
Oracle® iPlanet Web Proxy Server 4.0.14
Performance Tuning, Sizing, and Scaling
Guide

Part No: 821–1887
June 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

100624@24378

Contents

Preface ...11

1 Performance and Monitoring Overview ..17
Performance Issues .. 17
SSL Performance .. 18
Monitoring Server Performance .. 18

About Statistics ... 19
Monitoring Current Activity Using stats-xml ... 21
Monitoring Current Activity Using perfdump ... 22
Monitoring Current Activity Using the Java ES Monitoring Console 24

2 Tuning Proxy Server ..25
General Tuning Tips ... 25
Understanding Threads, Processes, and Connections ... 26

Connection-Handling Overview ... 26
Custom Thread Pools .. 28
Native Thread Pool .. 29
Process Modes .. 30

Using Monitoring Data to Tune Your Server .. 32
Connection Queue Information .. 33
HTTP Listener (Listen Socket) Information .. 35
Keep-Alive Information .. 36
Thread Information ... 40
File Cache Statistics Information ... 41
Thread Pool Information .. 46
DNS Cache Information ... 49

Tuning the ACL Cache ... 51

3

Tuning the ACL User Cache (Authentication Cache) .. 51
Tuning the Proxy Disk Cache to Store Dynamic Content ... 52
Using Busy Functions ... 52

3 Common Performance Problems ..53
check-acl Server Application Functions ... 53
Specific Configurations ... 54
Low-Memory Situations ... 54
Too Few Threads ... 54
Cache Not Utilized .. 55
Keep-Alive Connections Flushed .. 55
Log File Modes ... 55
Garbage Collection .. 56

4 Platform-Specific Issues and Tips ...57
Solaris Platform-Specific Issues ... 57

Files Open in a Single Process (File Descriptor Limits) ... 57
Failure to Connect to HTTP Server ... 58
Connection Refused Errors .. 59
Tuning TCP Buffering ... 59

Solaris File System Tuning ... 59
High File System Page-In Rate .. 60
Reduce File System Housekeeping ... 60
Long Service Times on Busy Disks or Volumes ... 60

Solaris Platform-Specific Performance Monitoring .. 61
Short-Term System Monitoring .. 61
Long-Term System Monitoring ... 61
Intelligent Monitoring ... 62

Solaris 10 Platform-Specific Tuning Information ... 62
Tuning Solaris for Performance Benchmarking .. 62
Tuning UltraSPARC T1–Based Systems for Performance Benchmarking 63

Tuning Operating System and TCP Settings .. 63
Disk Configuration .. 65
Network Configuration ... 65
Proxy Server Start Options ... 65

Contents

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 20104

5 Sizing and Scaling Your Server .. 67
Processors ... 67
Memory .. 67
Drive Space ... 68
Networking .. 68

6 Scalability Studies ...69
Study Goals ... 69
Study Conclusion .. 69
Hardware .. 70
Network Configuration .. 70
Software .. 70

Content ... 70
Configuration and Tuning ... 71

Network Configuration ... 72
Proxy Server Tuning .. 72
Cache in Memory ... 73

Performance Tests and Results .. 73
Configuration and Performance .. 74

Index ..77

Contents

5

6

Figures

FIGURE 2–1 Proxy Server Connection Handling .. 27

7

8

Tables

TABLE 1–1 Methods of Monitoring Performance ... 19
TABLE 2–1 Connection Queue Statistics .. 33
TABLE 2–2 Keep-Alive Statistics .. 36
TABLE 2–3 File Cache Statistics ... 42
TABLE 2–4 Thread Pools Statistics .. 46
TABLE 2–5 DNS Cache Statistics ... 50
TABLE 4–1 Tuning Solaris for Performance Benchmarking .. 62
TABLE 4–2 Tuning 64-bit systems for performance benchmarking 64
TABLE 6–1 Proxy Server Tuning Settings ... 73

9

10

Preface

This guide discusses adjustments that you can make to improve the performance of Oracle
iPlanet Web Proxy Server. The guide provides tuning, scaling, sizing tips and suggestions. It
also provides possible solutions to common performance problems and data from scalability
studies. It also addresses some configuration-specific and platform-specific issues.

This preface consists of the following sections:

■ “Who Should Use This Book” on page 11
■ “How This Book Is Organized” on page 11
■ “The Proxy Server Documentation Set” on page 12
■ “Documentation Conventions” on page 13
■ “Default Paths and File Names” on page 15
■ “Documentation, Support, and Training” on page 15
■ “Searching Oracle Product Documentation” on page 16
■ “Third-Party Web Site References” on page 16

Who Should Use This Book
This guide is intended for advanced administrators only. Be sure to read this guide and other
relevant server documentation before making any changes.

How This Book Is Organized
This guide is divided into chapters. Each chapter addresses specific areas and tasks. The
following table lists the chapters of the guide and their contents.

TABLE P–1 Guide Organization

Chapter Description

Chapter 1, “Performance and Monitoring Overview” This chapter provides a general discussion of server
performance considerations, and more specific
information about monitoring server performance.

11

TABLE P–1 Guide Organization (Continued)
Chapter 2, “Tuning Proxy Server” This chapter describes specific adjustments you can

make that might improve iPlanet Web Proxy Server;
performance. It provides an overview of Proxy
Server's connection-handling process so that you can
better understand the tuning settings.

Chapter 3, “Common Performance Problems” This chapter discusses common web site performance
problems.

Chapter 4, “Platform-Specific Issues and Tips” This chapter provides platform-specific tuning tips.

Chapter 5, “Sizing and Scaling Your Server” This chapter examines the subsystems of your server,
and provides recommendations for optimal
performance.

Chapter 6, “Scalability Studies” This chapter describes the results of scalability studies.

The Proxy Server Documentation Set
The documentation set lists the Oracle documents that are related to Proxy Server. The URL for
Proxy Server 4.0.14 documentation is http://docs.sun.com/coll/1311.14. For an
introduction to Proxy Server, refer to the books in the order in which they are listed in the
following table.

TABLE P–2 Proxy Server Documentation

Document Title Contents

Oracle iPlanet Web Proxy
Server 4.0.14 Release Notes

The Proxy Server release:
■ Late-breaking information about the software and the

documentation
■ New features
■ Supported platforms and environments
■ System requirements
■ Known issues and workarounds

Oracle iPlanet Web Proxy
Server 4.0.14 Installation and
Migration Guide

Performing installation and migration tasks:
■ Installing Proxy Server
■ Migrating from version 3.6 to version 4

Preface

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201012

http://docs.sun.com/coll/1311.14
http://docs.sun.com/doc/821-1888
http://docs.sun.com/doc/821-1888
http://docs.sun.com/doc/821-1885
http://docs.sun.com/doc/821-1885
http://docs.sun.com/doc/821-1885

TABLE P–2 Proxy Server Documentation (Continued)
Document Title Contents

Oracle iPlanet Web Proxy
Server 4.0.14 Administration Guide

Performing administration and management tasks:
■ Using the administration and command-line interfaces
■ Configuring server preferences
■ Managing users and groups
■ Monitoring and logging server activity
■ Using certificates and public key cryptography to secure the server
■ Controlling server access
■ Proxying and routing URLs
■ Caching
■ Filtering content
■ Using a reverse proxy
■ Using SOCKS

Oracle iPlanet Web Proxy
Server 4.0.14 Configuration File
Reference

Editing configuration files

Oracle iPlanet Web Proxy
Server 4.0.14 NSAPI Developer’s Guide

Creating custom Netscape Server Application Programming Interface
(NSAPI) plugins

Oracle iPlanet Web Proxy
Server 4.0.14 Performance Tuning,
Sizing, and Scaling Guide

Tuning Proxy Server to optimize performance

Documentation Conventions
This section describes the following conventions used in Proxy Server documentation:

■ “Typographic Conventions” on page 13
■ “Symbol Conventions” on page 14
■ “Shell Prompts in Command Examples” on page 15

Typographic Conventions
The following table describes the typographic changes that are used in this book.

Preface

13

http://docs.sun.com/doc/821-1882
http://docs.sun.com/doc/821-1882
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1886
http://docs.sun.com/doc/821-1886
http://docs.sun.com/doc/821-1887
http://docs.sun.com/doc/821-1887
http://docs.sun.com/doc/821-1887

TABLE P–3 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–4 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Preface

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201014

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–5 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Default Paths and File Names
The following table describes the default paths and file names used in Proxy Server
documentation.

TABLE P–6 Default Paths and File Names

Placeholder Description Default Value

install-dir Represents the base installation
directory for iPlanet Web Proxy
Server.

Solaris and Linux installations:
$HOME/Oracle/Middleware/ProxyServer4

Windows installations:
C:\Oracle\Middleware\ProxyServer4

Documentation, Support, and Training
The Oracle web site provides information about the following additional resources:

■ Documentation (http://docs.sun.com/)
■ Support (http://www.sun.com/support/)
■ Training (http://education.oracle.com/pls/web_prod-plq-dad/

db_pages.getpage?page_id=315)

Preface

15

http://docs.sun.com/
http://www.sun.com/support/
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315

Searching Oracle Product Documentation
Besides searching Oracle product documentation from the docs.sun.com web site, you can use
a search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “proxy,” type the following:

proxy site:docs.sun.com

To include other Oracle web sites in your search (for example, java.sun.com, www.sun.com,
and developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

Preface

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201016

http://java.sun.com
http://www.oracle.com/index.html
http://developers.sun.com

Performance and Monitoring Overview

Oracle iPlanet Web Proxy Server (Proxy Server) is designed to meet the needs of high-traffic
sites in the world. It can serve both static and dynamically generated content. Proxy Server can
run in the Secure Sockets Layer (SSL) mode, enabling secure transfer of information.

This guide helps you to define your server workload and size a system to meet your
performance needs. Your environment is unique, so the impact of the suggestions provided in
this guide will depend on your specific environment.

This chapter provides a general discussion of server performance considerations, and more
specific information about monitoring server performance.

This chapter includes the following topics:
■ “Performance Issues” on page 17
■ “SSL Performance” on page 18
■ “Monitoring Server Performance” on page 18

Performance Issues
You must first determine your requirements. Users want fast response times, typically less than
100 milliseconds, high availability with no connection refused messages, and significant
control. Webmasters and proxy server administrators, on the other hand, need high connection
rates, high data throughput, and uptime approaching 100%. You need to define what
performance means for your particular situation based on your requirement.

The following factors have an impact on performance:
■ The Number of peak concurrent users
■ Security requirements

Encrypting your proxy server’s data streams with SSL makes an enormous difference to your
site’s credibility for electronic commerce and other security conscious applications, but can
seriously impact your CPU load. For more information, see “SSL Performance” on page 18.

1C H A P T E R 1

17

■ Disk Cache hits or misses

A high percentage of cache hits indicate efficient utilization of cached objects, which in turn
leads to improved performances.

■ Custom configurations to increase cache efficiency

You can configure Proxy Server to increase cache efficiency, and performance, at the cost of
spec-compliance. For example, you can have configurations that ignores page reload
requests , or those that ignore cache directives in response headers that do not allow caching
the response.

■ Disk cache location

Using RAM-based file systems to hold the disk cache can significantly improve
performance.

■ Hardware bottlenecks

Care should be taken to ensure that hardware factors such as network speed and disk
throughput match the processing power of the CPU as well as the request handling capacity
of the proxy server.

■ Behavior of origin servers

The origin servers response time has a crucial effect on the proxy server's performance
numbers.

SSL Performance
SSL always has a significant impact on throughput. Hence for optimum performance, minimize
your use of SSL or consider using a multi-CPU server to handle it.

For SSL, Proxy Server uses the Network Security Services (NSS) library. However, you can use
other options for SSL:

■ If you are using the Solaris 10 operating system, kernel SSL (KSSL) is available. It does not
contain all the algorithms displayed, as does NSS, but it often provides better performance.

■ A cryptographic card hardware accelerator for SSL can also improve performance.

Monitoring Server Performance
You must measure the system behavior before and after a change to check performance. You
can monitor the performance of Proxy Server in different ways.

SSL Performance

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201018

TABLE 1–1 Methods of Monitoring Performance

Monitoring Method How to Enable How to Access Advantages and Requirements

Statistics through the
Admin console

Enabled by default In the Admin console, for a
configuration, click the
Monitor tab

Accessible when session
threads are hanging.
Administration Server
must be running.

XML-formatted statistics
(stats-xml) by using a
browser

Enable through
Admin console or by
editing a
configuration file

Through a URI Administration Server
need not be running.

perfdump by using a
browser

Enable through
Admin console or by
editing a
configuration file

Through a URI Administration Server
need not be running.

Java ES monitoring Enabled by default Through the Java ES
Monitoring Console

Only for Java ES
installations.
Administration Server
must be running.

Monitoring the server does have some impact on computing resources. In general, using
perfdump through the URI is the least expensive, followed by using stats-xml through a URI.
Because using the Administration Server requires computing resources, using the Admin
console is an expensive monitoring method.

For more information about the monitoring methods, see the following sections:

■ “About Statistics” on page 19
■ “Monitoring Current Activity Using stats-xml” on page 21
■ “Monitoring Current Activity Using perfdump” on page 22
■ “Monitoring Current Activity Using the Java ES Monitoring Console” on page 24

About Statistics
You can monitor performance statistics by using the Admin Console user interface, the
stats-xml URI, and the perfdump. For these monitoring methods, the server uses the statistics
it collects. None of these monitoring methods will work if statistics are not collected.

The statistics give you information at the configuration level, the server instance level, or the
virtual server level. The statistics are broken up into functional areas.

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 19

For configuration, statistics are available in the following areas:
■ Requests
■ Errors
■ Response Time

For the server instance, statistics are available in the following areas:
■ Requests
■ Errors
■ Response Time
■ General
■ Java Virtual Machine (JVM)
■ Connection Queue
■ Keep Alive
■ Host DNS Cache
■ Client DNS Cache
■ In-Memory File Cache
■ Thread Pools
■ Session Threads, including profiling data (exists if profiling is enabled)

Some statistics are set to zero if Quality of Service (QoS) is not enabled. For example, the
count of open connections, the maximum open connections, the rate of bytes transmitted,
and the maximum byte transmission rate is zero if disabled.

Enabling Statistics
To enable statistics, use Admin Console.

Note – Collecting statistics causes a slight hit to performance.

▼ To Enable Statistics (stats-xml) from the Admin Console

Select the Proxy Server instance.

Click the Server Status tab.

Click the Monitor Current Activity sub tab.

Choose Yes for Activate Statistics/Profiling?

Save and apply changes.

1

2

3

4

5

Monitoring Server Performance

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201020

Monitoring Current Activity Using stats-xml

You can display statistics in XML format by using stats-xml. You can view the stats-xml
output through a URI, that you need to enable, or you can view the stats-xml output through
the CLI, that is enabled by default.

▼ To Monitor Current Activity from the Admin Console

Select the Proxy Server instance.

Click the Server Status tab.

Click the Monitor Current Activity sub tab.
Ensure that Statistics is enabled (see above).

Select the required Statistics from the dropdown list under Monitor Proxy Server Statistics and
click Submit.

▼ To Limit the stats-xml Statistics Displayed in the URI
You can modify the stats-xml URI to limit the data it provides.

Modify the stats-xmlURI to limit the information by setting elements to 0or 1.
An element set to 0 is not displayed on the stats-xml output. For example:

http://yourhost:port/stats-xml?thread=0&process=0

This syntax limits the stats-xml output so that thread and process statistics are not included.
By default all statistics are enabled (set to 1).

Most of the statistics are available at the server level, but some are available at the process level.
Use the following syntax elements to limit stats-xmlstatistics:

■ cache-bucket

■ connection-queue

■ connection-queue-bucket (process-level)
■ cpu-info

■ host-dns-bucket

■ client-dns-bucket

■ keepalive-bucket

■ process

■ profile

■ profile-bucket (process-level)
■ request-bucket

■ thread

1

2

3

4

●

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 21

■ thread-pool

■ thread-pool-bucket (process-level)

Monitoring Current Activity Using perfdump

▼ To Enable and Use the perfdump SAF

Add the following object to your obj.conffile after the default object:
<Object name="perf">
Service fn="service-dump"
</Object>

Add the following line to the default object:
NameTrans fn=assign-name from="/.perf" name="perf"

Restart your server software.

Go to http://computer_name:proxyport/.perf and access perfdump.
You can specify the request time for the perfdump statistics. The browser automatically
refreshes the statistics based on the time you specify. The following example sets the refresh
time to every 5 seconds:

http://computer_name:proxyport/.perf?refresh=5

Using Performance Buckets
Performance buckets enable you to define buckets and link them to various server functions.
Every time one of these functions is invoked, the server collects statistical data and adds the data
to the bucket. The cost of collecting this information is minimal, and the impact on the server
performance is usually negligible. You can access this information by using perfdump. The
following information is stored in a bucket:

■ Name of the bucket. This name associates the bucket with a function.
■ Description. A description of the functions with which the bucket is associated.
■ Number of requests for this function. The total number of requests that caused this

function to be called.
■ Number of times the function was invoked. This number might not coincide with the

number of requests for the function, because some functions might be executed more than
once for a single request.

■ Function latency or the dispatch time. The time taken by the server to invoke the function.
■ Function time. The time spent in the function itself.

1

2

3

4

Monitoring Server Performance

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201022

default-bucket is predefined by the server. It records statistics for the functions not
associated with any user-defined bucket.

Configuration

You must specify all configuration information for performance buckets in the obj.conf file.
Only the default-bucket is automatically enabled.

You must enable performance statistics collection and perfdump.

The following examples show how to define new buckets in obj.conf:

Init fn="define-perf-bucket" name="acl-bucket" description="ACL bucket"

The above examples creates a bucket: acl-bucket. To associate this bucket with functions, add
bucket=bucket-name to the obj.conf function for which to measure performance.

Example

PathCheck fn="check-acl" acl="default" bucket="acl-bucket"
...

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file" bucket="file-bucket"
...

<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi" bucket="cgi-bucket"
</Object>

Performance Report

The Server statistics in buckets can be accessed by using perfdump. The performance buckets
information is located in the last section of the report returned by perfdump.

The report contains the following information:

■ Average, Total, and Percent columns show data for each requested statistic.
■ Request Processing Time is the total time required by the server to process all requests

received.
■ Number of Requests is the total number of requests for the function.
■ Number of Invocations is the total number of times that the function was invoked. This

number differs from the number of requests because a function can be called multiple times
while processing one request. The percentage column for this row is calculated in reference
to the total number of invocations for all of the buckets.

■ Latency is the time in seconds that Proxy Server takes to prepare for calling the function.

Monitoring Server Performance

Chapter 1 • Performance and Monitoring Overview 23

■ Function Processing Time is the time in seconds that Proxy Server spends in the function.
The percentage of Function Processing Time and Total Response Time is calculated with
reference to the total Request Processing Time.

■ Total Response Time is the sum in seconds of Function Processing Time and Latency.

The following example shows performance bucket information in perfdump:

Performance Counters:

--

Average Total Percent

Total number of requests: 62647125

Request processing time: 0.0343 2147687.2500

default-bucket (Default bucket)

Number of Requests: 62647125 (100.00%)

Number of Invocations: 3374170785 (100.00%)

Latency: 0.0008 47998.2500 (2.23%)

Function Processing Time: 0.0335 2099689.0000 (97.77%)

Total Response Time: 0.0343 2147687.2500 (100.00%)

Monitoring Current Activity Using the Java ES
Monitoring Console
The statistics displayed through the Proxy Server Admin Console is also accessible through the
Java ES Monitoring Console. Though the information is the same, it is presented in a different
format by using Common Monitoring Data Model (CMM). You can also monitor your server
by using the Java ES monitoring tools. For more information about using the Java ES
monitoring tools, see Sun Java Enterprise System 5 Monitoring Guide at
http://docs.sun.com/app/docs/doc/819-5081. Use the same settings to tune the server,
irrespective of the monitoring method used.

Monitoring Server Performance

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201024

Tuning Proxy Server

This chapter describes specific adjustments you can make that might improve Proxy Server
performance. It provides an overview of the Proxy Server connection-handling process so that
you can better understand the tuning settings. The chapter includes the following topics:

■ “General Tuning Tips” on page 25
■ “Understanding Threads, Processes, and Connections” on page 26
■ “Using Monitoring Data to Tune Your Server” on page 32
■ “Tuning the ACL Cache” on page 51
■ “Tuning the ACL User Cache (Authentication Cache)” on page 51
■ “Tuning the Proxy Disk Cache to Store Dynamic Content” on page 52
■ “Using Busy Functions” on page 52

Note – Be very careful when tuning your server. Always back up your configuration files before
making any changes.

General Tuning Tips
As you tune your server, it is important to remember that your specific environment is unique.
The impacts of the suggestions provided in this guide will vary, depending on your specific
environment. Ultimately you must rely on your own judgement and observations to select the
adjustments that are best for you.

As you work to optimize performance, keep the following guidelines in mind:

■ Work methodically
As much as possible, make one adjustment at a time. Measure your performance before and
after each change, and rescind any change that does not produce a measurable
improvement.

■ Adjust gradually

2C H A P T E R 2

25

When adjusting a quantitative parameter, make several changes in succession, rather than
trying to make a drastic change all at once. Different systems face different circumstances,
and you might pass by your system’s best setting if you change the value too rapidly.

■ Start fresh

At each major system change, be it a hardware or software upgrade or deployment of a
major new application, review all previous adjustments to see whether they still apply. After
a Solaris upgrade, you should start over with an unmodified /etc/system file.

■ Stay informed

Read the Oracle iPlanet Web Proxy Server 4.0.14 Release Notes and the release notes for your
operating system whenever you upgrade your system. The release notes often provide
updated information about specific adjustments.

Understanding Threads, Processes, and Connections
Before tuning your server, you should understand the connection-handling process in Proxy
Server. Request processing threads handle Proxy Server connections. You can configure
Request handling threads from the Admin console or by editing the configuration file. This
section includes the following topics:

■ “Connection-Handling Overview” on page 26
■ “Custom Thread Pools” on page 28
■ “Native Thread Pool” on page 29
■ “Process Modes” on page 30

Connection-Handling Overview
In Proxy Server, acceptor threads on a listen socket accept connections and put them into a
connection queue. Request processing threads in a thread pool then pick up connections from
the queue and service the requests.

Understanding Threads, Processes, and Connections

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201026

http://docs.sun.com/doc/821-1888

A request is not thread-safe if processing the request requires interaction between a number of
threads. A part of the request which is not thread-safe is transferred to a NativePool, which is a
collection of threads which can interact with each other. The NativePool processes the request
and communicates the request back to the request processing thread.

At startup, the server only creates the number of threads defined in the thread pool minimum
threads, by default set to number of processors. As the load increases, the server creates more
threads. The policy for adding new threads is based on the connection queue state.

Each time a new request is created, the number of requests waiting in the queue, often
considered the backlog of connections, is compared to the number of request processing
threads already created. If the number of requests is greater than the number of threads, more
threads are created.

The process of adding new session threads is strictly limited by the maximum threads value. For
more information on maximum threads, see “Maximum Threads (Maximum Simultaneous
Requests)” on page 40.

You can change the settings that affect the number and timeout of threads, processes, and
connections in the Admin console.

Low Latency and High Concurrency Modes
The server can run in one of two modes, depending upon the load. It changes modes to
accommodate the load most efficiently.
■ In low latency mode, for keep-alive connections, session threads themselves poll for new

requests.
■ In high concurrency mode, after finishing the request, session threads give the connection to

the keep-alive subsystem. In high concurrency mode, the keep-alive subsystem polls for new
requests for all keep-alive connections.

When the server is started, it starts in low latency mode. When the load increases, the server
moves to high concurrency mode. The decision to move from low latency mode to high

FIGURE 2–1 Proxy Server Connection Handling

Requests

Thread Pool

Proxy Server

Acceptor
Threads

Connection
Queue

Request
Processing

Threads

Understanding Threads, Processes, and Connections

Chapter 2 • Tuning Proxy Server 27

concurrency mode and back again is made by the server, based on connection queue length,
average total sessions, average idle sessions, and currently active and idle sessions.

Disabled Thread Pools
If a thread pool is disabled, no threads are created in the pool, no connection queue is created,
and no keep-alive threads are created. When the thread pool is disabled, the acceptor threads
themselves process the request.

Connection–Handling magnus.confDirectives for NSAPI
In addition to the settings discussed above, you can edit the following directives in the
magnus.conf file to configure additional request-processing settings for NSAPI plug-ins:
■ KernelThreads – Determines whether NSAPI plug-ins always run on kernel-scheduled

threads (Windows only)
■ TerminateTimeout – Determines the maximum amount of time to wait for NSAPI plug-ins

to finish processing requests when the server is shut down

For detailed information about these directives, see the Oracle iPlanet Web Proxy Server 4.0.14
Configuration File Reference.

Custom Thread Pools
By default, the connection queue sends requests to the default thread pool. However, you can
also create your own thread pools in magnus.conf using a thread pool Init function. These
custom thread pools are used for executing NSAPI Service Application Functions (SAFs), not
entire requests.

If the SAF requires the use of a custom thread pool, the current request processing thread
queues the request, waits until the other thread from the custom thread pool completes the SAF,
then the request processing thread completes the rest of the request.

For example, the obj.conf file contains the following:

NameTrans fn="assign-name" from="/testmod" name="testmod" pool="my-custom-pool"
...

<Object name="testmod">
ObjectType fn="force-type" type="magnus-internal/testmod"
Service method=(GET|HEAD|POST) type="magnus-internal/testmod"
fn="testmod_service" pool="my-custom-pool2"
</Object>

In this example, the request is processed as follows:

1. The request processing thread, referred to as A1 in this example, picks up the request and
executes the steps before the NameTrans directive.

Understanding Threads, Processes, and Connections

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201028

http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883

2. If the URI starts with /testmod, the A1 thread queues the request to the my-custom-pool
queue. The A1 thread waits.

3. A different thread in my-custom-pool, called the B1 thread in this example, picks up the
request queued by A1. B1 completes the request and returns to the wait stage.

4. The A1 thread wakes up and continues processing the request. It executes the ObjectType
SAF and moves on to the Service function.

5. Because the Service function must be processed by a thread in my-custom-pool2, the A1
thread queues the request to my-custom-pool2.

6. A different thread in my-custom-pool2, called C1 in this example, picks up the queued
request. C1 completes the request and returns to the wait stage.

7. The A1 thread wakes up and continues processing the request.

In this example, three threads, A1, B1, and C1 work to complete the request.

Additional thread pools are a way to run thread-unsafe plug-ins. By defining a pool with a
maximum number of threads set to 1, only one request is allowed into the specified service
function. In the previous example, if testmod_service is not thread-safe, it must be executed
by a single thread. If you create a single thread in the my-custom-pool2, the SAF works in a
multi-threaded Proxy Server.

For more information on defining thread pools, see “thread-pool-init” in Oracle iPlanet Web
Proxy Server 4.0.14 Configuration File Reference.

Native Thread Pool
On Windows, the native thread pool (NativePool) is used internally by the server to execute
NSAPI functions that require a native thread for execution.

Proxy Server uses Netscape Portable Runtime (NSPR), which is an underlying portability layer
providing access to the host OS services. This layer provides abstractions for threads that are
not always the same as those for the OS-provided threads. These non-native threads have lower
scheduling overhead, so their use improves performance. However, these threads are sensitive
to blocking calls to the OS, such as I/O calls. To make it easier to write NSAPI extensions that
can make use of blocking calls, the server keeps a pool of threads that safely support blocking
calls. These threads are usually native OS threads. During request processing, any NSAPI
function that is not marked as being safe for execution on a non-native thread is scheduled for
execution on one of the threads in the native thread pool.

If you have written your own NSAPI plug-ins such as NameTrans, Service, or PathCheck
functions, these execute by default on a thread from the native thread pool. If your plug-in
makes use of the NSAPI functions for I/O exclusively or does not use the NSAPI I/O functions
at all, then it can execute on a non-native thread. For this to happen, the function must be
loaded with a NativeThread="no" option, indicating that it does not require a native thread.

Understanding Threads, Processes, and Connections

Chapter 2 • Tuning Proxy Server 29

http://docs.sun.com/doc/821-1883/aebgz?a=view
http://docs.sun.com/doc/821-1883/aebgz?a=view

For example, add the following to the load-modules Init line in the obj.conf file:

Init funcs="pcheck_uri_clean_fixed_init" shlib="C:/Oracle/Middleware/ProxyServer4/lib/custom.dll"
fn="load-modules" NativeThread="no"

The NativeThread flag affects all functions in the funcs list, so if you have more than one
function in a library, but only some of them use native threads, use separate Init lines. If you set
NativeThread to yes, the thread maps directly to an OS thread.

For information on the load-modules function, see “load-modules” in Oracle iPlanet Web
Proxy Server 4.0.14 Configuration File Reference.

Process Modes
You can run Proxy Server in one of the following modes:

■ “Single-Process Mode” on page 30
■ “Multi-Process Mode” on page 31

Note – Multi-process mode is deprecated for Java technology-enabled servers. Most applications
are now multi-threaded, and multi-process mode is usually not needed. However,
multi-process mode can significantly improve overall server throughput for NSAPI
applications that do not implement fine-grained locking.

Single-Process Mode
In the single-process mode, the server receives requests from web clients to a single process.
Inside the single server process, acceptor threads are running that are waiting for new requests
to arrive. When a request arrives, an acceptor thread accepts the connection and puts the
request into the connection queue. A request processing thread picks up the request from the
connection queue and handles the request.

Because the server is multi-threaded, all NSAPI extensions written to the server must be
thread-safe. This means that if the NSAPI extension uses a global resource, like a shared
reference to a file or global variable, then the use of that resource must be synchronized so that
only one thread accesses it at a time. All plug-ins provided with the Proxy Server are thread-safe
and thread-aware, providing good scalability and concurrency. However, your legacy
applications might be single-threaded. When the server runs the application, it can only execute
one at a time. This leads to server performance problems when put under load. Unfortunately,
in the single-process design, there is no real workaround.

Understanding Threads, Processes, and Connections

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201030

http://docs.sun.com/doc/821-1883/aebgp?a=view
http://docs.sun.com/doc/821-1883/aebgp?a=view

Multi-Process Mode
You can configure the server to handle requests using multiple processes with multiple threads
in each process. This flexibility provides optimal performance for sites using threads, and also
provides backward compatibility to sites running legacy applications that are not ready to run
in a threaded environment. Because applications on Windows generally already take advantage
of multi-thread considerations, this feature applies to UNIX and Linux platforms.

The advantage of multiple processes is that legacy applications that are not thread-aware or
thread-safe can be run more effectively in Proxy Server. However, because all of the iPlanet
extensions are built to support a single-process threaded environment, they might not run in
the multi-process mode. The Search plug-ins fail on startup if the server is in multi-process
mode, and if session replication is enabled, the server will fail to start in multi-process mode.

In the multi-process mode, the server spawns multiple server processes at startup. Depending
on the configuration, each process contains one or more threads, that receive incoming
requests. Since each process is completely independent, each one has its own copies of global
variables, caches, and other resources. Using multiple processes requires more resources from
your system. Also, if you try to install an application that requires shared state, it has to
synchronize that state across multiple processes. NSAPI provides no helper functions for
implementing cross-process synchronization.

When you specify a MaxProcs value greater than 1, the server relies on the operating system to
distribute connections among multiple server processes (see “MaxProcs (UNIX/Linux)” on
page 31 for information about the MaxProcs directive). However, many modern operating
systems do not distribute connections evenly, particularly when there are a small number of
concurrent connections.

Because Proxy Server cannot guarantee that load is distributed evenly among server processes,
you might encounter performance problems if you set Maximum Threads to 1 and MaxProcs

greater than 1 to accommodate a legacy application that is not thread-safe. The problem is
especially pronounced if the legacy application takes a long time to respond to requests, for
example, when the legacy application contacts a back-end database. In this scenario, it might be
preferable to use the default value for Maximum Threads and serialize access to the legacy
application using thread pools. For more information about creating a thread pool, see
“thread-pool-init” in Oracle iPlanet Web Proxy Server 4.0.14 Configuration File Reference.

If you are not running any NSAPI in your server, you should use the default settings: one
process and many threads. If you are running an application that is not scalable in a threaded
environment, you should use a few processes and many threads, for example, 4 or 8 processes
and 128 or 512 threads per process.

MaxProcs (UNIX/Linux)

To run a UNIX or Linux server in multi-process mode, set the MaxProcs directive to a value that
is greater than 1. Multi-process mode might provide higher scalability on multi-processor

Understanding Threads, Processes, and Connections

Chapter 2 • Tuning Proxy Server 31

http://docs.sun.com/doc/821-1883/aebgz?a=view

machines and improve the overall server throughput on large systems such as the Sun Fire
T2000 server. If you set the value to less than 1, it is ignored and the default value of 1 is used.

You can set the value for MaxProcs by editing the MaxProcs parameter in magnus.conf.

Note – You will receive duplicate startup messages when running your server in MaxProcs mode.

Using Monitoring Data to Tune Your Server
This section describes the performance information available through the Admin console,
perfdump, and stats-xml. It discusses how to analyze that information and tune parameters to
improve your server’s performance.

Proxy Server automatically selects many server defaults based on the system resources. The
number of acceptor threads and keep-alive threads defaults to the number of CPUs. The
server/thread-pool/max-threads defaults to greater of 128 or the number of CPUs. The
server/thread-pool/min-threads defaults to lesser the value of
server/thread-pool/max-threads or the number of CPUs. The
server/access-log-buffer/max-buffers-per-file defaults to the number of CPUs. The
server configures the connection queue size, maximum number of keep-alive connections, and
the maximum number of open files in the file cache, based on the total number of available file
descriptors in the system. The values for these are obtained from the server log file when the log
level is set to fine. All the server chosen defaults are tunable.

The default tuning parameters are appropriate for all sites except those with very high volume.
The only settings that large sites might regularly need to change are the thread pool and keep
alive settings. Tune these settings at the configuration level in the Admin console or using wadm
commands. It is also possible to tune the server by editing the elements directly in the
server.xml file, but editing the server.xml file directly can lead to complications.

perfdump monitors statistics in the following categories, which are described in the following
sections. In most cases these statistics are also displayed in the Admin console, command-line
interface, and stats-xml output. The following sections contain tuning information for all
these categories, regardless of which method you use to monitor the data:

■ “Connection Queue Information” on page 33
■ “HTTP Listener (Listen Socket) Information” on page 35
■ “Keep-Alive Information” on page 36
■ “Thread Information” on page 40
■ “File Cache Statistics Information” on page 41
■ “Thread Pool Information” on page 46
■ “DNS Cache Information” on page 49

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201032

Connection Queue Information
In Proxy Server, a connection is first accepted by acceptor threads associated with the HTTP
listener. The acceptor threads accept the connection and put it into the connection queue.
Then, request processing threads take the connection in the connection queue and process the
request. For more information, see “Connection-Handling Overview” on page 26.

Connection queue information shows the number of sessions in the connection queue, and the
average delay before the connection is accepted by the request processing thread.

The following is an example of how these statistics are displayed in perfdump:

ConnectionQueue:

Current/Peak/Limit Queue Length 0/1853/160032

Total Connections Queued 11222922

Average Queue Length (1, 5, 15 minutes) 90.35, 89.64, 54.02

Average Queueing Delay 4.80 milliseconds

The following table shows the information displayed in the Admin Console when accessing
monitoring information for the server instance:

TABLE 2–1 Connection Queue Statistics

Present Number of Connections Queued 0

Total Number of Connections Queued 11222922

Average Connections Over Last 1 Minute 90.35

Average Connections Over Last 5 Minutes 89.64

Average Connections Over Last 15 Minutes 54.02

Maximum Queue Size 160032

Peak Queue Size 1853

Number of Connections Overflowed 0

Ticks Spent 5389284274

Total Number of Connections Added 425723

Current /Peak /Limit Queue Length
Current/Peak/Limit queue length shows, in order:

■ The number of connections currently in the queue.
■ The largest number of connections that have been in the queue simultaneously.
■ The maximum size of the connection queue. This number is:

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 33

Maximum Queue Size = Thread Pool Queue Size + Maximum Threads + Keep-Alive Queue
Size
Once the connection queue is full, new connections are dropped.

Tuning

If the peak queue length, also known as the maximum queue size, is close to the limit, you can
increase the maximum connection queue size to avoid dropping connections under heavy load.

Total Connections Queued
Total Connections Queued is the total number of times a connection has been queued. This
number includes newly-accepted connections and connections from the keep-alive system.

This setting is not tunable.

Average Queue Length
The Average Queue Length shows the average number of connections in the queue over the
most recent one-minute, five-minute, and 15-minute intervals.

This setting is not tunable.

Average Queuing Delay
The Average Queueing Delay is the average amount of time a connection spends in the
connection queue. This represents the delay between when a request connection is accepted by
the server and when a request processing thread begins servicing the request. It is the Ticks
Spent divided by the Total Connections Queued, and converted to milliseconds.

This setting is not tunable.

Ticks Spent
A tick is a system-dependent value and provided by the tickPerSecond attribute of the server
element in stats.xml. The ticks spent value is the total amount of time that connections spent
in the connection queue and is used to calculate the average queuing delay.

This setting is not tunable.

Total Number of Connections Added
The new connections added to the connection queue. This setting is not tunable.

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201034

HTTP Listener (Listen Socket) Information
The following HTTP listener information includes the IP address, port number, number of
acceptor threads, and the default virtual server. For tuning purposes, the most important field in
the HTTP listener information is the number of acceptor threads.

The following is an example of how the HTTP listeners information appears in perfdump:

ListenSocket ls1:

Address https://0.0.0.0:2014

Acceptor Threads 1

Default Virtual Server https-test

If you have created multiple HTTP listeners, perfdump displays all of them.

For more information about adding and editing listen sockets, see the Oracle iPlanet Web Proxy
Server 4.0.14 Administration Guide.

Address
The Address field contains the base address on which this listen socket is listening. A host can
have multiple network interfaces and multiple IP addresses. The address contains the IP
address and the port number.

If your listen socket listens on all network interfaces for the host machine, the IP part of the
address is 0.0.0.0.

Tuning

This setting is tunable when you edit an HTTP listener. If you specify an IP address other than
0.0.0.0, the server makes one less system call per connection. Specify an IP address other than
0.0.0.0 for best possible performance.

Acceptor Threads
Acceptor threads are threads that wait for connections. The threads accept connections and put
them in a queue where they are then picked up by worker threads. For more information, see
“Connection-Handling Overview” on page 26.

Ideally, you want to have enough acceptor threads so that there is always one available when a
user needs one, but few enough so that they do not burden the system. A good rule is to have
one acceptor thread per CPU on your system. You can increase this value to about double the
number of CPUs if you find indications of TCP/IP listen queue overruns.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 35

http://docs.sun.com/doc/821-1882
http://docs.sun.com/doc/821-1882

Tuning

This setting is tunable when you edit an HTTP listener. The number of acceptor threads
defaults to the number of CPUs on your system.

Other HTTP listener settings that affect performance are the size of the send buffer and receive
buffer. For more information regarding these buffers, see your operating system
documentation.

Tuning
This setting is tunable when you edit an HTTP listener.

Keep-Alive Information
This section provides information about the server’s HTTP-level keep-alive system.

Note – The name keep alive should not be confused with TCP keep-alives. Also, note that the
name keep-alive was changed to PersistentConnections in HTTP 1.1, but Proxy Server
continues to refer to these connections as keep-alive connections. Most modern browsers
request a web page from the server through persistent connections with the web server. The
connection is kept alive even after processing a request, so that it will be easier to process a
similar request.

The following example shows the keep-alive statistics displayed by perfdump:

KeepAliveInfo:

KeepAliveCount 198/200

KeepAliveHits 0

KeepAliveFlushes 0

KeepAliveRefusals 56844280

KeepAliveTimeouts 365589

KeepAliveTimeout 10 seconds

The following table shows the keep-alive statistics displayed in the Admin Console:

TABLE 2–2 Keep-Alive Statistics

Number of Connections Processed 0

Total Number of Connections Added 198

Maximum Connection Size 200

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201036

TABLE 2–2 Keep-Alive Statistics (Continued)
Number of Connections Flushed 0

Number of Connections Refused 56844280

Number of Idle Connections Closed 365589

Connection Timeout 10

Both HTTP 1.0 and HTTP 1.1 support the ability to send multiple requests across a single
HTTP session. A proxy server can receive hundreds of new HTTP requests per second. If every
request is allowed to keep the connection open indefinitely, the server can become overloaded
with connections. On UNIX and Linux systems, this can lead to a file table overflow very easily.

To resolve this problem, the server maintains a counter for the maximum number of waiting
keep-alive connections. A waiting keep-alive connection has fully completed processing the
previous request, and is now waiting for a new request to arrive on the same connection. If the
server has more than the maximum waiting connections open when a new connection waits for
a keep-alive request, the server closes the oldest connection. This algorithm keeps an upper
bound on the number of open waiting keep-alive connections that the server can maintain.

Proxy Server does not always honor a keep-alive request from a client. The following conditions
cause the server to close a connection, even if the client has requested a keep-alive connection:
■ The keep alive timeout is set to 0.
■ The keep alive maximum connections count is exceeded.
■ Dynamic content, such as a CGI, does not have an HTTP content-length header set. This

applies only to HTTP 1.0 requests. If the request is HTTP 1.1, the server honors keep-alive
requests even if the content-length is not set. The server can use chunked encoding for
these requests if the client can handle them (indicated by the request header
transfer-encoding: chunked).

■ The request is not HTTP GET or HEAD.
■ The request was determined to be bad. For example, if the client sends only headers with no

content.

The keep-alive subsystem in Proxy Server is designed to be massively scalable. The
out-of-the-box configuration can be less than optimal if the workload is non-persistent (that is,
HTTP 1.0 without the KeepAlive header), or for a lightly loaded system that is primarily
servicing keep-alive connections.

Keep-Alive Count
This section in perfdump has two numbers:
■ Number of connections in keep-alive mode, also known as the total number of connections

added

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 37

■ Maximum number of connections allowed in keep-alive mode simultaneously, also known
as the maximum connection size

The maximum number of connections allowed in keep-alive mode can be configured using the
MaxKeepAliveConnections magnus.conf directive.

Note – The number of connections specified by the maximum connections setting is divided
equally among the keep-alive threads. If the maximum connections setting is not equally
divisible by the keep-alive threads setting, the server might allow slightly more than the
maximum number of simultaneous keep-alive connections.

Keep-Alive Hits
The keep-alive hits, or the number of connections processed, is the number of times a request
was successfully received from a connection that was kept alive.

This setting is not tunable.

Keep-Alive Flushes
The number of times the server had to close a connection because the total number of
connections added exceeded the keep-alive maximum connections setting. The server does not
close existing connections when the keep-alive count exceeds the maximum connection size.
Instead, new keep-alive connections are refused and the number of connections refused count
is incremented.

Keep-Alive Refusals
The number of times the server could not complete the connection to a keep-alive thread,
possibly due to too many persistent connections (or when total number of connections added
exceeds the keep-alive maximum connections setting). The suggested tuning is to increase the
keep-alive maximum connections.

Keep-Alive Timeouts
The number of times the server closed idle keep-alive connections because client connections
timed out without any activity. This statistic is useful to monitor. There is no specific tuning
advised for this setting.

Keep-Alive Timeout
The time, measured in seconds, before idle keep-alive connections are closed.

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201038

Keep-Alive Poll Interval
The keep-alive poll interval specifies the interval in seconds at which the system polls keep-alive
connections for further requests. The default is 0.001 second, the lowest value allowed. It is set
to a low value to enhance performance at the cost of CPU usage.

Keep-Alive Threads
The KeepAliveThreads magnus.conf directive can be used to specify the number of keep-alive
threads.

Tuning for HTTP 1.0-Style Workload
Since HTTP 1.0 results in a large number of new incoming connections, the default acceptor
threads of 1 per listen socket would be suboptimal. Increasing this to a higher number should
improve performance for HTTP 1.0-style workloads. For instance, for a system with 2 CPUs,
you might want to set it to 2. You might also want to reduce the keep-alive connections, for
example, to 0.

HTTP 1.0-style workloads can have many connections established and terminated.

If users are experiencing connection timeouts from a browser to Proxy Server when the server is
heavily loaded, you can increase the size of the HTTP listener backlog queue by setting the
HTTP listener's listen queue size to a larger value, such as 8192. The listen queue size can be
specified using the "Configure System Preferences" screen in the admin interface.

The HTTP listener listen queue specifies the maximum number of pending connections on a
listen socket. Connections that time out on a listen socket whose backlog queue is full fail.

Tuning for HTTP 1.1-Style Workload
While tuning server-persistent connection handling, balancing throughput and latency is a
challenge. The keep-alive poll interval and timeout control latency. Lowering the value of these
settings is intended to lower latency on lightly loaded systems, for example, to reduce page load
times. Increasing the values of these settings is intended to raise aggregate throughput on
heavily loaded systems, for example, by increasing the number of requests per second the server
can handle. However, if there is too much latency and too few clients, aggregate throughput
suffers as the server sits idle unnecessarily. As a result, the general keep-alive subsystem tuning
rules at a particular load are as follows:
■ If there's idle CPU time, decrease the poll interval.
■ If there's no idle CPU time, increase the poll interval.

Also, chunked encoding could affect the performance for HTTP 1.1 workload. Tuning the
response buffer size can positively affect the performance. A higher response buffer size, set
using the magnus.conf parameter, ChunkedRequestBufferSize would result in sending a
Content-length: header, instead of chunking the response.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 39

You can also set the buffer size for a Service-class function in the obj.conf file, using the
UseOutputStreamSize parameter. UseOutputStreamSize overrides the value set using the
output-buffer-size property. If UseOutputStreamSize is not set, Proxy Server uses the
output-buffer-size setting. If the output-buffer-size is not set, Web Server uses the
output-buffer-size default value of 8192.

The following example shows setting the buffer size for the nsapi_test Service function:

<Object name="nsapitest">
ObjectType fn="force-type" type="magnus-internal/nsapitest"
Service method=(GET) type="magnus-internal/nsapitest" fn="nsapi_test"
UseOutputStreamSize=12288

</Object>

Thread Information

Maximum Threads (Maximum Simultaneous Requests)
The maximum threads setting specifies the maximum number of simultaneous transactions
that Proxy Server can handle. The default value is greater of 128 or the number of processors in
the system. Changes to this value can be used to throttle the server, minimizing latencies for the
transactions that are performed. The Maximum Threads value acts across multiple virtual
servers, but does not attempt to load balance. It is set for each configuration.

Reaching the maximum number of configured threads is not necessarily undesirable, and you
do not need to automatically increase the number of threads in the server. Reaching this limit
means that the server needed this many threads at peak load, but as long as it was able to serve
requests in a timely manner, the server is adequately tuned. However, at this point connections
queue up in the connection queue, potentially overloading it. If you monitor your server's
performance regularly and notice that total sessions created number is often near the maximum
number of threads, consider increasing your thread limits.

To compute the number of simultaneous requests, the server counts the number of active
requests, adding one to the number when a new request arrives, subtracting one when it finishes
the request. When a new request arrives, the server checks to see if it is already processing the
maximum number of requests. If it has reached the limit, it defers processing new requests until
the number of active requests drops below the maximum amount.

In theory, you can set the maximum threads to 1 and still have a functional server. Setting this
value to 1 would mean that the server could only handle one request at a time, but since HTTP
requests for static files generally have a very short duration. Response time can be as low as 5
milliseconds. Processing one request at a time still allows you to process up to 200 requests per
second.

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201040

However, in actuality, Internet clients frequently connect to the server and then do not
complete their requests. In these cases, the server waits 30 seconds or more for the data before
timing out. This wait interval can be configured using the AcceptTimeout directive in
magnus.conf. By setting the default value to less than 30 seconds you can free up threads
sooner, but you might also disconnect users with slower connections. Also, some sites perform
heavyweight transactions that take minutes to complete. Both of these factors add to the
maximum simultaneous requests that are required. If your site is processing many requests that
take many seconds, you might need to increase the number of maximum simultaneous
requests.

Suitable maximum threads values range from 100—500, depending on the load. Maximum
Threads represents a hard limit for the maximum number of active threads that can run
simultaneously, which can become a bottleneck for performance.

The thread pool minimum threads is the minimum number of threads the server initiates upon
startup. The default is set to number of processors.

Note – When configuring Proxy Server to be used with the Solaris Network Cache and
Accelerator (SNCA), setting the maximum threads and the queue size to 0 provides better
performance. Because SNCA manages the client connections, it is not necessary to set these
parameters. These parameters can also be set to 0 with non-SNCA configurations, especially for
cases in which short latency responses with no keep-alives must be delivered. It is important to
note that the maximum threads and queue size must both be set to 0.

Tuning
You can increase your thread limits in the Admin console by editing the value of "Request
Throttle" under "Configure System Preferences".

File Cache Statistics Information
The cache information section provides statistics on how your file cache is being used. The file
cache is an in-memory cache that stores frequently accessed objects from the proxy server's disk
cache.

For performance reasons, Proxy Server caches as follows:

■ For small files, it caches the content in memory (heap).
■ For medium files, it caches the content using mmap.
■ For large files, it caches the open file descriptors to avoid opening and closing files.

The following is an example of how the cache statistics are displayed in perfdump:

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 41

CacheInfo:

File Cache Enabled yes

File Cache Entries 141/1024

File Cache Hit Ratio 652/664 (98.19%)

Maximum Age 30

Accelerator Entries 120/1024

Acceleratable Requests 281/328 (85.67%)

Acceleratable Responses 131/144 (90.97%)

Accelerator Hit Ratio 247/281 (87.90%)

The following table shows the file cache statistics as displayed in the Admin Console:

TABLE 2–3 File Cache Statistics

Total Cache Hits 46

Total Cache Misses 52

Total Cache Content Hits 0

Number of File Lookup Failures 9

Number of File Information Lookups 37

Number of File Information Lookup Failures 50

Number of Entries 12

Maximum Cache Size 1024

Number of Open File Entries 0

Number of Maximum Open Files Allowed 1024

Heap Size 36064

Maximum Heap Cache Size 10735636

Size of Memory Mapped File Content 0

Maximum Memory Mapped File Size 0

Maximum Age of Entries 30

Accelerator Entries
The number of files that have been cached in the accelerator cache.

Tuning

You can increase the maximum number of accelerator cache entries by increasing the number
of file cache entries as described in “File Cache Entries” on page 43. Note that this number will

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201042

typically be smaller than the File Cache Entries number because the accelerator cache only
caches information about files and not directories. If the number is significantly lower than the
File Cache Entries number, you can improve the accelerator cache utilization by following the
tuning information described in “Acceleratable Requests” on page 43 and “Acceleratable
Responses” on page 43.

Acceleratable Requests
The number of client requests that were eligible for processing by the accelerator cache. Only
simple GET requests are processed by the accelerator cache. The accelerator cache does not
process requests that explicitly disable caching, for example, requests sent when a user clicks
Reload in the browser.

Tuning
To maximize the number of acceleratable requests, structure your web sites to use static files
when possible and avoid using query strings in requests for static files.

Acceleratable Responses
The number of times the response to an acceleratable request was eligible for addition to the
accelerator cache.

Accelerator Hit Ratio
The number of times the response for a request that can be accelerated was found in the
accelerator cache.

Tuning
Higher hit ratios result in better performance. To maximize the hit ratio, see the tuning
information for “Acceleratable Responses” on page 43.

File Cache Enabled
If the cache is disabled, the rest of this section is not displayed in perdump. In the Admin
console, the File Cache Statistics section shows zeros for the values.

Tuning
The cache is enabled by default. You can disable it in the Admin console at "Configure File
Cache" sub-tab in the "Caching" tab.

File Cache Entries
The number of current cache entries and the maximum number of cache entries are both
displayed in perfdump. In the Admin console, they are called the Number of Entries and the
Maximum Cache Size. A single cache entry represents a single URI.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 43

Tuning
The available address space for a 32-bit process like the Proxy server is limited to 4Gbytes. The
max-entries for file cache is based on the number of threads (as specified by
thread-pool/max-threads), and the connection queue size. It is recommended to cache small,
frequently accessed cache files in the file cache and use perfdump to ensure that the file cache hit
ratio is close to 100%. To achieve this, you may increase file cache size and fine tune the
max-entries for optimal performance.

File Cache Hit Ratio
The hit ratio available through perfdump gives you the number of file cache hits compared to
cache lookups. Numbers approaching 100% indicate that the file cache is operating effectively,
while numbers approaching 0% indicate that the file cache is not serving many requests.

To figure this number yourself using the statistics provided through the Admin console, divide
the Total Cache Hits by the sum of the Total Cache Hits and the Total Cache Misses.

This setting is not tunable.

Maximum Age
This field displays the maximum age of a valid cache entry. The parameter controls how long
cached information is used after a file has been cached. An entry older than the maximum age is
replaced by a new entry for the same file.

Maximum Heap Cache Size
The optimal cache heap size depends upon how much system memory is free. A larger heap size
means that the Proxy Server can cache more content and therefore obtain a better hit ratio.
However, the heap size should not be so large that the operating system starts paging cached
files.

File Cache Dynamic Control and Monitoring
File Cache stores file contents in the memory. You can add an object to obj.conf to
dynamically monitor and control the file cache while the server is running.

▼ To Control and Monitor the File Cache

Add a NameTransdirective to the default object:
NameTrans fn="assign-name" from="/nsfc" name="nsfc"

Add an nsfcobject definition:
<Object name="nsfc">
Service fn="service-nsfc-dump"
</Object>

1

2

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201044

This configuration enables the file cache control and monitoring function (nsfc-dump) to be
accessed through the URI /nfsc. To use a different URI, change the from parameter in the
NameTrans directive.

The following is an example of the information you receive when you access the URI:

Oracle iPlanet File Cache Status (pid 3602)

The file cache is enabled.

Cache resource utilization

Number of cached file entries = 174968 (152 bytes each, 26595136 total bytes)

Heap space used for cache = 1882632616/1882632760 bytes

Mapped memory used for medium file contents = 0/1 bytes

Number of cache lookup hits = 47615653/48089040 (99.02 %)

Number of hits/misses on cached file info = 23720344/324195

Number of hits/misses on cached file content = 16247503/174985

Number of outdated cache entries deleted = 0

Number of cache entry replacements = 0

Total number of cache entries deleted = 0

Parameter settings

ReplaceFiles: false

ReplaceInterval: 1 milliseconds

HitOrder: false

CacheFileContent: true

TransmitFile: false

MaxAge: 3600 seconds

MaxFiles: 600000 files

SmallFileSizeLimit: 500000 bytes

MediumFileSizeLimit: 1000001 bytes

BufferSize: 8192 bytes

CopyFiles: false

Directory for temporary files: /tmp

Hash table size: 1200007 buckets

You can include a query string when you access the URI. The following values are recognized:

■ ?list: Lists the files in the cache.
■ ?refresh=n: Causes the client to reload the page every n seconds.
■ ?restart: Causes the cache to be shut down and then restarted.
■ ?start: Starts the cache.
■ ?stop: Shuts down the cache.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 45

If you choose the ?list option, the file listing includes the file name, a set of flags, the current
number of references to the cache entry, the size of the file, and an internal file ID value. The
flags are as follows:
■ C: File contents are cached.
■ D: Cache entry is marked for delete.
■ E: PR_GetFileInfo() returned an error for this file.
■ I: File information including size and modification date is cached.
■ M: File contents are mapped into virtual memory.
■ O: File descriptor is cached (when TransmitFile is set to true).
■ P: File has associated private data and appears on shtml files.
■ T: Cache entry has a temporary file.
■ W: Cache entry is locked for write access.

Thread Pool Information
If you are using the default settings, threads from the default thread pool process the request.
However, you can also create custom thread pools and use them to run custom NSAPI
functions. By default, Web Server creates one additional pool, named NativePool. In most
cases, the native thread pool is only needed on the Windows platform. For more information on
thread pools, see “Understanding Threads, Processes, and Connections” on page 26.

Native Thread Pool
The following example shows native thread pool information as it appears in perfdump:

Native pools:

NativePool:

Idle/Peak/Limit 1/1/128

Work Queue Length/Peak/Limit 0/0/0

my-custom-pool:

Idle/Peak/Limit 1/1/128

Work Queue Length/Peak/Limit 0/0/0

If you have defined additional custom thread pools, they are shown under the Native Pools
heading in perfdump.

The following table shows the thread pool statistics as they appear in the Admin Console. If you
have not defined additional thread pools, only the NativePool is shown:

TABLE 2–4 Thread Pools Statistics

Name NativePool

Idle Threads 1

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201046

TABLE 2–4 Thread Pools Statistics (Continued)
Threads 1

Requests Queued 0

Peak Requests Queued 0

Idle /Peak /Limit
Idle, listed as Idle Threads in the Admin console, indicates the number of threads that are
currently idle. Peak indicates the peak number of threads in the pool. Limit, listed as Threads in
the Admin console, indicates the maximum number of native threads allowed in the thread
pool, and for NativePool is determined by the setting of NativePoolMaxThreads in the
magnus.conf file.

Tuning

You can modify the maximum threads for NativePool by editing the NativePoolMaxThreads
parameter in magnus.conf. For more information, see “NativePoolMaxThreads Directive” on
page 48.

Work Queue Length /Peak /Limit
These numbers refer to a queue of server requests that are waiting for the use of a native thread
from the pool. The Work Queue Length is the current number of requests waiting for a native
thread, which is represented as Requests Queued in the Admin console.

Peak indicates peak requests queued in the Admin console and is the highest number of
requests that were ever queued up simultaneously for the use of a native thread since the server
was started. This value can be viewed as the maximum concurrency for requests requiring a
native thread.

Limit is the maximum number of requests that can be queued at one time to wait for a native
thread, and is determined by the setting of NativePoolQueueSize.

Tuning

You can modify the queue size for NativePool by editing the NativePoolQueueSize directive in
magnus.conf. For more information, see “NativePoolQueueSize Directive” on page 48.

NativePoolStackSizeDirective
The NativePoolStackSize determines the stack size in bytes of each thread in the native
(kernel) thread pool.

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 47

Tuning

You can modify the NativePoolStackSize by editing the NativePoolStackSize directive in
magnus.conf.

NativePoolQueueSizeDirective
The NativePoolQueueSize determines the number of threads that can wait in the queue for the
thread pool. If all threads in the pool are busy, then the next request-handling thread that needs
to use a thread in the native pool must wait in the queue. If the queue is full, the next
request-handling thread that tries to get in the queue is rejected, with the result that it returns a
busy response to the client. It is then free to handle another incoming request instead of being
tied up waiting in the queue.

Setting the NativePoolQueueSize lower than the maximum threads value causes the server to
execute a busy function instead of the intended NSAPI function whenever the number of
requests waiting for service by pool threads exceeds this value. The default returns a “503
Service Unavailable” response and logs a message, depending on your log level setting. Setting
the NativePoolQueueSize higher than the maximum threads causes the server to reject
connections before a busy function can execute.

This value represents the maximum number of concurrent requests for service that require a
native thread. If your system is unable to fulfill requests due to load, allowing more requests
queue up increases the latency for requests, and could result in all available request threads
waiting for a native thread. In general, set this value to be high enough to avoid rejecting
requests by anticipating the maximum number of concurrent users who would execute requests
requiring a native thread.

The difference between this value and the maximum threads is the number of requests reserved
for non-native thread requests, such as static HTML and image files. Keeping a reserve and
rejecting requests ensures that your server continues to fill requests for static files, which
prevents it from becoming unresponsive during periods of very heavy dynamic content load. If
your server consistently rejects connections, this value is either set too low, or your server
hardware is overloaded.

Tuning

You can modify the NativePoolQueueSize by editing the NativePoolQueueSize directive in
magnus.conf.

NativePoolMaxThreadsDirective
NativePoolMaxThreads determine the maximum number of threads in the native (kernel)
thread pool.

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201048

A higher value allows more requests to execute concurrently, but has more overhead due to
context switching, so bigger is not always better. Typically, you do not need to increase this
number, but if the CPU is not saturated and you see requests queue up, then increase this
number.

Tuning

You can modify the NativePoolMaxThreads by editing the NativePoolMaxThreads parameter
in magnus.conf.

NativePoolMinThreadsDirective
NativePoolMinThreads determine the minimum number of threads in the native (kernel)
thread pool.

Tuning

You can modify the NativePoolMinThreads by editing the NativePoolMinThreads parameter
in magnus.conf.

DNS Cache Information
The DNS cache caches IP addresses and DNS names. Proxy Server uses DNS caching for
logging and for access control by IP address. DNS cache is enabled by default. The following
example shows DNS cache information as displayed in perfdump:

HostDNSCacheInfo:

enabled yes

CacheEntries 0/1024

HitRatio 0/0 (0.00%)

Async DNS disabled

ClientDNSCacheInfo:

enabled yes

CacheEntries 0/1024

HitRatio 0/0 (0.00%)

Async DNS disabled

The following example shows the DNS Cache information as displayed in the Admin Console:

Using Monitoring Data to Tune Your Server

Chapter 2 • Tuning Proxy Server 49

TABLE 2–5 DNS Cache Statistics

Total Cache Hits 62854802

Total Cache Misses 6110

Number of Asynchronous Lookups 0

Lookups in Progress 4

Asynchronous Lookups Enabled 1

Number of Asynchronous Address Lookups
Performed

0

Enabled
If the DNS cache is disabled, the rest of this section is not displayed in perfdump. In the Admin
console, the page displays zeros.

Tuning

By default, the DNS cache is on. You can enable or disable DNS caching in the Admin console at
"Configure DNS Caching".

Note: The Proxy server optionally maintains two types of DNS caches. One is a 'Host DNS'
cache which caches the results of hostname to ip address lookups done on remote hosts. The
second is a 'Client DNS' cache that caches the results of ip address to hostname lookup done on
clients.

Cache Entries
This section in perfdump shows the number of current cache entries and the maximum number
of cache entries. In the Admin Console the current cache entries are shown as Total Cache Hits.
A single cache entry represents a single IP address or DNS name lookup. The cache should be as
large as the maximum number of clients that access your web site concurrently. Note that
setting the cache size too high wastes memory and degrades performance.

Hit Ratio of Cache Hits and Lookups
The hit ratio in perfdump displays the number of cache hits compared to the number of cache
lookups. You can compute this number using the statistics in the Admin console by dividing the
Total Cache Hits by the sum of the Total Cache Hits and the Total Cache Misses.

This setting is not tunable.

Using Monitoring Data to Tune Your Server

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201050

Async DNS Enabled or Disabled
Async DNS enabled or disabled displays whether the server uses its own asynchronous DNS
resolver instead of the operating system's synchronous resolver. By default, Async DNS is
disabled. If it is disabled, this section does not appear in perfdump.

Tuning the ACL Cache
The Proxy server maintains an ACL Cache that maps between URLs and ACL Lists. The ACL
cache improves performance by avoiding the need to build the ACL list applicable to a
particular URL for each access.

However, the sheer number of URLs accessed through a Proxy server can cause the ACL Cache
to grow to huge sizes. The magnus.conf directive called "ACLCacheMax" can be used to restrict
the maximum number of entries in the ACL Cache.

Tuning the ACL User Cache (Authentication Cache)
The ACL user cache is active by default. Because of the default size of the cache (200 entries), the
ACL user cache can be a bottleneck, or can simply not serve its purpose on a site with heavy
traffic. On a busy site, more than 200 users can hit ACL-protected resources in less time than the
lifetime of the cache entries. When this situation occurs, Proxy Server must query the LDAP
server more often to validate users, which impacts performance.

This bottleneck can be avoided by increasing the maximum users of the ACL cache at
"Configure ACL Cache" under "Preferences" in the Admin console.

There can also be a potential (but much harder to hit) bottleneck with the number of groups
stored in a cache entry (four by default). If a user belongs to five groups and hits five ACLs that
check for these different groups within the ACL cache lifetime, an additional cache entry is
created to hold the additional group entry. When there are two cache entries, the entry with the
original group information is ignored.

While it would be extremely unusual to hit this possible performance problem, the number of
groups cached in a single ACL cache entry can be tuned with "Proxy Auth Group Cache Size" at
"Configure ACL Cache" under "Preferences" in the Admin console.

The maximum age setting of the ACL cache determines the number of seconds before the cache
entries expire. Each time an entry in the cache is referenced, its age is calculated and checked
against the maximum age setting. The entry is not used if its age is greater than or equal to the
maximum age. The default value is 120 seconds. If your LDAP is not likely to change often, use a
large number for the maximum age. However, if your LDAP entries change often, use a smaller
value. For example, when the value is 120 seconds, the Proxy Server might be out of sync with
the LDAP server for as long as two minutes. Depending on your environment, that might or
might not be a problem.

Tuning the ACL User Cache (Authentication Cache)

Chapter 2 • Tuning Proxy Server 51

Tuning the Proxy Disk Cache to Store Dynamic Content
For a list and description of settings available to fine tune the disk cache for a wider range of
responses, including dynamic responses, see “cache-setting” in Oracle iPlanet Web Proxy
Server 4.0.14 Configuration File Reference. These settings result in a behavior that violates the
HTTP standard.

Using Busy Functions
The default busy function returns a "503 Service Unavailable" response and logs a message
depending upon the log level setting. You might want to modify this behavior for your
application. You can specify your own busy functions for any NSAPI function in the obj.conf
file by including a service function in the configuration file in this format:

busy="my-busy-function"

For example, you could use this sample service function:

Service fn="send-cgi" busy="service-toobusy"

This function allows different responses if the server become too busy in the course of
processing a request that includes a number of types (such as Service, AddLog, and PathCheck).
Note that the busy function applies to all functions that require a native thread to execute when
the default thread type is non-native.

To use your own busy function instead of the default busy function for the entire server, you can
write an NSAPI init function that includes a func_insert call as shown below:

extern "C" NSAPI_PUBLIC int my_custom_busy_function

(pblock *pb, Session *sn, Request *rq);

my_init(pblock *pb, Session *, Request *){func_insert

("service-toobusy", my_custom_busy_function);}

Busy functions are never executed on a pool thread, so you must be careful to avoid using
function calls that could cause the thread to block.

Two other considerations are footprint and promptness. Footprint is the working size of the
JVM process, measured in pages and cache lines. Promptness is the time between when an
object becomes dead, and when the memory becomes available.

This is an important consideration for distributed systems. A particular generation size makes a
trade-off between these four metrics. For example, a large young generation likely maximizes
throughput, but at the cost of footprint and promptness.

Tuning the Proxy Disk Cache to Store Dynamic Content

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201052

http://docs.sun.com/doc/821-1883/aebjj?a=view
http://docs.sun.com/doc/821-1883/aebjj?a=view

Common Performance Problems

This chapter discusses common web site performance problems, and includes the following
topics:

■ “check-acl Server Application Functions” on page 53
■ “Specific Configurations” on page 54
■ “Low-Memory Situations” on page 54
■ “Too Few Threads” on page 54
■ “Cache Not Utilized” on page 55
■ “Keep-Alive Connections Flushed” on page 55
■ “Log File Modes” on page 55
■ “Garbage Collection” on page 56

Note – For platform-specific issues, see Chapter 4, “Platform-Specific Issues and Tips.”

check-acl Server Application Functions
For optimal server performance, use ACLs only when required.

The server is configured with an ACL file containing the default ACL allowing write access to
the server only to all, and an es-internal ACL for restricting write access for anybody. The
latter protects the manuals, icons, and search UI files in the server.

The default obj.conf file has NameTrans lines mapping the directories that need to be read-only
to the es-internal object, which in turn has a check-acl SAF for the es-internal ACL.

The default object also contains a check-acl SAF for the default ACL.

You can improve performance by removing the check-acl SAF from the default object for
URIs that are not protected by ACLs.

3C H A P T E R 3

53

Specific Configurations
Certain performance issues can be tracked down to a specific aspect of the server configuration.
For example, it is common practice to use the assign-name NameTrans directive in obj.conf

to apply rules based on request URL pattern. More and more assign-name directives get added
as time goes by and specific requirements come up, and it is not unusual to see configurations
with the number of assign-name directives running into hundreds.

Each assign-name directive introduces a regular expression comparison, which can be CPU
intensive. Hence, as the number of such directives increase, performace start getting affected.

For more information on this specific topic, see Chapter 6, “Scalability Studies.”

Low-Memory Situations
If Proxy Server must run in low-memory situations, reduce the thread limit to a bare minimum
by lowering the value of the "Request Throttle" at "Configure System Preferences" in the Admin
console.

The server automatically selects many server defaults based on the system resources, for
optimal performance. However, if the server's chosen defaults are not suited to your
configuration, you can override them. .

The File Cache configuration, especially when non-default, can impact memory usage.
Similarly, the ACL Cache size should be controlled using the “ACL Cache Tuning” in Oracle
iPlanet Web Proxy Server 4.0.14 Release Notes, if needed.

Too Few Threads
The server does not allow the number of active threads to exceed the thread limit value. If the
number of simultaneous requests reaches that limit, the server stops servicing new connections
until the old connections are freed up. This can lead to increased response time.

In Proxy Server, the server’s default maximum threads setting is greater of 128 or the number of
processors in the system. If you want your server to process more requests concurrently, you
need to increase the maximum number of threads.

The symptom of a server with too few threads is a long response time. Making a request from a
browser establishes a connection fairly quickly to the server, but if there are too few threads on
the server it can take a long time before the response comes back to the client.

The best way to tell if your server is being throttled by too few threads is to see if the number of
active sessions is close to, or equal to, the maximum number of threads. To do this, see “Thread
Information” on page 40.

Specific Configurations

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201054

http://docs.sun.com/doc/821-1888/ggfvi?a=view
http://docs.sun.com/doc/821-1888/ggfvi?a=view

Cache Not Utilized
If the file cache is not utilized, your server is not performing optimally.

Check your hit ratio using statistics from perfdump, the Admin console Monitoring tab. The hit
ratio is the percentage of times the cache was used with all hits to your server. For more
information, see “File Cache Statistics Information” on page 41.

Keep-Alive Connections Flushed
A Proxy site that can service 75 requests per second without keep-alive connections might be
able to do 200-300 requests per second when keep-alive is enabled. Therefore, as a client
requests various items from a single page, it is important that keep-alive connections are used
effectively. If the KeepAliveCount shown in perfdump (Total Number of Connections Added, as
displayed in the Admin Console) exceeds the keep-alive maximum connections, subsequent
keep-alive connections are closed, or “flushed,” instead of being honored and kept alive.

Check the KeepAliveFlushes and KeepAliveHits values using statistics from perfdump or the
Number of Connections Flushed and Number of Connections Processed under Keep Alive
Statistics on the Monitoring Statistics page. For more information, see “Keep-Alive
Information” on page 36.

On a site where keep-alive connections are running well, the ratio of KeepAliveFlushes to
KeepAliveHits is very low. If the ratio is high (greater than 1:1), your site is probably not
utilizing keep-alive connections as well as it can.

To reduce keep-alive flushes, increase the keep-alive maximum connections. You can do this
using the "MaxKeepAliveConnections" magnus.conf parameter. The default is based on the
number of available file descriptors in the system. By raising the keep-alive maximum
connections value, you keep more waiting keep-alive connections open.

Caution – On UNIX/Linux systems, if the keep-alive maximum connections value is too high,
the server can run out of open file descriptors. Typically 1024 is the limit for open files on
UNIX/Linux, so increasing this value above 500 is not recommended.

Log File Modes
Keeping the log files on a high-level of verbosity can have a significant impact on performance.
Use the Admin console's "Server Status" tab to modify and track logging settings.

Log File Modes

Chapter 3 • Common Performance Problems 55

Garbage Collection
Garbage collection can affect performance in some cases, especially with very high cache sizes.
Garbage Collection is a CPU and Disk intensive activity that, by default, involves iterating
through the entire cache structure and deleting enough files to bring down the cache size as per
the limits imposed by the caching configuration.

Garbage Collection is Automatic by default, which means that the Proxy server has a dedicated
"Garbage Collection Thread" which periodically wakes up to inspect the cache and perform
Garbage Collection if needed.

Using the admin GUI, Garbage Collection can be changed to Scheduled which disables the
in-process Garbage Collection thread. This can help improve performance, as Scheduled
Garbage Collection is achieved using the cachegc command line utility and can be configured
to run only at specific times on specific days.

Garbage Collection

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201056

Platform-Specific Issues and Tips

This chapter provides platform-specific tuning tips, and includes the following topics:

■ “Solaris Platform-Specific Issues” on page 57
■ “Solaris File System Tuning” on page 59
■ “Solaris Platform-Specific Performance Monitoring” on page 61
■ “Tuning Solaris for Performance Benchmarking” on page 62
■ “Tuning UltraSPARC T1–Based Systems for Performance Benchmarking” on page 63

Solaris Platform-Specific Issues
This section discusses miscellaneous Solaris Platform-specific issues and tuning tips, and
includes the following topics:

■ “Files Open in a Single Process (File Descriptor Limits)” on page 57
■ “Failure to Connect to HTTP Server” on page 58
■ “Connection Refused Errors” on page 59
■ “Tuning TCP Buffering” on page 59

Files Open in a Single Process (File Descriptor Limits)
Different platforms each have limits on the number of files that can be open in a single process
at one time. For busy sites, increase that number. On Solaris systems, control this limit by
setting rlim_fd_max in the /etc/system file. For Solaris 8, the default is 1024, which you can
increase to 65536. For Solaris 9 and 10, the default is 65536, which does not need to be
increased.

After making this or any change in the /etc/system file, reboot Solaris to put the new settings
into effect. In addition, if you upgrade to a new version of Solaris, remove any line added to
/etc/system and add it again only after verifying that it is still valid.

4C H A P T E R 4

57

An alternative way to make this change is using the ulimit –n "value" command. Using this
command does not require a system restart. However, this command only changes the login
shell, while editing the etc/system file affects all shells.

Failure to Connect to HTTP Server
If users are experiencing connection time-outs from a browser to Proxy Server when the server
is heavily loaded, you can increase the size of the HTTP listener backlog queue. To increase this
setting, edit the HTTP listener's listen queue value.

In addition to this setting, you must also increase the limits within the Solaris TCP/IP
networking code. There are two parameters that are changed by executing the following
commands:

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 8192

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q0 8192

These two settings increase the maximum number of two Solaris listen queues that can fill up
with waiting connections. tcp_conn_req_max_q increases the number of completed
connections waiting to return from an accept() call. tcp_conn_req_max_q0 increases the
maximum number of connections with the handshake incomplete. The default values are 128
and 1024, respectively. To automatically have these ndd commands executed after each system
reboot, place them in a file called /etc/init.d/network-tuning and create a link to that file
named /etc/rc2.d/S99network-tuning.

You can monitor the effect of these changes by using the netstat -s command and looking at
the tcpListenDrop, tcpListenDropQ0, and tcpHalfOpenDrop values. Review them before
adjusting these values. If the parameters are not set to zero, adjust the value to 2048 initially, and
continue to monitor the netstat output.

The Proxy Server HTTP listener's listen queue setting and the related Solaris
tcp_conn_req_max_q and tcp_conn_req_max_q0 settings are meant to match the throughput
of the Proxy Server. These queues act as a "buffer" to manage the irregular rate of connections
coming from web users. These queues allow Solaris to accept the connections and hold them
until they are processed by the Proxy Server.

Do not accept more connections than the Proxy Server is able to process. Instead, limit the size
of these queues and reject further connections than to accept excess connections and fail to
service them. The value of 2048 for these three parameters typically reduces connection request
failures, and improvement has been seen with values as high as 4096.

This adjustment is not expected to have any adverse impact in any web hosting environment, so
you can consider this suggestion even if your system is not showing the symptoms mentioned.

Solaris Platform-Specific Issues

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201058

Connection Refused Errors
If users are experiencing connection refused errors on a heavily loaded server, you can tune the
use of network resources on the server.

When a TCP/IP connection is closed, the port is not reused for the duration of
tcp_time_wait_interval (default value of 240000 milliseconds). This is to ensure that there
are no leftover segments. The shorter the tcp_time_wait_interval, the faster precious
network resources are again available. This parameter is changed by executing the following
command. Do not reduce the parameter below 60000

/usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

To automatically have this ndd command executed after each system reboot, place it in a file
called /etc/init.d/network-tuning and create a link to that file named
/etc/rc2.d/S99network-tuning.

If your system is not exhibiting the symptoms mentioned, and if you are not well-versed in
tuning the TCP protocol, do not change the above parameter.

Tuning TCP Buffering
If you are seeing unpredictable intermittent slowdowns in network response from a
consistently loaded server, investigate setting the sq_max_size parameter by adding the
following line to the /etc/system file:

set sq_max_size=512

This setting adjusts the size of the sync queue, which transfers packets from the hardware driver
to the TCP/IP protocol driver. Using the value of 512 allows the queue to accommodate high
volumes of network traffic without overflowing.

Solaris File System Tuning
This section discusses changes that can be made for file system tuning, and includes topics that
address the following issues:

■ “High File System Page-In Rate” on page 60
■ “Reduce File System Housekeeping” on page 60
■ “Long Service Times on Busy Disks or Volumes” on page 60

Read the descriptions of the following parameters carefully. If the description matches your
situation, consider making the adjustment.

Solaris File System Tuning

Chapter 4 • Platform-Specific Issues and Tips 59

High File System Page-In Rate
If you are seeing high file system page-in rates on Solaris 8 or 9, increase the value of
segmap_percent. This parameter is set by adding the following line to the /etc/system file:

set segmap_percent=25

segmap_percent adjusts the percentage of memory that the kernel maps into its address space
for the file system cache. The default value is 12, that is, the kernel reserves enough space to map
at most 12% of memory for the file system cache. On a heavily loaded machine with 4 Gbytes of
physical memory, improvements have been seen with values as high as 60. You can experiment
with this value, starting with values around 25. On systems with large amounts of physical
memory, you can raise this value in small increments, as it can significantly increase kernel
memory requirements.

Reduce File System Housekeeping
UNIX file system (UFS) volumes maintain the time that each file was accessed. Note that the
following change does not turn off the access time updates when the file is modified, but only
when the file is accessed. If the file access time updates are not important in your environment,
you can turn them off by adding the noatime parameter to the data volume's mount point in
/etc/vfstab. For example:

/dev/dsk/c0t5d0s6 /dev/rdsk/c0t5d0s6 /data0 ufs 1 yes noatime

Long Service Times on Busy Disks or Volumes
Proxy Server's responsiveness depends greatly on the performance of the disk subsystem. Use
the iostat utility to monitor how busy the disks are and how rapidly they complete I/O
requests (the %b and svc_t columns, respectively). Service times are unimportant for disks that
are less than about 30% busy, but for busier disks, service times should not exceed about 20
milliseconds. If your busy disks have slower service times, improving disk performance can
help Proxy Server performance substantially.

Your first step is to balance the load: if some disks are busy while others are lightly loaded, move
some files off of the busy disks and onto the idle disks. If there is an imbalance, correcting it
usually gives a far greater payoff than trying to tune the overloaded disks.

Solaris File System Tuning

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201060

Solaris Platform-Specific Performance Monitoring
This section describes some of the Solaris Platform-specific tools and utilities you can use to
monitor your system's behavior, and includes the following topics:
■ “Short-Term System Monitoring” on page 61
■ “Long-Term System Monitoring” on page 61
■ “Intelligent Monitoring” on page 62

The tools described in this section monitor performance from the standpoint of how the system
responds to the load that Proxy Server generates. For information about using Proxy Server's
own capabilities to track the demands that users place on the Proxy Server itself, see
“Monitoring Server Performance” on page 18.

Short-Term System Monitoring
Solaris offers several tools for taking “snapshots” of system behavior. Although you can capture
their output in files for later analysis, the tools listed below are primarily intended for
monitoring system behavior in real time:
■ The iostat -x 60 command reports disk performance statistics at 60-second intervals.

Watch the %b column to see how much of the time each disk is busy. For any disk busy more
than 20% of the time, pay attention to the service time as reported in the svct column.
Other columns report the I/O operation rates, the amount of data transferred, and so on.

■ The vmstat 60 command summarizes virtual memory activity and some CPU statistics at
60-second intervals.
Monitor the sr column to keep track of the page scan rate and take action if it is too high.
Note that "too high" is very different for Solaris 8 and 9 than for earlier releases. Watch the
us, sy, and id columns to see how heavily the CPUs are being used. Remember that you
need to keep plenty of CPU power in reserve to handle sudden bursts of activity. Also keep
track of the r column to see how many threads are contending for CPU time, if this remains
higher than about four times the number of CPUs, reduce the server's concurrency.

■ The mpstat 60 command gives a detailed look at CPU statistics, while the netstat -i 60
command summarizes network activity.

Long-Term System Monitoring
It is important not only to "spot-check" system performance with the tools mentioned above,
but to collect longer-term performance histories so you can detect trends. If nothing else, a
baseline record of a system performing well will help you figure out what has changed if the
system starts behaving poorly. Enable the system activity reporting package by doing the
following:

Solaris Platform-Specific Performance Monitoring

Chapter 4 • Platform-Specific Issues and Tips 61

■ Edit the file /etc/init.d/perf and remove the # comment characters from the lines near
the end of the file. For Solaris 10, run the following command:
svcadm enable system/sar

■ Run the command crontab -e sys and remove the # comment characters from the lines
with the sa1 and sa2 commands. You can adjust how often the commands run and at what
times of day depending on your site's activity profile. See the crontab man page for an
explanation of the format of this file.
This command causes the system to store performance data in files in the /var/adm/sa
directory, where by default they are retained for one month. You can then use the sar
command to examine the statistics for time periods of interest.

Intelligent Monitoring
The SE toolkit is a freely downloadable software package developed by Sun performance
experts. In addition to collecting and monitoring raw performance statistics, the toolkit can
apply heuristics to characterize the overall health of the system and highlight areas that need
adjustment. You can download the toolkit and its documentation from the following location:

http://www.sunfreeware.com/setoolkit.html

Solaris 10 Platform-Specific Tuning Information
DTrace is a comprehensive dynamic tracing framework for the Solaris Operating Environment.
You can use the DTrace Toolkit to monitor the system. It is available from the following URL:

http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit

Tuning Solaris for Performance Benchmarking
The following table shows the operating system tuning for Solaris used when benchmarking for
performance and scalability. These values are an example of how you can tune your system to
achieve the desired result.

TABLE 4–1 Tuning Solaris for Performance Benchmarking

Parameter Scope Default Value Tuned Value Comments

rlim_fd_max /etc/system 65536 65536 Process open file descriptors limit;
accounts for the expected load (for
the associated sockets, files, and pipes
if any).

Solaris 10 Platform-Specific Tuning Information

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201062

http://www.sunfreeware.com/setoolkit.html
http://hub.opensolaris.org/bin/view/Community+Group+dtrace/dtracetoolkit

TABLE 4–1 Tuning Solaris for Performance Benchmarking (Continued)
Parameter Scope Default Value Tuned Value Comments

sq_max_size /etc/system 2 0 Controls streams driver queue size;
setting to 0 makes it infinite so the
performance runs are not hit by lack
of buffer space. Set on clients too.
Note that setting sq_max_size to 0 is
not optimal for production systems
with high network traffic.

tcp_time_wait_interval ndd /dev/tcp 240000 60000 Set on clients too.

tcp_conn_req_max_q ndd /dev/tcp 128 1024

tcp_conn_req_max_q0 ndd /dev/tcp 1024 4096

tcp_ip_abort_interval ndd /dev/tcp 480000 60000

tcp_keepalive_interval ndd /dev/tcp 7200000 900000 For high traffic web sites, lower this
value.

tcp_rexmit_interval_initial ndd /dev/tcp 3000 3000 If retransmission is greater than
30-40%, increase this value.

tcp_rexmit_interval_max ndd /dev/tcp 240000 10000

tcp_rexmit_interval_min ndd /dev/tcp 200 3000

tcp_smallest_anon_port ndd /dev/tcp 32768 1024 Set on clients too.

tcp_slow_start_initial ndd /dev/tcp 1 2 Slightly faster transmission of small
amounts of data.

tcp_xmit_hiwat ndd /dev/tcp 8129 32768 To increase the transmit buffer.

tcp_recv_hiwat ndd /dev/tcp 8129 32768 To increase the receive buffer.

Tuning UltraSPARC T1–Based Systems for Performance
Benchmarking

Use a combination of tunable parameters and other parameters to tune your system for
performance benchmarking. These values are an example of how you can tune your system to
achieve the desired result.

Tuning Operating System and TCP Settings
The following table shows the operating system tuning for Solaris 10 used when benchmarking
for performance and scalability on UtraSPARC T1-based systems (64 bit systems).

Tuning UltraSPARC T1–Based Systems for Performance Benchmarking

Chapter 4 • Platform-Specific Issues and Tips 63

TABLE 4–2 Tuning 64-bit systems for performance benchmarking

Parameter Scope Default Value Tuned Value Comments

rlim_fd_max /etc/system 65536 260000 Process open file descriptors limit;
accounts for the expected load (for
the associated sockets, files, pipes if
any).

hires_tick /etc/system 1

sq_max_size /etc/system 2 0 Controls streams driver queue size;
setting to 0 makes it infinite so the
performance runs are not hit by lack
of buffer space. Set on clients too.
Note that setting sq_max_size to 0 is
not optimal for production systems
with high network traffic.

ip:ip_squeue_bind 0

ip:ip_squeue_fanout 1

ipge:ipge_taskq_disable /etc/system 0

ipge:ipge_tx_ring_size /etc/system 2048

ipge:ipge_srv_fifo_depth /etc/system 2048

ipge:ipge_bcopy_thresh /etc/system 384

ipge:ipge_dvma_thresh /etc/system 384

ipge:ipge_tx_syncq /etc/system 1

tcp_conn_req_max_q ndd /dev/tcp 128 3000

tcp_conn_req_max_q0 ndd /dev/tcp 1024 3000

tcp_max_buf ndd /dev/tcp 4194304

tcp_cwnd_max ndd/dev/tcp 2097152

tcp_xmit_hiwat ndd /dev/tcp 8129 400000 To increase the transmit buffer.

tcp_recv_hiwat ndd /dev/tcp 8129 400000 To increase the receive buffer.

Note that the IPGE driver version is 1.25.25.

Tuning UltraSPARC T1–Based Systems for Performance Benchmarking

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201064

Disk Configuration
If HTTP access is logged, follow these guidelines for the disk:

■ Write access logs on faster disks or attached storage.
■ If running multiple instances, move the logs for each instance onto separate disks as much

as possible.
■ Enable the disk read or write cache. Note that if you enable write cache on the disk, some

writes can be lost if the disk fails.
■ Consider mounting the disks with the following options, which can yield better disk

performance: nologging, directio, noatime.

Network Configuration
If more than one network interface card is used, make sure the network interrupts are not all
going to the same core. Run the following script to disable interrupts:

allpsr=‘/usr/sbin/psrinfo | grep -v off-line | awk ’{ print $1 }’‘
set $allpsr

numpsr=$#

while [$numpsr -gt 0];

do

shift

numpsr=‘expr $numpsr - 1‘
tmp=1

while [$tmp -ne 4];

do

/usr/sbin/psradm -i $1

shift

numpsr=‘expr $numpsr - 1‘
tmp=‘expr $tmp + 1‘

done

done

Put all network interfaces into a single group. For example:

$ifconfig ipge0 group proxyserver

$ifconfig ipge1 group proxyserver

Proxy Server Start Options
In some cases, performance can be improved by using large page sizes. To start the Proxy Server
with 4 Mbytes pages:

Tuning UltraSPARC T1–Based Systems for Performance Benchmarking

Chapter 4 • Platform-Specific Issues and Tips 65

LD_PRELOAD_32=/usr/lib/mpss.so.1 ; export LD_PRELOAD_32; export MPSSHEAP=4M;

./bin/startserv; unset LD_PRELOAD_32; unset MPSSHEAP

Tuning UltraSPARC T1–Based Systems for Performance Benchmarking

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201066

Sizing and Scaling Your Server

This chapter examines the subsystems of your server, and provides recommendations for
optimal performance. The chapter includes the following topics:

■ “Processors” on page 67
■ “Memory” on page 67
■ “Drive Space” on page 68
■ “Networking” on page 68

Processors
On Solaris and Windows, Proxy Server transparently takes advantage of multiple CPUs. In
general, the effectiveness of multiple CPUs varies with the operating system and the workload.
Dynamic content performance improves as more processors are added to the system. Because
static content involves mostly IO, and more primary memory means more caching of the
content (assuming the server is tuned to take advantage of the memory), more time is spent in
IO rather than CPU activity.

Memory
As a baseline, Proxy Server requires 64 Mbytes RAM. Multiple CPUs require at least 64 Mbytes
for each CPU. For example, if you have four CPUs, install at least 256 Mbytes RAM for optimal
performance. For high numbers of peak concurrent users, also allow extra RAM for the
additional threads. After the first 50 concurrent users, add an extra 512 Kbytes for each peak
concurrent user.

5C H A P T E R 5

67

Drive Space
You need to have enough drive space for your OS, Proxy server installation, and log files. In
most cases, 2 Gbytes total is sufficient. Apart from that, you need to factor in the disk space
required for Proxy server's disk cache.

Put the OS, swap or paging file, Proxy Server logs, and Disk cache each on separate hard drives.
If your log files fill up the log drive, your OS does not suffer. Also, you will be able to tell
whether, for example, the OS paging file is causing drive activity.

Your OS vendor can recommend how much swap or paging space to allocate. Based on testing,
Proxy Server performs best with swap space equal to RAM, plus enough to map a size that
corresponds to the frequently used portion of the disk cache.

Networking
For an Internet site, decide how many peak concurrent users you need the server to handle, and
multiply that number of users by the average request size on your site. Your average request can
include multiple documents. If you are not sure, try using your home page and all of its
associated subframes and graphics.

Next decide how long the average user will be willing to wait for a document, at peak utilization.
Divide by that number of seconds. The result is the WAN bandwidth your server needs.

For example, to support a peak of 50 users with an average document size of 24 Kbytes, and to
transfer each document in an average of 5 seconds, 240 Kbytes (1920 Kbit/s) are needed.
Therefore, this site needs two T1 lines (each 1544 Kbit/s). This amount of bandwidth also allows
some overhead for growth.

Your server’s network interface card is intended to support more than the WAN to which it is
connected. For example, if you have up to three T1 lines, one 10BaseT interface will be
adequate. If you have up to a T3 line (45 Mbit/s), you can use 100BaseT. But if you have more
than 50 Mbit/s of WAN bandwidth, consider configuring multiple 100BaseT interfaces, or look
at Gigabit Ethernet technology.

For an intranet site, your network is unlikely to be a bottleneck. However, you can use the same
calculations above to verify this.

Drive Space

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201068

Scalability Studies

This chapter describes the results of scalability studies. You can refer to these studies for a
sample of how the server performs, and how you can configure your system to best take
advantage of Proxy Server’s strengths.

This chapter includes the following topics:

■ “Study Goals” on page 69
■ “Study Conclusion” on page 69
■ “Hardware” on page 70
■ “Software” on page 70
■ “Configuration and Tuning” on page 71
■ “Performance Tests and Results” on page 73
■ “Configuration and Performance” on page 74

Study Goals
The goal of the tests in the study was to shows how well Proxy Server 4.0 scales. The tests also
helped to determine the configuration and tuning requirements.

Study Conclusion
When tuned, Proxy Server 4.0 provides excellent scalability, reliability and performance,
particularly when coupled with a network of suitable capacity and hardware whose chip
multithreading capabilities take advantage of Proxy Server 4.0's fully threaded model.

6C H A P T E R 6

69

Hardware
■ Sun SPARC Enterprise T1000 Server
■ UltraSparc T1 processor with 8 1GHz cores and support for 32 simultaneous threads
■ 8Gbytes RAM
■ Solaris 10 operating system
■ Four servers used as test machines to generate the load

Network Configuration
■ Four load generating servers connected to the T1000 server via a Gigabit ethernet switch in a

single subnet
■ Single Gigabit ethernet link

Software
Proxy Server system configuration:

■ 4Gbytes tmpfs cache
■ Suitably higher values for RqThrottle (320 — 512)
■ Keep alive disabled

Web polygraph benchmarking tool, which is a popular freely available benchmarking tool for
caching proxies, origin server accelerators, L4/7 switches, content filters, and other web
intermediaries, was used to evaluate the performance of Proxy Server 4.0.

Content
The studies were conducted with the following content:

■ The content size of each object followed an exponential distribution, with an average
content size of 13 Kbytes

■ All objects were cacheable with a two minute life cycle

Hardware

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201070

Configuration and Tuning
The following tuning settings are common to all the tests in this study. Individual studies have
additional configuration and tuning information.

/etc/system tuning:

set rlim_fd_max=500000

set rlim_fd_cur=500000

set sq_max_size=0

set consistent_coloring=2

set autoup=60

set ip:ip_squeue_bind=0

set ip:ip_soft_rings_cnt=0

set ip:ip_squeue_fanout=1

set ip:ip_squeue_enter=3

set ip:ip_squeue_worker_wait=0

set segmap_percent=6

set bufhwm=32768

set maxphys=1048576

set maxpgio=128

set ufs:smallfile=6000000

*For ipge driver

set ipge:ipge_tx_ring_size=2048

set ipge:ipge_tx_syncq=1

set ipge:ipge_srv_fifo_depth=16000

set ipge:ipge_reclaim_pending=32

set ipge:ipge_bcopy_thresh=512

set ipge:ipge_dvma_thresh=1

set pcie:pcie_aer_ce_mask=0x1

*For e1000g driver

set pcie:pcie_aer_ce_mask = 0x1

TCP/IP tuning:

ndd -set /dev/tcp tcp_conn_req_max_q 102400

ndd -set /dev/tcp tcp_conn_req_max_q0 102400

ndd -set /dev/tcp tcp_max_buf 4194304

ndd -set /dev/tcp tcp_cwnd_max 2097152

ndd -set /dev/tcp tcp_recv_hiwat 400000

ndd -set /dev/tcp tcp_xmit_hiwat 400000

Configuration and Tuning

Chapter 6 • Scalability Studies 71

Network Configuration
Since the tests use multiple network interfaces, it is important to make sure that all the network
interfaces are not going to the same core. Network interrupts were enabled on one strand and
disabled on the remaining three strand of a core using the following script:

allpsr=‘/usr/sbin/psrinfo | grep -v off-line | awk ’{ print $1 }’‘
set $allpsr

numpsr=$#

while [$numpsr -gt 0];

do

shift

numpsr=‘expr $numpsr - 1‘
tmp=1

while [$tmp -ne 4];

do

/usr/sbin/psradm -i $1

shift

numpsr=‘expr $numpsr - 1‘
tmp=‘expr $tmp + 1‘

done

done

The following example shows psrinfo output before running the script:

psrinfo | more

0 on-line since 12/06/2006 14:28:34

1 on-line since 12/06/2006 14:28:35

2 on-line since 12/06/2006 14:28:35

3 on-line since 12/06/2006 14:28:35

4 on-line since 12/06/2006 14:28:35

5 on-line since 12/06/2006 14:28:35

.................

The following example shows psrinfo output after running the script:

0 on-line since 12/06/2006 14:28:34

1 no-intr since 12/07/2006 09:17:04

2 no-intr since 12/07/2006 09:17:04

3 no-intr since 12/07/2006 09:17:04

4 on-line since 12/06/2006 14:28:35

5 no-intr since 12/07/2006 09:17:04

.................

Proxy Server Tuning
The following table shows the tuning settings used for the Proxy Server.

Configuration and Tuning

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201072

TABLE 6–1 Proxy Server Tuning Settings

Component Default Tuned

Access logging enabled disabled

Thread pool RqThrottle 128 RqThrottle 320

HTTP listener Non-secure listener on port 8080 Non-secure listener on port 8080

ListenQ 8192

Keep alive enabled disabled

Cache in Memory
The tmpfs filesystem was used to carve a 4Gbytes filesystem out of memory. This tmpfs
filesystem, which keeps all files in virtual memory, was used for caching purposes.

$ mkdir -p /proxycache

$ mount -F tmpfs -o size=5120m swap /proxycache

This creates a 5Gbytes filesystem in main memory. Although only 4Gbytes are actively used by
the proxy server, a 5Gbytes filesystem provides some spare room.

Performance Tests and Results
The following table contains the performance results for Proxy Server 4.0 running on Sun
SPARC Enterprise T1000 server.

Target Rate Throughput
(Operations /
seconds)

Response (ms) Error Network Utilization

6000 5999.70 11.02 0% 78%

6900 6906.71 11.10 0% 88%

7500 7503.58 15.65 0.51% 98%

8100 7925.65 293.03 2.15% 100%

9000 7956.88 365.19 11.59% 100%

-The Target Rate column specifies the target rate for clients submitting requests

-The Error column specifies the percentage of total requests that resulted in an error reported
by the clients.

Performance Tests and Results

Chapter 6 • Scalability Studies 73

Further measurements indicated that the Sun SPARC Enterprise server had approximately 30%
CPU idle time during peak loads of the benchmark test. Hence, it follows that the performance
can be potentially increased if additional network bandwidth is made available.

References:

http://www.sun.com/blueprints/0607/820-2142.html

Configuration and Performance
Overloading the server obj.conf with too many assign-name directives can have an adverse
effect on performance. Each assign-name directive involves a regular expression comparison
which can prove CPU intensive.

The following tables contains the performance results with varying number of assign-name
directives in the server obj.conf.

The first set of data is for a server with cache enabled, and the content server present in the local
network. Note that the response time is for a single request.

Number of assign-name directives in obj.conf Response time in milliseconds

10 1.05

100 1.45

250 1.8

1000 4.3

2000 7.35

4000 13.65

6000 20.0

8000 26.15

10000 32.5

As can be seen from the performance numbers, the response times show a marked increase
once the number of assign-name directives cross 100.

The following data was obtained with the cache disabled, and the remote server residing in a
remote network.

Configuration and Performance

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201074

http://www.sun.com/blueprints/0607/820-2142.html

Number of assign-name directives in obj.conf Response time in milliseconds

10 238.5

100 239.7

250 240.3

1000 242.2

2000 245.3

4000 252.3

6000 258.2

8000 264.3

10000 271.2

In the above data, a combination of network delay and the absence of a disk cache tend to hide
any performance drop due to the computational delay caused by the high number of
assign-name directives.

Recommendations:

■ Do not let the assign-name directives run into hundreds
■ Those assign-name directives that match commonly accessed URLs should appear earlier

in the obj.conf

Configuration and Performance

Chapter 6 • Scalability Studies 75

76

Index

A
acceptor threads, 35-36
access time updates, 60
acl-bucket, 23
ACL user cache, 51

max-groups-per-user, 51
max-users, 51
maximum age, 51

activating statistics, 20
AddLog, 52
async DNS cache, 51

B
benchmarking

tuning Solaris for, 62-63, 64
bottleneck, ACL user cache, 51
buckets, performance, 22
busy functions, 52

C
cache not utilized, 55
check-acl SAF, 53
configurations, statistics, 20
connection handling, 26-28
connection queue information, 33-34
connection refused errors, 59
connection timeouts, 58
connections, 26-32

connections (Continued)
closed, 37
simultaneous, 40
simultaneous using maximum threads setting, 31

content_length header, 37
creating, custom NSAPI plugins, 13
crontab -e sys command, 62
custom, NSAPI plugins, 13

D
default-bucket, 23
determining requirements, 68
disabling network interrupts, 65
disk configuration, 65
DNS cache, 49-51

async enabled, 51
current entries, 50
entries, 50
hit ratio, 50
maximum entries, 50

drive space, sizing issues, 68
dynamic control and monitoring, file cache, 44

E
enabling statistics, 20
etc/system file, 57

in scalability studies, 71

77

F
Faban driver, 70
features, Proxy Server, 12
file cache, 41-46

cache lookups, 44
dynamic control and monitoring, 44
entries, 43-44
flags for ?list option, 46
hit ratio, 44
maximum age, 44
maximum heap size, 44
obj.conf object for monitoring, 44
problems, cache not utilized, 55
status example, 45

file system tuning, Solaris, 59-60
flushed keep-alive connections, 55
func_insert, 52

H
hardware, for studies, 70
high concurrency mode, 27
high file system page-in rate, 60
hires_tick, 64
hit ratio, 44, 55
HTTP 1.0-style workload, 39
HTTP 1.1-style workload, 39-40
HTTP access logged, 65
HTTP listener, statistics, 35

I
idle threads, 47
iostat -x 60 command, 61
iostat utility, 60
ip:ip_squeue_bind, 64
ip:ip_squeue_fanout, 64
ipge:ipge_bcopy_thresh, 64
ipge:ipge_srv_fifo_depth, 64
ipge:ipge_taskq_disable, 64
ipge:ipge_tx_ring_size, 64
ipge:ipge_tx_syncq, 64

J
Java ES monitoring console, 24

K
keep-alive, 36-40

connections flushed, 55
count, 37-38, 55
flushes, 38, 55
hits, 38, 55
maximum connections, 37, 55
poll interval, 39
refusals, 38
threads, 39
timeout, 37
timeouts, 38

KernalThreads directive, 28
known issues, more information about, 12

L
LDAP server, and ACL user cache, 51
listen socket, statistics, 35
load driver, for studies, 70
load-modules function, 30
log file modes, 55

verbose, 55
long service times, 60
low latency mode, 27
low-memory problems, 54

M
magnus.conf, connection-handling directives, 28
max-groups-per-user, ACL user cache, 51
max-users, ACL user cache, 51
maximum age, file cache, 44
maximum heap size, 44
maximum threads, 31, 40, 54

and NativePoolQueueSize, 48
too few threads, 54

MaxProcs, 31

Index

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201078

memory, sizing issues, 67
memory requirements, 67
modes

log file, 55
multi-process, 31-32
single-process, 30

monitoring server performance
comparison of methods, 18
methods with least impact, 19
overview, 17-24
using Java EE monitoring console, 24
using perfdump, 22-24
using performance buckets, 22-24
using SE toolkit, 62
using stats-xml, 21-22

mpstat 60 command, 61
multi-process mode, 30-32

N
NameTrans, 29
native thread pool, 29-30, 46-47
NativePoolMaxThreads, 47, 48-49
NativePoolMinThreads, 49
NativePoolQueueSize, 47, 48
NativePoolStackSize, 47-48
NativeThread, 30
ndd command, 59
netstat -i 60, 61
netstat -s command, 58
network configuration, 65

for studies, 72
network interrupts, disabling, 65
networking, sizing issues, 68
new features, Proxy Server, 12
NSAPI plugins, custom, 13
NSPR, 29

O
obj.conf

custom thread pool, 28
object for monitoring the file cache, 44

obj.conf (Continued)
performance buckets, 23
UseOutputStreamSize parameter, 39

P
page sizes, 65-66
PathCheck, 29, 52
peak concurrent users, 68
perfdump

about, 22-24
using to monitor server activity, 22-24

performance
buckets, 22
issues, 17-18
monitoring tools, 18
overview, 17-24
problems, 12, 53
studies, 69-75
tuning, 25-52

performance buckets
configuration of, 23
defining in magnus.conf, 23
information in perfdump, 24
performance report, 23-24
using to monitor activity, 22

performance monitoring, Solaris-specific, 61-62
performance report, performance buckets, 23-24
persistent connection information, 36-40
platforms, supported, 12
PR_GetFileInfo, 46
problems

common, 12, 53
connection timeouts, 58
keep–alive connections flushed, 55
log file modes, 55
low memory, 54
too few threads, 54

process modes, 30-32
processes, 26-32
processors, sizing issues, 67
Proxy Server, features, 12

Index

79

R
ratio, hit, 44
refresh, 45
Release Notes, 12
restart, 45
rlim_fd_max, 57, 62, 64

S
scalability studies, 69-75
SE toolkit, 62
segmap_percent, 60
server instances, statistics, 20
Service, 29, 52
session creation information, 40-41
single-process mode, 30
Solaris

file system tuning, 57-59
platform-specific issues, 57-59
tuning for performance benchmarking, 62-63, 64

Solaris-specific performance monitoring, 61-62
long-term system monitoring, 61-62
SE toolkit, 62
short-term system monitoring, 61

sq_max_size, 59, 63, 64
SSL performance, 18
start options, 65-66
statistics

activating, 20
connection queue, 33
file cache information, 41
listen socket information, 35
monitoring, 19
performance buckets, 22

stats-xml
limiting output, 21-22
using to monitor current activity, 21-22

studies, 69-75
conclusion, 69
goals, 69
hardware used, 70
load driver, 70
network configuration, 72
Web Server tuning, 72-73

supported platforms, 12
system requirements, 12

T
TCP buffering, tuning, 59
tcp_conn_req_max_q, 58, 63, 64
tcp_conn_req_max_q0, 58, 63, 64
tcp_cwnd_max, 64
TCP/IP, tuning, 71
tcp_ip_abort_interval, 63, 64
tcp_keepalive_interval, 63
tcp_recv_hiwat, 63, 64
tcp_rexmit_interval_initial, 63
tcp_rexmit_interval_max, 63
tcp_rexmit_interval_min, 63
tcp_slow_start_initial, 63
tcp_smallest_anon_port, 63
tcp_time_wait_interval, 59, 63
tcp_xmit_hiwat, 63, 64
tcpHalfOpenDrop, 58
tcpListenDrop, 58
tcpListenDropQ0, 58
TerminateTimeout directive, 28
test results, 69-75
thread pools, 32, 46-49

custom, 28-29
disabled, 28
native thread pool, 29-30, 46-47

threads, 26-32
acceptor, 35-36
creation statistics, 40-41
keep-alive, 39
maximum, 40
multi-process mode, 31
too few, 54

tips, general, 25-26
tuning TCP buffering, 59
tuning the Web Server, 25-52

threads, processes, and connections, 26-32
using statistics, 32-51

tuning tips
general, 25-26
platform-specific, 57-66

Index

Oracle iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide • June 201080

tuning Web Server, keep-alive subsystem, 39

U
UFS, 60
under-throttled server, 54
UNIX file system, 60
using statistics to tune your server, 32-51

V
vmstat 60 command, 61

W
Web Server

start options, 65-66
tuning for studies, 72-73

work queue
length, 47
limit, 47
peak, 47

workarounds, more information about, 12

Index

81

82

	Oracle® iPlanet Web Proxy Server 4.0.14 Performance Tuning, Sizing, and Scaling Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	The Proxy Server Documentation Set
	Documentation Conventions
	Typographic Conventions
	Symbol Conventions
	Shell Prompts in Command Examples

	Default Paths and File Names
	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Performance and Monitoring Overview
	Performance Issues
	SSL Performance
	Monitoring Server Performance
	About Statistics
	Enabling Statistics
	To Enable Statistics (stats-xml) from the Admin Console

	Monitoring Current Activity Using stats-xml
	To Monitor Current Activity from the Admin Console
	To Limit the stats-xml Statistics Displayed in the URI

	Monitoring Current Activity Using perfdump
	To Enable and Use the perfdump SAF
	Using Performance Buckets
	Configuration
	Performance Report

	Monitoring Current Activity Using the Java ES Monitoring Console

	Tuning Proxy Server
	General Tuning Tips
	Understanding Threads, Processes, and Connections
	Connection-Handling Overview
	Low Latency and High Concurrency Modes
	Disabled Thread Pools
	Connection–Handling magnus.conf Directives for NSAPI

	Custom Thread Pools
	Native Thread Pool
	Process Modes
	Single-Process Mode
	Multi-Process Mode
	MaxProcs (UNIX/Linux)

	Using Monitoring Data to Tune Your Server
	Connection Queue Information
	Current /Peak /Limit Queue Length
	Tuning

	Total Connections Queued
	Average Queue Length
	Average Queuing Delay
	Ticks Spent
	Total Number of Connections Added

	HTTP Listener (Listen Socket) Information
	Address
	Tuning

	Acceptor Threads
	Tuning

	Tuning

	Keep-Alive Information
	Keep-Alive Count
	Keep-Alive Hits
	Keep-Alive Flushes
	Keep-Alive Refusals
	Keep-Alive Timeouts
	Keep-Alive Timeout
	Keep-Alive Poll Interval
	Keep-Alive Threads
	Tuning for HTTP 1.0-Style Workload
	Tuning for HTTP 1.1-Style Workload

	Thread Information
	Maximum Threads (Maximum Simultaneous Requests)
	Tuning

	File Cache Statistics Information
	Accelerator Entries
	Tuning

	Acceleratable Requests
	Tuning

	Acceleratable Responses
	Accelerator Hit Ratio
	Tuning

	File Cache Enabled
	Tuning

	File Cache Entries
	Tuning

	File Cache Hit Ratio
	Maximum Age
	Maximum Heap Cache Size
	File Cache Dynamic Control and Monitoring
	To Control and Monitor the File Cache

	Thread Pool Information
	Native Thread Pool
	Idle /Peak /Limit
	Tuning

	Work Queue Length /Peak /Limit
	Tuning

	NativePoolStackSize Directive
	Tuning

	NativePoolQueueSize Directive
	Tuning

	NativePoolMaxThreads Directive
	Tuning

	NativePoolMinThreads Directive
	Tuning

	DNS Cache Information
	Enabled
	Tuning

	Cache Entries
	Hit Ratio of Cache Hits and Lookups
	Async DNS Enabled or Disabled

	Tuning the ACL Cache
	Tuning the ACL User Cache (Authentication Cache)
	Tuning the Proxy Disk Cache to Store Dynamic Content
	Using Busy Functions

	Common Performance Problems
	check-acl Server Application Functions
	Specific Configurations
	Low-Memory Situations
	Too Few Threads
	Cache Not Utilized
	Keep-Alive Connections Flushed
	Log File Modes
	Garbage Collection

	Platform-Specific Issues and Tips
	Solaris Platform-Specific Issues
	Files Open in a Single Process (File Descriptor Limits)
	Failure to Connect to HTTP Server
	Connection Refused Errors
	Tuning TCP Buffering

	Solaris File System Tuning
	High File System Page-In Rate
	Reduce File System Housekeeping
	Long Service Times on Busy Disks or Volumes

	Solaris Platform-Specific Performance Monitoring
	Short-Term System Monitoring
	Long-Term System Monitoring
	Intelligent Monitoring

	Solaris 10 Platform-Specific Tuning Information
	Tuning Solaris for Performance Benchmarking
	Tuning UltraSPARC T1–Based Systems for Performance Benchmarking
	Tuning Operating System and TCP Settings
	Disk Configuration
	Network Configuration
	Proxy Server Start Options

	Sizing and Scaling Your Server
	Processors
	Memory
	Drive Space
	Networking

	Scalability Studies
	Study Goals
	Study Conclusion
	Hardware
	Network Configuration
	Software
	Content

	Configuration and Tuning
	Network Configuration
	Proxy Server Tuning
	Cache in Memory

	Performance Tests and Results
	Configuration and Performance

	Index

