
Programming Interfaces Guide

Part No: 821–1602–10
November 2011

Copyright © 2001, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

111206@25097

Contents

Preface ...11

1 Memory and CPU Management ..15
Memory Management Interfaces .. 15

Creating and Using Mappings .. 15
Removing Mappings .. 16
Cache Control .. 16

Library-Level Dynamic Memory ... 17
Dynamic Memory Allocation ... 17
Dynamic Memory Debugging .. 18
Other Memory Control Interfaces ... 20

CPU Performance Counters .. 21
API Additions to libcpc ... 21

2 Remote Shared Memory API for Oracle Solaris Clusters ... 27
Overview of the Shared Memory Model ... 27
API Framework ... 28
API Library Functions .. 29

Interconnect Controller Operations ... 29
Cluster Topology Operations ... 31
Administrative Operations ... 32
Memory Segment Operations .. 33

RSMAPI General Usage Notes ... 50
Segment Allocation and File Descriptor Usage .. 50
Export-Side Considerations ... 50
Import-Side Considerations ... 50
RSM Configurable Parameters ... 50

3

3 Session Description Protocol API ..53
Session Description API Overview ... 53
SDP Library Functions .. 56

Creating the SDP Session Structure ... 56
Searching the SDP Session Structure ... 63
Shutting Down the SDP Session Structure ... 65
SDP API Utility Functions .. 66

4 Process Scheduler ..71
Overview of the Scheduler .. 71

Time-Sharing Class .. 73
System Class .. 74
Real-time Class ... 74
Interactive Class ... 74
Fair-Share Class .. 74
Fixed-Priority Class ... 75

Commands and Interfaces ... 75
priocntl Usage .. 77
priocntl Interface ... 78

Interactions With Other Interfaces ... 78
Kernel Processes ... 78
Using fork and exec .. 78
Using nice .. 79
init(1M) ... 79

Scheduling and System Performance .. 79
Process State Transition .. 79

5 Locality Group APIs ...83
Locality Groups Overview .. 83
Verifying the Interface Version ... 86
Initializing the Locality Group Interface .. 86

Using lgrp_init() .. 87
Using lgrp_fini() .. 87

Locality Group Hierarchy .. 88
Using lgrp_cookie_stale() ... 88

Contents

Programming Interfaces Guide • November 20114

Using lgrp_view() .. 88
Using lgrp_nlgrps() ... 89
Using lgrp_root() .. 89
Using lgrp_parents() ... 89
Using lgrp_children() ... 90

Locality Group Contents .. 90
Using lgrp_resources() ... 90
Using lgrp_cpus() .. 91
Using lgrp_mem_size() ... 91

Locality Group Characteristics .. 92
Using lgrp_latency_cookie() .. 92

Locality Groups and Thread and Memory Placement .. 93
Using lgrp_home() .. 93
Using madvise() .. 94
Using madv.so.1 .. 95
Using meminfo() .. 97
Locality Group Affinity ... 99

Examples of API Usage ... 101

6 Input/Output Interfaces ...109
Files and I/O Interfaces ... 109

Basic File I/O ... 110
Advanced File I/O .. 111
File System Control .. 112

Using File and Record Locking .. 112
Choosing a Lock Type ... 112
Selecting Advisory or Mandatory Locking ... 113
Cautions About Mandatory Locking ... 114
Supported File Systems .. 114

Terminal I/O Functions .. 118

7 Interprocess Communication ..121
Pipes Between Processes ... 121
Named Pipes .. 123
Sockets Overview ... 123

Contents

5

POSIX Interprocess Communication ... 123
POSIX Messages ... 124
POSIX Semaphores .. 124
POSIX Shared Memory ... 125

System V IPC ... 125
Permissions for Messages, Semaphores, and Shared Memory ... 125
IPC Interfaces, Key Arguments, and Creation Flags ... 126
System V Messages .. 126
System V Semaphores ... 129
System V Shared Memory ... 133

8 Socket Interfaces ...137
SunOS 4 Binary Compatibility ... 137
Overview of Sockets .. 138

Socket Libraries .. 138
Socket Types ... 138
Interface Sets ... 139

Socket Basics .. 141
Socket Creation .. 141
Binding Local Names ... 141
Connection Establishment ... 142
Connection Errors ... 143
Data Transfer .. 144
Closing Sockets ... 144
Connecting Stream Sockets .. 145
Input/Output Multiplexing .. 150

Datagram Sockets .. 152
Standard Routines ... 156

Host and Service Names .. 156
Host Names – hostent .. 158
Network Names – netent ... 158
Protocol Names – protoent ... 159
Service Names – servent .. 159
Other Routines ... 159

Client-Server Programs .. 160

Contents

Programming Interfaces Guide • November 20116

Sockets and Servers .. 160
Sockets and Clients .. 162
Connectionless Servers ... 163

Advanced Socket Topics ... 165
Out-of-Band Data .. 165
Nonblocking Sockets ... 166
Asynchronous Socket I/O ... 167
Interrupt-Driven Socket I/O .. 168
Signals and Process Group ID .. 168
Selecting Specific Protocols ... 169
Address Binding ... 169
Socket Options ... 171
inetd Daemon ... 172
Broadcasting and Determining Network Configuration .. 173

Using Multicast .. 176
Sending IPv4 Multicast Datagrams ... 177
Receiving IPv4 Multicast Datagrams ... 178
Sending IPv6 Multicast Datagrams ... 179
Receiving IPv6 Multicast Datagrams ... 181

Stream Control Transmission Protocol .. 182
SCTP Stack Implementation .. 182
SCTP Socket Interfaces ... 183
Code Examples of SCTP Use .. 207

9 Programming With XTI and TLI ... 219
What Are XTI and TLI? .. 219
XTI/TLI Read/Write Interface ... 221

Write Data ... 222
Read Data .. 222
Close Connection ... 222

Advanced XTI/TLI Topics ... 223
Asynchronous Execution Mode ... 223
Advanced XTI/TLI Programming Example ... 224

Asynchronous Networking .. 229
Networking Programming Models .. 229

Contents

7

Asynchronous Connectionless-Mode Service ... 230
Asynchronous Connection-Mode Service .. 231
Asynchronous Open .. 232

State Transitions .. 234
XTI/TLI States .. 234
Outgoing Events ... 234
Incoming Events .. 235
State Tables ... 236

Guidelines to Protocol Independence ... 239
XTI/TLI Versus Socket Interfaces ... 240
Socket-to-XTI/TLI Equivalents ... 241
Additions to the XTI Interface ... 243

10 Packet Filtering Hooks ..245
Packet Filtering Hooks Interfaces .. 245

Packet Filtering Hooks Kernel Functions ... 245
Packet Filtering Hooks Data Types .. 247

Using the Packet Filtering Hooks Interfaces .. 248
IP Instances ... 248
Protocol Registration ... 249
Event Registration .. 250
The Packet Hook .. 252

Packet Filtering Hooks Example .. 253

11 Transport Selection and Name-to-Address Mapping ... 263
Transport Selection ... 263
Name-to-Address Mapping ... 264

straddr.so Library ... 265
Using the Name-to-Address Mapping Routines .. 266

12 Real-time Programming and Administration ...271
Basic Rules of Real-time Applications .. 271

Factors that Degrade Response Time .. 272
Runaway Real-time Processes .. 274

Contents

Programming Interfaces Guide • November 20118

Asynchronous I/O Behavior ... 274
The Real-Time Scheduler ... 275

Dispatch Latency .. 275
Interface Calls That Control Scheduling ... 281
Utilities That Control Scheduling .. 282
Configuring Scheduling .. 283

Memory Locking ... 285
Locking a Page .. 285
Unlocking a Page .. 286
Locking All Pages ... 286
Recovering Sticky Locks .. 286

High Performance I/O .. 286
POSIX Asynchronous I/O .. 287
Oracle Solaris Asynchronous I/O .. 288
Synchronized I/O ... 290

Interprocess Communication .. 291
Processing Signals .. 291
Pipes, Named Pipes, and Message Queues .. 291
Using Semaphores ... 292
Shared Memory .. 292

Asynchronous Network Communication .. 292
Modes of Networking .. 292

Timing Facilities .. 293
Timestamp Interfaces .. 293
Interval Timer Interfaces ... 293

13 The Oracle Solaris ABI and ABI Tools .. 297
What is the Oracle Solaris ABI? ... 297
Defining the Oracle Solaris ABI ... 298

Symbol Versioning in Oracle Solaris Libraries .. 298
Using Symbol Versioning to Label the Oracle Solaris ABI ... 300

Oracle Solaris ABI Tools ... 300
appcert Utility ... 301
What appcert Checks ... 301
What appcert Does Not Check ... 302

Contents

9

Working with appcert .. 302
Using appcert for Application Triage .. 304
appcert Results .. 305
Using apptrace for Application Verification ... 307

A UNIX Domain Sockets ...311
Creating Sockets .. 311
Local Name Binding .. 312
Establishing a Connection .. 312

Index ... 315

Contents

Programming Interfaces Guide • November 201110

Preface

The Programming Interfaces Guide describes the Oracle Solaris 11 network and system
interfaces used by application developers.

SunOS 5.11 is the core of the Oracle Solaris 11 Operating System (Oracle Solaris OS), and
conforms to the third edition of the System V Interface Description (SVID) and to the Single
UNIX Specification, version 3 (SUSv3). SunOS 5.11 is fully compatible with UNIX System V,
Release 4 (SVR4), and supports all System V network services.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures. The supported systems appear in the Oracle Solaris OS: Hardware
Compatibility Lists http://www.oracle.com/webfolder/technetwork/hcl/index.html.
This document cites any implementation differences between the platform types.

Audience
This book is intended for programmers who are new to theOracle Solaris platform or want
more familiarity with some portion of the interfaces provided. Additional interfaces and
facilities for networked applications are described in the ONC+ Developer’s Guide.

This manual assumes basic competence in programming, a working familiarity with the C
programming language, and familiarity with the UNIX operating system, particularly
networking concepts. For more information on UNIX networking basics, see W. Richard
Stevens' UNIX Network Programming, second edition, Upper Saddle River, Prentice Hall, 1998.

Organization of the Manual
The services and capabilities of the basic system interfaces and basic network interfaces of the
Oracle Solaris OS platform are described in the following chapters.

Chapter 1, “Memory and CPU Management,” describes the interfaces that create and manage
memory mappings, do high performance file I/O, and control other aspects of memory
management.

11

http://www.oracle.com/webfolder/technetwork/hcl/index.html
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG

Chapter 2, “Remote Shared Memory API for Oracle Solaris Clusters,” describes the Application
Programming Interface (API) framework and library functions for remote shared memory.

Chapter 3, “Session Description Protocol API,” describes the API framework and library
functions for the Solaris implementation of the Session Description Protocol (SDP).

Chapter 4, “Process Scheduler,” describes the operation of the SunOS process scheduler,
modification of the scheduler's behavior, the scheduler's interactions with process management
interfaces, and performance effects.

Chapter 5, “Locality Group APIs,” describes the interfaces used to control the behavior and
structure of locality groups and resource priority for threads within those groups.

Chapter 6, “Input/Output Interfaces,” describes basic and old-style buffered file I/O and other
elements of I/O.

Chapter 7, “Interprocess Communication,” describes older forms of non-networked
interprocess communication.

Chapter 8, “Socket Interfaces,” describes the use of sockets, which are the basic mode of
networked communication.

Chapter 9, “Programming With XTI and TLI,” describes the use of XTI and TLI to do
transport-independent networked communication.

Chapter 10, “Packet Filtering Hooks,” describes interfaces for developing network solutions at
the kernel level such as security (packet filtering and firewall) solutions and network address
translation (NAT) solutions.

Chapter 11, “Transport Selection and Name-to-Address Mapping,” describes the network
selection mechanisms used by applications to select a network transport and its configuration.

Chapter 12, “Real-time Programming and Administration,” describes real-time programming
facilities in the SunOS environment and their use.

Chapter 13, “The Oracle Solaris ABI and ABI Tools,” describes the Oracle Solaris Application
Binary Interface (ABI) and the tools used to verify an application's compliance with the Oracle
Solaris ABI, appcert and apptrace.

Appendix A, “UNIX Domain Sockets,” describes UNIX domain sockets.

Preface

Programming Interfaces Guide • November 201112

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Preface

13

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

TABLE P–2 Shell Prompts (Continued)
Shell Prompt

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

Programming Interfaces Guide • November 201114

Memory and CPU Management

This chapter describes an application developer's view of virtual memory and CPU
management in the Oracle Solaris operating system.

■ “Memory Management Interfaces” on page 15 describes interfaces and cache control.
■ Library level dynamic memory allocation and debugging are described in “Library-Level

Dynamic Memory” on page 17.
■ “Other Memory Control Interfaces” on page 20 describes other memory control interfaces.
■ “CPU Performance Counters” on page 21 describes the use of CPU Performance Counters

(CPC).

Memory Management Interfaces
Applications use the virtual memory facilities through several sets of interfaces. This section
summarizes these interfaces. This section also provides examples of the interfaces' use.

Creating and Using Mappings
mmap(2) establishes a mapping of a named file system object into a process address space. A
named file system object can also be partially mapped into a process address space. This basic
memory management interface is very simple. Use open(2) to open the file, then use mmap(2) to
create the mapping with appropriate access and sharing options. Then, proceed with your
application.

The mapping established by mmap(2) replaces any previous mappings for the specified address
range.

The flags MAP_SHARED and MAP_PRIVATE specify the type of mapping. You must specify a
mapping type. If the MAP_SHARED flag is set, write operations modify the mapped object. No
further operations on the object are needed to make the change. If the MAP_PRIVATE flag is set,

1C H A P T E R 1

15

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2

the first write operation to the mapped area creates a copy of the page. All further write
operations reference the copy. Only modified pages are copied.

A mapping type is retained across a fork(2).

After you have established the mapping through mmap(2), the file descriptor used in the call is no
longer used. If you close the file, the mapping remains until munmap(2) undoes the mapping.
Creating a new mapping replaces an existing mapping.

A mapped file can be shortened by a call to truncate. An attempt to access the area of the file that
no longer exists causes a SIGBUS signal.

Mapping /dev/zero gives the calling program a block of zero-filled virtual memory. The size of
the block is specified in the call to mmap(2). The following code fragment demonstrates a use of
this technique to create a block of zeroed storage in a program. The block's address is chosen by
the system.

removed to fr.ch4/pl1.create.mapping.c

Some devices or files are useful only when accessed by mapping. Frame buffer devices used to
support bit-mapped displays are an example of this phenomenon. Display management
algorithms are much simpler to implement when the algorithms operate directly on the
addresses of the display.

Removing Mappings
munmap(2) removes all mappings of pages in the specified address range of the calling process.
munmap(2) has no affect on the objects that were mapped.

Cache Control
The virtual memory system in SunOS is a cache system, in which processor memory buffers
data from file system objects. Interfaces are provided to control or interrogate the status of the
cache.

Using mincore

The mincore(2) interface determines the residency of the memory pages in the address space
covered by mappings in the specified range. Because the status of a page can change after
mincore checks the page but before mincore returns the data, returned information can be
outdated. Only locked pages are guaranteed to remain in memory.

Memory Management Interfaces

Programming Interfaces Guide • November 201116

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mincore-2

Using mlock and munlock

mlock(3C) causes the pages in the specified address range to be locked in physical memory.
References to locked pages in this process or in other processes do not result in page faults that
require an I/O operation. Because this I/O operation interferes with normal operation of virtual
memory, as well as slowing other processes, the use of mlock is limited to the superuser. The
limit to the number of pages that can be locked in memory is dependent on system
configuration. The call to mlock fails if this limit is exceeded.

munlock releases the locks on physical pages. If multiple mlock calls are made on an address
range of a single mapping, a single munlock call releases the locks. However, if different
mappings to the same pages are locked by mlock, the pages are not unlocked until the locks on
all the mappings are released.

Removing a mapping also releases locks, either through being replaced with an mmap(2)
operation or removed with munmap(2).

The copy-on-write event that is associated with a MAP_PRIVATE mapping transfers a lock on the
source page to the destination page. Thus locks on an address range that includes MAP_PRIVATE
mappings are retained transparently along with the copy-on-write redirection. For a discussion
of this redirection, see “Creating and Using Mappings” on page 15.

Using mlockall and munlockall

mlockall(3C) and munlockall(3C) are similar to mlock and munlock, but mlockall and
munlockall operate on entire address spaces. mlockall sets locks on all pages in the address
space and munlockall removes all locks on all pages in the address space, whether established
by mlock or mlockall.

Using msync

msync(3C) causes all modified pages in the specified address range to be flushed to the objects
mapped by those addresses. This command is similar to fsync(3C), which operates on files.

Library-Level Dynamic Memory
Library-level dynamic memory allocation provides an easy-to-use interface to dynamic
memory allocation.

Dynamic Memory Allocation
The most often used interfaces are:

■ malloc(3C)
■ free(3C)

Library-Level Dynamic Memory

Chapter 1 • Memory and CPU Management 17

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amunlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Afsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Afree-3c

■ calloc(3C)
■ watchmalloc(3MALLOC)

Other dynamic memory allocation interfaces are memalign(3C), valloc(3C), and realloc(3C)
■ malloc returns a pointer to a block of memory at least as large as the amount of memory

that is requested. The block is aligned to store any type of data.
■ free returns the memory that is obtained from malloc, calloc, realloc, memalign, or

valloc to system memory. Trying to free a block that was not reserved by a dynamic
memory allocation interface is an error that can cause a process to crash.

■ calloc returns a pointer to a block of memory that is initialized to zeros. Memory reserved
by calloc can be returned to the system through either watchmalloc or free. The memory
is allocated and aligned to contain an array of a specified number of elements of a specified
size.

■ memalign allocates a specified number of bytes on a specified alignment boundary. The
alignment boundary must be a power of 2.

■ valloc allocates a specified number of bytes that are aligned on a page boundary.
■ realloc changes the size of the memory block allocated to a process. realloc can be used to

increase or reduce the size of an allocated block of memory. realloc is the only way to
shrink a memory allocation without causing a problem. The location in memory of the
reallocated block might be changed, but the contents up to the point of the allocation size
change remain the same.

Dynamic Memory Debugging
The Sun WorkShop package of tools is useful in finding and eliminating errors in dynamic
memory use. The Run Time Checking (RTC) facility of the Sun WorkShop uses the functions
that are described in this section to find errors in dynamic memory use.

RTC does not require the program be compiled using -g in order to find all errors. However,
symbolic (-g) information is sometimes needed to guarantee the correctness of certain errors,
particularly errors that are read from uninitialized memory. For this reason, certain errors are
suppressed if no symbolic information is available. These errors are rui for a.out and rui +

aib + air for shared libraries. This behavior can be changed by using suppress and
unsuppress.

check -access

The -access option turns on access checking. RTC reports the following errors:

baf Bad free

duf Duplicate free

maf Misaligned free

Library-Level Dynamic Memory

Programming Interfaces Guide • November 201118

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Acalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Awatchmalloc-3malloc
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amemalign-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Avalloc-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Arealloc-3c

mar Misaligned read

maw Misaligned write

oom Out of memory

rua Read from unallocated memory

rui Read from uninitialized memory

rwo Write to read-only memory

wua Write to unallocated memory

The default behavior is to stop the process after detecting each access error. This behavior can
be changed using the rtc_auto_continue dbxenv variable. When set to on, RTC logs access
errors to a file. The file name is determined by the value of the rtc_error_log_file_name
dbxenv variable. By default, each unique access error is only reported the first time the error
happens. Change this behavior using the rtc_auto_suppress dbxenv variable. The default
setting of this variable is on.

check -leaks [-frames n] [-match m]

The -leaks option turns on leak checking. RTC reports the following errors:

aib Possible memory leak – The only pointer points in the middle of the block

air Possible memory leak – The pointer to the block exists only in register

mel Memory leak – No pointers to the block

With leak checking turned on, you get an automatic leak report when the program exits. All
leaks, including potential leaks, are reported at that time. By default, a non-verbose report is
generated. This default is controlled by the dbxenv rtc_mel_at_exit. However, you can ask for
a leak report at any time.

The -frames n variable displays up to n distinct stack frames when reporting leaks. The -match
m variable combines leaks. If the call stack at the time of allocation for two or more leaks
matches m frames, these leaks are reported in a single combined leak report. The default value
of n is the larger of 8 or the value of m. The maximum value of n is 16. The default value of m is
2.

check -memuse [-frames n] [-matchm]

The -memuse option turns on memory use (memuse) checking. Using check -memuse implies
using check -leaks. In addition to a leak report at program exit, you also get a report listing
blocks in use, biu. By default, a non-verbose report on blocks in use is generated. This default is
controlled by the dbxenv rtc_biu_at_exit. At any time during program execution, you can see
where the memory in your program has been allocated.

Library-Level Dynamic Memory

Chapter 1 • Memory and CPU Management 19

The -frames n and -match m variables function as described in the following section.

check -all [-frames n] [-matchm]

Equivalent to check -access; check -memuse [-frames n] [-match m]. The value of
rtc_biu_at_exit dbxenv variable is not changed with check -all. So, by default, no memory
use report is generated at exit.

check [funcs] [files] [loadobjects]
Equivalent to check -all; suppress all; unsuppress all in funcs files loadobjects. You can
use this option to focus RTC on places of interest.

Other Memory Control Interfaces
This section discusses additional memory control interfaces.

Using sysconf

sysconf(3C) returns the system dependent size of a memory page. For portability, applications
should not embed any constants that specify the size of a page. Note that varying page sizes are
not unusual, even among implementations of the same instruction set.

Using mprotect

mprotect(2) assigns the specified protection to all pages in the specified address range. The
protection cannot exceed the permissions that are allowed on the underlying object.

Using brk and sbrk

A break is the greatest valid data address in the process image that is not in the stack. When a
program starts executing, the break value is normally set by execve(2) to the greatest address
defined by the program and its data storage.

Use brk(2) to set the break to a greater address. You can also use sbrk(2) to add an increment of
storage to the data segment of a process. You can get the maximum possible size of the data
segment by a call to getrlimit(2).

caddr_t

brk(caddr_t addr);

caddr_t

sbrk(intptr_t incr);

Library-Level Dynamic Memory

Programming Interfaces Guide • November 201120

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Asysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mprotect-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2execve-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sbrk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2getrlimit-2

brk identifies the lowest data segment location not used by the caller as addr. This location is
rounded up to the next multiple of the system page size.

sbrk, the alternate interface, adds incr bytes to the caller data space and returns a pointer to the
start of the new data area.

CPU Performance Counters
This section describes developer interfaces for use of CPU Performance counters (CPC). Oracle
Solaris applications can use CPC independent of the underlying counter architecture.

API Additions to libcpc

This section covers recent additions to the libcpc(3LIB) library. Please see the libcpc man
page for information on older interfaces.

Initialization Interfaces
An application preparing to use the CPC facility initializes the library with a call to the
cpc_open() function. This function returns a cpc_t * parameter that is used by the other
interfaces. The syntax for the cpc_open() function is as follows:

cpc_t*cpc_open(intver);

The value of the ver parameter identifies the version of the interface that the application is
using. The cpc_open() function fails if the underlying counters are inaccessible or unavailable.

Hardware Query Interfaces
uint_t cpc_npic(cpc_t *cpc);

uint_t cpc_caps(cpc_t *cpc);

void cpc_walk_events_all(cpc_t *cpc, void *arg,

void (*action)(void *arg, const char *event));

void cpc_walk_events_pic(cpc_t *cpc, uint_t picno, void *arg,

void(*action)(void *arg, uint_t picno, const char *event));

void cpc_walk-attrs(cpc_t *cpc, void *arg,

void (*action)(void *arg, const char *attr));

The cpc_npic() function returns the number of physical counters on the underlying processor.

The cpc_caps() function returns a uint_t parameter whose value is the result of the bitwise
inclusive-OR operation performed on the capabilities that the underlying processor supports.
There are two capabilities. The CPC_CAP_OVERFLOW_INTERRUPT capability enables the processor
to generate an interrupt when a counter overflows. The CPC_CAP_OVERFLOW_PRECISE capability
enables the processor to determine which counter generates an overflow interrupt.

CPU Performance Counters

Chapter 1 • Memory and CPU Management 21

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Flibcpc-3lib

The kernel maintains a list of the events that the underlying processor supports. Different
physical counters on a single chip do not have to use the same list of events. The
cpc_walk_events_all() function calls the the action() routine for each processor-supported
event without regard to physical counter. The cpc_walk_events_pic() function calls the
action() routine for each processor-supported event on a specific physical counter. Both of
these functions pass the arg parameter uninterpreted from the caller to each invocation of the
action() function.

The platform maintains a list of attributes that the underlying processor supports. These
attributes enable access to advanced processor-specific features of the performance counters.
The cpc_walk_attrs() function calls the action routine on each attribute name.

Configuration Interfaces
cpc_set_t *cpc_set_create(cpc_t *cpc);

int cpc_set_destroy(cpc_t *cpc, cpc_set_t *set);

int cpc_set_add_request(cpc_t *cpc, cpc_set_t *set, const char *event,

uint64_t preset, uint_t flags, uint_t nattrs,

const cpc_attr_t *attrs);

int cpc_set_request_preset(cpc_t *cpc, cpc_set_t *set, int index,

uint64_t preset);

The opaque data type cpc_set_t represents collections of requests. The collections are called
sets. The cpc_set_create() function creates an empty set. The cpc_set_destroy() function
destroys a set and frees all the memory used by the set. Destroying a set releases the hardware
resources the set uses.

The cpc_set_add_request() function adds requests to a set. The following list describes the
parameters of a request.

event A string that specifies the name of the event to count.

preset A 64–bit unsigned integer that is used as the initial value of the counter.

flags The results of the logical OR operation applied to a group of request flags.

nattrs The number of attributes in the array that attrs points to.

attrs A pointer to an array of cpc_attr_t structures.

The following list describes the valid request flags.

CPC_COUNT_USER This flag enables counting of events that occur while the CPU is
executing in user mode.

CPC_COUNT_SYSTEM This flag enables counting of events that occur while the CPU is
executing in privileged mode.

CPC_OVF_NOTIFY_EMT This flag requests notification of hardware counter overflow.

The CPC interfaces pass attributes as an array of cpc_attr_t structures.

CPU Performance Counters

Programming Interfaces Guide • November 201122

When the cpc_set_add_request() function returns successfully, it returns an index. The
index references the data generated by the request added by the call to the
cpc_set_add_request() function.

The cpc_set_request_preset() function changes the preset value of a request. This enables
the re-binding of an overflowed set with new presets.

The cpc_walk_requests() function calls a user-provided action() routine on each request in
cpc_set_t. The value of the arg parameter is passed to the user routine without interpretation.
The cpc_walk_requests() function allows applications to print the configuration of each
request in a set. The syntax for the cpc_walk_requests() function is as follows:

void cpc_walk_requests(cpc_t *cpc, cpc_set_t *set, void *arg,

void (*action)(void *arg, int index, const char *event,

uint64_t preset, uint_t flags, int nattrs,

const cpc_attr_t *attrs));

Binding
The interfaces in this section bind the requests in a set to the physical hardware and set the
counters to a starting position.

int cpc_bind_curlwp(cpc_t *cpc, cpc_set_t *set, uint_t flags);

int cpc_bind_pctx(cpc_t *cpc, pctx_t *pctx, id_t id, cpc_set_t *set,

uint_t flags);

int cpc_bind_cpu(cpc_t *cpc, processorid_t id, cpc_set_t *set,

uint_t flags);

int cpc_unbind(cpc_t *cpc, cpc_set_t *set);

The cpc_bind_curlwp() function binds the set to the calling LWP. The set's counters are
virtualized to this LWP and count the events that occur on the CPU while the calling LWP runs.
The only flag that is valid for the cpc_bind_curlwp() routine is CPC_BIND_LWP_INHERIT.

The cpc_bind_pctx() function binds the set to a LWP in a process that is captured with
libpctx(3LIB). This function has no valid flags.

The cpc_bind_cpu() function binds the set to the processor specified in the id parameter.
Binding a set to a CPU invalidates existing performance counter contexts on the system. This
function has no valid flags.

The cpc_unbind() function stops the performance counters and releases the hardware that is
associated with the bound set. If a set is bound to a CPU, the cpc_unbind() function unbinds
the LWP from the CPU and releases the CPC pseudo-device.

CPU Performance Counters

Chapter 1 • Memory and CPU Management 23

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Flibpctx-3lib

Sampling
The interfaces described in this section enable the return of data from the counters to the
application. Counter data resides in an opaque data structure named cpc_buf_t. This data
structure takes a snapshot of the state of counters in use by a bound set and includes the
following information:

■ The 64–bit values of each counter
■ The timestamp of the most recent hardware snapshot
■ A cumulative CPU cycle counter that counts the number of CPU cycles the processor has

used on the bound set

cpc_buf_t *cpc_buf_create(cpc_t *cpc, cpc_set_t *set);

int cpc_buf_destroy(cpc_t *cpc, cpc_buf_t *buf);

int cpc_set_sample(cpc_t *cpc, cpc_set_t *set, cpc_buf_t *buf);

The cpc_buf_create() function creates a buffer that stores data from the set specified in
cpc_set_t. The cpc_buf_destroy() function frees the memory that is associated with the
given cpc_buf_t. The cpc_buf_sample() function takes a snapshot of the counters that are
counting on behalf of the specified set. The specified set must already be bound and have a
buffer created before calling the cpc_buf_sample() function.

Sampling into a buffer does not update the preset of the requests that are associated with that
set. When a buffer is sampled with the cpc_buf_sample() function, then unbound and bound
again, counts start from the request's preset as in the original call to the
cpc_set_add_request() function.

Buffer Operations
The following routines provide access to the data in a cpc_buf_t structure.

int cpc_buf_get(cpc_t *cpc, cpc_buf_t *buf, int index, uint64_t *val);

int cpc_buf_set(cpc_t *cpc, cpc_buf_t *buf, int index, uint64_t *val);

hrtime_t cpc_buf_hrtime(cpc_t *cpc, cpc_buf_t *buf);

uint64_t cpc_buf_tick(cpc_t *cpc, cpc_buf_t *buf);

int cpc_buf_sub(cpc_t *cpc, cpc_buf_t *result, cpc_buf_t *left

cpc_buf_t *right);

int cpc_buf_add(cpc_t *cpc, cpc_buf_t *result, cpc_buf_t *left,

cpc_buf_t *right);

int cpc_buf_copy(cpc_t *cpc, cpc_buf_t *dest, cpc_buf_t *src);

void cpc_buf_zero(cpc_t *cpc, cpc_buf_t *buf);

The cpc_buf_get() function retrieves the value of the counter that is identified by the index
parameter. The index parameter is a value that is returned by the cpc_set_add_request()
function before the set is bound. The cpc_buf_get() function stores the value of the counter at
the location indicated by the val parameter.

CPU Performance Counters

Programming Interfaces Guide • November 201124

The cpc_buf_set() function sets the value of the counter that is identified by the index
parameter. The index parameter is a value that is returned by the cpc_set_add_request()
function before the set is bound. The cpc_buf_set() function sets the counter's value to the
value at the location indicated by the val parameter. Neither the cpc_buf_get() function nor
the cpc_buf_set() function change the preset of the corresponding CPC request.

The cpc_buf_hrtime() function returns the high resolution timestamp that indicates when the
hardware was sampled. The cpc_buf_tick() function returns the number of CPU clock cycles
that have elapsed while the LWP is running.

The cpc_buf_sub() function computes the difference between the counters and tick values that
are specified in the left and right parameters. The cpc_buf_sub() function stores the results in
result. A given invocation of the cpc_buf_sub() function must have all cpc_buf_t values
originate from the same cpc_set_t structure. The result index contains the result of the left -
right computation for each request index in the buffers. The result index also contains the tick
difference. The cpc_buf_sub() function sets the high-resolution timestamp of the destination
buffer to the most recent time of the left or right buffers.

The cpc_buf_add() function computes the total of the counters and tick values that are
specified in the left and right parameters. The cpc_buf_add() function stores the results in
result. A given invocation of the cpc_buf_add() function must have all cpc_buf_t values
originate from the same cpc_set_t structure. The result index contains the result of the left +
right computation for each request index in the buffers. The result index also contains the tick
total. The cpc_buf_add() function sets the high-resolution timestamp of the destination buffer
to the most recent time of the left or right buffers.

The cpc_buf_copy() function makes dest identical to src.

The cpc_buf_zero() function sets everything in buf to zero.

Activation Interfaces
This section describes activation interfaces for CPC.

int cpc_enable(cpc_t *cpc);

int cpc_disable(cpc_t *cpc);

These two interfaces respectively enable and disable counters of any set that is bound to the
executing LWP. Use of these interfaces enables an application to designate code of interest while
deferring the counter configuration to a controlling process by using libpctx.

Error Handling Interfaces
This section describes CPC's error handling interfaces.

CPU Performance Counters

Chapter 1 • Memory and CPU Management 25

typedef void (cpc_errhndlr_t)(const char *fn, int subcode, const char *fmt,

va_list ap);

void cpc_seterrhndlr(cpc_t *cpc, cpc_errhndlr_t *errhndlr);

These two interfaces allow the passage of a cpc_t handle. The cpc_errhndlr_t handle takes an
integer subcode in addition to a string. The integer subcode describes the specific error that was
encountered by the function that the fn argument refers to. The integer subcode simplifies an
application's recognition of error conditions. The string value of the fmt argument contains an
internationalized description of the error subcode and is suitable for printing.

CPU Performance Counters

Programming Interfaces Guide • November 201126

Remote Shared Memory API for Oracle Solaris
Clusters

Oracle Solaris Cluster OS systems can be configured with a memory-based interconnect such as
Dolphin-SCI and layered system software components. These components implement a
mechanism for user-level inter-node messaging that is based on direct access to memory
residing on remote nodes. This mechanism is referred to as Remote Shared Memory (RSM).
This chapter defines the RSM Application Programming Interface (RSMAPI).

■ “API Framework” on page 28 describes the RSM API framework.
■ “API Library Functions” on page 29 covers RSM API library functions.

Overview of the Shared Memory Model
In the shared memory model, an application process creates an RSM export segment from the
process's local address space. One or more remote application processes create an RSM import
segment with a virtual connection between export and import segments across the
interconnect. All processes make memory references for the shared segment with addresses
local to their specific address space.

An application process creates an RSM export segment by allocating locally addressable
memory to the export segment. This allocation is done by using one of the standard Oracle
Solaris interfaces, such as System V Shared Memory, mmap(2), or valloc(3C). The process then
calls on the RSMAPI for the creation of a segment, which provides a reference handle for the
allocated memory. The RSM segment is published through one or more interconnect
controllers. A published segment is remotely accessible. A list of access privileges for the nodes
that are permitted to import the segment is also published.

A segment ID is assigned to the exported segment. This segment ID, along with the cluster node
ID of the creating process, allows an importing process to uniquely specify an export segment.
Successfully creating an export segment returns a segment handle to the process for use in
subsequent segment operations.

2C H A P T E R 2

27

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Avalloc-3c

An application process obtains access to a published segment by using the RSMAPI to create an
import segment. After creating the import segment, the application process forms a virtual
connection across the interconnect. Successfully creating this import segment returns an RSM
import segment handle to the application process for use in subsequent segment import
operations. After establishing the virtual connection, the application might request RSMAPI to
provide a memory map for local access, if supported by the interconnect. If memory mapping is
not supported, the application can use memory access primitives provided by RSMAPI.

The RSMAPI provides a mechanism to support remote access error detection and to resolve
write-order memory model issues. This mechanism is called a barrier.

RSMAPI provides a notification mechanism to synchronize local and remote accesses. An
export process can call a function to block while an import process finishes a data write
operation. When the import process finishes writing, the process unblocks the export process
by calling a signal function. Once unblocked, the export process processes the data.

API Framework
The RSM application support components are delivered in software packages as follows:

■ SUNWrsm

■ A shared library (/usr/lib/librsm.so) that exports the RSMAPI functions.
■ A Kernel Agent (KA) pseudo device driver (/usr/kernel/drv/rsm) that interfaces with

the memory interconnect driver through the RSMAPI interface on behalf of the user
library.

■ A cluster interface module for obtaining interconnect topology.
■ SUNWrsmop

Interconnect driver service module (/kernel/misc/rsmops).
■ SUNWrsmdk

Header files providing API function and data structure prototypes
(/opt/SUNWrsmdk/include).

■ SUNWinterconnect

An optional extension to librsm.so that provides RSM support for the specific
interconnect is configured in the system. The extension is provided in the form of a library,
librsminterconnect.so.

API Framework

Programming Interfaces Guide • November 201128

API Library Functions
The API library functions support the following operations:
■ Interconnect controller operations
■ Cluster topology operations
■ Memory segment operations, including segment management and data access
■ Barrier operations
■ Event operations

Interconnect Controller Operations
The controller operations provide mechanisms for obtaining access to a controller. Controller
operations can also determine the characteristics of the underlying interconnect. The following
list contains information on controller operations:
■ Get controller
■ Get controller attributes
■ Release controller

rsm_get_controller

int rsm_get_controller(char *name, rsmapi_controller_handle_t *controller);

Cluster interface Kernel Agent

Application

API Library
Functions

Generic Library
Functions

Service Module for
Interconnect Drivers

Interconnect Specific
Extension Library

Library Operations
Vector

User level

Kernel level

RSMAPI

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 29

The rsm_get_controller operation acquires a controller handle for the given controller
instance, such as sci0 or loopback. The returned controller handle is used for subsequent RSM
library calls.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_CTLR_NOT_PRESENT Controller not present

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_BAD_LIBRARY_VERSION Invalid library version

RSMERR_BAD_ADDR Bad address

rsm_release_controller

int rsm_release_controller(rsmapi_controller_handle_t chdl);
This function releases the controller associated with the given controller handle. Each call to
rsm_release_controller must have a matching rsm_get_controller. When all the
controller handles associated with a controller are released, the system resources associated
with the controller are freed. Attempting to access a controller handle, or attempting to access
import or export segments on a released controller handle, is not legal. The results of such an
attempt are undefined.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

rsm_get_controller_attr

int rsm_get_controller_attr(rsmapi_controller_handle_t chdl, rsmapi_controller_attr_t
*attr);
This function retrieves attributes for the specified controller handle. The following list describes
the currently defined attributes for this function:

typedef struct {

uint_t attr_direct_access_sizes;

uint_t attr_atomic_sizes;

size_t attr_page_size;

size_t attr_max_export_segment_size;

size_t attr_tot_export_segment_size;

ulong_t attr_max_export_segments;

size_t attr_max_import_map_size;

size_t attr_tot_import_map_size;

ulong_t attr_max_import_segments;

} rsmapi_controller_attr_t;

API Library Functions

Programming Interfaces Guide • November 201130

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_BAD_ADDR Bad address

Cluster Topology Operations
The key interconnect data required for export operations and import operations are:

■ Export cluster node ID
■ Import cluster node ID
■ Controller name

As a fundamental constraint, the controller specified for a segment import must have a physical
connection with the controller used for the associated segment export. This interface defines
the interconnect topology, which helps applications establish efficient export and import
policies. The data that is provided includes local node ID, local controller instance name, and
remote connection specification for each local controller.

An application component that exports memory can use the data provided by the interface to
find the set of existing local controllers. The data provided by the interface can also be used to
correctly assign controllers for the creation and publishing of segments. Application
components can efficiently distribute exported segments over the set of controllers that is
consistent with the hardware interconnect and with the application software distribution.

An application component that is importing memory must be informed of the segment IDs and
controllers used in the memory export. This information is typically conveyed by a predefined
segment and controller pair. The importing component can use the topology data to determine
the appropriate controllers for the segment import operations.

rsm_get_interconnect_topology

int rsm_get_interconnect_topology(rsm_topology_t **topology_data);
This function returns a pointer to the topology data in a location specified by an application
pointer. The topology data structure is defined next.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_TOPOLOGY_PTR Invalid topology pointer

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_BAD_ADDR Insufficient memory

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 31

rsm_free_interconnect_topology

void rsm_free_interconnect_topology(rsm_topology_t *topology_data);
The rsm_free_interconnect_topology operation frees the memory allocated by
rsm_get_interconnect_topology.

Return Values: None.

Data Structures
The pointer returned from rsm_get_topology_data references a rsm_topology_t structure.
This structure provides the local node ID and an array of pointers to a connections_t structure
for each local controller.

typedef struct rsm_topology {

rsm_nodeid_t local_nodeid;

uint_t local_cntrl_count;

connections_t *connections[1];

} rsm_topology_t;

Administrative Operations
RSM segment IDs can be specified by the application or generated by the system using the
rsm_memseg_export_publish() function. Applications that specify segment IDs require a
reserved range of segment IDs to use. To reserve a range of segment IDs, use
rsm_get_segmentid_range and define the reserved range of segment IDs in the segment ID
configuration file /etc/rsm/rsm.segmentid. The rsm_get_segmentid_range function can be
used by applications to obtain the segment ID range that is reserved for the applications. This
function reads the segment ID range defined in the /etc/rsm/rsm.segmentid file for a given
application ID.

An application ID is a null-terminated string that identifies the application. The application can
use any value equal to or greater than baseid and less than baseid+length. If baseid or length
are modified, the segment ID returned to the application might be outside the reserved range.
To avoid this problem, use an offset within the range of reserved segment IDs to obtain a
segment ID.

Entries in the /etc/rsm/rsm.segmentid file are of the form:

#keyword appid baseid length

reserve SUNWfoo 0x600000 100

The entries are composed of strings, which can be separated by tabs or blanks. The first string is
the keyword reserve, followed by the application identifier, which is a string without spaces.
Following the application identifier is the baseid, which is the starting segment ID of the

API Library Functions

Programming Interfaces Guide • November 201132

reserved range in hexadecimal. Following the baseid is the length, which is the number of
segment IDs that are reserved. Comment lines have a # in the first column. The file should not
contain blank or empty lines. Segment IDs that are reserved for the system are defined in the
/usr/include/rsm/rsm_common.h header file. The segment IDs that are reserved for the
system cannot be used by the applications.

The rsm_get_segmentid_range function returns 0 to indicate success. If the function fails, the
function returns one of the following error values:

RSMERR_BAD_ADDR The address that is passed is invalid

RSMERR_BAD_APPID Application ID not defined in the/etc/rsm/rsm.segmentid file

RSMERR_BAD_CONF The configuration file /etc/rsm/rsm.segmentid is not present or not
readable. The file format's configuration is incorrect

Memory Segment Operations
An RSM segment represents a set of (generally) non-contiguous physical memory pages
mapped to a contiguous virtual address range. RSM segment export and segment import
operations enable the sharing of regions of physical memory among systems on an
interconnect. A process of the node on which the physical pages reside is referred to as the
exporter of the memory. An exported segment that is published for remote access will have a
segment identifier that is unique for the given node. The segment ID might be specified by the
exporter or assigned by the RSMAPI framework.

Processes of nodes on the interconnect obtain access to exported memory by creating an RSM
import segment. The RSM import segment has a connection with an exported segment, rather
than local physical pages. When the interconnect supports memory mapping, importers can
read and write the exported memory by using the local memory-mapped addresses of the
import segment. When the interconnect does not support memory mapping, the importing
process uses memory access primitives.

Export-Side Memory Segment Operations
When exporting a memory segment, the application begins by allocating memory in its virtual
address space through the normal operating system interfaces such as the System V Shared
Memory Interface, mmap, or valloc. After allocating memory, the application calls the RSMAPI
library interfaces to create and label a segment. After labelling the segment, the RSMAPI library
interfaces bind physical pages to the allocated virtual range. After binding the physical pages,
the RSMAPI library interfaces publish the segment for access by importing processes.

Note – If virtual address space is obtained by using mmap, the mapping must be MAP_PRIVATE.

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 33

Export side memory segment operations include:

■ Memory segment creation and destruction
■ Memory segment publishing and unpublishing
■ Rebinding backing store for a memory segment

Memory Segment Creation and Destruction

Establishing a new memory segment with rsm_memseg_export_create enables the association
of physical memory with the segment at creation time. The operation returns an export-side
memory segment handle to the new memory segment. The segment exists for the lifetime of the
creating process or until destroyed with rsm_memseg_export_destroy.

Note – If destroy operation is performed before an import side disconnect, the disconnect is
forced.

Segment Creation

int rsm_memseg_export_create(rsmapi_controller_handle_t controller,
rsm_memseg_export_handle_t *memseg, void *vaddr, size_t size, uint_t flags);

This function creates a segment handle. After the segment handle is created, the segment
handle is bound to the specified virtual address range [vaddr..vaddr+size]. The range must
be valid and aligned on the controller's alignment property. The flags argument is a bitmask,
which enables:

■ Unbinding on the segment
■ Rebinding on the segment
■ Passing RSM_ALLOW_REBIND to flags

■ Support of lock operations
■ Passing RSM_LOCK_OPS to flags

Note – The RSM_LOCK_OPS flag is not included in the initial release of RSMAPI.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_CTLR_NOT_PRESENT Controller not present

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_LENGTH Length zero or length exceeds controller limits

RSMERR_BAD_ADDR Invalid address

API Library Functions

Programming Interfaces Guide • November 201134

RSMERR_PERM_DENIED Permission denied

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_BAD_MEM_ALIGNMENT Address not aligned on page boundary

RSMERR_INTERRUPTED Operation interrupted by signal

Segment Destruction

int rsm_memseg_export_destroy(rsm_memseg_export_handle_t memseg);

This function deallocates segment and its free resources. All importing processes are forcibly
disconnected.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_POLLFD_IN_USE pollfd in use

Memory Segment Publish, Republish, and Unpublish

The publish operation enables the importing of a memory segment by other nodes on the
interconnect. An export segment might be published on multiple interconnect adapters.

The segment ID might be specified from within authorized ranges or specified as zero, in which
case a valid segment ID is generated by the RSMAPI framework and is passed back.

The segment access control list is composed of pairs of node ID and access permissions. For
each node ID specified in the list, the associated read/write permissions are provided by three
octal digits for owner, group and other, as with Oracle Solaris file permissions. In the access
control list, each octal digit can have the following values:

2 Write access.

4 Read only access.

6 Read and write access.

An access permission value of 0624 specifies the following kind of access:

■ An importer with the same uid as the exporter has both read and write access.
■ An importer with the same gid as the exporter has write access only.
■ All other importers have read access only.

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 35

When an access control list is provided, nodes not included in the list cannot import the
segment. However, if the access list is null, any node can import the segment. The access
permissions on all nodes equal the owner-group-other file creation permissions of the
exporting process.

Note – Node applications have the responsibility of managing the assignment of segment
identifiers to ensure uniqueness on the exporting node.

Publish Segment

int rsm_memseg_export_publish(rsm_memseg_export_handle_t memseg,
rsm_memseg_id_t *segment_id, rsmapi_access_entry_t ACCESS_list[],
uint_t access_list_length);

typedef struct {

rsm_node_id_t ae_node; /* remote node id allowed to access resource */

rsm_permission_t ae_permissions; /* mode of access allowed */

} rsmapi_access_entry_t;.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_SEG_ALREADY_PUBLISHED Segment already published

RSMERR_BAD_ACL Invalid access control list

RSMERR_BAD_SEGID Invalid segment identifier

RSMERR_SEGID_IN_USE Segment identifier in use

RSMERR_RESERVED_SEGID Segment identifier reserved

RSMERR_NOT_CREATOR Not creator of segment

RSMERR_BAD_ADDR Bad address

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

Authorized Segment ID Ranges:

#define RSM_DRIVER_PRIVATE_ID_BASE 0

#define RSM_DRIVER_PRIVATE_ID_END 0x0FFFFF

#define RSM_CLUSTER_TRANSPORT_ID_BASE 0x100000

#define RSM_CLUSTER_TRANSPORT_ID_END 0x1FFFFF

#define RSM_RSMLIB_ID_BASE 0x200000

API Library Functions

Programming Interfaces Guide • November 201136

#define RSM_RSMLIB_ID_END 0x2FFFFF

#define RSM_DLPI_ID_BASE 0x300000

#define RSM_DLPI_ID_END 0x3FFFFF

#define RSM_HPC_ID_BASE 0x400000

#define RSM_HPC_ID_END 0x4FFFFF

The following range is reserved for allocation by the system when the publish value is zero.

#define RSM_USER_APP_ID_BASE 0x80000000

#define RSM_USER_APP_ID_END 0xFFFFFFF

Republish Segment

int rsm_memseg_export_republish(rsm_memseg_export_handle_t memseg,
rsmapi_access_entry_t access_list[], uint_t access_list_length);

This function establishes a new node access list and segment access mode. These changes only
affect future import calls and do not revoke already granted import requests.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_SEG_NOT_PUBLISHED Segment not published

RSMERR_BAD_ACL Invalid access control list

RSMERR_NOT_CREATOR Not creator of segment

RSMERR_INSUFFICIENT_MEMF Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_INTERRUPTED Operation interrupted by signal

Unpublish Segment

int rsm_memseg_export_unpublish(rsm_memseg_export_handle_t memseg);

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_SEG_NOT_PUBLISHED Segment not published

RSMERR_NOT_CREATOR Not creator of segment

RSMERR_INTERRUPTED Operation interrupted by signal

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 37

Memory Segment Rebind

The rebind operation releases the current backing store for an export segment. After releasing
the current backing store for an export segment, the rebind operation allocates a new backing
store. The application must first obtain a new virtual memory allocation for the segment. This
operation is transparent to importers of the segment.

Note – The application has the responsibility of preventing access to segment data until the
rebind operation is complete. Retrieving data from a segment during rebinding does not cause a
system failure, but the results of such an operation are undefined.

Rebind Segment

int rsm_memseg_export_rebind(rsm_memseg_export_handle_t memseg, void *vaddr,
offset_t off, size_t size);

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_LENGTH Invalid length

RSMERR_BAD_ADDR Invalid address

RSMERR_REBIND_NOT_ALLOWED Rebind not allowed

RSMERR_NOT_CREATOR Not creator of segment

RSMERR_PERM_DENIED Permission denied

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_INTERRUPTED Operation interrupted by signal

Import-Side Memory Segment Operations
The following list describes Import-side operations:

■ Memory segment connection and disconnection
■ Access to imported segment memory
■ Barrier operations used to impose order on data access operations and for access error

detection

The connect operation is used to create an RSM import segment and form a logical connection
with an exported segment.

API Library Functions

Programming Interfaces Guide • November 201138

Access to imported segment memory is provided by three interface categories:

■ Segment access.
■ Data transfer.
■ Segment memory mapping.

Memory Segment Connection and Disconnection

Connect to Segment

int rsm_memseg_import_connect(rsmapi_controller_handle_t controller,
rsm_node_id_t node_id, rsm_memseg_id_t segment_id, rsm_permission_t perm,

rsm_memseg_import_handle_t *im_memseg);

This function connects to segment segment_id on remote node node_id by using the specified
permission perm. The function returns a segment handle after connecting to the segment.

The argument perm specifies the access mode requested by the importer for this connection. To
establish the connection, the access permissions specified by the exporter are compared to the
access mode, user ID, and group ID used by the importer. If the request mode is not valid, the
connection request is denied. The perm argument is limited to the following octal values:

0400 Read mode

0200 Write mode

0600 Read/write mode

The specified controller must have a physical connection to the controller that is used in the
export of the segment.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_CTLR_NOT_PRESENT Controller not present

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_PERM_DENIED Permission denied

RSMERR_SEG_NOT_PUBLISHED_TO_NODE Segment not published to node

RSMERR_SEG_NOT_PUBLISHED No such segment published

RSMERR_REMOTE_NODE_UNREACHABLE Remote node not reachable

RSMERR_INTERRUPTED Connection interrupted

RSMERR_INSUFFICIENT_MEM Insufficient memory

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 39

RSMERR_BAD_ADDR Bad address

Disconnect from Segment

int rsm_memseg_import_disconnect(rsm_memseg_import_handle_t im_memseg);

This function disconnects a segment. This function frees a segment's resources after
disconnecting a segment. All existing mappings to the disconnected segment are removed. The
handle im_memseg is freed.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_SEG_STILL_MAPPED Segment still mapped

RSMERR_POLLFD_IN_USE pollfd in use

Memory Access Primitives

The following interfaces provide a mechanism for transferring between 8 bits and 64 bits of
data. The get interfaces use a repeat count (rep_cnt) to indicate the number of data items of a
given size the process will read from successive locations. The locations begin at byte offset
offset in the imported segment. The data is written to successive locations that begin at datap.
The put interfaces use a repeat count (rep_cnt). The count indicates the number of data items
the process will read from successive locations. The locations begin at datap. The data is then
written to the imported segment at successive locations. The locations begin at the byte offset
specified by the offset argument.

These interfaces also provide byte swapping in case the source and destination have
incompatible endian characteristics.

Function Prototypes:

int rsm_memseg_import_get8(rsm_memseg_import_handle_t im_memseg, off_t offset,
uint8_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get16(rsm_memseg_import_handle_t im_memseg, off_t offset,
uint16_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get32(rsm_memseg_import_handle_t im_memseg, off_t offset,
uint32_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get64(rsm_memseg_import_handle_t im_memseg, off_t offset,
uint64_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_put8(rsm_memseg_import_handle_t im_memseg, off_t offset,
uint8_t *datap, ulong_t rep_cnt);

API Library Functions

Programming Interfaces Guide • November 201140

int rsm_memseg_import_put16(rsm_memseg_import_handle_t im_memseg, off_t offset,
uint16_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_put32(rsm_memseg_import_handle_t im_memseg, off_t offset,
uint32_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_put64(rsm_memseg_import_handle_t im_memseg, off_t offset,
uint64_t *datap, ulong_t rep_cnt);

The following interfaces are intended for data transfers that are larger than the ones supported
by the segment access operations.

Segment Put

int rsm_memseg_import_put(rsm_memseg_import_handle_t im_memseg, off_t offset,
void *src_addr, size_t length);

This function copies data from local memory, specified by the src_addr and length, to the
corresponding imported segment locations specified by the handle and offset.

Segment Get

int rsm_memseg_import_get(rsm_memseg_import_handle_t im_memseg, off_t offset,
void *dst_addr, size_t length);

This function is similar to rsm_memseg_import_put(), but data flows from the imported
segment into local regions defined by the dest_vec argument

The put and get routines write or read the specified quantity of data from the byte offset
location specified by the argument offset. The routines begin at the base of the segment. The
offset must align at the appropriate boundary. For example, rsm_memseg_import_get64()
requires that offset and datap align at a double-word boundary, while
rsm_memseg_import_put32() requires an offset that is aligned at a word boundary.

By default, the barrier mode attribute of a segment is implicit. Implicit barrier mode means
that the caller assumes the data transfer has completed or has failed upon return from the
operation. Because the default barrier mode is implicit, the application must initialize the
barrier. The application initializes the barrier by using the
rsm_memseg_import_init_barrier() function before calling put or get routines when using
the default mode. To use the explicit operation mode, the caller must use a barrier operation to
force the completion of a transfer. After forcing the completion of the transfer, the caller must
determine if any errors have occurred as a result of the forced completion.

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 41

Note – An import segment can be partially mapped by passing an offset in the
rsm_memseg_import_map() routine. If the import segment is partially mapped, the offset
argument in the put or get routines is from the base of the segment. The user must make sure
that the correct byte offset is passed to put and get routines.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_ADDR Bad address

RSMERR_BAD_MEM_ALIGNMENT Invalid memory alignment

RSMERR_BAD_OFFSET Invalid offset

RSMERR_BAD_LENGTH Invalid length

RSMERR_PERM_DENIED Permission denied

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized

RSMERR_BARRIER_FAILURE I/O completion error

RSMERR_CONN_ABORTED Connection aborted

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

Scatter-Gather Access

The rsm_memseg_import_putv() and rsm_memseg_import_getv() functions allow the use of a
list of I/O requests instead of a single source and single destination address.

Function Prototypes:

int rsm_memseg_import_putv(rsm_scat_gath_t *sg_io);

int rsm_memseg_import_getv(rsm_scat_gath_t *sg_io);

The I/O vector component of the scatter-gather list (sg_io) enables the specification of local
virtual addresses or local_memory_handles. Handles are an efficient way to repeatedly use a
local address range. Allocated system resources, such as locked down local memory, are
maintained until the handle is freed. The supporting functions for handles are
rsm_create_localmemory_handle() and rsm_free_localmemory_handle().

You can gather virtual addresses or handles into the vector in order to write to a single remote
segment. You can also scatter the results of reading from a single remote segment to the vector
of virtual addresses or handles.

API Library Functions

Programming Interfaces Guide • November 201142

I/O for the entire vector is initiated before returning. The barrier mode attribute of the import
segment determines whether the I/O has completed before the function returns. Setting the
barrier mode attribute to implicit guarantees that data transfer is completed in the order
entered in the vector. An implicit barrier open and close surrounds each list entry. If an error is
detected, I/O for the vector is terminated and the function returns immediately. The residual
count indicates the number of entries for which the I/O either did not complete or was not
initiated.

You can specify that a notification event be sent to the target segment when a putv or getv
operation is successful. To specify the delivery of a notification event, specify the
RSM_IMPLICIT_SIGPOST value in the flags entry of the rsm_scat_gath_t structure. The flags
entry can also contain the value RSM_SIGPOST_NO_ACCUMULATE, which is passed on to the signal
post operation if RSM_IMPLICIT_SIGPOST is set.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SGIO Invalid scatter-gather structure pointer

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_BAD_ADDR Bad address

RSMERR_BAD_OFFSET Invalid offset

RSMERR_BAD_LENGTH Invalid length

RSMERR_PERM_DENIED Permission denied

RSMERR_BARRIER_FAILURE I/O completion error

RSMERR_CONN_ABORTED Connection aborted

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources

RSMERR_INTERRUPTED Operation interrupted by signal

Get Local Handle

int rsm_create_localmemory_handle(rsmapi_controller_handle_t cntrl_handle,
rsm_localmemory_handle_t *local_handle, caddr_t local_vaddr, size_t length);

This function obtains a local handle for use in the I/O vector for subsequent calls to putv or
getv. Freeing the handle as soon as possible conserves system resources, notably the memory
spanned by the local handle, which might be locked down.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_BAD_LOCALMEM_HNDL Invalid local memory handle

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 43

RSMERR_BAD_LENGTH Invalid length

RSMERR_BAD_ADDR Invalid address

RSMERR_INSUFFICIENT_MEM Insufficient memory

Free Local Handle

rsm_free_localmemory_handle(rsmapi_controller_handle_t cntrl_handle,
rsm_localmemory_handle_t handle);

This function releases the system resources associated with the local handle. While all handles
that belong to a process are freed when the process exits, calling this function conserves system
resources.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_CTLR_HNDL Invalid controller handle

RSMERR_BAD_LOCALMEM_HNDL Invalid local memory handle

The following example demonstrates the definition of primary data structures.

EXAMPLE 2–1 Primary Data Structures

typedef void *rsm_localmemory_handle_t

typedef struct {

ulong_t io_request_count; /* number of rsm_iovec_t entries */

ulong_t io_residual_count; /* rsm_iovec_t entries not completed */

int flags;

rsm_memseg_import_handle_t remote_handle; /* opaque handle for import segment */

rsm_iovec_t *iovec; /* pointer to array of io_vec_t */

} rsm_scat_gath_t;

typedef struct {

int io_type; /* HANDLE or VA_IMMEDIATE */

union {

rsm_localmemory_handle_t handle; /* used with HANDLE */

caddr_t virtual_addr; /* used with VA_IMMEDIATE */

} local;

size_t local_offset; /* offset from handle base vaddr */

size_t import_segment_offset; /* offset from segment base vaddr */

size_t transfer_length;

} rsm_iovec_t;

Segment Mapping

Mapping operations are only available for native architecture interconnects such as
Dolphin-SCI or NewLink. Mapping a segment grants CPU memory operations access to that
segment, saving the overhead of calling memory access primitives.

Imported Segment Map

API Library Functions

Programming Interfaces Guide • November 201144

int rsm_memseg_import_map(rsm_memseg_import_handle_t im_memseg, void **address,
rsm_attribute_t attr, rsm_permission_t perm, off_t offset, size_t length);

This function maps an imported segment into the caller address space. If the attribute
RSM_MAP_FIXED is specified, the function maps the segment at the value specified in **address.

typedef enum {

RSM_MAP_NONE = 0x0, /* system will choose available virtual address */

RSM_MAP_FIXED = 0x1, /* map segment at specified virtual address */

} rsm_map_attr_t;

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_ADDR Invalid address

RSMERR_BAD_LENGTH Invalid length

RSMERR_BAD_OFFSET Invalid offset

RSMERR_BAD_PERMS Invalid permissions

RSMERR_SEG_ALREADY_MAPPED Segment already mapped

RSMERR_SEG_NOT_CONNECTED Segment not connected

RSMERR_CONN_ABORTED Connection aborted

RSMERR_MAP_FAILED Error during mapping

RSMERR_BAD_MEM_ALIGNMENT Address not aligned on page boundary

Unmap segment

int rsm_memseg_import_unmap(rsm_memseg_import_handle_t im_memseg);

This function unmaps an imported segment from user virtual address space.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

Barrier Operations

Use Barrier operations to resolve order-of-write-access memory model issues. Barrier
operations also provide remote memory access error detection.

The barrier mechanism is made up of the following operations:

■ Initialization
■ Open

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 45

■ Close
■ Order

The open and close operations define a span-of-time interval for error detection and ordering.
The initialization operation enables barrier creation for each imported segment, as well as
barrier type specification. The only barrier type currently supported has a span-of-time scope
per segment. Use a type argument value of RSM_BAR_DEFAULT.

Successfully performing a close operation guarantees the successful completion of covered
access operations, which take place between the barrier open and the barrier close. After a
barrier open operation, failures of individual data access operations, both reads and writes, are
not reported until the barrier close operation.

To impose a specific order of write completion within a barrier's scope, use an explicit
barrier-order operation. A write operation that is issued before the barrier-order operation
finishes before operations that are issued after the barrier-order operation. Write operations
within a given barrier scope are ordered with respect to another barrier scope.

Initialize Barrier

int rsm_memseg_import_init_barrier(rsm_memseg_import_handle_t im_memseg,
rsm_barrier_type_t type, rsmapi_barrier_t *barrier);

Note – At present, RSM_BAR_DEFAULT is the only supported type.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

RSMERR_INSUFFICIENT_MEM Insufficient memory

Open Barrier

int rsm_memseg_import_open_barrier(rsmapi_barrier_t *barrier);

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

Close Barrier

int rsm_memseg_import_close_barrier(rsmapi_barrier_t *barrier);

API Library Functions

Programming Interfaces Guide • November 201146

This function closes the barrier and flushes all store buffers. This call assumes that the calling
process will retry all remote memory operations since the last
rsm_memseg_import_open_barrier call if the call to rsm_memseg_import_close_barrier()

fails.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized

RSMERR_BARRIER_NOT_OPENED Barrier not opened

RSMERR_BARRIER_FAILURE Memory access error

RSMERR_CONN_ABORTED Connection aborted

Order Barrier

int rsm_memseg_import_order_barrier(rsmapi_barrier_t *barrier);

This function flushes all store buffers.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized

RSMERR_BARRIER_NOT_OPENED Barrier not opened

RSMERR_BARRIER_FAILURE Memory access error

RSMERR_CONN_ABORTED Connection aborted

Destroy Barrier

int rsm_memseg_import_destroy_barrier(rsmapi_barrier_t *barrier);

This function deallocates all barrier resources.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer

Set Mode

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 47

int rsm_memseg_import_set_mode(rsm_memseg_import_handle_t im_memseg,
rsm_barrier_mode_t mode);

This function supports the optional explicit barrier scoping that is available in the put routines.
The two valid barrier modes are RSM_BARRIER_MODE_EXPLICIT and
RSM_BARRIER_MODE_IMPLICIT. The default value of the barrier mode is
RSM_BARRIER_MODE_IMPLICIT. While in implicit mode, an implicit barrier open and barrier
close is applied to each put operation. Before setting the barrier mode value to
RSM_BARRIER_MODE_EXPLICIT, use the rsm_memseg_import_init_barrier routine to initialize
a barrier for the imported segment im_memseg.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

Get Mode

int rsm_memseg_import_get_mode(rsm_memseg_import_handle_t im_memseg,
rsm_barrier_mode_t *mode);

This function obtains the current mode value for barrier scoping in the put routines.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle.

Event Operations
Event operations enable processes synchronization on memory access events. If a process
cannot use the rsm_intr_signal_wait() function, it can multiplex event waiting by obtaining
a poll descriptor with rsm_memseg_get_pollfd() and using the poll system call.

Note – Using the rsm_intr_signal_post() and rsm_intr_signal_wait() operations incurs
the need to process of ioctl calls to the kernel.

Post Signal

int rsm_intr_signal_post(void *memseg, uint_t flags);

The void pointer *memseg can be type cast to either an import segment handle or an export
segment handle. If *memseg refers to an import handle, this function sends a signal the
exporting process. If *memseg refers to an export handle, this function sends a signal to all
importers of that segment. Setting the flags argument to RSM_SIGPOST_NO_ACCUMULATE

discards this event if an event is already pending for the target segment.

Return Values: Returns 0 if successful. Returns an error value otherwise.

API Library Functions

Programming Interfaces Guide • November 201148

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_REMOTE_NODE_UNREACHABLE Remote node not reachable

Wait for Signal

int rsm_intr_signal_wait(void * memseg, int timeout);

The void pointer *memseg can be type cast to either an import segment handle or an export
segment handle. The process blocks for up to timeout milliseconds or until an event occurs. If
the value is -1, the process blocks until an event occurs or until interrupted.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_TIMEOUT Timer expired

RSMERR_INTERRUPTED Wait interrupted

Get pollfd

int rsm_memseg_get_pollfd(void *memseg, struct pollfd *pollfd);

This function initializes the specified pollfd structure with a descriptor for the specified
segment and the singular fixed event generated by rsm_intr_signal_post(). Use the pollfd
structure with the poll system call to wait for the event signalled by rsm_intr_signal_post. If
the memory segment is not currently published, the poll system call does not return a valid
pollfd. Each successful call increments a pollfd reference count for the specified segment.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

Release pollfd

int rsm_memseg_release_pollfd(oid *memseg);

This call decrements the pollfd reference count for the specified segment. If the reference
count is nonzero, operations that unpublish, destroy, or unmap the segment fail.

Return Values: Returns 0 if successful. Returns an error value otherwise.

RSMERR_BAD_SEG_HNDL Invalid segment handle

API Library Functions

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 49

RSMAPI General Usage Notes
These usage notes describe general considerations for the export and import sides of a
shared-memory operation. These usage notes also contain general information regarding
segments, file descriptors, and RSM configurable parameters.

Segment Allocation and File Descriptor Usage
The system allocates a file descriptor, which is inaccessible to the application importing or
exporting memory, for each export operation or import operation. The default limit on file
descriptor allocation for each process is 256. The importing or exporting application must
adjust the allocation limit appropriately. If the application increases the file descriptor limit
beyond 256, the values of the file descriptors that are allocated for export segments and import
segments starts at 256. These file descriptor values are chosen to avoid interfering with normal
file descriptor allocation by the application. This behavior accommodates the use of certain
libc functions in 32-bit applications that only work with file descriptor values lower than 256.

Export-Side Considerations
The application must prevent access to segment data until the rebind operation is complete.
Segment data access during rebind does not cause a system failure, but data content results are
undefined. The virtual address space must be currently mapped and valid.

Import-Side Considerations
The controller that is specified for a segment import must have a physical connection with the
controller that is used in the export of the segment.

RSM Configurable Parameters
The SUNWrsm software package includes an rsm.conf file. This file is located in
/usr/kernel/drv. This file is a configuration file for RSM. The rsm.conf file can be used to
specify values for certain configurable RSM properties. The configurable properties currently
defined in rsm.conf include max-exported-memory and enable-dynamic-reconfiguration.

max-exported-memory This property specifies an upper limit on the amount
of exportable memory. The upper limit is expressed as
a percentage of total available memory. Giving this

RSMAPI General Usage Notes

Programming Interfaces Guide • November 201150

property a value of zero indicates that the amount of
exportable memory is unlimited.

enable-dynamic-reconfiguration The value of this property indicates whether dynamic
reconfiguration is enabled. A value of zero indicates
dynamic reconfiguration is disabled. A value of one
enables dynamic reconfiguration support. The default
value for this property is one.

RSMAPI General Usage Notes

Chapter 2 • Remote Shared Memory API for Oracle Solaris Clusters 51

52

Session Description Protocol API

The Session Description Protocol (SDP) describes multimedia sessions. The SDP API discussed
in this chapter contains function calls you can use to add SDP functionality to your
applications.

Session Description API Overview
The function calls that make up the SDP API are provided by the shared object
libcommputil.so.1. The functions in this shared object parse the SDP description and check
the description's syntax.

The sdp.h header file defines the sdp_session_t structure, which contains the following
members:

typedef struct sdp_session {

int sdp_session_version; /* SDP session verstion */

int s_version; /* SDP version field */

sdp_origin_t *s_origin; /* SDP origin field */

char *s_name; /* SDP name field */

char *s_info; /* SDP info field */

char *s_uri; /* SDP uri field */

sdp_list_t *s_email; /* SDP email field */

sdp_list_t *s_phone; /* SDP phone field */

sdp_conn_t *s_conn; /* SDP connection field */

sdp_bandwidth_t *s_bw; /* SDP bandwidth field */

sdp_time_t *s_time; /* SDP time field */

sdp_zone_t *s_zone; /* SDP zone field */

sdp_key_t *s_key; /* SDP key field */

sdp_attr_t *s_attr; /* SDP attribute field */

sdp_media_t *s_media; /* SDP media field */

} sdp_session_t;

The sdp_session_version member tracks the version of the structure. The initial value of the
sdp_session_version member is SDP_SESSION_VERSION_1.

The sdp_origin_t structure contains the following members:

3C H A P T E R 3

53

typedef struct sdp_origin {

char *o_username; /* username of the originating host */

uint64_t o_id; /* session id */

uint64_t o_version; /* version number of this session */

/* description */

char *o_nettype; /* type of network */

char *o_addrtype; /* type of the address */

char *o_address; /* address of the machine from which */

/* session was created */

} sdp_origin_t;

The sdp_conn_t structure contains the following members:

typedef struct sdp_conn {

char *c_nettype; /* type of network */

char *c_addrtype; /* type of the address */

char *c_address; /* unicast-address or multicast */

/* address */

int c_addrcount; /* number of addresses (case of */

/* multicast address with layered */

/* encodings */

struct sdp_conn *c_next; /* pointer to next connection */

/* structure; there could be several */

/* connection fields in SDP description */

uint8_t c_ttl; /* TTL value for IPV4 multicast address */

} sdp_conn_t;

The sdp_bandwidth_t structure contains the following members:

typedef struct sdp_bandwidth {

char *b_type; /* info needed to interpret b_value */

uint64_t b_value; /* bandwidth value */

struct sdp_bandwidth *b_next; /* pointer to next bandwidth structure*/

/* (there could be several bandwidth */

/* fields in SDP description */

} sdp_bandwidth_t;

The sdp_list_t structure is a linked list of void pointers. This structure holds SDP fields. In the
case of SDP structure fields such as email and phone, the void pointers point to character
buffers. Use this structure to hold information in cases where the number of elements is not
predefined, as in the case of repeated offset fields, where the void pointer holds integer values.

The sdp_list_t structure contains the following members:

typedef struct sdp_list {

void *value; /* string values in case of email, phone and */

/* format (in media field) or integer values */

/* in case of offset (in repeat field) */

struct sdp_list *next; /* pointer to the next node in the list */

} sdp_list_t;

The sdp_repeat_t structure will always be part of the time structure sdp_time_t. The repeat
field does not appear alone in SDP descriptions and is always associated with the time field.

The sdp_repeat_t structure contains the following members:

Session Description API Overview

Programming Interfaces Guide • November 201154

typedef struct sdp_repeat {

uint64_t r_interval; /* repeat interval, e.g. 86400 seconds */

/* (1 day) */

uint64_t r_duration; /* duration of session, e.g. 3600 */

/* seconds (1 hour) */

sdp_list_t *r_offset; /* linked list of offset values; each */

/* represents offset from start-time */

/* in the SDP time field */

struct sdp_repeat *r_next; /* pointer to next repeat structure; */

/* there could be several repeat */

/* fields in the SDP description */

The sdp_time_t structure contains the following members:

typedef struct sdp_time {

uint64_t t_start; /* start-time for a session */

uint64_t t_stop; /* end-time for a session */

sdp_repeat_t *t_repeat; /* points to the SDP repeat field */

struct sdp_time *t_next; /* pointer to next time field; there */

/* could there could be several time */

/* fields in SDP description */

} sdp_time_t;

The sdp_zone_t structure contains the following members:

typedef struct sdp_zone {

uint64_t z_time; /* base time */

char *z_offset; /* offset added to z_time to determine */

/* session time; mainly used for daylight */

/* saving time conversions */

struct sdp_zone *z_next; /* pointer to next zone field; there */

/* could be several <adjustment-time> */

/* <offset> pairs within a zone field */

} sdp_zone_t;

The sdp_key_t structure contains the following members:

typedef struct sdp_key {

char *k_method; /* key type */

char *k_enckey; /* encryption key */

} sdp_key_t;

The sdp_attr_t structure contains the following members:

typedef struct sdp_attr {

char *a_name; /* name of the attribute */

char *a_value; /* value of the attribute */

struct sdp_attr *a_next; /* pointer to the next attribute */

/* structure; there could be several */

/* attribute fields within SDP description */

} sdp_attr_t;

The sdp_media_t structure contains the following members:

typedef struct sdp_media {

char *m_name; /* name of the media such as "audio", */

/* "video", "message" */

Session Description API Overview

Chapter 3 • Session Description Protocol API 55

uint_t m_port; /* transport layer port information */

int m_portcount; /* number of ports in case of */

/* hierarchically encoded streams */

char *m_proto; /* transport protocol */

sdp_list_t *m_format; /* media format description */

char *m_info; /* media info field */

sdp_conn_t *m_conn; /* media connection field */

sdp_bandwidth_t *m_bw; /* media bandwidth field */

sdp_key_t *m_key; /* media key field */

sdp_attr_t *m_attr; /* media attribute field */

struct sdp_media *m_next; /* pointer to next media structure; */

/* there could be several media */

/* sections in SDP description */

sdp_session_t *m_session; /* pointer to the session structure */

} sdp_media_t;

SDP Library Functions
The API library functions support the following operations:

■ Creating the SDP session structure
■ Searching within the SDP session structure
■ Shutting down an SDP session structure
■ Utility functions

Creating the SDP Session Structure
The first step in creating a new SDP session structure is allocating memory for the new structure
by calling the sdp_new_session() function. This function returns a pointer to the new session
structure. The other functions in this section use that pointer to construct the new session
structure. Once you are done constructing the new session structure, convert it to a string
representation with the sdp_session_to_str() function.

Creating a New SDP Session Structure
sdp_session_t *sdp_new_session();

The sdp_new_session() function allocates memory for a new SDP session structure that is
specified by the session parameter and assigns a version number to that new structure. You
can free the memory that is allocated to the session structure by calling the
sdp_free_session() function.

Return Values: The sdp_new_session() function returns the newly allocated SDP session
structure when the function completes successfully. The function returns NULL in the case of
failure.

SDP Library Functions

Programming Interfaces Guide • November 201156

Adding an Origin Field to the SDP Session Structure
int sdp_add_origin(sdp_session_t *session, const char *name, uint64_t id,
uint64_t ver, const char *nettype, const char *addrtype, const char *address);
The sdp_add_origin() function adds the ORIGIN (o=) SDP field to the session structure that is
specified by the value of the session parameter (sdp_session_t) using the name, id, ver,
nettype, addrtype, and address parameters.

Return Values: The sdp_add_origin() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a Name Field to the SDP Session Structure
int sdp_add_name(sdp_session_t *session, const char *name);
The sdp_add_name() function adds the NAME (s=) SDP field to the session structure that is
specified by the value of the session parameter (sdp_session_t) using the name parameter.

Return Values: The sdp_add_name() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding an Information Field to the SDP Session Structure
int sdp_add_information(char **information, const char *value);
The sdp_add_information() function adds the INFO (i=) SDP field to the session structure
(sdp_session_t) or the media structure (sdp_media_t) using the value parameter. This field
can go into the media or the session section of an SDP description. You must pass either
&session->s_info or &media->m_info as the first argument to specify the section.

Return Values: The sdp_add_information() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a URI Field to the SDP Session Structure
int sdp_add_uri(sdp_session_t *session, const char *uri);
The sdp_add_uri() function adds the URI (u=) SDP field to the session structure that is
specified by the value of the session parameter (sdp_session_t) using the uri parameter.

SDP Library Functions

Chapter 3 • Session Description Protocol API 57

Return Values: The sdp_add_uri() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding an Email Field to the SDP Session Structure
int sdp_add_email(sdp_session_t *session, const char *email);
The sdp_add_email() function adds the EMAIL (e=) SDP field to the session structure that is
specified by the value of the session parameter (sdp_session_t) using the email parameter.

Return Values: The sdp_add_email() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a Telephone Field to the SDP Session Structure
int sdp_add_phone(sdp_session_t *session, const char *email);
The sdp_add_phone() function adds the PHONE (p=) SDP field to the session structure that is
specified by the value of the session parameter (sdp_session_t) using the phone parameter.

Return Values: The sdp_add_phone() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a Connection Field to the SDP Session Structure
int sdp_add_connection(sdp_conn_t **conn, const char *nettype, const char

*addrtype, const char *address, uint8_t ttl, int addrcount);
The sdp_add_connection() function adds the CONNECTION (c=) SDP field to either the session
structure (sdp_session_t) or the media structure (sdp_media_t) using the nettype, addrtype,
address, ttl, and addrcount parameters. For IPv4 or IPv6 unicast addresses, set the values of the
ttl and addrcount parameters to zero. For multicast addresses, set the value of the ttl parameter
between zero and 255. A multicast address cannot have an addrcount parameter with a value of
zero.

This field can go into the media or the session section of an SDP description. You must pass
either &session->s_info or &media->m_info as the first argument to specify the section.

Return Values: The sdp_add_connection() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

SDP Library Functions

Programming Interfaces Guide • November 201158

Adding a Bandwidth Field to the SDP Session Structure
int sdp_add_bandwidth(sdp_bandwidth_t **bw, const char *type, uint64_t value);
The sdp_add_bandwidth() function adds the BANDWIDTH (b=) SDP field to either the session
structure (sdp_session_t) or the media structure (sdp_media_t) using the type and value
parameters.

This field can go into the media or the session section of an SDP description. You must pass
either &session->s_info or &media->m_info as the first argument to specify the section.

Return Values: The sdp_add_bandwidth() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a Time Field to the SDP Session Structure
int sdp_add_time(sdp_session_t *session, uint64_t starttime, uint64_t stoptime,
sdp_time_t **time);
The sdp_add_time() function adds the TIME (t=) SDP field to the session structure using the
values of the starttime and stoptime parameters. This function creates a new time structure and
returns the pointer to that structure in the time parameter.

Return Values: The sdp_add_time() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a Repeat Field to the SDP Session Structure
int sdp_add_repeat(sdp_time_t *time, uint64_t interval, uint64_t duration, const

char *offset);
The sdp_add_repeat() function adds the REPEAT (r=) SDP field to the session structure using
the values of the interval, duration, and offset parameters. The value of the offset parameter is a
string that holds one or more offset values, such as 60 or 60 1d 3h. The value of the time
parameter is the pointer to the time structure that the sdp_add_time() function creates.

Return Values: The sdp_add_repeat() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a Zone Field to the SDP Session Structure
int sdp_add_zone(sdp_session_t *session, uint64_t time, const char *offset);

SDP Library Functions

Chapter 3 • Session Description Protocol API 59

The sdp_add_zone() function adds the ZONE (z=) SDP field to the session structure that is
specified by the value of the session parameter (sdp_session_t) using the time and offset
parameters. You can add multiple time and offset values for a single zone field by calling this
function for each time/offset value pair.

Return Values: The sdp_add_zone() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a Key Field to the SDP Session Structure
int sdp_add_key(sdp_key_t **key, const char *method, const char *enckey);
The sdp_add_key() function adds the KEY (k=) SDP field to the session structure
(sdp_session_t) or the media structure (sdp_media_t) using the method and enckey
parameters. This field can go into the media or the session section of an SDP description. You
must pass either &session->s_info or &media->m_info as the first argument to specify the
section.

Return Values: The sdp_add_key() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding an Attribute Field to the SDP Session Structure
int sdp_add_attribute(sdp_attr_t **attr, const char *name, const char *value);
The sdp_add_attribute() function adds the ATTRIBUTE (a=) SDP field to the session structure
(sdp_session_t) or the media structure (sdp_media_t) using the name and value parameters.
This field can go into the media or the session section of an SDP description. You must pass
either &session->s_info or &media->m_info as the first argument to specify the section.

Return Values: The sdp_add_attribute() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Adding a Media Field to the SDP Session Structure
int sdp_add_media(sdp_session_t *session, const char *name, uint_t port, int

portcount, const char *protocol, const char *format, sdp_media_t **media);
The sdp_add_media() function adds the MEDIA (m=) SDP field to the session structure that is
specified by the value of the session parameter (sdp_session_t) using the values of the name,
port, portcount, protocol, and format parameters. The format parameter is a string that holds
one or more values, such as the string 0 32 97.

SDP Library Functions

Programming Interfaces Guide • November 201160

This function creates a new media structure and returns a pointer to that structure in the media
parameter. Functions that add SDP fields to the media structure use this pointer.

Return Values: The sdp_add_media() function returns 0 when the function completes
successfully. When mandatory parameters are not present, the function returns EINVAL.
When memory allocation fails, the function returns ENOMEM. The value of errno does not
change in the event of an error.

Code Sample: Building an SDP Session Structure
This example uses the functions in this section to create a new SDP session structure, add fields
to the structure, and convert a finished structure to its string representation. At the end of the
example, the program calls the sdp_free_session() function to free the session.

EXAMPLE 3–1 Building an SDP Session Structure

/* SDP Message we will be building

"v=0\r\n\
o=Alice 2890844526 2890842807 IN IP4 10.47.16.5\r\n\

s=-\r\n\

i=A Seminar on the session description protocol\r\n\

u=http://www.example.com/seminars/sdp.pdf\r\n\

e=alice@example.com (Alice Smith)\r\n\

p=+1 911-345-1160\r\n\

c=IN IP4 10.47.16.5\r\n\

b=CT:1024\r\n\

t=2854678930 2854679000\r\n\

r=604800 3600 0 90000\r\n\

z=2882844526 -1h 2898848070 0h\r\n\

a=recvonly\r\n\

m=audio 49170 RTP/AVP 0\r\n\

i=audio media\r\n\

b=CT:1000\r\n\

k=prompt\r\n\

m=video 51372 RTP/AVP 99 90\r\n\

i=video media\r\n\

a=rtpmap:99 h232-199/90000\r\n\

a=rtpmap:90 h263-1998/90000\r\n"
*/

#include stdio.h>

#include string.h>

#include errno.h>

#include sdp.h>

int main ()

{

sdp_session_t *my_sess;

sdp_media_t *my_media;

sdp_time_t *my_time;

char *b_sdp;

my_sess = sdp_new_session();

if (my_sess == NULL) {

return (ENOMEM);

SDP Library Functions

Chapter 3 • Session Description Protocol API 61

EXAMPLE 3–1 Building an SDP Session Structure (Continued)

}

my_sess->version = 0;

if (sdp_add_name(my_sess, "-") != 0)

goto err_ret;

if (sdp_add_origin(my_sess, "Alice", 2890844526ULL, 2890842807ULL,

"IN", "IP4", "10.47.16.5") != 0)

goto err_ret;

if (sdp_add_information(&my_sess->s_info, "A Seminar on the session"
"description protocol") != 0)

goto err_ret;

if (sdp_add_uri (my_sess, "http://www.example.com/seminars/sdp.pdf")
!= 0)

goto err_ret;

if (sdp_add_email(my_sess, "alice@example.com (Alice smith)") != 0)

goto err_ret;

if (sdp_add_phone(my_sess, "+1 911-345-1160") != 0)

goto err_ret;

if (sdp_add_connection(&my_sess->s_conn, "IN", "IP4", "10.47.16.5",
0, 0) != 0)

goto err_ret;

if (sdp_add_bandwidth(&my_sess->s_bw, "CT", 1024) != 0)

goto err_ret;

if (sdp_add_time(my_sess, 2854678930ULL, 2854679000ULL, &my_time)

!= 0)

goto err_ret;

if (sdp_add_repeat(my_time, 604800ULL, 3600ULL, "0 90000") != 0)

goto err_ret;

if (sdp_add_zone(my_sess, 2882844526ULL, "-1h") != 0)

goto err_ret;

if (sdp_add_zone(my_sess, 2898848070ULL, "0h") != 0)

goto err_ret;

if (sdp_add_attribute(&my_sess->s_attr, "sendrecv", NULL) != 0)

goto err_ret;

if (sdp_add_media(my_sess, "audio", 49170, 1, "RTP/AVP",
"0", &my_media) != 0)

goto err_ret;

if (sdp_add_information(&my_media->m_info, "audio media") != 0)

goto err_ret;

if (sdp_add_bandwidth(&my_media->m_bw, "CT", 1000) != 0)

goto err_ret;

if (sdp_add_key(&my_media->m_key, "prompt", NULL) != 0)

goto err_ret;

if (sdp_add_media(my_sess, "video", 51732, 1, "RTP/AVP",
"99 90", &my_media) != 0)

goto err_ret;

if (sdp_add_information(&my_media->m_info, "video media") != 0)

goto err_ret;

if (sdp_add_attribute(&my_media->m_attr, "rtpmap",
"99 h232-199/90000") != 0)

goto err_ret;

if (sdp_add_attribute(&my_media->m_attr, "rtpmap",
"90 h263-1998/90000") != 0)

goto err_ret;

b_sdp = sdp_session_to_str(my_sess, &error);

/*

SDP Library Functions

Programming Interfaces Guide • November 201162

EXAMPLE 3–1 Building an SDP Session Structure (Continued)

* b_sdp is the string representation of my_sess structure

*/

free(b_sdp);

sdp_free_session(my_sess);

return (0);

err_ret:

free(b_sdp);

sdp_free_session(my_sess);

return (1);

}

Searching the SDP Session Structure
The functions in this section search the SDP session structure for specific values and return
pointers to those values.

Finding an Attribute in an SDP Session Structure
sdp_attr_t *sdp_find_attribute(sdp_attr_t *attr, const char *name);
The sdp_find_attribute() function searches the attribute list that is specified by the attr
parameter for the attribute name that is specified by the name parameter.

Return Values: The sdp_find_attribute() function returns a pointer to the attribute
(sdp_attr_t *) that is specified by the name parameter when the function completes
successfully. In all other cases, the sdp_find_attribute() function returns a value of NULL.

EXAMPLE 3–2 Using the sdp_find_attribute() Function

The incomplete SDP description in this example has an audio section.

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

a=sendonly

a=ptime:10000

a=maxptime:20000

/*

* Assuming that above description is parsed using sdp_parse and that

* the parsed structure is in "session" sdp_session_t structure.

*/

sdp_attr_t *ptime;

sdp_attr_t *max_ptime;

sdp_media_t *media = session->s_media;

if ((ptime = sdp_find_attribute(media->m_attr, "ptime")) == NULL)

/* ptime attribute not present */

SDP Library Functions

Chapter 3 • Session Description Protocol API 63

EXAMPLE 3–2 Using the sdp_find_attribute() Function (Continued)

else if((max_ptime = sdp_find_attribute(media->m_attr,

"maxptime")) == NULL)

/* max_ptime attribute not present */

Finding Media in an SDP Session Structure
sdp_media_t *sdp_find_media(sdp_media_t *media, const char *name);
The sdp_find_media() function searches the media list that is specified by the media
parameter for the media entry that is specified by the name parameter.

Return Values: The sdp_find_media() function returns a pointer to the media list entry
(sdp_media_t *) that is specified by the name parameter when the function completes
successfully. In all other cases, the sdp_find_media() function returns a value of NULL.

EXAMPLE 3–3 Using the sdp_find_media() Function

The incomplete SDP description in this example has two sections, an audio section and a video
section.

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 51372 RTP/AVP 31 32

a=rtpmap:31 H261/90000

a=rtpmap:32 MPV/90000

/*

* Assuming that above description is parsed using sdp_parse() and that

* the parsed structure is in "session" sdp_session_t structure.

*/

sdp_media_t *my_media;

my_media = sdp_find_media(session->s_media, "video");

/*

* my_media now points to the structure containg video media section

* information

*/

Finding a Media Format in an SDP Session Structure
sdp_attr_t *sdp_find_media_rtpmap(sdp_media_t *media, const char *format);
The sdp_find_media_rtpmap() function searches the attribute list of the media structure that
is specified by the media parameter for the format entry that is specified by the format
parameter.

Return Values: The sdp_find_media_rtpmap() function returns a pointer to the format entry
(sdp_attr_t *) that is specified by the name parameter when the function completes
successfully. In all other cases, the sdp_find_media() function returns a value of NULL.

SDP Library Functions

Programming Interfaces Guide • November 201164

EXAMPLE 3–4 Using the sdp_find_media_rtpmap() Function

The incomplete SDP description in this example has two sections, an audio section and a video
section.

m=audio 49170 RTP/AVP 0 8

a=rtpmap:0 PCMU/8000

a=rtpmap:8 PCMA/8000

m=video 51372 RTP/AVP 31 32

a=rtpmap:31 H261/90000

a=rtpmap:32 MPV/90000

/*

* Assuming that above description is parsed using sdp_parse() and that

* the parsed structure is in "session" sdp_session_t structure.

*/

sdp_media_t *video;

sdp_attr_t *mpv;

video = sdp_find_media(session->s_media, "video);
mpv = sdp_find_media_rtpmap(video, "32");

/*

* Now the attribute structure sdp_attr_t, mpv will be having

* values from the attribute field "a=rtpmap:32 MPV/90000"
*/

Shutting Down the SDP Session Structure
The functions in this section perform the following functions:
■ Removing fields from an SDP session structure
■ Freeing an SDP session structure

Deleting Fields From the SDP Session Structure
int sdp_delete_all_field(sdp_session_t *session, const char field);
The sdp_delete_all_field() function deletes all occurrences of the SDP field that is specified
by the field parameter from the SDP structure. For example, if an SDP structure has three
BANDWIDTH (b=) fields, calling this function with a value of SDP_BANDWIDTH_FIELD in the field
parameter deletes all three BANDWIDTH fields from the session structure.

Return Values: The sdp_delete_all_field() function returns 0 when the function completes
successfully. When the session argument is NULL or the field type is unknown, the function
returns EINVAL. The value of errno does not change in the event of an error.

Deleting Fields From the SDP Media Structure
int sdp_delete_all_media_field(sdp_media_t *media, const char field);

SDP Library Functions

Chapter 3 • Session Description Protocol API 65

The sdp_delete_all_media_field() function deletes all occurrences of the SDP field that is
specified by the field parameter from the SDP media structure.

Return Values: The sdp_delete_all_media_field() function returns 0 when the function
completes successfully. When the session argument is NULL or the field type is unknown, the
function returns EINVAL. The value of errno does not change in the event of an error.

Deleting Media From the SDP Media Structure
int sdp_delete_media(sdp_media_t **l_media, sdp_media_t *media);
The sdp_delete_media() function deletes the media entry specified by the media parameter
from the media list. This function finds the specified media entry by calling the
sdp_find_media() function. This function frees the memory that is allocated to the media
structure after deleting the media entry.

Return Values: The sdp_delete_media() function returns 0 when the function completes
successfully. When the session argument is NULL or mandatory arguments do not exist, the
function returns EINVAL. The value of errno does not change in the event of an error.

Deleting an Attribute From the SDP Media Structure
int sdp_delete_attribute(sdp_attr_t **l_attr, sdp_attr_t *attr);
The sdp_delete_attribute() function deletes the attribute specified by the attr parameter
from the media list. This function finds the specified attribute by calling either the
sdp_find_media_rtpmap() function or the sdp_find_attribute() function. This function
frees the memory that is allocated to the attribute structure after deleting the attribute.

Return Values: The sdp_delete_attribute() function returns 0 when the function completes
successfully. When the session argument is NULL or mandatory arguments do not exist, the
function returns EINVAL. The value of errno does not change in the event of an error.

Deleting an Attribute From the SDP Media Structure
void sdp_free_session(sdp_session_t *session);
The sdp_free_session() function destroys the session specified by the session parameter and
frees the resources that are associated with that structure.

SDP API Utility Functions
The functions in this section parse and populate the SDP session structure, clone an existing
session, and convert an existing session to a string representation.

SDP Library Functions

Programming Interfaces Guide • November 201166

Parsing the SDP Session Structure
int sdp_parse(const char *sdp_info, int len, int flags, sdp_session_t **session,
uint_t *p_error);
The sdp_parse() function parses the SDP description in the sdp_info parameter and populates
the sdp_session_t structure. The len parameter specifies the length of the character buffer
sdp_info. The function allocates the memory required for the sdp_session_t structure. To free
that memory, call the sdp_free_session() function.

The value of the flags parameter must be set to zero. When the flags parameter has a nonzero
value, the sdp_parse() function fails with a return value of EINVAL and sets the value of
*session to NULL.

The p_error parameter takes on the values of any fields that have parsing errors. This parameter
cannot have a value of NULL. Possible values for the p_error parameter are in the following list:

SDP_VERSION_ERROR 0x00000001

SDP_ORIGIN_ERROR 0x00000002

SDP_NAME_ERROR 0x00000004

SDP_INFO_ERROR 0x00000008

SDP_URI_ERROR 0x00000010

SDP_EMAIL_ERROR 0x00000020

SDP_PHONE_ERROR 0x00000040

SDP_CONNECTION_ERROR 0x00000080

SDP_BANDWIDTH_ERROR 0x00000100

SDP_TIME_ERROR 0x00000200

SDP_REPEAT_TIME_ERROR 0x00000400

SDP_ZONE_ERROR 0x00000800

SDP_KEY_ERROR 0x00001000

SDP_ATTRIBUTE_ERROR 0x00002000

SDP_MEDIA_ERROR 0x00004000

SDP_FIELDS_ORDER_ERROR 0x00008000

SDP_MISSING_FIELDS 0x00010000

When the SDP structure violates RFC 4566 by having fields out of order, the sdp_parse()
function sets the value of the p_error parameter to SDP_FIELDS_ORDER_ERROR. When the SDP
structure violates RFC 4566 by lacking mandatory fields, the sdp_parse() function sets the
value of the p_error parameter to SDP_MISSING_FIELDS.

The sdp_parse() function continues to parse after processing a field with a parsing error, but
the field with the parsing error will not be present in the resulting sdp_session_t structure.

Return Values: The sdp_parse() function returns 0 when the function completes successfully.
When the session arguments are invalid, the sdp_parse()function returns EINVAL. When
memory allocation fails while the sdp_parse() function is parsing sdp_info, the function
returns ENOMEM. The value of errno does not change in the event of an error.

EXAMPLE 3–5 Example: Parsing an SDP Session Structure

In this example, the SDP session structure is as follows:

SDP Library Functions

Chapter 3 • Session Description Protocol API 67

EXAMPLE 3–5 Example: Parsing an SDP Session Structure (Continued)

v=0\r\n

o=jdoe 23423423 234234234 IN IP4 192.168.1.1\r\n

s=SDP seminar\r\n

i=A seminar on the session description protocol\r\n

e=test@host.com

c=IN IP4 156.78.90.1\r\n

t=2873397496 2873404696\r\n

After calling the sdp_parse_t() function, the resulting sdp_session_t structure is as follows:

session {

sdp_session_version = 1

s_version = 0

s_origin {

o_username = "jdoe"
o_id = 23423423ULL

o_version = 234234234ULL

o_nettype = "IN"
o_addrtype = "IP4"
o_address = "192.168.1.1"

}

s_name = "SDP seminar"
s_info = "A seminar on the session description protocol"
s_uri = (nil)

s_email {

value = "test@host.com"
next = (nil)

}

s_phone = (nil)

s_conn {

c_nettype = "IN"
c_addrtype = "IP4"
c_address = "156.78.90.1"
c_addrcount = 0

c_ttl = 0

c_next = (nil)

}

s_bw = (nil)

s_time {

t_start = 2873397496ULL

t_stop = 2873404696ULL

t_repeat = (nil)

t_next = (nil)

}

s_zone = (nil)

s_key = (nil)

s_attr = (nil)

s_media = (nil)

}

Cloning an Existing SDP Session Structure
sdp_session_t sdp_clone_session(const sdp_session_t *session);

SDP Library Functions

Programming Interfaces Guide • November 201168

The sdp_clone_session() function creates a new SDP session structure that is identical to the
SDP session structure that is identified in the session parameter. The sdp_clone_session()
function returns the cloned session structure upon successful completion. The
sdp_clone_session() function returns NULL on failure.

Converting an SDP Session Structure to a String
char *sdp_session_to_str(const sdp_session_t *session, int *error);
The sdp_session_to_str() function returns the string representation of the SDP session
structure that is specified by the session parameter. The sdp_session_to_str() function
appends a carriage return/line feed to the end of each SDP field before appending the field to the
string.

Return Values: The sdp_session_to_str() function returns the string representation of the
SDP session structure upon completing successfully. The sdp_session_to_str() function
returns NULL in all other cases. The sdp_session_to_str() function returns an error pointer
to EINVAL when the input is null. The sdp_session_to_str() function returns an error
pointer to ENOMEM when a memory allocation failure occurs. The value of errno does not
change in the event of an error.

SDP Library Functions

Chapter 3 • Session Description Protocol API 69

70

Process Scheduler

This chapter describes the scheduling of processes and how to modify scheduling.

■ “Overview of the Scheduler” on page 71 contains an overview of the scheduler and the
time-sharing scheduling class. Other scheduling classes are briefly described.

■ “Commands and Interfaces” on page 75 describes the commands and interfaces that modify
scheduling.

■ “Interactions With Other Interfaces” on page 78 describes the effects of scheduling changes
on kernel processes and certain interfaces.

■ Performance issues to consider when using these commands or interfaces are covered in
“Scheduling and System Performance” on page 79.

The chapter is for developers who need more control over the order of process execution than
default scheduling provides. See Multithreaded Programming Guide for a description of
multithreaded scheduling.

Overview of the Scheduler
When a process is created, the system assigns a lightweight process (LWP) to the process. If the
process is multithreaded, more LWPs might be assigned to the process. An LWP is the object
that is scheduled by the UNIX system scheduler, which determines when processes run. The
scheduler maintains process priorities that are based on configuration parameters, process
behavior, and user requests. The scheduler uses these priorities to determine which process
runs next. The six priority classes are real-time, system, interactive (IA), fixed-priority (FX),
fair-share (FSS), and time-sharing (TS).

The default scheduling is a time-sharing policy. This policy dynamically adjusts process
priorities to balance the response time of interactive processes. The policy also dynamically
adjusts priorities to balance the throughput of processes that use a lot of CPU time. The
time-sharing class has the lowest priority.

4C H A P T E R 4

71

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MTP

The SunOS 5.10 scheduler also provides a real-time scheduling policy. Real-time scheduling
enables the assigning of fixed priorities to specific processes by users. The highest-priority
real-time user process always gets the CPU as soon as the process is runnable .

The SunOS 5.10 scheduler also provides a policy for fixed-priority scheduling. Fixed-priority
scheduling enables the assignment of fixed priorities to specific processes by users.
Fixed-priority scheduling uses the same priority range as the time-sharing scheduling class by
default.

A program can be written so that its real-time processes have a guaranteed response time from
the system. See Chapter 12, “Real-time Programming and Administration,” for detailed
information.

The control of process scheduling provided by real-time scheduling is rarely needed. However,
when the requirements for a program include strict timing constraints, real-time processes
might be the only way to satisfy those constraints.

Caution – Careless use of real-time processes can have a dramatic negative effect on the
performance of time-sharing processes.

Because changes in scheduler administration can affect scheduler behavior, programmers
might also need to know something about scheduler administration. The following interfaces
affect scheduler administration:

■ dispadmin(1M) displays or changes scheduler configuration in a running system.
■ ts_dptbl(4) and rt_dptbl(4) are tables that contain the time-sharing and real-time

parameters that are used to configure the scheduler.

A process inherits its scheduling parameters, including scheduling class and priority within that
class, when the process is created. A process changes class only by user request. The system
bases its adjustments of a process' priority on user requests and the policy associated with the
scheduler class of the process.

In the default configuration, the initialization process belongs to the time-sharing class.
Therefore, all user login shells begin as time-sharing processes.

The scheduler converts class-specific priorities into global priorities. The global priority of a
process determines when the process runs. The scheduler always runs the runnable process
with the highest global priority. Higher priorities run first. A process assigned to the CPU runs
until the process sleeps, uses its time slice, or is preempted by a higher-priority process.
Processes with the same priority run in sequence, around a circle.

All real-time processes have higher priorities than any kernel process, and all kernel processes
have higher priorities than any time-sharing process.

Overview of the Scheduler

Programming Interfaces Guide • November 201172

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4ts-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4

Note – In a single processor system, no kernel process and no time-sharing process runs while a
runnable real-time process exists.

Administrators specify default time slices in the configuration tables. Users can assign
per-process time slices to real-time processes.

You can display the global priority of a process with the -cl options of the ps(1) command. You
can display configuration information about class-specific priorities with the priocntl(1)
command and the dispadmin(1M) command.

The following sections describe the scheduling policies of the six scheduling classes.

Time-Sharing Class
The goal of the time-sharing policy is to provide good response time to interactive processes
and good throughput to CPU-bound processes. The scheduler switches CPU allocation often
enough to provide good response time, but not so often that the system spends too much time
on switching. Time slices are typically a few hundred milliseconds.

The time-sharing policy changes priorities dynamically and assigns time slices of different
lengths. The scheduler raises the priority of a process that sleeps after only a little CPU use. For
example, a process sleeps when the process starts an I/O operation such as a terminal read or a
disk read. Frequent sleeps are characteristic of interactive tasks such as editing and running
simple shell commands. The time-sharing policy lowers the priority of a process that uses the
CPU for long periods without sleeping.

The time-sharing policy that is the default gives larger time slices to processes with lower
priorities. A process with a low priority is likely to be CPU-bound. Other processes get the CPU
first, but when a low-priority process finally gets the CPU, that process gets a larger time slice. If
a higher-priority process becomes runnable during a time slice, however, the higher-priority
process preempts the running process.

Global process priorities and user-supplied priorities are in ascending order: higher priorities
run first. The user priority runs from the negative of a configuration-dependent maximum to
the positive of that maximum. A process inherits its user priority. Zero is the default initial user
priority.

The “user priority limit” is the configuration-dependent maximum value of the user priority.
You can set a user priority to any value lower than the user priority limit. With appropriate
permission, you can raise the user priority limit. Zero is the user priority limit by default.

You can lower the user priority of a process to give the process reduced access to the CPU.
Alternately, with the appropriate permission, raise the user priority to get faster service. The

Overview of the Scheduler

Chapter 4 • Process Scheduler 73

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ps-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m

user priority cannot be set to a value that is higher than the user priority limit. Therefore, you
must raise the user priority limit before raising the user priority if both have their default values
at zero.

An administrator configures the maximum user priority independent of global time-sharing
priorities. For example, in the default configuration a user can set a user priority in the –20 to
+20 range. However, 60 time-sharing global priorities are configured.

The scheduler manages time-sharing processes by using configurable parameters in the
time-sharing parameter table ts_dptbl(4). This table contains information specific to the
time-sharing class.

System Class
The system class uses a fixed-priority policy to run kernel processes such as servers and
housekeeping processes like the paging daemon. The system class is reserved to the kernel.
Users cannot add a process to the system class. Users cannot remove a process from the system
class. Priorities for system class processes are set up in the kernel code. The priorities of system
processes do not change once established. User processes that run in kernel mode are not in the
system class.

Real-time Class
The real-time class uses a scheduling policy with fixed priorities so that critical processes run in
predetermined order. Real-time priorities never change except when a user requests a change.
Privileged users can use the priocntl(1) command or the priocntl(2) interface to assign
real-time priorities.

The scheduler manages real-time processes by using configurable parameters in the real-time
parameter table rt_dptbl(4). This table contains information specific to the real-time class.

Interactive Class
The IA class is very similar to the TS class. When used in conjunction with a windowing system,
processes have a higher priority while running in a window with the input focus. The IA class is
the default class while the system runs a windowing system. The IA class is otherwise identical
to the TS class, and the two classes share the same ts_dptbl dispatch parameter table.

Fair-Share Class
The FSS class is used by the Fair-Share Scheduler (FSS(7)) to manage application performance
by explicitly allocating shares of CPU resources to projects. A share indicates a project's
entitlement to available CPU resources. The system tracks resource usage over time. The system

Overview of the Scheduler

Programming Interfaces Guide • November 201174

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4ts-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7fss-7

reduces entitlement when usage is heavy. The system increases entitlement when usage is light.
The FSS schedules CPU time among processes according to their owners' entitlements,
independent of the number of processes each project owns. The FSS class uses the same priority
range as the TS and IA classes. See the FSS man page for more details.

Fixed-Priority Class
The FX class provides a fixed-priority preemptive scheduling policy. This policy is used by
processes that require user or application control of scheduling priorities but are not
dynamically adjusted by the system. By default, the FX class has the same priority range as the
TS, IA, and FSS classes. The FX class allows user or application control of scheduling priorities
through user priority values assigned to processes within the class. These user priority values
determine the scheduling priority of a fixed-priority process relative to other processes within
its class.

The scheduler manages fixed-priority processes by using configurable parameters in the
fixed-priority dispatch parameter table fx_dptbl(4). This table contains information specific to
the fixed-priority class.

Commands and Interfaces
The following figure illustrates the default process priorities.

Commands and Interfaces

Chapter 4 • Process Scheduler 75

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4fx-dptbl-4

A process priority has meaning only in the context of a scheduler class. You specify a process
priority by specifying a class and a class-specific priority value. The class and class-specific value
are mapped by the system into a global priority that the system uses to schedule processes.

A system administrator's view of priorities is different from the view of a user or programmer.
When configuring scheduler classes, an administrator deals directly with global priorities. The
system maps priorities supplied by users into these global priorities. See Oracle Solaris
Administration: Common Tasks for more information about priorities.

The ps(1) command with -cel options reports global priorities for all active processes. The
priocntl(1) command reports the class-specific priorities that users and programmers use.

The priocntl(1) command and the priocntl(2) and priocntlset(2) interfaces are used to set
or retrieve scheduler parameters for processes. Setting priorities generally follows the same
sequence for the command and both interfaces:

1. Specify the target processes.
2. Specify the scheduler parameters that you want for those processes.
3. Execute the command or interface to set the parameters for the processes.

Process IDs are basic properties of UNIX processes. See Intro(2) for more information. The
class ID is the scheduler class of the process. priocntl(2) works only for the time-sharing and
the real-time classes, not for the system class.

FIGURE 4–1 Process Priorities (Programmer's View)

Global
priority

Scheduling
order

Class-specific
priorities

Scheduler
classes

Run
queues

Highest First

Lowest Last

Kernel
threads of

realtime LWPs

Kernel
service
threads

Kernel
threads of

time-sharing LWPs

Real-time
priorities

System
priorities

Time-sharing
priorities

Commands and Interfaces

Programming Interfaces Guide • November 201176

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=SYSADV1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ps-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntlset-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2

priocntlUsage
The priocntl(1) utility performs four different control interfaces on the scheduling of a
process:

priocntl -l Displays configuration information

priocntl -d Displays the scheduling parameters of processes

priocntl -s Sets the scheduling parameters of processes

priocntl -e Executes a command with the specified scheduling parameters

The following examples demonstrate the use of priocntl(1).

■ The -l option for the default configuration produces the following output:

$ priocntl -l

CONFIGURED CLASSES

==================

SYS (System Class)

TS (Time Sharing)

Configured TS User Priority Range -60 through 60

RT (Real Time)

Maximum Configured RT Priority: 59

■ To display information on all processes, do the following:

$ priocntl -d -i all

■ To display information on all time-sharing processes:

$ priocntl -d -i class TS

■ To display information on all processes with user ID 103 or 6626, do the following:

$ priocntl -d -i uid 103 6626

■ To make the process with ID 24668 a real-time process with default parameters, do the
following:

$ priocntl -s -c RT -i pid 24668

■ To make 3608 RT with priority 55 and a one-fifth second time slice:

$ priocntl -s -c RT -p 55 -t 1 -r 5 -i pid 3608

■ To change all processes into time-sharing processes, do the following:

$ priocntl -s -c TS -i all

■ To reduce TS user priority and user priority limit to -10 for uid 1122:

$ priocntl -s -c TS -p -10 -m -10 -i uid 1122

■ To start a real-time shell with default real-time priority, do the following:

$ priocntl -e -c RT /bin/sh

Commands and Interfaces

Chapter 4 • Process Scheduler 77

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1

■ To run make with a time-sharing user priority of -10, do the following:

$ priocntl -e -c TS -p -10 make bigprog

priocntl(1) includes the interface of nice(1). nice works only on time-sharing processes and
uses higher numbers to assign lower priorities. The previous example is equivalent to using
nice(1) to set an increment of 10:

$ nice -10 make bigprog

priocntl Interface
priocntl(2) manages the scheduling parameters of a process or set of processes. An invocation
of priocntl(2) can act on a LWP, on a single process, or on a group of processes. A group of
processes can be identified by parent process, process group, session, user, group, class, or all
active processes. For more details, see the priocntl man page.

The PC_GETCLINFO command gets a scheduler class name and parameters when given the class
ID. This command enables you to write programs that make no assumptions about what classes
are configured.

The PC_SETXPARMS command sets the scheduler class and parameters of a set of processes. The
idtype and id input arguments specify the processes to be changed.

Interactions With Other Interfaces
Altering the priority of a process in the TS class can affect the behavior of other processes in the
TS class. This section identifies ways in which a scheduling change can affect other processes.

Kernel Processes
The kernel's daemon and housekeeping processes are members of the system scheduler class.
Users can neither add processes to nor remove processes from this class, nor can users change
the priorities of these processes. The command ps -cel lists the scheduler class of all processes.
A SYS entry in the CLS column identifies processes in the system class when you run ps(1) with
the -f option.

Using fork and exec

Scheduler class, priority, and other scheduler parameters are inherited across the fork(2) and
exec(2) interfaces.

Interactions With Other Interfaces

Programming Interfaces Guide • November 201178

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nice-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nice-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ps-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2

Using nice

The nice(1) command and the nice(2) interface work as in previous versions of the UNIX
system. These commands enable you to change the priority of a time-sharing process. Use
lower numeric values to assign higher time-sharing priorities with these interfaces.

To change the scheduler class of a process or to specify a real-time priority, use priocntl(2).
Use higher numeric values to assign higher priorities.

init(1M)
Theinit(1M) process is a special case to the scheduler. To change the scheduling properties of
init(1M), init must be the only process specified by idtype and id or by the procset
structure.

Scheduling and System Performance
The scheduler determines when and for how long processes run. Therefore, the scheduler's
behavior strongly affects a system's performance.

By default, all user processes are time-sharing processes. A process changes class only by a
priocntl(2) call.

All real-time process priorities have a higher priority than any time-sharing process.
Time-sharing processes or system processes cannot run while any real-time process is runnable.
A real-time application that occasionally fails to relinquish control of the CPU can completely
lock out other users and essential kernel housekeeping.

Besides controlling process class and priorities, a real-time application must also control other
factors that affect its performance. The most important factors in performance are CPU power,
amount of primary memory, and I/O throughput. These factors interact in complex ways. The
sar(1) command has options for reporting on all performance factors.

Process State Transition
Applications that have strict real-time constraints might need to prevent processes from being
swapped or paged out to secondary memory. A simplified overview of UNIX process states and
the transitions between states is shown in the following figure.

Scheduling and System Performance

Chapter 4 • Process Scheduler 79

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1nice-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2nice-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minit-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minit-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1sar-1

An active process is normally in one of the five states in the diagram. The arrows show how the
process changes states.

■ A process is running if the process is assigned to a CPU. A process is removed from the
running state by the scheduler if a process with a higher priority becomes runnable. A
process is also preempted if a process of equal priority is runnable when the original process
consumes its entire time slice.

■ A process is runnable in memory if the process is in primary memory and ready to run, but
is not assigned to a CPU.

■ A process is sleeping in memory if the process is in primary memory but is waiting for a
specific event before continuing execution. For example, a process sleeps while waiting for
an I/O operation to complete, for a locked resource to be unlocked, or for a timer to expire.
When the event occurs, a wakeup call is sent to the process. If the reason for its sleep is gone,
the process becomes runnable.

■ When a process' address space has been written to secondary memory, and that process is
not waiting for a specific event, the process is runnable and swapped.

■ If a process is waiting for a specific event and has had its whole address space written to
secondary memory, the process is sleeping and swapped.
If a machine does not have enough primary memory to hold all its active processes, that
machine must page or swap some address space to secondary memory.

■ When the system is short of primary memory, the system writes individual pages of some
processes to secondary memory but leaves those processes runnable. When a running
process, accesses those pages, the process sleeps while the pages are read back into primary
memory.

FIGURE 4–2 Process State Transition Diagram

running

runnable
in memory

runnable
swapped

sleep

sleeping
in memory

swap out swap outswap in

wakeup

wakeup

assign CPU preempt

sleeping
swapped

Scheduling and System Performance

Programming Interfaces Guide • November 201180

■ When the system encounters a more serious shortage of primary memory, the system writes
all the pages of some processes to secondary memory. The system marks the pages that have
been written to secondary memory as swapped. Such processes can only be scheduled when
the system scheduler daemon selects these processes to be read back into memory.

Both paging and swapping cause delay when a process is ready to run again. For processes that
have strict timing requirements, this delay can be unacceptable.

To avoid swapping delays, real-time processes are never swapped, though parts of such
processes can be paged. A program can prevent paging and swapping by locking its text and
data into primary memory. For more information, see the memcntl(2) man page. How much
memory can be locked is limited by how much memory is configured. Also, locking too much
can cause intolerable delays to processes that do not have their text and data locked into
memory.

Trade-offs between the performance of real-time processes and the performance of other
processes depend on local needs. On some systems, process locking might be required to
guarantee the necessary real-time response.

Note – See “Dispatch Latency” on page 275 for information about latencies in real-time
applications.

Scheduling and System Performance

Chapter 4 • Process Scheduler 81

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2memcntl-2

82

Locality Group APIs

This chapter describes the APIs that applications use to interact with locality groups.

This chapter discusses the following topics:
■ “Locality Groups Overview” on page 83 describes the locality group abstraction.
■ “Verifying the Interface Version” on page 86 describes the functions that give information

about the interface.
■ “Initializing the Locality Group Interface” on page 86 describes function calls that initialize

and shut down the portion of the interface that is used to traverse the locality group
hierarchy and to discover the contents of a locality group.

■ “Locality Group Hierarchy” on page 88 describes function calls that navigate the locality
group hierarchy and functions that get characteristics of the locality group hierarchy.

■ “Locality Group Contents” on page 90 describes function calls that retrieve information
about a locality group's contents.

■ “Locality Group Characteristics” on page 92 describes function calls that retrieve
information about a locality group's characteristics.

■ “Locality Groups and Thread and Memory Placement” on page 93 describes how to affect
the locality group placement of a thread and its memory.

■ “Examples of API Usage” on page 101 contains code that performs example tasks by using the
APIs that are described in this chapter.

Locality Groups Overview
Shared memory multiprocessor computers contain multiple CPUs. Each CPU can access all of
the memory in the machine. In some shared memory multiprocessors, the memory architecture
enables each CPU to access some areas of memory more quickly than other areas.

When a machine with such a memory architecture runs the Oracle Solaris software, providing
information to the kernel about the shortest access times between a given CPU and a given area

5C H A P T E R 5

83

of memory can improve the system's performance. The locality group (lgroup) abstraction has
been introduced to handle this information. The lgroup abstraction is part of the Memory
Placement Optimization (MPO) feature.

An lgroup is a set of CPU–like and memory–like devices in which each CPU in the set can
access any memory in that set within a bounded latency interval. The value of the latency
interval represents the least common latency between all the CPUs and all the memory in that
lgroup. The latency bound that defines an lgroup does not restrict the maximum latency
between members of that lgroup. The value of the latency bound is the shortest latency that is
common to all possible CPU-memory pairs in the group.

Lgroups are hierarchical. The lgroup hierarchy is a Directed Acyclic Graph (DAG) and is
similar to a tree, except that an lgroup might have more than one parent. The root lgroup
contains all the resources in the system and can include child lgroups. Furthermore, the root
lgroup can be characterized as having the highest latency value of all the lgroups in the system.
All of its child lgroups will have lower latency values. The lgroups closer to the root have a
higher latency while lgroups closer to leaves have lower latency.

A computer in which all the CPUs can access all the memory in the same amount of time can be
represented with a single lgroup (see Figure 5–1). A computer in which some of the CPUs can
access some areas of memory in a shorter time than other areas can be represented by using
multiple lgroups (see Figure 5–2).

FIGURE 5–1 Single Locality Group Schematic

Machine with single latency
is represented by one lgroup

Memory

CPU CPU CPU

Locality Groups Overview

Programming Interfaces Guide • November 201184

The organization of the lgroup hierarchy simplifies the task of finding the nearest resources in
the system. Each thread is assigned a home lgroup upon creation. The operating system
attempts to allocate resources for the thread from the thread's home lgroup by default. For
example, the Oracle Solaris kernel attempts to schedule a thread to run on the CPUs in the
thread's home lgroup and allocate the thread's memory in the thread's home lgroup by default.
If the desired resources are not available from the thread's home lgroup, the kernel can traverse
the lgroup hierarchy to find the next nearest resources from parents of the home lgroup. If the
desired resources are not available in the home lgroup's parents, the kernel continues to traverse
the lgroup hierarchy to the successive ancestor lgroups of the home lgroup. The root lgroup is
the ultimate ancestor of all other lgroups in a machine and contains all of the machine's
resources.

FIGURE 5–2 Multiple Locality Groups Schematic

Memory

CPU CPU CPU

lgroup 1

Memory

CPU CPU CPU

lgroup 2

Memory

CPU CPU CPU

lgroup 3

Memory

CPU CPU CPU

lgroup 4

Machine with multiple
latencies represented by multiple lgroups

root lgroup

Locality Groups Overview

Chapter 5 • Locality Group APIs 85

The lgroup APIs export the lgroup abstraction for applications to use for observability and
performance tuning. A new library, called liblgrp, contains the new APIs. Applications can
use the APIs to perform the following tasks:

■ Traverse the group hierarchy
■ Discover the contents and characteristics of a given lgroup
■ Affect the thread and memory placement on lgroups

Verifying the Interface Version
The lgrp_version(3LGRP) function must be used to verify the presence of a supported lgroup
interface before using the lgroup API. The lgrp_version() function has the following syntax:

#include <sys/lgrp_user.h>

int lgrp_version(const int version);

The lgrp_version() function takes a version number for the lgroup interface as an argument
and returns the lgroup interface version that the system supports. When the current
implementation of the lgroup API supports the version number in the version argument, the
lgrp_version() function returns that version number. Otherwise, the lgrp_version()
function returns LGRP_VER_NONE.

EXAMPLE 5–1 Example of lgrp_version()Use

#include <sys/lgrp_user.h>

if (lgrp_version(LGRP_VER_CURRENT) != LGRP_VER_CURRENT) {

fprintf(stderr, "Built with unsupported lgroup interface %d\n",
LGRP_VER_CURRENT);

exit (1);

}

Initializing the Locality Group Interface
Applications must call lgrp_init(3LGRP) in order to use the APIs for traversing the lgroup
hierarchy and to discover the contents of the lgroup hierarchy. The call to lgrp_init() gives
the application a consistent snapshot of the lgroup hierarchy. The application developer can
specify whether the snapshot contains only the resources that are available to the calling thread
specifically or the resources that are available to the operating system in general. The
lgrp_init() function returns a cookie that is used for the following tasks:

■ Navigating the lgroup hierarchy
■ Determining the contents of an lgroup
■ Determining whether the snapshot is current

Verifying the Interface Version

Programming Interfaces Guide • November 201186

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-version-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-init-3lgrp

Using lgrp_init()

The lgrp_init() function initializes the lgroup interface and takes a snapshot of the lgroup
hierarchy.

#include <sys/lgrp_user.h>

lgrp_cookie_t lgrp_init(lgrp_view_t view);

When the lgrp_init() function is called with LGRP_VIEW_CALLER as the view, the function
returns a snapshot that contains only the resources that are available to the calling thread.
When the lgrp_init() function is called with LGRP_VIEW_OS as the view, the function returns a
snapshot that contains the resources that are available to the operating system. When a thread
successfully calls the lgrp_init() function, the function returns a cookie that is used by any
function that interacts with the lgroup hierarchy. When a thread no longer needs the cookie,
call the lgrp_fini() function with the cookie as the argument.

The lgroup hierarchy consists of a root lgroup that contains all of the machine's CPU and
memory resources. The root lgroup might contain other locality groups bounded by smaller
latencies.

The lgrp_init() function can return two errors. When a view is invalid, the function returns
EINVAL. When there is insufficient memory to allocate the snapshot of the lgroup hierarchy, the
function returns ENOMEM.

Using lgrp_fini()

The lgrp_fini(3LGRP) function ends the usage of a given cookie and frees the corresponding
lgroup hierarchy snapshot.

#include <sys/lgrp_user.h>

int lgrp_fini(lgrp_cookie_t cookie);

The lgrp_fini() function takes a cookie that represents an lgroup hierarchy snapshot created
by a previous call to lgrp_init(). The lgrp_fini() function frees the memory that is allocated
to that snapshot. After the call to lgrp_fini(), the cookie is invalid. Do not use that cookie
again.

When the cookie passed to the lgrp_fini() function is invalid, lgrp_fini() returns EINVAL.

Initializing the Locality Group Interface

Chapter 5 • Locality Group APIs 87

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-fini-3lgrp

Locality Group Hierarchy
The APIs that are described in this section enable the calling thread to navigate the lgroup
hierarchy. The lgroup hierarchy is a directed acyclic graph that is similar to a tree, except that a
node might have more than one parent. The root lgroup represents the whole machine and
contains all of that machine's resources. The root lgroup is the lgroup with the highest latency
value in the system. Each of the child lgroups contains a subset of the hardware that is in the
root lgroup. Each child lgroup is bounded by a lower latency value. Locality groups that are
closer to the root have more resources and a higher latency. Locality groups that are closer to
the leaves have fewer resources and a lower latency. An lgroup can contain resources directly
within its latency boundary. An lgroup can also contain leaf lgroups that contain their own sets
of resources. The resources of leaf lgroups are available to the lgroup that encapsulates those leaf
lgroups.

Using lgrp_cookie_stale()

The lgrp_cookie_stale(3LGRP) function determines whether the snapshot of the lgroup
hierarchy represented by the given cookie is current.

#include <sys/lgrp_user.h>

int lgrp_cookie_stale(lgrp_cookie_t cookie);

The cookie returned by the lgrp_init() function can become stale due to several reasons that
depend on the view that the snapshot represents. A cookie that is returned by calling the
lgrp_init() function with the view set to LGRP_VIEW_OS can become stale due to changes in
the lgroup hierarchy such as dynamic reconfiguration or a change in a CPU's online status. A
cookie that is returned by calling the lgrp_init() function with the view set to
LGRP_VIEW_CALLER can become stale due to changes in the calling thread's processor set or
changes in the lgroup hierarchy. A stale cookie is refreshed by calling the lgrp_fini() function
with the old cookie, followed by calling lgrp_init() to generate a new cookie.

The lgrp_cookie_stale() function returns EINVAL when the given cookie is invalid.

Using lgrp_view()

The lgrp_view(3LGRP) function determines the view with which a given lgroup hierarchy
snapshot was taken.

#include <sys/lgrp_user.h>

lgrp_view_t lgrp_view(lgrp_cookie_t cookie);

The lgrp_view() function takes a cookie that represents a snapshot of the lgroup hierarchy and
returns the snapshot's view of the lgroup hierarchy. Snapshots that are taken with the view

Locality Group Hierarchy

Programming Interfaces Guide • November 201188

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-cookie-stale-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-view-3lgrp

LGRP_VIEW_CALLER contain only the resources that are available to the calling thread. Snapshots
that are taken with the view LGRP_VIEW_OS contain all the resources that are available to the
operating system.

The lgrp_view() function returns EINVAL when the given cookie is invalid.

Using lgrp_nlgrps()

The lgrp_nlgrps(3LGRP) function returns the number of locality groups in the system. If a
system has only one locality group, memory placement optimizations have no effect.

#include <sys/lgrp_user.h>

int lgrp_nlgrps(lgrp_cookie_t cookie);

The lgrp_nlgrps() function takes a cookie that represents a snapshot of the lgroup hierarchy
and returns the number of lgroups available in the hierarchy.

The lgrp_nlgrps() function returns EINVAL when the cookie is invalid.

Using lgrp_root()

The lgrp_root(3LGRP) function returns the root lgroup ID.

#include <sys/lgrp_user.h>

lgrp_id_t lgrp_root(lgrp_cookie_t cookie);

The lgrp_root() function takes a cookie that represents a snapshot of the lgroup hierarchy and
returns the root lgroup ID.

Using lgrp_parents()

The lgrp_parents(3LGRP) function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the number of parent lgroups for the specified lgroup.

#include <sys/lgrp_user.h>

int lgrp_parents(lgrp_cookie_t cookie, lgrp_id_t child,

lgrp_id_t *lgrp_array, uint_t lgrp_array_size);

If lgrp_array is not NULL and the value of lgrp_array_size is not zero, the lgrp_parents()
function fills the array with parent lgroup IDs until the array is full or all parent lgroup IDs are
in the array. The root lgroup has zero parents. When the lgrp_parents() function is called for
the root lgroup, lgrp_array is not filled in.

The lgrp_parents() function returns EINVAL when the cookie is invalid. The lgrp_parents()
function returns ESRCH when the specified lgroup ID is not found.

Locality Group Hierarchy

Chapter 5 • Locality Group APIs 89

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-nlgrps-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-root-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-parents-3lgrp

Using lgrp_children()

The lgrp_children(3LGRP) function takes a cookie that represents the calling thread's
snapshot of the lgroup hierarchy and returns the number of child lgroups for the specified
lgroup.

#include <sys/lgrp_user.h>

int lgrp_children(lgrp_cookie_t cookie, lgrp_id_t parent,

lgrp_id_t *lgrp_array, uint_t lgrp_array_size);

If lgrp_array is not NULL and the value of lgrp_array_size is not zero, the lgrp_children()
function fills the array with child lgroup IDs until the array is full or all child lgroup IDs are in
the array.

The lgrp_children() function returns EINVAL when the cookie is invalid. The
lgrp_children() function returns ESRCH when the specified lgroup ID is not found.

Locality Group Contents
The following APIs retrieve information about the contents of a given lgroup.

The lgroup hierarchy organizes the domain's resources to simplify the process of locating the
nearest resource. Leaf lgroups are defined with resources that have the least latency. Each of the
successive ancestor lgroups of a given leaf lgroup contains the next nearest resources to its child
lgroup. The root lgroup contains all of the resources that are in the domain.

The resources of a given lgroup are contained directly within that lgroup or indirectly within
the leaf lgroups that the given lgroup encapsulates. Leaf lgroups directly contain their resources
and do not encapsulate any other lgroups.

Using lgrp_resources()

The lgrp_resources() function returns the number of resources contained in a specified
lgroup.

#include <sys/lgrp_user.h>

int lgrp_resources(lgrp_cookie_t cookie, lgrp_id_t lgrp, lgrp_id_t *lgrpids,

uint_t count, lgrp_rsrc_t type);

The lgrp_resources() function takes a cookie that represents a snapshot of the lgroup
hierarchy. That cookie is obtained from the lgrp_init() function. The lgrp_resources()
function returns the number of resources that are in the lgroup with the ID that is specified by
the value of the lgrp argument. The lgrp_resources() function represents the resources with
a set of lgroups that directly contain CPU or memory resources. The lgrp_rsrc_t argument
can have the following two values:

Locality Group Contents

Programming Interfaces Guide • November 201190

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-children-3lgrp

LGRP_RSRC_CPU The lgrp_resources() function returns the number of CPU resources.

LGRP_RSRC_MEM The lgrp_resources() function returns the number of memory resources.

When the value passed in the lgrpids[] argument is not null and the count argument is not
zero, the lgrp_resources() function stores lgroup IDs in the lgrpids[] array. The number of
lgroup IDs stored in the array can be up to the value of the count argument.

The lgrp_resources() function returns EINVAL when the specified cookie, lgroup ID, or type
are not valid. The lgrp_resources() function returns ESRCH when the function does not find
the specified lgroup ID.

Using lgrp_cpus()

The lgrp_cpus(3LGRP) function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the number of CPUs in a given lgroup.

#include <sys/lgrp_user.h>

int lgrp_cpus(lgrp_cookie_t cookie, lgrp_id_t lgrp, processorid_t *cpuids,

uint_t count, int content);

If the cpuid[] argument is not NULL and the CPU count is not zero, the lgrp_cpus() function
fills the array with CPU IDs until the array is full or all the CPU IDs are in the array.

The content argument can have the following two values:

LGRP_CONTENT_ALL The lgrp_cpus() function returns IDs for the CPUs in this lgroup
and this lgroup's descendants.

LGRP_CONTENT_DIRECT The lgrp_cpus() function returns IDs for the CPUs in this lgroup
only.

The lgrp_cpus() function returns EINVAL when the cookie, lgroup ID, or one of the flags is not
valid. The lgrp_cpus() function returns ESRCH when the specified lgroup ID is not found.

Using lgrp_mem_size()

The lgrp_mem_size(3LGRP) function takes a cookie that represents a snapshot of the lgroup
hierarchy and returns the size of installed or free memory in the given lgroup. The
lgrp_mem_size() function reports memory sizes in bytes.

#include <sys/lgrp_user.h>

lgrp_mem_size_t lgrp_mem_size(lgrp_cookie_t cookie, lgrp_id_t lgrp,

int type, int content)

The type argument can have the following two values:

Locality Group Contents

Chapter 5 • Locality Group APIs 91

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-cpus-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-mem-size-3lgrp

LGRP_MEM_SZ_FREE The lgrp_mem_size() function returns the amount of free
memory in bytes.

LGRP_MEM_SZ_INSTALLED The lgrp_mem_size() function returns the amount of installed
memory in bytes.

The content argument can have the following two values:

LGRP_CONTENT_ALL The lgrp_mem_size() function returns the amount of memory in
this lgroup and this lgroup's descendants.

LGRP_CONTENT_DIRECT The lgrp_mem_size() function returns the amount of memory in
this lgroup only.

The lgrp_mem_size() function returns EINVAL when the cookie, lgroup ID, or one of the flags
is not valid. The lgrp_mem_size() function returns ESRCH when the specified lgroup ID is not
found.

Locality Group Characteristics
The following API retrieves information about the characteristics of a given lgroup.

Using lgrp_latency_cookie()

The lgrp_latency(3LGRP) function returns the latency between a CPU in one lgroup to the
memory in another lgroup.

#include <sys/lgrp_user.h>

int lgrp_latency_cookie(lgrp_cookie_t cookie, lgrp_id_t from, lgrp_id_t to.

lat_between_t between);

The lgrp_latency_cookie() function takes a cookie that represents a snapshot of the lgroup
hierarchy. The lgrp_init() function creates this cookie. The lgrp_latency_cookie()
function returns a value that represents the latency between a hardware resource in the lgroup
given by the value of the from argument and a hardware resource in the lgroup given by the
value of the to argument. If both arguments point to the same lgroup, the
lgrp_latency_cookie() function returns the latency value within that lgroup.

Note – The latency value returned by the lgrp_latency_cookie() function is defined by the
operating system and is platform-specific. This value does not necessarily represent the actual
latency between hardware devices. Use this value only for comparison within one domain.

Locality Group Characteristics

Programming Interfaces Guide • November 201192

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-latency-3lgrp

When the value of the between argument is LGRP_LAT_CPU_TO_MEM, the
lgrp_latency_cookie() function measures the latency from a CPU resource to a memory
resource.

The lgrp_latency_cookie() function returns EINVAL when the lgroup ID is not valid. When
the lgrp_latency_cookie() function does not find the specified lgroup ID, the “from” lgroup
does not contain any CPUs, or the “to” lgroup does not have any memory, the
lgrp_latency_cookie() function returns ESRCH.

Locality Groups and Thread and Memory Placement
This section discusses the APIs used to discover and affect thread and memory placement with
respect to lgroups.

■ The lgrp_home(3LGRP) function is used to discover thread placement.
■ The meminfo(2) system call is used to discover memory placement.
■ The MADV_ACCESS flags to the madvise(3C) function are used to affect memory allocation

among lgroups.
■ The lgrp_affinity_set(3LGRP) function can affect thread and memory placement by

setting a thread's affinity for a given lgroup.
■ The affinities of an lgroup may specify an order of preference for lgroups from which to

allocate resources.
■ The kernel needs information about the likely pattern of an application's memory use in

order to allocate memory resources efficiently.
■ The madvise() function and its shared object analogue madv.so.1 provide this information

to the kernel.
■ A running process can gather memory usage information about itself by using the

meminfo() system call.

Using lgrp_home()

The lgrp_home() function returns the home lgroup for the specified process or thread.

#include <sys/lgrp_user.h>

lgrp_id_t lgrp_home(idtype_t idtype, id_t id);

The lgrp_home() function returns EINVAL when the ID type is not valid. The lgrp_home()
function returns EPERM when the effective user of the calling process is not the superuser and the

Locality Groups and Thread and Memory Placement

Chapter 5 • Locality Group APIs 93

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-home-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2meminfo-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amadvise-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-affinity-set-3lgrp

real or effective user ID of the calling process does not match the real or effective user ID of one
of the threads. The lgrp_home() function returns ESRCH when the specified process or thread is
not found.

Using madvise()

The madvise() function advises the kernel that a region of user virtual memory in the range
starting at the address specified in addr and with length equal to the value of the len parameter is
expected to follow a particular pattern of use. The kernel uses this information to optimize the
procedure for manipulating and maintaining the resources associated with the specified range.
Use of the madvise() function can increase system performance when used by programs that
have specific knowledge of their access patterns over memory.

#include <sys/types.h>

#include <sys/mman.h>

int madvise(caddr_t addr, size_t len, int advice);

The madvise() function provides the following flags to affect how a thread's memory is
allocated among lgroups:

MADV_ACCESS_DEFAULT This flag resets the kernel's expected access pattern for the specified
range to the default.

MADV_ACCESS_LWP This flag advises the kernel that the next LWP to touch the specified
address range is the LWP that will access that range the most. The
kernel allocates the memory and other resources for this range and
the LWP accordingly.

MADV_ACCESS_MANY This flag advises the kernel that many processes or LWPs will access
the specified address range randomly across the system. The kernel
allocates the memory and other resources for this range
accordingly.

The madvise() function can return the following values:

EAGAIN Some or all of the mappings in the specified address range, from addr to addr+len,
are locked for I/O.

EINVAL The value of the addr parameter is not a multiple of the page size as returned by
sysconf(3C), the length of the specified address range is less than or equal to zero,
or the advice is invalid.

EIO An I/O error occurs while reading from or writing to the file system.

ENOMEM Addresses in the specified address range are outside the valid range for the address
space of a process or the addresses in the specified address range specify one or
more pages that are not mapped.

Locality Groups and Thread and Memory Placement

Programming Interfaces Guide • November 201194

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Asysconf-3c

ESTALE The NFS file handle is stale.

Using madv.so.1

The madv.so.1 shared object enables the selective configuration of virtual memory advice for
launched processes and their descendants. To use the shared object, the following string must
be present in the environment:

LD_PRELOAD=$LD_PRELOAD:madv.so.1

The madv.so.1 shared object applies memory advice as specified by the value of the MADV
environment variable. The MADV environment variable specifies the virtual memory advice to
use for all heap, shared memory, and mmap regions in the process address space. This advice is
applied to all created processes. The following values of the MADV environment variable affect
resource allocation among lgroups:

access_default This value resets the kernel's expected access pattern to the default.

access_lwp This value advises the kernel that the next LWP to touch an address range
is the LWP that will access that range the most. The kernel allocates the
memory and other resources for this range and the LWP accordingly.

access_many This value advises the kernel that many processes or LWPs will access
memory randomly across the system. The kernel allocates the memory
and other resources accordingly.

The value of the MADVCFGFILE environment variable is the name of a text file that contains one
or more memory advice configuration entries in the form exec-name:advice-opts.

The value of exec-name is the name of an application or executable. The value of exec-name can
be a full pathname, a base name, or a pattern string.

The value of advice-opts is of the form region=advice. The values of advice are the same as the
values for the MADV environment variable. Replace region with any of the following legal values:

madv Advice applies to all heap, shared memory, and mmap(2) regions in the process
address space.

heap The heap is defined to be the brk(2) area. Advice applies to the existing heap
and to any additional heap memory allocated in the future.

shm Advice applies to shared memory segments. See shmat(2) for more
information on shared memory operations.

ism Advice applies to shared memory segments that are using the SHM_SHARE_MMU
flag. The ism option takes precedence over shm.

Locality Groups and Thread and Memory Placement

Chapter 5 • Locality Group APIs 95

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2brk-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmat-2

dsm Advice applies to shared memory segments that are using the SHM_PAGEABLE
flag. The dsm option takes precedence over shm.

mapshared Advice applies to mappings established by the mmap() system call using the
MAP_SHARED flag.

mapprivate Advice applies to mappings established by the mmap() system call using the
MAP_PRIVATE flag.

mapanon Advice applies to mappings established by the mmap() system call using the
MAP_ANON flag. The mapanon option takes precedence when multiple options
apply.

The value of the MADVERRFILE environment variable is the name of the path where error
messages are logged. In the absence of a MADVERRFILE location, the madv.so.1 shared object
logs errors by using syslog(3C) with a LOG_ERR as the severity level and LOG_USER as the facility
descriptor.

Memory advice is inherited. A child process has the same advice as its parent. The advice is set
back to the system default advice after a call to exec(2) unless a different level of advice is
configured using the madv.so.1 shared object. Advice is only applied to mmap() regions
explicitly created by the user program. Regions established by the run-time linker or by system
libraries that make direct system calls are not affected.

madv.so.1Usage Examples
The following examples illustrate specific aspects of the madv.so.1 shared object.

EXAMPLE 5–2 Setting Advice for a Set of Applications

This configuration applies advice to all ISM segments for applications with exec names that
begin with foo.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1

$ MADVCFGFILE=madvcfg

$ export LD_PRELOAD MADVCFGFILE

$ cat $MADVCFGFILE

foo*:ism=access_lwp

EXAMPLE 5–3 Excluding a Set of Applications From Advice

This configuration sets advice for all applications with the exception of ls.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1

$ MADV=access_many

$ MADVCFGFILE=madvcfg

$ export LD_PRELOAD MADV MADVCFGFILE

$ cat $MADVCFGFILE

ls:

Locality Groups and Thread and Memory Placement

Programming Interfaces Guide • November 201196

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Asyslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2

EXAMPLE 5–4 Pattern Matching in a Configuration File

Because the configuration specified in MADVCFGFILE takes precedence over the value set in MADV,
specifying * as the exec-name of the last configuration entry is equivalent to setting MADV. This
example is equivalent to the previous example.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1

$ MADVCFGFILE=madvcfg

$ export LD_PRELOAD MADVCFGFILE

$ cat $MADVCFGFILE

ls:

*:madv=access_many

EXAMPLE 5–5 Advice for Multiple Regions

This configuration applies one type of advice for mmap() regions and different advice for heap
and shared memory regions for applications whose exec() names begin with foo.

$ LD_PRELOAD=$LD_PRELOAD:madv.so.1

$ MADVCFGFILE=madvcfg

$ export LD_PRELOAD MADVCFGFILE

$ cat $MADVCFGFILE

foo*:madv=access_many,heap=sequential,shm=access_lwp

Using meminfo()

The meminfo() function gives the calling process information about the virtual memory and
physical memory that the system has allocated to that process.

#include <sys/types.h>

#include <sys/mman.h>

int meminfo(const uint64_t inaddr[], int addr_count,

const uint_t info_req[], int info_count, uint64_t outdata[],

uint_t validity[]);

The meminfo() function can return the following types of information:

MEMINFO_VPHYSICAL The physical memory address corresponding to the given virtual
address

MEMINFO_VLGRP The lgroup to which the physical page corresponding to the given
virtual address belongs

MEMINFO_VPAGESIZE The size of the physical page corresponding to the given virtual
address

MEMINFO_VREPLCNT The number of replicated physical pages that correspond to the
given virtual address

MEMINFO_VREPL|n The nth physical replica of the given virtual address

Locality Groups and Thread and Memory Placement

Chapter 5 • Locality Group APIs 97

MEMINFO_VREPL_LGRP|n The lgroup to which the nth physical replica of the given virtual
address belongs

MEMINFO_PLGRP The lgroup to which the given physical address belongs

The meminfo() function takes the following parameters:

inaddr An array of input addresses.

addr_count The number of addresses that are passed to meminfo().

info_req An array that lists the types of information that are being requested.

info_count The number of pieces of information that are requested for each address in the
inaddr array.

outdata An array where the meminfo() function places the results. The array's size is
equal to the product of the values of the info_req and addr_count parameters.

validity An array of size equal to the value of the addr_count parameter. The validity
array contains bitwise result codes. The 0th bit of the result code evaluates the
validity of the corresponding input address. Each successive bit in the result
code evaluates the validity of the response to the members of the info_req array
in turn.

The meminfo() function returns EFAULT when the area of memory to which the outdata or
validity arrays point cannot be written to. The meminfo() function returns EFAULT when the
area of memory to which the info_req or inaddr arrays point cannot be read from. The
meminfo() function returns EINVAL when the value of info_count exceeds 31 or is less than 1.
The meminfo() function returns EINVAL when the value of addr_count is less than zero.

EXAMPLE 5–6 Use of meminfo() to Print Out Physical Pages and Page Sizes Corresponding to a Set of
Virtual Addresses

void

print_info(void **addrvec, int how_many)

{

static const int info[] = {

MEMINFO_VPHYSICAL,

MEMINFO_VPAGESIZE};

uint64_t * inaddr = alloca(sizeof(uint64_t) * how_many);

uint64_t * outdata = alloca(sizeof(uint64_t) * how_many * 2;

uint_t * validity = alloca(sizeof(uint_t) * how_many);

int i;

for (i = 0; i < how_many; i++)

inaddr[i] = (uint64_t *)addr[i];

if (meminfo(inaddr, how_many, info,

sizeof (info)/ sizeof(info[0]),

outdata, validity) < 0)

...

Locality Groups and Thread and Memory Placement

Programming Interfaces Guide • November 201198

EXAMPLE 5–6 Use of meminfo() to Print Out Physical Pages and Page Sizes Corresponding to a Set of
Virtual Addresses (Continued)

for (i = 0; i < how_many; i++) {

if (validity[i] & 1 == 0)

printf("address 0x%llx not part of address

space\n",
inaddr[i]);

else if (validity[i] & 2 == 0)

printf("address 0x%llx has no physical page

associated with it\n",
inaddr[i]);

else {

char buff[80];

if (validity[i] & 4 == 0)

strcpy(buff, "<Unknown>");
else

sprintf(buff, "%lld", outdata[i * 2 +

1]);

printf("address 0x%llx is backed by physical

page 0x%llx of size %s\n",
inaddr[i], outdata[i * 2], buff);

}

}

}

Locality Group Affinity
The kernel assigns a thread to a locality group when the lightweight process (LWP) for that
thread is created. That lgroup is called the thread's home lgroup. The kernel runs the thread on
the CPUs in the thread's home lgroup and allocates memory from that lgroup whenever
possible. If resources from the home lgroup are unavailable, the kernel allocates resources from
other lgroups. When a thread has affinity for more than one lgroup, the operating system
allocates resources from lgroups chosen in order of affinity strength. Lgroups can have one of
three distinct affinity levels:

1. LGRP_AFF_STRONG indicates strong affinity. If this lgroup is the thread's home lgroup, the
operating system avoids rehoming the thread to another lgroup if possible. Events such as
dynamic reconfiguration, processor, offlining, processor binding, and processor set binding
and manipulation might still result in thread rehoming.

2. LGRP_AFF_WEAK indicates weak affinity. If this lgroup is the thread's home lgroup, the
operating system rehomes the thread if necessary for load balancing purposes.

3. LGRP_AFF_NONE indicates no affinity. If a thread has no affinity to any lgroup, the operating
system assigns a home lgroup to the thread .

Locality Groups and Thread and Memory Placement

Chapter 5 • Locality Group APIs 99

The operating system uses lgroup affinities as advice when allocating resources for a given
thread. The advice is factored in with the other system constraints. Processor binding and
processor sets do not change lgroup affinities, but might restrict the lgroups on which a thread
can run.

Using lgrp_affinity_get()

The lgrp_affinity_get(3LGRP) function returns the affinity that a LWP has for a given
lgroup.

#include <sys/lgrp_user.h>

lgrp_affinity_t lgrp_affinity_get(idtype_t idtype, id_t id, lgrp_id_t lgrp);

The idtype and id arguments specify the LWP that the lgrp_affinity_get() function
examines. If the value of idtype is P_PID, the lgrp_affinity_get() function gets the lgroup
affinity for one of the LWPs in the process whose process ID matches the value of the id
argument. If the value of idtype is P_LWPID, the lgrp_affinity_get() function gets the lgroup
affinity for the LWP of the current process whose LWP ID matches the value of the id argument.
If the value of idtype is P_MYID, the lgrp_affinity_get() function gets the lgroup affinity for
the current LWP.

The lgrp_affinity_get() function returns EINVAL when the given lgroup or ID type is not
valid. The lgrp_affinity_get() function returns EPERM when the effective user of the calling
process is not the superuser and the ID of the calling process does not match the real or effective
user ID of one of the LWPs. The lgrp_affinity_get() function returns ESRCH when a given
lgroup or LWP is not found.

Using lgrp_affinity_set()

The lgrp_affinity_set(3LGRP) function sets the affinity that a LWP or set of LWPs have for a
given lgroup.

#include <sys/lgrp_user.h>

int lgrp_affinity_set(idtype_t idtype, id_t id, lgrp_id_t lgrp,

lgrp_affinity_t affinity);

The idtype and id arguments specify the LWP or set of LWPs the lgrp_affinity_set()
function examines. If the value of idtype is P_PID, the lgrp_affinity_set() function sets the
lgroup affinity for all of the LWPs in the process whose process ID matches the value of the id
argument to the affinity level specified in the affinity argument. If the value of idtype is P_LWPID,
the lgrp_affinity_set() function sets the lgroup affinity for the LWP of the current process
whose LWP ID matches the value of the id argument to the affinity level specified in the affinity
argument. If the value of idtype is P_MYID, the lgrp_affinity_set() function sets the lgroup
affinity for the current LWP or process to the affinity level specified in the affinity argument.

Locality Groups and Thread and Memory Placement

Programming Interfaces Guide • November 2011100

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-affinity-get-3lgrp
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Elgrp-affinity-set-3lgrp

The lgrp_affinity_set() function returns EINVAL when the given lgroup, affinity, or ID type
is not valid. The lgrp_affinity_set() function returns EPERM when the effective user of the
calling process is not the superuser and the ID of the calling process does not match the real or
effective user ID of one of the LWPs. The lgrp_affinity_set() function returns ESRCH when a
given lgroup or LWP is not found.

Examples of API Usage
This section contains code for example tasks that use the APIs that are described in this chapter.

EXAMPLE 5–7 Move Memory to a Thread

The following code sample moves the memory in the address range between addr and addr+len
near the next thread to touch that range.

#include <stdio.h>

#include <sys/mman.h>

#include <sys/types.h>

/*

* Move memory to thread

*/

void

mem_to_thread(caddr_t addr, size_t len)

{

if (madvise(addr, len, MADV_ACCESS_LWP) < 0)

perror("madvise");
}

EXAMPLE 5–8 Move a Thread to Memory

This sample code uses the meminfo() function to determine the lgroup of the physical memory
backing the virtual page at the given address. The sample code then sets a strong affinity for that
lgroup in an attempt to move the current thread near that memory.

#include <stdio.h>

#include <sys/lgrp_user.h>

#include <sys/mman.h>

#include <sys/types.h>

/*

* Move a thread to memory

*/

int

thread_to_memory(caddr_t va)

{

uint64_t addr;

ulong_t count;

lgrp_id_t home;

uint64_t lgrp;

Examples of API Usage

Chapter 5 • Locality Group APIs 101

EXAMPLE 5–8 Move a Thread to Memory (Continued)

uint_t request;

uint_t valid;

addr = (uint64_t)va;

count = 1;

request = MEMINFO_VLGRP;

if (meminfo(&addr, 1, &request, 1, &lgrp, &valid) != 0) {

perror("meminfo");
return (1);

}

if (lgrp_affinity_set(P_LWPID, P_MYID, lgrp, LGRP_AFF_STRONG) != 0) {

perror("lgrp_affinity_set");
return (2);

}

home = lgrp_home(P_LWPID, P_MYID);

if (home == -1) {

perror ("lgrp_home");
return (3);

}

if (home != lgrp)

return (-1);

return (0);

}

EXAMPLE 5–9 Walk the lgroup Hierarchy

The following sample code walks through and prints out the lgroup hierarchy.

#include <stdio.h>

#include <stdlib.h>

#include <sys/lgrp_user.h>

#include <sys/types.h>

/*

* Walk and print lgroup hierarchy from given lgroup

* through all its descendants

*/

int

lgrp_walk(lgrp_cookie_t cookie, lgrp_id_t lgrp, lgrp_content_t content)

{

lgrp_affinity_t aff;

lgrp_id_t *children;

processorid_t *cpuids;

int i;

int ncpus;

int nchildren;

int nparents;

lgrp_id_t *parents;

lgrp_mem_size_t size;

Examples of API Usage

Programming Interfaces Guide • November 2011102

EXAMPLE 5–9 Walk the lgroup Hierarchy (Continued)

/*

* Print given lgroup, caller’s affinity for lgroup,

* and desired content specified

*/

printf("LGROUP #%d:\n", lgrp);

aff = lgrp_affinity_get(P_LWPID, P_MYID, lgrp);

if (aff == -1)

perror ("lgrp_affinity_get");
printf("\tAFFINITY: %d\n", aff);

printf("CONTENT %d:\n", content);

/*

* Get CPUs

*/

ncpus = lgrp_cpus(cookie, lgrp, NULL, 0, content);

printf("\t%d CPUS: ", ncpus);

if (ncpus == -1) {

perror("lgrp_cpus");
return (-1);

} else if (ncpus > 0) {

cpuids = malloc(ncpus * sizeof (processorid_t));

ncpus = lgrp_cpus(cookie, lgrp, cpuids, ncpus, content);

if (ncpus == -1) {

free(cpuids);

perror("lgrp_cpus");
return (-1);

}

for (i = 0; i < ncpus; i++)

printf("%d ", cpuids[i]);

free(cpuids);

}

printf("\n");

/*

* Get memory size

*/

printf("\tMEMORY: ");
size = lgrp_mem_size(cookie, lgrp, LGRP_MEM_SZ_INSTALLED, content);

if (size == -1) {

perror("lgrp_mem_size");
return (-1);

}

printf("installed bytes 0x%llx, ", size);

size = lgrp_mem_size(cookie, lgrp, LGRP_MEM_SZ_FREE, content);

if (size == -1) {

perror("lgrp_mem_size");
return (-1);

}

printf("free bytes 0x%llx\n", size);

/*

* Get parents

*/

Examples of API Usage

Chapter 5 • Locality Group APIs 103

EXAMPLE 5–9 Walk the lgroup Hierarchy (Continued)

nparents = lgrp_parents(cookie, lgrp, NULL, 0);

printf("\t%d PARENTS: ", nparents);

if (nparents == -1) {

perror("lgrp_parents");
return (-1);

} else if (nparents > 0) {

parents = malloc(nparents * sizeof (lgrp_id_t));

nparents = lgrp_parents(cookie, lgrp, parents, nparents);

if (nparents == -1) {

free(parents);

perror("lgrp_parents");
return (-1);

}

for (i = 0; i < nparents; i++)

printf("%d ", parents[i]);

free(parents);

}

printf("\n");

/*

* Get children

*/

nchildren = lgrp_children(cookie, lgrp, NULL, 0);

printf("\t%d CHILDREN: ", nchildren);

if (nchildren == -1) {

perror("lgrp_children");
return (-1);

} else if (nchildren > 0) {

children = malloc(nchildren * sizeof (lgrp_id_t));

nchildren = lgrp_children(cookie, lgrp, children, nchildren);

if (nchildren == -1) {

free(children);

perror("lgrp_children");
return (-1);

}

printf("Children: ");
for (i = 0; i < nchildren; i++)

printf("%d ", children[i]);

printf("\n");

for (i = 0; i < nchildren; i++)

lgrp_walk(cookie, children[i], content);

free(children);

}

printf("\n");

return (0);

}

EXAMPLE 5–10 Find the Closest lgroup With Available Memory Outside a Given lgroup

#include <stdio.h>

#include <stdlib.h>

#include <sys/lgrp_user.h>

Examples of API Usage

Programming Interfaces Guide • November 2011104

EXAMPLE 5–10 Find the Closest lgroup With Available Memory Outside a Given lgroup (Continued)

#include <sys/types.h>

#define INT_MAX 2147483647

/*

* Find next closest lgroup outside given one with available memory

*/

lgrp_id_t

lgrp_next_nearest(lgrp_cookie_t cookie, lgrp_id_t from)

{

lgrp_id_t closest;

int i;

int latency;

int lowest;

int nparents;

lgrp_id_t *parents;

lgrp_mem_size_t size;

/*

* Get number of parents

*/

nparents = lgrp_parents(cookie, from, NULL, 0);

if (nparents == -1) {

perror("lgrp_parents");
return (LGRP_NONE);

}

/*

* No parents, so current lgroup is next nearest

*/

if (nparents == 0) {

return (from);

}

/*

* Get parents

*/

parents = malloc(nparents * sizeof (lgrp_id_t));

nparents = lgrp_parents(cookie, from, parents, nparents);

if (nparents == -1) {

perror("lgrp_parents");
free(parents);

return (LGRP_NONE);

}

/*

* Find closest parent (ie. the one with lowest latency)

*/

closest = LGRP_NONE;

lowest = INT_MAX;

for (i = 0; i < nparents; i++) {

lgrp_id_t lgrp;

/*

* See whether parent has any free memory

Examples of API Usage

Chapter 5 • Locality Group APIs 105

EXAMPLE 5–10 Find the Closest lgroup With Available Memory Outside a Given lgroup (Continued)

*/

size = lgrp_mem_size(cookie, parents[i], LGRP_MEM_SZ_FREE,

LGRP_CONTENT_ALL);

if (size > 0)

lgrp = parents[i];

else {

if (size == -1)

perror("lgrp_mem_size");

/*

* Find nearest ancestor if parent doesn’t

* have any memory

*/

lgrp = lgrp_next_nearest(cookie, parents[i]);

if (lgrp == LGRP_NONE)

continue;

}

/*

* Get latency within parent lgroup

*/

latency = lgrp_latency_cookie(lgrp, lgrp);

if (latency == -1) {

perror("lgrp_latency_cookie");
continue;

}

/*

* Remember lgroup with lowest latency

*/

if (latency < lowest) {

closest = lgrp;

lowest = latency;

}

}

free(parents);

return (closest);

}

/*

* Find lgroup with memory nearest home lgroup of current thread

*/

lgrp_id_t

lgrp_nearest(lgrp_cookie_t cookie)

{

lgrp_id_t home;

longlong_t size;

/*

* Get home lgroup

*/

home = lgrp_home(P_LWPID, P_MYID);

/*

Examples of API Usage

Programming Interfaces Guide • November 2011106

EXAMPLE 5–10 Find the Closest lgroup With Available Memory Outside a Given lgroup (Continued)

* See whether home lgroup has any memory available in its hierarchy

*/

size = lgrp_mem_size(cookie, home, LGRP_MEM_SZ_FREE,

LGRP_CONTENT_ALL);

if (size == -1)

perror("lgrp_mem_size");

/*

* It does, so return the home lgroup.

*/

if (size > 0)

return (home);

/*

* Otherwise, find next nearest lgroup outside of the home.

*/

return (lgrp_next_nearest(cookie, home));

}

EXAMPLE 5–11 Find Nearest lgroup With Free Memory

This example code finds the nearest lgroup with free memory to a given thread's home lgroup.

lgrp_id_t

lgrp_nearest(lgrp_cookie_t cookie)

{

lgrp_id_t home;

longlong_t size;

/*

* Get home lgroup

*/

home = lgrp_home();

/*

* See whether home lgroup has any memory available in its hierarchy

*/

if (lgrp_mem_size(cookie, lgrp, LGRP_MEM_SZ_FREE,

LGRP_CONTENT_ALL, &size) == -1)

perror("lgrp_mem_size");

/*

* It does, so return the home lgroup.

*/

if (size > 0)

return (home);

/*

* Otherwise, find next nearest lgroup outside of the home.

*/

Examples of API Usage

Chapter 5 • Locality Group APIs 107

EXAMPLE 5–11 Find Nearest lgroup With Free Memory (Continued)

return (lgrp_next_nearest(cookie, home));

}

Examples of API Usage

Programming Interfaces Guide • November 2011108

Input/Output Interfaces

This chapter introduces file input/output operations, as provided on systems that do not
provide virtual memory services. The chapter discusses the improved input/output method
provided by the virtual memory facilities. The chapter describes the older method of locking
files and records in “Using File and Record Locking” on page 112.

Files and I/O Interfaces
Files that are organized as a sequence of data are called regular files. Regular files can contain
ASCII text, text in some other binary data encoding, executable code, or any combination of
text, data, and code.

A regular file is made up of the following components:

■ Control data, which is called the inode. This data includes the file type, the access
permissions, the owner, the file size, and the location of the data blocks.

■ File contents: a nonterminated sequence of bytes.

The Oracle Solaris operating system provides the following basic forms of file input/output
interfaces:

■ The traditional, raw style of file I/O is described in “Basic File I/O” on page 110.
■ The standard I/O buffering provides an easier interface and improved efficiency to an

application run on a system without virtual memory. In an application running in a virtual
memory environment, such as on the SunOS operating system, standard file I/O is outdated.

■ The memory mapping interface is described in “Memory Management Interfaces” on
page 15. Mapping files is the most efficient form of file I/O for most applications run under
the SunOS platform.

6C H A P T E R 6

109

Basic File I/O
The following interfaces perform basic operations on files and on character I/O devices.

TABLE 6–1 Basic File I/O Interfaces

Interface Name Purpose

open(2) Open a file for reading or writing

close(2) Close a file descriptor

read(2) Read from a file

write(2) Write to a file

creat(2) Create a new file or rewrite an existing one

unlink(2) Remove a directory entry

lseek(2) Move read/write file pointer

The following code sample demonstrates the use of the basic file I/O interface. read(2) and
write(2) both transfer no more than the specified number of bytes, starting at the current offset
into the file. The number of bytes actually transferred is returned. The end of a file is indicated
on a read(2) by a return value of zero.

EXAMPLE 6–1 Basic File I/O Interface

#include <fcntl.h>

#define MAXSIZE 256

main()

{

int fd;

ssize_t n;

char array[MAXSIZE];

fd = open ("/etc/motd", O_RDONLY);

if (fd == -1) {

perror ("open");
exit (1);

}

while ((n = read (fd, array, MAXSIZE)) > 0)

if (write (1, array, n) != n)

perror ("write");
if (n == -1)

perror ("read");
close (fd);

}

When you are done reading or writing a file, always call close(2). Do not call close(2) for a file
descriptor that was not returned from a call to open(2).

Files and I/O Interfaces

Programming Interfaces Guide • November 2011110

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2creat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2unlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2

File pointer offsets into an open file are changed by using read(2), write(2), or by calls to
lseek(2). The following example demonstrates the uses of lseek.

off_t start, n;

struct record rec;

/* record current offset in start */

start = lseek (fd, 0L, SEEK_CUR);

/* go back to start */

n = lseek (fd, -start, SEEK_SET);

read (fd, &rec, sizeof (rec));

/* rewrite previous record */

n = lseek (fd, -sizeof (rec), SEEK_CUR);

write (fd, (char *&rec, sizeof (rec));

Advanced File I/O
The following table lists the tasks performed by advanced file I/O interfaces.

TABLE 6–2 Advanced File I/O Interfaces

Interface Name Purpose

link(2) Link to a file

access(2) Determine accessibility of a file

mknod(2) Make a special or ordinary file

chmod(2) Change mode of file

chown(2), lchown(2), fchown(2) Change owner and group of a file

utime(2) Set file access and modification times

stat(2), lstat(2), fstat(2) Get file status

fcntl(2) Perform file control functions

ioctl(2) Control device

fpathconf(2) Get configurable path name variables

opendir(3C), readdir(3C), closedir(3C) Perform directory operations

mkdir(2) Make a directory

readlink(2) Read the value of a symbolic link

rename(2) Change the name of a file

rmdir(2) Remove a directory

Files and I/O Interfaces

Chapter 6 • Input/Output Interfaces 111

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2link-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2access-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2chmod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2chown-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2lchown-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fchown-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2utime-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2stat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2lstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fstat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fpathconf-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aopendir-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Areaddir-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aclosedir-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mkdir-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2readlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2rename-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2rmdir-2

TABLE 6–2 Advanced File I/O Interfaces (Continued)
Interface Name Purpose

symlink(2) Make a symbolic link to a file

File System Control
The file system control interfaces listed in the following table enable the control of various
aspects of the file system.

TABLE 6–3 File System Control Interfaces

Interface Name Purpose

ustat(2) Get file system statistics

sync(2) Update super block

mount(2) Mount a file system

statvfs(2), fstatvfs(2) Get file system information

sysfs(2) Get file system type information

Using File and Record Locking
You do not need to use traditional file I/O to lock file elements. Use the lighter weight
synchronization mechanisms that are described in Multithreaded Programming Guide with
mapped files.

Locking files prevents errors that can occur when several users try to update a file at the same
time. You can lock a portion of a file.

File locking blocks access to an entire file. Record locking blocks access to a specified segment of
the file. In SunOS, all files are a sequence of bytes of data: a record is a concept of the programs
that use the file.

Choosing a Lock Type
Mandatory locking suspends a process until the requested file segments are free. Advisory
locking returns a result indicating whether the lock was obtained or not. A process can ignore
the result of advisory locking. You cannot use both mandatory and advisory file locking on the
same file at the same time. The mode of a file at the time the file is opened determines whether
locks on a file are treated as mandatory or advisory.

Using File and Record Locking

Programming Interfaces Guide • November 2011112

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2symlink-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ustat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sync-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mount-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2statvfs-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fstatvfs-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sysfs-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MTP

Of the two basic locking calls, fcntl(2) is more portable, more powerful, and less easy to use
than lockf(3C). fcntl(2) is specified in POSIX 1003.1 standard. lockf(3C) is provided to be
compatible with older applications.

Selecting Advisory or Mandatory Locking
For mandatory locks, the file must be a regular file with the set-group-ID bit on and the group
execute permission off. If either condition fails, all record locks are advisory.

Set a mandatory lock as follows.

#include <sys/types.h>

#include <sys/stat.h>

int mode;

struct stat buf;

...

if (stat(filename, &buf) < 0) {

perror("program");
exit (2);

}

/* get currently set mode */

mode = buf.st_mode;

/* remove group execute permission from mode */

mode &= ~(S_IEXEC>>3);

/* set ’set group id bit’ in mode */

mode |= S_ISGID;

if (chmod(filename, mode) < 0) {

perror("program");
exit(2);

}

...

The operating system ignores record locks when the system is executing a file. Any files with
record locks should not have execute permissions set.

The chmod(1) command can also be used to set a file to permit mandatory locking.

$ chmod +l file

This command sets the O20n0 permission bit in the file mode, which indicates mandatory
locking on the file. If n is even, the bit is interpreted as enabling mandatory locking. If n is odd,
the bit is interpreted as “set group ID on execution.”

The ls(1) command shows this setting when you ask for the long listing format with the −l
option:

$ ls -l file

This command displays the following information:

-rw---l--- 1 user group size mod_time file

Using File and Record Locking

Chapter 6 • Input/Output Interfaces 113

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Alockf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Alockf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1chmod-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ls-1

The letter “l” in the permissions indicates that the set-group-ID bit is on. Since the set-group-ID
bit is on, mandatory locking is enabled. Normal semantics of set group ID are also enabled.

Cautions About Mandatory Locking
Keep in mind the following aspects of locking:
■ Mandatory locking works only for local files. Mandatory locking is not supported when

accessing files through NFS.
■ Mandatory locking protects only the segments of a file that are locked. The remainder of the

file can be accessed according to normal file permissions.
■ If multiple reads or writes are needed for an atomic transaction, the process should explicitly

lock all such segments before any I/O begins. Advisory locks are sufficient for all programs
that perform in this way.

■ Arbitrary programs should not have unrestricted access permission to files on which record
locks are used.

■ Advisory locking is more efficient because a record lock check does not have to be
performed for every I/O request.

Supported File Systems
Both advisory and mandatory locking are supported on the file systems listed in the following
table.

TABLE 6–4 Supported File Systems

File System Description

ufs The default disk-based file system

fifofs A pseudo file system of named pipe files that give processes common access to data

namefs A pseudo file system used mostly by STREAMS for dynamic mounts of file descriptors
on top of file

specfs A pseudo file system that provides access to special character devices and block devices

Only advisory file locking is supported on NFS. File locking is not supported for the proc and fd

file systems.

Opening a File for Locking
You can only request a lock for a file with a valid open descriptor. For read locks, the file must be
open with at least read access. For write locks, the file must also be open with write access. In the
following example, a file is opened for both read and write access.

Using File and Record Locking

Programming Interfaces Guide • November 2011114

...

filename = argv[1];

fd = open (filename, O_RDWR);

if (fd < 0) {

perror(filename);

exit(2);

}

...

Setting a File Lock
To lock an entire file, set the offset to zero and set the size to zero.

You can set a lock on a file in several ways. The choice of method depends on how the lock
interacts with the rest of the program, performance, and portability. This example uses the
POSIX standard-compatible fcntl(2) interface. The interface tries to lock a file until one of the
following happens:

■ The file lock is set successfully.
■ An error occurs.
■ MAX_TRY is exceeded, and the program stops trying to lock the file.

#include <fcntl.h>

...

struct flock lck;

...

lck.l_type = F_WRLCK; /* setting a write lock */

lck.l_whence = 0; /* offset l_start from beginning of file */

lck.l_start = (off_t)0;

lck.l_len = (off_t)0; /* until the end of the file */

if (fcntl(fd, F_SETLK, &lck) <0) {

if (errno == EAGAIN || errno == EACCES) {

(void) fprintf(stderr, "File busy try again later!\n");
return;

}

perror("fcntl");
exit (2);

}

...

Using fcntl(2), you can set the type and start of the lock request by setting structure
variables.

Note – You cannot lock mapped files with flock. However, you can use the
multithread-oriented synchronization mechanisms with mapped files. These
synchronization mechanisms can be used in POSIX styles as well as in Oracle Solaris styles.

Using File and Record Locking

Chapter 6 • Input/Output Interfaces 115

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2

Setting and Removing Record Locks
When locking a record, do not set the starting point and length of the lock segment to zero. The
locking procedure is otherwise identical to file locking.

Contention for data is why you use record locking. Therefore, you should have a failure
response for when you cannot obtain all the required locks:

■ Wait a certain amount of time, then try again
■ Abort the procedure, warn the user
■ Let the process sleep until signaled that the lock has been freed
■ Do some combination of the previous

This example shows a record being locked by using fcntl(2).

{

struct flock lck;

...

lck.l_type = F_WRLCK; /* setting a write lock */

lck.l_whence = 0; /* offset l_start from beginning of file */

lck.l_start = here;

lck.l_len = sizeof(struct record);

/* lock "this" with write lock */

lck.l_start = this;

if (fcntl(fd, F_SETLKW, &lck) < 0) {

/* "this" lock failed. */

return (-1);

...

}

The next example shows the lockf(3C) interface.

#include <unistd.h>

{

...

/* lock "this" */

(void) lseek(fd, this, SEEK_SET);

if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {

/* Lock on "this" failed. Clear lock on "here". */

(void) lseek(fd, here, 0);

(void) lockf(fd, F_ULOCK, sizeof(struct record));

return (-1);

}

You remove locks in the same way the locks were set. Only the lock type is different (F_ULOCK).
An unlock cannot be blocked by another process and affects only locks placed by the calling
process. The unlock affects only the segment of the file specified in the preceding locking call.

Using File and Record Locking

Programming Interfaces Guide • November 2011116

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Alockf-3c

Getting Lock Information
You can determine which process is holding a lock. A lock is set, as in the previous examples,
and F_GETLK is used in fcntl(2).

The next example finds and prints identifying data on all the locked segments of a file.

EXAMPLE 6–2 Printing Locked Segments of a File

struct flock lck;

lck.l_whence = 0;

lck.l_start = 0L;

lck.l_len = 0L;

do {

lck.l_type = F_WRLCK;

(void) fcntl(fd, F_GETLK, &lck);

if (lck.l_type != F_UNLCK) {

(void) printf("%d %d %c %8ld %8ld\n", lck.l_sysid, lck.l_pid,

(lck.l_type == F_WRLCK) ? ’W’ : ’R’, lck.l_start, lck.l_len);

/* If this lock goes to the end of the address space, no

* need to look further, so break out. */

if (lck.l_len == 0) {

/* else, look for new lock after the one just found. */

lck.l_start += lck.l_len;

}

}

} while (lck.l_type != F_UNLCK);

fcntl(2) with the F_GETLK command can sleep while waiting for a server to respond. The
command can fail, returning ENOLCK, if either the client or the server have a resource shortage.

Use lockf(3C) with the F_TEST command to test if a process is holding a lock. This interface
does not return information about the lock's location or ownership.

EXAMPLE 6–3 Testing a Process With lockf

(void) lseek(fd, 0, 0L);

/* set the size of the test region to zero (0). to test until the

end of the file address space. */

if (lockf(fd, (off_t)0, SEEK_SET) < 0) {

switch (errno) {

case EACCES:

case EAGAIN:

(void) printf("file is locked by another process\n");
break;

case EBADF:

/* bad argument passed to lockf */

perror("lockf");
break;

default:

(void) printf("lockf: unexpected error <%d>\n", errno);

break;

}

}

Using File and Record Locking

Chapter 6 • Input/Output Interfaces 117

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Alockf-3c

Process Forking and Locks
When a process forks, the child receives a copy of the file descriptors that the parent opened.
Locks are not inherited by the child because the locks are owned by a specific process. The
parent and child share a common file pointer for each file. Both processes can try to set locks on
the same location in the same file. This problem occurs with both lockf(3C) and fcntl(2). If a
program holding a record lock forks, the child process should close the file. After closing the
file, the child process should reopen the file to set a new, separate file pointer.

Deadlock Handling
The UNIX locking facilities provide deadlock detection and avoidance. Deadlocks can occur
only when the system is ready to put a record−locking interface to sleep. A search is made to
determine whether two processes are in a deadlock. If a potential deadlock is detected, the
locking interface fails and sets errno to indicate deadlock. Processes setting locks that use
F_SETLK do not cause a deadlock because these processes do not wait when the lock cannot be
granted immediately.

Terminal I/O Functions
Terminal I/O interfaces deal with a general terminal interface for controlling asynchronous
communications ports, as shown in the following table. For more information, see the
termios(3C) and termio(7I) man pages.

TABLE 6–5 Terminal I/O Interfaces

Interface Name Purpose

tcgetattr(3C), tcsetattr(3C) Get and set terminal attributes

tcsendbreak(3C), tcdrain(3C), tcflush(3C), tcflow(3C) Perform line control interfaces

cfgetospeed(3C), cfgetispeed(3C)cfsetispeed(3C),
cfsetospeed(3C)

Get and set baud rate

tcsetpgrp(3C) Get and set terminal foreground process group
ID

tcgetsid(3C) Get terminal session ID

The following example shows how the server dissociates from the controlling terminal of its
invoker in the non-DEBUG mode of operation.

EXAMPLE 6–4 Dissociating From the Controlling Terminal

(void) close(0);

(void) close(1);

(void) close(2);

Terminal I/O Functions

Programming Interfaces Guide • November 2011118

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Alockf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atermios-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7termio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atcgetattr-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atcsetattr-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atcsendbreak-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atcdrain-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atcflush-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atcflow-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Acfgetospeed-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Acfgetispeed-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Acfsetispeed-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Acfsetospeed-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atcsetpgrp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Atcgetsid-3c

EXAMPLE 6–4 Dissociating From the Controlling Terminal (Continued)

(void) open("/", O_RDONLY);

(void) dup2(0, 1);

(void) dup2(0, 2);

setsid();

This operation mode prevents the server from receiving signals from the process group of the
controlling terminal. A server cannot send reports of errors to a terminal after the server has
dissociated. The dissociated server must log errors with syslog(3C).

Terminal I/O Functions

Chapter 6 • Input/Output Interfaces 119

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Asyslog-3c

120

Interprocess Communication

This chapter is for programmers who develop multiprocess applications.

SunOS 5.10 and compatible operating systems have a large variety of mechanisms for
concurrent processes to exchange data and synchronize execution. All of these mechanisms,
except mapped memory, are introduced in this chapter.

■ Pipes (anonymous data queues) are described in “Pipes Between Processes” on page 121.
■ Named pipes (data queues with file names.) “Named Pipes” on page 123 covers named pipes.
■ System V message queues, semaphores, and shared memory are described in “System V

IPC” on page 125.
■ POSIX message queues, semaphores, and shared memory are described in “POSIX

Interprocess Communication” on page 123.
■ “Sockets Overview” on page 123 describes interprocess communication using sockets.
■ Mapped memory and files are described in “Memory Management Interfaces” on page 15.

Pipes Between Processes
A pipe between two processes is a pair of files that is created in a parent process. The pipe
connects the resulting processes when the parent process forks. A pipe has no existence in any
file name space, so it is said to be anonymous. A pipe usually connects only two processes,
although any number of child processes can be connected to each other and their related parent
by a single pipe.

A pipe is created in the process that becomes the parent by a call to pipe(2). The call returns two
file descriptors in the array passed to it. After forking, both processes read from p[0] and write
to p[1]. The processes actually read from and write to a circular buffer that is managed for
them.

Because calling fork(2) duplicates the per-process open file table, each process has two readers
and two writers. Closing the extra readers and writers enables the proper functioning of the

7C H A P T E R 7

121

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2pipe-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2

pipe. For example, no end-of-file indication would ever be returned if the other end of a reader
is left open for writing by the same process. The following code shows pipe creation, a fork, and
clearing the duplicate pipe ends.

#include <stdio.h>

#include <unistd.h>

...

int p[2];

...

if (pipe(p) == -1) exit(1);

switch(fork())

{

case 0: /* in child */

close(p[0]);

dup2(p[1], 1);

close P[1]);

exec(...);

exit(1);

default: /* in parent */

close(p[1]);

dup2(P[0], 0);

close(p[0]);

break;

}

...

The following table shows the results of reads from a pipe and writes to a pipe, under certain
conditions.

TABLE 7–1 Read/Write Results in a Pipe

Attempt Conditions Result

read Empty pipe, writer attached Read blocked

write Full pipe, reader attached Write blocked

read Empty pipe, no writer attached EOF returned

write No reader SIGPIPE

Blocking can be prevented by calling fcntl(2) on the descriptor to set FNDELAY. This causes an
error return (-1) from the I/O call with errno set to EWOULDBLOCK.

Pipes Between Processes

Programming Interfaces Guide • November 2011122

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2

Named Pipes
Named pipes function much like pipes, but are created as named entities in a file system. This
enables the pipe to be opened by all processes with no requirement that they be related by
forking. A named pipe is created by a call to mknod(2). Any process with appropriate permission
can then read or write to a named pipe.

In the open(2) call, the process opening the pipe blocks until another process also opens the
pipe.

To open a named pipe without blocking, the open(2) call joins the O_NDELAY mask (found in
sys/fcntl.h) with the selected file mode mask using the Boolean or operation on the call to
open(2). If no other process is connected to the pipe when open(2) is called, -1 is returned with
errno set to EWOULDBLOCK.

Sockets Overview
Sockets provide point-to-point, two-way communication between two processes. Sockets are a
basic component of interprocess and intersystem communication. A socket is an endpoint of
communication to which a name can be bound. It has a type and one or more associated
processes.

Sockets exist in communication domains. A socket domain is an abstraction that provides an
addressing structure and a set of protocols. Sockets connect only with sockets in the same
domain. Twenty three socket domains are identified (see sys/socket.h), of which only the
UNIX and Internet domains are normally used in Oracle Solaris 10 and compatible operating
systems.

You can use sockets to communicate between processes on a single system, like other forms of
IPC. The UNIX domain (AF_UNIX) provides a socket address space on a single system. UNIX
domain sockets are named with UNIX paths. UNIX domain sockets are further described in
Appendix A, “UNIX Domain Sockets.” Sockets can also be used to communicate between
processes on different systems. The socket address space between connected systems is called
the Internet domain (AF_INET). Internet domain communication uses the TCP/IP internet
protocol suite. Internet domain sockets are described in Chapter 8, “Socket Interfaces.”

POSIX Interprocess Communication
POSIX interprocess communication (IPC) is a variation of System V interprocess
communication. It was introduced in the Solaris 7 release. Like System V objects, POSIX IPC
objects have read and write, but not execute, permissions for the owner, the owner's group, and
for others. There is no way for the owner of a POSIX IPC object to assign a different owner.
POSIX IPC includes the following features:

POSIX Interprocess Communication

Chapter 7 • Interprocess Communication 123

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mknod-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2

■ Messages allow processes to send formatted data streams to arbitrary processes.
■ Semaphores allow processes to synchronize execution.
■ Shared memory allows processes to share parts of their virtual address space.

Unlike the System V IPC interfaces, the POSIX IPC interfaces are all multithread safe.

POSIX Messages
The POSIX message queue interfaces are listed in the following table.

TABLE 7–2 POSIX Message Queue Interfaces

Interface Name Purpose

mq_open Connects to, and optionally creates, a named message queue

mq_close Ends the connection to an open message queue

mq_unlink Ends the connection to an open message queue and causes the
queue to be removed when the last process closes it

mq_send Places a message in the queue

mq_receive Receives (removes) the oldest, highest priority message from the
queue

mq_notify Notifies a process or thread that a message is available in the
queue

mq_setattr Set or get message queue attributes

POSIX Semaphores
POSIX semaphores are much lighter weight than are System V semaphores. A POSIX
semaphore structure defines a single semaphore, not an array of up to 25 semaphores.

The POSIX semaphore interfaces are shown below.

sem_open Connects to, and optionally creates, a named semaphore

sem_init Initializes a semaphore structure (internal to the calling program, so not a
named semaphore)

sem_close Ends the connection to an open semaphore

sem_unlink Ends the connection to an open semaphore and causes the semaphore to be
removed when the last process closes it

POSIX Interprocess Communication

Programming Interfaces Guide • November 2011124

sem_destroy Initializes a semaphore structure (internal to the calling program, so not a
named semaphore)

sem_getvalue Copies the value of the semaphore into the specified integer

sem_wait Blocks while the semaphore is held by other processes or returns an error if
the semaphore is held by another process

POSIX Shared Memory
POSIX shared memory is actually a variation of mapped memory (see “Creating and Using
Mappings” on page 15). The major differences are:

■ You use shm_open to open the shared memory object instead of calling open(2).
■ You use shm_unlink to close and delete the object instead of calling close(2) which does

not remove the object.

The options in shm_open substantially fewer than the number of options provided in open(2).

System V IPC
SunOS 5.10 and compatible operating systems also provide the System V inter process
communication (IPC) package. System V IPC has effectively been replaced by POSIX IPC, but
is maintained to support older applications.

See the ipcrm(1), ipcs(1), Intro(2), msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semget(2),
semctl(2), semop(2), shmget(2), shmctl(2), shmop(2), and ftok(3C) man pages for more
information about System V IPC.

Permissions for Messages, Semaphores, and Shared
Memory
Messages, semaphores, and shared memory have read and write permissions, but no execute
permission, for the owner, group, and others, which is similar to ordinary files. Like files, the
creating process identifies the default owner. Unlike files, the creating process can assign
ownership of the facility to another user or revoke an ownership assignment.

System V IPC

Chapter 7 • Interprocess Communication 125

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipcrm-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ipcs-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgrcv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aftok-3c

IPC Interfaces, Key Arguments, and Creation Flags
Processes requesting access to an IPC facility must be able to identify the facility. To identify the
facility to which the process requests access, interfaces that initialize or provide access to an IPC
facility use a key_t key argument. The key is an arbitrary value or one that can be derived from a
common seed at runtime. One way to derive such a key is by using ftok(3C), which converts a
file name to a key value that is unique within the system.

Interfaces that initialize or get access to messages, semaphores, or shared memory return an ID
number of type int. IPC Interfaces that perform read, write, and control operations use this ID.

If the key argument is specified as IPC_PRIVATE, the call initializes a new instance of an IPC
facility that is private to the creating process.

When the IPC_CREAT flag is supplied in the flags argument appropriate to the call, the interface
tries to create the facility if it does not exist already.

When called with both theIPC_CREAT and IPC_EXCL flags, the interface fails if the facility
already exists. This behavior can be useful when more than one process might attempt to
initialize the facility. One such case might involve several server processes having access to the
same facility. If they all attempt to create the facility with IPC_EXCL in effect, only the first
attempt succeeds.

If neither of these flags is given and the facility already exists, the interfaces return the ID of the
facility to get access. If IPC_CREAT is omitted and the facility is not already initialized, the calls
fail.

Using logical (bitwise) OR, IPC_CREAT and IPC_EXCL are combined with the octal permission
modes to form the flags argument. For example, the statement below initializes a new message
queue if the queue does not exist:

msqid = msgget(ftok("/tmp", ’A’), (IPC_CREAT | IPC_EXCL | 0400));

The first argument evaluates to a key (’A’) based on the string ("/tmp"). The second argument
evaluates to the combined permissions and control flags.

System V Messages
Before a process can send or receive a message, you must initialize the queue through
msgget(2). The owner or creator of a queue can change its ownership or permissions using
msgctl(2). Any process with permission can use msgctl(2) for control operations.

IPC messaging enables processes to send and receive messages and queue messages for
processing in an arbitrary order. Unlike the file byte-stream data flow of pipes, each IPC
message has an explicit length.

System V IPC

Programming Interfaces Guide • November 2011126

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aftok-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgctl-2

Messages can be assigned a specific type. A server process can thus direct message traffic
between clients on its queue by using the client process PID as the message type. For
single-message transactions, multiple server processes can work in parallel on transactions sent
to a shared message queue.

Operations to send and receive messages are performed by msgsnd(2) and msgrcv(2),
respectively. When a message is sent, its text is copied to the message queue. msgsnd(2) and
msgrcv(2) can be performed as either blocking or non-blocking operations. A blocked message
operation remains suspended until one of the following three conditions occurs:

■ The call succeeds.
■ The process receives a signal.
■ The queue is removed.

Initializing a Message Queue
msgget(2) initializes a new message queue. It can also return the message queue ID (msqid) of
the queue corresponding to the key argument. The value passed as the msgflg argument must
be an octal integer with settings for the queue's permissions and control flags.

The MSGMNI kernel configuration option determines the maximum number of unique message
queues that the kernel supports. msgget(2) fails when this limit is exceeded.

The following code illustrates msgget(2).

#include <sys/ipc.h>

#include <sys/msg.h>

...

key_t key; /* key to be passed to msgget() */

int msgflg, /* msgflg to be passed to msgget() */

msqid; /* return value from msgget() */

...

key = ...

msgflg = ...

if ((msqid = msgget(key, msgflg)) == -1)

{

perror("msgget: msgget failed");
exit(1);

} else

(void) fprintf(stderr, "msgget succeeded");
...

Controlling Message Queues
msgctl(2) alters the permissions and other characteristics of a message queue. The msqid
argument must be the ID of an existing message queue. The cmd argument is one of the
following:

IPC_STAT Place information about the status of the queue in the data structure pointed to
by buf. The process must have read permission for this call to succeed.

System V IPC

Chapter 7 • Interprocess Communication 127

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgrcv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgrcv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgctl-2

IPC_SET Set the owner's user and group ID, the permissions, and the size (in number of
bytes) of the message queue. A process must have the effective user ID of the
owner, creator, or superuser for this call to succeed.

IPC_RMID Remove the message queue specified by the msqid argument.

The following code illustrates msgctl(2) with all its various flags.

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

...

if (msgctl(msqid, IPC_STAT, &buf) == -1) {

perror("msgctl: msgctl failed");
exit(1);

}

...

if (msgctl(msqid, IPC_SET, &buf) == –1) {

perror("msgctl: msgctl failed");
exit(1);

}

...

Sending and Receiving Messages
msgsnd(2) and msgrcv(2) send and receive messages, respectively. The msqid argument must be
the ID of an existing message queue. The msgp argument is a pointer to a structure that contains
the type of the message and its text. The msgsz argument specifies the length of the message in
bytes. The msgflg argument passes various control flags.

The following code illustrates msgsnd(2) and msgrcv(2).

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

...

int msgflg; /* message flags for the operation */

struct msgbuf *msgp; /* pointer to the message buffer */

size_t msgsz; /* message size */

size_t maxmsgsize; /* maximum message size */

long msgtyp; /* desired message type */

int msqid /* message queue ID to be used */

...

msgp = malloc(sizeof(struct msgbuf) – sizeof (msgp–>mtext)

+ maxmsgsz);

if (msgp == NULL) {

(void) fprintf(stderr, "msgop: %s %ld byte messages.\n",
"could not allocate message buffer for", maxmsgsz);

exit(1);

...

msgsz = ...

msgflg = ...

if (msgsnd(msqid, msgp, msgsz, msgflg) == –1)

System V IPC

Programming Interfaces Guide • November 2011128

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgrcv-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2msgrcv-2

perror("msgop: msgsnd failed");
...

msgsz = ...

msgtyp = first_on_queue;

msgflg = ...

if (rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) == –1)

perror("msgop: msgrcv failed");
...

System V Semaphores
Semaphores enable processes to query or alter status information. They are often used to
monitor and control the availability of system resources such as shared memory segments.
Semaphores can be operated on as individual units or as elements in a set.

Because System V IPC semaphores can be in a large array, they are extremely heavy weight.
Much lighter-weight semaphores are available in the threads library. Also, POSIX semaphores
are the most current implementation of System V semaphores (see “POSIX Semaphores” on
page 124). Threads library semaphores must be used with mapped memory (see “Memory
Management Interfaces” on page 15).

A semaphore set consists of a control structure and an array of individual semaphores. A set of
semaphores can contain up to 25 elements. The semaphore set must be initialized using
semget(2). The semaphore creator can change its ownership or permissions using semctl(2).
Any process with permission can use semctl(2) to do control operations.

Semaphore operations are performed by semop(2). This interface takes a pointer to an array of
semaphore operation structures. Each structure in the array contains data about an operation to
perform on a semaphore. Any process with read permission can test whether a semaphore has a
zero value. Operations to increment or decrement a semaphore require write permission.

When an operation fails, none of the semaphores are altered. The process blocks unless the
IPC_NOWAIT flag is set, and remains blocked until:

■ The semaphore operations can all finish, so the call succeeds.
■ The process receives a signal.
■ The semaphore set is removed.

Only one process at a time can update a semaphore. Simultaneous requests by different
processes are performed in an arbitrary order. When an array of operations is given by a
semop(2) call, no updates are done until all operations on the array can finish successfully.

If a process with exclusive use of a semaphore terminates abnormally and fails to undo the
operation or free the semaphore, the semaphore stays locked in memory in the state the process
left it. To prevent this occurrence, the SEM_UNDO control flag makes semop(2) allocate an undo
structure for each semaphore operation, which contains the operation that returns the

System V IPC

Chapter 7 • Interprocess Communication 129

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semop-2

semaphore to its previous state. If the process dies, the system applies the operations in the
undo structures. This prevents an aborted process from leaving a semaphore set in an
inconsistent state.

If processes share access to a resource controlled by a semaphore, operations on the semaphore
should not be made with SEM_UNDO in effect. If the process that currently has control of the
resource terminates abnormally, the resource is presumed to be inconsistent. Another process
must be able to recognize this to restore the resource to a consistent state.

When performing a semaphore operation with SEM_UNDO in effect, you must also have SEM_UNDO
in effect for the call that performs the reversing operation. When the process runs normally, the
reversing operation updates the undo structure with a complementary value. This ensures that,
unless the process is aborted, the values applied to the undo structure are canceled to zero.
When the undo structure reaches zero, it is removed.

Using SEM_UNDO inconsistently can lead to memory leaks because allocated undo structures
might not be freed until the system is rebooted.

Initializing a Semaphore Set
semget(2) initializes or gains access to a semaphore. When the call succeeds, it returns the
semaphore ID (semid). The key argument is a value associated with the semaphore ID. The
nsems argument specifies the number of elements in a semaphore array. The call fails when
nsems is greater than the number of elements in an existing array. When the correct count is not
known, supplying 0 for this argument ensures that it will succeed. The semflg argument
specifies the initial access permissions and creation control flags.

The SEMMNI system configuration option determines the maximum number of semaphore
arrays allowed. The SEMMNS option determines the maximum possible number of individual
semaphores across all semaphore sets. Because of fragmentation between semaphore sets,
allocating all available semaphores might not be possible.

The following code illustrates semget(2).

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

...

key_t key; /* key to pass to semget() */

int semflg; /* semflg to pass to semget() */

int nsems; /* nsems to pass to semget() */

int semid; /* return value from semget() */

...

key = ...

nsems = ...

semflg = ...

...

if ((semid = semget(key, nsems, semflg)) == –1) {

System V IPC

Programming Interfaces Guide • November 2011130

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semget-2

perror("semget: semget failed");
exit(1);

} else

exit(0);

...

Controlling Semaphores
semctl(2) changes permissions and other characteristics of a semaphore set. It must be called
with a valid semaphore ID. The semnum value selects a semaphore within an array by its index.
The cmd argument is one of the following control flags.

GETVAL Return the value of a single semaphore.

SETVAL Set the value of a single semaphore. In this case, arg is taken as
arg.val, an int.

GETPID Return the PID of the process that performed the last
operation on the semaphore or array.

GETNCNT Return the number of processes waiting for the value of a
semaphore to increase.

GETZCNT Return the number of processes waiting for the value of a
particular semaphore to reach zero.

GETALL Return the values for all semaphores in a set. In this case, arg is
taken as arg.array, a pointer to an array of unsigned short
values.

SETALL Set values for all semaphores in a set. In this case, arg is taken
as arg.array, a pointer to an array of unsigned short values.

IPC_STAT Return the status information from the control structure for
the semaphore set and place it in the data structure pointed to
by arg.buf, a pointer to a buffer of type semid_ds.

IPC_SET Set the effective user and group identification and
permissions. In this case, arg is taken as arg.buf.

IPC_RMID Remove the specified semaphore set.

A process must have an effective user identification of owner, creator, or superuser to perform
an IPC_SET or IPC_RMID command. Read and write permission is required, as for the other
control commands.

The following code illustrates semctl(2).

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

System V IPC

Chapter 7 • Interprocess Communication 131

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semctl-2

...

register int i;

...

i = semctl(semid, semnum, cmd, arg);

if (i == –1) {

perror("semctl: semctl failed");
exit(1);

...

Semaphore Operations
semop(2) performs operations on a semaphore set. The semid argument is the semaphore ID
returned by a previous semget(2) call. The sops argument is a pointer to an array of structures,
each containing the following information about a semaphore operation:

■ The semaphore number
■ The operation to be performed
■ Control flags, if any

The sembuf structure specifies a semaphore operation, as defined in sys/sem.h. The nsops
argument specifies the length of the array, the maximum size of which is determined by the
SEMOPM configuration option. This option determines the maximum number of operations
allowed by a single semop(2) call, and is set to 10 by default.

The operation to be performed is determined as follows:

■ Positive integer increments the semaphore value by that amount.
■ Negative integer decrements the semaphore value by that amount. An attempt to set a

semaphore to a value less than zero fails or blocks, depending on whether IPC_NOWAIT is in
effect.

■ Value of zero means to wait for the semaphore value to reach zero.

The two control flags that can be used with semop(2) are IPC_NOWAIT and SEM_UNDO.

IPC_NOWAIT Can be set for any operations in the array. Makes the interface return without
changing any semaphore value if it cannot perform any of the operations for
which IPC_NOWAIT is set. The interface fails if it tries to decrement a semaphore
more than its current value, or tests a nonzero semaphore to be equal to zero.

SEM_UNDO Allows individual operations in the array to be undone when the process exits.

The following code illustrates semop(2).

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

...

int i; /* work area */

int nsops; /* number of operations to do */

int semid; /* semid of semaphore set */

System V IPC

Programming Interfaces Guide • November 2011132

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2semop-2

struct sembuf *sops; /* ptr to operations to perform */

...

if ((i = semop(semid, sops, nsops)) == –1) {

perror("semop: semop failed");
} else

(void) fprintf(stderr, "semop: returned %d\n", i);

...

System V Shared Memory
In the SunOS 5.10 operating system, the most efficient way to implement shared memory
applications is to rely on mmap(2) and on the system's native virtual memory facility. See
Chapter 1, “Memory and CPU Management,” for more information.

The SunOS 5.10 platform also supports System V shared memory, which is a less efficient way
to enable the attachment of a segment of physical memory to the virtual address spaces of
multiple processes. When write access is allowed for more than one process, an outside protocol
or mechanism, such as a semaphore, can be used to prevent inconsistencies and collisions.

A process creates a shared memory segment using shmget(2). This call is also used to get the ID
of an existing shared segment. The creating process sets the permissions and the size in bytes for
the segment.

The original owner of a shared memory segment can assign ownership to another user with
shmctl(2). The owner can also revoke this assignment. Other processes with proper permission
can perform various control functions on the shared memory segment using shmctl(2).

Once created, you can attach a shared segment to a process address space using shmat(2). You
can detach it using shmdt(2). The attaching process must have the appropriate permissions for
shmat(2). Once attached, the process can read or write to the segment, as allowed by the
permission requested in the attach operation. A shared segment can be attached multiple times
by the same process.

A shared memory segment is described by a control structure with a unique ID that points to an
area of physical memory. The identifier of the segment is called the shmid. The structure
definition for the shared memory segment control structure can be found in sys/shm.h.

Accessing a Shared Memory Segment
shmget(2) is used to obtain access to a shared memory segment. When the call succeeds, it
returns the shared memory segment ID (shmid). The following code illustrates shmget(2).

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

...

key_t key; /* key to be passed to shmget() */

System V IPC

Chapter 7 • Interprocess Communication 133

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmdt-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmget-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmget-2

int shmflg; /* shmflg to be passed to shmget() */

int shmid; /* return value from shmget() */

size_t size; /* size to be passed to shmget() */

...

key = ...

size = ...

shmflg) = ...

if ((shmid = shmget (key, size, shmflg)) == –1) {

perror("shmget: shmget failed");
exit(1);

} else {

(void) fprintf(stderr,

"shmget: shmget returned %d\n", shmid);

exit(0);

}

...

Controlling a Shared Memory Segment
shmctl(2) is used to alter the permissions and other characteristics of a shared memory
segment. The cmd argument is one of following control commands.

SHM_LOCK Lock the specified shared memory segment in memory. The
process must have the effective ID of superuser to perform this
command.

SHM_UNLOCK Unlock the shared memory segment. The process must have
the effective ID of superuser to perform this command.

IPC_STAT Return the status information contained in the control
structure and place it in the buffer pointed to by buf. The
process must have read permission on the segment to perform
this command.

IPC_SET Set the effective user and group identification and access
permissions. The process must have an effective ID of owner,
creator or superuser to perform this command.

IPC_RMID Remove the shared memory segment. The process must have
an effective ID of owner, creator, or superuser to perform this
command.

The following code illustrates shmctl(2).

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

...

int cmd; /* command code for shmctl() */

int shmid; /* segment ID */

struct shmid_ds shmid_ds; /* shared memory data structure to hold results */

...

System V IPC

Programming Interfaces Guide • November 2011134

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmctl-2

shmid = ...

cmd = ...

if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == –1) {

perror("shmctl: shmctl failed");
exit(1);

...

Attaching and Detaching a Shared Memory Segment
shmat() and shmdt() are used to attach and detach shared memory segments (see the shmop(2)
man page). shmat(2) returns a pointer to the head of the shared segment. shmdt(2) detaches the
shared memory segment located at the address indicated by shmaddr. The following code
illustrates calls to shmat(2) and shmdt(2)

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

static struct state { /* Internal record of attached segments. */

int shmid; /* shmid of attached segment */

char *shmaddr; /* attach point */

int shmflg; /* flags used on attach */

} ap[MAXnap]; /* State of current attached segments. */

int nap; /* Number of currently attached segments. */

...

char *addr; /* address work variable */

register int i; /* work area */

register struct state *p; /* ptr to current state entry */

...

p = &ap[nap++];

p–>shmid = ...

p–>shmaddr = ...

p–>shmflg = ...

p–>shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);

if(p–>shmaddr == (char *)-1) {

perror("shmat failed");
nap–-;

} else

(void) fprintf(stderr, "shmop: shmat returned %p\n",
p–>shmaddr);

...

i = shmdt(addr);

if(i == –1) {

perror("shmdt failed");
} else {

(void) fprintf(stderr, "shmop: shmdt returned %d\n", i);

for (p = ap, i = nap; i–-; p++) {

if (p–>shmaddr == addr) *p = ap[–-nap];

}

}

...

System V IPC

Chapter 7 • Interprocess Communication 135

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmop-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmdt-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmat-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2shmdt-2

136

Socket Interfaces

This chapter presents the socket interface. Sample programs are included to illustrate key
points. The following topics are discussed in this chapter:

■ “SunOS 4 Binary Compatibility” on page 137 discusses binary compatibility with the SunOS 4
environment.

■ Socket creation, connection, and closure are discussed in “Socket Basics” on page 141.
■ Client-Server architecture is discussed in “Client-Server Programs” on page 160.
■ Advanced topics such as multicast and asynchronous sockets are discussed in “Advanced

Socket Topics” on page 165.
■ Interfaces used to implement the Stream Control Transmission Protocol (SCTP) are

discussed in “Stream Control Transmission Protocol” on page 182.

Note – The interface that is described in this chapter is multithread safe. You can call
applications that contain socket interface calls freely in a multithreaded application. Note,
however, that the degree of concurrency that is available to applications is not specified.

SunOS 4 Binary Compatibility
Two major changes from the SunOS 4 environment hold true for the SunOS 5.11 release. The
binary compatibility package enables dynamically linked socket applications that are based on
SunOS 4 to run on SunOS 5.11.

■ You must explicitly specify the socket library (-lsocket or libsocket) on the compilation
line.

■ You might also need to link with libnsl by using -lsocket -lnsl, not -lnsl -lsocket.
■ You must recompile all SunOS 4 socket-based applications with the socket library to run in

a SunOS 5.11 environment.

8C H A P T E R 8

137

Overview of Sockets
Sockets have been an integral part of SunOS releases since 1981. A socket is an endpoint of
communication to which a name can be bound. A socket has a type and an associated process.
Sockets were designed to implement the client-server model for interprocess communication
where:

■ The interface to network protocols needs to accommodate multiple communication
protocols, such as TCP/IP, Xerox internet protocols (XNS), and the UNIX family.

■ The interface to network protocols needs to accommodate server code that waits for
connections and client code that initiates connections.

■ Operations differ depending on whether communication is connection-oriented or
connectionless.

■ Application programs might want to specify the destination address of the datagrams that
are being delivered instead of binding the address with the open(2) call.

Sockets make network protocols available while behaving like UNIX files. Applications create
sockets as sockets are needed. Sockets work with the close(2), read(2), write(2), ioctl(2), and
fcntl(2) interfaces. The operating system differentiates between the file descriptors for files and
the file descriptors for sockets.

Socket Libraries
The socket interface routines are in a library that must be linked with the application. The
library libsocket.so is contained in /usr/lib with the rest of the system service libraries. Use
libsocket.so for dynamic linking.

Socket Types
Socket types define the communication properties that are visible to a user. The Internet family
sockets provide access to the TCP/IP transport protocols. The Internet family is identified by
the value AF_INET6, for sockets that can communicate over both IPv6 and IPv4. The value
AF_INET is also supported for source compatibility with old applications and for raw access to
IPv4.

The SunOS environment supports four types of sockets:

■ Stream sockets enable processes to communicate using TCP. A stream socket provides a
bidirectional, reliable, sequenced, and unduplicated flow of data with no record boundaries.
After the connection has been established, data can be read from and written to these
sockets as a byte stream. The socket type is SOCK_STREAM.

Overview of Sockets

Programming Interfaces Guide • November 2011138

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2

■ Datagram sockets enable processes to use UDP to communicate. A datagram socket
supports a bidirectional flow of messages. A process on a datagram socket might receive
messages in a different order from the sending sequence. A process on a datagram socket
might receive duplicate messages. Messages that are sent over a datagram socket might be
dropped. Record boundaries in the data are preserved. The socket type is SOCK_DGRAM.

■ Raw sockets provide access to ICMP. Raw sockets also provide access to other protocols
based on IP that are not directly supported by the networking stack. These sockets are
normally datagram oriented, although their exact characteristics are dependent on the
interface provided by the protocol. Raw sockets are not for most applications. Raw sockets
are provided to support the development of new communication protocols, or for access to
more esoteric facilities of an existing protocol. Only superuser processes can use raw
sockets. The socket type is SOCK_RAW.

■ SEQ sockets support 1-to-N Stream Control Transmission Protocol (SCTP) connections.
More details on SCTP are in “Stream Control Transmission Protocol” on page 182.

See “Selecting Specific Protocols” on page 169 for further information.

Interface Sets
TheSunOS 5.11 platform provides two sets of socket interfaces. The BSD socket interfaces are
provided and, since SunOS version 5.7, the XNS 5 (UNIX03) socket interfaces are also
provided. The XNS 5 interfaces differ slightly from the BSD interfaces.

The XNS 5 socket interfaces are documented in the following man pages:
■ accept(3XNET)
■ bind(3XNET)
■ connect(3XNET)
■ endhostent(3XNET)
■ endnetent(3XNET)
■ endprotoent(3XNET)
■ endservent(3XNET)
■ gethostbyaddr(3XNET)
■ gethostbyname(3XNET)
■ gethostent(3XNET)
■ gethostname(3XNET)
■ getnetbyaddr(3XNET)
■ getnetbyname(3XNET)
■ getnetent(3XNET)
■ getpeername(3XNET)
■ getprotobyname(3XNET)
■ getprotobynumber(3XNET)
■ getprotoent(3XNET)
■ getservbyname(3XNET)

Overview of Sockets

Chapter 8 • Socket Interfaces 139

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bendhostent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bendnetent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bendprotoent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bendservent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgethostbyaddr-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgethostbyname-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgethostent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgethostname-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnetbyaddr-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnetbyname-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnetent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetpeername-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotobyname-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotobynumber-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotoent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservbyname-3xnet

■ getservbyport(3XNET)
■ getservent(3XNET)
■ getsockname(3XNET)
■ getsockopt(3XNET)
■ htonl(3XNET)
■ htons(3XNET)
■ inet_addr(3XNET)
■ inet_lnaof(3XNET)
■ inet_makeaddr(3XNET)
■ inet_netof(3XNET)
■ inet_network(3XNET)
■ inet_ntoa(3XNET)
■ listen(3XNET)
■ ntohl(3XNET)
■ ntohs(3XNET)
■ recv(3XNET)
■ recvfrom(3XNET)
■ recvmsg(3XNET)
■ send(3XNET)
■ sendmsg(3XNET)
■ sendto(3XNET)
■ sethostent(3XNET)
■ setnetent(3XNET)
■ setprotoent(3XNET)
■ setservent(3XNET)
■ setsockopt(3XNET)
■ shutdown(3XNET)
■ socket(3XNET)
■ socketpair(3XNET)

The traditional BSD Socket behavior is documented in the corresponding 3N man pages. In
addition, the following new interfaces have been added to section 3N:

■ freeaddrinfo(3SOCKET)
■ freehostent(3SOCKET)
■ getaddrinfo(3SOCKET)
■ getipnodebyaddr(3SOCKET)
■ getipnodebyname(3SOCKET)
■ getnameinfo(3SOCKET)
■ inet_ntop(3SOCKET)
■ inet_pton(3SOCKET)

See the standards(5) man page for information on building applications that use the XNS 5
(UNIX03) socket interface.

Overview of Sockets

Programming Interfaces Guide • November 2011140

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservbyport-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockname-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bhtonl-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bhtons-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-addr-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-lnaof-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-makeaddr-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-netof-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-network-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-ntoa-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bntohl-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bntohs-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvfrom-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvmsg-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendmsg-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsethostent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsetnetent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsetprotoent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsetservent-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsetsockopt-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bshutdown-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocket-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocketpair-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bfreeaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bfreehostent-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetipnodebyaddr-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetipnodebyname-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnameinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-ntop-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-pton-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN5standards-5

Socket Basics
This section describes the use of the basic socket interfaces.

Socket Creation
The socket(3SOCKET) call creates a socket in the specified family and of the specified type.

s = socket(family, type, protocol);

If the protocol is unspecified, the system selects a protocol that supports the requested socket
type. The socket handle is returned. The socket handle is a file descriptor.

The family is specified by one of the constants that are defined in sys/socket.h. Constants that
are named AF_suite specify the address format to use in interpreting names:

AF_APPLETALK Apple Computer Inc. Appletalk network

AF_INET6 Internet family for IPv6 and IPv4

AF_INET Internet family for IPv4 only

AF_PUP Xerox Corporation PUP internet

AF_UNIX UNIX file system

Socket types are defined in sys/socket.h. These types, SOCK_STREAM, SOCK_DGRAM, or
SOCK_RAW, are supported by AF_INET6, AF_INET, and AF_UNIX. The following example creates a
stream socket in the Internet family:

s = socket(AF_INET6, SOCK_STREAM, 0);

This call results in a stream socket. The TCP protocol provides the underlying communication.
Set the protocol argument to 0, the default, in most situations. You can specify a protocol other
than the default, as described in “Advanced Socket Topics” on page 165.

Binding Local Names
A socket is created with no name. A remote process has no way to refer to a socket until an
address is bound to the socket. Processes that communicate are connected through addresses.
In the Internet family, a connection is composed of local and remote addresses and local and
remote ports. Duplicate ordered sets, such as: protocol, local address, local port, foreign
address, foreign port cannot exist. In most families, connections must be unique.

The bind(3SOCKET) interface enables a process to specify the local address of the socket. This
interface forms the local address, local port set. connect(3SOCKET) and

Socket Basics

Chapter 8 • Socket Interfaces 141

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket

accept(3SOCKET) complete a socket's association by fixing the remote half of the address
tuple. The bind(3SOCKET) call is used as follows:

bind (s, name, namelen);

The socket handle is s. The bound name is a byte string that is interpreted by the supporting
protocols. Internet family names contain an Internet address and port number.

This example demonstrates binding an Internet address.

#include <sys/types.h>

#include <netinet/in.h>

...

struct sockaddr_in6 sin6;

...

s = socket(AF_INET6, SOCK_STREAM, 0);

bzero (&sin6, sizeof (sin6));

sin6.sin6_family = AF_INET6;

sin6.sin6_addr.s6_addr = in6addr_arg;

sin6.sin6_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin6, sizeof sin6);

The content of the address sin6 is described in “Address Binding” on page 169, where Internet
address bindings are discussed.

Connection Establishment
Connection establishment is usually asymmetric, with one process acting as the client and the
other as the server. The server binds a socket to a well-known address associated with the
service and blocks on its socket for a connect request. An unrelated process can then connect to
the server. The client requests services from the server by initiating a connection to the server's
socket. On the client side, the connect(3SOCKET) call initiates a connection. In the Internet
family, this connection might appear as:

struct sockaddr_in6 server;

...

connect(s, (struct sockaddr *)&server, sizeof server);

If the client's socket is unbound at the time of the connect call, the system automatically selects
and binds a name to the socket. For more information, see “Address Binding” on page 169. This
automatic selection is the usual way to bind local addresses to a socket on the client side.

To receive a client's connection, a server must perform two steps after binding its socket. The
first step is to indicate how many connection requests can be queued. The second step is to
accept a connection.

struct sockaddr_in6 from;

...

Socket Basics

Programming Interfaces Guide • November 2011142

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket

listen(s, 5); /* Allow queue of 5 connections */

fromlen = sizeof(from);

newsock = accept(s, (struct sockaddr *) &from, &fromlen);

The socket handle s is the socket bound to the address to which the connection request is sent.
The second parameter of listen(3SOCKET) specifies the maximum number of outstanding
connections that might be queued. The from structure is filled with the address of the client. A
NULL pointer might be passed. fromlen is the length of the structure.

The accept(3SOCKET) routine normally blocks processes. accept(3SOCKET) returns a new
socket descriptor that is connected to the requesting client. The value of fromlen is changed to
the actual size of the address.

A server cannot indicate that the server accepts connections from only specific addresses. The
server can check the from address returned by accept(3SOCKET) and close a connection with
an unacceptable client. A server can accept connections on more than one socket, or avoid
blocking on the accept(3SOCKET) call. These techniques are presented in “Advanced Socket
Topics” on page 165.

Connection Errors
An error is returned if the connection is unsuccessful, but an address bound by the system
remains. If the connection is successful, the socket is associated with the server and data transfer
can begin.

The following table lists some of the more common errors returned when a connection attempt
fails.

TABLE 8–1 Socket Connection Errors

Socket Errors Error Description

ENOBUFS Lack of memory available to support the call.

EPROTONOSUPPORT Request for an unknown protocol.

EPROTOTYPE Request for an unsupported type of socket.

ETIMEDOUT No connection established in specified time. This error happens when
the destination host is down or when problems in the network cause in
lost transmissions.

ECONNREFUSED The host refused service. This error happens when a server process is not
present at the requested address.

ENETDOWN or EHOSTDOWN These errors are caused by status information delivered by the
underlying communication interface.

Socket Basics

Chapter 8 • Socket Interfaces 143

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket

TABLE 8–1 Socket Connection Errors (Continued)
Socket Errors Error Description

ENETUNREACH or EHOSTUNREACH These operational errors can occur because no route to the network or
host exists. These errors can also occur because of status information
returned by intermediate gateways or switching nodes. The status
information that is returned is not always sufficient to distinguish
between a network that is down and a host that is down.

Data Transfer
This section describes the interfaces to send and receive data. You can send or receive a message
with the normal read(2) and write(2) interfaces:

write(s, buf, sizeof buf);

read(s, buf, sizeof buf);

You can also use send(3SOCKET) and recv(3SOCKET):

send(s, buf, sizeof buf, flags);

recv(s, buf, sizeof buf, flags);

send(3SOCKET) and recv(3SOCKET) are very similar to read(2) and write(2), but the flags
argument is important. The flags argument, which is defined in sys/socket.h, can be
specified as a nonzero value if one or more of the following is required:

MSG_OOB Send and receive out-of-band data

MSG_PEEK Look at data without reading

MSG_DONTROUTE Send data without routing packets

Out-of-band data is specific to stream sockets. When MSG_PEEK is specified with a
recv(3SOCKET) call, any data present is returned to the user, but treated as still unread. The
next read(2) or recv(3SOCKET) call on the socket returns the same data. The option to send
data without routing packets applied to the outgoing packets is currently used only by the
routing table management process.

Closing Sockets
A SOCK_STREAM socket can be discarded by a close(2) interface call. If data is queued to a socket
that promises reliable delivery after a close(2), the protocol continues to try to transfer the
data. The data is discarded if it remains undelivered after an arbitrary period.

A shutdown(3SOCKET) closes SOCK_STREAM sockets gracefully. Both processes can
acknowledge that they are no longer sending. This call has the form:

Socket Basics

Programming Interfaces Guide • November 2011144

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bshutdown-3socket

shutdown(s, how);

where how is defined as

0 Disallows further data reception

1 Disallows further data transmission

2 Disallows further transmission and further reception

Connecting Stream Sockets
The following two examples illustrate initiating and accepting an Internet family stream
connection.

Socket Basics

Chapter 8 • Socket Interfaces 145

The following example program is a server. The server creates a socket and binds a name to the
socket, then displays the port number. The program calls listen(3SOCKET) to mark the
socket as ready to accept connection requests and to initialize a queue for the requests. The rest
of the program is an infinite loop. Each pass of the loop accepts a new connection and removes
it from the queue, creating a new socket. The server reads and displays the messages from the
socket and closes the socket. The use of in6addr_any is explained in “Address Binding” on
page 169.

EXAMPLE 8–1 Accepting an Internet Stream Connection (Server)

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

FIGURE 8–1 Connection-Oriented Communication Using Stream Sockets

socket()

bind()

listen()

Connection
establishment

Server

Client

Data
transfer

accept()

read()/
write()

shutdown()
and/or

close()

read()/
write()

shutdown()
and/or

close()

socket()

connect()

Socket Basics

Programming Interfaces Guide • November 2011146

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket

EXAMPLE 8–1 Accepting an Internet Stream Connection (Server) (Continued)

#include <stdio.h>

#define TRUE 1

/*

* This program creates a socket and then begins an infinite loop.

* Each time through the loop it accepts a connection and prints

* data from it. When the connection breaks, or the client closes

* the connection, the program accepts a new connection.

*/

main() {

int sock, length;

struct sockaddr_in6 server;

int msgsock;

char buf[1024];

int rval;

/* Create socket. */

sock = socket(AF_INET6, SOCK_STREAM, 0);

if (sock == -1) {

perror("opening stream socket");
exit(1);

}

/* Bind socket using wildcards.*/

bzero (&server, sizeof(server));

server.sin6_family = AF_INET6;

server.sin6_addr = in6addr_any;

server.sin6_port = 0;

if (bind(sock, (struct sockaddr *) &server, sizeof server)

== -1) {

perror("binding stream socket");
exit(1);

}

/* Find out assigned port number and print it out. */

length = sizeof server;

if (getsockname(sock,(struct sockaddr *) &server, &length)

== -1) {

perror("getting socket name");
exit(1);

}

printf("Socket port #%d\n", ntohs(server.sin6_port));

/* Start accepting connections. */

listen(sock, 5);

do {

msgsock = accept(sock,(struct sockaddr *) 0,(int *) 0);

if (msgsock == -1)

perror("accept");
else do {

memset(buf, 0, sizeof buf);

if ((rval = read(msgsock,buf, sizeof(buf))) == -1)

perror("reading stream message");
if (rval == 0)

printf("Ending connection\n");
else

/* assumes the data is printable */

printf("-->%s\n", buf);

} while (rval > 0);

close(msgsock);

Socket Basics

Chapter 8 • Socket Interfaces 147

EXAMPLE 8–1 Accepting an Internet Stream Connection (Server) (Continued)

} while(TRUE);

/*

* Since this program has an infinite loop, the socket "sock" is

* never explicitly closed. However, all sockets are closed

* automatically when a process is killed or terminates normally.

*/

exit(0);

}

To initiate a connection, the client program in Example 8–2 creates a stream socket, then calls
connect(3SOCKET), specifying the address of the socket for connection. If the target socket
exists, and the request is accepted, the connection is complete. The program can now send data.
Data is delivered in sequence with no message boundaries. The connection is destroyed when
either socket is closed. For more information about data representation routines in this
program, such as ntohl(3SOCKET), ntohs(3SOCKET), htons(3SOCKET), and
htonl(3XNET), see the byteorder(3SOCKET) man page.

EXAMPLE 8–2 Internet Family Stream Connection (Client)

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#define DATA "Half a league, half a league . . ."
/*

* This program creates a socket and initiates a connection with

* the socket given in the command line. Some data are sent over the

* connection and then the socket is closed, ending the connection.

* The form of the command line is: streamwrite hostname portnumber

* Usage: pgm host port

*/

main(int argc, char *argv[])

{

int sock, errnum, h_addr_index;

struct sockaddr_in6 server;

struct hostent *hp;

char buf[1024];

/* Create socket. */

sock = socket(AF_INET6, SOCK_STREAM, 0);

if (sock == -1) {

perror("opening stream socket");
exit(1);

}

/* Connect socket using name specified by command line. */

bzero (&server, sizeof (server));

server.sin6_family = AF_INET6;

hp = getipnodebyname(argv[1], AF_INET6, AI_DEFAULT, &errnum);

/*

* getipnodebyname returns a structure including the network address

* of the specified host.

*/

Socket Basics

Programming Interfaces Guide • November 2011148

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bntohl-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bntohs-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bhtons-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bhtonl-3xnet
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbyteorder-3socket

EXAMPLE 8–2 Internet Family Stream Connection (Client) (Continued)

if (hp == (struct hostent *) 0) {

fprintf(stderr, "%s: unknown host\n", argv[1]);

exit(2);

}

h_addr_index = 0;

while (hp->h_addr_list[h_addr_index] != NULL) {

bcopy(hp->h_addr_list[h_addr_index], &server.sin6_addr,

hp->h_length);

server.sin6_port = htons(atoi(argv[2]));

if (connect(sock, (struct sockaddr *) &server,

sizeof (server)) == -1) {

if (hp->h_addr_list[++h_addr_index] != NULL) {

/* Try next address */

continue;

}

perror("connecting stream socket");
freehostent(hp);

exit(1);

}

break;

}

freehostent(hp);

if (write(sock, DATA, sizeof DATA) == -1)

perror("writing on stream socket");
close(sock);

freehostent (hp);

exit(0);

}

You can add support for one-to-one SCTP connections to stream sockets. The following
example code adds the -p to an existing program, enabling the program to specify the protocol
to use.

EXAMPLE 8–3 Adding SCTP Support to a Stream Socket

#include <stdio.h>

#include <netdb.h>

#include <string.h>

#include <errno.h>

int

main(int argc, char *argv[])

{

struct protoent *proto = NULL;

int c;

int s;

int protocol;

while ((c = getopt(argc, argv, "p:")) != -1) {

switch (c) {

case ’p’:

proto = getprotobyname(optarg);

if (proto == NULL) {

Socket Basics

Chapter 8 • Socket Interfaces 149

EXAMPLE 8–3 Adding SCTP Support to a Stream Socket (Continued)

fprintf(stderr, "Unknown protocol: %s\n",
optarg);

return (-1);

}

break;

default:

fprintf(stderr, "Unknown option: %c\n", c);

return (-1);

}

}

/* Use the default protocol, which is TCP, if not specified. */

if (proto == NULL)

protocol = 0;

else

protocol = proto->p_proto;

/* Create a IPv6 SOCK_STREAM socket of the protocol. */

if ((s = socket(AF_INET6, SOCK_STREAM, protocol)) == -1) {

fprintf(stderr, "Cannot create SOCK_STREAM socket of type %s: "
"%s\n", proto != NULL ? proto->p_name : "tcp",
strerror(errno));

return (-1);

}

printf("Success\n");
return (0);

}

Input/Output Multiplexing
Requests can be multiplexed among multiple sockets or multiple files. Use select(3C) to
multiplex:

#include <sys/time.h>

#include <sys/types.h>

#include <sys/select.h>

...

fd_set readmask, writemask, exceptmask;

struct timeval timeout;

...

select(nfds, &readmask, &writemask, &exceptmask, &timeout);

The first argument of select(3C) is the number of file descriptors in the lists pointed to by the
next three arguments.

The second, third, and fourth arguments of select(3C) point to three sets of file descriptors: a
set of descriptors to read on, a set to write on, and a set on which exception conditions are
accepted. Out-of-band data is the only exceptional condition. You can designate any of these
pointers as a properly cast null. Each set is a structure that contains an array of long integer bit

Socket Basics

Programming Interfaces Guide • November 2011150

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c

masks. Set the size of the array with FD_SETSIZE, which is defined in select.h. The array is long
enough to hold one bit for each FD_SETSIZE file descriptor.

The macros FD_SET (fd, &mask) and FD_CLR (fd, &mask) add and delete, respectively, the file
descriptor fd in the set mask. The set should be zeroed before use and the macro FD_ZERO

(&mask) clears the set mask.

The fifth argument of select(3C) enables the specification of a timeout value. If the timeout
pointer is NULL, select(3C) blocks until a descriptor is selectable, or until a signal is received. If
the fields in timeout are set to 0, select(3C) polls and returns immediately.

The select(3C) routine normally returns the number of file descriptors that are selected, or a
zero if the timeout has expired. The select(3C) routine returns −1 for an error or interrupt,
with the error number in errno and the file descriptor masks unchanged. For a successful
return, the three sets indicate which file descriptors are ready to be read from, written to, or
have exceptional conditions pending.

Test the status of a file descriptor in a select mask with the FD_ISSET (fd, &mask) macro. The
macro returns a nonzero value if fd is in the set mask. Otherwise, the macro returns zero. Use
select(3C) followed by a FD_ISSET (fd, &mask) macro on the read set to check for queued
connect requests on a socket.

The following example shows how to select on a listening socket for readability to determine
when a new connection can be picked up with a call to accept(3SOCKET). The program
accepts connection requests, reads data, and disconnects on a single socket.

EXAMPLE 8–4 Using select(3C) to Check for Pending Connections

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/time/h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#define TRUE 1

/*

* This program uses select to check that someone is

* trying to connect before calling accept.

*/

main() {

int sock, length;

struct sockaddr_in6 server;

int msgsock;

char buf[1024];

int rval;

fd_set ready;

struct timeval to;

/* Open a socket and bind it as in previous examples. */

/* Start accepting connections. */

listen(sock, 5);

do {

Socket Basics

Chapter 8 • Socket Interfaces 151

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket

EXAMPLE 8–4 Using select(3C) to Check for Pending Connections (Continued)

FD_ZERO(&ready);

FD_SET(sock, &ready);

to.tv_sec = 5;

to.tv_usec = 0;

if (select(sock + 1, &ready, (fd_set *)0,

(fd_set *)0, &to) == -1) {

perror("select");
continue;

}

if (FD_ISSET(sock, &ready)) {

msgsock = accept(sock, (struct sockaddr *)0, (int *)0);

if (msgsock == -1)

perror("accept");
else do {

memset(buf, 0, sizeof buf);

if ((rval = read(msgsock, buf, sizeof(buf))) == -1)

perror("reading stream message");
else if (rval == 0)

printf("Ending connection\n");
else

printf("-->%s\n", buf);

} while (rval > 0);

close(msgsock);

} else

printf("Do something else\n");
} while (TRUE);

exit(0);

}

In previous versions of the select(3C) routine, its arguments were pointers to integers instead
of pointers to fd_sets. This style of call still works if the number of file descriptors is smaller
than the number of bits in an integer.

The select(3C) routine provides a synchronous multiplexing scheme. The SIGIO and SIGURG

signals, which is described in “Advanced Socket Topics” on page 165, provide asynchronous
notification of output completion, input availability, and exceptional conditions.

Datagram Sockets
A datagram socket provides a symmetric data exchange interface without requiring connection
establishment. Each message carries the destination address. The following figure shows the
flow of communication between server and client.

The bind(3SOCKET) step for the server is optional.

Datagram Sockets

Programming Interfaces Guide • November 2011152

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket

Create datagram sockets as described in “Socket Creation” on page 141. If a particular local
address is needed, the bind(3SOCKET) operation must precede the first data transmission.
Otherwise, the system sets the local address or port when data is first sent. Use
sendto(3SOCKET) to send data.

sendto(s, buf, buflen, flags, (struct sockaddr *) &to, tolen);

The s, buf, buflen, and flags parameters are the same as in connection-oriented sockets. The to
and tolen values indicate the address of the intended recipient of the message. A locally detected
error condition, such as an unreachable network, causes a return of −1 and errno to be set to the
error number.

FIGURE 8–2 Connectionless Communication Using Datagram Sockets

socket()

bind()

recvfrom()

data

Server

Client

data

Normally block until a
request is received

Process
the request

Normally block
waiting
for reply

socket()

sendto()

sendto()

recvfrom()

Datagram Sockets

Chapter 8 • Socket Interfaces 153

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket

recvfrom(s, buf, buflen, flags, (struct sockaddr *) &from, &fromlen);

To receive messages on a datagram socket, recvfrom(3SOCKET) is used. Before the call,
fromlen is set to the size of the from buffer. On return, fromlen is set to the size of the address
from which the datagram was received.

Datagram sockets can also use the connect(3SOCKET) call to associate a socket with a specific
destination address. The socket can then use the send(3SOCKET) call. Any data that is sent on
the socket that does not explicitly specify a destination address is addressed to the connected
peer. Only the data that is received from that peer is delivered. A socket can have only one
connected address at a time. A second connect(3SOCKET) call changes the destination
address. Connect requests on datagram sockets return immediately. The system records the
peer's address. Neither accept(3SOCKET) nor listen(3SOCKET) are used with datagram
sockets.

A datagram socket can return errors from previous send(3SOCKET) calls asynchronously
while the socket is connected. The socket can report these errors on subsequent socket
operations. Alternately, the socket can use an option of getsockopt(3SOCKET), SO_ERROR to
interrogate the error status.

The following example code shows how to send an Internet call by creating a socket, binding a
name to the socket, and sending the message to the socket.

EXAMPLE 8–5 Sending an Internet Family Datagram

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <stdio.h>

#define DATA "The sea is calm, the tide is full . . ."
/*

* Here I send a datagram to a receiver whose name I get from

* the command line arguments. The form of the command line is:

* dgramsend hostname portnumber

*/

main(int argc, char *argv[])

{

int sock, errnum;

struct sockaddr_in6 name;

struct hostent *hp;

/* Create socket on which to send. */

sock = socket(AF_INET6,SOCK_DGRAM, 0);

if (sock == -1) {

perror("opening datagram socket");
exit(1);

}

/*

* Construct name, with no wildcards, of the socket to ‘‘send’’
* to. getinodebyname returns a structure including the network

* address of the specified host. The port number is taken from

* the command line.

Datagram Sockets

Programming Interfaces Guide • November 2011154

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvfrom-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket

EXAMPLE 8–5 Sending an Internet Family Datagram (Continued)

*/

hp = getipnodebyname(argv[1], AF_INET6, AI_DEFAULT, &errnum);

if (hp == (struct hostent *) 0) {

fprintf(stderr, "%s: unknown host\n", argv[1]);

exit(2);

}

bzero (&name, sizeof (name));

memcpy((char *) &name.sin6_addr, (char *) hp->h_addr,

hp->h_length);

name.sin6_family = AF_INET6;

name.sin6_port = htons(atoi(argv[2]));

/* Send message. */

if (sendto(sock,DATA, sizeof DATA ,0,

(struct sockaddr *) &name,sizeof name) == -1)

perror("sending datagram message");
close(sock);

exit(0);

}

The following sample code shows how to read an Internet call by creating a socket, binding a
name to the socket, and then reading from the socket.

EXAMPLE 8–6 Reading Internet Family Datagrams

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <stdio.h>

/*

* This program creates a datagram socket, binds a name to it, then

* reads from the socket.

*/

main()

{

int sock, length;

struct sockaddr_in6 name;

char buf[1024];

/* Create socket from which to read. */

sock = socket(AF_INET6, SOCK_DGRAM, 0);

if (sock == -1) {

perror("opening datagram socket");
exit(1);

}

/* Create name with wildcards. */

bzero (&name, sizeof (name));

name.sin6_family = AF_INET6;

name.sin6_addr = in6addr_any;

name.sin6_port = 0;

if (bind (sock, (struct sockaddr *)&name, sizeof (name)) == -1) {

perror("binding datagram socket");
exit(1);

}

/* Find assigned port value and print it out. */

Datagram Sockets

Chapter 8 • Socket Interfaces 155

EXAMPLE 8–6 Reading Internet Family Datagrams (Continued)

length = sizeof(name);

if (getsockname(sock,(struct sockaddr *) &name, &length)

== -1) {

perror("getting socket name");
exit(1);

}

printf("Socket port #%d\n", ntohs(name.sin6_port));

/* Read from the socket. */

if (read(sock, buf, 1024) == -1)

perror("receiving datagram packet");
/* Assumes the data is printable */

printf("-->%s\n", buf);

close(sock);

exit(0);

}

Standard Routines
This section describes the routines that you can use to locate and construct network addresses.
Unless otherwise stated, interfaces presented in this section apply only to the Internet family.

Locating a service on a remote host requires many levels of mapping before the client and server
communicate. A service has a name for human use. The service and host names must translate
to network addresses. Finally, the network address must be usable to locate and route to the
host. The specifics of the mappings can vary between network architectures.

Standard routines map host names to network addresses, network names to network numbers,
protocol names to protocol numbers, and service names to port numbers. The standard
routines also indicate the appropriate protocol to use in communicating with the server
process. The file netdb.h must be included when using any of these routines.

Host and Service Names
The interfaces getaddrinfo(3SOCKET), getnameinfo(3SOCKET),
gai_strerror(3SOCKET), and freeaddrinfo(3SOCKET) provide a simplified way to
translate between the names and addresses of a service on a host. These interfaces are more
recent than the getipnodebyname(3SOCKET), gethostbyname(3NSL), and
getservbyname(3SOCKET) APIs. Both IPv6 and IPv4 addresses are handled transparently.

The getaddrinfo(3SOCKET) routine returns the combined address and port number of the
specified host and service names. Because the information returned by
getaddrinfo(3SOCKET) is dynamically allocated, the information must be freed by
freeaddrinfo(3SOCKET) to prevent memory leaks. getnameinfo(3SOCKET) returns the host

Standard Routines

Programming Interfaces Guide • November 2011156

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnameinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgai-strerror-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bfreeaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetipnodebyname-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgethostbyname-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservbyname-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bfreeaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnameinfo-3socket

and services names associated with a specified address and port number. Call
gai_strerror(3SOCKET) to print error messages based on the EAI_xxx codes returned by
getaddrinfo(3SOCKET) and getnameinfo(3SOCKET).

An example of using getaddrinfo(3SOCKET) follows.

struct addrinfo *res, *aip;

struct addrinfo hints;

int error;

/* Get host address. Any type of address will do. */

bzero(&hints, sizeof (hints));

hints.ai_flags = AI_ALL|AI_ADDRCONFIG;

hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(hostname, servicename, &hints, &res);

if (error != 0) {

(void) fprintf(stderr, "getaddrinfo: %s for host %s service %s\n",
gai_strerror(error), hostname, servicename);

return (-1);

}

After processing the information returned by getaddrinfo(3SOCKET) in the structure
pointed to by res, the storage should be released by freeaddrinfo(res).

The getnameinfo(3SOCKET) routine is particularly useful in identifying the cause of an error,
as in the following example:

struct sockaddr_storage faddr;

int sock, new_sock, sock_opt;

socklen_t faddrlen;

int error;

char hname[NI_MAXHOST];

char sname[NI_MAXSERV];

...

faddrlen = sizeof (faddr);

new_sock = accept(sock, (struct sockaddr *)&faddr, &faddrlen);

if (new_sock == -1) {

if (errno != EINTR && errno != ECONNABORTED) {

perror("accept");
}

continue;

}

error = getnameinfo((struct sockaddr *)&faddr, faddrlen, hname,

sizeof (hname), sname, sizeof (sname), 0);

if (error) {

(void) fprintf(stderr, "getnameinfo: %s\n",
gai_strerror(error));

} else {

(void) printf("Connection from %s/%s\n", hname, sname);

}

Standard Routines

Chapter 8 • Socket Interfaces 157

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgai-strerror-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnameinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnameinfo-3socket

Host Names – hostent

An Internet host-name-to-address mapping is represented by the hostent structure as defined
in gethostent(3NSL):

struct hostent {

char *h_name; /* official name of host */

char **h_aliases; /* alias list */

int h_addrtype; /* hostaddrtype(e.g.,AF_INET6) */

int h_length; /* length of address */

char **h_addr_list; /* list of addrs, null terminated */

};

/*1st addr, net byte order*/

#define h_addr h_addr_list[0]

getipnodebyname(3SOCKET) Maps an Internet host name to a hostent structure

getipnodebyaddr(3SOCKET) Maps an Internet host address to a hostent structure

freehostent(3SOCKET) Frees the memory of a hostent structure

inet_ntop(3SOCKET) Maps an Internet host address to a string

The routines return a hostent structure that contains the name of the host, its aliases, the
address type, and a NULL-terminated list of variable length addresses. The list of addresses is
required because a host can have many addresses. The h_addr definition is for backward
compatibility, and is the first address in the list of addresses in the hostent structure.

Network Names – netent
The routines to map network names to numbers and the reverse return a netent structure:

/*

* Assumes that a network number fits in 32 bits.

*/

struct netent {

char *n_name; /* official name of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net address type */

int n_net; /* net number, host byte order */

};

getnetbyname(3SOCKET), getnetbyaddr_r(3SOCKET), and getnetent(3SOCKET) are the
network counterparts to the host routines previously described.

Standard Routines

Programming Interfaces Guide • November 2011158

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgethostent-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetipnodebyname-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetipnodebyaddr-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bfreehostent-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Binet-ntop-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnetbyname-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnetbyaddr-r-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnetent-3socket

Protocol Names – protoent

The protoent structure defines the protocol-name mapping used with
getprotobyname(3SOCKET), getprotobynumber(3SOCKET), and getprotoent(3SOCKET)
and defined in getprotoent(3SOCKET):

struct protoent {

char *p_name; /* official protocol name */

char **p_aliases /* alias list */

int p_proto; /* protocol number */

};

Service Names – servent

An Internet family service resides at a specific, well-known port, and uses a particular protocol.
A service-name-to-port-number mapping is described by the servent structure that is defined
in getprotoent(3SOCKET):

struct servent {

char *s_name; /* official service name */

char **s_aliases; /* alias list */

int s_port; /* port number, network byte order */

char *s_proto; /* protocol to use */

};

getservbyname(3SOCKET) maps service names and, optionally, a qualifying protocol to a
servent structure. The call:

sp = getservbyname("telnet", (char *) 0);

returns the service specification of a telnet server that is using any protocol. The call:

sp = getservbyname("telnet", "tcp");

returns the telnet server that uses the TCP protocol. getservbyport(3SOCKET) and
getservent(3SOCKET) are also provided. getservbyport(3SOCKET) has an interface that is
similar to the interface used by getservbyname(3SOCKET). You can specify an optional
protocol name to qualify lookups.

Other Routines
Several other routines that simplify manipulating names and addresses are available. The
following table summarizes the routines for manipulating variable-length byte strings and
byte-swapping network addresses and values.

Standard Routines

Chapter 8 • Socket Interfaces 159

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotobyname-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotobynumber-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotoent-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotoent-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotoent-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservbyname-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservbyport-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservent-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservbyport-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetservbyname-3socket

TABLE 8–2 Runtime Library Routines

Interface Synopsis

memcmp(3C) Compares byte-strings; 0 if same, not 0 otherwise

memcpy(3C) Copies n bytes from s2 to s1

memset(3C) Sets n bytes to value starting at base

htonl(3SOCKET) 32-bit quantity from host into network byte order

htons(3SOCKET) 16-bit quantity from host into network byte order

ntohl(3SOCKET) 32-bit quantity from network into host byte order

ntohs(3SOCKET) 16-bit quantity from network into host byte order

The byte-swapping routines are provided because the operating system expects addresses to be
supplied in network order. On some architectures, the host byte ordering is different from
network byte order, so programs must sometimes byte-swap values. Routines that return
network addresses do so in network order. Byte-swapping problems occur only when
interpreting network addresses. For example, the following code formats a TCP or UDP port:

printf("port number %d\n", ntohs(sp->s_port));

On machines that do not need these routines, the routines are defined as null macros.

Client-Server Programs
The most common form of distributed application is the client-server model. In this scheme,
client processes request services from a server process.

An alternate scheme is a service server that can eliminate dormant server processes. An example
is inetd(1M), the Internet service daemon. inetd(1M) listens at a variety of ports, determined
at startup by reading a configuration file. When a connection is requested on an inetd(1M)
serviced port, inetd(1M) spawns the appropriate server to serve the client. Clients are unaware
that an intermediary has played any part in the connection. inetd(1M) is described in more
detail in “inetd Daemon” on page 172.

Sockets and Servers
Most servers are accessed at well-known Internet port numbers or UNIX family names. The
service rlogin is an example of a well-known UNIX family name. The main loop of a remote
login server is shown in Example 8–7.

The server dissociates from the controlling terminal of its invoker unless the server is operating
in DEBUG mode.

Client-Server Programs

Programming Interfaces Guide • November 2011160

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amemcmp-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amemcpy-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amemset-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bhtonl-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bhtons-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bntohl-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bntohs-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m

(void) close(0);

(void) close(1);

(void) close(2);

(void) open("/", O_RDONLY);

(void) dup2(0, 1);

(void) dup2(0, 2);

setsid();

Dissociating prevents the server from receiving signals from the process group of the
controlling terminal. After a server has dissociated from the controlling terminal, the server
cannot send reports of errors to the terminal. The dissociated server must log errors with
syslog(3C).

The server gets its service definition by calling getaddrinfo(3SOCKET).

bzero(&hints, sizeof (hints));

hints.ai_flags = AI_ALL|AI_ADDRCONFIG;

hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(NULL, "rlogin", &hints, &api);

The result, which is returned in api, contains the Internet port at which the program listens for
service requests. Some standard port numbers are defined in /usr/include/netinet/in.h.

The server then creates a socket, and listens for service requests. The bind(3SOCKET) routine
ensures that the server listens at the expected location. Because the remote login server listens at
a restricted port number, the server runs as superuser. The main body of the server is the
following loop.

EXAMPLE 8–7 Server Main Loop

/* Wait for a connection request. */

for (;;) {

faddrlen = sizeof (faddr);

new_sock = accept(sock, (struct sockaddr *)api->ai_addr,

api->ai_addrlen)

if (new_sock == -1) {

if (errno != EINTR && errno != ECONNABORTED) {

perror("rlogind: accept");
}

continue;

}

if (fork() == 0) {

close (sock);

doit (new_sock, &faddr);

}

close (new_sock);

}

/*NOTREACHED*/

accept(3SOCKET) blocks messages until a client requests service. Furthermore,
accept(3SOCKET) returns a failure indication if accept is interrupted by a signal, such as
SIGCHLD. The return value from accept(3SOCKET) is checked, and an error is logged with
syslog(3C), if an error occurs.

Client-Server Programs

Chapter 8 • Socket Interfaces 161

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Asyslog-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Asyslog-3c

The server then forks a child process, and invokes the main body of the remote login protocol
processing. The socket used by the parent to queue connection requests is closed in the child.
The socket created by accept(3SOCKET) is closed in the parent. The address of the client is
passed to the server application's doit() routine, which authenticates the client.

Sockets and Clients
This section describes the steps taken by a client process. As in the server, the first step is to
locate the service definition for a remote login.

bzero(&hints, sizeof (hints));

hints.ai_flags = AI_ALL|AI_ADDRCONFIG;

hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(hostname, servicename, &hints, &res);

if (error != 0) {

(void) fprintf(stderr, "getaddrinfo: %s for host %s service %s\n",
gai_strerror(error), hostname, servicename);

return (-1);

}

getaddrinfo(3SOCKET) returns the head of a list of addresses in res. The desired address is
found by creating a socket and trying to connect to each address returned in the list until one
works.

for (aip = res; aip != NULL; aip = aip->ai_next) {

/*

* Open socket. The address type depends on what

* getaddrinfo() gave us.

*/

sock = socket(aip->ai_family, aip->ai_socktype,

aip->ai_protocol);

if (sock == -1) {

perror("socket");
freeaddrinfo(res);

return (-1);

}

/* Connect to the host. */

if (connect(sock, aip->ai_addr, aip->ai_addrlen) == -1) {

perror("connect");
(void) close(sock);

sock = -1;

continue;

}

break;

}

The socket has been created and has been connected to the desired service. The
connect(3SOCKET) routine implicitly binds sock, because sock is unbound.

Client-Server Programs

Programming Interfaces Guide • November 2011162

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket

Connectionless Servers
Some services use datagram sockets. The rwho(1) service provides status information on hosts
that are connected to a local area network. Avoid running in.rwhod(1M) because in.rwho
causes heavy network traffic. The rwho service broadcasts information to all hosts connected to
a particular network. The rwho service is an example of datagram socket use.

A user on a host that is running the rwho(1) server can get the current status of another host
with ruptime(1). Typical output is illustrated in the following example.

EXAMPLE 8–8 Output of ruptime(1)Program

itchy up 9:45, 5 users, load 1.15, 1.39, 1.31

scratchy up 2+12:04, 8 users, load 4.67, 5.13, 4.59

click up 10:10, 0 users, load 0.27, 0.15, 0.14

clack up 2+06:28, 9 users, load 1.04, 1.20, 1.65

ezekiel up 25+09:48, 0 users, load 1.49, 1.43, 1.41

dandy 5+00:05, 0 users, load 1.51, 1.54, 1.56

peninsula down 0:24

wood down 17:04

carpediem down 16:09

chances up 2+15:57, 3 users, load 1.52, 1.81, 1.86

Status information is periodically broadcast by the rwho(1) server processes on each host. The
server process also receives the status information. The server also updates a database. This
database is interpreted for the status of each host. Servers operate autonomously, coupled only
by the local network and its broadcast capabilities.

Use of broadcast is fairly inefficient because broadcast generates a lot of net traffic. Unless the
service is used widely and frequently, the expense of periodic broadcasts outweighs the
simplicity.

The following example shows a simplified version of the rwho(1) server. The sample code
receives status information broadcast by other hosts on the network and supplies the status of
the host on which the sample code is running. The first task is done in the main loop of the
program: Packets received at the rwho(1) port are checked to be sure they were sent by another
rwho(1) server process and are stamped with the arrival time. The packets then update a file
with the status of the host. When a host has not been heard from for an extended time, the
database routines assume the host is down and logs this information. Because a server might be
down while a host is up, this application is prone to error.

EXAMPLE 8–9 rwho(1) Server

main()

{

...

sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin6_addr = inet_makeaddr(net->n_net, in6addr_any);

sin.sin6_port = sp->s_port;

Client-Server Programs

Chapter 8 • Socket Interfaces 163

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rwho-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Min.rwhod-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rwho-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1ruptime-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rwho-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rwho-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rwho-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rwho-1

EXAMPLE 8–9 rwho(1) Server (Continued)

...

s = socket(AF_INET6, SOCK_DGRAM, 0);

...

on = 1;

if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on)

== -1) {

syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit(1);

}

bind(s, (struct sockaddr *) &sin, sizeof sin);

...

signal(SIGALRM, onalrm);

onalrm();

while(1) {

struct whod wd;

int cc, whod, len = sizeof from;

cc = recvfrom(s, (char *) &wd, sizeof(struct whod), 0,

(struct sockaddr *) &from, &len);

if (cc <= 0) {

if (cc == -1 && errno != EINTR)

syslog(LOG_ERR, "rwhod: recv: %m");
continue;

}

if (from.sin6_port != sp->s_port) {

syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin6_port));

continue;

}

...

if (!verify(wd.wd_hostname)) {

syslog(LOG_ERR, "rwhod: bad host name from %x",
ntohl(from.sin6_addr.s6_addr));

continue;

}

(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);

whod = open(path, O_WRONLY|O_CREAT|O_TRUNC, 0666);

...

(void) time(&wd.wd_recvtime);

(void) write(whod, (char *) &wd, cc);

(void) close(whod);

}

exit(0);

}

The second server task is to supply the status of its host. This requires periodically acquiring
system status information, packaging it in a message, and broadcasting it on the local network
for other rwho(1) servers to hear. This task is run by a timer. This task is triggered by a signal.

Status information is broadcast on the local network. For networks that do not support
broadcast, use multicast.

Client-Server Programs

Programming Interfaces Guide • November 2011164

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1rwho-1

Advanced Socket Topics
For most programmers, the mechanisms already described are enough to build distributed
applications. This section describes additional features.

Out-of-Band Data
The stream socket abstraction includes out-of-band data. Out-of-band data is a logically
independent transmission channel between a pair of connected stream sockets. Out-of-band
data is delivered independent of normal data. The out-of-band data facilities must support the
reliable delivery of at least one out-of-band message at a time. This message can contain at least
one byte of data. At least one message can be pending delivery at any time.

With in-band signaling, urgent data is delivered in sequence with normal data, and the message
is extracted from the normal data stream. The extracted message is stored separately. Users can
choose between receiving the urgent data in order and receiving the data out of sequence,
without having to buffer the intervening data.

Using MSG_PEEK, you can peek at out-of-band data. If the socket has a process group, a SIGURG
signal is generated when the protocol is notified of its existence. A process can set the process
group or process ID to deliver SIGURG to with the appropriate fcntl(2) call, as described in
“Interrupt-Driven Socket I/O” on page 168 for SIGIO. If multiple sockets have out-of-band data
waiting for delivery, a select(3C) call for exceptional conditions can determine which sockets
have such data pending.

A logical mark is placed in the data stream at the point at which the out-of-band data was sent.
The remote login and remote shell applications use this facility to propagate signals between
client and server processes. When a signal is received, all data up to the mark in the data stream
is discarded.

To send an out-of-band message, apply the MSG_OOB flag to send(3SOCKET) or
sendto(3SOCKET). To receive out-of-band data, specify MSG_OOB to recvfrom(3SOCKET) or
recv(3SOCKET). If out-of-band data is taken in line the MSG_OOB flag is not needed. The
SIOCATMARK ioctl(2) indicates whether the read pointer currently points at the mark in the
data stream:

int yes;

ioctl(s, SIOCATMARK, &yes);

If yes is 1 on return, the next read returns data after the mark. Otherwise, assuming out-of-band
data has arrived, the next read provides data sent by the client before sending the out-of-band
signal. The routine in the remote login process that flushes output on receipt of an interrupt or
quit signal is shown in the following example. This code reads the normal data up to the mark to
discard the normal data, then reads the out-of-band byte.

Advanced Socket Topics

Chapter 8 • Socket Interfaces 165

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aselect-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvfrom-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2

A process can also read or peek at the out-of-band data without first reading up to the mark.
Accessing this data when the underlying protocol delivers the urgent data in-band with the
normal data, and sends notification of its presence only ahead of time, is more difficult. An
example of this type of protocol is TCP, the protocol used to provide socket streams in the
Internet family. With such protocols, the out-of-band byte might not yet have arrived when
recv(3SOCKET) is called with the MSG_OOB flag. In that case, the call returns the error of
EWOULDBLOCK. Also, the amount of in-band data in the input buffer might cause normal flow
control to prevent the peer from sending the urgent data until the buffer is cleared. The process
must then read enough of the queued data to clear the input buffer before the peer can send the
urgent data.

EXAMPLE 8–10 Flushing Terminal I/O on Receipt of Out-of-Band Data

#include <sys/ioctl.h>

#include <sys/file.h>

...

oob()

{

int out = FWRITE;

char waste[BUFSIZ];

int mark = 0;

/* flush local terminal output */

ioctl(1, TIOCFLUSH, (char *) &out);

while(1) {

if (ioctl(rem, SIOCATMARK, &mark) == -1) {

perror("ioctl");
break;

}

if (mark)

break;

(void) read(rem, waste, sizeof waste);

}

if (recv(rem, &mark, 1, MSG_OOB) == -1) {

perror("recv");
...

}

...

}

A facility to retain the position of urgent in-line data in the socket stream is available as a
socket-level option, SO_OOBINLINE. See getsockopt(3SOCKET) for usage. With this
socket-level option, the position of urgent data remains. However, the urgent data immediately
following the mark in the normal data stream is returned without the MSG_OOB flag. Reception of
multiple urgent indications moves the mark, but does not lose any out-of-band data.

Nonblocking Sockets
Some applications require sockets that do not block. For example, a server would return an
error code, not executing a request that cannot complete immediately. This error could cause

Advanced Socket Topics

Programming Interfaces Guide • November 2011166

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket

the process to be suspended, awaiting completion. After creating and connecting a socket,
issuing a fcntl(2) call, as shown in the following example, makes the socket nonblocking.

EXAMPLE 8–11 Set Nonblocking Socket

#include <fcntl.h>

#include <sys/file.h>

...

int fileflags;

int s;

...

s = socket(AF_INET6, SOCK_STREAM, 0);

...

if (fileflags = fcntl(s, F_GETFL, 0) == -1)

perror("fcntl F_GETFL");
exit(1);

}

if (fcntl(s, F_SETFL, fileflags | FNDELAY) == -1)

perror("fcntl F_SETFL, FNDELAY");
exit(1);

}

When performing I/O on a nonblocking socket, check for the error EWOULDBLOCK in errno.h,
which occurs when an operation would normally block. accept(3SOCKET),
connect(3SOCKET), send(3SOCKET), recv(3SOCKET), read(2), and write(2) can all return
EWOULDBLOCK. If an operation such as a send(3SOCKET) cannot be done in its entirety but
partial writes work, as when using a stream socket, all available data is processed. The return
value is the amount of data actually sent.

Asynchronous Socket I/O
Asynchronous communication between processes is required in applications that
simultaneously handle multiple requests. Asynchronous sockets must be of the SOCK_STREAM
type. To make a socket asynchronous, you issue a fcntl(2) call, as shown in the following
example.

EXAMPLE 8–12 Making a Socket Asynchronous

#include <fcntl.h>

#include <sys/file.h>

...

int fileflags;

int s;

...

s = socket(AF_INET6, SOCK_STREAM, 0);

...

if (fileflags = fcntl(s, F_GETFL) == -1)

perror("fcntl F_GETFL");
exit(1);

}

if (fcntl(s, F_SETFL, fileflags | FNDELAY | FASYNC) == -1)

Advanced Socket Topics

Chapter 8 • Socket Interfaces 167

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2

EXAMPLE 8–12 Making a Socket Asynchronous (Continued)

perror("fcntl F_SETFL, FNDELAY | FASYNC");
exit(1);

}

After sockets are initialized, connected, and made nonblocking and asynchronous,
communication is similar to reading and writing a file asynchronously. Initiate a data transfer
by using send(3SOCKET), write(2), recv(3SOCKET), or read(2). A signal-driven I/O routine
completes a data transfer, as described in the next section.

Interrupt-Driven Socket I/O
The SIGIO signal notifies a process when a socket, or any file descriptor, has finished a data
transfer. The steps in using SIGIO are as follows:

1. Set up a SIGIO signal handler with the signal(3C) or sigvec calls.
2. Use fcntl(2) to set the process ID or process group ID to route the signal to its own process

ID or process group ID. The default process group of a socket is group 0.
3. Convert the socket to asynchronous, as shown in “Asynchronous Socket I/O” on page 167.

The following sample code enables receipt of information on pending requests as the requests
occur for a socket by a given process. With the addition of a handler for SIGURG, this code can
also be used to prepare for receipt of SIGURG signals.

EXAMPLE 8–13 Asynchronous Notification of I/O Requests

#include <fcntl.h>

#include <sys/file.h>

...

signal(SIGIO, io_handler);

/* Set the process receiving SIGIO/SIGURG signals to us. */

if (fcntl(s, F_SETOWN, getpid()) < 0) {

perror("fcntl F_SETOWN");
exit(1);

}

Signals and Process Group ID
For SIGURG and SIGIO, each socket has a process number and a process group ID. These values
are initialized to zero, but can be redefined at a later time with the F_SETOWN fcntl(2)
command, as in the previous example. A positive third argument to fcntl(2) sets the socket's
process ID. A negative third argument to fcntl(2) sets the socket's process group ID. The only
allowed recipient of SIGURG and SIGIO signals is the calling process. A similar fcntl(2),
F_GETOWN, returns the process number of a socket.

Advanced Socket Topics

Programming Interfaces Guide • November 2011168

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Asignal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2

You can also enable reception of SIGURG and SIGIO by using ioctl(2) to assign the socket to the
user's process group.

/* oobdata is the out-of-band data handling routine */

sigset(SIGURG, oobdata);

int pid = -getpid();

if (ioctl(client, SIOCSPGRP, (char *) &pid) < 0) {

perror("ioctl: SIOCSPGRP");
}

Selecting Specific Protocols
If the third argument of the socket(3SOCKET) call is 0, socket(3SOCKET) selects a default
protocol to use with the returned socket of the type requested. The default protocol is usually
correct, and alternate choices are not usually available. When using raw sockets to
communicate directly with lower-level protocols or lower-level hardware interfaces, set up
de-multiplexing with the protocol argument.

Using raw sockets in the Internet family to implement a new protocol on IP ensures that the
socket only receives packets for the specified protocol. To obtain a particular protocol,
determine the protocol number as defined in the protocol family. For the Internet family, use
one of the library routines that are discussed in “Standard Routines” on page 156, such as
getprotobyname(3SOCKET).

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

...

pp = getprotobyname("newtcp");
s = socket(AF_INET6, SOCK_STREAM, pp->p_proto);

Using getprotobyname results in a socket s by using a stream-based connection, but with a
protocol type of newtcp instead of the default tcp.

Address Binding
For addressing, TCP and UDP use a 4-tuple of:
■ Local IP address
■ Local port number
■ Foreign IP address
■ Foreign port number

TCP requires these 4-tuples to be unique. UDP does not. User programs do not always know
proper values to use for the local address and local port, because a host can reside on multiple
networks. The set of allocated port numbers is not directly accessible to a user. To avoid these

Advanced Socket Topics

Chapter 8 • Socket Interfaces 169

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetprotobyname-3socket

problems, leave parts of the address unspecified and let the system assign the parts
appropriately when needed. Various portions of these tuples can be specified by various parts of
the sockets API:

bind(3SOCKET) Local address or local port or both

connect(3SOCKET) Foreign address and foreign port

A call to accept(3SOCKET) retrieves connection information from a foreign client. This causes
the local address and port to be specified to the system even though the caller of
accept(3SOCKET) did not specify anything. The foreign address and foreign port are returned.

A call to listen(3SOCKET) can cause a local port to be chosen. If no explicit bind(3SOCKET)
has been done to assign local information, listen(3SOCKET) assigns an ephemeral port
number.

A service that resides at a particular port can bind(3SOCKET) to that port. Such a service can
leave the local address unspecified if the service does not require local address information. The
local address is set to in6addr_any, a variable with a constant value in <netinet/in.h>. If the
local port does not need to be fixed, a call to listen(3SOCKET) causes a port to be chosen.
Specifying an address of in6addr_any or a port number of 0 is known as wildcarding. For
AF_INET, INADDR_ANY is used in place of in6addr_any.

The wildcard address simplifies local address binding in the Internet family. The following
sample code binds a specific port number that was returned by a call to
getaddrinfo(3SOCKET) to a socket and leaves the local address unspecified:

#include <sys/types.h>

#include <netinet/in.h>

...

struct addrinfo *aip;

...

if (bind(sock, aip->ai_addr, aip->ai_addrlen) == -1) {

perror("bind");
(void) close(sock);

return (-1);

}

Each network interface on a host typically has a unique IP address. Sockets with wildcard local
addresses can receive messages that are directed to the specified port number. Messages that are
sent to any of the possible addresses that are assigned to a host are also received by sockets with
wildcard local addresses. To allow only hosts on a specific network to connect to the server, a
server binds the address of the interface on the appropriate network.

Similarly, a local port number can be left unspecified, in which case the system selects a port
number. For example, to bind a specific local address to a socket, but to leave the local port
number unspecified, you could use bind as follows:

Advanced Socket Topics

Programming Interfaces Guide • November 2011170

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetaddrinfo-3socket

bzero (&sin, sizeof (sin));

(void) inet_pton (AF_INET6, "::ffff:127.0.0.1", sin.sin6_addr.s6_addr);

sin.sin6_family = AF_INET6;

sin.sin6_port = htons(0);

bind(s, (struct sockaddr *) &sin, sizeof sin);

The system uses two criteria to select the local port number:

■ Internet port numbers less than 1024 (IPPORT_RESERVED) are reserved for privileged users.
Nonprivileged users can use any Internet port number that is greater than 1024. The largest
Internet port number is 65535.

■ The port number is not currently bound to some other socket.

The port number and IP address of the client are found through either accept(3SOCKET) or
getpeername(3SOCKET).

In certain cases, the algorithm used by the system to select port numbers is unsuitable for an
application due to the two-step creation process for associations. For example, the Internet file
transfer protocol specifies that data connections must always originate from the same local port.
However, duplicate associations are avoided by connecting to different foreign ports. In this
situation, the system would disallow binding the same local address and local port number to a
socket if a previous data connection's socket still existed.

To override the default port selection algorithm, you must perform an option call before
address binding:

int on = 1;

...

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof on);

bind(s, (struct sockaddr *) &sin, sizeof sin);

With this call, local addresses already in use can be bound. This binding does not violate the
uniqueness requirement. The system still verifies at connect time that any other sockets with the
same local address and local port do not have the same foreign address and foreign port. If the
association already exists, the error EADDRINUSE is returned.

Socket Options
You can set and get several options on sockets through setsockopt(3SOCKET) and
getsockopt(3SOCKET). For example, you can change the send or receive buffer space. The
general forms of the calls are in the following list:

setsockopt(s, level, optname, optval, optlen);

and

getsockopt(s, level, optname, optval, optlen);

Advanced Socket Topics

Chapter 8 • Socket Interfaces 171

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetpeername-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket

The operating system can adjust the values appropriately at any time.

The arguments of setsockopt(3SOCKET) and getsockopt(3SOCKET) calls are in the
following list:

s Socket on which the option is to be applied

level Specifies the protocol level, such as socket level, indicated by
the symbolic constant SOL_SOCKET in sys/socket.h

optname Symbolic constant defined in sys/socket.h that specifies the
option

optval Points to the value of the option

optlen Points to the length of the value of the option

For getsockopt(3SOCKET), optlen is a value-result argument. This argument is initially set to
the size of the storage area pointed to by optval. On return, the argument's value is set to the
length of storage used.

When a program needs to determine an existing socket's type, the program should invoke
inetd(1M) by using the SO_TYPE socket option and the getsockopt(3SOCKET) call:

#include <sys/types.h>

#include <sys/socket.h>

int type, size;

size = sizeof (int);

if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) < 0) {

...

}

After getsockopt(3SOCKET), type is set to the value of the socket type, as defined in
sys/socket.h. For a datagram socket, type would be SOCK_DGRAM.

inetdDaemon
The inetd(1M) daemon is invoked at startup time and gets the services for which the daemon
listens from the /etc/inet/inetd.conf file. The daemon creates one socket for each service
that is listed in /etc/inet/inetd.conf, binding the appropriate port number to each socket.
See the inetd(1M) man page for details.

The inetd(1M) daemon polls each socket, waiting for a connection request to the service
corresponding to that socket. For SOCK_STREAM type sockets, inetd(1M) accepts

Advanced Socket Topics

Programming Interfaces Guide • November 2011172

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m

(accept(3SOCKET)) on the listening socket, forks (fork(2)), duplicates (dup(2)) the new
socket to file descriptors 0 and 1 (stdin and stdout), closes other open file descriptors, and
executes (exec(2)) the appropriate server.

The primary benefit of using inetd(1M) is that services not in use do not consume machine
resources. A secondary benefit is that inetd(1M) does most of the work to establish a
connection. The server started by inetd(1M) has the socket connected to its client on file
descriptors 0 and 1. The server can immediately read, write, send, or receive. Servers can use
buffered I/O as provided by the stdio conventions, as long as the servers use fflush(3C) when
appropriate.

The getpeername(3SOCKET) routine returns the address of the peer (process) connected to a
socket. This routine is useful in servers started by inetd(1M). For example, you could use this
routine to log the Internet address such as fec0::56:a00:20ff:fe7d:3dd2, which is
conventional for representing the IPv6 address of a client. An inetd(1M) server could use the
following sample code:

struct sockaddr_storage name;

int namelen = sizeof (name);

char abuf[INET6_ADDRSTRLEN];

struct in6_addr addr6;

struct in_addr addr;

if (getpeername(fd, (struct sockaddr *) &name, &namelen) == -1) {

perror("getpeername");
exit(1);

} else {

addr = ((struct sockaddr_in *)&name)->sin_addr;

addr6 = ((struct sockaddr_in6 *)&name)->sin6_addr;

if (name.ss_family == AF_INET) {

(void) inet_ntop(AF_INET, &addr, abuf, sizeof (abuf));

} else if (name.ss_family == AF_INET6 &&

IN6_IS_ADDR_V4MAPPED(&addr6)) {

/* this is a IPv4-mapped IPv6 address */

IN6_MAPPED_TO_IN(&addr6, &addr);

(void) inet_ntop(AF_INET, &addr, abuf, sizeof (abuf));

} else if (name.ss_family == AF_INET6) {

(void) inet_ntop(AF_INET6, &addr6, abuf, sizeof (abuf));

}

syslog("Connection from %s\n", abuf);

}

Broadcasting and Determining Network
Configuration
Broadcasting is not supported in IPv6. Broadcasting is supported only in IPv4.

Advanced Socket Topics

Chapter 8 • Socket Interfaces 173

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Afflush-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetpeername-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Minetd-1m

Messages sent by datagram sockets can be broadcast to reach all of the hosts on an attached
network. The network must support broadcast because the system provides no simulation of
broadcast in software. Broadcast messages can place a high load on a network because broadcast
messages force every host on the network to service the broadcast messages. Broadcasting is
usually used for either of two reasons:

■ To find a resource on a local network without having its address
■ For functions that require information to be sent to all accessible neighbors

To send a broadcast message, create an Internet datagram socket:

s = socket(AF_INET, SOCK_DGRAM, 0);

Bind a port number to the socket:

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = htonl(INADDR_ANY);

sin.sin_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin, sizeof sin);

The datagram can be broadcast on only one network by sending to the network's broadcast
address. A datagram can also be broadcast on all attached networks by sending to the special
address INADDR_BROADCAST, which is defined in netinet/in.h.

The system provides a mechanism to determine a number of pieces of information about the
network interfaces on the system. This information includes the IP address and broadcast
address. The SIOCGIFCONF ioctl(2) call returns the interface configuration of a host in a single
ifconf structure. This structure contains an array of ifreq structures. Every address family
supported by every network interface to which the host is connected has its own ifreq

structure.

The following example shows the ifreq structures defined in net/if.h.

EXAMPLE 8–14 net/if.hHeader File

struct ifreq {

#define IFNAMSIZ 16

char ifr_name[IFNAMSIZ]; /* if name, e.g., "en0" */

union {

struct sockaddr ifru_addr;

struct sockaddr ifru_dstaddr;

char ifru_oname[IFNAMSIZ]; /* other if name */

struct sockaddr ifru_broadaddr;

short ifru_flags;

int ifru_metric;

char ifru_data[1]; /* interface dependent data */

char ifru_enaddr[6];

} ifr_ifru;

#define ifr_addr ifr_ifru.ifru_addr

#define ifr_dstaddr ifr_ifru.ifru_dstaddr

#define ifr_oname ifr_ifru.ifru_oname

Advanced Socket Topics

Programming Interfaces Guide • November 2011174

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2

EXAMPLE 8–14 net/if.hHeader File (Continued)

#define ifr_broadaddr ifr_ifru.ifru_broadaddr

#define ifr_flags ifr_ifru.ifru_flags

#define ifr_metric ifr_ifru.ifru_metric

#define ifr_data ifr_ifru.ifru_data

#define ifr_enaddr ifr_ifru.ifru_enaddr

};

The call that obtains the interface configuration is:

/*

* Do SIOCGIFNUM ioctl to find the number of interfaces

*

* Allocate space for number of interfaces found

*

* Do SIOCGIFCONF with allocated buffer

*

*/

if (ioctl(s, SIOCGIFNUM, (char *)&numifs) == -1) {

numifs = MAXIFS;

}

bufsize = numifs * sizeof(struct ifreq);

reqbuf = (struct ifreq *)malloc(bufsize);

if (reqbuf == NULL) {

fprintf(stderr, "out of memory\n");
exit(1);

}

ifc.ifc_buf = (caddr_t)&reqbuf[0];

ifc.ifc_len = bufsize;

if (ioctl(s, SIOCGIFCONF, (char *)&ifc) == -1) {

perror("ioctl(SIOCGIFCONF)");
exit(1);

}

After this call, buf contains an array of ifreq structures. Every network to which the host
connects has an associated ifreq structure. The sort order these structures appear in is:

■ Alphabetical by interface name
■ Numerical by supported address families

The value of ifc.ifc_len is set to the number of bytes used by the ifreq structures.

Each structure has a set of interface flags that indicate whether the corresponding network is up
or down, point-to-point or broadcast, and so on. The following example shows ioctl(2)
returning the SIOCGIFFLAGS flags for an interface specified by an ifreq structure.

EXAMPLE 8–15 Obtaining Interface Flags

struct ifreq *ifr;

ifr = ifc.ifc_req;

for (n = ifc.ifc_len/sizeof (struct ifreq); --n >= 0; ifr++) {

/*

Advanced Socket Topics

Chapter 8 • Socket Interfaces 175

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2

EXAMPLE 8–15 Obtaining Interface Flags (Continued)

* Be careful not to use an interface devoted to an address

* family other than those intended.

*/

if (ifr->ifr_addr.sa_family != AF_INET)

continue;

if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

...

}

/* Skip boring cases */

if ((ifr->ifr_flags & IFF_UP) == 0 ||

(ifr->ifr_flags & IFF_LOOPBACK) ||

(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTOPOINT)) == 0)

continue;

}

The following example uses the SIOGGIFBRDADDR ioctl(2) command to obtain the broadcast
address of an interface.

EXAMPLE 8–16 Broadcast Address of an Interface

if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

...

}

memcpy((char *) &dst, (char *) &ifr->ifr_broadaddr,

sizeof ifr->ifr_broadaddr);

You can also use SIOGGIFBRDADDR ioctl(2) to get the destination address of a point-to-point
interface.

After the interface broadcast address is obtained, transmit the broadcast datagram with
sendto(3SOCKET):

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof dst);

Use one sendto(3SOCKET) for each interface to which the host is connected, if that interface
supports the broadcast or point-to-point addressing.

Using Multicast
IP multicasting is supported only on AF_INET6 and AF_INET sockets of type SOCK_DGRAM and
SOCK_RAW. IP multicasting is only supported on subnetworks for which the interface driver
supports multicasting.

Using Multicast

Programming Interfaces Guide • November 2011176

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket

Sending IPv4 Multicast Datagrams
To send a multicast datagram, specify an IP multicast address in the range 224.0.0.0 to
239.255.255.255 as the destination address in a sendto(3SOCKET) call.

By default, IP multicast datagrams are sent with a time-to-live (TTL) of 1. This value prevents
the datagrams from being forwarded beyond a single subnetwork. The socket option
IP_MULTICAST_TTL allows the TTL for subsequent multicast datagrams to be set to any value
from 0 to 255. This ability is used to control the scope of the multicasts.

u_char ttl;

setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl,sizeof(ttl))

Multicast datagrams with a TTL of 0 are not transmitted on any subnet, but can be delivered
locally if the sending host belongs to the destination group and if multicast loopback has not
been disabled on the sending socket. Multicast datagrams with a TTL greater than one can be
delivered to more than one subnet if one or more multicast routers are attached to the first-hop
subnet. To provide meaningful scope control, the multicast routers support the notion of TTL
thresholds. These thresholds prevent datagrams with less than a certain TTL from traversing
certain subnets. The thresholds enforce the conventions for multicast datagrams with initial
TTL values as follows:

0 Are restricted to the same host

1 Are restricted to the same subnet

32 Are restricted to the same site

64 Are restricted to the same region

128 Are restricted to the same continent

255 Are unrestricted in scope

Sites and regions are not strictly defined and sites can be subdivided into smaller administrative
units as a local matter.

An application can choose an initial TTL other than the ones previously listed. For example, an
application might perform an expanding-ring search for a network resource by sending a
multicast query, first with a TTL of 0 and then with larger and larger TTLs until a reply is
received.

The multicast router does not forward any multicast datagram with a destination address
between 224.0.0.0 and 224.0.0.255 inclusive, regardless of its TTL. This range of addresses is
reserved for the use of routing protocols and other low-level topology discovery or maintenance
protocols, such as gateway discovery and group membership reporting.

Using Multicast

Chapter 8 • Socket Interfaces 177

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket

Each multicast transmission is sent from a single network interface, even if the host has more
than one multicast-capable interface. If the host is also a multicast router and the TTL is greater
than 1, a multicast can be forwarded to interfaces other than the originating interface. A socket
option is available to override the default for subsequent transmissions from a given socket:

struct in_addr addr;

setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr))

where addr is the local IP address of the desired outgoing interface. Revert to the default
interface by specifying the address INADDR_ANY. The local IP address of an interface is obtained
with the SIOCGIFCONF ioctl. To determine if an interface supports multicasting, fetch the
interface flags with the SIOCGIFFLAGS ioctl and test if the IFF_MULTICAST flag is set. This
option is intended primarily for multicast routers and other system services specifically
concerned with Internet topology.

If a multicast datagram is sent to a group to which the sending host itself belongs, a copy of the
datagram is, by default, looped back by the IP layer for local delivery. Another socket option
gives the sender explicit control over whether subsequent datagrams are looped back:

u_char loop;

setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop))

where loop is 0 to disable loopback and 1 to enable loopback. This option provides a
performance benefit for applications that have only one instance on a single host by eliminating
the overhead of receiving their own transmissions. Applications that can have more than one
instance on a single host, or for which the sender does not belong to the destination group,
should not use this option.

If the sending host belongs to the destination group on another interface, a multicast datagram
sent with an initial TTL greater than 1 can be delivered to the sending host on the other
interface. The loopback control option has no effect on such delivery.

Receiving IPv4 Multicast Datagrams
Before a host can receive IP multicast datagrams, the host must become a member of one or
more IP multicast groups. A process can ask the host to join a multicast group by using the
following socket option:

struct ip_mreq mreq;

setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq))

where mreq is the structure:

struct ip_mreq {

struct in_addr imr_multiaddr; /* multicast group to join */

Using Multicast

Programming Interfaces Guide • November 2011178

struct in_addr imr_interface; /* interface to join on */

}

Each membership is associated with a single interface. You can join the same group on more
than one interface. Specify the imr_interface address as INADDR_ANY to choose the default
multicast interface. You can also specify one of the host's local addresses to choose a particular
multicast-capable interface.

To drop a membership, use:

struct ip_mreq mreq;

setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof(mreq))

where mreq contains the same values used to add the membership. Closing a socket or killing
the process that holds the socket drops the memberships associated with that socket. More than
one socket can claim a membership in a particular group, and the host remains a member of
that group until the last claim is dropped.

If any socket claims membership in the destination group of the datagram, the kernel IP layer
accepts incoming multicast packets. A given socket's receipt of a multicast datagram depends
on the socket's associated destination port and memberships, or the protocol type for raw
sockets. To receive multicast datagrams sent to a particular port, bind to the local port, leaving
the local address unspecified, such as INADDR_ANY.

More than one process can bind to the same SOCK_DGRAM UDP port if the bind(3SOCKET) is
preceded by:

int one = 1;

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))

In this case, every incoming multicast or broadcast UDP datagram destined for the shared port
is delivered to all sockets bound to the port. For backwards compatibility reasons, this delivery
does not apply to incoming unicast datagrams. Unicast datagrams are never delivered to more
than one socket, regardless of how many sockets are bound to the datagram's destination port.
SOCK_RAW sockets do not require the SO_REUSEADDR option to share a single IP protocol type.

The definitions required for the new, multicast-related socket options are found in
<netinet/in.h>. All IP addresses are passed in network byte-order.

Sending IPv6 Multicast Datagrams
To send an IPv6 multicast datagram, specify an IP multicast address in the range ff00::0/8 as
the destination address in a sendto(3SOCKET) call.

By default, IP multicast datagrams are sent with a hop limit of one, which prevents the
datagrams from being forwarded beyond a single subnetwork. The socket option

Using Multicast

Chapter 8 • Socket Interfaces 179

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket

IPV6_MULTICAST_HOPS allows the hop limit for subsequent multicast datagrams to be set to any
value from 0 to 255. This ability is used to control the scope of the multicasts:

uint_l;

setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops,sizeof(hops))

You cannot transmit multicast datagrams with a hop limit of zero on any subnet, but you can
deliver the datagrams locally if:

■ The sending host belongs to the destination group
■ Multicast loopback on the sending socket is enabled

You can deliver multicast datagrams with a hop limit that is greater than one to more than one
subnet if the first-hop subnet attaches to one or more multicast routers. The IPv6 multicast
addresses, unlike their IPv4 counterparts, contain explicit scope information that is encoded in
the first part of the address. The defined scopes are, where X is unspecified:

ffX1::0/16 Node-local scope, restricted to the same node

ffX2::0/16 Link-local scope

ffX5::0/16 Site-local scope

ffX8::0/16 Organization-local scope

ffXe::0/16 Global scope

An application can, separately from the scope of the multicast address, use different hop limit
values. For example, an application might perform an expanding-ring search for a network
resource by sending a multicast query, first with a hop limit of 0, and then with larger and larger
hop limits, until a reply is received.

Each multicast transmission is sent from a single network interface, even if the host has more
than one multicast-capable interface. If the host is also a multicast router, and the hop limit is
greater than 1, a multicast can be forwarded to interfaces other than the originating interface. A
socket option is available to override the default for subsequent transmissions from a given
socket:

uint_t ifindex;

ifindex = if_nametoindex ("hme3");
setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_IF, &ifindex, sizeof(ifindex))

where ifindex is the interface index for the desired outgoing interface. Revert to the default
interface by specifying the value 0.

If a multicast datagram is sent to a group to which the sending host itself belongs, a copy of the
datagram is, by default, looped back by the IP layer for local delivery. Another socket option
gives the sender explicit control over whether to loop back subsequent datagrams:

Using Multicast

Programming Interfaces Guide • November 2011180

uint_t loop;

setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop, sizeof(loop))

where loop is zero to disable loopback and one to enable loopback. This option provides a
performance benefit for applications that have only one instance on a single host (such as a
router or a mail demon), by eliminating the overhead of receiving their own transmissions.
Applications that can have more than one instance on a single host (such as a conferencing
program) or for which the sender does not belong to the destination group (such as a time
querying program) should not use this option.

If the sending host belongs to the destination group on another interface, a multicast datagram
sent with an initial hop limit greater than 1 can be delivered to the sending host on the other
interface. The loopback control option has no effect on such delivery.

Receiving IPv6 Multicast Datagrams
Before a host can receive IP multicast datagrams, the host must become a member of one, or
more IP multicast groups. A process can ask the host to join a multicast group by using the
following socket option:

struct ipv6_mreq mreq;

setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq))

where mreq is the structure:

struct ipv6_mreq {

struct in6_addr ipv6mr_multiaddr; /* IPv6 multicast addr */

unsigned int ipv6mr_interface; /* interface index */

}

Each membership is associated with a single interface. You can join the same group on more
than one interface. Specify ipv6_interface to be 0 to choose the default multicast interface.
Specify an interface index for one of the host's interfaces to choose that multicast-capable
interface.

To leave a group, use:

struct ipv6_mreq mreq;

setsockopt(sock, IPPROTO_IPV6, IP_LEAVE_GROUP, &mreq, sizeof(mreq))

where mreq contains the same values used to add the membership. The socket drops associated
memberships when the socket is closed, or when the process that holds the socket is killed.
More than one socket can claim a membership in a particular group. The host remains a
member of that group until the last claim is dropped.

The kernel IP layer accepts incoming multicast packets if any socket has claimed a membership
in the destination group of the datagram. Delivery of a multicast datagram to a particular socket

Using Multicast

Chapter 8 • Socket Interfaces 181

is determined by the destination port and the memberships associated with the socket, or by the
protocol type for raw sockets. To receive multicast datagrams sent to a particular port, bind to
the local port, leaving the local address unspecified, such as INADDR_ANY.

More than one process can bind to the same SOCK_DGRAM UDP port if the bind(3SOCKET) is
preceded by:

int one = 1;

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))

In this case, all sockets that are bound to the port receive every incoming multicast UDP
datagram destined to the shared port. For backward compatibility reasons, this delivery does
not apply to incoming unicast datagrams. Unicast datagrams are never delivered to more than
one socket, regardless of how many sockets are bound to the datagram's destination port.
SOCK_RAW sockets do not require the SO_REUSEADDR option to share a single IP protocol type.

The definitions required for the new, multicast-related socket options are found in
<netinet/in.h>. All IP addresses are passed in network byte-order.

Stream Control Transmission Protocol
Stream Control Transmission Protocol (SCTP) is a reliable transport protocol that provides
services similar to the services provided by TCP. In addition, SCTP provides network-level fault
tolerance. SCTP supports multihoming at either end of an association. The SCTP socket API
supports a one-to-one socket style modeled after TCP. The SCTP socket API also supports a
one-to-many socket style designed for use with signaling. The one-to-many socket style reduces
the number of file descriptors used in a process. You must link the libsctp library to use SCTP
function calls.

An SCTP association is set up between two endpoints. The endpoints use a four-way handshake
mechanism that uses a cookie to guard against some types of denial-of-service (DoS) attacks.
The endpoints can be represented by multiple IP addresses.

SCTP Stack Implementation
This section lists the details of the Oracle Solaris implementation of the IETF standard for the
Stream Control Transmission Protocol (RFC 4960). The table in this section lists all of the
exceptions from RFC 4960. The SCTP protocol in the Oracle Solaris operating system fully
implements any sections of RFC 4960 that is not explicitly mentioned in the table.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011182

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket

TABLE 8–3 Oracle Solaris SCTP Implementation Exceptions from RFC 4960

RFC 4960 Section Exceptions in the Oracle Solaris Implementation

3. SCTP Packet Format 3.2 Chunk Field Descriptions: Oracle Solaris SCTP
does not implement the optional ECNE and CWR.

3.3.2: Oracle Solaris SCTP does not implement the
Initiation (INIT) Optional ECN, Host Name Address,
and Cookie Preserving parameters.

3.3.3: Oracle Solaris SCTP does not implement the
Initiation Acknowledgement, Optional ECN, and
Host Name Address parameters.

5. Association Initialization 5.1.2, Handle Address Parameters: Section (B),
Optional Host Name parameter, is not implemented.

10. Interface with Upper Layer Oracle Solaris SCTP implements the IETF TSVWG
SCTP socket API draft.

Note – The Oracle Solaris 11 implementation of the TSVWG SCTP socket API is based on a
version of the API draft that was published at the time when Oracle Solaris 11 was first shipped.

SCTP Socket Interfaces
When the socket() call creates a socket for IPPROTO_SCTP, it calls an SCTP-specific socket
creation routine. Socket calls made on an SCTP socket call the appropriate SCTP socket routine
automatically. In a one-to-one socket, each socket corresponds to one SCTP association. Create
a one-to-one socket by calling this function:

socket(AF_INET[6], SOCK_STREAM, IPPROTO_STCP);

In a one-to-many style socket, each socket handles multiple SCTP associations. Each
association has an association identifier called sctp_assoc_t. Create a one-to-many socket by
calling this function:

socket(AF_INET[6], SOCK_SEQPACKET, IPPROTO_STCP);

sctp_bindx()

int sctp_bindx(int sock, void *addrs, int addrcnt, int flags);

The sctp_bindx() function manages addresses on an SCTP socket. If the sock parameter is an
IPv4 socket, the addresses passed to the sctp_bindx() function must be IPv4 addresses.

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 183

If the sock parameter is an IPv6 socket, the addresses passed to the sctp_bindx() function can
be either IPv4 (in IPv4–mapped address format) or IPv6 addresses. When the address that is
passed to the sctp_bindx() function is INADDR_ANY or IN6ADDR_ANY, the socket binds to all
available addresses. Bind the SCTP endpoint with the bind(3SOCKET)

If the sock parameter is an IPv4 socket, *addrs should be an array of sockaddr_in structures
containing IPv4 addresses. If sock is an IPv6 socket, *addrs should be an array of sockaddr_in6
structures containing IPv6 or IPv4-mapped IPv6 addresses. The addrcnt is the number of array
elements in addrs. The family of the address type is used with addrcnt to determine the size of
the array.

If the addresses are IPv6 addresses, they are contained in sockaddr_in6 structures. The address
type's family distinguishes the address length. The caller specifies the number of addresses in
the array with the addrcnt parameter.

The sctp_bindx() function returns 0 on success. The sctp_bindx() function returns -1 on
failure and sets the value of errno to the appropriate error code.

If the same port is not given for each socket address, the sctp_bindx() function fails and sets
the value of errno to EINVAL.

The flags parameter is formed from performing the bitwise OR operation on zero or more of the
following currently defined flags:

■ SCTP_BINDX_ADD_ADDR

■ SCTP_BINDX_REM_ADDR

SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the association.
SCTP_BINDX_REM_ADDR directs SCTP to remove the given addresses from the association. The
two flags are mutually exclusive. If both are given, the sctp_bindx() fails and sets the value of
errno to EINVAL.

The caller should add or remove addresses one at a time. If an error occurs, and a list of
addresses has been used, it is not possible for the caller to find the address that caused the error.
Adding or removing addresses one at a time helps the caller resolve this issue.

A caller may not remove all addresses from an association. The sctp_bindx() function rejects
such an attempt by failing and setting the value of errno to EINVAL. An application can use
sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate additional addresses with an endpoint after
calling the bind() function. An application can use sctp_bindx(SCTP_BINDX_REM_ADDR) to
remove addresses associated with a listening socket. After using
sctp_bindx(SCTP_BINDX_REM_ADDR) to remove addresses, accepting new associations will not
reassociate the removed address. If the endpoint supports dynamic address, using
SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR sends a message to the peer to change the
peer's address lists. Adding and removing addresses from a connected association is optional
functionality. Implementations that do not support this functionality return EOPNOTSUPP.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011184

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket

If the address family is not AF_INET or AF_INET6, the sctp_bindx() function fails and returns
EAFNOSUPPORT. If the file descriptor passed to the sctp_bindx() in the sock parameter is invalid,
the sctp_bindx() function fails and returns EBADF.

sctp_opt_info()

int sctp_opt_info(int sock, sctp_assoc_id_t id, int opt, void *arg, socklen_t

*len);
The sctp_opt_info() function returns the SCTP level options that are associated with the
socket described in the sock parameter. If the socket is a one-to-many style SCTP socket the
value of the id parameter refers to a specific association. The id parameter is ignored for
one-to-one style SCTP sockets. The value of the opt parameter specifies the SCTP socket option
to get. The value of the arg parameter is an option-specific structure buffer that is allocated by
the calling program. The value of the *len parameter is the length of the option.

The opt parameter can have the following values:
■ SCTP_RTOINFO

■ SCTP_ASSOCINFO

■ SCTP_DEFAULT_SEND_PARAM

■ SCTP_PEER_ADDR_PARAMS

■ SCTP_STATUS

■ SCTP_INITMSG

■ SCTP_NODELAY

■ SCTP_AUTOCLOSE

■ SCTP_PRIMARY_ADDR

■ SCTP_GET_PEER_ADDR_INFO

■ SCTP_EVENT

■ SCTP_DELAYED_SACK

■ SCTP_PARTIAL_DELIVERY_POINT

■ SCTP_FRAGMENT_INTERLEAVE

■ SCTP_MAX_BURST

■ SCTP_CONTEXT

■ SCTP_EXPLICIT_EOR

■ SCTP_REUSE_PORT

■ SCTP_RECVRVCINFO

■ SCTP_RECVNXTINFO

■ SCTP_DEFAULT_SNDINFO

■ SCTP_GETASSOC_NUMBER

■ SCTP_GET_ASSOC_ID_LIST

A few of the opt parameters are described in detail below:

SCTP_RTOINFO Returns the protocol parameters that are used to initialize and
bind the retransmission timeout (RTO) tunable. The protocol
parameters use the following structure:

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 185

struct sctp_rtoinfo {

sctp_assoc_t srto_assoc_id;

uint32_t srto_initial;

uint32_t srto_max;

uint32_t srto_min;

};

srto_assoc_id The calling program provides this value,
which specifies the association of interest.

srto_initial This value is the initial RTO value.

srto_max This value is the maximum RTO value.

srto_min This value is the minimum RTO value.

SCTP_ASSOCINFO Returns the association-specific parameters. The parameters
use the following structure:

struct sctp_assocparams {

sctp_assoc_t sasoc_assoc_id;

uint16_t sasoc_asocmaxrxt;

uint16_t sasoc_number_peer_destinations;

uint32_t sasoc_peer_rwnd;

uint32_t sasoc_local_rwnd;

uint32_t sasoc_cookie_life;

};

sasoc_assoc_id

The calling program provides this value, which specifies the
association of interest.

sasoc_assocmaxrxt

This value specifies the maximum retransmission count for
the association.

sasoc_number_peer_destinations

This value specifies the number of addresses that the peer
has.

sasoc_peer_rwnd

This value specifies the current value of the peer's receive
window.

sasoc_local_rwnd

This value specifies the last reported receive window that
the peer transmitted to.

sasoc_cookie_life

The value specifies the lifetime of the association's cookie.
The value is used when issuing cookies.

All parameters that use time values are measured in
milliseconds.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011186

SCTP_DEFAULT_SEND_PARAM Returns the default set of parameters that a call to the
sendto(3SOCKET) function uses on this association. The
parameters use the following structure:

struct sctp_sndrcvinfo {

uint16_t sinfo_stream;

uint16_t sinfo_ssn;

uint16_t sinfo_flags;

uint32_t sinfo_ppid;

uint32_t sinfo_context;

uint32_t sinfo_timetolive;

uint32_t sinfo_tsn;

uint32_t sinfo_cumtsn;

sctp_assoc_t sinfo_assoc_id;

};

sinfo_stream

This value specifies the default stream for the sendmsg()
call.

sinfo_ssn

This value is always zero.

sinfo_flags This value contains the default flags for the sendmsg() call.
This flag can take on the following values:
■ MSG_UNORDERED

■ MSG_ADDR_OVER

■ MSG_ABORT

■ MSG_EOF

■ MSG_PR_SCTP

sinfo_ppid This value is the default payload protocol identifier for the
sendmsg() call.

sinfo_context This value is the default context for the sendmsg() call.

sinfo_timetolive This value specifies a time period in milliseconds. After this
time period has passed, the message expires if its transmission
has not begun. A value of zero indicates that the message does
not expire. If the MSG_PR_SCTP flag is set, the message expires
when its transmission has not successfully completed within
the time period specified in sinfo_timetolive.

sinfo_tsn This value is always zero.

sinfo_cumtsn This value is always zero.

sinfo_assoc_id This value is filled in by the calling application. This value
specifies the association of interest.

SCTP_PEER_ADDR_PARAMS Returns the parameters for a specified peer address. The
parameters use the following structure:

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 187

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket

struct sctp_paddrparams {

sctp_assoc_t spp_assoc_id;

struct sockaddr_storage spp_address;

uint32_t spp_hbinterval;

uint16_t spp_pathmaxrxt;

uint32_t spp_pathmtu;

uint32_t spp_flags;

uint32_t spp_ipv6_flowlabel;

uint8_t spp_ipv4_tos;

};

spp_assoc_id

The calling program provides this value, which specifies the
association of interest.

spp_address

This value specifies the peer's address of interest.

spp_hbinterval

This value specifies the heartbeat interval in milliseconds.

spp_pathmaxrxt

This value specifies the maximum number of
retransmissions to attempt on an address before
considering the address unreachable.

spp_pathmtu

The current path MTU of the peer address. It is the number
of bytes available in an SCTP packet for chunks. Providing a
value of 0 does not change the current setting. If a positive
value is provided and SPP_PMTUD_DISABLE is set in the
spp_flags, the given value is used as the path MTU. If
SPP_PMTUD_ENABLE is set in the spp_flags, then the
spp_pathmtu field is ignored.

spp_ipv6_flowlabel

This field is used in conjunction with the
SPP_IPV6_FLOWLABEL flag. This setting has precedence over
any other IPv6 layer setting.

spp_flags

The spp_flags flags are used to control various features on
an association. The flag field is a bit mask which may
contain one of the following options:
■ SPP_HB_ENABLE – Enable heartbeats on the specified

address.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011188

■ SPP_HB_DISABLE – Disable heartbeats on the specified
address. SPP_HB_ENABLE and SPP_HB_DISABLE are
mutually exclusive, only one of the two should be
specified. Enabling both fields will result in
undetermined results.

■ SPP_HB_DEMAND – Request a user initiated heartbeat to
be made immediately. This option should not be used in
conjunction with a wildcard address.

■ SPP_HB_TIME_IS_ZERO – Specifies that the time for
heartbeat delay is to be set to the value of 0 milliseconds.

■ SPP_PMTUD_ENABLE – Enable PMTU discovery on the
specified address.

■ SPP_PMTUD_DISABLE – Disable PMTU discovery on the
specified address. If the address field is empty then all
addresses on the association are affected.
SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE options
are mutually exclusive. Enabling both options will result
in undetermined results.

■ SPP_IPV6_FLOWLABEL – Enables the setting of the IPV6
flowlabel value. The value is obtained from the
spp_ipv6_flowlabel field. Upon retrieval, this flag will
be set to indicate that the ipv6_flowlabel field has a
valid value returned. If a specific destination address is
set in the spp_address field, then the value of the
address is returned. If only an association is specified
and no address is specified, then the association's default
flowlabel is returned. If neither an association nor a
destination is specified, then the socket's default
flowlabel is returned. For non– IPv6 sockets, this flag is
left empty.

■ SPP_IPV4_TOS – Setting this flag enables the setting of
the IPV4 TOS value associated with either the
association or a specific address. The value is obtained
from the spp_ipv4_tos field. Upon retrieval, this flag
will be set to indicate that the spp_ipv4_tos field has a
valid value returned. If a specific destination address in
the spp_address field is set when called, then the TOS
value of the specific destination address returned. If only
an association is specified then the default TOS of the
association is returned. If neither an association nor a
destination is specified, then the default TOS value of
the socket is returned.

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 189

SCTP_STATUS Returns the current status information about the association.
The parameters use the following structure:

struct sctp_status {

sctp_assoc_t sstat_assoc_id;

int32_t sstat_state;

uint32_t sstat_rwnd;

uint16_t sstat_unackdata;

uint16_t sstat_penddata;

uint16_t sstat_instrms;

uint16_t sstat_outstrms;

uint32_t sstat_fragmentation_point;

struct sctp_paddrinfo sstat_primary;

};

sstat_assoc_id

The calling program provides this value, which specifies the
association of interest.

sstat_state

This value is the association's current state. The association
can take on the following states:

SCTP_IDLE The SCTP endpoint does
not have any association
associated with it.
Immediately after the call to
the socket() function
opens an endpoint, or after
the endpoint closes, the
endpoint is in this state.

SCTP_BOUND An SCTP endpoint is bound
to one or more local
addresses after calling the
bind().

SCTP_LISTEN This endpoint is waiting for
an association request from
any remote SCTP endpoint.

SCTP_COOKIE_WAIT This SCTP endpoint has
sent an INIT chunk and is
waiting for an INIT-ACK

chunk.

SCTP_COOKIE_ECHOED This SCTP endpoint has
echoed the cookie that it

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011190

received from its peer's
INIT-ACK chunk back to the
peer.

SCTP_ESTABLISHED This SCTP endpoint can
exchange data with its peer.

SCTP_SHUTDOWN_PENDING This SCTP endpoint has
received a SHUTDOWN
primitive from its upper
layer. This endpoint no
longer accepts data from its
upper layer.

SCTP_SHUTDOWN_SEND An SCTP endpoint that was
in the
SCTP_SHUTDOWN_PENDING

state has sent a SHUTDOWN
chunk to its peer. The
SHUTDOWN chunk is sent
only after all outstanding
data from this endpoint to
its peer is acknowledged.
When this endpoint's peer
sends a SHUTDOWN ACK
chunk, this endpoint sends a
SHUTDOWN COMPLETE chunk
and the association is
considered closed.

SCTP_SHUTDOWN_RECEIVED An SCTP endpoint has
received a SHUTDOWN chunk
from its peer. This endpoint
no longer accepts new data
from its user.

SCTP_SHUTDOWN_ACK_SEND An SCTP endpoint in the
SCTP_SHUTDOWN_RECEIVED

state has sent the SHUTDOWN
ACK chunk to its peer. The
endpoint only sends the
SHUTDOWN ACK chunk after
the peer acknowledges all
outstanding data from this
endpoint. When this
endpoint's peer sends a

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 191

SHUTDOWN COMPLETE chunk,
the association is closed.

sstat_rwnd

This value is the association peer's current receive window.

sstat_unackdata

This value is the number of unacknowledged DATA
chunks.

sstat_penddata

This value is the number of DATA chunks that are awaiting
receipt.

sstat_instrms

This value is the number of inbound streams.

sstat_outstrms

This value is the number of outbound streams.

sstat_fragmentation_point

If the combined size of the message, the SCTP headers, and
the IP headers exceeds the value of
sstat_fragmentation_point, the message fragments. This
value is equal to the Path Maximum Transmission Unit
(P-MTU) for the packet's destination address

sstat_primary

This value contains information about the primary peer
address. This information uses the following structure:

struct sctp_paddrinfo {

sctp_assoc_t spinfo_assoc_id;

struct sockaddr_storage spinfo_address;

int32_t spinfo_state;

uint32_t spinfo_cwnd;

uint32_t spinfo_srtt;

uint32_t spinfo_rto;

uint32_t spinfo_mtu;

};

spinfo_assoc_id The calling program provides this
value, which specifies the association
of interest.

spinfo_address This value is the primary peer's
address.

spinfo_state This value can take on either of the
two values SCTP_ACTIVE or
SCTP_INACTIVE.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011192

spinfo_cwnd This value is the congestion window
of the peer address.

spinfo_srtt This value is the current smoothed
round-trip time calculation for the
peer address. This value is expressed
in milliseconds.

spinfo_rto This value is the current
retransmission timeout value for the
peer address. This value is expressed
in milliseconds.

spinfo_mtu This value is the P-MTU for the peer
address.

The sctp_opt_info() function returns 0 on success. The sctp_opt_info() function returns -1
on failure and sets the value of errno to the appropriate error code. If the file descriptor passed
to the sctp_opt_info() in the sock parameter is invalid, the sctp_opt_info() function fails
and returns EBADF. If the file descriptor passed to the sctp_opt_info() function in the sock
parameter does not describe a socket, the sctp_opt_info() function fails and returns
ENOTSOCK. If the association ID is invalid for a one-to-many style SCTP socket, the
sctp_opt_info() function fails and sets the value of errno to EINVAL. If the input buffer length
is too short for the option specified, the sctp_opt_info() function fails and sets the value of
errno to EINVAL. If the address family for the peer's address is not AF_INET or AF_INET6, the
sctp_opt_info() function fails and sets the value of errno to EAFNOSUPPORT.

sctp_recvmsg()

ssize_t sctp_recvmsg(int s, void *msg, size_t len, struct sockaddr *from,

socklen_t *fromlen, struct sctp_sndrcvinfo *sinfo, int *msg_flags);
The sctp_recvmsg() function enables receipt of a message from the SCTP endpoint specified
by the s parameter. The calling program can specify the following attributes:

msg
This parameter is the address of the message buffer.

len
This parameter is the length of the message buffer.

from
This parameter is a pointer to an address that contains the sender's address.

fromlen
This parameter is the size of the buffer associated with the address in the from parameter.

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 193

sinfo
This parameter is only active if the calling program enables sctp_data_io_events. To
enable sctp_data_io_events, call the setsockopt() function with the socket option
SCTP_EVENTS. When sctp_data_io_events is enabled, the application receives the contents
of the sctp_sndrcvinfo structure for each incoming message. This parameter is a pointer to
a sctp_sndrcvinfo structure. The structure is populated upon receipt of the message.

msg_flags
This parameter contains any message flags that are present.

The sctp_recvmsg() function returns the number of bytes it receives. The sctp_recvmsg()
function returns -1 when an error occurs.

If the file descriptor passed in the s parameter is not valid, the sctp_recvmsg() function fails
and sets the value of errno to EBADF. If the file descriptor passed in the s parameter does not
describe a socket, the sctp_recvmsg() function fails and sets the value of errno to ENOTSOCK. If
the msg_flags parameter includes the value MSG_OOB, the sctp_recvmsg() function fails and sets
the value of errno to EOPNOTSUPP. If there is no established association, the sctp_recvmsg()
function fails and sets the value of errno to ENOTCONN.

sctp_sendmsg()

ssize_t sctp_sendmsg(int s, const void *msg, size_t len, const struct sockaddr

*to, socklen_t tolen, uint32_t ppid, uint32_t flags, uint16_t stream_no, uint32_t

timetolive, uint32_t context);
The sctp_sendmsg() function enables advanced SCTP features while sending a message from
an SCTP endpoint.

s This value specifies the SCTP endpoint that is sending the message.

msg This value contains the message sent by the sctp_sendmsg() function.

len This value is the length of the message. This value is expressed in bytes.

to This value is the destination address of the message.

tolen This value is the length of the destination address.

ppid This value is the application-specified payload protocol identifier.

stream_no This value is the target stream for this message.

timetolive This value is the time period after which the message expires if it has not been
successfully sent to the peer. This value is expressed in milliseconds.

context This value is returned if an error occurs during the sending of the message.

flags This value is formed from applying the logical operation OR in bitwise fashion
on zero or more of the following flag bits:

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011194

MSG_UNORDERED

When this flag is set, the sctp_sendmsg() function delivers the message
unordered.

MSG_ADDR_OVER

When this flag is set, the sctp_sendmsg() function uses the address in the to
parameter instead of the association's primary destination address. This flag is
only used with one-to-many style SCTP sockets.

MSG_ABORT

When this flag is set, the specified association aborts by sending an ABORT
signal to its peer. This flag is only used with one-to-many style SCTP sockets.

MSG_EOF

When this flag is set, the specified association enters graceful shutdown. This
flag is only used with one-to-many style SCTP sockets.

MSG_PR_SCTP

When this flag is set, the message expires when its transmission has not
successfully completed within the time period specified in the timetolive
parameter.

The sctp_sendmsg() function returns the number of bytes it sent. The sctp_sendmsg()
function returns -1 when an error occurs.

If the file descriptor passed in the s parameter is not valid, the sctp_sendmsg() function fails
and sets the value of errno to EBADF. If the file descriptor passed in the s parameter does not
describe a socket, the sctp_sendmsg() function fails and sets the value of errno to ENOTSOCK. If
the flags parameter includes the value MSG_OOB, the sctp_sendmsg() function fails and sets the
value of errno to EOPNOTSUPP. If the flags parameter includes the values MSG_ABORT or MSG_EOF
for a one-to-one style socket, the sctp_sendmsg() function fails and sets the value of errno to
EOPNOTSUPP. If there is no established association, the sctp_sendmsg() function fails and sets
the value of errno to ENOTCONN. If the socket is shutting down, disallowing further writes, the
sctp_sendmsg() function fails and sets the value of errno to EPIPE. If the socket is nonblocking
and the transmit queue is full, the sctp_sendmsg() function fails and sets the value of errno to
EAGAIN.

If the control message length is incorrect, the sctp_sendmsg() function fails and sets the value
of errno to EINVAL. If the specified destination address does not belong to the association, the
sctp_sendmsg() function fails and sets the value of errno to EINVAL. If the value of stream_no is
outside the number of outbound streams that the association supports, the sctp_sendmsg()
function fails and sets the value of errno to EINVAL. If the address family of the specified
destination address is not AF_INET or AF_INET6, the sctp_sendmsg() function fails and sets the
value of errno to EINVAL.

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 195

sctp_send()

ssize_t sctp_send(int s, const void *msg, size_t len, const struct

sctp_sndrcvinfo *sinfo, int flags);
The sctp_send() function is usable by one-to-one and one-to-many style sockets. The
sctp_send() function enables advanced SCTP features while sending a message from an SCTP
endpoint.

s
This value specifies the socket created by the socket() function.

msg
This value contains the message sent by the sctp_send() function.

len
This value is the length of the message. This value is expressed in bytes.

sinfo
This value contains the parameters used to send the message. For a one-to-many style socket,
this value can contain the association ID to which the message is being sent.

flags
This value is identical to the flags parameter in the sendmsg() function.

The sctp_send() function returns the number of bytes it sent. The sctp_send() function
returns -1 when an error occurs.

If the file descriptor passed in the s parameter is not valid, the sctp_send() function fails and
sets the value of errno to EBADF. If the file descriptor passed in the s parameter does not describe
a socket, the sctp_send() function fails and sets the value of errno to ENOTSOCK. If the
sinfo_flags field of the sinfo parameter includes the value MSG_OOB, the sctp_send() function
fails and sets the value of errno to EOPNOTSUPP. If the sinfo_flags field of the sinfo parameter
includes the values MSG_ABORT or MSG_EOF for a one-to-one style socket, the sctp_send()
function fails and sets the value of errno to EOPNOTSUPP. If there is no established association,
the sctp_send() function fails and sets the value of errno to ENOTCONN. If the socket is shutting
down, disallowing further writes, the sctp_send() function fails and sets the value of errno to
EPIPE. If the socket is nonblocking and the transmit queue is full, the sctp_send() function
fails and sets the value of errno to EAGAIN.

If the control message length is incorrect, the sctp_send() function fails and sets the value of
errno to EINVAL. If the specified destination address does not belong to the association, the
sctp_send() function fails and sets the value of errno to EINVAL. If the value of stream_no is
outside the number of outbound streams that the association supports, the sctp_send()
function fails and sets the value of errno to EINVAL. If the address family of the specified
destination address is not AF_INET or AF_INET6, the sctp_send() function fails and sets the
value of errno to EINVAL.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011196

sctp_sendv()

ssize_t sctp_sendv(int sd, const struct iovec *iov, int iovcnt, struct sockaddr

*addrs, int addrcnt, void *info,socklen_t infolen, unsigned int infotype,int flags);

The sctp_sendv() sends a message to an SCTP socket. The following attributes are specified:

sd The socket descriptor.

iov The message to be sent. The data in the buffer are treated as one single user
message.

iovcnt The number of elements in iov.

addrs An array of addresses to be used to set up an association or one single address to be
used to send the message. Pass in NULL if the caller does not want to set up an
association nor want to send the message to a specific address.

addrcnt The number of addresses in the addrs array.

info A pointer to the buffer containing the attribute associated with the message to be
sent. The type is indicated by info_type parameter.

infolen The length in bytes of info.

infotype The type of the info buffer. The following values are defined:

SCTP_SENDV_SNDFO The type of info is struct sctp_sndinfo.

SCTP_SENDV_PRINFO The type of info is struct sctp_prinfo.

SCTP_SENDV_AUTHINFO The type of info is struct sctp_authinfo. This type is
not supported.

SCTP_SENDV_SPA The type of info is struct sctp_send_spa.

The sctp_sendv() function provides an extensible way for an application to communicate
different send attributes to the SCTP stack when sending a message. This function can also be
used to set up an association. The addrs array is similar to the addrs array used by
“sctp_connectx()” on page 204.

There are three types of attributes which can be used to describe a message to be sent. They are
represented by struct sctp_sndinfo, struct sctp_prinfo, and struct sctp_authinfo which is
currently not supported.

The following structure sctp_sendv_spa is defined to be used when more than one of the above
attributes are needed to describe a message to be sent.

struct sctp_sendv_spa {

uint32_t sendv_flags;

struct sctp_sndinfo sendv_sndinfo;

struct sctp_prinfo sendv_prinfo;

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 197

struct sctp_authinfo sendv_authinfo;

};

The sendv_flags field holds a bitwise–OR of SCTP_SEND_SNDINFO_VALID,
SCTP_SEND_PRINFO_VALID, and SCTP_SEND_AUTHINFO_VALID values, indicating whether the
sendv_sndinfo, sendv_prinfo, and sendv_authinfo fields contain valid information.

The sctp_sndinfo structure is defined as follows:

struct sctp_sndinfo {

uint16_t snd_sid;

uint16_t snd_flags;

uint32_t snd_ppid;

uint32_t snd_context;

sctp_assoc_t snd_assoc_id;

};

where:

snd_sid This value holds the stream number to send the message to. If a sender
specifies an invalid stream number, an error value is returned and the call
fails.

snd_flags This field is a bit wise OR of the following flags:

SCTP_UNORDERED his flag requests the unordered delivery of the message.

SCTP_ADDR_OVER This flag requests the SCTP stack to override the
primary destination address and send the message to the
given address in addrs. Only one address can be given is
this case. If this flag is not specified and addrs is not
NULL, this call is treated as a connect request. This flag
is applicable to one-to-many style sockets only.

SCTP_ABORT Setting this flag causes the specified association to be
aborted by sending an ABORT message to the peer. The
ABORT message will contain an error cause User
Initiated Abort with cause code 12. The specific
information the cause of this error is provided in
msg_iov.

SCTP_EOF Setting this flag invokes the SCTP graceful shutdown
procedures on the specified association. Graceful
shutdown assures that all data queued by both
endpoints is successfully transmitted before closing the
association.

SCTP_SENDALL This flag requests that the message is sent to all
associations that are currently established on the socket.
This flag is applicable to one-to-many style sockets only.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011198

snd_ppid An unsigned integer that is passed to the remote end in each user message
(SCTP DATA chunk). The SCTP stack performs no byte order modification
of this field. For example, if the DATA chunk has to contain a given value in
network byte order, the SCTP user has to perform the htonl(3SOCKET)
computation.

snd_context This value is an opaque 32 bit context datum. It is passed back to the caller if
an error occurs on the transmission of the message and is retrieved with each
undelivered message.

snd_assoc_id When sending a message, this field holds the identifier for the association
which the message is sent to. When this call is used to set up an association,
the association identifier of the newly created association is returned in this
field. This field is applicable to one-to-many style sockets only.

The sctp_prininfo structure is defined as follows:

struct sctp_prinfo {

uint16_t pr_policy;

uint32_t pr_value;

};

where:

pr_policy This field specifies the partial reliability (PR-SCTP) policy that is used to send the
message. If it is SCTP_PR_SCTP_NONE, the message is sent reliably (the default is
normal send). If it is SCTP_PR_SCTP_TTL, timed reliability as defined in RFC
3758 is used. In this case, the lifetime is provided in pr_value.

pr_value The meaning of this field depends on the PR-SCTP policy specified by the
pr_policy field. It is ignored when SCTP_PR_SCTP_NONE is specified. In case of
SCTP_PR_SCTP_TTL, this field specifies the lifetime in milliseconds of the message.

When new send attributes are needed, new structures can be defined. Those new structures do
not need to be based on any of the above defined structures.

The struct sctp_sndinfo attribute for one-to-many style sockets must always be used in order
to specify the association the message is to be sent to. The only case where it is not needed is
when this call is used to set up a new association.

The caller provides a list of addresses in the addrs parameter to set up an association. This
function will behave like calling sctp_connectx(), first using the list of addresses, and then
calling sendmsg() with the given message and attributes. For an one-to-many style socket, if a
struct sctp_sndinfo attribute is provided, the snd_assoc_id field must be 0. When this function
returns, the snd_assoc_id field will contain the association identifier of the newly established
association. The struct sctp_sndinfo attribute is not required to set up an association for

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 199

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bhtonl-3socket

one-to-many style sockets. If this attribute is not provided, the caller can enable the
SCTP_ASSOC_CHANGE notification and use the SCTP_COMM_UP message to find out the association
identifier.

If the caller wants to send the message to a specific peer address (overriding the primary
address), the caller can provide the specific address in the addrs parameter and provide a
struct sctp_sndinfo attribute with the snd_flags field set to SCTP_ADDR_OVER.

This function can also be used to terminate an association. The caller provides an sctp_sndinfo
attribute with the snd_flags set to SCTP_EOF. In this case, the length of the message would be
zero. Sending a message using sctp_sendv() is atomic unless explicit EOR marking is enabled
on the socket specified by sd.

Upon successful completion, the number of bytes sent is returned. Otherwise, -1 is returned
and errno is set to indicate the error.

The following error values are defined:

EADDRINUSE The address is already in use.

EADDRNOTAVAIL No local address is available for this operation.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EBADF The sd parameter is not a valid file descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected. The calling program should
close the socket descriptor using close(2) and issue another socket(3) call
to obtain a new descriptor before making another attempt.

EFAULT A parameter can not be accessed.

EINTR The operation was interrupted by delivery of a signal before any data could
be buffered to be sent.

EINVAL A parameter provided is invalid for this operation.

EMSGSIZE The message is too large to be sent all at once.

ENETUNREACH The network is not reachable from this host.

ENOBUFS Insufficient memory is available to complete the operation.

EOPNOTSUPP Operation not supported in this type of socket.

EPIPE The peer end point has shutdown the association.

ETIMEDOUT Attempt timed out.

EWOULDBLOCK The socket is marked as non-blocking, and the requested operation would
block.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011200

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2

sctp_recvv()

ssize_t sctp_recvv(int sd, const struct iovec *iov, int iovlen, struct sockaddr

*from,int fromlen, void *info,socklen_t infolen, unsigned int infotype,int flags);

The sctp_recvv() function provides an extensible way for the SCTP stack to pass up different
SCTP attributes associated with a received message to an application. The following attributes
are specified:

sd The socket descriptor.

iov The scatter buffer containing the received message.

iovlen The number of elements in iov.

from A pointer to a buffer to be filled with the sender address of the received message.

fromlen The size of the from buffer. Upon return, it is set to the actual size of the sender's
address.

info A pointer to the buffer containing the attributes of the received message. The type
of structure is indicated by info_type parameter.

infolen The length in bytes of info buffer. Upon return, it is set to the actual size of the
returned info buffer.

infotype The type of the info buffer. The following values are defined:

SCTP_RECVV_NOINFO If both SCTP_RECVRCVINFO and SCTP_RECVNXTINFO

options are not enabled, no attribute will be returned. If
only the SCTP_RECVNXTINFO option is enabled but there
is no next message in the buffer, there will also no
attribute be returned. In these cases, infotype will be set
to SCTP_RECVV_NOINFO.

SCTP_RECVV_RCVINFO The type of info is struct sctp_rcvinfo and the attribute
is about the received message.

SCTP_RECVV_NXTINFO The type of info is struct sctp_nxtinfo and the attribute
is about the next message in receive buffer. This is the
case when only the SCTP_RECVNXTINFO option is enabled
and there is a next message in the buffer.

SCTP_RECVV_RN The type of info is struct sctp_recvv_rn. The
recvv_rcvinfo field is the attribute of the received
message and the recvv_nxtinfo field is the attribute of the
next message in buffer. This is the case when both
SCTP_RECVRCVINFO and SCTP_RECVNXTINFO options are
enabled and there is a next message in the receive buffer.

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 201

flags Flag for receive as in recvmsg(3SOCKET). On return, its value will be different
from what was set in to the call. It has the same value as rcv_flags.

There are two types of attributes which can be returned by the call to sctp_recvv():

■ The attribute of the received message and the attribute of the next message in receive buffer.
The caller enables the SCTP_RECVRCVINFO and SCTP_RECVNXTINFO socket option to receive
these attributes respectively.

Attributes of the received message are returned in struct sctp_rcvinfo and attributes of the
next message are returned in the structure sctp_nxtinfo. If both options are enabled, both
attributes are returned using the following structure.

struct sctp_recvv_rn {

struct sctp_rcvinfo recvv_rcvinfo;

struct sctp_nxtinfo recvv_nxtinfo;

};

The sctp_rcvinfo structure is defined as follows:

struct sctp_rcvinfo {

uint16_t rcv_sid;

uint16_t rcv_ssn;

uint16_t rcv_flags;

uint32_t rcv_ppid;

uint32_t rcv_tsn;

uint32_t rcv_cumtsn;

uint32_t rcv_context;

sctp_assoc_t rcv_assoc_id;

};

where:

rcv_info The stream number of the received message.

rcv_ssn The stream sequence number that the peer endpoint assigned to the DATA
chunk of this message. For fragmented messages, this is the same number
for all deliveries of the message (if more than one sctp_recvv() is needed to
read the message).

rcv_flags May be set to SCTP_UNORDERED when the message was sent unordered.

rcv_ppid This value is the same information that is passed by the peer socket to its
SCTP stack. The SCTP stack performs no byte order modification of this
field.

rcv_tsn The transmission sequence number that the peer endpoint assigned to the
received message.

rcv_cumtsn The current cumulative transmission sequence number of the association
known to the SCTP stack.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011202

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvmsg-3socket

rcv_assoc_id The association identifier of the association of the received message. This
field applies only to a one-to-many style socket.

rcv_context This value is an opaque 32 bit context datum that was set by the caller with
the SCTP_CONTEXT socket option. This value is passed back to the upper layer
if an error occurs on the transmission of a message and is retrieved with each
undelivered message.

The sctp_nxtinfo structure is defined as follows:

struct sctp_nxtinfo {

uint16_t nxt_sid;

uint16_t nxt_flags;

uint32_t nxt_ppid;

size_t nxt_length;

sctp_assoc_t nxt_assoc_id;

};

where:

nxt_sid The stream number of the next message.

flags This field can contain any of the following flags and is composed of a bitwise– OR
of the following values:

SCTP_UNORDERED The next message was sent unordered.

SCTP_COMPLETE The entire message has been received and is in the socket
buffer. This flag has special implications with respect to
the nxt_length field.

SCTP_NOTIFICATION The next message is not a user message but instead is a
notification.

ppid This value is the same information that was passed by the peer socket to its SCTP
stack when sending the next message. The SCTP stack performs no byte order
modification of this field.

length The length of the message currently received in the socket buffer. This might not
be the entire length of the next message since a partial delivery may be in progress.
This field represents the entire next message size only if the flag SCTP_COMPLETE is
set in the nxt_flags field.

assoc_id The association identifier of the association of the next message. This field applies
only to a one-to-many style socket.

The following error values are defined for sctp_recvv():

EBADF The sd parameter is not a valid file descriptor.

EFAULT A parameter can not be accessed.

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 203

EINTR The operation was interrupted by delivery of a signal before any data could be
buffered to be sent or the operation was interrupted by delivery of a signal
before any data is available to be received.

EINVAL A parameter provided is invalid for this operation.

ENOBUFS Insufficient memory is available to complete the operation.

EWOULDBLOCK The socket is marked as non-blocking and the requested operation would get
blocked.

sctp_connectx()

int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt, sctp_assoc_t *aid);

The sctp_connectx() requests an SCTP association to be made on a socket. This is similar to
connect(3SOCKET) except that an array of peer addresses can be given.

Much like sctp_bindx(3SOCKET), this function allows a caller to specify multiple addresses at
which a peer can be reached. The SCTP stack tries each addresses in the array in a round robin
fashion to set up the association. Note that the list of addresses passed in is only used for setting
up the association. It does not necessarily equal the set of addresses the peer uses for the
resulting association. If the caller wants to find out the set of peer addresses, the caller must use
sctp_getpaddrs(3SOCKET) to retrieve them after the association has been set up.

The following attributes are specified:

sd The socket descriptor.

addrs If sd is an IPv4 socket, addrs should be an array of sockaddr_in structures
containing IPv4 addresses. If sd is an IPv6 socket, addrs should be an array of
sockaddr_in6 structures containing IPv6 or IPv4-mapped IPv6 addresses.

addrcnt The number of addresses in the array addrs.

aid If the call to sctp_connectx() function returns successfully, the association
identifier for the newly created association is returned in aid. This parameter is
applicable only to one-to-many style SCTP sockets.

The following error values are defined for sctp_connectx():

EADDRINUSE The address is already in use.

EADDRNOTAVAIL No local address is available for this operation.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EALREADY The socket is non-blocking and a previous connection attempt has not yet
been completed.

EBADF The sd parameter is not a valid file descriptor.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011204

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsctp-bindx-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsctp-getpaddrs-3socket

ECONNREFUSED The attempt to connect was forcefully rejected. The calling program should
use connect(3SOCKET) to close the socket descriptor, and issue another
socket(3SOCKET) call to obtain a new descriptor before making another
attempt.

EFAULT A parameter can not be accessed.

EINTR The connect attempt was interrupted before it is completed. The attempt
will be established asynchronously.

EINVAL A parameter provided is invalid for this operation.

ENOBUFS Insufficient memory is available to complete the operation.

EWOULDBLOCK The socket is marked as non-blocking and the requested operation would
get blocked.

ETIMEDOUT The attempt timed out.

EOPNOTSUPP The operation is not supported in this type of socket.

sctp_getladdrs()

The sctp_getladdrs() function returns all locally bound addresses on a socket. The syntax for
the sctp_getladdrs() function is as follows:

int sctp_getladdrs(int sock, sctp_assoc_t id, void **addrs);

When the sctp_getladdrs() function returns successfully, the value of addrs points to a
dynamically allocated packed array of sockaddr structures. The sockaddr structures are of the
appropriate type for each local address. The calling application uses the sctp_freeladdrs()
function to free the memory. The value of the addrs parameter must not be NULL.

If the socket referenced by the sd parameter is an IPv4 socket, the sctp_getladdrs() function
returns IPv4 addresses. If the socket referenced by the sd parameter is an IPv6 socket, the
sctp_getladdrs() function returns a mix of IPv4 or IPv6 addresses as appropriate.

When the sctp_getladdrs() function is invoked for a one-to-many style socket, the value of
the id parameter specifies the association to query. The sctp_getladdrs() function ignores the
id parameter when the function is operating on a one-to-one socket.

When the value of the id parameter is zero, the sctp_getladdrs() function returns locally
bound addresses without regard to any particular association. When the sctp_getladdrs()
function returns successfully, it reports the number of local addresses bound to the socket. If the
socket is unbound, the sctp_getladdrs() function returns 0 and the value of *addrs is
undefined. If an error occurs, the sctp_getladdrs() function returns -1 and the value of *addrs
is undefined.

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 205

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocket-3socket

sctp_freeladdrs()

The sctp_freeladdrs() function frees all of the resources that were allocated by a previous call
to the sctp_getladdrs(). The syntax for the sctp_freeladdrs() function is as follows:

void sctp_freeladdrs(void *addrs);

The *addrs parameter is an array that contains the peer addresses that are returned by the
sctp_getladdrs() function.

sctp_getpaddrs()

The sctp_getpaddrs() function returns all peer addresses in an association.

int sctp_getpaddrs(int sock, sctp_assoc_t id, void **addrs);

When the sctp_getpaddrs() function returns successfully, the value of the **addrs parameter
points to a dynamically allocated packed array of sockaddr structures of the appropriate type
for each address. The calling thread frees the memory with the sctp_freepaddrs() function.
The **addrs parameter cannot have a value of NULL. If the socket descriptor given in sock is for
an IPv4 socket, the sctp_getpaddrs() function returns IPv4 addresses. If the socket descriptor
given in sock is for an IPv6 socket, the sctp_getpaddrs() function returns a mix of IPv4 and
IPv6 addresses. For one-to-many style sockets, the id parameter specifies the association to
query. The sctp_getpaddrs() function ignores the id parameter for one-to-one style sockets.
When the sctp_getpaddrs() function returns successfully, it returns the number of peer
addresses in the association. If there is no association on this socket, the sctp_getpaddrs()
function returns 0 and the value of the **addrs parameter is undefined. If an error occurs, the
sctp_getpaddrs() function returns -1 and the value of the **addrs parameter is undefined.

If the file descriptor passed to the sctp_getpaddrs() function in the sock parameter is invalid,
the sctp_getpaddrs() function fails and returns EBADF. If the file descriptor passed to the
sctp_getpaddrs() function in the sock parameter does not describe a socket, the
sctp_getpaddrs() function fails and returns ENOTSOCK. If the file descriptor passed to the
sctp_getpaddrs() function in the sock parameter describes a socket that is not connected, the
sctp_getpaddrs() function fails and returns ENOTCONN.

sctp_freepaddrs()

The sctp_freepaddrs() function frees all of the resources that were allocated by a previous call
to the sctp_getpaddrs(). The syntax for the sctp_freepaddrs() function is as follows:

void sctp_freepaddrs(void *addrs);

The *addrs parameter is an array that contains the peer addresses that are returned by the
sctp_getpaddrs() function.

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011206

Branched-off Association
Applications can branch an established association on a one-to-many style socket into a
separate socket and file descriptor. A separate socket and file descriptor is useful for
applications that have a number of sporadic message senders or receivers that need to remain
under the original one-to-many style socket. The application branches off associations that
carry high volume data traffic into separate socket descriptors. The application uses the
sctp_peeloff() call to branch off an association into a separate socket. The new socket is a
one-to-one style socket. The syntax for the sctp_peeloff() function is as follows:

int sctp_peeloff(int sock, sctp_assoc_t id);

sock
The original one-to-many style socket descriptor returned from the socket() system call.

id
The identifier of the association to branch off to a separate file descriptor.

The sctp_peeloff() function fails and returns EOPTNOTSUPP if the socket descriptor passed in
the sock parameter is not a one-to-many style SCTP socket. The sctp_peeloff() function fails
and returns EINVAL if the value of id is zero or if the value of id is greater than the maximum
number of associations for the socket descriptor passed in the sock parameter. The
sctp_peeloff() function fails and returns EMFILE if the function fails to create a new user file
descriptor or file structure.

Code Examples of SCTP Use
This section details two uses of SCTP sockets.

EXAMPLE 8–17 SCTP Echo Client

/*

* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.

*/

/*

* IPv4 echo client.

*/

/* To enable socket features used for SCTP socket. */

#define _XPG4_2

#define __EXTENSIONS__

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <stdlib.h>

#include <unistd.h>

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 207

EXAMPLE 8–17 SCTP Echo Client (Continued)

#include <netinet/sctp.h>

#include <errno.h>

#define BUFLEN 2048

#define SERVER_PORT 5000

#define MAX_STREAM 64

static void

usagBe(char *a0)

{

fprintf(stderr, "Usage: %s <server address>\n", a0);

}

static void

print_notif(char *buf)

{

union sctp_notification *snp;

struct sctp_assoc_change *sac;

snp = (union sctp_notification *)buf;

/* We only subscribe the association change event. */

if (snp->sn_header.sn_type != SCTP_ASSOC_CHANGE) {

fprintf(stderr, "unexpected notification type: %d\n",
snp->sn_header.sn_type);

exit(1);

}

sac = &snp->sn_assoc_change;

printf("[Receive assocication change event: state = %hu," error = %hu,"
instr = %hu, outstr = %hu]\n", sac->sac_state,

sac->sac_error,sac->sac_inbound_streams,

sac->sac_outbound_streams);

}

/*

* Read from the network.

*/

static void

readit(void *vfdp)

{

int fd;

ssize_t n;

char buf[BUFLEN];

struct iovec iov[1];

int flags;

socklen_t info_len;

uint_t info_type;

struct sctp_rcvinfo info;

union sctp_notification *snp;

pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

fd = *(int *)vfdp;

/* Initialize the iov for receiving */

memset(buf, 0, BUFLEN);

iov->iov_base = buf;

iov->iov_len = BUFLEN;

info_len = sizeof (info);

info_type = 0;

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011208

EXAMPLE 8–17 SCTP Echo Client (Continued)

flags = 0;

while ((n = sctp_recvv(fd, iov, 1, NULL, NULL, &info,

&info_len,&info_type, &flags)) > 0) {

/* Intercept notifications here */

if (flags & MSG_NOTIFICATION) {

print_notif(buf);

continue;

}

/* The message should be accompanied by sctp_rcvinfo. */

if (info_type != SCTP_RECVV_RCVINFO) {

fprintf(stderr, "no sctp_rcvinfo attached\n");
exit(1);

}

printf("[Receive echo (%u bytes): stream = %hu, ssn = %hu," "tsn = %hu,

flags = %hx, ppid = %u]\n", n, info.rcv_sid, info.rcv_ssn, info.rcv_tsn,

info.rcv_flags, info.rcv_ppid);

flags = 0;

info_len = sizeof (info);

}

if (n < 0) {

perror("sctp_recvv");
exit(1);

}

close(fd);

exit(0);

}

static void

echo(struct sockaddr_in *addrs, int addrcnt)

{

int fd;

uchar_t buf[BUFLEN];

ssize_t n;

int perr;

pthread_t tid;

struct iovec iov[1];

int ret, on;

struct sctp_sndinfo info;

struct sctp_initmsg initmsg;

struct sctp_event event;

/* Create a one-one SCTP socket */

if ((fd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) == -1) {

perror("socket");
exit(1);

}

/*

* We are interested in association change events and we want

* to get sctp_rcvinfo in each receive.

*/

event.se_assoc_id = 0; /* Ignored for one-one SCTP socket */

event.se_type = SCTP_ASSOC_CHANGE;

event.se_on = 1;

ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event, sizeof (event));

if (ret < 0) {

perror("setsockopt SCTP_EVENT");

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 209

EXAMPLE 8–17 SCTP Echo Client (Continued)

exit(1);

}

on = 1;

ret = setsockopt(fd, IPPROTO_SCTP, SCTP_RECVRCVINFO, &on, sizeof (on));

if (ret < 0) {

perror("setsockopt SCTP_RECVRCVINFO");
exit(1);

}

/*

* Set the SCTP stream parameters to tell the other side when

* setting up the association.

*/

memset(&initmsg, 0, sizeof (struct sctp_initmsg));

initmsg.sinit_num_ostreams = MAX_STREAM;

initmsg.sinit_max_instreams = MAX_STREAM;

initmsg.sinit_max_attempts = MAX_STREAM;

ret = setsockopt(fd, IPPROTO_SCTP, SCTP_INITMSG, &initmsg,sizeof (struct sctp_initmsg));

if (ret < 0) {

perror("setsockopt SCTP_INITMSG");
exit(1);

}

/* Now connect to the peer. */

if (sctp_connectx(fd, (struct sockaddr *)addrs, addrcnt, NULL) == -1) {

perror("sctp_connectx");
exit(1);

}

/* Initialize the struct sctp_sndinfo for sending. */

memset(&info, 0, sizeof (info));

/* Start sending to stream 0. */

info.snd_sid = 0;

/*

* Note that the server is expected to echo back the snd_ppid value.

* So we don’t need to do any conversion here. But if the server needs

* to understand this value, we need to do a htonl() on it so that the

* server side can do a ntohl() to convert it back to the host byte

* order.

*/

info.snd_ppid = 0;

/* Create a thread to receive network traffic. */

perr = pthread_create(&tid, NULL, (void *(*)(void *))readit, &fd);

if (perr != 0) {

fprintf(stderr, "pthread_create: %d\n", perr);

exit(1);

}

iov->iov_base = buf;

/* Read from stdin and then send to the echo server. */

while ((n = read(fileno(stdin), buf, BUFLEN)) > 0) {

iov->iov_len = n;

if (sctp_sendv(fd, iov, 1, NULL, 0, &info, sizeof (info),

SCTP_SENDV_SNDINFO, 0) < 0) {

perror("sctp_sendv");

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011210

EXAMPLE 8–17 SCTP Echo Client (Continued)

exit(1);

}

/* Send the next message to a different stream. */

info.snd_sid = (info.snd_sid + 1) % MAX_STREAM;

info.snd_ppid++;

}

pthread_cancel(tid);

close(fd);

}

static struct sockaddr_in *

setup_addrs(const char *name, int *addrcnt)

{

int num_addrs, i;

int error;

struct hostent *hp;

struct sockaddr_in *addrs;

hp = getipnodebyname(name, AF_INET, AI_DEFAULT, &error);

if (hp == NULL) {

fprintf(stderr, "host %s not found\n", name);

return (NULL);

}

for (num_addrs = 0; hp->h_addr_list[num_addrs] != NULL; num_addrs++)

;

addrs = malloc((num_addrs) * sizeof (*addrs));

if (addrs == NULL) {

fprintf(stderr, "cannot allocate address list\n");
return (NULL);

}

for (i = 0; i < num_addrs; i++) {

addrs[i].sin_family = AF_INET;

addrs[i].sin_addr.s_addr = *(ipaddr_t *)hp->h_addr_list[i];

addrs[i].sin_port = htons(SERVER_PORT);

}

*addrcnt = num_addrs;

return (addrs);

}

int

main(int argc, char **argv)

{

struct sockaddr_in *addrs;

int addrcnt;

if (argc < 2) {

usage(*argv);

exit(1);

}

/* Find the host to connect to. */

if ((addrs = setup_addrs(argv[1], &addrcnt)) == NULL)

exit(1);

echo(addrs, addrcnt);

return (0);

}

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 211

EXAMPLE 8–18 SCTP Echo Server

/*

* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.

*/

/*

* IPv4 echo server

*/

/* To enable socket features used for SCTP socket. */

#define _XPG4_2

#define __EXTENSIONS__

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <stdlib.h>

#include <unistd.h>

#include <netinet/sctp.h>

#include <netdb.h>

#define BUFLEN 1024

#define SERVER_PORT 5000

#define MAX_STREAM 64

/*

* Given an event notification, print out what it is.

*/

static void

handle_event(void *buf)

{

struct sctp_assoc_change *sac;

struct sctp_send_failed_event *ssfe;

struct sctp_paddr_change *spc;

struct sctp_remote_error *sre;

union sctp_notification *snp;

char addrbuf[INET6_ADDRSTRLEN];

const char *ap;

struct sockaddr_in *sin;

snp = buf;

switch (snp->sn_header.sn_type) {

case SCTP_ASSOC_CHANGE:

sac = &snp->sn_assoc_change;

printf(">>> assoc_change: state=%hu, error=%hu, instr=%hu "
"outstr=%hu\n", sac->sac_state, sac->sac_error,

sac->sac_inbound_streams, sac->sac_outbound_streams);

break;

case SCTP_SEND_FAILED_EVENT:

ssfe = &snp->sn_send_failed_event;

printf(">>> sendfailed: len=%hu err=%d\n", ssfe->ssfe_length,

ssfe->ssfe_error);

break;

case SCTP_PEER_ADDR_CHANGE:

spc = &snp->sn_paddr_change;

if (spc->spc_aaddr.ss_family != AF_INET) {

fprintf(stderr, "getmsg: unexpected family %d\n",spc->spc_aaddr.ss_family);
exit(1);

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011212

EXAMPLE 8–18 SCTP Echo Server (Continued)

} else {

sin = (struct sockaddr_in *)&spc->spc_aaddr;

ap = inet_ntop(AF_INET, &sin->sin_addr, addrbuf,INET6_ADDRSTRLEN);

}

printf(">>> intf_change: %s state=%d, error=%d\n", ap,

spc->spc_state, spc->spc_error);

break;

case SCTP_REMOTE_ERROR:

sre = &snp->sn_remote_error;

printf(">>> remote_error: err=%hu len=%hu\n",
ntohs(sre->sre_error), ntohs(sre->sre_length));

break;

case SCTP_SHUTDOWN_EVENT:

printf(">>> shutdown event\n");
break;

default:

printf(">>> unexpected type: %hu\n", snp->sn_header.sn_type);

break;

}

}

/*

* Receive a message from the network.

*/

static ssize_t

getmsg(int fd, struct iovec *iov, struct sctp_rcvinfo *info, int *flags)

{

ssize_t tot = 0, nr;

size_t buflen;

socklen_t info_len;

uint_t info_type;

char *buf;

buf = iov->iov_base;

buflen = iov->iov_len;

/* Loop until a whole message is received. */

for (;;) {

info_len = sizeof (*info);

memset(info, 0, sizeof (*info));

*flags = 0;

nr = sctp_recvv(fd, iov, 1, NULL, NULL, info, &info_len,

&info_type, flags);

if (nr <= 0) {

/* EOF or error */

iov->iov_base = buf;

return (nr);

}

tot += nr;

/* Whole message/notification is received, return it. */

if (*flags & MSG_EOR || *flags & MSG_NOTIFICATION) {

iov->iov_base = buf;

/* Buffer may be realloc(). Return the new size. */

iov->iov_len = buflen;

return (tot);

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 213

EXAMPLE 8–18 SCTP Echo Server (Continued)

}

/* Only sctp_rcvinfo is expected. */

if (info_type != SCTP_RECVV_RCVINFO) {

fprintf(stderr, "unexpected info received: %d\n",
info_type);

iov->iov_base = buf;

return (-1);

}

/* Maybe we need a bigger buffer, do realloc(). */

if (buflen == tot) {

buf = realloc(buf, buflen * 2);

if (buf == NULL) {

fprintf(stderr, "out of memory\n");
exit(1);

}

buflen *= 2;

}

/* Set the next read offset */

iov->iov_base = buf + tot;

iov->iov_len = buflen - tot;

}

}

/*

* The echo server.

*/

static void

echo(int fd)

{

ssize_t nr;

size_t buflen;

int flags;

struct iovec iov[1];

struct sctp_rcvinfo rinfo;

struct sctp_sndinfo sinfo;

if ((iov->iov_base = malloc(BUFLEN)) == NULL) {

fprintf(stderr, "out of memory\n");
exit(1);

}

iov->iov_len = BUFLEN;

memset(&sinfo, 0, sizeof (sinfo));

/* Wait for something to echo */

while ((nr = getmsg(fd, iov, &rinfo, &flags)) > 0) {

/* Intercept notifications here */

if (flags & SCTP_NOTIFICATION) {

handle_event(iov->iov_base);

continue;

}

printf(">>> got %u bytes on stream %hu: ", nr, rinfo.rcv_sid);

fflush(stdout);

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011214

EXAMPLE 8–18 SCTP Echo Server (Continued)

write(fileno(stdout), iov->iov_base, nr);

fflush(stdout);

/* The buffer may be realloc(), so get the new size. */

buflen = iov->iov_len;

/*

* Echo the message back using the incoming info.

*

* Note that rcv_sid is in host byte order. But rcv_ppid is

* what is stored by the peer. If both sides wnat to use this

* value for communication (interpreting it on both sides),

* the sender needs to do htonl() when setting snd_ppid. And

* the receiver side needs to do ntohl() to convert rcv_ppid

* back to the host byte order.

*/

sinfo.snd_sid = rinfo.rcv_sid;

sinfo.snd_ppid = rinfo.rcv_ppid;

iov->iov_len = nr;

if (sctp_sendv(fd, iov, 1, NULL, 0, &sinfo, sizeof (sinfo),

SCTP_SENDV_SNDINFO, 0) < 0) {

fprintf(stderr, "sctp_sendv\n");
exit(1);

}

/* Restore the original buffer size. */

iov->iov_len = buflen;

}

free(iov->iov_base);

close(fd);

}

static void

subscribe_event(int fd, uint16_t event)

{

struct sctp_event ev;

int ret;

ev.se_assoc_id = 0; /* Ignored for one-one SCTP socket */

ev.se_type = event;

ev.se_on = 1;

ret = setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &ev, sizeof (ev));

if (ret < 0) {

fprintf(stderr, "%s: setsockopt SCTP_EVENT: %d\n",strerror(errno), event);

exit(1);

}

}

/* List of events we are interested in. */

static uint16_t event_interested[] = {

SCTP_ASSOC_CHANGE,

SCTP_SEND_FAILED_EVENT,

SCTP_PEER_ADDR_CHANGE,

SCTP_REMOTE_ERROR,

SCTP_SHUTDOWN_EVENT

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 215

EXAMPLE 8–18 SCTP Echo Server (Continued)

};

int main(void)

{

int lfd;

int cfd;

int onoff;

int i;

struct sockaddr_in sin[1];

struct sctp_initmsg initmsg;

if ((lfd = socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP)) == -1) {

perror("socket");
exit(1);

}

sin->sin_family = AF_INET;

sin->sin_port = htons(SERVER_PORT);

sin->sin_addr.s_addr = INADDR_ANY;

if (bind(lfd, (struct sockaddr *)sin, sizeof (*sin)) == -1) {

perror("bind");
exit(1);

}

if (listen(lfd, 1) == -1) {

perror("listen");
exit(1);

}

(void) memset(&initmsg, 0, sizeof (struct sctp_initmsg));

initmsg.sinit_num_ostreams = MAX_STREAM;

initmsg.sinit_max_instreams = MAX_STREAM;

initmsg.sinit_max_attempts = MAX_STREAM;

if (setsockopt(lfd, IPPROTO_SCTP, SCTP_INITMSG, &initmsg,

sizeof (struct sctp_initmsg)) < 0) {

perror("SCTP_INITMSG");
exit(1);

}

/* Subscribe to events. */

for (i = 0; i < sizeof (event_interested) / sizeof (uint16_t); i++)

subscribe_event(lfd, event_interested[i]);

/* Wait for new associations */

for (;;) {

if ((cfd = accept(lfd, NULL, 0)) == -1) {

perror("accept");
exit(1);

}

/* Subcribe to interesting events for the new association. */

for (i = 0; i < sizeof (event_interested) / sizeof (int); i++)

subscribe_event(cfd, event_interested[i]);

/* We want sctp_rcvinfo in each receive. */

onoff = 1;

i = setsockopt(cfd, IPPROTO_SCTP, SCTP_RECVRCVINFO, &onoff,

sizeof (onoff));

if (i < 0) {

Stream Control Transmission Protocol

Programming Interfaces Guide • November 2011216

EXAMPLE 8–18 SCTP Echo Server (Continued)

perror("setsockopt SCTP_RECVRCVINFO");
close(cfd);

continue;

}

/* Echo back any and all data */

echo(cfd);

}

}

Stream Control Transmission Protocol

Chapter 8 • Socket Interfaces 217

218

Programming With XTI and TLI

This chapter describes the Transport Layer Interface (TLI) and the X/Open Transport Interface
(XTI). Advanced topics such as asynchronous execution mode are discussed in “Advanced
XTI/TLI Topics” on page 223.

Some recent additions to XTI, such as scatter/gather data transfer, are discussed in “Additions
to the XTI Interface” on page 243.

The transport layer of the OSI model (layer 4) is the lowest layer of the model that provides
applications and higher layers with end-to-end service. This layer hides the topology and
characteristics of the underlying network from users. The transport layer also defines a set of
services common to many contemporary protocol suites including the OSI protocols,
Transmission Control Protocol and TCP/IP Internet Protocol Suite, Xerox Network Systems
(XNS), and Systems Network Architecture (SNA).

TLI is modeled on the industry standard Transport Service Definition (ISO 8072). It also can be
used to access both TCP and UDP. XTI and TLI are a set of interfaces that constitute a network
programming interface. XTI is an evolution from the older TLI interface available on the
SunOS 4 platform. The Oracle Solaris operating system supports both interfaces, although XTI
represents the future direction of this set of interfaces. The Oracle Solaris software implements
XTI and TLI as a user library using the STREAMS I/O mechanism.

What Are XTI and TLI?

Note – The interfaces described in this chapter are multithread safe. This means that
applications containing XTI/TLI interface calls can be used freely in a multithreaded
application. Because these interface calls are not re-entrant, they do not provide linear
scalability.

9C H A P T E R 9

219

Caution – The XTI/TLI interface behavior has not been well specified in an asynchronous
environment. Do not use these interfaces from signal handler routines.

TLI was introduced with AT&T System V, Release 3 in 1986. TLI provided a transport layer
interface API. The ISO Transport Service Definition provided the model on which TLI is based.
TLI provides an API between the OSI transport and session layers. TLI interfaces evolved
further in AT&T System V, Release 4 version of UNIX and were also made available in SunOS
5.6 operating system interfaces.

XTI interfaces are an evolution of TLI interfaces and represent the future direction of this
family of interfaces. Compatibility for applications using TLI interfaces is available. You do not
need to port TLI applications to XTI immediately. New applications can use the XTI interfaces
and you can port older applications to XTI when necessary.

TLI is implemented as a set of interface calls in a library (libnsl) to which the applications link.
XTI applications are compiled using the c89 front end and must be linked with the xnet library
(libxnet). For additional information on compiling with XTI, see the standards(5) man page.

Note – An application using the XTI interface uses the xti.h header file, whereas an application
using the TLI interface includes the tiuser.h header file.

XTI/TLI code can be independent of current transport providers when used in conjunction
with some additional interfaces and mechanisms described in Chapter 4. The SunOS 5 product
includes some transport providers (TCP, for example) as part of the base operating system. A
transport provider performs services, and the transport user requests the services. The
transport user issues service requests to the transport provider. An example is a request to
transfer data over a connection TCP and UDP.

XTI/TLI can also be used for transport-independent programming by taking advantage of two
components:
■ Library routines that perform the transport services, in particular, transport selection and

name-to-address translation. The network services library includes a set of interfaces that
implement XTI/TLI for user processes. See Chapter 11, “Transport Selection and
Name-to-Address Mapping.”
Programs using TLI should be linked with the libnsl network services library by specifying
the -l nsl option at compile time.
Programs using XTI should be linked with the xnet library by specifying the -l xnet option
at compile time.

■ State transition rules that define the sequence in which the transport routines can be
invoked. For more information on state transition rules, see “State Transitions” on page 234.
The state tables define the legal sequence of library calls based on the state and the handling

What Are XTI and TLI?

Programming Interfaces Guide • November 2011220

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN5standards-5

of events. These events include user-generated library calls, as well as provider-generated
event indications. XTI/TLI programmers should understand all state transitions before
using the interface.

XTI/TLI Read/Write Interface
A user might want to establish a transport connection using exec(2) on an existing program
(such as /usr/bin/cat) to process the data as it arrives over the connection. Existing programs
use read(2) and write(2). XTI/TLI does not directly support a read/write interface to a
transport provider, but one is available. The interface enables you to issue read(2) and write(2)
calls over a transport connection in the data transfer phase. This section describes the
read/write interface to the connection mode service of XTI/TLI. This interface is not available
with the connectionless mode service.

EXAMPLE 9–1 Read/Write Interface

#include <stropts.h>

/* Same local management and connection establishment steps. */

if (ioctl(fd, I_PUSH, "tirdwr") == −1) {

perror(“I_PUSH of tirdwr failed”);

exit(5);

}

close(0);

dup(fd);

execl(“/usr/bin/cat”, “/usr/bin/cat”, (char *) 0);

perror(“exec of /usr/bin/cat failed”);

exit(6);

The client invokes the read/write interface by pushing tirdwr onto the stream associated with
the transport endpoint. See the description of I_PUSH in the streamio(7I) man page. The
tirdwr module converts XTI/TLI above the transport provider into a pure read/write interface.
With the module in place, the client calls close(2) and dup(2) to establish the transport
endpoint as its standard input file, and uses /usr/bin/cat to process the input.

Pushing tirdwr onto the transport provider forces XTI/TLI to use read(2) and write(2)
semantics. XTI/TLI does not preserve message boundaries when using read and write

semantics. Pop tirdwr from the transport provider to restore XTI/TLI semantics (see the
description of I_POP in the streamio(7I) man page.

XTI/TLI Read/Write Interface

Chapter 9 • Programming With XTI and TLI 221

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7streamio-7i

Caution – Push the tirdwr module onto a stream only when the transport endpoint is in the data
transfer phase. After pushing the module, the user cannot call any XTI/TLI routines. If the user
invokes an XTI/TLI routine, tirdwr generates a fatal protocol error, EPROTO, on the stream,
rendering it unusable. If you then pop the tirdwr module off the stream, the transport
connection aborts. See the description of I_POP in the streamio(7I) man page.

Write Data
After you send data over the transport connection with write(2), tirdwr passes data through to
the transport provider. If you send a zero-length data packet, which the mechanism allows,
tirdwr discards the message. If the transport connection is aborted, a hang-up condition is
generated on the stream, further write(2) calls fail, and errno is set to ENXIO. This problem
might occur, for example, because the remote user aborts the connection using
t_snddis(3NSL). You can still retrieve any available data after a hang-up.

Read Data
Receive data that arrives at the transport connection with read(2). tirdwr passes data from the
transport provider. The tirdwr module processes any other event or request passed to the user
from the provider as follows:

■ read(2) cannot identify expedited data to the user. If read(2) receives an expedited data
request, tirdwr generates a fatal protocol error, EPROTO, on the stream. The error causes
further system calls to fail. Do not use read(2) to receive expedited data.

■ tirdwr discards an abortive disconnect request and generates a hang-up condition on the
stream. Subsequent read(2) calls retrieve any remaining data, then return zero for all further
calls, indicating end of file.

■ tirdwr discards an orderly release request and delivers a zero-length message to the user. As
described in the read(2) man page, this notifies the user of end of file by returning 0.

■ If read(2) receives any other XTI/TLI request, tirdwr generates a fatal protocol error,
EPROTO, on the stream. This causes further system calls to fail. If a user pushes tirdwr onto a
stream after establishing the connection, tirdwr generates no request.

Close Connection
With tirdwr on a stream, you can send and receive data over a transport connection for the
duration of the connection. Either user can terminate the connection by closing the file
descriptor associated with the transport endpoint or by popping the tirdwr module off the
stream. In either case, tirdwr does the following:

XTI/TLI Read/Write Interface

Programming Interfaces Guide • November 2011222

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7streamio-7i
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-snddis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2

■ If tirdwr receives an orderly release request, it passes the request to the transport provider
to complete the orderly release of the connection. The remote user who initiated the orderly
release procedure receives the expected request when data transfer completes.

■ If tirdwr receives a disconnect request, it takes no special action.
■ If tirdwr receives neither an orderly release nor a disconnect request, it passes a disconnect

request to the transport provider to abort the connection.
■ If an error occurs on the stream and tirdwr does not receive a disconnect request, it passes a

disconnect request to the transport provider.

A process cannot initiate an orderly release after pushing tirdwr onto a stream. tirdwr handles
an orderly release if the user on the other side of a transport connection initiates the release. If
the client in this section is communicating with a server program, the server terminates the
transfer of data with an orderly release request. The server then waits for the corresponding
request from the client. At that point, the client exits and closes the transport endpoint. After
closing the file descriptor, tirdwr initiates the orderly release request from the client's side of
the connection. This release generates the request on which the server blocks.

Some protocols, like TCP, require this orderly release to ensure intact delivery of the data.

Advanced XTI/TLI Topics
This section presents additional XTI/TLI concepts:
■ “Asynchronous Execution Mode” on page 223 describes optional nonblocking

(asynchronous) mode for some library calls.
■ “Advanced XTI/TLI Programming Example” on page 224 is a program example of a server

supporting multiple outstanding connect requests and operating in an event-driven
manner.

Asynchronous Execution Mode
Many XTI/TLI library routines block to wait for an incoming event. However, some
time-critical applications should not block for any reason. An application can do local
processing while waiting for some asynchronous XTI/TLI event.

Applications can access asynchronous processing of XTI/TLI events through the combination
of asynchronous features and the non-blocking mode of XTI/TLI library routines. See the
ONC+ Developer’s Guide for information on use of the poll(2) system call and the I_SETSIG
ioctl(2) command to process events asynchronously.

You can run each XTI/TLI routine that blocks for an event in a special non-blocking mode. For
example, t_listen(3NSL) normally blocks for a connect request. A server can periodically poll
a transport endpoint for queued connect requests by calling t_listen(3NSL) in the

Advanced XTI/TLI Topics

Chapter 9 • Programming With XTI and TLI 223

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=ONCDG
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-listen-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-listen-3nsl

non-blocking (or asynchronous) mode. You enable the asynchronous mode by setting
O_NDELAY or O_NONBLOCK in the file descriptor. Set these modes as a flag through t_open(3NSL),
or by calling fcntl(2) before calling the XTI/TLI routine. Use fcntl(2) to enable or disable this
mode at any time. All program examples in this chapter use the default synchronous processing
mode.

Use of O_NDELAY or O_NONBLOCK affects each XTI/TLI routine differently. You need to
determine the exact semantics of O_NDELAY or O_NONBLOCK for a particular routine.

Advanced XTI/TLI Programming Example
Example 9–2 demonstrates two important concepts. The first is a server's ability to manage
multiple outstanding connect requests. The second is event-driven use of XTI/TLI and the
system call interface.

By using XTI/TLI, a server can manage multiple outstanding connect requests. One reason to
receive several simultaneous connect requests is to prioritize the clients. A server can receive
several connect requests, and accept them in an order based on the priority of each client.

The second reason for handling several outstanding connect requests is to overcome the limits
of single-threaded processing. Depending on the transport provider, while a server is
processing one connect request, other clients see the server as busy. If multiple connect requests
are processed simultaneously, the server is busy only if more than the maximum number of
clients try to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint for incoming
XTI/TLI events and takes the appropriate actions for the event received. The example following
demonstrates the ability to poll multiple transport endpoints for incoming events.

EXAMPLE 9–2 Endpoint Establishment (Convertible to Multiple Connections)

#include <tiuser.h>

#include <fcntl.h>

#include <stdio.h>

#include <poll.h>

#include <stropts.h>

#include <signal.h>

#define NUM_FDS 1

#define MAX_CONN_IND 4

#define SRV_ADDR 1 /* server’s well known address */

int conn_fd; /* server connection here */

extern int t_errno;

/* holds connect requests */

struct t_call *calls[NUM_FDS][MAX_CONN_IND];

main()

{

Advanced XTI/TLI Topics

Programming Interfaces Guide • November 2011224

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-open-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2

EXAMPLE 9–2 Endpoint Establishment (Convertible to Multiple Connections) (Continued)

struct pollfd pollfds[NUM_FDS];

struct t_bind *bind;

int i;

/*

* Only opening and binding one transport endpoint, but more can

* be supported

*/

if ((pollfds[0].fd = t_open(“/dev/tivc”, O_RDWR,

(struct t_info *) NULL)) == −1) {

t_error(“t_open failed”);

exit(1);

}

if ((bind = (struct t_bind *) t_alloc(pollfds[0].fd, T_BIND,

T_ALL)) == (struct t_bind *) NULL) {

t_error(“t_alloc of t_bind structure failed”);

exit(2);

}

bind->qlen = MAX_CONN_IND;

bind->addr.len = sizeof(int);

*(int *) bind->addr.buf = SRV_ADDR;

if (t_bind(pollfds[0].fd, bind, bind) == −1) {

t_error(“t_bind failed”);

exit(3);

}

/* Was the correct address bound? */

if (bind->addr.len != sizeof(int) ||

*(int *)bind->addr.buf != SRV_ADDR) {

fprintf(stderr, “t_bind bound wrong address\n”);

exit(4);

}

}

The file descriptor returned by t_open(3NSL) is stored in a pollfd structure that controls
polling of the transport endpoints for incoming data. See the poll(2) man page. Only one
transport endpoint is established in this example. However, the remainder of the example is
written to manage multiple transport endpoints. Several endpoints could be supported with
minor changes to Example 9–2.

This server sets qlen to a value greater than 1 for t_bind(3NSL). This value specifies that the
server should queue multiple outstanding connect requests. The server accepts the current
connect request before accepting additional connect requests. This example can queue up to
MAX_CONN_IND connect requests. The transport provider can negotiate the value of qlen to be
smaller if the provider cannot support MAX_CONN_IND outstanding connect requests.

After the server binds its address and is ready to process connect requests, it behaves as shown
in the following example.

EXAMPLE 9–3 Processing Connection Requests

pollfds[0].events = POLLIN;

Advanced XTI/TLI Topics

Chapter 9 • Programming With XTI and TLI 225

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-open-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-bind-3nsl

EXAMPLE 9–3 Processing Connection Requests (Continued)

while (TRUE) {

if (poll(pollfds, NUM_FDS, −1) == −1) {

perror(“poll failed”);

exit(5);

}

for (i = 0; i < NUM_FDS; i++) {

switch (pollfds[i].revents) {

default:

perror(“poll returned error event”);

exit(6);

case 0:

continue;

case POLLIN:

do_event(i, pollfds[i].fd);

service_conn_ind(i, pollfds[i].fd);

}

}

}

The events field of the pollfd structure is set to POLLIN, which notifies the server of any
incoming XTI/TLI events. The server then enters an infinite loop in which it polls the transport
endpoints for events, and processes events as they occur.

The poll(2) call blocks indefinitely for an incoming event. On return, the server checks the
value of revents for each entry, one per transport endpoint, for new events. If revents is 0, the
endpoint has generated no events and the server continues to the next endpoint. If revents is
POLLIN, there is an event on the endpoint. The server calls do_event to process the event. Any
other value in revents indicates an error on the endpoint, and the server exits. With multiple
endpoints, the server should close this descriptor and continue.

Each time the server iterates the loop, it calls service_conn_ind to process any outstanding
connect requests. If another connect request is pending, service_conn_ind saves the new
connect request and responds to it later.

The server calls do_event in the following example to process an incoming event.

EXAMPLE 9–4 Event Processing Routine

do_event(slot, fd)

int slot;

int fd;

{

struct t_discon *discon;

int i;

switch (t_look(fd)) {

default:

fprintf(stderr, "t_look: unexpected event\n");
exit(7);

case T_ERROR:

Advanced XTI/TLI Topics

Programming Interfaces Guide • November 2011226

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2

EXAMPLE 9–4 Event Processing Routine (Continued)

fprintf(stderr, "t_look returned T_ERROR event\n");
exit(8);

case −1:
t_error("t_look failed");
exit(9);

case 0:

/* since POLLIN returned, this should not happen */

fprintf(stderr,"t_look returned no event\n");
exit(10);

case T_LISTEN:

/* find free element in calls array */

for (i = 0; i < MAX_CONN_IND; i++) {

if (calls[slot][i] == (struct t_call *) NULL)

break;

}

if ((calls[slot][i] = (struct t_call *) t_alloc(fd, T_CALL,

T_ALL)) == (struct t_call *) NULL) {

t_error("t_alloc of t_call structure failed");
exit(11);

}

if (t_listen(fd, calls[slot][i]) == −1) {

t_error("t_listen failed");
exit(12);

}

break;

case T_DISCONNECT:

discon = (struct t_discon *) t_alloc(fd, T_DIS, T_ALL);

if (discon == (struct t_discon *) NULL) {

t_error("t_alloc of t_discon structure failed");
exit(13)

}

if(t_rcvdis(fd, discon) == −1) {

t_error("t_rcvdis failed");
exit(14);

}

/* find call ind in array and delete it */

for (i = 0; i < MAX_CONN_IND; i++) {

if (discon->sequence == calls[slot][i]->sequence) {

t_free(calls[slot][i], T_CALL);

calls[slot][i] = (struct t_call *) NULL;

}

}

t_free(discon, T_DIS);

break;

}

}

The arguments in Example 9–4 are a number (slot) and a file descriptor (fd). A slot is the index
into the global array calls, which has an entry for each transport endpoint. Each entry is an
array of t_call structures that hold incoming connect requests for the endpoint.

Advanced XTI/TLI Topics

Chapter 9 • Programming With XTI and TLI 227

The do_event module calls t_look(3NSL) to identify the XTI/TLI event on the endpoint
specified by fd. If the event is a connect request (T_LISTEN event) or disconnect request
(T_DISCONNECT event), the event is processed. Otherwise, the server prints an error message and
exits.

For connect requests, do_event scans the array of outstanding connect requests for the first free
entry. A t_call structure is allocated for the entry, and the connect request is received by
t_listen(3NSL). The array is large enough to hold the maximum number of outstanding
connect requests. The processing of the connect request is deferred.

A disconnect request must correspond to an earlier connect request. The do_event module
allocates a t_discon structure to receive the request. This structure has the following fields:

struct t_discon {

struct netbuf udata;

int reason;

int sequence;

}

The udata structure contains any user data sent with the disconnect request. The value of
reason contains a protocol-specific disconnect reason code. The value of sequence identifies
the connect request that matches the disconnect request.

The server calls t_rcvdis(3NSL) to receive the disconnect request. The array of connect
requests is scanned for one that contains the sequence number that matches the sequence
number in the disconnect request. When the connect request is found, its structure is freed and
the entry is set to NULL.

When an event is found on a transport endpoint, service_conn_ind is called to process all
queued connect requests on the endpoint, as the following example shows.

EXAMPLE 9–5 Process All Connect Requests

service_conn_ind(slot, fd)

{

int i;

for (i = 0; i < MAX_CONN_IND; i++) {

if (calls[slot][i] == (struct t_call *) NULL)

continue;

if((conn_fd = t_open(“/dev/tivc”, O_RDWR,

(struct t_info *) NULL)) == −1) {

t_error("open failed");
exit(15);

}

if (t_bind(conn_fd, (struct t_bind *) NULL,

(struct t_bind *) NULL) == −1) {

t_error("t_bind failed");
exit(16);

}

if (t_accept(fd, conn_fd, calls[slot][i]) == −1) {

if (t_errno == TLOOK) {

Advanced XTI/TLI Topics

Programming Interfaces Guide • November 2011228

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-look-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-listen-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvdis-3nsl

EXAMPLE 9–5 Process All Connect Requests (Continued)

t_close(conn_fd);

return;

}

t_error("t_accept failed");
exit(167);

}

t_free(calls[slot][i], T_CALL);

calls[slot][i] = (struct t_call *) NULL;

run_server(fd);

}

}

For each transport endpoint, the array of outstanding connect requests is scanned. For each
request, the server opens a responding transport endpoint, binds an address to the endpoint,
and accepts the connection on the endpoint. If another connect or disconnect request arrives
before the current request is accepted, t_accept(3NSL) fails and sets t_errno to TLOOK. You
cannot accept an outstanding connect request if any pending connect request events or
disconnect request events exist on the transport endpoint.

If this error occurs, the responding transport endpoint is closed and service_conn_ind returns
immediately, saving the current connect request for later processing. This activity causes the
server's main processing loop to be entered, and the new event is discovered by the next call to
poll(2). In this way, the user can queue multiple connect requests.

Eventually, all events are processed, and service_conn_ind is able to accept each connect
request in turn.

Asynchronous Networking
This section discusses the techniques of asynchronous network communication using XTI/TLI
for real-time applications. The SunOS platform provides support for asynchronous network
processing of XTI/TLI events using a combination of STREAMS asynchronous features and the
non-blocking mode of the XTI/TLI library routines.

Networking Programming Models
Like file and device I/O, network transfers can be done synchronously or asynchronously with
process service requests.

Synchronous networking proceeds similar to synchronous file and device I/O. Like the
write(2) interface, the send request returns after buffering the message, but might suspend the
calling process if buffer space is not immediately available. Like the read(2) interface, a receive
request suspends execution of the calling process until data arrives to satisfy the request.

Asynchronous Networking

Chapter 9 • Programming With XTI and TLI 229

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-accept-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2

Because there are no guaranteed bounds for transport services, synchronous networking is
inappropriate for processes that must have real-time behavior with respect to other devices.

Asynchronous networking is provided by non-blocking service requests. Additionally,
applications can request asynchronous notification when a connection might be established,
when data might be sent, or when data might be received.

Asynchronous Connectionless-Mode Service
Asynchronous connectionless mode networking is conducted by configuring the endpoint for
non-blocking service, and either polling for or receiving asynchronous notification when data
might be transferred. If asynchronous notification is used, the actual receipt of data typically
takes place within a signal handler.

Making the Endpoint Asynchronous
After the endpoint has been established using t_open(3NSL), and its identity established using
t_bind(3NSL), the endpoint can be configured for asynchronous service. Use the fcntl(2)
interface to set the O_NONBLOCK flag on the endpoint. Thereafter, calls to t_sndudata(3NSL) for
which no buffer space is immediately available return -1 with t_errno set to TFLOW. Likewise,
calls to t_rcvudata(3NSL) for which no data are available return -1 with t_errno set to
TNODATA.

Asynchronous Network Transfers
Although an application can use poll(2) to check periodically for the arrival of data or to wait
for the receipt of data on an endpoint, receiving asynchronous notification when data arrives
might be necessary. Use ioctl(2) with the I_SETSIG command to request that a SIGPOLL signal
be sent to the process upon receipt of data at the endpoint. Applications should check for the
possibility of multiple messages causing a single signal.

In the following example, protocol is the name of the application-chosen transport protocol.

#include <sys/types.h>

#include <tiuser.h>

#include <signal.h>

#include <stropts.h>

int fd;

struct t_bind *bind;

void sigpoll(int);

fd = t_open(protocol, O_RDWR, (struct t_info *) NULL);

bind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);

... /* set up binding address */

t_bind(fd, bind, bin

Asynchronous Networking

Programming Interfaces Guide • November 2011230

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-open-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-bind-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndudata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvudata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2

/* make endpoint non-blocking */

fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_NONBLOCK);

/* establish signal handler for SIGPOLL */

signal(SIGPOLL, sigpoll);

/* request SIGPOLL signal when receive data is available */

ioctl(fd, I_SETSIG, S_INPUT | S_HIPRI);

...

void sigpoll(int sig)

{

int flags;

struct t_unitdata ud;

for (;;) {

... /* initialize ud */

if (t_rcvudata(fd, &ud, &flags) < 0) {

if (t_errno == TNODATA)

break; /* no more messages */

... /* process other error conditions */

}

... /* process message in ud */

}

Asynchronous Connection-Mode Service
For connection-mode service, an application can arrange not only for the data transfer, but also
for the establishment of the connection itself to be done asynchronously. The sequence of
operations depends on whether the process is attempting to connect to another process or is
awaiting connection attempts.

Asynchronously Establishing a Connection
A process can attempt a connection and asynchronously complete the connection. The process
first creates the connecting endpoint and, using fcntl(2), configures the endpoint for
non-blocking operation. As with connectionless data transfers, the endpoint can also be
configured for asynchronous notification upon completion of the connection and subsequent
data transfers. The connecting process then uses t_connect(3NSL) to initiate setting up the
transfer. Then t_rcvconnect(3NSL) is used to confirm the establishment of the connection.

Asynchronous Use of a Connection
To asynchronously await connections, a process first establishes a non-blocking endpoint
bound to a service address. When either the result of poll(2) or an asynchronous notification
indicates that a connection request has arrived, the process can get the connection request by
using t_listen(3NSL). To accept the connection, the process uses t_accept(3NSL) . The
responding endpoint must be separately configured for asynchronous data transfers.

Asynchronous Networking

Chapter 9 • Programming With XTI and TLI 231

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-connect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvconnect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-listen-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-accept-3nsl

The following example illustrates how to request a connection asynchronously.

#include <tiuser.h>

int fd;

struct t_call *call;

fd = /* establish a non-blocking endpoint */

call = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR);

/* initialize call structure */

t_connect(fd, call, call);

/* connection request is now proceeding asynchronously */

/* receive indication that connection has been accepted */

t_rcvconnect(fd, &call);

The following example illustrates listening for connections asynchronously.

#include <tiuser.h>

int fd, res_fd;

struct t_call call;

fd = /* establish non-blocking endpoint */

/*receive indication that connection request has arrived */

call = (struct t_call *) t_alloc(fd, T_CALL, T_ALL);

t_listen(fd, &call);

/* determine whether or not to accept connection */

res_fd = /* establish non-blocking endpoint for response */

t_accept(fd, res_fd, call);

Asynchronous Open
Occasionally, an application might be required to dynamically open a regular file in a file system
mounted from a remote host, or on a device whose initialization might be prolonged. However,
while such a request to open a file is being processed, the application is unable to achieve
real-time response to other events. The SunOS software solves this problem by having a second
process handle the actual opening of the file, then passes the file descriptor to the real-time
process.

Transferring a File Descriptor
The STREAMS interface provided by the SunOS platform provides a mechanism for passing an
open file descriptor from one process to another. The process with the open file descriptor uses
ioctl(2) with a command argument of I_SENDFD. The second process obtains the file
descriptor by calling ioctl(2) with a command argument of I_RECVFD.

Asynchronous Networking

Programming Interfaces Guide • November 2011232

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2ioctl-2

In the following example, the parent process prints out information about the test file, and
creates a pipe. Next, the parent creates a child process that opens the test file and passes the open
file descriptor back to the parent through the pipe. The parent process then displays the status
information on the new file descriptor.

EXAMPLE 9–6 File Descriptor Transfer

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stropts.h>

#include <stdio.h>

#define TESTFILE "/dev/null"
main(int argc, char *argv[])

{

int fd;

int pipefd[2];

struct stat statbuf;

stat(TESTFILE, &statbuf);

statout(TESTFILE, &statbuf);

pipe(pipefd);

if (fork() == 0) {

close(pipefd[0]);

sendfd(pipefd[1]);

} else {

close(pipefd[1])

recvfd(pipefd[0]);

}

}

sendfd(int p)

{

int tfd;

tfd = open(TESTFILE, O_RDWR);

ioctl(p, I_SENDFD, tfd);

}

recvfd(int p)

{

struct strrecvfd rfdbuf;

struct stat statbuf;

char fdbuf[32];

ioctl(p, I_RECVFD, &rfdbuf);

fstat(rfdbuf.fd, &statbuf);

sprintf(fdbuf, "recvfd=%d", rfdbuf.fd);

statout(fdbuf, &statbuf);

}

statout(char *f, struct stat *s)

{

printf("stat: from=%s mode=0%o, ino=%ld, dev=%lx, rdev=%lx\n",
f, s->st_mode, s->st_ino, s->st_dev, s->st_rdev);

fflush(stdout);

Asynchronous Networking

Chapter 9 • Programming With XTI and TLI 233

EXAMPLE 9–6 File Descriptor Transfer (Continued)

}

State Transitions
The tables in the following sections describe all state transitions associated with XTI/TLI.

XTI/TLI States
The following table defines the states used in XTI/TLI state transitions, along with the service
types.

TABLE 9–1 XTI/TLI State Transitions and Service Types

State Description Service Type

T_UNINIT Uninitialized–initial and final state of interface T_COTS, T_COTS_ORD, T_CLTS

T_UNBND Initialized but not bound T_COTS, T_COTS_ORD, T_CLTS

T_IDLE No connection established T_COTS, T_COTS_ORD, T_CLTS

T_OUTCON Outgoing connection pending for client T_COTS, T_COTS_ORD

T_INCON Incoming connection pending for server T_COTS, T_COTS_ORD

T_DATAXFER Data transfer T_COTS, T_COTS_ORD

T_OUTREL Outgoing orderly release (waiting for orderly release
request)

T_COTS_ORD

T_INREL Incoming orderly release (waiting to send orderly
release request)

T_COTS_ORD

Outgoing Events
The outgoing events described in the following table correspond to the status returned from the
specified transport routines, where these routines send a request or response to the transport
provider. In the table, some events, such as “accept,” are distinguished by the context in which
they occur. The context is based on the values of the following variables:

■ ocnt – Count of outstanding connect requests
■ fd – File descriptor of the current transport endpoint
■ resfd – File descriptor of the transport endpoint where a connection is accepted

State Transitions

Programming Interfaces Guide • November 2011234

TABLE 9–2 Outgoing Events

Event Description Service Type

opened Successful return of t_open(3NSL) T_COTS, T_COTS_ORD, T_CLTS

bind Successful return of t_bind(3NSL) T_COTS, T_COTS_ORD, T_CLTS

optmgmt Successful return of t_optmgmt(3NSL) T_COTS, T_COTS_ORD, T_CLTS

unbind Successful return of t_unbind(3NSL) T_COTS, T_COTS_ORD, T_CLTS

closed Successful return of t_close(3NSL) T_COTS, T_COTS_ORD, T_CLT

connect1 Successful return of t_connect(3NSL) in
synchronous mode

T_COTS, T_COTS_ORD

connect2 TNODATA error on t_connect(3NSL) in
asynchronous mode, or TLOOK error due to a
disconnect request arriving on the transport
endpoint

T_COTS, T_COTS_ORD

accept1 Successful return of t_accept(3NSL) with ocnt

== 1, fd == resfd

T_COTS, T_COTS_ORD

accept2 Successful return of t_accept(3NSL) with
ocnt== 1, fd!= resfd

T_COTS, T_COTS_ORD

accept3 Successful return of t_accept(3NSL) with ocnt

> 1

T_COTS, T_COTS_ORD

snd Successful return of t_snd(3NSL) T_COTS, T_COTS_ORD

snddis1 Successful return of t_snddis(3NSL) with ocnt

<= 1

T_COTS, T_COTS_ORD

snddis2 Successful return of t_snddis(3NSL) with ocnt

> 1

T_COTS, T_COTS_ORD

sndrel Successful return of t_sndrel(3NSL) T_COTS_ORD

sndudata Successful return of t_sndudata(3NSL) T_CLTS

Incoming Events
The incoming events correspond to the successful return of the specified routines. These
routines return data or event information from the transport provider. The only incoming
event not associated directly with the return of a routine is pass_conn, which occurs when a
connection is transferred to another endpoint. The event occurs on the endpoint that is being
passed the connection, although no XTI/TLI routine is called on the endpoint.

In the following table, the rcvdis events are distinguished by the value of ocnt, the count of
outstanding connect requests on the endpoint.

State Transitions

Chapter 9 • Programming With XTI and TLI 235

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-open-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-bind-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-optmgmt-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-unbind-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-close-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-connect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-connect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-accept-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-accept-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-accept-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-snd-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-snddis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-snddis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndrel-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndudata-3nsl

TABLE 9–3 Incoming Events

Event Description Service Type

listen Successful return of t_listen(3NSL) T_COTS, T_COTS_ORD

rcvconnect Successful return of t_rcvconnect(3NSL) T_COTS, T_COTS_ORD

rcv Successful return of t_rcv(3NSL) T_COTS, T_COTS_ORD

rcvdis1 Successful return of t_rcvdis(3NSL)
rcvdis1t_rcvdis(), onct <= 0

T_COTS, T_COTS_ORD

rcvdis2 Successful return of t_rcvdis(3NSL), ocnt
== 1

T_COTS, T_COTS_ORD

rcvdis3 Successful return of t_rcvdis(3NSL) with
ocnt > 1

T_COTS, T_COTS_ORD

rcvrel Successful return of t_rcvrel(3NSL) T_COTS_ORD

rcvudata Successful return of t_rcvudata(3NSL) T_CLTS

rcvuderr Successful return of t_rcvuderr(3NSL) T_CLTS

pass_conn Receive a passed connection T_COTS, T_COTS_ORD

State Tables
The state tables describe the XTI/TLI state transitions. Each box contains the next state, given
the current state (column) and the current event (row). An empty box is an invalid state/event
combination. Each box can also have an action list. Actions must be done in the order specified
in the box.

You should understand the following when studying the state tables:

■ t_close(3NSL) terminates an established connection for a connection-oriented transport
provider. The connection termination will be either orderly or abortive, depending on the
service type supported by the transport provider. See the t_getinfo(3NSL) man page.

■ If a transport user issues a interface call out of sequence, the interface fails and t_errno is set
to TOUTSTATE. The state does not change.

■ The error codes TLOOK or TNODATA after t_connect(3NSL) can result in state changes. The
state tables assume correct use of XTI/TLI.

■ Any other transport error does not change the state, unless the man page for the interface
says otherwise.

■ The support interfaces t_getinfo(3NSL), t_getstate(3NSL), t_alloc(3NSL),
t_free(3NSL), t_sync(3NSL), t_look(3NSL), and t_error(3NSL) are excluded from the
state tables because they do not affect the state.

State Transitions

Programming Interfaces Guide • November 2011236

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-listen-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvconnect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcv-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvdis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvdis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvdis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvrel-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvudata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvuderr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-close-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-getinfo-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-connect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-getinfo-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-getstate-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-alloc-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-free-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sync-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-look-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-error-3nsl

Some of the state transitions listed in the tables below offer actions the transport user must take.
Each action is represented by a digit derived from the list below:

■ Set the count of outstanding connect requests to zero
■ Increment the count of outstanding connect requests
■ Decrement the count of outstanding connect requests
■ Pass a connection to another transport endpoint, as indicated in thet_accept(3NSL) man

page

The following table shows endpoint establishment states.

TABLE 9–4 Connection Establishment State

Event/State T_UNINIT T_UNBND T_IDLE

opened T_UNBND

bind T_IDLE[1]

optmgmt (TLI only) T_IDLE

unbind T_UNBND

closed T_UNINIT

The following table shows data transfer in connection mode.

TABLE 9–5 Connection Mode State: Part 1

Event/State T_IDLE T_OUTCON T_INCON T_DATAXFER

connect1 T_DATAXFER

connect2 T_OUTCON

rcvconnect T_DATAXFER

listen T_INCON [2] T_INCON [2]

accept1 T_DATAXFER [3]

accept2 T_IDLE [3] [4]

accept3 T_INCON [3] [4]

snd T_DATAXFER

rcv T_DATAXFER

snddis1 T_IDLE T_IDLE [3] T_IDLE

snddis2 T_INCON [3]

State Transitions

Chapter 9 • Programming With XTI and TLI 237

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-accept-3nsl

TABLE 9–5 Connection Mode State: Part 1 (Continued)
Event/State T_IDLE T_OUTCON T_INCON T_DATAXFER

rcvdis1 T_IDLE T_IDLE

rcvdis2 T_IDLE [3]

rcvdis3 T_INCON [3]

sndrel T_OUTREL

rcvrel T_INREL

pass_conn T_DATAXFER

optmgmt T_IDLE T_OUTCON T_INCON T_DATAXFER

closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT

The following table shows connection establishment/connection release/data transfer in
connection mode.

TABLE 9–6 Connection Mode State: Part 2

Event/State T_OUTREL T_INREL T_UNBND

connect1

connect2

rcvconnect

listen

accept1

accept2

accept3

snd T_INREL

rcv T_OUTREL

snddis1 T_IDLE T_IDLE

snddis2

rcvdis1 T_IDLE T_IDLE

rcvdis2

rcvdis3

sndrel T_IDLE

State Transitions

Programming Interfaces Guide • November 2011238

TABLE 9–6 Connection Mode State: Part 2 (Continued)
Event/State T_OUTREL T_INREL T_UNBND

rcvrel T_IDLE

pass_conn T_DATAXFER

optmgmt T_OUTREL T_INREL T_UNBND

closed T_UNINIT T_UNINIT

The following table shows connectionless mode states.

TABLE 9–7 Connectionless Mode State

Event/State T_IDLE

snudata T_IDLE

rcvdata T_IDLE

rcvuderr T_IDLE

Guidelines to Protocol Independence
The set of XTI/TLI services, common to many transport protocols, offers protocol
independence to applications. Not all transport protocols support all XTI/TLI services. If
software must run in a variety of protocol environments, use only the common services.

The following is a list of services that might not be common to all transport protocols.

■ In connection mode service, a transport service data unit (TSDU) might not be supported
by all transport providers. Make no assumptions about preserving logical data boundaries
across a connection.

■ Protocol and implementation-specific service limits are returned by the t_open(3NSL) and
t_getinfo(3NSL) routines. Use these limits to allocate buffers to store protocol-specific
transport addresses and options.

■ Do not send user data with connect requests or disconnect requests, such as
t_connect(3NSL) and t_snddis(3NSL). Not all transport protocols can use this method.

■ The buffers in the t_call structure used for t_listen(3NSL) must be large enough to hold
any data sent by the client during connection establishment. Use the T_ALL argument to
t_alloc(3NSL) to set maximum buffer sizes to store the address, options, and user data for
the current transport provider.

Guidelines to Protocol Independence

Chapter 9 • Programming With XTI and TLI 239

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-open-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-getinfo-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-connect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-snddis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-listen-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-alloc-3nsl

■ Do not specify a protocol address on t_bind(3NSL) on a client-side endpoint. The transport
provider should assign an appropriate address to the transport endpoint. A server should
retrieve its address for t_bind(3NSL) in a way that does not require knowledge of the
transport provider's name space.

■ Do not make assumptions about formats of transport addresses. Transport addresses
should not be constants in a program. Chapter 11, “Transport Selection and
Name-to-Address Mapping,” contains detailed information about transport selection.

■ The reason codes associated with t_rcvdis(3NSL) are protocol-dependent. Do not
interpret these reason codes if protocol independence is important.

■ The t_rcvuderr(3NSL) error codes are protocol dependent. Do not interpret these error
codes if protocol independence is a concern.

■ Do not code the names of devices into programs. The device node identifies a particular
transport provider and is not protocol independent. See Chapter 11, “Transport Selection
and Name-to-Address Mapping,” for details regarding transport selection.

■ Do not use the optional orderly release facility of the connection mode service, provided by
t_sndrel(3NSL) and t_rcvrel(3NSL), in programs targeted for multiple protocol
environments. This facility is not supported by all connection-based transport protocols.
Using the facility can prevent programs from successfully communicating with open
systems.

XTI/TLI Versus Socket Interfaces
XTI/TLI and sockets are different methods of handling the same tasks. Although they provide
mechanisms and services that are functionally similar, they do not provide one-to-one
compatibility of routines or low-level services. Observe the similarities and differences between
the XTI/TLI and socket-based interfaces before you decide to port an application.

The following issues are related to transport independence, and can have some bearing on RPC
applications:

■ Privileged ports – Privileged ports are an artifact of the Berkeley Software Distribution
(BSD) implementation of the TCP/IP Internet Protocols. These ports are not portable. The
notion of privileged ports is not supported in the transport-independent environment.

■ Opaque addresses – Separating the portion of an address that names a host from the portion
of an address that names the service at that host cannot be done in a transport-independent
fashion. Be sure to change any code that assumes it can discern the host address of a network
service.

■ Broadcast – No transport-independent form of broadcast address exists.

XTI/TLI Versus Socket Interfaces

Programming Interfaces Guide • November 2011240

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-bind-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-bind-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvdis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvuderr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndrel-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvrel-3nsl

Socket-to-XTI/TLI Equivalents
The following table shows approximate equivalents between XTI/TLI interfaces and socket
interfaces. The comment field describes the differences. If the comment column is blank, either
the interfaces are similar or no equivalent interface exists in either interface.

TABLE 9–8 TLI and Socket Equivalent Functions

TLI interface Socket interface Comments

t_open(3NSL) socket(3SOCKET)

– socketpair(3SOCKET)

t_bind(3NSL) bind(3SOCKET) t_bind(3NSL) sets the queue depth for
passive sockets, but bind(3SOCKET) does
not. For sockets, the queue length is specified
in the call to listen(3SOCKET).

t_optmgmt(3NSL) getsockopt(3SOCKET)

setsockopt(3SOCKET)

t_optmgmt(3NSL) manages only transport
options. getsockopt(3SOCKET) and
setsockopt(3SOCKET) can manage options
at the transport layer, but also at the socket
layer and at the arbitrary protocol layer.

t_unbind(3NSL) –

t_close(3NSL) close(2)

t_getinfo(3NSL) getsockopt(3SOCKET) t_getinfo(3NSL) returns information about
the transport. getsockopt(3SOCKET) can
return information about the transport and
the socket.

t_getstate(3NSL) -

t_sync(3NSL) -

t_alloc(3NSL) -

t_free(3NSL) -

t_look(3NSL) - getsockopt(3SOCKET) with the SO_ERROR
option returns the same kind of error
information as t_look(3NSL)t_look().

t_error(3NSL) perror(3C)

Socket-to-XTI/TLI Equivalents

Chapter 9 • Programming With XTI and TLI 241

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-open-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocket-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocketpair-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-bind-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-bind-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-optmgmt-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-optmgmt-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-unbind-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-close-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-getinfo-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-getinfo-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-getstate-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sync-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-alloc-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-free-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-look-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetsockopt-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-look-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-error-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Aperror-3c

TABLE 9–8 TLI and Socket Equivalent Functions (Continued)
TLI interface Socket interface Comments

t_connect(3NSL) connect(3SOCKET) You do not need to bind the local endpoint
before invoking connect(3SOCKET). Bind
the endpoint before calling
t_connect(3NSL). You can use
connect(3SOCKET) on a connectionless
endpoint to set the default destination
address for datagrams. You can send data
using connect(3SOCKET).

t_rcvconnect(3NSL) -

t_listen(3NSL) listen(3SOCKET) t_listen(3NSL) waits for connection
indications. listen(3SOCKET) sets the
queue depth.

t_accept(3NSL) accept(3SOCKET)

t_snd(3NSL) send(3SOCKET)

sendto(3SOCKET)

sendmsg(3SOCKET) sendto(3SOCKET) and sendmsg(3SOCKET)
operate in connection mode as well as in
datagram mode.

t_rcv(3NSL) recv(3SOCKET)

recvfrom(3SOCKET)

recvmsg(3SOCKET) recvfrom(3SOCKET) and
recvmsg(3SOCKET) operate in connection
mode as well as datagram mode.

t_snddis(3NSL) -

t_rcvdis(3NSL) -

t_sndrel(3NSL) shutdown(3SOCKET)

t_rcvrel(3NSL) -

t_sndudata(3NSL) sendto(3SOCKET)

recvmsg(3SOCKET)

t_rcvuderr(3NSL) -

read(2), write(2) read(2), write(2) In XTI/TLI you must push the tirdwr(7M)
module before calling read(2) or write(2). In
sockets, calling read(2) or write(2) suffices.

Socket-to-XTI/TLI Equivalents

Programming Interfaces Guide • November 2011242

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-connect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-connect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvconnect-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-listen-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-listen-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Blisten-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-accept-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-snd-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsend-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendmsg-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendmsg-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcv-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecv-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvfrom-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvmsg-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvfrom-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvmsg-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-snddis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvdis-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndrel-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bshutdown-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvrel-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndudata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsendto-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Brecvmsg-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvuderr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7tirdwr-7m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2

Additions to the XTI Interface
The XNS 5 (UNIX03) standard introduces some new XTI interfaces. These are briefly described
below. You can find the details in the relevant manual pages. These interfaces are not available
for TLI users. The scatter-gather data transfer interfaces are:

t_sndvudata(3NSL) Send a data unit from one or more non-contiguous buffers

t_rcvvudata(3NSL) Receive a data unit into one or more non-contiguous buffers

t_sndv(3NSL) Send data or expedited data from one or more non-contiguous buffers
on a connection

t_rcvv(3NSL) Receive data or expedited data sent over a connection and put the data
into one or more non-contiguous buffers

The XTI utility interface t_sysconf(3NSL) gets configurable XTI variables. The
t_sndreldata(3NSL) interface initiates and responds to an orderly release with user data. The
t_rcvreldata(3NSL) receives an orderly release indication or confirmation containing user
data.

Note – The additional interfaces t_sndreldata(3NSL) and t_rcvreldata(3NSL) are used only
with a specific transport called minimal OSI, which is not available on the Oracle Solaris
platform. These interfaces are not available for use in conjunction with Internet Transports
(TCP or UDP).

Additions to the XTI Interface

Chapter 9 • Programming With XTI and TLI 243

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndvudata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvvudata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndv-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvv-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sysconf-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndreldata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvreldata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-sndreldata-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bt-rcvreldata-3nsl

244

Packet Filtering Hooks

The packet filtering hooks interfaces help develop value added network solutions at the kernel
level such as security (packet filtering and firewall) solutions and network address translation
(NAT) solutions.

The packet filtering hooks interfaces provide the following capabilities:

■ Notification each time a packet appears at one of the hook points
■ Notification each time a new instance of IP is created to support a new zone booting that

requires an exclusive instance of IP
■ Kernel access to other basic network interface information such as interface names and

addresses
■ Interception of packets on the loopback interface

Loopback packet interception also provides access to packets as they move between zones that
are using a shared instance of IP. This is the default model.

Packet Filtering Hooks Interfaces
Packet filtering hooks interfaces include kernel functions and data type definitions.

Packet Filtering Hooks Kernel Functions
The packet filtering hooks kernel functions are exported from the misc/neti and misc/hook

kernel modules to support packet filtering. To use these functions, link your kernel modules
with -Nmisc/neti and -Nmisc/hook so that the functions will be correctly loaded by the kernel.

hook_alloc(9F) Allocate a hook_t data structure.

hook_free(9F) Free a hook_t structure that was originally
allocated by hook_alloc().

10C H A P T E R 1 0

245

net_event_notify_register(9F) Register a function to be called when there is a
change to a specified event.

net_event_notify_unregister(9F) Indicate that there is no longer any desire to
receive notification of changes to the specified
event through calls to the specified callback
function.

net_getifname(9F) Retrieve the name given to the specified network
interface.

net_getlifaddr(9F) Retrieve the network address information for
each specified logical interface.

net_getmtu(9F) Retrieve information about the current MTU of
the specified network interface.

net_getpmtuenabled(9F) Indicate whether path MTU (PMTU) discovery is
enabled for the specified network protocol.

net_hook_register(9F) Add a hook that allows callbacks to be registered
with events that belong to the specified network
protocol.

net_hook_unregister(9F) Disable callback hooks that were registered with
net_hook_register().

net_inject(9F) Deliver network layer packets either into the
kernel or onto the network.

net_inject_alloc(9F) Allocate a net_inject_t structure.

net_inject_free(9F) Free a net_inject_t structure that was originally
allocated by net_inject_alloc().

net_instance_alloc(9F) Allocate a net_instance_t structure.

net_instance_free(9F) Free a net_instance_t structure that was
originally allocated by net_instance_alloc().

net_instance_notify_register(9F) Register the specified function to be called when
there is a new instance added to or removed from
the specified network instance.

net_instance_notify_unregister(9F) Indicate that there is no longer any desire to
receive notification of changes to the specified
instance through calls to the specified callback
function.

net_instance_register(9F) Record the set of functions to be called when an
event related to IP instance maintenance occurs.

Packet Filtering Hooks Interfaces

Programming Interfaces Guide • November 2011246

net_instance_unregister(9F) Remove the set of instances that were previously
registered with net_instance_register().

net_ispartialchecksum(9F) Indicates whether the specified packet contains
headers with only partial checksum values.

net_isvalidchecksum(9F) Verify the layer 3 checksum and, in some cases,
the layer 4 checksum in the specified packet.

net_kstat_create(9F) Allocate and initialize a new kstat(9S) structure
for the specified instance of IP.

net_kstat_delete(9F) Remove a kstat for the specified instance of IP
from the system.

net_lifgetnext(9F) Search all of the logical interfaces that are
associated with a physical network interface.

net_phygetnext(9F) Search all of the network interfaces that a network
protocol “owns.”

net_phylookup(9F) Attempt to retrieve the specified interface name
for a network protocol.

net_protocol_lookup(9F) Locate an implementation of a network layer
protocol.

net_protocol_notify_register(9F) Register the specified function to be called when
there is a change to the specified protocol.

net_protocol_notify_unregister(9F) Remove the specified function from the list of
functions to call.

net_protocol_release(9F) Indicate that a reference to the specified network
protocol is no longer required.

net_routeto(9F) Indicate which network interface packets are sent.

Packet Filtering Hooks Data Types
The following types support the functions described above.

hook_t(9S) A callback to be inserted into a networking event.

hook_nic_event(9S) An event that has occurred and belongs to a network interface.

hook_pkt_event(9S) A packet event structure passed through to hooks.

net_inject_t(9S) Information about how to transmit a packet.

Packet Filtering Hooks Interfaces

Chapter 10 • Packet Filtering Hooks 247

net_instance_t(9S) A collection of instances to be called when relevant events happen
within IP.

Using the Packet Filtering Hooks Interfaces
A substantial amount of programming is required to work with the packet filtering hooks
interfaces because this API supports multiple instances of the IP stack running concurrently in
the same kernel. The IP stack allows multiple instances of itself for zones and multiple instances
of the framework support packet interception in IP.

This section demonstrates the set up code to use the packet filtering hooks API to receive
inbound IPv4 packets.

IP Instances
The first decision you need to make when you use this API is whether to accommodate multiple
instances of IP running in the kernel or to only interact with the global zone.

To be aware of the presence of IP instances, register callback functions that are activated when
an instance is created, destroyed, and shut down. Use net_instance_alloc() to allocate a
net_instance_t packet event structure to store these three function pointers. Use
net_instance_free() to free resources when you no longer need the callbacks and the
structure. Specify nin_name to give the structure instance a name. Specify at least the
nin_create() and nin_destroy() callbacks. The nin_create() function is called when a new
instance of IP is created, and the nin_destroy() function is called when an instance of IP is
destroyed.

Specifying nin_shutdown() is optional unless the code will be exporting information to kstats.
To use kstats on a per-instance basis, use net_kstat_create() during the create callback.
Cleanup of the kstat information must happen during the shutdown callback, not the destroy
callback. Use net_kstat_delete() to clean up kstat information.

extern void *mycreate(const netid_t);

net_instance_t *n;

n = net_instance_alloc(NETINFO_VERSION);

if (n != NULL) {

n->nin_create = mycreate;

n->nin_destroy = mydestroy;

n->nin_name = "my module";
if (net_instance_register(n) != 0)

net_instance_free(n);

}

Using the Packet Filtering Hooks Interfaces

Programming Interfaces Guide • November 2011248

If one or more instances of IP are present when net_instance_alloc() is called, the create
callback will be called for each currently active instance. The framework that supports the
callbacks ensures that only one of the create, destroy, or shutdown functions is active at any one
time for a given instance. The framework also ensures that once the create callback has been
called, the shutdown callback will only be called after create has completed. Similarly, the
destroy callback does not start until the shutdown callback is complete.

The mycreate() function in the following example is a simple example of a create callback. The
mycreate() function records the network instance identifier in its own private context
structure and registers a new callback to be called when a new protocol (such as IPv4 or IPv6) is
registered with this framework.

If no zones are running (and therefore no instances other than the global zone), calling
net_instance_register() runs the create callback for the global zone. You must supply the
destroy callback so that net_instance_unregister() can be called later. Attempts to call
net_instance_register() with either the nin_create or nin_destroy fields set to NULL will
fail.

void *

mycreate(const netid_t id)

{

mytype_t *ctx;

ctx = kmem_alloc(sizeof(*ctx), KM_SLEEP);

ctx->instance_id = id;

net_instance_notify_register(id, mynewproto, ctx);

return (ctx);

}

The function mynewproto() should expect to be called each time a network protocol is either
added to or removed from a networking instance. If registered network protocols are already
operating within the given instance, then the create callback will be called for each protocol that
already exists.

Protocol Registration
For this callback, only the proto argument is filled in by the caller. Neither an event nor a hook
name can be meaningfully supplied at this point. In this example function, only events that
announce the registration of the IPv4 protocol are being looked for.

The next step in this function is to discover when events are added to the IPv4 protocol by using
the net_protocol_notify_register() interface to register the mynewevent() function.

static int

mynewproto(hook_notify_cmd_t cmd, void *arg, const char *proto,

const char *event, const char *hook)

{

Using the Packet Filtering Hooks Interfaces

Chapter 10 • Packet Filtering Hooks 249

mytype_t *ctx = arg;

if (strcmp(proto, NHF_INET) != 0)

return (0);

switch (cmd) {

case HN_REGISTER :

ctx->inet = net_protocol_lookup(s->id, proto);

net_protocol_notify_register(s->inet, mynewevent, ctx);

break;

case HN_UNREGISTER :

case HN_NONE :

break;

}

return (0);

}

The table below lists all three protocols that could be expected to be seen with the mynewproto()
callback. New protocols could be added in the future, so you must safely fail (return the value 0)
any unknown protocols.

Programming Symbol Protocol

NHF_INET IPv4

NHF_INET6 IPv6

NHF_ARP ARP

Event Registration
Just as the handling of instances and protocols is dynamic, the handling of the events that live
under each protocol also is dynamic. Two types of events are supported by this API: network
interface events and packet events.

In the function below, the announcement for the presence of the event for inbound packets for
IPv4 is being checked for. When that announcement is seen, a hook_t structure is allocated,
describing the function to be called for each inbound IPv4 packet.

static int

mynewevent(hook_notify_cmd_t cmd, void *arg, const char *parent,

const char *event, const char *hook)

{

mytype_t *ctx = arg;

char buffer[32];

hook_t *h;

if ((strcmp(event, NH_PHYSICAL_IN) == 0) &&

(strcmp(parent, NHF_INET) == 0)) {

sprintf(buffer, "mypkthook_%s_%s", parent, event);

h = hook_alloc(HOOK_VERSION);

Using the Packet Filtering Hooks Interfaces

Programming Interfaces Guide • November 2011250

h->h_hint = HH_NONE;

h->h_arg = s;

h->h_name = strdup(buffer);

h->h_func = mypkthook;

s->hook_in = h;

net_hook_register(ctx->inet, (char *)event, h);

} else {

h = NULL;

}

return (0);

}

The function mynewevent() will be called for each event that is added and removed. The
following events are available.

Event Name Data Structure Comment

NH_PHYSICAL_IN hook_pkt_event_t This event is generated for every packet that arrives at
the network protocol and has been received from a
network interface driver.

NH_PHYSICAL_OUT hook_pkt_event_t This event is generated for every packet prior to
delivery to the network interface driver for sending
from the network protocol layer.

NH_FORWARDING hook_pkt_event_t This event is for all packets that have been received by
the system and will be sent out another network
interface. This event happens after NH_PHYSICAL_IN
and before NH_PHYSICAL_OUT.

NH_LOOPBACK_IN hook_pkt_event_t This event is generated for packets that are received on
the loopback interface or that are received by a zone
that is sharing its network instance with the global
zone.

NH_LOOPBACK_OUT hook_pkt_event_t This event is generated for packets that are sent on the
loopback interface or that are being sent by a zone that
is sharing its network instance with the global zone.

NH_NIC_EVENTS hook_nic_event_t This event is generated for specific changes of state for
network interfaces.

For packet events, there is one specific event for each particular point in the IP stack. This is to
enable you to be selective about exactly where in the flow of the packets you wish to intercept
packets, without being overburdened by examining every packet event that happens inside the
kernel. For network interface events the model is different, in part because the events are much
lower in volume and because it is more likely that the developer will be interested in several of
them, not just one.

Using the Packet Filtering Hooks Interfaces

Chapter 10 • Packet Filtering Hooks 251

The network interface event announces one of the following events:

■ An interface is created (NE_PLUMB) or destroyed (NE_UNPLUMB).
■ An interface changes state to up (NE_UP) or down (NE_DOWN).
■ An interface has an address change (NE_ADDRESS_CHANGE).

New network interface events could be added in the future, so you must always return 0 for any
unknown or unrecognized event that the callback function receives.

The Packet Hook
The packet hook function is called when a packet is received. In this case the function
mypkthook() should expect to be called for each inbound packet that arrives in the kernel from
a physical network interface. Packets generated internally, that flow between zones using the
shared IP instance model or over the loopback interface, will not be seen.

To illustrate the difference between accepting a packet and allowing the function to return
normally with what is required to drop a packet, the code below prints out the source and
destination address of every 100th packet and then drops the packet, introducing a packet loss
of 1%.

static int

mypkthook(hook_event_token_t tok, hook_data_t data, void *arg)

{

static int counter = 0;

mytupe_t *ctx = arg;

hook_pkt_event_t *pkt = (hook_pkt_event_t)data;

struct ip *ip;

size_t bytes;

bytes = msgdsize(pkt->hpe_mb);

ip = (struct ip *)pkt->hpe_hdr;

counter++;

if (counter == 100) {

printf("drop %d bytes received from %x to %x\n", bytes,

ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));

counter = 0;

freemsg(*pkt->hpe_mp);

*pkt->hpe_mp = NULL;

pkt->hpe_mb = NULL;

pkt->hpe_hdr = NULL;

return (1);

}

return (0);

}

Packets received by this function, and all others that are called as a callback from a packet event,
are received one at a time. There is no chaining together of packets with this interface, so you

Using the Packet Filtering Hooks Interfaces

Programming Interfaces Guide • November 2011252

should expect only one packet per call and expect b_next to always be NULL. While there is no
other packet, a single packet may be comprised of several mblk_t structures chained together
with b_cont.

Packet Filtering Hooks Example
Following is a complete example that can be compiled and loaded into the kernel.

Use the following commands to compile this code into a working kernel module on a 64–bit
system:

gcc -D_KERNEL -m64 -c full.c

ld -dy -Nmisc/neti -Nmisc/hook -r full.o -o full

EXAMPLE 10–1 Packet Filtering Hooks Example Program

/*

* This file is a test module written to test the netinfo APIs in Oracle Solaris 11.

* It is being published to demonstrate how the APIs can be used.

*/

#include <sys/param.h>

#include <sys/sunddi.h>

#include <sys/modctl.h>

#include <sys/ddi.h>

#include "neti.h"

/*

* Module linkage information for the kernel.

*/

static struct modldrv modlmisc = {

&mod_miscops, /* drv_modops */

"neti test module", /* drv_linkinfo */

};

static struct modlinkage modlinkage = {

MODREV_1, /* ml_rev */

&modlmisc, /* ml_linkage */

NULL

};

typedef struct scratch_s {

int sentinel_1;

netid_t id;

int sentinel_2;

int event_notify;

int sentinel_3;

int v4_event_notify;

int sentinel_4;

int v6_event_notify;

int sentinel_5;

int arp_event_notify;

int sentinel_6;

int v4_hook_notify;

int sentinel_7;

Packet Filtering Hooks Example

Chapter 10 • Packet Filtering Hooks 253

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

int v6_hook_notify;

int sentinel_8;

int arp_hook_notify;

int sentinel_9;

hook_t *v4_h_in;

int sentinel_10;

hook_t *v6_h_in;

int sentinel_11;

hook_t *arp_h_in;

int sentinel_12;

net_handle_t v4;

int sentinel_13;

net_handle_t v6;

int sentinel_14;

net_handle_t arp;

int sentinel_15;

} scratch_t;

#define MAX_RECALL_DOLOG 10000

char recall_myname[10];

net_instance_t *recall_global;

int recall_inited = 0;

int recall_doing[MAX_RECALL_DOLOG];

int recall_doidx = 0;

kmutex_t recall_lock;

int recall_continue = 1;

timeout_id_t recall_timeout;

int recall_steps = 0;

int recall_alloced = 0;

void *recall_alloclog[MAX_RECALL_DOLOG];

int recall_freed = 0;

void *recall_freelog[MAX_RECALL_DOLOG];

static int recall_init(void);

static void recall_fini(void);

static void *recall_create(const netid_t id);

static void recall_shutdown(const netid_t id, void *arg);

static void recall_destroy(const netid_t id, void *arg);

static int recall_newproto(hook_notify_cmd_t cmd, void *arg,

const char *parent, const char *event, const char *hook);

static int recall_newevent(hook_notify_cmd_t cmd, void *arg,

const char *parent, const char *event, const char *hook);

static int recall_newhook(hook_notify_cmd_t cmd, void *arg,

const char *parent, const char *event, const char *hook);

static void recall_expire(void *arg);

static void recall_strfree(char *);

static char *recall_strdup(char *, int);

static void

recall_add_do(int mydo)

{

mutex_enter(&recall_lock);

recall_doing[recall_doidx] = mydo;

recall_doidx++;

recall_steps++;

Packet Filtering Hooks Example

Programming Interfaces Guide • November 2011254

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

if ((recall_steps % 1000000) == 0)

printf("stamp %d %d\n", recall_steps, recall_doidx);

if (recall_doidx == MAX_RECALL_DOLOG)

recall_doidx = 0;

mutex_exit(&recall_lock);

}

static void *recall_alloc(size_t len, int wait)

{

int i;

mutex_enter(&recall_lock);

i = recall_alloced++;

if (recall_alloced == MAX_RECALL_DOLOG)

recall_alloced = 0;

mutex_exit(&recall_lock);

recall_alloclog[i] = kmem_alloc(len, wait);

return recall_alloclog[i];

}

static void recall_free(void *ptr, size_t len)

{

int i;

mutex_enter(&recall_lock);

i = recall_freed++;

if (recall_freed == MAX_RECALL_DOLOG)

recall_freed = 0;

mutex_exit(&recall_lock);

recall_freelog[i] = ptr;

kmem_free(ptr, len);

}

static void recall_assert(scratch_t *s)

{

ASSERT(s->sentinel_1 == 0);

ASSERT(s->sentinel_2 == 0);

ASSERT(s->sentinel_3 == 0);

ASSERT(s->sentinel_4 == 0);

ASSERT(s->sentinel_5 == 0);

ASSERT(s->sentinel_6 == 0);

ASSERT(s->sentinel_7 == 0);

ASSERT(s->sentinel_8 == 0);

ASSERT(s->sentinel_9 == 0);

ASSERT(s->sentinel_10 == 0);

ASSERT(s->sentinel_11 == 0);

ASSERT(s->sentinel_12 == 0);

ASSERT(s->sentinel_13 == 0);

ASSERT(s->sentinel_14 == 0);

ASSERT(s->sentinel_15 == 0);

}

int

_init(void)

Packet Filtering Hooks Example

Chapter 10 • Packet Filtering Hooks 255

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

{

int error;

bzero(recall_doing, sizeof(recall_doing));

mutex_init(&recall_lock, NULL, MUTEX_DRIVER, NULL);

error = recall_init();

if (error == DDI_SUCCESS) {

error = mod_install(&modlinkage);

if (error != 0)

recall_fini();

}

recall_timeout = timeout(recall_expire, NULL, drv_usectohz(500000));

return (error);

}

int

_fini(void)

{

int error;

recall_continue = 0;

if (recall_timeout != NULL) {

untimeout(recall_timeout);

recall_timeout = NULL;

}

error = mod_remove(&modlinkage);

if (error == 0) {

recall_fini();

delay(drv_usectohz(500000)); /* .5 seconds */

mutex_destroy(&recall_lock);

ASSERT(recall_inited == 0);

}

return (error);

}

int

_info(struct modinfo *info)

{

return(0);

}

static int

recall_init()

{

recall_global = net_instance_alloc(NETINFO_VERSION);

strcpy(recall_myname, "full_");
bcopy(((char *)&recall_global) + 4, recall_myname + 5, 4);

recall_myname[5] = (recall_myname[5] & 0x7f) | 0x20;

recall_myname[6] = (recall_myname[6] & 0x7f) | 0x20;

Packet Filtering Hooks Example

Programming Interfaces Guide • November 2011256

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

recall_myname[7] = (recall_myname[7] & 0x7f) | 0x20;

recall_myname[8] = (recall_myname[8] & 0x7f) | 0x20;

recall_myname[9] = ’\0’;

recall_global->nin_create = recall_create;

recall_global->nin_shutdown = recall_shutdown;

recall_global->nin_destroy = recall_destroy;

recall_global->nin_name = recall_myname;

if (net_instance_register(recall_global) != 0)

return (DDI_FAILURE);

return (DDI_SUCCESS);

}

static void

recall_fini()

{

if (recall_global != NULL) {

net_instance_unregister(recall_global);

net_instance_free(recall_global);

recall_global = NULL;

}

}

static void

recall_expire(void *arg)

{

if (!recall_continue)

return;

recall_fini();

if (!recall_continue)

return;

delay(drv_usectohz(5000)); /* .005 seconds */

if (!recall_continue)

return;

if (recall_init() == DDI_SUCCESS)

recall_timeout = timeout(recall_expire, NULL,

drv_usectohz(5000)); /* .005 seconds */

}

static void *

recall_create(const netid_t id)

{

scratch_t *s = kmem_zalloc(sizeof(*s), KM_SLEEP);

if (s == NULL)

return (NULL);

Packet Filtering Hooks Example

Chapter 10 • Packet Filtering Hooks 257

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

recall_inited++;

s->id = id;

net_instance_notify_register(id, recall_newproto, s);

return s;

}

static void

recall_shutdown(const netid_t id, void *arg)

{

scratch_t *s = arg;

ASSERT(s != NULL);

recall_add_do(__LINE__);

net_instance_notify_unregister(id, recall_newproto);

if (s->v4 != NULL) {

if (s->v4_h_in != NULL) {

net_hook_unregister(s->v4, NH_PHYSICAL_IN,

s->v4_h_in);

recall_strfree(s->v4_h_in->h_name);

hook_free(s->v4_h_in);

s->v4_h_in = NULL;

}

if (net_protocol_notify_unregister(s->v4, recall_newevent))

cmn_err(CE_WARN,

"v4:net_protocol_notify_unregister(%p) failed",
s->v4);

net_protocol_release(s->v4);

s->v4 = NULL;

}

if (s->v6 != NULL) {

if (s->v6_h_in != NULL) {

net_hook_unregister(s->v6, NH_PHYSICAL_IN,

s->v6_h_in);

recall_strfree(s->v6_h_in->h_name);

hook_free(s->v6_h_in);

s->v6_h_in = NULL;

}

if (net_protocol_notify_unregister(s->v6, recall_newevent))

cmn_err(CE_WARN,

"v6:net_protocol_notify_unregister(%p) failed",
s->v6);

net_protocol_release(s->v6);

s->v6 = NULL;

}

if (s->arp != NULL) {

if (s->arp_h_in != NULL) {

net_hook_unregister(s->arp, NH_PHYSICAL_IN,

s->arp_h_in);

recall_strfree(s->arp_h_in->h_name);

hook_free(s->arp_h_in);

Packet Filtering Hooks Example

Programming Interfaces Guide • November 2011258

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

s->arp_h_in = NULL;

}

if (net_protocol_notify_unregister(s->arp, recall_newevent))

cmn_err(CE_WARN,

"arp:net_protocol_notify_unregister(%p) failed",
s->arp);

net_protocol_release(s->arp);

s->arp = NULL;

}

}

static void

recall_destroy(const netid_t id, void *arg)

{

scratch_t *s = arg;

ASSERT(s != NULL);

recall_assert(s);

ASSERT(s->v4 == NULL);

ASSERT(s->v6 == NULL);

ASSERT(s->arp == NULL);

ASSERT(s->v4_h_in == NULL);

ASSERT(s->v6_h_in == NULL);

ASSERT(s->arp_h_in == NULL);

kmem_free(s, sizeof(*s));

ASSERT(recall_inited > 0);

recall_inited--;

}

static int

recall_newproto(hook_notify_cmd_t cmd, void *arg, const char *parent,

const char *event, const char *hook)

{

scratch_t *s = arg;

s->event_notify++;

recall_assert(s);

switch (cmd) {

case HN_REGISTER :

if (strcmp(parent, NHF_INET) == 0) {

s->v4 = net_protocol_lookup(s->id, parent);

net_protocol_notify_register(s->v4, recall_newevent, s);

} else if (strcmp(parent, NHF_INET6) == 0) {

s->v6 = net_protocol_lookup(s->id, parent);

net_protocol_notify_register(s->v6, recall_newevent, s);

} else if (strcmp(parent, NHF_ARP) == 0) {

s->arp = net_protocol_lookup(s->id, parent);

net_protocol_notify_register(s->arp,recall_newevent, s);

}

break;

Packet Filtering Hooks Example

Chapter 10 • Packet Filtering Hooks 259

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

case HN_UNREGISTER :

case HN_NONE :

break;

}

return 0;

}

static int

recall_do_event(hook_event_token_t tok, hook_data_t data, void *ctx)

{

scratch_t *s = ctx;

recall_assert(s);

return (0);

}

static int

recall_newevent(hook_notify_cmd_t cmd, void *arg, const char *parent,

const char *event, const char *hook)

{

scratch_t *s = arg;

char buffer[32];

hook_t *h;

recall_assert(s);

if (strcmp(event, NH_PHYSICAL_IN) == 0) {

sprintf(buffer, "%s_%s_%s", recall_myname, parent, event);

h = hook_alloc(HOOK_VERSION);

h->h_hint = HH_NONE;

h->h_arg = s;

h->h_name = recall_strdup(buffer, KM_SLEEP);

h->h_func = recall_do_event;

} else {

h = NULL;

}

if (strcmp(parent, NHF_INET) == 0) {

s->v4_event_notify++;

if (h != NULL) {

s->v4_h_in = h;

net_hook_register(s->v4, (char *)event, h);

}

net_event_notify_register(s->v4, (char *)event,

recall_newhook, s);

} else if (strcmp(parent, NHF_INET6) == 0) {

s->v6_event_notify++;

if (h != NULL) {

s->v6_h_in = h;

net_hook_register(s->v6, (char *)event, h);

}

net_event_notify_register(s->v6, (char *)event,

Packet Filtering Hooks Example

Programming Interfaces Guide • November 2011260

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

recall_newhook, s);

} else if (strcmp(parent, NHF_ARP) == 0) {

s->arp_event_notify++;

if (h != NULL) {

s->arp_h_in = h;

net_hook_register(s->arp, (char *)event, h);

}

net_event_notify_register(s->arp, (char *)event,

recall_newhook, s);

}

recall_assert(s);

return (0);

}

static int

recall_newhook(hook_notify_cmd_t cmd, void *arg, const char *parent,

const char *event, const char *hook)

{

scratch_t *s = arg;

recall_assert(s);

if (strcmp(parent, NHF_INET) == 0) {

s->v4_hook_notify++;

} else if (strcmp(parent, NHF_INET6) == 0) {

s->v6_hook_notify++;

} else if (strcmp(parent, NHF_ARP) == 0) {

s->arp_hook_notify++;

}

recall_assert(s);

return (0);

}

static void recall_strfree(char *str)

{

int len;

if (str != NULL) {

len = strlen(str);

recall_free(str, len + 1);

}

}

static char* recall_strdup(char *str, int wait)

{

char *newstr;

int len;

len = strlen(str);

newstr = recall_alloc(len, wait);

if (newstr != NULL)

Packet Filtering Hooks Example

Chapter 10 • Packet Filtering Hooks 261

EXAMPLE 10–1 Packet Filtering Hooks Example Program (Continued)

strcpy(newstr, str);

return (newstr);

}

Packet Filtering Hooks Example

Programming Interfaces Guide • November 2011262

Transport Selection and Name-to-Address
Mapping

This chapter describes selecting transports and resolving network addresses. This chapter
further describes interfaces that enable you to specify the available communication protocols
for an application. The chapter also explains additional interfaces that provide direct mapping
of names to network addresses.

■ “Transport Selection” on page 263
■ “Name-to-Address Mapping” on page 264

Note – In this chapter, the terms network and transport are used interchangeably. The terms
refer to the programmatic interface that conforms to the transport layer of the OSI Reference
Mode. The term network is also used to refer to the physical collection of computers that are
connected through some electronic medium.

Transport Selection

Caution – The interfaces that are described in this chapter are multithread safe. “Multithread
safe” means that you can use applications that contain transport selection interface calls freely
in a multithreaded application. These interface calls do not provide linear scalability because
the calls are not re-entrant.

A distributed application must use a standard interface to the transport services to be portable
to different protocols. Transport selection services provide an interface that allows an
application to select which protocols to use. This interface makes an application independent of
protocol and medium.

Transport selection means that a client application can easily try each available transport until
the client establishes communication with a server. Transport selection enables request
acceptance on multiple transports by server applications. The applications can then

11C H A P T E R 1 1

263

communicate over a number of protocols. Transports can be tried in either the order specified
by the local default sequence or in an order specified by the user.

Choosing from the available transports is the responsibility of the application. The transport
selection mechanism makes that selection uniform and simple.

Name-to-Address Mapping
Name-to-address mapping enables an application to obtain the address of a service on a
specified host independent of the transport used. Name-to-address mapping consists of the
following interfaces:

netdir_getbyname(3NSL) Maps the host and service name to a set of addresses

netdir_getbyaddr(3NSL) Maps addresses into host and service names

netdir_free(3NSL) Frees structures allocated by the name-to-address translation
routines

taddr2uaddr(3NSL) Translates an address and returns a transport-independent
character representation of the address

uaddr2taddr(3NSL) The universal address is translated into a netbuf structure

netdir_options(3NSL) Interfaces to transport-specific capabilities such as the broadcast
address and reserved port facilities of TCP and UDP

netdir_perror(3NSL) Displays a message stating why one of the routines that map
name-to-address failed on stderr.

netdir_sperror(3NSL) Returns a string containing the error message stating why one of
the routines that map name-to-address failed.

The first argument of each routine points to a netconfig(4) structure that describes a transport.
The routine uses the array of directory-lookup library paths in the netconfig(4) structure to
call each path until the translation succeeds.

The name-to-address libraries are described in Table 11–1. The routines that are described in
“Using the Name-to-Address Mapping Routines” on page 266 are defined in the netdir(3NSL)
man page.

Note – The following libraries no longer exist in the Oracle Solaris environment: tcpip.so,
switch.so, and nis.so. For more information on this change, see the nsswitch.conf(4) man
page and the NOTES section of the gethostbyname(3NSL) man page.

Name-to-Address Mapping

Programming Interfaces Guide • November 2011264

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-getbyname-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-getbyaddr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-free-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Btaddr2uaddr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Buaddr2taddr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-options-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-perror-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-sperror-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4nsswitch.conf-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgethostbyname-3nsl

TABLE 11–1 Name-to-Address Libraries

Library Transport Family Description

- inet The name-to-address mapping for networks of the protocol
family inet is provided by the name service switch based on the
entries for hosts and services in the file nsswitch.conf(4). For
networks of other families, the dash indicates a nonfunctional
name-to-address mapping.

straddr.so loopback Contains the routines that map name-to-address in any
protocol that accepts strings as addresses, such as the loopback
transports.

straddr.so Library
Name–to–address translation files for the straddr.so library are created by the system
administrator. The system administrator also maintains these translation files. The straddr.so
files are /etc/net/transport-name/hosts and /etc/net/transport-name/services.
transport-name is the local name of the transport that accepts string addresses, which is
specified in the network ID field of the /etc/netconfig file. For example, the host file for
ticlts would be /etc/net/ticlts/hosts, and the service file for ticlts would be
/etc/net/ticlts/services.

Most string addresses do not distinguish between host and service. However, separating the
string into a host part and a service part is consistent with other transports. The
/etc/net/transport-name/hosts file contains a text string that is assumed to be the host
address, followed by the host name:

joyluckaddr joyluck

carpediemaddr carpediem

thehopaddr thehop

pongoaddr pongo

Because loopback transports cannot go outside the containing host, listing other hosts makes
no sense.

The /etc/net/transport-name/services file contains service names followed by strings that
identify the service address:

rpcbind rpc

listen serve

The routines create the full-string address by concatenating the host address, a period (.), and
the service address. For example, the address of the listen service on pongo is
pongoaddr.serve.

Name-to-Address Mapping

Chapter 11 • Transport Selection and Name-to-Address Mapping 265

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4nsswitch.conf-4

When an application requests the address of a service on a particular host on a transport that
uses this library, the host name must be in /etc/net/transport/hosts. The service name must
be in /etc/net/transport/services. If either name is missing, the name-to-address translation
fails.

Using the Name-to-Address Mapping Routines
This section is an overview of the mapping routines that are available for use. The routines
return or convert the network names to their respective network addresses. Note that
netdir_getbyname(3NSL), netdir_getbyaddr(3NSL), and taddr2uaddr(3NSL) return
pointers to data that must be freed by calls to netdir_free(3NSL).

int netdir_getbyname(struct netconfig *nconf,

struct nd_hostserv *service, struct nd_addrlist **addrs);

netdir_getbyname(3NSL) maps the host and service name specified in service to a set of
addresses that are consistent with the transport identified in nconf. The nd_hostserv and
nd_addrlist structures are defined in the netdir(3NSL) man page. A pointer to the addresses
is returned in addrs.

To find all addresses of a host and service on all available transports, call
netdir_getbyname(3NSL) with each netconfig(4) structure returned by either
getnetpath(3NSL) or getnetconfig(3NSL).

int netdir_getbyaddr(struct netconfig *nconf,

struct nd_hostservlist **service, struct netbuf *netaddr);

netdir_getbyaddr(3NSL) maps addresses into host and service names. The interface is called
with an address in netaddr and returns a list of host-name and service-name pairs in service.
The nd_hostservlist structure is defined in netdir(3NSL).

void netdir_free(void *ptr, int struct_type);

The netdir_free(3NSL) routine frees structures allocated by the name-to-address translation
routines. The parameters can take the values that are shown in the following table.

TABLE 11–2 netdir_free(3NSL) Routines

struct_type ptr

ND_HOSTSERV Pointer to an nd_hostserv structure

ND_HOSTSERVLIST Pointer to an nd_hostservlist structure

ND_ADDR Pointer to a netbuf structure

ND_ADDRLIST Pointer to an nd_addrlist structure

Name-to-Address Mapping

Programming Interfaces Guide • November 2011266

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-getbyname-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-getbyaddr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Btaddr2uaddr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-free-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-getbyname-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-getbyname-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4netconfig-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnetpath-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bgetnetconfig-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-getbyaddr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-free-3nsl

char *taddr2uaddr(struct netconfig *nconf, struct netbuf *addr);

taddr2uaddr(3NSL) translates the address pointed to by addr and returns a
transport-independent character representation of the address. This character representation is
called a universal address. The value that is given in nconf specifies the transport for which the
address is valid. The universal address can be freed by free(3C).

struct netbuf *uaddr2taddr(struct netconfig *nconf, char *uaddr);

The universal address pointed to by uaddr is translated into a netbuf structure. nconf specifies
the transport for which the address is valid.

int netdir_options(const struct netconfig *config,

const int option, const int fildes, char *point_to_args);

netdir_options(3NSL) provides interfaces to transport-specific capabilities, such as the
broadcast address and reserved port facilities of TCP and UDP. The value of nconf specifies a
transport, while option specifies the transport-specific action to take. The value in option might
disable consideration of the value in fd. The fourth argument points to operation-specific data.

The following table shows the values used for option.

TABLE 11–3 Values for netdir_options

Option Description

ND_SET_BROADCAST Sets the transport for broadcast if the transport supports
broadcast

ND_SET_RESERVEDPORT Enables application binding to reserved ports if allowed by the
transport

ND_CHECK_RESERVEDPORT Verifies that an address corresponds to a reserved port if the
transport supports reserved ports

ND_MERGEADDR Transforms a locally meaningful address into an address to
which client hosts can connect

The netdir_perror(3NSL) routine displays a message stating why one of the routines that map
name-to-address failed on stderr.

void netdir_perror(char *s);

The netdir_sperror(3NSL) routine returns a string containing the error message stating why
one of the routines that map name-to-address failed.

char *netdir_sperror(void);

The following example shows network selection and name-to-address mapping.

Name-to-Address Mapping

Chapter 11 • Transport Selection and Name-to-Address Mapping 267

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Btaddr2uaddr-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Afree-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-options-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-perror-3nsl
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bnetdir-sperror-3nsl

EXAMPLE 11–1 Network Selection and Name-to-Address Mapping

#include <netconfig.h>

#include <netdir.h>

#include <sys/tiuser.h>

struct nd_hostserv nd_hostserv; /* host and service information */

struct nd_addrlist *nd_addrlistp; /* addresses for the service */

struct netbuf *netbufp; /* the address of the service */

struct netconfig *nconf; /* transport information*/

int i; /* the number of addresses */

char *uaddr; /* service universal address */

void *handlep; /* a handle into network selection */

/*

* Set the host structure to reference the "date"
* service on host "gandalf"
*/

nd_hostserv.h_host = "gandalf";
nd_hostserv.h_serv = "date";
/*

* Initialize the network selection mechanism.

*/

if ((handlep = setnetpath()) == (void *)NULL) {

nc_perror(argv[0]);

exit(1);

}

/*

* Loop through the transport providers.

*/

while ((nconf = getnetpath(handlep)) != (struct netconfig *)NULL)

{

/*

* Print out the information associated with the

* transport provider described in the "netconfig"
* structure.

*/

printf("Transport provider name: %s\n", nconf->nc_netid);

printf("Transport protocol family: %s\n", nconf->nc_protofmly);

printf("The transport device file: %s\n", nconf->nc_device);

printf("Transport provider semantics: ");
switch (nconf->nc_semantics) {

case NC_TPI_COTS:

printf("virtual circuit\n");
break;

case NC_TPI_COTS_ORD:

printf("virtual circuit with orderly release\n");
break;

case NC_TPI_CLTS:

printf("datagram\n");
break;

}

/*

* Get the address for service "date" on the host

* named "gandalf" over the transport provider

* specified in the netconfig structure.

*/

if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp) != ND_OK) {

printf("Cannot determine address for service\n");

Name-to-Address Mapping

Programming Interfaces Guide • November 2011268

EXAMPLE 11–1 Network Selection and Name-to-Address Mapping (Continued)

netdir_perror(argv[0]);

continue;

}

printf("<%d> addresses of date service on gandalf:\n",
nd_addrlistp->n_cnt);

/*

* Print out all addresses for service "date" on

* host "gandalf" on current transport provider.

*/

netbufp = nd_addrlistp->n_addrs;

for (i = 0; i < nd_addrlistp->n_cnt; i++, netbufp++) {

uaddr = taddr2uaddr(nconf,netbufp);

printf("%s\n",uaddr);
free(uaddr);

}

netdir_free(nd_addrlistp, ND_ADDRLIST);

}

endnetconfig(handlep);

Name-to-Address Mapping

Chapter 11 • Transport Selection and Name-to-Address Mapping 269

270

Real-time Programming and Administration

This chapter describes writing and porting real-time applications to run under SunOS. This
chapter is written for programmers that are experienced in writing real-time applications and
for administrators familiar with real-time processing and the Oracle Solaris system.

This chapter discusses the following topics:

■ Scheduling needs of real-time applications, which are covered in “The Real-Time
Scheduler” on page 275.

■ “Memory Locking” on page 285.
■ “Asynchronous Network Communication” on page 292.

Basic Rules of Real-time Applications
Real-time response is guaranteed when certain conditions are met. This section identifies these
conditions and some of the more significant design errors.

Most of the potential problems described here can degrade the response time of the system. One
of the potential problems can freeze a workstation. Other, more subtle, mistakes are priority
inversion and system overload.

An Oracle Solaris real-time process has the following characteristics:

■ Runs in the RT scheduling class, as described in “The Real-Time Scheduler” on page 275
■ Locks down all the memory in its process address space, as described in “Memory Locking”

on page 285
■ Is from a program in which all dynamic binding is completed early, as described in “Shared

Libraries” on page 273

Real-time operations are described in this chapter in terms of single-threaded processes, but the
description can also apply to multithreaded processes. For detailed information about
multithreaded processes, see the Multithreaded Programming Guide. To guarantee real-time

12C H A P T E R 1 2

271

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MTP

scheduling of a thread, the thread must be created as a bound thread. Furthermore, the thread's
LWP must be run in the RT scheduling class. The locking of memory and early dynamic binding
is effective for all threads in a process.

When a process is the highest priority real-time process, the process acquires the processor
within the guaranteed dispatch latency period of becoming runnable. For more information,
see “Dispatch Latency” on page 275. The process continues to run for as long as it remains the
highest priority runnable process.

A real-time process can lose control of the processor because of other system events. A real-time
process can also be unable to gain control of the processor because of other system events.
These events include external events, such as interrupts, resource starvation, waiting on
external events such as synchronous I/O, and preemption by a higher priority process.

Real-time scheduling generally does not apply to system initialization and termination services
such as open(2) and close(2).

Factors that Degrade Response Time
The problems described in this section all increase the response time of the system to varying
extents. The degradation can be serious enough to cause an application to miss a critical
deadline.

Real-time processing can also impair the operation of aspects of other applications that are
active on a system that is running a real-time application. Because real-time processes have
higher priority, time-sharing processes can be prevented from running for significant amounts
of time. This phenomenon can cause interactive activities, such as displays and keyboard
response time, to slow noticeably.

Synchronous I/O Calls
System response under SunOS provides no bounds to the timing of I/O events. This means that
synchronous I/O calls should never be included in any program segment whose execution is
time critical. Even program segments that permit very large time bounds must not perform
synchronous I/O. Mass storage I/O is such a case, where causing a read or write operation hangs
the system while the operation takes place.

A common application mistake is to perform I/O to get error message text from disk.
Performing I/O in this fashion should be done from an independent process or independent
thread. This independent process or independent thread should not run in real time.

Interrupt Servicing
Interrupt priorities are independent of process priorities. The priorities that are set for a group
of processes are not inherited by the services of hardware interrupts that result from those
processes' actions. As a consequence, devices controlled by high-priority real-time processes do
not necessarily have high-priority interrupt processing.

Basic Rules of Real-time Applications

Programming Interfaces Guide • November 2011272

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2

Shared Libraries
Time-sharing processes can save significant amounts of memory by using dynamically linked,
shared libraries. This type of linking is implemented through a form of file mapping.
Dynamically linked library routines cause implicit reads.

Real-time programs can set the environment variable LD_BIND_NOW to a non-NULL value when
the program is invoked. Setting the value of this environment value allows the use of shared
libraries while avoiding dynamic binding. This procedure also forces all dynamic linking to be
bound before the program begins execution. See the Linker and Libraries Guide for more
information.

Priority Inversion
A time-sharing process can block a real-time process by acquiring a resource that is required by
a real-time process. Priority inversion occurs when a higher priority process is blocked by a
lower priority process. The term blocking describes a situation in which a process must wait for
one or more processes to relinquish control of resources. Real-time processes might miss their
deadlines if this blocking is prolonged.

Consider the case that is depicted in the following figure, where a high-priority process requires
a shared resource. A lower priority process holds the resource and is preempted by an
intermediate priority process, blocking the high-priority process. Any number of intermediate
processes can be involved. All intermediate processes must finish executing, as well as the
lower-priority process' critical section. This series of executions can take an arbitrarily long
time.

This issue and the methods of dealing with this issue are described in “Mutual Exclusion Lock
Attributes” in Multithreaded Programming Guide.

FIGURE 12–1 Unbounded Priority Inversion

Intermediate
priority

Higher
priority

Lower
priority

Shared
resource

Basic Rules of Real-time Applications

Chapter 12 • Real-time Programming and Administration 273

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MTPsync-28983
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MTPsync-28983

Sticky Locks
A page is permanently locked into memory when its lock count reaches 65535 (0xFFFF). The
value 0xFFFF is defined by the implementation and might change in future releases. Pages that
are locked this way cannot be unlocked.

Runaway Real-time Processes
Runaway real-time processes can cause the system to halt. Such runaway processes can also
slow the system response so much that the system appears to halt.

Note – If you have a runaway process on a SPARC system, press Stop-A. You might have to do
press Stop-A more than one time. If pressing Stop-A does not work, turn the power off, wait a
moment, then turn the power back on. If you have a runaway process on a non-SPARC system,
turn the power off, wait a moment, then turn the power back on.

When a high priority real-time process does not relinquish control of the CPU, you must break
the infinite loop in order to regain control of the system. Such a runaway process does not
respond to Control-C. Attempts to use a shell set at a higher priority than the priority of the
runaway process do not work.

Asynchronous I/O Behavior
Asynchronous I/O operations do not always execute in the sequence in which the operations
are queued to the kernel. Asynchronous operations do not necessarily return to the caller in the
sequence in which the operations were performed.

If a single buffer is specified for a rapid sequence of calls to aioread, the buffer's state is
uncertain. The uncertainty of the buffer's state is from the time the first call is made to the time
the last result is signaled to the caller.

An individual aio_result_t structure can be used for only one asynchronous operation. The
operation can be a read or a write operation.

Real-time Files
SunOS provides no facilities to ensure that files are allocated as physically contiguous.

For regular files, the read(2) and write(2) operations are always buffered. An application can
use mmap(2) and msync(3C) to effect direct I/O transfers between secondary storage and process
memory.

Basic Rules of Real-time Applications

Programming Interfaces Guide • November 2011274

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amsync-3c

The Real-Time Scheduler
Real-time scheduling constraints are necessary to manage data acquisition or process control
hardware. The real-time environment requires that a process be able to react to external events
in a bounded amount of time. Such constraints can exceed the capabilities of a kernel that is
designed to provide a fair distribution of the processing resources to a set of time-sharing
processes.

This section describes the SunOS real-time scheduler, its priority queue, and how to use system
calls and utilities that control scheduling.

Dispatch Latency
The most significant element in scheduling behavior for real-time applications is the provision
of a real-time scheduling class. The standard time-sharing scheduling class is not suitable for
real-time applications because this scheduling class treats every process equally. The standard
time-sharing scheduling class has a limited notion of priority. Real-time applications require a
scheduling class in which process priorities are taken as absolute. Real-time applications also
require a scheduling class in which process priorities are changed only by explicit application
operations.

The term dispatch latency describes the amount of time a system takes to respond to a request
for a process to begin operation. With a scheduler that is written specifically to honor
application priorities, real-time applications can be developed with a bounded dispatch latency.

The following figure illustrates the amount of time an application takes to respond to a request
from an external event.

The Real-Time Scheduler

Chapter 12 • Real-time Programming and Administration 275

The overall application response time consists of the interrupt response time, the dispatch
latency, and the application's response time.

The interrupt response time for an application includes both the interrupt latency of the system
and the device driver's own interrupt processing time. The interrupt latency is determined by
the longest interval that the system must run with interrupts disabled. This time is minimized in
SunOS using synchronization primitives that do not commonly require a raised processor
interrupt level.

During interrupt processing, the driver's interrupt routine wakes the high-priority process and
returns when finished. The system detects that a process with higher priority than the
interrupted process is now ready to dispatch and dispatches the process. The time to switch
context from a lower-priority process to a higher-priority process is included in the dispatch
latency time.

Figure 12–3 illustrates the internal dispatch latency and application response time of a system.
The response time is defined in terms of the amount of time a system takes to respond to an
internal event. The dispatch latency of an internal event represents the amount of time that a
process needs to wake up a higher priority process. The dispatch latency also includes the time
that the system takes to dispatch the higher priority process.

The application response time is the amount of time that a driver takes to: wake up a
higher-priority process, release resources from a low-priority process, reschedule the
higher-priority task, calculate the response, and dispatch the task.

FIGURE 12–2 Application Response Time

Application response time

Interrupt response

Interrupt
latency

Interrupt
processing

Dispatch
latency

Priority
task

Reschedules
to run highest
priority task.

Processor
instruction
or system
in critical
region;
locks out
interrupts.

System
saves or
restores
registers,
and vectors
to interrupt
routine.

Driver s
interrupt
routine sends
message to
wake up
sleeping
process.

Returns
process
interrupt.

Calculates
response.

External
event

Response
to event

The Real-Time Scheduler

Programming Interfaces Guide • November 2011276

Interrupts can arrive and be processed during the dispatch latency interval. This processing
increases the application response time, but is not attributed to the dispatch latency
measurement. Therefore, this processing is not bounded by the dispatch latency guarantee.

With the new scheduling techniques provided with real-time SunOS, the system dispatch
latency time is within specified bounds. As you can see in the following table, dispatch latency
improves with a bounded number of processes.

TABLE 12–1 Real-time System Dispatch Latency

Workstation Bounded Number of Processes Arbitrary Number of Processes

SPARCstation 2 <0.5 milliseconds in a system with
fewer than 16 active processes

1.0 milliseconds

SPARCstation 5 <0.3 millisecond 0.3 millisecond

Scheduling Classes
The SunOS kernel dispatches processes by priority. The scheduler or dispatcher supports the
concept of scheduling classes. Classes are defined as real-time (RT), system (SYS), and
time-sharing (TS). Each class has a unique scheduling policy for dispatching processes within its
class.

The kernel dispatches highest priority processes first. By default, real-time processes have
precedence over sys and TS processes. Administrators can configure systems so that the
priorities for TS processes and RT processes overlap.

FIGURE 12–3 Internal Dispatch Latency

Application response time

Dispatch latency

Wakeup Dispatch Priority
task

Reschedules
to run highest
priority task.

Low-priority processes release resources or provide
input to higher priority process.

Calculates
response.

Internal
event

Response
to event

The Real-Time Scheduler

Chapter 12 • Real-time Programming and Administration 277

The following figure illustrates the concept of classes as viewed by the SunOS kernel.

Hardware interrupts, which cannot be controlled by software, have the highest priority. The
routines that process interrupts are dispatched directly and immediately from interrupts,
without regard to the priority of the current process.

Real-time processes have the highest default software priority. Processes in the RT class have a
priority and time quantum value. RT processes are scheduled strictly on the basis of these
parameters. As long as an RT process is ready to run, no SYS or TS process can run.
Fixed-priority scheduling enables critical processes to run in a predetermined order until
completion. These priorities never change unless they are changed by an application.

An RT class process inherits the parent's time quantum, whether finite or infinite. A process
with a finite time quantum runs until the time quantum expires. A process with a finite time
quantum also stops running if the process blocks while waiting for an I/O event or is preempted
by a higher-priority runnable real-time process. A process with an infinite time quantum ceases
execution only when the process terminates, blocks, or is preempted.

The SYS class exists to schedule the execution of special system processes, such as paging,
STREAMS, and the swapper. You cannot change the class of a process to the SYS class. The SYS
class of processes has fixed priorities established by the kernel when the processes are started.

The time-sharing (TS) processes have the lowest priority. TS class processes are scheduled
dynamically, with a few hundred milliseconds for each time slice. The TS scheduler switches
context in round-robin fashion often enough to give every process an equal opportunity to run,
depending upon:

■ The time slice value
■ The process history, which records when the process was last put to sleep

FIGURE 12–4 Dispatch Priorities for Scheduling Classes

Realtime
(RT)

Kernel Daemons
(sys)

Time-Sharing
(TS)

System
Interrupts

Hardware
Dispatching

Software
Dispatching

The Real-Time Scheduler

Programming Interfaces Guide • November 2011278

■ Considerations for CPU utilization

Default time-sharing policy gives larger time slices to processes with lower priority.

A child process inherits the scheduling class and attributes of the parent process through
fork(2). A process's scheduling class and attributes are unchanged by exec(2).

Different algorithms dispatch each scheduling class. Class-dependent routines are called by the
kernel to make decisions about CPU process scheduling. The kernel is class-independent, and
takes the highest priority process off its queue. Each class is responsible for calculating a
process's priority value for its class. This value is placed into the dispatch priority variable of
that process.

As the following figure illustrates, each class algorithm has its own method of nominating the
highest priority process to place on the global run queue.

Each class has a set of priority levels that apply to processes in that class. A class-specific
mapping maps these priorities into a set of global priorities. A set of global scheduling priority
maps is not required to start with zero or be contiguous.

By default, the global priority values for time-sharing (TS) processes range from -20 to +20.
These global priority values are mapped into the kernel from 0-40, with temporary assignments

FIGURE 12–5 Kernel Dispatch Queue

Realtime
priorities

59
58
57
56

01
00

...

Global
priorities

159
158
157
156

100
99
98

02
01
00

...

...

Time-share
priorities

+20
+19

+1

-1

-19
-20

...

...

The Real-Time Scheduler

Chapter 12 • Real-time Programming and Administration 279

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2

as high as 99. The default priorities for real-time (RT) processes range from 0-59, and are
mapped into the kernel from 100 to 159. The kernel's class-independent code runs the process
with the highest global priority on the queue.

Dispatch Queue
The dispatch queue is a linear-linked list of processes with the same global priority. Each
process has class-specific information attached to the process upon invocation. A process is
dispatched from the kernel dispatch table in an order that is based on the process' global
priority.

Dispatching Processes
When a process is dispatched, the context of the process is mapped into memory along with its
memory management information, its registers, and its stack. Execution begins after the
context mapping is done. Memory management information is in the form of hardware
registers that contain the data that is needed to perform virtual memory translations for the
currently running process.

Process Preemption
When a higher priority process becomes dispatchable, the kernel interrupts its computation
and forces the context switch, preempting the currently running process. A process can be
preempted at any time if the kernel finds that a higher-priority process is now dispatchable.

For example, suppose that process A performs a read from a peripheral device. Process A is put
into the sleep state by the kernel. The kernel then finds that a lower-priority process B is
runnable. Process B is dispatched and begins execution. Eventually, the peripheral device sends
an interrupt, and the driver of the device is entered. The device driver makes process A
runnable and returns. Rather than returning to the interrupted process B, the kernel now
preempts B from processing, resuming execution of the awakened process A.

Another interesting situation occurs when several processes contend for kernel resources. A
high-priority real-time process might be waiting for a resource held by a low-priority process.
When the low-priority process releases the resource, the kernel preempts that process to
resume execution of the higher-priority process.

Kernel Priority Inversion
Priority inversion occurs when a higher-priority process is blocked by one or more
lower-priority processes for a long time. The use of synchronization primitives such as
mutual-exclusion locks in the SunOS kernel can lead to priority inversion.

A process is blocked when the process must wait for one or more processes to relinquish
resources. Prolonged blocking can lead to missed deadlines, even for low levels of utilization.

The Real-Time Scheduler

Programming Interfaces Guide • November 2011280

The problem of priority inversion has been addressed for mutual-exclusion locks for the SunOS
kernel by implementing a basic priority inheritance policy. The policy states that a
lower-priority process inherits the priority of a higher-priority process when the lower-priority
process blocks the execution of the higher-priority process. This inheritance places an upper
bound on the amount of time a process can remain blocked. The policy is a property of the
kernel's behavior, not a solution that a programmer institutes through system calls or interface
execution. User-level processes can still exhibit priority inversion, however.

User Priority Inversion
The issue of user priority inversion, and the means to deal with priority inversion, are discussed
in “Mutual Exclusion Lock Attributes” in Multithreaded Programming Guide.

Interface Calls That Control Scheduling
The following interface calls control process scheduling.

Using priocntl

Control over scheduling of active classes is done with priocntl(2). Class attributes are
inherited through fork(2) and exec(2), along with scheduling parameters and permissions
required for priority control. This inheritance happens with both the RT and the TS classes.

priocntl(2) is the interface for specifying a real-time process, a set of processes, or a class to
which the system call applies. priocntlset(2) also provides the more general interface for
specifying an entire set of processes to which the system call applies.

The command arguments of priocntl(2) can be one of: PC_GETCID, PC_GETCLINFO,
PC_GETPARMS, or PC_SETPARMS. The real or effective ID of the calling process must match the
real or effective ID of the affected processes, or must have superuser privilege.

PC_GETCID This command takes the name field of a structure that contains a
recognizable class name. The class ID and an array of class attribute data are
returned.

PC_GETCLINFO This command takes the ID field of a structure that contains a recognizable
class identifier. The class name and an array of class attribute data are
returned.

PC_GETPARMS This command returns the scheduling class identifier or the class specific
scheduling parameters of one of the specified processes. Even though
idtype and id might specify a big set, PC_GETPARMS returns the parameter of
only one process. The class selects the process.

PC_SETPARMS This command sets the scheduling class or the class-specific scheduling
parameters of the specified process or processes.

The Real-Time Scheduler

Chapter 12 • Real-time Programming and Administration 281

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=MTPsync-28983
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntlset-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2

Other interface calls
sched_get_priority_max Returns the maximum values for the specified policy.

sched_get_priority_min Returns the minimum values for the specified policy.
For more information, see the
sched_get_priority_max(3R) man page.

sched_rr_get_interval Updates the specified timespec structure to the current
execution time limit.

sched_setparam, sched_getparam Sets or gets the scheduling parameters of the specified
process.

sched_yield Blocks the calling process until the calling process
returns to the head of the process list.

Utilities That Control Scheduling
The administrative utilities that control process scheduling are dispadmin(1M) and
priocntl(1). Both of these utilities support the priocntl(2) system call with compatible
options and loadable modules. These utilities provide system administration functions that
control real-time process scheduling during runtime.

priocntl(1)
The priocntl(1) command sets and retrieves scheduler parameters for processes.

dispadmin(1M)
The dispadmin(1M) utility displays all current process scheduling classes by including the -l
command line option during runtime. Process scheduling can also be changed for the class
specified after the -c option, using RT as the argument for the real-time class.

The class options for dispadmin(1M) are in the following list:

-l Lists scheduler classes currently configured

-c Specifies the class with parameters to be displayed or to be changed

-g Gets the dispatch parameters for the specified class

-r Used with −g, specifies time quantum resolution

-s Specifies a file where values can be located

A class-specific file that contains the dispatch parameters can also be loaded during runtime.
Use this file to establish a new set of priorities that replace the default values that were

The Real-Time Scheduler

Programming Interfaces Guide • November 2011282

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m

established during boot time. This class-specific file must assert the arguments in the format
used by the -g option. Parameters for the RT class are found in the rt_dptbl(4), and are listed in
Example 12–1.

To add an RT class file to the system, the following modules must be present:

■ An rt_init() routine in the class module that loads the rt_dptbl(4).
■ An rt_dptbl(4) module that provides the dispatch parameters and a routine to return

pointers to config_rt_dptbl.
■ The dispadmin(1M) executable.

The following steps install a RT class dispatch table:

1. Load the class-specific module with the following command, where module_name is the
class-specific module.

modload /kernel/sched/module_name
2. Invoke the dispadmin command.

dispadmin -c RT -s file_name

The file must describe a table with the same number of entries as the table that is being
overwritten.

Configuring Scheduling
Associated with both scheduling classes is a parameter table, rt_dptbl(4), and ts_dptbl(4).
These tables are configurable by using a loadable module at boot time, or with dispadmin(1M)
during runtime.

Dispatcher Parameter Table
The in-core table for real-time establishes the properties for RT scheduling. The rt_dptbl(4)
structure consists of an array of parameters, struct rt_dpent_t. Each of the n priority levels
has one parameter. The properties of a given priority level are specified by the ith parameter
structure in the array, rt_dptbl[i].

A parameter structure consists of the following members, which are also described in the
/usr/include/sys/rt.h header file.

rt_globpri The global scheduling priority associated with this priority level. The
rt_globpri values cannot be changed with dispadmin(1M).

rt_quantum The length of the time quantum allocated to processes at this level in ticks. For
more information, see “Timestamp Interfaces” on page 293. The time quantum
value is only a default or starting value for processes at a particular level. The

The Real-Time Scheduler

Chapter 12 • Real-time Programming and Administration 283

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4ts-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m

time quantum of a real-time process can be changed by using the priocntl(1)
command or the priocntl(2) system call.

Reconfiguring config_rt_dptbl

A real-time administrator can change the behavior of the real-time portion of the scheduler by
reconfiguring the config_rt_dptbl at any time. One method is described in the rt_dptbl(4)
man page, in the section titled “Replacing the rt_dptbl Loadable Module.”

A second method for examining or modifying the real-time parameter table on a running
system is through the dispadmin(1M) command. Invoking dispadmin(1M) for the real-time
class enables retrieval of the current rt_quantum values in the current config_rt_dptbl
configuration from the kernel's in-core table. When overwriting the current in-core table, the
configuration file used for input to dispadmin(1M) must conform to the specific format
described in the rt_dptbl(4) man page.

Following is an example of prioritized processes rtdpent_t with their associated time quantum
config_rt_dptbl[] value as the processes might appear in config_rt_dptbl[].

EXAMPLE 12–1 RT Class Dispatch Parameters

rtdpent_t rt_dptbl[] = { 129, 60,

/* prilevel Time quantum */ 130, 40,

100, 100, 131, 40,

101, 100, 132, 40,

102, 100, 133, 40,

103, 100, 134, 40,

104, 100, 135, 40,

105, 100, 136, 40,

106, 100, 137, 40,

107, 100, 138, 40

108, 100, 139, 40,

109, 100, 140, 20,

110, 80, 141, 20,

111, 80, 142, 20,

112, 80, 143, 20,

113, 80, 144, 20,

114, 80, 145, 20,

115, 80, 146, 20,

116, 80, 147, 20,

117, 80, 148, 20,

118, 80, 149, 20,

119, 80, 150, 10,

120, 60, 151, 10,

121, 60, 152, 10,

122, 60, 153, 10,

123, 60, 154, 10,

124, 60, 155, 10,

125, 60, 156, 10,

126, 60, 157, 10,

126, 60, 158, 10,

127, 60, 159, 10,

128, 60, }

The Real-Time Scheduler

Programming Interfaces Guide • November 2011284

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Mdispadmin-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN4rt-dptbl-4

Memory Locking
Locking memory is one of the most important issues for real-time applications. In a real-time
environment, a process must be able to guarantee continuous memory residence to reduce
latency and to prevent paging and swapping.

This section describes the memory locking mechanisms that are available to real-time
applications in SunOS.

Under SunOS, the memory residency of a process is determined by its current state, the total
available physical memory, the number of active processes, and the processes' demand for
memory. This residency is appropriate in a time-share environment. This residency is often
unacceptable for a real-time process. In a real-time environment, a process must guarantee a
memory residence to reduce the process' memory access and dispatch latency.

Real-time memory locking in SunOS is provided by a set of library routines. These routines
allow a process running with superuser privileges to lock specified portions of its virtual address
space into physical memory. Pages locked in this manner are exempt from paging until the
pages are unlocked or the process exits.

The operating system has a system-wide limit on the number of pages that can be locked at any
time. This limit is a tunable parameter whose default value is calculated at boot time. The
default value is based on the number of page frames minus another percentage, currently set at
ten percent.

Locking a Page
A call to mlock(3C) requests that one segment of memory be locked into the system's physical
memory. The pages that make up the specified segment are faulted in. The lock count of each
page is incremented. Any page whose lock count value is greater than zero is exempt from
paging activity.

A particular page can be locked multiple times by multiple processes through different
mappings. If two different processes lock the same page, the page remains locked until both
processes remove their locks. However, within a given mapping, page locks do not nest.
Multiple calls of locking interfaces on the same address by the same process are removed by a
single unlock request.

If the mapping through which a lock has been performed is removed, the memory segment is
implicitly unlocked. When a page is deleted through closing or truncating the file, the page is
also implicitly unlocked.

Locks are not inherited by a child process after a fork(2) call. If a process that has some memory
locked forks a child, the child must perform a memory locking operation on its own behalf to

Memory Locking

Chapter 12 • Real-time Programming and Administration 285

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fork-2

lock its own pages. Otherwise, the child process incurs copy-on-write page faults, which are the
usual penalties that are associated with forking a process.

Unlocking a Page
To unlock a page of memory, a process requests the release of a segment of locked virtual pages
by a calling munlock(3C). munlock decrements the lock counts of the specified physical pages.
After decrementing a page's lock count to 0, the page swaps normally.

Locking All Pages
A superuser process can request that all mappings within its address space be locked by a call to
mlockall(3C). If the flag MCL_CURRENT is set, all the existing memory mappings are locked. If
the flag MCL_FUTURE is set, every mapping that is added to an existing mapping or that replaces
an existing mapping is locked into memory.

Recovering Sticky Locks
A page is permanently locked into memory when its lock count reaches 65535 (0xFFFF). The
value 0xFFFF is defined by implementation. This value might change in future releases. Pages
that are locked in this manner cannot be unlocked. Reboot the system to recover.

High Performance I/O
This section describes I/O with real−time processes. In SunOS, the libraries supply two sets of
interfaces and calls to perform fast, asynchronous I/O operations. The POSIX asynchronous
I/O interfaces are the most recent standard. The SunOS environment also provides file and
in-memory synchronization operations and modes to prevent information loss and data
inconsistency.

Standard UNIX I/O is synchronous to the application programmer. An application that calls
read(2) or write(2) usually waits until the system call has finished.

Real-time applications need asynchronous, bounded I/O behavior. A process that issues an
asynchronous I/O call proceeds without waiting for the I/O operation to complete. The caller is
notified when the I/O operation has finished.

Asynchronous I/O can be used with any SunOS file. Files are opened synchronously and no
special flagging is required. An asynchronous I/O transfer has three elements: call, request, and

High Performance I/O

Programming Interfaces Guide • November 2011286

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amunlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Amlockall-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2

operation. The application calls an asynchronous I/O interface, the request for the I/O is placed
on a queue, and the call returns immediately. At some point, the system dequeues the request
and initiates the I/O operation.

Asynchronous and standard I/O requests can be intermingled on any file descriptor. The
system maintains no particular sequence of read and write requests. The system arbitrarily
resequences all pending read and write requests. If a specific sequence is required for the
application, the application must insure the completion of prior operations before issuing the
dependent requests.

POSIX Asynchronous I/O
POSIX asynchronous I/O is performed using aiocb structures. An aiocb control block
identifies each asynchronous I/O request and contains all of the controlling information. A
control block can be used for only one request at a time. A control block can be reused after its
request has been completed.

A typical POSIX asynchronous I/O operation is initiated by a call to aio_read or aio_write.
Either polling or signals can be used to determine the completion of an operation. If signals are
used for completing operations, each operation can be uniquely tagged. The tag is then returned
in the si_value component of the generated signal. See the siginfo(3HEAD) man page.

aio_read Is called with an asynchronous I/O control block to initiate a read
operation.

aio_write Is called with an asynchronous I/O control block to initiate a write
operation.

aio_return, aio_error Are called to obtain return and error values, respectively, after an
operation is known to have completed.

aio_cancel Is called with an asynchronous I/O control block to cancel pending
operations. aio_cancel can be used to cancel a specific request, if a
request is specified by the control block. aio_cancel can also
cancel all of the requests that are pending for the specified file
descriptor.

aio_fsync Queues an asynchronous fsync or fdatasync request for all of the
pending I/O operations on the specified file.

aio_suspend Suspends the caller as though one or more of the preceding
asynchronous I/O requests had been made synchronously.

High Performance I/O

Chapter 12 • Real-time Programming and Administration 287

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Fsiginfo-3head

Oracle Solaris Asynchronous I/O
This section discusses asynchronous I/O operations in the Oracle Solaris operating
environment.

Notification (SIGIO)
When an asynchronous I/O call returns successfully, the I/O operation has only been queued
and waits to be done. The actual operation has a return value and a potential error identifier.
This return value and potential error identifier would have been returned to the caller if the call
had been synchronous. When the I/O is finished, both the return and error values are stored at a
location given by the user at the time of the request as a pointer to an aio_result_t. The
structure of the aio_result_t is defined in <sys/asynch.h>:

typedef struct aio_result_t {

ssize_t aio_return; /* return value of read or write */

int aio_errno; /* errno generated by the IO */

} aio_result_t;

When the aio_result_t has been updated, a SIGIO signal is delivered to the process that made
the I/O request.

Note that a process with two or more asynchronous I/O operations pending has no certain way
to determine the cause of the SIGIO signal. A process that receives a SIGIO should check all its
conditions that could be generating the SIGIO signal.

Using aioread

This command routine is the asynchronous version of read(2). In addition to the normal read
arguments, aioread takes the arguments that specify a file position and the address of an
aio_result_t structure. The resulting information about the operation is stored in the
aio_result_t structure. The file position specifies a seek to be performed within the file before
the operation. Whether the aioread command call succeeds or fails, the file pointer is updated.

Using aiowrite

The aiowrite command routine is the asynchronous version of write(2). In addition to the
normal write arguments, aiowrite command takes arguments that specify a file position and
the address of an aio_result_t structure. The resulting information about the operation is
stored in the aio_result_t structure.

The file position specifies that a seek operation is to be performed within the file before the
operation. If the command call succeeds, the file pointer is updated to the position that would
have resulted in a successful seek and write. The file pointer is also updated when a write fails to
allow for subsequent write requests.

High Performance I/O

Programming Interfaces Guide • November 2011288

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2write-2

Using aiocancel

This command routine attempts to cancel the asynchronous request whose aio_result_t
structure is given as an argument. An aiocancel call succeeds only if the request is still queued.
If the operation is in progress, aiocancel fails.

Using aiowait

A call to aiowait blocks the calling process until at least one outstanding asynchronous I/O
operation is completed. The timeout parameter points to a maximum interval to wait for I/O
completion. A timeout value of zero specifies that no wait is wanted. The aiowait command
returns a pointer to the aio_result_t structure for the completed operation.

Using poll()

To determine the completion of an asynchronous I/O event synchronously rather than depend
on a SIGIO interrupt, use poll(2). You can also poll to determine the origin of a SIGIO
interrupt.

poll(2) is slow when used on very large numbers of files. This problem is resolved by poll(7d).

Using the pollDriver
Using /dev/poll provides a highly scalable way of polling a large number of file descriptors.
This scalability is provided through a new set of APIs and a new driver, /dev/poll. The
/dev/poll API is an alternative to, not a replacement of, poll(2). Use poll(7d) to provide
details and examples of the /dev/poll API. When used properly, the /dev/poll API scales
much better than poll(2). This API is especially suited for applications that satisfy the following
criteria:

■ Applications that repeatedly poll a large number of file descriptors
■ Polled file descriptors that are relatively stable, meaning that the descriptors are not

constantly closed and reopened
■ The set of file descriptors that actually have polled events pending is small, comparing to the

total number of file descriptors that are being polled

Using close

Files are closed by calling close(2). The call to close(2) cancels any outstanding asynchronous
I/O request that can be closed. close(2) waits for an operation that cannot be cancelled. For
more information, see “Using aiocancel” on page 289. When close(2) returns, no
asynchronous I/O is pending for the file descriptor. Only asynchronous I/O requests queued to
the specified file descriptor are cancelled when a file is closed. Any I/O pending requests for
other file descriptors are not cancelled.

High Performance I/O

Chapter 12 • Real-time Programming and Administration 289

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7poll-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN7poll-7d
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2poll-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2close-2

Synchronized I/O
Applications might need to guarantee that information has been written to stable storage, or
that file updates are performed in a particular order. Synchronized I/O provides for these needs.

Synchronization Modes
Under SunOS, a write operation succeeds when the system ensures that all written data is
readable after any subsequent open of the file. This check assumes no failure of the physical
storage medium. Data is successfully transferred for a read operation when an image of the data
on the physical storage medium is available to the requesting process. An I/O operation is
complete when the associated data has been successfully transferred, or when the operation has
been diagnosed as unsuccessful.

An I/O operation has reached synchronized I/O data integrity completion when:

■ For reads, the operation has been completed, or diagnosed if unsuccessful. The read is
complete only when an image of the data has been successfully transferred to the requesting
process. If the synchronized read operation is requested when pending write requests affect
the data to be read, these write requests are successfully completed before the data is read.

■ For writes, the operation has been completed, or diagnosed if unsuccessful. The write
operation succeeds when the data specified in the write request is successfully transferred.
Furthermore, all file system information required to retrieve the data must be successfully
transferred.

■ File attributes that are not necessary for data retrieval are not transferred prior to returning
to the calling process.

■ Synchronized I/O file integrity completion requires that all file attributes relative to the I/O
operation be successfully transferred before returning to the calling process. Synchronized
I/O file integrity completion is otherwise identical to synchronized I/O data integrity
completion.

Synchronizing a File
fsync(3C) and fdatasync explicitly synchronize a file to secondary storage.

The fsync(3C) routine guarantees that the interface is synchronized at the I/O file integrity
completion level. fdatasync guarantees that the interface is synchronized at level of I/O data
integrity completion.

Applications can synchronize each I/O operation before the operation completes. Setting the
O_DSYNC flag on the file description by using open(2) or fcntl(2) ensures that all I/O writes
reach I/O data completion before the operation completes. Setting the O_SYNC flag on the file
description ensures that all I/O writes have reached completion before the operation is
indicated as completed. Setting the O_RSYNC flag on the file description ensures that all I/O reads

High Performance I/O

Programming Interfaces Guide • November 2011290

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Afsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Afsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2open-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2fcntl-2

read(2) and aio_read reach the same level of completion that is requested by the descriptor
setting. The descriptor setting can be either O_DSYNC or O_SYNC.

Interprocess Communication
This section describes the interprocess communication (IPC) interfaces of SunOS as the
interfaces relate to real-time processing. Signals, pipes, FIFOs, message queues, shared memory,
file mapping, and semaphores are described here. For more information about the libraries,
interfaces, and routines that are useful for interprocess communication, see Chapter 7,
“Interprocess Communication.”

Processing Signals
The sender can use sigqueue to send a signal together with a small amount of information to a
target process.

To queue subsequent occurrences of a pending signal, the target process must have the
SA_SIGINFO bit set for the specified signal. See the sigaction(2) man page.

The target process normally receive signals asynchronously. To receive signals synchronously,
block the signal and call either sigwaitinfo or sigtimedwait. See the sigprocmask(2) man
page. This procedure causes the signal to be received synchronously. The value sent by the caller
of sigqueue is stored in the si_value member of the siginfo_t argument. Leaving the signal
unblocked causes the signal to be delivered to the signal handler specified by sigaction(2),
with the value appearing in the si_value of the siginfo_t argument to the handler.

A specified number of signals with associated values can be sent by a process and remain
undelivered. Storage for {SIGQUEUE_MAX} signals is allocated at the first call to sigqueue.
Thereafter, a call to the command either successfully enqueues at the target process or fails
within a bounded amount of time.

Pipes, Named Pipes, and Message Queues
Pipes, named pipes, and message queues behave similarly to character I/O devices. These
interfaces have different methods of connecting. See “Pipes Between Processes” on page 121 for
more information about pipes. See “Named Pipes” on page 123 for more information about
named pipes. See “System V Messages” on page 126 and “POSIX Messages” on page 124 for
more information about message queues.

Interprocess Communication

Chapter 12 • Real-time Programming and Administration 291

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2read-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sigaction-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sigprocmask-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2sigaction-2

Using Semaphores
Semaphores are also provided in both System V and POSIX styles. See “System V Semaphores”
on page 129 and “POSIX Semaphores” on page 124 for more information.

Note that using semaphores can cause priority inversions unless priority inversions are
explicitly avoided by the techniques mentioned earlier in this chapter.

Shared Memory
The fastest way for processes to communicate is directly, through a shared segment of memory.
When more than two processes attempt to read and write shared memory simultaneously, the
memory contents can become inaccurate. This potential inaccuracy is the major difficulty with
using shared memory.

Asynchronous Network Communication
This section introduces asynchronous network communication, using sockets or
Transport-Level Interface (TLI) for real-time applications. Asynchronous networking with
sockets is done by setting an open socket, of type SOCK_STREAM, to asynchronous and non
blocking. For more information on asynchronous sockets, see “Advanced Socket Topics” on
page 165. Asynchronous network processing of TLI events is supported using a combination of
STREAMS asynchronous features and the non-blocking mode of the TLI library routines.

For more information on the Transport-Level Interface, see Chapter 9, “Programming With
XTI and TLI.”

Modes of Networking
Both sockets and transport-level interface provide two modes of service: connection-mode and
connectionless-mode.

Connection-mode service is circuit-oriented. This service enables the transmission of data over
an established connection in a reliable, sequenced manner. This service also provides an
identification procedure that avoids the overhead of address resolution and transmission
during the data transfer phase. This service is attractive for applications that require relatively
long-lived, datastream-oriented interactions.

Connectionless-mode service is message-oriented and supports data transfer in self-contained
units with no logical relationship required among multiple units. A single service request passes
all the information required to deliver a unit of data from the sender to the transport provider.

Asynchronous Network Communication

Programming Interfaces Guide • November 2011292

This service request includes the destination address and the data to be delivered.
Connectionless-mode service is attractive for applications that involve short-term interactions
that do not require guaranteed, in-sequence delivery of data. Connectionless transports are
generally unreliable.

Timing Facilities
This section describes the timing facilities that are available for real-time applications under
SunOS. Real-time applications that use these mechanisms require detailed information from
the man pages of the routines that are listed in this section.

The timing interfaces of SunOS fall into two separate areas: timestamps and interval timers. The
timestamp interfaces provide a measure of elapsed time. The timestamp interfaces also enable
the application to measure the duration of a state or the time between events. Interval timers
allow an application to wake up at specified times and to schedule activities based on the
passage of time.

Timestamp Interfaces
Two interfaces provide timestamps. gettimeofday(3C) provides the current time in a timeval
structure, representing the time in seconds and microseconds since midnight, Greenwich Mean
Time, on January 1, 1970. clock_gettime, with a clockid of CLOCK_REALTIME, provides the
current time in a timespec structure, representing in seconds and nanoseconds the same time
interval returned by gettimeofday(3C).

SunOS uses a hardware periodic timer. For some workstations, the hardware periodic timer is
the sole source of timing information. If the hardware periodic timer is the sole source of timing
information, the accuracy of timestamps is limited to the timer's resolution. For other
platforms, a timer register with a resolution of one microsecond means that timestamps are
accurate to one microsecond.

Interval Timer Interfaces
Real-time applications often schedule actions by using interval timers. Interval timers can be
either of two types: a one-shot type or a periodic type.

A one-shot is an armed timer that is set to an expiration time relative to either a current time or
an absolute time. The timer expires once and is disarmed. This type of a timer is useful for
clearing buffers after the data has been transferred to storage, or to time-out an operation.

Timing Facilities

Chapter 12 • Real-time Programming and Administration 293

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Agettimeofday-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Agettimeofday-3c

A periodic timer is armed with an initial expiration time, either absolute or relative, and a
repetition interval. Every time the interval timer expires, the timer is reloaded with the
repetition interval. The timer is then rearmed. This timer is useful for data logging or for
servo-control. In calls to interval timer interfaces, time values that are smaller than the timer's
resolution are rounded up to the next multiple of the hardware timer interval. This interval is
typically 10ms.

SunOS has two sets of timer interfaces. The setitimer(2) and getitimer(2) interfaces operate
fixed set timers, which are called the BSD timers, using the timeval structure to specify time
intervals. The POSIX timers, which are created with the timer-create command, operate the
POSIX clock, CLOCK_REALTIME. POSIX timer operations are expressed in terms of the timespec
structure.

The getitimer(2) and setitimer(2) functions retrieve and establish, respectively, the value of
the specified BSD interval timer. The three BSD interval timers that are available to a process
include a real-time timer designated ITIMER_REAL. If a BSD timer is armed and allowed to
expire, the system sends an appropriate signal to the process that set the timer.

The timer_create command routine can create up to TIMER_MAX POSIX timers. The caller can
specify what signal and what associated value are sent to the process when the timer expires.
The timer_settime and timer_gettime routines retrieve and establish respectively the value
of the specified POSIX interval timer. POSIX timers can expire while the required signal is
pending delivery. The timer expirations are counted, and timer_getoverrun retrieves the
count. The timer_delete command deallocates a POSIX timer.

The following example illustrates how to use setitimer(2) to generate a periodic interrupt, and
how to control the arrival of timer interrupts.

EXAMPLE 12–2 Controlling Timer Interrupts

#include <unistd.h>

#include <signal.h>

#include <sys/time.h>

#define TIMERCNT 8

void timerhandler();

int timercnt;

struct timeval alarmtimes[TIMERCNT];

main()

{

struct itimerval times;

sigset_t sigset;

int i, ret;

struct sigaction act;

siginfo_t si;

/* block SIGALRM */

sigemptyset (&sigset);

Timing Facilities

Programming Interfaces Guide • November 2011294

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2setitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2getitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2getitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2setitimer-2
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN2setitimer-2

EXAMPLE 12–2 Controlling Timer Interrupts (Continued)

sigaddset (&sigset, SIGALRM);

sigprocmask (SIG_BLOCK, &sigset, NULL);

/* set up handler for SIGALRM */

act.sa_action = timerhandler;

sigemptyset (&act.sa_mask);

act.sa_flags = SA_SIGINFO;

sigaction (SIGALRM, &act, NULL);

/*

* set up interval timer, starting in three seconds,

* then every 1/3 second

*/

times.it_value.tv_sec = 3;

times.it_value.tv_usec = 0;

times.it_interval.tv_sec = 0;

times.it_interval.tv_usec = 333333;

ret = setitimer (ITIMER_REAL, ×, NULL);

printf ("main:setitimer ret = %d\n", ret);

/* now wait for the alarms */

sigemptyset (&sigset);

timerhandler (0, si, NULL);

while (timercnt < TIMERCNT) {

ret = sigsuspend (&sigset);

}

printtimes();

}

void timerhandler (sig, siginfo, context)

int sig;

siginfo_t *siginfo;

void *context;

{

printf ("timerhandler:start\n");
gettimeofday (&alarmtimes[timercnt], NULL);

timercnt++;

printf ("timerhandler:timercnt = %d\n", timercnt);

}

printtimes ()

{

int i;

for (i = 0; i < TIMERCNT; i++) {

printf("%ld.%0l6d\n", alarmtimes[i].tv_sec,

alarmtimes[i].tv_usec);

}

}

Timing Facilities

Chapter 12 • Real-time Programming and Administration 295

296

The Oracle Solaris ABI and ABI Tools

The Oracle Solaris Application Binary Interface (ABI) defines the interfaces that are available
for the use of application developers. Conforming to the ABI enhances an application's binary
stability. This chapter discusses the Oracle Solaris ABI and the tools provided to verify an
application's compliance with the ABI, including:

■ The definition and purpose of the Oracle Solaris ABI, discussed in “Defining the Oracle
Solaris ABI” on page 298.

■ The usage of the two ABI tools, appcert and apptrace, discussed in “Oracle Solaris ABI
Tools” on page 300.

What is the Oracle Solaris ABI?
The Oracle Solaris ABI is the set of supported run-time interfaces that are available for an
application to use with the Oracle Solaris operating system. The most important components of
the ABI are in the following list:

■ The interfaces provided by the Oracle Solaris system libraries, which are documented in
section 3 of the man pages

■ The interfaces provided by the Oracle Solaris kernel system calls, which are documented in
section 2 of the man pages

■ The locations and formats of various system files and directories, which are documented in
section 4 of the man pages

■ The input and output syntax and semantics of Oracle Solaris utilities, which are
documented in section 1 of the man pages

The main component of the Oracle Solaris ABI is the set of system library interfaces. The term
ABI in this chapter refers only to that component. The ABI contains exclusively C language
interfaces, as C is the only language for which the Oracle Solaris operating system provides
interfaces.

13C H A P T E R 1 3

297

C source code that is written to the Oracle Solaris API (Application Programming Interface) is
transformed by the C compiler into a binary for one of four ABI versions. The versions are:
■ 32-bit SPARC
■ 64-bit SPARC
■ 32-bit x86
■ 64–bit x86 (Opteron)

While the ABI is very similar to the API, the source compilation process introduces several
important differences:
■ Compiler directives such as #define can alter or replace source-level constructs. The

resulting binary might lack a symbol present in the source or include a symbol not present
in the source.

■ The compiler might generate processor-specific symbols, such as arithmetic instructions,
which augment or replace source constructs.

■ The compiler's binary layout might be specific to that compiler and the versions of the
source language which the compiler accepts. In such cases, identical code compiled with
different compilers might produce incompatible binaries.

For these reasons, source-level (API) compatibility does not provide a sufficient expectation of
binary compatibility across Oracle Solaris releases.

The Oracle Solaris ABI is made up of the supported interfaces provided by the operating
system. Some of the interfaces that are available in the system are intended for the exclusive use
of the operating system. These exclusive interfaces are not available for use by an application.
Prior to the SunOS 5.6 release, all of the interfaces in Oracle Solaris libraries were available for
application developers to use. With the library symbol scoping technology available in the
Oracle Solaris link editor, interfaces not intended for use outside of a library have their scope
reduced to be purely local to the library. See the Linker and Libraries Guide for details. Due to
system requirements, not all private interfaces can have such a reduced scope. These interfaces
are labeled private, and are not included in the Oracle Solaris ABI.

Defining the Oracle Solaris ABI
The Oracle Solaris ABI is defined in the Oracle Solaris libraries. These definitions are done by
means of the library versioning technology and policies used in the link editor and run-time
linker.

Symbol Versioning in Oracle Solaris Libraries
The Oracle Solaris link editor and run-time linker use two kinds of library versioning: file
versioning and symbol versioning. In file versioning, a library is named with an appended
version number, such as libc.so.1. When an incompatible change is made to one or more

Defining the Oracle Solaris ABI

Programming Interfaces Guide • November 2011298

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

public interfaces in that library, the version number is incremented (for example, to
libc.so.2). In a dynamically linked application, a symbol bound to at build time might not be
present in the library at run time. In symbol versioning, the Oracle Solaris linker associates a set
of symbols with a name. The linker then checks for the presence of the name in the library
during run-time linking to verify the presence of the associated symbols.

Library symbol versioning associates a set of symbols with a symbol version name, and number
if that name has a numbering scheme, by means of a mapfile. The following is an example
mapfile for a hypothetical Sun library, libfoo.so.1.

SUNW_1.2 {

global:

symbolD;

symbolE

} SUNW_1.1;

SUNW_1.1 {

global:

symbolA;

symbolB;

symbolC;

};

SUNWprivate {

global:

__fooimpl;

local: *;

};

This mapfile indicates that symbolA, symbolB, and symbolC are associated with version
SUNW_1.1, symbolD and symbolE are associated with SUNW_1.2, and that SUNW_1.2 inherits all
the symbols associated with SUNW_1.1. The symbol __fooimpl is associated with a different
named set which does not have a numbered inheritance chain.

During build time, the link editor examines the symbols used by the application. The link editor
records the set names in the application on which those symbols depend. In the case of chained
sets, the link editor records the smallest named set containing all the symbols used by the
application. If an application uses only symbolA and symbolB, the link editor records a
dependency on SUNW_1.1. If an application uses symbolA, symbolB, and symbolD, the link editor
records a dependency on SUNW_1.2, because SUNW_1.2 includes SUNW_1.1.

At run time, the linker verifies that the version names recorded as dependencies in the
application are present in the libraries that are being linked. This process is a quick way to verify
the presence of required symbols. For more details, see the Linker and Libraries Guide.

Defining the Oracle Solaris ABI

Chapter 13 • The Oracle Solaris ABI and ABI Tools 299

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=LLM

Note – The local: * directive in the mapfile means that any symbol in the library that is not
explicitly associated with a named set is scoped locally to the library. Such locally scoped
symbols are not visible outside the library. This convention ensures that symbols are only
visible when associated with a symbol versioning name.

Using Symbol Versioning to Label the Oracle Solaris
ABI
Since all visible symbols in a library belong to some named set, the naming scheme can be used
to label the symbols' ABI status. This labeling is done by associating all private interfaces with a
set name beginning with SUNWprivate. Public interfaces begin with other names, specifically:

■ SYSVABI, for interfaces defined by the System V ABI definition
■ SISCD, for interfaces defined by the SPARC International SPARC Compliance Definition
■ SUNW, for interfaces defined by Sun Microsystems

These public, named sets are numbered with a major.minor numbering scheme. When a set
includes new symbols, the set's minor version number increases. When an existing symbol
changes in a way that makes the symbol incompatible with its previous behavior, the major
version number of the set that includes that symbol increases. When an existing symbol
changes incompatibly, the version number in the library's file name also increases.

The definition of the Oracle Solaris library ABI is therefore contained in the libraries, and
consists of the set of symbols that are associated with symbol version names that do not begin
with SUNWprivate. The pvs command lists the symbols in a library.

Oracle Solaris ABI Tools
The Oracle Solaris operating system provides two tools to verify that an application's use of
Oracle Solaris interfaces conforms to the Oracle Solaris ABI. The appcert utility statically
examines the Oracle Solaris library interfaces used by ELF binaries for instances of private
interface usage. The appcert utility produces summary and detailed reports of any potential
binary stability problems it finds. The apptrace tool uses the link-auditing capability of the
run-time linker to dynamically trace Oracle Solaris library routine calls as the application runs.
This capability enables developers to examine an application's use of the Oracle Solaris system
interfaces.

The ABI tools enable easy, rapid identification of binaries that might have binary compatibility
problems with a given Oracle Solaris release. To check binary stability, perform the following
steps:

Oracle Solaris ABI Tools

Programming Interfaces Guide • November 2011300

■ Use appcert on the current Oracle Solaris release for triage. This identifies which binaries
use problematic interfaces and which do not.

■ Use apptrace on the target Oracle Solaris release for verification. This verifies whether
interface compatibility problems exist by enabling dynamic observation of those interfaces
as they are used.

appcertUtility
The appcert utility is a Perl script that statically examines ELF binaries and compares the
library symbols used against a model of public interfaces and private interfaces in a given Oracle
Solaris release. The utility runs on either SPARC or x86 platforms. The utility can check
interface usage for both SPARC and x86 3F2-bit interfaces as well as the 64-bit interfaces on
SPARC. Note that appcert only examines C language interfaces.

As new Oracle Solaris releases become available, some library interfaces might change their
behavior or disappear entirely. These changes can affect the performance of applications that
rely on those interfaces. The Oracle Solaris ABI defines runtime library interfaces that are safe
and stable for application use. The appcert utility is designed to help developers verify an
application's compliance with the Oracle Solaris ABI.

What appcertChecks
The appcert utility examines your applications for:

■ Private symbol usage
■ Static linking
■ Unbound symbols

Private Symbol Usage
Private symbols are functions or data that is used by Oracle Solaris libraries to call each other.
The semantic behavior of private symbols might change, and symbols might sometimes be
removed. Such symbols are called demoted symbols. The mutable nature of private symbols
introduces the potential for instability in applications that depend on private symbols.

Static Linking
The semantics of private symbol calls between Oracle Solaris libraries might change between
releases. Therefore, the creation of static links to archives degrades an application's binary
stability. Dynamic links to the archive's corresponding shared object file avoid this problem.

Oracle Solaris ABI Tools

Chapter 13 • The Oracle Solaris ABI and ABI Tools 301

Unbound Symbols
The appcert utility uses the dynamic linker to resolve the library symbols that are used by the
application being examined. Symbols that the dynamic linker cannot resolve are called
unbound symbols. Unbound symbols might be caused by environment problems, such as an
incorrectly set LD_LIBRARY_PATH variable. Unbound symbols might also be caused by build
problems, such as omitting the definitions of the -llib or -z switches at compile time. While
these examples are minor, unbound symbols that are reported by appcert might indicate a
more serious problem, such as a dependency on a private symbol that no longer exists.

What appcertDoes Not Check
If the object file appcert is examining depends on libraries, those dependencies must be
recorded in the object. To do so, be sure to use the compiler's -l switch when compiling the
code. If the object file depends on other shared libraries, those libraries must be accessible
through LD_LIBRARY_PATH or RPATH at the time you run appcert.

The appcert application cannot check 64–bit applications unless the machine is running the
64–bit Solaris kernel. Since Solaris provides no 64–bit static libraries, appcert does not perform
static-linking checks on 64–bit applications.

The appcert utility cannot examine:

■ Object files that are completely or partially statically linked. A completely statically linked
object is reported as unstable.

■ Executable files that do not have the execute permission set. The appcert utility skips such
executables. Shared objects without the execute permission set are examined normally.

■ Object files whose user ID is set to root.
■ Non-ELF executables, such as shell scripts.
■ Oracle Solaris interfaces in languages other than C. The code need not be in C, but the call to

the Oracle Solaris library must be.

Working with appcert

To check your application with appcert, type:

appcert object|directory

replacing object|directory with either:

■ The complete list of objects you want appcert to examine
■ The complete list of directories that contain such objects

Oracle Solaris ABI Tools

Programming Interfaces Guide • November 2011302

Note – You might run appcert in an environment that is different from the environment in
which the application runs. If these environments are different, appcert might not be able to
correctly resolve references to Oracle Solaris library interfaces.

The appcert utility uses the Oracle Solaris runtime linker to construct a profile of interface
dependencies for each executable or shared object file. This profile is used to determine the
Oracle Solaris system interfaces upon which the application depends. The dependencies that
are outlined in the profile are compared to the Oracle Solaris ABI to verify conformance. No
private interfaces should be found.

The appcert utility recursively searches directories for object files, ignoring non-ELF object
files. After appcert has finished checking the application, appcert prints a rollup report to the
standard output, usually the screen. A copy of this report is written in the working directory,
which is usually /tmp/appcert.pid, in a file that is named Report. In the subdirectory name,
pid represents the 1–to–6 digit process ID of that particular instantiation of appcert. See
“appcert Results” on page 305 for more on the directory structure to which appcert writes
output files.

appcertOptions
The following options modify the behavior of the appcert utility. You can type any of these
options at the command line, after the appcert command but before the object|directory
operand.

-B Runs appcert in batch mode.

In batch mode, the report produced by appcert contains one line for each
binary checked.

A line that begins with PASS indicates the binary that is named in that line
did not trigger any appcert warnings.

A line that begins with FAIL indicates problems were found in that binary.

A line that begins with INC indicates the binary that is named in that line
could not be completely checked.

-f infile The file infile should contain a list of files to check, with one file name per
line. These files are added to any files already specified at the command line.
If you use this switch, you do not need to specify an object or directory at the
command line.

-h Prints usage information for appcert.

Oracle Solaris ABI Tools

Chapter 13 • The Oracle Solaris ABI and ABI Tools 303

-L By default, appcert notes any shared objects in an application, and appends
the directories in which the shared objects reside to LD_LIBRARY_PATH. The
-L switch disables this behavior.

-n By default, appcert follows symbolic links when appcert searches
directories for binaries to check. The -n switch disables this behavior.

-S Appends the Oracle Solaris library directories /usr/openwin/lib and
/usr/dt/lib to LD_LIBRARY_PATH.

-w working_dir Specifies a directory in which to run the library components. Temporary
files are also created in the directory specified by this switch. If this switch is
not specified, appcert uses the /tmp directory.

Using appcert for Application Triage
The appcert utility can be used to quickly and easily discern which applications in a given set
have potential stability problems. If appcert does not report any stability problems, the
application is not likely to encounter binary stability problems in subsequent Solaris releases.
The following table lists some common binary stability problems.

TABLE 13–1 Common Binary Stability Problems

Problem Course of Action

Use of a private symbol that is known to change Eliminate use of symbol immediately.

Use of a private symbol that has not changed yet Application can still be run for now, but eliminate use
of symbol as soon as practical.

Static linking of a library with a shared object
counterpart

Use shared object counterpart instead.

Static linking of a library with no shared object
counterpart

Convert .a file to .so file by using the command ld

-z allextract if possible. Otherwise, continue to use
static library until shared object is available.

Use of a private symbol for which no public equivalent
is available

Contact Sun and request a public interface.

Use of a symbol that is deprecated, or use of a symbol
that is planned for removal

Application can still be run for now, but eliminate use
of symbol as soon as practical.

Use of a public symbol that has changed Recompile.

Potential stability problems caused by the use of private interfaces might not occur on a given
release. The behavior of private interfaces does not always change between releases. To verify

Oracle Solaris ABI Tools

Programming Interfaces Guide • November 2011304

that a private interface's behavior has changed in the target release, use the apptrace tool. Usage
of apptrace is discussed in “Using apptrace for Application Verification” on page 307.

appcertResults
The results of the appcert utility's analysis of an application's object files are written to several
files that are located in the appcert utility's working directory, typically /tmp. The main
subdirectory under the working directory is appcert.pid, where pid is the process ID for that
instantiation of appcert. The appcert utility's results are written to the following files:

Index Contains the mapping between checked binaries and the
subdirectory in which appcert output specific to that binary is
located.

Report Contains a copy of the rollup report that is displayed on stdout

when appcert is run.

Skipped Contains a list of binaries that appcert was asked to check but was
forced to skip, along with the reason each binary was skipped. These
reasons are in the following list:
■ File is not a binary object
■ File cannot be read by the user
■ File name contains metacharacters
■ File does not have the execute bit set

objects/object_name A separate subdirectory is under the objects subdirectory for each
object examined by appcert. Each of these subdirectories contains
the following files:

check.demoted.symbols Contains a list of symbols that
appcert suspects are demoted
Oracle Solaris symbols.

check.dynamic.private Contains a list of private Oracle
Solaris symbols to which the object
is directly bound.

check.dynamic.public Contains a list of public Oracle
Solaris symbols to which the object
is directly bound.

check.dynamic.unbound Contains a list of symbols not
bound by the dynamic linker when
running ldd -r. Lines returned by
ldd containing “file not found”
are also included.

Oracle Solaris ABI Tools

Chapter 13 • The Oracle Solaris ABI and ABI Tools 305

summary.dynamic Contains a printer-formatted
summary of dynamic bindings in
the objects appcert examined,
including tables of public and
private symbols used from each
Oracle Solaris library.

Returns one of four exit values.

0 No potential sources of binary instability were found by appcert.

1 The appcert utility did not run successfully.

2 Some of the objects checked by appcert have potential binary stability problems.

3 The appcert utility did not find any binary objects to check.

Correcting Problems Reported by appcert
■ Private Symbol Use – An application that depends on private symbols might not run on a

Oracle Solaris release different from the one in which it was developed. This phenomenon
occurs because private symbols that occur in a given Oracle Solaris release might behave
differently or not be present in another release. If appcert reports private symbol usage in
your application, rewrite the application to avoid the use of private symbols.

■ Demoted Symbols – Demoted symbols are functions or data variables in a Oracle Solaris
library that have been removed or have been scoped locally in a later Oracle Solaris release.
An application that directly calls such a symbol fails to run on a release whose libraries do
not export that symbol.

■ Unbound Symbols – Unbound symbols are library symbols that are referenced by the
application that the dynamic linker was unable to resolve when called by appcert. While
unbound symbols are not always an indicator of poor binary stability, unbound symbols
might indicate a more serious problem, such as dependencies on demoted symbols.

■ Obsolete Library – An obsolete library might be removed from the Oracle Solaris operating
system in a future release. The appcert utility flags any use of such a library. Applications
that depend on such a library might not function in a future release that does not feature the
library. To avoid this problem, do not use interfaces from obsolete libraries.

■ Use of sys_errlist or sys_nerr – The use of the sys_errlist and sys_nerr symbols might
degrade binary stability. A reference might be made past the end of the sys_errlist array.
To avoid this risk, use strerror instead.

■ Use of strong and weak symbols – The strong symbols that are associated with weak
symbols are reserved as private because their behavior might change in future Oracle Solaris
releases. Applications should only directly reference weak symbols. An example of a strong
symbol is _socket, which is associated with the weak symbol socket.

Oracle Solaris ABI Tools

Programming Interfaces Guide • November 2011306

Using apptrace for Application Verification
The apptrace utility is a C program which dynamically traces calls to Oracle Solaris library
routines as an application runs. apptrace works on either SPARC or x86 platforms. apptrace
can trace interface calls for both SPARC and x86 32-bit interfaces, as well as the 64-bit interfaces
on SPARC. As with appcert, apptrace only examines C language interfaces.

Application Verification
After using appcert to determine an application is at risk of binary instability, apptrace helps
assess the degree of risk in each case. To determine an application's binary compatibility with a
given release, verify the successful use of each interface used by the application with apptrace.

The apptrace utility can verify that an application is using public interfaces correctly. For
example, an application that is using the open() to open the administrative file /etc/passwd
directly should instead use the appropriate programmatic interfaces. This ability to inspect the
usage of the Oracle Solaris ABI enables easy and rapid identification of potential interface
problems.

Running apptrace

The apptrace utility does not require any modification of the application being traced. To use
apptrace, type apptrace, followed by any desired options along with the command line used to
run the application of interest. The apptrace utility works by using the link-auditing capability
of the runtime linker to intercept the application's calls to Oracle Solaris library interfaces. The
apptrace utility then traces the calls by printing the names and values of the call's arguments
and return value. The tracing output can be on a single line or arranged across multiple lines for
readability. Public interfaces are printed in human-readable form. Private interfaces are printed
in hexadecimal.

The apptrace utility enables selective tracing of calls, both at the level of individual interfaces
and the level of libraries. For example, apptrace can trace calls to printf() coming from
libnsl, or a range of calls within a specific library. The apptrace utility can also verbosely trace
user-specified calls. The specifications that dictate apptrace behavior are governed by a syntax
that is consistent with the usage of truss(1). The -f option directs apptrace to follow forked
child processes. The -o option specifies an output file for apptrace results.

The apptrace utility traces only library-level calls and is loaded into the running application
process, gaining a performance increase over truss. With the exception of printf, apptrace
cannot trace calls to functions that accept variable argument lists or examine the stack or other
caller information, for example, setcontext, getcontext, setjmp, longjmp, and vfork.

Oracle Solaris ABI Tools

Chapter 13 • The Oracle Solaris ABI and ABI Tools 307

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1truss-1

Interpreting apptraceOutput
The following examples contain sample apptrace output from tracing a simple one-binary
application, ls.

EXAMPLE 13–1 Default Tracing Behavior

% apptrace ls /etc/passwd

ls -> libc.so.1:atexit(func = 0xff3cb8f0) = 0x0

ls -> libc.so.1:atexit(func = 0x129a4) = 0x0

ls -> libc.so.1:getuid() = 0x32c3

ls -> libc.so.1:time(tloc = 0x23918) = 0x3b2fe4ef

ls -> libc.so.1:isatty(fildes = 0x1) = 0x1

ls -> libc.so.1:ioctl(0x1, 0x540d, 0xffbff7ac)

ls -> libc.so.1:ioctl(0x1, 0x5468, 0x23908)

ls -> libc.so.1:setlocale(category = 0x6, locale = "") = "C"
ls -> libc.so.1:calloc(nelem = 0x1, elsize = 0x40) = 0x23cd0

ls -> libc.so.1:lstat64(path = "/etc/passwd", buf = 0xffbff6b0) = 0x0

ls -> libc.so.1:acl(pathp = "/etc/passwd", cmd = 0x3, nentries = 0x0,

aclbufp = 0x0) = 0x4

ls -> libc.so.1:qsort(base = 0x23cd0, nel = 0x1, width = 0x40,

compar = 0x12038)

ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0

ls -> libc.so.1:strlen(s = "") = 0x0

ls -> libc.so.1:strlen(s = "/etc/passwd") = 0xb

ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0

ls -> libc.so.1:strlen(s = "") = 0x0

ls -> libc.so.1:printf(format = 0x12ab8, ...) = 11

ls -> libc.so.1:printf(/etc/passwd

format = 0x12abc, ...) = 1

ls -> libc.so.1:exit(status = 0)

The previous example shows the default tracing behavior, tracing every library call on the
command ls /etc/passwd. The apptrace utility prints a line of output for every system call,
indicating:

■ The name of the call
■ The library the call is in
■ The arguments and return values of the call

The output from ls is mixed in with the apptrace output.

EXAMPLE 13–2 Selective Tracing

% apptrace -t *printf ls /etc/passwd

ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0

ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0

ls -> libc.so.1:printf(format = 0x12ab8, ...) = 11

ls -> libc.so.1:printf(/etc/passwd

format = 0x12abc, ...) = 1

Oracle Solaris ABI Tools

Programming Interfaces Guide • November 2011308

The previous example shows how apptrace can selectively trace calls with regular-expression
syntax. In the example, calls to interfaces ending in printf, which include sprintf, are traced
in the same ls command as before. Consequently, apptrace only traces the printf and
sprintf calls.

EXAMPLE 13–3 Verbose Tracing

% apptrace -v sprintf ls /etc/passwd

ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0

buf = (char *) 0x233d0 ""
format = (char *) 0x12af8 "%s%s%s"

ls -> libc.so.1:sprintf(buf = 0x233d0, format = 0x12af8, ...) = 0

buf = (char *) 0x233d0 ""
format = (char *) 0x12af8 "%s%s%s"

/etc/passwd

The previous example shows the verbose tracing mode, where the arguments to sprintf are
printed on multiple output lines for readability. At the end, apptrace displays the output of the
ls command.

Oracle Solaris ABI Tools

Chapter 13 • The Oracle Solaris ABI and ABI Tools 309

310

UNIX Domain Sockets

UNIX domain sockets are named with UNIX paths. For example, a socket might be named
/tmp/foo. UNIX domain sockets communicate only between processes on a single host.
Sockets in the UNIX domain are not considered part of the network protocols because they can
be used to communicate only between processes on a single host.

Socket types define the communication properties visible to a user. The Internet domain
sockets provide access to the TCP/IP transport protocols. The Internet domain is identified by
the value AF_INET. Sockets exchange data only with sockets in the same domain.

Creating Sockets
The socket(3SOCKET) call creates a socket in the specified family and of the specified type.

s = socket(family, type, protocol);

If the protocol is unspecified (a value of 0), the system selects a protocol that supports the
requested socket type. The socket handle (a file descriptor) is returned.

The family is specified by one of the constants defined in sys/socket.h. Constants named
AF_suite specify the address format to use in interpreting names.

The following creates a datagram socket for intramachine use:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

Set the protocol argument to 0, the default protocol, in most situations.

AA P P E N D I X A

311

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bsocket-3socket

Local Name Binding
A socket is created with no name. A remote process has no way to refer to a socket until an
address is bound to the socket. Communicating processes are connected through addresses. In
the UNIX family, a connection is composed of (usually) one or two path names. UNIX family
sockets need not always be bound to a name. If they are, bound, duplicate ordered sets such as
local pathname or foreign pathname can never exist. The path names cannot refer to existing
files.

The bind(3SOCKET) call enables a process to specify the local address of the socket. This
creates the local pathname ordered set, while connect(3SOCKET) and accept(3SOCKET)
complete a socket's association by fixing the remote half of the address. Use bind(3SOCKET) as
follows:

bind (s, name, namelen);

The socket handle is s. The bound name is a byte string that is interpreted by the supporting
protocols. UNIX family names contain a path name and a family. The example shows binding
the name /tmp/foo to a UNIX family socket.

#include <sys/un.h>

...

struct sockaddr_un addr;

...

strcpy(addr.sun_path, "/tmp/foo");
addr.sun_family = AF_UNIX;

bind (s, (struct sockaddr *) &addr,

strlen(addr.sun_path) + sizeof (addr.sun_family));

When determining the size of an AF_UNIX socket address, null bytes are not counted, which is
why you can use strlen(3C).

The file name referred to in addr.sun_path is created as a socket in the system file name space.
The caller must have write permission in the directory where addr.sun_path is created. The file
should be deleted by the caller when it is no longer needed. Delete AF_UNIX sockets with
unlink(1M).

Establishing a Connection
Connection establishment is usually asymmetric. One process acts as the client and the other as
the server. The server binds a socket to a well-known address associated with the service and
blocks on its socket for a connect request. An unrelated process can then connect to the server.
The client requests services from the server by initiating a connection to the server's socket. On
the client side, the connect(3SOCKET) call initiates a connection. In the UNIX family, this
might appear as:

Local Name Binding

Programming Interfaces Guide • November 2011312

http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Baccept-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bbind-3socket
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Astrlen-3c
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN1Munlink-1m
http://www.oracle.com/pls/topic/lookup?ctx=E19963&id=REFMAN3Bconnect-3socket

struct sockaddr_un server;

server.sun.family = AF_UNIX;

...

connect(s, (struct sockaddr *)&server, strlen(server.sun_path)

+ sizeof (server.sun_family));

See “Connection Errors” on page 143 for information on connection errors. “Data Transfer” on
page 144 tells you how to transfer data. “Closing Sockets” on page 144 tells you how to close a
socket.

Establishing a Connection

Appendix A • UNIX Domain Sockets 313

314

Index

A
ABI, See application binary interface
ABI differences from API, 298
accept, 141, 312
API differences from ABI, 298
appcert

limitations, 302
syntax, 302–304

application binary interface (ABI), 297–298
defined, 298–300
tools, 300–309

appcert, 300
apptrace, 300

apptrace, 307–309
asynchronous I/O

behavior, 274
endpoint service, 230
guaranteeing buffer state, 274
listen for network connection, 232
making connection request, 232
notification of data arrival, 230
opening a file, 232–234
using structure, 274

Asynchronous Safe, 220
asynchronous socket, 167–168, 168
atomic updates to semaphores, 129
attribute, finding in an SDP session structure, 63–64

B
barrier mode, implicit, 43

bind, 141, 312
blocking mode

defined, 280
finite time quantum, 278
priority inversion, 280
time-sharing process, 273

brk(2), 21
broadcast, sending message, 174

C
calloc, 18
chmod(1), 113
class

definition, 277
priority queue, 279
scheduling algorithm, 279
scheduling priorities, 277–280

Client-server model, 160
close, 144
connect, 141, 142, 154, 312
connection-mode

asynchronous network service, 231–232
asynchronously connecting, 231
definition, 292
using asynchronous connection, 231–232

connectionless mode, asynchronous network
service, 230–231

connectionless-mode, definition, 292
context switch, preempting a process, 280
creation flags, IPC, 126

315

D
daemon, inetd, 172–173
datagram

socket, 139, 152–156, 163
debugging dynamic memory, 18–20
/dev/zero, mapping, 16
dispatch, priorities, 278
dispatch latency, 275

under realtime, 275–281
dispatch table

configuring, 283–284
kernel, 280

dynamic memory
allocation, 17–18
debugging, 18–20

access checking, 18–19
leak checking, 19
memory use checking, 19–20

E
EWOULDBLOCK, 167
examples, library mapfile, 299

F
F_GETLK, 117
F_SETOWN fcntl, 168
fcntl(2), 115
file and record locking, 112
file descriptor

passing to another process, 232
transferring, 232–234

file system
contiguous, 274
opening dynamically, 232

file versioning, 298
files, lock, 112
free, 18

G
gethostbyaddr, 158
gethostbyname, 158
getpeername, 173
getservbyname, 159
getservbyport, 159
getservent, 159

H
handle

socket, 142, 312
handles, 42
host name mapping, 158
hostent structure, 158

I
I/O, See asynchronous I/O or synchronous I/O
implicit barrier mode, 43
inet_ntoa, 158
inetd, 160, 172
inetd.conf, 172
init(1M), scheduler properties, 79
interfaces

advanced I/O, 111
basic I/O, 110
IPC, 121
list file system control, 112
terminal I/O, 118

Internet
host name mapping, 158
port numbers, 171
well known address, 159, 160

Interprocess Communication (IPC)
using messages, 291
using named pipes, 291
using pipes, 291
using semaphores, 292
using shared memory, 292

ioctl, SIOCATMARK, 165
IPC (interprocess communication), 121

creation flags, 126

Index

Programming Interfaces Guide • November 2011316

IPC (interprocess communication) (Continued)
interfaces, 126
messages, 126–129
permissions, 125
semaphores, 129–133
shared memory, 133–135

IPC_RMID, 128
IPC_SET, 128
IPC_STAT, 127
IPPORT_RESERVED, 171

K
kernel

class independent, 279
context switch, 280
dispatch table, 280
preempting current process, 280
queue, 274

L
libnsl, 220
lockf(3C), 117
locking

advisory, 114
F_GETLK, 117
finding locks, 117
mandatory, 114
memory in realtime, 285
opening a file for, 114–115
record, 116
removing, 116
setting, 116
supported file systems, 114–118
testing locks, 117
with fcntl(2), 115

ls(1), 113

M
malloc, 18

mapped files, 15, 16
media, finding in an SDP session structure, 64
media format, finding in an SDP session

structure, 64–65
memalign, 18
memory

locking, 285
locking a page, 285–286
locking all pages, 286
number of locked pages, 285
sticky locks, 286
unlocking a page, 286

memory allocation, dynamic, 17–18
memory management, 21

brk, 20–21
interfaces, 15–17
mlock, 17
mlockall, 17
mmap, 15, 16
mprotect, 20
msync, 17
munmap, 16
sbrk, 20–21
sysconf, 20

messages, 126–129
mlock, 17
mlockall, 17
mmap, 15, 16
mprotect, 20
MSG_DONTROUTE, 144
MSG_OOB, 144
MSG_PEEK, 144, 165
msgget(), 126
msqid, 127
msync, 17
multiple connect (TLI), 224
multithread safe, 219, 263
munmap, 16

N
name-to-address translation

inet, 265
nis.so, 264

Index

317

name-to-address translation (Continued)
straddr.so, 265
switch.so, 264
tcpip.so, 264

named pipe, FIFO, 291
netdir_free, 266
netdir_getbyaddr, 266
netdir_getbyname, 266
netdir_options, 267
netdir_perror, 267
netdir_sperror, 267
netent structure, 158
network

asynchronous connection, 229, 292
asynchronous service, 230–231
asynchronous transfers, 230–231
asynchronous use, 230
connection-mode service, 292–293
connectionless-mode service, 292
programming models for real-time, 229–230
services under realtime, 292–293
using STREAMS asynchronously, 229, 292
using Transport-Level Interface (TLI), 229

networked applications, 11
nice(1), 79
nice(2), 79
nis.so, 264
non-blocking mode

configuring endpoint connections, 231
defined, 229
endpoint bound to service address, 231
network service, 230
polling for notification, 230
service requests, 230
Transport-Level Interface (TLI), 229
using t_connect(), 231

nonblocking sockets, 166–167

O
optmgmt, 235, 237, 238
out-of-band data, 165

P
performance, scheduler effect on, 79
permissions, IPC, 125
poll, 223
pollfd structure, 225, 226
polling

for a connection request, 231
notification of data, 230
using poll(2), 230

port numbers for Internet, 171
port to service mapping, 159
porting from TLI to XTI, 220
priocntl(1), 77
priority inversion

defined, 273
synchronization, 280–281

priority queue, linear linked list, 280
process

defined for realtime, 271–274
dispatching, 280
highest priority, 272
preemption, 280
residence in memory, 285
runaway, 274
scheduling for realtime, 278
setting priorities, 282

process priority
global, 72
setting and retrieving, 77

protoent structure, 159

R
real-time, scheduler class, 74
realloc, 18
recvfrom, 154
remote shared memory API, See RSMAPI
removing record locks, 116
response time

blocking processes, 273
bounds to I/O, 272
degrading, 272–274
inheriting priority, 273
servicing interrupts, 272

Index

Programming Interfaces Guide • November 2011318

response time (Continued)
sharing libraries, 273
sticky locks, 274

reversing operations for semaphores, 130
rpcbind, 265
rsm_create_localmemory_handle, 43
rsm_free_interconnect_topology, 32
rsm_free_localmemory_handle, 44
rsm_get_controller, 29–30
rsm_get_controller_attr, 30–31
rsm_get_interconnect_topology, 31
rsm_get_segmentid_range, 32
rsm_intr_signal_post, 48
rsm_intr_signal_wait, 49
rsm_memseg_export_create, 34
rsm_memseg_export_destroy, 35
rsm_memseg_export_publish, 36
rsm_memseg_export_rebind, 38
rsm_memseg_export_republish, 37
rsm_memseg_export_unpublish, 37
rsm_memseg_get_pollfd, 49
rsm_memseg_import_close_barrier, 46
rsm_memseg_import_connect, 39
rsm_memseg_import_destroy_barrier, 47
rsm_memseg_import_disconnect, 40
rsm_memseg_import_get, 41
rsm_memseg_import_get_mode, 48
rsm_memseg_import_get16, 40
rsm_memseg_import_get32, 40
rsm_memseg_import_get64, 40
rsm_memseg_import_get8, 40
rsm_memseg_import_getv, 42
rsm_memseg_import_init_barrier, 41, 46
rsm_memseg_import_map, 44
rsm_memseg_import_open_barrier, 46
rsm_memseg_import_order_barrier, 47
rsm_memseg_import_put, 41
rsm_memseg_import_put16, 40
rsm_memseg_import_put32, 40
rsm_memseg_import_put64, 40
rsm_memseg_import_put8, 40
rsm_memseg_import_putv, 42
rsm_memseg_import_set_mode, 47
rsm_memseg_import_unmap, 45

rsm_memseg_release_pollfd, 49
rsm_release_controller, 30
RSMAPI, 27

administrative operations, 32–33
application ID, 32
rsm_get_segmentid_range, 32

API framework, 28
barrier mode

implicit, 43
cluster topology operations, 31–32
data structures, 32
event operations, 48–49

get pollfd, 49
post signal, 48
release pollfd, 49
rsm_intr_signal_post, 48
rsm_intr_signal_wait, 49
rsm_memseg_get_pollfd, 49
rsm_memseg_release_pollfd, 49
wait for signal, 49

interconnect controller operations, 29–31
rsm_free_interconnect_topology, 32
rsm_get_controller, 29–30
rsm_get_controller_attr, 30–31
rsm_get_interconnect_topology, 31
rsm_release_controller, 30

library functions, 29–49
memory access primitives, 40–42

rsm_memseg_import_get, 41
rsm_memseg_import_get16, 40
rsm_memseg_import_get32, 40
rsm_memseg_import_get64, 40
rsm_memseg_import_get8, 40
rsm_memseg_import_put, 41
rsm_memseg_import_put16, 40
rsm_memseg_import_put32, 40
rsm_memseg_import_put64, 40
rsm_memseg_import_put8, 40

memory segment creation, 34
memory segment destruction, 35
memory segment operations, 33–49

barrier operations, 45–48
close barrier, 46
connect, 39

Index

319

RSMAPI, memory segment operations (Continued)
destroy barrier, 47
disconnect, 40
export-side, 33–38
free local handle, 44
get barrier mode, 48
get local handle, 43
handles, 42
import-side, 38–48
imported segment map, 44
initialize barrier, 46
open barrier, 46
order barrier, 47
rebind, 38
rsm_create_localmemory_handle, 43
rsm_free_localmemory_handle, 44
rsm_memseg_export_create, 34
rsm_memseg_export_destroy, 35
rsm_memseg_export_publish, 36
rsm_memseg_export_rebind, 38
rsm_memseg_export_republish, 37
rsm_memseg_export_unpublish, 37
rsm_memseg_import_close_barrier, 46
rsm_memseg_import_connect, 39
rsm_memseg_import_destroy_barrier, 47
rsm_memseg_import_disconnect, 40
rsm_memseg_import_get_mode, 48
rsm_memseg_import_getv, 42
rsm_memseg_import_init_barrier, 46
rsm_memseg_import_map, 44
rsm_memseg_import_open_barrier, 46
rsm_memseg_import_order_barrier, 47
rsm_memseg_import_putv, 42
rsm_memseg_import_set_mode, 47
rsm_memseg_import_unmap, 45
scatter-gather access, 42–44
segment mapping, 44–45
segment unmapping, 45
set barrier mode, 47

memory segment publication, 36
memory segment republication, 37
memory segment unpublication, 37
parameters, 50–51
segment allocation, 50

RSMAPI (Continued)
shared memory model, 27
SUNWinterconnect, 28
SUNWrsm, 28
SUNWrsmdk, 28
SUNWrsmop, 28
usage, 50–51

file descriptor, 50
Run Time Checking (RTC), 18
rwho, 163

S
sbrk, 20–21
sbrk(2), 21
scheduler, 71, 81

classes, 278
configuring, 283–284
effect on performance, 79
priority, 277
real-time, 275
real-time policy, 74
scheduling classes, 277
system policy, 74
time-sharing policy, 73
using system calls, 281–282
using utilities, 282–283

scheduler, class, 74
sdp_add_attribute, 60
sdp_add_bandwidth, 59
sdp_add_connection, 58
sdp_add_email, 58
sdp_add_information, 57
sdp_add_key, 60
sdp_add_media, 60–61
sdp_add_name, 57
sdp_add_origin, 57
sdp_add_phone, 58
sdp_add_repeat, 59
sdp_add_time, 59
sdp_add_uri, 57–58
sdp_add_zone, 59–60
sdp_clone_session, 68–69
sdp_delete_all_field, 65

Index

Programming Interfaces Guide • November 2011320

sdp_delete_all_media_field, 65–66
sdp_delete_attribute, 66
sdp_delete_media, 66
sdp_find_attribute, 63–64
sdp_find_media, 64
sdp_find_media_rtpmap, 64–65
sdp_free_session, 66
sdp_new_session, 56
sdp_parse, 67–68
SDP session structure

finding an attribute in, 63–64
finding media format in, 64–65
finding media in, 64

sdp_session_to_str, 69
select, 150, 165
semaphores, 129–133

arbitrary simultaneous updates, 129
atomic updates, 129
reversing operations and SEM_UNDO, 130
undo structure, 129

semget(), 129
semop(), 129
send, 154
servent structure, 159
service to port mapping, 159
Session Description Protocol API

API framework, 53–56
attribute field, 60
bandwidth field, 59
cloning a session, 68–69
connection field, 58
converting a session to string, 69
creating a new session structure, 56–63
deleting attributes, 66
deleting fields, 65
deleting media, 66
deleting media fields, 65–66
email field, 58
finding an attribute, 63–64
finding media, 64
finding media format, 64–65
freeing a session, 66
information field, 57
key field, 60

Session Description Protocol API (Continued)
library functions, 56–69
media field, 60–61
name field, 57
origin field, 57
parsing a structure, 67–68
repeat field, 59
sdp_new_session, 56
searching the SDP session structure, 63–65
shutting down a session structure, 65–66
telephone field, 58
time field, 59
URI field, 57–58
utility functions, 66–69
zone field, 59–60

setting record locks, 116
shared memory, 133–135
shared memory model, 27
shmget(), 133
shutdown, 144
SIGIO, 168
SIOCATMARK ioctl, 165
SIOCGIFCONF ioctl, 174
SIOCGIFFLAGS ioctl, 175
SOCK_DGRAM, 139, 172
SOCK_RAW, 141
SOCK_STREAM, 138, 169, 172
socket

address binding, 169–171
AF_INET

bind, 142
create, 141
getservbyname, 159
getservbyport, 159
getservent, 159
inet_ntoa, 158
socket, 311

AF_UNIX
bind, 142, 312
create, 311
delete, 312

asynchronous, 167–168, 168
close, 144
connect stream, 145–150

Index

321

socket (Continued)
datagram, 139, 152–156, 163
handle, 142, 312
initiate connection, 142, 312
multiplexed, 150
nonblocking, 166–167
out-of-band data, 144, 165
select, 150, 165
selecting protocols, 169
SIOCGIFCONF ioctl, 174
SIOCGIFFLAGS ioctl, 175
SOCK_DGRAM

connect, 154
recvfrom, 154, 165
send, 154

SOCK_STREAM, 169
F_GETOWN fcntl, 168
F_SETOWN fcntl, 168
out-of-band, 165
SIGIO signal, 168
SIGURG signal, 168

TCP port, 160
UDP port, 160

Solaris library symbol versioning, See symbol
versioning

straddr.so, 265
stream

data, 165
socket, 138, 144

Sun WorkShop, 18
access checking, 18–19
leak checking, 19
memory use checking, 19–20

SUNWinterconnect, 28
SUNWrsm, 28
SUNWrsmdk, 28
SUNWrsmop, 28
switch.so, 264
symbol versioning, 298
synchronous I/O

blocking, 286
critical timing, 272

sysconf, 20

T
t_accept, 242
t_alloc, 239, 241
t_bind, 240, 241
t_close, 236, 241
t_connect, 242
T_DATAXFER, 239
t_error, 241
t_free, 241
t_getinfo, 239, 241
t_getstate, 241
t_listen, 223, 239, 242
t_look, 241
t_open, 223, 239, 241
t_optmgmt, 241
t_rcv, 242
t_rcvconnect, 242
t_rcvdis, 240, 242
t_rcvrel, 240, 242
t_rcvuderr, 240, 242
t_rcvv, 243
t_rcvvudata, 243
t_snd, 242
t_snddis, 222, 242
t_sndrel, 240, 242
t_sndreldata, 243
t_sndudata, 242
t_sndv, 243
t_sndvudata, 243
t_sync, 241
t_sysconf, 243
t_unbind, 241
TCP, port, 160
tcpip.so, 264
time-sharing

scheduler class, 73
scheduler parameter table, 74

timers
f applications, 293
for interval timing, 293
timestamping, 293
using one-shot, 293
using periodic type, 293

tirdwr, 242

Index

Programming Interfaces Guide • November 2011322

tiuser.h, 220
TLI

asynchronous mode, 223–224
broadcast, 240
incoming events, 235–236
multiple connection requests, 224
opaque addresses, 240
outgoing events, 234–235
privileged ports, 240
protocol independence, 239–240
queue connect requests, 225
queue multiple requests, 225
read/write interface, 221–223
socket comparison, 240
state transitions, 236–239
states, 234

Transport-Level Interface (TLI), asynchronous
endpoint, 230

U
UDP, port, 160
undo structure for semaphores, 129
unlink, 312
updates, atomic for semaphores, 129
usage

apptrace, 307–309
file descriptor, 50
RSMAPI, 50–51

user priority, 73

V
valloc, 18
versioning

file, 298
symbol, 298

virtual memory, 21

X
XTI, 220

xti.h, 220
XTI Interface, 243
XTI Utility Interfaces, 243
XTI variables, getting, 243

Z
zero, 16

Index

323

324

	Programming Interfaces Guide
	Preface
	Audience
	Organization of the Manual
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	Memory and CPU Management
	Memory Management Interfaces
	Creating and Using Mappings
	Removing Mappings
	Cache Control
	Using mincore
	Using mlock and munlock
	Using mlockall and munlockall
	Using msync

	Library-Level Dynamic Memory
	Dynamic Memory Allocation
	Dynamic Memory Debugging
	check -access
	check -leaks [-frames n] [-match m]
	check -memuse [-frames n] [-match m]
	check -all [-frames n] [-match m]
	check [funcs] [files] [loadobjects]

	Other Memory Control Interfaces
	Using sysconf
	Using mprotect
	Using brk and sbrk

	CPU Performance Counters
	API Additions to libcpc
	Initialization Interfaces
	Hardware Query Interfaces
	Configuration Interfaces
	Binding
	Sampling
	Buffer Operations
	Activation Interfaces
	Error Handling Interfaces

	Remote Shared Memory API for Oracle Solaris Clusters
	Overview of the Shared Memory Model
	API Framework
	API Library Functions
	Interconnect Controller Operations
	rsm_get_controller
	rsm_release_controller
	rsm_get_controller_attr

	Cluster Topology Operations
	rsm_get_interconnect_topology
	rsm_free_interconnect_topology
	Data Structures

	Administrative Operations
	Memory Segment Operations
	Export-Side Memory Segment Operations
	Memory Segment Creation and Destruction
	Memory Segment Publish, Republish, and Unpublish
	Memory Segment Rebind

	Import-Side Memory Segment Operations
	Memory Segment Connection and Disconnection
	Memory Access Primitives
	Scatter-Gather Access
	Segment Mapping
	Barrier Operations

	Event Operations

	RSMAPI General Usage Notes
	Segment Allocation and File Descriptor Usage
	Export-Side Considerations
	Import-Side Considerations
	RSM Configurable Parameters

	Session Description Protocol API
	Session Description API Overview
	SDP Library Functions
	Creating the SDP Session Structure
	Creating a New SDP Session Structure
	Adding an Origin Field to the SDP Session Structure
	Adding a Name Field to the SDP Session Structure
	Adding an Information Field to the SDP Session Structure
	Adding a URI Field to the SDP Session Structure
	Adding an Email Field to the SDP Session Structure
	Adding a Telephone Field to the SDP Session Structure
	Adding a Connection Field to the SDP Session Structure
	Adding a Bandwidth Field to the SDP Session Structure
	Adding a Time Field to the SDP Session Structure
	Adding a Repeat Field to the SDP Session Structure
	Adding a Zone Field to the SDP Session Structure
	Adding a Key Field to the SDP Session Structure
	Adding an Attribute Field to the SDP Session Structure
	Adding a Media Field to the SDP Session Structure
	Code Sample: Building an SDP Session Structure

	Searching the SDP Session Structure
	Finding an Attribute in an SDP Session Structure
	Finding Media in an SDP Session Structure
	Finding a Media Format in an SDP Session Structure

	Shutting Down the SDP Session Structure
	Deleting Fields From the SDP Session Structure
	Deleting Fields From the SDP Media Structure
	Deleting Media From the SDP Media Structure
	Deleting an Attribute From the SDP Media Structure
	Deleting an Attribute From the SDP Media Structure

	SDP API Utility Functions
	Parsing the SDP Session Structure
	Cloning an Existing SDP Session Structure
	Converting an SDP Session Structure to a String

	Process Scheduler
	Overview of the Scheduler
	Time-Sharing Class
	System Class
	Real-time Class
	Interactive Class
	Fair-Share Class
	Fixed-Priority Class

	Commands and Interfaces
	priocntl Usage
	priocntl Interface

	Interactions With Other Interfaces
	Kernel Processes
	Using fork and exec
	Using nice
	init(1M)

	Scheduling and System Performance
	Process State Transition

	Locality Group APIs
	Locality Groups Overview
	Verifying the Interface Version
	Initializing the Locality Group Interface
	Using lgrp_init()
	Using lgrp_fini()

	Locality Group Hierarchy
	Using lgrp_cookie_stale()
	Using lgrp_view()
	Using lgrp_nlgrps()
	Using lgrp_root()
	Using lgrp_parents()
	Using lgrp_children()

	Locality Group Contents
	Using lgrp_resources()
	Using lgrp_cpus()
	Using lgrp_mem_size()

	Locality Group Characteristics
	Using lgrp_latency_cookie()

	Locality Groups and Thread and Memory Placement
	Using lgrp_home()
	Using madvise()
	Using madv.so.1
	madv.so.1 Usage Examples

	Using meminfo()
	Locality Group Affinity
	Using lgrp_affinity_get()
	Using lgrp_affinity_set()

	Examples of API Usage

	Input/Output Interfaces
	Files and I/O Interfaces
	Basic File I/O
	Advanced File I/O
	File System Control

	Using File and Record Locking
	Choosing a Lock Type
	Selecting Advisory or Mandatory Locking
	Cautions About Mandatory Locking
	Supported File Systems
	Opening a File for Locking
	Setting a File Lock
	Setting and Removing Record Locks
	Getting Lock Information
	Process Forking and Locks
	Deadlock Handling

	Terminal I/O Functions

	Interprocess Communication
	Pipes Between Processes
	Named Pipes
	Sockets Overview
	POSIX Interprocess Communication
	POSIX Messages
	POSIX Semaphores
	POSIX Shared Memory

	System V IPC
	Permissions for Messages, Semaphores, and Shared Memory
	IPC Interfaces, Key Arguments, and Creation Flags
	System V Messages
	Initializing a Message Queue
	Controlling Message Queues
	Sending and Receiving Messages

	System V Semaphores
	Initializing a Semaphore Set
	Controlling Semaphores
	Semaphore Operations

	System V Shared Memory
	Accessing a Shared Memory Segment
	Controlling a Shared Memory Segment
	Attaching and Detaching a Shared Memory Segment

	Socket Interfaces
	SunOS 4 Binary Compatibility
	Overview of Sockets
	Socket Libraries
	Socket Types
	Interface Sets

	Socket Basics
	Socket Creation
	Binding Local Names
	Connection Establishment
	Connection Errors
	Data Transfer
	Closing Sockets
	Connecting Stream Sockets
	Input/Output Multiplexing

	Datagram Sockets
	Standard Routines
	Host and Service Names
	Host Names – hostent
	Network Names – netent
	Protocol Names – protoent
	Service Names – servent
	Other Routines

	Client-Server Programs
	Sockets and Servers
	Sockets and Clients
	Connectionless Servers

	Advanced Socket Topics
	Out-of-Band Data
	Nonblocking Sockets
	Asynchronous Socket I/O
	Interrupt-Driven Socket I/O
	Signals and Process Group ID
	Selecting Specific Protocols
	Address Binding
	Socket Options
	inetd Daemon
	Broadcasting and Determining Network Configuration

	Using Multicast
	Sending IPv4 Multicast Datagrams
	Receiving IPv4 Multicast Datagrams
	Sending IPv6 Multicast Datagrams
	Receiving IPv6 Multicast Datagrams

	Stream Control Transmission Protocol
	SCTP Stack Implementation
	SCTP Socket Interfaces
	sctp_bindx()
	sctp_opt_info()
	sctp_recvmsg()
	sctp_sendmsg()
	sctp_send()
	sctp_sendv()
	sctp_recvv()
	sctp_connectx()
	sctp_getladdrs()
	sctp_freeladdrs()
	sctp_getpaddrs()
	sctp_freepaddrs()
	Branched-off Association

	Code Examples of SCTP Use

	Programming With XTI and TLI
	What Are XTI and TLI?
	XTI/TLI Read/Write Interface
	Write Data
	Read Data
	Close Connection

	Advanced XTI/TLI Topics
	Asynchronous Execution Mode
	Advanced XTI/TLI Programming Example

	Asynchronous Networking
	Networking Programming Models
	Asynchronous Connectionless-Mode Service
	Making the Endpoint Asynchronous
	Asynchronous Network Transfers

	Asynchronous Connection-Mode Service
	Asynchronously Establishing a Connection
	Asynchronous Use of a Connection

	Asynchronous Open
	Transferring a File Descriptor

	State Transitions
	XTI/TLI States
	Outgoing Events
	Incoming Events
	State Tables

	Guidelines to Protocol Independence
	XTI/TLI Versus Socket Interfaces
	Socket-to-XTI/TLI Equivalents
	Additions to the XTI Interface

	Packet Filtering Hooks
	Packet Filtering Hooks Interfaces
	Packet Filtering Hooks Kernel Functions
	Packet Filtering Hooks Data Types

	Using the Packet Filtering Hooks Interfaces
	IP Instances
	Protocol Registration
	Event Registration
	The Packet Hook

	Packet Filtering Hooks Example

	Transport Selection and Name-to-Address Mapping
	Transport Selection
	Name-to-Address Mapping
	straddr.so Library
	Using the Name-to-Address Mapping Routines

	Real-time Programming and Administration
	Basic Rules of Real-time Applications
	Factors that Degrade Response Time
	Synchronous I/O Calls
	Interrupt Servicing
	Shared Libraries
	Priority Inversion
	Sticky Locks

	Runaway Real-time Processes
	Asynchronous I/O Behavior
	Real-time Files

	The Real-Time Scheduler
	Dispatch Latency
	Scheduling Classes
	Dispatch Queue
	Dispatching Processes
	Process Preemption
	Kernel Priority Inversion
	User Priority Inversion

	Interface Calls That Control Scheduling
	Using priocntl
	Other interface calls

	Utilities That Control Scheduling
	priocntl(1)
	dispadmin(1M)

	Configuring Scheduling
	Dispatcher Parameter Table
	Reconfiguring config_rt_dptbl

	Memory Locking
	Locking a Page
	Unlocking a Page
	Locking All Pages
	Recovering Sticky Locks

	High Performance I/O
	POSIX Asynchronous I/O
	Oracle Solaris Asynchronous I/O
	Notification (SIGIO)
	Using aioread
	Using aiowrite
	Using aiocancel
	Using aiowait
	Using poll()
	Using the poll Driver
	Using close

	Synchronized I/O
	Synchronization Modes
	Synchronizing a File

	Interprocess Communication
	Processing Signals
	Pipes, Named Pipes, and Message Queues
	Using Semaphores
	Shared Memory

	Asynchronous Network Communication
	Modes of Networking

	Timing Facilities
	Timestamp Interfaces
	Interval Timer Interfaces

	The Oracle Solaris ABI and ABI Tools
	What is the Oracle Solaris ABI?
	Defining the Oracle Solaris ABI
	Symbol Versioning in Oracle Solaris Libraries
	Using Symbol Versioning to Label the Oracle Solaris ABI

	Oracle Solaris ABI Tools
	appcert Utility
	What appcert Checks
	Private Symbol Usage
	Static Linking
	Unbound Symbols

	What appcert Does Not Check
	Working with appcert
	appcert Options

	Using appcert for Application Triage
	appcert Results
	Correcting Problems Reported by appcert

	Using apptrace for Application Verification
	Application Verification
	Running apptrace
	Interpreting apptrace Output

	UNIX Domain Sockets
	Creating Sockets
	Local Name Binding
	Establishing a Connection

	Index

