ORACLE

Oracle® Fusion Middleware

Using Clusters for Oracle WebLogic Server
11gRelease 1 (10.3.5)

E13709-05

April 2011

This document describes clusters and provides information
for planning, implementing, and supporting a production
environment that includes WebLogic Server clusters.

Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server, 11g Release 1 (10.3.5)
E13709-05
Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUOIACE ... et s et s e e XV
Documentation AccesSibility ..o XV
CONMVEIIEIONS ..ooitteeieee ettt e e ee ettt e e e st eeeesaaeeeesessaaaseeessessaeeeesesaseeessessaseeeesesnasssessssnssseesssnnsseeeeesnn XV

1 Introduction and Roadmap

1.1 Document Scope and AUIENCE..........ccccuiuiiiiiiiiiiiiic e 1-1
1.2 Guide to thisS DOCUMENTccvivieieieiieieieieiee ettt a e eseeseesessessessessessessessessessasens 1-1
1.3 Related DocumeEntation.........c.eiieviiieciiiieie ettt a et sreeae e esbesraesesreessesseens 1-2
1.4 New and Changed Clustering Features in This Release...........ccccococovriiniiiinicniinicnen, 1-2

2 Understanding WebLogic Server Clustering

2.1 What Is a WebLogic Server CIUSLEr? ... 2-1
2.2 How Does a Cluster Relate to @ DOMain?ccoecevieirieinieinieireeseereesee e 2-1
2.3 What Are the Benefits of CluStering?...........ccoovoiiiiiiiiii e 2-2
2.4 What Are the Key Capabilities of @ CIUSTEI?cccocoiiiiiiiiiiiiiiiccccccce 2-2
25 What Types of Objects Can Be Clustered? ..o 2-4
2.5.1 SEIVIEtS ANd JSPS ..ottt ettt sttt ettt 2-4
25.2 EJBs and RMI ODJECtS........cccuiiririiiiiiiiiiiiiniiiiisin s 2-5
253 JTDBC CONNECIONS.ctiteieieieieteeettee ettt sttt st et et st ebt e bt s b st e b e st et et e b et enteseenesaesbeabes 2-5
2.5.31 Getting Connections with Clustered JDBC..........ccccoooiiiii, 2-6
2532 Failover and Load Balancing for JDBC Connectionscccceceueueueieieicicnencuennns 2-6
2.54 JMS and CIUSERTING.......oiuiieiiiiiieie e s 2-6
2.6 What Types of Objects Cannot Be Clustered?coooiioiiiiiiiice 2-7

3 Communications In a Cluster

3.1 WebLogic Server Communication In a Cluster ... 3-1
3.1.1 Using IP Multicast for Backward Compatibility........c.cccccovvvnnnninnnininicne. 3-2
3.1.11 Multicast and Cluster Configuration...........ccceeueiiiiieiiiiiiii 3-2
3.1.1.11 If Your Cluster Spans Multiple Subnets Ina WAN ... 3-2
3.1.1.1.2 Firewalls Can Break Multicast Communication..........c.cceevveeeevieeeenreeeenreenens 3-3
3.1.1.1.3 Do Not Share the Cluster Multicast Address with Other Applications........ 3-3
3.1.1.1.4 If Multicast StOrmS OCCUTcc.eeeeiiieieiiciereteeteereet et ae e ae e eeeseeveens 3-3
3.1.2 One-to-Many Communication Using Unicast...........ccccoceeiiniiiiiininiiiinicinnes 3-4
3.1.2.1 Unicast Configuration..........ceiiiiiiiiiiiiie e 3-4
3.1.2.2 Considerations When Using Unicast...........ccoeiiiiiiiiiiiiiiiiiiiceeieeeennas 3-4

3.1.3 Peer-to-Peer Communication Using IP Sockets ..o, 3-4

3.1.31 Pure-Java Versus Native Socket Reader Implementations...........cccccoeeiiirnieininnes 3-5
3.1.3.2 Configuring Reader Threads for Java Socket Implementation..........c.ccccccceueuenee 3-6
3.1.3.2.1 Determining Potential Socket Usageccoceviiiirieieiiiciiiicccecce 3-6
3.14 Client Communication via SOCKEtS ... 3-7
3.2 Cluster-Wide JNDI Naming Serviceccccceveiririerriririrrirercrrreeeiesseseeseses e 3-8
3.2.1 How WebLogic Server Creates the Cluster-Wide JNDI Tree.........ccccooevniiiiiiiinnnnnnn. 3-8
3.2.2 How JNDI Naming Conflicts OCCUTccouiiuiiiiiiiciciicicci 3-10
3.2.21 Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts 3-10
3.2.3 How WebLogic Server Updates the JNDI Tree.........c.cccoooorieiiiiiieiiiiiii 3-11
3.24 Client Interaction with the Cluster-Wide JNDI Tree.......ccccccerererieneneeieeeeeeeene e 3-11

4 Understanding Cluster Configuration

4.1 Cluster Configuration and config.Xml...........ccccoooioiiiiiii 4-1
4.2 Role of the Administration SEIVETcccovviiiiiiiiiiiii s 4-1
4.21 What Happens if the Administration Server Fails? ..o 4-3
4.3 How Dynamic Configuration WOrks...........cooueiiiiiiiiiiiicccc 4-3
4.4 Application Deployment for Clustered Configurationsc.cccecucueurueueieiceneeecneeenenns 4-4
4.41 Deployment Methods............couiiiiiiiiiii e 4-4
4.4.2 Introduction to Two-Phase Deployment.............cooueueiiiiiiiiiinieiecceccec 4-5
4421 First Phase of Deploymentccccvuvieiiiniirniriiircccrceeeee e 4-5
4.42.2 Second Phase of Deployment ..o 4-5
4.4.3 Guidelines for Deploying to a CIuster ..., 4-5
4.4.31 WebLogic Server Supports "Relaxed Deployment” Rules............cccccccocccccccnnes 4-6
4.431.1 Deployment to a Partial Cluster is Allowed........c.ccccoooiiiiiiiiiiiiiiice, 4-6
4.431.2 Deploying to Complete Clusters in WebLogic Serverccccocooeeeiennne. 4-6
44313 Pinned Services can be Deployed to Multiple Managed Servers................... 4-6
4.5 Methods of Configuring CIUStTS.........cceueviiiiiiiice e 4-7

5 Load Balancing in a Cluster

5.1 Load Balancing for Servlets and JSPs..........cccoiiiiiiiiiiiicccc 5-1
5.1.1 Load Balancing with a Proxy PIUg-in ... 5-1
51.1.1 How Session Connection and Failover Work with a Proxy Plug-in..................... 5-2
5.1.2 Load Balancing HTTP Sessions with an External Load Balancer.............cc.cccocco...... 5-2
5.1.2.1 Load Balancer Configuration Requirements.............ccccccoeeueuiiiiiiiiiinciicenenennns 5-2
51.2.2 Load Balancers and the WebLogic Session Cookieccccouvuverevnrnnnncnninccnc. 5-2
5.1.2.3 Related Programming Considerations ... 5-3
51.2.4 How Session Connection and Failover Works with a Load Balancer 5-3
5.2 Load Balancing for EJBs and RMI ObJEcts ... 5-3
5.2.1 Round-Robin Load Balancing ... 5-4
522 Weight-Based Load Balancingcccceeeiiiiiiiiiniiniiiiiciccccccccecccnenas 5-4
523 Random Load Balancing...........ccccccceiiiiiiiiiiiiiiceecceeeceeeeeeeeieeeeeeeenenenennes 5-5
524 Server Affinity Load Balancing Algorithms ... 5-5
5241 Server Affinity and Initial Context.........ccccoeiiiiiiiiiiiiiiniiic, 5-6
5242 Server Affinity and IIOP Client Authentication Using CSIV2cccccccccueucucuennne 5-6
5.2.4.3 Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity 5-6
5.2.4.3.1 Server Affinity EXamples ..o 5-7

5.2.5 Parameter-Based Routing for Clustered Objects..........cccccooevvviiiiiiiiiiiiiiiiiiis 5-9

5.2.6 Optimization for Collocated Objects...........ooeuiiiiirieiiiiicieccece e, 5-9
5.2.6.1 Transactional ColloCation...........ccoceiiiiiiiiiiiiiii 5-10
5.3 Load Balancing for JIMS.........c.ciiiie s 5-11
5.3.1 Server Affinity for Distributed JMS Destinationscccccoooeeieiiiniicieiiicceene 5-12
5.3.2 Initial Context Affinity and Server Affinity for Client Connectionsc.c........ 5-12
5.4 Load Balancing for JDBC ConNectionscceueiuiueieiiiiinieiiicieeeci s 5-13

6 Failover and Replication in a Cluster

6.1 How WebLogic Server Detects Failures ... 6-1
6.1.1 Failure Detection Using IP SOCKetSccooovrueiiiiiiiieiiccc 6-1
6.1.2 The WebLogic Server "Heartbeat"...........ccccocciiiiiiiinnnirrececreeeereee e 6-1
6.2 Replication and Failover for Servlets and JSPs ..., 6-2
6.2.1 HTTP Session State Replication ..o 6-2
6.2.1.1 Requirements for HTTP Session State Replication.........cccccovveverenineninncncnincncnccnce. 6-3
6.2.1.1.1 Supported Server and Proxy Software..........ccccceeeiiiniiciiiiiececn, 6-3
6.2.1.1.2 Load Balancer Requirements............ccocoeueiiiiiiiniiiniciiicccece e 6-4
6.2.1.1.3 Programming Considerations for Clustered Servlets and JSPs...................... 6-4
6.2.1.2 Using Replication GIOUPScccovvviiiniiiiiiiii s 6-5
6.2.2 Accessing Clustered Servlets and JSPs Using a Proxycccoeeeeieicieiiiniiccieciccnnn, 6-7
6.2.2.1 Proxy Connection Procedurecccoeueueuvirririiirerineniirreereeeseeeeeesee e 6-7
6.2.2.1.1 Using URL Rewriting to Track Session Replicas..........cccooveueieiiriniiiinncnnne. 6-8
6.2.2.2 Proxy Failover Procedure...........ccoooiiiiiiiic 6-8
6.2.3 Accessing Clustered Servlets and JSPs with Load Balancing Hardware..................... 6-8
6.2.3.1 Connection with Load Balancing Hardware..........c.ccccoooiriiiniiieiiiiicccc 6-9
6.2.3.2 Failover with Load Balancing Hardware.............cccooooiiiiii, 6-10
6.2.4 Session State Replication Across Clusters in a MAN/WAN ..o 6-11
6.2.4.1 Network Requirements for Cross-cluster Replicationcccccevvvivnininninnn 6-11
6.2.4.1.1 Global Load Balancer ..o 6-12
6.2.4.1.2 Local Load Balancer ..o 6-12
6.2.4.1.3 RePIICAtION....cuiviviiiiiiciiicicc s 6-12
6.2.4.1.4 FaIOVET ..ttt 6-13
6.2.4.2 Configuration Requirements for Cross-Cluster Replication...........ccccccceueueueneee. 6-13
6.2.4.3 Configuring Session State Replication Across Clusters.........c.cccccvviiriiviiinnnn, 6-14
6.2.4.4 Configuring a Replication Channelccccocovvnniinnnnnniices 6-15
6.2.4.5 MAN HTTP Session State Replicationcccccccoceucucceeiiicieeicceecceceee 6-15
6.2.4.5.1 Replication Within a MANccccoiiiiiiicc s 6-15
6.2.4.5.2 Failover Scenarios in @ MANccccvviiiiiiinnnccrnccteneeeereee e 6-16
6.2.4.5.3 MAN Replication, Load Balancers, and Session Stickiness 6-17
6.2.4.6 WAN HTTP Session State Replication ... 6-17
6.2.4.6.1 Replication Within a WAN ... 6-17
6.2.4.6.2 Failover Scenarios Within a WAN ... 6-18
6.2.4.6.3 Database Configuration for WAN Session State Replication 6-18
6.3 Replication and Failover for EJBs and RMIs...........ccccccccciiiiiiiniiiiiiciccceeeees 6-19
6.3.1 Clustering Objects with Replica-Aware Stubscccccovvviiinnvniirccene 6-20
6.3.2 Clustering Support for Different Types of E]Bscccccceviiiiiiiiniiiiiicn, 6-20
6.3.2.1 Clustered EJBHOIMESccccoeieiiiiriiniiieieieieieteeteeteie st te et se e esessesse e 6-21

6.3.2.2 Clustered EJBODJECtS........ccoiviviiiiiiiiiiiiiciicicc s 6-21

6.3.2.2.1 Stateless Session Beanscccccoviiiiiiiiiiiiiiiiiiini 6-21
6.3.2.2.2 Stateful Session Beans.........ccccccccuiuiiiiiiiiiiicccccceec s 6-21
6.3.2.2.3 Failover for Stateful Session EJBS.......cccccceveririnininienieieieenencesieeeeees 6-22
6.3.2.3 Entity EJBS ..o 6-23
6.3.2.3.1 Failover for Entity Beans and EJB Handlescccccccccociiiiiiininnnne. 6-23
6.3.3 Clustering Support for RMI ODbjectsccccviiiiiiiiiiiiiiiiicicccccecs 6-23
6.3.4 Object Deployment ReqUIrementscocoeueueiiicieiiicieecec e 6-24
6.3.4.1 Other Failover EXCEPHIONSccccueuiuiiiiiiiiiicieicicicceicicecieeieee e 6-24
6.4 Failover and JDBC CONNECHIONSc..ccueieuiriririinienienieieieteteite sttt saeeaea 6-24

7 Whole Server Migration

7.1 Understanding Server and Service Migrationccoeoeeueiiiieiiiniiniciceeces 7-1
7.2 Migration TerminolOgYccoeeieirueiiiiiicieie et 7-2
7.3 LASINEiiiiiiiicic s 7-3
7.3.1 Features That Use Leasing........ccccceouirieiiiiiicieiicceec e 7-3
7.3.2 Leasing VerSiONScccceieiiiiieiiieieiiie 7-3
7.3.3 Determining Which Type of Leasing To Usecccccccoeeeuiuieiciieceeceeeeeeeeeene 7-4
7.3.4 High-availability Database Leasingcccoceeiiieieiiiciiiiccie s 7-4
7.3.5 Non-database Consensus Leasing............ccooceueiiiicieiniiciciiiicccece e 7-5
7.4 Automatic Whole Server Migrationc.ccccceucucucicuiuiiriiiciniceeeeiceeeeeeeeeeeeeeeeeseseseseseseenene 7-6
7.41 Preparing for Automatic Whole Server Migrationccccoovieiiinieiiiniciciie, 7-6
7.4.2 Configuring Automatic Whole Server Migrationcccocoovieiiiiiniiicicceecce, 7-7
7.4.3 Using High Availability Storage for State Data ..o 7-9
7.4.4 Server Migration Processes and Communicationsc.cccoeeeueveiricieinincciceiceiees 7-9
7.4.41 Startup Process in a Cluster with Migratable Servers............ccccoooiiiinien, 7-9
7.44.2 Automatic Whole Server Migration Processccccccoecueueucceucecccencecnccnennn 7-11
7.4.43 Manual Whole Server Migration Processcocoeeuevviiiieiiiinciciiccee, 7-12
7.44.4 Administration Server Role in Whole Server Migrationcccoocoeueveinrnnnnn. 7-13
7.445 Migratable Server Behavior in @ ClUStercccocoviiivrviciicrccccceeceene 7-14
7.4.4.6 Node Manager Role in Whole Server Migrationccccoeoireiiiicicininnen, 7-14
7.4.4.7 Cluster Master Role in Whole Server Migration...........c.ccccevvvviiinivnnniiennenenes 7-15

8 Service Migration

vi

8.1 Understanding the Service Migration Framework ..., 8-1
8.1.1 Migratable SEIVICES........cccvuviiiiiiriirieiicreeere e 8-2
8.1.1.1 JMS-Telated SETVICEScceiuiriiriiiiieieeietee ettt ettt ettt st nee s 8-2
8.1.1.2 JTA Transaction Recovery Service ... 8-3
8.1.1.3 User-defined Singleton Services............ooviiiiiiiiiciicicceeeeerereeereeenenenes 8-3
8.1.2 Understanding Migratable Targets In a Clusterccccoeveveiiiniciiiiiiiiiics 8-3
8.1.2.1 Policies for Manual and Automatic Service Migration............ccoceevvvnninincnenc. 8-3
8.1.2.1.1 Manual MIgrationc.ccccccccuiiiiiieiiicceeeeeeeeeee e 8-3
8.1.21.2 EXACtLY-ONCE ..ottt 8-3
8.1.2.1.3 Failure-ReCOVETYcccouiiiiiiiiiiiiicc e 8-4
8.1.2.2 Options For Attempting to Restart Failed Services Before Migrating.................. 8-5
8.1.2.3 User-Preferred Servers and Candidate SErverscoooceverereneneneneneeencnennens 8-5
8.1.24 Example Migratable Targets In a CLUSterccccovvivvnninininniiccccae, 8-5

8.1.2.5 Targeting Rules for JMS Servers.........cooooiriiiiiicieiicieecc s 8-6
8.1.2.6 Targeting Rules for SAF Agents...........ccououoiiriiiiiiiiiic 8-7
8.1.2.6.1 Re-targeting SAF Agents to Migratable Targets........c.cccocoeevvvnrnnncncncrcnence. 8-7
8.1.2.6.2 Targeting Migratable SAF Agents For Increased Message Throughput 8-7
8.1.2.6.3 Targeting SAF Agents For Consistent Quality-of-Service.............cccooeuennnnne. 8-7
8.1.2.7 Targeting Rules for Path SEIvicecccccoeiuiiiiiiiiiiiiiiccccceceeeceeeeeeeeenes 8-7
8.1.2.71 Special Considerations For Targeting a Path Service..........ccccooeeviiiiiinnin. 8-7
8.1.2.8 Targeting Rules for Custom StOresooeuiiiiiiriciiiiiciccc 8-8
8.1.2.9 Migratable Targets For the JTA Transaction Recovery Service..........ccccccceuvuvuenee 8-8
8.1.3 Migration Processing TOOIS.........cccuoviurieiiiiiieii s 8-8
8.1.3.1 Administration CONSOLEccceuiiiiiiiiiiiiii 8-8
8.1.3.2 WebLogic Scripting TOOL........ooviiiiiiiiiiicccccce e 8-8
8.1.4 Automatic Service Migration Infrastructure ..o 8-9
8.1.4.1 Leasing for Migratable Services ... 8-9
8.1.4.11 Database Leasing..........ccccoveiiiiniiiiiiniiiiiii s 8-9
8.1.4.1.2 Consensus Leasingcccceviiueieiiiiiiciiicic s 8-9
8.1.4.2 INOAE MANAGETcorvviiiiiiiceci ettt 8-9
8.1.4.3 Administration Server Not Required When Migrating Servicesc.cccccuecuc... 8-9
8.1.4.4 Service Health MONItOringcccoviiiiieiiiiiieiicc 8-10
8.1.4.41 How Health Monitoring of the JTA Transaction Recovery Service Triggers
Automatic Migration 8-10
8.1.4.4.2 How Health Monitoring of JMS-related Services Triggers Automatic
Migration 8-10
8.1.5 In-Place Restarting of Failed Migratable Services..........ccccooioreieiiiicicieiiicice 8-11
8.1.6 Migrating a Service From an Unavailable Serverccccoooriiiiiceciccciecne 8-11
8.1.7 JMS and JTA Automatic Service Migration Interaction.............ccccocoecccciccccuennnns 8-11
8.2 Pre-Migration ReqUirements.c.ccoeiuieiiiiiiiiiiciiiiiiie 8-11
8.2.1 Custom Store Availability for JMS Services........cooeeoirreiniiiicieiciccccecce e 8-12
8.2.2 Default File Store Availability for JTA........ccccoiiiiirriecrrceccreeee s 8-12
8.2.3 Server State and Manual Service Migrationccceoeirieiiiicicieninceceee 8-13
8.3 Roadmap for Configuring Automatic Migration of JMS-related Services...................... 8-13
8.3.1 Step 1: Configured Managed Servers and Node Manager..........c.cccccceueueueucurrcncncnnne. 8-14
8.3.2 Step 2: Configure the Migration Leasing Basis..........ccccooiieiiiiiiiiiiicc 8-14
8.3.3 Step 3: Configure Migratable Targets..........cccccoevviieiiinicceice e 8-14
8.3.3.1 Configuring a Migratable Server as an Automatically Migratable Target 8-14
8.3.3.2 Create a New Migratable Targetccccoovoiiiiiiiiie, 8-14
8.3.3.2.1 Select a User Preferred Server ... 8-15
8.3.3.2.2 Select a Service Migration POLICYccccoeueuiuriviiiiiiiricccccccereceeeees 8-15
8.3.3.2.3 Optionally Select Constrained Candidate Serversc.cccoococueiiiirininnnne, 8-15
8.3.3.24 Optionally Specify Pre/Post-Migration Scripts...........cccccevvivirvvniininnnenes 8-16
8.3.3.2.5 Optionally Specify In-Place Restart Options.........ccccceveeeveveverrvnnnrcncncncnes 8-16
8.3.4 Step 4: Configure and Target Custom Stores...........cccooveirieiiiiciciece 8-16
8.3.5 Step 5: Target the JMS Services..........cocvuiuiiurieiiiiicieieice s 8-16
8.3.5.1 Special Considerations When Targeting SAF Agents or Path Service 8-17
8.3.6 Step 6: Restart the Administration Server and Managed Servers With Modified
Migration Policies 8-17
8.3.7 Step 7: Manually Migrating JMS Services Back to the Original Server 8-17

vii

8.4 Best Practices for Targeting JMS when Configuring Automatic Service Migration...... 8-17

8.5 Roadmap for Configuring Manual Migration of J]MS-related Services............cccccucuueece. 8-18
8.5.1 Step 1: Configured Managed SEIrverscccccoccucuiiieeiiieiceiceeeeeeeeeeeeee s 8-18
8.5.2 Step 2: Configure Migratable Targets..........cccoooiieiiiiicicic 8-19
8.5.2.1 Configuring a Migratable Server As a Migratable Target............ccccoceveieennnen. 8-19
8.56.2.2 Create a New Migratable Target ... 8-19
8.5.2.2.1 Select a Preferred Server........ooviiiiiiiiiiiicccc 8-19
8.5.2.2.2 Accept the Default Manual Service Migration Policy.........ccccoceveiirieinnnne. 8-19
8.5.2.2.3 Optionally Select Constrained Candidate Serverscccceeeueurvvreenenene. 8-19
8.5.2.24 Optionally Specify Pre/Post-Migration Scripts..........cccooeueveiviceiiiiiiciennes 8-19
8.5.2.2.5 Optionally Specify In-Place Restart Options..........ccccooueirrieiiiiiiiiiiicene, 8-20
8.5.3 Step 3: Configure and Target Custom StOres...........ccovvevuvvererirererinnrerereeeeeeeens 8-20
8.5.4 Step 4: Target the JMS Services.........coreieiiicicieiiiieiecc e 8-20
8.5.4.1 Special Considerations When Targeting SAF Agents or Path Service 8-20
8.5.5 Step 5: Restart the Administration Server and Managed Servers With Modified
Migration Policies 8-20
8.5.6 Step 6: Manually Migrating JMS Services.........cccouomurieiniicieiiiicicecce 8-21
8.6 Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service...
8-21
8.6.1 Step 1: Configured Managed Servers and Node Manager..........cccccccecucucueuercucnnnnnes 8-21
8.6.2 Step 2: Configure the Migration Basisc.cccoeuveeiieiicniinicccc 8-22
8.6.3 Step 3: Enable Automatic JTA Migrationccccoooeiooiiiiiicc 8-22
8.6.3.1 Select the Automatic JTA Migration Check BoXc.ccccceueuciiiiniiinniiiene 8-22
8.6.3.2 Optionally Select Candidate Servers ..ot 8-22
8.6.3.3 Optionally Specify Pre/Post-Migration Scripts...........ccoceueioireieiiiccieeicc, 8-22
8.6.4 Step 4: Configure the Default Persistent Store For Transaction Recovery Service
Migration 8-23
8.6.5 Step 5: Restart the Administration Server and Managed Servers With Modified
Migration Policies 8-23
8.6.6 Step 6: Automatic Failback of the Transaction Recovery Service Back to the Original
Server 8-23
8.7 Manual Migration of the JTA Transaction Recovery Service..........c.ccccoevrvvnvrrrncnnes 8-24
8.8 Automatic Migration of User-Defined Singleton Servicescccoooeeeiiiiiiinennnn, 8-24
8.8.1 Overview of Singleton Service Migration...........ccccoeevvieeeiniiicinincceecce e 8-24
8.8.1.1 SINGIETON MASTET ...t 8-25
8.8.1.2 Migration FailUure...........coieuiiiiiicieicc 8-25
8.8.2 Implementing the Singleton Service Interface...........cccccooeiiiiiiiiiiiiiiiine 8-25
8.8.3 Deploying a Singleton Service and Configuring the Migration Behavior 8-26
8.8.3.1 Packaging and Deploying a Singleton Service Within an Application.............. 8-26
8.8.3.2 Deploying a Singleton Service as a Standalone Service in WebLogic Server... 8-26
8.8.3.3 Configuring Singleton Service Migrationc.ccceevvvvirinnnnierrcceeene 8-27

9 Cluster Architectures

viii

9.1 Architectural and Cluster Terminologycccccccocecueicieieiiiicrcereeeeeeeeeeeeeeseeeeene 9-1
9.1.1 ATCIITECEUTE ..ottt ettt e sae et e steesaesbeesaesseessasseessasseensensesnsas 9-1
9.1.2 Web APPLication TIETScccoviiiiiiiiiic s 9-1
9.1.3 Combined Tier ATCRITECLUTIEcocvievivieiiieieeieieieeee ettt se e e e s sesaessessennens 9-2
9.1.4 De-Militarized Zone (DMZ)cocveiiiiiiinenieieeeeete ettt sttt 9-2

10

9.1.5 J IO Y=Yo B 2T 1 g Ual < ORI 9-2

9.1.6 ProxXy PIUg-IN......ccooiiiiiiiiiiiiiiiiiiccc s 9-2
9.2 Recommended Basic Architecture............ccoviiiiiiiiiiniiiii s 9-2
9.2.1 When Not to Use a Combined Tier Architecture..........cccocovvriiiiiiiiininiiiinn, 9-4
9.3 Recommended Multi-Tier Architecture ... 9-4
9.3.1 Physical Hardware and Software Layers...........cccccciiveiiiiiiiiceceeeeeenceenenenenes 9-5
9.3.1.1 Web /Presentation Layer ... 9-5
9.3.1.2 ODbJeCt Layer....c.cuiiceceee i 9-5
9.3.2 Benefits of Multi-Tier ArchiteCture ..., 9-5
9.3.3 Load Balancing Clustered Objects in a in Multi-Tier Architecture..........cccccooeeunnn. 9-6
9.3.4 Configuration Considerations for Multi-Tier Architecture...........cccccevviniiiiiinnnnnns 9-8
9.3.4.1 IP SOCKEE USAGE.......vvveeiiiciiececiiee et 9-8
9.3.4.2 Hardware Load Balancers.............ccocooviiiiiiniiiiininiiiiiiiiic, 9-8
9.3.5 Limitations of Multi-Tier Architecturescccocvvvviiiiiinniin, 9-8
9.3.5.1 No Collocation OptimizZation..........cccccueuecuiiiiiiieiicceceeeeeeeee e 9-8
9.3.5.2 Firewall ReStriCtions........cccovueiiiiiiiiiiiiiiiiiiiciciciccecc e 9-9
94 Recommended Proxy ArchiteCturescocooioiiiiiiiiiiicc e 9-9
9.4.1 Two-Tier Proxy ArchiteCturecccococuiuiiiiiiiiiiiiiiiiiceeeeieeeieeee e 9-9
9.4.11 Physical Hardware and Software Layers.........c.cccoooeiiiiiiiiiiiiiccce, 9-10
9.4.1.11 WED LayeT ... 9-10
9.4.11.2 Servlet/Object Layer......ccccccviiiiiiiiricccreeersee s 9-10
9.4.2 Multi-Tier Proxy ArchiteCtureccooooviiiiiiiiiii 9-11
9.4.3 Proxy Architecture Benefits.........cccoooiiiioiiiiii 9-11
9.4.4 Proxy Architecture Limitationsccccocceeuieiiiiiiiiiiiceccccceeeeeeeeeeeeeees 9-12
9.45 Proxy Plug-In Versus Load Balancer ... 9-12
9.5 Security Options for Cluster Architectures...........ocoooioiiiioiiiiiic 9-12
9.5.1 Basic Firewall for Proxy Architecturesc.cccccccccuciiiiiiiiicicciccccceeeeeeeeeeees 9-12
9.5.1.1 Firewall Between Proxy Layer and Clustercooeoiiiiiiicieiiicicce, 9-13
9.5.1.2 DMZ with Basic Firewall Configurationsccceevoiorciiiniicciciiccceccc, 9-14
9.5.1.3 Combining Firewall with Load Balancerccccccoovvviininnnninrncccne 9-14
9.5.14 Expanding the Firewall for Internal CLients...........cccccocvvvviviinviniiiniie, 9-15
9.5.2 Additional Security for Shared Databases............cccccocovivivirniininnnnnniirniine, 9-16
9.5.2.1 DMZ with Two Firewall Configuration...........cccecevuverurnnirnnnnreirreeeeecrenes 9-16
Setting up WebLogic Clusters

10.1 Before YOU Start.....cciiiiiiiiiiiiiic s 10-1
10.1.1 Understand the Configuration Processcccooeeieiiiicieiiiicicccce 10-1
10.1.2 Determine Your Cluster Architecture........c.coocceevirieeioinniecicncecnneeeeeeeceene 10-1
10.1.3 Consider Your Network and Security Topologies..........cccccovuvvrnvrnrnnnnrnecnes 10-2
10.1.4 Choose Machines for the Cluster Installation...........c.ccceeeiiiniininnini, 10-2
10.1.4.1 WebLogic Server Instances on Multi-CPU Machinescccccoceiiininnicnnne. 10-2
10.1.4.2 Check Host Machines' Socket Reader Implementationcccccccccucucuccucncnnnne. 10-2
10.1.4.3 Setting Up a Cluster on a Disconnected Windows Machinecccccceeueee. 10-2
10.1.5 Identify Names and AddIessesccccoccuiiiiiiiiiiiiiiiiiiiiciicceceeees 10-3
10.1.5.1 Avoiding Listen Address Problems...........cccccccceevieiiinniiiencececeeeeeeees 10-3
10.1.5.11 DNS Names or IP Addresses? ... 10-3
10.1.5.1.2 When Internal and External DNS Names Varyccocoeciiiiccicnccnnne. 10-3

10.1.51.3 Localhost CoNnSIAerationsSooveeeeviiiieieeciieeeeeeeeeeee et e e e ennees 10-3

10.1.5.2 Assigning Names to WebLogic Server Resources..........cccoooirueiiiicicieieecnnnen, 10-4
10.1.5.3 Administration Server Address and Portcccooevviiiiniii 10-4
10.1.5.4 Managed Server Addresses and Listen Ports...........c.ccooeiieiiiiciiiiicice, 10-4
10.1.5.5 Cluster Multicast Address and Portcccccceiviiiiiiniiiiiicccce, 10-4
10.1.5.5.1 Multicast and Multiple CIUSLETScccccoeuiiciicciieccceeeceeeeeeeeeeens 10-4
10.1.5.5.2 Multicast and Multi-Tier Clusters..........ccccoveniiiiiiiiiii 10-4
10.1.5.6 Cluster AdAIESsccvuviviviiiiiiiiiiiii s 10-4
10.1.5.6.1 Dynamic Cluster Address........c.cccceuiciiiiiiiiiiiccecceeeeeceeeeeeeeeeees 10-5
10.1.5.6.2 Explicitly Defining Cluster Address for Production Environments........... 10-5
10.1.5.6.3 Explicitly Defining Cluster Address for Development and Test Environments .
10-6
10.1.5.6.4 Explicitly Defining Cluster Address for Single, Multihomed Machine...... 10-6
10.2 Cluster Implementation Procedurescooviiiiiiiniiiiiniiiiiiicccceceeees 10-6
10.2.1 Configuration ROAdmMapcoeeuiiiiiiiic e 10-6
10.2.2 Install WebLOGIC SEIVETc.ccuiuiimiiiiiiicciicccciceeee e 10-7
10.2.3 Create a Clustered DOMAINccoevimiiiiiiiiiiiiiiiccccc s 10-8
10.2.3.1 Starting a WebLogic Server CIUSter...........coooeiiiiiiiiiicicc e, 10-8
10.2.4 Configure Node Manager...........ccccccueueiiiiiciiieieiiceeieieieeeeeeieeeneeeeeeee e enenens 10-9
10.2.5 Configure Load Balancing Method for E]JBs and RMIsccccooeirinirinicinicinnnnne, 10-9
10.2.6 Specifying a Timeout Value For RMIS..........ccccoooiiiiiiiiiiicc, 10-10
10.2.7 Configure Server Affinity for Distributed JMS Destinationsc.ccceceevrenecnce. 10-10
10.2.8 Configuring Load Balancers that Support Passive Cookie Persistence.................. 10-10
10.2.9 Configure Proxy PIUZ-INSccooiiiiii e 10-11
10.2.9.1 Set Up the HttpClusterServietcooovviinininiricccccccceenenes 10-11
10.2.9.1.1 Sample Web. XMccooviiiiiiiiii e 10-12
10.2.9.1.2 Sample weblogic.Xml ..o 10-14
10.2.9.1.3 Proxy Servlet Deployment Parameters............ccccoeuvervvinnnnnnnnnecnes 10-14
10.2.9.1.4 Accessing Applications Via the Proxy Server ... 10-17
10.2.10 Configure Replication GIroups.......ccccovcrieiiiiicicieccce e 10-18
10.2.11 Configure Migratable Targets for Pinned Services..........cccccoevuvvvnrnnnnnrcnenccnes 10-18
10.2.12 Configure Clustered JDBCcccccovviiiiiiiiiesns 10-19
10.2.12.1 Clustering Data SOUICESccceuiuiiiiiiriiiiiiiciiinic s 10-19
10.2.13 Clustering Multi Data SOUICES............couviriiiiiiiiiitccccccccecee e 10-19
10.2.14 Package Applications for Deployment..........ccccooeiiiiiiiiiiinii 10-20
10.2.15 Deploy APPLCAtIONSc.cocviiviiiiiiiiiiiiciiric e 10-20
10.2.15.1 Deploying to a Single Server Instance (Pinned Deployment).........c.cccceuevucaeee. 10-20
10.2.15.1.1 Pinned Deployment from the Command Linecccccooeeiiiiinniiinne 10-20
10.2.15.2 Cancelling Cluster Deploymentscccooeeviiiiiiiiiiicicccccccenes 10-20
10.2.15.2.1 Cancel Deployment from the Command Line..........cccccccevvvvnnninnenene. 10-20
10.2.15.2.2 Cancel Deployment Using the Administration Console..............cccoceunuee 10-20
10.2.15.3 Viewing Deployed Applications...........ccccciiiiiiiiiiiiiiiiiccceceeeeeees 10-21
10.2.15.4 Undeploying Deployed Applications...........ccccoeeiiicccicmieceiceceeeeenenenens 10-21
10.2.16 Deploying, Activating, and Migrating Migratable Services..........ccccccoouviriiiennnnen. 10-21
10.2.16.1 Deploying JMS to a Migratable Target Server Instance............ccccccevvvvivinenenne. 10-21
10.2.16.2 Activating JTA as a Migratable Service..........cccoooviiiiiinciiiniicciccceenes 10-22
10.2.16.3 Migrating a Pinned Service to a Target Server Instance...........ccccccoeierurieinnnne, 10-22

10.2.16.3.1 Migrating When the Currently Active Host is Unavailable 10-23

11

12

10.2.17 Configure In-Memory HTTP Replicationcccoceeieiiirieiiiiiicecc 10-23

10.2.18 Additional Configuration TOPICSccoeueiirieiiiiiiicieiceie e 10-24
10.2.18.1 Configure IP SOCKELSc.ceueuiuririiiiiicicecrcr s 10-24
10.2.18.1.1 Configure Native IP Sockets Readers on Machines that Host Server Instances..
10-24
10.2.18.1.2 Set the Number of Reader Threads on Machines that Host Server Instances......
10-25

10.2.18.1.3 Set the Number of Reader Threads on Client Machinesc.cccccceueee. 10-25
10.2.18.2 Configure Multicast Time-To-Live (TTL)ccccccovvviininiiiiin 10-25
10.2.18.3 Configure Multicast Buffer Size ... 10-26
10.2.18.4 Configure Multicast Data ENCryptioncccccoiiiviiiiiicciiiciccccceenes 10-26
10.2.18.5 Configure Machine Namescccccoiiieiiiiiiiiicccc e, 10-26
10.2.18.6 Configuration Notes for Multi-Tier Architecture...........ccccoooviiiiiiiiiinns 10-27
10.2.18.7 Enable URL REWTIHINGcocveviiiiiiiiiiciiccrerer s 10-27
Clustering Best Practices

11.1 General Design COonsiderationscccoceueuiuieiieiciiiceicieceeeeeeeeseieeeneeeeseeee e 11-1
11.1.1 Strive for SIMPLCIEY ...cvoviieieeieic s 11-1
11.1.2 Minimize Remote Calls.........c.coiiiiiiiiiiiiiiiiccnc s 11-1
11.1.21 Session Facades Reduce Remote Calls ..o, 11-1
11.1.2.2 Transfer Objects Reduce Remote Calls.........cccccoeeeiiiiinniiiiiiiiiiice 11-1
11.1.2.3 Distributed Transactions Increase Remote Callsccccccvvvvviiiiiiniiiinninnne, 11-2
11.2 Web Application Design Considerations............cccccieccuicuiiceeeeeneneneeeeeneeieneneneens 11-2
11.2.1 Configure In-Memory Replication ... 11-2
11.2.2 Design for Idempotencecoceueiiiiieiiice e 11-2
11.2.3 Programming Considerations............ccccccucueuieieicieeicieiieieeeeeeeeeeeeeneeeeeeeeeeseeeeees 11-2
11.3 EJB Design Considerations..........ccccceuiiieieiiiiiiiciiiiciccc s 11-2
11.3.1 Design Idempotent Methods..........c.c.ooeiiiiiii 11-2
11.3.2 Follow Usage and Configuration Guidelines............cccccccccueuiiciiiieieececenccennees 11-3
11.3.2.1 Cluster-Related Configuration Options........ccccceeeiciiiiiiiieiiiiccee, 11-4
11.4 State Management in @ CIUSEETccooiiiiiiiiiiiiiiccc e 11-5
11.5 Application Deployment Considerations............ccccoeoeiiiiiiiceeeciceeeeeeeeeeneneeens 11-9
11.6 Architecture Considerationsc.cocovviiiiiiiiiiiic s 11-9
11.7 Avoiding ProODIEMSccoiiiiiiiiiiii s 11-9
11.7.1 Naming Considerations..........cccccuceuiiueiiriciieeceeeeeeereeee e 11-9
11.7.2 Administration Server Considerations...........ccccoevvviiiiniiiniiiiii 11-9
11.7.3 Firewall Considerationsc.cocceirirueueiininieiciieieteeiresee e es 11-10
11.7.4 Evaluate Cluster Capacity Prior to Production Useccccevvevvnrnnnnnnenencnes 11-11
Troubleshooting Common Problems

12.1 Before You Start the CIUSLETccccciiiiiiiiiiiiicccccccceeee s 12-1
12.11 Check the Server Version NUMDeErS.........cccccviiiiiiiiiniiiii 12-1
12.1.2 Check the Multicast AAAIess...........cccciiuiiiiiiiiiiiiie s 12-1
12.1.3 Check the CLASSPATH ValUeccccccociiiiiiiiiciceeeeeceeeeeeeeeseseese s 12-2
12,2 After You Start the CIUSTETcoooiiiiiiii s 12-2
12.2.1 Check Your Commands..........cccceucuiiiiiiiiiiiiiiiieeeeee e 12-2

xi

13

A

B

Cc

Xii

12.2.2 Generate @ Log File ... 12-2

12.2.2.1 Getting a JRockit Thread Dump Under Linuxcccooiiieiiiiiiieiiee, 12-3
12.2.3 Check Garbage COLECtIONc.c.ccuiuiuiiimiiiieiciciciccicceee e 12-3
12.2.4 Run utils. MulticastTestcccoeveieiiiiiiiiiiiiiiicc s 12-3

Troubleshooting Multicast Configuration

13.1 Verifying Multicast Address and Port Configuration..........cccceeeeieiiiiciciciicice 13-1
13.1.1 POSSIDLE EXTOTS ...ttt 13-2
13.1.2 Checking the Multicast Address and Port ... 13-2
13.2 Identifying Network Configuration Problems ..o 13-2
13.2.1 Physical CONNECHIONScouiviiiiiiiiiiiiiiiiiii s 13-2
13.2.2 Address CONTICES.......ovviviiiiiiiic s 13-2
13.2.3 nsswitch.conf Settings on UNIX Systems..........c.cccooiiiiiiiiiiiiiccc 13-2
13.3 Using the MulticastTest Utilitycccoooiiiiiiiiiiiiii 13-2
13.4 Tuning Multicast FEatUIes...........cooiiiiiiiiiiiiccccecccccce e 13-3
13.4.1 Multicast TIMEOULScouiuiviiiiiiiiicicie s 13-3
13.4.2 Cluster Heartbeatscccocciiiiiiiiiiiiiiiiiiiic s 13-3
13.4.2.1 Multicast Send Delaycccoceeiiiiiiiiiicieeceeeeeee s 13-3
13.4.2.2 Operating System Parameterscccouoiieieiiiiiciiccc 13-3
13.4.3 Multicast STOTIScccuiviiiiiiiiiiiiii s 13-4
13.4.4 Multicast and Multihomed Machines............ccccccvviiiiiniiniiiices 13-4
13.4.5 Multicast in Different SUDNetSs ..o 13-4
13.5 Debugging MultiCastcccceuiiiriiiiiiiiic e 13-4
13.5.1 Debugging ULILIHIESccceuiiiiiiiiiiiiciccceecceieee e 13-4
13.5.1.1 MulticaStMOINIEOLcviviiiiiiieiiicccc s 13-4
13.5.1.2 MUIHCASTTES ... 13-5
13.5.2 Debugging FIagsc.ccceuiuiiiuiiiiiiiiceeieeeeeeeeeeeeeee e 13-5
13.5.2.1 Setting Debug Flags on the Command Line..........cccooovoiiiiiiiciiiicee, 13-5
13.5.2.2 Setting Debug Attributes Using WLSTccooioiiiiii e, 13-5
13.6 Miscellaneous ISSUES.........ccvviimiiiiiiiiiiiicc s 13-5
13.6.1 Multicast 0N ALX ..o s 13-5
13.6.2 File Descriptor PrODLEMSc.cccccuiiiiiiiiiiiiiiiiiiiciciiicic s 13-6
13.7 Other Resources for Troubleshooting Multicast Configurationcccccccccueueueueucnnnnne. 13-6

The WebLogic Cluster API

A1 How to Use the APL...........cooiiiiii e A-1
A2 Custom Call Routing and Collocation Optimization ..o, A-2

Configuring BIG-IP Hardware with Clusters

Configuring F5 Load Balancers for MAN/WAN Failover

C.1 ReQUITEMENTES.....cvviiiiiiiicicc s C-1
C.2 Configure Local Load Balancers............cccccciiuiiiiiiiiiiniiiiiciccieeeeeeeeneeeeeneeennes C-1
C.2.1 Virtual Server IPS and POOIS........cccccveieiiinieirireieieieieie et ss e eseesesseereenas C-2
c22 Create a Failover Trigger Virtual Server and Pool.........c.ccccoiiiiiiiiiie C-2
c.23 Create a Multi-layered Virtual Server and IP Pool............ccccocvinnniinnnnnnnnne, C-3

C.3
C.3.1
C.3.2
C.3.3
C.34
C.4

Configure the 3-DNS Global Hardware Load Balancer...........ccccccooeviiiinnnninnnnn C-3
Configure DNS ZONESc.ccovviiiiiiiiiiiiiiiiiiis s C4
Configure BIG-IP Addresses Managed by 3-DNS..........ccccocovvinnnnnnnrnncrreenes C-4
Configure Data Centersccooviieieieiiiiiiiiiiiiccc s C4
Configure Wide IPSccccoviiiiiiiiiiiiiiiiiiiiiic s C4

Configuring WebLogic Server COmMpONents...........ccccccucucueurueuiienieeeeeeeeeeeeeeeeeeeeeeeeeseeens C-5

D Configuring Radware Load Balancers for MAN/WAN Failover

D.1
D.2
D.3
D.3.1
D.3.2
D.3.3
D.4
D.5
D.6
D.7
D.8

ReqQUITEMENTES ..o D-1
Step 1: Configure an Authoritative Delegation Zone ..o, D-2
Step 2: Configure Farm Virtual IPs and Servers..........cccoooceieiiniiiiiicicccee, D-2

Create a Farm IP........ocooviiiii s D-2

Configure the Dispatch Method for the Server Farm..........c.ccccoooooiiiii D-2

Creating Farm SeIVers..........ooooiioiiiieiiiiicc s D-2
Step 3: Configure Port MULtIPLEXiNgGc.cccceuvueieiriririniiirirrcccreeereereeeeeee s D-3
Step 4: Configure HTTP Redirects..........oooiueiiiciiiiii D-3
Step 5: Configure Session ID Persistencyococeueioirucieiiicicieicicciecse e D-4
Step 6: Configure LRPc.ccccoiiiiiiiiiiicecce e D-4
Step 7: Configure WebLogic Server Components............c..ccouoirueueiiciciiiincieceeeee, D-4

xiii

Xiv

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using Clusters for Oracle WebLogic Server.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

XV

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XVi

1

Introduction and Roadmap

This section describes the contents and organization of this guide—Using WebLogic
Server Clusters.

= Section 1.1, "Document Scope and Audience"
s Section 1.2, "Guide to this Document"
m Section 1.3, "Related Documentation"

= Section 1.4, "New and Changed Clustering Features in This Release"

1.1 Document Scope and Audience

This document is written for application developers and administrators who are
developing or deploying Web-based applications on one or more clusters. It also
contains information that is useful for business analysts and system architects who are
evaluating WebLogic Server or considering the use of WebLogic Server clusters for a
particular application.

The topics in this document are primarily relevant to planning, implementing, and
supporting a production environment that includes WebLogic Server clusters. Key
guidelines for software engineers who design or develop applications that will run on
a WebLogic Server cluster are also addressed.

It is assumed that the reader is familiar with Java EE, HTTP, HTML coding, and Java
programming (servlets, JSP, or EJB development).

1.2 Guide to this Document

s This chapter, Chapter 1, "Introduction and Roadmap," describes the organization
of this guide.

» Chapter 2, "Understanding WebLogic Server Clustering," provides a brief
introduction to WebLogic Server clusters.

» Chapter 3, "Communications In a Cluster," describes how WebLogic Server
instances communicate to one another in a cluster and how they utilize a
cluster-wide JNDI tree.

» Chapter 4, "Understanding Cluster Configuration,” explains how the information
that defines the configuration of a cluster is stored and maintained, and identifies
the methods you can use to accomplish cluster configuration tasks.

s Chapter 5, "Load Balancing in a Cluster," describes the load balancing support that
a WebLogic Server cluster provides for different types of objects, and provides
planning and configuration considerations for architects and administrators.

Introduction and Roadmap 1-1

Related Documentation

Chapter 6, "Failover and Replication in a Cluster," describes how WebLogic Server
detects failures in a cluster, and summarizes how failover is accomplished for
different types of objects.

Chapter 7, "Whole Server Migration," describes the different migration
mechanisms supported by WebLogic Server.

Chapter 8, "Service Migration," describes the service migration mechanisms
supported by WebLogic Server:

Chapter 9, "Cluster Architectures," describes alternative architectures for a
WebLogic Server cluster.

Chapter 10, "Setting up WebLogic Clusters," contains guidelines and instructions
for configuring a WebLogic Server cluster.

Chapter 11, "Clustering Best Practices,” provides recommendations for design and
deployment practices that maximize the scalability, reliability, and performance of
applications hosted by a WebLogic Server cluster.

Chapter 12, "Troubleshooting Common Problems," provides guidelines on how to
prevent and troubleshoot common cluster problems.

Appendix A, "The WebLogic Cluster APL" describes the WebLogic Cluster APL

Appendix B, "Configuring BIG-IP Hardware with Clusters," describes options for
configuring an F5 BIG-IP controller to operate with a WebLogic Server cluster.

Appendix C, "Configuring F5 Load Balancers for MAN/WAN Failover," explains
how to configure F5 hardware load balancers.

Appendix D, "Configuring Radware Load Balancers for MAN/WAN Failover,"
describes how to configure Radware hardware load balancers.

1.3 Related Documentation

"Understanding Enterprise JavaBeans" in Programming WebLogic Enterprise
JavaBeans for Oracle WebLogic Server

"Creating and Configuring Web Applications" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

1.4 New and Changed Clustering Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

1-2 Using Clusters for Oracle WebLogic Server

2

Understanding WebLogic Server Clustering

This section is a brief introduction to WebLogic Server clusters. It contains the
following information:

» Section 2.1, "What Is a WebLogic Server Cluster?"

m Section 2.2, "How Does a Cluster Relate to a Domain?"

» Section 2.3, "What Are the Benefits of Clustering?"

» Section 2.4, "What Are the Key Capabilities of a Cluster?"
= Section 2.5, "What Types of Objects Can Be Clustered?"

» Section 2.6, "What Types of Objects Cannot Be Clustered?"

2.1 What Is a WebLogic Server Cluster?

A WebLogic Server cluster consists of multiple WebLogic Server server instances
running simultaneously and working together to provide increased scalability and
reliability. A cluster appears to clients to be a single WebLogic Server instance. The
server instances that constitute a cluster can run on the same machine, or be located on
different machines. You can increase a cluster's capacity by adding additional server
instances to the cluster on an existing machine, or you can add machines to the cluster
to host the incremental server instances. Each server instance in a cluster must run the
same version of WebLogic Server.

2.2 How Does a Cluster Relate to a Domain?
A cluster is part of a particular WebLogic Server domain.

A domain is an interrelated set of WebLogic Server resources that are managed as a
unit. A domain includes one or more WebLogic Server instances, which can be
clustered, non-clustered, or a combination of clustered and non-clustered instances. A
domain can include multiple clusters. A domain also contains the application
components deployed in the domain, and the resources and services required by those
application components and the server instances in the domain. Examples of the
resources and services used by applications and server instances include machine
definitions, optional network channels, connectors, and startup classes.

You can use a variety of criteria for organizing WebLogic Server instances into
domains. For instance, you might choose to allocate resources to multiple domains
based on logical divisions of the hosted application, geographical considerations, or
the number or complexity of the resources under management. For additional
information about domains see Understanding Domain Configuration for Oracle WebLogic
Server.

Understanding WebLogic Server Clustering 2-1

What Are the Benefits of Clustering?

In each domain, one WebLogic Server instance acts as the Administration Server—the
server instance which configures, manages, and monitors all other server instances
and resources in the domain. Each Administration Server manages one domain only. If
a domain contains multiple clusters, each cluster in the domain has the same
Administration Server.

All server instances in a cluster must reside in the same domain; you cannot "split" a
cluster over multiple domains. Similarly, you cannot share a configured resource or
subsystem between domains. For example, if you create a JDBC connection pool in one
domain, you cannot use it with a server instance or cluster in another domain.
(Instead, you must create a similar connection pool in the second domain.)

Clustered WebLogic Server instances behave similarly to non-clustered instances,
except that they provide failover and load balancing. The process and tools used to
configure clustered WebLogic Server instances are the same as those used to configure
non-clustered instances. However, to achieve the load balancing and failover benefits
that clustering enables, you must adhere to certain guidelines for cluster configuration.

To understand how the failover and load balancing mechanisms used in WebLogic
Server relate to particular configuration options see Section 5, "Load Balancing in a
Cluster," and Section 6, "Failover and Replication in a Cluster."

Detailed configuration recommendations are included throughout the instructions in
Section 10, "Setting up WebLogic Clusters".

2.3 What Are the Benefits of Clustering?

A WebLogic Server cluster provides these benefits:
= Scalability

The capacity of an application deployed on a WebLogic Server cluster can be
increased dynamically to meet demand. You can add server instances to a cluster
without interruption of service—the application continues to run without impact
to clients and end users.

» High-Availability

In a WebLogic Server cluster, application processing can continue when a server
instance fails. You "cluster" application components by deploying them on
multiple server instances in the cluster—so, if a server instance on which a
component is running fails, another server instance on which that component is
deployed can continue application processing.

The choice to cluster WebLogic Server instances is transparent to application
developers and clients. However, understanding the technical infrastructure that
enables clustering will help programmers and administrators maximize the scalability
and availability of their applications.

2.4 What Are the Key Capabilities of a Cluster?

This section defines, in non-technical terms, the key clustering capabilities that enable
scalability and high availability.

= Application Failover

Simply put, failover means that when an application component (typically
referred to as an "object" in the following sections) doing a particular "job"—some
set of processing tasks—becomes unavailable for any reason, a copy of the failed
object finishes the job.

2-2 Using Clusters for Oracle WebLogic Server

What Are the Key Capabilities of a Cluster?

For the new object to be able to take over for the failed object:
— There must be a copy of the failed object available to take over the job.

— There must be information, available to other objects and the program that
manages failover, defining the location and operational status of all
objects—so that it can be determined that the first object failed before finishing
its job.

— There must be information, available to other objects and the program that
manages failover, about the progress of jobs in process—so that an object
taking over an interrupted job knows how much of the job was completed
before the first object failed, for example, what data has been changed, and
what steps in the process were completed.

WebLogic Server uses standards-based communication techniques and facilities—
including IP sockets and the Java Naming and Directory Interface (JNDI)—to
share and maintain information about the availability of objects in a cluster. These
techniques allow WebLogic Server to determine that an object stopped before
finishing its job, and where there is a copy of the object to complete the job that
was interrupted.

Note: For backward compatibility with previous versions, WebLogic
Server allows you to use multicast for communications between
clusters.

Information about what has been done on a job is called state. WebLogic Server
maintains information about state using techniques called session replication and
replica-aware stubs. When a particular object unexpectedly stops doing its job,
replication techniques enable a copy of the object pick up where the failed object
stopped, and finish the job.

WebLogic Server supports automatic and manual migration of a clustered server
instance from one machine to another. A Managed Server that can be migrated is
referred to as a migratable server. This feature is designed for environments with
requirements for high availability. The server migration capability is useful for:

- Ensuring uninterrupted availability of singleton services—services that must
run on only a single server instance at any given time, such as JMS and the
JTA transaction recovery system, when the hosting server instance fails. A
Managed Server configured for automatic migration will be automatically
migrated to another machine in the event of failure.

- Easing the process of relocating a Managed Server, and all the services it hosts,
as part of a planned system administration process. An administrator can
initiate the migration of a Managed Server from the Administration Console
or command line.

The server migration process relocates a Managed Server in its entirety—including
IP addresses and hosted applications—to one of a predefined set of available host
machines.

Load Balancing

Load balancing is the even distribution of jobs and associated communications
across the computing and networking resources in your environment. For load
balancing to occur:

— There must be multiple copies of an object that can do a particular job.

Understanding WebLogic Server Clustering 2-3

What Types of Objects Can Be Clustered?

- Information about the location and operational status of all objects must be
available.

WebLogic Server allows objects to be clustered—deployed on multiple server
instances—so that there are alternative objects to do the same job. WebLogic
Server shares and maintains the availability and location of deployed objects
using unicast, IP sockets, and JNDI.

Note: For backward compatibility with previous versions, WebLogic
Server also allows you to use multicast for communications between
clusters.

A detailed discussion of how communications and replication techniques are
employed by WebLogic Server is provided in Section 3, "Communications In a
Cluster."

2.5 What Types of Objects Can Be Clustered?

A clustered application or application component is one that is available on multiple
WebLogic Server instances in a cluster. If an object is clustered, failover and load
balancing for that object is available. Deploy objects homogeneously—to every server
instance in your cluster—to simplify cluster administration, maintenance, and
troubleshooting.

Web applications can consist of different types of objects, including Enterprise Java
Beans (E]Bs), servlets, and Java Server Pages (JSPs). Each object type has a unique set
of behaviors related to control, invocation, and how it functions within an application.
For this reason, the methods that WebLogic Server uses to support clustering—and
hence to provide load balancing and failover—can vary for different types of objects.
The following types of objects can be clustered in a WebLogic Server deployment:

= Servlets

s JSPs

= EJBs

= Remote Method Invocation (RMI) objects

= Java Messaging Service (JMS) destinations

= Java Database Connectivity (JDBC) connections

Different object types can have certain behaviors in common. When this is the case, the
clustering support and implementation considerations for those similar object types
may be same. In the sections that follow, explanations and instructions for the
following types of objects are generally combined:

s Servlets and JSPs
= EJBs and RMI objects

The sections that follow briefly describe the clustering, failover, and load balancing
support that WebLogic Server provides for different types of objects.

2.5.1 Servlets and JSPs

WebLogic Server provides clustering support for servlets and JSPs by replicating the
HTTP session state of clients that access clustered servlets and JSPs. WebLogic Server
can maintain HTTP session states in memory, a file system, or a database.

2-4 Using Clusters for Oracle WebLogic Server

What Types of Objects Can Be Clustered?

To enable automatic failover of servlets and JSPs, session state must persist in memory.
For information about how failover works for servlets and JSPs, and for related
requirements and programming considerations, see Section 6.2.1, "HTTP Session State
Replication."

You can balance the servlet and JSP load across a cluster using a WebLogic Server
proxy plug-in or external load balancing hardware. WebLogic Server proxy plug-ins
perform round-robin load balancing. External load balancers typically support a
variety of session load balancing mechanisms. For more information, see Section 5.1,
"Load Balancing for Servlets and JSPs."

2.5.2 EJBs and RMI Objects

Load balancing and failover for EJBs and RMI objects is handled using replica-aware
stubs, which can locate instances of the object throughout the cluster. Replica-aware
stubs are created for EJBs and RMI objects as a result of the object compilation process.
EJBs and RMI objects are deployed homogeneously—to all the server instances in the
cluster.

Failover for EJBs and RMI objects is accomplished using the object's replica-aware
stub. When a client makes a call through a replica-aware stub to a service that fails, the
stub detects the failure and retries the call on another replica. To understand failover
support for different types of objects, see Section 6.3, "Replication and Failover for EJBs
and RMIs."

WebLogic Server clusters support multiple algorithms for load balancing clustered
EJBs and RMI objects: round-robin, weight-based, random, round-robin-affinity,
weight-based-affinity, and random-affinity. By default, a WebLogic Server cluster will
use the round-robin method. You can configure a cluster to use one of the other
methods using the Administration Console. The method you select is maintained
within the replica-aware stub obtained for clustered objects. For details, see Section 5.2,
"Load Balancing for EJBs and RMI Objects."

2.5.3 JDBC Connections

WebLogic Server allows you to cluster JDBC objects, including data sources and multi
data sources, to improve the availability of cluster-hosted applications. Each JDBC
object you configure for your cluster must exist on each Managed Server in the
cluster—when you configure the JDBC objects, target them to the cluster.

= Data Sources—In a cluster, external clients must obtain connections through a
JDBC data source on the JNDI tree. The data source uses the WebLogic Server RMI
driver to acquire a connection. The cluster-aware nature of WebLogic data sources
in external client applications allows a client to request another connection if the
server instance hosting the previous connection fails. Although not strictly
required, Oracle recommends that server-side clients also obtain connections via a
data source on the JNDI tree.

= Multi data sources—Multi data sources are an abstraction around a group of data
sources that provides load balancing or failover processing between the data
sources associated with the multi data source. Multi data sources are bound to the
JNDI tree or local application context just like data sources are bound to the JNDI
tree. Applications lookup a multi data source on the JNDI tree just like they do for
data sources, and then request a database connection. The multi data source
determines which data source to use to satisfy the request depending on the
algorithm selected in the multi data source configuration: load balancing or
failover.

Understanding WebLogic Server Clustering 2-5

What Types of Objects Can Be Clustered?

For more information about JDBC, see "Configuring WebLogic JDBC Resources” in
Configuring and Managing JDBC for Oracle WebLogic Server.

2.5.3.1 Getting Connections with Clustered JDBC

To ensure that any JDBC request can be handled equivalently by any cluster member,
each Managed Server in the cluster must have similarly named/defined data sources,
if applicable, multi data sources. To achieve this result, data sources and multi data
sources should be targeted to the cluster so they are cluster-aware and, if intended for
use in external clients, their connections can be to any cluster members.

= External Clients Connections—External clients that require a database connection
perform a JNDI lookup and obtain a replica-aware stub for the data source. The
stub for the data source contains a list of the server instances that host the data
source—which should be all of the Managed Servers in the cluster. Replica-aware
stubs contain load balancing logic for distributing the load among host server
instances.

s Server-Side Client Connections—For server-side use, connection requests will be
handled by the local instance of the data source or multi data source. A server-side
data source will not go to another cluster member for its JDBC connections. The
connection is pinned to the local server instance for the duration of the database
transaction, and as long as the application code retains it (until the connection is
closed).

2.5.3.2 Failover and Load Balancing for JDBC Connections

Clustering your JDBC objects does not enable failover of connections, but it can ease
the process of reconnecting when a connection fails. In replicated database
environments, multi data sources may be clustered to support database failover, and
optionally, load balancing of connections. See the following topics for more
information:

= To understand the behavior of clustered JDBC objects when failures occur, see
Section 6.4, "Failover and JDBC Connections."

= To learn more about how clustered multi data sources enable load balancing of
connections, see Section 5.4, "Load Balancing for JDBC Connections."

= For instructions on configuring clustered JDBC objects, see Section 10.2.12,
"Configure Clustered JDBC."

2.5.4 JMS and Clustering

The WebLogic Java Messaging Service (JMS) architecture implements clustering of
multiple JMS servers by supporting cluster-wide, transparent access to destinations
from any WebLogic Server server instance in the cluster. Although WebLogic Server
supports distributing JMS destinations and connection factories throughout a cluster,
the same JMS topic or queue is still managed separately by each WebLogic Server
instance in the cluster.

Load balancing is supported for JMS. To enable load balancing, you must configure
targets for JMS servers. For more information about load balancing and JMS
components, see Section 5.3, "Load Balancing for JMS," For instructions on setting up
clustered JMS, see Section 10.2.11, "Configure Migratable Targets for Pinned Services,"
and Section 10.2.16, "Deploying, Activating, and Migrating Migratable Services."

2-6 Using Clusters for Oracle WebLogic Server

What Types of Objects Cannot Be Clustered?

2.6 What Types of Objects Cannot Be Clustered?

The following APIs and internal services cannot be clustered in WebLogic Server:
» File services including file shares
= Time services

You can still use these services on individual WebLogic Server instances in a cluster.
However, the services do not make use of load balancing or failover features.

Understanding WebLogic Server Clustering 2-7

What Types of Objects Cannot Be Clustered?

2-8 Using Clusters for Oracle WebLogic Server

3

Communications In a Cluster

WebLogic Server clusters implement two key features: load balancing and failover.
The following sections provide information that helps architects and administrators
configure a cluster that meets the needs of a particular Web application:

Section 3.1, "WebLogic Server Communication In a Cluster"

Section 3.2, "Cluster-Wide JNDI Naming Service"

3.1 WebLogic Server Communication In a Cluster

WebLogic Server instances in a cluster communicate with one another using two basic
network technologies:

IP sockets, which are the conduits for peer-to-peer communication between
clustered server instances.

IP unicast or multicast, which server instances use to broadcast availability of
services and heartbeats that indicate continued availability.

When creating a new cluster, Oracle recommends that you use unicast for
messaging within a cluster.

Note: When creating a cluster using the Configuration Wizard, the default
cluster messaging mode is unicast. When creating a cluster using WLST, the
default cluster messaging mode is multicast.

If you encounter problems with updating JNDI trees for a cluster with unicast
messaging, use the new property
ClusterMBean.MessageOrderingEnabled. This property forces unicast
messages to be processed in strict order. By default, this property is not
enabled. To enable the property, add the following line to the <cluster>
element in config.xml.

<message-ordering-enabled>true</message-ordering-enabled>

For detailed information, see "Forcing Unicast Messages To Be Processed in
Order" in the Oracle Fusion Middleware Release Notes. If this property does not
resolve your issues with unicast messaging, switch to the multicast messaging
mode.

The way in which WebLogic Server uses IP multicast or unicast and socket
communication affects the way you configure your cluster.

Communications In a Cluster 3-1

WebLogic Server Communication In a Cluster

3.1.1 Using IP Multicast for Backward Compatibility

IP multicast is a simple broadcast technology that enables multiple applications to
"subscribe" to a given IP address and port number and listen for messages.

Note: When creating a new cluster, Oracle recommends that you use
unicast for messaging within a cluster. For WebLogic Server versions
9.2 and earlier, you must use multicast for communications between
clusters.

IP multicast broadcasts messages to applications, but it does not guarantee that
messages are actually received. If an application's local multicast buffer is full, new
multicast messages cannot be written to the buffer and the application is not notified
when messages are "dropped." Because of this limitation, WebLogic Server instances
allow for the possibility that they may occasionally miss messages that were broadcast
over IP multicast.

Note: A multicast address is an IP address in the range from
224.0.0.0 to 239.255.255.255. The default multicast value used by
WebLogic Server is 239.192.0.0. You should not use any multicast
address within the range x.0.0.1.

WebLogic Server uses IP multicast for all one-to-many communications among server
instances in a cluster. This communication includes:

s Cluster-wide JNDI updates—Each WebLogic Server instance in a cluster uses
multicast to announce the availability of clustered objects that are deployed or
removed locally. Each server instance in the cluster monitors these announcements
and updates its local JNDI tree to reflect current deployments of clustered objects.
For more details, see Section 3.2, "Cluster-Wide JNDI Naming Service."

» Cluster heartbeats—Each WebLogic Server instance in a cluster uses multicast to
broadcast regular "heartbeat" messages that advertise its availability. By
monitoring heartbeat messages, server instances in a cluster determine when a
server instance has failed. (Clustered server instances also monitor IP sockets as a
more immediate method of determining when a server instance has failed.)

s Clusters with many nodes—Multicast communication is the option of choice for
clusters with many nodes.

3.1.1.1 Multicast and Cluster Configuration

Because multicast communications control critical functions related to detecting
failures and maintaining the cluster-wide JNDI tree (described in Section 3.2,
"Cluster-Wide JNDI Naming Service") it is important that neither the cluster
configuration nor the network topology interfere with multicast communications. The
sections that follow provide guidelines for avoiding problems with multicast
communication in a cluster.

3.1.1.1.1 If Your Cluster Spans Multiple Subnets Ina WAN In many deployments, clustered
server instances reside within a single subnet, ensuring multicast messages are reliably
transmitted. However, you may want to distribute a WebLogic Server cluster across
multiple subnets in a Wide Area Network (WAN) to increase redundancy, or to
distribute clustered server instances over a larger geographical area.

3-2 Using Clusters for Oracle WebLogic Server

WebLogic Server Communication In a Cluster

If you choose to distribute a cluster over a WAN (or across multiple subnets), plan and
configure your network topology to ensure that multicast messages are reliably
transmitted to all server instances in the cluster. Specifically, your network must meet
the following requirements:

s Full support of IP multicast packet propagation. In other words, all routers and
other tunneling technologies must be configured to propagate multicast messages
to clustered server instances.

= Network latency low enough to ensure that most multicast messages reach their
final destination in 200 to 300 milliseconds.

= Multicast Time-To-Live (TTL) value for the cluster high enough to ensure that
routers do not discard multicast packets before they reach their final destination.
For instructions on setting the Multicast TTL parameter, see Section 10.2.18.2,
"Configure Multicast Time-To-Live (TTL)."

Note: Distributing a WebLogic Server cluster over a WAN may
require network facilities in addition to the multicast requirements
described above. For example, you may want to configure load
balancing hardware to ensure that client requests are directed to
server instances in the most efficient manner (to avoid unnecessary
network hops).

3.1.1.1.2 Firewalls Can Break Multicast Communication Although it may be possible to
tunnel multicast traffic through a firewall, this practice is not recommended for
WebLogic Server clusters. Treat each WebLogic Server cluster as a logical unit that
provides one or more distinct services to clients of a Web application. Do not split this
logical unit between different security zones. Furthermore, any technologies that
potentially delay or interrupt IP traffic can disrupt a WebLogic Server cluster by
generating false failures due to missed heartbeats.

3.1.1.1.3 Do Not Share the Cluster Multicast Address with Other Applications Although
multiple WebLogic Server clusters can share a single IP multicast address and port,
other applications should not broadcast or subscribe to the multicast address and port
used by your cluster or clusters. That is, if the machine or machines that host your
cluster also host other applications that use multicast communications, make sure that
those applications use a different multicast address and port than the cluster does.

Sharing the cluster multicast address with other applications forces clustered server
instances to process unnecessary messages, introducing overhead. Sharing a multicast
address may also overload the IP multicast buffer and delay transmission of WebLogic
Server heartbeat messages. Such delays can result in a WebLogic Server instance being
marked as failed, simply because its heartbeat messages were not received in a timely
manner.

For these reasons, assign a dedicated multicast address for use by WebLogic Server
clusters, and ensure that the address can support the broadcast traffic of all clusters
that use the address.

3.1.1.1.4 If Multicast Storms Occur If server instances in a cluster do not process
incoming messages on a timely basis, increased network traffic, including negative
acknowledgement (NAK) messages and heartbeat re-transmissions, can result. The
repeated transmission of multicast packets on a network is referred to as a multicast
storm, and can stress the network and attached stations, potentially causing
end-stations to hang or fail. Increasing the size of the multicast buffers can improve the

Communications In a Cluster 3-3

WebLogic Server Communication In a Cluster

rate at which announcements are transmitted and received, and prevent multicast
storms. See Section 10.2.18.3, "Configure Multicast Buffer Size."

3.1.2 One-to-Many Communication Using Unicast

WebLogic Server provides an alternative to using multicast to handle cluster
messaging and communications. Unicast configuration is much easier because it does
not require cross network configuration that multicast requires. Additionally, it
reduces potential network errors that can occur from multicast address conflicts.

3.1.2.1 Unicast Configuration

Unicast is configured using
ClusterMBean.isUnicastBasedClusterMessagingEnabled (). The default
value of this parameter is false. Changes made to this MBean are not dynamic. You
must restart your cluster for changes to take effect.

To define a specific channel for unicast communications, you can use the
setNetworkChannelForUnicastMessaging (String NetworkChannelName).
When unicast is enabled, servers will attempt to use the value defined in this MBean
for communications between clusters. If the unicast channel is not explicitly defined,
the default network channel is used.

When configuring WebLogic Server clusters for unicast communications, if the servers
are running on different machines, you must explicitly specify their listen addresses or
DNS names.

3.1.2.2 Considerations When Using Unicast

The following considerations apply when using unicast to handle cluster
communications:

= All members of a cluster must use the same message type. Mixing between
multicast and unicast messaging is not allowed.

= You must use multicast if you need to support previous versions of WebLogic
Server within your cluster.

s Individual cluster members cannot override the cluster messaging type.
= The entire cluster must be shutdown and restarted to message modes.

= JMS topics configured for multicasting can access WebLogic clusters configured
for unicast because a JMS topic publishes messages on its own multicast address
that is independent of the cluster address. However, the following considerations

apply:
— The router hardware configurations that allow unicast clusters may not allow
JMS multicast subscribers to work.

— JMS multicast subscribers need to be in a network hardware configuration that
allows multicast accessibility.

For more details, see "Using Multicasting with WebLogic JMS" in Programming
JMS for Oracle WebLogic Server.

3.1.3 Peer-to-Peer Communication Using IP Sockets

IP sockets provide a simple, high-performance mechanism for transferring messages
and data between two applications. Clustered WebLogic Server instances use IP
sockets for:

3-4 Using Clusters for Oracle WebLogic Server

WebLogic Server Communication In a Cluster

= Accessing non-clustered objects deployed to another clustered server instance on a
different machine.

= Replicating HTTP session states and stateful session E]B states between a primary
and secondary server instance.

» Accessing clustered objects that reside on a remote server instance. (This generally
occurs only in a multi-tier cluster architecture, such as the one described in
Section 9.3, "Recommended Multi-Tier Architecture.")

Note: The use of IP sockets in WebLogic Server extends beyond the
cluster scenario—all RMI communication takes place using sockets,
for example, when a remote Java client application accesses a remote
object.

Proper socket configuration is crucial to the performance of a WebLogic Server cluster.
Two factors determine the efficiency of socket communications in WebLogic Server:

= Whether the server instance host system uses a native or a pure-Java socket reader
implementation.

= For systems that use pure-Java socket readers, whether the server instance is
configured to use enough socket reader threads.

3.1.3.1 Pure-Java Versus Native Socket Reader Implementations

Although the pure-Java implementation of socket reader threads is a reliable and
portable method of peer-to-peer communication, it does not provide the best
performance for heavy-duty socket usage in a WebLogic Server cluster. With pure-Java
socket readers, threads must actively poll all opened sockets to determine if they
contain data to read. In other words, socket reader threads are always "busy" polling
sockets, even if the sockets have no data to read. This unnecessary overhead can
reduce performance.

The performance issue is magnified when a server instance has more open sockets
than it has socket reader threads—each reader thread must poll more than one open
socket. When the socket reader encounters an inactive socket, it waits for a timeout
before servicing another. During this timeout period, an active socket may go unread
while the socket reader polls inactive sockets, as shown in Figure 3-1.

Figure 3—1 Pure-Java Socket Reader Threads Poll Inactive Sockets

.+ Poll Poll Read
Socket Reader Thread ‘ | |

D Socket ryy

B Active socket I D D D I D

For best socket performance, configure the WebLogic Server host machine to use the
native socket reader implementation for your operating system, rather than the
pure-Java implementation. Native socket readers use far more efficient techniques to
determine if there is data to read on a socket. With a native socket reader
implementation, reader threads do not need to poll inactive sockets—they service only
active sockets, and they are immediately notified (via an interrupt) when a given
socket becomes active.

Communications In a Cluster 3-5

WebLogic Server Communication In a Cluster

Note: Applets cannot use native socket reader implementations, and

therefore have limited efficiency in socket communication.

For instructions on how to configure the WebLogic Server host machine to use the
native socket reader implementation for your operating system, see Section 10.2.18.1.1,
"Configure Native IP Sockets Readers on Machines that Host Server Instances."

3.1.3.2 Configuring Reader Threads for Java Socket Implementation

If you do use the pure-Java socket reader implementation, you can still improve the
performance of socket communication by configuring the proper number of socket
reader threads for each server instance. For best performance, the number of socket
reader threads in WebLogic Server should equal the potential maximum number of
opened sockets. This configuration avoids the situation in which a reader thread must
service multiple sockets, and ensures that socket data is read immediately.

To determine the proper number of reader threads for server instances in your cluster,
see the following section, Section 3.1.3.2.1, "Determining Potential Socket Usage."

For instructions on how to configure socket reader threads, see Section 10.2.18.1.2, "Set
the Number of Reader Threads on Machines that Host Server Instances."

3.1.3.21 Determining Potential Socket Usage Each WebLogic Server instance can
potentially open a socket for every other server instance in the cluster. However, the
actual maximum number of sockets used at a given time depends on the configuration
of your cluster. In practice, clustered systems generally do not open a socket for every
other server instance, because objects are deployed homogeneously—to each server

instance in the cluster.

If your cluster uses in-memory HTTP session state replication, and you deploy objects
homogeneously, each server instance potentially opens a maximum of only two

sockets, as shown in Figure 3-2.
Figure 3-2 Homogeneous Deployment Minimizes Socket Requirements

-a-p Potential IP Socket

« ISP =i
1
JDBC
D
JSP ‘E"B ISP | e
| |
JDBC JDBC

JSP | S

JOBC

3-6 Using Clusters for Oracle WebLogic Server

WebLogic Server Communication In a Cluster

The two sockets in this example are used to replicate HTTP session states between
primary and secondary server instances. Sockets are not required for accessing
clustered objects, due to the collocation optimizations that WebLogic Server uses to
access those objects. (These optimizations are described in Section 5.2.6, "Optimization
for Collocated Objects.") In this configuration, the default socket reader thread
configuration is sufficient.

Deployment of "pinned" services—services that are active on only one server instance
at a time—can increase socket usage, because server instances may need to open
additional sockets to access the pinned object. (This potential can only be released if a
remote server instance actually accesses the pinned object.) Figure 3-3 shows the
potential effect of deploying a non-clustered RMI object to Server A.

Figure 3-3 Non-Clustered Objects Increase Potential Socket Requirements

A *Pinned” RMI

- potential IP Socket «
«

/ 43

D
J5P Lo JS5P Lo
JpBC ioee
¥
c
4 e | HE K
LDBC

In this example, each server instance can potentially open a maximum of three sockets
at a given time, to accommodate HTTP session state replication and to access the
pinned RMI object on Server A.

Note: Additional sockets may also be required for servlet clusters in
a multi-tier cluster architecture, as described in Section 10.2.18.6,
"Configuration Notes for Multi-Tier Architecture."

3.1.4 Client Communication via Sockets

Clients of a cluster use the Java implementation of socket reader threads.

WebLogic Server allows you to configure server affinity load balancing algorithms that
reduce the number of IP sockets opened by a Java client application. A client accessing
multiple objects on a server instance will use a single socket. If an object fails, the client
will failover to a server instance to which it already has an open socket, if possible. In
older version of WebLogic Server, under some circumstances, a client might open a
socket to each server instance in a cluster.

Communications In a Cluster 3-7

Cluster-Wide JNDI Naming Service

For best performance, configure enough socket reader threads in the Java Virtual
Machine (JVM) that runs the client. For instructions, see Section 10.2.18.1.3, "Set the
Number of Reader Threads on Client Machines."

3.2 Cluster-Wide JNDI Naming Service

Clients of a non-clustered WebLogic Server server instance access objects and services
by using a JNDI-compliant naming service. The JNDI naming service contains a list of
the public services that the server instance offers, organized in a tree structure. A
WebLogic Server instance offers a new service by binding into the JNDI tree a name
that represents the service. Clients obtain the service by connecting to the server
instance and looking up the bound name of the service.

Server instances in a cluster utilize a cluster-wide JNDI tree. A cluster-wide JNDI tree
is similar to a single server instance JNDI tree, insofar as the tree contains a list of
available services. In addition to storing the names of local services, however, the
cluster-wide JNDI tree stores the services offered by clustered objects (EJBs and RMI
classes) from other server instances in the cluster.

Each WebLogic Server instance in a cluster creates and maintains a local copy of the
logical cluster-wide JNDI tree. The follow sections describe how the cluster-wide JNDI
tree is maintained, and how to avoid naming conflicts that can occur in a clustered
environment.

Caution: Do not use the cluster-wide JNDI tree as a persistence or
caching mechanism for application data. Although WebLogic Server
replicates a clustered server instance's JNDI entries to other server
instances in the cluster, those entries are removed from the cluster if
the original instance fails. Also, storing large objects within the JNDI
tree can overload multicast or unicast traffic and interfere with the
normal operation of a cluster.

3.2.1 How WebLogic Server Creates the Cluster-Wide JNDI Tree

Each WebLogic Server in a cluster builds and maintains its own local copy of the
cluster-wide JNDI tree, which lists the services offered by all members of the cluster.
Creation of a cluster-wide JNDI tree begins with the local JNDI tree bindings of each
server instance. As a server instance boots (or as new services are dynamically
deployed to a running server instance), the server instance first binds the
implementations of those services to the local JNDI tree. The implementation is bound
into the JNDI tree only if no other service of the same name exists.

Note: When you start a Managed Server in a cluster, the server
instance identifies other running server instances in the cluster by
listening for heartbeats, after a warm-up period specified by the
MemberWarmupTimeoutSeconds parameter in ClusterMBean. The
default warm-up period is 30 seconds.

Once the server instance successfully binds a service into the local JNDI tree,
additional steps are performed for clustered objects that use replica-aware stubs. After
binding the clustered object's implementation into the local JNDI tree, the server
instance sends the object's stub to other members of the cluster. Other members of the
cluster monitor the multicast or unicast address to detect when remote server
instances offer new services.

3-8 Using Clusters for Oracle WebLogic Server

Cluster-Wide JNDI Naming Service

Figure 3—4 shows a snapshot of the JNDI binding process.

Figure 3—4 Server A Binds an Object in its JNDI Tree, then Unicasts Object Availability

A B

Service offered

\\‘En ServerA

IP
Unicast

In the previous figure, Server A has successfully bound an implementation of
clustered Object X into its local JNDI tree. Because Object X is clustered, it offers this
service to all other members of the cluster. Server C is still in the process of binding an
implementation of Object X.

Other server instances in the cluster listening to the multicast or unicast address note
that Server A offers a new service for clustered object, X. These server instances update
their local JNDI trees to include the new service.

Updating the local JNDI bindings occurs in one of two ways:

» If the clustered service is not yet bound in the local JNDI tree, the server instance
binds a new replica-aware stub into the local tree that indicates the availability of
Object X on Server A. Servers B and D would update their local JNDI trees in this
manner, because the clustered object is not yet deployed on those server instances.

» If the server instance already has a binding for the cluster-aware service, it updates
its local JNDI tree to indicate that a replica of the service is also available on Server
A. Server C would update its JNDI tree in this manner, because it will already
have a binding for the clustered Object X.

In this manner, each server instance in the cluster creates its own copy of a
cluster-wide JNDI tree. The same process would be used when Server C announces
that Object X has been bound into its local JNDI tree. After all broadcast messages are
received, each server instance in the cluster would have identical local JNDI trees that
indicate the availability of the object on Servers A and C, as shown in Figure 3-5.

Communications In a Cluster 3-9

Cluster-Wide JNDI Naming Service

Figure 3-5 Each Server's JNDI Tree is the Same after Unicast Messages are Received

Note: In an actual cluster, Object X would be deployed
homogeneously, and an implementation which can invoke the object
would be available on all four server instances.

3.2.2 How JNDI Naming Conflicts Occur

Simple JNDI naming conflicts occur when a server instance attempts to bind a
non-clustered service that uses the same name as a non-clustered service already
bound in the JNDI tree. Cluster-level JNDI conflicts occur when a server instance
attempts to bind a clustered object that uses the name of a non-clustered object already
bound in the JNDI tree.

WebLogic Server detects simple naming conflicts (of non-clustered services) when
those services are bound to the local JNDI tree. Cluster-level JNDI conflicts may occur
when new services are advertised over multicast or unicast. For example, if you
deploy a pinned RMI object on one server instance in the cluster, you cannot deploy a
replica-aware version of the same object on another server instance.

If two server instances in a cluster attempt to bind different clustered objects using the
same name, both will succeed in binding the object locally. However, each server
instance will refuse to bind the other server instance's replica-aware stub in to the
JNDI tree, due to the JNDI naming conflict. A conflict of this type would remain until
one of the two server instances was shut down, or until one of the server instances
undeployed the clustered object. This same conflict could also occur if both server
instances attempt to deploy a pinned object with the same name.

3.2.2.1 Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts

To avoid cluster-level JNDI conflicts, you must homogeneously deploy all
replica-aware objects to all WebLogic Server instances in a cluster. Having unbalanced
deployments across WebLogic Server instances increases the chance of JNDI naming
conflicts during startup or redeployment. It can also lead to unbalanced processing
loads in the cluster.

If you must pin specific RMI objects or E]Bs to individual server instances, do not
replicate the object's bindings across the cluster.

3-10 Using Clusters for Oracle WebLogic Server

Cluster-Wide JNDI Naming Service

3.2.3 How WebLogic Server Updates the JNDI Tree

When a clustered object is removed (undeployed from a server instance), updates to
the JNDI tree are handled similarly to the updates performed when new services are
added. The server instance on which the service was undeployed broadcasts a
message indicating that it no longer provides the service. Again, other server instances
in the cluster that observe the multicast or unicast message update their local copies of
the JNDI tree to indicate that the service is no longer available on the server instance
that undeployed the object.

Once the client has obtained a replica-aware stub, the server instances in the cluster
may continue adding and removing host servers for the clustered objects. As the
information in the JNDI tree changes, the client's stub may also be updated.
Subsequent RMI requests contain update information as necessary to ensure that the
client stub remains up-to-date.

3.2.4 Client Interaction with the Cluster-Wide JNDI Tree

Clients that connect to a WebLogic Server cluster and look up a clustered object obtain
a replica-aware stub for the object. This stub contains the list of available server
instances that host implementations of the object. The stub also contains the load
balancing logic for distributing the load among its host servers.

For more information about replica-aware stubs for E]Bs and RMI classes, see
Section 6.3, "Replication and Failover for E]Bs and RMIs."

For a more detailed discussion of how WebLogic JNDI is implemented in a clustered
environment and how to make your own objects available to JNDI clients, see "Using
WebLogic JNDI in a Clustered Environment" in Programming JNDI for Oracle WebLogic
Server

Communications In a Cluster 3-11

Cluster-Wide JNDI Naming Service

3-12 Using Clusters for Oracle WebLogic Server

4

Understanding Cluster Configuration

This following sections explain how the information that defines the configuration of a
cluster is stored and maintained, and the methods you can use to accomplish
configuration tasks:

» Section 4.1, "Cluster Configuration and config.xml"

m Section 4.2, "Role of the Administration Server"

= Section 4.3, "How Dynamic Configuration Works"

» Section 4.4, "Application Deployment for Clustered Configurations"

= Section 4.5, "Methods of Configuring Clusters"

Note: Much of the information in this section also pertains to the
process of configuring a WebLogic domain in which the server
instances are not clustered.

4.1 Cluster Configuration and config.xml

The config.xml file is an XML document that describes the configuration of a
WebLogic Server domain. config.xml consists of a series of XML elements. The
Domain element is the top-level element, and all elements in the Domain descend
from the Domain element. The Domain element includes child elements, such as the
Server, Cluster, and Application elements. These child elements may have children of
their own. For example, the Server element includes the child elements WebServer, SSL
and Log. The Application element includes the child elements EJBComponent and
WebAppComponent.

Each element has one or more configurable attributes. An attribute defined in
config.dtd has a corresponding attribute in the configuration API. For example, the
Server element has a ListenPort attribute, and likewise, the
weblogic.management.configuration.ServerMBean has a ListenPort
attribute. Configurable attributes are readable and writable, that is, ServerMBean has
agetListenPort and a setListenPort method.

To learn more about config.xml, see "Domain Configuration Files" in Understanding
Domain Configuration for Oracle WebLogic Server.

4.2 Role of the Administration Server

The Administration Server is the WebLogic Server instance that configures and
manages the WebLogic Server instances in its domain.

Understanding Cluster Configuration 4-1

Role of the Administration Server

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic
Server instances. Strictly speaking, a domain could consist of only one WebLogic
Server instance—however, in that case that sole server instance would be an
Administration Server, because each domain must have exactly one Administration
Server.

There are a variety of ways to invoke the services of the Administration Server to
accomplish configuration tasks, as described in Section 4.5, "Methods of Configuring
Clusters." Whichever method you use, the Administration Server for a cluster must be
running when you modify the configuration.

When the Administration Server starts, it loads the config.xml for the domain. It
looks for config.xml in the directory:

MW_HOME/user_projects/domains/domain_name/config

where domain_name is a domain-specific directory, with the same name as the
domain.

Each time the Administration Server starts successfully, a backup configuration file
named config.xml.bootedis created in the domain directory. In the unlikely event
that the config.xml file should be corrupted during the lifetime of the server
instance, it is possible to revert to this previous configuration.

Figure 4-1 shows a typical production environment that contains an Administration
Server and multiple WebLogic Servers instances. When you start the server instances
in such a domain, the Administration Server is started first. As each additional server
instance is started, it contacts the Administration Server for its configuration
information. In this way, the Administration Server operates as the central control
entity for the configuration of the entire domain.

4-2 Using Clusters for Oracle WebLogic Server

How Dynamic Configuration Works

Figure 4-1 WebLogic Server Configuration

i nfig.xml
1
1
Managed i_ _______
Server 1
Managed
Server 2 Administration
Server Cluster B

Managed
Server 5

Cluster A

Managed
Server 3

Managed
Server 6

Managed
Server 4

4.2.1 What Happens if the Administration Server Fails?

The failure of an Administration Server for a domain does not affect the operation of
Managed Servers in the domain. If an Administration Server for a domain becomes
unavailable while the server instances it manages—clustered or otherwise—are up
and running, those Managed Servers continue to run. If the domain contains clustered
server instances, the load balancing and failover capabilities supported by the domain
configuration remain available, even if the Administration Server fails.

Note: If an Administration Server fails because of a hardware or
software failure on its host machine, other server instances on the
same machine may be similarly affected. However, the failure of an
Administration Server itself does not interrupt the operation of
Managed Servers in the domain.

For instructions on re-starting an Administration Server, see "Avoiding and
Recovering from Server Failure" in Managing Server Startup and Shutdown for Oracle
WebLogic Server.

4.3 How Dynamic Configuration Works

WebLogic Server allows you to change the configuration attributes of domain
resources dynamically—while server instances are running. In most cases you do not
need to restart the server instance for your changes to take effect. When an attribute is

Understanding Cluster Configuration 4-3

Application Deployment for Clustered Configurations

reconfigured, the new value is immediately reflected in both the current run-time
value of the attribute and the persistent value stored in config.xml.

Not all configuration changes are applied dynamically. For example, if you change a
Managed Server's ListenPort value, the new port will not be used until the next
time you start the Managed Server. The updated value is stored in config.xml, but
the runtime value is not affected.

The Administration Console validates attribute changes, checking for out-of-range
errors and data type mismatch errors, and displays an error message for erroneous
entries.

Once the Administration Console has been started, if another process captures the

listen port assigned to the Administration Server, you should stop the process that
captured the port. If you are not able to remove the process that captured the listen
port, edit the config.xml file to change the ListenPort value.

4.4 Application Deployment for Clustered Configurations

This section is brief introduction to the application deployment process. For more
information about deployment, see Deploying Applications to Oracle WebLogic Server.

For instructions on how to perform common deployment tasks, see Section 10.2.15,
"Deploy Applications.”

4.4.1 Deployment Methods
You can deploy an application to a cluster using following methods:
= WebLogic Server Administration Console

The Administration Console is a graphical user interface (GUI) to the
Administration Service.

= weblogic.Deployer

The weblogic.Deployer utility is a Java-based deployment tool that provides a
command-line interface to the WebLogic Server deployment APL

s WebLogic Scripting Tool

The WebLogic Scripting Tool (WLST) is a command-line interface that you can use
to automate domain configuration tasks, including application deployment
configuration and deployment operations.

These deployment tools are discussed in "Deployment Tools" in Deploying Applications
to Oracle WebLogic Server.

Regardless of the deployment tool you use, when you initiate the deployment process
you specify the components to be deployed, and the targets to which they will be
deployed—your cluster, or individual server instances within the cluster or domain.

The Administration Server for the domain manages the deployment process,
communicating with the Managed Servers in the cluster throughout the process. Each
Managed Server downloads components to be deployed, and initiates local
deployment tasks. The deployment state is maintained in the relevant MBeans for the
component being deployed. For more information, see Deployment Management API.

4-4 Using Clusters for Oracle WebLogic Server

Application Deployment for Clustered Configurations

Note: You must package applications before you deploy them to
WebLogic Server. For more information, see the packaging topic in
"Deploying and Packaging from a Split Development Directory" in
Developing Applications for Oracle WebLogic Server.

4.4.2 Introduction to Two-Phase Deployment

In WebLogic Server, applications are deployed in two phases. Before starting,
WebLogic Server determines the availability of the Managed Servers in the cluster.

4.4.2.1 First Phase of Deployment

During the first phase of deployment, application components are distributed to the
target server instances, and the planned deployment is validated to ensure that the
application components can be successfully deployed. During this phase, user requests
to the application being deployed are not allowed.

Failures encountered during the distribution and validation process will result in the
deployment being aborted on all server instances—including those upon which the
validation succeeded. Files that have been staged will not be removed; however,
container-side changes performed during the preparation will be reverted.

4.4.2.2 Second Phase of Deployment

After the application components have been distributed to targets and validated, they
are fully deployed on the target server instances, and the deployed application is made
available to clients.

When a failure is encountered during the second phase of deployment, the server
starts with one of the following behaviors:

» If a failure occurs while deploying to the target server instances, the server
instance will start in ADMIN state. See "ADMIN State" in Managing Server Startup
and Shutdown for Oracle WebLogic Server.

» If cluster member fails to deploy an application, the application that failed to
deploy is made unavailable.

4.4.3 Guidelines for Deploying to a Cluster

Ideally, all Managed Servers in a cluster should be running and available during the
deployment process. Deploying applications while some members of the cluster are
unavailable is not recommended. Before deploying applications to a cluster, ensure, if
possible, that all Managed Servers in the cluster are running and reachable by the
Administration Server.

Understanding Cluster Configuration 4-5

Application Deployment for Clustered Configurations

Note: If you deploy an application to a Managed Server that is
partitioned at the time of deployment—running but not reachable by
the Administration Server—problems accessing the Managed Server
can occur when that Managed Server rejoins the cluster. During the
synchronization period, while other clustered Managed Servers
re-establish communications with the previously partitioned server
instance, user requests to the deployed applications and attempts to
create secondary sessions on that server instance will fail. The risk of
this circumstance occurring can be reduced by setting
ClusterConstraintsEnabled, as described in "Enforcing
Consistent Deployment to All Configured Cluster Members" in
Deploying Applications to Oracle WebLogic Server.

Cluster membership should not change during the deployment process. After
initiating deployment, do not:

= add or remove Managed Servers to the target cluster

= shut down Managed Servers in the target cluster

4.4.3.1 WebLogic Server Supports "Relaxed Deployment" Rules

Previous versions of WebLogic Server imposed these restrictions on deployment to
clusters:

= No partial deployment—If one or more of the Managed Servers in the cluster are
unavailable, the deployment process is terminated, and an error message is
generated, indicating that unreachable Managed Servers should be either restarted
or removed from the cluster before attempting deployment.

= Pinned services cannot be deployed to multiple Managed Servers in a cluster—If
an application is not deployed to the cluster, you can deploy it to one and only one
Managed Server in the cluster.

4.4.3.1.1 Deployment to a Partial Cluster is Allowed By default, WebLogic Server allows
deployment to a partial cluster. If one or more of the Managed Servers in the cluster
are unavailable, the following message may be displayed:

Unable to contact "servername". Deployment is deferred until "servername" becomes available.

When the unreachable Managed Server becomes available, deployment to that server
instance will be initiated. Until the deployment process is completed, the Managed
Server may experience failures related to missing or out-of-date classes.

4.4.3.1.2 Deploying to Complete Clusters in WebLogic Server You can ensure that
deployment is only performed if all Managed Servers in the cluster are reachable by
setting ClusterConstraintsEnabled. When ClusterConstraintsEnabledis
set to "true", a deployment to a cluster succeeds only if all members of the cluster are
reachable and all can deploy the specified files. See "Enforcing Consistent Deployment
to All Configured Cluster Members" in Deploying Applications to Oracle WebLogic Server.

4.4.3.1.3 Pinned Services can be Deployed to Multiple Managed Servers. It is possible to
target a pinned service to multiple Managed Servers in a cluster. This practice is not
recommended. The load-balancing capabilities and scalability of your cluster can be
negatively affected by deploying a pinned service to multiple Managed Servers in a
cluster. If you target a pinned service to multiple Managed Servers, the following
message is printed to the server logs:

4-6 Using Clusters for Oracle WebLogic Server

Methods of Configuring Clusters

Adding server servername of cluster clustername as a target for

module modulename. This module also includes server servername that
belongs to this cluster as one of its other targets. Having multiple
individual servers in a cluster as targets instead of having the entire
cluster as the target can result in non-optimal load balancing and
scalability. Hence this is not usually recommended.

4.5 Methods of Configuring Clusters

There are several methods for configuring a clusters:

Configuration Wizard

The Configuration Wizard is the recommended tool for creating a new domain or
cluster. See "Introduction” in Creating Domains Using the Configuration Wizard. See
"Select Optional Configuration" for information about creating and configuring a
cluster.

WebLogic Server Administration Console

The Administration Console is a graphical user interface (GUI) to the
Administration Service. It allows you to perform a variety of domain
configuration and monitoring functions.

WebLogic Server Application Programming Interface (API)

You can write a program to modify the configuration attributes, based on the
configuration application programming interface (API) provided with WebLogic
Server. This method is not recommended for initial cluster implementation.

WebLogic Scripting Tool (WLST)

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that
system administrators and operators use to monitor and manage WebLogic Server
instances and domains. For more information, see Oracle WebLogic Scripting Tool.

Java Management Extensions (JMX)

JMX is the Java EE solution for monitoring and managing resources on a network.
WebLogic Server provides a set of MBeans that you can use to configure, monitor,
and manage WebLogic Server resources through JMX.

Understanding Cluster Configuration 4-7

Methods of Configuring Clusters

4-8 Using Clusters for Oracle WebLogic Server

O

Load Balancing in a Cluster

This section describes the load balancing support that a WebLogic Server cluster
provides for different types of objects, and related planning and configuration
considerations for architects and administrators. It contains the following information:

» Section 5.1, "Load Balancing for Servlets and JSPs"

» Section 5.2, "Load Balancing for EJBs and RMI Objects"
= Section 5.3, "Load Balancing for J]MS"

= Section 5.4, "Load Balancing for JDBC Connections"

For information about replication and failover in a cluster, see Section 6, "Failover and
Replication in a Cluster."

5.1 Load Balancing for Servlets and JSPs

You can accomplish load balancing of servlets and JSPs with the built-in load
balancing capabilities of a WebLogic proxy plug-in or with separate load balancing
hardware.

Note: In addition to distributing HTTP traffic, external load
balancers can distribute initial context requests that come from Java
clients over t3 and the default channel. See Section 5.2, "Load
Balancing for EJBs and RMI Objects” for a discussion of object-level
load balancing in WebLogic Server.

5.1.1 Load Balancing with a Proxy Plug-in

The WebLogic proxy plug-in maintains a list of WebLogic Server instances that host a
clustered servlet or JSP, and forwards HTTP requests to those instances on a
round-robin basis. This load balancing method is described in Section 5.2.1,
"Round-Robin Load Balancing."

The plug-in also provides the logic necessary to locate the replica of a client's HTTP
session state if a WebLogic Server instance should fail.

WebLogic Server supports the following Web servers and associated proxy plug-ins:
= WebLogic Server with the Ht tpClusterServlet

= Netscape Enterprise Server with the Netscape (proxy) plug-in

= Apache with the Apache Server (proxy) plug-in

= Microsoft Internet Information Server with the Microsoft-1IS (proxy) plug-in

Load Balancing in a Cluster 5-1

Load Balancing for Servlets and JSPs

For instructions on setting up proxy plug-ins, see Section 10.2.9, "Configure Proxy
Plug-Ins."

5.1.1.1 How Session Connection and Failover Work with a Proxy Plug-in

For a description of connection and failover for HTTP sessions in a cluster with proxy
plug-ins, see Section 6.2.2, "Accessing Clustered Servlets and JSPs Using a Proxy."

5.1.2 Load Balancing HTTP Sessions with an External Load Balancer

Clusters that employ a hardware load balancing solution can use any load balancing
algorithm supported by the hardware. These can include advanced load-based
balancing strategies that monitor the utilization of individual machines.

5.1.2.1 Load Balancer Configuration Requirements

If you choose to use load balancing hardware instead of a proxy plug-in, it must
support a compatible passive or active cookie persistence mechanism, and SSL
persistence.

m Passive Cookie Persistence

Passive cookie persistence enables WebL0giC Server to write a cookie containing
session parameter information through the load balancer to the client. For
information about the session cookie and how a load balancer uses session
parameter data to maintain the relationship between the client and the primary
WebLogic Server hosting a HTTP session state, see Section 5.1.2.2, "Load
Balancers and the WebLogic Session Cookie.".

m Active Cookie Persistence

You can use certain active cookie persistence mechanisms with WebLogic Server
clusters, provided the load balancer does not modify the WebLogic Server cookie.
WebLogic Server clusters do not support active cookie persistence mechanisms
that overwrite or modify the WebLogic HTTP session cookie. If the load balancer's
active cookie persistence mechanism works by adding its own cookie to the client
session, no additional configuration is required to use the load balancer with a
WebLogic Server cluster.

m SSL Persistence

When SSL persistence is used, the load balancer performs all encryption and
decryption of data between clients and the WebLogic Server cluster. The load
balancer then uses the plain text cookie that WebLogic Server inserts on the client
to maintain an association between the client and a particular server in the cluster.

5.1.2.2 Load Balancers and the WebLogic Session Cookie

A load balancer that uses passive cookie persistence can use a string in the WebLogic
session cookie to associate a client with the server hosting its primary HTTP session
state. The string uniquely identifies a server instance in the cluster. You must configure
the load balancer with the offset and length of the string constant. The correct values
for the offset and length depend on the format of the session cookie.

The format of a session cookie is:

sessionid!primary_server_id!secondary_server_id

where:

5-2 Using Clusters for Oracle WebLogic Server

Load Balancing for EJBs and RMI Objects

s sessionidis arandomly generated identifier of the HTTP session. The length of
the value is configured by the IDLength parameter in the
<session-descriptor> element in the weblogic.xml file for an application.
By default, the sessionid length is 52 bytes.

m primary_server_idand secondary server_id are 10 character identifiers
of the primary and secondary hosts for the session.

Note: For sessions using non-replicated memory, cookie, JDBC, or
file-based session persistence, the secondary_server_idis not
present. For sessions that use in-memory replication, if the secondary
session does not exist, the secondary_server_idis "NONE".

For general instructions on configuring load balancers, see Section 10.2.8, "Configuring
Load Balancers that Support Passive Cookie Persistence." Instructions for configuring
BIG-IP, see Section B, "Configuring BIG-IP Hardware with Clusters."

5.1.2.3 Related Programming Considerations

For programming constraints and recommendations for clustered servlets and JSPs,
see Section 6.2.1.1.3, "Programming Considerations for Clustered Servlets and JSPs.".

5.1.2.4 How Session Connection and Failover Works with a Load Balancer

For a description of connection and failover for HTTP sessions in a cluster with load
balancing hardware, see Section 6.2.3, "Accessing Clustered Servlets and JSPs with
Load Balancing Hardware.".

5.2 Load Balancing for EJBs and RMI Objects

This section describes WebLogic Server load balancing algorithms for EJBs and RMI
objects.

The load balancing algorithm for an object is maintained in the replica-aware stub
obtained for a clustered object.

By default, WebLogic Server clusters use round-robin load balancing, described in
Section 5.2.1, "Round-Robin Load Balancing." You can configure a different default
load balancing method for a cluster by using the Administration Console to set
weblogic.cluster.defaultLoadAlgorithm. For instructions, see Section 10.2.5,
"Configure Load Balancing Method for EJBs and RMIs." You can also specify the load
balancing algorithm for a specific RMI object using the -1loadAlgorithm option in
rmic, or with the home-load-algorithmor stateless-bean-load-algorithm
in an E]B's deployment descriptor. A load balancing algorithm that you configure for
an object overrides the default load balancing algorithm for the cluster.

In addition to the standard load balancing algorithms, WebLogic Server supports
custom parameter-based routing. For more information, see Section 5.2.5,
"Parameter-Based Routing for Clustered Objects."

Also, external load balancers can distribute initial context requests that come from Java
clients over t3 and the default channel. However, because WebLogic Server load
balancing for E]Bs and RMI objects is controlled via replica-aware stubs, including
situations where server affinity is employed, you should not route client requests,
following the initial context request, through the load balancers. When using the t3
protocol with external load balancers, you must ensure that only the initial context

Load Balancing in a Cluster 5-3

Load Balancing for EJBs and RMI Objects

request is routed through the load balancers, and that subsequent requests are routed
and controlled using WebLogic Server load balancing.

Oracle advises against using the t 3s protocol with external load balancers. In cases
where the use of t3 and SSL with external load balancers is required, Oracle
recommends using t3 tunneling through HTTPS. In cases where server affinity is
required, you must use HI'TP session IDs for routing requests, and must terminate SSL
at the load balancer performing session-based routing to enable appropriate routing of
requests based on session IDs.

5.2.1 Round-Robin Load Balancing

WebLogic Server uses the round-robin algorithm as the default load balancing strategy
for clustered object stubs when no algorithm is specified. This algorithm is supported
for RMI objects and E]Bs. It is also the method used by WebLogic proxy plug-ins.

The round-robin algorithm cycles through a list of WebLogic Server instances in order.
For clustered objects, the server list consists of WebLogic Server instances that host the
clustered object. For proxy plug-ins, the list consists of all WebLogic Server instances
that host the clustered servlet or JSP.

The advantages of the round-robin algorithm are that it is simple, cheap and very
predictable. The primary disadvantage is that there is some chance of convoying.
Convoying occurs when one server is significantly slower than the others. Because
replica-aware stubs or proxy plug-ins access the servers in the same order, a slow
server can cause requests to "synchronize" on the server, then follow other servers in
order for future requests.

Note: WebLogic Server does not always load balance an object's
method calls. For more information, see Section 5.2.6, "Optimization
for Collocated Objects."

5.2.2 Weight-Based Load Balancing
This algorithm applies only to EJB and RMI object clustering.

Weight-based load balancing improves on the round-robin algorithm by taking into
account a pre-assigned weight for each server. You can use the Server > Configuration
> Cluster page in the Administration Console to assign each server in the cluster a
numerical weight between 1 and 100, in the Cluster Weight field. This value
determines what proportion of the load the server will bear relative to other servers. If
all servers have the same weight, they will each bear an equal proportion of the load. If
one server has weight 50 and all other servers have weight 100, the 50-weight server
will bear half as much as any other server. This algorithm makes it possible to apply
the advantages of the round-robin algorithm to clusters that are not homogeneous.

If you use the weight-based algorithm, carefully determine the relative weights to
assign to each server instance. Factors to consider include:

= The processing capacity of the server's hardware in relationship to other servers
(for example, the number and performance of CPUs dedicated to WebLogic
Server).

s The number of non-clustered ("pinned") objects each server hosts.

If you change the specified weight of a server and reboot it, the new weighting
information is propagated throughout the cluster via the replica-aware stubs. For
related information see Section 3.2, "Cluster-Wide JNDI Naming Service."

5-4 Using Clusters for Oracle WebLogic Server

Load Balancing for EJBs and RMI Objects

Note: WebLogic Server does not always load balance an object's
method calls. For more information, see Section 5.2.6, "Optimization
for Collocated Objects."

In this version of WebLogic Server, weight-based load balancing is not
supported for objects that communicate using the RMI/IIOP protocol.

5.2.3 Random Load Balancing
The random method of load balancing applies only to EJB and RMI object clustering.

In random load balancing, requests are routed to servers at random. Random load
balancing is recommended only for homogeneous cluster deployments, where each
server instance runs on a similarly configured machine. A random allocation of
requests does not allow for differences in processing power among the machines upon
which server instances run. If a machine hosting servers in a cluster has significantly
less processing power than other machines in the cluster, random load balancing will
give the less powerful machine as many requests as it gives more powerful machines.

Random load balancing distributes requests evenly across server instances in the
cluster, increasingly so as the cumulative number of requests increases. Over a small
number of requests the load may not be balanced exactly evenly.

Disadvantages of random load balancing include the slight processing overhead
incurred by generating a random number for each request, and the possibility that the
load may not be evenly balanced over a small number of requests.

Note: WebLogic Server does not always load balance an object's
method calls. For more information, see Section 5.2.6, "Optimization
for Collocated Objects."

5.2.4 Server Affinity Load Balancing Algorithms

WebLogic Server provides three load balancing algorithms for RMI objects that
provide server affinity. Server affinity turns off load balancing for external client
connections; instead, the client considers its existing connections to WebLogic Server
instances when choosing the server instance on which to access an object. If an object is
configured for server affinity, the client-side stub attempts to choose a server instance
to which it is already connected, and continues to use the same server instance for
method calls. All stubs on that client attempt to use that server instance. If the server
instance becomes unavailable, the stubs fail over, if possible, to a server instance to
which the client is already connected.

The purpose of server affinity is to minimize the number IP sockets opened between
external Java clients and server instances in a cluster. WebLogic Server accomplishes
this by causing method calls on objects to "stick” to an existing connection, instead of
being load balanced among the available server instances. With server affinity
algorithms, the less costly server-to-server connections are still load-balanced
according to the configured load balancing algorithm—Iload balancing is disabled only
for external client connections.

Server affinity is used in combination with one of the standard load balancing
methods: round-robin, weight-based, or random:

= round-robin-affinity—server affinity governs connections between external Java
clients and server instances; round-robin load balancing is used for connections
between server instances.

Load Balancing in a Cluster 5-5

Load Balancing for EJBs and RMI Objects

= weight-based-affinity—server affinity governs connections between external Java
clients and server instances; weight-based load balancing is used for connections
between server instances.

= random-affinity—server affinity governs connections between external Java clients
and server instances; random load balancing is used for connections between
server instances.

5.2.4.1 Server Affinity and Initial Context

A client can request an initial context from a particular server instance in the cluster, or
from the cluster by specifying the cluster address in the URL. The connection process
varies, depending on how the context is obtained:

s If the initial context is requested from a specific Managed Server, the context is
obtained using a new connection to the specified server instance.

s If the initial context is requested from a cluster, by default, context requests are
load balanced on a round-robin basis among the clustered server instances. To
reuse an existing connection between a particular JVM and the cluster, set
ENABLE_SERVER_AFFINITY to true in the hash table of
weblogic.jndi.WLContext properties you specify when obtaining context. (If
a connection is not available, a new connection is created.) ENABLE_SERVER__
AFFINITY is only supported when the context is requested from the cluster
address.

5.2.4.2 Server Affinity and IIOP Client Authentication Using CSlv2

If you use WebLogic Server Common Secure Interoperability (CSIv2) functionality to
support stateful interactions with the WebLogic Server Java EE Application Client
("thin client"), you must use an affinity-based load balancing algorithm to ensure that
method calls stick to a server instance. Otherwise, all remote calls will be
authenticated. To prevent redundant authentication of stateful CSIv2 clients, use one
of the load balancing algorithms described in Section 5.2.4.3, "Round-Robin Affinity,
Weight-Based Affinity, and Random-Affinity."

5.2.4.3 Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity

WebLogic Server has three load balancing algorithms that provide server affinity:
= round-robin-affinity

= weight-based-affinity

» random-affinity

Server affinity is supported for all types of RMI objects including JMS objects, all EJB
home interfaces, and stateless E]B remote interfaces.

The server affinity algorithms consider existing connections between an external Java
client and server instances in balancing the client load among WebLogic Server
instances. Server affinity:

s Turns off load balancing between external Java clients and server instances

s Causes method calls from an external Java client to stick to a server instance to
which the client has an open connection, assuming that the connection supports
the necessary protocol and QOS

s In the case of failure, causes the client to failover to a server instance to which it
has an open connection, assuming that the connection supports the necessary
protocol and QOS

5-6 Using Clusters for Oracle WebLogic Server

Load Balancing for EJBs and RMI Objects

= Does not affect the load balancing performed for server-to-server connections

5.2.4.3.1 Server Affinity Examples The following examples illustrate the effect of server
affinity under a variety of circumstances. In each example, the objects deployed are
configured for round-robin-affinity.

Example 1—Context From Cluster

In the example shown in Figure 5-1, the client obtains context from the cluster.
Lookups on the context and object calls stick to a single connection. Requests for new
initial context are load balanced on a round-robin basis.

Figure 5-1 Client Obtains Context From the Cluster

NewlC (clusteraddress)

MS1
IClookup A~ Ebiects
B
Callson A= =
Ms2
Objects
/ A
B
IC lookup B
Calls on B
MS3
Objects
A
B
C
Iload algorithm:

round-robin-affinity

1. Client requests a new initial context from the cluster (Provider_
URL=clusteraddress) and obtains the context from MSI.

2. Client does a lookup on the context for Object A. The lookup goes to MS1.

3. Client issues a call to Object A. The call goes to MS1, to which the client is already
connected. Additional method calls to Object A stick to MS1.

4. Client requests a new initial context from the cluster (Provider_
URL=clusteraddress) and obtains the context from MS2.

5. Client does a lookup on the context for Object B. The call goes to MS2, to which the
client is already connected. Additional method calls to Object B stick to MS2.

Example 2—Server Affinity and Failover

The example shown in Figure 5-2 illustrates the effect that server affinity has on object
failover. When a Managed Server goes down, the client fails over to another Managed
Server to which it has a connection.

Load Balancing in a Cluster 5-7

Load Balancing for EJBs and RMI Objects

Figure 5-2 Server Affinity and Failover

NewlC (M51)
MS1
IC.lookup A
Objects
Calls on A A
B
Client
Stub A IC.lookup C
Stub C M32
Ohjects
A
B
Callson C
“[ms3
Calls on A Objects
___),r A
B
C

load algarithm:

round-robin-affinity

1. Client requests new initial context from MS1.
2. Client does a lookup on the context for Object A. The lookup goes to MS1.
3. Client makes a call to Object A. The call goes to MS1, to which the client is already

Calls on A fail
after MS1 fails

Clignt fails over
to replica of
Object A on
MS3 after MST
fails

connected. Additional calls to Object A stick to MS1.

4. The client obtains a stub for Object C, which is pinned to MS3. The client opens a

connection to MS3.

5. MSI fails.

6. Client makes a call to Object A.The client no longer has a connection to MS1.
Because the client is connected to MS3, it fails over to a replica of Object A on MS3.

Example 3—Server affinity and server-to-server connections

The example shown in Figure 5-3 illustrates the fact that server affinity does not affect

the connections between server instances.

5-8 Using Clusters for Oracle WebLogic Server

Load Balancing for EJBs and RMI Objects

Figure 5-3 Server Affinity and Server-to-Server Connections

MS1
Objects
A
Ty B
MS4
Untrusted
firewall \\ JSP MS2
Stub B Eb'ws
B
M
MS3
Objects
A
B
c
load algorithm:

round-rabin-affinity

1. A JSP on M54 obtains a stub for Object B.

2. The JSP selects a replica on MS1. For each method call, the JSP cycles through the
Managed Servers upon which Object B is available, on a round-robin basis.

5.2.5 Parameter-Based Routing for Clustered Objects

Parameter-based routing allows you to control load balancing behavior at a lower
level. Any clustered object can be assigned a CallRouter. This is a class that is called
before each invocation with the parameters of the call. The CallRouter is free to
examine the parameters and return the name server to which the call should be routed.
For information about creating custom CallRouter classes, see "Parameter-Based
Routing for Clustered Objects" in Programming RMI for Oracle WebLogic Server.

5.2.6 Optimization for Collocated Objects

WebLogic Server does not always load balance an object's method calls. In most cases,
it is more efficient to use a replica that is collocated with the stub itself, rather than
using a replica that resides on a remote server. Figure 5-4 illustrates this.

Load Balancing in a Cluster 5-9

Load Balancing for EJBs and RMI Objects

Figure 5-4 Collocation Optimization Overrides Load Balancer Logic for Method Call

TN
/ Serviet |Objects
Client |
N / Stub —g
C

Serviet |Objects

A
B
c

In this example, a client connects to a servlet hosted by the first WebLogic Server
instance in the cluster. In response to client activity, the servlet obtains a replica-aware
stub for Object A. Because a replica of Object A is also available on the same server
instance, the object is said to be collocated with the client's stub.

WebLogic Server always uses the local, collocated copy of Object A, rather than
distributing the client's calls to other replicas of Object A in the cluster. It is more
efficient to use the local copy, because doing so avoids the network overhead of
establishing peer connections to other servers in the cluster.

This optimization is often overlooked when planning WebLogic Server clusters. The
collocation optimization is also frequently confusing for administrators or developers
who expect or require load balancing on each method call. If your Web application is
deployed to a single cluster, the collocation optimization overrides any load balancing
logic inherent in the replica-aware stub.

If you require load balancing on each method call to a clustered object, see Section 9.3,
"Recommended Multi-Tier Architecture,” for information about how to plan your
WebLogic Server cluster accordingly.

5.2.6.1 Transactional Collocation

As an extension to the basic collocation strategy, WebLogic Server attempts to use
collocated clustered objects that are enlisted as part of the same transaction. When a
client creates a UserTransaction object, WebLogic Server attempts to use object
replicas that are collocated with the transaction. This optimization is depicted in the
example shown in Figure 5-5.

5-10 Using Clusters for Oracle WebLogic Server

Load Balancing for JMS

Figure 5-5 Collocation Optimization Extends to Other Objects in Transaction

<N
! Client '—— ! Serviet Objects
, / | A

— User -~ B

Transaction C

Serviet Objects’ | P Database
A
B
c

Serviet Objects —

A
B
c

In this example, a client attaches to the first WebLogic Server instance in the cluster
and obtains a UserTransaction object. After beginning a new transaction, the client
looks up Objects A and B to do the work of the transaction. In this situation WebLogic
Server always attempts to use replicas of A and B that reside on the same server as the
UserTransaction object, regardless of the load balancing strategies in the stubs for
A and B.

This transactional collocation strategy is even more important than the basic
optimization described in Section 5.2.6, "Optimization for Collocated Objects." If
remote replicas of A and B were used, added network overhead would be incurred for
the duration of the transaction, because the peer connections for A and B would be
locked until the transaction committed. Furthermore, WebLogic Server would need to
employ a multi-tiered JDBC connection to commit the transaction, incurring additional
network overhead.

By using collocating clustered objects during a transaction, WebLogic Server reduces
the network load for accessing the individual objects. The server also can make use of
a single-tiered JDBC connection, rather than a multi-tiered connection, to do the work
of the transaction.

5.3 Load Balancing for JMS

WebLogic Server JMS supports server affinity for distributed JMS destinations and
client connections.

By default, a WebLogic Server cluster uses the round-robin method to load balance
objects. To use a load balancing algorithm that provides server affinity for JMS objects,
you must configure the desired method for the cluster as a whole. You can configure
the load balancing algorithm by using the Administration Console to set
weblogic.cluster.defaultLoadAlgorithm. For instructions, see Section 10.2.5,
"Configure Load Balancing Method for EJBs and RMIs."

Load Balancing in a Cluster 5-11

Load Balancing for IMS

Note: To provide persistent store for failover of J]MS and JTA pinned
services, you might consider using high-availability clustering
software such as VERITAS Cluster Server, which provides an
integrated, out-of-the-box solution for WebLogic Server based
applications. Some other recommended high-availability software
solutions include SunCluster, IBM HACMP, or the equivalent.

5.3.1 Server Affinity for Distributed JMS Destinations

Server affinity is supported for JMS applications that use the distributed destination
feature; this feature is not supported for standalone destinations. If you configure
server affinity for JMS connection factories, a server instance that is load balancing
consumers or producers across multiple members of a distributed destination will first
attempt to load balance across any destination members that are also running on the
same server instance.

For detailed information on how the JMS connection factory's Server Affinity Enabled
option affects the load balancing preferences for distributed destination members, see
"How Distributed Destination Load Balancing Is Affected When Using the Server
Affinity Enabled Attribute" in Configuring and Managing [MS for Oracle WebLogic Server.

5.3.2 Initial Context Affinity and Server Affinity for Client Connections

A system administrator can establish load balancing of JMS destinations across
multiple servers in a cluster by configuring multiple JMS servers and using targets to
assign them to the defined WebLogic Servers. Each JMS server is deployed on exactly
one WebLogic Server and handles requests for a set of destinations. During the
configuration phase, the system administrator enables load balancing by specifying
targets for JMS servers. For instructions on setting up targets, see Section 10.2.11,
"Configure Migratable Targets for Pinned Services." For instructions on deploying a
JMS server to a migratable target, see Section 10.2.16, "Deploying, Activating, and
Migrating Migratable Services."

A system administrator can establish cluster-wide, transparent access to destinations
from any server in the cluster by configuring multiple connection factories and using
targets to assign them to WebLogic Servers. Each connection factory can be deployed
on multiple WebLogic Servers. Connection factories are described in more detail in
"ConnectionFactory" in Programming JMS for Oracle WebLogic Server.

The application uses the Java Naming and Directory Interface (JNDI) to look up a
connection factory and create a connection to establish communication with a JMS
server. Each JMS server handles requests for a set of destinations. Requests for
destinations not handled by a JMS server are forwarded to the appropriate server.

WebLogic Server provides server affinity for client connections. If an application has a
connection to a given server instance, JMS will attempt to establish new JMS
connections to the same server instance.

When creating a connection, J]MS will try first to achieve initial context affinity. It will
attempt to connect to the same server or servers to which a client connected for its
initial context, assuming that the server instance is configured for that connection
factory. For example, if the connection factory is configured for servers A and B, but
the client has an InitialContext on server C, then the connection factory will not
establish the new connection with A, but will choose between servers B and C.

If a connection factory cannot achieve initial context affinity, it will try to provide
affinity to a server to which the client is already connected. For instance, assume the

5-12 Using Clusters for Oracle WebLogic Server

Load Balancing for JDBC Connections

client has an InitialContext on server A and some other type of connection to server B.
If the client then uses a connection factory configured for servers B and C it will not
achieve initial context affinity. The connection factory will instead attempt to achieve
server affinity by trying to create a connection to server B, to which it already has a
connection, rather than server C.

If a connection factory cannot provide either initial context affinity or server affinity,
then the connection factory is free to make a connection wherever possible. For
instance, assume a client has an initial context on server A, no other connections and a
connection factory configured for servers B and C. The connection factory is unable to
provide any affinity and is free to attempt new connections to either server B or C.

Note: In the last case, if the client attempts to make a second
connection using the same connection factory, it will go to the same
server as it did on the first attempt. That is, if it chose server B for the
first connection, when the second connection is made, the client will
have a connection to server B and the server affinity rule will be
enforced.

5.4 Load Balancing for JDBC Connections

Load balancing of JDBC connection requires the use of a multi data source configured
for load balancing. Load balancing support is an option you can choose when
configuring a multi data source.

A load balancing multi data source provides the high available behavior described in
Section 6.4, "Failover and JDBC Connections" and, in addition, balances the load
among the data sources in the multi data source. A multi data source has an ordered
list of data sources it contains. If you do not configure the multi data source for load
balancing, it always attempts to obtain a connection from the first data source in the
list. In a load-balancing multi data source, the data sources it contains are accessed
using a round-robin scheme. In each successive client request for a multi data source
connection, the list is rotated so the first pool tapped cycles around the list.

For instructions on clustering JDBC objects, see Section 10.2.12, "Configure Clustered
JDBC."

Load Balancing in a Cluster 5-13

Load Balancing for JDBC Connections

5-14 Using Clusters for Oracle WebLogic Server

6

Failover and Replication in a Cluster

In order for a cluster to provide high availability it must be able to recover from
service failures. The following sections describe how WebLogic Server detects failures
in a cluster, and provides an overview of how failover is accomplished for different
types of objects:

» Section 6.1, "How WebLogic Server Detects Failures"

= Section 6.2, "Replication and Failover for Servlets and JSPs"
= Section 6.3, "Replication and Failover for E]Bs and RMIs"

= Section 6.4, "Failover and JDBC Connections"

This chapter focuses on failover and replication at the application level. WebLogic
Server also supports automatic migration of server instances and services after failure.
For more information, see Chapter 7, "Whole Server Migration."

6.1 How WebLogic Server Detects Failures

WebLogic Server instances in a cluster detect failures of their peer server instances by
monitoring:

= Socket connections to a peer server

= Regular server heartbeat messages

6.1.1 Failure Detection Using IP Sockets

WebLogic Server instances monitor the use of IP sockets between peer server instances
as an immediate method of detecting failures. If a server connects to one of its peers in
a cluster and begins transmitting data over a socket, an unexpected closure of that
socket causes the peer server to be marked as "failed,"” and its associated services are
removed from the JNDI naming tree.

6.1.2 The WebLogic Server "Heartbeat"

If clustered server instances do not have opened sockets for peer-to-peer
communication, failed servers may also be detected via the WebLogic Server
heartbeat. All server instances in a cluster use multicast or unicast to broadcast regular
server heartbeat messages to other members of the cluster.

Note: For backward compatibility with previous versions, WebLogic
Server also allows you to use multicast for communications between
clusters.

Failover and Replication in a Cluster 6-1

Replication and Failover for Servlets and JSPs

Each heartbeat message contains data that uniquely identifies the server that sends the
message. Servers broadcast their heartbeat messages at regular intervals of 10 seconds.
In turn, each server in a cluster monitors the multicast or unicast address to ensure
that all peer servers' heartbeat messages are being sent.

Note: For backward compatibility with previous versions, WebLogic
Server also allows you to use multicast for communications between
clusters.

If a server monitoring the multicast or unicast address misses three heartbeats from a
peer server (for example, if it does not receive a heartbeat from the server for 30
seconds or longer), the monitoring server marks the peer server as "failed." It then
updates its local JNDI tree, if necessary, to retract the services that were hosted on the
failed server.

In this way, servers can detect failures even if they have no sockets open for
peer-to-peer communication.

Note: For more information about how WebLogic Server uses IP
sockets and either multicast or unicast communications see
Section 3.1, "WebLogic Server Communication In a Cluster."

6.2 Replication and Failover for Servlets and JSPs

To support automatic replication and failover for servlets and JSPs within a cluster,
Weblogic Server supports two mechanisms for preserving HTTP session state:

s Hardware load balancers

For clusters that use a supported hardware load balancing solution, the load
balancing hardware simply redirects client requests to any available server in the
WebLogic Server cluster. The cluster itself obtains the replica of the client's HTTP
session state from a secondary server in the cluster.

= Proxy plug-ins

In clusters that utilize Web servers with WebLogic proxy plug-ins, the proxy
plug-in handles failover transparently to the client. If a server fails, the plug-in
locates the replicated HTTP session state on a secondary server and redirects the
client's request accordingly.

This section covers the following topics:
» Section 6.2.1, "HTTP Session State Replication"
= Section 6.2.2, "Accessing Clustered Servlets and JSPs Using a Proxy"

= Section 6.2.3, "Accessing Clustered Servlets and JSPs with Load Balancing
Hardware"

= Section 6.2.4, "Session State Replication Across Clusters in a MAN/WAN"

6.2.1 HTTP Session State Replication

WebLogic Server uses two methods for replicating HTTP session state across clusters:

s In-memory replication

6-2 Using Clusters for Oracle WebLogic Server

Replication and Failover for Servlets and JSPs

Using in-memory replication, WebLogic Server copies a session state from one
server instance to another. The primary server creates a primary session state on
the server to which the client first connects, and a secondary replica on another
WebLogic Server instance in the cluster. The replica is kept up-to-date so that it
may be used if the server that hosts the servlet fails.

s JDBC-based persistence

In JDBC-based persistence, WebLogic Server maintains the HTTP session state of a
servlet or JSP using file-based or JDBC-based persistence. For more information on
these persistence mechanisms, see "Configuring Session Persistence" in Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

JDBC-based persistence is also used for HTTP session state replication within a
Wide Area Network (WAN). For more information, see Section 6.2.4.6, "WAN
HTTP Session State Replication."

Note: Web applications which have persistent store type set to
replicatedorreplicated_if_clustered will have to be
targeted to the cluster or all the nodes of that cluster. If it is targeted to
only some nodes in the cluster, the Web application will not be
deployed. In-memory replication requires that Web applications be
deployed homogeneously on all the nodes in a cluster.

s Coherence*Web

You can use Coherence*Web for session replication. Coherence*Web is not a
replacement for WebLogic Server's in-memory HTTP state replication services.
However, you should consider using Coherence*Web when an application has
large HTTP session state objects, when running into memory constraints due to
storing HTTP session object data, or if you have an existing Coherence cluster and
want to off-load HTTP session state to it

For more information, see User’s Guide for Oracle Coherence*Web.

The following section describe session state replication using in-memory replication.

6.2.1.1 Requirements for HTTP Session State Replication

To use in-memory replication for HTTP session states, you must access the WebLogic
Server cluster using either a collection of Web servers with identically configured
WebLogic proxy plug-ins, or load balancing hardware.

6.2.1.1.1 Supported Server and Proxy Software The WebLogic proxy plug-in maintains a
list of WebLogic Server instances that host a clustered servlet or JSP, and forwards
HTTP requests to those instances using a round-robin strategy. The plug-in also
provides the logic necessary to locate the replica of a client's HTTP session state if a
WebLogic Server instance should fail.

In-memory replication for HTTP session states is supported by the following Web
servers and proxy software:

s WebLogic Server with the HttpClusterServlet
= Apache with the Apache Server (proxy) plug-in
= Microsoft Internet Information Server with the Microsoft-1IS (proxy) plug-in

For instructions on setting up proxy plug-ins, see Section 10.2.9, "Configure Proxy
Plug-Ins."

Failover and Replication in a Cluster 6-3

Replication and Failover for Servlets and JSPs

6.2.1.1.2 Load Balancer Requirements If you choose to use load balancing hardware
instead of a proxy plug-in, it must support a compatible passive or active cookie
persistence mechanism, and SSL persistence. For details on these requirements, see
Section 5.1.2.1, "Load Balancer Configuration Requirements." For instructions on
setting up a load balancer, see Section 10.2.8, "Configuring Load Balancers that
Support Passive Cookie Persistence."

6.2.1.1.3 Programming Considerations for Clustered Servlets and JSPs This section
highlights key programming constraints and recommendations for servlets and JSPs
that you will deploy in a clustered environment.

m Session Data Must Be Serializable

To support in-memory replication of HTTP session states, all servlet and JSP
session data must be serializable.

Note: Serialization is the process of converting a complex data
structure, such as a parallel arrangement of data (in which a number
of bits are transmitted at a time along parallel channels) into a serial
form (in which one bit at a time is transmitted); a serial interface
provides this conversion to enable data transmission.

Every field in an object must be serializable or transient in order for the object to
be considered serializable. If the servlet or JSP uses a combination of serializable
and non-serializable objects, WebLogic Server does not replicate the session state
of the non-serializable objects.

s Use setAttribute to Change Session State

In an HTTP servlet that implements javax.servlet.http.HttpSession, use
HttpSession.setAttribute (which replaces the deprecated putvalue) to
change attributes in a session object. If you set attributes in a session object with
setAttribute, the object and its attributes are replicated in a cluster using
in-memory replication. If you use other set methods to change objects within a
session, WebLogic Server does not replicate those changes. Every time a change is
made to an object that is in the session, setAttribute () should be called to
update that object across the cluster.

Likewise, use removeAttribute (which, in turn, replaces the deprecated
removeValue) to remove an attribute from a session object.

Note: Use of the deprecated putvalue and removevalue methods
will also cause session attributes to be replicated.

s Consider Serialization Overhead

Serializing session data introduces some overhead for replicating the session state.
The overhead increases as the size of serialized objects grows. If you plan to create
very large objects in the session, test the performance of your servlets to ensure
that performance is acceptable.

s Control Frame Access to Session Data

If you are designing a Web application that utilizes multiple frames, keep in mind
that there is no synchronization of requests made by frames in a given frameset.
For example, it is possible for multiple frames in a frameset to create multiple

6-4 Using Clusters for Oracle WebLogic Server

Replication and Failover for Servlets and JSPs

sessions on behalf of the client application, even though the client should logically
create only a single session.

In a clustered environment, poor coordination of frame requests can cause
unexpected application behavior. For example, multiple frame requests can "reset"
the application's association with a clustered instance, because the proxy plug-in
treats each request independently. It is also possible for an application to corrupt
session data by modifying the same session attribute via multiple frames in a
frameset.

To avoid unexpected application behavior, carefully plan how you access session
data with frames. You can apply one of the following general rules to avoid
common problems:

- Inagiven frameset, ensure that only one frame creates and modifies session
data.

— Always create the session in a frame of the first frameset your application uses
(for example, create the session in the first HTML page that is visited). After
the session has been created, access the session data only in framesets other
than the first frameset.

6.2.1.2 Using Replication Groups

By default, WebLogic Server attempts to create session state replicas on a different
machine than the one that hosts the primary session state. You can further control
where secondary states are placed using replication groups. A replication group is a
preferred list of clustered servers to be used for storing session state replicas.

Using the WebLogic Server Administration Console, you can define unique machine
names that will host individual server instances. These machine names can be
associated with new WebLogic Server instances to identify where the servers reside in
your system.

Machine names are generally used to indicate servers that run on the same machine.
For example, you would assign the same machine name to all server instances that run
on the same machine, or the same server hardware.

If you do not run multiple WebLogic Server instances on a single machine, you do not
need to specify WebLogic Server machine names. Servers without a machine name are
treated as though they reside on separate machines. For detailed instructions on
setting machine names, see Section 10.2.18.5, "Configure Machine Names."

When you configure a clustered server instance, you can assign the server to a
replication group, and a preferred secondary replication group for hosting replicas of
the primary HTTP session states created on the server.

When a client attaches to a server in the cluster and creates a primary session state, the
server hosting the primary state ranks other servers in the cluster to determine which
server should host the secondary. Server ranks are assigned using a combination of the
server's location (whether or not it resides on the same machine as the primary server)
and its participation in the primary server's preferred replication group. Table 6-1
shows the relative ranking of servers in a cluster.

Table 6—-1 Ranking Server Instances for Session Replication

Server Resides on Server is a Member of
Server Rank a Different Machine Preferred Replication Group

1 Yes Yes
2 No Yes

Failover and Replication in a Cluster 6-5

Replication and Failover for Servlets and JSPs

Table 6—-1 (Cont.) Ranking Server Instances for Session Replication

Server Resides on Server is a Member of
Server Rank a Different Machine Preferred Replication Group

3 Yes No
4 No No

Using these rules, the primary WebLogic Server ranks other members of the cluster
and chooses the highest-ranked server to host the secondary session state. For
example, Figure 61 shows replication groups configured for different geographic
locations.

Figure 6—1 Replication Groups for Different Geographic Locations

Headquarters Crosstown

r—— - — = " r—— — — — = 1
| sardina | | |
I I I I
| A I X |
| I I I
| I I I
| I I I
I B I I N I
| I I I
I I I I
| C I I z I
I I I I
b —_— —_ —_ —_ — J L —_ — —_ —_ — -

In this example, Servers A, B, and C are members of the replication group
"Headquarters" and use the preferred secondary replication group "Crosstown."
Conversely, Servers X, Y, and Z are members of the "Crosstown" group and use the
preferred secondary replication group "Headquarters." Servers A, B, and X reside on
the same machine, "sardina.”

If a client connects to Server A and creates an HTTP session state,

s Servers Y and Z are most likely to host the replica of this state, since they reside on
separate machines and are members of Server A's preferred secondary group.

= Server X holds the next-highest ranking because it is also a member of the
preferred replication group (even though it resides on the same machine as the
primary.)

= Server C holds the third-highest ranking since it resides on a separate machine but
is not a member of the preferred secondary group.

= Server B holds the lowest ranking, because it resides on the same machine as
Server A (and could potentially fail along with A if there is a hardware failure) and
it is not a member of the preferred secondary group.

To configure a server's membership in a replication group, or to assign a server's
preferred secondary replication group, follow the instructions in Section 10.2.10,
"Configure Replication Groups."

6-6 Using Clusters for Oracle WebLogic Server

Replication and Failover for Servlets and JSPs

6.2.2 Accessing Clustered Servlets and JSPs Using a Proxy

This section describes the connection and failover processes for requests that are
proxied to clustered servlets and JSPs. For instructions on setting up proxy plug-ins,
see Section 10.2.9, "Configure Proxy Plug-Ins."

Figure 6-2 depicts a client accessing a servlet hosted in a cluster. This example uses a
single WebLogic Server instance to serve static HI'TP requests only; all servlet requests
are forwarded to the WebLogic Server cluster via the HttpClusterServlet.

Figure 6-2 Accessing Servlets and JSPs using a Proxy

HTTP .
JSP ‘bjects
Servist ;8
/8
Stub
WebLogic Server
Cluster
A
Serviet
Primary State
— : B
- A HTTP Server
[g I Serviet
C:Ilem:f Secondary
R State
—
HttpClusterServiet
Cookie c
Primary: A Berviet

Secondary: B

Note: The discussion that follows also applies if you use a
third-party Web server and WebLogic proxy plug-in, rather than
WebLogic Server and the HttpClusterServlet.

6.2.2.1 Proxy Connection Procedure

When the HTTP client requests the servlet, Ht tpClusterServlet proxies the
request to the WebLogic Server cluster. Ht tpClusterServlet maintains the list of
all servers in the cluster, and the load balancing logic to use when accessing the cluster.
In the above example, HttpClusterServlet routes the client request to the servlet
hosted on WebLogic Server A. WebLogic Server A becomes the primary server hosting
the client's servlet session.

Failover and Replication in a Cluster 6-7

Replication and Failover for Servlets and JSPs

To provide failover services for the servlet, the primary server replicates the client's
servlet session state to a secondary WebLogic Server in the cluster. This ensures that a
replica of the session state exists even if the primary server fails (for example, due to a
network failure). In the example above, Server B is selected as the secondary.

The servlet page is returned to the client through the Ht tpClusterServlet, and the
client browser is instructed to write a cookie that lists the primary and secondary
locations of the servlet session state. If the client browser does not support cookies,
WebLogic Server can use URL rewriting instead.

6.2.2.1.1 Using URL Rewriting to Track Session Replicas In its default configuration,
WebLogic Server uses client-side cookies to keep track of the primary and secondary
server that host the client's servlet session state. If client browsers have disabled cookie
usage, WebLogic Server can also keep track of primary and secondary servers using
URL rewriting. With URL rewriting, both locations of the client session state are
embedded into the URLs passed between the client and proxy server. To support this
feature, you must ensure that URL rewriting is enabled on the WebLogic Server
cluster. For instructions on how to enable URL rewriting, see "Using URL Rewriting
Instead of Cookies" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server.

6.2.2.2 Proxy Failover Procedure

Should the primary server fail, Ht tpClusterServlet uses the client's cookie
information to determine the location of the secondary WebLogic Server that hosts the
replica of the session state. Ht tpClusterServlet automatically redirects the client's
next HTTP request to the secondary server, and failover is transparent to the client.

After the failure, WebLogic Server B becomes the primary server hosting the servlet
session state, and a new secondary is created (Server C in the previous example). In
the HTTP response, the proxy updates the client's cookie to reflect the new primary
and secondary servers, to account for the possibility of subsequent failovers.

Note: Now WebLogic proxy plug-ins randomly pick up a secondary
server after the failover.

In a two-server cluster, the client would transparently fail over to the server hosting
the secondary session state. However, replication of the client's session state would not
continue unless another WebLogic Server became available and joined the cluster. For
example, if the original primary server was restarted or reconnected to the network, it
would be used to host the secondary session state.

6.2.3 Accessing Clustered Servlets and JSPs with Load Balancing Hardware

To support direct client access via load balancing hardware, the WebLogic Server
replication system allows clients to use secondary session states regardless of the
server to which the client fails over. WebLogic Server uses client-side cookies or URL
rewriting to record primary and secondary server locations. However, this information
is used only as a history of the servlet session state location; when accessing a cluster
via load balancing hardware, clients do not use the cookie information to actively
locate a server after a failure.

The following sections describe the connection and failover procedure when using
HTTP session state replication with load balancing hardware.

6-8 Using Clusters for Oracle WebLogic Server

Replication and Failover for Servlets and JSPs

6.2.3.1 Connection with Load Balancing Hardware
Figure 6-3 illustrates the connection procedure for a client accessing a cluster through
a load balancer.

Figure 6—-3 Connection with Load Balancing Hardware

HTTP .
JSP ‘bjects

A
Ser'lufl et/ E
Stub

WebLogic Server
Cluster

A

Serviet
Primary State

Primary: A
Secondary: B

< Vs
AT E []
P i I = Serviet
Client g Secondary
7 - State
T—y [y j
=]
-
Cookie C
Servlet

When the client of a Web application requests a servlet using a public IP address:

1.

The load balancer routes the client's connection request to a WebLogic Server
cluster in accordance with its configured policies. It directs the request to
WebLogic Server A.

WebLogic Server A acts as the primary host of the client's servlet session state. It
uses the ranking system described in Section 6.2.1.2, "Using Replication Groups" to
select a server to host the replica of the session state. In the example above,
WebLogic Server B is selected to host the replica.

The client is instructed to record the location of WebLogic Server instances A and
B in a local cookie. If the client does not allow cookies, the record of the primary
and secondary servers can be recorded in the URL returned to the client via URL

rewriting.

Failover and Replication in a Cluster 6-9

Replication and Failover for Servlets and JSPs

Note: You must enable WebLogic Server URL rewriting capabilities
to support clients that disallow cookies, as described in
Section 6.2.2.1.1, "Using URL Rewriting to Track Session Replicas."

4. As the client makes additional requests to the cluster, the load balancer uses an
identifier in the client-side cookie to ensure that those requests continue to go to
WebLogic Server A (rather than being load-balanced to another server in the
cluster). This ensures that the client remains associated with the server hosting the
primary session object for the life of the session.

6.2.3.2 Failover with Load Balancing Hardware
Should Server A fail during the course of the client's session, the client's next

connection request to Server A also fails, as illustrated in Figure 6-4.

Figure 6—4 Failover with Load Balancing Hardware

HTTP,, .
JSP Jbjects
Serviet ‘é
| c
Stub
WebLogic Server
Cluster
A
Ser
\/Pri ry Rgate
— B
- ™
Serviet

O

Seconda
N M
Ny j‘\\
ik

Primary: C Serviet
Secondary: B Primary State

Load Balancer

In response to the connection failure:

1. The load balancing hardware uses its configured policies to direct the request to an
available WebLogic Server in the cluster. In the above example, assume that the
load balancer routes the client's request to WebLogic Server C after WebLogic
Server A fails.

6-10 Using Clusters for Oracle WebLogic Server

Replication and Failover for Servlets and JSPs

2. When the client connects to WebLogic Server C, the server uses the information in
the client's cookie (or the information in the HTTP request if URL rewriting is
used) to acquire the session state replica on WebLogic Server B. The failover
process remains completely transparent to the client.

WebLogic Server C becomes the new host for the client's primary session state, and
WebLogic Server B continues to host the session state replica. This new information
about the primary and secondary host is again updated in the client's cookie, or via
URL rewriting.

6.2.4 Session State Replication Across Clusters in a MAN/WAN

In addition to providing HTTP session state replication across servers within a cluster,
WebLogic Server provides the ability to replicate HTTP session state across multiple
clusters. This improves high-availability and fault tolerance by allowing clusters to be
spread across multiple geographic regions, power grids, and Internet service
providers. This section discusses mechanisms for cross-cluster replication supported
by WebLogic Server:

= Section 6.2.4.1, "Network Requirements for Cross-cluster Replication"

» Section 6.2.4.2, "Configuration Requirements for Cross-Cluster Replication"
m Section 6.2.4.5, "MAN HTTP Session State Replication"

m Section 6.2.4.6, "WAN HTTP Session State Replication"

For general information on HTTP session state replication, see Section 6.2.1, "HTTP
Session State Replication." For more information on using hardware load balancers,
see Section 6.2.3, "Accessing Clustered Servlets and JSPs with Load Balancing
Hardware."

6.2.4.1 Network Requirements for Cross-cluster Replication

To perform cross-cluster replication with WebLogic Server, your network must include
global and local hardware load balancers. Figure 6-5 shows how both types of load
balancers interact within a multi-cluster environment to support cross-cluster
replication. For general information on using load balancer within a WebLogic Server
environment, see Section 6.2.3.1, "Connection with Load Balancing Hardware."

Failover and Replication in a Cluster 6-11

Replication and Failover for Servlets and JSPs

Figure 6-5 Load Balancer Requirements for Cross-cluster Replications

HTTP.. .
JSP *J;m
Serviet
B
I
Stuh‘fC
o
! Client !
™, A
Global Load
Balancer
LT O O
Local Load Local Load
Balancer A Balancer B
L] T L] L] L]
Cluster A Cluster B
- — = — | uster

Daomain A Domain B

Replication Channel

The following sections describe each of the components in this network configuration.

6.2.4.1.1 Global Load Balancer In a network configuration that supports cross-cluster
replication, the global load balancer is responsible for balancing HTTP requests across
clusters. When a request comes in, the global load balancer determines which cluster
to send it to based on the current number of requests being handled by each cluster.
Then the request is passed to the local load balancer for the chosen cluster.

6.2.4.1.2 Local Load Balancer The local load balancer receives HTTP requests from the
global load balancer. The local load balancer is responsible for balancing HTTP
requests across servers within the cluster.

6.2.4.1.3 Replication In order to replicate session data from one cluster to another, a
replication channel must be configured to communicate session state information from
the primary to the secondary cluster. The specific method used to replicate session
information depends on which type of cross-cluster replication you are implementing.
For more information, see Section 6.2.4.5, "MAN HTTP Session State Replication" or
Section 6.2.4.6, "WAN HTTP Session State Replication."

6-12 Using Clusters for Oracle WebLogic Server

Replication and Failover for Servlets and JSPs

6.2.4.1.4 Failover When a server within a cluster fails, the local load balancer is
responsible for transferring the request to other servers within a cluster. When the
entire cluster fails, the local load balancer returns HTTP requests back to the global
load balancer. The global load balancer then redirects this request to the other local
load balancer.

6.2.4.2 Configuration Requirements for Cross-Cluster Replication

The following procedures outline the basic steps required to configure cross-cluster
replication.

1.

Install WebLogic Server according to your network configuration and
requirements. This includes installing a WebLogic Server instance on every
physical machine that hosts a WebLogic Server instance.

Install and configure the hardware load balancers. For more information on load
balancer requirements see Section 6.2.4.1, "Network Requirements for
Cross-cluster Replication." For more information on installing and configuring
load balancers, see the documentation for your load balancer.

Following are some general considerations when configuring hardware load
balancers to support cross-cluster replications:

= You must configure your load balancer to maintain session IDs. If the load
balancers do not maintain session ID, subsequent requests will always be sent
to a new server. For more information, see Section 6.2.3.1, "Connection with
Load Balancing Hardware."

= You should ensure that the cluster failover timeout value is not set to high.
This value should be around 3-5 seconds. Some hardware load balancers have
default values that are much longer.

= You must configure your load balancer to know which backup cluster to use
when a primary cluster or server fails.

Create and configure your domains according to your cluster requirements.

Note: Cross-cluster replication requires that each cluster be assigned
to a different domain.

In addition to creating and configuring your domains, you should also create and
configure your clusters and Managed Servers. For information about creating and
configuring domains, clusters, and Managed Servers, see the following topics:

» "Understanding Oracle WebLogic Server Domains" in Understanding Domain
Configuration for Oracle WebLogic Server

= "Select Optional Configuration" in Creating Domains Using the Configuration
Wizard

Following are some considerations when configuring domains to support
cross-cluster replication:

s Each domain should be set up and configured identically. In addition to
identical domain, cluster and server configuration, the number of servers
clusters, etc. should be identical.

= Application deployment should be identical in each domain.

Failover and Replication in a Cluster 6-13

Replication and Failover for Servlets and JSPs

4.

= When setting up your domains, you must enable trust between both domains.
For more information on enabling trust between domains, see "Enabling Trust
Between WebLogic Server Domains" in Securing Oracle WebLogic Server

If you are using cross-cluster replication in a WAN environment, you must create a
data source that is used to maintain session state. For more information, see
Section 6.2.4.6.3, "Database Configuration for WAN Session State Replication."

After you have created and configured your domains, servers, and clusters you
should verify the configuration elements specific to cross-cluster replication have
been configured correctly. These parameters must be configured identically for
both domains.

Table 6-2 lists the subelements of the cluster element in config.xml that are used
to configure cross-cluster replication:

Table 6-2 Cluster Elements in config.xml

Element

Description

cluster-type

This setting must match the replication type you are using and
must be consistent across both clusters.

The valid values are man or wan

remote-cluster-address

This is the address used to communicate replication information
to the other cluster. This should be configured so that
communications between clusters do not go through a load
balancer.

replication-channel

This is the network channel used to communicate replication
information to the other cluster.

Note: The named channel must exist on all members of the cluster
and must be configured to use the same protocol. The selected
channel may be configured to use a secure protocol.

data-source-for-session-persistence This is the data source that is used to store session information

when using JDBC-based session persistence.

This method of session state replication is used to perform
cross-cluster replication within a WAN. For more information, see
Section 6.2.4.6.3, "Database Configuration for WAN Session State
Replication.”

session-flush-interval

This is the interval, in seconds, the cluster waits to flush HTTP
sessions to the backup cluster.

session-flush-threshold

If the number of HTTP sessions reaches the value of
session-flush-threshold, the sessions are flushed to the backup
cluster. This allows servers to flush sessions faster under heavy
loads.

inter-cluster-comm-link-health-check-interval = This is the amount of time, in milliseconds, between consecutive

checks to determine if the link between two clusters is restored.

6.2.4.3 Configuring Session State Replication Across Clusters

You can use a third-party replication product to replicate state across clusters, or you
can allow WebLogic Server to replicate session state across clusters. The following
configuration considerations should be kept in mind depending on which method you

use:

If you are using a third-party product, ensure that you have specified a value for
jdbc-pool, and that backup-cluster-address is blank.

If you are using WebLogic Server to handle session state replication, you must
configure both the jdbc-pool and the backup-cluster-address.

6-14 Using Clusters for Oracle WebLogic Server

Replication and Failover for Servlets and JSPs

If backup-cluster-address is NULL, WebLogic Server assumes that you are using a
third-party product to handle replication. In this case, session data is not persisted to
the remote database, but is persisted locally.

6.2.4.4 Configuring a Replication Channel

A replication channel is a normal network channel that is dedicated specifically to
replication traffic between clusters. For general information on configuring a network
channel, see "Configuring Network Resources" in Configuring Server Environments for
Oracle WebLogic Server.

When creating a network channel to be used as the replication channel in cross-cluster
replication, the following considerations apply:

= You must ensure that the replication channel is created on all cluster members and
has the same name.

s The channel should be used only for replication. Other types of network traffic
should be directed to other network channels.

6.2.4.5 MAN HTTP Session State Replication

Resources within a metropolitan area network (MAN) are often in physically separate
locations, but are geographically close enough that network latency is not an issue.
Network communication in a MAN generally has low latency and fast interconnect.
Clusters within a MAN can be installed in physically separate locations which
improves availability.

To provide failover within a MAN, WebLogic Server provides an in-memory
mechanism that works between two separate clusters. This allows session state to be
replicated synchronously from one cluster to another, provided that the network
latency is a few milliseconds. The advantage of using a synchronous method is that
reliability of in-memory replication is guaranteed.

Note: The performance of synchronous state replication is
dependant on the network latency between clusters. You should use
this method only if the network latency between the clusters is
tolerable.

6.2.4.5.1 Replication Within a MAN This section discusses possible failover scenarios
across multiple clusters within a MAN. Figure 6-6 shows a typical multi-cluster
environment within a MAN.

Failover and Replication in a Cluster 6-15

Replication and Failover for Servlets and JSPs

Figure 6-6 MAN Replication

Global Load
Balancer

g

[
JSP Jbjects

Servlet/‘é

I
Stub i

Local Load
Balancer 1

/ Cluster 1

Cluster 2
Local Load 54
Balancer 2

85

(s 17

This figure shows the following HTTP session state scenario:

1.
2.

A client makes a request which passes through the global load balancer.

The global load balancer passes the request to a local load balancer based on
current system load. In this case, the session request is passed to Local Load
Balancer 1.

The local load balancer in turn passes the request to a server within a cluster based
on system load, in this case S1. Once the request reaches S1, this Managed Server
becomes the primary server for this HTTP session. This server will handle
subsequent requests assuming there are no failures.

Session state information is stored in the database of the primary cluster.

After the server establishes the HTTP session, the current session state is replicated
to the designated secondary server.

6.2.4.5.2 Failover Scenarios in a MAN The following sections describe various failover
scenarios based on the MAN configuration in Figure 6-6.

Failover Scenario 1

6-16 Using Clusters for Oracle WebLogic Server

Replication and Failover for Servlets and JSPs

If all of the servers in Cluster 1 fail, the global load balancer will automatically fail all
subsequent session requests to Cluster 2. All sessions that have been replicated to
Cluster 2 will be recovered and the client will experience no data loss.

Failover Scenario 2

Assume that the primary server S1 is being hosted on Cluster 1, and the secondary
server 56 is being hosted on Cluster 2. If S1 crashes, then any other server in Cluster 1
(52 or S3) can pick up the request and retrieve the session data from server S6. S6 will
continue to be the backup server.

Failover Scenario 3

Assume that the primary server S1 is being hosted on Cluster 1, and the secondary
server 56 is being hosted on Cluster 2. If the secondary server S6 fails, then the
primary server S1 will automatically select a new secondary server on Cluster 2. Upon
receiving a client request, the session information will be backed up on the new
secondary server.

Failover Scenario 4

If the communication between the two clusters fails, the primary server will
automatically replicate session state to a new secondary server within the local cluster.
Once the communication between the two clusters, any subsequent client requests will
be replicated on the remote cluster.

6.2.4.5.3 MAN Replication, Load Balancers, and Session Stickiness MAN replication relies
on global load balancers to maintain cluster affinity and local load balancers to
maintain server affinity. If a server within a cluster fails, the local load balancer is
responsible for ensuring that session state is replicated to another server in the cluster.
If all of the servers within a cluster have failed or are unavailable, the global load
balancer is responsible for replicating session state to another cluster. This ensures that
failover to another cluster does not occur unless the entire cluster fails.

Once a client establishes a connection through a load balancer to a cluster, the client
must maintain stickiness to that cluster as long as it is healthy.

6.2.4.6 WAN HTTP Session State Replication

Resources in a wide area network (WAN) are frequently spread across separate
geographical regions. In addition to requiring network traffic to cross long distances,
these resources are often separated by multiple routers and other network bottle necks.
Network communication in a WAN generally has higher latency and slower
interconnect.

Slower network performance within a WAN makes it difficult to use a synchronous
replication mechanism like the one used within a MAN. WebLogic Server provides
failover across clusters in WAN by using an asynchronous data replication scheme.

6.2.4.6.1 Replication Within a WAN This section discusses possible failover scenarios

across multiple clusters within a WAN. Figure 6-7 shows a typical multi-cluster
environment within a WAN.

Failover and Replication in a Cluster 6-17

Replication and Failover for Servlets and JSPs

Figure 6—-7 WAN Replication

pEEE DB 1

Local Load

Balancer 1 S3

/ Cluster 1
1

_ Global Load
Balancer

Cluster 2
Local Load 54
Balancer 2 :|

&
[8 [os2

[a—

This figure demonstrates the following HTTP session state scenario:
1. A client makes a request which passes through the global load balancer.

2. The global load balancer passes the request to a local load balancer based on
current system load. In this case, the session request is passed to Local Load
Balancer 1.

3. The local load balancer in turn passes the request to a server within a cluster based
on system load, in this case S1. Once the request reaches S1, this Managed Server
becomes the primary server for this HTTP session. This server will handle
subsequent requests assuming there are no failures.

4. Session state information is stored in the database of the primary cluster.

5. After the server establishes the HTTP session, the current session state is replicated
to the designated secondary server.

6.2.4.6.2 Failover Scenarios Within a WAN This section describes the failover scenario

within a WAN environment.

Failover Scenario

If all of the servers in Cluster 1 fail, the global load balancer will automatically fail all
subsequent session requests to Cluster 2. All sessions will be backed up according to
the last know flush to the database.

6.2.4.6.3 Database Configuration for WAN Session State Replication This section describes
the data source configuration requirements for cross-cluster session state replication in
a WAN. For more general information about setting up cross-cluster replication, see
Section 6.2.4.2, "Configuration Requirements for Cross-Cluster Replication."

6-18 Using Clusters for Oracle WebLogic Server

Replication and Failover for EJBs and RMIs

To enable cross-cluster replication within a WAN environment, you must create a
JDBC data source that points to the database where session state information is stored.
Perform the following procedures to setup and configure your database:

1. Install and configure your database server software according to your vendor's
documentation.

2. Create a JDBC data source that references this database. For more information on
creating a JDBC data source, see "Configuring JDBC Data Sources" in Configuring
and Managing JDBC for Oracle WebLogic Server

This data source can also be configured as a JDBC Multi Data Source. For more
information on configuring a Multi Data Source, see "Configuring JDBC Multi
Data Sources" in Configuring and Managing [DBC for Oracle WebLogic Server

3. Setthe DataSourceForSessionPersistence for both the primary and
secondary cluster to point to this data source.

4. Create a table called WLS_WAN_PERSISTENCE in your database according to the
following schema:

CREATE TABLE WLS_WAN_PERSISTENCE_TABLE (
WL_ID VARCHAR2(100) NOT NULL,
WL_CONTEXT PATH VARCHAR2 (50) NOT NULL,
WL_CREATE_TIME NUMBER (20),
WL_ACCESS_TIME NUMBER (20),
WL_MAX_INACTIVE_INTERVAL NUMBER (38),
WL_VERSION NUMBER (20) NOT NULL,
WL_INTERNAL_ ATTRIBUTE NUMBER (38),
WL_SESSION_ATTRIBUTE_KEY VARCHAR2(100),
WL_SESSION_ATTRIBUTE_VALUE LONG RAW,
PRIMARY KEY (WL_ID, WL_CONTEXT PATH,
WL_VERSION, WL_SESSION_ATTRIBUTE_KEY));

Table 6-3 describes what each row of this table contains:

Table 6-3 Contents of Replication Table

Database Row Description

wl_id Stores the HTTP session ID.

wl_context_path Stores the context path to the Web application that created
the session.

wl_create_time Stores the time the session state was created.

wl_session_values Stores the session attributes.

wl_access_time Stores the time of the last update to the session state.

wl_max_inactive_ Stores the MaxInactiveInterval of the session state.

interval

wl_version Stores the version of the session. Each update to a session

has an associated version.

6.3 Replication and Failover for EJBs and RMIs

For clustered EJBs and RMIs, failover is accomplished using the object's replica-aware
stub. When a client makes a call through a replica-aware stub to a service that fails, the
stub detects the failure and retries the call on another replica.

With clustered objects, automatic failover generally occurs only in cases where the
object is idempotent. An object is idempotent if any method can be called multiple times

Failover and Replication in a Cluster 6-19

Replication and Failover for EJBs and RMIs

with no different effect than calling the method once. This is always true for methods
that have no permanent side effects. Methods that do have side effects have to be
written with idempotence in mind.

Consider a shopping cart service call addItem() that adds an item to a shopping cart.
Suppose client C invokes this call on a replica on Server S1. After S1 receives the call,
but before it successfully returns to C, S1 crashes. At this point the item has been
added to the shopping cart, but the replica-aware stub has received an exception. If the
stub were to retry the method on Server S2, the item would be added a second time to
the shopping cart. Because of this, replica-aware stubs will not, by default, attempt to
retry a method that fails after the request is sent but before it returns. This behavior
can be overridden by marking a service idempotent.

6.3.1 Clustering Objects with Replica-Aware Stubs

If an E]JB or RMI object is clustered, instances of the object are deployed on all
WebLogic Server instances in the cluster. The client has a choice about which instance
of the object to call. Each instance of the object is referred to as a replica.

The key technology that supports object clustering in WebLogic Server is the
replica-aware stub. When you compile an EJB that supports clustering (as defined in its
deployment descriptor), appc passes the E]JB's interfaces through the rmic compiler
to generate replica-aware stubs for the bean. For RMI objects, you generate
replica-aware stubs explicitly using command-line options to rmic, as described in
"Using the WebLogic RMI Compiler" in Programming RMI for Oracle WebLogic Server.

A replica-aware stub appears to the caller as a normal RMI stub. Instead of
representing a single object, however, the stub represents a collection of replicas. The
replica-aware stub contains the logic required to locate an EJB or RMI class on any
WebLogic Server instance on which the object is deployed. When you deploy a
cluster-aware EJB or RMI object, its implementation is bound into the JNDI tree. As
described in Section 3.2, "Cluster-Wide JNDI Naming Service," clustered WebLogic
Server instances have the capability to update the JNDI tree to list all server instances
on which the object is available. When a client accesses a clustered object, the
implementation is replaced by a replica-aware stub, which is sent to the client.

The stub contains the load balancing algorithm (or the call routing class) used to load
balance method calls to the object. On each call, the stub can employ its load algorithm
to choose which replica to call. This provides load balancing across the cluster in a way
that is transparent to the caller. To understand the load balancing algorithms available
for RMI objects and E]Bs, see Section 5.2, "Load Balancing for EJBs and RMI Objects." If
a failure occurs during the call, the stub intercepts the exception and retries the call on
another replica. This provides a failover that is also transparent to the caller.

6.3.2 Clustering Support for Different Types of EJBs

EJBs differ from plain RMI objects in that each EJB can potentially generate two
different replica-aware stubs: one for the EJBHome interface and one for the
EJBObject interface. This means that E]Bs can potentially realize the benefits of load
balancing and failover on two levels:

= When a client looks up an EJB object using the EJBHome stub
= When a client makes method calls against the EJB using the EJBObject stub

The following sections describe clustering support for different types of E]Bs.

6-20 Using Clusters for Oracle WebLogic Server

Replication and Failover for EJBs and RMIs

6.3.2.1 Clustered EJBHomes

All bean homes interfaces—used to find or create bean instances—can be clustered, by
specifying the home-is-clusterable element in weblogic-ejb-jar.xml.

Note: Stateless session beans, stateful session beans, and entity beans
have home interfaces. Message-driven beans do not.

When a bean is deployed to a cluster, each server binds the bean's home interface to its
cluster JNDI tree under the same name. When a client requests the bean's home from
the cluster, the server instance that does the look-up returns a EJBHome stub that has a
reference to the home on each server.

When the client issues a create () or £ind () call, the stub selects a server from the
replica list in accordance with the load balancing algorithm, and routes the call to the
home interface on that server. The selected home interface receives the call, and creates
a bean instance on that server instance and executes the call, creating an instance of the
bean.

Note: WebLogic Server supports load balancing algorithms that
provide server affinity for EJB home interfaces. To understand server
affinity and how it affects load balancing and failover, see

Section 5.2.4.3, "Round-Robin Affinity, Weight-Based Affinity, and
Random-Affinity."

6.3.2.2 Clustered EJBObjects

An EJBObject stub tracks available replicas of an EJB in a cluster.

6.3.2.2.1 Stateless Session Beans When a home creates a stateless bean, it returns a
EJBObject stub that lists all of the servers in the cluster, to which the bean should be
deployed. Because a stateless bean holds no state on behalf of the client, the stub is free
to route any call to any server that hosts the bean. The stub can automatically fail over
in the event of a failure. The stub does not automatically treat the bean as idempotent,
so it will not recover automatically from all failures. If the bean has been written with
idempotent methods, this can be noted in the deployment descriptor and automatic
failover will be enabled in all cases.

Note: WebLogic Server supports load balancing options that provide
server affinity for stateless EJB remote interfaces. To understand server
affinity and how it affects load balancing and failover, see

Section 5.2.4.3, "Round-Robin Affinity, Weight-Based Affinity, and
Random-Affinity."

6.3.2.2.2 Stateful Session Beans Method-level failover for a stateful service requires
state replication. WebLogic Server satisfies this requirement by replicating the state of
the primary bean instance to a secondary server instance, using a replication scheme
similar to that used for HTTP session state.

When a home interface creates a stateless session bean instance, it selects a secondary
instance to host the replicated state, using the same rules defined in Section 6.2.1.2,
"Using Replication Groups." The home interface returns a EJBObject stub to the
client that lists the location of the primary bean instance, and the location for the
replicated bean state.

Failover and Replication in a Cluster 6-21

Replication and Failover for EJBs and RMIs

Figure 6-8 shows a client accessing a clustered stateful session E]B.
Figure 6-8 Client Accessing Stateful Session EJB

WebLogic Server
Cluster

State of
Object ‘A’

As the client makes changes to the state of the E]B, state differences are replicated to

the secondary server instance. For E]Bs that are involved in a transaction, replication
occurs immediately after the transaction commits. For E]Bs that are not involved in a
transaction, replication occurs after each method invocation.

In both cases, only the actual changes to the E]B's state are replicated to the secondary
server. This ensures that there is minimal overhead associated with the replication
process.

Note: The actual state of a stateful EJB is non-transactional, as
described in the EJB specification. Although it is unlikely, there is a
possibility that the current state of the EJB can be lost. For example, if
a client commits a transaction involving the EJB and there is a failure
of the primary server before the state change is replicated, the client
will fail over to the previously-stored state of the EJB. If it is critical to
preserve the state of your EJB in all possible failover scenarios, use an
entity EJB rather than a stateful session EJB.

6.3.2.2.3 Failover for Stateful Session EJBs Should the primary server fail, the client's EJB
stub automatically redirects further requests to the secondary WebLogic Server
instance. At this point, the secondary server creates a new EJB instance using the
replicated state data, and processing continues on the secondary server.

After a failover, WebLogic Server chooses a new secondary server to replicate EJB
session states (if another server is available in the cluster). The location of the new
primary and secondary server instances is automatically updated in the client's
replica-aware stub on the next method invocation, as in Figure 6-9.

6-22 Using Clusters for Oracle WebLogic Server

Replication and Failover for EJBs and RMIs

Figure 6-9 Replica Aware Stubs are Updated after Failover

WebLogic Server
Cluster

——
-~ -
“Client -
/ K o
ject “A” Stub | | Instance of

Erimary State: | Object "A’
Primary Sta
B

S d State:
gecondary State *
C

State of
Object ‘A’

6.3.2.3 Entity EJBs

There are two types of entity beans to consider: read-write entity beans and read-only
entity beans.

» Read-Write Entities

When a home finds or creates a read-write entity bean, it obtains an instance on
the local server and returns a stub pinned to that server. Load balancing and
failover occur only at the home level. Because it is possible for multiple instances
of the entity bean to exist in the cluster, each instance must read from the database
before each transaction and write on each commit.

= Read-Only Entities

When a home finds or creates a read-only entity bean, it returns a replica-aware
stub. This stub load balances on every call but does not automatically fail over in
the event of a recoverable call failure. Read-only beans are also cached on every
server to avoid database reads.

6.3.2.3.1 Failover for Entity Beans and EJB Handles Failover for entity beans and EJB
handles depends upon the existence of the cluster address. You can explicitly define
the cluster address, or allow WebLogic Server to generate it automatically, as described
in Section 10.1.5.6, "Cluster Address." If you explicitly define cluster address, you must
specify it as a DNS name that maps to all server instances in the cluster and only server
instances in the cluster. The cluster DNS name should not map to a server instance that
is not a member of the cluster.

6.3.3 Clustering Support for RMI Objects

WebLogic RMI provides special extensions for building clustered remote objects. These
are the extensions used to build the replica-aware stubs described in the EJB section.
For more information about using RMI in clusters, see "WebLogic RMI Features" in
Programming RMI for Oracle WebLogic Server.

Failover and Replication in a Cluster 6-23

Failover and JDBC Connections

6.3.4 Object Deployment Requirements

If you are programming EJBs to be used in a WebLogic Server cluster, read the
instructions in this section to understand the capabilities of different EJB types in a
cluster. Then ensure that you enable clustering in the EJB's deployment descriptor. See
"weblogic-ejb-jar.xml Deployment Descriptor Reference" in Programming WebLogic
Enterprise JavaBeans for Oracle WebLogic Server for information about the XML
deployment elements relevant for clustering.

If you are developing either EJBs or custom RMI objects, also refer to "Using WebLogic
JNDI in a Clustered Environment" in Programming JNDI for Oracle WebLogic Server to
understand the implications of binding clustered objects in the JNDI tree.

6.3.4.1 Other Failover Exceptions

Even if a clustered object is not idempotent, WebLogic Server performs automatic
failover in the case of a ConnectException or MarshalException. Either of these
exceptions indicates that the object could not have been modified, and therefore there
is no danger of causing data inconsistency by failing over to another instance.

6.4 Failover and JDBC Connections

JDBC is a highly stateful client-DBMS protocol, in which the DBMS connection and
transactional state are tied directly to the socket between the DBMS process and the
client (driver). For this reason, failover of a connection is not supported. If a WebLogic
Server instance dies, any JDBC connections that it managed will die, and the DBMS(s)
will roll back any transactions that were under way. Any applications affected will
have to restart their current transactions from the beginning. All JDBC objects
associated with dead connections will also be defunct. Clustered JDBC eases the
reconnection process: the cluster-aware nature of WebLogic data sources in external
client applications allow a client to request another connection from them if the server
instance that was hosting the previous connection fails.

If you have replicated, synchronized database instances, you can use a JDBC multi
data source to support database failover. In such an environment, if a client cannot
obtain a connection from one data source in the multi data source because the data
source doesn't exist or because database connectivity from the data source is down,
WebLogic Server will attempt to obtain a connection from the next data source in the
list of data sources.

For instructions on clustering JDBC objects, see Section 10.2.12, "Configure Clustered
JDBC."

Note: Any data source assigned to a multi data source must be
configured to test its connections at reserve time. This is the only way
a pool can verify it has a good connection, and the only way a multi
data source can know when to fail over to the next pool on its list.

6-24 Using Clusters for Oracle WebLogic Server

7

Whole Server Migration

The following sections describe the different migration mechanisms supported by
WebLogic Server:

= Section 7.1, "Understanding Server and Service Migration"
= Section 7.2, "Migration Terminology"

= Section 7.3, "Leasing"

» Section 7.4, "Automatic Whole Server Migration"

These sections focus on whole server-level migration, where a migratable server
instance, and all of its services, is migrated to a different physical machine upon
failure. WebLogic Server also supports service-level migration, as well as replication
and failover at the application level. For more information, see Chapter 8, "Service
Migration" and Chapter 6, "Failover and Replication in a Cluster."

7.1 Understanding Server and Service Migration

In a WebLogic Server cluster, most services are deployed homogeneously on all server
instances in the cluster, enabling transparent failover from one server to another. In
contrast, "pinned services" such as JMS and the JTA transaction recovery system are
targeted at individual server instances within a cluster—for these services, WebLogic
Server supports failure recovery with migration, as opposed to failover.

Note: Whole server migration is not supported on all platforms. See
Support for Server Migration in Oracle WebLogic Server, WebLogic Portal
and WebLogic Integration 10gR3 (10.3).

Migration in WebLogic Server is the process of moving a clustered WebLogic Server
instance or a component running on a clustered instance elsewhere in the event of
failure. In the case of whole server migration, the server instance is migrated to a
different physical machine upon failure. In the case of service-level migration, the
services are moved to a different server instance within the cluster. See Chapter 8,
"Service Migration."

WebLogic Server provides this feature for making JMS and the JTA transaction system
highly available: migratable servers. Migratable servers provide for both automatic and
manual migration at the server-level, rather than the service level.

When a migratable server becomes unavailable for any reason, for example, if it hangs,
loses network connectivity, or its host machine fails—migration is automatic. Upon
failure, a migratable server is automatically restarted on the same machine if possible.
If the migratable server cannot be restarted on the machine where it failed, it is

Whole Server Migration 7-1

Migration Terminology

migrated to another machine. In addition, an administrator can manually initiate
migration of a server instance.

7.2 Migration Terminology

The following terms apply to server and service migration:

Migratable server—a clustered server instance that migrates in its entirety, along
with all the services it hosts. Migratable servers are intended to host pinned
services, such as JMS servers and the JTA transaction recovery servers, but they
can also host clusterable services. All services that run on a migratable server are
highly available.

Whole server migration— a WebLogic Server instance to be migrated to a different
physical machine upon failure, either manually or automatically.

Service migration:

- Manual Service Migration—the manual migration of pinned JTA and
JMS-related services (for example, JMS server, SAF agent, path service, and
custom store) after the host server instance fails. See Chapter 8, "Service
Migration."

- Automatic Service Migration—]MS-related services, singleton services, and
the JTA Transaction Recovery Service can be configured to automatically
migrate to another member server when a member server fails or is restarted.
See Chapter 8, "Service Migration."

Cluster leader—one server instance in a cluster, elected by a majority of the
servers, that is responsible for maintaining the leasing information. See
Section 7.3.5, "Non-database Consensus Leasing."

Cluster master—one server instance in a cluster that contains migratable servers
acts as the cluster master and orchestrates the process of automatic server
migration, in the event of failure. Any Managed Server in a cluster can serve as the
cluster master, whether it hosts pinned services or not. See Section 7.4.4.7, "Cluster
Master Role in Whole Server Migration."

Singleton master—a lightweight singleton service that monitors other services that
can be migrated automatically. The server that currently hosts the singleton master
is responsible for starting and stopping the migration tasks associated with each
migratable service. See Section 8.8.1.1, "Singleton Master."

Candidate machines—a user-defined list of machines within a cluster that can be a
potential target for migration.

Target machines—a set of machines that are designated as allowable or preferred
hosts for migratable servers.

Node Manager—a WebLogic Server utility used by the Administration Server or a
standalone Node Manager client, to start and stop migratable servers, and is
invoked by the cluster master to shut down and restart migratable servers, as
necessary. For background information about Node Manager and how it fits into a
WebLogic Server environment, see "General Node Manager Configuration" in
Node Manager Administrator’s Guide for Oracle WebLogic Server.

Lease table—a database table in which migratable servers persist their state, and
which the cluster master monitors to verify the health and liveness of migratable
servers. For more information on leasing, see Section 7.3, "Leasing."

7-2 Using Clusters for Oracle WebLogic Server

Leasing

7.3 Leasing

Administration Server—used to configure migratable servers and target machines,
to obtain the run-time state of migratable servers, and to orchestrate the manual
migration process.

Floating IP address—an IP address that follows a server from one physical
machine to another after migration.

Leasing is the process WebLogic Server uses to manage services that are required to
run on only one member of a cluster at a time. Leasing ensures exclusive ownership of
a cluster-wide entity. Within a cluster, there is a single owner of a lease. Additionally,
leases can failover in case of server or cluster failure. This helps to avoid having a
single point of failure.

7.3.1 Features That Use Leasing

The following WebLogic Server features use leasing;:

Automatic Whole Server Migration—Uses leasing to elect a cluster master. The
cluster master is responsible for monitoring other cluster members. It is also
responsible for restarting failed members hosted on other physical machines.

Leasing ensures that the cluster master is always running, but is only running on
one server at a time within a cluster. For information on the cluster master, see
Section 7.4.4.7, "Cluster Master Role in Whole Server Migration."

Automatic Service Migration—JMS-related services, singleton services, and the
JTA Transaction Recovery Service can be configured to automatically migrate from
an unhealthy hosting server to a healthy active server with the help of the health
monitoring subsystem. When the migratable target is migrated, the pinned service
hosted by that target is also migrated. Migratable targets use leasing to accomplish
automatic service migration. See Chapter 8, "Service Migration."

Singleton Services—A singleton service is, by definition, a service running within
a cluster that is available on only one member of the cluster at a time. Singleton
services use leasing to accomplish this. See Section 8.8.1.1, "Singleton Master."

Job Scheduler—The Job Scheduler is a persistent timer that is used with in a
cluster. The Job Scheduler uses the timer master to load balance the timer across a
cluster.

Although you can use the non-database version, consensus leasing, with the Job
Scheduler, this feature requires an external database to maintain failover and
replication information.

Note: Beyond basic configuration, most leasing functionality is
handled internally by WebLogic Server.

7.3.2 Leasing Versions

WebLogic Server provides two types of leasing functionality. Which one you use
depends on your requirements and your environment.

High-availability database leasing—This version of leasing requires a
high-availability database to store leasing information. For information on general
requirements and configuration, see Section 7.3.4, "High-availability Database
Leasing."

Whole Server Migration 7-3

Leasing

= Non-database consensus leasing—This version of leasing stores the leasing
information in-memory within a cluster member. This version of leasing requires
that all servers in the cluster are started by Node Manager. For more information,
see Section 7.3.5, "Non-database Consensus Leasing."

Within a WebLogic Server installation, you can use only one type of leasing. Although
it is possible to implement multiple features that use leasing within your environment,
each must use the same kind of leasing.

When switching from one leasing type to another, you must restart the entire cluster,
not just the Administration Server. Changing the leasing type cannot be done
dynamically.

7.3.3 Determining Which Type of Leasing To Use

The following considerations will help you determine which type of leasing is
appropriate for your WebLogic Server environment:

= High-availability database leasing

Database leasing basis is useful in environments that are already invested in a
high-availability database, like Oracle RAC, for features like JMS store recovery.
The high-availability database instance can also be configured to support leasing
with minimal additional configuration. This is particularly useful if Node
Manager is not running in the system.

= Non-database consensus leasing

This type of leasing provides a leasing basis option (consensus) that does not
require the use of a high-availability database. This has a direct benefit in
automatic whole server migration. Without the high-availability database
requirement, consensus leasing requires less configuration to enable automatic
server migration.

Consensus leasing basis requires Node Manager to be configured and running.
Automatic whole server migration also requires the Node Manager for IP
migration and server restart on another machine. Hence, consensus leasing works
well since it does not impose additional requirements, but instead takes away an
expensive one.

7.3.4 High-availability Database Leasing

In this version of leasing, lease information is maintained within a table in a
high-availability database. A high-availability database is required to ensure that the
leasing information is always available to the servers. Each member of the cluster must
be able to connect to the database in order to access leasing information, update and
renew their leases. Servers will fail if the database becomes unavailable and they are
not able to renew their leases.

This method of leasing is useful for customers who already have a high-availability
database within their clustered environment. This method allows you to use leasing
functionality without being required to use Node Manager to manage servers within
your environment.

The following procedures outline the steps required to configure your database for
leasing.

1. Configure the database for server migration. The database stores leasing
information that is used to determine whether or not a server is running or needs
to be migrated.

7-4 Using Clusters for Oracle WebLogic Server

Leasing

Your database must be reliable. The server instances will only be as reliable as the
database. For experimental purposes, a regular database will suffice. For a
production environment, only high-availability databases are recommended. If the
database goes down, all the migratable servers will shut themselves down.

Create the leasing table in the database. This is used to store the machine-server
associations used to enable server migration. The schema for this table is located in
WL_HOME/server/db/dbname/leasing.ddl, where dbname is the name of
the database vendor.

Note: The leasing table should be stored in a highly available
database. Migratable servers are only as reliable as the database used
to store the leasing table.

2. Setup and configure a data source. This data source should point to the database
configured in the previous step.

Note: XA data sources are not supported for server migration.

For more information on creating a JDBC data source, see "Configuring JDBC Data
Sources" in Configuring and Managing [DBC for Oracle WebLogic Server.

7.3.5 Non-database Consensus Leasing

Note: Consensus leasing requires that you use Node Manager to control
servers within the cluster. Node Manager should be running on every
machine hosting Managed Servers within the cluster. For more information,
see "Using Node Manager to Control Servers" in Node Manager Administrator’s
Guide for Oracle WebLogic Server.

In Consensus leasing, there is no highly available database required. The cluster leader
maintains the leases in-memory. All the servers renew their leases by contacting the
cluster leader, however, the leasing table is replicated to other nodes of the cluster to
provide failover.

The cluster leader is elected by all the running servers in the cluster. A server becomes
a cluster leader only when it has received acceptance from the majority of the servers.
If the Node Manager reports a server as shutdown, the cluster leader assumes that
server to have accepted it as leader when counting the majority.

Consensus leasing requires a majority of servers to continue functioning. Any time
there is a network partition, the servers in the majority partition will continue to run
while those in the minority partition will fail since they cannot contact the cluster
leader or elect a new cluster leader since they will not have the majority of servers. If
the partition results in an equal division of servers, then the partition that contains the
cluster leader will survive while the other one will fail.

If automatic server migration is enabled, the servers are required to contact the cluster
leader and renew their leases periodically. Servers will shut themselves down if they
are unable to renew their leases. The failed servers will then be automatically migrated
to the machines in the majority partition.

Whole Server Migration 7-5

Automatic Whole Server Migration

7.4 Automatic Whole Server Migration

This section outlines the procedures for configuring automatic whole server migration
and provides a general discussion of how whole server migration functions within a
WebLogic Server environment.

The following topics are covered:

Section 7.4.1, "Preparing for Automatic Whole Server Migration"
Section 7.4.2, "Configuring Automatic Whole Server Migration"
Section 7.4.3, "Using High Availability Storage for State Data"

Section 7.4.4, "Server Migration Processes and Communications"

7.4.1 Preparing for Automatic Whole Server Migration

Before configuring automatic whole server migration, be aware of the following
requirements:

Verify that whole server migration is supported on your platform. See Support for
Server Migration in Oracle WebLogic Server, WebLogic Portal and WebLogic Integration
10gR3 (10.3)

Caution: Support for automatic whole server migration on Solaris 10 systems
using the Solaris Zones feature can be found in Note 3: Support For Sun Solaris
10 In Multi-Zone Operation at
http://www.oracle.com/technetwork/middleware/ias/oracleas-
supported-virtualization-089265.html.

Each Managed Server uses the same subnet mask. Unicast and multicast
communication among servers requires each server to use the same subnet. Server
migration will not work without multicast or unicast communication being
configured.

For information on using multicast, see Section 3.1.1, "Using IP Multicast for
Backward Compatibility." For information on using unicast, see Section 3.1.2,
"One-to-Many Communication Using Unicast."

All servers hosting migratable servers are time-synchronized. Although migration
works when servers are not time-synchronized, time-synchronized servers are
recommended in a clustered environment.

If you are using different operating system versions among migratable servers,
make sure that all versions support identical functionality for i fconfig.

The primary interface names used by migratable servers are the same. If your
environment requires different interface names, then configure a local version of
wlscontrol.sh for each migratable server.

For more information on wlscontrol.sh, see "Using Node Manager to Control
Servers" in Node Manager Administrator's Guide for Oracle WebLogic Server.

See "Databases Supporting WebLogic Server Features" in Oracle WebLogic Server,
WebLogic Portal and WebLogic Integration 10gR3 (10.3) for a list of databases for
which WebLogic Server supports automatic server migration.

You cannot create channels/network access points that have a different listen
address on a migratable server.

7-6 Using Clusters for Oracle WebLogic Server

Automatic Whole Server Migration

There is no built-in mechanism for transferring files that a server depends on
between machines. Using a disk that is accessible from all machines is the
preferred way to ensure file availability. If you cannot share disks between servers,
you must ensure that the contents of domain_dir/bin are copied to each
machine.

Ensure that the Node Manager security files are copied to each machine using the
nmEnroll () WLST command. For more information, see "Using Node Manager
to Control Servers" in Node Manager Administrator’s Guide for Oracle WebLogic
Server.

Use high availability storage for state data. For highest reliability, use a shared
storage solution that is itself highly available—for example, a storage area network
(SAN). See Section 7.4.3, "Using High Availability Storage for State Data."

For capacity planning in a production environment, keep in mind that server
startup during migration taxes CPU utilization. You cannot assume that because a
machine can handle x number of servers running concurrently that it also can
handle that same number of servers starting up on the same machine at the same
time.

7.4.2 Configuring Automatic Whole Server Migration

Before configuring server migration, ensure that your environment meets the
requirements outlined in Section 7.4.1, "Preparing for Automatic Whole Server
Migration."

To configure server migration for a Managed Server within a cluster, perform the
following tasks:

1.

Obtain floating IP addresses for each Managed Server that will have migration
enabled.

Each migratable server must be assigned a floating IP address which follows the
server from one physical machine to another after migration. Any server that is
assigned a floating IP address must also have AutoMigrationEnabled set to
true.

Note: The migratable IP address should not be present on the
interface of any of the candidate machines before the migratable
server is started.

Configure Node Manager. Node Manager must be running and configured to
allow server migration.

The Java version of Node Manager can be used for server migration on Windows
or UNIX. The SSH version of Node Manager can be used for server migration on
UNIX only.

When using the Java Node Manager, you must edit nodemanager .properties
at WL_HOME/ common /nodemanager/ to add your environment Interface and
NetMask values. For information about nodemanager .properties, see
"Reviewing nodemanager.properties" in Node Manager Administrator's Guide for
Oracle WebLogic Server

If you are using the SSH version of Node Manager, edit wlscontrol.sh and set
the Interface variable to the name of your network interface.

Whole Server Migration 7-7

Automatic Whole Server Migration

For general information on using Node Manager in server migration, see
Section 7.4.4.6, "Node Manager Role in Whole Server Migration." For general
information on configuring Node Manager, "General Node Manager
Configuration" in Node Manager Administrator’s Guide for Oracle WebLogic Server.

3. If you are using a database to manage leasing information, configure the database
for server migration according to the procedures outlined in Section 7.3.4,
"High-availability Database Leasing." For general information on leasing, see
Section 7.3, "Leasing."

4. If you are using database leasing within a test environment and you need to reset
the leasing table, you should re-run the leasing.ddl script. This causes the
correct tables to be dropped and re-created.

5. If you are using a database to store leasing information, set up and configure a
data source according to the procedures outlined in Section 7.3.4,
"High-availability Database Leasing."

You should set DataSourceForAutomaticMigration to this data source in
each cluster configuration.

Note: XA data sources are not supported for server migration.

For more information on creating a JDBC data source, see "Configuring JDBC Data
Sources" in Configuring and Managing JDBC for Oracle WebLogic Server.

6. Grant superuser privileges to the wlsifconfig. sh script (on UNIX) or the
wlsifconfig.cmd script (on Windows).

This script is used to transfer IP addresses from one machine to another during
migration. It must be able to run i fconfig, which is generally only available to
superusers. You can edit the script so that it is invoked using sudo.

The Java Node Manager uses the wlsifconfig. cmd script, which uses the
netsh utility.

The wlsifconfig scripts are available in the WIL_HOME/common/bin directory.
7. Ensure that the following commands are included in your machine PATH:

» wlsifconfig.sh (UNIX)orwlsifconfig.cmd (Windows)

s wlscontrol.sh (UNIX)

s nodemanager.domains

Thewlsifconfig.sh,wlsifconfig.cmd, and wlscontrol. sh files are
located in WI_HOME/common/bin. The nodemanager . domains file is located in
WL__HOME/common/nodemanager.

Depending on your default shell on UNIX, you may need to edit the first line of
the . sh scripts.

8. This step applies only to the SSH version of Node Manager and UNIX. If you are
using Windows, skip to step 9.

The machines that host migratable servers must trust each other. For server
migration to occur, it must be possible to get to a shell prompt using 'ssh/rsh
machine_A' from machine_B and vice versa without having to explicitly enter a
username and password. Also, each machine must be able to connect to itself
using SSH in the same way.

7-8 Using Clusters for Oracle WebLogic Server

Automatic Whole Server Migration

Note: You should ensure that your login scripts (. cshrc, .profile,
.login, and such) only echo messages from your shell profile if the shell is
interactive. WebLogic Server uses an ssh command to login and echo the
contents of the server. state file. Only the first line of this output is used to
determine the server state.

9. Set the candidate machines for server migration. Each server can have a different
set of candidate machines, or they can all have the same set.

10. Restart the Administration Server.

7.4.3 Using High Availability Storage for State Data

The server migration process migrates services, but not the state information
associated with work in process at the time of failure.

To ensure high availability, it is critical that such state information remains available to
the server instance and the services it hosts after migration. Otherwise, data about the
work in process at the time of failure may be lost. State information maintained by a
migratable server, such as the data contained in transaction logs, should be stored in a
shared storage system that is accessible to any potential machine to which a failed
migratable server might be migrated. For highest reliability, use a shared storage
solution that is itself highly available—for example, a storage area network (SAN).

In addition, if you are using a database to store leasing information, the lease table,
described in the following sections, which is used to track the health and liveness of
migratable servers, should also be stored in a high availability database. For more
information, see Section 7.3, "Leasing."

7.4.4 Server Migration Processes and Communications

The sections that follow describe key processes in a cluster that contains migratable
servers:

» Section 7.4.4.1, "Startup Process in a Cluster with Migratable Servers"
= Section 7.4.4.2, "Automatic Whole Server Migration Process"

= Section 7.4.4.3, "Manual Whole Server Mig