

Oracle® Fusion Middleware
Identity Governance Framework ArisID API Developer's Guide

11g (11.1.1)

E16588-02

February 2011

Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide, 11g (11.1.1)

E16588-02

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Ellen Desmond

Contributing Author: Venkat Medam, Vasuki Ashok, Trish Fuzesy

Contributors: Amit Sharma, Mark Wilcox

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions ... viii

1 Using the Identity Governance Framework ArisID API

About the Identity Governance Framework ... 1-1
Benefits to Organizations .. 1-1
Benefits to Developers ... 1-2

About the Identity Governance Framework ArisID API ... 1-2
Developing Applications With the ArisID API ... 1-4

Configuring CARML Files.. 1-4
Configuring the Identity Repository ... 1-4
Configuring the Mapping File.. 1-5

System Requirements and Certification.. 1-5

2 Design Recommendations

Choose a LoginID... 2-1
Choose a UniqueKey ... 2-1
Specify Multiple Language Support .. 2-2
Handle Large Results... 2-2
Secure the Application .. 2-3

Domain Level Credentials .. 2-3
Application Level Credentials.. 2-4

3 Developing Applications

Using the Identity Governance Framework ArisID API .. 3-1
Creating the Project.. 3-1
Creating and Editing the CARML File... 3-2
Generating ArisID Beans.. 3-3
How to Use the ArisID Beans in an Application ... 3-4
Editing the Mapping File.. 3-5

iv

4 Migrating From the User and Role API to the ArisID API

Introduction ... 4-1
Migrate a Simple Application.. 4-1

Initialize the Application... 4-2
Perform Search Operations... 4-2

SearchByGuid .. 4-2
SearchByName .. 4-3
SearchUsers.. 4-3
SearchByPage... 4-3

Migrate Complex Application ... 4-3
Identify the New Attributes ... 4-4
Identify the Interactions .. 4-4
Generate ArisID Beans by Using the JDeveloper Extension.. 4-4
Set Up the Environment .. 4-4
Perform Search Operations... 4-4

Comparison Between User and Role API and Aris ID API ... 4-4
User-Related APIs .. 4-4
Role-Related APIs .. 4-7

A Sample Application

SearchUsers.jsp .. A-1
SearchUsers.html... A-2

v

vi

List of Figures

1–1 IGF ArisID API Architecture... 1-4

vii

Preface

This guide describes how to use the Identity Governance Framework ArisID extension
to Oracle JDeveloper to build Oracle Fusion Middleware applications that implement
the Identity Governance Framework ArisID API.

Audience
This document is intended for developers who are writing applications that use the
Oracle Fusion Middleware Identity Governance Framework ArisID API.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

viii

Related Documents
For more information, see the following documents:

■ Oracle Fusion Middleware Identity Governance Framework UserRole API Reference

■ Oracle Fusion Middleware Identity Governance Framework IDXUserRole API Reference

■ Online Help for the Identity Governance Framework ArisID JDeveloper Extension

■ Javadocs for Project Aristotle - ArisID Attribute Services, at:
http://arisid.sourceforge.net/javadocs/arisId_1.1_javadoc/.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Using the Identity Governance Framework ArisID API 1-1

1Using the Identity Governance Framework
ArisID API

This chapter describes the architecture and key functionality of the Identity
Governance Framework ArisID API (ArisID API). The ArisID API provides enterprise
developers and system architects a library for building identity-enabled applications
using multiple identity protocols. The ArisID API enables developers to specify
requirements for identity attributes, roles, and search filters by using Client Attribute
Requirements Markup Language (CARML).

This chapter contains the following topics:

■ About the Identity Governance Framework

■ About the Identity Governance Framework ArisID API

■ Developing Applications With the ArisID API

About the Identity Governance Framework
The Identity Governance Framework (IGF) is an open initiative designed to meet the
following goals:

■ To simplify the development of identity information regardless of where that
information is stored.

■ To simplify the management (also known as governance) of how applications use
identity data, in particular, sensitive data.

As part of this initiative, Oracle has contributed key initial specifications and is
making them available to the community. These specifications provide a common
framework for defining usage policies, attribute requirements, and developer APIs
pertaining to the use of identity related information. These enable businesses to ensure
full documentation, control, and auditing regarding the use, storage, and propagation
of identity-related data across systems and applications.

Benefits to Organizations
Organizations need to maintain control and integrity of sensitive personal information
about their customers, employees, and partners. Data related to social security
numbers, credit card numbers, medical history and more are increasingly under
scrutiny by regulations seeking to prevent abuse or theft of such information. Privacy
conscious organizations frequently have reacted to these requirements by enforcing
overly strict controls and processes that hinder business operations and impact
productivity, flexibility, and efficiency. At the opposite end of the spectrum, some
organizations do not take the care needed to safeguard this information, potentially

About the Identity Governance Framework ArisID API

1-2 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

putting identity-related data at risk without sufficient oversight and control. The
Identity Governance Framework enables a standards-based mechanism for enterprises
to establish "contracts" between their applications so that identity related information
can be shared securely with confidence that this data will not be abused,
compromised, or misplaced. Using this framework, organizations have complete
visibility into how identity information is stored, used, and propagated throughout
their business. This enables organizations to automate controls to streamline business
processes without fear of compromising the confidentiality of sensitive identity related
information.

Benefits to Developers
The Identity Governance Framework is an agreed-upon process for specifying how
identity-related data is treated when writing applications. This provides developers a
standards-based way to easily write applications that use this data so that governing
policies can be used to control it. This will result in faster development of privacy
aware applications.

IGF enables the decoupling of identity-aware applications from a specific deployment
infrastructure. Specifically, using IGF enables developers to defer deciding on how
identity related information will be stored and accessed by their application.
Developers will not need to worry about whether they should use a SQL database, an
LDAP directory, or other system. In the past, developers were forced to write highly
specific code, driving technology and vendor lock-in. By using a Client Attribute
Requirement Markup Language (CARML) file and declarations, applications will
support flexible deployment in a wide range of environments without the need for
ongoing specialized developer enhancements. The ArisID API handles the hard work
of data retrieval, transformation, and policy-enforcement when it comes to
identity-based information.

About the Identity Governance Framework ArisID API
The Identity Governance Framework ArisID API represents a common core service
through which all identity information exchange should be passed. While not an
official name, the ArisID API is often referred to as Identity Beans by developers.

The 11g (11.1.1) release of the ArisID API is a subset of the configuration proposed at:

 http://www.openliberty.org/wiki/index.php/ArisID_Configuration.

If you have installed Oracle WebLogic Server and Oracle Identity Management, all the
necessary jar files for developing applications with this API are already installed on
your computer.

The Identity Governance Framework open source API jar files are as follows:

■ openliberty.arisId_1.1.jar — Provides the core ArisID API with library functions
and providers that can be used to retrieve identity subjects that contain collections

See Also:

■ Oracle Fusion Middleware Installation Guide for Oracle Identity
Management for information about installing Oracle Identity
Management.

■ Oracle Fusion Middleware Installation Guide for Oracle JDeveloper for
information about installing JDeveloper and its extensions.

About the Identity Governance Framework ArisID API

Using the Identity Governance Framework ArisID API 1-3

of attributes. For more information, see
http://arisid.sourceforge.net/javadocs/arisId_1.1_javadoc/.

■ org.openliberty.arisIdBeans_1.1.jar — Provides the ArisID beans, which provide
Java object abstractions on top of the ArisID API. These convert the transactional
approach of the ArisID API to an object or bean approach. For more information,
see http://arisid.sourceforge.net/javadocs/arisId_1.1_
javadoc/.

The ArisID API jar files are as follows:

■ idxuserrole.jar — Provides the Standard User and Role identity read-only
operations. This jar is generated from the standard idxuserrole.xml CARML file.
For more information, see Oracle Fusion Middleware Identity Governance Framework
IDXUserRole API Reference.

■ userrole.jar — Provides the User and Role identity read/write operations for
updating identity information. For more information, see Oracle Fusion Middleware
Identity Governance Framework UserRole API Reference.

■ arisId-stack-ovd.jar — This jar file is an implementation of the IAttrSvcStack
interface with the Oracle Virtualization library to connect to different backends
and provide an abstract view of the identity store entities.

The ArisID beans provide the Java APIs required for initialization and accessing
CARML interactions. The bean generator generates a set of java files for each entity in
the CARML file using Apache Velociy. The CARML file is a declarative document that
describes the attribute usage requirements of your application. The ArisID beans are in
the jar files idxuserrole.jar and userrole.jar. If the standard ArisID beans do not meet
your needs, you can generate new ArisID beans by creating a CARML file and using
the bean generator in the Identity Governance Framework ArisID extension to
JDeveloper.

The following figure provides a high-level view of the ArisID API architecture.

Developing Applications With the ArisID API

1-4 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

Figure 1–1 IGF ArisID API Architecture

Developing Applications With the ArisID API
The Identity Governance Framework ArisID extension supports the basic
development process Create > Modify > Test > Deploy. Creation requires starting a
new JDeveloper project and creating CARML files. Use the CARML editor to modify
the CARML XML files to suit your environment. Testing the application can be done in
Oracle WebLogic Server embedded LDAP directory server.

Configuring CARML Files
Determine whether the existing ArisID beans meet your application’s needs by
examining the CARML files idxuserrole.xml (read-only operations) and userrole.xml
(read-only and read/write operations). These files are located in DOMAIN_
HOME/config/fmwconfig/carml. If you need additional attributes or other
customizations, create a new CARML file and generate beans as described in
Chapter 3, "Developing Applications".

Configuring the Identity Repository
The identity repository to be used by the ArisID beans must be available. You can use
the Oracle WebLogic Server embedded LDAP-based directory server or any LDAP
directory supported by 11g Oracle Virtual Directory. The ArisID API is integrated with
Oracle Platform Security Services. It automatically connects to the LDAP-based
identity store configured in Oracle Platform Security Services. The identity stores
supported by Oracle Platform Security Services. For more information about system
requirements and certification, see "System Requirements and Certification".

System Requirements and Certification

Using the Identity Governance Framework ArisID API 1-5

For more information about Oracle Platform Security Services, see Oracle Fusion
Middleware Application Security Guide.

If you must use a different identity store from the Oracle Platform Security Services
identity store, then set the following system property:

igf.ovd.config.dir=DOMAIN_HOME/config/fmwconfig/arisidprovider/conf

Next, edit the adapters.os_xml file to include the host, port and credentials of the
directory to be connected to. The igf.ovd.config.dir property can be set to any
other directory containing adapaters.os_xml and other configuration files with the
right settings.

For OpenLDAP, Role.MEMBER is a mandatory attribute for the following APIs:

■ createRole(List<PropertyValue> attrVals, Map<String,Object>
appCtxMap)

■ createRole(List<PropertyValue> attrVals)

If the Role.MEMBER is not included in the input attrVals list, role creation will fail.

Configuring the Mapping File
When a CARML file is created a corresponding mapping file is created in the same
location. The default mapping file has attribute details specific to Oracle WebLogic
Server embedded directory server, which is the Oracle Platform Security Services
default identity store. If you are using a default CARML file and the Oracle Platform
Security Services identity store, you do not need to configure mapping. The
configuration parameters in Oracle Platform Security Services override the parameters
in the mapping file.

If you are creating your own CARML file with additional attributes, or if you are using
a non-Oracle Platform Security Services identity store, you must edit the mapping file.
For more information, see Chapter 3, "Developing Applications".

System Requirements and Certification
Refer to the system requirements and certification documentation for information
about hardware and software requirements, platforms, databases, and other
information. Both of these documents are available on Oracle Technology Network
(OTN).

The system requirements document covers information such as hardware and
software requirements, minimum disk space and memory requirements, and required
system libraries, packages, or patches:

http://www.oracle.com/technology/software/products/ias/files/fus
ion_requirements.html

The certification document covers supported installation types, platforms, operating
systems, databases, JDKs, and third-party products:

http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html

System Requirements and Certification

1-6 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

2

Design Recommendations 2-1

2Design Recommendations

The default CARML and mapping files make certain assumptions about the
deployment scenario. You may need to modify these details depending on your
deployment requirements. The configuration parameters that can be modified are
discussed in this chapter.

This chapter contains the following topics:

■ Choose a LoginID

■ Choose a UniqueKey

■ Specify Multiple Language Support

■ Handle Large Results

■ Secure the Application

Choose a LoginID
In the default configuration, email is used as a unique identifier for identifying user
entries. When you are searching for a user, the default attribute expected for search is
email. For example:

SearchUser(String uniqueid, Map<String, Object>)

For performance reasons, the attribute used as a unique identifier must be a searchable
attribute in the backend. The mapping between the application's choice of uniquekey
and the backend attribute is handled at configuration time. This is a configuration in
Oracle Virtual Directory mapping. The HashMap is used to provide the optional
context information to be used while performing the operation. In the current release it
supports the following options:

■ The Principal user that performs the search - (ArisIdConstants.APP_CTX_
AUTHUSER, (Principal)user)

■ The language constraint if any - (ArisIdConstants.APP_CTX_LOCALE, "fr")

■ Pagination support if any - (ArisIdConstants.APP_CTX_PAGESIZE, 10)

Choose a UniqueKey
An application occasionally stores the entries accessed from the identity repository’s
backend in their own application-specific repository. In such cases, you must carefully
consider which attribute should be persisted. For instance, if the backend is an
LDAP-based repository, you should use the GUID attribute as the persisting attribute

Specify Multiple Language Support

2-2 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

because this is the only unique key on the LDAP-based backend. All other LDAP
attributes are modifiable.

If the backend is a relational database, choose an attribute on which uniqueness
constraint is enforced as the unique key. You can specify this in the ArisID mapping
property file. The method to search for a user based on the unique key is:

searchUserOnUniqueKey(String UniqueKey, Map<String,Object>)

The HashMap is used to provide the optional context information to be used while
performing the operation. In the current release it supports the following options:

■ The Principal user that performs the search - (ArisIdConstants.APP_CTX_
AUTHUSER, (Principal)user)

■ The language constraint if any - (ArisIdConstants.APP_CTX_LOCALE, "fr")

■ Pagination support if any - (ArisIdConstants.APP_CTX_PAGESIZE, "10")

Specify Multiple Language Support
Multiple Language Support (MLS) is provided for applications that need
locale-specific results. The attributes and the appropriate MLS code are stored in the
ArisID properties file in the multiLanguageAttributes element.

<multiLanguageAttributes>…</multiLanguageAttribute>

Because displayname is the most commonly used multiple language attribute, it is
configured by default as a multi-language attribute. Other attributes can be added as
needed in the ArisID mapping file.

Restrictions
Any API to which locale is specified as an argument will return the locale-specific
values for all the attributes listed in the ArisID properties file as
<multiLanguageAttributes> that have locale-specific values. For all other
attributes it returns the default values stored.

In the backend system, the data is returned in a form conforming to ISO-3166. For
example, if there is a French locale (in addition to English), it is stored as cn,:fr for
the cn attribute. The locale for the client applications should be specified in the
properties HashMap as ArisIdConstants.APP_CTX_LOCALE, "fr" and the
ArisID properties file should contain cn as multiLanguageAttribute and map this
attribute.

Handle Large Results
When applications access identity data, the result set for a search is frequently too
large to be handled by the application. In such cases you have the option of dividing
the result into manageable sized pages. You do this by defining the number of objects
to be returned in the page.

The following example shows a typical usage pattern:

RoleManager rm = new RoleManager(env);
 List<PropertyFilterValue> attrFilters = new ArrayList<PropertyFilterValue>();
 attrFilters.add(new PropertyFilterValue(Role.NAME, "admin", AttributeFilter.OP_
CONTAINS));

 HashMap<String,Object> map = new HashMap<String,Object>();
 map.put("ArisIdConstants.APP_CTX_PAGESIZE","2");

Secure the Application

Design Recommendations 2-3

 SearchResults<Role> sr = rm.searchRolesbyPage(attrFilters, map);

 while(sr.hasMore())
 {
 List<Role> roles = sr.getNextSet();

 for (int i=0; i<roles.size(); i++)
 //do the operations with roles.get(i)
}

Secure the Application
Two security scenarios are available for executing create, read, update, and delete
(CRUD) operations on the target system. They are:

■ Domain level credentials

■ Application level credentials

Proxy authentication is not supported in this release.

Domain Level Credentials
In this scenario, all applications in a domain use common credentials to connect to the
target system and perform operations with those credentials. The application does not
maintain a footprint in the target system.

The LDAP Adapter's configuration file, adapters.os_xml, contains credentials to
connect to the backend directory, along with the host and port details. If you do not
provide any other credentials during initialization, the application connects to the
target system using the credentials in the LDAP Adapter's configuration file.

If proxy user (logged in user id) is not specified in the API's application context,
ArisID operation will be executed with the credentials that are in LDAP Adapter's
configuration file.

If your application connects using common credentials, you must build security into
the application itself so that it displays or modifies data only for an authorized user.

Code Sample
The LDAP Adapter's configuration file adapters.os_xml is configured with domain
level userid and encrypted password to connect to backend directory. The following is
a snippet of adapters.os_xml.

 <binddn>cn=admin</binddn>
 <bindpass>{OMASK}C2QXW1Nmf+s=</bindpass>

While initializing the ArisID API do not provide any credentials.

Map env = new HashMap();
// Do not set UserManager.SECURITY_PRINCIPAL & SECURITY_CREDENTIALS
UserManager uMgr = new UserManager(env);
…
…
// Search Operation (with no proxy user in app context)
List<PropertyFilterValue> attrFilters = new ArrayList<PropertyFilterValue>();
attrFilters.add(new PropertyFilterValue("User.FIRSTNAME", "app1",
AttributeFilter.OP_CONTAINS));
attrFilters.add(new PropertyFilterValue("User.LASTNAME", "user1",
AttributeFilter.OP_BGNSWITH));
Map<String, Object> appCtx = null;

Secure the Application

2-4 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

users = um.searchUsers(attrFilters, appCtx);

Application Level Credentials
In this scenario, each application uses application level credentials to connect to the
target system and performs CRUD operations with those credentials.

In this case you provide the application's user id and password while initializing the
ArisID API. When you do that, the application connects to the target system using
those credentials.

If no proxy user is specified in the API's application context then ArisID operation will
be executed with the application's credentials.

This scenario has the following features:

■ Each application has different privileges to view and update the data in the target
system

■ You can audit the modifications performed by each application in the target
system

Code Sample
The LDAP Adapter's configuration file adapters.os_xml is configured with
domain level userid and encrypted password to connect to backend directory. The
following is a snippet of adapters.os_xml.

 <binddn>cn=admin</binddn>
 <bindpass>{OMASK}C2QXW1Nmf+s=</bindpass>

While initializing the ArisID API, provide the application user credentials.

Map env = new HashMap();
env.put(UserManager.SECURITY_PRINCIPAL, "cn=app1_user,cn=users,dc=oracle,dc=com");
env.put(UserManager.SECURITY_CREDENTIALS, "mypassword");
UserManager uMgr = new UserManager(env);
…
// Search Operation (with no proxy user in app context)
List<PropertyFilterValue> attrFilters = new ArrayList<PropertyFilterValue>();
attrFilters.add(new PropertyFilterValue("User.FIRSTNAME", "app1",
AttributeFilter.OP_CONTAINS));
attrFilters.add(new PropertyFilterValue("User.LASTNAME", "user1",
AttributeFilter.OP_BGNSWITH));
Map<String, Object> appCtx = null;
users = um.searchUsers(attrFilters, appCtx);

3

Developing Applications 3-1

3Developing Applications

This chapter describes how to use Identity Governance Framework ArisID Extension
to Oracle JDeveloper to develop applications.

This chapter contains the following topics:

■ Using the Identity Governance Framework ArisID API

■ Creating the Project

■ Creating and Editing the CARML File

■ Generating ArisID Beans

■ How to Use the ArisID Beans in an Application

■ Editing the Mapping File

Using the Identity Governance Framework ArisID API
When developing an application with the ArisID API you will typically perform the
following tasks:

■ Create an ArisID project in Oracle JDeveloper.

■ Create and configure a CARML file.

■ Generate the ArisID beans.

■ (Optional) Edit the mapping file.

The Identity Governance Framework ArisID extension for JDeveloper is organized
into several different packages. The packages are separated primarily by functionality.
At the top level, the packages are for the CARML Overview Editor, the Relationship
Editor, the Mapping Editor, Bean Generation, and Project Creation. Project creation
contains all the classes required for creating a project structure, managing project
properties, and creating CARML files. Common elements shared between many of
these packages are kept in .common. This is primarily abstract classes for common
Swing components and Parsing/Modeling XML structures.

Creating the Project
The first step in using Identity Governance Framework ArisID is to create a project in
Oracle JDeveloper. After the Identity Governance Framework ArisID extension is

See Also: Oracle Fusion Middleware Installation Guide for Oracle
JDeveloper

Creating and Editing the CARML File

3-2 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

installed, ArisID/IGF Project is added to the project gallery in JDevelolper. The
corresponding project wizard adds the ArisID required libraries, creates a directory
structure, and adds the option to test the ArisID configuration. The follow figure
shows an example ArisID project and the directory structure as it appears in
JDeveloper:

To create a project:

1. Choose File then New to open the New Gallery.

2. In the Categories tree, expand General and select Projects.

3. Choose IGF/ArisID Project and click OK.

4. Specify a Project Name and Directory for your project on the Project Name page.

5. Optionally, move additional technologies from the Available list to the Selected
list.

6. Specify a Default Package, Java Source Path, and Output Directory for your
project in the Project Java Settings page.

7. Specify J2SE or J2EE in the Configure IGF/CARML Setting page.

8. Click Finish.

Creating and Editing the CARML File
You declare the application requirements in terms of attributes and interactions. These
are specified using a Client Attribute Requirements Markup Language (CARML) file.
The CARML editor is an XML editor that lets you edit the various fields of a CARML
file. The following figure shows an example CARML XML file displayed in the
CARML Editor with the Data Definitions section:

Generating ArisID Beans

Developing Applications 3-3

To create a new CARML file:

1. Choose File then choose New to open the New Gallery.

2. In the Categories tree, expand Business Tier and choose Security.

3. In the Items list, double click Client Attributes Requirements (CARML) to open
the dialog.

4. In the Create CARML File dialog, specify the name of the file that you would like
to create and click OK.

You can use any of the templates provided. The associated description provides
the details about each of the template files.

The General page of the CARML file editor appears.

5. Specify the values for the two fields on the General page: CARML Unique
Indicator and CARML description.

6. Specify your application attribute requirements in the Data Definitions page. Add
entities and specify data interactions for entities.

7. Specify the application based interaction requirements in the Data interactions
page. During the data interactions step, specify filters for interaction types.

To edit an existing CARML file, double-click the appropriate file in the Projects panel
to open it in the overview editor for CARML files.

Generating ArisID Beans
When you have finished editing your CARML file, you can generate the ArisID Beans
to use in your application. If you have created a relation file according to the schema
definitions bundled with the ArisID API, you can use it when generating the beans.

After you have specified your attribute and interaction declarations in the CARML
file, you can generate the corresponding bean classes to use in your application. If you

How to Use the ArisID Beans in an Application

3-4 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

have multiple entities defined in the file, and would like to specify the relationship
between the entities, you can do so using the relationship file.

 To generate the beans:

1. In the Projects pane, highlight the CARML file you want to use to generate the
beans.

2. Right click to display the Application Navigator context menu for a CARML file.

3. Choose Generate ArisIDBeans.

4. In the Generate ArisIDBeans dialog, specify the Package.

5. If you want to use a relation file, select Use Relations and specify or browse to the
Relation File.

6. Click OK.

You can now incorporate these beans into your application.

How to Use the ArisID Beans in an Application
The Identity Governance Framework ArisID API extension to JDeveloper initially
creates the ArisId beans. These beans are from a developer perspective, like any other
Java bean. They can be called from any Java application using standard bean
semantics. This enables more interesting use cases depending upon the frameworks a
developer wants to use.

Editing the Mapping File

Developing Applications 3-5

For example, if building an ADF (Oracle's Java-based Web application framework), the
beans can be converted into a Data Control and dragged into an ADF page. This
enables developers to quickly wire applications together that utilize the bean - either
for searching, updating or displaying on a page - without having to write a single line
of code.

Another use case is a developer who wants to expose identity data as a Web Service
from Oracle SOA Suite. In this case, the beans could be accessed using a Java call-out
instead of using a DSML query against a directory server, such as Oracle Virtual
Directory or Oracle Directory Server Enterprise Edition. This can be easier to construct
and more efficient because there is less XML parsing being utilized in the SOA process.

By focusing their efforts on describing objects and attributes and worrying less about
specific protocols, developers can be more productive in accessing identity
information. Because ArisID has privacy and security built-in, this can be done in a
secure, standards compliant way.

Editing the Mapping File
The Oracle implementation maps CARML declarations to an LDAP-based server, such
as Oracle Virtual Directory. The mapping editor enables you to map CARML attributes
to LDAP attributes, objectclasses and search parameters. You can customize your
mapping file for the LDAP-based server at your site. LDAP terms are defined by the
Internet Engineering Task Force in RFC's 2251 through 2256. For more information, see
http://www.ietf.org.

To edit the mapping file:

1. In the Projects pane, highlight the mapping file.

2. Double-click to open the file in the mapping file overview editor.

3. On the Mappings page, highlight an entity that you want to modify.

4. Highlight a mapping definition you want to modify for that entity.

5. Edit the RDN Attribute, Search Base, and Create Base if necessary.

Editing the Mapping File

3-6 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

6. To add Objectclasses, Filter Objectclasses, Password Attributes, and
Multilanguage Attributes, click the corresponding Add icon.

7. Repeat Steps 3 - 6 for other entities that you want to modify.

8. If necessary, change the Paging setting on the Global page.

4

Migrating From the User and Role API to the ArisID API 4-1

4Migrating From the User and Role API to the
ArisID API

This chapter describes how to migrate applications from the User and Role API to the
ArisID API.

This chapter contains the following topics:

■ Introduction

■ Migrate a Simple Application

■ Migrate Complex Application

■ Comparison Between User and Role API and Aris ID API

Introduction
If you have an application that uses the User and Role API described in Oracle Fusion
Middleware Application Security Guide and Oracle Fusion Middleware User and Role Java
API Reference for Oracle Platform Security Services, you can modify it to use ArisID beans
instead.

First you must determine whether your application is simple or complex.

An application is simple if it has the following characteristics:

■ User attributes belong to the LDAP inetorgperson object class.

■ Role attributes belong to the LDAP groupofuniquenames object class.

■ Search filters have only and condition on the attribute values.

■ The standard userrole jar file meets your requirements.

All other applications are identified as complex applications.

Migrate a Simple Application
If you have used the standard User and Role API without adding custom attributes,
you can migrate to the ArisID API by following this sequence of steps.

See Also:

■ Oracle Fusion Middleware Identity Governance Framework UserRole
API Reference

■ Oracle Fusion Middleware Identity Governance Framework
IDXUserRole API Reference

Migrate a Simple Application

4-2 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

To migrate a simple application, proceed as follows. This sequence applies only to Java
EE applications.

Initialize the Application
Initialize your application to use the ArisID APIs.

import oracle.igf.userrole.UserManager;
import oracle.igf.userrole.RoleManager;
import org.openliberty.arisidbeans.ArisIdConstants;
import org.openliberty.arisidbeans.PropertyFilterValue;
HashMap env = new HashMap();

SECURITY_PRINCIPAL & SECURITY_CREDENTIALS are optional. If they are not
used, the application connects to the backend with the credentials configured at
domain level.

env.put(ArisIdConstants.SECURITY_PRINCIPAL, "cn=orcladmin");
env.put(ArisIdConstants.SECURITY_CREDENTIALS, "mypassword");

Create UserManager and Role manager objects.

UserManager userMgr = new UserManager(env);
RoleManager roleMgr = new RoleManager(env);

If the API will connect to the default identity store configured in Oracle Platform
Security Services, the host and port details are automatically obtained from the
identity store. If the API connects to a non-default identity store, the following must be
configured:

■ Set the system property igf.ovd.config.dir to point to the directory where
the Identity Virtualization library configuration files reside.

■ Configure each adapter in the Identity Virtualization library with the host and port
details (such as host, port, root dn, plugins, and so on).

For more information about Identity Virtualization library, see Oracle Fusion
Middleware Application Security Guide.

Perform Search Operations
You have the following search options:

■ SearchByGuid

■ SearchByName

■ SearchUsers

■ SearchByPage

SearchByGuid
You can search based on the GUID using one of the searchUserByGuid() methods.
For example:

User myObject = userMgr.searchUserByGuid(String guidValue);

You can also search specifying more context to the search.

User myObject = userMgr.searchUserByGuid(String guidValue, Map appCtx);

Where appCtx can contain the following details:

Migrate Complex Application

Migrating From the User and Role API to the ArisID API 4-3

■ APP_CTX_AUTHUSER - Principal (the Application principal to be used for doing
the search)

■ APP_CTX_LOCALE - User locale (applicable to all the attributes which have locale
specific values)

■ APP_CTX_PAGE - Application's page size

SearchByName
You can search based on the loginid using one of the searchUser() methods. For
example:

User myObject = userMgr.searchUser(String loginid);

You can also search specifying more context to the search:

User myObject = userMgr.searchUser(String loginid, Map appCtx);

Where appCtx can contain the following details:

■ APP_CTX_AUTHUSER - Principal (the Application principal to be used for doing
the search)

■ APP_CTX_LOCALE - User locale (applicable to all the attributes which have locale
specific values)

■ APP_CTX_PAGE - Application's page size.

SearchUsers
You can search based on the following filter:

List myUsers =
userMgr.searchUsers(java.util.List<org.openliberty.arisidbeans.PropertyFilterValue
> attrFiltersList));

You can construct the attrFiltersList as follows:

attrFilters = new ArrayList<PropertyFilterValue>();
attrFilters.add(new PropertyFilterValue("firstname", "abc"));
attrFilters.add(new PropertyFilterValue("lastname", "xyz"));

SearchByPage
The ArisID API provides pagination support. You can search for users by using
searchUsersByPage() as follows:

SearchResults<User> sResult = userMgr.searchUsersByPage(java.util.List
 <org.openliberty.arisidbeans.PropertyFilterValue> attrFiltessList));
while (sResult.hasMore()) {
 List<User> users = sResult.getNextSet();
 for (int i = 0; i < users.size(); i++)
// Process each user entry fetched
 Util.printObject(users.get(i));
}

Migrate Complex Application
For complex applications, you need to create a custom CARML file and generate
ArisID beans. You can migrate search code in the same way as for simple applications.
There are some additional preliminary steps, however. Proceed as follows.

Comparison Between User and Role API and Aris ID API

4-4 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

Identify the New Attributes
If your application requires custom attributes (that is, attributes which are not
supported by inetorgperson), you must create an application-specific CARML file.
You need to edit the CARML file and add the attribute definitions in the data
definitions part of the CARML file.

Identify the Interactions
The default ArisID bean interactions are designed to access all the attributes of the
user and role entries. If your application requires custom interactions for performance
reasons, you can create the interactions by editing the CARML file.

Generate ArisID Beans by Using the JDeveloper Extension
Use the Identity Governance Framework ArisID JDeveloper extension to create and
edit the CARML file and generate the beans. For more information, see Chapter 3,
"Developing Applications."

Set Up the Environment
Make the CARML file available to your application. Include the classes generated by
the BeanGenerator as part of your application, or make it available in the CLASSPATH
environment variable.

Perform Search Operations
Search operations are the same as for simple application migration. See "Perform
Search Operations" on page 4-2.

Comparison Between User and Role API and Aris ID API
These APIs are compared to the ArisID API in the following tables:

■ User-Related APIs

■ Role-Related APIs

User-Related APIs
Table 4–1 provides a comparison between the User-related API method and the
corresponding Identity Beans method available in the Identity Governance
Framework Aris ID API.

Identity Beans methods marked with a double asterisk (**) have an optional
parameter: Map<String.Object> appCtxMap. For example,
UserManager.createUser(List<PropertyValue> attrVals,
Map<String,Object> appCtxMap). appCtxMap may contain the following
elements:

■ UserManager.APP_CTX_AUTHUSER: java.security.Principal, the user context to
execute under.

■ UserManager.APP_CTX_PAGE: String value of Page size. This is applicable only
for search methods returning SearchResults object.

■ UserManager.APP_CTX_LOCALE: String value of language code.

Comparison Between User and Role API and Aris ID API

Migrating From the User and Role API to the ArisID API 4-5

Table 4–1 Comparison Between User-Related API and ArisID API

Functionality User/Role API Method Identity Beans Method

User Creation User
UserManager.createUser
(String name, char[]
password)

User
UserManager.createUser
(String name, char[]
password, PropertySet
pset)

** void
UserManager.createUser(List<PropertyVal
ue> attrVals)

Delete User void
UserManager.dropUser(
UserProfile user)

void
UserManager.dropUser(
User user);

** void
UserManager.dropUser(IPrincipalIdentifi
er

** void UserManager.dropUser(String
SubjectId)

** void UserManager.dropUser(User
subj)

Authenticate User User
UserManager.authentica
teUser(String user_id,
char[] passwd)

User
UserManager.authentica
teUser(User user, char[]
passwd)

User
UserManager.authentica
teUser(String user_id,
String authProperty,
char[] passwd)

** User
UserManager.authenticateUser(List<Prop
ertyFilterValue> attrFiltersList)

** User
UserManager.authenticateUser(String uid,
String password)

Check if create User is
supported

boolean
UserManager.isCreateUs
erSupported()

boolean
UserManager.isCreateUserSupported()

Check if modify User
is supported

boolean
UserManager.isModifyU
serSupported()

boolean
UserManager.isModifyUserSupported()

Check if drop User is
supported

boolean
UserManager.isDropUse
rSupported()

boolean
UserManager.isDropUserSupported()

Search Users by given
search criteria

SearchResponse
IdentityStore.searchUser
s(SearchParameters
params)

** List<User>
UserManager.searchUsers(List<PropertyF
ilterValue> attrFiltersList)

** SearchResults<User>
UserManager.searchUsersbyPage(List<Pr
opertyFilterValue> attrFiltersList)

Search an User by
name /uniquename /
guid

User
IdentityStore.searchUser
(String name)

** User
UserManager.searchUser(List<PropertyFil
terValue> attrFiltersList)

** User UserManager.searchUser(String
loginid)

Check if User exists in
the repository for a
given User object

boolean
IdentityStore.exists (User
user)

boolean UserManager.exists(User subj)

Comparison Between User and Role API and Aris ID API

4-6 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

Simple search filter
(search based on a
single attribute name,
type and value)

SimpleSearchFilter Filter defined for search interaction in
CARML file

Complex Search Filter
(search based on more
than one attribute
with filter conditions
and nested filters)

ComplextSearchFilter Limited Support available where the
actual attributes based on which the
search will be made is predefined in
CARML file.

Getting a property
value for a given
property name

String
User.getPropertyVal(Stri
ng propName)

Note: User Role API,
fetches the attribute
values from cache. If it
misses cache, it fetches
from repository.

String User.getAttributeValue(String
attribute)

boolean User.getPredicateValue(String
predicate)

Object User.getPropertyValue(String
property)

Limitation: Returns attribute values from
User object that's already fetched from the
repository. This doesn't go to repository
again to fetch the latest value. This applies
to all variations of get values.

Getting the User
property for a given
property name

Property
User.getProperty(String
propName)

IAttributeValue User.getAttribute(String
attribute)

PredicateValue User.getPredicate(String
predicate)

Object User.getProperty(String property)

Getting the user
properties for a given
set of property names

Map User.getProperties() Map<String,IAttributeValue>
User.getAllAttributes()

Map<String,PredicateValue>
User.getAllPredicates()

Map<String,Object>
User.getAllProperties()

Get all user property
names from the
schema

List
IdentityStore.getUserPro
pertyNames()

Note: Returns the names
of all the properties in
the schema

List<String>
UserManager.getAllAttributeNames()

List<String>
UserManager.getAllPredicateNames()

List<String>
UserManager.getAllPropertyNames()

Changing the
attribute value in the
repository of an user

void
User.setProperty(ModPr
operty mprop)

void User.setAttributeValue(String
attrName, String attrValue)

void
User.setAttribute(ModPropertyValue attr)

Changing the set of
attribute values in the
repository for an user

void
User.setProperties(ModP
roperty[] modPropObjs)

void
User.setProperties(Ldap
Context ctx,
ModProperty[]
modPropObjs)

void
User.setAttributes(List<ModPropertyValu
e> attrs)

Table 4–1 (Cont.) Comparison Between User-Related API and ArisID API

Functionality User/Role API Method Identity Beans Method

Comparison Between User and Role API and Aris ID API

Migrating From the User and Role API to the ArisID API 4-7

Role-Related APIs
Table 4–2 provides a comparison between the Role-related API method and the
corresponding Identity Beans method available in the Identity Governance
Framework Aris ID API.

Identity Beans methods marked with a double asterisk (**) have an optional
parameter: Map<String.Object> appCtxMap. For example,
RoleManager.searchRolesbyPage(List<PropertyFilterValue>
attrFiltersList, Map<String,Object> appCtxMap). appCtxMap may
contain the following elements:

■ UserManager.APP_CTX_AUTHUSER: java.security.Principal, the user context to
execute under.

■ UserManager.APP_CTX_PAGE: String value of Page size. This is applicable only
for search methods returning SearchResults object.

■ UserManager.APP_CTX_LOCALE: String value of language code.

Get all the reports of
an User either direct
or indirect

SearchResponse
User.getReportees(boole
an direct)

** List<User>
UserManager.getReportees(User user, int
nLevels)

Get Management
chain of an user

List
User.getManagementCh
ain(int max, String
upToManagerName,
String upToTitle)

** List<User>
UserManager.getManagementChain(User
user, int nLevels, String title, String
manager)

Get/Set of Binary
Attributes

Available.

Property in User/Role
API supports binary
attributes

byte[]
user.getJPEGPhoto()

void
user.setJPEGPhoto(Strin
g imgpath)

Available.

byte[] User.getJpegphoto()

void User.setJpegphoto(byte[] value)

Selecting the Realm Available.

env.put(OIDIdentityStor
eFactory.RT_
SUBSCRIBER_NAME,
"<realm dn>");

IdentityStoreFactory.getI
dentityStoreInstance(env
);

This is part of Mapping configuration.

Table 4–2 Comparison Between Role-Related APIs and ArisID API

Functionality User/Role API Method Identity Beans Method

Creating a Role Role
RoleManager.createRole(S
tring name, int scope)

Role
RoleManager.createRole(S
tring name)

** void
RoleManager.createRole(List<PropertyVal
ue> attrVals)

Table 4–1 (Cont.) Comparison Between User-Related API and ArisID API

Functionality User/Role API Method Identity Beans Method

Comparison Between User and Role API and Aris ID API

4-8 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

Deleting a Role void
RoleManager.dropRole(R
oleProfile role)

void
RoleManager.dropRole(R
ole role)

** void
RoleManager.dropRole(IPrincipalIdentifie
r principal)

** void RoleManager.dropRole(Role
subj)

Check if create role is
supported

boolean
RoleManager.isCreateRol
eSupported()

boolean
RoleManager.isCreateRoleSupported()

Check if modify role
is supported

boolean
RoleManager.isModifyRo
leSupported()

boolean
RoleManager.isModifyRoleSupported()

Check if delete role is
supported

boolean
RoleManager.isDropRole
Supported()

boolean
RoleManager.isDropRoleSupported()

Is the Group owned
by a User

boolean
RoleManager.isGranted(R
ole parent, Principal
principal)

** boolean RoleManager.isGranted(Role
role, Role member, boolean direct)

** boolean RoleManager.isGranted(Role
role, User member, boolean direct)

Is the Group owned
by a User

boolean
RoleManager.isOwnedBy
(Role parent, Principal
principal)

** boolean RoleManager.isOwned(Role
role, Role owner, boolean direct)

** boolean RoleManager.isOwned(Role
role, User owner, boolean direct)

Is the group
managed by a User

boolean
RoleManager.isManaged
By(Role parent, Principal
principal)

** boolean
RoleManager.isManaged(Role role, Role
manager, boolean direct)

** boolean
RoleManager.isManaged(Role role, User
manager, boolean direct)

Get all the members
of a Role either direct
/ indirect

SearchResponse
Role.getGrantees(SearchF
ilter filter, boolean direct)

** List<User>
RoleManager.getGrantees(Role role, int
nLevels, UserManager usermanager)

Add a user as a
member to a role

void
RoleManager.grantRole(R
ole parent, Principal
principal)

** void Role.addMember(Role role)

** void Role.addMember(String value)

** void Role.addMember(User user)

Remove a user from
being member of a
role

void
RoleManager.revokeRole(
Role parent, Principal
principal)

** List<User>
RoleManager.getOwners(Role role, int
nLevels, UserManager usermanager)

Get all the owners of
a specific Role either
direct / indirect

SearchResponse
Role.getOwners(SearchFil
ter filter, boolean direct)

SearchResponse
Role.getOwners(SearchFil
ter filter)

** List<User>
RoleManager.getOwners(Role role, int
nLevels, UserManager usermanager)

Add a user as a
owner of a role

void
Role.addOwner(Principal
principal)

** void Role.addOwner(Role role)

** void Role.addOwner(String value)

** void Role.addOwner(User user)

Table 4–2 (Cont.) Comparison Between Role-Related APIs and ArisID API

Functionality User/Role API Method Identity Beans Method

Comparison Between User and Role API and Aris ID API

Migrating From the User and Role API to the ArisID API 4-9

Remove a user from
being a owner of a
Role

void
Role.removeOwner(Princi
pal principal)

** void Role.deleteOwner(Role role)

** void Role.deleteOwner(String value)

** void Role.deleteOwner(User user)

Get all the managers
of a Role either direct
/ indirect

SearchResponse
Role.getManagers(Search
Filter filter, boolean
direct)

SearchResponse
Role.getManagers(Search
Filter filter)

** List<User>
RoleManager.getManagers(Role role, int
nLevels, UserManager usermanager)

Add an user as a
manager of a Role

void
Role.addManager(Princip
al principal)

** void Role.addManager(Role role)

** void Role.addManager(String value)

** void Role.addManager(User user)

Remove an user
from being manager
of a Role

void
Role.removeManager(Pri
ncipal principal)

** void Role.deleteManager(Role role)

** void Role.deleteManager(String value)

** void Role.deleteManager(User user)

Getting the role
property

Property
Role.getProperty(String
propName)

Note: User Role API,
fetches these attribute
values from cache. If it
misses cache, it fetches
from repository)

IAttributeValue Role.getAttribute(String
attribute)

PredicateValue Role.getPredicate(String
predicate)

Object Role.getProperty(String property)

Determine the Role
Type

Role.isApplicationRole

Role.isEnterpriseRole

Role.isSeeded

Search Roles for a
given search criteria

SearchResponse
IdentityStore.searchRoles(
int scope,
SearchParameters
params)

** List<Role>
RoleManager.searchRoles(List<PropertyFi
lterValue> attrFiltersList)

** SearchResults<Role>
RoleManager.searchRolesbyPage(List<Pr
opertyFilterValue> attrFiltersList)

Search a Role by
name / uniquename
/ guid

Role
IdentityStore.searchRole(i
nt searchType, String
value)

** Role
RoleManager.searchUser(List<PropertyFil
terValue> attrFiltersList)

** Role RoleManager.searchUser(String
guid)

Search both User and
Roles for a given
filter

SearchResponse
IdentityStore.search(Searc
hParameters params)

This is available through separate
methods: UserManager.searchUsers,
RoleManager.searchRoles

Table 4–2 (Cont.) Comparison Between Role-Related APIs and ArisID API

Functionality User/Role API Method Identity Beans Method

Comparison Between User and Role API and Aris ID API

4-10 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

A

Sample Application A-1

ASample Application

The following sample application uses IDX User/Role Beans.

SearchUsers.jsp
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@page import="org.openliberty.arisid.*"%>
<%@page import="org.openliberty.arisidbeans.*"%>
<%@page import="oracle.igf.userrole.*"%>
<%@page import="java.util.*"%>
<%@page import="java.net.URI"%>
<%!public static UserManager uMgr = null;
{
 try {
 uMgr = new UserManager(null);
 } catch (Exception e) {
 e.printStackTrace();
 }

}
%>
<html>
<head>
<title>Search Users</title>
<%

String firstname = request.getParameter("firstname");
String lastname = request.getParameter("lastname");
String telephone = request.getParameter("telephone");

List<PropertyFilterValue> attrFilters = new ArrayList<PropertyFilterValue>();
attrFilters.add(new PropertyFilterValue("firstname", firstname,
AttributeFilter.OP_BGNSWITH));
attrFilters.add(new PropertyFilterValue("lastname", lastname, AttributeFilter.OP_
BGNSWITH));
attrFilters.add(new PropertyFilterValue("telephone", telephone,
AttributeFilter.OP_CONTAINS));

List<User> subjs = uMgr.searchUsers(attrFilters);

%>

SearchUsers.html

A-2 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

</head>
<body>

Home
<center>List of Users with FirstName starting with "<%=firstname%>", LastName
starting with "<%=lastname%>" and TelephoneNumber containing
"<%=telephone%>"</center>

<%
Iterator<User> sIter = subjs.iterator();
while (sIter.hasNext()) {
 User subj = sIter.next();

 Map<String, IAttributeValue> vals = subj.getAllAttributes();
 Iterator<IAttributeValue> iter = vals.values().iterator();
%>
<table border="0">
 <tr>
 <th>Item</th>
 <th>Value</th>
 </tr>
 <%
 while (iter.hasNext()) {
 IAttributeValue val = iter.next();
 String name = val.getNameIdRef();
 String value = null;
 if (val.size() > 0)
 value = val.get(0);
if (value != null)
{
 %>
 <tr>
 <td><%=name%></td>
 <td><%=value%></td>
 </tr>
 <%
}
 }
 %>
</table>
<%
 }
%>

Home
</body>
</html>

SearchUsers.html
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<HTML>
<HEAD><TITLE>Search Users</TITLE></HEAD>
<BODY>
<FORM METHOD=POST ACTION="SearchUsers.jsp">

First Name Starting with <INPUT TYPE=TEXT NAME=firstname SIZE=30>

SearchUsers.html

Sample Application A-3

Last Name Starting with <INPUT TYPE=TEXT NAME=lastname SIZE=30>

Telephone Number containing <INPUT TYPE=TEXT NAME=telephone SIZE=15>

<P><INPUT TYPE=SUBMIT>
</FORM>
</BODY>
</HTML>

SearchUsers.html

A-4 Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide

	Contents
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Using the Identity Governance Framework ArisID API
	About the Identity Governance Framework
	Benefits to Organizations
	Benefits to Developers

	About the Identity Governance Framework ArisID API
	Developing Applications With the ArisID API
	Configuring CARML Files
	Configuring the Identity Repository
	Configuring the Mapping File

	System Requirements and Certification

	2 Design Recommendations
	Choose a LoginID
	Choose a UniqueKey
	Specify Multiple Language Support
	Handle Large Results
	Secure the Application
	Domain Level Credentials
	Application Level Credentials

	3 Developing Applications
	Using the Identity Governance Framework ArisID API
	Creating the Project
	Creating and Editing the CARML File
	Generating ArisID Beans
	How to Use the ArisID Beans in an Application
	Editing the Mapping File

	4 Migrating From the User and Role API to the ArisID API
	Introduction
	Migrate a Simple Application
	Initialize the Application
	Perform Search Operations
	SearchByGuid
	SearchByName
	SearchUsers
	SearchByPage

	Migrate Complex Application
	Identify the New Attributes
	Identify the Interactions
	Generate ArisID Beans by Using the JDeveloper Extension
	Set Up the Environment
	Perform Search Operations

	Comparison Between User and Role API and Aris ID API
	User-Related APIs
	Role-Related APIs

	A Sample Application
	SearchUsers.jsp
	SearchUsers.html

