i:

x = i == 0 ? "zero" : "non-zero";

In this example, the expression i == 0 is first evaluated to determine whether it is true or false.
If the first expression is true, the second expression is evaluated and the ?: expression returns its
value. If the first expression is false, the third expression is evaluated and the ?: expression
return its value.

As with any D operator, you can use multiple ?: operators in a single expression to create more
complex expressions. For example, the following expression would take a char variable c

Types, Operators, and Expressions

Chapter 2 • D Programming Language 49

containing one of the characters 0-9, a-z, or A-Z and return the value of this character when
interpreted as a digit in a hexadecimal (base 16) integer:

hexval = (c >= ’0’ && c <= ’9’) ? c - ’0’ :

(c >= ’a’ && c <= ’z’) ? c + 10 - ’a’ : c + 10 - ’A’;

The first expression used with ?: must be a pointer or integer in order to be evaluated for its
truth value. The second and third expressions may be of any compatible types. You may not
construct a conditional expression where, for example, one path returns a string and another
path returns an integer. The second and third expressions also may not invoke a tracing
function such as trace or printf. If you want to conditionally trace data, use a predicate
instead, as discussed in “Predicates ” on page 25.

Type Conversions
When expressions are constructed using operands of different but compatible types, type
conversions are performed in order to determine the type of the resulting expression. The D
rules for type conversions are the same as the arithmetic conversion rules for integers in
ANSI-C. These rules are sometimes referred to as the usual arithmetic conversions.

A simple way to describe the conversion rules is as follows: each integer type is ranked in the
order char, short, int, long, long long, with the corresponding unsigned types assigned a
rank above its signed equivalent but below the next integer type. When you construct an
expression using two integer operands such as x + y and the operands are of different integer
types, the operand type with the highest rank is used as the result type.

If a conversion is required, the operand of lower rank is first promoted to the type of higher
rank. Promotion does not actually change the value of the operand: it simply extends the value
to a larger container according to its sign. If an unsigned operand is promoted, the unused
high-order bits of the resulting integer are filled with zeroes. If a signed operand is promoted,
the unused high-order bits are filled by performing sign extension. If a signed type is converted
to an unsigned type, the signed type is first sign-extended and then assigned the new unsigned
type determined by the conversion.

Integers and other types can also be explicitly cast from one type to another. In D, pointers and
integers can be cast to any integer or pointer types, but not to other types. Rules for casting and
promoting strings and character arrays are discussed in “Strings” on page 71. An integer or
pointer cast is formed using an expression such as:

y = (int)x;

where the destination type is enclosed in parentheses and used to prefix the source expression.
Integers are cast to types of higher rank by performing promotion. Integers are cast to types of
lower rank by zeroing the excess high-order bits of the integer.

Because D does not permit floating-point arithmetic, no floating-point operand conversion or
casting is permitted and no rules for implicit floating-point conversion are defined.

Types, Operators, and Expressions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0250

Precedence
The D rules for operator precedence and associativity are described in the following table.
These rules are somewhat complex, but are necessary to provide precise compatibility with the
ANSI-C operator precedence rules. The table entries are in order from highest precedence to
lowest precedence.

TABLE 2–12 D Operator Precedence and Associativity

Operators Associativity

() [] ->. left to right

! ~ ++ - + - * & (type) sizeof stringof offsetof xlate right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

^^ left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^= ?= <<= >>= right to left

, left to right

There are several operators in the table that we have not yet discussed; these will be covered in
subsequent chapters:

sizeof Computes the size of an object (“Structs and Unions” on page 74)

offsetof Computes the offset of a type member (“Structs and Unions” on page 74)

stringof Converts the operand to a string (“Strings” on page 71)

Types, Operators, and Expressions

Chapter 2 • D Programming Language 51

xlate Translates a data type (Chapter 19, “Translators”)

unary & Computes the address of an object (“Pointers and Arrays” on page 63)

unary * Dereferences a pointer to an object (“Pointers and Arrays” on page 63)

-> and . Accesses a member of a structure or union type (“Structs and Unions” on page 74)

The comma (,) operator listed in the table is for compatibility with the ANSI-C comma
operator, which can be used to evaluate a set of expressions in left-to-right order and return the
value of the right most expression. This operator is provided strictly for compatibility with C
and should generally not be used.

The () entry in the table of operator precedence represents a function call; examples of calls to
functions such as printf and trace are presented in Chapter 6, “Output Formatting.” A
comma is also used in D to list arguments to functions and to form lists of associative array keys.
This comma is not the same as the comma operator and does not guarantee left-to-right
evaluation. The D compiler provides no guarantee as to the order of evaluation of arguments to
a function or keys to an associative array. You should be careful of using expressions with
interacting side-effects, such as the pair of expressions i and i++, in these contexts.

The [] entry in the table of operator precedence represents an array or associative array
reference. Examples of associative arrays are presented in “Associative Arrays” on page 54. A
special kind of associative array called an aggregation is described in Chapter 3, “Aggregations.”
The [] operator can also be used to index into fixed-size C arrays as well, as described in
“Pointers and Arrays” on page 63.

Variables
D provides two basic types of variables for use in your tracing programs: scalar variables and
associative arrays. This chapter explores the rules for D variables in more detail and how
variables can be associated with different scopes. A special kind of array variable, called an
aggregation, is discussed in Chapter 3, “Aggregations.”

Note –

■ Scalar variables and associative arrays have a global scope and are not multi-processor safe
(MP-safe). It means that the value of these variables can be changed by more than one
processor and thus there are chances that the variable can became corrupt.

■ Aggregations are MP-safe even though they have a global scope.

■ “Scalar Variables” on page 53
■ “Associative Arrays” on page 54
■ “Thread-Local Variables” on page 55

Variables

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0252

■ “Clause-Local Variables” on page 58
■ “Built-in Variables” on page 60
■ “External Variables” on page 62

Scalar Variables
Scalar variables are used to represent individual fixed-size data objects, such as integers and
pointers. Scalar variables can also be used for fixed-size objects that are composed of one or
more primitive or composite types. D provides the ability to create both arrays of objects as well
as composite structures. DTrace also represents strings as fixed-size scalars by permitting them
to grow up to a predefined maximum length. Control over string length in your D program is
discussed further in “Strings” on page 71.

Scalar variables are created automatically the first time you assign a value to a previously
undefined identifier in your D program. For example, to create a scalar variable named x of type
int, you can simply assign it a value of type int in any probe clause:

BEGIN

{

x = 123;

}

Scalar variables created in this manner are global variables: their name and data storage location
is defined once and is visible in every clause of your D program. Any time you reference the
identifier x, you are referring to a single storage location associated with this variable.

Unlike ANSI-C, D does not require explicit variable declarations. If you do want to declare a
global variable to assign its name and type explicitly before using it, you can place a declaration
outside of the probe clauses in your program as shown in the following example. Explicit
variable declarations are not necessary in most D programs, but are sometimes useful when you
want to carefully control your variable types or when you want to begin your program with a set
of declarations and comments documenting your program's variables and their meanings.

int x; /* declare an integer x for later use */

BEGIN

{

x = 123;

...

}

Unlike ANSI-C declarations, D variable declarations may not assign initial values. You must
use a BEGIN probe clause to assign any initial values. All global variable storage is filled with
zeroes by DTrace before you first reference the variable.

The D language definition places no limit on the size and number of D variables, but limits are
defined by the DTrace implementation and by the memory available on your system. The D

Variables

Chapter 2 • D Programming Language 53

compiler will enforce any of the limitations that can be applied at the time you compile your
program. You can learn more about how to tune options related to program limits in
Chapter 10, “Options and Tunables.”

Associative Arrays
Associative arrays are used to represent collections of data elements that can be retrieved by
specifying a name called a key. D associative array keys are formed by a list of scalar expression
values called a tuple. You can think of the array tuple itself as an imaginary parameter list to a
function that is called to retrieve the corresponding array value when you reference the array.
Each D associative array has a fixed key signature consisting of a fixed number of tuple elements
where each element has a given, fixed type. You can define different key signatures for each
array in your D program.

Associative arrays differ from normal, fixed-size arrays in that they have no predefined limit on
the number of elements, the elements can be indexed by any tuple as opposed to just using
integers as keys, and the elements are not stored in preallocated consecutive storage locations.
Associative arrays are useful in situations where you would use a hash table or other simple
dictionary data structure in a C, C++, or Java language program. Associative arrays give you the
ability to create a dynamic history of events and state captured in your D program that you can
use to create more complex control flows.

To define an associative array, you write an assignment expression of the form:

name [key] = expression ;

where name is any valid D identifier and key is a comma-separated list of one or more
expressions. For example, the following statement defines an associative array a with key
signature [int, string] and stores the integer value 456 in a location named by the tuple [
123, "hello"]:

a[123, "hello"] = 456;

The type of each object contained in the array is also fixed for all elements in a given array.
Because a was first assigned using the integer 456, every subsequent value stored in the array
will also be of type int. You can use any of the assignment operators defined in “Types,
Operators, and Expressions” on page 40 to modify associative array elements, subject to the
operand rules defined for each operator. The D compiler will produce an appropriate error
message if you attempt an incompatible assignment. You can use any type with an associative
array key or value that you can use with a scalar variable. You cannot nest an associative array
within another associative array as a key or value.

You can reference an associative array using any tuple that is compatible with the array key
signature. The rules for tuple compatibility are similar to those for function calls and variable

Variables

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0254

assignments: the tuple must be of the same length and each type in the list of actual parameters
must be compatible with the corresponding type in the formal key signature. For example, if an
associative array x is defined as follows:

x[123ull] = 0;

then the key signature is of type unsigned long long and the values are of type int. This array
can also be referenced using the expression x[’a’] because the tuple consisting of the character
constant 'a' of type int and length one is compatible with the key signature unsigned long long

according to the arithmetic conversion rules described in “Type Conversions” on page 50.

If you need to explicitly declare a D associative array before using it, you can create a declaration
of the array name and key signature outside of the probe clauses in your program source code:

int x[unsigned long long, char];

BEGIN

{

x[123ull, ’a’] = 456;

}

Once an associative array is defined, references to any tuple of a compatible key signature are
permitted, even if the tuple in question has not been previously assigned. Accessing an
unassigned associative array element is defined to return a zero-filled object. A consequence of
this definition is that underlying storage is not allocated for an associative array element until a
non-zero value is assigned to that element. Conversely, assigning an associative array element
to zero causes DTrace to deallocate the underlying storage. This behavior is important because
the dynamic variable space out of which associative array elements are allocated is finite; if it is
exhausted when an allocation is attempted, the allocation will fail and an error message will be
generated indicating a dynamic variable drop. Always assign zero to associative array elements
that are no longer in use. See Chapter 10, “Options and Tunables,” for other techniques to
eliminate dynamic variable drops.

Thread-Local Variables
DTrace provides the ability to declare variable storage that is local to each operating system
thread, as opposed to the global variables demonstrated earlier in this chapter. Thread-local
variables are useful in situations where you want to enable a probe and mark every thread that
fires the probe with some tag or other data. Creating a program to solve this problem is easy in
D because thread-local variables share a common name in your D code but refer to separate
data storage associated with each thread. Thread-local variables are referenced by applying the
-> operator to the special identifier self:

syscall::read:entry

{

self->read = 1;

}

Variables

Chapter 2 • D Programming Language 55

This D fragment example enables the probe on the read(2) system call and associates a
thread-local variable named read with each thread that fires the probe. Similar to global
variables, thread-local variables are created automatically on their first assignment and assume
the type used on the right-hand side of the first assignment statement (in this example, int).

Each time the variable self->read is referenced in your D program, the data object referenced
is the one associated with the operating system thread that was executing when the
corresponding DTrace probe fired. You can think of a thread-local variable as an associative
array that is implicitly indexed by a tuple that describes the thread's identity in the system. A
thread's identity is unique over the lifetime of the system: if the thread exits and the same
operating system data structure is used to create a new thread, this thread does not reuse the
same DTrace thread-local storage identity.

Once you have defined a thread-local variable, you can reference it for any thread in the system
even if the variable in question has not been previously assigned for that particular thread. If a
thread's copy of the thread-local variable has not yet been assigned, the data storage for the copy
is defined to be filled with zeroes. As with associative array elements, underlying storage is not
allocated for a thread-local variable until a non-zero value is assigned to it. Also as with
associative array elements, assigning zero to a thread-local variable causes DTrace to deallocate
the underlying storage. Always assign zero to thread-local variables that are no longer in use.
See Chapter 10, “Options and Tunables,” for other techniques to fine-tune the dynamic variable
space from which thread-local variables are allocated.

Thread-local variables of any type can be defined in your D program, including associative
arrays. Some example thread-local variable definitions are:

self->x = 123; /* integer value */

self->s = "hello"; /* string value */

self->a[123, ’a’] = 456; /* associative array */

Like any D variable, you don't need to explicitly declare thread-local variables before using
them. If you want to create a declaration anyway, you can place one outside of your program
clauses by prepending the keyword self:

self int x; /* declare int x as a thread-local variable */

syscall::read:entry

{

self->x = 123;

}

Thread-local variables are kept in a separate namespace from global variables so you can reuse
names. Remember that x and self->x are not the same variable if you overload names in your
program! The following example shows how to use thread-local variables. In a text editor, type
in the following program and save it in a file named rtime.d:

Variables

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0256

EXAMPLE 2–3 rtime.d: Compute Time Spent in read(2)

syscall::read:entry

{

self->t = timestamp;

}

syscall::read:return

/self->t != 0/

{

printf("%d/%d spent %d nsecs in read(2)\n",
pid, tid, timestamp - self->t);

/*

* We’re done with this thread-local variable; assign zero to it to

* allow the DTrace runtime to reclaim the underlying storage.

*/

self->t = 0;

}

Now go to your shell and start the program running. Wait a few seconds and you should start to
see some output. If no output appears, try running a few commands.

dtrace -q -s rtime.d

100480/1 spent 11898 nsecs in read(2)

100441/1 spent 6742 nsecs in read(2)

100480/1 spent 4619 nsecs in read(2)

100452/1 spent 19560 nsecs in read(2)

100452/1 spent 3648 nsecs in read(2)

100441/1 spent 6645 nsecs in read(2)

100452/1 spent 5168 nsecs in read(2)

100452/1 spent 20329 nsecs in read(2)

100452/1 spent 3596 nsecs in read(2)

...

^C

#

rtime.d uses a thread-local variable named t to capture a timestamp on entry to read(2) by any
thread. Then, in the return clause, the program prints out the amount of time spent in read(2)
by subtracting self->t from the current timestamp. The built-in D variables pid and tid

report the process ID and thread ID of the thread performing the read(2). Because self->t is
no longer needed once this information is reported, it is then assigned 0 to allow DTrace to
reuse the underlying storage associated with t for the current thread.

Typically you will see many lines of output without even doing anything because, behind the
scenes, server processes and daemons are executing read(2) all the time even when you aren't
doing anything. Try changing the second clause of rtime.d to use the execname variable to
print out the name of the process performing a read(2) to learn more:

printf("%s/%d spent %d nsecs in read(2)\n",
execname, tid, timestamp - self->t);

If you find a process that's of particular interest, add a predicate to learn more about its read(2)
behavior:

Variables

Chapter 2 • D Programming Language 57

syscall::read:entry

/execname == "Xsun"/
{

self->t = timestamp;

}

Clause-Local Variables
You can also define D variables whose storage is reused for each D program clause. Clause-local
variables are similar to automatic variables in a C, C++, or Java language program that are active
during each invocation of a function. Like all D program variables, clause-local variables are
created on their first assignment. These variables can be referenced and assigned by applying
the -> operator to the special identifier this:

BEGIN

{

this->secs = timestamp / 1000000000;

...

}

If you want to explicitly declare a clause-local variable before using it, you can do so using the
this keyword:

this int x; /* an integer clause-local variable */

this char c; /* a character clause-local variable */

BEGIN

{

this->x = 123;

this->c = ’D’;

}

Clause-local variables are only active for the lifetime of a given probe clause. After DTrace
performs the actions associated with your clauses for a given probe, the storage for all
clause-local variables is reclaimed and reused for the next clause. For this reason, clause-local
variables are the only D variables that are not initially filled with zeroes. Note that if your
program contains multiple clauses for a single probe, any clause-local variables will remain
intact as the clauses are executed, as shown in the following example:

EXAMPLE 2–4 clause.d: Clause-local Variables

int me; /* an integer global variable */

this int foo; /* an integer clause-local variable */

tick-1sec

{

/*

* Set foo to be 10 if and only if this is the first clause executed.

*/

this->foo = (me % 3 == 0) ? 10 : this->foo;

printf("Clause 1 is number %d; foo is %d\n", me++ % 3, this->foo++);

Variables

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0258

EXAMPLE 2–4 clause.d: Clause-local Variables (Continued)

}

tick-1sec

{

/*

* Set foo to be 20 if and only if this is the first clause executed.

*/

this->foo = (me % 3 == 0) ? 20 : this->foo;

printf("Clause 2 is number %d; foo is %d\n", me++ % 3, this->foo++);

}

tick-1sec

{

/*

* Set foo to be 30 if and only if this is the first clause executed.

*/

this->foo = (me % 3 == 0) ? 30 : this->foo;

printf("Clause 3 is number %d; foo is %d\n", me++ % 3, this->foo++);

}

Because the clauses are always executed in program order, and because clause-local variables
are persistent across different clauses enabling the same probe, running the above program will
always produce the same output:

dtrace -q -s clause.d

Clause 1 is number 0; foo is 10

Clause 2 is number 1; foo is 11

Clause 3 is number 2; foo is 12

Clause 1 is number 0; foo is 10

Clause 2 is number 1; foo is 11

Clause 3 is number 2; foo is 12

Clause 1 is number 0; foo is 10

Clause 2 is number 1; foo is 11

Clause 3 is number 2; foo is 12

Clause 1 is number 0; foo is 10

Clause 2 is number 1; foo is 11

Clause 3 is number 2; foo is 12

^C

While clause-local variables are persistent across clauses enabling the same probe, their values
are undefined in the first clause executed for a given probe. Be sure to assign each clause-local
variable an appropriate value before using it, or your program may have unexpected results.

Clause-local variables can be defined using any scalar variable type, but associative arrays may
not be defined using clause-local scope. The scope of clause-local variables only applies to the
corresponding variable data, not to the name and type identity defined for the variable. Once a
clause-local variable is defined, this name and type signature may be used in any subsequent D
program clause. You cannot rely on the storage location to be the same across different clauses.

You can use clause-local variables to accumulate intermediate results of calculations or as
temporary copies of other variables. Access to a clause-local variable is much faster than access

Variables

Chapter 2 • D Programming Language 59

to an associative array. Therefore, if you need to reference an associative array value multiple
times in the same D program clause, it is more efficient to copy it into a clause-local variable first
and then reference the local variable repeatedly.

Built-in Variables
The following table provides a complete list of D built-in variables. All of these variables are
scalar global variables; no thread-local or clause-local variables or built-in associative arrays are
currently defined by D.

TABLE 2–13 DTrace Built-in Variables

int64_t

arg0, ...,

arg9

The first ten input arguments to a probe represented as raw 64-bit integers. If fewer than ten
arguments are passed to the current probe, the remaining variables return zero.

args[] The typed arguments to the current probe, if any. The args[] array is accessed using an
integer index, but each element is defined to be the type corresponding to the given probe
argument. For example, if args[] is referenced by a read(2) system call probe, args[0] is of
type int, args[1] is of type void *, and args[2] is of type size_t.

uintptr_t

caller

The program counter location of the current kernel thread at the time the probe fired.

uintptr_t

ucaller

The program counter location of the current user thread at the time the probe fired.

chipid_t

chip

The CPU chip identifier for the current physical chip. See “sched Provider” on page 255 for
more information.

processorid_t

cpu

The CPU identifier for the current CPU. See “sched Provider” on page 255 for more
information.

cpuinfo_t

*curcpu

The CPU information for the current CPU. See “sched Provider” on page 255 for more
information.

lwpsinfo_t

*curlwpsinfo

The lightweight process (LWP) state of the LWP associated with the current thread. This
structure is described in further detail in the proc(4) man page.

psinfo_t

*curpsinfo

The process state of the process associated with the current thread. This structure is described
in further detail in the proc(4) man page.

kthread_t

*curthread

The address of the operating system kernel's internal data structure for the current thread, the
kthread_t. The kthread_t is defined in <sys/thread.h>. Refer to Solaris Internals for more
information on this variable and other operating system data structures.

string cwd The name of the current working directory of the process associated with the current thread.

uint_t epid The enabled probe ID (EPID) for the current probe. This integer uniquely identifies a
particular probe that is enabled with a specific predicate and set of actions.

Variables

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0260

TABLE 2–13 DTrace Built-in Variables (Continued)
int errno The error value returned by the last system call executed by this thread.

string

execname

The name that was passed to exec(2) to execute the current process.

gid_t gid The real group ID of the current process.

uint_t id The probe ID for the current probe. This ID is the system-wide unique identifier for the
probe as published by DTrace and listed in the output of dtrace -l.

uint_t ipl The interrupt priority level (IPL) on the current CPU at probe firing time. Refer to Solaris
Internals for more information on interrupt levels and interrupt handling in the Solaris
operating system kernel.

lgrp_id_t

lgrp

The latency group ID for the latency group of which the current CPU is a member. See
“sched Provider” on page 255 for more information.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

string

probefunc

The function name portion of the current probe's description.

string

probemod

The module name portion of the current probe's description.

string

probename

The name portion of the current probe's description.

string

probeprov

The provider name portion of the current probe's description.

psetid_t

pset

The processor set ID for the processor set containing the current CPU. See “sched Provider”
on page 255 for more information.

string root The name of the root directory of the process associated with the current thread.

uint_t

stackdepth

The current thread's stack frame depth at probe firing time.

id_t tid The thread ID of the current thread. For threads associated with user processes, this value is
equal to the result of a call to pthread_self(3C).

uint64_t

timestamp

The current value of a nanosecond timestamp counter. This counter increments from an
arbitrary point in the past and should only be used for relative computations.

uid_t uid The real user ID of the current process.

uint64_t

uregs[]

The current thread's saved user-mode register values at probe firing time. Use of the uregs[]
array is discussed in Chapter 12, “User Process Tracing.”

Variables

Chapter 2 • D Programming Language 61

TABLE 2–13 DTrace Built-in Variables (Continued)
uint64_t

vtimestamp

The current value of a nanosecond timestamp counter that is virtualized to the amount of
time that the current thread has been running on a CPU, minus the time spent in DTrace
predicates and actions. This counter increments from an arbitrary point in the past and
should only be used for relative time computations.

uint64_t

walltimestamp

The current number of nanoseconds since 00:00 Universal Coordinated Time, January 1,
1970.

Functions built into the D language such as trace are discussed in Chapter 4, “Actions and
Subroutines.”

External Variables
D uses the backquote character (‘) as a special scoping operator for accessing variables that are
defined in the operating system and not in your D program. For example, the Solaris kernel
contains a C declaration of a system tunable named kmem_flags for enabling memory allocator
debugging features. See the Oracle Solaris Tunable Parameters Reference Manual for more
information about kmem_flags. This tunable is declared as a C variable in the kernel source
code as follows:

int kmem_flags;

To access the value of this variable in a D program, use the D notation:

‘kmem_flags

DTrace associates each kernel symbol with the type used for the symbol in the corresponding
operating system C code, providing easy source-based access to the native operating system
data structures. In order to use external operating system variables, you will need access to the
corresponding operating system source code.

When you access external variables from a D program, you are accessing the internal
implementation details of another program such as the operating system kernel or its device
drivers. These implementation details do not form a stable interface upon which you can rely!
Any D programs you write that depend on these details might cease to work when you next
upgrade the corresponding piece of software. For this reason, external variables are typically
used by kernel and device driver developers and service personnel in order to debug
performance or functionality problems using DTrace. To learn more about the stability of your
D programs, refer to Chapter 18, “Stability.”

Kernel symbol names are kept in a separate namespace from D variable and function identifiers,
so you never need to worry about these names conflicting with your D variables. When you
prefix a variable with a backquote, the D compiler searches the known kernel symbols in order
using the list of loaded modules in order to find a matching variable definition. Because the

Variables

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0262

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=SOLTUNEPARAMREF

Solaris kernel supports dynamically loaded modules with separate symbol namespaces, the
same variable name might be used more than once in the active operating system kernel. You
can resolve these name conflicts by specifying the name of the kernel module whose variable
should be accessed prior to the backquote in the symbol name. For example, each loadable
kernel module typically provides a _fini(9E) function, so to refer to the address of the _fini
function provided by a kernel module named foo, you would write:

foo‘_fini

You can apply any of the D operators to external variables, except those that modify values,
subject to the usual rules for operand types. When you launch DTrace, the D compiler loads the
set of variable names corresponding to the active kernel modules, so declarations of these
variables are not required. You may not apply any operator to an external variable that modifies
its value, such as = or +=. For safety reasons, DTrace prevents you from damaging or corrupting
the state of the software you are observing.

Pointers and Arrays
Pointers are memory addresses of data objects in the operating system kernel or in the address
space of a user process. D provides the ability to create and manipulate pointers and store them
in variables and associative arrays. This chapter describes the D syntax for pointers, operators
that can be applied to create or access pointers, and the relationship between pointers and
fixed-size scalar arrays. Also discussed are issues relating to the use of pointers in different
address spaces.

Note – If you are an experienced C or C++ programmer, you can skim most of this chapter as the
D pointer syntax is the same as the corresponding ANSI-C syntax. You should read “Pointers to
DTrace Objects” on page 69 and “Pointers and Addresses” on page 63 as they describe features
and issues specific to DTrace.

Pointers and Addresses
The Oracle Solaris Operating System uses a technique called virtual memory to provide each
user process with its own virtual view of the memory resources on your system. A virtual view
on memory resources is referred to as an address space, which associates a range of address
values (either [0 ... 0xffffffff] for a 32-bit address space or [0 ... 0xffffffffffffffff]

for a 64-bit address space) with a set of translations that the operating system and hardware use
to convert each virtual address to a corresponding physical memory location. Pointers in D are
data objects that store an integer virtual address value and associate it with a D type that
describes the format of the data stored at the corresponding memory location.

Pointers and Arrays

Chapter 2 • D Programming Language 63

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Eu-fini-9e

You can declare a D variable to be of pointer type by first specifying the type of the referenced
data and then appending an asterisk (*) to the type name to indicate you want to declare a
pointer type. For example, the declaration:

int *p;

declares a D global variable named p that is a pointer to an integer. This declaration means that
p itself is an integer of size 32 or 64-bits whose value is the address of another integer located
somewhere in memory. Because the compiled form of your D code is executed at probe firing
time inside the operating system kernel itself, D pointers are typically pointers associated with
the kernel's address space. You can use the isainfo(1) -b command to determine the number
of bits used for pointers by the active operating system kernel.

If you want to create a pointer to a data object inside of the kernel, you can compute its address
using the & operator. For example, the operating system kernel source code declares an int

kmem_flags tunable. You could trace the address of this int by tracing the result of applying the
& operator to the name of that object in D:

trace(&‘kmem_flags);

The * operator can be used to refer to the object addressed by the pointer, and acts as the inverse
of the & operator. For example, the following two D code fragments are equivalent in meaning:

p = &‘kmem_flags; trace(‘kmem_flags);
trace(*p);

The left-hand fragment creates a D global variable pointer p. Because the kmem_flags object is
of type int, the type of the result of &‘kmem_flags is int * (that is, pointer to int). The
left-hand fragment traces the value of *p, which follows the pointer back to the data object
kmem_flags. This fragment is therefore the same as the right-hand fragment, which simply
traces the value of the data object directly using its name.

Pointer Safety
If you are a C or C++ programmer, you may be a bit frightened after reading the previous
section because you know that misuse of pointers in your programs can cause your programs to
crash. DTrace is a robust, safe environment for executing your D programs where these
mistakes cannot cause program crashes. You may indeed write a buggy D program, but invalid
D pointer accesses will not cause DTrace or the operating system kernel to fail or crash in any
way. Instead, the DTrace software will detect any invalid pointer accesses, disable your
instrumentation, and report the problem back to you for debugging.

If you have programmed in the Java programming language, you probably know that the Java
language does not support pointers for precisely the same reasons of safety. Pointers are needed
in D because they are an intrinsic part of the operating system's implementation in C, but
DTrace implements the same kind of safety mechanisms found in the Java programming

Pointers and Arrays

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0264

language that prevent buggy programs from damaging themselves or each other. DTrace's error
reporting is similar to the run-time environment for the Java programming language that
detects a programming error and reports an exception back to you.

To see DTrace's error handling and reporting, write a deliberately bad D program using
pointers. In an editor, type the following D program and save it in a file named badptr.d:

EXAMPLE 2–5 badptr.d: Demonstration of DTrace Error Handling

BEGIN

{

x = (int *)NULL;

y = *x;

trace(y);

}

The badptr.d program creates a D pointer named x that is a pointer to int. The program
assigns this pointer the special invalid pointer value NULL, which is a built-in alias for address 0.
By convention, address 0 is always defined to be invalid so that NULL can be used as a sentinel
value in C and D programs. The program uses a cast expression to convert NULL to be a pointer
to an integer. The program then dereferences the pointer using the expression *x, and assigns
the result to another variable y, and then attempts to trace y. When the D program is executed,
DTrace detects an invalid pointer access when the statement y = *x is executed and reports the
error:

dtrace -s badptr.d

dtrace: script ’/dev/stdin’ matched 1 probe

CPU ID FUNCTION:NAME

dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address

(0x0) in action #2 at DIF offset 4

dtrace: 1 error on CPU 0

^C

#

The other problem that can arise from programs that use invalid pointers is an alignment error.
By architectural convention, fundamental data objects such as integers are aligned in memory
according to their size. For example, 2-byte integers are aligned on addresses that are multiples
of 2, 4-byte integers on multiples of 4, and so on. If you dereference a pointer to a 4-byte integer
and your pointer address is an invalid value that is not a multiple of 4, your access will fail with
an alignment error. Alignment errors in D almost always indicate that your pointer has an
invalid or corrupt value due to a bug in your D program. You can create an example alignment
error by changing the source code of badptr.d to use the address (int *)2 instead of NULL.
Because int is 4 bytes and 2 is not a multiple of 4, the expression *x results in a DTrace
alignment error.

For details about the DTrace error mechanism, see “ERROR Probe” on page 169.

Pointers and Arrays

Chapter 2 • D Programming Language 65

Array Declarations and Storage
D provides support for scalar arrays in addition to the dynamic associative arrays described in
“Variables” on page 52 . Scalar arrays are a fixed-length group of consecutive memory locations
that each store a value of the same type. Scalar arrays are accessed by referring to each location
with an integer starting from zero. Scalar arrays correspond directly in concept and syntax with
arrays in C and C++. Scalar arrays are not used as frequently in D as associative arrays and their
more advanced counterparts aggregations, but these are sometimes needed when accessing
existing operating system array data structures declared in C. Aggregations are described in
Chapter 3, “Aggregations.”

A D scalar array of 5 integers would be declared by using the type int and suffixing the
declaration with the number of elements in square brackets as follows:

int a[5];

The following diagram shows a visual representation of the array storage:

The D expression a[0] is used to refer to the first array element, a[1] refers to the second, and
so on. From a syntactic perspective, scalar arrays and associative arrays are very similar. You
can declare an associative array of five integers referenced by an integer key as follows:

int a[int];

and also reference this array using the expression a[0]. But from a storage and implementation
perspective, the two arrays are very different. The static array a consists of five consecutive
memory locations numbered from zero and the index refers to an offset in the storage allocated
for the array. An associative array, on the other hand, has no predefined size and does not store
elements in consecutive memory locations. In addition, associative array keys have no
relationship to the corresponding's value storage location. You can access associative array
elements a[0] and a[-5] and only two words of storage will be allocated by DTrace which may
or may not be consecutive. Associative array keys are abstract names for the corresponding
value that have no relationship to the value storage locations.

If you create an array using an initial assignment and use a single integer expression as the array
index (for example, a[0] = 2), the D compiler will always create a new associative array, even
though in this expression a could also be interpreted as an assignment to a scalar array. Scalar
arrays must be predeclared in this situation so that the D compiler can see the definition of the
array size and infer that the array is a scalar array.

FIGURE 2–1 Scalar Array Representation

Pointers and Arrays

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0266

Pointer and Array Relationship
Pointers and arrays have a special relationship in D, just as they do in ANSI-C. An array is
represented by a variable that is associated with the address of its first storage location. A
pointer is also the address of a storage location with a defined type, so D permits the use of the
array [] index notation with both pointer variables and array variables. For example, the
following two D fragments are equivalent in meaning:

p = &a[0]; trace(a[2]);

trace(p[2]);

In the left-hand fragment, the pointer p is assigned to the address of the first array element in a
by applying the & operator to the expression a[0]. The expression p[2] traces the value of the
third array element (index 2). Because p now contains the same address associated with a, this
expression yields the same value as a[2], shown in the right-hand fragment. One consequence
of this equivalence is that C and D permit you to access any index of any pointer or array. Array
bounds checking is not performed for you by the compiler or DTrace runtime environment. If
you access memory beyond the end of an array's predefined value, you will either get an
unexpected result or DTrace will report an invalid address error, as shown in the previous
example. As always, you can't damage DTrace itself or your operating system, but you will need
to debug your D program.

The difference between pointers and arrays is that a pointer variable refers to a separate piece of
storage that contains the integer address of some other storage. An array variable names the
array storage itself, not the location of an integer that in turn contains the location of the array.
This difference is illustrated in the following diagram:

This difference is manifested in the D syntax if you attempt to assign pointers and scalar arrays.
If x and y are pointer variables, the expression x = y is legal; it simply copies the pointer address
in y to the storage location named by x. If x and y are scalar array variables, the expression x = y

is not legal. Arrays may not be assigned as a whole in D. However, an array variable or symbol
name can be used in any context where a pointer is permitted. If p is a pointer and a is an array,
the statement p = a is permitted; this statement is equivalent to the statement p = &a[0].

FIGURE 2–2 Pointer and Array Storage

Pointers and Arrays

Chapter 2 • D Programming Language 67

Pointer Arithmetic
Since pointers are just integers used as addresses of other objects in memory, D provides a set of
features for performing arithmetic on pointers. However, pointer arithmetic is not identical to
integer arithmetic. Pointer arithmetic implicitly adjusts the underlying address by multiplying
or dividing the operands by the size of the type referenced by the pointer. The following D
fragment illustrates this property:

int *x;

BEGIN

{

trace(x);

trace(x + 1);

trace(x + 2);

}

This fragment creates an integer pointer x and then trace its value, its value incremented by one,
and its value incremented by two. If you create and execute this program, DTrace reports the
integer values 0, 4, and 8.

Since x is a pointer to an int (size 4 bytes), incrementing x adds 4 to the underlying pointer
value. This property is useful when using pointers to refer to consecutive storage locations such
as arrays. For example, if x were assigned to the address of an array a like the one shown in
Figure 2–2, the expression x + 1 would be equivalent to the expression &a[1]. Similarly, the
expression *(x + 1) would refer to the value a[1]. Pointer arithmetic is implemented by the D
compiler whenever a pointer value is incremented using the =+, +, or ++ operators. Pointer
arithmetic is also applied when an integer is subtracted from a pointer on the left-hand side,
when a pointer is subtracted from another pointer, or when the -- operator is applied to a
pointer. For example, the following D program would trace the result 2:

int *x, *y;

int a[5];

BEGIN

{

x = &a[0];

y = &a[2];

trace(y - x);

}

Generic Pointers
Sometimes it is useful to represent or manipulate a generic pointer address in a D program
without specifying the type of data referred to by the pointer. Generic pointers can be specified
using the type void *, where the keyword void represents the absence of specific type
information, or using the built-in type alias uintptr_t which is aliased to an unsigned integer
type of size appropriate for a pointer in the current data model. You may not apply pointer

Pointers and Arrays

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0268

arithmetic to an object of type void *, and these pointers cannot be dereferenced without
casting them to another type first. You can cast a pointer to the uintptr_t type when you need
to perform integer arithmetic on the pointer value.

Pointers to void may be used in any context where a pointer to another data type is required,
such as an associative array tuple expression or the right-hand side of an assignment statement.
Similarly, a pointer to any data type may be used in a context where a pointer to void is
required. To use a pointer to a non-void type in place of another non-void pointer type, an
explicit cast is required. You must always use explicit casts to convert pointers to integer types
such as uintptr_t, or to convert these integers back to the appropriate pointer type.

Multi-Dimensional Arrays
Multi-dimensional scalar arrays are used infrequently in D, but are provided for compatibility
with ANSI-C and for observing and accessing operating system data structures created using
this capability in C. A multi-dimensional array is declared as a consecutive series of scalar array
sizes enclosed in square brackets [] following the base type. For example, to declare a fixed-size
two-dimensional rectangular array of integers of dimensions 12 rows by 34 columns, you would
write the declaration:

int a[12][34];

A multi-dimensional scalar array is accessed using similar notation. For example, to access the
value stored at row 0 column 1 you would write the D expression:

a[0][1]

Storage locations for multi-dimensional scalar array values are computed by multiplying the
row number by the total number of columns declared, and then adding the column number.

You should be careful not to confuse the multi-dimensional array syntax with the D syntax for
associative array accesses (that is, a[0][1] is not the same as a[0,1]). If you use an
incompatible tuple with an associative array or attempt an associative array access of a scalar
array, the D compiler will report an appropriate error message and refuse to compile your
program.

Pointers to DTrace Objects
The D compiler prohibits you from using the & operator to obtain pointers to DTrace objects
such as associative arrays, built-in functions, and variables. You are prohibited from obtaining
the address of these variables so that the DTrace runtime environment is free to relocate them
as needed between probe firings in order to more efficiently manage the memory required for
your programs. If you create composite structures, it is possible to construct expressions that do

Pointers and Arrays

Chapter 2 • D Programming Language 69

retrieve the kernel address of your DTrace object storage. You should avoid creating such
expressions in your D programs. If you need to use such an expression, be sure not to cache the
address across probe firings.

In ANSI-C, pointers can also be used to perform indirect function calls or to perform
assignments, such as placing an expression using the unary * dereference operator on the
left-hand side of an assignment operator. In D, these types of expressions using pointers are not
permitted. You may only assign values directly to D variables using their name or by applying
the array index operator [] to a D scalar or associative array. You may only call functions
defined by the DTrace environment by name as specified in Chapter 4, “Actions and
Subroutines.” Indirect function calls using pointers are not permitted in D.

Pointers and Address Spaces
A pointer is an address that provides a translation within some virtual address space to a piece of
physical memory. DTrace executes your D programs within the address space of the operating
system kernel itself. Your entire Oracle Solaris system manages many address spaces: one for
the operating system kernel, and one for each user process. Since each address space provides
the illusion that it can access all of the memory on the system, the same virtual address pointer
value can be reused across address spaces but translate to different physical memory. Therefore,
when writing D programs that use pointers, you must be aware of the address space
corresponding to the pointers you intend to use.

For example, if you use the syscall provider to instrument entry to a system call that takes a
pointer to an integer or array of integers as an argument (for example, pipe(2)), it would not be
valid to dereference that pointer or array using the * or [] operators because the address in
question is an address in the address space of the user process that performed the system call.
Applying the * or [] operators to this address in D would result in a kernel address space access,
which would result in an invalid address error or in returning unexpected data to your D
program depending upon whether the address happened to match a valid kernel address.

To access user process memory from a DTrace probe, you must apply one of the copyin,
copyinstr, or copyinto functions described in Chapter 4, “Actions and Subroutines,” to the
user address space pointer. Take care when writing your D programs to name and comment
variables storing user addresses appropriately to avoid confusion. You can also store user
addresses as uintptr_t so you don't accidentally compile D code that dereferences them.
Techniques for using DTrace on user processes are described in Chapter 12, “User Process
Tracing.”

Pointers and Arrays

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0270

Strings
DTrace provides support for tracing and manipulating strings. This chapter describes the
complete set of D language features for declaring and manipulating strings. Unlike ANSI-C,
strings in D have their own built-in type and operator support so you can easily and
unambiguously use them in your tracing programs.

String Representation
Strings are represented in DTrace as an array of characters terminated by a null byte (that is, a
byte whose value is zero, usually written as ’\0’). The visible part of the string is of variable
length, depending on the location of the null byte, but DTrace stores each string in a fixed-size
array so that each probe traces a consistent amount of data. Strings may not exceed the length of
this predefined string limit, but the limit can be modified in your D program or on the dtrace
command line by tuning the strsize option. Refer to Chapter 10, “Options and Tunables,” for
more information on tunable DTrace options. The default string limit is 256 bytes.

The D language provides an explicit string type rather than using the type char * to refer to
strings. The string type is equivalent to a char * in that it is the address of a sequence of
characters, but the D compiler and D functions like trace provide enhanced capabilities when
applied to expressions of type string. For example, the string type removes the ambiguity of the
type char * when you need to trace the actual bytes of a string. In the D statement:

trace(s);

if s is of type char *, DTrace will trace the value of the pointer s (that is, it will trace an integer
address value). In the D statement:

trace(*s);

by definition of the * operator, the D compiler will dereference the pointer s and trace the single
character at that location. These behaviors are essential to permitting you to manipulate
character pointers that by design refer to either single characters, or to arrays of byte-sized
integers that are not strings and do not end with a null byte. In the D statement:

trace(s);

if s is of type string, the string type indicates to the D compiler that you want DTrace to trace a
null terminated string of characters whose address is stored in the variable s. You can also
perform lexical comparison of expressions of type string, as described in “String Comparison ”
on page 73.

Strings

Chapter 2 • D Programming Language 71

String Constants
String constants are enclosed in double quotes (") and are automatically assigned the type string
by the D compiler. You can define string constants of any length, limited only by the amount of
memory DTrace is permitted to consume on your system. The terminating null byte (\0) is
added automatically by the D compiler to any string constants that you declare. The size of a
string constant object is the number of bytes associated with the string plus one additional byte
for the terminating null byte.

A string constant may not contain a literal newline character. To create strings containing
newlines, use the \n escape sequence instead of a literal newline. String constants may also
contain any of the special character escape sequences defined for character constants in
Table 2–6.

String Assignment
Unlike assignment of char * variables, strings are copied by value, not by reference. String
assignment is performed using the = operator and copies the actual bytes of the string from the
source operand up to and including the null byte to the variable on the left-hand side, which
must be of type string. You can create a new variable of type string by assigning it an
expression of type string. For example, the D statement:

s = "hello";

would create a new variable s of type string and copy the 6 bytes of the string "hello" into it (5
printable characters plus the null byte). String assignment is analogous to the C library function
strcpy(3C), except that if the source string exceeds the limit of the storage of the destination
string, the resulting string is automatically truncated at this limit.

You can also assign to a string variable an expression of a type that is compatible with strings. In
this case, the D compiler automatically promotes the source expression to the string type and
performs a string assignment. The D compiler permits any expression of type char * or of type
char[n] (that is, a scalar array of char of any size), to be promoted to a string.

String Conversion
Expressions of other types may be explicitly converted to type string by using a cast expression
or by applying the special stringof operator, which are equivalent in meaning:

s = (string) expression s = stringof (expression)

The stringof operator binds very tightly to the operand on its right-hand side. Typically,
parentheses are used to surround the expression for clarity, although they are not strictly
necessary.

Strings

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0272

Any expression that is a scalar type such as a pointer or integer or a scalar array address may be
converted to string. Expressions of other types such as void may not be converted to string. If
you erroneously convert an invalid address to a string, the DTrace safety features will prevent
you from damaging the system or DTrace, but you might end up tracing a sequence of
undecipherable characters.

String Comparison
D overloads the binary relational operators and permits them to be used for string comparisons
as well as integer comparisons. The relational operators perform string comparison whenever
both operands are of type string, or when one operand is of type string and the other operand
can be promoted to type string, as described in “String Assignment ” on page 72. All of the
relational operators can be used to compare strings:

TABLE 2–14 D Relational Operators for Strings

< left-hand operand is less than right-operand

<= left-hand operand is less than or equal to right-hand operand

> left-hand operand is greater than right-hand operand

>= left-hand operand is greater than or equal to right-hand operand

== left-hand operand is equal to right-hand operand

!= left-hand operand is not equal to right-hand operand

As with integers, each operator evaluates to a value of type int which is equal to one if the
condition is true, or zero if it is false.

The relational operators compare the two input strings byte-by-byte, similar to the C library
routine strcmp(3C). Each byte is compared using its corresponding integer value in the ASCII
character set, as shown in ascii(5), until a null byte is read or the maximum string length is
reached. Some example D string comparisons and their results are:

"coffee" < "espresso" ... returns 1 (true)

"coffee" == "coffee" ... returns 1 (true)

"coffee" >= "mocha" ... returns 0 (false)

Strings

Chapter 2 • D Programming Language 73

Structs and Unions
Collections of related variables can be grouped together into composite data objects called
structs and unions. You can define these objects in D by creating new type definitions for them.
You can use your new types for any D variables, including associative array values. This chapter
explores the syntax and semantics for creating and manipulating these composite types and the
D operators that interact with them. The syntax for structs and unions is illustrated using
several example programs that demonstrate the use of the DTrace fbt and pid providers.

Structs
The D keyword struct, short for structure, is used to introduce a new type composed of a
group of other types. The new struct type can be used as the type for D variables and arrays,
enabling you to define groups of related variables under a single name. D structs are the same as
the corresponding construct in C and C++. If you have programmed in the Java programming
language, think of a D struct as a class, but one with data members only and no methods.

Suppose you want to create a more sophisticated system call tracing program in D that records a
number of things about each read(2) and write(2) system call executed by your shell, such as the
elapsed time, number of calls, and the largest byte count passed as an argument. You could
write a D clause to record these properties in three separate associative arrays as shown in the
following example:

int maxbytes; /* declare maxbytes */

syscall::read:entry, syscall::write:entry

/pid == 12345/

{

ts[probefunc] = timestamp;

calls[probefunc]++;

maxbytes[probefunc] = arg2 > maxbytes[probefunc] ?

arg2 : maxbytes[probefunc];

}

However, this clause is inefficient because DTrace must create three separate associative arrays
and store separate copies of the identical tuple values corresponding to probefunc for each one.
Instead, you can conserve space and make your program easier to read and maintain by using a
struct. First, declare a new struct type at the top of the program source file:

struct callinfo {

uint64_t ts; /* timestamp of last syscall entry */

uint64_t elapsed; /* total elapsed time in nanoseconds */

uint64_t calls; /* number of calls made */

size_t maxbytes; /* maximum byte count argument */

};

The struct keyword is followed by an optional identifier used to refer back to our new type,
which is now known as struct callinfo. The struct members are then enclosed in a set of

Structs and Unions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0274

braces {} and the entire declaration is terminated by a semicolon (;). Each struct member is
defined using the same syntax as a D variable declaration, with the type of the member listed
first followed by an identifier naming the member and another semicolon (;).

The struct declaration itself simply defines the new type; it does not create any variables or
allocate any storage in DTrace. Once declared, you can use struct callinfo as a type
throughout the remainder of your D program, and each variable of type struct callinfo will
store a copy of the four variables described by our structure template. The members will be
arranged in memory in order according to the member list, with padding space introduced
between members as required for data object alignment purposes.

You can use the member identifier names to access the individual member values using the “.”
operator by writing an expression of the form:

variable-name.member-name

The following example is an improved program using the new structure type. Go to your editor
and type in the following D program and save it in a file named rwinfo.d:

EXAMPLE 2–6 rwinfo.d: Gather read(2) and write(2) Statistics

struct callinfo {

uint64_t ts; /* timestamp of last syscall entry */

uint64_t elapsed; /* total elapsed time in nanoseconds */

uint64_t calls; /* number of calls made */

size_t maxbytes; /* maximum byte count argument */

};

struct callinfo i[string]; /* declare i as an associative array */

syscall::read:entry, syscall::write:entry

/pid == $1/

{

i[probefunc].ts = timestamp;

i[probefunc].calls++;

i[probefunc].maxbytes = arg2 > i[probefunc].maxbytes ?

arg2 : i[probefunc].maxbytes;

}

syscall::read:return, syscall::write:return

/i[probefunc].ts != 0 && pid == $1/

{

i[probefunc].elapsed += timestamp - i[probefunc].ts;

}

END

{

printf(" calls max bytes elapsed nsecs\n");
printf("------ ----- --------- -------------\n");
printf(" read %5d %9d %d\n",

i["read"].calls, i["read"].maxbytes, i["read"].elapsed);
printf(" write %5d %9d %d\n",

i["write"].calls, i["write"].maxbytes, i["write"].elapsed);
}

Structs and Unions

Chapter 2 • D Programming Language 75

After you type in the program, run dtrace -q -s rwinfo.d, specifying one of your shell
processes. Then go type in a few commands in your shell and, when you're done entering your
shell commands, type Control-C in the dtrace terminal to fire the END probe and print the
results:

dtrace -q -s rwinfo.d ‘pgrep -n ksh‘
^C

calls max bytes elapsed nsecs

------ ----- --------- -------------

read 36 1024 3588283144

write 35 59 14945541

#

Pointers to Structs
Referring to structs using pointers is very common in C and D. You can use the operator -> to
access struct members through a pointer. If a struct shas a member m and you have a pointer
to this struct named sp (that is, sp is a variable of type struct s *), you can either use the *
operator to first dereference sp pointer in order to access the member:

struct s *sp;

(*sp).m

or you can use the -> operator as a shorthand for this notation. The following two D fragments
are equivalent in meaning if sp is a pointer to a struct:

(*sp).m sp->m

DTrace provides several built-in variables which are pointers to structs, including curpsinfo
and curlwpsinfo. These pointers refer to the structs psinfo and lwpsinfo respectively, and
their content provides a snapshot of information about the state of the current process and
lightweight process (LWP) associated with the thread that has fired the current probe. A Oracle
Solaris LWP is the kernel's representation of a user thread, upon which the Oracle Solaris
threads and POSIX threads interfaces are built. For convenience, DTrace exports this
information in the same form as the /proc filesystem files /proc/pid/psinfo and
/proc/pid/lwps/lwpid/lwpsinfo. The /proc structures are used by observability and
debugging tools such as ps(1), pgrep(1), and truss(1), and are defined in the system header file
<sys/procfs.h> and are described in the proc(4) man page. Here are few example expressions
using curpsinfo, their types, and their meanings:

curpsinfo->pr_pid pid_t current process ID

curpsinfo->pr_fname char [] executable file name

curpsinfo->pr_psargs char [] initial command line arguments

Structs and Unions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0276

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1ps-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1pgrep-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1truss-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4proc-4

You should review the complete structure definition later by examining the <sys/procfs.h>
header file and the corresponding descriptions in proc(4). The next example uses the pr_psargs
member to identify a process of interest by matching command-line arguments.

Structs are used frequently to create complex data structures in C programs, so the ability to
describe and reference structs from D also provides a powerful capability for observing the
inner workings of the Oracle Solaris operating system kernel and its system interfaces. In
addition to using the aforementioned curpsinfo struct, the next example examines some
kernel structs as well by observing the relationship between the ksyms(7D) driver and read(2)
requests. The driver makes use of two common structs, known as uio(9S) and iovec(9S), to
respond to requests to read from the character device file /dev/ksyms.

The uio struct, accessed using the name struct uio or type alias uio_t, is described in the
uio(9S) man page and is used to describe an I/O request that involves copying data between the
kernel and a user process. The uio in turn contains an array of one or more iovec(9S) structures
which each describe a piece of the requested I/O, in the event that multiple chunks are requested
using the readv(2) or writev(2) system calls. One of the kernel device driver interface (DDI)
routines that operates on struct uio is the function uiomove(9F), which is one of a family of
functions kernel drivers use to respond to user process read(2) requests and copy data back to
user processes.

The ksyms driver manages a character device file named /dev/ksyms, which appears to be an
ELF file containing information about the kernel's symbol table, but is in fact an illusion created
by the driver using the set of modules that are currently loaded into the kernel. The driver uses
the uiomove(9F) routine to respond to read(2) requests. The next example illustrates that the
arguments and calls to read(2) from /dev/ksyms match the calls by the driver to uiomove(9F)
to copy the results back into the user address space at the location specified to read(2).

We can use the strings(1) utility with the -a option to force a bunch of reads from
/dev/ksyms. Try running strings -a /dev/ksyms in your shell and see what output it
produces. In an editor, type in the first clause of the example script and save it in a file named
ksyms.d:

syscall::read:entry

/curpsinfo->pr_psargs == "strings -a /dev/ksyms"/
{

printf("read %u bytes to user address %x\n", arg2, arg1);

}

This first clause uses the expression curpsinfo->pr_psargs to access and match the
command-line arguments of our strings(1) command so that the script selects the correct
read(2) requests before tracing the arguments. Notice that by using operator == with a left-hand
argument that is an array of char and a right-hand argument that is a string, the D compiler
infers that the left-hand argument should be promoted to a string and a string comparison
should be performed. Type in and execute the command dtrace -q -s ksyms.d in one shell,
and then type in the command strings -a /dev/ksyms in another shell. As strings(1) executes,
you will see output from DTrace similar to the following example:

Structs and Unions

Chapter 2 • D Programming Language 77

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Suio-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Siovec-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2readv-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2writev-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fuiomove-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1strings-1

dtrace -q -s ksyms.d

read 8192 bytes to user address 80639fc

read 8192 bytes to user address 80639fc

read 8192 bytes to user address 80639fc

read 8192 bytes to user address 80639fc

...

^C

#

This example can be extended using a common D programming technique to follow a thread
from this initial read(2) request deeper into the kernel. Upon entry to the kernel in
syscall::read:entry, the next script sets a thread-local flag variable indicating this thread is
of interest, and clears this flag on syscall::read:return. Once the flag is set, it can be used as a
predicate on other probes to instrument kernel functions such as uiomove(9F). The DTrace
function boundary tracing (fbt) provider publishes probes for entry and return to functions
defined within the kernel, including those in the DDI. Type in the following source code which
uses the fbt provider to instrument uiomove(9F) and again save it in the file ksyms.d:

EXAMPLE 2–7 ksyms.d: Trace read(2) and uiomove(9F) Relationship

/*

* When our strings(1) invocation starts a read(2), set a watched flag on

* the current thread. When the read(2) finishes, clear the watched flag.

*/

syscall::read:entry

/curpsinfo->pr_psargs == "strings -a /dev/ksyms"/
{

printf("read %u bytes to user address %x\n", arg2, arg1);

self->watched = 1;

}

syscall::read:return

/self->watched/

{

self->watched = 0;

}

/*

* Instrument uiomove(9F). The prototype for this function is as follows:

* int uiomove(caddr_t addr, size_t nbytes, enum uio_rw rwflag, uio_t *uio);

*/

fbt::uiomove:entry

/self->watched/

{

this->iov = args[3]->uio_iov;

printf("uiomove %u bytes to %p in pid %d\n",
this->iov->iov_len, this->iov->iov_base, pid);

}

The final clause of the example uses the thread-local variable self->watched to identify when a
kernel thread of interest enters the DDI routine uiomove(9F). Once there, the script uses the
built-in args array to access the fourth argument (args[3]) to uiomove, which is a pointer to
the struct uio representing the request. The D compiler automatically associates each
member of the args array with the type corresponding to the C function prototype for the

Structs and Unions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0278

instrumented kernel routine. The uio_iov member contains a pointer to the struct iovec for
the request. A copy of this pointer is saved for use in our clause in the clause-local variable
this->iov. In the final statement, the script dereferences this->iov to access the iovec
members iov_len and iov_base, which represent the length in bytes and destination base
address for uiomove(9F), respectively. These values should match the input parameters to the
read(2) system call issued on the driver. Go to your shell and run dtrace -q -s ksyms.d and
then again enter the command strings -a /dev/ksyms in another shell. You should see output
similar to the following example:

dtrace -q -s ksyms.d

read 8192 bytes at user address 80639fc

uiomove 8192 bytes to 80639fc in pid 101038

read 8192 bytes at user address 80639fc

uiomove 8192 bytes to 80639fc in pid 101038

read 8192 bytes at user address 80639fc

uiomove 8192 bytes to 80639fc in pid 101038

read 8192 bytes at user address 80639fc

uiomove 8192 bytes to 80639fc in pid 101038

...

^C

#

The addresses and process IDs will be different in your output, but you should observe that the
input arguments to read(2) match the parameters passed to uiomove(9F) by the ksyms driver.

Unions
Unions are another kind of composite type supported by ANSI-C and D, and are closely related
to structs. A union is a composite type where a set of members of different types are defined and
the member objects all occupy the same region of storage. A union is therefore an object of
variant type, where only one member is valid at any given time, depending on how the union
has been assigned. Typically, some other variable or piece of state is used to indicate which
union member is currently valid. The size of a union is the size of its largest member, and the
memory alignment used for the union is the maximum alignment required by the union
members.

The Oracle Solaris kstat framework defines a struct containing a union that is used in the
following example to illustrate and observe C and D unions. The kstat framework is used to
export a set of named counters representing kernel statistics such as memory usage and I/O
throughput. The framework is used to implement utilities such as mpstat(1M) and iostat(1M).
This framework uses struct kstat_named to represent a named counter and its value and is
defined as follows:

struct kstat_named {

char name[KSTAT_STRLEN]; /* name of counter */

uchar_t data_type; /* data type */

union {

char c[16];

Structs and Unions

Chapter 2 • D Programming Language 79

int32_t i32;

uint32_t ui32;

long l;

ulong_t ul;

...

} value; /* value of counter */

};

The examined declaration is shortened for illustrative purposes. The complete structure
definition can be found in the <sys/kstat.h> header file and is described in kstat_named(9S).
The declaration above is valid in both ANSI-C and D, and defines a struct containing as one of
its members a union value with members of various types, depending on the type of the
counter. Notice that since the union itself is declared inside of another type, struct
kstat_named, a formal name for the union type is omitted. This declaration style is known as an
anonymous union. The member named value is of a union type described by the preceding
declaration, but this union type itself has no name because it does not need to be used anywhere
else. The struct member data_type is assigned a value that indicates which union member is
valid for each object of type struct kstat_named. A set of C preprocessor tokens are defined
for the values of data_type. For example, the token KSTAT_DATA_CHAR is equal to zero and
indicates that the member value.c is where the value is currently stored.

The kstat counters can be sampled from a user process using the kstat_data_lookup(3KSTAT)
function, which returns a pointer to a struct kstat_named. The mpstat(1M) utility calls this
function repeatedly as it executes in order to sample the latest counter values. Go to your shell
and try running mpstat 1 and observe the output. Press Control-C in your shell to abort
mpstat after a few seconds. To observe counter sampling, we would like to enable a probe that
fires each time the mpstat command calls the kstat_data_lookup(3KSTAT) function in
libkstat. To do so, we're going to make use of a new DTrace provider: pid. The pid provider
permits you to dynamically create probes in user processes at C symbol locations such as
function entry points. You can ask the pid provider to create a probe at a user function entry
and return sites by writing probe descriptions of the form:

pidprocess-ID:object-name:function-name:entry

pidprocess-ID:object-name:function-name:return

For example, if you wanted to create a probe in process ID 12345 that fires on entry to
kstat_data_lookup(3KSTAT), you would write the following probe description:

pid12345:libkstat:kstat_data_lookup:entry

The pid provider inserts dynamic instrumentation into the specified user process at the
program location corresponding to the probe description. The probe implementation forces
each user thread that reaches the instrumented program location to trap into the operating
system kernel and enter DTrace, firing the corresponding probe. So although the
instrumentation location is associated with a user process, the DTrace predicates and actions
you specify still execute in the context of the operating system kernel. The pid provider is
described in further detail in “pid Provider” on page 222.

Structs and Unions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0280

Instead of having to edit your D program source each time you wish to apply your program to a
different process, you can insert identifiers called macro variables into your program that are
evaluated at the time your program is compiled and replaced with the additional dtrace
command-line arguments. Macro variables are specified using a dollar sign $ followed by an
identifier or digit. If you execute the command dtrace -s script foo bar baz, the D
compiler will automatically define the macro variables $1, $2, and $3 to be the tokens foo, bar,
and baz respectively. You can use macro variables in D program expressions or in probe
descriptions. For example, the following probe descriptions instrument whatever process ID is
specified as an additional argument to dtrace:

pid$1:libkstat:kstat_data_lookup:entry

{

self->ksname = arg1;

}

pid$1:libkstat:kstat_data_lookup:return

/self->ksname != NULL && arg1 != NULL/

{

this->ksp = (kstat_named_t *)copyin(arg1, sizeof (kstat_named_t));

printf("%s has ui64 value %u\n", copyinstr(self->ksname),

this->ksp->value.ui64);

}

pid$1:libkstat:kstat_data_lookup:return

/self->ksname != NULL && arg1 == NULL/

{

self->ksname = NULL;

}

Macro variables and reusable scripts are described in further detail in Chapter 9, “Scripting.”
Now that we know how to instrument user processes using their process ID, let's return to
sampling unions. Go to your editor and type in the source code for our complete example and
save it in a file named kstat.d:

EXAMPLE 2–8 kstat.d: Trace Calls to kstat_data_lookup(3KSTAT)

pid$1:libkstat:kstat_data_lookup:entry

{

self->ksname = arg1;

}

pid$1:libkstat:kstat_data_lookup:return

/self->ksname != NULL && arg1 != NULL/

{

this->ksp = (kstat_named_t *) copyin(arg1, sizeof (kstat_named_t));

printf("%s has ui64 value %u\n",
copyinstr(self->ksname), this->ksp->value.ui64);

}

pid$1:libkstat:kstat_data_lookup:return

/self->ksname != NULL && arg1 == NULL/

{

self->ksname = NULL;

}

Structs and Unions

Chapter 2 • D Programming Language 81

EXAMPLE 2–8 kstat.d: Trace Calls to kstat_data_lookup(3KSTAT) (Continued)

Now go to one of your shells and execute the command mpstat 1 to start mpstat(1M) running
in a mode where it samples statistics and reports them once per second. Once mpstat is
running, execute the command dtrace -q -s kstat.d ‘pgrep mpstat‘ in your other shell.
You will see output corresponding to the statistics that are being accessed. Press Control-C to
abort dtrace and return to the shell prompt.

dtrace -q -s kstat.d ‘pgrep mpstat‘
cpu_ticks_idle has ui64 value 41154176

cpu_ticks_user has ui64 value 1137

cpu_ticks_kernel has ui64 value 12310

cpu_ticks_wait has ui64 value 903

hat_fault has ui64 value 0

as_fault has ui64 value 48053

maj_fault has ui64 value 1144

xcalls has ui64 value 123832170

intr has ui64 value 165264090

intrthread has ui64 value 124094974

pswitch has ui64 value 840625

inv_swtch has ui64 value 1484

cpumigrate has ui64 value 36284

mutex_adenters has ui64 value 35574

rw_rdfails has ui64 value 2

rw_wrfails has ui64 value 2

...

^C

#

If you capture the output in each terminal window and subtract each value from the value
reported by the previous iteration through the statistics, you should be able to correlate the
dtrace output with the mpstat output. The example program records the counter name
pointer on entry to the lookup function, and then performs most of the tracing work on return
from kstat_data_lookup(3KSTAT). The D built-in functions copyinstr and copyin copy the
function results from the user process back into DTrace when arg1 (the return value) is not
NULL. Once the kstat data has been copied, the example reports the ui64 counter value from
the union. This simplified example assumes that mpstat samples counters that use the
value.ui64 member. As an exercise, try recoding kstat.d to use multiple predicates and
print out the union member corresponding to the data_type member. You can also try to
create a version of kstat.d that computes the difference between successive data values and
actually produces output similar to mpstat.

Member Sizes and Offsets
You can determine the size in bytes of any D type or expression, including a struct or union,
using the sizeof operator. The sizeof operator can be applied either to an expression or to the
name of a type surrounded by parentheses, as illustrated by the following two examples:

sizeof expression sizeof (type-name)

Structs and Unions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0282

For example, the expression sizeof (uint64_t) would return the value 8, and the expression
sizeof (callinfo.ts) would also return 8 if inserted into the source code of our example
program above. The formal return type of the sizeof operator is the type alias size_t, which is
defined to be an unsigned integer of the same size as a pointer in the current data model, and is
used to represent byte counts. When the sizeof operator is applied to an expression, the
expression is validated by the D compiler but the resulting object size is computed at compile
time and no code for the expression is generated. You can use sizeof anywhere an integer
constant is required.

You can use the companion operator offsetof to determine the offset in bytes of a struct or
union member from the start of the storage associated with any object of the struct or union
type. The offsetof operator is used in an expression of the following form:

offsetof (type-name, member-name)

Here type-name is the name of any struct or union type or type alias, and member-name is the
identifier naming a member of that struct or union. Similar to sizeof, offsetof returns a
size_t and can be used anywhere in a D program that an integer constant can be used.

Bit-Fields
D also permits the definition of integer struct and union members of arbitrary numbers of bits,
known as bit-fields. A bit-field is declared by specifying a signed or unsigned integer base type, a
member name, and a suffix indicating the number of bits to be assigned for the field, as shown
in the following example:

struct s {

int a : 1;

int b : 3;

int c : 12;

};

The bit-field width is an integer constant separated from the member name by a trailing colon.
The bit-field width must be positive and must be of a number of bits not larger than the width of
the corresponding integer base type. Bit-fields larger than 64 bits may not be declared in D. D
bit-fields provide compatibility with and access to the corresponding ANSI-C capability.
Bit-fields are typically used in situations when memory storage is at a premium or when a struct
layout must match a hardware register layout.

A bit-field is a compiler construct that automates the layout of an integer and a set of masks to
extract the member values. The same result can be achieved by simply defining the masks
yourself and using the & operator. C and D compilers try to pack bits as efficiently as possible,
but they are free to do so in any order or fashion they desire, so bit-fields are not guaranteed to
produce identical bit layouts across differing compilers or architectures. If you require stable bit
layout, you should construct the bit masks yourself and extract the values using the & operator.

Structs and Unions

Chapter 2 • D Programming Language 83

A bit-field member is accessed by simply specifying its name in combination with the “.” or ->
operators like any other struct or union member. The bit-field is automatically promoted to the
next largest integer type for use in any expressions. Because bit-field storage may not be aligned
on a byte boundary or be a round number of bytes in size, you may not apply the sizeof or
offsetof operators to a bit-field member. The D compiler also prohibits you from taking the
address of a bit-field member using the & operator.

Type and Constant Definitions
This chapter describes how to declare type aliases and named constants in D. This chapter also
discusses D type and namespace management for program and operating system types and
identifiers.

typedef
The typedef keyword is used to declare an identifier as an alias for an existing type. Like all D
type declarations, the typedef keyword is used outside probe clauses in a declaration of the
form:

typedef existing-type new-type ;

where existing-type is any type declaration and new-type is an identifier to be used as the alias for
this type. For example, the declaration:

typedef unsigned char uint8_t;

is used internally by the D compiler to create the uint8_t type alias. Type aliases can be used
anywhere that a normal type can be used, such as the type of a variable or associative array value
or tuple member. You can also combine typedef with more elaborate declarations such as the
definition of a new struct:

typedef struct foo {

int x;

int y;

} foo_t;

In this example, struct foo is defined as the same type as its alias, foo_t. Oracle Solaris C
system headers often use the suffix _t to denote a typedef alias.

Enumerations
Defining symbolic names for constants in a program eases readability and simplifies the process
of maintaining the program in the future. One method is to define an enumeration, which

Type and Constant Definitions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0284

associates a set of integers with a set of identifiers called enumerators that the compiler
recognizes and replaces with the corresponding integer value. An enumeration is defined using
a declaration such as:

enum colors {

RED,

GREEN,

BLUE

};

The first enumerator in the enumeration, RED, is assigned the value zero and each subsequent
identifier is assigned the next integer value. You can also specify an explicit integer value for any
enumerator by suffixing it with an equal sign and an integer constant, as in the following
example:

enum colors {

RED = 7,

GREEN = 9,

BLUE

};

The enumerator BLUE is assigned the value 10 by the compiler because it has no value specified
and the previous enumerator is set to 9. Once an enumeration is defined, the enumerators can
be used anywhere in a D program that an integer constant can be used. In addition, the
enumeration enum colors is also defined as a type that is equivalent to an int. The D compiler
will allow a variable of enum type to be used anywhere an int can be used, and will allow any
integer value to be assigned to a variable of enum type. You can also omit the enum name in the
declaration if the type name is not needed.

Enumerators are visible in all subsequent clauses and declarations in your program, so you
cannot define the same enumerator identifier in more than one enumeration. However, you
may define more than one enumerator that has the same value in either the same or different
enumerations. You may also assign integers that have no corresponding enumerator to a
variable of the enumeration type.

The D enumeration syntax is the same as the corresponding syntax in ANSI-C. D also provides
access to enumerations defined in the operating system kernel and its loadable modules, but
these enumerators are not globally visible in your D program. Kernel enumerators are only
visible when used as an argument to one of the binary comparison operators when compared to
an object of the corresponding enumeration type. For example, the function uiomove(9F) has a
parameter of type enum uio_rw defined as follows:

enum uio_rw { UIO_READ, UIO_WRITE };

The enumerators UIO_READ and UIO_WRITE are not normally visible in your D program, but you
can promote them to global visibility by comparing one a value of type enum uio_rw, as shown
in the following example clause:

Type and Constant Definitions

Chapter 2 • D Programming Language 85

fbt::uiomove:entry

/args[2] == UIO_WRITE/

{

...

}

This example traces calls to the uiomove(9F) function for write requests by comparing args[2],
a variable of type enum uio_rw, to the enumerator UIO_WRITE. Because the left-hand argument
is an enumeration type, the D compiler searches the enumeration when attempting to resolve
the right-hand identifier. This feature protects your D programs against inadvertent identifier
name conflicts with the large collection of enumerations defined in the operating system kernel.

Inlines
D named constants can also be defined using inline directives, which provide a more general
means of creating identifiers that are replaced by predefined values or expressions during
compilation. Inline directives are a more powerful form of lexical replacement than the #define
directive provided by the C preprocessor because the replacement is assigned an actual type and
is performed using the compiled syntax tree and not simply a set of lexical tokens. An inline
directive is specified using a declaration of the form:

inline type name = expression ;

where type is a type declaration of an existing type, name is any valid D identifier that is not
previously defined as an inline or global variable, and expression is any valid D expression. Once
the inline directive is processed, the D compiler substitutes the compiled form of expression for
each subsequent instance of name in the program source. For example, the following D
program would trace the string "hello" and integer value 123:

inline string hello = "hello";
inline int number = 100 + 23;

BEGIN

{

trace(hello);

trace(number);

}

An inline name may be used anywhere a global variable of the corresponding type can be used.
If the inline expression can be evaluated to an integer or string constant at compile time, then
the inline name can also be used in contexts that require constant expressions, such as scalar
array dimensions.

The inline expression is validated for syntax errors as part of evaluating the directive. The
expression result type must be compatible with the type defined by the inline, according to the
same rules used for the D assignment operator (=). An inline expression may not reference the
inline identifier itself: recursive definitions are not permitted.

Type and Constant Definitions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0286

The DTrace software packages install a number of D source files in the system directory
/usr/lib/dtrace that contain inline directives you can use in your D programs. For example,
the signal.d library includes directives of the form:

inline int SIGHUP = 1;

inline int SIGINT = 2;

inline int SIGQUIT = 3;

...

These inline definitions provide you access to the current set of Oracle Solaris signal names
described in signal(3HEAD). Similarly, the errno.d library contains inline directives for the C
errno constants described in Intro(2).

By default, the D compiler includes all of the provided D library files automatically so you can
use these definitions in any D program.

Type Namespaces
This section discusses D namespaces and namespace issues related to types. In traditional
languages such as ANSI-C, type visibility is determined by whether a type is nested inside of a
function or other declaration. Types declared at the outer scope of a C program are associated
with a single global namespace and are visible throughout the entire program. Types defined in
C header files are typically included in this outer scope. Unlike these languages, D provides
access to types from multiple outer scopes.

D is a language that facilitates dynamic observability across multiple layers of a software stack,
including the operating system kernel, an associated set of loadable kernel modules, and user
processes running on the system. A single D program may instantiate probes to gather data
from multiple kernel modules or other software entities that are compiled into independent
binary objects. Therefore, more than one data type of the same name, perhaps with different
definitions, might be present in the universe of types available to DTrace and the D compiler.
To manage this situation, the D compiler associates each type with a namespace identified by
the containing program object. Types from a particular program object can be accessed by
specifying the object name and backquote (‘) scoping operator in any type name.

For example, if a kernel module named foo contains the following C type declaration:

typedef struct bar {

int x;

} bar_t;

then the types struct bar and bar_t could be accessed from D using the type names:

struct foo‘bar foo‘bar_t

The backquote operator can be used in any context where a type name is appropriate, including
when specifying the type for D variable declarations or cast expressions in D probe clauses.

Type and Constant Definitions

Chapter 2 • D Programming Language 87

The D compiler also provides two special built-in type namespaces that use the names C and D
respectively. The C type namespace is initially populated with the standard ANSI-C intrinsic
types such as int. In addition, type definitions acquired using the C preprocessor cpp(1) using
the dtrace -C option will be processed by and added to the C scope. As a result, you can include
C header files containing type declarations which are already visible in another type namespace
without causing a compilation error.

The D type namespace is initially populated with the D type intrinsics such as int and string as
well as the built-in D type aliases such as uint32_t. Any new type declarations that appear in
the D program source are automatically added to the D type namespace. If you create a complex
type such as a struct in your D program consisting of member types from other namespaces,
the member types will be copied into the D namespace by the declaration.

When the D compiler encounters a type declaration that does not specify an explicit namespace
using the backquote operator, the compiler searches the set of active type namespaces to find a
match using the specified type name. The C namespace is always searched first, followed by the
D namespace. If the type name is not found in either the C or D namespace, the type
namespaces of the active kernel modules are searched in ascending order by kernel module ID.
This ordering guarantees that the binary objects that form the core kernel are searched before
any loadable kernel modules, but does not guarantee any ordering properties among the
loadable modules. You should use the scoping operator when accessing types defined in
loadable kernel modules to avoid type name conflicts with other kernel modules.

The D compiler uses compressed ANSI-C debugging information provided with the core
Oracle Solaris kernel modules in order to automatically access the types associated with the
operating system source code without the need for accessing the corresponding C include files.
This symbolic debugging information might not be available for all kernel modules on your
system. The D compiler will report an error if you attempt to access a type within the
namespace of a module that lacks compressed C debugging information intended for use with
DTrace.

Type and Constant Definitions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0288

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1cpp-1

Aggregations

When instrumenting the system to answer performance-related questions, it is useful to
consider how data can be aggregated to answer a specific question rather than thinking in terms
of data gathered by individual probes. For example, if you wanted to know the number of
system calls by user ID, you would not necessarily care about the datum collected at each system
call. You simply want to see a table of user IDs and system calls. Historically, you would answer
this question by gathering data at each system call, and postprocessing the data using a tool like
awk(1) or perl(1). However, in DTrace the aggregating of data is a first-class operation. This
chapter describes the DTrace facilities for manipulating aggregations.

Aggregating Functions
An aggregating function is one that has the following property:

f(f(x0) U f(x1) U ... U f(xn)) = f(x0 U x1 U ... U xn)

where x{_}{_}{~}n{~} is a set of arbitrary data. That is, applying an aggregating function to
subsets of the whole and then applying it again to the results gives the same result as applying it
to the whole itself. For example, consider a function SUM that yields the summation of a given
data set. If the raw data consists of {2, 1, 2, 5, 4, 3, 6, 4, 2}, the result of applying SUM to the entire
set is {29}. Similarly, the result of applying SUM to the subset consisting of the first three elements
is {5}, the result of applying SUM to the set consisting of the subsequent three elements is {12},
and the result of of applying SUM to the remaining three elements is also {12}. SUM is an
aggregating function because applying it to the set of these results, {5, 12, 12}, yields the same
result, {29}, as applying SUM to the original data.

Not all functions are aggregating functions. An example of a non-aggregating function is the
function MEDIAN that determines the median element of the set. (The median is defined to be
that element of a set for which as many elements in the set are greater than it as are less than it.)
The MEDIAN is derived by sorting the set and selecting the middle element. Returning to the
original raw data, if MEDIAN is applied to the set consisting of the first three elements, the result is

3C H A P T E R 3

89

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1awk-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1perl-1

{2}. (The sorted set is {1, 2, 2}; {2} is the set consisting of the middle element.) Likewise, applying
MEDIAN to the next three elements yields {4} and applying MEDIAN to the final three elements
yields {4}. Applying MEDIAN to each of the subsets thus yields the set {2, 4, 4}. Applying MEDIAN to
this set yields the result {4}. However, sorting the original set yields {1, 2, 2, 2, 3, 4, 4, 5, 6}.
Applying MEDIAN to this set thus yields {3}. Because these results do not match, MEDIAN is not an
aggregating function.

Many common functions for understanding a set of data are aggregating functions. These
functions include counting the number of elements in the set, computing the minimum value of
the set, computing the maximum value of the set, and summing all elements in the set.
Determining the arithmetic mean of the set can be constructed from the function to count the
number of elements in the set and the function to sum the number the elements in the set.

However, several useful functions are not aggregating functions. These functions include
computing the mode (the most common element) of a set, the median value of the set, or the
standard deviation of the set.

Applying aggregating functions to data as it is traced has a number of advantages:

■ The entire data set need not be stored. Whenever a new element is to be added to the set, the
aggregating function is calculated given the set consisting of the current intermediate result
and the new element. After the new result is calculated, the new element may be discarded.
This process reduces the amount of storage required by a factor of the number of data
points, which is often quite large.

■ Data collection does not induce pathological scalability problems. Aggregating functions
enable intermediate results to be kept per-CPU instead of in a shared data structure. DTrace
then applies the aggregating function to the set consisting of the per-CPU intermediate
results to produce the final system-wide result.

Aggregations
DTrace stores the results of aggregating functions in objects called aggregations. The
aggregation results are indexed using a tuple of expressions similar to those used for associative
arrays. In D, the syntax for an aggregation is:

@name[keys] = aggfunc (args);

where name is the name of the aggregation, keys is a comma-separated list of D expressions,
aggfunc is one of the DTrace aggregating functions, and args is a comma-separated list of
arguments appropriate for the aggregating function. The aggregation name is a D identifier that
is prefixed with the special character @. All aggregations named in your D programs are global
variables; there are no thread- or clause-local aggregations. The aggregation names are kept in a
separate identifier namespace from other D global variables. Remember that a and @a are not

Aggregations

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0290

the same variable if you reuse names. The special aggregation name @ can be used to name an
anonymous aggregation in simple D programs. The D compiler treats this name as an alias for
the aggregation name @_.

The DTrace aggregating functions are shown in the following table. Most aggregating functions
take just a single argument that represents the new datum.

TABLE 3–1 DTrace Aggregating Functions

Function Name Arguments Result

count none The number of times called.

sum scalar expression The total value of the specified
expressions.

avg scalar expression The arithmetic average of the
specified expressions.

min scalar expression The smallest value among the
specified expressions.

max scalar expression The largest value among the
specified expressions.

stddev scalar expression The standard deviation of the
specified expressions.

lquantize scalar expression, lower bound,
upper bound, step value

A linear frequency distribution,
sized by the specified range, of the
values of the specified expressions.
Increments the value in the highest
bucket that is less than the specified
expression.

quantize scalar expression A power-of-two frequency
distribution of the values of the
specified expressions. Increments
the value in the highest
power-of-two bucket that is less
than the specified expression.

For example, to count the number of write(2) system calls in the system, you could use an
informative string as a key and the count aggregating function:

syscall::write:entry

{

@counts["write system calls"] = count();

}

Aggregations

Chapter 3 • Aggregations 91

The dtrace command prints aggregation results by default when the process terminates, either
as the result of an explicit END action or when the user presses Control-C. The following
example output shows the result of running this command, waiting for a few seconds, and
pressing Control-C:

dtrace -s writes.d

dtrace: script ’./writes.d’ matched 1 probe

^C

write system calls 179

#

You can count system calls per process name using the execname variable as the key to an
aggregation:

syscall::write:entry

{

@counts[execname] = count();

}

The following example output shows the result of running this command, waiting for a few
seconds, and pressing Control-C:

dtrace -s writesbycmd.d

dtrace: script ’./writesbycmd.d’ matched 1 probe

^C

dtrace 1

cat 4

sed 9

head 9

grep 14

find 15

tail 25

mountd 28

expr 72

sh 291

tee 814

def.dir.flp 1996

make.bin 2010

#

Alternatively, you might want to further examine writes organized by both executable name
and file descriptor. The file descriptor is the first argument to write(2), so the following example
uses a key consisting of both execname and arg0:

syscall::write:entry

{

@counts[execname, arg0] = count();

}

Running this command results in a table with both executable name and file descriptor, as
shown in the following example:

dtrace -s writesbycmdfd.d

dtrace: script ’./writesbycmdfd.d’ matched 1 probe

Aggregations

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0292

^C

cat 1 58

sed 1 60

grep 1 89

tee 1 156

tee 3 156

make.bin 5 164

acomp 1 263

macrogen 4 286

cg 1 397

acomp 3 736

make.bin 1 880

iropt 4 1731

#

The following example displays the average time spent in the write system call, organized by
process name. This example uses the avg aggregating function, specifying the expression to
average as the argument. The example averages the wall clock time spent in the system call:

syscall::write:entry

{

self->ts = timestamp;

}

syscall::write:return

/self->ts/

{

@time[execname] = avg(timestamp - self->ts);

self->ts = 0;

}

The following example output shows the result of running this command, waiting for a few
seconds, and pressing Control-C:

dtrace -s writetime.d

dtrace: script ’./writetime.d’ matched 2 probes

^C

iropt 31315

acomp 37037

make.bin 63736

tee 68702

date 84020

sh 91632

dtrace 159200

ctfmerge 321560

install 343300

mcs 394400

get 413695

ctfconvert 594400

bringover 1332465

tail 1335260

#

The average can be useful, but often does not provide sufficient detail to understand the
distribution of data points. To understand the distribution in further detail, use the quantize
aggregating function as shown in the following example:

Aggregations

Chapter 3 • Aggregations 93

syscall::write:entry

{

self->ts = timestamp;

}

syscall::write:return

/self->ts/

{

@time[execname] = quantize(timestamp - self->ts);

self->ts = 0;

}

Because each line of output becomes a frequency distribution diagram, the output of this script
is substantially longer than previous ones. The following example shows a selection of sample
output:

lint

value ------------- Distribution ------------- count

8192 | 0

16384 | 2

32768 | 0

65536 |@@@@@@@@@@@@@@@@@@@ 74

131072 |@@@@@@@@@@@@@@@ 59

262144 |@@@ 14

524288 | 0

acomp

value ------------- Distribution ------------- count

4096 | 0

8192 |@@@@@@@@@@@@ 840

16384 |@@@@@@@@@@@ 750

32768 |@@ 165

65536 |@@@@@@ 460

131072 |@@@@@@ 446

262144 | 16

524288 | 0

1048576 | 1

2097152 | 0

iropt

value ------------- Distribution ------------- count

4096 | 0

8192 |@@@@@@@@@@@@@@@@@@@@@@@ 4149

16384 |@@@@@@@@@@ 1798

32768 |@ 332

65536 |@ 325

131072 |@@ 431

262144 | 3

524288 | 2

1048576 | 1

2097152 | 0

Notice that the rows for the frequency distribution are always power-of-two values. Each rows
indicates the count of the number of elements greater than or equal to the corresponding value,
but less than the next larger row value. For example, the above output shows that iropt had
4,149 writes taking between 8,192 nanoseconds and 16,383 nanoseconds, inclusive.

Aggregations

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0294

While quantize is useful for getting quick insight into the data, you might want to examine a
distribution across linear values instead. To display a linear value distribution, use the
lquantize aggregating function. The lquantize function takes three arguments in addition to
a D expression: a lower bound, an upper bound, and a step. For example, if you wanted to look
at the distribution of writes by file descriptor, a power-of-two quantization would not be
effective. Instead, use a linear quantization with a small range, as shown in the following
example:

syscall::write:entry

{

@fds[execname] = lquantize(arg0, 0, 100, 1);

}

Running this script for several seconds yields a large amount of information. The following
example shows a selection of typical output:

mountd

value ------------- Distribution ------------- count

11 | 0

12 |@ 4

13 | 0

14 |@@@@@@@@@@@@@@@@@@@@@@@@@ 70

15 | 0

16 |@@@@@@@@@@@@ 34

17 | 0

xemacs-20.4

value ------------- Distribution ------------- count

6 | 0

7 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 521

8 | 0

9 | 1

10 | 0

make.bin

value ------------- Distribution ------------- count

0 | 0

1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 3596

2 | 0

3 | 0

4 | 42

5 | 50

6 | 0

acomp

value ------------- Distribution ------------- count

0 | 0

1 |@@@@@ 1156

2 | 0

3 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 6635

4 |@ 297

5 | 0

iropt

value ------------- Distribution ------------- count

Aggregations

Chapter 3 • Aggregations 95

2 | 0

3 | 299

4 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 20144

5 | 0

You can also use the lquantize aggregating function to aggregate on time since some point in
the past. This technique allows you to observe a change in behavior over time. The following
example displays the change in system call behavior over the lifetime of a process executing the
date(1) command:

syscall::exec:return,

syscall::exece:return

/execname == "date"/
{

self->start = vtimestamp;

}

syscall:::entry

/self->start/

{

/*

* We linearly quantize on the current virtual time minus our

* process’s start time. We divide by 1000 to yield microseconds

* rather than nanoseconds. The range runs from 0 to 10 milliseconds

* in steps of 100 microseconds; we expect that no date(1) process

* will take longer than 10 milliseconds to complete.

*/

@a["system calls over time"] =

lquantize((vtimestamp - self->start) / 1000, 0, 10000, 100);

}

syscall::rexit:entry

/self->start/

{

self->start = 0;

}

The preceding script provides greater insight into system call behavior when many date(1)
processes are executed. To see this result, run sh -c ’while true; do date >/dev/null;

done’ in one window, while executing the D script in another. The script produces a profile of
the system call behavior of the date(1) command:

dtrace -s dateprof.d

dtrace: script ’./dateprof.d’ matched 218 probes

^C

system calls over time

value ------------- Distribution ------------- count

< 0 | 0

0 |@@ 20530

100 |@@@@@@ 48814

200 |@@@ 28119

300 |@ 14646

400 |@@@@@ 41237

500 | 1259

600 | 218

Aggregations

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0296

700 | 116

800 |@ 12783

900 |@@@ 28133

1000 | 7897

1100 |@ 14065

1200 |@@@ 27549

1300 |@@@ 25715

1400 |@@@@ 35011

1500 |@@ 16734

1600 | 498

1700 | 256

1800 | 369

1900 | 404

2000 | 320

2100 | 555

2200 | 54

2300 | 17

2400 | 5

2500 | 1

2600 | 7

2700 | 0

This output provides a rough idea of the different phases of the date(1) command with respect
to the services required of the kernel. To better understand these phases, you might want to
understand which system calls are being called when. If so, you could change the D script to
aggregate on the variable probefunc instead of a constant string.

Similarly, you can use the stddev aggregating function to characterize the distribution of data
points. This example shows the average and standard deviation of the time it takes to exec
processes:

syscall::exece:entry,

syscall::exec:entry

{

self->ts = timestamp;

}

syscall::exece:return,

syscall::exec:return

/ self->ts /

{

t = timestamp - self->ts;

@execavg[probefunc] = avg(t);

@execsd[probefunc] = stddev(t);

self->ts = 0;

}

END

{

printf("AVERAGE:");
printa(@execavg);

printf("nSTDDEV:");
printa(@execsd);

}

With sample output as follows:

Aggregations

Chapter 3 • Aggregations 97

dtrace -s ./stddev.d

^C

AVERAGE:

exece 567257

STDDEV:

exece 158867

Note that standard deviation is being approximated as sqrt(avg(x^2) - avg(x)^2). This is an
imprecise approximation to standard deviation, but it is calculable as an aggregation, and it
should be sufficient for most of the purposes to which DTrace is put.

Printing Aggregations
By default, multiple aggregations are displayed in the order they are introduced in the D
program. You can override this behavior using the printa function to print the aggregations.
The printa function also enables you to precisely format the aggregation data using a format
string, as described in Chapter 6, “Output Formatting.”

If an aggregation is not formatted with a printa statement in your D program, the dtrace
command will snapshot the aggregation data and print the results once after tracing has
completed using the default aggregation format. If a given aggregation is formatted using a
printa statement, the default behavior is disabled. You can achieve equivalent results by adding
the statement printa(@{_}aggregation-name{_}) to a dtrace:::END probe clause in your
program. The default output format for the avg, count, min, max, and sum aggregating functions
displays an integer decimal value corresponding to the aggregated value for each tuple. The
default output format for the lquantize and quantize aggregating functions displays an ASCII
table of the results. Aggregation tuples are printed as if trace had been applied to each tuple
element.

Data Normalization
When aggregating data over some period of time, you might want to normalize the data with
respect to some constant factor. This technique enables you to compare disjoint data more
easily. For example, when aggregating system calls, you might want to output system calls as a
per-second rate instead of as an absolute value over the course of the run. The DTrace
normalize action enables you to normalize data in this way. The parameters to normalize are
an aggregation and a normalization factor. The output of the aggregation shows each value
divided by the normalization factor.

The following example shows how to aggregate data by system call:

#pragma D option quiet

BEGIN

Printing Aggregations

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_0298

{

/*

* Get the start time, in nanoseconds.

*/

start = timestamp;

}

syscall:::entry

{

@func[execname] = count();

}

END

{

/*

* Normalize the aggregation based on the number of seconds we have

* been running. (There are 1,000,000,000 nanoseconds in one second.)

*/

normalize(@func, (timestamp - start) / 1000000000);

}

Running the above script for a brief period of time results in the following output on a desktop
machine:

dtrace -s ./normalize.d

^C

syslogd 0

rpc.rusersd 0

utmpd 0

xbiff 0

in.routed 1

sendmail 2

echo 2

FvwmAuto 2

stty 2

cut 2

init 2

pt_chmod 3

picld 3

utmp_update 3

httpd 4

xclock 5

basename 6

tput 6

sh 7

tr 7

arch 9

expr 10

uname 11

mibiisa 15

dirname 18

dtrace 40

ksh 48

java 58

xterm 100

nscd 120

fvwm2 154

prstat 180

Data Normalization

Chapter 3 • Aggregations 99

perfbar 188

Xsun 1309

.netscape.bin 3005

normalize sets the normalization factor for the specified aggregation, but this action does not
modify the underlying data. denormalize takes only an aggregation. Adding the denormalize
action to the preceding example returns both raw system call counts and per-second rates:

#pragma D option quiet

BEGIN

{

start = timestamp;

}

syscall:::entry

{

@func[execname] = count();

}

END

{

this->seconds = (timestamp - start) / 1000000000;

printf("Ran for %d seconds.n", this->seconds);

printf("Per-second rate:n");
normalize(@func, this->seconds);

printa(@func);

printf("nRaw counts:n");
denormalize(@func);

printa(@func);

}

Running the above script for a brief period of time produces output similar to the following
example:

dtrace -s ./denorm.d

^C

Ran for 14 seconds.

Per-second rate:

syslogd 0

in.routed 0

xbiff 1

sendmail 2

elm 2

picld 3

httpd 4

xclock 6

FvwmAuto 7

mibiisa 22

dtrace 42

java 55

xterm 75

adeptedit 118

Data Normalization

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02100

nscd 127

prstat 179

perfbar 184

fvwm2 296

Xsun 829

Raw counts:

syslogd 1

in.routed 4

xbiff 21

sendmail 30

elm 36

picld 43

httpd 56

xclock 91

FvwmAuto 104

mibiisa 314

dtrace 592

java 774

xterm 1062

adeptedit 1665

nscd 1781

prstat 2506

perfbar 2581

fvwm2 4156

Xsun 11616

Aggregations can also be renormalized. If normalize is called more than once for the same
aggregation, the normalization factor will be the factor specified in the most recent call. The
following example prints per-second rates over time:

EXAMPLE 3–1 renormalize.d: Renormalizing an Aggregation

#pragma D option quiet

BEGIN

{

start = timestamp;

}

syscall:::entry

{

@func[execname] = count();

}

tick-10sec

{

normalize(@func, (timestamp - start) / 1000000000);

printa(@func);

}

Data Normalization

Chapter 3 • Aggregations 101

Clearing Aggregations
When using DTrace to build simple monitoring scripts, you can periodically clear the values in
an aggregation using the clear function. This function takes an aggregation as its only
parameter. The clear function clears only the aggregation's values; the aggregation's keys are
retained. Therefore, the presence of a key in an aggregation that has an associated value of zero
indicates that the key had a non-zero value that was subsequently set to zero as part of a clear.
To discard both an aggregation's values and its keys, use the trunc. See “Truncating
aggregations” on page 102 for details.

The following example adds clear to Example 3–1:

EXAMPLE 3–2 Clearing Aggregations

#pragma D option quiet

BEGIN

{

last = timestamp;

}

syscall:::entry

{

@func[execname] = count();

}

tick-10sec

{

normalize(@func, (timestamp - last) / 1000000000);

printa(@func);

clear(@func);

last = timestamp;

}

While Example 3–1 shows the system call rate over the lifetime of the dtrace invocation, the
preceding example shows the system call rate only for the most recent ten-second period.

Truncating aggregations
When looking at aggregation results, you often care only about the top several results. The keys
and values associated with anything other than the highest values are not interesting. You might
also wish to discard an entire aggregation result, removing both keys and values. The DTrace
trunc function is used for both of these situations.

The parameters to trunc are an aggregation and an optional truncation value. Without the
truncation value, trunc discards both aggregation values and aggregation keys for the entire
aggregation. When a truncation value n is present, trunc discards aggregation values and keys
except for those values and keys associated with the highest n values. That is, trunc(@foo, 10)

Clearing Aggregations

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02102

truncates the aggregation named foo after the top ten values, where trunc(@foo) discards the
entire aggregation. The entire aggregation is also discarded if 0 is specified as the truncation
value.

To see the bottom n values instead of the top n, specify a negative truncation value to trunc. For
example, trunc(@foo, -10) truncates the aggregation named foo after the bottom ten values.

The following example augments the system call example to only display the per-second system
call rates of the top ten system-calling applications in a ten-second period:

#pragma D option quiet

BEGIN

{

last = timestamp;

}

syscall:::entry

{

@func[execname] = count();

}

tick-10sec

{

trunc(@func, 10);

normalize(@func, (timestamp - last) / 1000000000);

printa(@func);

clear(@func);

last = timestamp;

}

The following example shows output from running the above script on a lightly loaded laptop:

FvwmAuto 7

telnet 13

ping 14

dtrace 27

xclock 34

MozillaFirebird- 63

xterm 133

fvwm2 146

acroread 168

Xsun 616

telnet 4

FvwmAuto 5

ping 14

dtrace 27

xclock 35

fvwm2 69

xterm 70

acroread 164

MozillaFirebird- 491

Xsun 1287

Truncating aggregations

Chapter 3 • Aggregations 103

Minimizing Drops
Because DTrace buffers some aggregation data in the kernel, space might not be available when
a new key is added to an aggregation. In this case, the data will be dropped, a counter will be
incremented, and dtrace will generate a message indicating an aggregation drop. This situation
rarely occurs because DTrace keeps long-running state (consisting of the aggregation's key and
intermediate result) at user-level where space may grow dynamically. In the unlikely event that
aggregation drops occur, you can increase the aggregation buffer size with the aggsize option
to reduce the likelihood of drops. You can also use this option to minimize the memory
footprint of DTrace. As with any size option, aggsize may be specified with any size suffix. The
resizing policy of this buffer is dictated by the bufresize option. For more details on buffering,
see Chapter 5, “Buffers and Buffering.” For more details on options, see Chapter 10, “Options
and Tunables.”

An alternative method to eliminate aggregation drops is to increase the rate at which
aggregation data is consumed at user-level. This rate defaults to once per second, and may be
explicitly tuned with the aggrate option. As with any rate option, aggrate may be specified
with any time suffix, but defaults to rate-per-second. For more details on the aggsize option,
see Chapter 10, “Options and Tunables.”

Minimizing Drops

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02104

Actions and Subroutines

You can use D function calls such as trace and printf to invoke two different kinds of services
provided by DTrace: actions that trace data or modify state external to DTrace, and subroutines
that affect only internal DTrace state. This chapter defines the actions and subroutines and
describes their syntax and semantics.

Actions
Actions enable your DTrace programs to interact with the system outside of DTrace. The most
common actions record data to a DTrace buffer. Other actions are available, such as stopping
the current process, raising a specific signal on the current process, or ceasing tracing
altogether. Some of these actions are destructive in that they change the system, albeit in a
well-defined way. These actions may only be used if destructive actions have been explicitly
enabled. By default, data recording actions record data to the principal buffer. For more details
on the principal buffer and buffer policies, see Chapter 5, “Buffers and Buffering.”

Default Action
A clause can contain any number of actions and variable manipulations. If a clause is left empty,
the default action is taken. The default action is to trace the enabled probe identifier (EPID) to
the principal buffer. The EPID identifies a particular enabling of a particular probe with a
particular predicate and actions. From the EPID, DTrace consumers can determine the probe
that induced the action. Indeed, whenever any data is traced, it must be accompanied by the
EPID to enable the consumer to make sense of the data. Therefore, the default action is to trace
the EPID and nothing else.

Using the default action allows for simple use of dtrace(1M). For example, the following
example command enables all probes in the TS timeshare scheduling module with the default
action:

dtrace -m TS

4C H A P T E R 4

105

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdtrace-1m

The preceding command might produce output similar to the following example:

dtrace -m TS

dtrace: description ’TS’ matched 80 probes

CPU ID FUNCTION:NAME

0 12077 ts_trapret:entry

0 12078 ts_trapret:return

0 12069 ts_sleep:entry

0 12070 ts_sleep:return

0 12033 ts_setrun:entry

0 12034 ts_setrun:return

0 12081 ts_wakeup:entry

0 12082 ts_wakeup:return

0 12069 ts_sleep:entry

0 12070 ts_sleep:return

0 12033 ts_setrun:entry

0 12034 ts_setrun:return

0 12069 ts_sleep:entry

0 12070 ts_sleep:return

0 12033 ts_setrun:entry

0 12034 ts_setrun:return

0 12069 ts_sleep:entry

0 12070 ts_sleep:return

0 12023 ts_update:entry

0 12079 ts_update_list:entry

0 12080 ts_update_list:return

0 12079 ts_update_list:entry

...

Data Recording Actions
The data recording actions comprise the core DTrace actions. Each of these actions records data
to the principal buffer by default, but each action may also be used to record data to speculative
buffers. See Chapter 5, “Buffers and Buffering,” for more details on the principal buffer. See
Chapter 7, “Speculative Tracing,” for more details on speculative buffers. The descriptions in
this section refer only to the directed buffer, indicating that data is recorded either to the
principal buffer or to a speculative buffer if the action follows a speculate.

trace
void trace(expression)

The most basic action is the trace action, which takes a D expression as its argument and traces
the result to the directed buffer. The following statements are examples of trace actions:

trace(execname);

trace(curlwpsinfo->pr_pri);

trace(timestamp / 1000);

trace(‘lbolt);
trace("somehow managed to get here");

Data Recording Actions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02106

tracemem
void tracemem(address, size_t nbytes)

The tracemem action takes a D expression as its first argument, address, and a constant as its
second argument, nbytes. tracemem copies the memory from the address specified by addr into
the directed buffer for the length specified by nbytes.

The output format depends on the data printed. When dtrace decides that the data looks like
ascii string, it prints them as text, and output is terminated by first '0'. When dtrace decides that
the data is binary, it prints them in hex form

0 342 write:entry

0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

0: c0 de 09 c2 4a e8 27 54 dc f8 9f f1 9a 20 4b d1J.’T..... K.

10: 9c 7a 7a 85 1b 03 0a fb 3a 81 8a 1b 25 35 b3 9a .zz.....:...%5..

20: f1 7d e6 2b 66 6d 1c 11 f8 eb 40 7f 65 9a 25 f8 .}.+fm....@.e.%.

30: c8 68 87 b2 6f 48 a2 a5 f3 a2 1f 46 ab 3d f9 d2 .h..oH.....F.=..

40: 3d b8 4c c0 41 3c f7 3c cd 18 ad 0d 0d d3 1a 90 =.L.A<.<........

You can force tracemem to use always binary format by using rawbytes option.

printf
void printf(string format, ...)

Like trace, the printf action traces D expressions. However, printf allows for elaborate
printf(3C) -style formatting. Like printf(3C), the parameters consists of a format string followed
by a variable number of arguments. By default, the arguments are traced to the directed buffer.
The arguments are later formatted for output by dtrace(1M) according to the specified format
string. For example, the first two examples of trace from “trace” on page 106 could be
combined in a single printf:

printf("execname is %s; priority is %d", execname, curlwpsinfo->pr_pri);

For more information on printf, see Chapter 6, “Output Formatting.”

printa
void printa(aggregation)

void printa(string format, aggregation)

The printa action enables you to display and format aggregations. See Chapter 3,
“Aggregations,” for more detail on aggregations. If a format is not provided, printa only traces
a directive to the DTrace consumer that the specified aggregation should be processed and
displayed using the default format. If a format is provided, the aggregation will be formatted as
specified. See Chapter 6, “Output Formatting,” for a more detailed description of the printa
format string.

Data Recording Actions

Chapter 4 • Actions and Subroutines 107

printa only traces a directive that the aggregation should be processed by the DTrace
consumer. It does not process the aggregation in the kernel. Therefore, the time between the
tracing of the printa directive and the actual processing of the directive depends on the factors
that affect buffer processing. These factors include the aggregation rate, the buffering policy
and, if the buffering policy is switching, the rate at which buffers are switched. See Chapter 3,
“Aggregations,” and Chapter 5, “Buffers and Buffering,” for detailed descriptions of these
factors.

stack
void stack(int nframes)

void stack(void)

The stack action records a kernel stack trace to the directed buffer. The kernel stack will be
nframes in depth. If nframes is not provided, the number of stack frames recorded is the number
specified by the stackframes option. For example:

dtrace -n uiomove:entry’{stack()}’

CPU ID FUNCTION:NAME

0 9153 uiomove:entry

genunix‘fop_write+0x1b
namefs‘nm_write+0x1d
genunix‘fop_write+0x1b
genunix‘write+0x1f7

0 9153 uiomove:entry

genunix‘fop_read+0x1b
genunix‘read+0x1d4

0 9153 uiomove:entry

genunix‘strread+0x394
specfs‘spec_read+0x65
genunix‘fop_read+0x1b
genunix‘read+0x1d4

...

The stack action is a little different from other actions in that it may also be used as the key to
an aggregation:

dtrace -n kmem_alloc:entry’{@[stack()] = count()}’

dtrace: description ’kmem_alloc:entry’ matched 1 probe

^C

rpcmod‘endpnt_get+0x47c
rpcmod‘clnt_clts_kcallit_addr+0x26f
rpcmod‘clnt_clts_kcallit+0x22
nfs‘rfscall+0x350
nfs‘rfs2call+0x60
nfs‘nfs_getattr_otw+0x9e
nfs‘nfsgetattr+0x26
nfs‘nfs_getattr+0xb8
genunix‘fop_getattr+0x18
genunix‘cstat64+0x30

Data Recording Actions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02108

genunix‘cstatat64+0x4a
genunix‘lstat64+0x1c
1

genunix‘vfs_rlock_wait+0xc
genunix‘lookuppnvp+0x19d
genunix‘lookuppnat+0xe7
genunix‘lookupnameat+0x87
genunix‘lookupname+0x19
genunix‘chdir+0x18
1

rpcmod‘endpnt_get+0x6b1
rpcmod‘clnt_clts_kcallit_addr+0x26f
rpcmod‘clnt_clts_kcallit+0x22
nfs‘rfscall+0x350
nfs‘rfs2call+0x60
nfs‘nfs_getattr_otw+0x9e
nfs‘nfsgetattr+0x26
nfs‘nfs_getattr+0xb8
genunix‘fop_getattr+0x18
genunix‘cstat64+0x30
genunix‘cstatat64+0x4a
genunix‘lstat64+0x1c
1

...

ustack
void ustack(int nframes, int strsize)

void ustack(int nframes)

void ustack(void)

The ustack action records a user stack trace to the directed buffer. The user stack will be
nframes in depth. If nframes is not provided, the number of stack frames recorded is the number
specified by the ustackframes option. While ustack is able to determine the address of the
calling frames when the probe fires, the stack frames will not be translated into symbols until
the ustack action is processed at user-level by the DTrace consumer. If strsize is specified and
non-zero, ustack will allocate the specified amount of string space, and use it to perform
address-to-symbol translation directly from the kernel. This direct user symbol translation is
currently available only for Java virtual machines, version 1.5 and higher. Java
address-to-symbol translation annotates user stacks that contain Java frames with the Java class
and method name. If such frames cannot be translated, the frames will appear only as
hexadecimal addresses.

The following example traces a stack with no string space, and therefore no Java
address-to-symbol translation:

dtrace -n syscall::write:entry’/pid == $target/{ustack(50, 0);

exit(0)}’ -c "java -version"
dtrace: description ’syscall::write:entry’ matched 1 probe

Data Recording Actions

Chapter 4 • Actions and Subroutines 109

java version "1.5.0-beta3"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-beta3-b58)

Java HotSpot(TM) Client VM (build 1.5.0-beta3-b58, mixed mode)

dtrace: pid 5312 has exited

CPU ID FUNCTION:NAME

0 35 write:entry

libc.so.1‘_write+0x15
libjvm.so‘__1cDhpiFwrite6FipkvI_I_+0xa8
libjvm.so‘JVM_Write+0x2f
d0c5c946

libjava.so‘Java_java_io_FileOutputStream_writeBytes+0x2c
cb007fcd

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb002a7b

cb000152

libjvm.so‘__1cJJavaCallsLcall_helper6FpnJJavaValue_
pnMmethodHandle_pnRJavaCallArguments_

pnGThread__v_+0x187

libjvm.so‘__1cCosUos_exception_wrapper6FpFpnJJavaValue_
pnMmethodHandle_pnRJavaCallArguments_

pnGThread__v2468_v_+0x14

libjvm.so‘__1cJJavaCallsEcall6FpnJJavaValue_nMmethodHandle_
pnRJavaCallArguments_pnGThread __v_+0x28

libjvm.so‘__1cRjni_invoke_static6FpnHJNIEnv__pnJJavaValue_
pnI_jobject_nLJNICallType_pnK_jmethodID_pnSJNI_

ArgumentPusher_pnGThread__v_+0x180

libjvm.so‘jni_CallStaticVoidMethod+0x10f
java‘main+0x53d

Notice that the C and C++ stack frames from the Java virtual machine are presented
symbolically using C++ “mangled” symbol names, and the Java stack frames are presented only
as hexadecimal addresses. The following example shows a call to ustack with a non-zero string
space:

dtrace -n syscall::write:entry’/pid == $target/{ustack(50, 500); exit(0)}’

-c "java -version"
dtrace: description ’syscall::write:entry’ matched 1 probe

java version "1.5.0-beta3"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0-beta3-b58)

Java HotSpot(TM) Client VM (build 1.5.0-beta3-b58, mixed mode)

dtrace: pid 5308 has exited

CPU ID FUNCTION:NAME

0 35 write:entry

libc.so.1‘_write+0x15
libjvm.so‘__1cDhpiFwrite6FipkvI_I_+0xa8
libjvm.so‘JVM_Write+0x2f

Data Recording Actions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02110

d0c5c946

libjava.so‘Java_java_io_FileOutputStream_writeBytes+0x2c
java/io/FileOutputStream.writeBytes

java/io/FileOutputStream.write

java/io/BufferedOutputStream.flushBuffer

java/io/BufferedOutputStream.flush

java/io/PrintStream.write

sun/nio/cs/StreamEncoder$CharsetSE.writeBytes

sun/nio/cs/StreamEncoder$CharsetSE.implFlushBuffer

sun/nio/cs/StreamEncoder.flushBuffer

java/io/OutputStreamWriter.flushBuffer

java/io/PrintStream.write

java/io/PrintStream.print

java/io/PrintStream.println

sun/misc/Version.print

sun/misc/Version.print

StubRoutines (1)

libjvm.so‘__1cJJavaCallsLcall_helper6FpnJJavaValue_
pnMmethodHandle_pnRJavaCallArguments_pnGThread

__v_+0x187

libjvm.so‘__1cCosUos_exception_wrapper6FpFpnJJavaValue_
pnMmethodHandle_pnRJavaCallArguments_pnGThread

__v2468_v_+0x14

libjvm.so‘__1cJJavaCallsEcall6FpnJJavaValue_nMmethodHandle
_pnRJavaCallArguments_pnGThread__v_+0x28

libjvm.so‘__1cRjni_invoke_static6FpnHJNIEnv__pnJJavaValue_pnI
_jobject_nLJNICallType_pnK_jmethodID_pnSJNI

_ArgumentPusher_pnGThread__v_+0x180

libjvm.so‘jni_CallStaticVoidMethod+0x10f
java‘main+0x53d
8051b9a

The above example output demonstrates symbolic stack frame information for Java stack
frames. There are still some hexadecimal frames in this output because some functions are static
and do not have entries in the application symbol table. Translation is not possible for these
frames.

The ustack symbol translation for non-Java frames occurs after the stack data is recorded.
Therefore, the corresponding user process might exit before symbol translation can be
performed, making stack frame translation impossible. If the user process exits before symbol
translation is performed, dtrace will emit a warning message, followed by the hexadecimal
stack frames, as shown in the following example:

dtrace: failed to grab process 100941: no such process

c7b834d4

c7bca85d

c7bca1a4

c7bd4374

c7bc2628

8047efc

Techniques for mitigating this problem are described in Chapter 12, “User Process Tracing.”

Finally, because the postmortem DTrace debugger commands cannot perform the frame
translation, using ustack with a ring buffer policy always results in raw ustack data.

Data Recording Actions

Chapter 4 • Actions and Subroutines 111

The following D program shows an example of ustack that leaves strsize unspecified:

syscall::brk:entry

/execname == $$1/

{

@[ustack(40)] = count();

}

To run this example for the Netscape web browser, .netscape.bin in default Oracle Solaris
installations, use the following command:

dtrace -s brk.d .netscape.bin

dtrace: description ’syscall::brk:entry’ matched 1 probe

^C

libc.so.1‘_brk_unlocked+0xc
88143f6

88146cd

.netscape.bin‘unlocked_malloc+0x3e

.netscape.bin‘unlocked_calloc+0x22

.netscape.bin‘calloc+0x26

.netscape.bin‘_IMGCB_NewPixmap+0x149

.netscape.bin‘il_size+0x2f7

.netscape.bin‘il_jpeg_write+0xde
8440c19

.netscape.bin‘il_first_write+0x16b
8394670

83928e5

.netscape.bin‘NET_ProcessHTTP+0xa6

.netscape.bin‘NET_ProcessNet+0x49a
827b323

libXt.so.4‘XtAppProcessEvent+0x38f
.netscape.bin‘fe_EventLoop+0x190
.netscape.bin‘main+0x1875

1

libc.so.1‘_brk_unlocked+0xc
libc.so.1‘sbrk+0x29
88143df

88146cd

.netscape.bin‘unlocked_malloc+0x3e

.netscape.bin‘unlocked_calloc+0x22

.netscape.bin‘calloc+0x26

.netscape.bin‘_IMGCB_NewPixmap+0x149

.netscape.bin‘il_size+0x2f7

.netscape.bin‘il_jpeg_write+0xde
8440c19

.netscape.bin‘il_first_write+0x16b
8394670

83928e5

.netscape.bin‘NET_ProcessHTTP+0xa6

.netscape.bin‘NET_ProcessNet+0x49a
827b323

libXt.so.4‘XtAppProcessEvent+0x38f
.netscape.bin‘fe_EventLoop+0x190
.netscape.bin‘main+0x1875
1

...

Data Recording Actions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02112

jstack
void jstack(int nframes, int strsize)

void jstack(int nframes)

void jstack(void)

jstack is an alias for ustack that uses the jstackframes option for the number of stack frames
the value specified by , and for the string space size the value specified by the jstackstrsize
option. By default, jstacksize defaults to a non-zero value. As a result, use of jstack will result
in a stack with in situ Java frame translation.

uaddr
_usymaddr uaddr(uintptr_t address)

uaddr will prints the symbol for a specified address, including hexadecimal offset. This allows
for the same symbol resolution that ustack provides.

dtrace -c date -n ’pid$target::main:entry{ uaddr(0x8062578); }’

dtrace: description ’pid$target::main:entry’ matched 1 probe

Sun Feb 3 20:58:03 PST 2008

dtrace: pid 105537 has exited

CPU ID FUNCTION:NAME

0 59934 main:entry date‘clock_val

In the above example, a call to uaddr(0x8062578) causes date‘clock_val to be printed.

The example below shows the hexadecimal offsets being printed.

demo$ sudo dtrace -n "pid\$target::main:{uaddr(uregs[R_PC])}" -c nmap

dtrace: description ’pid$target::main:’ matched 946 probes

[outout cut]

dtrace: pid 2229 has exited

CPU ID FUNCTION:NAME

1 20165 main:entry nmap‘main
1 20166 main:0 nmap‘main
1 20167 main:1 nmap‘main+0x1
1 20168 main:3 nmap‘main+0x3
1 20169 main:4 nmap‘main+0x4
1 20170 main:5 nmap‘main+0x5
1 20171 main:6 nmap‘main+0x6
1 20172 main:b nmap‘main+0xb
1 20173 main:c nmap‘main+0xc
1 20174 main:12 nmap‘main+0x12
1 20175 main:15 nmap‘main+0x15
1 20176 main:1c nmap‘main+0x1c
1 20177 main:23 nmap‘main+0x23
1 20178 main:2b nmap‘main+0x2b
1 20179 main:2e nmap‘main+0x2e
1 20180 main:33 nmap‘main+0x33

Data Recording Actions

Chapter 4 • Actions and Subroutines 113

...

...

...

usym
_usymaddr usym(uintptr_t address)

usym will print the symbol for a specified address. This is analogous to how uaddr works, but
without the hexadecimal offsets.

uaddr: date‘clock_val+0x1
usym: date‘clock_val

Destructive Actions
Some DTrace actions are destructive in that they change the state of the system in some
well-defined way. Destructive actions may not be used unless they have been explicitly enabled.
When using dtrace(1M), you can enable destructive actions using the -w option. If an attempt
is made to enable destructive actions in dtrace(1M) without explicitly enabling them, dtrace
will fail with a message similar to the following example:

dtrace: failed to enable ’syscall’: destructive actions not allowed

An administrator may choose to disable destructive actions system-wide by setting the kernel
tunable dtrace_destructive_disallow to 1. This may be done in a number of ways including
rebooting after adding the following line to /etc/system:

set dtrace:dtrace_destructive_disallow = 1

It may be set temporarily on a running system using mdb(1):

echo "dtrace_destructive_disallow/W 1" | mdb -kw

dtrace_destructive_disallow: 0x0 = 0x1

Process Destructive Actions
Some destructive actions are destructive only to a particular process. These actions are available
to users with the dtrace_proc or dtrace_user privileges. See Chapter 14, “Security,” for details
on DTrace security privileges.

stop
void stop(void)

Destructive Actions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02114

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mdtrace-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1mdb-1

The stop action forces the process that fires the enabled probe to stop when it next leaves the
kernel, as if stopped by a proc(4) action. The prun(1) utility may be used to resume a process
that has been stopped by the stop action. The stop action can be used to stop a process at any
DTrace probe point. This action can be used to capture a program in a particular state that
would be difficult to achieve with a simple breakpoint, and then attach a traditional debugger
like mdb(1) to the process. You can also use the gcore(1) utility to save the state of a stopped
process in a core file for later analysis.

raise
void raise(int signal)

The raise action sends the specified signal to the currently running process. This action is
similar to using the kill(1) command to send a process a signal. The raise action can be used
to send a signal at a precise point in a process's execution.

copyout
void copyout(void *buf, uintptr_t addr, size_t nbytes)

The copyout action copies nbytes from the buffer specified by buf to the address specified by
addr in the address space of the process associated with the current thread. If the user-space
address does not correspond to a valid, faulted-in page in the current address space, an error
will be generated.

copyoutstr
void copyoutstr(string str, uintptr_t addr, size_t maxlen)

The copyoutstr action copies the string specified by str to the address specified by addr in the
address space of the process associated with the current thread. If the user-space address does
not correspond to a valid, faulted-in page in the current address space, an error will be
generated. The string length is limited to the value set by the strsize option. See Chapter 10,
“Options and Tunables,” for details.

system
void system(string program, ...)

The system action causes the program specified by program to be executed as if it were given to
the shell as input. The program string may contain any of the printf/printa format
conversions. Arguments must be specified that match the format conversions. Refer to
Chapter 6, “Output Formatting,” for details on valid format conversions.

The following example runs the date(1) command once per second:

dtrace -wqn tick-1sec’{system("date")}’
Tue Jul 20 11:56:26 CDT 2004

Tue Jul 20 11:56:27 CDT 2004

Destructive Actions

Chapter 4 • Actions and Subroutines 115

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1prun-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1gcore-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1kill-1

Tue Jul 20 11:56:28 CDT 2004

Tue Jul 20 11:56:29 CDT 2004

Tue Jul 20 11:56:30 CDT 2004

The following example shows a more elaborate use of the action, using printf conversions in
the program string along with traditional filtering tools like pipes:

#pragma D option destructive

#pragma D option quiet

proc:::signal-send

/args[2] == SIGINT/

{

printf("SIGINT sent to %s by ", args[1]->pr_fname);

system("getent passwd %d | cut -d: -f5", uid);

}

Running the above script results in output similar to the following example:

./whosend.d

SIGINT sent to MozillaFirebird- by Bryan Cantrill

SIGINT sent to run-mozilla.sh by Bryan Cantrill

^C

SIGINT sent to dtrace by Bryan Cantrill

The execution of the specified command does not occur in the context of the firing probe. It
occurs when the buffer containing the details of the system action are processed at user-level.
How and when this processing occurs depends on the buffering policy, described in Chapter 5,
“Buffers and Buffering.” With the default buffering policy, the buffer processing rate is specified
by the switchrate option. You can see the delay inherent in system if you explicitly tune the
switchrate higher than its one-second default, as shown in the following example:

#pragma D option quiet

#pragma D option destructive

#pragma D option switchrate=5sec

tick-1sec

/n++ < 5/

{

printf("walltime : %Y\n", walltimestamp);

printf("date : ");
system("date");
printf("\n");

}

tick-1sec

/n == 5/

{

exit(0);

}

Running the above script results in output similar to the following example:

dtrace -s ./time.d

walltime : 2004 Jul 20 13:26:30

Destructive Actions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02116

date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:31

date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:32

date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:33

date : Tue Jul 20 13:26:35 CDT 2004

walltime : 2004 Jul 20 13:26:34

date : Tue Jul 20 13:26:35 CDT 2004

Notice that the walltime values differ, but the date values are identical. This result reflects the
fact that the execution of the date(1) command occurred only when the buffer was processed,
not when the system action was recorded.

Kernel Destructive Actions
Some destructive actions are destructive to the entire system. These actions must obviously be
used extremely carefully, as they will affect every process on the system and any other system
implicitly or explicitly depending upon the affected system's network services.

breakpoint
void breakpoint(void)

The breakpoint action induces a kernel breakpoint, causing the system to stop and transfer
control to the kernel debugger. The kernel debugger will emit a string denoting the DTrace
probe that triggered the action. For example, if one were to do the following:

dtrace -w -n clock:entry’{breakpoint()}’

dtrace: allowing destructive actions

dtrace: description ’clock:entry’ matched 1 probe

On Oracle Solaris running on SPARC, the following message might appear on the console:

dtrace: breakpoint action at probe fbt:genunix:clock:entry (ecb 30002765700)

Type ’go’ to resume

ok

On Oracle Solaris running on x86, the following message might appear on the console:

dtrace: breakpoint action at probe fbt:genunix:clock:entry (ecb d2b97060)

stopped at int20+0xb: ret

kmdb[0]:

The address following the probe description is the address of the enabling control block (ECB)
within DTrace. You can use this address to determine more details about the probe enabling
that induced the breakpoint action.

Destructive Actions

Chapter 4 • Actions and Subroutines 117

A mistake with the breakpoint action may cause it to be called far more often than intended.
This behavior might in turn prevent you from even terminating the DTrace consumer that is
triggering the breakpoint actions. In this situation, set the kernel tunable
dtrace_destructive_disallow to 1. This setting will disallow all destructive actions on the
machine.

The exact method for setting dtrace_destructive_disallow will depend on the kernel
debugger that you are using. If using the OpenBoot PROM on a SPARC system, use w!:

ok 1 dtrace_destructive_disallow w!

ok

Confirm that the variable has been set using w?:

ok dtrace_destructive_disallow w?

1

ok

Continue by typing go:

ok go

If using kmdb(1) on x86 or SPARC systems, use the 4–byte write modifier (W) with the /
formatting dcmd:

kmdb[0]: dtrace_destructive_disallow/W 1

dtrace_destructive_disallow: 0x0 = 0x1

kmdb[0]:

Continue using :c:

kadb[0]: :c

To re-enable destructive actions after continuing, you will need to explicitly reset
dtrace_destructive_disallow back to 0 using mdb(1):

echo "dtrace_destructive_disallow/W 0" | mdb -kw

dtrace_destructive_disallow: 0x1 = 0x0

#

panic
void panic(void)

The panic action causes a kernel panic when triggered. This action should be used to force a
system crash dump at a time of interest. You can use this action together with ring buffering and
postmortem analysis to understand a problem. For more information, see Chapter 5, “Buffers
and Buffering,” and Chapter 16, “Postmortem Tracing,” respectively. When the panic action is
used, a panic message appears that denotes the probe causing the panic. For example:

Destructive Actions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02118

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1kmdb-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1mdb-1

panic[cpu0]/thread=30001830b80: dtrace: panic action at probe

syscall::mmap:entry (ecb 300000acfc8)

000002a10050b840 dtrace:dtrace_probe+518 (fffe, 0, 1830f88, 1830f88,

30002fb8040, 300000acfc8)

%l0-3: 0000000000000000 00000300030e4d80 0000030003418000 00000300018c0800

%l4-7: 000002a10050b980 0000000000000500 0000000000000000 0000000000000502

000002a10050ba30 genunix:dtrace_systrace_syscall32+44 (0, 2000, 5,

80000002, 3, 1898400)

%l0-3: 00000300030de730 0000000002200008 00000000000000e0 000000000184d928

%l4-7: 00000300030de000 0000000000000730 0000000000000073 0000000000000010

syncing file systems... 2 done

dumping to /dev/dsk/c0t0d0s1, offset 214827008, content: kernel

100% done: 11837 pages dumped, compression ratio 4.66, dump

succeeded

rebooting...

syslogd(1M) will also emit a message upon reboot:

Jun 10 16:56:31 machine1 savecore: [ID 570001 auth.error] reboot after panic:

dtrace: panic action at probe syscall::mmap:entry (ecb 300000acfc8)

The message buffer of the crash dump also contains the probe and ECB responsible for the
panic action.

chill
void chill(int nanoseconds)

The chill action causes DTrace to spin for the specified number of nanoseconds. chill is
primarily useful for exploring problems that might be timing related. For example, you can use
this action to open race condition windows, or to bring periodic events into or out of phase with
one another. Because interrupts are disabled while in DTrace probe context, any use of chill
will induce interrupt latency, scheduling latency, dispatch latency. Therefore, chill can cause
unexpected systemic effects and it should not used indiscriminately. Because system activity
relies on periodic interrupt handling, DTrace will refuse to execute the chill action for more
than 500 milliseconds out of each one-second interval on any given CPU. If the maximum
chill interval is exceeded, DTrace will report an illegal operation error, as shown in the
following example:

dtrace -w -n syscall::openat:entry’{chill(500000001)}’

dtrace: allowing destructive actions

dtrace: description ’syscall::openat:entry’ matched 1 probe

dtrace: 57 errors

CPU ID FUNCTION:NAME

dtrace: error on enabled probe ID 1 (ID 14: syscall::openat:entry): \

illegal operation in action #1

This limit is enforced even if the time is spread across multiple calls to chill, or multiple
DTrace consumers of a single probe. For example, the same error would be generated by the
following command:

Destructive Actions

Chapter 4 • Actions and Subroutines 119

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Msyslogd-1m

dtrace -w -n syscall::openat:entry’{chill(250000000); chill(250000001);}’

Special Actions
This section describes actions that are neither data recording actions nor destructive actions.

Speculative Actions
The actions associated with speculative tracing are speculate, commit, and discard. These
actions are discussed in Chapter 7, “Speculative Tracing.”

exit
void exit(int status)

The exit action is used to immediately stop tracing, and to inform the DTrace consumer that it
should cease tracing, perform any final processing, and call exit(3C) with the status specified.
Because exit returns a status to user-level, it is a data recording action, However, unlike other
data storing actions, exit cannot be speculatively traced. exit will cause the DTrace consumer
to exit regardless of buffer policy. Because exit is a data recording action, it can be dropped.

When exit is called, only DTrace actions already in progress on other CPUs will be completed.
No new actions will occur on any CPU. The only exception to this rule is the processing of the
END probe, which will be called after the DTrace consumer has processed the exit action and
indicated that tracing should stop.

Subroutines
Subroutines differ from actions because they generally only affect internal DTrace state.
Therefore, there are no destructive subroutines, and subroutines never trace data into buffers.
Many subroutines have analogs in the Section 9F or Section 3C interfaces. See Intro(9F) and
Intro(3) for more information on the corresponding subroutines.

alloca
void *alloca(size_t size)

alloca allocates size bytes out of scratch space, and returns a pointer to the allocated memory.
The returned pointer is guaranteed to have 8–byte alignment. Scratch space is only valid for the
duration of a clause. Memory allocated with alloca will be deallocated when the clause
completes. If insufficient scratch space is available, no memory is allocated and an error is
generated.

Special Actions

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02120

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fintro-9f

basename
string basename(char *str)

basename is a D analogue for basename(1). This subroutine creates a string that consists of a
copy of the specified string, but without any prefix that ends in /. The returned string is
allocated out of scratch memory, and is therefore valid only for the duration of the clause. If
insufficient scratch space is available, basename does not execute and an error is generated.

bcopy
void bcopy(void *src, void *dest, size_t size)

bcopy copies size bytes from the memory pointed to by src to the memory pointed to by dest. All
of the source memory must lie outside of scratch memory and all of the destination memory
must lie within it. If these conditions are not met, no copying takes place and an error is
generated.

cleanpath
string cleanpath(char *str)

cleanpath creates a string that consists of a copy of the path indicated by str, but with certain
redundant elements eliminated. In particular “/./” elements in the path are removed, and
“/../” elements are collapsed. The collapsing of /../ elements in the path occurs without
regard to symbolic links. Therefore, it is possible that cleanpath could take a valid path and
return a shorter, invalid one.

For example, if str were “/foo/../bar” and /foo were a symbolic link to /net/foo/export,
cleanpath would return the string “/bar” even though bar might only be in /net/foo not /.
This limitation is due to the fact that cleanpath is called in the context of a firing probe, where
full symbolic link resolution or arbitrary names is not possible. The returned string is allocated
out of scratch memory, and is therefore valid only for the duration of the clause. If insufficient
scratch space is available, cleanpath does not execute and an error is generated.

copyin
void *copyin(uintptr_t addr, size_t size)

copyin copies the specified size in bytes from the specified user address into a DTrace scratch
buffer, and returns the address of this buffer. The user address is interpreted as an address in the
space of the process associated with the current thread. The resulting buffer pointer is
guaranteed to have 8-byte alignment. The address in question must correspond to a faulted-in

Subroutines

Chapter 4 • Actions and Subroutines 121

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1basename-1

page in the current process. If the address does not correspond to a faulted-in page, or if
insufficient scratch space is available, NULL is returned, and an error is generated. See
Chapter 12, “User Process Tracing,” for techniques to reduce the likelihood of copyin errors.

copyinstr
string copyinstr(uintptr_t addr)

string copyinstr(uintptr_t addr, size_t maxlength)

copyinstr copies a null-terminated C string from the specified user address into a DTrace
scratch buffer, and returns the address of this buffer. The user address is interpreted as an
address in the space of the process associated with the current thread. The maxlength
parameter, if specified, sets a limit on the number of bytes past addr which will be examined (the
resulting string will always be null-terminated). The resulting string's length is limited to the
value set by the strsize option; see Chapter 10, “Options and Tunables,” for details. As with
copyin, the specified address must correspond to a faulted-in page in the current process. If the
address does not correspond to a faulted-in page, or if insufficient scratch space is available,
NULL is returned, and an error is generated. See Chapter 12, “User Process Tracing,” for
techniques to reduce the likelihood of copyinstr errors.

copyinto
void copyinto(uintptr_t addr, size_t size, void *dest)

copyinto copies the specified size in bytes from the specified user address into the DTrace
scratch buffer specified by dest. The user address is interpreted as an address in the space of the
process associated with the current thread. The address in question must correspond to a
faulted-in page in the current process. If the address does not correspond to a faulted-in page,
or if any of the destination memory lies outside scratch space, no copying takes place, and an
error is generated. See Chapter 12, “User Process Tracing,” for techniques to reduce the
likelihood of copyinto errors.

dirname
string dirname(char *str)

dirname is a D analogue for dirname(1). This subroutine creates a string that consists of all but
the last level of the pathname specified by str. The returned string is allocated out of scratch
memory, and is therefore valid only for the duration of the clause. If insufficient scratch space is
available, dirname does not execute and an error is generated.

inet_ntoa
string inet_ntoa(ipaddr_t *addr)

Subroutines

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02122

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1dirname-1

inet_ntoa takes a pointer to an IPv4 address and returns it as a dotted quad decimal string.
This is similar to inet_ntoa() from libnsl as described in inet(3SOCKET), however this D
version takes a pointer to the IPv4 address rather than the address itself. The returned string is
allocated out of scratch memory, and is therefore valid only for the duration of the clause. If
insufficient scratch space is available, inet_ntoa does not execute and an error is generated.

inet_ntoa6
string inet_ntoa6(in6_addr_t *addr)

inet_ntoa6 takes a pointer to an IPv6 address and returns it as an RFC 1884 convention 2
string, with lower case hexadecimal digits. The returned string is allocated out of scratch
memory, and is therefore valid only for the duration of the clause. If insufficient scratch space is
available, inet_ntoa6 does not execute and an error is generated.

inet_ntop
string inet_ntop(int af, void *addr)

inet_ntop takes a pointer to an IP address and returns a string version depending on the
provided address family. This is similar to inet_ntop() from libnsl as described in
inet(3SOCKET). Supported address families are AF_INET and AF_INET6, both of which have
been defined for use in D programs. The returned string is allocated out of scratch memory, and
is therefore valid only for the duration of the clause. If insufficient scratch space is available,
inet_ntop does not execute and an error is generated.

msgdsize
size_t msgdsize(mblk_t *mp)

msgdsize returns the number of bytes in the data message pointed to by mp. See msgdsize(9F)
for details. msgdsize only includes data blocks of type M_DATA in the count.

msgsize
size_t msgsize(mblk_t *mp)

msgsize returns the number of bytes in the message pointed to by mp. Unlike msgdsize, which
returns only the number of data bytes, msgsize returns the total number of bytes in the
message.

Subroutines

Chapter 4 • Actions and Subroutines 123

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmsgdsize-9f

mutex_owned
int mutex_owned(kmutex_t *mutex)

mutex_owned is an implementation of mutex_owned(9F). mutex_owned returns non-zero if the
calling thread currently holds the specified kernel mutex, or zero if the specified adaptive mutex
is currently unowned.

Top

mutex_owner
kthread_t *mutex_owner(kmutex_t *mutex)

mutex_owner returns the thread pointer of the current owner of the specified adaptive kernel
mutex. mutex_owner returns NULL if the specified adaptive mutex is currently unowned, or if the
specified mutex is a spin mutex. See mutex_owned(9F).

mutex_type_adaptive
int mutex_type_adaptive(kmutex_t *mutex)

mutex_type_adaptive returns non-zero if the specified kernel mutex is of type
MUTEX_ADAPTIVE, or zero if it is not. Mutexes are adaptive if they meet one or more of the
following conditions:
■ The mutex is declared statically
■ The mutex is created with an interrupt block cookie of NULL
■ The mutex is created with an interrupt block cookie that does not correspond to a high-level

interrupt

See mutex_init(9F) for more details on mutexes. The majority of mutexes in the Oracle Solaris
kernel are adaptive.

progenyof
int progenyof(pid_t pid)

progenyof returns non-zero if the calling process (the process associated with the thread that is
currently triggering the matched probe) is among the progeny of the specified process ID.

rand
int rand(void)

Subroutines

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02124

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-owned-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fmutex-init-9f

rand returns a pseudo-random integer. The number returned is a weak pseudo-random
number, and should not be used for any cryptographic application.

rw_iswriter
int rw_iswriter(krwlock_t *rwlock)

rw_iswriter returns non-zero if the specified reader-writer lock is either held or desired by a
writer. If the lock is held only by readers and no writer is blocked, or if the lock is not held at all,
rw_iswriter returns zero. See rw_init(9F).

rw_write_held
int rw_write_held(krwlock_t *rwlock)

rw_write_held returns non-zero if the specified reader-writer lock is currently held by a writer.
If the lock is held only by readers or not held at all, rw_write_held returns zero. Seerw_init(9F).

speculation
int speculation(void)

speculation reserves a speculative trace buffer for use with speculate and returns an identifier
for this buffer. See Chapter 7, “Speculative Tracing,” for details.

strjoin
string strjoin(char *str1, char *str2)

strjoin creates a string that consists of str1 concatenated with str2. The returned string is
allocated out of scratch memory, and is therefore valid only for the duration of the clause. If
insufficient scratch space is available, strjoin does not execute and an error is generated.

strlen
size_t strlen(string str)

strlen returns the length of the specified string in bytes, excluding the terminating null byte.

Subroutines

Chapter 4 • Actions and Subroutines 125

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frw-init-9f

126

Buffers and Buffering

Data buffering and management is an essential service provided by the DTrace framework for
its clients, such as dtrace(1M). This chapter explores data buffering in detail and describes
options you can use to change DTrace's buffer management policies.

Principal Buffers
The principal buffer is present in every DTrace invocation and is the buffer to which tracing
actions record their data by default. These actions include:

exit printf trace ustack

printa stack tracemem

The principal buffers are always allocated on a per-CPU basis. This policy is not tunable, but
tracing and buffer allocation can be restricted to a single CPU by using the cpu option.

Principal Buffer Policies
DTrace permits tracing in highly constrained contexts in the kernel. In particular, DTrace
permits tracing in contexts in which kernel software may not reliably allocate memory. The
consequence of this flexibility of context is that there always exists a possibility that DTrace will
attempt to trace data when there isn't space available. DTrace must have a policy to deal with
such situations when they arise, but you might wish to tune the policy based on the needs of a
given experiment. Sometimes the appropriate policy might be to discard the new data. Other
times it might be desirable to reuse the space containing the oldest recorded data to trace new
data. Most often, the desired policy is to minimize the likelihood of running out of available
space in the first place. To accommodate these varying demands, DTrace supports several

5C H A P T E R 5

127

different buffer policies. This support is implemented with the bufpolicy option, and can be set
on a per-consumer basis. See Chapter 10, “Options and Tunables,” for more details on setting
options.

switch Policy
By default, the principal buffer has a switch buffer policy. Under this policy, per-CPU buffers
are allocated in pairs: one buffer is active and the other buffer is inactive. When a DTrace
consumer attempts to read a buffer, the kernel firsts switches the inactive and active buffers.
Buffer switching is done in such a manner that there is no window in which tracing data may be
lost. Once the buffers are switched, the newly inactive buffer is copied out to the DTrace
consumer. This policy assures that the consumer always sees a self-consistent buffer: a buffer is
never simultaneously traced to and copied out. This technique also avoids introducing a
window in which tracing is paused or otherwise prevented. The rate at which the buffer is
switched and read out is controlled by the consumer with the switchrate option. As with any
rate option, switchrate may be specified with any time suffix, but defaults to rate-per-second.
For more details on switchrate and other options, see Chapter 10, “Options and Tunables.”

Under the switch policy, if a given enabled probe would trace more data than there is space
available in the active principal buffer, the data is dropped and a per-CPU drop count is
incremented. In the event of one or more drops, dtrace(1M) displays a message similar to the
following example:

dtrace: 11 drops on CPU 0

If a given record is larger than the total buffer size, the record will be dropped regardless of
buffer policy. You can reduce or eliminate drops by either increasing the size of the principal
buffer with the bufsize option or by increasing the switching rate with the switchrate option.

Under the switch policy, scratch space for copyin, copyinstr, and alloca is allocated out of
the active buffer.

fill Policy
For some problems, you might wish to use a single in-kernel buffer. While this approach can be
implemented with the switch policy and appropriate D constructs by incrementing a variable
in D and predicating an exit action appropriately, such an implementation does not eliminate
the possibility of drops. To request a single, large in-kernel buffer, and continue tracing until
one or more of the per-CPU buffers has filled, use the fill buffer policy. Under this policy,
tracing continues until an enabled probe attempts to trace more data than can fit in the
remaining principal buffer space. When insufficient space remains, the buffer is marked as filled
and the consumer is notified that at least one of its per-CPU buffers has filled. Once dtrace(1M)
detects a single filled buffer, tracing is stopped, all buffers are processed and dtrace exits. No
further data will be traced to a filled buffer even if the data would fit in the buffer.

Principal Buffer Policies

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02128

To use the fill policy, set the bufpolicy option to fill. For example, the following command
traces every system call entry into a per-CPU 2K buffer with the buffer policy set to fill:

dtrace -n syscall:::entry -b 2k -x bufpolicy=fill

fill Policy and END Probes
END probes normally do not fire until tracing has been explicitly stopped by the DTrace
consumer. END probes are guaranteed to only fire on one CPU, but the CPU on which the probe
fires is undefined. With fill buffers, tracing is explicitly stopped when at least one of the
per-CPU principal buffers has been marked as filled. If the fill policy is selected, the END probe
may fire on a CPU that has a filled buffer. To accommodate END tracing in fill buffers, DTrace
calculates the amount of space potentially consumed by END probes and subtracts this space
from the size of the principal buffer. If the net size is negative, DTrace will refuse to start, and
dtrace(1M) will output a corresponding error message:

dtrace: END enablings exceed size of principal buffer

The reservation mechanism ensures that a full buffer always has sufficient space for any END
probes.

ring Policy
The DTrace ring buffer policy helps you trace the events leading up to a failure. If reproducing
the failure takes hours or days, you might wish to keep only the most recent data. Once a
principal buffer has filled, tracing wraps around to the first entry, thereby overwriting older
tracing data. You establish the ring buffer by setting the bufpolicy option to the string ring:

dtrace -s foo.d -x bufpolicy=ring

When used to create a ring buffer, dtrace(1M) will not display any output until the process is
terminated. At that time, the ring buffer is consumed and processed. dtrace processes each ring
buffer in CPU order. Within a CPU's buffer, trace records will be displayed in order from oldest
to youngest. Just as with the switch buffering policy, no ordering exists between records from
different CPUs are made. If such an ordering is required, you should trace the timestamp
variable as part of your tracing request.

The following example demonstrates the use of a #pragma option directive to enable ring
buffering:

#pragma D option bufpolicy=ring

#pragma D option bufsize=16k

syscall:::entry

/execname == $1/

Principal Buffer Policies

Chapter 5 • Buffers and Buffering 129

{

trace(timestamp);

}

syscall::rexit:entry

{

exit(0);

}

Other Buffers
Principal buffers exist in every DTrace enabling. Beyond principal buffers, some DTrace
consumers may have additional in-kernel data buffers: an aggregation buffer, discussed in
Chapter 3, “Aggregations,” and one or more speculative buffers, discussed in Chapter 7,
“Speculative Tracing.”

Buffer Sizes
The size of each buffer can be tuned on a per-consumer basis. Separate options are provided to
tune each buffer size, as shown in the following table:

Buffer Size Option

Principal bufsize

Speculative specsize

Aggregation aggsize

Each of these options is set with a value that denotes the size. As with any size option, the value
may have an optional size suffix. See Chapter 10, “Options and Tunables,” for more details. For
example, to set the buffer size to one megabyte on the command line to dtrace, you can use -x
to set the option:

dtrace -P syscall -x bufsize=1m

Alternatively, you can use the -b option to dtrace:

dtrace -P syscall -b 1m

Finally, you could can set bufsize using #pragma D option:

#pragma D option bufsize=1m

The buffer size you select denotes the size of the buffer on each CPU. Moreover, for the switch
buffer policy, bufsize denotes the size of each buffer on each CPU. The buffer size defaults to
four megabytes.

Other Buffers

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02130

Buffer Resizing Policy
Occasionally, the system might not have adequate free kernel memory to allocate a buffer of
desired size either because not enough memory is available or because the DTrace consumer
has exceeded one of the tunable limits described in Chapter 10, “Options and Tunables.” You
can configure the policy for buffer allocation failure using bufresize option, which defaults to
auto. Under the auto buffer resize policy, the size of a buffer is halved until a successful
allocation occurs. dtrace(1M) generates a message if a buffer as allocated is smaller than the
requested size:

dtrace -P syscall -b 4g

dtrace: description ’syscall’ matched 430 probes

dtrace: buffer size lowered to 128m

...

or:

dtrace -P syscall’{@a[probefunc] = count()}’ -x aggsize=1g

dtrace: description ’syscall’ matched 430 probes

dtrace: aggregation size lowered to 128m

...

Alternatively, you can require manual intervention after buffer allocation failure by setting
bufresize to manual. Under this policy, a failure to allocate will cause DTrace to fail to start:

dtrace -P syscall -x bufsize=1g -x bufresize=manual

dtrace: description ’syscall’ matched 430 probes

dtrace: could not enable tracing: Not enough space

#

The buffer resizing policy of all buffers, principal, speculative and aggregation, is dictated by the
bufresize option.

Buffer Resizing Policy

Chapter 5 • Buffers and Buffering 131

132

Output Formatting

DTrace provides built-in formatting functions printf and printa that you can use from your
D programs to format output. The D compiler provides features not found in the printf(3C)
library routine, so you should read this chapter even if you are already familiar with printf.
This chapter also discusses the formatting behavior of the trace function and the default output
format used by dtrace(1M) to display aggregations.

printf
The printf function combines the ability to trace data, as if by the trace function, with the
ability to output the data and other text in a specific format that you describe. The printf
function tells DTrace to trace the data associated with each argument after the first argument,
and then to format the results using the rules described by the first printf argument, known as
a format string. The format string is a regular string that contains any number of format
conversions, each beginning with the % character, that describe how to format the
corresponding argument. The first conversion in the format string corresponds to the second
printf argument, the second conversion to the third argument, and so on. All of the text
between conversions is printed verbatim. The character following the % conversion character
describes the format to use for the corresponding argument.

Unlike printf(3C), DTrace printf is a built-in function that is recognized by the D compiler.
The D compiler provides several useful services for DTrace printf that are not found in the C
library printf:

■ The D compiler compares the arguments to the conversions in the format string. If an
argument's type is incompatible with the format conversion, the D compiler provides an
error message explaining the problem.

■ The D compiler does not require the use of size prefixes with printf format conversions. The
C printf routine requires that you indicate the size of arguments by adding prefixes such as
%ld for long or %lld for long long. The D compiler knows the size and type of your
arguments, so these prefixes are not required in your D printf statements.

6C H A P T E R 6

133

■ DTrace provides additional format characters that are useful for debugging and
observability. For example, the %a format conversion can be used to print a pointer as a
symbol name and offset.

In order to implement these features, the format string in the DTrace printf function must be
specified as a string constant in your D program. Format strings may not be dynamic variables
of type string.

Conversion Specifications
Each conversion specification in the format string is introduced by the % character, after which
the following information appears in sequence:

■ Zero or more flags (in any order), that modify the meaning of the conversion specification as
described in the next section.

■ An optional minimum field width. If the converted value has fewer bytes than the field
width, the value will be padded with spaces on the left by default, or on the right if the
left-adjustment flag (-) is specified. The field width can also be specified as an asterisk (*), in
which case the field width is set dynamically based on the value of an additional argument of
type int.

■ An optional precision that indicates the minimum number of digits to appear for the d, i, o,
u, x, and X conversions (the field is padded with leading zeroes); the number of digits to
appear after the radix character for the e, E, and f conversions, the maximum number of
significant digits for the g and G conversions; or the maximum number of bytes to be printed
from a string by the s conversion. The precision takes the form of a period (.) followed by
either an asterisk (*), described below, or a decimal digit string.

■ An optional sequence of size prefixes that indicate the size of the corresponding argument,
described in “Overview” on page 224. The size prefixes are not necessary in D and are
provided for compatibility with the C printf function.

■ A conversion specifier that indicates the type of conversion to be applied to the argument.

The printf(3C) function also supports conversion specifications of the form %n$ where n is a
decimal integer; DTrace printf does not support this type of conversion specification.

Flag Specifiers
The printf conversion flags are enabled by specifying one or more of the following characters,
which may appear in any order:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g, or %G) is
formatted with thousands grouping characters using the non-monetary grouping
character. Some locales, including the POSIX C locale, do not provide non-monetary
grouping characters for use with this flag.

printf

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02134

- The result of the conversion is left-justified within the field. The conversion is
right-justified if this flag is not specified.

+ The result of signed conversion always begins with a sign (+ or -). If this flag is not
specified, the conversion begins with a sign only when a negative value is converted.

space If the first character of a signed conversion is not a sign or if a signed conversion
results in no characters, a space is placed before the result. If the space and + flags
both appear, the space flag is ignored.

The value is converted to an alternate form if an alternate form is defined for the
selected conversion. The alternate formats for conversions are described along with
the corresponding conversion.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeroes (following any
indication of sign or base) are used to pad to the field width. No space padding is
performed. If the 0 and - flags both appear, the 0 flag is ignored. For d, i, o, u, x and X

conversions, if a precision is specified, the 0 flag is ignored. If the 0 and ’ flags both
appear, the grouping characters are inserted before the zero padding.

Width and Precision Specifiers
The minimum field width can be specified as a decimal digit string following any flag specifier,
in which case the field width is set to the specified number of columns. The field width can also
be specified as asterisk (*) in which case an additional argument of type int is accessed to
determine the field width. For example, to print an integer x in a field width determined by the
value of the int variable w, you would write the D statement:

printf("%*d", w, x);

The field width can also be specified using a ? character to indicate that the field width should be
set based on the number of characters required to format an address in hexadecimal in the data
model of the operating system kernel. The width is set to 8 if the kernel is using the 32-bit data
model, or to 16 if the kernel is using the 64-bit data model. The precision for the conversion can
be specified as a decimal digit string following a period (.) or by an asterisk (*) following a
period. If an asterisk is used to specify the precision, an additional argument of type int prior to
the conversion argument is accessed to determine the precision. If both width and precision are
specified as asterisks, the order of arguments to printf for the conversion should appear in the
following order: width, precision, value.

Size Prefixes
Size prefixes are required in ANSI-C programs that use printf(3C) in order to indicate the size
and type of the conversion argument. The D compiler performs this processing for your printf

printf

Chapter 6 • Output Formatting 135

calls automatically, so size prefixes are not required. Although size prefixes are provided for C
compatibility, their use is explicitly discouraged in D programs because they bind your code to a
particular data model when using derived types. For example, if a typedef is redefined to
different integer base types depending on the data model, it is not possible to use a single C
conversion that works in both data models without explicitly knowing the two underlying types
and including a cast expression, or defining multiple format strings. The D compiler solves this
problem automatically by allowing you to omit size prefixes and automatically determining the
argument size.

The size prefixes can be placed just prior to the format conversion name and after any flags,
widths, and precision specifiers. The size prefixes are as follows:

■ An optional h specifies that a following d, i, o, u, x, or X conversion applies to a short or
unsigned short.

■ An optional l specifies that a following d, i, o, u, x, or X conversion applies to a long or
unsigned long.

■ An optional ll specifies that a following d, i, o, u, x, or X conversion applies to a long long or
unsigned long long.

■ An optional L specifies that a following e, E, f, g, or G conversion applies to a long double.
■ An optional l specifies that a following c conversion applies to a wint_t argument, and that

a following s conversion character applies to a pointer to a wchar_t argument.

Conversion Formats
Each conversion character sequence results in fetching zero or more arguments. If insufficient
arguments are provided for the format string, or if the format string is exhausted and arguments
remain, the D compiler issues an appropriate error message. If an undefined conversion format
is specified, the D compiler issues an appropriate error message. The conversion character
sequences are:

a The pointer or uintptr_t argument is printed as a kernel symbol name in the form
module‘symbol-name plus an optional hexadecimal byte offset. If the value does not fall
within the range defined by a known kernel symbol, the value is printed as a
hexadecimal integer.

A Exactly like %a, but for user symbols.

c The char, short, or int argument is printed as an ASCII character.

C The char, short, or int argument is printed as an ASCII character if the character is a
printable ASCII character. If the character is not a printable character, it is printed
using the corresponding escape sequence as shown in Table 2–6.

printf

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02136

d The char, short, int, long, or long long argument is printed as a decimal (base 10)
integer. If the argument is signed, it will be printed as a signed value. If the argument is
unsigned, it will be printed as an unsigned value. This conversion has the same
meaning as i.

e, E The float, double, or long double argument is converted to the style [-]d.ddde+/-dd,
where there is one digit before the radix character and the number of digits after it is
equal to the precision. The radix character is non-zero if the argument is non-zero. If
the precision is not specified, the default precision value is 6. If the precision is 0 and the
flag is not specified, no radix character appears. The E conversion format produces a
number with E instead of e introducing the exponent. The exponent always contains at
least two digits. The value is rounded up to the appropriate number of digits.

f The float, double, or long double argument is converted to the style [-]ddd.ddd,
where the number of digits after the radix character is equal to the precision
specification. If the precision is not specified, the default precision value is 6. If the
precision is 0 and the # flag is not specified, no radix character appears. If a radix
character appears, at least one digit appears before it. The value is rounded up to the
appropriate number of digits.

g, G The float, double, or long double argument is printed in the style f or e (or in style E
in the case of a G conversion character), with the precision specifying the number of
significant digits. If an explicit precision is 0, it is taken as 1. The style used depends on
the value converted: style e (or E) is used only if the exponent resulting from the
conversion is less than -4 or greater than or equal to the precision. Trailing zeroes are
removed from the fractional part of the result. A radix character appears only if it is
followed by a digit. If the # flag is specified, trailing zeroes are not removed from the
result.

i The char, short, int, long, or long long argument is printed as a decimal (base 10)
integer. If the argument is signed, it will be printed as a signed value. If the argument is
unsigned, it will be printed as an unsigned value. This conversion has the same
meaning as d.

k The stack argument is printed as if by a call to trace(). Handles both user and
kernel-level stacks. Valid only with printa() because, according to the D compiler,
stack() and ustack() "may not be called from a D expression (D program context
required)."

o The char, short, int, long, or long long argument is printed as an unsigned octal
(base 8) integer. Arguments that are signed or unsigned may be used with this
conversion. If the # flag is specified, the precision of the result will be increased if
necessary to force the first digit of the result to be a zero.

p The pointer or uintptr_t argument is printed as a hexadecimal (base 16) integer. D
accepts pointer arguments of any type. If the # flag is specified, a non-zero result will
have 0x prepended to it.

printf

Chapter 6 • Output Formatting 137

s The argument must be an array of char or a string. Bytes from the array or string are
read up to a terminating null character or the end of the data and interpreted and
printed as ASCII characters. If the precision is not specified, it is taken to be infinite, so
all characters up to the first null character are printed. If the precision is specified, only
that portion of the character array that will display in the corresponding number of
screen columns is printed. If an argument of type char * is to be formatted, it should be
cast to string or prefixed with the D stringof operator to indicate that DTrace should
trace the bytes of the string and format them.

S The argument must be an array of char or a string. The argument is processed as if by
the %s conversion, but any ASCII characters that are not printable are replaced by the
corresponding escape sequence described in Table 2–6.

u The char, short, int, long, or long long argument is printed as an unsigned decimal
(base 10) integer. Arguments that are signed or unsigned may be used with this
conversion, and the result is always formatted as unsigned.

wc The int argument is converted to a wide character (wchar_t) and the resulting wide
character is printed.

ws The argument must be an array of wchar_t. Bytes from the array are read up to a
terminating null character or the end of the data and interpreted and printed as wide
characters. If the precision is not specified, it is taken to be infinite, so all wide
characters up to the first null character are printed. If the precision is specified, only that
portion of the wide character array that will display in the corresponding number of
screen columns is printed.

x, X The char, short, int, long, or long long argument is printed as an unsigned
hexadecimal (base 16) integer. Arguments that are signed or unsigned may be used
with this conversion. If the x form of the conversion is used, the letter digits abcdef are
used. If the X form of the conversion is used, the letter digits ABCDEF are used. If the #
flag is specified, a non-zero result will have 0x (for %x) or 0X (for %X) prepended to it.

Y The uint64_t argument is interpreted to be the number of nanoseconds since 00:00
Universal Coordinated Time, January 1, 1970, and is printed in the following
cftime(3C) form: "%Y %a %b %e %T %Z." The current number of nanoseconds since 00:00
UTC, January 1, 1970 is available in the walltimestamp variable.

% Print a literal % character. No argument is converted. The entire conversion
specification must be %%.

printf

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02138

printa
The printa function is used to format the results of aggregations in a D program. The function
is invoked using one of two forms:

printa(@aggregation-name);

printa(format-string, @aggregation-name);

If the first form of the function is used, the dtrace(1M) command takes a consistent snapshot of
the aggregation data and produces output equivalent to the default output format used for
aggregations, described in Chapter 3, “Aggregations.” If the second form of the function is used,
the dtrace(1M) command takes a consistent snapshot of the aggregation data and produces
output according to the conversions specified in the format string, according to the following
rules:

■ The format conversions must match the tuple signature used to create the aggregation. Each
tuple element may only appear once. For example, if you aggregate a count using the
following D statements:

@a["hello", 123] = count();

@a["goodbye", 456] = count();

and then add the D statement printa(format-string, @a)to a probe clause, dtrace will
snapshot the aggregation data and produce output as if you had entered the statements:

printf(format-string, "hello", 123);

printf(format-string, "goodbye", 456);

and so on for each tuple defined in the aggregation.
■ Unlike printf, the format string you use for printa need not include all elements of the

tuple. That is, you can have a tuple of length 3 and only one format conversion. Therefore,
you can omit any tuple keys from your printa output by changing your aggregation
declaration to move the keys you want to omit to the end of the tuple and then omit
corresponding conversion specifiers for them in the printa format string.

■ The aggregation result can be included in the output by using the additional @ format flag
character, which is only valid when used with printa. The @ flag can be combined with any
appropriate format conversion specifier, and may appear more than once in a format string
so that your tuple result can appear anywhere in the output and can appear more than once.
The set of conversion specifiers that can be used with each aggregating function are implied
by the aggregating function's result type. The aggregation result types are:

avg uint64_t

count uint64_t

lquantize int64_t

printa

Chapter 6 • Output Formatting 139

max uint64_t

min uint64_t

quantize int64_t

sum uint64_t

For example, to format the results of avg, you can apply the %d, %i, %o, %u, or %x format
conversions. The quantize and lquantize functions format their results as an ASCII table
rather than as a single value.

The following D program shows a complete example of printa, using the profile provider to
sample the value of caller and then formatting the results as a simple table:

profile:::profile-997

{

@a[caller] = count();

}

END

{

printa("%@8u %a\n", @a);

}

If you use dtrace to execute this program, wait a few seconds, and press Control-C, you will see
output similar to the following example:

dtrace -s printa.d

^C

CPU ID FUNCTION:NAME

1 2 :END 1 0x1

1 ohci‘ohci_handle_root_hub_status_change+0x148
1 specfs‘spec_write+0xe0
1 0xff14f950

1 genunix‘cyclic_softint+0x588
1 0xfef2280c

1 genunix‘getf+0xdc
1 ufs‘ufs_icheck+0x50
1 genunix‘infpollinfo+0x80
1 genunix‘kmem_log_enter+0x1e8
...

trace Default Format
If the trace function is used to capture data rather than printf, the dtrace command formats
the results using a default output format. If the data is 1, 2, 4, or 8 bytes in size, the result is
formatted as a decimal integer value. If the data is any other size and is a sequence of printable
characters if interpreted as a sequence of bytes, it will be printed as an ASCII string. If the data is
any other size and is not a sequence of printable characters, it will be printed as a series of byte
values formatted as hexadecimal integers.

trace Default Format

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02140

Speculative Tracing

This chapter discusses the DTrace facility for speculative tracing, the ability to tentatively trace
data and then later decide whether to commit the data to a tracing buffer or discard it. In
DTrace, the primary mechanism for filtering out uninteresting events is the predicate
mechanism, discussed in “D Program Structure” on page 23. Predicates are useful when you
know at the time that a probe fires whether or not the probe event is of interest. For example, if
you are only interested in activity associated with a certain process or a certain file descriptor,
you know when the probe fires if it is associated with the process or file descriptor of interest.
However, in other situations, you might not know whether a given probe event is of interest
until some time after the probe fires.

For example, if a system call is occasionally failing with a common error code (for example, EIO
or EINVAL), you might want to examine the code path leading to the error condition. To capture
the code path, you could enable every probe — but only if the failing call can be isolated in such
a way that a meaningful predicate can be constructed. If the failures are sporadic or
nondeterministic, you would be forced to trace all events that might be interesting, and later
postprocess the data to filter out the ones that were not associated with the failing code path. In
this case, even though the number of interesting events may be reasonably small, the number of
events that must be traced is very large, making postprocessing difficult.

You can use the speculative tracing facility in these situations to tentatively trace data at one or
more probe locations, and then decide to commit the data to the principal buffer at another
probe location. As a result, your trace data contains only the output of interest, no
postprocessing is required, and the DTrace overhead is minimized.

7C H A P T E R 7

141

Speculation Interfaces
The following table describes the DTrace speculation functions:

TABLE 7–1 DTrace Speculation Functions

Function Name Args Description

speculation None Returns an identifier for a new speculative buffer

speculate ID Denotes that the remainder of the clause should be
traced to the speculative buffer specified by ID

commit ID Commits the speculative buffer associated with ID

discard ID Discards the speculative buffer associated with ID

Creating a Speculation
The speculation function allocates a speculative buffer, and returns a speculation identifier.
The speculation identifier should be used in subsequent calls to the speculate function.
Speculative buffers are a finite resource: if no speculative buffer is available when speculation

is called, an ID of zero is returned and a corresponding DTrace error counter is incremented.
An ID of zero is always invalid, but may be passed to speculate, commit or discard. If a call to
speculation fails, a dtrace message similar to the following example is generated:

dtrace: 2 failed speculations (no speculative buffer space available)

The number of speculative buffers defaults to one, but may be optionally tuned higher. See
“Speculation Options and Tuning” on page 148 for more information.

Using a Speculation
To use a speculation, an identifier returned from speculation must be passed to the speculate
function in a clause before any data-recording actions. All subsequent data-recording actions in
a clause containing a speculate will be speculatively traced. The D compiler will generate a
compile-time error if a call to speculate follows data recording actions in a D probe clause.
Therefore, clauses may contain speculative tracing or non-speculative tracing requests, but not
both.

Aggregating actions, destructive actions, and the exit action may never be speculative. Any
attempt to take one of these actions in a clause containing a speculate results in a compile-time
error. A speculate may not follow a speculate: only one speculation is permitted per clause. A
clause that contains only a speculate will speculatively trace the default action, which is
defined to trace only the enabled probe ID. See Chapter 4, “Actions and Subroutines,” for a
description of the default action.

Speculation Interfaces

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02142

Typically, you assign the result of speculation to a thread-local variable and then use that
variable as a subsequent predicate to other probes as well as an argument to speculate. For
example:

syscall::openat:entry

{

self->spec = speculation();

}

syscall:::

/self->spec/

{

speculate(self->spec);

printf("this is speculative");
}

Committing a Speculation
You commit speculations using the commit function. When a speculative buffer is committed,
its data is copied into the principal buffer. If there is more data in the specified speculative buffer
than there is available space in the principal buffer, no data is copied and the drop count for the
buffer is incremented. If the buffer has been speculatively traced to on more than one CPU, the
speculative data on the committing CPU is copied immediately, while speculative data on other
CPUs is copied some time after the commit. Thus, some time might elapse between a commit
beginning on one CPU and the data being copied from speculative buffers to principal buffers
on all CPUs. This time is guaranteed to be no longer than the time dictated by the cleaning rate.
See “Speculation Options and Tuning” on page 148 for more details.

A committing speculative buffer will not be made available to subsequent speculation calls
until each per-CPU speculative buffer has been completely copied into its corresponding
per-CPU principal buffer. Similarly, subsequent calls to speculate to the committing buffer
will be silently discarded, and subsequent calls to commit or discard will silently fail. Finally, a
clause containing a commit cannot contain a data recording action, but a clause may contain
multiple commit calls to commit disjoint buffers.

Discarding a Speculation
You discard speculations using the discard function. When a speculative buffer is discarded, its
contents are thrown away. If the speculation has only been active on the CPU calling discard,
the buffer is immediately available for subsequent calls to speculation. If the speculation has
been active on more than one CPU, the discarded buffer will be available for subsequent
speculation some time after the call to discard. The time between a discard on one CPU and
the buffer being made available for subsequent speculations is guaranteed to be no longer than
the time dictated by the cleaning rate. If, at the time speculation is called, no buffer is available
because all speculative buffers are currently being discarded or committed, adtrace message
similar to the following example is generated:

Discarding a Speculation

Chapter 7 • Speculative Tracing 143

dtrace: 905 failed speculations (available buffer(s) still busy)

The likelihood of all buffers being unavailable can be reduced by tuning the number of
speculation buffers or the cleaning rate. See “Speculation Options and Tuning” on page 148, for
details.

Speculation Example
One potential use for speculations is to highlight a particular code path. The following example
shows the entire code path under the open(2) system call only when the open fails:

EXAMPLE 7–1 specopen.d: Code Flow for Failed open(2)

#!/usr/sbin/dtrace -Fs

syscall::openat:entry,

syscall::openat64:entry

{

/*

* The call to speculation() creates a new speculation. If this fails,

* dtrace(1M) will generate an error message indicating the reason for

* the failed speculation(), but subsequent speculative tracing will be

* silently discarded.

*/

self->spec = speculation();

speculate(self->spec);

/*

* Because this printf() follows the speculate(), it is being

* speculatively traced; it will only appear in the data buffer if the

* speculation is subsequently commited.

*/

printf("%s", stringof(copyinstr(arg1)));

}

fbt:::

/self->spec/

{

/*

* A speculate() with no other actions speculates the default action:

* tracing the EPID.

*/

speculate(self->spec);

}

syscall::openat:return,

syscall::openat64:return

/self->spec/

{

/*

* To balance the output with the -F option, we want to be sure that

* every entry has a matching return. Because we speculated the

* open entry above, we want to also speculate the open return.

* This is also a convenient time to trace the errno value.

Speculation Example

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02144

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2open-2

EXAMPLE 7–1 specopen.d: Code Flow for Failed open(2) (Continued)

*/

speculate(self->spec);

trace(errno);

}

syscall::openat:return,

syscall::openat64:return

/self->spec && errno != 0/

{

/*

* If errno is non-zero, we want to commit the speculation.

*/

commit(self->spec);

self->spec = 0;

}

syscall::openat:return,

syscall::openat64:return

/self->spec && errno == 0/

{

/*

* If errno is not set, we discard the speculation.

*/

discard(self->spec);

self->spec = 0;

}

Running the above script produces output similar to the following example:

./specopen.d

dtrace: script ’./specopen.d’ matched 24282 probes

CPU FUNCTION

1 => open /var/ld/ld.config

1 -> open

1 -> copen

1 -> falloc

1 -> ufalloc

1 -> fd_find

1 -> mutex_owned

1 <- mutex_owned

1 <- fd_find

1 -> fd_reserve

1 -> mutex_owned

1 <- mutex_owned

1 -> mutex_owned

1 <- mutex_owned

1 <- fd_reserve

1 <- ufalloc

1 -> kmem_cache_alloc

1 -> kmem_cache_alloc_debug

1 -> verify_and_copy_pattern

1 <- verify_and_copy_pattern

1 -> file_cache_constructor

1 -> mutex_init

1 <- mutex_init

Speculation Example

Chapter 7 • Speculative Tracing 145

EXAMPLE 7–1 specopen.d: Code Flow for Failed open(2) (Continued)

1 <- file_cache_constructor

1 -> tsc_gethrtime

1 <- tsc_gethrtime

1 -> getpcstack

1 <- getpcstack

1 -> kmem_log_enter

1 <- kmem_log_enter

1 <- kmem_cache_alloc_debug

1 <- kmem_cache_alloc

1 -> crhold

1 <- crhold

1 <- falloc

1 -> vn_openat

1 -> lookupnameat

1 -> copyinstr

1 <- copyinstr

1 -> lookuppnat

1 -> lookuppnvp

1 -> pn_fixslash

1 <- pn_fixslash

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 -> groupmember

1 -> supgroupmember

1 <- supgroupmember

1 <- groupmember

1 <- ufs_iaccess

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 <- ufs_iaccess

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 -> pn_getcomponent

1 <- pn_getcomponent

1 -> ufs_lookup

1 -> dnlc_lookup

Speculation Example

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02146

EXAMPLE 7–1 specopen.d: Code Flow for Failed open(2) (Continued)

1 -> bcmp

1 <- bcmp

1 <- dnlc_lookup

1 -> ufs_iaccess

1 -> crgetuid

1 <- crgetuid

1 <- ufs_iaccess

1 -> vn_rele

1 <- vn_rele

1 <- ufs_lookup

1 -> vn_rele

1 <- vn_rele

1 <- lookuppnvp

1 <- lookuppnat

1 <- lookupnameat

1 <- vn_openat

1 -> setf

1 -> fd_reserve

1 -> mutex_owned

1 <- mutex_owned

1 -> mutex_owned

1 <- mutex_owned

1 <- fd_reserve

1 -> cv_broadcast

1 <- cv_broadcast

1 <- setf

1 -> unfalloc

1 -> mutex_owned

1 <- mutex_owned

1 -> crfree

1 <- crfree

1 -> kmem_cache_free

1 -> kmem_cache_free_debug

1 -> kmem_log_enter

1 <- kmem_log_enter

1 -> tsc_gethrtime

1 <- tsc_gethrtime

1 -> getpcstack

1 <- getpcstack

1 -> kmem_log_enter

1 <- kmem_log_enter

1 -> file_cache_destructor

1 -> mutex_destroy

1 <- mutex_destroy

1 <- file_cache_destructor

1 -> copy_pattern

1 <- copy_pattern

1 <- kmem_cache_free_debug

1 <- kmem_cache_free

1 <- unfalloc

1 -> set_errno

1 <- set_errno

1 <- copen

1 <- open

1 <= open 2

Speculation Example

Chapter 7 • Speculative Tracing 147

Speculation Options and Tuning
If a speculative buffer is full when a speculative tracing action is attempted, no data is stored in
the buffer and a drop count is incremented. If this situation, a dtrace message similar to the
following example is generated:

dtrace: 38 speculative drops

Speculative drops will not prevent the full speculative buffer from being copied into the
principal buffer when the buffer is committed. Similarly, speculative drops can occur even if
drops were experienced on a speculative buffer that was ultimately discarded. Speculative drops
can be reduced by increasing the speculative buffer size, which is tuned using the specsize
option. The specsize option may be specified with any size suffix. The resizing policy of this
buffer is dictated by the bufresize option.

Speculative buffers might be unavailable when speculation is called. If buffers exist that have
not yet been committed or discarded, a dtrace message similar to the following example is
generated:

dtrace: 1 failed speculation (no speculative buffer available)

You can reduce the likelihood of failed speculations of this nature by increasing the number of
speculative buffers with the nspec option. The value of nspec defaults to one.

Alternatively, speculation may fail because all speculative buffers are busy. In this case, a
dtrace message similar to the following example is generated:

dtrace: 1 failed speculation (available buffer(s) still busy)

This message indicates that speculation was called after commit was called for a speculative
buffer, but before that buffer was actually committed on all CPUs. You can reduce the
likelihood of failed speculations of this nature by increasing the rate at which CPUs are cleaned
with the cleanrate option. The value of cleanrate defaults to 101.

Speculation Options and Tuning

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02148

dtrace(1M) Utility

The dtrace(1M) command is a generic front-end to the DTrace facility. The command
implements a simple interface to invoke the D language compiler, the ability to retrieve buffered
trace data from the DTrace kernel facility, and a set of basic routines to format and print traced
data. This chapter provides a complete reference for the dtrace command.

Description
The dtrace command provides a generic interface to all of the essential services provided by the
DTrace facility, including:

■ Options to list the set of probes and providers currently published by DTrace
■ Options to enable probes directly using any of the probe description specifiers (provider,

module, function, name)
■ Options to run the D compiler and compile one or more D program files or programs

written directly on the command-line
■ Options to generate anonymous tracing programs (see Chapter 15, “Anonymous Tracing”)
■ Options to generate program stability reports (see Chapter 18, “Stability”)
■ Options to modify DTrace tracing and buffering behavior and enable additional D compiler

features (see Chapter 10, “Options and Tunables”)

dtrace can also be used to create D scripts by using it in a #! declaration to create an interpreter
file (see Chapter 9, “Scripting”). Finally, you can use dtrace to attempt to compile D programs
and determine their properties without actually enabling any tracing using the -e option,
described below.

8C H A P T E R 8

149

Options
The dtrace command accepts the following options:

dtrace[-32| -64][-aACeFGHlqSvVwZ][-b bufsz][-c cmd][-D name[=def]][-I path][-L path][-o
output][-p pid][-s script][-U name][-x arg[=val]][-X[a| c| s| t]][-P
provider[[predicate]action]][-m [[provider:]module[[predicate]action]]][-f
[[provider:]module:]func[[predicate]action]][-n
[[[provider:]module:]func:]name[[predicate]action]][-i probe-id[[predicate]action]]

where predicate is any D predicate enclosed in slashes / / and action is any D statement list
enclosed in braces { } according to the previously described D language syntax. If D program
code is provided as an argument to the -P, -m, -f, -n, or -i options this text must be appropriately
quoted to avoid interpretation by the shell. The options are as follows:

-32, -64

The D compiler produces programs using the native data model of the operating system kernel.
You can use the isainfo(1) -b command to determine the current operating system data
model. If the -32 option is specified, dtrace will force the D compiler to compile a D program
using the 32-bit data model. If the -64 option is specified, dtrace will force the D compiler to
compile a D program using the 64-bit data model. These options are typically not required as
dtrace selects the native data model as the default. The data model affects the sizes of integer
types and other language properties. D programs compiled for either data model may be
executed on both 32-bit and 64-bit kernels. The -32 and -64 options also determine the ELF file
format (ELF32 or ELF64) produced by the -G option.

-a

Claim anonymous tracing state and display the traced data. You can combine the -a option with
the -e option to force dtrace to exit immediately after consuming the anonymous tracing state
rather than continuing to wait for new data. See Chapter 15, “Anonymous Tracing,” for more
information about anonymous tracing.

-A

Generate driver.conf(4) directives for anonymous tracing. If the -A option is specified,
dtrace compiles any D programs specified using the -s option or on the command-line and
constructs a set of dtrace(7D) configuration file directives to enable the specified probes for
anonymous tracing (see Chapter 15, “Anonymous Tracing”) and then exits. By default, dtrace
attempts to store the directives to the file /kernel/drv/dtrace.conf. This behavior can be
modified using the -o option to specify an alternate output file.

-b

Options

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02150

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1isainfo-1
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN4driver.conf-4

Set principal trace buffer size. The trace buffer size can include any of the size suffixes k, m, g, or t
as described in Chapter 15, “Anonymous Tracing.” If the buffer space cannot be allocated,
dtrace attempts to reduce the buffer size or exit depending on the setting of the bufresize
property.

-c

Run the specified command cmd and exit upon its completion. If more than one -c option is
present on the command line, dtrace exits when all commands have exited, reporting the exit
status for each child process as it terminates. The process-ID of the first command is made
available to any D programs specified on the command line or using the -s option through the
$target macro variable. Refer to Chapter 9, “Scripting,” for more information on macro
variables.

-C

Run the C preprocessor cpp(1) over D programs before compiling them. Options can be passed
to the C preprocessor using the -D, -U, -I, and -H options. The degree of C standard
conformance can be selected using the -X option. Refer to the description of the -X option for a
description of the set of tokens defined by the D compiler when invoking the C preprocessor.

-D

Define the specified name when invoking cpp(1) (enabled using the -C option). If an equals sign
(=) and additional value are specified, the name is assigned the corresponding value. This
option passes the -D option to each cpp invocation.

-e

Exit after compiling any requests and consuming anonymous tracing state (-a option) but prior
to enabling any probes. This option can be combined with the -a option to print anonymous
tracing data and exit, or it can be combined with D compiler options to verify that the programs
compile without actually executing them and enabling the corresponding instrumentation.

-f

Specify function name to trace or list (-l option). The corresponding argument can include any
of the probe description forms provider:module:function, module:function, or function.
Unspecified probe description fields are left blank and match any probes regardless of the values
in those fields. If no qualifiers other than function are specified in the description, all probes
with the corresponding function are matched. The -f argument can be suffixed with an optional
D probe clause. More than one -f option may be specified on the command-line at a time.

-F

Coalesce trace output by identifying function entry and return. Function entry probe reports
are indented and their output is prefixed with ->. Function return probe reports are unindented
and their output is prefixed with <-.

Options

Chapter 8 • dtrace(1M) Utility 151

-G

Generate an ELF file containing an embedded DTrace program. The DTrace probes specified in
the program are saved inside of a relocatable ELF object that can be linked into another
program. If the -o option is present, the ELF file is saved using the pathname specified as the
argument for this operand. If the -o option is not present and the DTrace program is contained
with a file whose name is filename .s, then the ELF file is saved using the name file .o; otherwise
the ELF file is saved using the name d.out.

-H

Print the pathnames of included files when invoking cpp(1) (enabled using the -C option). This
option passes the -H option to each cpp invocation, causing it to display the list of pathnames,
one per line, to stderr.

-i

Specify probe identifier to trace or list (-l option). Probe IDs are specified using decimal integers
as shown by dtrace -l. The -i argument can be suffixed with an optional D probe clause. More
than one -i option may be specified on the command-line at a time.

-I

Add the specified directory path to the search path for #include files when invoking cpp(1)
(enabled using the -C option). This option passes the -I option to each cpp invocation. The
specified directory is inserted into the search path ahead of the default directory list.

-l

List probes instead of enabling them. If the -l option is specified, dtrace produces a report of
the probes matching the descriptions given using the -P, -m, -f, -n, -i, and -s options. If none of
these options are specified, all probes are listed.

-L

Add the specified directory path to the search path for DTrace libraries. DTrace libraries are
used to contain common definitions that may be used when writing D programs. The specified
path is added after the default library search path.

-m

Specify module name to trace or list (-l option). The corresponding argument can include any
of the probe description forms provider:module or module. Unspecified probe description fields
are left blank and match any probes regardless of the values in those fields. If no qualifiers other
than module are specified in the description, all probes with a corresponding module are
matched. The -m argument can be suffixed with an optional D probe clause. More than one -m
option may be specified on the command-line at a time.

-n

Options

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02152

Specify probe name to trace or list (-l option). The corresponding argument can include any of
the probe description forms provider:module:function:name, module:function:name,
function:name, or name. Unspecified probe description fields are left blank and match any
probes regardless of the values in those fields. If no qualifiers other than name are specified in
the description, all probes with a corresponding name are matched. The -n argument can be
suffixed with an optional D probe clause. More than one -n option may be specified on the
command-line at a time.

-o

Specify the output file for the -A , -G, and -l options, or for the traced data. If the -A option is
present and -o is not present, the default output file is /kernel/drv/dtrace.conf. If the -G
option is present and the -s option's argument is of the form filename .d and -o is not present,
the default output file is filename .o; otherwise the default output file is d.out.

-p

Grab the specified process-ID pid, cache its symbol tables, and exit upon its completion. If more
than one -p option is present on the command line, dtrace exits when all commands have
exited, reporting the exit status for each process as it terminates. The first process-ID is made
available to any D programs specified on the command line or using the -s option through the
$target macro variable. Refer to Chapter 9, “Scripting,” for more information on macro
variables.

-P

Specify provider name to trace or list (-l option). The remaining probe description fields
module, function, and name are left blank and match any probes regardless of the values in
those fields. The -P argument can be suffixed with an optional D probe clause. More than one -P
option may be specified on the command-line at a time.

-q

Set quiet mode. dtrace will suppress messages such as the number of probes matched by the
specified options and D programs and will not print column headers, the CPU ID, the probe ID,
or insert newlines into the output. Only data traced and formatted by D program statements
such as trace and printf will be displayed to stdout.

-s

Compile the specified D program source file. If the -e option is present, the program is compiled
but no instrumentation is enabled. If the -l option is present, the program is compiled and the
set of probes matched by it is listed, but no instrumentation will be enabled. If neither -e nor -l
are present, the instrumentation specified by the D program is enabled and tracing begins.

-S

Show D compiler intermediate code. The D compiler will produce a report of the intermediate
code generated for each D program to stderr.

Options

Chapter 8 • dtrace(1M) Utility 153

-U

Undefine the specified name when invoking cpp(1) (enabled using the -C option). This option
passes the -U option to each cpp invocation.

-v

Set verbose mode. If the -v option is specified, dtrace produces a program stability report
showing the minimum interface stability and dependency level for the specified D programs.
DTrace stability levels are explained in further detail in Chapter 18, “Stability.”

-V

Report the highest D programming interface version supported by dtrace. The version
information is printed to stdout and the dtrace command exits. See Chapter 20, “Versioning,”
for more information about DTrace versioning features.

-w

Permit destructive actions in D programs specified using the -s, -P, -m, -f, -n, or -i options. If the
-w option is not specified, dtrace will not permit the compilation or enabling of a D program
that contains destructive actions. Destructive actions are described in further detail in
Chapter 4, “Actions and Subroutines.”

-x

Enable or modify a DTrace runtime option or D compiler option. The options are listed in
Chapter 10, “Options and Tunables.” Boolean options are enabled by specifying their name.
Options with values are set by separating the option name and value with an equals sign (=).

-X

Specify the degree of conformance to the ISO C standard that should be selected when invoking
cpp(1) (enabled using the -C option). The -X option argument affects the value and presence of
the __STDC__ macro depending upon the value of the argument letter:

a (default)

ISO C plus K&R compatibility extensions, with semantic changes required by ISO C. This mode
is the default mode if -X is not specified. The predefined macro __STDC__ has a value of 0 when
cpp is invoked in conjunction with the -Xa option.

c (conformance)

Strictly conformant ISO C, without K&R C compatibility extensions. The predefined macro
__STDC__ has a value of 1 when cpp is invoked in conjunction with the -Xc option.

s (K&R C)

Options

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02154

K&R C only. The macro __STDC__ is not defined when cpp is invoked in conjunction with the
-Xs option.

t (transition)

ISO C plus K&R C compatibility extensions, without semantic changes required by ISO C. The
predefined macro __STDC__ has a value of 0 when cpp is invoked in conjunction with the -Xt
option.

Because the -X option affects only how the D compiler invokes the C preprocessor, the -Xa and
-Xt options are equivalent from the perspective of D. Both options are provided to ease re-use of
settings from a C build environment.

Regardless of the -X mode, the following additional C preprocessor definitions are always
specified and valid in all modes:

■ __sun

■ __unix

■ __SVR4

■ __sparc (on SPARC systems only)
■ __sparcv9 (on SPARC systems only when 64–bit programs are compiled)
■ __i386 (on x86 systems only when 32–bit programs are compiled)
■ __amd64 (on x86 systems only when 64–bit programs are compiled)
■ ___‘uname -s‘_‘uname -r‘_ (for example, __SunOS_5_10)
■ __SUNW_D=1

■ __SUNW_D_VERSION=0x_MMmmmuuu_ (where _MM_ is the Major release value in
hexadecimal, _mmm_ is the Minor release value in hexadecimal, and _uuu_ is the Micro
release value in hexadecimal; see Chapter 20, “Versioning,” for more information about
DTrace versioning)

-Z

Permit probe descriptions that match zero probes. If the -Z option is not specified, dtrace will
report an error and exit if any probe descriptions specified in D program files (-s option) or on
the command-line (-P, -m, -f, -n, or -i options) contain descriptions that do not match any
known probes.

Options

Chapter 8 • dtrace(1M) Utility 155

Operands
Zero or more additional arguments may be specified on the dtrace command line to define a
set of macro variables ($1, $2, and so on) to be used in any D programs specified using the -s
option or on the command-line. The use of macro variables is described further in Chapter 9,
“Scripting.”

Exit Status
The following exit values are returned by the dtrace utility:

0

The specified requests were completed successfully. For D program requests, the 0 exit status
indicates that programs were successfully compiled, probes were successfully enabled, or
anonymous state was successfully retrieved. dtrace returns 0 even if the specified tracing
requests encounted errors or drops.

1

A fatal error occurred. For D program requests, the 1 exit status indicates that program
compilation failed or that the specified request could not be satisfied.

2

Invalid command-line options or arguments were specified.

Operands

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02156

Scripting

You can use the dtrace(1M) utility to create interpreter files out of D programs similar to shell
scripts that you can install as reusable interactive DTrace tools. The D compiler and dtrace
command provide a set of macro variables that are expanded by the D compiler that make it
easy to create DTrace scripts. This chapter provides a reference for the macro variable facility
and tips for creating persistent scripts.

Interpreter Files
Similar to your shell and utilities such as awk(1) and perl(1), dtrace(1M) can be used to create
executable interpreter files. An interpreter file begins with a line of the form:

#! pathname [arg]

where pathname is the path of the interpreter and arg is a single optional argument. When an
interpreter file is executed, the system invokes the specified interpreter. If arg was specified in
the interpreter file, it is passed as an argument to the interpreter. The path to the interpreter file
itself and any additional arguments specified when it was executed are then appended to the
interpreter argument list. Therefore, you will always need to create DTrace interpreter files with
at least these arguments:

#!/usr/sbin/dtrace -s

When your interpreter file is executed, the argument to the -s option will therefore be the
pathname of the interpreter file itself. dtrace will then read, compile, and execute this file as if
you had typed the following command in your shell:

dtrace -s interpreter-file

The following example shows how to create and execute a dtrace interpreter file. Type the
following D source code and save it in a file named interp.d:

9C H A P T E R 9

157

#!/usr/sbin/dtrace -s

BEGIN

{

trace("hello");
exit(0);

}

Mark the interp.d file as executable and execute it as follows:

chmod a+rx interp.d

./interp.d

dtrace: script ’./interp.d’ matched 1 probe

CPU ID FUNCTION:NAME

1 1 :BEGIN hello

#

Remember that the #! directive must comprise the first two characters of your file with no
intervening or preceding whitespace. The D compiler knows to automatically ignore this line
when it processes the interpreter file.

dtrace uses getopt(3C) to process command-line options, so you can combine multiple
options in your single interpreter argument. For example, to add the -q option to the preceding
example you could change the interpreter directive to:

#!/usr/sbin/dtrace -qs

If you specify multiple option letters, the -s option must always end the list of boolean options
so that the next argument (the interpreter file name) is processed as the argument
corresponding to the -s option.

If you need to specify more than one option that requires an argument in your interpreter file,
you will not be able to fit all your options and arguments into the single interpreter argument.
Instead, use the #pragma D option directive syntax to set your options. All of the dtrace
command-line options have #pragma equivalents that you can use, as shown in Chapter 10,
“Options and Tunables.”

Macro Variables
The D compiler defines a set of built-in macro variables that you can use when writing D
programs or interpreter files. Macro variables are identifiers that are prefixed with a dollar sign
($) and are expanded once by the D compiler when processing your input file. The D compiler
provides the following macro variables:

Macro Variables

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02158

TABLE 9–1 D Macro Variables

Name Description Reference

$[0-9]+ macro arguments See “Macro Arguments” on
page 160

$egid effective group-ID getegid(2)

$euid effective user-ID geteuid(2)

$gid real group-ID getgid(2)

$pid process ID getpid(2)

$pgid process group ID getpgid(2)

$ppid parent process ID getppid(2)

$projid project ID getprojid(2)

$sid session ID getsid(2)

$target target process ID See “Target Process ID” on
page 161

$taskid task ID gettaskid(2)

$uid real user-ID getuid(2)

Except for the $[0-9]+ macro arguments and the $target macro variable, the macro variables
all expand to integers corresponding to system attributes such as the process ID and user ID.
The variables expand to the attribute value associated with the current dtrace process itself, or
whatever process is running the D compiler.

Using macro variables in interpreter files enables you to create persistent D programs that do
not need to be edited each time you want to use them. For example, to count all system calls
except those executed by the dtrace command, you can use the following D program clause
containing $pid:

syscall:::entry

/pid != $pid/

{

@calls = count();

}

This clause always produces the desired result, even though each invocation of the dtrace
command will have a different process ID. Macro variables can be used anywhere an integer,
identifier, or string can be used in a D program.

Macro variables are expanded only once (that is, not recursively) when the input file is parsed.
Each macro variable is expanded to form a separate input token, and cannot be concatenated
with other text to yield a single token. For example, if $pid expands to the value 456, the D code:

Macro Variables

Chapter 9 • Scripting 159

123$pid

would expand to the two adjacent tokens 123 and 456, resulting in a syntax error, rather than
the single integer token 123456.

Macro variables are expanded and concatenated with adjacent text inside of D probe
descriptions at the start of your program clauses. For example, the following clause uses the
DTrace pid provider to instrument the dtrace command:

pid$pid:libc.so:printf:entry

{

...

}

Macro variables are only expanded once within each probe description field; they may not
contain probe description delimiters (:).

Macro Arguments
The D compiler also provides a set of macro variables corresponding to any additional
argument operands specified as part of the dtrace command invocation. These macro
arguments are accessed using the built-in names $0 for name of the D program file or dtrace
command, $1 for the first additional operand,$2 for the second operand, and so on. If you use
the dtrace -s option, $0 expands to the value of the name of the input file used with this
option. For D programs specified on the command-line, $0 expands to the value of argv[0]
used to exec dtrace itself.

Macro arguments can expand to integers, identifiers, or strings, depending on the form of the
corresponding text. As with all macro variables, macro arguments can be used anywhere
integer, identifier, and string tokens can be used in a D program. All of the following examples
could form valid D expressions assuming appropriate macro argument values:

execname == $1 /* with a string macro argument */

x += $1 /* with an integer macro argument */

trace(x->$1) /* with an identifier macro argument */

Macro arguments can be used to create dtrace interpreter files that act like real Oracle Solaris
commands and use information specified by a user or by another tool to modify their behavior.
For example, the following D interpreter file traces write(2) system calls executed by a particular
process ID:

#!/usr/sbin/dtrace -s

syscall::write:entry

/pid == $1/

{

}

If you make this interpreter file executable, you can specify the value of $1 using an additional
command-line argument to your interpreter file:

Macro Arguments

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02160

chmod a+rx ./tracewrite

./tracewrite 12345

The resulting command invocation counts each write(2) system call executed by process ID
12345.

If your D program references a macro argument that is not provided on the command-line, an
appropriate error message will be printed and your program will fail to compile:

./tracewrite

dtrace: failed to compile script ./tracewrite: line 4:

macro argument $1 is not defined

D programs can reference unspecified macro arguments if the defaultargs option is set. If
defaultargs is set, unspecified arguments will have the value 0. See Chapter 10, “Options and
Tunables,” for more information about D compiler options. The D compiler will also produce
an error message if additional arguments are specified on the command line that are not
referenced by your D program.

The macro argument values must match the form of an integer, identifier, or string. If the
argument does not match any of these forms, the D compiler will report an appropriate error
message. When specifying string macro arguments to a DTrace interpreter file, surround the
argument in an extra pair of single quotes to avoid interpretation of the double quotes and
string contents by your shell:

./foo ’"a string argument"’

If you want your D macro arguments to be interpreted as string tokens even if they match the
form of an integer or identifier, prefix the macro variable or argument name with two leading
dollar signs (for example, $$1) to force the D compiler to interpret the argument value as if it
were a string surrounded by double quotes. All the usual D string escape sequences (see
Table 2–6) are expanded inside of any string macro arguments, regardless of whether they are
referenced using the $arg or $$arg form of the macro. If the defaultargs option is set,
unspecified arguments that are referenced with the $$arg form have the value of the empty
string ("").

Target Process ID
Use the $target macro variable to create scripts that can be applied to a particular user process
of interest that is selected on the dtrace command line using the -p option or created using the
-c option. The D programs specified on the command line or using the -s option are compiled
after processes are created or grabbed and the $target variable expands to the integer
process-ID of the first such process. For example, the following D script could be used to
determine the distribution of system calls executed by a particular subject process:

syscall:::entry

/pid == $target/

Target Process ID

Chapter 9 • Scripting 161

{

@[probefunc] = count();

}

To determine the number of system calls executed by the date(1) command, save the script in
the file syscall.d and execute the following command:

dtrace -s syscall.d -c date

dtrace: script ’syscall.d’ matched 227 probes

Fri Jul 30 13:46:06 PDT 2004

dtrace: pid 109058 has exited

gtime 1

getpid 1

getrlimit 1

rexit 1

ioctl 1

resolvepath 1

read 1

stat 1

write 1

munmap 1

close 2

fstat64 2

setcontext 2

mmap 2

open 2

brk 4

Target Process ID

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02162

Options and Tunables

To allow for customization, DTrace affords its consumers several important degrees of
freedom. To minimize the likelihood of requiring specific tuning, DTrace is implemented using
reasonable default values and flexible default policies. However, situations may arise that
require tuning the behavior of DTrace on a consumer-by-consumer basis. This chapter
describes the DTrace options and tunables and the interfaces you can use to modify them.

Consumer Options
DTrace is tuned by setting or enabling options. The available options are described in the table
below. For some options, dtrace(1M) provides a corresponding command-line option.

TABLE 10–1 DTrace Consumer Options

Option Name Value dtrace(1M) Alias Description See Chapter

aggrate time Rate of aggregation reading Chapter 3, “Aggregations”

aggsize size Aggregation buffer size Chapter 3, “Aggregations”

bufresize auto or
manual

Buffer resizing policy Chapter 5, “Buffers and
Buffering”

bufsize size -b Principal buffer size Chapter 5, “Buffers and
Buffering”

cleanrate time Cleaning rate Chapter 7, “Speculative
Tracing”

cpu scalar -c CPU on which to enable
tracing

Chapter 5, “Buffers and
Buffering”

defaultargs — Allow references to
unspecified macro
arguments

Chapter 9, “Scripting”

10C H A P T E R 1 0

163

TABLE 10–1 DTrace Consumer Options (Continued)
Option Name Value dtrace(1M) Alias Description See Chapter

destructive — -w Allow destructive actions Chapter 4, “Actions and
Subroutines”

dynvarsize size Dynamic variable space
size

“Variables” on page 52

flowindent — -F Indent function entry and
prefix with >; unindent
function return and prefix
with <

Chapter 8, “dtrace(1M)
Utility”

grabanon — -a Claim anonymous state Chapter 15, “Anonymous
Tracing”

jstackframes scalar Number of default stack
frames jstack

Chapter 4, “Actions and
Subroutines”

jstackstrsize scalar Default string space size for
jstack

Chapter 4, “Actions and
Subroutines”

nspec scalar Number of speculations Chapter 7, “Speculative
Tracing”

quiet — -q Output only explicitly
traced data

Chapter 8, “dtrace(1M)
Utility”

rawbytes — Always print tracemem
output in hexadecimal

Chapter 4, “Actions and
Subroutines”

specsize size Speculation buffer size Chapter 7, “Speculative
Tracing”

strsize size String size “Strings” on page 71

stackframes scalar Number of stack frames Chapter 4, “Actions and
Subroutines”

stackindent scalar Number of whitespace
characters to use when
indenting stack and ustack
output

Chapter 4, “Actions and
Subroutines”

statusrate time Rate of status checking

switchrate time Rate of buffer switching Chapter 5, “Buffers and
Buffering”

ustackframes scalar Number of user stack
frames

Chapter 4, “Actions and
Subroutines”

Consumer Options

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02164

Values that denote sizes may be given an optional suffix of k, m, g, or t to denote kilobytes,
megabytes, gigabytes, and terabytes respectively. Values that denote times may be given an
optional suffix of ns, us, ms, s or hz to denote nanoseconds, microseconds, milliseconds,
seconds, and number-per-second, respectively.

Modifying Options
Options may be set in a D script by using #pragma D followed by the string option and the
option name. If the option takes a value, the option name should be followed by an equals sign
(=) and the option value. The following examples are all valid option settings:

#pragma D option nspec=4

#pragma D option grabanon

#pragma D option bufsize=2g

#pragma D option switchrate=10hz

#pragma D option aggrate=100us

#pragma D option bufresize=manual

The dtrace(1M) command also accepts option settings on the command-line as an argument to
the -x option. For example:

dtrace -x nspec=4 -x grabanon -x bufsize=2g \

-x switchrate=10hz -x aggrate=100us -x bufresize=manual

If an invalid option is specified, dtrace indicates that the option name is invalid and exits:

dtrace -x wombats=25

dtrace: failed to set option -x wombats: Invalid option name

#

Similarly, if an option value is not valid for the given option, dtrace will indicate that the value
is invalid:

dtrace -x bufsize=100wombats

dtrace: failed to set option -x bufsize: Invalid value for specified option

#

If an option is set more than once, subsequent settings overwrite earlier settings. Some options,
such as grabanon, may only be set. The presence of such an option sets it, and you cannot
subsequently unset it.

Options that are set for an anonymous enabling will be honored by the DTrace consumer that
claims the anonymous state. See Chapter 15, “Anonymous Tracing,” for information about
enabling anonymous tracing.

Modifying Options

Chapter 10 • Options and Tunables 165

166

Providers

This chapter lists and explains the existing DTrace providers.

dtrace Provider
The dtrace provider provides several probes related to DTrace itself. You can use these probes
to initialize state before tracing begins, process state after tracing has completed, and handle
unexpected execution errors in other probes.

BEGIN Probe
The BEGIN probe fires before any other probe. No other probe will fire until all BEGIN clauses
have completed. This probe can be used to initialize any state that is needed in other probes.
The following example shows how to use the BEGIN probe to initialize an associative array to
map between mmap(2) protection bits and a textual representation:

BEGIN

{

prot[0] = "---";
prot[1] = "r--";
prot[2] = "-w-";
prot[3] = "rw-";
prot[4] = "--x";
prot[5] = "r-x";
prot[6] = "-wx";
prot[7] = "rwx";

}

syscall::mmap:entry

{

printf("mmap with prot = %s", prot[arg2 & 0x7]);

}

11C H A P T E R 1 1

167

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2mmap-2

The BEGIN probe fires in an unspecified context. This means that the output of stack or ustack,
and the value of context-specific variables (for example, execname), are all arbitrary. These
values should not be relied upon or interpreted to infer any meaningful information. No
arguments are defined for the BEGIN probe.

END Probe
The END probe fires after all other probes. This probe will not fire until all other probe clauses
have completed. This probe can be used to process state that has been gathered or to format the
output. The printa action is therefore often used in the END probe. The BEGIN and END probes
can be used together to measure the total time spent tracing:

BEGIN

{

start = timestamp;

}

/*

* ... other tracing actions...

*/

END

{

printf("total time: %d secs", (timestamp - start) / 1000000000);

}

See “Data Normalization” on page 98 and “printa” on page 107 for other common uses of the
END probe.

As with the BEGIN probe, no arguments are defined for the END probe. The context in which the
END probe fires is arbitrary and should not be depended upon.

When tracing with the bufpolicy option set to fill, adequate space is reserved to
accommodate any records traced in the END probe. See “fill Policy and END Probes” on
page 129 for details.

Note – The exit action causes tracing to stop and the END probe to fire. However, there is some
delay between the invocation of the exit action and the END probe firing. During this delay, no
probes will fire. After a probe invokes the exit action, the END probe is not fired until the
DTrace consumer determines that exit has been called and stops tracing. The rate at which the
exit status is checked can be set using statusrate option. For more information, see
Chapter 10, “Options and Tunables.”

dtrace Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02168

ERROR Probe
The ERROR probe fires when a run-time error occurs in executing a clause for a DTrace probe.
For example, if a clause attempts to dereference a NULL pointer, the ERROR probe will fire, as
shown in the following example.

EXAMPLE 11–1 error.d: Record Errors

BEGIN

{

*(char *)NULL;

}

ERROR

{

printf("Hit an error!");
}

When you run this program, you will see output like the following example:

dtrace -s ./error.d

dtrace: script ’./error.d’ matched 2 probes

CPU ID FUNCTION:NAME

2 3 :ERROR Hit an error!

dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address

(0x0) in action #1 at DIF offset 12

dtrace: 1 error on CPU 2

The output shows that the ERROR probe fired, and also illustrates dtrace(1M) reporting the error.
dtrace has its own enabling of the ERROR probe to allow it to report errors. Using the ERROR
probe, you can create your own custom error handling.

The arguments to the ERROR probe are as follows:

arg1 The enabled probe identifier (EPID) of the probe that caused the error

arg2 The index of the action that caused the fault

arg3 The DIF offset into that action or -1 if not applicable

arg4 The fault type

arg5 Value particular to the fault type

The table below describes the various fault types and the value that arg5 will have for each:

arg4Value Description arg5Meaning

DTRACEFLT_UNKNOWN Unknown fault type None

dtrace Provider

Chapter 11 • Providers 169

arg4Value Description arg5Meaning

DTRACEFLT_BADADDR Access to unmapped or invalid address Address accessed

DTRACEFLT_BADALIGN Unaligned memory access Address accessed

DTRACEFLT_ILLOP Illegal or invalid operation None

DTRACEFLT_DIVZERO Integer divide by zero None

DTRACEFLT_NOSCRATCH Insufficient scratch space to satisfy scratch allocation None

DTRACEFLT_KPRIV Attempt to access a kernel address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_UPRIV Attempt to access a user address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_TUPOFLOW DTrace internal parameter stack overflow None

DTRACEFLT_BADSTACK Invalid user process stack Address of invalid stack
pointer

If the actions taken in the ERROR probe itself cause an error, that error is silently dropped — the
ERROR probe will not be recursively invoked.

Stability
The dtrace provider uses DTrace's stability mechanism to describe its stabilities as shown in
the following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Stable Stable Common

Module Private Private Unknown

Function Private Private Unknown

Name Stable Stable Common

Arguments Stable Stable Common

dtrace Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02170

lockstat Provider
The lockstat provider makes available probes that can be used to discern lock contention
statistics, or to understand virtually any aspect of locking behavior. The lockstat(1M)
command is actually a DTrace consumer that uses the lockstat provider to gather its raw data.

Overview
The lockstat provider makes available two kinds of probes: content-event probes and
hold-event probes.

Contention-event probes correspond to contention on a synchronization primitive, and fire
when a thread is forced to wait for a resource to become available. Oracle Solaris is generally
optimized for the non-contention case, so prolonged contention is not expected. These probes
should be used to understand those cases where contention does arise. Because contention is
relatively rare, enabling contention-event probes generally doesn't substantially affect
performance.

Hold-event probes correspond to acquiring, releasing, or otherwise manipulating a
synchronization primitive. These probes can be used to answer arbitrary questions about the
way synchronization primitives are manipulated. Because Oracle Solaris acquires and releases
synchronization primitives very often (on the order of millions of times per second per CPU on
a busy system), enabling hold-event probes has a much higher probe effect than does enabling
contention-event probes. While the probe effect induced by enabling them can be substantial, it
is not pathological; they may still be enabled with confidence on production systems.

The lockstat provider makes available probes that correspond to the different synchronization
primitives in Oracle Solaris; these primitives and the probes that correspond to them are
discussed in the remainder of this chapter.

Adaptive Lock Probes
Adaptive locks enforce mutual exclusion to a critical section, and may be acquired in most
contexts in the kernel. Because adaptive locks have few context restrictions, they comprise the
vast majority of synchronization primitives in the Oracle Solaris kernel. These locks are
adaptive in their behavior with respect to contention: when a thread attempts to acquire a held
adaptive lock, it will determine if the owning thread is currently running on a CPU. If the owner
is running on another CPU, the acquiring thread will spin. If the owner is not running, the
acquiring thread will block.

The four lockstat probes pertaining to adaptive locks are in Table 18–1. For each probe, arg0
contains a pointer to the kmutex_t structure that represents the adaptive lock.

lockstat Provider

Chapter 11 • Providers 171

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mlockstat-1m

TABLE 11–1 Adaptive Lock Probes

adaptive-acquire Hold-event probe that fires immediately after an adaptive lock is acquired

adaptive-block Contention-event probe that fires after a thread that has blocked on a held adaptive
mutex has reawakened and has acquired the mutex. If both probes are enabled,
adaptive-block fires before adaptive-acquire. At most one of adaptive-block and
adaptive-spin will fire for a single lock acquisition. arg1 for adaptive-block contains
the sleep time in nanoseconds.

adaptive-spin Contention-event probe that fires after a thread that has spun on a held adaptive mutex
has successfully acquired the mutex. If both are enabled, adaptive-spin fires before
adaptive-acquire. At most one of adaptive-spin and adaptive-block will fire for a
single lock acquisition. arg1 for adaptive-spin contains the spin time: the number of
nanoseconds that were spent in the spin loop before the lock was acquired.

adaptive-release Hold-event probe that fires immediately after an adaptive lock is released.

Spin Lock Probes
Threads cannot block in some contexts in the kernel, such as high-level interrupt context and
any context manipulating dispatcher state. In these contexts, this restriction prevents the use of
adaptive locks. Spin locks are instead used to effect mutual exclusion to critical sections in these
contexts. As the name implies, the behavior of these locks in the presence of contention is to
spin until the lock is released by the owning thread. The three probes pertaining to spin locks
are in Table 11–2.

TABLE 11–2 Spin Lock Probes

spin-acquire Hold-event probe that fires immediately after a spin lock is acquired.

spin-spin Contention-event probe that fires after a thread that has spun on a held spin lock
has successfully acquired the spin lock. If both are enabled, spin-spin fires before
spin-acquire. arg1 for spin-spin contains the spin time: the number of
nanoseconds that were spent in the spin loop before the lock was acquired.

spin-release Hold-event probe that fires immediately after a spin lock is released.

Adaptive locks are much more common than spin locks. The following script displays totals for
both lock types to provide data to support this observation.

lockstat:::adaptive-acquire

/execname == "date"/
{

@locks["adaptive"] = count();

}

lockstat:::spin-acquire

/execname == "date"/

lockstat Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02172

{

@locks["spin"] = count();

}

Run this script in one window, and a date(1) command in another. When you terminate the
DTrace script, you will see output similar to the following example:

dtrace -s ./whatlock.d

dtrace: script ’./whatlock.d’ matched 5 probes

^C

spin 26

adaptive 2981

As this output indicates, over 99 percent of the locks acquired in running the date command are
adaptive locks. It may be surprising that so many locks are acquired in doing something as
simple as a date. The large number of locks is a natural artifact of the fine-grained locking
required of an extremely scalable system like the Oracle Solaris kernel.

Thread Locks
Thread locks are a special kind of spin lock that are used to lock a thread for purposes of
changing thread state. Thread lock hold events are available as spin lock hold-event probes (that
is, spin-acquire and spin-release), but contention events have their own probe specific to thread
locks. The thread lock hold-event probe is in Table 11–3.

TABLE 11–3 Thread Lock Probe

thread-spin Contention-event probe that fires after a thread has spun on a thread lock. Like other
contention-event probes, if both the contention-event probe and the hold-event probe are
enabled, thread-spin will fire before spin-acquire. Unlike other contention-event probes,
however, thread-spin fires before the lock is actually acquired. As a result, multiple
thread-spin probe firings may correspond to a single spin-acquire probe firing.

Readers/Writer Lock Probes
Readers/writer locks enforce a policy of allowing multiple readers or a single writer — but not
both — to be in a critical section. These locks are typically used for structures that are searched
more frequently than they are modified and for which there is substantial time in the critical
section. If critical section times are short, readers/writer locks will implicitly serialize over the
shared memory used to implement the lock, giving them no advantage over adaptive locks. See
rwlock(9F) for more details on readers/writer locks.

The probes pertaining to readers/writer locks are in Table 11–4. For each probe, arg0 contains a
pointer to the krwlock_t structure that represents the adaptive lock.

lockstat Provider

Chapter 11 • Providers 173

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Frwlock-9f

TABLE 11–4 Readers/Writer Lock Probes

rw-acquire Hold-event probe that fires immediately after a readers/writer lock is acquired.
arg1 contains the constant RW_READER if the lock was acquired as a reader, and
RW_WRITER if the lock was acquired as a writer.

rw-block Contention-event probe that fires after a thread that has blocked on a held
readers/writer lock has reawakened and has acquired the lock. arg1 contains the
length of time (in nanoseconds) that the current thread had to sleep to acquire
the lock. arg2 contains the constant RW_READER if the lock was acquired as a
reader, and RW_WRITER if the lock was acquired as a writer. arg3 and arg4

contain more information on the reason for blocking. arg3 is non-zero if and
only if the lock was held as a writer when the current thread blocked. arg4
contains the readers count when the current thread blocked. If both the
rw-block and rw-acquire probes are enabled, rw-block fires before
rw-acquire.

rw-upgrade Hold-event probe that fires after a thread has successfully upgraded a
readers/writer lock from a reader to a writer. Upgrades do not have an
associated contention event because they are only possible through a
non-blocking interface, rw_tryupgrade(9F).

rw-downgrade Hold-event probe that fires after a thread had downgraded its ownership of a
readers/writer lock from writer to reader. Downgrades do not have an
associated contention event because they always succeed without contention.

rw-release Hold-event probe that fires immediately after a readers/writer lock is released.
arg1 contains the constant RW_READER if the released lock was held as a reader,
and RW_WRITER if the released lock was held as a writer. Due to upgrades and
downgrades, the lock may not have been released as it was acquired.

Stability
The lockstat provider uses DTrace's stability mechanism* to describe its stabilities as shown in
the following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

lockstat Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02174

profile Provider
The profile provider provides probes associated with a time-based interrupt firing every fixed,
specified time interval. These unanchored probes that are not associated with any particular
point of execution, but rather with the asynchronous interrupt event. These probes can be used
to sample some aspect of system state every unit time and the samples can then be used to infer
system behavior. If the sampling rate is high, or the sampling time is long, an accurate inference
is possible. Using DTrace actions, the profile provider can be used to sample practically
anything in the system. For example, you could sample the state of the current thread, the state
of the CPU, or the current machine instruction.

profile- n probes
A profile- n probe fires every fixed interval on every CPU at high interrupt level. The probe's
firing interval is denoted by the value of n: the interrupt source will fire n times per second. n
may also have an optional time suffix, in which case n is interpreted to be in the units denoted by
the suffix. Valid suffixes and the units they denote are listed in Table 11–5.

TABLE 11–5 Valid time suffixes

Suffix Time Units

nsec or ns nanoseconds

usec or us microseconds

msec or ms milliseconds

sec or s seconds

min or m minutes

hour or h hours

day or d days

hz hertz (frequency per second)

The following example creates a probe to fire at 97 hertz to sample the currently running
process:

#pragma D option quiet

profile-97

/pid != 0/

{

@proc[pid, execname] = count();

}

profile Provider

Chapter 11 • Providers 175

END

{

printf("%-8s %-40s %s\n", "PID", "CMD", "COUNT");
printa("%-8d %-40s %@d\n", @proc);

}

Running the above example for a brief period of time results in output similar to the following
example:

dtrace -s ./prof.d

^C

PID CMD COUNT

223887 sh 1

100360 httpd 1

100409 mibiisa 1

223887 uname 1

218848 sh 2

218984 adeptedit 2

100224 nscd 3

3 fsflush 4

2 pageout 6

100372 java 7

115279 xterm 7

100460 Xsun 7

100475 perfbar 9

223888 prstat 15

You can also use the profile- n provider to sample information about the running process.
The following example D script uses a 1,001 hertz profile probe to sample the current priority of
a specified process:

profile-1001

/pid == $1/

{

@proc[execname] = lquantize(curlwpsinfo->pr_pri, 0, 100, 10);

}

To see this example script in action, type the following commands in one window:

$ echo $$

494621

$ while true ; do let i=0 ; done

In another window, run the D script for a brief period of time:

dtrace -s ./profpri.d 494621

dtrace: script ’./profpri.d’ matched 1 probe

^C

ksh

value ------------- Distribution ------------- count

< 0 | 0

0 |@@@@@@@@@@@@@@@@@@@@@ 7443

10 |@@@@@@ 2235

20 |@@@@ 1679

30 |@@@ 1119

profile Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02176

40 |@ 560

50 |@ 554

60 | 0

This output shows the bias of the timesharing scheduling class. Because the shell process is
spinning on the CPU, its priority is constantly being lowered by the system. If the shell process
were running less frequently, its priority would be higher. To see this result, type Control-C in
the spinning shell and run the script again:

dtrace -s ./profpri.d 494621

dtrace: script ’./profpri.d’ matched 1 probe

Now in the shell, type a few characters. When you terminate the DTrace script, output like the
following example will appear:

ksh

value ------------- Distribution ------------- count

40 | 0

50 |@@ 14

60 | 0

Because the shell process was sleeping awaiting user input instead of spinning on the CPU,
when it did run it was run at a much higher priority.

tick- n probes
Like profile- n probes, tick- n probes fire every fixed interval at high interrupt level.
However, unlike profile- n probes, which fire on every CPU, tick- n probes fire on only one
CPU per interval. The actual CPU may change over time. As with profile- n probes, n defaults
to rate-per-second but may also have an optional time suffix. tick- n probes have several uses,
such as providing some periodic output or taking a periodic action.

Arguments
The arguments to profile probes are as follows:

arg0 The program counter (PC) in the kernel at the time that the probe fired, or 0 if the current
process was not executing in the kernel at the time that the probe fired

arg1 The PC in the user-level process at the time that the probe fired, or 0 if the current process
was executing at the kernel at the time that the probe fired

As the descriptions imply, if arg0 is non-zero then arg1 is zero; if arg0 is zero then arg1 is
non-zero. Thus, you can use arg0 and arg1 to differentiate user-level from kernel level, as in
this simple example:

profile Provider

Chapter 11 • Providers 177

profile-1ms

{

@ticks[arg0 ? "kernel" : "user"] = count();

}

Timer Resolution
The profile provider uses arbitrary resolution interval timers in the operating system. On
architectures that do not support truly arbitrary resolution time-based interrupts, the frequency
is limited by the system clock frequency, which is specified by the hz kernel variable. Probes of
higher frequency than hz on such architectures will fire some number of times every 1/hz
seconds. For example, a 1000 hertz profile probe on such an architecture with hz set to 100
will fire ten times in rapid succession every ten milliseconds. On platforms that support
arbitrary resolution, a 1000 hertz profile probe would fire exactly every one millisecond.

The following example tests a given architecture's resolution:

profile-5000

{

/*

* We divide by 1,000,000 to convert nanoseconds to milliseconds, and

* then we take the value mod 10 to get the current millisecond within

* a 10 millisecond window. On platforms that do not support truly

* arbitrary resolution profile probes, all of the profile-5000 probes

* will fire on roughly the same millisecond. On platforms that

* support a truly arbitrary resolution, the probe firings will be

* evenly distributed across the milliseconds.

*/

@ms = lquantize((timestamp / 1000000) % 10, 0, 10, 1);

}

tick-1sec

/i++ >= 10/

{

exit(0);

}

On an architecture that supports arbitrary resolution profile probes, running the example
script will yield an even distribution:

dtrace -s ./restest.d

dtrace: script ’./restest.d’ matched 2 probes

CPU ID FUNCTION:NAME

0 33631 :tick-1sec

value ------------- Distribution ------------- count

< 0 | 0

0 |@@@ 10760

1 |@@@@ 10842

2 |@@@@ 10861

3 |@@@ 10820

4 |@@@ 10819

5 |@@@ 10817

profile Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02178

6 |@@@@ 10826

7 |@@@@ 10847

8 |@@@@ 10830

9 |@@@@ 10830

On an architecture that does not support arbitrary resolution profile probes, running the
example script will yield an uneven distribution:

dtrace -s ./restest.d

dtrace: script ’./restest.d’ matched 2 probes

CPU ID FUNCTION:NAME

0 28321 :tick-1sec

value ------------- Distribution ------------- count

4 | 0

5 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 107864

6 | 424

7 | 255

8 | 496

9 | 0

On these architectures, hz may be manually tuned in /etc/system to improve the effective
profile resolution.

Currently, all variants of UltraSPARC (sun4u) support arbitrary resolution profile probes.
Many variants of the x86 architecture (i86pc) also support arbitrary resolution profile probes,
although some older variants do not.

Probe Creation
Unlike other providers, the profile provider creates probes dynamically on an as-needed basis.
Thus, the desired profile probe might not appear in a listing of all probes (for example, by using
dtrace -l -P profile) but the probe will be created when it is explicitly enabled.

On architectures that support arbitrary resolution profile probes, a time interval that is too
short would cause the machine to continuously field time-based interrupts, thereby denying
service on the machine. To prevent this situation, the profile provider will silently refuse to
create any probe that would result in an interval of less than two hundred microseconds.

Stability
The profile provider uses DTrace's stability mechanism to describe its stabilities as shown in
the following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

profile Provider

Chapter 11 • Providers 179

Element Name stability Data stability Dependency class

Module Unstable Unstable Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

cpc Provider
The cpc provider makes available probes associated with CPU performance counter events. A
probe fires when a specified number of events of a given type in a chosen processor mode have
occurred. When a probe fires we can sample aspects of system state and inferences can be made
about system behavior. Accurate inferences are possible when high enough sampling rates
and/or long sampling times are employed.

Probes
Probes made available by the cpc provider have the format of cpc:::<event
name>-<mode>-<optional mask>-<count>. The definitions of the components of the
probename are listed in table.

TABLE 11–6 Probename Components

Component Meaning

event name The platform specific or generic event name. A full list of events can be
obtained using the -h option to cpustat(1M).

mode The privilege mode in which to count events. Valid modes are "user" for user
mode events, "kernel" for kernel mode events and "all" for both user mode and
kernel mode events.

optional mask On some platforms it is possible to specify a mask (commonly referred to as a
unit mask or an event mask) to further refine a platform specific event
specification. This field is optional and can only be specified for platform
specific events. Specified as a hex value.

count The number of events that must occur on a CPU for a probe to be fired on that
CPU.

The following introductory example fires a probe on a CPU for every 10000 user-mode Level 1
instruction cache misses on a SPARC platform. When the probe fires we record the name of the
executable that was on processor at the time the probe fires (see “Examples” on page 183 section
for further examples):

cpc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02180

#!/usr/sbin/dtrace -s

#pragma D option quiet

cpc:::IC_miss-user-10000

{

@[execname] = count();

}

END

{

trunc(@, 10);

}

./user-l1miss.d

^C

dirname 8

firefox 8

sed 11

intrd 12

run-mozilla.sh 13

java 64

sshd 135

gconfd-2 569

thunderbird-bin 1666

firefox-bin 2060

Note – When working with the cpc provider it is important to remember that the state available
when a probe fires is valid for the performance counter event that caused the probe to fire and
not for all events counted with that probe. In the above output we see that the firefox-bin
application caused the cpc:::IC_miss-user-10000 probe to fire 2060 times. As this probe fires
once for every 10000 level 1 instruction cache misses on a CPU, the firefox-bin application
could have contributed anywhere from 2060 to 20600000 of these misses.

Arguments
The arguments to cpc probes are listed in table below.

TABLE 11–7 Probe Arguments

arg0 The program counter (PC) in the kernel at the time that the probe fired, or 0 if
the current process was not executing in the kernel at the time that the probe
fired

arg1 The PC in the user-level process at the time that the probe fired, or 0 if the
current process was executing at the kernel at the time that the probe fired

As the descriptions imply, if arg0 is non-zero then arg1 is zero; if arg0 is zero then arg1 is
non-zero.

cpc Provider

Chapter 11 • Providers 181

Probe Availability
CPU performance counters are a finite resource and the number of probes that can be enabled
depends upon hardware capabilities. Processors that cannot determine which counter has
overflowed when multiple counters are programmed (e.g. AMD, UltraSPARC) are only allowed
to have a single enabling at any one time. On such platforms, consumers attempting to enable
more than 1 probe will fail as will consumers attempting to enable a probe when a disparate
enabling already exists. Processors that can detect which counter has overflowed (e.g. Niagara2,
Intel P4) are allowed to have as many probes enabled as the hardware will allow. This will be, at
most, the number of counters available on a processor. On such configurations, multiple probes
can be enabled at any one time.

Probes are enabled by consumers on a first-come, first-served basis. When hardware resources
are fully utilized subsequent enablings will fail until resources become available.

Probe Creation
Like the profile provider, the cpc provider creates probes dynamically on an as-needed basis.
Thus, the desired cpc probe might not appear in a listing of all probes (for example, by using
dtrace -l -P cpc) but the probe will be created when it is explicitly enabled.

Specifying a small event overflow count for frequently occurring events (e.g. cycle count,
instructions executed) would quickly render the system unusable as a processor would be
continuously servicing performance counter overflow interrupts. To prevent this situation, the
smallest overflow count that can be specified for any probe is set, by default, at 5000. This can be
altered by adjusting the dcpc-min-overflow variable in the /kernel/drv/dcpc.conf
configuration file and then unloading and reloading the dcpc driver.

Note – It is necessary to take care specifying high frequency events such as instructions executed
or cycle count. For example, measuring busy cycles on a fully utilized 3GHz processor with a
count of 50000 would generate approximately 65000 interrupts/sec. This rate of interrupt
delivery could degrade system performance to some degree.

Co-existence With Existing Tools
The provider has priority over per-LWP libcpc usage (i.e. cputrack) for access to counters. In
the same manner as cpustat, enabling probes causes all existing per-LWP counter contexts to be
invalidated. As long as enabled probes remain active, the counters will remain unavailable to
cputrack-type consumers.

Only one of cpustat and DTrace may use the counter hardware at any one time. Ownership of
the counters is given on a first-come, first-served basis.

cpc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02182

Examples
Some simple examples of cpc provider usage follow.

user-insts.d
The simple script displays instructions executed by applications on an AMD platform

cpc:::FR_retired_x86_instr_w_excp_intr-user-10000

{

@[execname] = count();

}

./user-insts.d

dtrace: script ’./user-insts.d’ matched 1 probe

^C

[chop]

init 138

dtrace 175

nis_cachemgr 179

automountd 183

intrd 235

run-mozilla.sh 306

thunderbird 316

Xorg 453

thunderbird-bin 2370

sshd 8114

kern-cycles.d
The following example shows a kernel profiled by cycle usage on an AMD platform.

cpc:::BU_cpu_clk_unhalted-kernel-10000

{

@[func(arg0)] = count();

}

./kern-cycles.d

dtrace: script ’./kern-cycles.d’ matched 1 probe

^C

[chop]

genunix‘vpm_sync_pages 478948

genunix‘vpm_unmap_pages 496626

genunix‘vpm_map_pages 640785

unix‘mutex_delay_default 916703

unix‘hat_kpm_page2va 988880

tmpfs‘rdtmp 991252

unix‘hat_page_setattr 1077717

unix‘page_try_reclaim_lock 1213379

genunix‘free_vpmap 1914810

genunix‘get_vpmap 2417896

unix‘page_lookup_create 3992197

unix‘mutex_enter 5595647

unix‘do_copy_fault_nta 27803554

cpc Provider

Chapter 11 • Providers 183

brendan-l2miss.d
In this example we are looking at user-mode L2 cache misses and the functions that generated
them on an AMD platform. The predicate ensures that we only sample function names when
the probe was fired by the 'brendan' executable.

cpc:::BU_fill_req_missed_L2-all-0x7-10000

/execname == "brendan"/
{

@[ufunc(arg1)] = count();

}

./brendan-l2miss.d

dtrace: script ’./brendan-l2miss.d’ matched 1 probe

CPU ID FUNCTION:NAME

^C

brendan‘func_gamma 930

brendan‘func_beta 1578

brendan‘func_alpha 2945

brendan-generic-l2miss.d
Here we use the same example as about but we use the much simpler generic event
PAPI_l2_dcm to indicate our interest in L2 data cache misses instead of the platform event.

cpc:::PAPI_l2_dcm-all-10000

/execname == "brendan"/
{

@[ufunc(arg1)] = count();

}

./breandan-generic-l2miss.d

dtrace: script ’./brendan-generic-l2miss.d’ matched 1 probe

^C

brendan‘func_gamma 1681

brendan‘func_beta 2521

brendan‘func_alpha 5068

Stability
The cpc provider uses DTrace's stability mechanism to describe its stabilities as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

cpc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02184

Element Name Stability Data Stability Dependency Class

Function Private Private Unknown

Name Evolving Evolving CPU

Arguments Evolving Evolving Common

fbt Provider
This chapter describes the Function Boundary Tracing (FBT) provider, which provides probes
associated with the entry to and return from most functions in the Oracle Solaris kernel. The
function is the fundamental unit of program text. In a well-designed system, each function
performs a discrete and well-defined operation on a specified object or series of like objects.
Therefore, even on the smallest Oracle Solaris systems, FBT will provide on the order of 20,000
probes.

Similar to other DTrace providers, FBT has no probe effect when it is not explicitly enabled.
When enabled, FBT only induces a probe effect in probed functions. While the FBT
implementation is highly specific to the instruction set architecture, FBT has been implemented
on both SPARC and x86 platforms. For each instruction set, there are a small number of
functions that do not call other functions and are highly optimized by the compiler (so-called
leaf functions) that cannot be instrumented by FBT. Probes for these functions are not
present in DTrace.

Effective use of FBT probes requires knowledge of the operating system implementation.
Therefore, it is recommended that you use FBT only when developing kernel software or when
other providers are not sufficient. Other DTrace providers, including syscall, sched, proc,
and io, can be used to answer most system analysis questions without requiring operating
system implementation knowledge.

Probes
FBT provides a probe at the boundary of most functions in the kernel. The boundary of a
function is crossed by entering the function and by returning from the function. FBT thus
provides two functions for every function in the kernel: one upon entry to the function, and one
upon return from the function. These probes are named entry and return, respectively. The
function name, and module name are specified as part of the probe. All FBT probes specify a
function name and module name.

fbt Provider

Chapter 11 • Providers 185

Probe arguments

entry probes
The arguments to entry probes are the same as the arguments to the corresponding operating
system kernel function. These arguments may be accessed in a typed fashion by using the
args[] array. These arguments may be accessed as int64_t's by using the arg0 .. arg n
variables.

return probes
While a given function only has a single point of entry, it may have many different points where
it returns to its caller. You are usually interested in either the value that a function returned or
the fact that the function returned at all rather than the specific return path taken. FBT therefore
collects a function's multiple return sites into a single return probe. If the exact return path is of
interest, you can examine the return probe args[0] value, which indicates the offset (in bytes)
of the returning instruction in the function text.

If the function has a return value, the return value is stored in args[1]. If a function does not
have a return value, args[1] is not defined.

Examples
You can use FBT to easily explore the kernel's implementation. The following example script
records the first ioctl(2) from any xclock process and then follows the subsequent code path
through the kernel:

/*

* To make the output more readable, we want to indent every function entry

* (and unindent every function return). This is done by setting the

* "flowindent" option.

*/

#pragma D option flowindent

syscall::ioctl:entry

/execname == "xclock" && guard++ == 0/

{

self->traceme = 1;

printf("fd: %d", arg0);

}

fbt:::

/self->traceme/

{}

syscall::ioctl:return

/self->traceme/

{

fbt Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02186

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2ioctl-2

self->traceme = 0;

exit(0);

}

Running this script results in output similar to the following example:

dtrace -s ./xioctl.d

dtrace: script ’./xioctl.d’ matched 26254 probes

CPU FUNCTION

0 => ioctl fd: 3

0 -> ioctl

0 -> getf

0 -> set_active_fd

0 <- set_active_fd

0 <- getf

0 -> fop_ioctl

0 -> sock_ioctl

0 -> strioctl

0 -> job_control_type

0 <- job_control_type

0 -> strcopyout

0 -> copyout

0 <- copyout

0 <- strcopyout

0 <- strioctl

0 <- sock_ioctl

0 <- fop_ioctl

0 -> releasef

0 -> clear_active_fd

0 <- clear_active_fd

0 -> cv_broadcast

0 <- cv_broadcast

0 <- releasef

0 <- ioctl

0 <= ioctl

The output shows that an xclock process called ioctl on a file descriptor that appears to be
associated with a socket.

You can also use FBT when trying to understand kernel drivers. For example, the ssd(7D) driver
has many code paths by which EIO may be returned. FBT can be easily used to determine the
precise code path that resulted in an error condition, as shown in the following example:

fbt:ssd::return

/arg1 == EIO/

{

printf("%s+%x returned EIO.", probefunc, arg0);

}

For more information on any one return of EIO, one may wish to speculatively trace all fbt
probes, and then commit(or discard) based on the return value of a specific function. See
Chapter 7, “Speculative Tracing,” for details on speculative tracing.

Alternatively, you can use FBT to understand the functions called within a specified module.
The following example lists all of the functions called in UFS:

fbt Provider

Chapter 11 • Providers 187

dtrace -n fbt:ufs::entry’{@a[probefunc] = count()}’

dtrace: description ’fbt:ufs::entry’ matched 353 probes

^C

ufs_ioctl 1

ufs_statvfs 1

ufs_readlink 1

ufs_trans_touch 1

wrip 1

ufs_dirlook 1

bmap_write 1

ufs_fsync 1

ufs_iget 1

ufs_trans_push_inode 1

ufs_putpages 1

ufs_putpage 1

ufs_syncip 1

ufs_write 1

ufs_trans_write_resv 1

ufs_log_amt 1

ufs_getpage_miss 1

ufs_trans_syncip 1

getinoquota 1

ufs_inode_cache_constructor 1

ufs_alloc_inode 1

ufs_iget_alloced 1

ufs_iget_internal 2

ufs_reset_vnode 2

ufs_notclean 2

ufs_iupdat 2

blkatoff 3

ufs_close 5

ufs_open 5

ufs_access 6

ufs_map 8

ufs_seek 11

ufs_addmap 15

rdip 15

ufs_read 15

ufs_rwunlock 16

ufs_rwlock 16

ufs_delmap 18

ufs_getattr 19

ufs_getpage_ra 24

bmap_read 25

findextent 25

ufs_lockfs_begin 27

ufs_lookup 46

ufs_iaccess 51

ufs_imark 92

ufs_lockfs_begin_getpage 102

bmap_has_holes 102

ufs_getpage 102

ufs_itimes_nolock 107

ufs_lockfs_end 125

dirmangled 498

dirbadname 498

If you know the purpose or arguments of a kernel function, you can use FBT to understand how
or why the function is being called. For example, putnext(9F) takes a pointer to a queue(9S)

fbt Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02188

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fputnext-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Squeue-9s

structure as its first member. The q_qinfo member of the queue structure is a pointer to a
qinit(9S) structure. The qi_minfo member of the qinit structure has a pointer to a
module_info(9S) structure, which contains the module name in its mi_idname member. The
following example puts this information together by using the FBT probe in putnext to track
putnext(9F) calls by module name:

fbt::putnext:entry

{

@calls[stringof(args[0]->q_qinfo->qi_minfo->mi_idname)] = count();

}

Running the above script results in output similar to the following example:

dtrace -s ./putnext.d

^C

iprb 1

rpcmod 1

pfmod 1

timod 2

vpnmod 2

pts 40

conskbd 42

kb8042 42

tl 58

arp 108

tcp 126

ptm 249

ip 313

ptem 340

vuid2ps2 361

ttcompat 412

ldterm 413

udp 569

strwhead 624

mouse8042 726

You can also use FBT to determine the time spent in a particular function. The following
example shows how to determine the callers of the DDI delaying routines drv_usecwait(9F)
and delay(9F).

fbt::delay:entry,

fbt::drv_usecwait:entry

{

self->in = timestamp

}

fbt::delay:return,

fbt::drv_usecwait:return

/self->in/

{

@snoozers[stack()] = quantize(timestamp - self->in);

self->in = 0;

}

fbt Provider

Chapter 11 • Providers 189

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Sqinit-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Smodule-info-9s
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdrv-usecwait-9f
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Fdelay-9f

This example script is particularly interesting to run during boot. Chapter 15, “Anonymous
Tracing,” describes the procedure for performing anonymous tracing during system boot.
Upon reboot, you might see output similar to the following example:

dtrace -ae

ata‘ata_wait+0x34
ata‘ata_id_common+0xf5
ata‘ata_disk_id+0x20
ata‘ata_drive_type+0x9a
ata‘ata_init_drive+0xa2
ata‘ata_attach+0x50
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘devi_attach_node+0x3d
genunix‘devi_config_one+0x1d0
genunix‘ndi_devi_config_one+0xb0
devfs‘dv_find+0x125
devfs‘devfs_lookup+0x40
genunix‘fop_lookup+0x21
genunix‘lookuppnvp+0x236
genunix‘lookuppnat+0xe7
genunix‘lookupnameat+0x87
genunix‘cstatat_getvp+0x134

value ------------- Distribution ------------- count

2048 | 0

4096 |@@@@@@@@@@@@@@@@@@@@@ 4105

8192 |@@@@ 783

16384 |@@@@@@@@@@@@@@ 2793

32768 | 16

65536 | 0

kb8042‘kb8042_wait_poweron+0x29
kb8042‘kb8042_init+0x22
kb8042‘kb8042_attach+0xd6
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘devi_attach_node+0x3d
genunix‘devi_config_one+0x1d0
genunix‘ndi_devi_config_one+0xb0
genunix‘resolve_pathname+0xa5
genunix‘ddi_pathname_to_dev_t+0x16
consconfig_dacf‘consconfig_load_drivers+0x14
consconfig_dacf‘dynamic_console_config+0x6c
consconfig‘consconfig+0x8
unix‘stubs_common_code+0x3b

value ------------- Distribution ------------- count

262144 | 0

524288 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 221

1048576 |@@@@ 29

fbt Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02190

2097152 | 0

usba‘hubd_enable_all_port_power+0xed
usba‘hubd_check_ports+0x8e
usba‘usba_hubdi_attach+0x275
usba‘usba_hubdi_bind_root_hub+0x168
uhci‘uhci_attach+0x191
genunix‘devi_attach+0x75
genunix‘attach_node+0xb2
genunix‘i_ndi_config_node+0x97
genunix‘i_ddi_attachchild+0x4b
genunix‘i_ddi_attach_node_hierarchy+0x49
genunix‘attach_driver_nodes+0x49
genunix‘ddi_hold_installed_driver+0xe3
genunix‘attach_drivers+0x28

value ------------- Distribution ------------- count

33554432 | 0

67108864 |@@ 3

134217728 | 0

Tail-call Optimization
When one function ends by calling another function, the compiler can engage in tail-call
optimization, in which the function being called reuses the caller's stack frame. This procedure
is most commonly used in the SPARC architecture, where the compiler reuses the caller's
register window in the function being called in order to minimize register window pressure.

The presence of this optimization causes the return probe of the calling function to fire before
the entry probe of the called function. This ordering can lead to quite a bit of confusion. For
example, if you wanted to record all functions called from a particular function and any
functions that this function calls, you might use the following script:

fbt::foo:entry

{

self->traceme = 1;

}

fbt:::entry

/self->traceme/

{

printf("called %s", probefunc);

}

fbt::foo:return

/self->traceme/

{

self->traceme = 0;

}

However, if foo ends in an optimized tail-call, the tail-called function, and therefore any
functions that it calls, will not be captured. The kernel cannot be dynamically de-optimized on

fbt Provider

Chapter 11 • Providers 191

the fly, and DTrace does not wish to engage in a lie about how code is structured. Therefore, you
should be aware of when tail-call optimization might be used.

Tail-call optimization is likely to be used in source code similar to the following example:

return (bar());

Or in source code similar to the following example:

(void) bar();

return;

Conversely, function source code that ends like the following example cannot have its call to
bar optimized, because the call to bar is not a tail-call:

bar();

return (rval);

You can determine whether a call has been tail-call optimized using the following technique:

■ While running DTrace, trace arg0 of the return probe in question. arg0 contains the offset
of the returning instruction in the function.

■ After DTrace has stopped, use mdb(1) to look at the function. If the traced offset contains a
call to another function instead of an instruction to return from the function, the call has
been tail-call optimized.

Due to the instruction set architecture, tail-call optimization is far more common on SPARC
systems than on x86 systems. The following example uses mdb to discover tail-call optimization
in the kernel's dup function:

dtrace -q -n fbt::dup:return’{printf("%s+0x%x", probefunc, arg0);}’

While this command is running, run a program that performs a dup(2), such as a bash process.
The above command should provide output similar to the following example:

dup+0x10

^C

Now examine the function with mdb:

echo "dup::dis" | mdb -k

dup: sra %o0, 0, %o0

dup+4: mov %o7, %g1

dup+8: clr %o2

dup+0xc: clr %o1

dup+0x10: call -0x1278 <fcntl>

dup+0x14: mov %g1, %o7

The output shows that dup+0x10 is a call to the fcntl function and not a ret instruction.
Therefore, the call to fcntl is an example of tail-call optimization.

fbt Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02192

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2dup-2

Assembly Functions
You might observe functions that seem to enter but never return or vice versa. Such rare
functions are generally hand-coded assembly routines that branch to the middle of other
hand-coded assembly functions. These functions should not impede analysis: the branched-to
function must still return to the caller of the branched-from function. That is, if you enable all
FBT probes, you should see the entry to one function and the return from another function at
the same stack depth.

Instruction Set Limitations
Some functions cannot be instrumented by FBT. The exact nature of uninstrumentable
functions is specific to the instruction set architecture.

x86 Limitations
Functions that do not create a stack frame on x86 systems cannot be instrumented by FBT.
Because the register set for x86 is extraordinarily small, most functions must put data on the
stack and therefore create a stack frame. However, some x86 functions do not create a stack
frame and therefore cannot be instrumented. Actual numbers vary, but typically fewer than five
percent of functions cannot be instrumented on the x86 platform.

SPARC Limitations
Leaf routines hand-coded in assembly language on SPARC systems cannot be instrumented by
FBT. The majority of the kernel is written in C, and all functions written in C can be
instrumented by FBT. Actual numbers vary, but typically fewer cannot be instrumented on the
SPARC platform.

Breakpoint Interaction
FBT works by dynamically modifying kernel text. Because kernel breakpoints also work by
modifying kernel text, if a kernel breakpoint is placed at an entry or return site before loading
DTrace, FBT will refuse to provide a probe for the function, even if the kernel breakpoint is
subsequently removed. If the kernel breakpoint is placed after loading DTrace, both the kernel
breakpoint and the DTrace probe will correspond to the same point in text. In this situation, the
breakpoint will trigger first, and then the probe will fire when the debugger resumes the kernel.
It is recommended that kernel breakpoints not be used concurrently with DTrace. If
breakpoints are required, use the DTrace breakpoint action instead.

fbt Provider

Chapter 11 • Providers 193

Module Loading
The Oracle Solaris kernel can dynamic load and unload kernel modules. When FBT is loaded
and a module is dynamically loaded, FBT automatically provides new probes associated with
the new module. If a loaded module has unenabled FBT probes, the module may be unloaded;
the corresponding probes will be destroyed as the module is unloaded. If a loaded module has
enabled FBT probes, the module is considered busy, and cannot be unloaded.

Stability
The FBT provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

As FBT exposes the kernel implementation, nothing about it is Stable — and the Module and
Function name and data stability are explicitly Private. The data stability for Provider and Name
are Evolving, but all other data stabilities are Private: they are artifacts of the current
implementation. The dependency class for FBT is ISA: while FBT is available on all current
instruction set architectures, there is no guarantee that FBT will be available on arbitrary future
instruction set architectures.

syscall Provider
The syscall provider makes available a probe at the entry to and return from every system call
in the system. Because system calls are the primary interface between user-level applications
and the operating system kernel, the syscall provider can offer tremendous insight into
application behavior with respect to the system.

syscall Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02194

Probes
syscall provides a pair of probes for each system call: an entry probe that fires before the
system call is entered, and a return probe that fires after the system call has completed but
before control has transferred back to user-level. For all syscall probes, the function name is
set to be the name of the instrumented system call and the module name is undefined.

The names of the system calls as provided by the syscall provider may be found in the
/etc/name_to_sysnum file. Often, the system call names provided by syscall correspond to
names in Section 2 of the man pages. However, some probes provided by the syscall provider
do not directly correspond to any documented system call. There common reasons for this
discrepancy are described in this section.

System Call Anachronisms
In some cases, the name of the system call as provided by the syscall provider is actually a
reflection of an ancient implementation detail. For example, for reasons dating back to UNIX
antiquity, the name of exit(2) in /etc/name_to_sysnum is rexit. Similarly, the name of time(2)
is gtime, and the name of execve(2) is exece.

Subcoded System Calls
Some system calls as presented in Section 2 are implemented as suboperations of an
undocumented system call. For example, the system calls related to System V semaphores
(semctl(2), semget(2), semids(2), semop(2), and semtimedop(2)) are implemented as
suboperations of a single system call, semsys. The semsys system call takes as its first argument
an implementation-specific subcode denoting the specific system call required: SEMCTL, SEMGET,
SEMIDS, SEMOP or SEMTIMEDOP, respectively. As a result of overloading a single system call to
implement multiple system calls, there is only a single pair of syscall probes for System V
semaphores:

syscall::semsys:entry and syscall::semsys:return

New System Calls
Oracle Solaris 11 implements the following system interfaces as individual system calls, unlike
Oracle Solaris 10 where some of them were not implemented at all and the remainder were
implemented as subcodes of a single private system call:
■ faccessat()
■ fchmodat()
■ fchownat()
■ fstatat()
■ linkat()
■ mkdirat()
■ mknodat()

syscall Provider

Chapter 11 • Providers 195

■ openat()
■ readlinkat()
■ renameat()
■ symlinkat()
■ unlinkat()

These system calls implement a superset of the functionality of their old non-at-suffixed
counterparts. They take an additional first argument that is either an open directory file
descriptor, in which case the operation on a relative pathname is taken relative to the specified
directory, or is the reserved value AT_FDCWD, in which case the operation takes place relative to
the current working directory.

Deleted System Calls
In Oracle Solaris 11, the following old system calls have been removed from the system. The
libc interfaces remain, but they are reimplemented not as system calls in their own right, but as
calls to the new system calls as indicated:

access(p, m) faccessat(AT_FDCWD, p, m, 0)

chmod(p, m) fchmodat(AT_FDCWD, p, m, 0)

chown(p, u, g) fchownat(AT_FDCWD, p, u, g, 0)

creat(p, m) openat(AT_FDCWD, p, O_WRONLY | O_CREAT | O_TRUNC, m)

fchmod(fd, m) fchmodat(fd, NULL, m, 0)

fchown(fd, u, g) fchownat(fd, NULL, u, g, 0)

fstat(fd, s) fstatat(fd, NULL, s, 0)

lchown(p, u, g) fchownat(AT_FDCWD, p, u, g, AT_SYMLINK_NOFOLLOW)

link(p1, p2) linkat(AT_FDCWD, p1, AT_FDCWD, p2, 0)

lstat(p, s) fstatat(AT_FDCWD, p, s, AT_SYMLINK_NOFOLLOW)

mkdir(p, m) mkdirat(AT_FDCWD, p, m)

mknod(p, m. d) mknodat(AT_FDCWD, p, m, d)

open(p, o, m) openat(AT_FDCWD, p, o, m)

readlink(p, b, s) readlinkat(AT_FDCWD, p, b, s)

rename(p1, p2) renameat(AT_FDCWD, p1, AT_FDCWD, p2)

rmdir(p) unlinkat(AT_FDCWD, p, AT_REMOVEDIR)

stat(p, s) fstatat(AT_FDCWD, p, s, 0)

syscall Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02196

symlink(p1, p2) symlinkat(p1, AT_FDCWD, p2)

unlink(p) unlinkat(AT_FDCWD, p, 0)

Large File System Calls
A 32-bit program that supports large files that exceed four gigabytes in size must be able to
process 64--bit file offsets. Because large files require use of large offsets, large files are
manipulated through a parallel set of system interfaces, as described in lf64(5). These
interfaces are documented in lf64, but they do not have individual man pages. Each of these
large file system call interfaces appears as its own syscall probe as shown in Table 11–8.

TABLE 11–8 sycall Large File Probes

Large File syscall Probe System Call

fstatat64 fstatat(2)

fstatvfs64 fstatvfs(2)

getdents64 fgetdents(2)

getrlimit64 getrlimit(2)

mmap64 mmap(2)

openat64 openat(2)

pread64 pread(2)

pwrite64 pwrite(2)

setrlimit64 setrlimit(2)

statvfs64 statvfs(2)

Private System Calls
Some system calls are private implementation details of Oracle Solaris subsystems that span the
user-kernel boundary. As such, these system calls do not have man pages in Section 2. Examples
of system calls in this category include the signotify system call, which is used as part of the
implementation of POSIX.4 message queues, and the utssys system call, which is used to
implement fuser(1M).

Arguments
For entry probes, the arguments (arg0 .. argn) are the arguments to the system call. For return
probes, both arg0 and arg1 contain the return value. A non-zero value in the D variable errno
indicates system call failure.

syscall Provider

Chapter 11 • Providers 197

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN5lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mfuser-1m

Stability
The syscall provider uses DTrace's stability mechanism to describe its stabilities as shown in
the following table. For more information about the stability mechanism, refer to Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Unstable Unstable ISA

Name Evolving Evolving Common

Arguments Unstable Unstable ISA

sdt Provider
The Statically Defined Tracing (SDT) provider creates probes at sites that a software
programmer has formally designated. The SDT mechanism allows programmers to consciously
choose locations of interest to users of DTrace and to convey some semantic knowledge about
each location through the probe name. The Oracle Solaris kernel has defined a handful of SDT
probes, and will likely add more over time. DTrace also provides a mechanism for user
application developers to define static probes, described in Chapter 13, “Statically Defined
Tracing for User Applications.”

Probes
The SDT probes defined by the Oracle Solaris kernel are listed in the following table. The name
stability and data stability of these probes are both Private because their description here thus
reflects the kernel's implementation and should not be inferred to be an interface commitment.
For more information about the DTrace stability mechanism, see Chapter 18, “Stability.”

TABLE 11–9 SDT Probes

Probe name Description arg0

callout-start Probe that fires immediately before
executing a callout (see
<sys/callo.h>). Callouts are
executed by periodic system clock,
and represent the implementation
for timeout(9F)

Pointer to the callout_t (see
<sys/callo.h>) corresponding to
the callout to be executed.

sdt Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02198

TABLE 11–9 SDT Probes (Continued)
Probe name Description arg0

callout-end Probe that fires immediately after
executing a callout (see
<sys/callo.h>).

Pointer to the callout_t (see
<sys/callo.h>) corresponding to
the callout just executed.

interrupt-start Probe that fires immediately before
calling into a device's interrupt
handler.

Pointer to the dev_info structure
(see <sys/ddi_impldefs.h>)
corresponding to the interrupting
device.

interrupt-complete Probe that fires immediately after
returning from a device's interrupt
handler.

Pointer to dev_info structure (see
<sys/ddi_impldefs.h>)
corresponding to the interrupting
device.

Examples
The following example is a script to observe callout behavior on a per-second basis:

#pragma D option quiet

sdt:::callout-start

{

@callouts[((callout_t *)arg0)->c_func] = count();

}

tick-1sec

{

printa("%40a %10@d\n", @callouts);

clear(@callouts);

}

Running this example reveals the frequent users of timeout(9F) in the system, as shown in the
following output:

dtrace -s ./callout.d

FUNC COUNT

TS‘ts_update 1

uhci‘uhci_cmd_timeout_hdlr 3

genunix‘setrun 5

genunix‘schedpaging 5

ata‘ghd_timeout 10

uhci‘uhci_handle_root_hub_status_change 309

FUNC COUNT

ip‘tcp_time_wait_collector 1

TS‘ts_update 1

uhci‘uhci_cmd_timeout_hdlr 3

genunix‘schedpaging 4

genunix‘setrun 8

ata‘ghd_timeout 10

sdt Provider

Chapter 11 • Providers 199

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN9Ftimeout-9f

uhci‘uhci_handle_root_hub_status_change 300

FUNC COUNT

ip‘tcp_time_wait_collector 0

iprb‘mii_portmon 1

TS‘ts_update 1

uhci‘uhci_cmd_timeout_hdlr 3

genunix‘schedpaging 4

genunix‘setrun 7

ata‘ghd_timeout 10

uhci‘uhci_handle_root_hub_status_change 300

The timeout(9F) interface only produces a single timer expiration. Consumers of timeout
requiring interval timer functionality typically reinstall their timeout from their timeout
handler. The following example shows this behavior:

#pragma D option quiet

sdt:::callout-start

{

self->callout = ((callout_t *)arg0)->c_func;

}

fbt::timeout:entry

/self->callout && arg2 <= 100/

{

/*

* In this case, we are most interested in interval timeout(9F)s that

* are short. We therefore do a linear quantization from 0 ticks to

* 100 ticks. The system clock’s frequency - set by the variable

* "hz" - defaults to 100, so 100 system clock ticks is one second.

*/

@callout[self->callout] = lquantize(arg2, 0, 100);

}

sdt:::callout-end

{

self->callout = NULL;

}

END

{

printa("%a\n%@d\n\n", @callout);

}

Running this script and waiting several seconds before typing Control-C results in output
similar to the following example:

dtrace -s ./interval.d

^C

genunix‘schedpaging

value ------------- Distribution ------------- count

24 | 0

25 |@@ 20

26 | 0

sdt Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02200

ata‘ghd_timeout

value ------------- Distribution ------------- count

9 | 0

10 |@@ 51

11 | 0

uhci‘uhci_handle_root_hub_status_change

value ------------- Distribution ------------- count

0 | 0

1 |@@ 1515

2 | 0

The output shows that uhci_handle_root_hub_status_change in the uhci(7D) driver
represents the shortest interval timer on the system: it is called every system clock tick.

The interrupt-start probe can be used to understand interrupt activity. The following
example shows how to quantize the time spent executing an interrupt handler by driver name:

interrupt-start

{

self->ts = vtimestamp;

}

interrupt-complete

/self->ts/

{

this->devi = (struct dev_info *)arg0;

@[stringof(‘devnamesp[this->devi->devi_major].dn_name),
this->devi->devi_instance] = quantize(vtimestamp - self->ts);

}

Running this script results in output similar to the following example:

dtrace -s ./intr.d

dtrace: script ’./intr.d’ matched 2 probes

^C

isp 0

value ------------- Distribution ------------- count

8192 | 0

16384 |@@ 1

32768 | 0

pcf8584 0

value ------------- Distribution ------------- count

64 | 0

128 | 2

256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 157

512 |@@@@@@ 31

1024 | 3

2048 | 0

pcf8584 1

value ------------- Distribution ------------- count

sdt Provider

Chapter 11 • Providers 201

2048 | 0

4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 154

8192 |@@@@@@@ 37

16384 | 2

32768 | 0

qlc 0

value ------------- Distribution ------------- count

16384 | 0

32768 |@@ 9

65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 126

131072 |@ 5

262144 | 2

524288 | 0

hme 0

value ------------- Distribution ------------- count

1024 | 0

2048 | 6

4096 | 2

8192 |@@@@ 89

16384 |@@@@@@@@@@@@@ 262

32768 |@ 37

65536 |@@@@@@@ 139

131072 |@@@@@@@@ 161

262144 |@@@ 73

524288 | 4

1048576 | 0

2097152 | 1

4194304 | 0

ohci 0

value ------------- Distribution ------------- count

8192 | 0

16384 | 3

32768 | 1

65536 |@@@ 143

131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1368

262144 | 0

Creating SDT Probes
If you are a device driver developer, you might be interested in creating your own SDT probes in
your Oracle Solaris driver. The disabled probe effect of SDT is essentially the cost of several
no-operation machine instructions. You are therefore encouraged to add SDT probes to your
device drivers as needed. Unless these probes negatively affect performance, you can leave them
in your shipping code.

Declaring Probes
SDT probes are declared using the DTRACE_PROBE, DTRACE_PROBE1, DTRACE_PROBE2,
DTRACE_PROBE3 and DTRACE_PROBE4 macros from <sys/sdt.h>. The module name and
function name of an SDT-based probe corresponds to the kernel module and function of the

sdt Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02202

probe. The name of the probe depends on the name given in the DTRACE_PROBEn macro. If the
name contains no two consecutive underbars (_), the name of the probe is as written in the
macro. If the name contains any two consecutive underbars, the probe name converts the
consecutive underbars to a single dash (-). For example, if a DTRACE_PROBE macro specifies
transaction_start, the SDT probe will be named transaction-start. This substitution
allows C code to provide macro names that are not valid C identifiers without specifying a
string.

DTrace includes the kernel module name and function name as part of the tuple identifying a
probe, so you do not need to include this information in the probe name to prevent name space
collisions. You can use the command dtrace -l -P sdt -m module on your driver module to
list the probes you have installed and the full names that will be seen by users of DTrace.

Probe Arguments
The arguments for each SDT probe are the arguments specified in the corresponding
DTRACE_PROBEn macro reference. The number of arguments depends on which macro was used
to create the probe: DTRACE_PROBE1 specifies one argument, DTRACE_PROBE2 specifies two
arguments, and so on. When declaring your SDT probes, you can minimize their disabled
probe effect by not dereferencing pointers and not loading from global variables in the probe
arguments. Both pointer dereferencing and global variable loading may be done safely in D
actions that enable probes, so DTrace users can request these actions only when they are
needed.

Stability
The SDT provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Nam Private Private ISA

Arguments Private Private ISA

sdt Provider

Chapter 11 • Providers 203

mib Provider
The mib provider makes available probes that correspond to counters in the Oracle Solaris
management information bases (MIBs). MIB counters are used by the simple network
management protocol (SNMP) that allow remote monitoring of heterogeneous networking
entities. You can also view the counters with the kstat(1M) and netstat(1M) commands. The
mib provider facilitates quick exploration of aberrant networking behavior that is observed
using either remote or local networking monitors.

Probes
The mib provider makes available probes for counters from several MIBs. The protocols that
export MIBs instrumented by the mib provider are listed in Table 11–10. The table includes a
reference to documentation that specifies some or all of the MIB, the name of the kernel statistic
that may be used to access the running counts (using the kstat(1M) -n statistic option), and a
reference to the table that has a complete definition of the probes. All MIB counters are also
available through the -s option to netstat(1M).

TABLE 11–10 mib probes

Protocol MIB Description Kernel Statistic mib Probes Table

ICMP RFC 1213 icmp Table 11–11

IP RFC 1213 ip Table 11–12

IPsec — ip Table 11–13

IPv6 RFC 2465 — Table 11–14

SCTP “SCTP MIB” (Internet
draft)

sctp Table 11–16

TCP RFC 1213 tcp Table 11–17

UDP RFC 1213 udp Table 11–18

TABLE 11–11 ICMP mib Probes

icmpInAddrMaskReps Probe that fires whenever an ICMP Address Mask Reply message is
received.

icmpInAddrMasks Probe that fires whenever an ICMP Address Mask Request message is
received.

icmpInBadRedirects Probe that fires whenever an ICMP Redirect message is received that is
determined to be malformed in some way (unknown ICMP code, sender or
target off-link, and the like).

mib Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02204

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mkstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mnetstat-1m

TABLE 11–11 ICMP mib Probes (Continued)
icmpInCksumErrs Probe that fires whenever an ICMP message with a bad checksum is

received.

icmpInDestUnreachs Probe that fires whenever an ICMP Destination Unreachable message is
received.

icmpInEchoReps Probe that fires whenever an ICMP Echo Reply message is received.

icmpInEchos Probe that fires whenever an ICMP Echo request message is received.

icmpInErrors Probe that fires whenever an ICMP message is received that is determined
to have an ICMP-specific error (bad ICMP checksum, bad length, etc.).

icmpInFragNeeded Probe that fires whenever an ICMP Destination Unreachable
(Fragmentation Needed) message is received, indicating that a sent packet
was lost because it was larger than some MTU and the Don't Fragment flag
was set.

icmpInMsgs Probe that fires whenever an ICMP message is received. Whenever this
probe fires, the icmpInErrors probe may also fire if the message is
determined to have an ICMP-specific error.

icmpInOverflows Probe that fires whenever an ICMP message is received, but the message is
subsequently dropped due to lack of buffer space.

icmpInParmProbs Probe that fires whenever an ICMP Parameter Problem message is received.

icmpInRedirects Probe that fires whenever an ICMP Redirect message is received.

icmpInSrcQuenchs Probe that fires whenever an ICMP Source Quench message is received.

icmpInTimeExcds Probe that fires whenever an ICMP Time Exceeded message is received.

icmpInTimestampReps Probe that fires whenever an ICMP Timestamp Reply message is received.

icmpInTimestamps Probe that fires whenever an ICMP Timestamp request message is received.

icmpInUnknowns Probe that fires whenever an ICMP message of unknown type is received.

icmpOutAddrMaskReps Probe that fires whenever an ICMP Address Mask Reply message is sent.

icmpOutDestUnreachs Probe that fires whenever an ICMP Destination Unreachable message is
sent.

icmpOutDrops Probe that fires whenever an outbound ICMP message is dropped for some
reason (such as memory allocation failure, broadcast/multicast source or
destination, and the like).

icmpOutEchoReps Probe that fires whenever an ICMP Echo Reply message is sent.

icmpOutErrors Probe that fires whenever an ICMP message is not sent due to problems
discovered within ICMP, such as a lack of buffers. This probe will not fire if
errors are discovered outside the ICMP layer, such as the inability of IP to
route the resulting datagram.

mib Provider

Chapter 11 • Providers 205

TABLE 11–11 ICMP mib Probes (Continued)
icmpOutFragNeeded Probe that fires whenever an ICMP Destination Unreachable

(Fragmentation Needed) message is sent.

icmpOutMsgs Probe that fires whenever an ICMP message is sent. Whenever this probe
fires, the icmpOutErrors probe might also fire if the message is determined
to have ICMP-specific errors.

icmpOutParmProbs Probe that fires whenever an ICMP Parameter Problem message is sent.

icmpOutRedirects Probe that fires whenever an ICMP Redirect message is sent. For a host, this
probe will never fire, because hosts do not send redirects.

icmpOutTimeExcds Probe that fires whenever an ICMP Time Exceeded message is sent.

icmpOutTimestampReps Probe that fires whenever an ICMP Timestamp Reply message is sent.

TABLE 11–12 IP mib Probes

ipForwDatagrams Probe that fires whenever a datagram is received that does not have this
machine as its final IP destination, and an attempt is made to find a route to
forward the datagram to that final destination. On machines that do not act
as IP gateways, this probe will only fire for those packets that are
source-routed through this machine, and for which the source-route option
processing was successful.

ipForwProhibits Probe that fires whenever a datagram is received that does not have this
machine as its final IP destination, but because the machine is not permitted
to act as a router, no attempt is made to find a route to forward the datagram
to that final destination.

ipFragCreates Probe that fires whenever an IP datagram fragment is generated as a result
of fragmentation.

ipFragFails Probe that fires whenever an IP datagram is discarded because it could not
be fragmented, for example, because fragmentation was required and the
Don't Fragment flag was set.

ipFragOKs Probe that fires whenever an IP datagram has been successfully fragmented.

ipInCksumErrs Probe that fires whenever an input datagram is discarded due to a bad IP
header checksum.

ipInDelivers Probe that fires whenever an input datagram is successfully delivered to IP
user protocols, including ICMP.

ipInDiscards Probe that fires whenever an input IP datagram is discarded for reasons
unrelated to the packet (for example, for lack of buffer space). This probe
does not fire for any datagram discarded while awaiting reassembly.

mib Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02206

TABLE 11–12 IP mib Probes (Continued)
ipInHdrErrors Probe that fires whenever an input datagram is discarded due to an error in

its IP header, including a version number mismatch, a format error, an
exceeded time-to-live, an error discovered in processing IP options, and the
like.

ipInIPv6 Probe that fires whenever an IPv6 packet erroneously arrives on an IPv4
queue.

ipInReceives Probe that fires whenever a datagram is received from an interface, even if
that datagram is received in error.

ipInUnknownProtos Probe that fires whenever a locally addressed datagram is received
successfully but subsequently discarded because of an unknown or
unsupported protocol.

ipOutDiscards Probe that fires whenever an output IP datagram is discarded for reasons
unrelated to the packet (for example, for lack of buffer space). This probe
will fire for a packet counted in the ipForwDatagrams MIB counter if the
packet meets such a (discretionary) discard criterion.

ipOutIPv6 Probe that fires whenever an IPv6 packet is sent over an IPv4 connection.

ipOutNoRoutes Probe that fires whenever an IP datagram is discarded because no route
could be found to transmit it to its destination. This probe will fire for a
packet counted in the ipForwDatagrams MIB counter if the packet meets
this “no-route”; criterion. This probe will also fire for any datagrams which
cannot be routed because all default gateways are down.

ipOutRequests Probe that fires whenever an IP datagram is supplied to IP for transmission
from local IP user protocols (include ICMP). Note that this probe will not
fire for any packet counted in the ipForwDatagrams MIB counter.

ipOutSwitchIPv6 Probe that fires whenever a connection changes from using IPv4 to using
IPv6 as its IP protocol.

ipReasmDuplicates Probe that fires whenever the IP reassembly algorithm determines that an
IP fragment contains only previously received data.

ipReasmFails Probe that fires whenever any failure is detected by the IP reassembly
algorithm. This probe does not necessarily fire for every discarded IP
fragment because some algorithms, notably the algorithm in RFC 815, can
lose track of fragments by combining them as they are received.

ipReasmOKs Probe that fires whenever an IP datagram is successfully reassembled.

ipReasmPartDups Probe that fires whenever the IP reassembly algorithm determines that an
IP fragment contains both some previously received data and some new
data.

ipReasmReqds Probe that fires whenever an IP fragment is received that needs to be
reassembled.

mib Provider

Chapter 11 • Providers 207

TABLE 11–13 IPsec mib Probes

ipsecInFailed Probe that fires whenever a received packet is dropped because it fails to
match the specified IPsec policy.

ipsecInSucceeded Probe that fires whenever a received packet matches the specified IPsec
policy and processing is allowed to continue.

TABLE 11–14 IPv6 mib Probes

ipv6ForwProhibits Probe that fires whenever an IPv6 datagram is received that does
not have this machine as its final IPv6 destination, but because the
machine is not permitted to act as a router, no attempt is made to
find a route to forward the datagram to that final destination.

ipv6IfIcmpBadHoplimit Probe that fires whenever an ICMPv6 neighbor discovery protocol
message is received that is found to have a Hop Limit less than the
defined maximum. Such messages might not have originated from
a neighbor, and are therefore discarded.

ipv6IfIcmpInAdminProhibs Probe that fires whenever an ICMPv6 Destination Unreachable
(Communication Administratively Prohibited) message is
received.

ipv6IfIcmpInBadNeighborAdvertisementsProbe that fires whenever an ICMPv6 Neighbor Advertisement
message is received that is malformed in some way.

ipv6IfIcmpInBadNeighborSolicitationsProbe that fires whenever an ICMPv6 Neighbor Solicit message is
received that is malformed in some way.

ipv6IfIcmpInBadRedirects Probe that fires whenever an ICMPv6 Redirect message is received
that is malformed in some way.

ipv6IfIcmpInDestUnreachs Probe that fires whenever an ICMPv6 Destination Unreachable
message is received.

ipv6IfIcmpInEchoReplies Probe that fires whenever an ICMPv6 Echo Reply message is
received.

ipv6IfIcmpInEchos Probe that fires whenever an ICMPv6 Echo request message is
received.

ipv6IfIcmpInErrors Probe that fires whenever an ICMPv6 message is received that is
determined to have an ICMPv6-specific error (such as bad
ICMPv6 checksum, bad length, and the like).

ipv6IfIcmpInGroupMembBadQueries Probe that fires whenever an ICMPv6 Group Membership Query
message is received that is malformed in some way.

ipv6IfIcmpInGroupMembBadReports Probe that fires whenever an ICMPv6 Group Membership Report
message is received that is malformed in some way.

mib Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02208

TABLE 11–14 IPv6 mib Probes (Continued)
ipv6IfIcmpInGroupMembOurReports Probe that fires whenever an ICMPv6 Group Membership Report

message is received.

ipv6IfIcmpInGroupMembQueries Probe that fires whenever an ICMPv6 Group Membership Query
message is received.

ipv6IfIcmpInGroupMembReductions Probe that fires whenever an ICMPv6 Group Membership
Reduction message is received.

ipv6IfIcmpInGroupMembResponses Probe that fires whenever an ICMPv6 Group Membership
Response message is received.

ipv6IfIcmpInGroupMembTotal Probe that fires whenever an ICMPv6 multicast listener discovery
message is received.

ipv6IfIcmpInMsgs Probe that fires whenever an ICMPv6 message is received. When
this probe fires, the ipv6IfIcmpInErrors probe might also fire if
the message has an ICMPv6-specific error.

ipv6IfIcmpInNeighborAdvertisements Probe that fires whenever an ICMPv6 Neighbor Advertisement
message is received.

ipv6IfIcmpInNeighborSolicits Probe that fires whenever an ICMPv6 Neighbor Solicit message is
received.

ipv6IfIcmpInOverflows Probe that fires whenever an ICMPv6 message is received, but that
message is subsequently dropped due to lack of buffer space.

ipv6IfIcmpInParmProblems Probe that fires whenever an ICMPv6 Parameter Problem message
is received.

ipv6IfIcmpInRedirects Probe that fires whenever an ICMPv6 Redirect message is received.

ipv6IfIcmpInRouterAdvertisements Probe that fires whenever an ICMPv6 Router Advertisement
message is received.

ipv6IfIcmpInRouterSolicits Probe that fires whenever an ICMPv6 Router Solicit message is
received.

ipv6IfIcmpInTimeExcds Probe that fires whenever an ICMPv6 Time Exceeded message is
received.

ipv6IfIcmpOutAdminProhibs Probe that fires whenever an ICMPv6 Destination Unreachable
(Communication Administratively Prohibited) message is sent.

ipv6IfIcmpOutDestUnreachs Probe that fires whenever an ICMPv6 Destination Unreachable
message is sent.

ipv6IfIcmpOutEchoReplies Probe that fires whenever an ICMPv6 Echo Reply message is sent.

ipv6IfIcmpOutEchos Probe that fires whenever an ICMPv6 Echo message is sent.

mib Provider

Chapter 11 • Providers 209

TABLE 11–14 IPv6 mib Probes (Continued)
ipv6IfIcmpOutErrors Probe that fires whenever an ICMPv6 message is not sent due to

problems discovered within ICMPv6, such as a lack of buffers. This
probe will not fire if errors are discovered outside the ICMPv6
layer, such as the inability of IPv6 to route the resulting datagram.

ipv6IfIcmpOutGroupMembQueries Probe that fires whenever an ICMPv6 Group Membership Query
message is sent.

ipv6IfIcmpOutGroupMembReductions Probe that fires whenever an ICMPv6 Group Membership
Reduction message is sent.

ipv6IfIcmpOutGroupMembResponses Probe that fires whenever an ICMPv6 Group Membership
Response message is sent.

ipv6IfIcmpOutMsgs Probe that fires whenever an ICMPv6 message is sent. When this
probe fires, the ipv6IfIcmpOutErrors probe might also fire if the
message has ICMPv6-specific errors.

ipv6IfIcmpOutNeighborAdvertisements Probe that fires whenever an ICMPv6 Neighbor Advertisement
message is sent.

ipv6IfIcmpOutNeighborSolicits Probe that fires whenever an ICMPv6 Neighbor Solicitation
message is sent.

ipv6IfIcmpOutParmProblems Probe that fires whenever an ICMPv6 Parameter Problem message
is sent.

ipv6IfIcmpOutPktTooBigs Probe that fires whenever an ICMPv6 Packet Too Big message is
sent.

ipv6IfIcmpOutRedirects Probe that fires whenever an ICMPv6 Redirect message is sent. For
a host, this probe will never fire, because hosts do not send
redirects.

ipv6IfIcmpOutRouterAdvertisements Probe that fires whenever an ICMPv6 Router Advertisement
message is sent.

ipv6IfIcmpOutRouterSolicits Probe that fires whenever an ICMPv6 Router Solicit message is
sent.

ipv6IfIcmpOutTimeExcds Probe that fires whenever an ICMPv6 Time Exceeded message is
sent.

ipv6InAddrErrors Probe that fires whenever an input datagram is discarded because
the IPv6 address in their IPv6 header's destination field is not a
valid address to be received by this entity. This probe will fire for
invalid addresses (for example, ::0) and for unsupported addresses
(for example, addresses with unallocated prefixes). For machines
that are not configured to act as IPv6 routers and therefore do not
forward datagrams, this probe will fire for datagrams discarded
because the destination address was not a local address.

mib Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02210

TABLE 11–14 IPv6 mib Probes (Continued)
ipv6InDelivers Probe that fires whenever an input datagram is successfully

delivered to IPv6 user-protocols (including ICMPv6).

ipv6InDiscards Probe that fires whenever an input IPv6 datagram is discarded for
reasons unrelated to the packet (for example, for lack of buffer
space). This probe does not fire for any datagram discarded while
awaiting reassembly.

ipv6InHdrErrors Probe that fires whenever an input datagram is discarded due to an
error in its IPv6 header, including a version number mismatch, a
format error, an exceeded hop count, an error discovered in
processing IPv6 options, and the like.

ipv6InIPv4 Probe that fires whenever an IPv4 packet erroneously arrives on an
IPv6 queue.

ipv6InMcastPkts Probe that fires whenever a multicast IPv6 packet is received.

ipv6InNoRoutes Probe that fires whenever a routed IPv6 datagram is discarded
because no route could be found to transmit it to its destination.
This probe will only fire for packets that have originated externally.

ipv6InReceives Probe that fires whenever an IPv6 datagram is received from an
interface, even if that datagram is received in error.

ipv6InTooBigErrors Probe that fires whenever a fragment is received that is larger than
the maximum fragment size.

ipv6InTruncatedPkts Probe that fires whenever an input datagram is discarded because
the datagram frame didn't carry enough data.

ipv6InUnknownProtos Probe that fires whenever a locally-addressed IPv6 datagram is
received successfully but subsequently discarded because of an
unknown or unsupported protocol.

ipv6OutDiscards Probe that fires whenever an output IPv6 datagram is discarded for
reasons unrelated to the packet (for example, for lack of buffer
space). This probe will fire for a packet counted in the
ipv6OutForwDatagrams MIB counter if the packet meets such a
(discretionary) discard criterion.

ipv6OutForwDatagrams Probe that fires whenever a datagram is received that does not have
this machine as its final IPv6 destination, and an attempt is made to
find a route to forward the datagram to that final destination. On a
machine that does not act as an IPv6 router, this probe will only fire
for those packets that are source-routed through the machine, and
for which the source-route option processing was successful.

ipv6OutFragCreates Probe that fires whenever an IPv6 datagram fragment is generated
as a result of fragmentation.

mib Provider

Chapter 11 • Providers 211

TABLE 11–14 IPv6 mib Probes (Continued)
ipv6OutFragFails Probe that fires whenever an IPv6 datagram is discarded because it

could not be fragmented, for example, because its Don't Fragment
flag was set.

ipv6OutFragOKs Probe that fires whenever an IPv6 datagrams has been successfully
fragmented.

ipv6OutIPv4 Probe that fires whenever an IPv6 packet is sent over an IPv4
connection.

ipv6OutMcastPkts Probe that fires whenever a multicast packet is sent.

ipv6OutNoRoutes Probe that fires whenever an IPv6 datagram is discarded because
no route could be found to transmit it to its destination. This probe
will not fire for packets that have originated externally.

ipv6OutRequests Probe that fires whenever an IPv6 datagram is supplied to IPv6 for
transmission from local IPv6 user protocols (including ICMPv6).
This probe will not fire for any packet counted in the
ipv6ForwDatagrams MIB counter.

ipv6OutSwitchIPv4 Probe that fires whenever a connection changes from using IPv6 to
using IPv4 as its IP protocol.

ipv6ReasmDuplicates Probe that fires whenever the IPv6 reassembly algorithm
determines that an IPv6 fragment contains only previously
received data.

ipv6ReasmFails Probe that fires whenever a failure is detected by the IPv6
reassembly algorithm. This probe does not necessarily fire for
every discarded IPv6 fragment since some algorithms can lose
track of fragments by combining them as they are received.

ipv6ReasmOKs Probe that fires whenever an IPv6 datagram is successfully
reassembled.

ipv6ReasmPartDups Probe that fires whenever the IPv6 reassembly algorithm
determines that an IPv6 fragment contains both some previously
received data and some new data.

ipv6ReasmReqds Probe that fires whenever an IPv6 fragment is received that needs
to be reassembled.

TABLE 11–15 Raw IP mib Probes

rawipInCksumErrs Probe that fires whenever a raw IP packet is received that has a bad
IP checksum.

rawipInDatagrams Probe that fires whenever a raw IP packet is received.

rawipInErrors Probe that fires whenever a raw IP packet is received that is
malformed in some way.

mib Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02212

TABLE 11–15 Raw IP mib Probes (Continued)
rawipInOverflows Probe that fires whenever a raw IP packet is received, but that packet

is subsequently dropped due to lack of buffer space.

rawipOutDatagrams Probe that fires whenever a raw IP packet is sent.

rawipOutErrors Probe that fires whenever a raw IP packet is not sent due to some
error condition, typically because the raw IP packet was malformed
in some way.

TABLE 11–16 SCTP mib Probes

sctpAborted Probe that fires whenever an SCTP association has made a direct
transition to the CLOSED state from any state using the ABORT
primitive, denoting ungraceful termination of the association.

sctpActiveEstab Probe that fires whenever an SCTP association has made a direct
transition to the ESTABLISHED state from the COOKIE-ECHOED
state, denoting that the upper layer has initiated the association
attempt.

sctpChecksumError Probe that fires whenever an SCTP packet is received from peers
with an invalid checksum.

sctpCurrEstab Probe that fires whenever an SCTP association is tallied as a part of
reading the sctpCurrEstab MIB counter. An SCTP association is
tallied if its current state is ESTABLISHED,
SHUTDOWN-RECEIVED, or SHUTDOWN-PENDING.

sctpFragUsrMsgs Probe that fires whenever a user message has to be fragmented
because of the MTU.

sctpInClosed Probe that fires whenever data is received on a closed SCTP
association.

sctpInCtrlChunks Probe that fires whenever the sctpInCtrlChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpInDupAck Probe that fires whenever a duplicate ACK is received.

sctpInInvalidCookie Probe that fires whenever an invalid cookie is received.

sctpInOrderChunks Probe that fires whenever the sctpInOrderChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

mib Provider

Chapter 11 • Providers 213

TABLE 11–16 SCTP mib Probes (Continued)
sctpInSCTPPkts Probe that fires whenever the sctpInSCTPPkts MIB counter is

updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpInUnorderChunks Probe that fires whenever the sctpInUnorderChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpListenDrop Probe that fires whenever an incoming connection is dropped for
any reason.

sctpOutAck Probe that fires whenever a selective acknowledgement is sent.

sctpOutAckDelayed Probe that fires whenever delayed acknowledgement processing is
performed for an SCTP association. Any acknowledgements sent as
a part of delayed acknowledgement processing will cause the
sctpOutAck probe to fire.

sctpOutCtrlChunks Probe that fires whenever the sctpOutCtrlChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpOutOfBlue Probe that fires whenever an otherwise correct SCTP packet is
received for which the receiver is not able to identify the association
to which the packet belongs.

sctpOutOrderChunks Probe that fires whenever the sctpOutOrderChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in aRgs[0].

sctpOutSCTPPkts Probe that fires whenever the sctpOutSCTPPkts MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpOutUnorderChunks Probe that fires whenever the sctpOutUnorderChunks MIB counter
is updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpOutWinProbe Probe that fires whenever a window probe is sent.

sctpOutWinUpdate Probe that fires whenever a window update is sent.

sctpPassiveEstab Probe that fires whenever SCTP associations have made a direct
transition to the ESTABLISHED state from the CLOSED state. The
remote endpoint has initiated the association attempt.

mib Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02214

TABLE 11–16 SCTP mib Probes (Continued)
sctpReasmUsrMsgs Probe that fires whenever the sctpReasmUsrMsgs MIB counter is

updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpRetransChunks Probe that fires whenever the sctpRetransChunks MIB counter is
updated, either because the MIB counter is explicitly queried or
because an SCTP connection is closed. The value by which the MIB
counter is to be increased is in args[0].

sctpShutdowns Probe that fires whenever an SCTP association makes the direct
transition to the CLOSED state from either the
SHUTDOWN-SENT state or the SHUTDOWN-ACK-SENT state,
denoting graceful termination of the association.

sctpTimHeartBeatDrop Probe that fires whenever an SCTP association is aborted due to
failure to receive a heartbeat acknowledgement.

sctpTimHeartBeatProbe Probe that fires whenever an SCTP heartbeat is sent.

sctpTimRetrans Probe that fires whenever timer-based retransmit processing is
performed on an association.

sctpTimRetransDrop Probe that fires whenever prolonged failure to perform timer-based
retransmission results in the association being aborted.

TABLE 11–17 TCP mib Probes

tcpActiveOpens Probe that fires whenever a TCP connection makes a direct
transition from the CLOSED state to the SYN_SENT state.

tcpAttemptFails Probe that fires whenever a TCP connection makes a direct
transition to the CLOSED state from either the SYN_SENT state or
the SYN_RCVD state and whenever a TCP connection makes a
direct transition to the LISTEN state from the SYN_RCVD state.

tcpCurrEstab Probe that fires whenever a TCP connection is tallied as a part of
reading the tcpCurrEstab MIB counter. A TCP connection is
tallied if its current state is either ESTABLISHED or CLOSE_WAIT.

tcpEstabResets Probe that fires whenever a TCP connection makes the direct
transition to the CLOSED state from either the ESTABLISHED
state or the CLOSE_WAIT state.

tcpHalfOpenDrop Probe that fires whenever a connection is dropped due to a full
queue of connections in the SYN_RCVD state.

tcpInAckBytes Probe that fires whenever an ACK is received for previously sent
data. The number of bytes acknowledged is passed in args[0].

mib Provider

Chapter 11 • Providers 215

TABLE 11–17 TCP mib Probes (Continued)
tcpInAckSegs Probe that fires whenever an ACK is received for a previously sent

segment.

tcpInAckUnsent Probe that fires whenever an ACK is received for an unsent segment.

tcpInClosed Probe that fires whenever data was received for a connection in a
closing state.

tcpInDataDupBytes Probe that fires whenever a segment is received such that all data in
the segment has been previously received. The number of bytes in
the duplicated segment is passed in args[0].

tcpInDataDupSegs Probe that fires whenever a segment is received such that all data in
the segment has been previously received. The number of bytes in
the duplicated segment is passed in args[0].

tcpInDataInorderBytes Probe that fires whenever data is received such that all data prior to
the new data's sequence number has been previously received. The
number of bytes received in-order is passed in args[0].

tcpInDataInorderSegs Probe that fires whenever a segment is received such that all data
prior to the new segment's sequence number has been previously
received.

tcpInDataPartDupBytes Probe that fires whenever a segment is received such that some of
the data in the segment has been previously received, but some of
the data in the segment is new. The number of duplicate bytes is
passed in args[0].

tcpInDataPartDupSegs Probe that fires whenever a segment is received such that some of
the data in the segment has been previously received, but some of
the data in the segment is new. The number of duplicate bytes is
passed in args[0].

tcpInDataPastWinBytes Probe that fires whenever data is received that lies past the current
receive window. The number of bytes is in args[0].

tcpInDataPastWinSegs Probe that fires whenever a segment is received that lies past the
current receive window.

tcpInDataUnorderBytes Probe that fires whenever data is received such that some data prior
to the new data's sequence number is missing. The number of bytes
received unordered is passed in args[0].

tcpInDataUnorderSegs Probe that fires whenever a segment is received such that some data
prior to the new data's sequence number is missing.

tcpInDupAck Probe that fires whenever a duplicate ACK is received.

tcpInErrs Probe that fires whenever a TCP error (for example, a bad TCP
checksum) is found on a received segment.

mib Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02216

TABLE 11–17 TCP mib Probes (Continued)
tcpInSegs Probe that fires whenever a segment is received, even if that segment

is later found to have an error that prevents further processing.

tcpInWinProbe Probe that fires whenever a window probe is received.

tcpInWinUpdate Probe that fires whenever a window update is received.

tcpListenDrop Probe that fires whenever an incoming connection is dropped due
to a full listen queue.

tcpListenDropQ0 Probe that fires whenever a connection is dropped due to a full
queue of connections in the SYN_RCVD state.

tcpOutAck Probe that fires whenever an ACK is sent.

tcpOutAckDelayed Probe that fires whenever an ACK is sent after having been initially
delayed.

tcpOutControl Probe that fires whenever a SYN, FIN, or RST is sent.

tcpOutDataBytes Probe that fires whenever data is sent. The number of bytes sent is in
args[0].

tcpOutDataSegs Probe that fires whenever a segment is sent.

tcpOutFastRetrans Probes that fires whenever a segment is retransmitted as part of the
fast retransmit algorithm.

tcpOutRsts Probe that fires whenever a segment is sent with the RST flag set.

tcpOutSackRetransSegs Probe that fires whenever a segment is retransmitted on a
connection that has selective acknowledgement enabled.

tcpOutSegs Probe that fires whenever a segment is sent that contains at least one
non-retransmitted byte.

tcpOutUrg Probe that fires whenever a segment is sent with the URG flag set,
and with a valid urgent pointer.

tcpOutWinProbe Probe that fires whenever a window probe is sent.

tcpOutWinUpdate Probe that fires whenever a window update is sent.

tcpPassiveOpens Probe that fires whenever a TCP connections have made a direct
transition to the SYN_RCVD state from the LISTEN state.

tcpRetransBytes Probe that fires whenever data is retransmitted. The number of
bytes retransmitted is in args[0].

tcpRetransSegs Probe that fires whenever a segment is sent that contains one or
more retransmitted bytes.

tcpRttNoUpdate Probe that fires whenever data was received, but there was no
timestamp information available with which to update the RTT.

mib Provider

Chapter 11 • Providers 217

TABLE 11–17 TCP mib Probes (Continued)
tcpRttUpdate Probe that fires whenever data was received containing the

timestamp information necessary to update the RTT.

tcpTimKeepalive Probe that fires whenever timer-based keep-alive processing is
performed on a connection.

tcpTimKeepaliveDrop Probe that fires whenever keep-alive processing results in
termination of a connection.

tcpTimKeepaliveProbe Probe that fires whenever a keep-alive probe is sent out as a part of
keep-alive processing.

tcpTimRetrans Probe that fires whenever timer-based retransmit processing is
performed on a connection.

tcpTimRetransDrop Probe that fires whenever prolonged failure to perform timer-based
retransmission results in termination of the connection.

TABLE 11–18 UDP mib Probes

udpInCksumErrs Probe that fires whenever a datagram is discarded due to a bad UDP
checksum.

udpInDatagrams Probe that fires whenever a UDP datagram is received.

udpInErrors Probe that fires whenever a UDP datagram is received, but is
discarded due to either a malformed packet header or the failure to
allocate an internal buffer.

udpInOverflows Probe that fires whenever a UDP datagram is received, but
subsequently dropped due to lack of buffer space.

udpNoPorts Probe that fires whenever a UDP datagram is received on a port to
which no socket is bound.

udpOutDatagrams Probe that fires whenever a UDP datagram is sent.

udpOutErrors Probe that fires whenever a UDP datagram is not sent due to some
error condition, typically because the datagram was malformed in
some way.

Arguments
The sole argument for each mib probe has the same semantics: args[0] contains the value with
which the counter is to be incremented. For most mib probes, args[0] always contains the value
1, but for some probes args[0] may take arbitrary positive values. For these probes, the
meaning of args[0] is noted in the probe description.

mib Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02218

Stability
The mib provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

fpuinfo Provider
The fpuinfo provider makes available probes that correspond to the simulation of
floating-point instructions on SPARC microprocessors. While most floating-point instructions
are executed in hardware, some floating-point operations trap into the operating system for
simulation. The conditions under which floating-point operations require operating system
simulation are specific to a microprocessor implementation. The operations that require
simulation are rare. However, if an application uses one of these operations frequently, the
effect on performance could be severe. The fpuinfo provider enables rapid investigation of
floating-point simulation seen through either kstat(1M) and the fpu_info kernel statistic or
trapstat(1M) and the fp-xcp-other trap.

Probes
The fpuinfo provider makes available a probe for each type of floating-point instruction that
can be simulated. The fpuinfo provider has a Name Stability of CPU; the names of the probes are
specific to a microprocessor implementation, and might not be available on different
microprocessors within the same family. For example, some of the probes listed might only be
available on UltraSPARC-III and not UltraSPARC-III+ or vice versa.

The fpuinfo probes are described in Table 11–19.

TABLE 11–19 fpuinfo Probes

fpu_sim_fitoq Probe that fires whenever an fitoq instruction is simulated by the kernel.

fpu_sim_fitod Probe that fires whenever an fitod instruction is simulated by the kernel.

fpuinfo Provider

Chapter 11 • Providers 219

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mtrapstat-1m

TABLE 11–19 fpuinfo Probes (Continued)
fpu_sim_fitos Probe that fires whenever an fitos instruction is simulated by the kernel.

fpu_sim_fxtoq Probe that fires whenever an fxtoq instruction is simulated by the kernel.

fpu_sim_fxtod Probe that fires whenever an fxtod instruction is simulated by the kernel.

fpu_sim_fxtos Probe that fires whenever an fxtos instruction is simulated by the kernel.

fpu_sim_fqtox Probe that fires whenever an fqtox instruction is simulated by the kernel.

fpu_sim_fdtox Probe that fires whenever an fdtox instruction is simulated by the kernel.

fpu_sim_fstox Probe that fires whenever an fstox instruction is simulated by the kernel.

fpu_sim_fqtoi Probe that fires whenever an fqtoi instruction is simulated by the kernel.

fpu_sim_fdtoi Probe that fires whenever an fdtoi instruction is simulated by the kernel.

fpu_sim_fstoi Probe that fires whenever an fstoi instruction is simulated by the kernel.

fpu_sim_fsqrtq Probe that fires whenever an fsqrtq instruction is simulated by the kernel.

fpu_sim_fsqrtd Probe that fires whenever an fsqrtd instruction is simulated by the kernel.

fpu_sim_fsqrts Probe that fires whenever an fsqrts instruction is simulated by the kernel.

fpu_sim_fcmpeq Probe that fires whenever an fcmpeq instruction is simulated by the kernel.

fpu_sim_fcmped Probe that fires whenever an fcmped instruction is simulated by the kernel.

fpu_sim_fcmpes Probe that fires whenever an fcmpes instruction is simulated by the kernel.

fpu_sim_fcmpq Probe that fires whenever an fcmpq instruction is simulated by the kernel.

fpu_sim_fcmpd Probe that fires whenever an fcmpd instruction is simulated by the kernel.

fpu_sim_fcmps Probe that fires whenever an fcmps instruction is simulated by the kernel.

fpu_sim_fdivq Probe that fires whenever an fdivq instruction is simulated by the kernel.

fpu_sim_fdivd Probe that fires whenever an fdivd instruction is simulated by the kernel.

fpu_sim_fdivs Probe that fires whenever an fdivs instruction is simulated by the kernel.

fpu_sim_fdmulx Probe that fires whenever an fdmulx instruction is simulated by the kernel.

fpu_sim_fsmuld Probe that fires whenever an fsmuld instruction is simulated by the kernel.

fpu_sim_fmulq Probe that fires whenever an fmulq instruction is simulated by the kernel.

fpu_sim_fmuld Probe that fires whenever an fmuld instruction is simulated by the kernel.

fpu_sim_fmuls Probe that fires whenever an fmuls instruction is simulated by the kernel.

fpu_sim_fsubq Probe that fires whenever an fsubq instruction is simulated by the kernel.

fpu_sim_fsubd Probe that fires whenever an fsubd instruction is simulated by the kernel.

fpuinfo Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02220

TABLE 11–19 fpuinfo Probes (Continued)
fpu_sim_fsubs Probe that fires whenever an fsubs instruction is simulated by the kernel.

fpu_sim_faddq Probe that fires whenever an faddq instruction is simulated by the kernel.

fpu_sim_faddd Probe that fires whenever an faddd instruction is simulated by the kernel.

fpu_sim_fadds Probe that fires whenever an fadds instruction is simulated by the kernel.

fpu_sim_fnegd Probe that fires whenever an fnegd instruction is simulated by the kernel.

fpu_sim_fnegq Probe that fires whenever an fneqq instruction is simulated by the kernel.

fpu_sim_fnegs Probe that fires whenever an fnegs instruction is simulated by the kernel.

fpu_sim_fabsd Probe that fires whenever an fabsd instruction is simulated by the kernel.

fpu_sim_fabsq Probe that fires whenever an fabsq instruction is simulated by the kernel.

fpu_sim_fabss Probe that fires whenever an fabss instruction is simulated by the kernel.

fpu_sim_fmovd Probe that fires whenever an fmovd instruction is simulated by the kernel.

fpu_sim_fmovq Probe that fires whenever an fmovq instruction is simulated by the kernel.

fpu_sim_fmovs Probe that fires whenever an fmovs instruction is simulated by the kernel.

fpu_sim_fmovr Probe that fires whenever an fmovr instruction is simulated by the kernel.

fpu_sim_fmovcc Probe that fires whenever an fmovcc instruction is simulated by the kernel.

Arguments
There are no arguments to fpuinfo probes.

Stability
The fpuinfo provider uses DTrace's stability mechanism to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving CPU

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving CPU

fpuinfo Provider

Chapter 11 • Providers 221

Element Name stability Data stability Dependency class

Arguments Evolving Evolving CPU

pid Provider
The pid provider allows for tracing of the entry and return of any function in a user process as
well as any instruction as specified by an absolute address or function offset. The pid provider
has no probe effect when probes are not enabled. When probes are enabled, the probes only
induce probe effect on those processes that are traced.

Note – When the compiler inlines a function, the pid provider's probe does not fire. Use one of
the following methods to compile a particular C function so that it will not be inlined.
■ Sun Studio: #pragma no_inline (funcname[, funcname])

■ gcc: funcname __attribute__ ((noinline))

Consult your compiler documentation for updates.

Naming pid Probes
The pid provider actually defines a class of providers. Each process can potentially have its own
associated pid provider. A process with ID 123, for example, would be traced by using the
pid123 provider. For probes from one of these providers, the module portion of the probe
description refers to an object loaded in the corresponding process's address space. The
following example uses mdb(1) to display a list of objects:

$ mdb -p 1234

Loading modules: [ld.so.1 libc.so.1]

> ::objects

BASE LIMIT SIZE NAME

10000 34000 24000 /usr/bin/csh

ff3c0000 ff3e8000 28000 /lib/ld.so.1

ff350000 ff37a000 2a000 /lib/libcurses.so.1

ff200000 ff2be000 be000 /lib/libc.so.1

ff3a0000 ff3a2000 2000 /lib/libdl.so.1

ff320000 ff324000 4000 /platform/sun4u/lib/libc_psr.so.1

In the probe description, you name the object by the name of the file, not its full path name. You
can also omit the .1 or so.1 suffix. All of the following examples name the same probe:

pid123:libc.so.1:strcpy:entry

pid123:libc.so:strcpy:entry

pid123:libc:strcpy:entry

The first example is the actual name of the probe. The other examples are convenient aliases
that are replaced with the full load object name internally.

pid Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02222

For the load object of the executable, you can use the alias a.out. The following two probe
descriptions name the same probe:

pid123:csh:main:return

pid123:a.out:main:return

As with all anchored DTrace probes, the function field of the probe description names a
function in the module field. A user application binary might have several names for the same
function. For example, mutex_lock might be an alternate name for the function
pthread_mutex_lock in libc.so.1. DTrace chooses one canonical name for such functions
and uses that name internally. The following example shows how DTrace internally remaps
module and function names to a canonical form:

dtrace -q -n pid101267:libc:mutex_lock:entry’{ \

printf("%s:%s:%s:%s\n", probeprov, probemod, probefunc, probename); }’

pid101267:libc.so.1:pthread_mutex_lock:entry

^C

This automatic renaming means that the names of the probes you enable may be slightly
different than those actually enabled. The canonical name will always be consistent between
runs of DTrace on systems running the same Oracle Solaris release.

See Chapter 12, “User Process Tracing,” for examples of how to use the pid provider effectively.

Function Boundary Probes
The pid provider enables you to trace function entry and return in user programs just as the
FBT provider provides that capability for the kernel. Most of the examples in this manual that
use the FBT provider to trace kernel function calls can be modified slightly to apply to user
processes.

entry Probes
An entry probe fires when the traced function is invoked. The arguments to entry probes are
the values of the arguments to the traced function.

return Probes
A return probes fires when the traced function returns or makes a tail call to another function.
The value for arg0 is the offset in the function of the return instruction; arg1 holds the return
value.

Function Offset Probes
The pid provider lets you trace any instruction in a function. For example to trace the
instruction 4 bytes into a function main, you could use a command similar to the following
example:

pid Provider

Chapter 11 • Providers 223

pid123:a.out:main:4

Every time the program executes the instruction at address main+4, this probe will be activated.
The arguments for offset probes are undefined. The uregs[] array will help you examine
process state at these probe sites. See “uregs[] Array” on page 366 for more information.

Stability
The pid provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown

plockstat Provider
The plockstat provider makes available probes that can be used to observe the behavior of
user-level synchronization primitives including lock contention and hold times. The
plockstat(1M) command is a DTrace consumer that uses the plockstat provider to gather
data on user-level locking events.

Overview
The plockstat provider makes available probes for the following types of events:

Contention Events

These probes correspond to contention on a user-level synchronization primitive, and fire
when a thread is forced to wait for a resource to become available. Oracle Solaris is generally
optimized for the non-contention case, so prolonged contention is not expected; these probes
should be used to understand those cases where contention does arise. Because contention is
designed to be (relatively) rare, enabling contention-event probes generally doesn't have a
serious probe effect; they can be enabled without concern for substantially affecting
performance.

plockstat Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02224

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mplockstat-1m

Hold Events

These probes correspond to acquiring, releasing or otherwise manipulating a user-level
synchronization primitive. As such, these probes can be used to answer arbitrary questions
about the way user-level synchronization primitives are manipulated. Because applications
typically acquire and release synchronization primitives very often, enabling hold-event probes
can have a greater probe effect than enabling contention-event probes. While the probe effect
induced by enabling them can be substantial, it is not pathological; they may still be enabled
with confidence on production applications.

Error Events

These probes correspond to any kind of anomalous behavior encountered when acquiring or
releasing a user-level synchronization primitive. These events can be used to detect errors
encountered while a thread is blocking on a user-level synchronization primitive. Error events
should be extremely uncommon so enabling them shouldn't induce a serious probe effect.

Mutex Probes
Mutexes enforce mutual exclusion to critical sections. When a thread attempts to acquire a
mutex held by another thread using mutex_lock(3C) or pthread_mutex_lock(3C), it will
determine if the owning thread is running on a different CPU. If it is, the acquiring thread will
spin for a short while waiting for the mutex to become available. If the owner is not executing on
another CPU, the acquiring thread will block.

The four plockstat probes pertaining to mutexes are listed in Table 11–20. For each probe,
arg0 contains a pointer to the mutex_t or pthread_mutex_t structure (these are identical types)
that represents the mutex.

TABLE 11–20 Mutex Probes

mutex-acquire Hold event probe that fires immediately after a mutex is acquired. arg1 contains
a boolean value that indicates whether the acquisition was recursive on a
recursive mutex. arg2 indicates the number of iterations that the acquiring
thread spent spinning on this mutex. arg2 will be non-zero only if the
mutex-spin probe fired on this mutex acquisition.

mutex-block Contention event probe that fires before a thread blocks on a held mutex. Both
mutex-block and mutex-spin might fire for a single lock acquisition.

mutex-spin Contention event probe that fires before a thread begins spinning on a held
mutex. Both mutex-block and mutex-spin might fire for a single lock
acquisition.

mutex-release Hold event probe that fires immediately after an mutex is released. arg1
contains a boolean value that indicates whether the event corresponds to a
recursive release on a recursive mutex.

plockstat Provider

Chapter 11 • Providers 225

TABLE 11–20 Mutex Probes (Continued)
mutex-error Error event probe that fires when an error is encountered on a mutex operation.

arg1 is the errno value for the error encountered.

Reader/Writer Lock Probes
Reader/write locks permit multiple readers or a single writer, but not both, to be in a critical
section at one time. These locks are typically used for structures that are searched more
frequently than they are modified, or when threads spend substantial time in a critical section.
Users interact with reader/writer locks using the Oracle Solaris rwlock(3C) or POSIX
pthread_rwlock_init(3C) interfaces.

The probes pertaining to readers/writer locks are in Table 11–21. For each probe, arg0 contains
a pointer to the rwlock_t or pthread_rwlock_tstructure (these are identical types) that
represents the adaptive lock. arg1 contains a boolean value that indicates whether the operation
was as a writer.

TABLE 11–21 Readers/Writer Lock Probes

rw-acquire Hold event probe that fires immediately after a readers/writer lock is acquired.

rw-block Contention event probe that fires before a thread blocks while attempting to
acquire a lock. If enabled, the rw-acquire probe or the rw-error probe will fire
after rw-block.

rw-release Hold event probe that fires immediately after a reader/writer lock is released

rw-error Error event probe that fires when an error is encountered during a reader/writer
lock operation. arg1 is the errno value of the error encountered.

Stability
The plockstat provider uses DTrace's stability mechanism to describe its stabilities, as shown
in the following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

plockstat Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02226

fasttrap Provider
The fasttrap provider allows for tracing at specific, preprogrammed user process locations.
Unlike most other DTrace providers, the fasttrap provider is not designed for tracing system
activity Rather, this provider is meant as a way for DTrace consumers to inject information into
the DTrace framework by activating the fasttrap probe.

Probes
The fasttrap provider makes available a single probe, fasttrap:::fasttrap, that fires
whenever a user-level process makes a certain DTrace call into the kernel. The DTrace call to
activate the probe is not publicly available at the present time.

Stability
The fasttrap provider uses DTrace's stability mechanism to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

sysinfo Provider
The sysinfo provider makes available probes that correspond to kernel statistics classified by
the name sys. Because these statistics provide the input for system monitoring utilities like
mpstat(1M), the sysinfo provider enables quick exploration of observed aberrant behavior.

Probes
The sysinfo provider makes available probes that correspond to the fields in the sys named
kernel statistic: a probe provided by sysinfo fires immediately before the corresponding sys
value is incremented. The following example shows how to display both the names and the
current values of the sys named kernel statistic using the kstat(1M) command.

sysinfo Provider

Chapter 11 • Providers 227

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mmpstat-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mkstat-1m

$ kstat -n sys

module: cpu instance: 0

name: sys class: misc

bawrite 123

bread 2899

bwrite 17995

cpu_ticks_idle 73743866

cpu_ticks_kernel 2096277

cpu_ticks_user 1010122

cpu_ticks_wait 46413

...

The sysinfo probes are described in the following table.

bawrite Probe that fires whenever a buffer is about to be asynchronously written out
to a device.

bread Probe that fires whenever a buffer is physically read from a device. bread
fires after the buffer has been requested from the device, but before blocking
pending its completion.

bwrite Probe that fires whenever a buffer is about to be written out to a device,
whether synchronously or asynchronously.

cpu_ticks_idle Probe that fires when the periodic system clock has made the determination
that a CPU is idle. Note that this probe fires in the context of the system
clock and therefore fires on the CPU running the system clock. The cpu_t
argument (arg2) indicates the CPU that has been deemed idle. See
“Arguments ” on page 230 for details.

cpu_ticks_kernel Probe that fires when the periodic system clock has made the determination
that a CPU is executing in the kernel. This probe fires in the context of the
system clock and therefore fires on the CPU running the system clock. The
cpu_t argument (arg2) indicates the CPU that has been deemed to be
executing in the kernel. See “Arguments ” on page 230 for details.

cpu_ticks_user Probe that fires when the periodic system clock has made the determination
that a CPU is executing in user mode. This probe fires in the context of the
system clock and therefore fires on the CPU running the system clock. The
cpu_t argument (arg2) indicates the CPU that has been deemed to be
running in user-mode. See “Arguments ” on page 230 for details.

cpu_ticks_wait Probe that fires when the periodic system clock has made the determination
that a CPU is otherwise idle, but some threads are waiting for I/O on the
CPU. This probe fires in the context of the system clock and therefore fires
on the CPU running the system clock. The cpu_t argument (arg2) indicates
the CPU that has been deemed waiting on I/O. See “Arguments ” on
page 230 for details.

idlethread Probe that fires whenever a CPU enters the idle loop.

intrblk Probe that fires whenever an interrupt thread blocks.

sysinfo Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02228

inv_swtch Probe that fires whenever a running thread is forced to involuntarily give up
the CPU.

lread Probe that fires whenever a buffer is logically read from a device.

lwrite Probe that fires whenever a buffer is logically written to a device.

modload Probe that fires whenever a kernel module is loaded.

modunload Probe that fires whenever a kernel module is unloaded.

msg Probe that fires whenever a msgsnd(2) or msgrcv(2) system call is made, but
before the message queue operations have been performed.

mutex_adenters Probe that fires whenever an attempt is made to acquire an owned adaptive
lock. If this probe fires, one of the lockstat provider's adaptive-block or
adaptive-spin probes will also fire. See “lockstat Provider” on page 171
for details.

namei Probe that fires whenever a name lookup is attempted in the filesystem.

nthreads Probe that fires whenever a thread is created.

phread Probe that fires whenever a raw I/O read is about to be performed.

phwrite Probe that fires whenever a raw I/O write is about to be performed.

procovf Probe that fires whenever a new process cannot be created because the
system is out of process table entries.

pswitch Probe that fires whenever a CPU switches from executing one thread to
executing another.

readch Probe that fires after each successful read, but before control is returned to
the thread performing the read. A read may occur through the read(2),
readv(2) or pread(2) system calls. arg0 contains the number of bytes that
were successfully read.

rw_rdfails Probe that fires whenever an attempt is made to read-lock a readers/writer
when the lock is either held by a writer, or desired by a writer. If this probe
fires, the lockstat provider's rw-block probe will also fire. See “lockstat
Provider” on page 171 for details.

rw_wrfails Probe that fires whenever an attempt is made to write-lock a readers/writer
lock when the lock is held either by some number of readers or by another
writer. If this probe fires, the lockstat provider's rw-block probe will also
fire. See “lockstat Provider” on page 171 for details.

sema Probe that fires whenever a semop(2) system call is made, but before any
semaphore operations have been performed.

sysexec Probe that fires whenever an exec(2) system call is made.

sysfork Probe that fires whenever a fork(2) system call is made.

sysinfo Provider

Chapter 11 • Providers 229

sysread Probe that fires whenever a read(2), readv(2), or pread(2) system call is
made.

sysvfork Probe that fires whenever a vfork(2) system call is made.

syswrite Probe that fires whenever a write(2), writev(2), or pwrite(2) system call is
made.

trap Probe that fires whenever a processor trap occurs. Note that some
processors, in particular UltraSPARC variants, handle some light-weight
traps through a mechanism that does not cause this probe to fire.

ufsdirblk Probe that fires whenever a directory block is read from the UFS file system.
See ufs(7FS) for details on UFS.

ufsiget Probe that fires whenever an inode is retrieved. See ufs(7FS) for details on
UFS.

ufsinopage. Probe that fires after an in-core inode without any associated data pages has
been made available for reuse. See ufs(7FS) for details on UFS.

ufsipage Probe that fires after an in-core inode with associated data pages has been
made available for reuse. This probe fires after the associated data pages
have been flushed to disk. See ufs(7FS) for details on UFS.

wait_ticks_io Probe that fires when the periodic system clock has made the determination
that a CPU is otherwise idle but some threads are waiting for I/O on the
CPU. This probe fires in the context of the system clock and therefore fires
on the CPU running the system clock. The cpu_t argument (arg2) indicates
the CPU that is described as waiting for I/O. See “Arguments ” on page 230
for details on arg2. No semantic difference between wait_ticks_io and
cpu_ticks_wait; wait_ticks_io exists solely for historical reasons.

writech Probe that fires after each successful write, but before control is returned to
the thread performing the write. A write may occur through the write(2),
writev(2) or pwrite(2) system calls. arg0 contains the number of bytes that
were successfully written

xcalls Probe that fires whenever a cross-call is about to be made. A cross-call is the
operating system's mechanism for one CPU to request immediate work of
another CPU.

Arguments
The arguments to sysinfo probes are as follows:

arg0 The value by which the statistic is to be incremented. For most probes, this
argument is always 1, but for some probes this argument may take other values.

sysinfo Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02230

arg1 A pointer to the current value of the statistic to be incremented. This value is a
64–bit quantity that will be incremented by the value in arg0. Dereferencing this
pointer enables consumers to determine the current count of the statistic
corresponding to the probe.

arg2 A pointer to the cpu_t structure that corresponds to the CPU on which the
statistic is to be incremented. This structure is defined in <sys/cpuvar.h>, but it
is part of the kernel implementation and should be considered Private.

The value of arg0 is 1 for most sysinfo probes. However, the readch and writech probes set
arg0 to the number of bytes read or written, respectively. This features permits you to
determine the size of reads by executable name, as shown in the following example:

dtrace -n readch’{@[execname] = quantize(arg0)}’

dtrace: description ’readch’ matched 4 probes

^C

xclock

value ------------- Distribution ------------- count

16 | 0

32 |@@ 1

64 | 0

acroread

value ------------- Distribution ------------- count

16 | 0

32 |@@ 3

64 | 0

FvwmAuto

value ------------- Distribution ------------- count

2 | 0

4 |@@@@@@@@@@@@@ 13

8 |@@@@@@@@@@@@@@@@@@@@@ 21

16 |@@@@@ 5

32 | 0

xterm

value ------------- Distribution ------------- count

16 | 0

32 |@@@@@@@@@@@@@@@@@@@@@@@@ 19

64 |@@@@@@@@@ 7

128 |@@@@@@ 5

256 | 0

fvwm2

value ------------- Distribution ------------- count

-1 | 0

0 |@@@@@@@@@ 186

1 | 0

2 | 0

4 |@@ 51

8 | 17

16 | 0

32 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 503

64 | 9

sysinfo Provider

Chapter 11 • Providers 231

128 | 0

Xsun

value ------------- Distribution ------------- count

-1 | 0

0 |@@@@@@@@@@@ 269

1 | 0

2 | 0

4 | 2

8 |@ 31

16 |@@@@@ 128

32 |@@@@@@@ 171

64 |@ 33

128 |@@@ 85

256 |@ 24

512 | 8

1024 | 21

2048 |@ 26

4096 | 21

8192 |@@@@ 94

16384 | 0

The sysinfo provider sets arg2 to be a pointer to a cpu_t, a structure internal to the kernel
implementation. Most sysinfo probes fire on the CPU on which the statistic is being
incremented, but some probes do not. The exceptional probes include cpu_ticks_idle,
cpu_ticks_kernel, cpu_ticks_user and cpu_ticks_wait, which always fire on the CPU
executing the system clock. Use the cpu_id member of the cpu_t structure to determine the
CPU of interest. The following D script runs for about ten seconds and gives a quick snapshot of
relative CPU behavior on a statistic-by-statistic basis:

cpu_ticks_*

{

@[probename] = lquantize(((cpu_t *)arg2)->cpu_id, 0, 1024, 1);

}

tick-1sec

/x++ >= 10/

{

exit(0);

}

Running the above script results in output similar to the following example:

dtrace -s ./tick.d

dtrace: script ’./tick.d’ matched 5 probes

CPU ID FUNCTION:NAME

22 37588 :tick-1sec

cpu_ticks_user

value ------------- Distribution ------------- count

11 | 0

12 |@@@@@@@@ 14

13 |@@@@ 7

14 |@ 3

15 |@ 2

sysinfo Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02232

16 |@@ 4

17 |@@@@@@ 10

18 | 0

19 |@ 2

20 |@@@ 6

21 |@@@ 5

22 | 1

23 |@@@@@@ 10

24 | 0

cpu_ticks_wait

value ------------- Distribution ------------- count

11 | 0

12 |@@@@@@@@@@@@@ 241

13 |@@@@@@@@@@@@@ 236

14 | 16

15 |@@@@@@@ 132

16 | 11

17 | 10

18 | 7

19 |@ 18

20 | 4

21 | 16

22 | 13

23 | 10

24 | 0

cpu_ticks_kernel

value ------------- Distribution ------------- count

11 | 0

12 |@@@@@@@@ 234

13 |@@@@@ 159

14 |@@@ 104

15 |@@@@ 131

16 |@@ 66

17 |@ 40

18 |@ 51

19 |@ 36

20 |@@ 56

21 |@ 42

22 |@@@ 96

23 |@@ 57

24 | 0

cpu_ticks_idle

value ------------- Distribution ------------- count

11 | 0

12 |@@ 534

13 |@@ 621

14 |@@@ 900

15 |@@ 758

16 |@@@ 942

17 |@@@ 963

18 |@@@ 965

19 |@@@ 967

20 |@@@ 957

21 |@@@ 960

22 |@@@ 913

23 |@@@ 946

24 | 0

sysinfo Provider

Chapter 11 • Providers 233

Example
Examine the following output from mpstat(1M):

CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl

12 90 22 5760 422 299 435 26 71 116 11 1372 5 19 17 60

13 46 18 4585 193 162 431 25 69 117 12 1039 3 17 14 66

14 33 13 3186 405 381 397 21 58 105 10 770 2 17 11 70

15 34 19 4769 109 78 417 23 57 115 13 962 3 14 14 69

16 74 16 4421 437 406 448 29 77 111 8 1020 4 23 14 59

17 51 15 4493 139 110 378 23 62 109 9 928 4 18 14 65

18 41 14 4204 494 468 360 23 56 102 9 849 4 17 12 68

19 37 14 4229 115 87 363 22 50 106 10 845 3 15 14 67

20 78 17 5170 200 169 456 26 69 108 9 1119 5 21 25 49

21 53 16 4817 78 51 394 22 56 106 9 978 4 17 22 57

22 32 13 3474 486 463 347 22 48 106 9 769 3 17 17 63

23 43 15 4572 59 34 361 21 46 102 10 947 4 15 22 59

From the above output, you might conclude that the xcal field seems too high, especially given
the relative idleness of the system. mpstat determines the value in the xcal field by examining
the xcalls field of thesys kernel statistic. This aberration can therefore be explored easily by
enabling the xcalls sysinfo probe, as shown in the following example:

dtrace -n xcalls’{@[execname] = count()}’

dtrace: description ’xcalls’ matched 4 probes

^C

dtterm 1

nsrd 1

in.mpathd 2

top 3

lockd 4

java_vm 10

ksh 19

iCald.pl6+RPATH 28

nwadmin 30

fsflush 34

nsrindexd 45

in.rlogind 56

in.routed 100

dtrace 153

rpc.rstatd 246

imapd 377

sched 431

nfsd 1227

find 3767

The output shows where to look for the source of the cross-calls. Some number of find(1)
processes are causing the majority of the cross-calls. The following D script can be used to
understand the problem in further detail:

syscall:::entry

/execname == "find"/
{

self->syscall = probefunc;

sysinfo Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02234

self->insys = 1;

}

sysinfo:::xcalls

/execname == "find"/
{

@[self->insys ? self->syscall : "<none>"] = count();

}

syscall:::return

/self->insys/

{

self->insys = 0;

self->syscall = NULL;

}

This script uses the syscall provider to attribute cross-calls from find to a particular system
call. Some cross-calls, such as those resulting from page faults, might not emanate from system
calls. The script prints “<none>” in these cases. Running the script results in output similar to
the following example:

dtrace -s ./find.d

dtrace: script ’./find.d’ matched 444 probes

^C

<none> 2

lstat64 2433

getdents64 14873

This output indicates that the majority of cross-calls induced by find are in turn induced by
getdents(2) system calls. Further exploration would depend on the direction you want to
explore. If you want to understand why find processes are making calls to getdents, you could
write a D script to aggregate on ustack when find induces a cross-call. If you want to
understand why calls to getdents are inducing cross-calls, you could write a D script to
aggregate on stack when find induces a cross-call. Whatever your next step, the presence of the
xcalls probe has enabled you to quickly discover the root cause of the unusual monitoring
output.

Stability
The sysinfo provider uses DTrace's stability mechanism to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

sysinfo Provider

Chapter 11 • Providers 235

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2getdents-2

Element Name stability Data stability Dependency class

Name Evolving Evolving ISA

Arguments Private Private ISA

vminfo Provider
The vminfo provider makes available probes that correspond to the vm kernel statistics. Because
these statistics provide the input for system monitoring utilities like vmstat(1M), the vminfo
provider enables quick exploration of observed aberrant behavior.

Probes
The vminfo provider makes available probes that correspond to the fields in the vm named
kernel statistic: a probe provided by vminfo fires immediately before the corresponding vm
value is incremented. To display both the names and the current values of the vm named kernel
statistic, use the kstat(1M) command, as shown in the following example:

$ kstat -n vm

module: cpu instance: 0

name: vm class: misc

anonfree 13

anonpgin 2620

anonpgout 13

as_fault 12528831

cow_fault 2278711

crtime 202.10625712

dfree 1328740

execfree 0

execpgin 5541

...

The vminfo probes are described in Table 11–22.

TABLE 11–22 vminfo Probes

anonfree Probe that fires whenever an unmodified anonymous page is freed as part of
paging activity. Anonymous pages are those that are not associated with a
file. Memory containing such pages includes heap memory, stack memory,
or memory obtained by explicitly mapping zero(7D).

anonpgin Probe that fires whenever an anonymous page is paged in from a swap
device.

anonpgout Probe that fires whenever a modified anonymous page is paged out to a swap
device.

vminfo Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02236

TABLE 11–22 vminfo Probes (Continued)
as_fault Probe that fires whenever a fault is taken on a page and the fault is neither a

protection fault nor a copy-on-write fault.

cow_fault Probe that fires whenever a copy-on-write fault is taken on a page. arg0
contains the number of pages that are created as a result of the
copy-on-write.

dfree Probe that fires whenever a page is freed as a result of paging activity.
Whenever dfree fires, exactly one of anonfree, execfree or fsfree will also
subsequently fire.

execfree Probe that fires whenever an unmodified executable page is freed as a result
of paging activity.

execpgin Probe that fires whenever an executable page is paged in from the backing
store.

execpgout Probe that fires whenever a modified executable page is paged out to the
backing store. Most paging of executable pages occurs in terms of execfree.
execpgout can only fire if an executable page is modified in memory, an
uncommon occurrence in most systems.

fsfree Probe that fires whenever an unmodified file system data page is freed as part
of paging activity.

fspgin Probe that fires whenever a file system page is paged in from the backing
store.

fspgout Probe that fires whenever a modified file system page is paged out to the
backing store.

kernel_asflt Probe that fires whenever a page fault is taken by the kernel on a page in its
own address space. Whenever kernel_asflt fires, it will be immediately
preceded by a firing of the as_fault probe.

maj_fault Probe that fires whenever a page fault is taken that results in I/O from a
backing store or swap device. Whenever maj_fault fires, it will be
immediately preceded by a firing of the pgin probe.

pgfrec Probe that fires whenever a page is reclaimed off of the free page list.

pgin Probe that fires whenever a page is paged in from the backing store or from a
swap device. This probe differs from maj_fault in that maj_fault only fires
when a page is paged in as a result of a page fault. pgin fires every time a page
is paged in, regardless of the reason.

pgout Probe that fires whenever a page is paged out to the backing store or to a swap
device.

vminfo Provider

Chapter 11 • Providers 237

TABLE 11–22 vminfo Probes (Continued)
pgpgin Probe that fires whenever a page is paged in from the backing store or from a

swap device. The only difference between pgpgin and pgin is that pgpgin
contains the number of pages paged in as arg0. pgin always contains 1 in
arg0.

pgpgout Probe that fires whenever a page is paged out to the backing store or to a swap
device. The only difference between pgpgout and pgout is that pgpgout
contains the number of pages paged out as arg0. (pgout always contains 1 in
arg0.)

pgrec Probe that fires whenever a page is reclaimed.

pgrrun Probe that fires whenever the pager is scheduled.

pgswapin Probe that fires whenever pages from a swapped-out process are swapped in.
The number of pages swapped in is contained in arg0.

pgswapout Probe that fires whenever pages are swapped out as part of swapping out a
process. The number of pages swapped out is contained in arg0.

prot_fault Probe that fires whenever a page fault is taken due to a protection violation.

rev Probe that fires whenever the page daemon begins a new revolution through
all pages.

scan Probe that fires whenever the page daemon examines a page.

softlock Probe that fires whenever a page is faulted as a part of placing a software lock
on the page.

swapin Probe that fires whenever a swapped-out process is swapped back in.

swapout Probe that fires whenever a process is swapped out.

zfod Probe that fires whenever a zero-filled page is created on demand.

Arguments

arg0 The value by which the statistic is to be incremented. For most probes, this
argument is always 1, but for some it may take other values; these probes are
noted in Table 24–1.

arg1 A pointer to the current value of the statistic to be incremented. This value is a
64–bit quantity that will be incremented by the value in arg0. Dereferencing
this pointer allows consumers to determine the current count of the statistic
corresponding to the probe.

vminfo Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02238

Example
Examine the following output from vmstat(1M):

kthr memory page disk faults cpu

r b w swap free re mf pi po fr de sr cd s0 - - in sy cs us sy id

0 1 0 1341844 836720 26 311 1644 0 0 0 0 216 0 0 0 797 817 697 9 10 81

0 1 0 1341344 835300 238 934 1576 0 0 0 0 194 0 0 0 750 2795 791 7 14 79

0 1 0 1340764 833668 24 165 1149 0 0 0 0 133 0 0 0 637 813 547 5 4 91

0 1 0 1340420 833024 24 394 1002 0 0 0 0 130 0 0 0 621 2284 653 14 7 79

0 1 0 1340068 831520 14 202 380 0 0 0 0 59 0 0 0 482 5688 1434 25 7 68

The pi column in the above output denotes the number of pages paged in. The vminfo provider
enables you to learn more about the source of these page-ins, as shown in the following
example:

dtrace -n pgin’{@[execname] = count()}’

dtrace: description ’pgin’ matched 1 probe

^C

xterm 1

ksh 1

ls 2

lpstat 7

sh 17

soffice 39

javaldx 103

soffice.bin 3065

The output shows that a process associated with the StarOffice software, soffice.bin, is
responsible for most of the page-ins. To get a better picture of soffice.bin in terms of virtual
memory behavior, you could enable all vminfo probes. The following example runs dtrace(1M)
while launching the StarOffice software:

dtrace -P vminfo’/execname == "soffice.bin"/{@[probename] = count()}’

dtrace: description ’vminfo’ matched 42 probes

^C

kernel_asflt 1

fspgin 10

pgout 16

execfree 16

execpgout 16

fsfree 16

fspgout 16

anonfree 16

anonpgout 16

pgpgout 16

dfree 16

execpgin 80

prot_fault 85

maj_fault 88

pgin 90

pgpgin 90

cow_fault 859

vminfo Provider

Chapter 11 • Providers 239

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mvmstat-1m

zfod 1619

pgfrec 8811

pgrec 8827

as_fault 9495

The following example script provides more information about the virtual memory behavior of
the StarOffice software during its startup:

vminfo:::maj_fault,

vminfo:::zfod,

vminfo:::as_fault

/execname == "soffice.bin" && start == 0/

{

/*

* This is the first time that a vminfo probe has been hit; record

* our initial timestamp.

*/

start = timestamp;

}

vminfo:::maj_fault,

vminfo:::zfod,

vminfo:::as_fault

/execname == "soffice.bin"/
{

/*

* Aggregate on the probename, and lquantize() the number of seconds

* since our initial timestamp. (There are 1,000,000,000 nanoseconds

* in a second.) We assume that the script will be terminated before

* 60 seconds elapses.

*/

@[probename] =

lquantize((timestamp - start) / 1000000000, 0, 60);

}

Run the script while again starting the StarOffice software. Then, create a new drawing, create a
new presentation, and then close all files and quit the application. Press Control-C in the shell
running the D script. The results provide a view of some virtual memory behavior over time:

dtrace -s ./soffice.d

dtrace: script ’./soffice.d’ matched 10 probes

^C

maj_fault

value ------------- Distribution ------------- count

7 | 0

8 |@@@@@@@@@ 88

9 |@@@@@@@@@@@@@@@@@@@@ 194

10 |@ 18

11 | 0

12 | 0

13 | 2

14 | 0

15 | 1

16 |@@@@@@@@ 82

17 | 0

vminfo Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02240

18 | 0

19 | 2

20 | 0

zfod

value ------------- Distribution ------------- count

< 0 | 0

0 |@@@@@@@ 525

1 |@@@@@@@@ 605

2 |@@ 208

3 |@@@ 280

4 | 4

5 | 0

6 | 0

7 | 0

8 | 44

9 |@@ 161

10 | 2

11 | 0

12 | 0

13 | 4

14 | 0

15 | 29

16 |@@@@@@@@@@@@@@ 1048

17 | 24

18 | 0

19 | 0

20 | 1

21 | 0

22 | 3

23 | 0

as_fault

value ------------- Distribution ------------- count

< 0 | 0

0 |@@@@@@@@@@@@@ 4139

1 |@@@@@@@ 2249

2 |@@@@@@@ 2402

3 |@ 594

4 | 56

5 | 0

6 | 0

7 | 0

8 | 189

9 |@@ 929

10 | 39

11 | 0

12 | 0

13 | 6

14 | 0

15 | 297

16 |@@@@ 1349

17 | 24

18 | 0

19 | 21

20 | 1

21 | 0

22 | 92

23 | 0

vminfo Provider

Chapter 11 • Providers 241

The output shows some StarOffice behavior with respect to the virtual memory system. For
example, the maj_fault probe didn't fire until a new instance of the application was started. As
you would hope, a “warm start” of StarOffice did not result in new major faults. The as_fault
output shows an initial burst of activity, latency while the user located the menu to create a new
drawing, another period of idleness, and a final burst of activity when the user clicked on a new
presentation. The zfod output shows that creating the new presentation induced significant
pressure for zero-filled pages, but only for a short period of time.

The next iteration of DTrace investigation in this example would depend on the direction you
want to explore. If you want to understand the source of the demand for zero-filled pages, you
could aggregate on ustack in a zfod enabling. You might want to establish a threshold for
zero-filled pages and use the stop destructive action to stop the offending process when the
threshold is exceeded. This approach would enable you to use more traditional debugging tools
like truss(1) or mdb(1). The vminfo provider enables you to associate statistics seen in the
output of conventional tools like vmstat(1M) with the applications that are inducing the
systemic behavior.

Stability
The vminfo provider uses DTrace's stability mechanism to describe its stabilities, as shown in
the following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private ISA

proc Provider
The proc provider makes available probes pertaining to the following activities: process
creation and termination, LWP creation and termination, executing new program images, and
sending and handling signals.

Probes
The proc probes are described in Table 11–23.

proc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02242

TABLE 11–23 proc Probes

Probe Description

create Probe that fires when a process is created using fork(2), forkall(2), fork1(2), or
vfork(2). The psinfo_t corresponding to the new child process is pointed to by
args[0]. You can distinguish vfork from the other fork variants by checking for
PR_VFORKP in the pr_flag member of the forking thread's lwpsinfo_t. You can
distinguish fork1 from forkall by examining the pr_nlwp members of both the
parent process's psinfo_t (curpsinfo) and the child process's psinfo_t
(args[0]). Because the create probe only fires after the process has been
successfully created, and because LWP creation is part of creating a process,
lwp-create will fire for any LWPs created at process creation time before the
create probe fires for the new process.

exec Probe that fires whenever a process loads a new process image with a variant of
the exec(2) system call: exec(2), execle(2), execlp(2), execv(2), execve(2), execvp(2).
The exec probe fires before the process image is loaded. Process variables like
execname and curpsinfo therefore contain the process state before the image is
loaded. Some time after the exec probe fires, either the exec-failure probe or
the exec-success probe will subsequently fire in the same thread. The path of the
new process image is pointed to by args[0].

exec-failure Probe that fires when an exec(2) variant has failed. The exec-failure probe fires
only after the exec probe has fired in the same thread. The errno(3C) value is
provided in args[0].

exec-success Probe that fires when an exec(2) variant has succeeded. Like the exec-failure
probe, the exec-success probe fires only after the exec probe has fired in the same
thread. By the time the exec-success probe fires, process variables like execname
and curpsinfo contain the process state after the new process image has been
loaded.

exit Probe that fires when the current process is exiting. The reason for exit, which is
expressed as one of the SIGCHLD siginfo.h(3HEAD) codes, is contained in
args[0].

fault Probe that fires when a thread experiences a machine fault. The fault code (as
defined in proc(4)) is in args[0]. The siginfo structure corresponding to the
fault is pointed to by args[1]. Only those faults that induce a signal can trigger
the fault probe.

lwp-create Probe that fires when an LWP is created, typically as a result of thr_create(3C).
The lwpsinfo_t corresponding to the new thread is pointed to by args[0]. The
psinfo_t of the process containing the thread is pointed to by args[1].

lwp-exit Probe that fires when an LWP is exiting, due either to a signal or to an explicit call
to thr_exit(3C).

lwp-start Probe that fires within the context of a newly created LWP. The lwp-start probe
will fire before any user-level instructions are executed. If the LWP is the first
LWP in the process, the start probe will fire, followed by lwp-start.

proc Provider

Chapter 11 • Providers 243

TABLE 11–23 proc Probes (Continued)
Probe Description

signal-clear Probes that fires when a pending signal is cleared because the target thread was
waiting for the signal in sigwait(2), sigwaitinfo(3RT), or sigtimedwait(3RT).
Under these conditions, the pending signal is cleared and the signal number is
returned to the caller. The signal number is in args[0]. signal-clear fires in the
context of the formerly waiting thread.

signal-discard Probe that fires when a signal is sent to a single-threaded process, and the signal is
both unblocked and ignored by the process. Under these conditions, the signal is
discarded on generation. The lwpsinfo_t and psinfo_t of the target process and
thread are in args[0] and args[1], respectively. The signal number is in
args[2].

signal-handle Probe that fires immediately before a thread handles a signal. The signal-handle
probe fires in the context of the thread that will handle the signal. The signal
number is in args[0]. A pointer to the siginfo_t structure that corresponds to
the signal is in args[1]. The address of the signal handler in the process is in
args[2].

signal-send Probe that fires when a signal is sent to a thread or process. The signal-send
probe fires in the context of the sending process and thread. The lwpsinfo_t and
psinfo_t of the receiving process and thread are in args[0] and args[1],
respectively. The signal number is in args[2]. signal-send is always followed by
signal-handle or signal-clear in the receiving process and thread.

start Probe that fires in the context of a newly created process. The start probe will
fire before any user-level instructions are executed in the process.

Arguments
The argument types for the proc probes are listed in Table 11–24. The arguments are described
in Table 11–23.

TABLE 11–24 proc Probe Arguments

Probe args[0] args[1] args[2]

create psinfo_t * — —

exec char * — —

exec-failure int — —

exec-success — — —

exit int — —

fault int siginfo_t * —

proc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02244

TABLE 11–24 proc Probe Arguments (Continued)
Probe args[0] args[1] args[2]

lwp-create lwpsinfo_t * psinfo_t * —

lwp-exit — — —

lwp-start — — —

signal-clear int — —

signal-discard lwpsinfo_t * psinfo_t * int

signal-handle int siginfo_t * void (*)(void)

signal-send lwpsinfo_t * psinfo_t * int

start — — —

lwpsinfo_t
Several proc probes have arguments of type lwpsinfo_t, a structure that is documented in
proc(4). The definition of the lwpsinfo_t structure as available to DTrace consumers is as
follows:

typedef struct lwpsinfo {

int pr_flag; /* flags; see below */

id_t pr_lwpid; /* LWP id */

uintptr_t pr_addr; /* internal address of thread */

uintptr_t pr_wchan; /* wait addr for sleeping thread */

char pr_stype; /* synchronization event type */

char pr_state; /* numeric thread state */

char pr_sname; /* printable character for pr_state */

char pr_nice; /* nice for cpu usage */

short pr_syscall; /* system call number (if in syscall) */

int pr_pri; /* priority, high value = high priority */

char pr_clname[PRCLSZ]; /* scheduling class name */

processorid_t pr_onpro; /* processor which last ran this thread */

processorid_t pr_bindpro; /* processor to which thread is bound */

psetid_t pr_bindpset; /* processor set to which thread is bound */

} lwpsinfo_t;

The pr_flag field is a bit-mask holding flags describing the process. These flags and their
meanings are described in Table 11–25.

TABLE 11–25 pr_flag Values

PR_ISSYS The process is a system process.

PR_VFORKP The process is the parent of a vfork(2)'d child.

PR_FORK The process has its inherit-on-fork mode set.

proc Provider

Chapter 11 • Providers 245

TABLE 11–25 pr_flag Values (Continued)
PR_RLC The process has its run-on-last-close mode set.

PR_KLC The process has its kill-on-last-close mode set.

PR_ASYNC The process has its asynchronous-stop mode set.

PR_MSACCT The process has microstate accounting enabled.

PR_MSFORK The process microstate accounting is inherited on fork.

PR_BPTADJ The process has its breakpoint adjustment mode set.

PR_PTRACE The process has its ptrace(3C) -compatibility mode set.

PR_STOPPED The thread is an LWP that is stopped.

PR_ISTOP The thread is an LWP stopped on an event of interest.

PR_DSTOP The thread is an LWP that has a stop directive in effect.

PR_STEP The thread is an LWP that has a single-step directive in effect.

PR_ASLEEP The thread is an LWP in an interruptible sleep within a system call.

PR_DETACH The thread is a detached LWP. See pthread_create(3C) and
pthread_join(3C).

PR_DAEMON The thread is a daemon LWP. See pthread_create(3C).

PR_AGENT The thread is the agent LWP for the process.

PR_IDLE The thread is the idle thread for a CPU. Idle threads only run on a CPU
when the run queues for the CPU are empty.

The pr_addr field is the address of a private, in-kernel data structure representing the thread.
While the data structure is private, the pr_addr field may be used as a token unique to a thread
for the thread's lifetime.

The pr_wchan field is set when the thread is sleeping on a synchronization object. The meaning
of the pr_wchan field is private to the kernel implementation, but the field may be used as a
token unique to the synchronization object.

The pr_stype field is set when the thread is sleeping on a synchronization object. The possible
values for the pr_stype field are in Table 11–26.

TABLE 11–26 pr_stype Values

SOBJ_MUTEX Kernel mutex synchronization object. Used to serialize access to shared
data regions in the kernel. See“lockstat Provider” on page 171 and
mutex_init(9F) for details on kernel mutex synchronization objects.

proc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02246

TABLE 11–26 pr_stype Values (Continued)
SOBJ_RWLOCK Kernel readers/writer synchronization object. Used to synchronize

access to shared objects in the kernel that can allow multiple concurrent
readers or a single writer. See “lockstat Provider” on page 171 and
rwlock(9F) for details on kernel readers/writer synchronization objects.

SOBJ_CV Condition variable synchronization object. A condition variable is
designed to wait indefinitely until some condition becomes true.
Condition variables are typically used to synchronize for reasons other
than access to a shared data region, and are the mechanism generally
used when a process performs a program-directed indefinite wait. For
example, blocking in poll(2), pause(2), wait(3C), and the like.

SOBJ_SEMA Semaphore synchronization object. A general-purpose
synchronization object that — like condition variable objects — does
not track a notion of ownership. Because ownership is required to
implement priority inheritance in the Oracle Solaris kernel, the lack of
ownership inherent in semaphore objects inhibits their widespread use.
See semaphore(9F) for details.

SOBJ_USER A user-level synchronization object. All blocking on user-level
synchronization objects is handled with SOBJ_USER synchronization
objects. User-level synchronization objects include those created with
mutex_init(3C), sema_init(3C), rwlock_init(3C), cond_init(3C) and
their POSIX equivalents.

SOBJ_USER_PI A user-level synchronization object that implements priority
inheritance. Some user-level synchronization objects that track
ownership additionally allow for priority inheritance. For example,
mutex objects created with pthread_mutex_init(3C) may be made to
inherit priority using pthread_mutexattr_setprotocol(3C).

SOBJ_SHUTTLE A shuttle synchronization object. Shuttle objects are used to implement
doors. See door_create(3DOOR) for more information.

The pr_state field is set to one of the values in Table 11–27. The pr_sname field is set to a
corresponding character shown in parentheses in the same table.

TABLE 11–27 pr_state Values

SSLEEP (S) The thread is sleeping. The sched:::sleep probe will fire
immediately before a thread's state is transitioned to SSLEEP.

SRUN (R) The thread is runnable, but is not currently running. The
sched:::enqueue probe will fire immediately before a thread's
state is transitioned to SRUN.

SZOMB (Z) The thread is a zombie LWP.

proc Provider

Chapter 11 • Providers 247

TABLE 11–27 pr_state Values (Continued)
SSTOP (T) The thread is stopped, either due to an explicit proc(4) directive or

some other stopping mechanism.

SIDL (I) The thread is an intermediate state during process creation.

SONPROC (O) The thread is running on a CPU. The sched:::on-cpu probe will
fire in the context of the SONPROC thread a short time after the
thread's state is transitioned to SONPROC.

SWAIT (W) The thread is waiting on wait queue. The
sched:::cpucaps-sleep probe will fire immediately before a
thread state is transitioned to SWAIT.

psinfo_t
Several proc probes have an argument of type psinfo_t, a structure that is documented in
proc(4). The definition of the psinfo_t structure as available to DTrace consumers is as
follows:

typedef struct psinfo {

int pr_nlwp; /* number of active lwps in the process */

pid_t pr_pid; /* unique process id */

pid_t pr_ppid; /* process id of parent */

pid_t pr_pgid; /* pid of process group leader */

pid_t pr_sid; /* session id */

uid_t pr_uid; /* real user id */

uid_t pr_euid; /* effective user id */

gid_t pr_gid; /* real group id */

gid_t pr_egid; /* effective group id */

uintptr_t pr_addr; /* address of process */

dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */

timestruc_t pr_start; /* process start time, from the epoch */

char pr_fname[PRFNSZ]; /* name of execed file */

char pr_psargs[PRARGSZ]; /* initial characters of arg list */

int pr_argc; /* initial argument count */

uintptr_t pr_argv; /* address of initial argument vector */

uintptr_t pr_envp; /* address of initial environment vector */

char pr_dmodel; /* data model of the process */

taskid_t pr_taskid; /* task id */

projid_t pr_projid; /* project id */

poolid_t pr_poolid; /* pool id */

zoneid_t pr_zoneid; /* zone id */

} psinfo_t;

The pr_dmodel field is set to either PR_MODEL_ILP32, denoting a 32–bit process, or
PR_MODEL_LP64, denoting a 64–bit process.

proc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02248

Examples

exec
You can use the exec probe to easily determine which programs are being executed, and by
whom, as shown in the following example:

#pragma D option quiet

proc:::exec

{

self->parent = execname;

}

proc:::exec-success

/self->parent != NULL/

{

@[self->parent, execname] = count();

self->parent = NULL;

}

proc:::exec-failure

/self->parent != NULL/

{

self->parent = NULL;

}

END

{

printf("%-20s %-20s %s\n", "WHO", "WHAT", "COUNT");
printa("%-20s %-20s %@d\n", @);

}

Running the example script for a short period of time on a build machine results in output
similar to the following example:

dtrace -s ./whoexec.d

^C

WHO WHAT COUNT

make.bin yacc 1

tcsh make 1

make.bin spec2map 1

sh grep 1

lint lint2 1

sh lint 1

sh ln 1

cc ld 1

make.bin cc 1

lint lint1 1

sh lex 1

make.bin mv 2

sh sh 3

sh make 3

sh sed 4

sh tr 4

proc Provider

Chapter 11 • Providers 249

make make.bin 4

sh install.bin 5

sh rm 6

cc ir2hf 33

cc ube 33

sh date 34

sh mcs 34

cc acomp 34

sh cc 34

sh basename 34

basename expr 34

make.bin sh 87

start and exit
If you want to know how long programs are running from creation to termination, you can
enable the start and exit probes, as shown in the following example:

proc:::start

{

self->start = timestamp;

}

proc:::exit

/self->start/

{

@[execname] = quantize(timestamp - self->start);

self->start = 0;

}

Running the example script on the build server for several seconds results in output similar to
the following example:

dtrace -s ./progtime.d

dtrace: script ’./progtime.d’ matched 2 probes

^C

ir2hf

value ------------- Distribution ------------- count

4194304 | 0

8388608 |@ 1

16777216 |@@@@@@@@@@@@@@@@ 14

33554432 |@@@@@@@@@@ 9

67108864 |@@@ 3

134217728 |@ 1

268435456 |@@@@ 4

536870912 |@ 1

1073741824 | 0

ube

value ------------- Distribution ------------- count

16777216 | 0

33554432 |@@@@@@@ 6

67108864 |@@@ 3

134217728 |@@ 2

268435456 |@@@@ 4

proc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02250

536870912 |@@@@@@@@@@@@ 10

1073741824 |@@@@@@@ 6

2147483648 |@@ 2

4294967296 | 0

acomp

value ------------- Distribution ------------- count

8388608 | 0

16777216 |@@ 2

33554432 | 0

67108864 |@ 1

134217728 |@@@ 3

268435456 | 0

536870912 |@@@@@ 5

1073741824 |@@@@@@@@@@@@@@@@@@@@@@@@@ 22

2147483648 |@ 1

4294967296 | 0

cc

value ------------- Distribution ------------- count

33554432 | 0

67108864 |@@@ 3

134217728 |@ 1

268435456 | 0

536870912 |@@@@ 4

1073741824 |@@@@@@@@@@@@@@ 13

2147483648 |@@@@@@@@@@@@ 11

4294967296 |@@@ 3

8589934592 | 0

sh

value ------------- Distribution ------------- count

262144 | 0

524288 |@ 5

1048576 |@@@@@@@ 29

2097152 | 0

4194304 | 0

8388608 |@@@ 12

16777216 |@@ 9

33554432 |@@ 9

67108864 |@@ 8

134217728 |@ 7

268435456 |@@@@@ 20

536870912 |@@@@@@ 26

1073741824 |@@@ 14

2147483648 |@@ 11

4294967296 | 3

8589934592 | 1

17179869184 | 0

make.bin

value ------------- Distribution ------------- count

16777216 | 0

33554432 |@ 1

67108864 |@ 1

134217728 |@@ 2

268435456 | 0

536870912 |@@ 2

1073741824 |@@@@@@@@@ 9

proc Provider

Chapter 11 • Providers 251

2147483648 |@@@@@@@@@@@@@@@ 14

4294967296 |@@@@@@ 6

8589934592 |@@ 2

17179869184 | 0

lwp-start and lwp-exit
Instead of knowing the amount of time that a particular process takes to run, you might want to
know how long individual threads take to run. The following example shows how to use the
lwp-start and lwp-exit probes for this purpose:

proc:::lwp-start

/tid != 1/

{

self->start = timestamp;

}

proc:::lwp-exit

/self->start/

{

@[execname] = quantize(timestamp - self->start);

self->start = 0;

}

Running the example script on an NFS and calendar server results in output similar to the
following example:

dtrace -s ./lwptime.d

dtrace: script ’./lwptime.d’ matched 3 probes

^C

nscd

value ------------- Distribution ------------- count

131072 | 0

262144 |@ 18

524288 |@@ 24

1048576 |@@@@@@@ 75

2097152 |@@@@@@@@@@@@@@@@@@@@@@@ 245

4194304 |@@ 22

8388608 |@@ 24

16777216 | 6

33554432 | 3

67108864 | 1

134217728 | 1

268435456 | 0

mountd

value ------------- Distribution ------------- count

524288 | 0

1048576 |@ 15

2097152 |@ 24

4194304 |@@@ 51

8388608 |@ 17

16777216 |@ 24

33554432 |@ 15

67108864 |@@@@ 57

proc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02252

134217728 |@ 28

268435456 |@ 26

536870912 |@@ 39

1073741824 |@@@ 45

2147483648 |@@@@@ 72

4294967296 |@@@@@ 77

8589934592 |@@@ 55

17179869184 | 14

34359738368 | 2

68719476736 | 0

automountd

value ------------- Distribution ------------- count

1048576 | 0

2097152 | 3

4194304 |@@@@ 146

8388608 | 6

16777216 | 6

33554432 | 9

67108864 |@@@@@ 203

134217728 |@@ 87

268435456 |@@@@@@@@@@@@@@@ 534

536870912 |@@@@@@ 223

1073741824 |@ 45

2147483648 | 20

4294967296 | 26

8589934592 | 20

17179869184 | 19

34359738368 | 7

68719476736 | 2

137438953472 | 0

iCald

value ------------- Distribution ------------- count

8388608 | 0

16777216 |@@@@@@@ 20

33554432 |@@@ 9

67108864 |@@ 8

134217728 |@@@@@ 16

268435456 |@@@@ 11

536870912 |@@@@ 11

1073741824 |@ 4

2147483648 | 2

4294967296 | 0

8589934592 |@@ 8

17179869184 |@ 5

34359738368 |@ 4

68719476736 |@@ 6

137438953472 |@ 4

274877906944 | 2

549755813888 | 0

signal-send
You can use the signal-send probe to determine the sending and receiving process associated
with any signal, as shown in the following example:

proc Provider

Chapter 11 • Providers 253

#pragma D option quiet

proc:::signal-send

{

@[execname, stringof(args[1]->pr_fname), args[2]] = count();

}

END

{

printf("%20s %20s %12s %s\n",
"SENDER", "RECIPIENT", "SIG", "COUNT");

printa("%20s %20s %12d %@d\n", @);

}

Running this script results in output similar to the following example:

dtrace -s ./sig.d

^C

SENDER RECIPIENT SIG COUNT

xterm dtrace 2 1

xterm soffice.bin 2 1

tr init 18 1

sched test 18 1

sched fvwm2 18 1

bash bash 20 1

sed init 18 2

sched ksh 18 15

sched Xsun 22 471

Stability
The proc provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

proc Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02254

sched Provider
The sched provider makes available probes related to CPU scheduling. Because CPUs are the
one resource that all threads must consume, the sched provider is very useful for understanding
systemic behavior. For example, using the sched provider, you can understand when and why
threads sleep, run, change priority, or wake other threads.

Probes
The sched probes are described in Table 11–28.

TABLE 11–28 sched Probes

Probe Description

change-pri Probe that fires whenever a thread's priority is about to be changed. The
lwpsinfo_t of the thread is pointed to by args[0]. The thread's current
priority is in the pr_pri field of this structure. The psinfo_t of the
process containing the thread is pointed to by args[1]. The thread's new
priority is contained in args[2].

cpucaps-sleep Probe that fires immediately before the current thread is placed on a wait
queue. The lwpsinfo_t of the waiting thread is pointed to by args[0].
The psinfo_t of the process containing the waiting thread is pointed to
by args[1].

cpucaps-wakeup Probe that fires immediately after a thread is removed from a wait queue.
The lwpsinfo_t of the waiting thread is pointed to by args[0]. The
psinfo_t of the process containing the waiting thread is pointed to by
args[1].

dequeue Probe that fires immediately before a runnable thread is dequeued from a
run queue. The lwpsinfo_t of the thread being dequeued is pointed to by
args[0]. The psinfo_t of the process containing the thread is pointed to
by args[1]. The cpuinfo_t of the CPU from which the thread is being
dequeued is pointed to by args[2]. If the thread is being dequeued from a
run queue that is not associated with a particular CPU, the cpu_id
member of this structure will be -1.

sched Provider

Chapter 11 • Providers 255

TABLE 11–28 sched Probes (Continued)
Probe Description

enqueue Probe that fires immediately before a runnable thread is enqueued to a
run queue. The lwpsinfo_t of the thread being enqueued is pointed to by
args[0]. The psinfo_t of the process containing the thread is pointed to
by args[1]. The cpuinfo_t of the CPU to which the thread is being
enqueued is pointed to by args[2]. If the thread is being enqueued from a
run queue that is not associated with a particular CPU, the cpu_id
member of this structure will be -1. The value in args[3] is a boolean
indicating whether the thread will be enqueued to the front of the run
queue. The value is non-zero if the thread will be enqueued at the front of
the run queue, and zero if the thread will be enqueued at the back of the
run queue.

off-cpu Probe that fires when the current CPU is about to end execution of a
thread. The curcpu variable indicates the current CPU. The curlwpsinfo
variable indicates the thread that is ending execution. The curpsinfo
variable describes the process containing the current thread. The
lwpsinfo_t structure of the thread that the current CPU will next execute
is pointed to by args[0]. The psinfo_t of the process containing the next
thread is pointed to by args[1].

on-cpu Probe that fires when a CPU has just begun execution of a thread. The
curcpu variable indicates the current CPU. The curlwpsinfo variable
indicates the thread that is beginning execution. The curpsinfo variable
describes the process containing the current thread.

preempt Probe that fires immediately before the current thread is preempted. After
this probe fires, the current thread will select a thread to run and the
off-cpu probe will fire for the current thread. In some cases, a thread on
one CPU will be preempted, but the preempting thread will run on
another CPU in the meantime. In this situation, the preempt probe will
fire, but the dispatcher will be unable to find a higher priority thread to
run and the remain-cpu probe will fire instead of the off-cpu probe.

remain-cpu Probe that fires when a scheduling decision has been made, but the
dispatcher has elected to continue to run the current thread. The curcpu
variable indicates the current CPU. The curlwpsinfo variable indicates
the thread that is beginning execution. The curpsinfo variable describes
the process containing the current thread.

schedctl-nopreempt Probe that fires when a thread is preempted and then re-enqueued at the
front of the run queue due to a preemption control request. See
schedctl_init(3C) for details on preemption control. As with preempt,
either off-cpu or remain-cpu will fire after schedctl-nopreempt.
Because schedctl-nopreempt denotes a re-enqueuing of the current
thread at the front of the run queue, remain-cpu is more likely to fire after
schedctl-nopreempt than off-cpu. The lwpsinfo_t of the thread being
preempted is pointed to by args[0]. The psinfo_t of the process
containing the thread is pointed to by args[1].

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02256

TABLE 11–28 sched Probes (Continued)
Probe Description

schedctl-preempt Probe that fires when a thread that is using preemption control is
nonetheless preempted and re-enqueued at the back of the run queue. See
schedctl_init(3C) for details on preemption control. As with preempt,
either off-cpu or remain-cpu will fire after schedctl-preempt. Like
preempt (and unlike schedctl-nopreempt), schedctl-preempt denotes
a re-enqueuing of the current thread at the back of the run queue. As a
result, off-cpu is more likely to fire after schedctl-preempt than
remain-cpu. The lwpsinfo_t of the thread being preempted is pointed to
by args[0]. The psinfo_t of the process containing the thread is pointed
to by args[1].

schedctl-yield Probe that fires when a thread that had preemption control enabled and
its time slice artificially extended executed code to yield the CPU to other
threads.

sleep Probe that fires immediately before the current thread sleeps on a
synchronization object. The type of the synchronization object is
contained in the pr_stype member of the lwpsinfo_t pointed to by
curlwpsinfo. The address of the synchronization object is contained in
the pr_wchan member of the lwpsinfo_t pointed to by curlwpsinfo.
The meaning of this address is a private implementation detail, but the
address value may be treated as a token unique to the synchronization
object.

surrender Probe that fires when a CPU has been instructed by another CPU to make
a scheduling decision — often because a higher-priority thread has
become runnable.

tick Probe that fires as a part of clock tick-based accounting. In clock
tick-based accounting, CPU accounting is performed by examining
which threads and processes are running when a fixed-interval interrupt
fires. The lwpsinfo_t that corresponds to the thread that is being
assigned CPU time is pointed to by args[0]. The psinfo_t that
corresponds to the process that contains the thread is pointed to by
args[1].

wakeup Probe that fires immediately before the current thread wakes a thread
sleeping on a synchronization object. The lwpsinfo_t of the sleeping
thread is pointed to by args[0]. The psinfo_t of the process containing
the sleeping thread is pointed to by args[1]. The type of the
synchronization object is contained in the pr_stype member of the
lwpsinfo_t of the sleeping thread. The address of the synchronization
object is contained in the pr_wchan member of the lwpsinfo_t of the
sleeping thread. The meaning of this address is a private implementation
detail, but the address value may be treated as a token unique to the
synchronization object.

sched Provider

Chapter 11 • Providers 257

Arguments
The argument types for the sched probes are listed in Table 11–29; the arguments are described
in Table 11–28.

TABLE 11–29 sched Probe Arguments

Probe args[0] args[1] args[2] args[3]

change-pri lwpsinfo_t * psinfo_t * pri_t —

cpucaps-sleep lwpsinfo_t * psinfo_t * — —

cpucaps-wakeup- lwpsinfo_t * psinfo_t * — —

dequeue lwpsinfo_t * psinfo_t * cpuinfo_t * —

enqueue lwpsinfo_t * psinfo_t * cpuinfo_t * int

off-cpu lwpsinfo_t * psinfo_t * — —

on-cpu — — — —

preempt — — — —

remain-cpu — — — —

schedctl-nopreempt lwpsinfo_t * psinfo_t * — —

schedctl-preempt lwpsinfo_t * psinfo_t * — —

schedctl-yield lwpsinfo_t * psinfo_t * — —

sleep — — — —

surrender lwpsinfo_t * psinfo_t * — —

tick lwpsinfo_t * psinfo_t * — —

wakeup lwpsinfo_t * psinfo_t * — —

As Table 11–29 indicates, many sched probes have arguments consisting of a pointer to an
lwpsinfo_t and a pointer to a psinfo_t, indicating a thread and the process containing the
thread, respectively. These structures are described in detail in lwpsinfo_t and psinfo_t,
respectively.

cpuinfo_t
The cpuinfo_t structure defines a CPU. As Table 11–29 indicates, arguments to both the
enqueue and dequeue probes include a pointer to a cpuinfo_t. Additionally, the cpuinfo_t
corresponding to the current CPU is pointed to by the curcpu variable. The definition of the
cpuinfo_t structure is as follows:

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02258

typedef struct cpuinfo {

processorid_t cpu_id; /* CPU identifier */

psetid_t cpu_pset; /* processor set identifier */

chipid_t cpu_chip; /* chip identifier */

lgrp_id_t cpu_lgrp; /* locality group identifer */

processor_info_t cpu_info; /* CPU information */

} cpuinfo_t;

The cpu_id member is the processor identifier, as returned by psrinfo(1M) and p_online(2).

The cpu_pset member is the processor set that contains the CPU, if any. See psrset(1M) for
more details on processor sets.

The cpu_chip member is the identifier of the physical chip. Physical chips may contain several
CPUs. See psrinfo(1M) for more information.

The cpu_lgrp member is the identifier of the latency group associated with the CPU. See
liblgrp(3LIB) for details on latency groups.

The cpu_info member is the processor_info_t structure associated with the CPU, as
returned by processor_info(2).

Examples

on-cpu and off-cpu
One common question you might want answered is which CPUs are running threads and for
how long. You can use the on-cpu and off-cpu probes to easily answer this question on a
system-wide basis as shown in the following example:

sched:::on-cpu

{

self->ts = timestamp;

}

sched:::off-cpu

/self->ts/

{

@[cpu] = quantize(timestamp - self->ts);

self->ts = 0;

}

Running the above script results in output similar to the following example:

dtrace -s ./where.d

dtrace: script ’./where.d’ matched 5 probes

^C

0

value ------------- Distribution ------------- count

sched Provider

Chapter 11 • Providers 259

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mpsrinfo-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2p-online-2
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1Mpsrset-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN2processor-info-2

2048 | 0

4096 |@@ 37

8192 |@@@@@@@@@@@@@ 212

16384 |@ 30

32768 | 10

65536 |@ 17

131072 | 12

262144 | 9

524288 | 6

1048576 | 5

2097152 | 1

4194304 | 3

8388608 |@@@@ 75

16777216 |@@@@@@@@@@@@ 201

33554432 | 6

67108864 | 0

1

value ------------- Distribution ------------- count

2048 | 0

4096 |@ 6

8192 |@@@@ 23

16384 |@@@ 18

32768 |@@@@ 22

65536 |@@@@ 22

131072 |@ 7

262144 | 5

524288 | 2

1048576 | 3

2097152 |@ 9

4194304 | 4

8388608 |@@@ 18

16777216 |@@@ 19

33554432 |@@@ 16

67108864 |@@@@ 21

134217728 |@@ 14

268435456 | 0

The above output shows that on CPU 1 threads tend to run for less than 100 microseconds at a
stretch, or for approximately 10 milliseconds. A noticable gap between the two clusters of data
shown in the histogram. You also might be interested in knowing which CPUs are running a
particular process. You can use the on-cpu and off-cpu probes for answering this question as
well. The following script displays which CPUs run a specified application over a period of ten
seconds:

#pragma D option quiet

dtrace:::BEGIN

{

start = timestamp;

}

sched:::on-cpu

/execname == $$1/

{

self->ts = timestamp;

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02260

}

sched:::off-cpu

/self->ts/

{

@[cpu] = sum(timestamp - self->ts);

self->ts = 0;

}

profile:::tick-1sec

/++x == 10/

{

exit(0);

}

dtrace:::END

{

printf("CPU distribution over %d seconds:\n\n",
(timestamp - start) / 1000000000);

printf("CPU microseconds\n--- ------------\n");
normalize(@, 1000);

printa("%3d %@d\n", @);

}

Running the above script on a large mail server and specifying the IMAP daemon results in
output similar to the following example:

dtrace -s ./whererun.d imapd

CPU distribution of imapd over 10 seconds:

CPU microseconds

--- ------------

15 10102

12 16377

21 25317

19 25504

17 35653

13 41539

14 46669

20 57753

22 70088

16 115860

23 127775

18 160517

Oracle Solaris takes into account the amount of time that a thread has been sleeping when
selecting a CPU on which to run the thread: a thread that has been sleeping for less time tends
not to migrate. You can use the off-cpu and on-cpu probes to observe this behavior:

sched:::off-cpu

/curlwpsinfo->pr_state == SSLEEP/

{

self->cpu = cpu;

self->ts = timestamp;

}

sched Provider

Chapter 11 • Providers 261

sched:::on-cpu

/self->ts/

{

@[self->cpu == cpu ?

"sleep time, no CPU migration" : "sleep time, CPU migration"] =

lquantize((timestamp - self->ts) / 1000000, 0, 500, 25);

self->ts = 0;

self->cpu = 0;

}

Running the above script for approximately 30 seconds results in output similar to the
following example:

dtrace -s ./howlong.d

dtrace: script ’./howlong.d’ matched 5 probes

^C

sleep time, CPU migration

value -------------- Distribution ------------ count

< 0 | 0

0 |@@@@@@@ 6838

25 |@@@@@ 4714

50 |@@@ 3108

75 |@ 1304

100 |@ 1557

125 |@ 1425

150 | 894

175 |@ 1526

200 |@@ 2010

225 |@@ 1933

250 |@@ 1982

275 |@@ 2051

300 |@@ 2021

325 |@ 1708

350 |@ 1113

375 | 502

400 | 220

425 | 106

450 | 54

475 | 40

>= 500 |@ 1716

sleep time, no CPU migration

value -------------- Distribution ------------ count

< 0 | 0

0 |@@@@@@@@@@@@ 58413

25 |@@@ 14793

50 |@@ 10050

75 | 3858

100 |@ 6242

125 |@ 6555

150 | 3980

175 |@ 5987

200 |@ 9024

225 |@ 9070

250 |@@ 10745

275 |@@ 11898

300 |@@ 11704

325 |@@ 10846

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02262

350 |@ 6962

375 | 3292

400 | 1713

425 | 585

450 | 201

475 | 96

>= 500 | 3946

The example output shows that there are many more occurrences of non-migration than
migration. Also, when sleep times are longer, migrations are more likely. The distributions are
noticeably different in the sub 100 millisecond range, but look very similar as the sleep times get
longer. This result would seem to indicate that sleep time is not factored into the scheduling
decision once a certain threshold is exceeded.

The final example using off-cpu and on-cpu shows how to use these probes along with the
pr_stype field to determine why threads sleep and for how long:

sched:::off-cpu

/curlwpsinfo->pr_state == SSLEEP/

{

/*

* We’re sleeping. Track our sobj type.

*/

self->sobj = curlwpsinfo->pr_stype;

self->bedtime = timestamp;

}

sched:::off-cpu

/curlwpsinfo->pr_state == SRUN/

{

self->bedtime = timestamp;

}

sched:::on-cpu

/self->bedtime && !self->sobj/

{

@["preempted"] = quantize(timestamp - self->bedtime);

self->bedtime = 0;

}

sched:::on-cpu

/self->sobj/

{

@[self->sobj == SOBJ_MUTEX ? "kernel-level lock" :

self->sobj == SOBJ_RWLOCK ? "rwlock" :

self->sobj == SOBJ_CV ? "condition variable" :

self->sobj == SOBJ_SEMA ? "semaphore" :

self->sobj == SOBJ_USER ? "user-level lock" :

self->sobj == SOBJ_USER_PI ? "user-level prio-inheriting lock" :

self->sobj == SOBJ_SHUTTLE ? "shuttle" : "unknown"] =

quantize(timestamp - self->bedtime);

self->sobj = 0;

self->bedtime = 0;

}

Running the above script for several seconds results in output similar to the following example:

sched Provider

Chapter 11 • Providers 263

dtrace -s ./whatfor.d

dtrace: script ’./whatfor.d’ matched 12 probes

^C

kernel-level lock

value -------------- Distribution ------------ count

16384 | 0

32768 |@@@@@@@@ 3

65536 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 11

131072 |@@ 1

262144 | 0

preempted

value -------------- Distribution ------------ count

16384 | 0

32768 | 4

65536 |@@@@@@@@ 408

131072 |@@@@@@@@@@@@@@@@@@@@@@ 1031

262144 |@@@ 156

524288 |@@ 116

1048576 |@ 51

2097152 | 42

4194304 | 16

8388608 | 15

16777216 | 4

33554432 | 8

67108864 | 0

semaphore

value -------------- Distribution ------------ count

32768 | 0

65536 |@@ 61

131072 |@@@@@@@@@@@@@@@@@@@@@@@@ 553

262144 |@@ 63

524288 |@ 36

1048576 | 7

2097152 | 22

4194304 |@ 44

8388608 |@@@ 84

16777216 |@ 36

33554432 | 3

67108864 | 6

134217728 | 0

268435456 | 0

536870912 | 0

1073741824 | 0

2147483648 | 0

4294967296 | 0

8589934592 | 0

17179869184 | 1

34359738368 | 0

shuttle

value -------------- Distribution ------------ count

32768 | 0

65536 |@@@@@ 2

131072 |@@@@@@@@@@@@@@@@ 6

262144 |@@@@@ 2

524288 | 0

1048576 | 0

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02264

2097152 | 0

4194304 |@@@@@ 2

8388608 | 0

16777216 | 0

33554432 | 0

67108864 | 0

134217728 | 0

268435456 | 0

536870912 | 0

1073741824 | 0

2147483648 | 0

4294967296 |@@@@@ 2

8589934592 | 0

17179869184 |@@ 1

34359738368 | 0

condition variable

value -------------- Distribution ------------ count

32768 | 0

65536 | 122

131072 |@@@@@ 1579

262144 |@ 340

524288 | 268

1048576 |@@@ 1028

2097152 |@@@ 1007

4194304 |@@@ 1176

8388608 |@@@@ 1257

16777216 |@@@@@@@@@@@@@@ 4385

33554432 | 295

67108864 | 157

134217728 | 96

268435456 | 48

536870912 | 144

1073741824 | 10

2147483648 | 22

4294967296 | 18

8589934592 | 5

17179869184 | 6

34359738368 | 4

68719476736 | 0

enqueue and dequeue
When a CPU becomes idle, the dispatcher looks for work enqueued on other (non-idle) CPUs.
The following example uses the dequeue probe to understand how often applications are
transferred and by which CPU:

#pragma D option quiet

sched:::dequeue

/args[2]->cpu_id != -1 && cpu != args[2]->cpu_id &&

(curlwpsinfo->pr_flag & PR_IDLE)/

{

@[stringof(args[1]->pr_fname), args[2]->cpu_id] =

lquantize(cpu, 0, 100);

}

sched Provider

Chapter 11 • Providers 265

END

{

printa("%s stolen from CPU %d by:\n%@d\n", @);

}

The tail of the output from running the above script on a 4 CPU system results in output similar
to the following example:

dtrace -s ./whosteal.d

^C

...

nscd stolen from CPU 1 by:

value -------------- Distribution ------------ count

1 | 0

2 |@@ 28

3 | 0

snmpd stolen from CPU 1 by:

value -------------- Distribution ------------ count

< 0 | 0

0 |@ 1

1 | 0

2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 31

3 |@@ 2

4 | 0

sched stolen from CPU 1 by:

value -------------- Distribution ------------ count

< 0 | 0

0 |@@ 3

1 | 0

2 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 36

3 |@@@@ 5

4 | 0

Instead of knowing which CPUs took which work, you might want to know the CPUs on which
processes and threads are waiting to run. You can use the enqueue and dequeue probes together
to answer this question:

sched:::enqueue

{

a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] =

timestamp;

}

sched:::dequeue

/a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]/

{

@[args[2]->cpu_id] = quantize(timestamp -

a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]);

a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] = 0;

}

Running the above script for several seconds results in output similar to the following example:

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02266

dtrace -s ./qtime.d

dtrace: script ’./qtime.d’ matched 5 probes

^C

1

value ------------- Distribution ------------- count

1024 | 0

2048 | 10

4096 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 4316

8192 |@@@@@@@ 1115

16384 |@@@ 549

32768 |@@ 337

65536 |@@ 330

131072 | 13

262144 | 6

524288 | 4

1048576 | 2

2097152 | 1

4194304 | 0

0

value ------------- Distribution ------------- count

1024 | 0

2048 | 22

4096 |@@@@@@@@@@@@@@@@ 2747

8192 |@@@@@@@ 1205

16384 |@@@@@@@@@@@@ 1942

32768 |@@@ 469

65536 |@@ 304

131072 | 28

262144 | 16

524288 | 5

1048576 | 1

2097152 | 2

4194304 | 1

8388608 | 0

#

Instead of looking at wait times, you might want to examine the length of the run queue over
time. Using the enqueue and dequeue probes, you can set up an associative array to track the
queue length:

sched:::enqueue

{

this->len = qlen[args[2]->cpu_id]++;

@[args[2]->cpu_id] = lquantize(this->len, 0, 100);

}

sched:::dequeue

/qlen[args[2]->cpu_id]/

{

qlen[args[2]->cpu_id]--;

}

Running the above script for approximately 30 seconds on a largely idle uniprocessor laptop
system results in output similar to the following example:

sched Provider

Chapter 11 • Providers 267

dtrace -s ./qlen.d

dtrace: script ’./qlen.d’ matched 5 probes

^C

0

value -------------- Distribution ------------ count

< 0 | 0

0 |@@@@@@@@@@@@@@@@@@@@@@@@@ 110626

1 |@@@@@@@@@ 41142

2 |@@ 12655

3 |@ 5074

4 | 1722

5 | 701

6 | 302

7 | 63

8 | 23

9 | 12

10 | 24

11 | 58

12 | 14

13 | 3

14 | 0

The output is roughly what you would expect for an idle system: the majority of the time that a
runnable thread is enqueued, the run queue was very short (three or fewer threads in length).
However, given that the system was largely idle, the exceptional data points at the bottom of the
table might be unexpected. For example, why was the run queue as long as 13 runnable threads?
To explore this question, you could write a D script that displays the contents of the run queue
when the length of the run queue is long. This problem is complicated because D enablings
cannot iterate over data structures, and therefore cannot simply iterate over the entire run
queue. Even if D enablings could do so, you should avoid dependencies on the kernel's internal
data structures.

For this type of script, you would enable the enqueue and dequeue probes and use both
speculations and associative arrays. Whenever a thread is enqueued, the script increments the
length of the queue and records the timestamp in an associative array keyed by the thread. You
cannot use a thread-local variable in this case because a thread might be enqueued by another
thread. The script then checks to see if the queue length exceeds the maximum. If it does, the
script starts a new speculation, and records the timestamp and the new maximum. Then, when
a thread is dequeued, the script compares the enqueue timestamp to the timestamp of the
longest length: if the thread was enqueued before the timestamp of the longest length, the
thread was in the queue when the longest length was recorded. In this case, the script
speculatively traces the thread's information. Once the kernel dequeues the last thread that was
enqueued at the timestamp of the longest length, the script commits the speculation data. This
script is shown below:

#pragma D option quiet

#pragma D option nspec=4

#pragma D option specsize=100k

int maxlen;

int spec[int];

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02268

sched:::enqueue

{

this->len = ++qlen[this->cpu = args[2]->cpu_id];

in[args[0]->pr_addr] = timestamp;

}

sched:::enqueue

/this->len > maxlen && spec[this->cpu]/

{

/*

* There is already a speculation for this CPU. We just set a new

* record, so we’ll discard the old one.

*/

discard(spec[this->cpu]);

}

sched:::enqueue

/this->len > maxlen/

{

/*

* We have a winner. Set the new maximum length and set the timestamp

* of the longest length.

*/

maxlen = this->len;

longtime[this->cpu] = timestamp;

/*

* Now start a new speculation, and speculatively trace the length.

*/

this->spec = spec[this->cpu] = speculation();

speculate(this->spec);

printf("Run queue of length %d:\n", this->len);

}

sched:::dequeue

/(this->in = in[args[0]->pr_addr]) &&

this->in <= longtime[this->cpu = args[2]->cpu_id]/

{

speculate(spec[this->cpu]);

printf(" %d/%d (%s)\n",
args[1]->pr_pid, args[0]->pr_lwpid,

stringof(args[1]->pr_fname));

}

sched:::dequeue

/qlen[args[2]->cpu_id]/

{

in[args[0]->pr_addr] = 0;

this->len = --qlen[args[2]->cpu_id];

}

sched:::dequeue

/this->len == 0 && spec[this->cpu]/

{

/*

* We just processed the last thread that was enqueued at the time

* of longest length; commit the speculation, which by now contains

* each thread that was enqueued when the queue was longest.

*/

sched Provider

Chapter 11 • Providers 269

commit(spec[this->cpu]);

spec[this->cpu] = 0;

}

Running the above script on the same uniprocessor laptop results in output similar to the
following example:

dtrace -s ./whoqueue.d

Run queue of length 3:

0/0 (sched)

0/0 (sched)

101170/1 (dtrace)

Run queue of length 4:

0/0 (sched)

100356/1 (Xsun)

100420/1 (xterm)

101170/1 (dtrace)

Run queue of length 5:

0/0 (sched)

0/0 (sched)

100356/1 (Xsun)

100420/1 (xterm)

101170/1 (dtrace)

Run queue of length 7:

0/0 (sched)

100221/18 (nscd)

100221/17 (nscd)

100221/16 (nscd)

100221/13 (nscd)

100221/14 (nscd)

100221/15 (nscd)

Run queue of length 16:

100821/1 (xterm)

100768/1 (xterm)

100365/1 (fvwm2)

101118/1 (xterm)

100577/1 (xterm)

101170/1 (dtrace)

101020/1 (xterm)

101089/1 (xterm)

100795/1 (xterm)

100741/1 (xterm)

100710/1 (xterm)

101048/1 (xterm)

100697/1 (MozillaFirebird-)

100420/1 (xterm)

100394/1 (xterm)

100368/1 (xterm)

^C

The output reveals that the long run queues are due to many runnable xterm processes. This
experiment coincided with a change in virtual desktop, and therefore the results are probably
due to some sort of X event processing.

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02270

sleep and wakeup
In enqueue and dequeue, the final example demonstrated that a burst in run queue length was
due to runnable xterm processes. One hypothesis is that the observations resulted from a
change in virtual desktop. You can use the wakeup probe to explore this hypothesis by
determining who is waking the xterm processes, and when, as shown in the following example:

#pragma D option quiet

dtrace:::BEGIN

{

start = timestamp;

}

sched:::wakeup

/stringof(args[1]->pr_fname) == "xterm"/
{

@[execname] = lquantize((timestamp - start) / 1000000000, 0, 10);

}

profile:::tick-1sec

/++x == 10/

{

exit(0);

}

To investigate the hypothesis, run the above script, waiting roughly five seconds, and switch
your virtual desktop exactly once. If the burst of runnable xterm processes is due to switching
the virtual desktop, the output should show a burst of wakeup activity at the five second mark.

dtrace -s ./xterm.d

Xsun

value -------------- Distribution ------------ count

4 | 0

5 |@ 1

6 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 32

7 | 0

The output does show that the X server is waking xterm processes, clustered around the time
that you switched virtual desktops. If you wanted to understand the interaction between the X
server and the xterm processes, you could aggregate on user stack traces when the X server fires
the wakeup probe.

Understanding the performance of client/server systems like the X windowing system requires
understanding the clients on whose behalf the server is doing work. This kind of question is
difficult to answer with conventional performance analysis tools. However, if you have a model
where a client sends a message to the server and sleeps pending the server's processing, you can
use the wakeup probe to determine the client for whom the request is being performed, as
shown in the following example:

sched Provider

Chapter 11 • Providers 271

self int last;

sched:::wakeup

/self->last && args[0]->pr_stype == SOBJ_CV/

{

@[stringof(args[1]->pr_fname)] = sum(vtimestamp - self->last);

self->last = 0;

}

sched:::wakeup

/execname == "Xsun" && self->last == 0/

{

self->last = vtimestamp;

}

Running the above script results in output similar to the following example:

dtrace -s ./xwork.d

dtrace: script ’./xwork.d’ matched 14 probes

^C

xterm 9522510

soffice.bin 9912594

fvwm2 100423123

MozillaFirebird 312227077

acroread 345901577

This output reveals that much Xsun work is being done on behalf of the processes acroread,
MozillaFirebird and, to a lesser degree, fvwm2. Notice that the script only examined wakeups
from condition variable synchronization objects (SOBJ_CV). As described in Table 11–26,
condition variables are the type of synchronization object typically used to synchronize for
reasons other than access to a shared data region. In the case of the X server, a client will wait for
data in a pipe by sleeping on a condition variable.

You can additionally use the sleep probe along with the wakeup probe to understand which
applications are blocking on which applications, and for how long, as shown in the following
example:

#pragma D option quiet

sched:::sleep

/!(curlwpsinfo->pr_flag & PR_ISSYS) && curlwpsinfo->pr_stype == SOBJ_CV/

{

bedtime[curlwpsinfo->pr_addr] = timestamp;

}

sched:::wakeup

/bedtime[args[0]->pr_addr]/

{

@[stringof(args[1]->pr_fname), execname] =

quantize(timestamp - bedtime[args[0]->pr_addr]);

bedtime[args[0]->pr_addr] = 0;

}

END

{

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02272

printa("%s sleeping on %s:\n%@d\n", @);

}

The tail of the output from running the example script for several seconds on a desktop system
resembles the following example:

dtrace -s ./whofor.d

^C

...

xterm sleeping on Xsun:

value -------------- Distribution ------------ count

131072 | 0

262144 | 12

524288 | 2

1048576 | 0

2097152 | 5

4194304 |@@@ 45

8388608 | 1

16777216 | 9

33554432 |@@@@@ 83

67108864 |@@@@@@@@@@@ 164

134217728 |@@@@@@@@@@ 147

268435456 |@@@@ 56

536870912 |@ 17

1073741824 | 9

2147483648 | 1

4294967296 | 3

8589934592 | 1

17179869184 | 0

fvwm2 sleeping on Xsun:

value -------------- Distribution ------------ count

32768 | 0

65536 |@@@@@@@@@@@@@@@@@@@@@@ 67

131072 |@@@@@ 16

262144 |@@ 6

524288 |@ 3

1048576 |@@@@@ 15

2097152 | 0

4194304 | 0

8388608 | 1

16777216 | 0

33554432 | 0

67108864 | 1

134217728 | 0

268435456 | 0

536870912 | 1

1073741824 | 1

2147483648 | 2

4294967296 | 2

8589934592 | 2

17179869184 | 0

34359738368 | 2

68719476736 | 0

syslogd sleeping on syslogd:

sched Provider

Chapter 11 • Providers 273

value -------------- Distribution ------------ count

17179869184 | 0

34359738368 |@@ 3

68719476736 | 0

MozillaFirebird sleeping on MozillaFirebird:

value -------------- Distribution ------------ count

65536 | 0

131072 | 3

262144 |@@ 14

524288 | 0

1048576 |@@@ 18

2097152 | 0

4194304 | 0

8388608 | 1

16777216 | 0

33554432 | 1

67108864 | 3

134217728 |@ 7

268435456 |@@@@@@@@@@ 53

536870912 |@@@@@@@@@@@@@@ 78

1073741824 |@@@@ 25

2147483648 | 0

4294967296 | 0

8589934592 |@ 7

17179869184 | 0

You might want to understand how and why MozillaFirebird is blocking on itself. You could
modify the above script as shown in the following example to answer this question:

#pragma D option quiet

sched:::sleep

/execname == "MozillaFirebird" && curlwpsinfo->pr_stype == SOBJ_CV/

{

bedtime[curlwpsinfo->pr_addr] = timestamp;

}

sched:::wakeup

/execname == "MozillaFirebird" && bedtime[args[0]->pr_addr]/

{

@[args[1]->pr_pid, args[0]->pr_lwpid, pid, curlwpsinfo->pr_lwpid] =

quantize(timestamp - bedtime[args[0]->pr_addr]);

bedtime[args[0]->pr_addr] = 0;

}

sched:::wakeup

/bedtime[args[0]->pr_addr]/

{

bedtime[args[0]->pr_addr] = 0;

}

END

{

printa("%d/%d sleeping on %d/%d:\n%@d\n", @);

}

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02274

Running the modified script for several seconds results in output similar to the following
example:

dtrace -s ./firebird.d

^C

100459/1 sleeping on 100459/13:

value -------------- Distribution ------------ count

262144 | 0

524288 |@@ 1

1048576 | 0

100459/13 sleeping on 100459/1:

value -------------- Distribution ------------ count

16777216 | 0

33554432 |@@ 1

67108864 | 0

100459/1 sleeping on 100459/2:

value -------------- Distribution ------------ count

16384 | 0

32768 |@@@@ 5

65536 |@ 2

131072 |@@@@@ 6

262144 | 1

524288 |@ 2

1048576 | 0

2097152 |@@ 3

4194304 |@@@@ 5

8388608 |@@@@@@@@ 9

16777216 |@@@@@ 6

33554432 |@@ 3

67108864 | 0

100459/1 sleeping on 100459/5:

value -------------- Distribution ------------ count

16384 | 0

32768 |@@@@@ 12

65536 |@@ 5

131072 |@@@@@@ 15

262144 | 1

524288 | 1

1048576 | 2

2097152 |@ 4

4194304 |@@@@@ 13

8388608 |@@@ 8

16777216 |@@@@@ 13

33554432 |@@ 6

67108864 |@@ 5

134217728 |@ 4

268435456 | 0

536870912 | 1

1073741824 | 0

sched Provider

Chapter 11 • Providers 275

100459/2 sleeping on 100459/1:

value -------------- Distribution ------------ count

16384 | 0

32768 |@@@@@@@@@@@@@@ 11

65536 | 0

131072 |@@ 2

262144 | 0

524288 | 0

1048576 |@@@@ 3

2097152 |@ 1

4194304 |@@ 2

8388608 |@@ 2

16777216 |@ 1

33554432 |@@@@@@ 5

67108864 | 0

134217728 | 0

268435456 | 0

536870912 |@ 1

1073741824 |@ 1

2147483648 |@ 1

4294967296 | 0

100459/5 sleeping on 100459/1:

value -------------- Distribution ------------ count

16384 | 0

32768 | 1

65536 | 2

131072 | 4

262144 | 7

524288 | 1

1048576 | 5

2097152 | 10

4194304 |@@@@@@ 77

8388608 |@@@@@@@@@@@@@@@@@@@@@@@ 270

16777216 |@@@ 43

33554432 |@ 20

67108864 |@ 14

134217728 | 5

268435456 | 2

536870912 | 1

1073741824 | 0

You can also use the sleep and wakeup probes to understand the performance of door servers
such as the name service cache daemon, as shown in the following example:

sched:::sleep

/curlwpsinfo->pr_stype == SOBJ_SHUTTLE/

{

bedtime[curlwpsinfo->pr_addr] = timestamp;

}

sched:::wakeup

/execname == "nscd" && bedtime[args[0]->pr_addr]/

{

@[stringof(curpsinfo->pr_fname), stringof(args[1]->pr_fname)] =

quantize(timestamp - bedtime[args[0]->pr_addr]);

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02276

bedtime[args[0]->pr_addr] = 0;

}

sched:::wakeup

/bedtime[args[0]->pr_addr]/

{

bedtime[args[0]->pr_addr] = 0;

}

The tail of the output from running the above script on a large mail server resembles the
following example:

imapd

value -------------- Distribution ------------ count

16384 | 0

32768 | 2

65536 |@@@@@@@@@@@@@@@@@ 57

131072 |@@@@@@@@@@@ 37

262144 | 3

524288 |@@@ 11

1048576 |@@@ 10

2097152 |@@ 9

4194304 | 1

8388608 | 0

mountd

value -------------- Distribution ------------ count

65536 | 0

131072 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 49

262144 |@@@ 6

524288 | 1

1048576 | 0

2097152 | 0

4194304 |@@@@ 7

8388608 |@ 3

16777216 | 0

sendmail

value -------------- Distribution ------------ count

16384 | 0

32768 |@ 18

65536 |@@@@@@@@@@@@@@@@@ 205

131072 |@@@@@@@@@@@@@ 154

262144 |@ 23

524288 | 5

1048576 |@@@@ 50

2097152 | 7

4194304 | 5

8388608 | 2

16777216 | 0

automountd

value -------------- Distribution ------------ count

32768 | 0

65536 |@@@@@@@@@@ 22

131072 |@@@@@@@@@@@@@@@@@@@@@@@ 51

262144 |@@ 6

524288 | 1

sched Provider

Chapter 11 • Providers 277

1048576 | 0

2097152 | 2

4194304 | 2

8388608 | 1

16777216 | 1

33554432 | 1

67108864 | 0

134217728 | 0

268435456 | 1

536870912 | 0

You might be interested in the unusual data points for automountd or the persistent data point
at over one millisecond for sendmail. You can add additional predicates to the above script to
hone in on the causes of any exceptional or anomalous

preempt and remain-cpu
Because Oracle Solaris is a preemptive system, higher priority threads preempt lower priority
ones. Preemption can induce a significant latency bubble in the lower priority thread, so you
might want to know which threads are being preempted by which other threads. The following
example shows how to use the preempt and remain-cpu probes to display this information:

#pragma D option quiet

sched:::preempt

{

self->preempt = 1;

}

sched:::remain-cpu

/self->preempt/

{

self->preempt = 0;

}

sched:::off-cpu

/self->preempt/

{

/*

* If we were told to preempt ourselves, see who we ended up giving

* the CPU to.

*/

@[stringof(args[1]->pr_fname), args[0]->pr_pri, execname,

curlwpsinfo->pr_pri] = count();

self->preempt = 0;

}

END

{

printf("%30s %3s %30s %3s %5s\n", "PREEMPTOR", "PRI",
"PREEMPTED", "PRI", "#");

printa("%30s %3d %30s %3d %5@d\n", @);

}

Running the above script for several seconds on a desktop system results in output similar to the
following example:

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02278

dtrace -s ./whopreempt.d

^C

PREEMPTOR PRI PREEMPTED PRI #

sched 60 Xsun 53 1

xterm 59 Xsun 53 1

MozillaFirebird 57 Xsun 53 1

mpstat 100 fvwm2 59 1

sched 99 MozillaFirebird 57 1

sched 60 dtrace 30 1

mpstat 100 Xsun 59 2

sched 60 Xsun 54 2

sched 99 sched 60 2

fvwm2 59 Xsun 44 2

sched 99 Xsun 44 2

sched 60 xterm 59 2

sched 99 Xsun 53 2

sched 99 Xsun 54 3

sched 60 fvwm2 59 3

sched 60 Xsun 59 3

sched 99 Xsun 59 4

fvwm2 59 Xsun 54 8

fvwm2 59 Xsun 53 9

Xsun 59 MozillaFirebird 57 10

sched 60 MozillaFirebird 57 14

MozillaFirebird 57 Xsun 44 16

MozillaFirebird 57 Xsun 54 18

change-pri
Preemption is based on priorities, so you might want to observe changes in priority over time.
The following example uses the change-pri probe to display this information:

sched:::change-pri

{

@[stringof(args[0]->pr_clname)] =

lquantize(args[2] - args[0]->pr_pri, -50, 50, 5);

}

The example script captures the degree to which priority is raised or lowered, and aggregates by
scheduling class. Running the above script results in output similar to the following example:

dtrace -s ./pri.d

dtrace: script ’./pri.d’ matched 10 probes

^C

IA

value -------------- Distribution ------------ count

< -50 | 20

-50 |@ 38

-45 | 4

-40 | 13

-35 | 12

-30 | 18

-25 | 18

-20 | 23

-15 | 6

-10 |@@@@@@@@ 201

sched Provider

Chapter 11 • Providers 279

-5 |@@@@@@ 160

0 |@@@@@ 138

5 |@ 47

10 |@@ 66

15 |@ 36

20 |@ 26

25 |@ 28

30 | 18

35 | 22

40 | 8

45 | 11

>= 50 |@ 34

TS

value -------------- Distribution ------------ count

-15 | 0

-10 |@ 1

-5 |@@@@@@@@@@@@ 7

0 |@@@@@@@@@@@@@@@@@@@@ 12

5 | 0

10 |@@@@@ 3

15 | 0

The output shows the priority manipulation of the Interactive (IA) scheduling class. Instead of
seeing priority manipulation, you might want to see the priority values of a particular process
and thread over time. The following script uses the change-pri probe to display this
information:

#pragma D option quiet

BEGIN

{

start = timestamp;

}

sched:::change-pri

/args[1]->pr_pid == $1 && args[0]->pr_lwpid == $2/

{

printf("%d %d\n", timestamp - start, args[2]);

}

tick-1sec

/++n == 5/

{

exit(0);

}

To see the change in priorities over time, type the following command in one window:

$ echo $$

139208

$ while true ; do let i=0 ; done

In another window, run the script and redirect the output to a file:

dtrace -s ./pritime.d 139208 1 > /tmp/pritime.out

#

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02280

You can use the file /tmp/pritime.out that is generated above as input to plotting software to
graphically display priority over time. gnuplot is a freely available plotting package that is
included in the Oracle Solaris Freeware Companion CD. By default, gnuplot is installed in
/opt/sfw/bin.

tick
Oracle Solaris uses tick-based CPU accounting, in which a system clock interrupt fires at a fixed
interval and attributes CPU utilization to the threads and processes running at the time of the
tick. The following example shows how to use the tick probe to observe this attribution:

dtrace -n sched:::tick’{@[stringof(args[1]->pr_fname)] = count()}’

^C

arch 1

sh 1

sed 1

echo 1

ls 1

FvwmAuto 1

pwd 1

awk 2

basename 2

expr 2

resize 2

tput 2

uname 2

fsflush 2

dirname 4

vim 9

fvwm2 10

ksh 19

xterm 21

Xsun 93

MozillaFirebird 260

The system clock frequency varies from operating system to operating system, but generally
ranges from 25 hertz to 1024 hertz. The Oracle Solaris system clock frequency is adjustable, but
defaults to 100 hertz.

The tick probe only fires if the system clock detects a runnable thread. To use the tick probe to
observe the system clock's frequency, you must have a thread that is always runnable. In one
window, create a looping shell as shown in the following example:

$ while true ; do let i=0 ; done

n another window, run the following script:

uint64_t last[int];

sched:::tick

/last[cpu]/

{

sched Provider

Chapter 11 • Providers 281

@[cpu] = min(timestamp - last[cpu]);

}

sched:::tick

{

last[cpu] = timestamp;

}

dtrace -s ./ticktime.d

dtrace: script ’./ticktime.d’ matched 2 probes

^C

0 9883789

The minimum interval is 9.8 millisecond, which indicates that the default clock tick frequency
is 10 milliseconds (100 hertz). The observed minimum is somewhat less than 10 milliseconds
due to jitter.

One deficiency of tick-based accounting is that the system clock that performs accounting is
often also responsible for dispatching any time-related scheduling activity. As a result, if a
thread is to perform some amount of work every clock tick (that is, every 10 milliseconds), the
system will either over-account for the thread or under-account for the thread, depending on
whether the accounting is done before or after time-related dispatching scheduling activity. In
Oracle Solaris, accounting is performed before time-related dispatching. As a result, the system
will under-account for threads running at regular interval. If such threads run for less than the
clock tick interval, they can effectively hide behind the clock tick. The following example shows
the degree to which the system has such threads:

sched:::tick,

sched:::enqueue

{

@[probename] = lquantize((timestamp / 1000000) % 10, 0, 10);

}

The output of the example script is two distributions of the millisecond offset within a ten
millisecond interval, one for the tick probe and another for enqueue:

dtrace -s ./tick.d

dtrace: script ’./tick.d’ matched 4 probes

^C

tick

value -------------- Distribution ------------ count

6 | 0

7 |@ 3

8 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 79

9 | 0

enqueue

value -------------- Distribution ------------ count

< 0 | 0

0 |@@ 267

1 |@@ 300

2 |@@ 259

sched Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02282

3 |@@ 291

4 |@@@ 360

5 |@@ 305

6 |@@ 295

7 |@@@@ 522

8 |@@@@@@@@@@@@ 1315

9 |@@@ 337

The output histogram named tick shows that the clock tick is firing at an 8 millisecond offset. If
scheduling were not at all associated with the clock tick, the output for enqueue would be evenly
spread across the ten millisecond interval. However, the output shows a spike at the same 8
millisecond offset, indicating that at least some threads in the system are being scheduled on a
time basis.

cpucaps-sleep and cpucaps-wakeup
You can use cpucaps-sleep and cpucaps-wakeup probes to understand the impact CPU Caps
have on specific processes and threads. The following example shows how much various
processes spend on wait queues:

sched:::cpucaps-sleep

{

sleep[args[1]->pr_pid] = timestamp;

}

sched:::cpucaps-wakeup

/sleep[args[1]->pr_pid]/

{

@sleeps[args[1]->pr_fname] = quantize(timestamp - sleep[args[1]->pr_pid]);

sleep[args[1]->pr_pid] = 0;

}

Running the above script results in output similar to the following example:

./capswait.d

dtrace: script ’./capswait.d’ matched 2 probes

^C

exmh

value ------------- Distribution ------------- count

8388608 | 0

16777216 |@@ 4

33554432 | 0

scan

value ------------- Distribution ------------- count

16777216 | 0

33554432 |@@@@@@@@@@@@@@@@@@@@ 1

67108864 | 0

134217728 |@@@@@@@@@@@@@@@@@@@@ 1

268435456 | 0

firefox-bin

value ------------- Distribution ------------- count

sched Provider

Chapter 11 • Providers 283

4194304 | 0

8388608 |@@ 1

16777216 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 19

33554432 |@@@@ 2

67108864 | 0

Stability
The sched provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

io Provider
The io provider makes available probes related to disk input and output. The io provider
enables quick exploration of behavior observed through I/O monitoring tools such as
iostat(1M). For example, using the io provider, you can understand I/O by device, by I/O type,
by I/O size, by process, by application name, by file name, or by file offset.

Probes
The io probes are described in Table 11–30.

TABLE 11–30 io Probes

Probe Description

start Probe that fires when an I/O request is about to be made either to a
peripheral device or to an NFS server. The bufinfo_t corresponding to
the I/O request is pointed to by args[0]. The devinfo_t of the device to
which the I/O is being issued is pointed to by args[1]. The fileinfo_t
of the file that corresponds to the I/O request is pointed to by args[2].
Note that file information availability depends on the filesystem making
the I/O request. See fileinfo_t for more information.

io Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02284

TABLE 11–30 io Probes (Continued)
Probe Description

done Probe that fires after an I/O request has been fulfilled. The bufinfo_t
corresponding to the I/O request is pointed to by args[0]. The done
probe fires after the I/O completes, but before completion processing
has been performed on the buffer. As a result B_DONE is not set in
b_flags at the time the done probe fires. The devinfo_t of the device to
which the I/O was issued is pointed to by args[1]. The fileinfo_t of
the file that corresponds to the I/O request is pointed to by args[2].

wait-start Probe that fires immediately before a thread begins to wait pending
completion of a given I/O request. The buf(9S) structure corresponding
to the I/O request for which the thread will wait is pointed to by
args[0]. The devinfo_t of the device to which the I/O was issued is
pointed to by args[1]. The fileinfo_t of the file that corresponds to
the I/O request is pointed to by args[2]. Some time after the wait-start
probe fires, the wait-done probe will fire in the same thread.

wait-done Probe that fires when a thread is done waiting for the completion of a
given I/O request. The bufinfo_t corresponding to the I/O request for
which the thread will wait is pointed to by args[0]. The devinfo_t of
the device to which the I/O was issued is pointed to by args[1]. The
fileinfo_t of the file that corresponds to the I/O request is pointed to
by args[2]. The wait-done probe fires only after the wait-start probe
has fired in the same thread.

Note that the io probes fire for all I/O requests to peripheral devices, and for all file read and file
write requests to an NFS server. Requests for metadata from an NFS server, for example, do not
trigger io probes due to a readdir(3C) request.

Arguments
The argument types for the io probes are listed in Table 11–31. The arguments are described in
Table 11–30.

TABLE 11–31 io Probe Arguments

Probe args[0] args[1] args[2]

start struct buf * devinfo_t * fileinfo_t *

done struct buf * devinfo_t * fileinfo_t *

wait-start struct buf * devinfo_t * fileinfo_t *

wait-done struct buf * devinfo_t * fileinfo_t *

io Provider

Chapter 11 • Providers 285

Each io probe has arguments consisting of a pointer to a buf(9S) structure, a pointer to a
devinfo_t, and a pointer to a fileinfo_t. These structures are described in greater detail in
this section.

bufinfo_t structure
The bufinfo_t structure is the abstraction that describes an I/O request. The buffer
corresponding to an I/O request is pointed to by args[0] in the start, done, wait-start, and
wait-done probes. The bufinfo_t structure definition is as follows:

typedef struct bufinfo {

int b_flags; /* flags */

size_t b_bcount; /* number of bytes */

caddr_t b_addr; /* buffer address */

uint64_t b_blkno; /* expanded block # on device */

uint64_t b_lblkno; /* block # on device */

size_t b_resid; /* # of bytes not transferred */

size_t b_bufsize; /* size of allocated buffer */

caddr_t b_iodone; /* I/O completion routine */

int b_error; /* expanded error field */

dev_t b_edev; /* extended device */

} bufinfo_t;

The b_flags member indicates the state of the I/O buffer, and consists of a bitwise-or of
different state values. The valid state values are in Table 11–32.

TABLE 11–32 b_flags Values

B_DONE Indicates that the data transfer has completed.

B_ERROR Indicates an I/O transfer error. It is set in conjunction with the
b_error field.

B_PAGEIO Indicates that the buffer is being used in a paged I/O request. See
the description of the b_addr field for more information.

B_PHYS Indicates that the buffer is being used for physical (direct) I/O to a
user data area.

B_READ Indicates that data is to be read from the peripheral device into
main memory.

B_WRITE Indicates that the data is to be transferred from main memory to
the peripheral device.

B_ASYNC The I/O request is asynchronous, and will not be waited upon.
The wait-start and wait-done probes don't fire for
asynchronous I/O requests. Note that some I/Os directed to be
asynchronous might not have B_ASYNC set: the asynchronous I/O
subsystem might implement the asynchronous request by having
a separate worker thread perform a synchronous I/O operation.

io Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02286

The b_bcount field is the number of bytes to be transferred as part of the I/O request.

The b_addr field is the virtual address of the I/O request, unless B_PAGEIO is set. The address is a
kernel virtual address unless B_PHYS is set, in which case it is a user virtual address. If B_PAGEIO
is set, the b_addr field contains kernel private data. Exactly one of B_PHYS and B_PAGEIO can be
set, or neither flag will be set.

The b_lblkno field identifies which logical block on the device is to be accessed. The mapping
from a logical block to a physical block (such as the cylinder, track, and so on) is defined by the
device.

The b_resid field is set to the number of bytes not transferred because of an error.

The b_bufsize field contains the size of the allocated buffer.

The b_iodone field identifies a specific routine in the kernel that is called when the I/O is
complete.

The b_error field may hold an error code returned from the driver in the event of an I/O error.
b_error is set in conjunction with the B_ERROR bit set in the b_flags member.

The b_edev field contains the major and minor device numbers of the device accessed.
Consumers may use the D subroutines getmajor and getminor to extract the major and minor
device numbers from the b_edev field.

devinfo_t
The devinfo_t structure provides information about a device. The devinfo_t structure
corresponding to the destination device of an I/O is pointed to by args[1] in the start, done,
wait-start, and wait-done probes. The members of devinfo_t are as follows:

typedef struct devinfo {

int dev_major; /* major number */

int dev_minor; /* minor number */

int dev_instance; /* instance number */

string dev_name; /* name of device */

string dev_statname; /* name of device + instance/minor */

string dev_pathname; /* pathname of device */

} devinfo_t;

The dev_major field is the major number of the device. See getmajor(9F) for more information.

The dev_minor field is the minor number of the device. See getminor(9F) for more information.

The dev_instance field is the instance number of the device. The instance of a device is
different from the minor number. The minor number is an abstraction managed by the device
driver. The instance number is a property of the device node. You can display device node
instance numbers with prtconf(1M).

io Provider

Chapter 11 • Providers 287

The dev_name field is the name of the device driver that manages the device. You can display
device driver names with the -D option to prtconf(1M).

The dev_statname field is the name of the device as reported by iostat(1M). This name also
corresponds to the name of a kernel statistic as reported by kstat(1M). This field is provided so
that aberrant iostat or kstat output can be quickly correlated to actual I/O activity.

The dev_pathname field is the full path of the device. This path may be specified as an argument
to prtconf(1M) to obtain detailed device information. The path specified by dev_pathname
includes components expressing the device node, the instance number, and the minor node.
However, all three of these elements aren't necessarily expressed in the statistics name. For some
devices, the statistics name consists of the device name and the instance number. For other
devices, the name consists of the device name and the number of the minor node. As a result,
two devices that have the same dev_statname may differ in dev_pathname.

fileinfo_t
The fileinfo_t structure provides information about a file. The file to which an I/O
corresponds is pointed to by args[2] in the start, done, wait-start, and wait-done probes.
The presence of file information is contingent upon the filesystem providing this information
when dispatching I/O requests. Some filesystems, especially third-party filesystems, might not
provide this information. Also, I/O requests might emanate from a filesystem for which no file
information exists. For example, any I/O to filesystem metadata will not be associated with any
one file. Finally, some highly optimized filesystems might aggregate I/O from disjoint files into a
single I/O request. In this case, the filesystem might provide the file information either for the
file that represents the majority of the I/O or for the file that represents some of the I/O.
Alternately, the filesystem might provide no file information at all in this case.

The definition of the fileinfo_t structure is as follows:

typedef struct fileinfo {

string fi_name; /* name (basename of fi_pathname) */

string fi_dirname; /* directory (dirname of fi_pathname) */

string fi_pathname; /* full pathname */

offset_t fi_offset; /* offset within file */

string fi_fs; /* filesystem */

string fi_mount; /* mount point of file system */

} fileinfo_t;

The fi_name field contains the name of the file but does not include any directory components.
If no file information is associated with an I/O, the fi_name field will be set to the string <none>.
In some rare cases, the pathname associated with a file might be unknown. In this case, the
fi_name field will be set to the string <unknown>.

The fi_dirname field contains only the directory component of the file name. As with fi_name,
this string may be set to <none> if no file information is present, or <unknown> if the pathname
associated with the file is not known.

io Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02288

The fi_pathname field contains the full pathname to the file. As with fi_name, this string may
be set to <none> if no file information is present, or <unknown> if the pathname associated with
the file is not known.

The fi_offset field contains the offset within the file , or -1 if either file information is not
present or if the offset is otherwise unspecified by the filesystem.

Examples
The following example script displays pertinent information for every I/O as it's issued:

#pragma D option quiet

BEGIN

{

printf("%10s %58s %2s\n", "DEVICE", "FILE", "RW");
}

io:::start

{

printf("%10s %58s %2s\n", args[1]->dev_statname,

args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W");
}

The output of the example when cold-starting Acrobat Reader on an x86 laptop system
resembles the following example:

dtrace -s ./iosnoop.d

DEVICE FILE RW

cmdk0 /opt/Acrobat4/bin/acroread R

cmdk0 /opt/Acrobat4/bin/acroread R

cmdk0 <unknown> R

cmdk0 /opt/Acrobat4/Reader/AcroVersion R

cmdk0 <unknown> R

cmdk0 <unknown> R

cmdk0 <none> R

cmdk0 <unknown> R

cmdk0 <none> R

cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R

cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R

cmdk0 /usr/lib/locale/iso_8859_1/iso_8859_1.so.3 R

cmdk0 <none> R

cmdk0 <unknown> R

cmdk0 <unknown> R

cmdk0 <unknown> R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 <none> R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

io Provider

Chapter 11 • Providers 289

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 <unknown> R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 <none> R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libreadcore.so.4.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/bin/acroread R

cmdk0 <unknown> R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R

cmdk0 <none> R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R

cmdk0 /opt/Acrobat4/Reader/intelsolaris/lib/libAGM.so.3.0 R

...

The <none> entries in the output indicate that the I/O doesn't correspond to the data in any
particular file: these I/Os are due to metadata of one form or another. The <unknown> entries in
the output indicate that the pathname for the file is not known. This situation is relatively rare.

You could make the example script slightly more sophisticated by using an associative array to
track the time spent on each I/O, as shown in the following example:

#pragma D option quiet

BEGIN

{

printf("%10s %58s %2s %7s\n", "DEVICE", "FILE", "RW", "MS");
}

io:::start

{

start[args[0]->b_edev, args[0]->b_blkno] = timestamp;

}

io:::done

/start[args[0]->b_edev, args[0]->b_blkno]/

{

this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];

printf("%10s %58s %2s %3d.%03d\n", args[1]->dev_statname,

args[2]->fi_pathname, args[0]->b_flags & B_READ ? "R" : "W",
this->elapsed / 10000000, (this->elapsed / 1000) % 1000);

start[args[0]->b_edev, args[0]->b_blkno] = 0;

}

The output of the above example while hot-plugging a USB storage device into an otherwise idle
x86 laptop system is shown in the following example:

dtrace -s ./iotime.d

DEVICE FILE RW MS

io Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02290

cmdk0 /kernel/drv/scsa2usb R 24.781

cmdk0 /kernel/drv/scsa2usb R 25.208

cmdk0 /var/adm/messages W 25.981

cmdk0 /kernel/drv/scsa2usb R 5.448

cmdk0 <none> W 4.172

cmdk0 /kernel/drv/scsa2usb R 2.620

cmdk0 /var/adm/messages W 0.252

cmdk0 <unknown> R 3.213

cmdk0 <none> W 3.011

cmdk0 <unknown> R 2.197

cmdk0 /var/adm/messages W 2.680

cmdk0 <none> W 0.436

cmdk0 /var/adm/messages W 0.542

cmdk0 <none> W 0.339

cmdk0 /var/adm/messages W 0.414

cmdk0 <none> W 0.344

cmdk0 /var/adm/messages W 0.361

cmdk0 <none> W 0.315

cmdk0 /var/adm/messages W 0.421

cmdk0 <none> W 0.349

cmdk0 <none> R 1.524

cmdk0 <unknown> R 3.648

cmdk0 /usr/lib/librcm.so.1 R 2.553

cmdk0 /usr/lib/librcm.so.1 R 1.332

cmdk0 /usr/lib/librcm.so.1 R 0.222

cmdk0 /usr/lib/librcm.so.1 R 0.228

cmdk0 /usr/lib/librcm.so.1 R 0.927

cmdk0 <none> R 1.189

...

cmdk0 /usr/lib/devfsadm/linkmod R 1.110

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_audio_link.so R 1.763

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_audio_link.so R 0.161

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_cfg_link.so R 0.819

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_cfg_link.so R 0.168

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_disk_link.so R 0.886

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_disk_link.so R 0.185

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so R 0.778

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_fssnap_link.so R 0.166

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_lofi_link.so R 1.634

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_lofi_link.so R 0.163

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_md_link.so R 0.477

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_md_link.so R 0.161

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.198

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.168

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link.so R 0.247

cmdk0 /usr/lib/devfsadm/linkmod/SUNW_misc_link_i386.so R 1.735

...

You can make several observations about the mechanics of the system based on this output.
First, note the long time to perform the first several I/Os, which took about 25 milliseconds
each. This time might have been due to the cmdk0 device having been power managed on the
laptop. Second, observe the I/O due to the scsa2usb(7D) driver loading to deal with USB Mass
Storage device. Third, note the writes to /var/adm/messages as the device is reported. Finally,
observe the reading of the device link generators (the files ending in link.so) , which
presumably deal with the new device.

io Provider

Chapter 11 • Providers 291

The io provider enables in-depth understanding of iostat(1M) output. Assume you observe
iostat output similar to the following example:

extended device statistics

device r/s w/s kr/s kw/s wait actv svc_t %w %b

cmdk0 8.0 0.0 399.8 0.0 0.0 0.0 0.8 0 1

sd0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

sd2 0.0 109.0 0.0 435.9 0.0 1.0 8.9 0 97

nfs1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

nfs2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

You can use the iotime.d script to see these I/Os as they happen, as shown in the following
example:

DEVICE FILE RW MS

sd2 /mnt/archives.tar W 0.856

sd2 /mnt/archives.tar W 0.729

sd2 /mnt/archives.tar W 0.890

sd2 /mnt/archives.tar W 0.759

sd2 /mnt/archives.tar W 0.884

sd2 /mnt/archives.tar W 0.746

sd2 /mnt/archives.tar W 0.891

sd2 /mnt/archives.tar W 0.760

sd2 /mnt/archives.tar W 0.889

cmdk0 /export/archives/archives.tar R 0.827

sd2 /mnt/archives.tar W 0.537

sd2 /mnt/archives.tar W 0.887

sd2 /mnt/archives.tar W 0.763

sd2 /mnt/archives.tar W 0.878

sd2 /mnt/archives.tar W 0.751

sd2 /mnt/archives.tar W 0.884

sd2 /mnt/archives.tar W 0.760

sd2 /mnt/archives.tar W 3.994

sd2 /mnt/archives.tar W 0.653

sd2 /mnt/archives.tar W 0.896

sd2 /mnt/archives.tar W 0.975

sd2 /mnt/archives.tar W 1.405

sd2 /mnt/archives.tar W 0.724

sd2 /mnt/archives.tar W 1.841

cmdk0 /export/archives/archives.tar R 0.549

sd2 /mnt/archives.tar W 0.543

sd2 /mnt/archives.tar W 0.863

sd2 /mnt/archives.tar W 0.734

sd2 /mnt/archives.tar W 0.859

sd2 /mnt/archives.tar W 0.754

sd2 /mnt/archives.tar W 0.914

sd2 /mnt/archives.tar W 0.751

sd2 /mnt/archives.tar W 0.902

sd2 /mnt/archives.tar W 0.735

sd2 /mnt/archives.tar W 0.908

sd2 /mnt/archives.tar W 0.753

This output appears to show that the file archives.tar is being read from cmdk0 (in
/export/archives), and being written to device sd2 (in /mnt). This existence of two files

io Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02292

named archives.tar that are being operated on separately in parallel seems unlikely. To
investigate further, you can aggregate on device, application, process ID and bytes transferred,
as shown in the following example:

#pragma D option quiet

io:::start

{

@[args[1]->dev_statname, execname, pid] = sum(args[0]->b_bcount);

}

END

{

printf("%10s %20s %10s %15s\n", "DEVICE", "APP", "PID", "BYTES");
printa("%10s %20s %10d %15@d\n", @);

}

Running this script for a few seconds results in output similar to the following example:

dtrace -s ./whoio.d

^C

DEVICE APP PID BYTES

cmdk0 cp 790 1515520

sd2 cp 790 1527808

This output shows that this activity is a copy of the file archives.tar from one device to
another. This conclusion leads to another natural question: is one of these devices faster than
the other? Which device acts as the limiter on the copy? To answer these questions, you need to
know the effective throughput of each device rather than the number of bytes per second each
device is transferring. You can determine the throughput with the following example script:

#pragma D option quiet

io:::start

{

start[args[0]->b_edev, args[0]->b_blkno] = timestamp;

}

io:::done

/start[args[0]->b_edev, args[0]->b_blkno]/

{

/*

* We want to get an idea of our throughput to this device in KB/sec.

* What we have, however, is nanoseconds and bytes. That is we want

* to calculate:

*

* bytes / 1024

* ------------------------

* nanoseconds / 1000000000

*

* But we can’t calculate this using integer arithmetic without losing

* precision (the denomenator, for one, is between 0 and 1 for nearly

* all I/Os). So we restate the fraction, and cancel:

*

* bytes 1000000000 bytes 976562

io Provider

Chapter 11 • Providers 293

* --------- * ------------- = --------- * -------------

* 1024 nanoseconds 1 nanoseconds

*

* This is easy to calculate using integer arithmetic; this is what

* we do below.

*/

this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];

@[args[1]->dev_statname, args[1]->dev_pathname] =

quantize((args[0]->b_bcount * 976562) / this->elapsed);

start[args[0]->b_edev, args[0]->b_blkno] = 0;

}

END

{

printa(" %s (%s)\n%@d\n", @);

}

Running the example script for several seconds yields the following output:

sd2 (/devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0:r)

value ------------- Distribution ------------- count

32 | 0

64 | 3

128 | 1

256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2257

512 | 1

1024 | 0

cmdk0 (/devices/pci@0,0/pci-ide@1f,1/ide@0/cmdk@0,0:a)

value ------------- Distribution ------------- count

128 | 0

256 | 1

512 | 0

1024 | 2

2048 | 0

4096 | 2

8192 |@@@@@@@@@@@@@@@@@@ 172

16384 |@@@@@ 52

32768 |@@@@@@@@@@@ 108

65536 |@@@ 34

131072 | 0

The output shows that sd2 is clearly the limiting device. The sd2 throughput is between
256K/sec and 512K/sec, while cmdk0 is delivering I/O at anywhere from 8 MB/second to over
64 MB/second. The script prints out both the name as seen in iostat, and the full path of the
device. To find out more about the device, you could specify the device path to prtconf, as
shown in the following example:

prtconf -v /devices/pci@0,0/pci1179,1@1d/storage@2/disk@0,0

disk, instance #2 (driver name: sd)

Driver properties:

name=’lba-access-ok’ type=boolean dev=(29,128)

name=’removable-media’ type=boolean dev=none

name=’pm-components’ type=string items=3 dev=none

io Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02294

value=’NAME=spindle-motor’ + ’0=off’ + ’1=on’

name=’pm-hardware-state’ type=string items=1 dev=none

value=’needs-suspend-resume’

name=’ddi-failfast-supported’ type=boolean dev=none

name=’ddi-kernel-ioctl’ type=boolean dev=none

Hardware properties:

name=’inquiry-revision-id’ type=string items=1

value=’1.04’

name=’inquiry-product-id’ type=string items=1

value=’STORAGE DEVICE’

name=’inquiry-vendor-id’ type=string items=1

value=’Generic’

name=’inquiry-device-type’ type=int items=1

value=00000000

name=’usb’ type=boolean

name=’compatible’ type=string items=1

value=’sd’

name=’lun’ type=int items=1

value=00000000

name=’target’ type=int items=1

value=00000000

As the emphasized terms indicate, this device is a removable USB storage device.

The examples in this section have explored all I/O requests. However, you might only be
interested in one type of request. The following example tracks the directories in which writes
are occurring, along with the applications performing the writes:

#pragma D option quiet

io:::start

/args[0]->b_flags & B_WRITE/

{

@[execname, args[2]->fi_dirname] = count();

}

END

{

printf("%20s %51s %5s\n", "WHO", "WHERE", "COUNT");
printa("%20s %51s %5@d\n", @);

}

Running this example script on a desktop workload for a period of time yields some interesting
results, as shown in the following example output:

dtrace -s ./whowrite.d

^C

WHO WHERE COUNT

su /var/adm 1

fsflush /etc 1

fsflush / 1

fsflush /var/log 1

fsflush /export/bmc/lisa 1

esd /export/bmc/.phoenix/default/78cxczuy.slt/Cache 1

fsflush /export/bmc/.phoenix 1

esd /export/bmc/.phoenix/default/78cxczuy.slt 1

io Provider

Chapter 11 • Providers 295

vi /var/tmp 2

vi /etc 2

cat <none> 2

bash / 2

vi <none> 3

xterm /var/adm 3

fsflush /export/bmc 7

MozillaFirebird <none> 8

vim /export/bmc 9

MozillaFirebird /export/bmc 10

fsflush /var/adm 11

devfsadm /dev 14

ksh <none> 71

ksh /export/bmc 71

fsflush /export/bmc/.phoenix/default/78cxczuy.slt 119

MozillaFirebird /export/bmc/.phoenix/default/78cxczuy.slt 119

fsflush <none> 211

MozillaFirebird /export/bmc/.phoenix/default/78cxczuy.slt/Cache 591

fsflush /export/bmc/.phoenix/default/78cxczuy.slt/Cache 666

sched <none> 2385

As the output indicates, virtually all writes are associated with the Mozilla Firebird cache. The
writes labeled <none> are likely due to writes associated with the UFS log, writes that are
themselves induced by other writes in the filesystem. See ufs(7FS) for details on logging. This
example shows how to use the io provider to discover a problem at a much higher layer of
software. In this case, the script has revealed a configuration problem: the web browser would
induce much less I/O (and quite likely none at all) if its cache were in a directory in a tmpfs(7FS)
filesystem.

The previous examples have used only the start and done probes. You can use the wait-start
and wait-done probes to understand why applications block for I/O — and for how long. The
following example script uses both io probes and sched probes (see “sched Provider” on
page 255) to derive CPU time compared to I/O wait time for the StarOffice software:

#pragma D option quiet

sched:::on-cpu

/execname == "soffice.bin"/
{

self->on = vtimestamp;

}

sched:::off-cpu

/self->on/

{

@time["<on cpu>"] = sum(vtimestamp - self->on);

self->on = 0;

}

io:::wait-start

/execname == "soffice.bin"/
{

self->wait = timestamp;

}

io Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02296

io:::wait-done

/self->wait/

{

@io[args[2]->fi_name] = sum(timestamp - self->wait);

@time["<I/O wait>"] = sum(timestamp - self->wait);

self->wait = 0;

}

END

{

printf("Time breakdown (milliseconds):\n");
normalize(@time, 1000000);

printa(" %-50s %15@d\n", @time);

printf("\nI/O wait breakdown (milliseconds):\n");
normalize(@io, 1000000);

printa(" %-50s %15@d\n", @io);

}

Running the example script during a cold start of the StarOffice software yields the following
output:

Time breakdown (milliseconds):

<on cpu> 3634

<I/O wait> 13114

I/O wait breakdown (milliseconds):

soffice.tmp 0

Office 0

unorc 0

sbasic.cfg 0

en 0

smath.cfg 0

toolboxlayout.xml 0

sdraw.cfg 0

swriter.cfg 0

Linguistic.dat 0

scalc.cfg 0

Views.dat 0

Store.dat 0

META-INF 0

Common.xml.tmp 0

afm 0

libsimreg.so 1

xiiimp.so.2 3

outline 4

Inet.dat 6

fontmetric 6

...

libucb1.so 44

libj641si_g.so 46

libX11.so.4 46

liblng641si.so 48

swriter.db 53

libwrp641si.so 53

liblocaledata_ascii.so 56

libi18npool641si.so 65

libdbtools2.so 69

io Provider

Chapter 11 • Providers 297

ofa64101.res 74

libxcr641si.so 82

libucpchelp1.so 83

libsot641si.so 86

libcppuhelper3C52.so 98

libfwl641si.so 100

libsb641si.so 104

libcomphelp2.so 105

libxo641si.so 106

libucpfile1.so 110

libcppu.so.3 111

sw64101.res 114

libdb-3.2.so 119

libtk641si.so 126

libdtransX11641si.so 127

libgo641si.so 132

libfwe641si.so 150

libi18n641si.so 152

libfwi641si.so 154

libso641si.so 173

libpsp641si.so 186

libtl641si.so 189

<unknown> 189

libucbhelper1C52.so 195

libutl641si.so 213

libofa641si.so 216

libfwk641si.so 229

libsvl641si.so 261

libcfgmgr2.so 368

libsvt641si.so 373

libvcl641si.so 741

libsvx641si.so 885

libsfx641si.so 993

<none> 1096

libsw641si.so 1365

applicat.rdb 1580

As this output shows, much of the cold StarOffice start time is due to waiting for I/O. (13.1
seconds waiting for I/O as opposed to 3.6 seconds on CPU.) Running the script on a warm start
of the StarOffice software reveals that page caching has eliminated the I/O time , as shown in the
following example output:

Time breakdown (milliseconds):

<I/O wait> 0

<on cpu> 2860

I/O wait breakdown (milliseconds):

temp 0

soffice.tmp 0

<unknown> 0

Office 0

The cold start output shows that the file applicat.rdb accounts for more I/O wait time than
any other file. This result is presumably due to many I/Os to the file. To explore the I/Os
performed to this file, you can use the following D script:

io Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02298

io:::start

/execname == "soffice.bin" && args[2]->fi_name == "applicat.rdb"/
{

@ = lquantize(args[2]->fi_offset != -1 ?

args[2]->fi_offset / (1000 * 1024) : -1, 0, 1000);

}

This script uses the fi_offset field of the fileinfo_t structure to understand which parts of
the file are being accessed, at the granularity of a megabyte. Running this script during a cold
start of the StarOffice software results in output similar to the following example:

dtrace -s ./applicat.d

dtrace: script ’./applicat.d’ matched 4 probes

^C

value ------------- Distribution ------------ count

< 0 | 0

0 |@@@ 28

1 |@@ 17

2 |@@@@ 35

3 |@@@@@@@@@ 72

4 |@@@@@@@@@@ 78

5 |@@@@@@@@ 65

6 | 0

This output indicates that only the first six megabytes of the file are accessed, perhaps because
the file is six megabytes in size. The output also indicates that the entire file is not accessed. If
you wanted to improve the cold start time of StarOffice, you might want to understand the
access pattern of the file. If the needed sections of the file could be largely contiguous, one way
to improve StarOffice cold start time might be to have a scout thread run ahead of the
application, inducing the I/O to the file before it's needed. (This approach is particularly
straightforward if the file is accessed using mmap(2).) However, the ~1.6 seconds that this
strategy would gain in cold start time does not merit the additional complexity and
maintenance burden in the application. Either way, the data gathered with the io provider
allows a precise understanding of the benefit that such work could ultimately deliver.

Stability
The io provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

io Provider

Chapter 11 • Providers 299

Element Name stability Data stability Dependency class

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

Protocols
This section lists all the protocol providers.

ip Provider
The ip provider provides probes for tracing both IPv4 and IPv6 protocols.

Probes
The ip probes are described in the table below.

TABLE 11–33 ip Providers

Probe Description

send Probe that fires whenever the kernel network stack sends an ip packet.

receive Probe that fires whenever the kernel network stack receives an ip packet.

These probes trace packets on physical interfaces and also packets on loopback interfaces that
are processed by ip. An IP packet must have a full IP header to be visible by these probes.

Note – Loopback tcp packets on Solaris may be processed by tcp fusion, a performance feature
that by-passes the ip layer. These fused packets will not be visible using the ip:::send and
ip:::receive probes. They are typically all loopback tcp packets after the tcp handshake.

Arguments
The argument types for the ip probes are listed in the table below. The arguments are described
in the following section.

TABLE 11–34 ip Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4] args[5]

send pktinfo_t * csinfo_t * ipinfo_t * ifinfo_t * ipv4info_t

*

ipv6info_t

*

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02300

TABLE 11–34 ip Probe Arguments (Continued)
Probe args[0] args[1] args[2] args[3] args[4] args[5]

receive pktinfo_t * csinfo_t * ipinfo_t * ifinfo_t * ipv4info_t

*

ipv6info_t

*

args[0] - pktinfo_t Structure

The pktinfo_t structure is where packet ID info can be made available for deeper analysis if
packet IDs become supported by the kernel in the future.

The pkt_addr member is currently always NULL.

typedef struct pktinfo {

uintptr_t pkt_addr; /* currently always NULL */

} pktinfo_t;

args[1] - csinfo_t Structure

The csinfo_t structure is where connection state info can be made available if connection IDs
become supported by the kernel in the future.

The cs_addr member is currently always NULL.

typedef struct csinfo {

uintptr_t cs_addr; /* currently always NULL */

} csinfo_t;

args[2] - ipinfo_t Structure

The ipinfo_t structure contains common IP info for both IPv4 and IPv6.

typedef struct ipinfo {

uint8_t ip_ver; /* IP version (4, 6) */

uint16_t ip_plength; /* payload length */

string ip_saddr; /* source address */

string ip_daddr; /* destination address */

} ipinfo_t;

TABLE 11–35 ipinfo_t Members

ip_ver IP version number. Currently either 4 or 6.

ip_plength Payload length in bytes. This is the length of the packet at the time of tracing,
excluding the IP header.

ip_saddr. Source IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6 follows
RFC-1884 convention 2 with lower case hexadecimal digits.

ip_daddr Destination IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC-1884 convention 2 with lower case hexadecimal digits.

Protocols

Chapter 11 • Providers 301

args[3] - ifinfo_t Structure

The ifinfo_t structure contains network interface info.

typedef struct ifinfo {

string if_name; /* interface name */

int8_t if_local; /* is delivered locally */

netstackid_t if_ipstack; /* ipstack ID */

uintptr_t if_addr; /* pointer to raw ill_t */

} ifinfo_t;

TABLE 11–36 ifinfo_t Members

if_name Interface name as a string. For example, "eri0", "lo0", "ip.tun0", "<unknown>".

if_local Is-local status. 1: is a local interface, 0: is not a local interface, -1: is unknown.

if_ipstack ipstack ID, for associating ip stack instances, or NULL.

if_addr Pointer to raw kernel structure for advanced debugging only.

The ifinfo_t details are provided for debugging convenience in the ip layer, if that
information is available. There may be some types of traffic where some or all of that
information is not available during the ip layer, for which the members may be: "<null>", -1,
NULL, NULL.

args[4] - ipv4info_t Structure

The ipv4info_t structure is a DTrace translated version of the IPv4 header.

typedef struct ipv4info {

uint8_t ipv4_ver; /* IP version (4) */

uint8_t ipv4_ihl; /* header length, bytes */

uint8_t ipv4_tos; /* type of service field */

uint16_t ipv4_length; /* length (header + payload) */

uint16_t ipv4_ident; /* identification */

uint8_t ipv4_flags; /* IP flags */

uint16_t ipv4_offset; /* fragment offset */

uint8_t ipv4_ttl; /* time to live */

uint8_t ipv4_protocol; /* next level protocol */

string ipv4_protostr; /* next level protocol, as a string */

uint16_t ipv4_checksum; /* header checksum */

ipaddr_t ipv4_src; /* source address */

ipaddr_t ipv4_dst; /* destination address */

string ipv4_saddr; /* source address, string */

string ipv4_daddr; /* destination address, string */

ipha_t *ipv4_hdr; /* pointer to raw header */

} ipv4info_t;

TABLE 11–37 ipv4info_t Members

ipv4_ver IP version (4).

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02302

TABLE 11–37 ipv4info_t Members (Continued)
ipv4_ihl IPv4 header length, in bytes.

ipv4_tos Contents of IPv4 type of service field.

ipv4_length IPv4 packet length (header + payload) at time of tracing, in bytes.

ipv4_ident IPv4 identification field.

ipv4_flags IPv4 flags. See the ipv4_flags table below for bitwise values.

ipv4_offset IPv4 fragment offset, in bytes.

ipv4_ttl IPv4 time to live.

ipv4_protocol IPv4 encapsulated protocol number. See /usr/include/netinet/in.h for the
protocol list (IPPROTO_*).

ipv4_protostr IPv4 encapsulated protocol, as a string. For example, "TCP".

ipv4_checksum IPv4 header checksum, if available at time of tracing.

ipv4_src IPv4 source address, as an ipaddr_t.

ipv4_dst IPv4 destination address, as an ipaddr_t.

ipv4_saddr IPv4 source address, as a dotted decimal quad string.

ipv4_daddr IPv4 destination address, as a dotted decimal quad string.

ipv4_hdr Pointer to raw IPv4 header at the time of tracing.

See RFC-791 for a detailed explanation for these IPv4 header fields. If the packet is IPv6, these
members are either "<null>", 0, or NULL depending on type.

TABLE 11–38 ipv4_flags Values

IPH_DF Don't fragment

IPH_MF More fragments

args[5] - ipv6info_t Structure

The ipv6info_t structure is a DTrace translated version of the IPv6 header.

typedef struct ipv6info {

uint8_t ipv6_ver; /* IP version (6) */

uint8_t ipv6_tclass; /* traffic class */

uint32_t ipv6_flow; /* flow label */

uint16_t ipv6_plen; /* payload length */

uint8_t ipv6_nexthdr; /* next header protocol */

string ipv6_nextstr; /* next header protocol, as a string*/

uint8_t ipv6_hlim; /* hop limit */

in6_addr_t *ipv6_src; /* source address */

Protocols

Chapter 11 • Providers 303

in6_addr_t *ipv6_dst; /* destination address */

string ipv6_saddr; /* source address, string */

string ipv6_daddr; /* destination address, string */

ip6_t *ipv6_hdr; /* pointer to raw header */

} ipv6info_t;

TABLE 11–39 ipv6info_t Members

ipv6_ver IP version (6).

ipv6_tclass IPv6 traffic class.

ipv6_plen IPv6 payload length at time of tracing, in bytes.

ipv6_nexthdr IPv6 next header protocol number. See /usr/include/netinet/in.h for the
protocol list (IPPROTO_*).

ipv6_nextstr IPv6 next header protocol, as a string. For example, "TCP".

ipv6_hlim IPv6 hop limit.

ipv6_src IPv6 source address, as an in6_addr_t.

ipv6_dst IPv6 destination address, as an in6_addr_t.

ipv6_saddr IPv6 source address, as an RFC-1884 convention 2 string with lower case
hexadecimal digits.

ipv6_daddr IPv6 destination address, as an RFC-1884 convention 2 string with lower case
hexadecimal digits.

ipv6_hdr Pointer to raw IPv6 header at the time of tracing.

See RFC-2460 for a detailed explanation for these IPv6 header fields. If the packet is IPv4, these
members are either "<null>", 0, or NULL depending on type.

Examples
Some simple examples of ip provider usage follow.

Packets by host address

This DTrace one-liner counts received packets by host address:

dtrace -n ’ip:::receive { @[args[2]->ip_saddr] = count(); }’

dtrace: description ’ip:::receive ’ matched 4 probes

^C

192.168.1.5 1

192.168.1.185 4

fe80::214:4fff:fe3b:76c8 9

127.0.0.1 14

192.168.1.109 28

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02304

The output above shows that 28 IP packets were received from 192.168.1.109, 14 IP packets
from 127.0.0.1, and so on.

Sent size distribution

This DTrace one-liner prints distribution plots of sent payload size by destination:

dtrace -n ’ip:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }’

dtrace: description ’ip:::send ’ matched 11 probes

^C

192.168.2.27

value ------------- Distribution ------------- count

8 | 0

16 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 7

32 |@@@@ 1

64 |@@@@ 1

128 | 0

192.168.1.109

value ------------- Distribution ------------- count

8 | 0

16 |@@@@@ 5

32 |@@@ 3

64 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 24

128 |@ 1

256 |@ 1

512 |@@ 2

1024 |@ 1

2048 | 0

ipio.d

The following DTrace script traces IP packets and prints various details:

#!/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option switchrate=10hz

dtrace:::BEGIN

{

printf(" %3s %10s %15s %15s %8s %6s\n", "CPU", "DELTA(us)",
"SOURCE", "DEST", "INT", "BYTES");

last = timestamp;

}

ip:::send

{

this->elapsed = (timestamp - last) / 1000;

printf(" %3d %10d %15s -> %15s %8s %6d\n", cpu, this->elapsed,

args[2]->ip_saddr, args[2]->ip_daddr, args[3]->if_name,

args[2]->ip_plength);

last = timestamp;

}

Protocols

Chapter 11 • Providers 305

ip:::receive

{

this->elapsed = (timestamp - last) / 1000;

printf(" %3d %10d %15s <- %15s %8s %6d\n", cpu, this->elapsed,

args[2]->ip_daddr, args[2]->ip_saddr, args[3]->if_name,

args[2]->ip_plength);

last = timestamp;

}

This example output shows tracing packets as they pass in and out of tunnels:

./ipio.d

CPU DELTA(us) SOURCE DEST INT BYTES

1 598913 10.1.100.123 -> 192.168.10.75 ip.tun0 68

1 73 192.168.1.108 -> 192.168.5.1 nge0 140

1 18325 192.168.1.108 <- 192.168.5.1 nge0 140

1 69 10.1.100.123 <- 192.168.10.75 ip.tun0 68

0 102921 10.1.100.123 -> 192.168.10.75 ip.tun0 20

0 79 192.168.1.108 -> 192.168.5.1 nge0 92

The fields printed are:

Field Description

CPU CPU id that event occurred on

DELTA(us) elapsed time since previous event

SOURCE source IP address

DEST destination IP address

INT interface name

BYTES payload bytes

Note – The output may be shuffled slightly on multi-CPU servers due to DTrace per-CPU
buffering; keep an eye on changes in the CPU column, or add a timestamp column and post
sort.

ipproto.d

This DTrace script provides a neat summary for both send and receive IP traffic, including the
next level protocol:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02306

{

printf("Tracing... Hit Ctrl-C to end.\n");
}

ip:::send,

ip:::receive

{

this->protostr = args[2]->ip_ver == 4 ?

args[4]->ipv4_protostr : args[5]->ipv6_nextstr;

@num[args[2]->ip_saddr, args[2]->ip_daddr, this->protostr] = count();

}

dtrace:::END

{

printf(" %-28s %-28s %6s %8s\n", "SADDR", "DADDR", "PROTO", "COUNT");
printa(" %-28s %-28s %6s %@8d\n", @num);

}

This script was run on a system with both IPv4 and IPv6 interfaces for several seconds:

./ipproto.d

Tracing... Hit Ctrl-C to end.

^C

SADDR DADDR PROTO COUNT

192.168.1.108 192.168.155.32 UDP 1

192.168.1.108 192.168.17.55 UDP 1

192.168.1.108 192.168.228.54 UDP 1

192.168.1.108 192.168.1.5 UDP 1

192.168.1.108 192.168.2.27 ICMP 1

192.168.1.200 192.168.3.255 UDP 1

192.168.1.5 192.168.1.108 UDP 1

192.168.2.27 192.168.1.108 ICMP 1

fe80::214:4fff:fe3b:76c8 ff02::1 ICMPV6 1

fe80::2e0:81ff:fe5e:8308 fe80::214:4fff:fe3b:76c8 ICMPV6 1

fe80::2e0:81ff:fe5e:8308 ff02::1:2 UDP 1

192.168.1.185 192.168.1.255 UDP 2

192.168.1.211 192.168.1.255 UDP 3

192.168.1.109 192.168.1.108 TCP 428

192.168.1.108 192.168.1.109 TCP 789

The fields printed are:

Field Description

SADDR source IP address

DADDR destination IP address

PROTO IP next level protocol

COUNT number of packets

The example output above provides a quick summary of network activity with host address
details; we can see that both 192.168.1.109 and 192.168.1.108 are swapping many packets via
TCP.

Protocols

Chapter 11 • Providers 307

Stability
The ip provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name stability Data stability Dependency class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

iscsi Provider
The iscsi provider provides probes for tracing iSCSI target activity.

This is a kernel provider built into the COMSTAR iSCSI target port provider. The COMSTAR
iSCSI target and the user-land iSCSI target (/usr/sbin/iscsitgtd) are mutually exclusive.
Only one of the targets can be enabled at a time. The COMSTAR iSCSI target DTrace provider
provides all the probes that are provided by the user-land iSCSI provider, so that any DTrace
script written for the userland provider built into the iSCSI target daemon (iscsitgtd) will
work with the COMSTAR iSCSI target port provider as well without any modification. Since
this provider instruments the iSCSI target activity, DTrace commands and scripts must be run
on the iSCSI target server to observe these probes.

Probes

SCSI Event Probes

SCSI command/response iscsi:::scsi-commandiscsi:::scsi-response

Data out/in/request (rtt) iscsi:::data-sendiscsi:::data-receiveiscsi:::data-request

Login and logout
command/response

iscsi:::login-commandiscsi:::login-responseiscsi:::logout-commandiscsi:::logout-response

NOP out/in (pings) iscsi:::nop-receiveiscsi:::nop-send

Text and task
command/response

iscsi:::task-commandiscsi:::task-responseiscsi:::text-commandiscsi:::text-response

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02308

SCSI Event Probes

Asynchronous message from
target

iscsi:::async-send

Buffer dispatch and
completion (not available
with the USDT provider)

iscsi:::xfer-startiscsi:::xfer-done

Arguments

Probes Variable Type Description

* args[0] conninfo_t * connection info

* args[1] iscsiinfo_t * common iSCSI properties

scsi-command args[2] scsicmd_t * SCSI command block
(cdb)

xfer-startxfer-done args[2] xferinfo_t * Buffer info

Types
All COMSTAR iSCSI target probes have the first and second argument in common:

args[0] conninfo_t * connection information

conninfo_t

typedef struct conninfo {

string ci_local; /* local host IP address */

string ci_remote; /* remote host IP address */

string ci_protocol; /* protocol ("ipv4", "ipv6") */

} conninfo_t;

The conninfo_t structure is used by NFSv4 provider,

Fibre Channel provider and is intended for use by all

application protocol providers as the first argument

to indicate some basic information about the connection.

args[1] iscsiinfo_t * common iSCSI properties

iscsiinfo_t

typedef struct iscsiinfo {

string ii_target; /* target iqn */

string ii_initiator; /* initiator iqn */

string ii_isid; /* initiator session identifier */

string ii_tsih; /* target session identifying handle */

string ii_transport; /* transport type ("iser-ib", "sockets") */

Protocols

Chapter 11 • Providers 309

uint64_t ii_lun; /* target logical unit number */

uint32_t ii_itt; /* initiator task tag */

uint32_t ii_ttt; /* target transfer tag */

uint32_t ii_cmdsn; /* command sequence number */

uint32_t ii_statsn; /* status sequence number */

uint32_t ii_datasn; /* data sequence number */

uint32_t ii_datalen; /* length of data payload */

uint32_t ii_flags; /* probe-specific flags */

} iscsiinfo_t;

The iscsiinfo_t structure is used to provide identifying

information about the target and the initiator and

also some PDU level information such as lun, data length and sequence numbers.

The third argument is only used for the SCSI command probe or the data transfer probe

args[2] scsicmd_t * SCSI command block (cdb)

scsicmd_t

typedef struct scsicmd {

uint64_t ic_len; /* CDB length */

uint8_t *ic_cdb; /* CDB data */

} scsicmd_t;

The scsicmd_t structure is used by the SCSI command probe

and it contains information about the SCSI command

blocks and is intended for use by all the application

protocols that deal with SCSI data.

Although the transport layer is transparent to the user, the COMSTAR iSCSI target also
supports iSCSI over Remote DMA (RDMA), also known as iSER. Since the data transfer phases
are mapped to Remote DMA (RDMA) operations in iSER, the data-send, data-receive and
data-request probes cannot be used with iSER. Instead the xfer-start and xfer-done probes
can be used to trace the data transfer irrespective of the transport used. The data-receive,
data-request and data-send probes can be used when a user wants to track the SCSI Data-IN
and Data-OUT PDUs specifically.

args[2] xferinfo_t * data transfer information

xferinfo_t

typedef struct xferinfo {

uintptr_t xfer_laddr; /* local buffer address */

uint32_t xfer_loffset; /* offset within the local buffer */

uint32_t xfer_lkey; /* access control to local memory */

uintptr_t xfer_raddr; /* remote virtual address */

uint32_t xfer_roffset; /* offset from the remote address */

uint32_t xfer_rkey; /* access control to remote virtual address */

uint32_t xfer_len; /* transfer length */

uint32_t xfer_type; /* Read or Write */

} xferinfo_t;

The xferinfo_t structure is used by the xfer-start

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02310

and the xfer-done probes and contain information about the

data transfer. When the transport type is iSER,

the remote buffer information is given by the xfer_raddr,

xfer_rkey and xfer_roffset fields. It is set to 0 when the transport type is sockets.

Examples

One-liners

Frequency of iSCSI command types:

dtrace -n ’iscsi*::: { @[probename] = count(); }’

Frequency of iSCSI client IP addresses:

dtrace -n ’iscsi*::: { @[args[0]->ci_remote] = count(); }’

Payload bytes by iSCSI command type:

dtrace -n ’iscsi*::: { @[probename] = sum(args[1]->ii_datalen); }’

Payload byte distribution by iSCSI command type:

dtrace -n ’iscsi*::: { @[probename] = quantize(args[1]->ii_datalen); }’

iscsiwho.d

This is a simple script to produce a report of the remote IP addresses and a count of iSCSI
events. This is intended to provide a quick summary of iSCSI activity when run on the iSCSI
target server:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

{

printf("Tracing... Hit Ctrl-C to end.\n");
}

iscsi*:::

{

@events[args[0]->ci_remote, probename] = count();

}

dtrace:::END

{

printf(" %-26s %14s %8s\n", "REMOTE IP", "iSCSI EVENT", "COUNT");
printa(" %-26s %14s %@8d\n", @events);

}

This output shows the host and the number of iSCSI operations:

Protocols

Chapter 11 • Providers 311

./iscsiwho.d

Tracing... Hit Ctrl-C to end.

^C

REMOTE IP iSCSI EVENT COUNT

192.168.1.109 nop-receive 1

192.168.1.109 nop-send 1

192.168.1.109 scsi-response 126

192.168.1.109 scsi-command 208

192.168.1.109 data-request 1207

192.168.1.109 data-receive 1207

The fields are:

Field Description

REMOTE IP IP address of the client

iSCSI EVENT iSCSI event type

COUNT Number of events traced

The example output shows normal traffic. For this simple script, these event names are not
translated beyond their iSCSI provider probe names, and require some thought to comprehend
(they are from the perspective of the iSCSI target server).

iscsixfer.d

Although the transport layer is transparent to the user, the COMSTAR iSCSI target also
supports iSCSI over Remote DMA (RDMA), also known as iSER. An iSER initiator should be
able to read and write data from an iSER target at high data rates with relatively low CPU
utilization compared to iSCSI using TCP/IP. In order to see the transport layer in use, display
the ii_transport field from the iscsiinfo_t structure.

Since the data transfer phases are mapped to Remote DMA (RDMA) operations in iSER, the
data-send, data-receive and data-request probes cannot be used with iSER. Instead here is a
simple script to print an aggregation of all the data transferred between two points using the
xfer-start probe. This can be used for iSCSI using TCP/IP and iSCSI over Remote DMA.

The data-receive, data-request and data-send probes can be used when a user wants to track the
SCSI Data-IN and Data-OUT PDUs specifically (e.g. if the PDUs are received out of order, one
might want to trace the ii_ttt, ii_datasn, ii_statsn etc.). To just get a trace of IO activity,
the xfer-start/xfer-done probes should suffice.

#!/usr/sbin/dtrace -s

#pragma D option quiet

iscsi:::xfer-start

{

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02312

@[args[0]->ci_remote, args[2]->xfer_type] = sum(args[2]->xfer_len);

}

END

{

printf("%26s %10s %8s\n", "REMOTE IP", "READ/WRITE", "BYTES");
printa("%26s %10s %15@d\n", @);

}

This output shows the transfer of bytes:

./iscsixfer.d

Tracing... Hit Ctrl-C to end.

^C

REMOTE IP READ/WRITE BYTES

192.168.1.109 write 464

192.168.1.109 read 1024

The fields are:

Field Description

REMOTE IP IP address of the client

READ/WRITE Read or write

BYTES Number of bytes transferred

Now if a user is interested in just seeing the data move (read or write) as it happens, one could
use this script

#!/usr/sbin/dtrace -s

#pragma D option quiet

BEGIN

{

printf(" %-26s %8s %10s\n", "REMOTE IP", "BYTES", "READ/WRITE");

}

iscsi:::xfer-start

{

printf("%26s %%8d %108s\n", args[0]->ci_remote,

args[2]->xfer_len, args[2]->xfer_type);

}

An interpretation for some of these events are:

Protocols

Chapter 11 • Providers 313

iSCSI event Interpretation

scsi-command A SCSI command was issued, such as a read or a write. Use other scripts for a
breakdown on the SCSI command type.

data-send Data was sent from the iSCSI target server to the client; the client is performing
a read.

data-receive sData was received on the iSCSI target server from the client. The client is
performing a write.

nfsv3 Provider
The nfsv3 provider provides probes for tracing NFS version 3 server activity.

Arguments
All NFS operation probes have the first argument in common:

args[0] conninfo_t * socket connection information

The conninfo_t structure is already used by the iSCSI target provider (iscsi) and the NFS v4
provider (nfsv4), and is intended for use by all provider which are providing some higher level
protocol (e.g. iscsi, nfs, http, ftp).

typedef struct conninfo {

string ci_local; /* local host address */

string ci_remote; /* remote host address */

string ci_protocol; /* protocol (ipv4, ipv6, etc) */

} conninfo_t;

Operation probes have their second argument in common:

args[1] nfsv3opinfo_t * NFS v3 operation properties

typedef struct nfsv3opinfo {

string noi_curpath; /* current file handle path (if any) */

cred_t *noi_cred; /* credentials */

uint64_t noi_xid; /* transaction ID */

} nfsv4opinfo_t;

Probes
Below is a list of the probes along with the specific argument for each whose type is defined by
the NFS v3 specification:

Probe Name args[2]

nfsv3:::op-access-start ACCESS3args *

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02314

Probe Name args[2]

nfsv3:::op-access-done ACCESS3res *

nfsv3:::op-commit-start COMMIT3args *

nfsv3:::op-commit-done COMMIT3res *

nfsv3:::op-create-start CREATE3args *

nfsv3:::op-create-done CREATE3res *

nfsv3:::op-fsinfo-start FSINFO3args *

nfsv3:::op-fsinfo-done FSINFO3res *

nfsv3:::op-fsstat-start FSSTAT3args *

nfsv3:::op-fsstat-done FSSTAT3res *

nfsv3:::op-getattr-start GETATTR3args *

nfsv3:::op-getattr-done GETATTR3res *

nfsv3:::op-lookup-start LOOKUP3args *

nfsv3:::op-lookup-done LOOKUP3res *

nfsv3:::op-link-start LINK3args *

nfsv3:::op-link-done LINK3res *

nfsv3:::op-mkdir-start MKDIR3args *

nfsv3:::op-mkdir-done MKDIR3res *

nfsv3:::op-mknod-start MKNOD3args *

nfsv3:::op-mknod-done- MKNOD3res *

nfsv3:::op-null-start -

nfsv3:::op-null-done -

nfsv3:::op-pathconf-start PATHCONF3args *

nfsv3:::op-pathconf-done PATHCONF3res *

nfsv3:::op-read-start READ3args *

nfsv3:::op-read-done READ3res *

nfsv3:::op-readdir-start READDIR3args *

nfsv3:::op-readdir-done READDIR3res *

nfsv3:::op-readdirplus-start READDIRPLUS3args *

Protocols

Chapter 11 • Providers 315

Probe Name args[2]

nfsv3:::op-readdirplus-done READDIRPLUS3res *

nfsv3:::op-readlink-start READLINK3args *

nfsv3:::op-readlink-done READLINK3res *

nfsv3:::op-remove-start REMOVE3args *

nfsv3:::op-remove-done REMOVE3res *

nfsv3:::op-renamestart RENAME3args *

nfsv3:::op-rename-done RENAME3res *

nfsv3:::op-rmdir-start RMDIR3args *

nfsv3:::op-rmdir-done RMDIR3res *

nfsv3:::op-setattr-start SETATTR3args *

nfsv3:::op-setattr-done SETATTR3res *

nfsv3:::op-symlink-start SYMLINK3args *

nfsv3:::op-symlink-done SYMLINK3res *

nfsv3:::op-write-start WRITE3args *

nfsv3:::op-write-done WRITE3res *

Note – The op-null-* probes have an undefined args[2].

Examples
Some simple examples of nfsv3 provider usage follow.

nfsv3rwsnoop.d

This DTrace scripts traces NFSv3 read and write requests, showing details of each operation:

#!/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option switchrate=10hz

dtrace:::BEGIN

{

printf("%-16s %-18s %2s %-8s %6s %s\n", "TIME(us)",
"CLIENT", "OP", "OFFSET", "BYTES", "PATHNAME");

}

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02316

nfsv3:::op-read-start

{

printf("%-16d %-18s %2s %-8d %6d %s\n", timestamp / 1000,

args[0]->ci_remote, "R", args[2]->offset / 1024, args[2]->count,

args[1]->noi_curpath);

}

nfsv3:::op-write-start

{

printf("%-16d %-18s %2s %-8d %6d %s\n", timestamp / 1000,

args[0]->ci_remote, "W", args[2]->offset / 1024,

args[2]->data.data_len, args[1]->noi_curpath);

}

The following output shows a read of /export/stuff/bin/ghex2, then a read of
/export/stuff/bin/gksu, and finally a write of /export/stuff/words12:

./nfsv3iosnoop.d

TIME(us) CLIENT OP OFFSET BYTES PATHNAME

4299383207 192.168.17.75 R 0 4096 /export/stuff/bin/ghex2

4299391813 192.168.17.75 R 4 28672 /export/stuff/bin/ghex2

4299395700 192.168.17.75 R 32 32768 /export/stuff/bin/ghex2

4299396038 192.168.17.75 R 96 32768 /export/stuff/bin/ghex2

4299396462 192.168.17.75 R 128 8192 /export/stuff/bin/ghex2

4299396550 192.168.17.75 R 64 32768 /export/stuff/bin/ghex2

4320233417 192.168.17.75 R 0 4096 /export/stuff/bin/gksu

4320240902 192.168.17.75 R 4 28672 /export/stuff/bin/gksu

4320242434 192.168.17.75 R 32 32768 /export/stuff/bin/gksu

4320242730 192.168.17.75 R 64 24576 /export/stuff/bin/gksu

4333460565 192.168.17.75 W 0 32768 /export/stuff/words12

4333461477 192.168.17.75 W 32 32768 /export/stuff/words12

4333463264 192.168.17.75 W 64 32768 /export/stuff/words12

4333463567 192.168.17.75 W 96 32768 /export/stuff/words12

4333463893 192.168.17.75 W 128 32768 /export/stuff/words12

4333464202 192.168.17.75 W 160 32768 /export/stuff/words12

4333464451 192.168.17.75 W 192 10055 /export/stuff/words12

The fields printed are:

Field Description

TIME(us) Time of event in microseconds

CLIENT Remote client IP address

OP R == read, W == write

OFFSET File offset of I/O, in Kbytes

BYTES TBytes of I/O

PATHNAME Pathname of file, if known

Protocols

Chapter 11 • Providers 317

Note – The output may be shuffled slightly on multi-CPU servers due to DTrace per-CPU
buffering; post sort the TIME column if needed.

nfsv3ops.d

This DTrace script counts NFSv3 operations by client, printing a summary every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

{

trace("Tracing... Interval 5 secs.\n");
}

nfsv3:::op-*

{

@ops[args[0]->ci_remote, probename] = count();

}

profile:::tick-5sec,

dtrace:::END

{

printf("\n %-32s %-28s %8s\n", "Client", "Operation", "Count");
printa(" %-32s %-28s %@8d\n", @ops);

trunc(@ops);

}

The following output shows which client is sending which NFSv3 operations:

./nfsv3ops.d

Tracing... Interval 5 secs.

Client Operation Count

192.168.17.75 op-commit-done 1

192.168.17.75 op-commit-start 1

192.168.17.75 op-create-done 1

192.168.17.75 op-create-start 1

192.168.17.75 op-access-done 6

192.168.17.75 op-access-start 6

192.168.17.75 op-read-done 6

192.168.17.75 op-read-start 6

192.168.17.75 op-write-done 7

192.168.17.75 op-write-start 7

192.168.17.75 op-lookup-done 8

192.168.17.75 op-lookup-start 8

192.168.17.75 op-getattr-done 10

192.168.17.75 op-getattr-start 10

Client Operation Count

Client Operation Count

192.168.17.75 op-getattr-done 1

192.168.17.75 op-getattr-start 1

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02318

The fields printed are:

Field Description

Client Remote client IP address

Operation NFSv3 operation, described using the nfsv3 provider probename

Count Operations during this interval

nfsv3fileio.d

This DTrace script prints a summary of file read and write bytes:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

{

trace("Tracing... Hit Ctrl-C to end.\n");
}

nfsv3:::op-read-done

{

@readbytes[args[1]->noi_curpath] = sum(args[2]->res_u.ok.data.data_len);

}

nfsv3:::op-write-done

{

@writebytes[args[1]->noi_curpath] = sum(args[2]->res_u.ok.count);

}

dtrace:::END

{

printf("\n%12s %12s %s\n", "Rbytes", "Wbytes", "Pathname");
printa("%@12d %@12d %s\n", @readbytes, @writebytes);

}

This output shows a few files were read, and one was written:

./nfsv3fileio.d

Tracing... Hit Ctrl-C to end.

^C

Rbytes Wbytes Pathname

0 206663 /export/stuff/words10

8624 0 /export/stuff/bin/echo-client-2

13228 0 /export/stuff/bin/echo

496292 0 /export/stuff/bin/ecpg

The fields printed are:

Protocols

Chapter 11 • Providers 319

Field Description

Rbytes Bytes read for this pathname

Wbytes Bytes written to this pathname

Pathname Pathname of NFS file

nfsv3rwtime.d

This DTrace script prints a summary NFSv3 read and write elapsed times (latencies), along with
other details:

#!/usr/sbin/dtrace -s

#pragma D option quiet

inline int TOP_FILES = 10;

dtrace:::BEGIN

{

printf("Tracing... Hit Ctrl-C to end.\n");
}

nfsv3:::op-read-start,

nfsv3:::op-write-start

{

start[args[1]->noi_xid] = timestamp;

}

nfsv3:::op-read-done,

nfsv3:::op-write-done

/start[args[1]->noi_xid] != 0/

{

this->elapsed = timestamp - start[args[1]->noi_xid];

@rw[probename == "op-read-done" ? "read" : "write"] =

quantize(this->elapsed / 1000);

@host[args[0]->ci_remote] = sum(this->elapsed);

@file[args[1]->noi_curpath] = sum(this->elapsed);

start[args[1]->noi_xid] = 0;

}

dtrace:::END

{

printf("NFSv3 read/write distributions (us):\n");
printa(@rw);

printf("\nNFSv3 read/write by host (total us):\n");
normalize(@host, 1000);

printa(@host);

printf("\nNFSv3 read/write top %d files (total us):\n", TOP_FILES);

normalize(@file, 1000);

trunc(@file, TOP_FILES);

printa(@file);

}

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02320

This output below shows a clear peak in the read time distribution plot in the 64 to 127
microsecond range, and a second smaller peak between 4 and 16 milliseconds:

./nfsv3rwtime.d

Tracing... Hit Ctrl-C to end.

^C

NFSv3 read/write distributions (us):

write

value ------------- Distribution ------------- count

16 | 0

32 |@@ 1

64 | 0

read

value ------------- Distribution ------------- count

8 | 0

16 |@ 1

32 |@ 1

64 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 36

128 |@ 1

256 |@ 1

512 | 0

1024 | 0

2048 |@ 1

4096 |@@@ 3

8192 |@@@ 4

16384 | 0

NFSv3 read/write by host (total us):

192.168.17.75 81674

NFSv4 read/write top 10 files (total us):

/export/stuff/motd 63

/export/stuff/bin/daps 5876

/export/stuff/bin/date 8150

/export/stuff/bin/dasher 67584

Other details are printed, such as total read/write latency by host, and the top 10 files by latency.

The next example also shows a pair of peaks, the first around a fraction of a millisecond, the
second at around 4 milliseconds:

./nfsv3rwtime.d

Tracing... Hit Ctrl-C to end.

^C

NFSv3 read/write distributions (us):

read

value ------------- Distribution ------------- count

8 | 0

16 |@ 4

32 |@ 5

Protocols

Chapter 11 • Providers 321

64 |@@@@@@ 22

128 |@@@@ 13

256 |@@@@@@@@@ 30

512 |@@ 7

1024 |@ 3

2048 |@@@ 12

4096 |@@@@@@@ 26

8192 |@@@@ 15

16384 |@ 2

32768 | 0

NFSv3 read/write by host (total us):

192.168.17.75 414458

NFSv3 read/write top 10 files (total us):

/export/stuff/bin/cal 11225

/export/stuff/bin/cjpeg 11947

/export/stuff/bin/charmap 12347

/export/stuff/bin/cdda2wav.bin 13449

/export/stuff/bin/chkey 13963

/export/stuff/bin/cputrack 14533

/export/stuff/bin/catman 15535

/export/stuff/bin/csslint-0.6 18302

/export/stuff/bin/col 19926

/export/stuff/bin/cdrecord.bin 40622

The first peak is likely to be NFS operations hitting the memory cache, and the second those that
missed and went to disk. Further use of DTrace can confirm this theory.

The fields from the distribution plot are:

Field Description

value Minimum elapsed time for this event in microseconds

count Number of events in this time range

nfsv3io.d

This is a simple DTrace script to provide basic I/O details by host every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

{

interval = 5;

printf("Tracing... Interval %d secs.\n", interval);

tick = interval;

}

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02322

nfsv3:::op-*

{

@ops[args[0]->ci_remote] = count();

}

nfsv3:::op-read-done

{

@reads[args[0]->ci_remote] = count();

@readbytes[args[0]->ci_remote] = sum(args[2]->res_u.ok.data.data_len);

}

nfsv3:::op-write-done

{

@writes[args[0]->ci_remote] = count();

@writebytes[args[0]->ci_remote] = sum(args[2]->res_u.ok.count);

}

profile:::tick-1sec

/tick-- == 0/

{

normalize(@ops, interval);

normalize(@reads, interval);

normalize(@writes, interval);

normalize(@writebytes, 1024 * interval);

normalize(@readbytes, 1024 * interval);

printf("\n %-32s %6s %6s %6s %6s %8s\n", "Client", "r/s", "w/s",
"kr/s", "kw/s", "ops/s");

printa(" %-32s %@6d %@6d %@6d %@6d %@8d\n", @reads, @writes,

@readbytes, @writebytes, @ops);

trunc(@ops);

trunc(@reads);

trunc(@writes);

trunc(@readbytes);

trunc(@writebytes);

tick = interval;

}

This output shows 192.168.17.75 calling NFSv3 reads and writes:

./nfsv3io.d

Tracing... Interval 5 secs.

Client r/s w/s kr/s kw/s ops/s

192.168.17.75 27 1 686 40 100

Client r/s w/s kr/s kw/s ops/s

192.168.17.75 0 0 0 0 8

Client r/s w/s kr/s kw/s ops/s

0.0.0.0 0 0 0 0 0

192.168.17.75 2 0 28 0 18

^C

Other details can be calculated from the output, such as average read and write size (eg,
686(kr/s) / 27(r/s) = 25.4 average kr). These could also be added to the script to be printed as
columns.

Protocols

Chapter 11 • Providers 323

The fields printed are:

Field Description

Client Remote client IP address

r/s reads per second

w/s writes per second

kr/s kilobytes read per second

kw/s kilobytes written per second

ops/s Total NFSv3 operations per second (including the reads and writes)

nfsv4 Provider
The nfsv4 provider provides probes for tracing NFS v4 server activity.

Arguments
All NFS operation probes have the first argument in common:

args[0] conninfo_t * socket connection information

The conninfo_t structure is already used by the iSCSI target provider (iscsi), and is intended
for use by all provider which are providing some higher level protocol (e.g. iscsi, nfs, http,
ftp).

typedef struct conninfo {

string ci_local; /* local host address */

string ci_remote; /* remote host address */

string ci_protocol; /* protocol (ipv4, ipv6, etc) */

} conninfo_t;

Operation probes have their second argument in common:

args[1] nfsv4opinfo_t * NFS v4 operation properties

typedef struct nfsv4opinfo {

string noi_curpath; /* current file handle path (if any) */

cred_t *noi_cred; /* credentials */

uint64_t noi_xid; /* transaction ID */

} nfsv4opinfo_t;

Callback operation probes have their second argument in common:

args[1] nfsv4cbinfo_t * NFS v4 callback properties

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02324

typedef struct nfsv4cbinfo {

string nci_curpath; /* file handle path (if any) */

} nfsv4cbinfo_t;

Probes
Below is a list of the top level operation probes along with the specific argument for each whose
type is defined by the NFS v4 specification:

Probe Name args[2]

nfsv4:::compound-op-start COMPOUND4args *

nfsv4:::compound-op-done COMPOUND4res *

Below is a list of operation probes along with the specific argument for each whose type is
defined by the NFS v4 specification:

Probe Name args[2]

nfsv4:::op-access-start ACCESS4args *

nfsv4:::op-access-done ACCESS4res *

nfsv4:::op-close-start CLOSE4args *

nfsv4:::op-close-done CLOSE4res *

nfsv4:::op-commit-start COMMIT4args *

nfsv4:::op-commit-done COMMIT4res *

nfsv4:::op-create-start CREATE4args *

nfsv4:::op-create-done CREATE4res *

nfsv4:::op-delegpurge-start DELEGPURGE4args *

nfsv4:::op-delegpurge-done DELEGPURGE4res *

nfsv4:::op-delegreturn-start DELEGRETURN4args *

nfsv4:::op-delegreturn-done DELEGRETURN4res *

nfsv4:::op-getattr-start GETATTR4args *

nfsv4:::op-getattr-done GETATTR4res *

nfsv4:::op-getfh-start GETFH4args *

nfsv4:::op-getfh-done GETFH4res *

nfsv4:::op-link-start LINK4args *

Protocols

Chapter 11 • Providers 325

Probe Name args[2]

nfsv4:::op-link-done LINK4res *

nfsv4:::op-lock-start LOCK4args *

nfsv4:::op-lock-done LOCK4res *

nfsv4:::op-lockt-start LOCKT4args *

nfsv4:::op-lockt-done LOCKT4res *

nfsv4:::op-locku-start LOCKU4args *

nfsv4:::op-locku-done LOCKU4res *

nfsv4:::op-lookup-start LOOKUP4args *

nfsv4:::op-lookup-done LOOKUP4res *

nfsv4:::op-lookupp-start LOOKUPP4args *

nfsv4:::op-lookupp-done LOOKUPP4res *

nfsv4:::op-nverify-start NVERIFY4args *

nfsv4:::op-nverify-done NVERIFY4res *

nfsv4:::op-open-start OPEN4args *

nfsv4:::op-open-done OPEN4res *

nfsv4:::op-open-confirm-start OPEN_CONFIRM4args *

nfsv4:::op-open-confirm-done OPEN_CONFIRM4res *

nfsv4:::op-open-downgrade-start OPEN_DOWNGRADE4args *

nfsv4:::op-open-downgrade-done OPEN_DOWNGRADE4args *

nfsv4:::op-openattr-start OPENATTR4args *

nfsv4:::op-openattr-done OPENATTR4res *

nfsv4:::op-putfh-start PUTFH4args *

nfsv4:::op-putfh-done PUTFH4res *

nfsv4:::op-putpubfh-start PUTPUBFH4args *

nfsv4:::op-putpubfh-done PUTPUBFH4res *

nfsv4:::op-putrootfh-start PUTROOTFH4args *

nfsv4:::op-putrootfh-done PUTROOTFH4res *

nfsv4:::op-read-start READ4args *

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02326

Probe Name args[2]

nfsv4:::op-read-done READ4res *

nfsv4:::op-readdir-start READDIR4args *

nfsv4:::op-readdir-done READDIR4res *

nfsv4:::op-readlink-start READLINK4args *

nfsv4:::op-readlink-done READLINK4res *

nfsv4:::op-release-lockowner-start RELEASE_LOCKOWNER4args *

nfsv4:::op-release-lockowner-done RELEASE_LOCKOWNER4res *

nfsv4:::op-remove-start REMOVE4args *

nfsv4:::op-remove-don REMOVE4res *

nfsv4:::op-rename-start RENAME4args *

nfsv4:::op-rename-done RENAME4res *

nfsv4:::op-renew-start RENEW4args *

nfsv4:::op-renew-done RENEW4res *

nfsv4:::op-restorefh-start <none>

nfsv4:::op-restorefh-done <none>

nfsv4:::op-savefh-start SAVEFH4args *

nfsv4:::op-savefh-done SAVEFH4res *

nfsv4:::op-secinfo-start SECINFO4args *

nfsv4:::op-secinfo-done SECINFO4res *

nfsv4:::op-setattr-start SETATTR4args *

nfsv4:::op-setattr-done SETATTR4res *

nfsv4:::op-setclientid-start SETCLIENTID4args *

nfsv4:::op-setclientid-done SETCLIENTID4res *

nfsv4:::op-setclientid-confirm-start SETCLIENTID_CONFIRM4args *

nfsv4:::op-setclientid-confirm-done SETCLIENTID_CONFIRM4res *

nfsv4:::op-verify-start VERIFY4args *

nfsv4:::op-verify-done VERIFY4res *

nfsv4:::op-write-start WRITE4args *

Protocols

Chapter 11 • Providers 327

Probe Name args[2]

nfsv4:::op-write-done WRITE4res *

Callback compound probes have an undefined second argument; this slot is reserved for future
use.

Below is a list of the top level callback probes along with the specific argument for each whose
type is defined by the NFS v4 specification:

Probe Name args[2]

nfsv4:::compound-cb-start CB_COMPOUND4args *

nfsv4:::compound-cb-done CB_COMPOUND4res *

Below is a list of callback probes along with the specific argument for each whose type is defined
by the NFS v4 specification:

Probe Name args[2]

nfsv4:::cb-getattr-start CB_GETATTR4args*

nfsv4:::cb-getattr-done CB_GETATTR4res *

nfsv4:::cb-recall-start CB_RECALL4args *

nfsv4:::cb-recall-done CB_RECALL4res *

Note – Since the Solaris NFS v4 implementation does not yet use the 'getattr' callback, the
probe will not be implemented; it is noted here in anticipation of a future implementation.

Examples
Some simple examples of nfsv4 provider usage follow.

nfsv4rwsnoop.d

This DTrace script traces NFSv4 reads and writes:

#!/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option switchrate=10hz

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02328

dtrace:::BEGIN

{

printf("%-16s %-18s %2s %-8s %6s %s\n", "TIME(us)",
"CLIENT", "OP", "OFFSET", "BYTES", "PATHNAME");

}

nfsv4:::op-read-start

{

printf("%-16d %-18s %2s %-8d %6d %s\n", timestamp / 1000,

args[0]->ci_remote, "R", args[2]->offset / 1024, args[2]->count,

args[1]->noi_curpath);

}

nfsv4:::op-write-start

{

printf("%-16d %-18s %2s %-8d %6d %s\n", timestamp / 1000,

args[0]->ci_remote, "W", args[2]->offset / 1024, args[2]->data_len,

args[1]->noi_curpath);

}

This output shows a few files were read, and one was written:

./nfsv4rwsnoop.d

TIME(us) CLIENT OP OFFSET BYTES PATHNAME

156889725960 192.168.1.109 R 0 4096 /export/share/bin/nawk

156889735515 192.168.1.109 R 4 28672 /export/share/bin/nawk

156889736298 192.168.1.109 R 32 32768 /export/share/bin/nawk

156889736544 192.168.1.109 R 96 32768 /export/share/bin/nawk

156889736902 192.168.1.109 R 64 32768 /export/share/bin/nawk

156916061653 192.168.1.109 R 0 4096 /export/share/bin/ssh

156916069375 192.168.1.109 R 4 28672 /export/share/bin/ssh

156916070098 192.168.1.109 R 32 32768 /export/share/bin/ssh

156916070435 192.168.1.109 R 96 32768 /export/share/bin/ssh

156916070758 192.168.1.109 R 64 32768 /export/share/bin/ssh

156916071036 192.168.1.109 R 128 32768 /export/share/bin/ssh

156916071352 192.168.1.109 R 160 32768 /export/share/bin/ssh

156916071582 192.168.1.109 R 192 32768 /export/share/bin/ssh

156916071696 192.168.1.109 R 72 4096 /export/share/bin/ssh

156916080508 192.168.1.109 R 224 4096 /export/share/bin/ssh

156916080844 192.168.1.109 R 228 28672 /export/share/bin/ssh

156916081566 192.168.1.109 R 256 32768 /export/share/bin/ssh

156916081833 192.168.1.109 R 288 32768 /export/share/bin/ssh

156916082237 192.168.1.109 R 320 20480 /export/share/bin/ssh

156933373074 192.168.1.109 W 0 32768 /export/share/words

156933373351 192.168.1.109 W 32 32768 /export/share/words

156933373855 192.168.1.109 W 64 32768 /export/share/words

156933374185 192.168.1.109 W 96 32768 /export/share/words

156933375442 192.168.1.109 W 128 32768 /export/share/words

156933375864 192.168.1.109 W 160 32768 /export/share/words

156933376105 192.168.1.109 W 192 10055 /export/share/words

The fields printed are:

Field Description

TIME(us) Time of event in microseconds

Protocols

Chapter 11 • Providers 329

Field Description

CLIENT Remote client IP address

OP R == read, W == write

OFFSET File offset of I/O, in Kbytes

BYTES Bytes of I/O

PATHNAME Pathname of file, if known

nfsv4ops.d

This DTrace script counts NFSv4 operations by client, printing a summary every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

{

trace("Tracing... Interval 5 secs.\n");
}

nfsv4:::op-*

{

@ops[args[0]->ci_remote, probename] = count();

}

profile:::tick-5sec,

dtrace:::END

{

printf("\n %-32s %-28s %8s\n", "Client", "Operation", "Count");
printa(" %-32s %-28s %@8d\n", @ops);

trunc(@ops);

}

The following output shows which client is sending which NFSv4 operations:

./nfsv4ops.d

Tracing... Interval 5 secs.

Client Operation Count

192.168.1.109 op-getattr-done 1

192.168.1.109 op-getattr-start 1

192.168.1.109 op-putfh-done 1

192.168.1.109 op-putfh-start 1

Client Operation Count

192.168.1.109 op-access-done 1

192.168.1.109 op-access-start 1

192.168.1.109 op-close-done 1

192.168.1.109 op-close-start 1

192.168.1.109 op-getfh-done 1

192.168.1.109 op-getfh-start 1

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02330

192.168.1.109 op-open-done 1

192.168.1.109 op-open-start 1

192.168.1.109 op-getattr-done 3

192.168.1.109 op-getattr-start 3

192.168.1.109 op-read-done 9

192.168.1.109 op-read-start 9

192.168.1.109 op-putfh-done 12

192.168.1.109 op-putfh-start 12

^C

Client Operation Count

The fields printed are:

Field Description

Client Remote client IP address

Operation NFSv4 operation, described using the nfsv4 provider probename

Count Operations during this interval

nfsv4fileio.d

This DTrace script prints a summary of file read and write bytes:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

{

trace("Tracing... Hit Ctrl-C to end.\n");
}

nfsv4:::op-read-done

{

@readbytes[args[1]->noi_curpath] = sum(args[2]->data_len);

}

nfsv4:::op-write-done

{

@writebytes[args[1]->noi_curpath] = sum(args[2]->count);

}

dtrace:::END

{

printf("\n%12s %12s %s\n", "Rbytes", "Wbytes", "Pathname");
printa("%@12d %@12d %s\n", @readbytes, @writebytes);

}

This output shows a few files were read, and one was written:

Protocols

Chapter 11 • Providers 331

./nfsv4fileio.d

Tracing... Hit Ctrl-C to end.

^C

Rbytes Wbytes Pathname

0 206663 /export/share/words1

24528 0 /export/share/bin/xargs

44864 0 /export/share/bin/ed

232476 0 /export/share/bin/vi

The fields printed are:

Field Description

Rbytes Bytes read for this pathname

Wbytes Bytes written to this pathname

Pathname Pathname of NFS file

nfsv4rwtime.d

This DTrace script prints a summary NFSv4 read and write elapsed times (latencies), along with
other details:

#!/usr/sbin/dtrace -s

#pragma D option quiet

inline int TOP_FILES = 10;

dtrace:::BEGIN

{

printf("Tracing... Hit Ctrl-C to end.\n");
}

nfsv4:::op-read-start,

nfsv4:::op-write-start

{

start[args[1]->noi_xid] = timestamp;

}

nfsv4:::op-read-done,

nfsv4:::op-write-done

{

this->elapsed = timestamp - start[args[1]->noi_xid];

@rw[probename == "op-read-done" ? "read" : "write"] =

quantize(this->elapsed / 1000);

@host[args[0]->ci_remote] = sum(this->elapsed);

@file[args[1]->noi_curpath] = sum(this->elapsed);

start[args[1]->noi_xid] = 0;

}

dtrace:::END

{

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02332

printf("NFSv4 read/write distributions (us):\n");
printa(@rw);

printf("\nNFSv4 read/write by host (total us):\n");
normalize(@host, 1000);

printa(@host);

printf("\nNFSv4 read/write top %d files (total us):\n", TOP_FILES);

normalize(@file, 1000);

trunc(@file, TOP_FILES);

printa(@file);

}

This output below shows a peak in the read time distribution plot in the 64 to 127 microsecond
range, and a second peak between 2 and 8 milliseconds:

./nfsv4rwtime.d

Tracing... Hit Ctrl-C to end.

^C

NFSv4 read/write distributions (us):

write

value ------------- Distribution ------------- count

32 | 0

64 |@@@@@@ 1

128 |@@@@@@@@@@@ 2

256 |@@@@@@@@@@@@@@@@@ 3

512 |@@@@@@ 1

1024 | 0

read

value ------------- Distribution ------------- count

16 | 0

32 |@@@@ 6

64 |@@@@@@@@@@@@ 17

128 |@ 1

256 |@@ 3

512 |@ 1

1024 |@@ 3

2048 |@@@@@@@@ 12

4096 |@@@@@@@@@@ 15

8192 |@ 1

16384 | 0

NFSv4 read/write by host (total us):

192.168.1.109 148215

NFSv4 read/write top 10 files (total us):

/export/share/bin/man 5020

/export/share/bin/makeuuid 5132

/export/share/bin/mc68030 5836

/export/share/bin/m4 6446

/export/share/bin/msgfmt 6669

/export/share/bin/mkmsgs 6674

/export/share/bin/mailstats 6935

Protocols

Chapter 11 • Providers 333

/export/share/bin/mkdir 7009

/export/share/bin/mac 7693

/export/share/bin/make 27903

Other details are printed, such as total read/write latency by host, and the top 10 files by latency.

The first peak in the read distribution is likely to be NFS operations hitting the memory cache,
and the second those that missed and read from disk. The writes were all fast as they are likely to
written to the memory cache and returned asynchronously. Further use of DTrace can confirm
these theories.

The fields from the distribution plot are:

Field Description

value Minimum elapsed time for this event in microseconds

count Number of events in this time range

nfsv4io.d

This is a simple DTrace script to provide basic I/O details by host every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

{

interval = 5;

printf("Tracing... Interval %d secs.\n", interval);

tick = interval;

}

nfsv4:::op-*

{

@ops[args[0]->ci_remote] = count();

}

nfsv4:::op-read-done

{

@reads[args[0]->ci_remote] = count();

@readbytes[args[0]->ci_remote] = sum(args[2]->data_len);

}

nfsv4:::op-write-done

{

@writes[args[0]->ci_remote] = count();

@writebytes[args[0]->ci_remote] = sum(args[2]->count);

}

profile:::tick-1sec

/tick-- == 0/

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02334

{

normalize(@ops, interval);

normalize(@reads, interval);

normalize(@writes, interval);

normalize(@writebytes, 1024 * interval);

normalize(@readbytes, 1024 * interval);

printf("\n %-32s %6s %6s %6s %6s %8s\n", "Client", "r/s", "w/s",
"kr/s", "kw/s", "ops/s");

printa(" %-32s %@6d %@6d %@6d %@6d %@8d\n", @reads, @writes,

@readbytes, @writebytes, @ops);

trunc(@ops);

trunc(@reads);

trunc(@writes);

trunc(@readbytes);

trunc(@writebytes);

tick = interval;

}

This output shows 192.168.1.109 calling NFSv4 reads and writes:

./nfsv4io.d

Tracing... Interval 5 secs.

Client r/s w/s kr/s kw/s ops/s

192.168.1.109 17 1 331 40 290

Client r/s w/s kr/s kw/s ops/s

192.168.1.109 9 0 197 0 152

Client r/s w/s kr/s kw/s ops/s

192.168.1.109 16 0 269 0 363

Client r/s w/s kr/s kw/s ops/s

^C

Other details can be calculated from the output, such as average read and write size (eg,
331(kr/s) / 17(r/s) = 19.5 average kr). These could also be added to the script to be printed as
columns.

The fields printed are:

Field Description

Client Remote client IP address

r/s Reads per second

w/s Writes per second

kr/s Kilobytes read per second

kw/s Kilobytes written per second

ops/s Total NFSv4 operations per second (including the reads and writes)

Protocols

Chapter 11 • Providers 335

srp Provider
The srp provider provides probes for tracing srp port provider activity.

This is a kernel provider built into the COMSTAR srp target port provider.

Probes

Probes Overview

Header Header

Service up/down srp:::service-up, srp:::service-down

Remote Port login/logout srp:::login-command, srp:::login-response,
srp:::logout-command

SRP command/response srp:::task-command, srp:::task-response

SCSI command/response srp:::scsi-command, srp:::scsi-response

Data transfer srp:::xfer-start, srp:::xfer-done

For all of the providers below, string fields which are not known contain the string
"<unknown>". Integer fields which are not known contain 0.

Service up/down Event Probes

srp:::service-up and srp:::service-down trace SRP target online and offline events.
Remote port information (ci_remote) is unavailable for both probes.

Probes Variable Type Description

srp:::service-up

srp:::service-down

args[0] conninfo_t * connection information

srp:::service-up

srp:::service-down

args[1] srp_portinfo_t * local and remote port
information

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02336

Remote Port Login/Logout Event Probes

Probes Variable Type Description

srp:::login-command

srp:::login-response

srp:::logout-command

args[0] conninfo_t * connection information

srp:::login-command

srp:::login-response

srp:::logout-command

args[1] srp_portinfo_t * local and remote port
information

srp:::login-command

srp:::login-response

args[2] srp_logininfo_t * login command/response
information

SRP Command Event Probes

Probes Variable Type Description

srp:::task-command

srp:::task-response

args[0] conninfo_t * connection information

srp:::task-command

srp:::task-response

args[1] srp_portinfo_t * local and remote port
information

srp:::scsi-response

srp:::scsi-command

args[2] srp_taskinfo_t * srp task information

SCSI Command Event Probes

Probes Variable Type Description

srp:::scsi-command

srp:::scsi-response

args[0] conninfo_t * connection information

srp:::scsi-command

srp:::scsi-response

args[1] srp_portinfo_t * local and remote port
information

srp:::scsi-command args[2] scsicmd_t * SCSI command block
(cdb)

srp:::scsi-response args[2] srp_taskinfo_t * srp task information

Protocols

Chapter 11 • Providers 337

Probes Variable Type Description

srp:::scsi-command args[3] srp_taskinfo_t * srp task information

Data Transfer Probes

Probes Variable Type Description

srp:::xfer-start

srp:::xfer-done

args[0] conninfo_t * connection information

srp:::xfer-start

srp:::xfer-done

args[1] fc_port_info_t * local port information

srp:::xfer-start

srp:::xfer-done

args[2] xferinfo_t * RDMA transfer
information

srp:::xfer-start

srp:::xfer-done

args[3] srp_taskinfo_t * srp task information

Types
scsicmd_t, conninfo_t and xferinfo_t are common types which are used by other providers.

scsicmd_t
typedef struct scsicmd {

uint64_t ic_len; /* CDB length */

uint8_t *ic_cdb; /* CDB data */

} scsicmd_t;

conninfo_t
typedef struct conninfo {

string ci_local; /* GID of the local HCA */

string ci_remote; /* GID of the remote HCA */

string ci_protocol; /* protocol ("ib") */

} conninfo_t;

srp_portinfo_t
typedef struct srp_portinfo {

/* initiator */

string pi_initiator; /* Initiator: eui.xxxxxxxxxxxxxxx */

string pi_i_sid; /* Initiator seiion id */

/* target */

string pi_target; /* Target: eui.xxxxxxxxxxxxxxx */

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02338

string pi_t_sid; /* Target session id */

uintptr_t pi_chan_id; /* Channel identifier */

} srp_portinfo_t;

srp_logininfo_t
typedef struct srp_logininfo {

uint64_t li_task_tag; /* SRP task tag */

uint32_t li_max_it_iu_len; /* Maxium iu length that initiator can

send to target */

uint32_t li_max_ti_iu_len; /* Maxium iu length that target can

send to initiator */

uint32_t li_request_limit; /* Maximun number of SRP requests

that initiator can send on a channel */

uint32_t reason_code; /* Reason code */

} srp_logininfo_t;

srp_taskinfo_t
typedef struct srp_taskinfo {

uint64_t ti_task_tag; /* SRP task tag */

uint64_t ti_lun; /* Target logical unit number */

uint8_t ti_function; /* Task management function */

uint32_t ti_req_limit_delta; /* Increment of channel’s request limit */

uint8_t ti_flag; /* bit 2:DOOVER 3:DOUNDER 4:DIOVER 5:DIUNDER */

uint32_t ti_do_resid_cnt; /* Data-out residual count */

uint32_t ti_di_resid_cnt; /* Data-in residual count */

uint8_t ti_status; /* Status of this task */

} srp_taskinfo_t;

xferinfo_t
typedef struct xferinfo {

uintptr_t xfer_laddr; /* Local buffer address */

uint32_t xfer_loffset; /* Relative offset from local buffer */

uint32_t xfer_lkey; /* Access control to local memory */

uintptr_t xfer_raddr; /* Remote virtual address */

uint32_t xfer_roffset; /* Offset from the remote address */

uint32_t xfer_rkey; /* Access control to remote address */

uint32_t xfer_len; /* Transfer length */

uint8_t xfer_type; /* 0: read; 1: write; */

} xferinfo_t;

Examples

service.d

This is a simple script to produce a report of target online/offline events.

#!/usr/sbin/dtrace -s

#pragma D option quiet

Protocols

Chapter 11 • Providers 339

dtrace:::BEGIN

{

printf("Tracing... Hit Ctrl-C to end.\n\n");
printf("%-14s %-35s %-20s\n", "SRP EVENT", "LOCAL PORT", "EUI NAME");

};

srp:::service-up

{

printf("%-14s %-35s %-20s\n", probename, args[0]->ci_local, args[1]->pi_target);

}

srp:::service-down

{

printf("%-14s %-35s %-20s\n", probename, args[0]->ci_local, args[1]->pi_target);

}

This output shows the host and the number of iSCSI operations:

thump1## dtrace -s ~/src/service.d

Tracing... Hit Ctrl-C to end.

^C

SRP EVENT LOCAL PORT EUI NAME

service-down fe80000000000000:0003ba0001004d31 eui.0003BA0001004D30

service-down fe80000000000000:0003ba0001004d32 eui.0003BA0001004D30

service-up fe80000000000000:0003ba0001004d31 eui.0003BA0001004D30

service-up fe80000000000000:0003ba0001004d32 eui.0003BA0001004D30

thump1##

The fields are:

Field Description

SRP EVENT srp event type

LOCAL PORT GID of the local port

EUI NAME EUI name of the local port

srpwho.d

This is a simple script to produce a report of the remote HCA port and a count of srp events.
This is intended to provide a quick summary of srp activity when run on the SRP target server:

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN

{

printf("Tracing... Hit Ctrl-C to end.\n");
}

srp:::login-command,

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02340

srp:::login-response,

srp:::task-command,

srp:::task-response,

srp:::scsi-command,

srp:::scsi-response,

srp:::xfer-start,

srp:::xfer-done

{

@events[args[0]->ci_remote, probename] = count();

}

dtrace:::END

{

printf(" %-33s %14s %8s\n", "REMOTE GID", "iSCSI EVENT", "COUNT");
printa(" %-33s %14s %@8d\n", @events);

}

This output shows the host and the number of iSCSI operations:

thump1## dtrace -s ./srpwho.d

Tracing... Hit Ctrl-C to end.

^C

REMOTE GID iSCSI EVENT COUNT

fe80000000000000:0003ba000100386d login-command 1

fe80000000000000:0003ba000100386d login-response 1

fe80000000000000:0003ba0001003851 login-command 2

fe80000000000000:0003ba0001003851 login-response 2

fe80000000000000:0003ba0001003852 login-command 2

fe80000000000000:0003ba0001003852 login-response 2

fe80000000000000:0003ba0001004d32 xfer-done 9

fe80000000000000:0003ba0001004d32 xfer-start 9

fe80000000000000:0003ba0001004d31 xfer-done 18

fe80000000000000:0003ba0001004d31 xfer-start 18

fe80000000000000:0003ba0001004d32 scsi-command 22

fe80000000000000:0003ba0001004d32 scsi-response 22

fe80000000000000:0003ba0001004d32 task-command 22

fe80000000000000:0003ba0001004d32 task-response 22

fe80000000000000:0003ba0001004d31 scsi-command 42

fe80000000000000:0003ba0001004d31 scsi-response 42

fe80000000000000:0003ba0001004d31 task-command 42

fe80000000000000:0003ba0001004d31 task-response 42

The fields are:

Field Description

REMOTE GID GID of the client HCA port

SRP EVENT srp event type

COUNT Number of events traced

srpsnoop.d

This is a simple script to snoop srp events when run on a srp target server.

Protocols

Chapter 11 • Providers 341

#!/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option switchrate=10

dtrace:::BEGIN

{

printf("%17s %3s %-40s %-14s %6s %10s %6s\n", "TIMESTAMP",
"CPU", "REMOTE GID", "EVENT", "BYTES", "TAG", "SCSIOP");

/*

* SCSI opcode to string translation hash. This is from

* /usrp/include/sys/scsi/generic/commands.h. If you would

* rather all hex, comment this out.

*/

scsiop[0x08] = "read";
scsiop[0x0a] = "write";
scsiop[0x0b] = "seek";
scsiop[0x28] = "read(10)";
scsiop[0x2a] = "write(10)";
scsiop[0x2b] = "seek(10)";

}

srp:::login-*

{

printf("%17d %3d %-40s %-14s %17d -\n", timestamp, cpu,

args[0]->ci_remote,

probename, args[2]->li_task_tag);

}

srp:::task-command,

srp:::task-response,

srp:::scsi-response

{

printf("%17d %3d %-40s %-14s %6d %10d -\n", timestamp, cpu,

args[0]->ci_remote,

probename, 0, args[2]->ti_task_tag);

}

srp:::scsi-command

/scsiop[args[2]->ic_cdb[0]] != NULL/

{

printf("%17d %3d %-40s %-14s %6d %10d %s\n", timestamp, cpu,

args[0]->ci_remote,

probename, 0, args[3]->ti_task_tag, scsiop[args[2]->ic_cdb[0]]);

}

srp:::scsi-command

/scsiop[args[2]->ic_cdb[0]] == NULL/

{

printf("%17d %3d %-40s %-14s %6d %10d 0x%x\n", timestamp, cpu,

args[0]->ci_remote,

probename, 0, args[3]->ti_task_tag, args[2]->ic_cdb[0]);

}

srp:::xfer-start,

srp:::xfer-done

{

printf("%17d %3d %-40s %-14s %6d %10d %s\n", timestamp,

cpu, args[0]->ci_remote,

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02342

probename,args[2]->xfer_len, args[3]->ti_task_tag,

args[2]->xfer_type > 0 ? "READ" : "WRITE");
}

This output shows the snoop on dd commands executed by the initiator.

thump1## dtrace -s ./srpsnoop.d

TIMESTAMP CPU REMOTE GID EVENT BYTES TAG SCSIOP

22644410404019 3 fe80000000000000:0003ba0001004d31 task-command 0 26 -

22644410493068 3 fe80000000000000:0003ba0001004d31 scsi-command 0 26 read(10)

22644410511422 3 fe80000000000000:0003ba0001004d31 task-command 0 30 -

22644410541494 3 fe80000000000000:0003ba0001004d31 scsi-command 0 30 read(10)

22644410621049 0 fe80000000000000:0003ba0001004d31 xfer-start 2048 26 READ

22644410720486 1 fe80000000000000:0003ba0001004d31 xfer-start 49152 30 READ

22644410681390 3 fe80000000000000:0003ba0001004d31 xfer-done 2048 26 READ

22644410694719 3 fe80000000000000:0003ba0001004d31 scsi-response 0 26 -

22644410703358 3 fe80000000000000:0003ba0001004d31 task-response 0 26 -

22644410895424 3 fe80000000000000:0003ba0001004d31 xfer-done 49152 30 READ

22644410901576 3 fe80000000000000:0003ba0001004d31 scsi-response 0 30 -

22644410905717 3 fe80000000000000:0003ba0001004d31 task-response 0 30 -

22727363721107 3 fe80000000000000:0003ba0001004d31 task-command 0 59 -

22727363919179 0 fe80000000000000:0003ba0001004d31 xfer-start 10240 59 WRITE

22727364095164 0 fe80000000000000:0003ba0001004d31 scsi-response 0 59 -

22727364105406 0 fe80000000000000:0003ba0001004d31 task-response 0 59 -

22727363812953 3 fe80000000000000:0003ba0001004d31 scsi-command 0 59 write(10)

22727363986185 3 fe80000000000000:0003ba0001004d31 xfer-done 10240 59 WRITE

The fields are:

Field Description

CPU CPU event occurred on

REMOTE GID GID of the client HCA port

EVENT srp event type

BYTES Data bytes

TAG Initiator task tag

SCSIOP SCSI opcode as a description, as hex, or '-'

tcp Provider
he tcp provider provides probes for tracing the TCP protocol.

Probes
The tcp probes are described in the table below.

Protocols

Chapter 11 • Providers 343

TABLE 11–40 tcp Probes

Probe Description

state-change Probe that fires a TCP session changes its TCP state. Previous state is noted in
the tcplsinfo_t * probe argument. The tcpinfo_t * and ipinfo_t *

arguments are NULL.

send Probe that fires whenever TCP sends a segment (either control or data).

receive Probe that fires whenever TCP receives a segment (either control or data).

connect-request Probe that fires when a TCP active open is initiated by sending an initial SYN
segment. The tcpinfo_t * and ipinfo_t * probe arguments represent the
TCP and IP headers associated with the initial SYN segment sent.

connect-established This probe fires when either of the following occurs: either a TCP active
OPEN succeeds - the initial SYN has been sent and a valid SYN,ACK segment
has been received in response. TCP enters the ESTABLISHED state, and the
tcpinfo_t * and ipinfo_t * probe arguments represent the TCP and IP
headers associated with the SYN,ACK segment received; or a simultaneous
active OPEN succeeds and a final ACK is received from the peer TCP. TCP has
entered the ESTABLISHED state and the tcpinfo_t * and ipinfo_t * probe
arguments represent the TCP and IP headers of the final ACK received. The
common thread in these cases is that an active-OPEN connection is
established at this point, in contrast with tcp:::accept-established which
fires on passive connection establishment. In both cases above, the TCP
segment that is presented via the tcpinfo_t * is the segment that triggers the
transition to ESTABLISHED - the received SYN,ACK in the first case and the
final ACK segment in the second.

connect-refused A TCP active OPEN connection attempt was refused by the peer - a RST
segment was received in acknowledgment of the initial SYN. The tcpinfo_t *
and ipinfo_t * probe arguments represent the TCP and IP headers
associated with the RST,ACK segment received.

accept-established A passive open has succeeded - an initial active OPEN initiation SYN has been
received, TCP responded with a SYN,ACK and a final ACK has been received.
TCP has entered the ESTABLISHED state. The tcpinfo_t * and ipinfo_t *

probe arguments represent the TCP and IP headers associated with the final
ACK segment received.

accept-refused An incoming SYN has arrived for a destination port with no listening
connection, so the connection initiation request is rejected by sending a RST
segment ACKing the SYN. The tcpinfo_t * and ipinfo_t * probe arguments
represent the TCP and IP headers associated with the RST segment sent.

The send and receive probes trace packets on physical interfaces and also packets on loopback
interfaces that are processed by tcp. On Solaris, loopback TCP connections can bypass the TCP
layer when transferring data packets - this is a performance feature called tcp fusion; these
packets are also traced by the tcp provider.

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02344

Arguments
The argument types for the tcp probes are listed in the table below. The arguments are
described in the following section. All probes expect state-change have 5 arguments -
state-change has 6.

Probe args[0] args[1] args[2] args[3] args[4] args[5]

state-change null csinfo_t * null tcpsinfo_t

*

null tcplsinfo_t

*

send pktinfo_t

*

csinfo_t * ipinfo_t * tcpsinfo_t

*

tcpinfo_t

*

receive pktinfo_t

*

csinfo_t * ipinfo_t * tcpsinfo_t

*

tcpinfo_t

*

connect-request pktinfo_t

*

csinfo_t * ipinfo_t * tcpsinfo_t

*

tcpinfo_t

*

connect-established pktinfo_t

*

csinfo_t * ipinfo_t * tcpsinfo_t

*

tcpinfo_t

*

connect-refused pktinfo_t

*

csinfo_t * ipinfo_t * tcpsinfo_t

*

tcpinfo_t

*

accept-established pktinfo_t

*

csinfo_t * ipinfo_t * tcpsinfo_t

*

tcpinfo_t

*

accept-refused pktinfo_t

*

csinfo_t * ipinfo_t * tcpsinfo_t

*

tcpinfo_t

*

pktinfo_t Structure

The pktinfo_t structure is where packet ID info can be made available for deeper analysis if
packet IDs become supported by the kernel in the future.

The pkt_addr member is currently always NULL.

typedef struct pktinfo {

uintptr_t pkt_addr; /* currently always NULL */

} pktinfo_t;

csinfo_t Structure

The csinfo_t structure is where connection state info is made available. It contains a unique
(system-wide) connection ID, and the process ID and zone ID associated with the connection.

typedef struct csinfo {

uintptr_t cs_addr;

uint64_t cs_cid;

Protocols

Chapter 11 • Providers 345

pid_t cs_pid;

zoneid_t cs_zoneid;

} csinfo_t;

cs_addr Address of translated ip_xmit_attr_t *.

cs_cid Connection id. A unique per-connection identifier which identifies the
connection during its lifetime.

cs_pid Process ID associated with the connection.

cs_zoneid Zone ID associated with the connection.

ipinfo_t Structure

The ipinfo_t structure contains common IP info for both IPv4 and IPv6.

typedef struct ipinfo {

uint8_t ip_ver; /* IP version (4, 6) */

uint16_t ip_plength; /* payload length */

string ip_saddr; /* source address */

string ip_daddr; /* destination address */

} ipinfo_t;

These values are read at the time the probe fired in TCP, and so ip_plength is the expected IP
payload length - however the IP layer may add headers (such as AH and ESP) which will
increase the actual payload length. To examine this, also trace packets using the ip provider.

TABLE 11–41 ipinfo_t Members

ip_ver IP version number. Currently either 4 or 6.

ip_plength Payload length in bytes. This is the length of the packet at the time of tracing,
excluding the IP header.

ip_saddr Source IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC-1884 convention 2 with lower case hexadecimal digits.

ip_daddr Destination IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC-1884 convention 2 with lower case hexadecimal digits.

tcpsinfo_t Structure

The tcpsinfo_t structure contains tcp state info.

typedef struct tcpsinfo {

uintptr tcps_addr;

int tcps_local; /* is delivered locally, boolean */

int tcps_active; /* active open (from here), boolean */

uint16_t tcps_lport; /* local port */

uint16_t tcps_rport; /* remote port */

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02346

string tcps_laddr; /* local address, as a string */

string tcps_raddr; /* remote address, as a string */

int32_t tcps_state;/* TCP state. Use inline tcp_state_string[]to convert to string */

uint32_t tcps_iss; /* initial sequence # sent */

uint32_t tcps_suna; /* sequence # sent but unacked */

uint32_t tcps_snxt; /* next sequence # to send */

uint32_t tcps_rack; /* sequence # we have acked */

uint32_t tcps_rnxt; /* next sequence # expected */

uint32_t tcps_swnd; /* send window size */

uint32_t tcps_snd_ws; /* send window scaling */

uint32_t tcps_rwnd; /* receive window size */

uint32_t tcps_rcv_ws; /* receive window scaling */

uint32_t tcps_cwnd; /* congestion window */

uint32_t tcps_cwnd_ssthresh; /* threshold for congestion avoidance */

uint32_t tcps_sack_fack; /* SACK sequence # we have acked */

uint32_t tcps_sack_snxt; /* next SACK seq # for retransmission */

uint32_t tcps_rto; /* round-trip timeout, msec */

uint32_t tcps_mss; /* max segment size */

int tcps_retransmit; /* retransmit send event, boolean */

} tcpsinfo_t;

It may seem redundant to supply the local and remote ports and addresses here as well as in the
tcpinfo_t below, but the tcp:::state-change probes do not have associated tcpinfo_t data,
so in order to map the state change to a specific port, we need this data here.

TABLE 11–42 tcpsinfo_t Members

tcps_addr Address of translated tcp_t *.

tcps_local is local, boolean. 0: is not delivered locally (uses a physical network interface),
1: is delivered locally (including loopback interfaces, eg lo0).

tcps_active is an active open, boolean. 0: TCP connection was created from a remote host,
1: TCP connection was created from this host.

tcps_lport local port associated with the TCP connection.

tcps_rport remote port associated with the TCP connection.

tcps_laddr local address associated with the TCP connection, as a string.

tcps_raddr remote address associated with the TCP connection, as a string.

tcps_state TCP state. Inline definitions are provided for the various TCP states:
TCP_STATE_CLOSED, TCP_STATE_SYN_SENT, etc. Use inline tcp_state_string[]
to convert state to a string.

tcps_iss Initial sequence number sent.

tcps_suna Lowest sequence number for which we have sent data but not received
acknowledgement.

tcps_snxt Next sequence number to send. tcps_snxt - tcps_suna gives the number of
bytes pending acknowledgement for the TCP connection.

Protocols

Chapter 11 • Providers 347

TABLE 11–42 tcpsinfo_t Members (Continued)
tcps_rack Highest sequence number for which we have received and sent

acknowledgement.

tcps_rnxt Next sequence number expected on receive side. tcps_rnxt - tcps_rack gives
the number of bytes we have received but not yet acknowledged for the TCP
connection.

tcps_swnd TCP send window size.

tcps_snd_ws TCP send window scale. tcps_swnd << tcp_snd_ws gives the scaled window
size if window scaling options are in use.

tcps_rwnd TCP receive window size.

tcps_rcv_ws TCP receive window scale. tcps_rwnd << tcp_rcv_ws gives the scaled window
size if window scaling options are in use.

tcps_cwnd TCP congestion window size. tcps_cwnd_ssthresh TCP congestion window
threshold. When the congestion window is greater than ssthresh, congestion
avoidance begins.

tcps_cwnd_ssthresh TCP congestion window threshold. When the congestion window is greater
than ssthresh, congestion avoidance begins.

tcps_sack_fack Highest SACK-acked sequence number.

tcps_sack_snxt Next sequence num to be retransmitted using SACK.

tcps_rto Round-trip timeout. If we do not receive acknowledgement of data sent
tcps_rto msec ago, retransmit is required.

tcps_mss Maximum segment size.

tcps_retransmit send is a retransmit, boolean. 1 for tcp:::send events that are retransmissions,
0 for tcp events that are not send events, and for send events that are not
retransmissions.

tcplsinfo_t Structure

The tcplsinfo_t structure contains the previous tcp state during a state change.

typedef struct tcplsinfo {

int32_t tcps_state; /* TCP state */

} tcplsinfo_t;

TABLE 11–43 tcplsinfo_t Members

tcps_state previous TCP state. Inline definitions are provided for the various TCP states:
TCP_STATE_CLOSED, TCP_STATE_SYN_SENT, etc. Use inline
tcp_state_string[] to convert state to a string.

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02348

tcpinfo_t Structure

The tcpinfo_t structure is a DTrace translated version of the TCP header.

typedef struct tcpinfo {

uint16_t tcp_sport; /* source port */

uint16_t tcp_dport; /* destination port */

uint32_t tcp_seq; /* sequence number */

uint32_t tcp_ack; /* acknowledgment number */

uint8_t tcp_offset; /* data offset, in bytes */

uint8_t tcp_flags; /* flags */

uint16_t tcp_window; /* window size */

uint16_t tcp_checksum; /* checksum */

uint16_t tcp_urgent; /* urgent data pointer */

tcph_t *tcp_hdr; /* raw TCP header */

} tcpinfo_t;

TABLE 11–44 tcpinfo_t Members

tcp_sport TCP source port.

tcp_dport TCP destination port.

tcp_seq TCP sequence number.

tcp_ack TCP acknowledgment number.

tcp_offset Payload data offset, in bytes (not 32-bit words).

tcp_flags TCP flags. See the tcp_flags table below for available macros.

tcp_window TCP window size, bytes.

tcp_checksum Checksum of TCP header and payload.

tcp_urgent TCP urgent data pointer, bytes.

tcp_hdr Pointer to raw TCP header at time of tracing.

TABLE 11–45 tcp_flags Values

TH_FIN No more data from sender (finish).

TH_SYN Synchronize sequence numbers (connect).

TH_RST Reset the connection.

TH_PUSH TCP push function.

TH_ACK Acknowledgment field is set.

TH_URG Urgent pointer field is set.

TH_ECE Explicit congestion notification echo (see RFC-3168).

Protocols

Chapter 11 • Providers 349

TABLE 11–45 tcp_flags Values (Continued)
TH_CWR Congestion window reduction.

See RFC-793 for a detailed explanation of the standard TCP header fields and flags.

Examples
Some simple examples of tcp provider usage follow.

Connections by Host Address

This DTrace one-liner counts inbound TCP connections by source IP address:

dtrace -n ’tcp:::accept-established { @[args[3]->tcps_raddr] = count(); }’

dtrace: description ’tcp:::state-change’ matched 1 probes

^C

127.0.0.1 1

192.168.2.88 1

fe80::214:4fff:fe8d:59aa 1

192.168.1.109 3

The output above shows there were 3 TCP connections from 192.168.1.109, a single TCP
connection from the IPv6 host fe80::214:4fff:fe8d:59aa, etc.

Connections by TCP Port

This DTrace one-liner counts inbound TCP connections by local TCP port:

dtrace -n ’tcp:::accept-established { @[args[3]->tcps_lport] = count(); }’

dtrace: description ’tcp:::state-change’ matched 1 probes

^C

40648 1

22 3

The output above shows there were 3 TCP connections for port 22 (ssh), a single TCP
connection for port 40648 (an RPC port).

Who is Connecting to What

Combining the previous two examples produces a useful one liner, to quickly identify who is
connecting to what:

dtrace -n

’tcp:::accept-established { @[args[3]->tcps_raddr, args[3]->tcps_lport] = count(); }’

dtrace: description ’tcp:::state-change’ matched 1 probes

^C

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02350

192.168.2.88 40648 1

fe80::214:4fff:fe8d:59aa 22 1

192.168.1.109 22 3

The output above shows there were 3 TCP connections from 192.168.1.109 to port 22 (ssh),
etc.

Who Isn't Connecting to What

It may be useful when troubleshooting connection issues to see who is failing to connect to their
requested ports. This is equivalent to seeing where incoming SYNs arrive when no listener is
present, as per RFC793:

dtrace -n ’tcp:::accept-refused

{ @[args[2]->ip_daddr, args[4]->tcp_sport] = count(); }’

dtrace: description ’tcp:::receive ’ matched 1 probes

^C

192.168.1.109 23 2

Here we traced two failed attempts by host 192.168.1.109 to connect to port 23 (telnet).

Packets by Host Address

This DTrace one-liner counts TCP received packets by host address:

dtrace -n ’tcp:::receive { @[args[2]->ip_saddr] = count(); }’

dtrace: description ’tcp:::receive ’ matched 5 probes

^C

127.0.0.1 7

fe80::214:4fff:fe8d:59aa 14

192.168.2.30 43

192.168.1.109 44

192.168.2.88 3722

The output above shows that 7 TCP packets were received from 127.0.0.1, 14 TCP packets
from the IPv6 host fe80::214:4fff:fe8d:59aa, etc.

Packets by Local Port

This DTrace one-liner counts TCP received packets by the local TCP port:

dtrace -n ’tcp:::receive { @[args[4]->tcp_dport] = count(); }’

dtrace: description ’tcp:::receive ’ matched 5 probes

^C

42303 3

42634 3

2049 27

40648 36

22 162

Protocols

Chapter 11 • Providers 351

The output above shows that 162 packets were received for port 22 (ssh), 36 packets were
received for port 40648 (an RPC port), 27 packets for 2049 (NFS), and a few packets to high
numbered client ports.

Sent Size Distribution

This DTrace one-liner prints distribution plots of IP payload size by destination, for TCP sends:

dtrace -n ’tcp:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }’

dtrace: description ’tcp:::send ’ matched 3 probes

^C

192.168.1.109

value ------------- Distribution ------------- count

32 | 0

64 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 14

128 |@@@ 1

256 | 0

192.168.2.30

value ------------- Distribution ------------- count

16 | 0

32 |@@@@@@@@@@@@@@@@@@@@ 7

64 |@@@@@@@@@ 3

128 |@@@ 1

256 |@@@@@@ 2

512 |@@@ 1

1024 | 0

tcpstate.d

This DTrace script demonstrates the capability to trace TCP state changes:

#!/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option switchrate=10

int last[int];

dtrace:::BEGIN

{

printf(" %3s %12s %-20s %-20s\n", "CPU", "DELTA(us)", "OLD", "NEW");
last = timestamp;

}

tcp:::state-change

/ last[args[1]->cs_cid] /

{

this->elapsed = (timestamp - last[args[1]->cs_cid]) / 1000;

printf(" %3d %12d %-20s -> %-20s\n", cpu, this->elapsed,

tcp_state_string[args[5]->tcps_state],

tcp_state_string[args[3]->tcps_state]);

last[args[1]->cs_cid] = timestamp;

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02352

}

tcp:::state-change

/ last[args[1]->cs_cid] == 0 /

{

printf(" %3d %12s %-20s -> %-20s\n", cpu, "-",
tcp_state_string[args[5]->tcps_state],

tcp_state_string[args[3]->tcps_state]);

last[args[1]->cs_cid] = timestamp;

}

This script was run on a system for a couple of minutes:

./tcpstate.d

CPU DELTA(us) OLD NEW

0 - state-listen -> state-syn-received

0 613 state-syn-received -> state-established

0 - state-idle -> state-bound

0 63 state-bound -> state-syn-sent

0 685 state-syn-sent -> state-bound

0 22 state-bound -> state-idle

0 114 state-idle -> state-closed

In the above example output, an inbound connection is traced, It takes 613 us to go from
syn-received to established. An outbound connection attempt is also made to a closed port. It
takes 63us to go from bound to syn-sent, 685 us to go from syn-sent to bound etc.

The fields printed are:

Field Description

CPU CPU id for the event

DELTA(us) time since previous event for that connection, microseconds

OLD old TCP state

NEW new TCP state

tcpio.d

The following DTrace script traces TCP packets and prints various details:

#!/usr/sbin/dtrace -s

#pragma D option quiet

#pragma D option switchrate=10hz

dtrace:::BEGIN

{

printf(" %3s %15s:%-5s %15s:%-5s %6s %s\n", "CPU",
"LADDR", "LPORT", "RADDR", "RPORT", "BYTES", "FLAGS");

}

Protocols

Chapter 11 • Providers 353

tcp:::send

{

this->length = args[2]->ip_plength - args[4]->tcp_offset;

printf(" %3d %16s:%-5d -> %16s:%-5d %6d (", cpu,

args[2]->ip_saddr, args[4]->tcp_sport,

args[2]->ip_daddr, args[4]->tcp_dport, this->length);

}

tcp:::receive

{

this->length = args[2]->ip_plength - args[4]->tcp_offset;

printf(" %3d %16s:%-5d <- %16s:%-5d %6d (", cpu,

args[2]->ip_daddr, args[4]->tcp_dport,

args[2]->ip_saddr, args[4]->tcp_sport, this->length);

}

tcp:::send,

tcp:::receive

{

printf("%s", args[4]->tcp_flags & TH_FIN ? "FIN|" : "");
printf("%s", args[4]->tcp_flags & TH_SYN ? "SYN|" : "");
printf("%s", args[4]->tcp_flags & TH_RST ? "RST|" : "");
printf("%s", args[4]->tcp_flags & TH_PUSH ? "PUSH|" : "");
printf("%s", args[4]->tcp_flags & TH_ACK ? "ACK|" : "");
printf("%s", args[4]->tcp_flags & TH_URG ? "URG|" : "");
printf("%s", args[4]->tcp_flags & TH_ECE ? "ECE|" : "");
printf("%s", args[4]->tcp_flags & TH_CWR ? "CWR|" : "");
printf("%s", args[4]->tcp_flags == 0 ? "null " : "");
printf("\b)\n");

}

This example output has captured a TCP handshake:

./tcpio.d

CPU LADDR:LPORT RADDR:RPORT BYTES FLAGS

1 192.168.2.80:22 -> 192.168.1.109:60337 464 (PUSH|ACK)

1 192.168.2.80:22 -> 192.168.1.109:60337 48 (PUSH|ACK)

2 192.168.2.80:22 -> 192.168.1.109:60337 20 (PUSH|ACK)

3 192.168.2.80:22 <- 192.168.1.109:60337 0 (SYN)

3 192.168.2.80:22 -> 192.168.1.109:60337 0 (SYN|ACK)

3 192.168.2.80:22 <- 192.168.1.109:60337 0 (ACK)

3 192.168.2.80:22 <- 192.168.1.109:60337 0 (ACK)

3 192.168.2.80:22 <- 192.168.1.109:60337 20 (PUSH|ACK)

3 192.168.2.80:22 -> 192.168.1.109:60337 0 (ACK)

3 192.168.2.80:22 <- 192.168.1.109:60337 0 (ACK)

3 192.168.2.80:22 <- 192.168.1.109:60337 376 (PUSH|ACK)

3 192.168.2.80:22 -> 192.168.1.109:60337 0 (ACK)

3 192.168.2.80:22 <- 192.168.1.109:60337 24 (PUSH|ACK)

2 192.168.2.80:22 -> 192.168.1.109:60337 736 (PUSH|ACK)

3 192.168.2.80:22 <- 192.168.1.109:60337 0 (ACK)

The fields printed are:

Field Description

CPU CPU id that event occurred on

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02354

Field Description

LADDR local IP address

LPORT local TCP port

RADDR remote IP address

RPORT remote TCP port

BYTES TCP payload bytes

FLAGS TCP flags

Note – The output may be shuffled slightly on multi-CPU servers due to DTrace per-CPU
buffering, and events such as the TCP handshake can be printed out of order. Keep an eye on
changes in the CPU column, or add a timestamp column to this script and post sort.

tcp Stability
The tcp provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

udp Provider
The udp provider provides probes for tracing the UDP protocol.

Probes
The udp probes are described in the table below.

Protocols

Chapter 11 • Providers 355

TABLE 11–46 udp Probes

Probe Description

send Probe that fires whenever UDP sends a datagram.

receive Probe that fires whenever UDP receives a datagram.

The send and receive probes trace datagrams on physical interfaces and also packets on
loopback interfaces that are processed by udp.

Arguments
The argument types for the udp probes are listed in the table below. The arguments are
described in the following section.

TABLE 11–47 udp Probe Arguments

Probe args[0] args[1] args[2] args[3] args[4]

send pktinfo_t * csinfo_t * ipinfo_t * udpinfo_t * udpinfo_t *

receive pktinfo_t * csinfo_t * ipinfo_t * udpinfo_t * udpinfo_t *

pktinfo_t Structure

The pktinfo_t structure is where packet ID info can be made available for deeper analysis if
packet IDs become supported by the kernel in the future.

The pkt_addr member is currently always NULL.

typedef struct pktinfo {

uintptr_t pkt_addr; /* currently always NULL */

} pktinfo_t;

csinfo_t Structure

The csinfo_t structure is where connection state info is made available. It contains a unique
(system-wide) connection ID, and the process ID and zone ID associated with the connection.

typedef struct csinfo {

uintptr_t cs_addr;

uint64_t cs_cid;

pid_t cs_pid;

zoneid_t cs_zoneid;

} csinfo_t;

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02356

TABLE 11–48 csinfo_t Members

cs_addr Address of translated ip_xmit_attr_t *.

cs_cid Connection id. A unique per-connection identifier which identifies the
connection during its lifetime.

cs_pid Process ID associated with the connection.

cs_zoneid Zone ID associated with the connection.

ipinfo_t Structure

The ipinfo_t structure contains common IP info for both IPv4 and IPv6.

typedef struct ipinfo {

uint8_t ip_ver; /* IP version (4, 6) */

uint16_t ip_plength; /* payload length */

string ip_saddr; /* source address */

string ip_daddr; /* destination address */

} ipinfo_t;

These values are read at the time the probe fired in UDP, and so ip_plength is the expected IP
payload length - however the IP layer may add headers (such as AH and ESP) which will
increase the actual payload length. To examine this, also trace packets using the ip provider.

TABLE 11–49 ipinfo_t Members

ip_ver IP version number. Currently either 4 or 6.

ip_plength Payload length in bytes. This is the length of the packet at the time of tracing,
excluding the IP header.

ip_saddr Source IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC-1884 convention 2 with lower case hexadecimal digits.

ip_daddr Destination IP address, as a string. For IPv4 this is a dotted decimal quad, IPv6
follows RFC-1884 convention 2 with lower case hexadecimal digits.

udpsinfo_t Structure

The udpsinfo_t structure contains udp state info.

typedef struct udpsinfo {

uintptr_t udps_addr;

uint16_t upds_lport; /* local port */

uint16_t udps_fport; /* remote port */

string udps_laddr; /* local address, as a string */

string udps_faddr; /* remote address, as a string */

} udpsinfo_t;

Protocols

Chapter 11 • Providers 357

TABLE 11–50 udpsinfo_t Members

udps_addr Address of translated udp_t *.

udps_lport local port associated with the UDP connection.

udps_fport remote port associated with the UDP connection.

udps_laddr local address associated with the UDP connection, as a string

udps_fport remote address associated with the UDP connection, as a string

udpsinfo_t Structure

The udpinfo_t structure is a DTrace translated version of the UDP header.

typedef struct udpinfo {

uint16_t udp_sport; /* source port */

uint16_t udp_dport; /* destination port */

uint16_t udp_length; /* total length */

uint16_t udp_checksum; /* headers + data checksum */

udpha_t *udp_hdr; /* raw UDP header */

} udpinfo_t;

TABLE 11–51 udpinfo_t Members

udp_sport UDP source port.

udp_dport UDP destination port.

udp_length Payload length in bytes.

udp_checksum Checksum of UDP header and payload.

udp_hdr Pointer to raw UDP header at time of tracing.

See RFC-768 for a detailed explanation of the standard UDP header fields and flags.

Examples
Some simple examples of udp provider usage follow.

Packets by Host Address

This DTrace one-liner counts UDP received packets by host address:

dtrace -n ’udp:::receive { @[args[2]->ip_saddr] = count(); }’

dtrace: description ’udp:::receive ’ matched 5 probes

^C

127.0.0.1 7

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02358

fe80::214:4fff:fe8d:59aa 14

192.168.2.30 43

192.168.1.109 44

192.168.2.88 3722

The output above shows that 7 UDP packets were received from 127.0.0.1, 14 UDP packets
from the IPv6 host fe80::214:4fff:fe8d:59aa, etc.

Packets by Local Port

This DTrace one-liner counts UDP received packets by the local UDP port:

dtrace -n ’udp:::receive { @[args[4]->udp_dport] = count(); }’

dtrace: description ’udp:::receive ’ matched 1 probe

^C

33294 1

33822 1

38961 1

44433 1

46258 1

46317 1

47511 1

50581 1

54685 1

56491 1

59056 1

62171 1

62769 1

64231 1

The output above shows that 1 packet was received for port 33294, 1 packet was received for
port 33822, etc.

Sent Size Distribution

This DTrace one-liner prints distribution plots of IP payload size by destination, for UDP
sends:

dtrace -n ’udp:::send { @[args[2]->ip_daddr] = quantize(args[2]->ip_plength); }’

dtrace: description ’udp:::send ’ matched 6 probes

^C

129.156.86.11

value ------------- Distribution ------------- count

16 | 0

32 |@@ 14

64 | 0

udp Stability
The udp provider uses DTrace's stability mechanism to describe its stabilities, as shown in the
following table. For more information about the stability mechanism, see Chapter 18,
“Stability.”

Protocols

Chapter 11 • Providers 359

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

Protocols

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02360

User Process Tracing

DTrace is an extremely powerful tool for understanding the behavior of user processes. DTrace
can be invaluable when debugging, analyzing performance problems, or simply understanding
the behavior of a complex application. This chapter focuses on the DTrace facilities relevant for
tracing user process activity and provides examples to illustrate their use.

copyin and copyinstr Subroutines
DTrace's interaction with processes is a little different than most traditional debuggers or
observability tools. Many such tools appear to execute within the scope of the process, letting
users dereference pointers to program variables directly. Rather than appearing to execute
within or as part of the process itself, DTrace probes execute in the Oracle Solaris kernel. To
access process data, a probe needs to use the copyin or copyinstr subroutines to copy user
process data into the address space of the kernel.

For example, consider the following write(2) system call:

ssize_t write(int fd, const void *buf, size_t nbytes);

The following D program illustrates an incorrect attempt to print the contents of a string passed
to the write(2) system call:

syscall::write:entry

{

printf("%s", stringof(arg1)); /* incorrect use of arg1 */

}

If you try to run this script, DTrace will produce error messages similar to the following
example:

dtrace: error on enabled probe ID 1 (ID 37: syscall::write:entry): \

invalid address (0x10038a000) in action #1

12C H A P T E R 1 2

361

The arg1 variable, containing the value of the buf parameter, is an address that refers to
memory in the process executing the system call. To read the string at that address, use the
copyinstr subroutine and record its result with the printf action:

syscall::write:entry

{

printf("%s", copyinstr(arg1)); /* correct use of arg1 */

}

The output of this script shows all of the strings being passed to the write(2) system call.
Occasionally, however, you might see irregular output similar to the following example:

0 37 write:entry mada&^%**&

The copyinstr subroutine acts on an input argument that is the user address of a
null-terminated ASCII string. However, buffers passed to the write(2) system call might refer to
binary data rather than ASCII strings or to ASCII strings which don't include a terminating null
byte. To print only as much of the string as the caller intended, use the two parameter version of
the copyinstr subroutine which includes the size of the targeted string buffer:

syscall::write:entry

{

printf("%s", copyinstr(arg1, arg2));

}

An alternate way to accomplish the same end would be to use the copyin subroutine which
takes an address and size:

syscall::write:entry

{

printf("%s", stringof(copyin(arg1, arg2)));

}

Notice that the stringof operator is necessary so that DTrace properly converts the user data
retrieved using copyin to a string. The use of stringof is not necessary when using copyinstr
because this function always returns type string.

Avoiding Errors
The copyin and copyinstr subroutines cannot read from user addresses which have not yet
been touched so even a valid address may cause an error if the page containing that address has
not yet been faulted in by being accessed. Consider the following example:

dtrace -n syscall::openat:entry’{ trace(copyinstr(arg1)); }’

dtrace: description ’syscall::openat:entry’ matched 1 probe

CPU ID FUNCTION:NAME

dtrace: error on enabled probe ID 2 (ID 50: syscall::openat:entry): invalid address

(0x9af1b) in action #1 at DIF offset 52

copyin and copyinstr Subroutines

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02362

In the above example output, the application was functioning properly, and the address in arg0

was valid, but it referred to a page that had not yet been accessed by the corresponding process.
To resolve this issue, wait for kernel or application to use the data before tracing it. For example,
you might wait until the system call returns to apply copyinstr, as shown in the following
example:

dtrace -n syscall::openat:entry’{ self->file = arg1; }’ \

-n syscall::openat:return’{ trace(copyinstr(self->file)); self->file = 0; }’

dtrace: description ’syscall::openat:entry’ matched 1 probe

CPU ID FUNCTION:NAME

2 51 open:return /dev/null

Eliminating dtrace(1M) Interference
If you trace every call to the write(2) system call, you will cause a cascade of output. Each call to
write causes the dtrace(1M) command to call write as it displays the output, and so on. This
feedback loop is a good example of how the dtrace command can interfere with the desired
data. You can use a simple predicate to prevent these unwanted data from being traced:

syscall::write:entry

/pid != $pid/

{

printf("%s", stringof(copyin(arg1, arg2)));

}

The $pid macro variable expands to the process identifier of the process that enabled the
probes. The pid variable contains the process identifier of the process whose thread was
running on the CPU where the probe was fired. Therefore the predicate /pid != $pid/ ensures
that the script does not trace any events related to the running of this script itself.

syscall Provider
The syscall provider enables you to trace every system call entry and return. System calls can
be a good starting point for understanding a process's behavior, especially if the process seems
to be spending a large amount of time executing or blocked in the kernel. You can use the
prstat(1M) command to see where processes are spending time:

$ prstat -m -p 31337

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX SCL SIG PROCESS/NLWP

13499 user1 53 44 0.0 0.0 0.0 0.0 2.5 0.0 4K 24 9K 0 mystery/6

This example shows that the process is consuming a large amount of system time. One possible
explanation for this behavior is that the process is executing a large number of system calls. You
can use a simple D program specified on the command-line to see which system calls are
happening most often:

syscall Provider

Chapter 12 • User Process Tracing 363

dtrace -n syscall:::entry’/pid == 31337/{ @syscalls[probefunc] = count(); }’

dtrace: description ’syscall:::entry’ matched 215 probes

^C

open 1

lwp_park 2

times 4

fcntl 5

close 6

sigaction 6

read 10

ioctl 14

sigprocmask 106

write 1092

This report shows which system calls are being called most often, in this case, the write(2)
system call. You can use the syscall provider to further examine the source of all the write
system calls:

dtrace -n syscall::write:entry’/pid == 31337/{ @writes = quantize(arg2); }’

dtrace: description ’syscall::write:entry’ matched 1 probe

^C

value ------------- Distribution ------------- count

0 | 0

1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1037

2 |@ 3

4 | 0

8 | 0

16 | 0

32 |@ 3

64 | 0

128 | 0

256 | 0

512 | 0

1024 |@ 5

2048 | 0

The output shows that the process is executing many write system calls with a relatively small
amount of data. This ratio could be the source of the performance problem for this particular
process. This example illustrates a general methodology for investigating system call behavior.

ustack Action
Tracing a process thread's stack at the time a particular probe is activated is often useful for
examining a problem in more detail. The ustack action traces the user thread's stack. If, for
example, a process that opens many files occasionally fails in the open(2) system call, you can
use the ustack action to discover the code path that executes the failed open:

syscall::openat:entry

/pid == $1/

{

ustack Action

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02364

self->path = copyinstr(arg1);

}

syscall::openat:return

/self->path != NULL && arg1 == -1/

{

printf("open for ’%s’ failed", self->path);

ustack();

}

This script also illustrates the use of the $1 macro variable which takes the value of the first
operand specified on the dtrace(1M) command-line:

dtrace -s ./badopen.d 31337

dtrace: script ’./badopen.d’ matched 2 probes

CPU ID FUNCTION:NAME

0 40 open:return open for ’/usr/lib/foo’ failed

libc.so.1‘__open+0x4
libc.so.1‘open+0x6c
420b0

tcsh‘dosource+0xe0
tcsh‘execute+0x978
tcsh‘execute+0xba0
tcsh‘process+0x50c
tcsh‘main+0x1d54
tcsh‘_start+0xdc

The ustack action records program counter (PC) values for the stack and dtrace(1M) resolves
those PC values to symbol names by looking though the process's symbol tables. If dtrace can't
resolve the PC value to a symbol, it will print out the value as a hexadecimal integer.

If a process exits or is killed before the ustack data is formatted for output, dtrace might be
unable to convert the PC values in the stack trace to symbol names, and will be forced to display
them as hexadecimal integers. To work around this limitation, specify a process of interest with
the -c or -p option to dtrace. See Chapter 8, “dtrace(1M) Utility,” for details on these and other
options. If the process ID or command is not known in advance, the following example D
program that can be used to work around the limitation:

/*

* This example uses the open(2) system call probe, but this technique

* is applicable to any script using the ustack() action where the stack

* being traced is in a process that may exit soon.

*/

syscall::openat:entry

{

ustack();

stop_pids[pid] = 1;

}

syscall::rexit:entry

/stop_pids[pid] != 0/

{

printf("stopping pid %d", pid);

stop();

stop_pids[pid] = 0;

}

ustack Action

Chapter 12 • User Process Tracing 365

The above script stops a process just before it exits if the ustack action has been applied to a
thread in that process. This technique ensures that the dtrace command will be able to resolve
the PC values to symbolic names. Notice that the value of stop_pidspid is set to 0 after it has
been used to clear the dynamic variable. Remember to set stopped processes running again
using the prun(1) command or your system will accumulate many stopped processes.

uregs[] Array
The uregs[] array enables you to access individual user registers. The following tables list
indices into the uregs[] array corresponding to each supported Oracle Solaris system
architecture.

TABLE 12–1 SPARC uregs[] Constants

Constant Register

R_G0..R_G7 %g0..%g7 global registers

R_O0..R_O7 %o0..%o7 out registers

R_L0..R_L7 %l0..%l7 local registers

R_I0..R_I7 %i0..%i7 in registers

R_CCR %ccr condition code register

R_PC %pc program counter

R_NPC %npc next program counter

R_Y %y multiply/divide register

R_ASI %asi address space identifier register

R_FPRS %fprs floating-point registers state

TABLE 12–2 x86 uregs[] Constants

Constant Register

R_CS %cs

R_GS %gs

R_ES %es

R_DS %ds

R_EDI %edi

R_ESI %esi

uregs[] Array

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02366

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1prun-1

TABLE 12–2 x86 uregs[] Constants (Continued)
Constant Register

R_EBP %ebp

R_EAX %eax

R_ESP %esp

R_EAX %eax

R_EBX %ebx

R_ECX %ecx

R_EDX %edx

R_TRAPNO %trapno

R_ERR %err

R_EIP %eip

R_CS %cs

R_ERR %err

R_EFL %efl

R_UESP %uesp

R_SS %ss

On AMD64 platforms, the uregs array has the same content as it does on x86 platforms, plus the
additional elements listed in the following table:

TABLE 12–3 amd64 uregs[] Constants

Constant Register

R_RSP %rsp

R_RFL %rfl

R_RIP %rip

R_RAX %rax

R_RCX %rcx

R_RDX %rdx

R_RBX %rbx

R_RBP %rbp

uregs[] Array

Chapter 12 • User Process Tracing 367

TABLE 12–3 amd64 uregs[] Constants (Continued)
Constant Register

R_RSI %rsi

R_RDI %rdi

R_R8 %r8

R_R9 %r9

R_R10 %r10

R_R11 %r11

R_R12 %r12

R_R13 %r13

R_R14 %r14

R_R15 %r15

The aliases listed in the following table can be used on all platforms:

Constant Register

R_PC program counter register

R_SP stack pointer register

R_R0 first return code

R_R1 second return code

pid Provider
The pid provider enables you to trace any instruction in a process. Unlike most other providers,
pid probes are created on demand based on the probe descriptions found in your D programs.
As a result, no pid probes are listed in the output of dtrace -l until you have enabled them
yourself.

User Function Boundary Tracing
The simplest mode of operation for the pid provider is as the user space analogue to the fbt
provider. The following example program traces all function entries and returns that are made
from a single function. The $1 macro variable (the first operand on the command line) is the
process ID for the process to trace. The $2 macro variable (the second operand on the
command line) is the name of the function from which to trace all function calls.

pid Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02368

EXAMPLE 12–1 userfunc.d: Trace User Function Entry and Return

#!/usr/sbin/dtrace -s

#pragma D option flowindent

pid$1::$2:entry

{

self->trace = 1;

}

pid$1::$2:return

/self->trace/

{

self->trace = 0;

}

pid$1:::entry,

pid$1:::return

/self->trace/

{

}

Type in the above example script and save it in a file named userfunc.d, and then chmod it to be
executable. This script produces output similar to the following example:

./userfunc.d 15032 execute

dtrace: script ’./userfunc.d’ matched 11594 probes

0 -> execute

0 -> execute

0 -> Dfix

0 <- Dfix

0 -> s_strsave

0 -> malloc

0 <- malloc

0 <- s_strsave

0 -> set

0 -> malloc

0 <- malloc

0 <- set

0 -> set1

0 -> tglob

0 <- tglob

0 <- set1

0 -> setq

0 -> s_strcmp

0 <- s_strcmp

...

The pid provider can only be used on processes that are already running. You can use the
$target macro variable (see Chapter 9, “Scripting”) and the dtrace -c and -p options to create
and grab processes of interest and instrument them using DTrace. For example, the following D
script can be used to determine the distribution of function calls made to libc by a particular
subject process:

pid$target:libc.so::entry

{

pid Provider

Chapter 12 • User Process Tracing 369

EXAMPLE 12–1 userfunc.d: Trace User Function Entry and Return (Continued)

@[probefunc] = count();

}

To determine the distribution of such calls made by the date(1) command, save the script in a
file named libc.d and execute the following command:

dtrace -s libc.d -c date

dtrace: script ’libc.d’ matched 2476 probes

Fri Jul 30 14:08:54 PDT 2004

dtrace: pid 109196 has exited

pthread_rwlock_unlock 1

_fflush_u 1

rwlock_lock 1

rw_write_held 1

strftime 1

_close 1

_read 1

__open 1

_open 1

strstr 1

load_zoneinfo 1

...

_ti_bind_guard 47

_ti_bind_clear 94

Tracing Arbitrary Instructions
You can use the pid provider to trace any instruction in any user function. Upon demand, the
pid provider will create a probe for every instruction in a function. The name of each probe is
the offset of its corresponding instruction in the function expressed as a hexadecimal integer.
For example, to enable a probe associated with the instruction at offset 0x1c in function foo of
module bar.so in the process with PID 123, you can use the following command:

dtrace -n pid123:bar.so:foo:1c

To enable all of the probes in the function foo, including the probe for each instruction, you can
use the command:

dtrace -n pid123:bar.so:foo:

This command demonstrates an extremely powerful technique for debugging and analyzing
user applications. Infrequent errors can be difficult to debug because they can be difficult to
reproduce. Often, you can identify a problem after the failure has occurred, too late to
reconstruct the code path. The following example demonstrates how to combine the pid
provider with speculative tracing (see Chapter 7, “Speculative Tracing”) to solve this problem
by tracing every instruction in a function.

pid Provider

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02370

EXAMPLE 12–2 errorpath.d: Trace User Function Call Error Path

pid$1::$2:entry

{

self->spec = speculation();

speculate(self->spec);

printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);

}

pid$1::$2:

/self->spec/

{

speculate(self->spec);

}

pid$1::$2:return

/self->spec && arg1 == 0/

{

discard(self->spec);

self->spec = 0;

}

pid$1::$2:return

/self->spec && arg1 != 0/

{

commit(self->spec);

self->spec = 0;

}

Executing errorpath.d results in output similar to the following example:

./errorpath.d 100461 _chdir

dtrace: script ’./errorpath.d’ matched 19 probes

CPU ID FUNCTION:NAME

0 25253 _chdir:entry 81e08 6d140 ffbfcb20 656c73 0

0 25253 _chdir:entry

0 25269 _chdir:0

0 25270 _chdir:4

0 25271 _chdir:8

0 25272 _chdir:c

0 25273 _chdir:10

0 25274 _chdir:14

0 25275 _chdir:18

0 25276 _chdir:1c

0 25277 _chdir:20

0 25278 _chdir:24

0 25279 _chdir:28

0 25280 _chdir:2c

0 25268 _chdir:return

pid Provider

Chapter 12 • User Process Tracing 371

372

Statically Defined Tracing for User Applications

DTrace provides a facility for user application developers to define customized probes in
application code to augment the capabilities of the pid provider. These static probes impose
little to no overhead when disabled and are dynamically enabled like all other DTrace probes.
You can use static probes to describe application semantics to users of DTrace without exposing
or requiring implementation knowledge of your applications. This chapter describes how to
define static probes in user applications and how to use DTrace to enable such probes in user
processes.

Choosing the Probe Points
DTrace allows developers to embed static probe points in application code, including both
complete applications and shared libraries. These probes can be enabled wherever the
application or library is running, either in development or in production. You should define
probes that have a semantic meaning that is readily understood by your DTrace user
community. For example, you could define query-receive and query-respond probes for a
web server that correspond to a client submitting a request and the web server responding to
that request. These example probes are easily understood by most DTrace users and correspond
to the highest level abstractions for the application, rather than lower level implementation
details. DTrace users might use these probes to understand the time distribution of requests. If
your query-receive probe presented the URL request strings as an argument, a DTrace user
could determine which requests were generating the most disk I/O by combining this probe
with the io provider.

You should also consider the stability of the abstractions you describe when choosing probe
names and locations. Will this probe persist in future releases of the application, even if the
implementation changes? Does the probe make sense on all system architectures or is it specific
to a particular instruction set? This chapter will discuss the details of how these decisions guide
your static tracing definitions.

13C H A P T E R 1 3

373

Adding Probes to an Application
DTrace probes for libraries and executables are defined in an ELF section in the corresponding
application binary. This section describes how to define your probes, add them to your
application source code, and augment your application's build process to include the DTrace
probe definitions.

Defining Providers and Probes
You define DTrace probes in a .d source file which is then used when compiling and linking
your application. First, select an appropriate name for your user application provider. The
provider name you choose will be appended with the process identifier for each process that is
executing your application code. For example, if you chose the provider name myserv for a web
server that was executing as process ID 1203, the DTrace provider name corresponding to this
process would be myserv1203. In your .d source file, add a provider definition similar to the
following example:

provider myserv {

...

};

Next, add a definition for each probe and the corresponding arguments. The following example
defines the two probes discussed in “Choosing the Probe Points” on page 373. The first probe
has two arguments, both of type string, and the second probe has no arguments. The D
compiler converts two consecutive underscores (--) in any probe name to a hyphen (-).

provider myserv {

probe query__receive(string, string);

probe query__respond();

};You should add stability attributes to your provider definition so that consumers of

your probes understand the likelihood of change in future versions of your application.

See Chapter 18, “Stability,” for more information on the DTrace stability attributes.

Stability attributes are defined as shown in the following example:

EXAMPLE 13–1 myserv.d: Statically Defined Application Probes

#pragma D attributes Evolving/Evolving/Common provider myserv provider

#pragma D attributes Private/Private/Unknown provider myserv module

#pragma D attributes Private/Private/Unknown provider myserv function

#pragma D attributes Evolving/Evolving/Common provider myserv name

#pragma D attributes Evolving/Evolving/Common provider myserv args

provider myserv {

probe query__receive(string, string);

probe query__respond();

};

Adding Probes to an Application

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02374

Adding Probes to Application Code
Now that you have defined your probes in a .d file, you need to augment your source code to
indicate the locations that should trigger your probes. Consider the following example C
application source code:

void

main_look(void)

{

...

query = wait_for_new_query();

process_query(query)

...

}

To add a probe site, add a reference to the DTRACE_PROBE() macro defined in <sys/sdt.h> as
shown in the following example:

...

void

main_look(void)

{

...

query = wait_for_new_query();

DTRACE_PROBE2(myserv, query__receive, query->clientname, query->msg);

process_query(query)

...

}

The suffix 2 in the macro name DTRACE_PROBE2 refers the number of arguments that are passed
to the probe. The first two arguments to the probe macro are the provider name and probe
name and must correspond to your D provider and probe definitions. The remaining macro
arguments are the arguments assigned to the DTrace arg0..9 variables when the probes
fires.Your application source code can contain multiple references to the same provider and
probe name. If multiple references to the same probe are present in your source code, any of the
macro references will cause the probe to fire.

Building Applications with Probes
You must augment the build process for your application to include the DTrace provider and
probe definitions. A typical build process takes each source file and compiles it to create a
corresponding object file. The compiled object files are then linked together to create the
finished application binary, as shown in the following example:

cc -c src1.c

cc -c src2.c

...

cc -o myserv src1.o src2.o ...

Adding Probes to an Application

Chapter 13 • Statically Defined Tracing for User Applications 375

To include DTrace probe definitions in your application, add appropriate Makefile rules to your
build process to execute the dtrace command as shown in the following example:

cc -c src1.c

cc -c src2.c

...

dtrace -G -32 -s myserv.d src1.o src2.o ...

cc -o myserv myserv.o src1.o src2.o ...

The dtrace command shown above post-processes the object files generated by the preceding
compiler commands and generates the object file myserv.o from myserv.d and the other object
files. The dtrace -G option is used to link provider and probe definitions with a user
application. The -32 option is used to build 32–bit application binaries. The -64 option is used
to build 64–bit application binaries.

Adding Probes to an Application

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02376

Security

This chapter describes the privileges that system administrators can use to grant access to
DTrace to particular users or processes. DTrace enables visibility into all aspects of the system
including user-level functions, system calls, kernel functions, and more. It allows for powerful
actions some of which can modify a program's state. Just as it would be inappropriate to allow a
user access to another user's private files, a system administrator should not grant every user full
access to all the facilities that DTrace offers. By default, only the super-user can use DTrace. The
Least Privilege facility can be used to allow other users controlled use of DTrace.

Privileges
The Oracle Solaris Least Privilege facility enables administrators to grant specific privileges to
specific Oracle Solaris users. To give a user a privilege on login, insert a line into the
/etc/user_attr file of the form:

user-name::::defaultpriv=basic,privilege

To give a running process an additional privilege, use the ppriv(1) command:

ppriv -s A+privilege process-ID

The three privileges that control a user's access to DTrace features are dtrace_proc,
dtrace_user, and dtrace_kernel. Each privilege permits the use of a certain set of DTrace
providers, actions, and variables, and each corresponds to a particular type of use of DTrace.
The privilege modes are described in detail in the following sections. System administrators
should carefully weigh each user's need against the visibility and performance impact of the
different privilege modes. Users need at least one of the three DTrace privileges in order to use
any of the DTrace functionality.

14C H A P T E R 1 4

377

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN1ppriv-1

Privileged Use of DTrace
Users with any of the three DTrace privileges may enable probes provided by the dtrace
provider (see “dtrace Provider” on page 167), and may use the following actions and variables:

Providers dtrace

Actions exit printf tracemem

discard speculate

printa trace

Variables args probemod this

epid probename timestamp

id probeprov vtimestamp

probefunc self

Address Spaces None

dtrace_proc Privilege
The dtrace_proc privilege permits use of the pid and fasttrap providers for process-level
tracing. It also allows the use of the following actions and variables:

Providers pid

Actions copyin copyout stop

copyinstr raise ustack

Variables execname pid uregs

Address Spaces User

This privilege does not grant any visibility to Oracle Solaris kernel data structures or to
processes for which the user does not have permission.

Users with this privilege may create and enable probes in processes that they own. If the user
also has the proc_owner privilege, probes may be created and enabled in any process. The
dtrace_proc privilege is intended for users interested in the debugging or performance analysis
of user processes. This privilege is ideal for a developer working on a new application or an
engineer trying to improve an application's performance in a production environment.

Privileged Use of DTrace

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02378

Note – Users with the dtrace_proc and proc_owner privileges may enable any pid probe from
any process, but can only create probes in processes whose privilege set is a subset of their own
privilege set. Refer to the Least Privilege documentation for complete details.

The dtrace_proc privilege allows access to DTrace that can impose a performance penalty only
on those processes to which the user has permission. The instrumented processes will impose
more of a load on the system resources, and as such it may have some small impact on the
overall system performance. Aside from this increase in overall load, this privilege does not
allow any instrumentation that impacts performance for any processes other than those being
traced. As this privilege grants users no additional visibility into other processes or the kernel
itself, it is recommended that this privilege be granted to all users that may need to better
understand the inner-workings of their own processes.

dtrace_user Privilege
The dtrace_user privilege permits use of the profile and syscall providers with some
caveats, and the use of the following actions and variables:

Providers profile syscall fasttrap

Actions copyin copyout stop

copyinstr raise ustack

Variables execname pid uregs

Address Spaces User

The dtrace_user privilege provides only visibility to those processes to which the user already
has permission; it does not allow any visibility into kernel state or activity. With this privilege,
users may enable the syscall provider, but the enabled probes will only activate in processes to
which the user has permission. Similarly, the profile provider may be enabled, but the enabled
probes will only activate in processes to which the user has permission, never in the Oracle
Solaris kernel.

This privilege permits the use of instrumentation that, while only allowing visibility into
particular processes, can affect overall system performance. The syscall provider has some
small performance impact on every system call for every process. The profile provider affects
overall system performance by executing every time interval, similar to a real-time timer.
Neither of these performance degradations is so great as to severely limit the system's progress,
but system administrators should consider the implications of granting a user this privilege.
Refer to “syscall Provider” on page 194 and “profile Provider” on page 175 for a discussion
of the performance impact of the syscall and profile providers.

dtrace_user Privilege

Chapter 14 • Security 379

dtrace_kernel Privilege
The dtrace_kernel privilege permits the use of every provider except for the use of the pid and
fasttrap providers on processes not owned by the user. This privilege also permits the use of
all actions and variables except for kernel destructive actions (breakpoint, panic, chill). This
privilege permits complete visibility into kernel and user state. The facilities enabled by the
dtrace_user privilege are a strict subset of those enabled by dtrace_kernel.

Providers All with above restrictions

Actions All but destructive actions

Variables All

Address Spaces User Kernel

Super User Privileges
A user with all privileges may use every provider and every action including the kernel
destructive actions unavailable to every other class of user.

Providers All

Actions All including destructive actions

Variables All

Address Spaces User Kernel

dtrace_kernel Privilege

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02380

Anonymous Tracing

This chapter describes anonymous tracing, tracing that is not associated with any DTrace
consumer. Anonymous tracing is used in situations when no DTrace consumer processes can
run. The most common use of anonymous tracing is to permit device driver developers to
debug and trace activity that occurs during system boot. Any tracing that you can do
interactively you can do anonymously. However, only the super user may create an anonymous
enabling, and only one anonymous enabling can exist at any time.

Anonymous Enablings
To create an anonymous enabling, use the -A option with a dtrace(1M) invocation that specifies
the desired probes, predicates, actions and options. dtrace will add a series of driver properties
representing your request to the dtrace(7D) driver's configuration file, typically
/kernel/drv/dtrace.conf. These properties will be read by the dtrace(7D) driver when it is
loaded. The driver will enable the specified probes with the specified actions, and create an
anonymous state to associate with the new enabling. Normally, the dtrace(7D) driver is loaded
on-demand, as are any drivers that act as DTrace providers. To allow tracing during boot, the
dtrace(7D) driver must be loaded as early as possible. dtrace adds the necessary forceload
statements to /etc/system (see system(4)) for each required DTrace provider and for
dtrace(7D) itself.

Thereafter, when the system boots, a message is emitted by dtrace(7D) to indicate that the
configuration file has been successfully processed.

All options may be set with an anonymous enabling, including buffer size, dynamic variable
size, speculation size, number of speculations, and so on.

To remove an anonymous enabling, specify -A to dtrace without any probe descriptions.

15C H A P T E R 1 5

381

Claiming Anonymous State
Once the machine has completely booted, any anonymous state may be claimed by specifying
the -a option with dtrace. By default, -a claims the anonymous state, processes the existing
data, and continues to run. To consume the anonymous state and then exit, add the -e option.

Once anonymous state has been consumed from the kernel, it cannot be replaced: the in-kernel
buffers that contained it are reused. If you attempt to claim anonymous tracing state where
none exists, dtrace will generate a message similar to the following example:

dtrace: could not enable tracing: No anonymous tracing state

If drops or errors have occurred, dtrace will generate the appropriate messages when the
anonymous state is claimed. The messages for drops and errors are the same for both
anonymous and non-anonymous state.

Anonymous Tracing Examples
The following example shows an anonymous DTrace enabling for every probe in the iprb(7D)
module:

dtrace -A -m iprb

dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf

dtrace: added forceload directives to /etc/system

dtrace: run update_drv(1M) or reboot to enable changes

reboot

After rebooting, dtrace(7D) prints a message on the console to indicate that it is enabling the
specified probes:

...

Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

NOTICE: enabling probe 0 (:iprb::)

NOTICE: enabling probe 1 (dtrace:::ERROR)

configuring IPv4 interfaces: iprb0.

...

When the machine has rebooted, the anonymous state may be consumed by specifying the -a
option with dtrace:

dtrace -a

CPU ID FUNCTION:NAME

0 22954 _init:entry

0 22955 _init:return

0 22800 iprbprobe:entry

0 22934 iprb_get_dev_type:entry

0 22935 iprb_get_dev_type:return

0 22801 iprbprobe:return

Claiming Anonymous State

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02382

0 22802 iprbattach:entry

0 22874 iprb_getprop:entry

0 22875 iprb_getprop:return

0 22934 iprb_get_dev_type:entry

0 22935 iprb_get_dev_type:return

0 22870 iprb_self_test:entry

0 22871 iprb_self_test:return

0 22958 iprb_hard_reset:entry

0 22959 iprb_hard_reset:return

0 22862 iprb_get_eeprom_size:entry

0 22826 iprb_shiftout:entry

0 22828 iprb_raiseclock:entry

0 22829 iprb_raiseclock:return

...

The following example focuses only on those functions called from iprbattach. In an editor,
type the following script and save it in a file named iprb.d.

fbt::iprbattach:entry

{

self->trace = 1;

}

fbt:::

/self->trace/

{}

fbt::iprbattach:return

{

self->trace = 0;

}

Run the following commands to clear the previous settings from the driver configuration file,
install the new anonymous tracing request, and reboot:

dtrace -AFs iprb.d

dtrace: cleaned up old anonymous enabling in /kernel/drv/dtrace.conf

dtrace: cleaned up forceload directives in /etc/system

dtrace: saved anonymous enabling in /kernel/drv/dtrace.conf

dtrace: added forceload directives to /etc/system

dtrace: run update_drv(1M) or reboot to enable changes

reboot

After rebooting, dtrace(7D) prints a different message on the console to indicate the slightly
different enabling:

...

Copyright 1983-2003 Sun Microsystems, Inc. All rights reserved.

Use is subject to license terms.

NOTICE: enabling probe 0 (fbt::iprbattach:entry)

NOTICE: enabling probe 1 (fbt:::)

NOTICE: enabling probe 2 (fbt::iprbattach:return)

NOTICE: enabling probe 3 (dtrace:::ERROR)

configuring IPv4 interfaces: iprb0.

...

Anonymous Tracing Examples

Chapter 15 • Anonymous Tracing 383

After the machine has completely booted, run the dtrace with the -a option and the -e option to
consume the anonymous data and then exit.

dtrace -ae

CPU FUNCTION

0 -> iprbattach

0 -> gld_mac_alloc

0 -> kmem_zalloc

0 -> kmem_cache_alloc

0 -> kmem_cache_alloc_debug

0 -> verify_and_copy_pattern

0 <- verify_and_copy_pattern

0 -> tsc_gethrtime

0 <- tsc_gethrtime

0 -> getpcstack

0 <- getpcstack

0 -> kmem_log_enter

0 <- kmem_log_enter

0 <- kmem_cache_alloc_debug

0 <- kmem_cache_alloc

0 <- kmem_zalloc

0 <- gld_mac_alloc

0 -> kmem_zalloc

0 -> kmem_alloc

0 -> vmem_alloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> vmem_xalloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> segkmem_alloc

0 -> segkmem_xalloc

0 -> vmem_alloc

0 -> highbit

0 <- highbit

0 -> lowbit

0 <- lowbit

0 -> vmem_seg_alloc

0 -> highbit

0 <- highbit

0 -> highbit

0 <- highbit

0 -> vmem_seg_create

...

Anonymous Tracing Examples

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02384

Postmortem Tracing

This chapter describes the DTrace facilities for postmortem extraction and processing of the
in-kernel data of DTrace consumers. In the event of a system crash, the information that has
been recorded with DTrace may provide the crucial clues to root-cause the system failure.
DTrace data may be extracted and processed from the system crash dump to aid you in
understanding fatal system failures. By coupling these postmortem capabilities of DTrace with
its ring buffering buffer policy (see Chapter 5, “Buffers and Buffering”), DTrace can be used as
an operating system analog to the black box flight data recorder present on commercial aircraft.

To extract DTrace data from a specific crash dump, you should begin by running the Oracle
Solaris Modular Debugger, mdb(1), on the crash dump of interest. The MDB module
containing the DTrace functionality will be loaded automatically. To learn more about MDB,
see Oracle Solaris Modular Debugger Guide.

Displaying DTrace Consumers
To extract DTrace data from a DTrace consumer, you must first determine the DTrace
consumer of interest by running the ::dtrace_state MDB dcmd:

> ::dtrace_state

ADDR MINOR PROC NAME FILE

ccaba400 2 - <anonymous> -

ccab9d80 3 d1d6d7e0 intrstat cda37078

cbfb56c0 4 d71377f0 dtrace ceb51bd0

ccabb100 5 d713b0c0 lockstat ceb51b60

d7ac97c0 6 d713b7e8 dtrace ceb51ab8

This command displays a table of DTrace state structures. Each row of the table consists of the
following information:

■ The address of the state structure
■ The minor number associated with the dtrace(7D) device
■ The address of the process structure that corresponds to the DTrace consumer

16C H A P T E R 1 6

385

http://www.oracle.com/pls/topic/lookup?ctx=E23824_01&id=MODDEBUG

■ The name of the DTrace consumer (or <anonymous> for anonymous consumers)
■ The name of the file structure that corresponds to the open dtrace(7D) device

To obtain further information about a specific DTrace consumer, specify the address of its
process structure to the ::ps dcmd:

> d71377f0::ps

S PID PPID PGID SID UID FLAGS ADDR NAME

R 100647 100642 100647 100638 0 0x00004008 d71377f0 dtrace

Displaying Trace Data
Once you determine the consumer of interest, you can retrieve the data corresponding to any
unconsumed buffers by specifying the address of the state structure to the ::dtrace dcmd. The
following example shows the output of the ::dtrace dcmd on an anonymous enabling of
syscall:::entry with the action trace(execname):

> ::dtrace_state

ADDR MINOR PROC NAME FILE

cbfb7a40 2 - <anonymous> -

> cbfb7a40::dtrace

CPU ID FUNCTION:NAME

0 344 resolvepath:entry init

0 16 close:entry init

0 202 xstat:entry init

0 202 xstat:entry init

0 14 open:entry init

0 206 fxstat:entry init

0 186 mmap:entry init

0 186 mmap:entry init

0 186 mmap:entry init

0 190 munmap:entry init

0 344 resolvepath:entry init

0 216 memcntl:entry init

0 16 close:entry init

0 202 xstat:entry init

0 14 open:entry init

0 206 fxstat:entry init

0 186 mmap:entry init

0 186 mmap:entry init

0 186 mmap:entry init

0 190 munmap:entry init

...

The ::dtrace dcmd handles errors in the same way that dtrace(1M) does: if drops, errors,
speculative drops, or the like were encountered while the consumer was executing, ::dtrace
will emit a message corresponding to the dtrace(1M)message.

The order of events as displayed by ::dtrace is always oldest to youngest within a given CPU.
The CPU buffers themselves are displayed in numerical order. If an ordering is required for
events on different CPUs, trace the timestamp variable.

Displaying Trace Data

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02386

You can display only the data for a specific CPU by specifying the -c option to ::dtrace:

> cbfb7a40::dtrace -c 1

CPU ID FUNCTION:NAME

1 14 open:entry init

1 206 fxstat:entry init

1 186 mmap:entry init

1 344 resolvepath:entry init

1 16 close:entry init

1 202 xstat:entry init

1 202 xstat:entry init

1 14 open:entry init

1 206 fxstat:entry init

1 186 mmap:entry init

...

Notice that ::dtrace only processes in-kernel DTrace data. Data that has been consumed from
the kernel and processed (through dtrace(1M) or other means) will not be available to be
processed with ::dtrace. To assure that the most amount of data possible is available at the
time of failure, use a ring buffer buffering policy. See Chapter 5, “Buffers and Buffering,” for
more information on buffer policies.

The following example creates a very small (16K) ring buffer and records all system calls and the
process making them:

dtrace -P syscall’{trace(curpsinfo->pr_psargs)}’ -b 16k -x bufpolicy=ring

dtrace: description ’syscall:::entry’ matched 214 probes

Looking at a crash dump taken when the above command was running results in output similar
to the following example:

> ::dtrace_state

ADDR MINOR PROC NAME FILE

cdccd400 3 d15e80a0 dtrace ced065f0

> cdccd400::dtrace

CPU ID FUNCTION:NAME

0 139 getmsg:return mibiisa -r -p 25216

0 138 getmsg:entry mibiisa -r -p 25216

0 139 getmsg:return mibiisa -r -p 25216

0 138 getmsg:entry mibiisa -r -p 25216

0 139 getmsg:return mibiisa -r -p 25216

0 138 getmsg:entry mibiisa -r -p 25216

0 139 getmsg:return mibiisa -r -p 25216

0 138 getmsg:entry mibiisa -r -p 25216

0 139 getmsg:return mibiisa -r -p 25216

0 138 getmsg:entry mibiisa -r -p 25216

0 17 close:return mibiisa -r -p 25216

...

0 96 ioctl:entry mibiisa -r -p 25216

0 97 ioctl:return mibiisa -r -p 25216

0 96 ioctl:entry mibiisa -r -p 25216

0 97 ioctl:return mibiisa -r -p 25216

0 96 ioctl:entry mibiisa -r -p 25216

Displaying Trace Data

Chapter 16 • Postmortem Tracing 387

0 97 ioctl:return mibiisa -r -p 25216

0 96 ioctl:entry mibiisa -r -p 25216

0 97 ioctl:return mibiisa -r -p 25216

0 16 close:entry mibiisa -r -p 25216

0 17 close:return mibiisa -r -p 25216

0 124 lwp_park:entry mibiisa -r -p 25216

1 68 access:entry mdb -kw

1 69 access:return mdb -kw

1 202 xstat:entry mdb -kw

1 203 xstat:return mdb -kw

1 14 open:entry mdb -kw

1 15 open:return mdb -kw

1 206 fxstat:entry mdb -kw

1 207 fxstat:return mdb -kw

1 186 mmap:entry mdb -kw

...

1 13 write:return mdb -kw

1 10 read:entry mdb -kw

1 11 read:return mdb -kw

1 12 write:entry mdb -kw

1 13 write:return mdb -kw

1 96 ioctl:entry mdb -kw

1 97 ioctl:return mdb -kw

1 364 pread64:entry mdb -kw

1 365 pread64:return mdb -kw

1 366 pwrite64:entry mdb -kw

1 367 pwrite64:return mdb -kw

1 364 pread64:entry mdb -kw

1 365 pread64:return mdb -kw

1 38 brk:entry mdb -kw

1 39 brk:return mdb -kw

>

Note that CPU 1's youngest records include a series of write(2) system calls by an mdb -kw

process. This result is likely related to the reason for the system failure because a user can
modify running kernel data or text with mdb(1) when run with the -k and -w options. In this
case, the DTrace data provides at least an interesting avenue of investigation, if not the root
cause of the failure.

Displaying Trace Data

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02388

Performance Considerations

Because DTrace causes additional work in the system, enabling DTrace always affects system
performance in some way. Often, this effect is negligible, but it can become substantial if many
probes are enabled with costly enablings. This chapter describes techniques for minimizing the
performance effect of DTrace.

Limit Enabled Probes
Dynamic instrumentation techniques enable DTrace to provide unparalleled tracing coverage
of the kernel and of arbitrary user processes. While this coverage allows revolutionary new
insight into system behavior, it also can cause enormous probe effect. If tens of thousands or
hundreds of thousands of probes are enabled, the effect on the system can easily be substantial.
Therefore, you should only enable as many probes as you need to solve a problem. You should
not, for example, enable all FBT probes if a more concise enabling will answer your question.
For example, your question might allow you to concentrate on a specific module of interest or a
specific function.

When using the pid provider, you should be especially careful. Because the pid provider can
instrument every instruction, you could enable millions of probes in an application, and
therefore slow the target process to a crawl.

DTrace can also be used in situations where large numbers of probes must be enabled for a
question to be answered. Enabling a large number of probes might slow down the system quite a
bit, but it will never induce fatal failure on the machine. You should therefore not hesitate to
enable many probes if required.

17C H A P T E R 1 7

389

Use Aggregations
As discussed in Chapter 3, “Aggregations,” DTrace's aggregations allow for a scalable way of
aggregating data. Associative arrays might appear to offer similar functionality to aggregations.
However, by nature of being global, general-purpose variables, they cannot offer the linear
scalability of aggregations. You should therefore prefer to use aggregations over associative
arrays when possible. The following example is not recommended:

syscall:::entry

{

totals[execname]++;

}

syscall::rexit:entry

{

printf("%40s %d\n", execname, totals[execname]);

totals[execname] = 0;

}

The following example is preferable:

syscall:::entry

{

@totals[execname] = count();

}

END

{

printa("%40s %@d\n", @totals);

}

Use Cacheable Predicates
DTrace predicates are used to filter unwanted data from the experiment by tracing data is only
traced if a specified condition is found to be true. When enabling many probes, you generally
use predicates of a form that identifies a specific thread or threads of interest, such as
/self->traceme/ or /pid == 12345/. Although many of these predicates evaluate to a false
value for most threads in most probes, the evaluation itself can become costly when done for
many thousands of probes. To reduce this cost, DTrace caches the evaluation of a predicate if it
includes only thread-local variables (for example, /self->traceme/) or immutable variables
(for example, /pid == 12345/). The cost of evaluating a cached predicate is much smaller than
the cost of evaluating a non-cached predicate, especially if the predicate involves thread-local
variables, string comparisons, or other relatively costly operations. While predicate caching is
transparent to the user, it does imply some guidelines for constructing optimal predicates, as
shown in the following table:

Use Aggregations

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02390

Cacheable Uncacheable

self->mumble mumblecurthread, mumblepid, tid

execname curpsinfo->pr_fname, curthread->t_procp->p_user.u_comm

pid curpsinfo->pr_pid, curthread->t_procp->p_pipd->pid_id

tid curlwpsinfo->pr_lwpid, curthread->t_tid

curthread curthread-> any member, curlwpsinfo-> any member, curpsinfo-> any member

The following example is not recommended:

syscall::read:entry

{

follow[pid, tid] = 1;

}

fbt:::

/follow[pid, tid]/

{}

syscall::read:return

/follow[pid, tid]/

{

follow[pid, tid] = 0;

}

The following example using thread-local variables is preferable:

syscall::read:entry

{

self->follow = 1;

}

fbt:::

/self->follow/

{}

syscall::read:return

/self->follow/

{

self->follow = 0;

}

A predicate must consist exclusively of cacheable expressions in order to be cacheable. The
following predicates are all cacheable:

/execname == "myprogram"/
/execname == $$1/

/pid == 12345/

/pid == $1/

/self->traceme == 1/

The following examples, which use global variables, are not cacheable:

Use Cacheable Predicates

Chapter 17 • Performance Considerations 391

/execname == one_to_watch/

/traceme[execname]/

/pid == pid_i_care_about/

/self->traceme == my_global/

Use Cacheable Predicates

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02392

Stability

Developers are provided with early access to new technologies as well as observability tools that
allow users to peer into the internal implementation details of user and kernel software.
Unfortunately, new technologies and internal implementation details are both prone to
changes as interfaces and implementations evolve and mature when software is upgraded or
patched. Application and interface stability levels are documented using a set of labels described
in the attributes(5) man page to help set user expectations for what kinds of changes might
occur in different kinds of future releases.

No one stability attribute appropriately describes the arbitrary set of entities and services that
can be accessed from a D program. DTrace and the D compiler therefore include features to
dynamically compute and describe the stability levels of D programs you create. This chapter
discusses the DTrace features for determining program stability to help you design stable D
programs. You can use the DTrace stability features to inform you of the stability attributes of
your D programs, or to produce compile-time errors when your program has undesirable
interface dependencies.

Stability Levels
DTrace provides two types of stability attributes for entities such as built-in variables, functions,
and probes: a stability level and an architectural dependency class. The DTrace stability level
assists you in making risk assessments when developing scripts and tools based on DTrace by
indicating how likely an interface or DTrace entity is to change in a future release or patch. The
DTrace dependency class tells you whether an interface is common to all Oracle Solaris
platforms and processors, or whether the interface is associated with a particular architecture
such as SPARC processors only. The two types of attributes used to describe interfaces can vary
independently.

The stability values used by DTrace appear in the following list in order from lowest to highest
stability. Applications that depend only on Stable interfaces should reliably continue to function
correctly on future minor releases and will not be broken by interim patches. The less stable

18C H A P T E R 1 8

393

http://www.oracle.com/pls/topic/lookup?ctx=E23824&id=REFMAN5attributes-5

interfaces allow experimentation, prototyping, tuning, and debugging on your current system,
but should be used with the understanding that they might change incompatibly or even be
dropped or replaced with alternatives in future minor releases.

The DTrace stability values also help you understand the stability of the software entities you
are observing, in addition to the stability of the DTrace interfaces themselves. Therefore,
DTrace stability values also tell you how likely your D programs and layered tools are to require
corresponding changes when you upgrade or change the software stack you are observing.

Internal

The interface is private to DTrace and represents an implementation detail of DTrace. Internal
interfaces might change in minor or micro releases.

Private

The interface is private to Oracle and represents an interface developed for use by other Oracle
products that is not yet publicly documented for use by customers and ISVs. Private interfaces
might change in minor or micro releases.

Obsolete

The interface is supported in the current release but is scheduled to be removed, most likely in a
future minor release. The D compiler might produce warning messages if you attempt to use an
Obsolete interface.

External

The interface is controlled by an entity other than Oracle. Oracle makes no claims regarding
either source or binary compatibility for External interfaces between any two releases.
Applications based on these interfaces might not work in future releases, including patches that
contain External interfaces.

Unstable

The interface is provided to give developers early access to new or rapidly changing technology
or to an implementation artifact that is essential for observing or debugging system behavior for
which a more stable solution is anticipated in the future. Oracle makes no claims about either
source or binary compatibility for Unstable interfaces from one minor release to another.

Evolving

The interface might eventually become Standard or Stable but is still in transition. When
non-upward compatible changes become necessary, they will occur in minor and major
releases. These changes will be avoided in micro releases whenever possible. If such a change is
necessary, it will be documented in the release notes for the affected release, and when feasible,
migration aids will be provided for binary compatibility and continued D program
development.

Stability Levels

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02394

Stable

The interface is a mature interface.

Standard

The interface complies with an industry standard. The corresponding documentation for the
interface will describe the standard to which the interface conforms. Standards are typically
controlled by a standards development organization, and changes can be made to the interface
in accordance with approved changes to the standard. This stability level can also apply to
interfaces that have been adopted (without a formal standard by an industry convention.
Support is provided for only the specified versions of a standard; support for later versions is
not guaranteed.

Dependency Classes
Since Oracle Solaris and DTrace support a variety of operating platforms and processors,
DTrace also labels interfaces with a dependency class that tells you whether an interface is
common to all Oracle Solaris platforms and processors, or whether the interface is associated
with a particular system architecture. The dependency class is orthogonal to the stability levels
described earlier. For example, a DTrace interface can be Stable but only supported on SPARC
microprocessors, or it can be Unstable but common to all Oracle Solaris systems. The DTrace
dependency classes are described in the following list in order from least common (that is, most
specific to a particular architecture) to most common (that is, common to all architectures).

Unknown

The interface has an unknown set of architectural dependencies. DTrace does not necessarily
know the architectural dependencies of all entities, such as data types defined in the operating
system implementation. The Unknown label is typically applied to interfaces of very low
stability for which dependencies cannot be computed. The interface might not be available
when using DTrace on any architecture other than the one you are currently using.

CPU

The interface is specific to the CPU model of the current system. You can use the psrinfo(1M)
utility's -v option to display the current CPU model and implementation names. Interfaces with
CPU model dependencies might not be available on other CPU implementations, even if those
CPUs export the same instruction set architecture (ISA). For example, a CPU-dependent
interface on an UltraSPARC-III+ microprocessor might not be available on an UltraSPARC-II
microprocessor, even though both processors support the SPARC instruction set.

Platform

The interface is specific to the hardware platform of the current system. A platform typically
associates a set of system components and architectural characteristics such as a set of

Dependency Classes

Chapter 18 • Stability 395

supported CPU models with a system name such as SUNW,Ultra-Enterprise-10000. You can
display the current platform name using the uname(1) -i option. The interface might not be
available on other hardware platforms.

Group

The interface is specific to the hardware platform group of the current system. A platform
group typically associates a set of platforms with related characteristics together under a single
name, such as sun4u. You can display the current platform group name using the uname(1) -m
option. The interface is available on other platforms in the platform group, but might not be
available on hardware platforms that are not members of the group.

ISA

The interface is specific to the instruction set architecture (ISA) supported by the
microprocessors on this system. The ISA describes a specification for software that can be
executed on the microprocessor, including details such as assembly language instructions and
registers. You can display the native instruction sets supported by the system using the
isainfo(1) utility. The interface might not be supported on systems that do not export any of the
same instruction sets. For example, an ISA-dependent interface on a Oracle Solaris SPARC
system might not be supported on a Oracle Solaris x86 system.

Common

The interface is common to all Oracle Solaris systems regardless of the underlying hardware.
DTrace programs and layered applications that depend only on Common interfaces can be
executed and deployed on other Oracle Solaris systems with the same Oracle Solaris and
DTrace revisions. The majority of DTrace interfaces are Common, so you can use them
wherever you use Oracle Solaris.

Interface Attributes
DTrace describes interfaces using a triplet of attributes consisting of two stability levels and a
dependency class. By convention, the interface attributes are written in the following order,
separated by slashes:

name-stability / data-stability / dependency-class

The name stability of an interface describes the stability level associated with its name as it
appears in your D program or on the dtrace(1M) command-line. For example, the execname D
variable is a Stable name.

The data stability of an interface is distinct from the stability associated with the interface name.
This stability level describes the commitment to maintain the data formats used by the interface
and any associated data semantics.

Interface Attributes

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02396

The dependency class of an interface is distinct from its name and data stability, and describes
whether the interface is specific to the current operating platform or microprocessor.

DTrace and the D compiler track the stability attributes for all of the DTrace interface entities,
including providers, probe descriptions, D variables, D functions, types, and program
statements themselves, as we'll see shortly. Notice that all three values can vary independently.
For example, the curthread D variable has Stable/Private/Common attributes: the variable
name is Stable and is Common to all Oracle Solaris operating platforms, but this variable
provides access to a Private data format that is an artifact of the Oracle Solaris kernel
implementation. Most D variables are provided with Stable/Stable/Common attributes, as are
the variables you define.

USDT Interfaces
USDT providers require that stabilities be defined for five interface groups that fully specify a
DTrace probe.

■ The Provider
■ The Modules
■ The Functions
■ The Probes
■ The Arguments

This will generally be done in the .d file where the provider is declared with pragmas using the
triplets discussed in “Interface Attributes” on page 396. For example:

#pragma D attributes Evolving/Evolving/Common provider providername provider

#pragma D attributes Private/Private/Common provider providername module

#pragma D attributes Private/Private/Common provider providername function

#pragma D attributes Evolving/Evolving/Common provider providername name

#pragma D attributes Evolving/Evolving/Common provider providername args

Stability Computations and Reports
The D compiler performs stability computations for each of the probe descriptions and action
statements in your D programs. You can use the dtrace -v option to display a report of your
program's stability. The following example uses a program written on the command line:

dtrace -v -n dtrace:::BEGIN’{exit(0);}’

dtrace: description ’dtrace:::BEGIN’ matched 1 probe

Stability data for description dtrace:::BEGIN:

Minimum probe description attributes

Identifier Names: Evolving

Data Semantics: Evolving

Dependency Class: Common

Minimum probe statement attributes

Stability Computations and Reports

Chapter 18 • Stability 397

Identifier Names: Stable

Data Semantics: Stable

Dependency Class: Common

CPU ID FUNCTION:NAME

0 1 :BEGIN

You may also wish to combine the dtrace -v option with the -e option, which tells dtrace to
compile but not execute your D program, so that you can determine program stability without
having to enable any probes and execute your program. Here is another example stability
report:

dtrace -ev -n dtrace:::BEGIN’{trace(curthread->t_procp);}’

Stability data for description dtrace:::BEGIN:

Minimum probe description attributes

Identifier Names: Evolving

Data Semantics: Evolving

Dependency Class: Common

Minimum probe statement attributes

Identifier Names: Stable

Data Semantics: Private

Dependency Class: Common

#

Notice that in our new program, we have referenced the D variable curthread, which has a
Stable name, but Private data semantics (that is, if you look at it, you are accessing Private
implementation details of the kernel), and this status is now reflected in the program's stability
report. Stability attributes in the program report are computed by selecting the minimum
stability level and class out of the corresponding values for each interface attributes triplet.

Stability attributes are computed for a probe description by taking the minimum stability
attributes of all specified probe description fields according to the attributes published by the
provider. The attributes of the available DTrace providers are shown in the chapter
corresponding to each provider. DTrace providers export a stability attributes triplet for each of
the four description fields for all probes published by that provider. Therefore, a provider's
name may have a greater stability than the individual probes it exports. For example, the probe
description:

fbt:::

indicating that DTrace should trace entry and return from all kernel functions, has greater
stability than the probe description:

fbt:foo:bar:entry

which names a specific internal function bar in the kernel module foo. For simplicity, most
providers use a single set of attributes for all of the individual module function name values that
they publish. Providers also specify attributes for the args[] array, as the stability of any probe
arguments varies by provider.

If the provider field is not specified in a probe description, then the description is assigned the
stability attributes Unstable/Unstable/Common because the description might end up

Stability Computations and Reports

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02398

matching probes of providers that do not yet exist when used on a future Oracle Solaris version.
As such, Oracle is not able to provide guarantees about the future stability and behavior of this
program. You should always explicitly specify the provider when writing your D program
clauses. In addition, any probe description fields that contain pattern matching characters (see
“D Program Structure” on page 23) or macro variables such as $1 (see Chapter 9, “Scripting”)
are treated as if they are unspecified because these description patterns might expand to match
providers or probes released in future versions of DTrace and the Oracle Solaris OS.

Stability attributes are computed for most D language statements by taking the minimum
stability and class of the entities in the statement. For example, the following D language entities
have the following attributes:

Entity Attributes

D built-in variable curthread Stable/Private/Common

D user-defined variable x Stable/Stable/Common

If you write the following D program statement:

x += curthread->t_pri;

then the resulting attributes of the statement are Stable/Private/Common, the minimum
attributes associated with the operands curthread and x. The stability of an expression is
computed by taking the minimum stability attributes of each of the operands.

Any D variables you define in your program are automatically assigned the attributes
Stable/Stable/Common. In addition, the D language grammar and D operators are implicitly
assigned the attributes Stable/Stable/Common. References to kernel symbols using the
backquote (‘) operator are always assigned the attributes Private/Private/Unknown because
they reflect implementation artifacts. Types that you define in your D program source code,
specifically those that are associated with the C and D type namespace, are assigned the
attributes Stable/Stable/Common. Types that are defined in the operating system
implementation and provided by other type namespaces are assigned the attributes
Private/Private/Unknown. The D type cast operator yields an expression whose stability
attributes are the minimum of the input expression's attributes and the attributes of the cast
output type.

If you use the C preprocessor to include C system header files, these types will be associated with
the C type namespace and will be assigned the attributes Stable/Stable/Common as the D
compiler has no choice but to assume that you are taking responsibility for these declarations. It
is therefore possible to mislead yourself about your program's stability if you use the C
preprocessor to include a header file containing implementation artifacts. You should always
consult the documentation corresponding to the header files you are including in order to
determine the correct stability levels.

Stability Computations and Reports

Chapter 18 • Stability 399

Stability Enforcement
When developing a DTrace script or layered tool, you may wish to identify the specific source of
stability issues or ensure that your program has a desired set of stability attributes. You can use
the dtrace -x amin=_attributes_ option to force the D compiler to produce an error when
any attributes computation results in a triplet of attributes less than the minimum values you
specify on the command-line. The following example demonstrates the use of -x amin using a
snippet of D program source. Notice that attributes are specified using three labels delimited by
/ in the usual order.

dtrace -x amin=Evolving/Evolving/Common \

-ev -n dtrace:::BEGIN’{trace(curthread->t_procp);}’

dtrace: invalid probe specifier dtrace:::BEGIN{trace(curthread->t_procp);}: \

in action list: attributes for scalar curthread (Stable/Private/Common) \

are less than predefined minimum

#

Stability Enforcement

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02400

Translators

In Chapter 18, “Stability,” we learned about how DTrace computes and reports program
stability attributes. Ideally, we would like to construct our DTrace programs by consuming only
Stable or Evolving interfaces. Unfortunately, when debugging a low-level problem or
measuring system performance, you may need to enable probes that are associated with
internal operating system routines such as functions in the kernel, rather than probes associated
with more stable interfaces such as system calls. The data available at probe locations deep
within the software stack is often a collection of implementation artifacts rather than more
stable data structures such as those associated with the Oracle Solaris system call interfaces. In
order to aid you in writing stable D programs, DTrace provides a facility to translate
implementation artifacts into stable data structures accessible from your D program
statements.

Translator Declarations
A translator is a collection of D assignment statements provided by the supplier of an interface
that can be used to translate an input expression into an object of struct type. To understand the
need for and use of translators, we'll consider as an example the ANSI-C standard library
routines defined in stdio.h. These routines operate on a data structure named FILE whose
implementation artifacts are abstracted away from C programmers. A standard technique for
creating a data structure abstraction is to provide only a forward declaration of a data structure
in public header files, while keeping the corresponding struct definition in a separate private
header file.

If you are writing a C program and wish to know the file descriptor corresponding to a FILE
struct, you can use the fileno(3C) function to obtain the descriptor rather than dereferencing a
member of the FILE struct directly. The Oracle Solaris header files enforce this rule by defining
FILE as an opaque forward declaration tag so it cannot be dereferenced directly by C programs
that include <stdio.h>. Inside the libc.so.1 library, you can imagine that fileno is
implemented in C something like this:

19C H A P T E R 1 9

401

int

fileno(FILE *fp)

{

struct file_impl *ip = (struct file_impl *)fp;

return (ip->fd);

}

Our hypothetical fileno takes a FILE pointer as an argument and casts it to a pointer to a
corresponding internal libc structure, struct file_impl, and then returns the value of the fd
member of the implementation structure. Why does Oracle Solaris implement interfaces like
this? By abstracting the details of the current libc implementation away from client programs,
it is possible to maintain a commitment to strong binary compatibility while continuing to
evolve and change the internal implementation details of libc. In our example, the fd member
could change size or position within struct file_impl, even in a patch, and existing binaries
calling fileno(3C) would not be affected by this change because they do not depend on these
artifacts.

Unfortunately, observability software such as DTrace has the need to peer inside the
implementation in order to provide useful results, and does not have the luxury of calling
arbitrary C functions defined in Oracle Solaris libraries or in the kernel. You could declare a
copy of struct file_impl in your D program in order to instrument the routines declared in
stdio.h, but then your D program would rely on Private implementation artifacts of the library
that might break in a future micro or minor release, or even in a patch. Ideally, we want to
provide a construct for use in D programs that is bound to the implementation of the library
and is updated accordingly, but still provides an additional layer of abstraction associated with
greater stability.

A new translator is created using a declaration of the form:

translator output-type < input-type input-identifier > {

member-name = expression ;

member-name = expression ;

...

};

The output-type names a struct that will be the result type for the translation. The input-type
specifies the type of the input expression, and is surrounded in angle brackets < > and followed
by an input-identifier that can be used in the translator expressions as an alias for the input
expression. The body of the translator is surrounded in braces { } and terminated with a
semicolon (;), and consists of a list of member-name and identifiers corresponding translation
expressions. Each member declaration must name a unique member of the output-type and
must be assigned an expression of a type compatible with the member type, according to the
rules for the D assignment (=) operator.

For example, we could define a struct of stable information about stdio files based on some of
the available libc interfaces:

Translator Declarations

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02402

struct file_info {

int file_fd; /* file descriptor from fileno(3C) */

int file_eof; /* eof flag from feof(3C) */

};

A hypothetical D translator from FILE to file_info could then be declared in D as follows:

translator struct file_info < FILE *F > {

file_fd = ((struct file_impl *)F)->fd;

file_eof = ((struct file_impl *)F)->eof;

};

In our hypothetical translator, the input expression is of type FILE * and is assigned the
input-identifier F. The identifier F can then be used in the translator member expressions as a
variable of type FILE * that is only visible within the body of the translator declaration. To
determine the value of the output file_fd member, the translator performs a cast and
dereference similar to the hypothetical implementation of fileno(3C) shown above. A similar
translation is performed to obtain the value of the EOF indicator.

Translate Operator
The D operator xlate is used to perform a translation from an input expression to one of the
defined translation output structures. The xlate operator is used in an expression of the form:

xlate < output-type > (input-expression)

For example, to invoke the hypothetical translator for FILE structs defined above and access the
file_fd member, you would write the expression:

xlate <struct file_info *>(f)->file_fd;

where f is a D variable of type FILE *. The xlate expression itself is assigned the type defined
by the output-type. Once a translator is defined, it can be used to translate input expressions to
either the translator output struct type, or to a pointer to that struct.

If you translate an input expression to a struct, you can either dereference a particular member
of the output immediately using the “.” operator, or you can assign the entire translated struct
to another D variable to make a copy of the values of all the members. If you dereference a single
member, the D compiler will only generate code corresponding to the expression for that
member. You may not apply the & operator to a translated struct to obtain its address, as the
data object itself does not exist until it is copied or one of its members is referenced.\\

If you translate an input expression to a pointer to a struct, you can either dereference a
particular member of the output immediately using the -> operator, or you can dereference the
pointer using the unary * operator, in which case the result behaves as if you translated the
expression to a struct. If you dereference a single member, the D compiler will only generate
code corresponding to the expression for that member. You may not assign a translated pointer

Translate Operator

Chapter 19 • Translators 403

to another D variable as the data object itself does not exist until it is copied or one of its
members is referenced, and therefore cannot be addressed.\\

A translator declaration may omit expressions for one or more members of the output type. If
an xlate expression is used to access a member for which no translation expression is defined,
the D compiler will produce an appropriate error message and abort the program compilation.
If the entire output type is copied by means of a structure assignment, any members for which
no translation expressions are defined will be filled with zeroes.\\

In order to find a matching translator for an xlate operation, the D compiler examines the set
of available translators in the following order:

■ First, the compiler looks for a translation from the exact input expression type to the exact
output type.

■ Second, the compiler resolves the input and output types by following any typedef aliases to
the underlying type names, and then looks for a translation from the resolved input type to
the resolved output type.

■ Third, the compiler looks for a translation from a compatible input type to the resolved
output type. The compiler uses the same rules as it does for determining compatibility of
function call arguments with function prototypes in order to determine if an input
expression type is compatible with a translator's input type.

If no matching translator can be found according to these rules, the D compiler produces an
appropriate error message and program compilation fails.

Process Model Translators
The DTrace library file /usr/lib/dtrace/procfs.d provides a set of translators for use in your
D programs to translate from the operating system kernel implementation structures for
processes and threads to the stable proc(4) structures psinfo and lwpsinfo. These structures
are also used in the Oracle Solaris /proc filesystem files /proc/pid/psinfo and
/proc/pid/lwps/lwpid/lwpsinfo, and are defined in the system header file
/usr/include/sys/procfs.h. These structures define useful Stable information about
processes and threads such as the process ID, LWP ID, initial arguments, and other data
displayed by the ps(1) command. Refer to proc(4) for a complete description of the struct
members and semantics.

TABLE 19–1 procfs.d Translators

Input Type Input Type Attributes Output Type Output Type Attributes

proc_t * Private/Private/Common psinfo_t * Stable/Stable/Common

kthread_t * Private/Private/Common lwpsinfo_t * Stable/Stable/Common

Process Model Translators

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02404

Stable Translations
While a translator provides the ability to convert information into a stable data structure, it
does not necessarily resolve all stability issues that can arise in translating data. For example, if
the input expression for an xlate operation itself references Unstable data, the resulting D
program is also Unstable because program stability is always computed as the minimum
stability of the accumulated D program statements and expressions. Therefore, it is sometimes
necessary to define a specific stable input expression for a translator in order to permit stable
programs to be constructed. The D inline mechanism can be used to facilitate such stable
translations.

The DTrace procfs.d library provides the curlwpsinfo and curpsinfo variables described
earlier as stable translations. For example, the curlwpsinfo variable is actually an inline

declared as follows:

inline lwpsinfo_t *curlwpsinfo = xlate <lwpsinfo_t *> (curthread);

#pragma D attributes Stable/Stable/Common curlwpsinfo

The curlwpsinfo variable is defined as an inlined translation from the curthread variable, a
pointer to the kernel's Private data structure representing a thread, to the Stable lwpsinfo_t
type. The D compiler processes this library file and caches the inline declaration, making
curlwpsinfo appear as any other D variable. The #pragma statement following the declaration
is used to explicitly reset the attributes of the curlwpsinfo identifier to Stable/Stable/Common,
masking the reference to curthread in the inlined expression.

Stable Translations

Chapter 19 • Translators 405

406

Versioning

In Chapter 18, “Stability,” we learned about the DTrace features for determining the stability
attributes of D programs that you create. Once you have created a D program with the
appropriate stability attributes, you may also wish to bind this program to a particular version of
the D programming interface. The D interface version is a label applied to a particular set of
types, variables, functions, constants, and translators made available to you by the D compiler.
If you specify a binding to a specific version of the D programming interface, you ensure that
you can recompile your program on future versions of DTrace without encountering conflicts
between program identifiers that you define and identifiers defined in future versions of the D
programming interface. You should establish version bindings for any D programs that you
wish to install as persistent scripts (see Chapter 9, “Scripting”) or use in layered tools.

Versions and Releases
The D compiler labels sets of types, variables, functions, constants, and translators
corresponding to a particular software release using a version string. A version string is a
period-delimited sequence of decimal integers of the form “x” (a Major release), “x.y” (a Minor
release), or “x.y.z” (a Micro release). Versions are compared by comparing the integers from left
to right. If the leftmost integers are not equal, the string with the greater integer is the greater
(and therefore more recent) version. If the leftmost integers are equal, the comparison proceeds
to the next integer in order from left to right to determine the result. All unspecified integers in
a version string are interpreted as having the value zero during a version comparison.

The DTrace version strings correspond to the standard nomenclature for interface versions, as
described in attributes(5). A change in the D programming interface is accompanied by a new
version string. The following table summarizes the version strings used by DTrace and the
likely significance of the corresponding DTrace software release.

20C H A P T E R 2 0

407

TABLE 20–1 DTrace Release Versions

Release Version Significance

Major x.0 A Major release is likely to contain major feature additions; adhere to
different, possibly incompatible Standard revisions; and though
unlikely, could change, drop, or replace Standard or Stable interfaces
(see Chapter 18, “Stability”). The initial version of the D
programming interface is labeled as version 1.0.

Minor x.y Compared to an x.0 or earlier version (where y is not equal to zero), a
new Minor release is likely to contain minor feature additions,
compatible Standard and Stable interfaces, possibly incompatible
Evolving interfaces, or likely incompatible Unstable interfaces. These
changes may include new built-in D types, variables, functions,
constants, and translators. In addition, a Minor release may remove
support for interfaces previously labeled as Obsolete (see Chapter 18,
“Stability”).

Micro x.y.z Micro releases are intended to be interface compatible with the
previous release (where z is not equal to zero), but are likely to
include bug fixes, performance enhancements, and support for
additional hardware.

In general, each new version of the D programming interface will provide a superset of the
capabilities offered by the previous version, with the exception of any Obsolete interfaces that
have been removed.

Versioning Options
By default, any D programs you compile using dtrace -s or specify using the dtrace -P, -m,
-f, -n or -i command-line options are bound to the most recent D programming interface
version offered by the D compiler. You can determine the current D programming interface
version using the dtrace -V option:

$ dtrace -V

dtrace: Sun D 1.0

$

If you wish to establish a binding to a specific version of the D programming interface, you can
set the version option to an appropriate version string. Similar to other DTrace options (see
Chapter 10, “Options and Tunables”), you can set the version option either on the
command-line using dtrace -x:

dtrace -x version=1.0 -n ’BEGIN{trace("hello");}’

or you can use the #pragma D option syntax to set the option in your D program source file:

Versioning Options

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02408

#pragma D option version=1.0

BEGIN

{

trace("hello");
}

If you use the #pragma D option syntax to request a version binding, you must place this
directive at the top of your D program file prior to any other declarations and probe clauses. If
the version binding argument is not a valid version string or refers to a version not offered by
the D compiler, an appropriate error message will be produced and compilation will fail. You
can therefore also use the version binding facility to cause execution of a D script on an older
version of DTrace to fail with an obvious error message.

Prior to compiling your program declarations and clauses, the D compiler loads the set of D
types, functions, constants, and translators for the appropriate interface version into the
compiler namespaces. Therefore, any version binding options you specify simply control the set
of identifiers, types, and translators that are visible to your program in addition to the variables,
types, and translators that your program defines. Version binding prevents the D compiler from
loading newer interfaces that may define identifiers or translators that conflict with declarations
in your program source code and would therefore cause a compilation error. See “Identifier
Names and Keywords” on page 40 for tips on how to pick identifier names that are unlikely to
conflict with interfaces offered by future versions of DTrace.

Provider Versioning
Unlike interfaces offered by the D compiler, interfaces offered by DTrace providers (that is,
probes and probe arguments) are not affected by or associated with the D programming
interface or the previously described version binding options. The available provider interfaces
are established as part of loading your compiled instrumentation into the DTrace software in
the operating system kernel and vary depending on your instruction set architecture, operating
platform, processor, the software installed on your Oracle Solaris system, and your current
security privileges. The D compiler and DTrace runtime examine the probes described in your
D program clauses and report appropriate error messages when probes requested by your D
program are not available. These features are orthogonal to the D programming interface
version because DTrace providers do not export interfaces that can conflict with definitions in
your D programs; that is, you can only enable probes in D, you cannot define them, and probe
names are kept in a separate namespace from other D program identifiers.

DTrace providers are delivered with a particular release of Oracle Solaris and are described in
the corresponding version of the Oracle Solaris Dynamic Tracing Guide. The chapter of this
guide corresponding to each provider will also describe any relevant changes to or new features
offered by a given provider. You can use the dtrace -l option to explore the set of providers
and probes available on your Oracle Solaris system. Providers label their interfaces using the
DTrace stability attributes, and you can use the DTrace stability reporting features (see

Provider Versioning

Chapter 20 • Versioning 409

Chapter 18, “Stability”) to determine whether the provider interfaces used by your D program
are likely to change or be offered in future Oracle Solaris releases.

Provider Versioning

Oracle Solaris Dynamic Tracing Guide • November 2011 E22973_02410

	Oracle® Solaris Dynamic Tracing Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	About DTrace
	Getting Started
	Providers and Probes

	D Programming Language
	D Program Structure
	Probe Clauses and Declarations
	Probe Descriptions
	Predicates
	Actions
	Order of Execution
	Use of the C Preprocessor

	Compilation and Instrumentation
	Variables and Arithmetic Expressions
	Predicates
	Output Formatting
	Arrays
	External Symbols and Types
	Types, Operators, and Expressions
	Identifier Names and Keywords
	Data Types and Sizes
	Constants
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Increment and Decrement Operators
	Conditional Expressions
	Type Conversions
	Precedence

	Variables
	Scalar Variables
	Associative Arrays
	Thread-Local Variables
	Clause-Local Variables
	Built-in Variables
	External Variables

	Pointers and Arrays
	Pointers and Addresses
	Pointer Safety
	Array Declarations and Storage
	Pointer and Array Relationship
	Pointer Arithmetic
	Generic Pointers
	Multi-Dimensional Arrays
	Pointers to DTrace Objects
	Pointers and Address Spaces

	Strings
	String Representation
	String Constants
	String Assignment
	String Conversion
	String Comparison

	Structs and Unions
	Structs
	Pointers to Structs
	Unions
	Member Sizes and Offsets
	Bit-Fields

	Type and Constant Definitions
	typedef
	Enumerations
	Inlines
	Type Namespaces

	Aggregations
	Aggregating Functions
	Aggregations
	Printing Aggregations
	Data Normalization
	Clearing Aggregations
	Truncating aggregations
	Minimizing Drops

	Actions and Subroutines
	Actions
	Default Action
	Data Recording Actions
	trace
	tracemem
	printf
	printa
	stack
	ustack
	jstack
	uaddr
	usym

	Destructive Actions
	Process Destructive Actions
	stop
	raise
	copyout
	copyoutstr
	system

	Kernel Destructive Actions
	breakpoint
	panic
	chill

	Special Actions
	Speculative Actions
	exit

	Subroutines
	alloca
	basename
	bcopy
	cleanpath
	copyin
	copyinstr
	copyinto
	dirname
	inet_ntoa
	inet_ntoa6
	inet_ntop
	msgdsize
	msgsize
	mutex_owned
	mutex_owner
	mutex_type_adaptive
	progenyof
	rand
	rw_iswriter
	rw_write_held
	speculation
	strjoin
	strlen

	Buffers and Buffering
	Principal Buffers
	Principal Buffer Policies
	switch Policy
	fill Policy
	fill Policy and END Probes
	ring Policy

	Other Buffers
	Buffer Sizes
	Buffer Resizing Policy

	Output Formatting
	printf
	Conversion Specifications
	Flag Specifiers
	Width and Precision Specifiers
	Size Prefixes
	Conversion Formats

	printa
	trace Default Format

	Speculative Tracing
	Speculation Interfaces
	Creating a Speculation
	Using a Speculation
	Committing a Speculation
	Discarding a Speculation
	Speculation Example
	Speculation Options and Tuning

	dtrace(1M) Utility
	Description
	Options
	Operands
	Exit Status

	Scripting
	Interpreter Files
	Macro Variables
	Macro Arguments
	Target Process ID

	Options and Tunables
	Consumer Options
	Modifying Options

	Providers
	dtrace Provider
	BEGIN Probe
	END Probe
	ERROR Probe
	Stability

	lockstat Provider
	Overview
	Adaptive Lock Probes
	Spin Lock Probes
	Thread Locks
	Readers/Writer Lock Probes
	Stability

	profile Provider
	profile- n probes
	tick- n probes
	Arguments
	Timer Resolution
	Probe Creation
	Stability

	cpc Provider
	Probes
	Arguments
	Probe Availability
	Probe Creation
	Co-existence With Existing Tools
	Examples
	user-insts.d
	kern-cycles.d
	brendan-l2miss.d
	brendan-generic-l2miss.d

	Stability

	fbt Provider
	Probes
	Probe arguments
	entry probes
	return probes

	Examples
	Tail-call Optimization
	Assembly Functions
	Instruction Set Limitations
	x86 Limitations
	SPARC Limitations

	Breakpoint Interaction
	Module Loading
	Stability

	syscall Provider
	Probes
	System Call Anachronisms
	Subcoded System Calls
	New System Calls
	Deleted System Calls
	Large File System Calls
	Private System Calls

	Arguments
	Stability

	sdt Provider
	Probes
	Examples
	Creating SDT Probes
	Declaring Probes
	Probe Arguments

	Stability

	mib Provider
	Probes
	Arguments
	Stability

	fpuinfo Provider
	Probes
	Arguments
	Stability

	pid Provider
	Naming pid Probes
	Function Boundary Probes
	entry Probes
	return Probes

	Function Offset Probes
	Stability

	plockstat Provider
	Overview
	Mutex Probes
	Reader/Writer Lock Probes
	Stability

	fasttrap Provider
	Probes
	Stability

	sysinfo Provider
	Probes
	Arguments
	Example
	Stability

	vminfo Provider
	Probes
	Arguments
	Example
	Stability

	proc Provider
	Probes
	Arguments
	lwpsinfo_t
	psinfo_t
	Examples
	exec
	start and exit
	lwp-start and lwp-exit
	signal-send

	Stability

	sched Provider
	Probes
	Arguments
	cpuinfo_t
	Examples
	on-cpu and off-cpu
	enqueue and dequeue
	sleep and wakeup
	preempt and remain-cpu
	change-pri
	tick
	cpucaps-sleep and cpucaps-wakeup

	Stability

	io Provider
	Probes
	Arguments
	bufinfo_t structure
	devinfo_t
	fileinfo_t
	Examples
	Stability

	Protocols
	ip Provider
	Probes
	Arguments
	args[0] - pktinfo_t Structure
	args[1] - csinfo_t Structure
	args[2] - ipinfo_t Structure
	args[3] - ifinfo_t Structure
	args[4] - ipv4info_t Structure
	args[5] - ipv6info_t Structure

	Examples
	Packets by host address
	Sent size distribution
	ipio.d
	ipproto.d

	Stability

	iscsi Provider
	Probes
	Arguments
	Types
	Examples
	One-liners
	iscsiwho.d
	iscsixfer.d

	nfsv3 Provider
	Arguments
	Probes
	Examples
	nfsv3rwsnoop.d
	nfsv3ops.d
	nfsv3fileio.d
	nfsv3rwtime.d
	nfsv3io.d

	nfsv4 Provider
	Arguments
	Probes
	Examples
	nfsv4rwsnoop.d
	nfsv4ops.d
	nfsv4fileio.d
	nfsv4rwtime.d
	nfsv4io.d

	srp Provider
	Probes
	Probes Overview
	Service up/down Event Probes
	Remote Port Login/Logout Event Probes
	SRP Command Event Probes
	SCSI Command Event Probes
	Data Transfer Probes

	Types
	scsicmd_t
	conninfo_t
	srp_portinfo_t
	srp_logininfo_t
	srp_taskinfo_t
	xferinfo_t

	Examples
	service.d
	srpwho.d
	srpsnoop.d

	tcp Provider
	Probes
	Arguments
	pktinfo_t Structure
	csinfo_t Structure
	ipinfo_t Structure
	tcpsinfo_t Structure
	tcplsinfo_t Structure
	tcpinfo_t Structure

	Examples
	Connections by Host Address
	Connections by TCP Port
	Who is Connecting to What
	Who Isn't Connecting to What
	Packets by Host Address
	Packets by Local Port
	Sent Size Distribution
	tcpstate.d
	tcpio.d

	tcp Stability

	udp Provider
	Probes
	Arguments
	pktinfo_t Structure
	csinfo_t Structure
	ipinfo_t Structure
	udpsinfo_t Structure
	udpsinfo_t Structure

	Examples
	Packets by Host Address
	Packets by Local Port
	Sent Size Distribution

	udp Stability

	User Process Tracing
	copyin and copyinstr Subroutines
	Avoiding Errors

	Eliminating dtrace(1M) Interference
	syscall Provider
	ustack Action
	uregs[] Array
	pid Provider
	User Function Boundary Tracing
	Tracing Arbitrary Instructions

	Statically Defined Tracing for User Applications
	Choosing the Probe Points
	Adding Probes to an Application
	Defining Providers and Probes
	Adding Probes to Application Code
	Building Applications with Probes

	Security
	Privileges
	Privileged Use of DTrace
	dtrace_proc Privilege
	dtrace_user Privilege
	dtrace_kernel Privilege
	Super User Privileges

	Anonymous Tracing
	Anonymous Enablings
	Claiming Anonymous State
	Anonymous Tracing Examples

	Postmortem Tracing
	Displaying DTrace Consumers
	Displaying Trace Data

	Performance Considerations
	Limit Enabled Probes
	Use Aggregations
	Use Cacheable Predicates

	Stability
	Stability Levels
	Dependency Classes
	Interface Attributes
	USDT Interfaces
	Stability Computations and Reports
	Stability Enforcement

	Translators
	Translator Declarations
	Translate Operator
	Process Model Translators
	Stable Translations

	Versioning
	Versions and Releases
	Versioning Options
	Provider Versioning

