Oracle® iPlanet Web Proxy Server 4.0.14
NSAPI Developer's Guide

Part No: 821-1886

ORACLG June 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

100624@24378

Contents

PREFACE ...ttt ettt 13
Creating Custom SAFs
Future Compatibility ISSUEScveuvuevcireiricietricireireieecireeeeeeneieie et sese s nsesseseeaenaes 20
SAF TNEEITACE «.vovereirieeieieieieicets ettt sttt s e a b ss s se s s st s eass s s sassesssassessssnsnnns 20
SAF PATQIMIELETSueuiuiririeieteteietiriniete ettt ettt sttt ettt et sebebenens 20
PD (Parameter DIOCK) ..ottt 20
STL (SESSIONN) we.evivevveeeereseeeteeeteseeseseseeteseeseseseseseesesesesessesesesesessesessesesensesessesesensesensesesensesensesensnesen 21
T (FEQUESLE) eevriuieiiecteieecereeiet ettt ettt sttt ettt bttt b s stacaenntacs 21
RESUIE COAES ...nenveiriieete ettt ettt bbbt anaas 22
Creating and Using CUStOM SAFSc.ccvveuirireineinicneeceeieeeretsee et ssesesessessssessessesenns 23
VW To create @ CUStOM SAF ...t 23
Writing the SOUICE COde ..ottt 24

Compiling and Linking
Loading and Initializing the SAF

Instructing the Server to Call the SAFS ..o 28
ReStArting the SEIVETc.vuveciciieciciriieciretsecret ettt naeen 29
TeStNG the SAF ..ottt e saen
Overview of NSAPI C Functions
Parameter Block Manipulation ROULINESc.cvvueveuierieeinieniieieineieieineeseieeseiseie e sseseesesens 30
Protocol Utilities for Service SAFS ..o 30
Memory Management ... 31
FileI/O
Network I/O
Threads
Utilities
Required Behavior of SAFs for Each DIrectivec.cecveureeeeneineeeicineenieeineireeeeetseseeseenessesesessesenaes 33
INEE SAFS o 34

Contents

AULNTTANS SAFS wovieieieeieieieii ettt s s s ssss bbb sesssnsnsnsasas 34
NAMETTANS SATFS ettt ettt ettt ettt e ssenan 34
PathCRECK SAFS ...evvtteiteeeie ettt bbb s bbb ae bbb s s s anananees 35
ODBJECLTYPE SAFS ..ottt 35
Input SAFs .35
OUEPUL SATFS ettt e 35
SEIVICE SAFS ettt ettt ettt ettt e b ettt et st benen 35
EITOT SATFS oottt sttt ettt ettt enen 36
AALOG SAFES oottt st 36

Connect

Creating CUStOM FIIEErSc.oooiii ettt een 39
Future Compatibility ISSUESc.eveeuerriueierriiicierrieeieirereeene ettt ssess s ssescsessenns 39
INSAPI FIIter INTEITACE ..cuvrvreicireicicireteccirctreicct ettt sttt sese st 40
Filter Methods ... 40

C Prototypes for Filter Methodsccovveevcuniurrciniirieiinieieeiereneeseeeeesesessesseseseesessesensens 40

insert

remove

flush

TEAM ouivrtiiinetrete ettt bbb bbb et

write

WLV 1ottt 43

sendfile .43
Position of Filters in the Filter StACKccccvireceeinieeinciniricreecreeeeeeee e 43
Filters That Alter Content-Length ..ot 45
Creating and Using Custom Filters ..o 46

VW To create @ CUSLOM fIIEETvueuiueveciieericiirecicieieceie et 46

Writing the SOUICe COde ...ttt 46

Compiling and Linking .. 47

Loading and Initializing the FIIter ..o eesesennees 47

Instructing the Server to Insert the FIlter ... 48

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Contents

ReStArting the SEIVETc.vuevecuiirieeicirieicieieectis ettt esesaen 48
Testing the FIIETcoiiiiiiiiicccicc st 48
Overview of NSAPI Functions for Filter DeVelOPMENLc.oceeeeerevreeeeeirieneeireineeenesseeenessesseneens 49

Examples of Custom SAFs and Filters

Examples in the BUild ..o
AuthTrans Example
Installing the AuthTrans Example
AuthTrans Example Source Code
NameTrans EXAMPLEc.cvvieiiciricieiicinieienecieicctsecte ettt eese s sssae s seacaseeacs
Installing the NameTrans Example
NameTrans Example Source Code
PathCheck EXAMPLEcueviuieeiciiiicircineiecincietetet ettt et nns
Installing the PathCheck Example
PathCheck Example Source Code

ObjectTyPe EXAMPIE ...t
Installing the ObjectType EXAmPLEc.ccvvurieereiniueiciiirieciteneieciseiensciseeeescesessesessesesessessesenses 61
ObjectType Example SOUIce Code ..o nsessesensens 62

Output Example
Installing the Output EXAMPIecovuieviiiciciieicieeeeeeetenseeee e s esenaens 63
Output EXample SOUICe COdecumiiiiniiiiiniiicineiniietineieeeiseie e sssssese s ssessesessees 63

SEIVICE EXAMPLE ...ovuiiieciiiicieicict ettt ettt 69
Installing the Service EXAMPILEcvvuriueiiirieieiniiriceinieceneieeeteseeeesesesessese et ssessssesens 69
Service EXample SOUICe COAE ...ttt tsesessesese et sesesseaeans 70
More Complex Service EXAMPIEcoveueuriueiciniinieeeiinieeicireseescineiseeeseesesesse s ssesessssesssssesens 71

AdALOG EXAMIPIE ...ttt sttt saeaesenaenae 72
Installing the AdALOG EXAMIPLEccvureeiieriieiciriieicieiicieinei et ssssseaees 72
AddLog Example SOUICe COevuumriuermirieeieiiieieieieeereiee e ssesessesessessesesnne 72

NSAPIFunction Reference ... 75

NSAPI Functions (in Alphabetical Order)cccocvecneiricineinieicinieicneiseeneeseeeeceneseeeesesseeenne 75

e 76
CACKIE_QIZESL c.uvneeiieecirt e 76
CaChe_fIONAIME ..o 76
CACHE_ 1110 dIZ wvuevreeinciriiicicireic e e 77

Contents

CALLOCQC oottt sttt st s st s et s st s s s et ss s s s s sassesebesessansnsnsasas 77
O ITEO ettt ettt ettt ea e et et et et et e st et et et saees e st et et ent et e et e et et e st eaeetenaees et eneeaeeaenes
CE_LOOKUD wenttieietiiccte ettt
cif_write_entry
CINTO TINIA oottt ettt et et e e e e et et e e e st esesee s et eseeseaseeseateneeseeseneeenenteneeaeenenes
COTMAVAT_ITEIE cuveeveeeeeeeeeee ettt ettt e et e e e et e et eee e eeeae e te et eeneeasessteneeesesneeeseenteseesesasesseenteesesneensesaean
CONAVAT_NOLILY 1.vuirieriiecieiciece it ss st et 81
CONAVAT_EITINATE ...evveveriieierieeeieteieteiieseseseeesees e esessaesesessssssesessssesesssssasssssssssesesssssaesessseses 81
condvar_wait .82
CIIE_BIIEET ooinviiieciiecceite ettt ettt e cete e e e rtt e e eetbeeeeba e e e aaeeeesbasesssaeeesaseeessasessasesastseeensasesnsssesessseesnnes 83
CIIE_EXIE 1rviiiiiiiiitiii it ettt e et e e et e eetbeeeebaeeeaaeeeeabaeeeabaeeesaeeeessasessasesastseeenbasesnsssesansseeennes 83
(& 5 LA §' 5 RO T R RRUURURURRRRNY 84
(& 5 LA 136 50055 P= 1 (<IN USSR 84
.. 85
AACTIION. ALTESTATT vttt ettt ettt et et et et et e st ees e te e sseeseseeteneeseesessessenteneeseesensesentenessessenes 85
AIIS_ SO OSTEIIE ettt ettt ettt e e et et e e eeeesesee et e eeseesesseeseteneeseeseneeeseteneesessenes 85

FILEDUL _CLOSE vttt ettt ettt et s e s et et saessesse st ensenessessessentensenessesensensenessessenes 88
FILEDUL _GELC cuvvriiieitcci et e 89
ILEDUL 0PI outieitt e 89
filebuf_open_nostat .90
FIIEET CTOALE ettt ettt ettt et ettt et et e st e et et et saeasesse s et ese et essessentenssseesensesentenessessenes 91
FIEET SINIA ettt ettt et et e et et et et eseesesee e et eseesease st et eneeaeeseneaenetenesaeenenes 92
IEET_INSEIT 1.ttt sttt sttt esnsn sttt essanennansnsas 92
filter_layer

filter_name

FIIEET TEIMMOVE .ttt ettt ettt et a e et et s et s e et ese st eseseseneatesenessenessaensasanas 94
TSI oottt s nnea st 95
FREE ..ottt sttt e a sttt b b s s bbb s b a s s et n s s aens 95
£ DI SIZE ettt ettt e e et e et e e et et e e e e et et e e e et eseeee et et ene et eaae et et e st eneeseneeene e eneeaeenenes 96
£S_DIKS_QVAIL ovviiecececieieieieie ettt sttt ettt s s s ettt essnnnennsenes 97
FUIIC EXEC vttt ettt et e e sa e et et et et ese st et et e st ssessesse s et eneasessessentenssseesensesentenessessenes 97
FUDNC IINIA ettt et et et et e e e e et et et e et esesee et et eseesesse st eteneeseesenseesentenesaessenes 98

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Contents

MAGNUS_ATFESTATT «ecveeieiiiicicectc s 101
MALLOC
oL A 1 L0TS) o WSRO
NEE_IP2ROST ettt bbbttt 103
TIEE TEAM oottt ettt et et et et et et eaesae et e st ese et esesse s ente st eaeese st et ententenessesententeaeeresaenren 103
NIET_SEIMALILIE .ttt ettt st et et e st e s et et eaeesesse s et entesessesenteneeaeerenaennen 104
8T 4 6 LSRR 105
NIEEDUL DULZSA ettt et e et et e ea et et et eaeeseseeen et eseeseeseesentenesseesenaenen 106
TICTDUE CLOSE ettt eae et e et et et e e see s et et saeesesseaneneeseeseesesenteneeasesensenen 107
NEEDUL GELC vttt st 107
NEDUL_GIaD ..o 108
NEDUL OPCIL oottt s e 108
NSAPL_MOAULE_INIE ceceereriviiiieicicierieeeieeiet et ss s seseaenaes 109
NSAPI_RUNTIME_VERSIONcooiieiriiieiiierisieisseesessssssssssesssssssssssssssssessssessssssesssssessssens 109
NSAPIL_VERSION ..ottt ettt te sttt et et a e sesbe st e ae s eseebassansenes 110
... 111
PATAIN_CTEALE .ttt sa s 111
PATAIN_LTEE ..ottt ettt ettt ettt 111
PDIOCK _COPY ittt 112
PDLOCK _CIEALE ..cvuiuiiiieeiciect ettt en 112
PDLOCK QU ettt e 113
PDIOCK fINA ettt e 113
PDIOCK _fINALONG .ot e ees 114
PDLOCK _FINAVAL .ottt 115
PDIOCK _TEE oottt e 115
PDIOCK TIISETT ovoveiritieieiiecieteteee ettt e 116
PDLOCK NNINSEIT c.uiireiieiciecteicieect ettt eeaeseen 116
PDIOCK NIVINISEIT w.eoveiiiiieicticictreteccicie ettt e 117
PDIOCK _PD2EIV .ottt bbb e 118

Contents

PDIOCK_PDLOCKZSEE ..ottt e
PDIOCK PINSEIT ..ttt et e

PDIOCK _TEIMOVE .ottt e
pblock_replace_nameccccocveeuverrevererncenercnnennen.

PDIOCK_STI2ZPDLOCK .ivieiieiiieiti et ettt
PERM_CALLOCQC ettt ettt sttt e be st esseseebe s s s e s ensesaebessensenseseesennan
PERM_FREE ..ottt sttt sttt e s se s st essnsnnsnsa
PERM_MALLOC
PERM_REALLOC
PERM_STRDUPouiieieieiririiessietetstsiessssssssssssssssssssssssssesesssssssssssssesessssssssssssssesesesssssssssnses
prepare_nsapi_thread ...ttt s
PrOtOCOL_AUMPB22 .ottt ettt
ProtoCol_fINISh_TEQUESEccuvuuieieciiieeeciticcir et e
protocol_handle_session
PIOLOCOL PATSE TEQUEST ..eucvrreeerirceiaciitreaetretseietet sttt sese ettt sttt
Protocol_SCAN_NEAAETSc.veceiiceiciriiricrer ettt e
PLOLOCOL_SEE_fINFO couvrieieiciicte et
protocol_start_response ...
protocol_status
PIOOCOL_UTT2UIT ..o

protocol_uri2url_dynamic

REALLOC ...
TEITIOVE uuvereevereresessssesssssssesesessssssssssssesesessssssssssssesesessssssssssssesesesessssssssssssesesesssssssssesesesesessssssssnsess
TEQUEST_CIEALE ..oocviniiiieee e
FEQUEST_TTE oreiiuiitieice ettt et
request_header
sem_grab

FY=3 0 0 ' 1 USROS RPN
SEITL_TELEASE ..ttt ettt et et e et e et et et st eseste et et e e sseeset et esseseesessensenteneeseesensensentenesaensen
Y= 0 0 W 138 0 001 =1 (RS RT
SEIML_EETAD ..ot e
SEIALILE <.eveeeeveieieii ettt sttt et bbb s s s s bbbt nenannnas

YRR (0] s W <=1 IO

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Contents

SESSION AIIS evivieeereeee et teeteet et et eatesest e et et et esesseesestessestesessesentesesseesessesenteseesessensentenssasesessensen 140
SESSION._fTCC ettt ettt ettt et e e e et et et eaeeae et e st et estesesseesentesesseesesseasenseseesessesententeasesessensen 141
SESSION._ IMAXAIIS tuveeveneeeeeeeereeteeteeeeeeeeeeseeteeteeteteseeseesesteeestesesseesentesesseesessessenteseesessesestenssseesessesen 141
shexp_casecmp

SHEXP_CIMIP ettt ettt
SHEXP_IMALCH .ttt

SHEXP_VAlIA ettt et
SHIMEM_IL0C ittt
shmem_free
STRDUP ...ctiiiteeerieteieietstesses e ss st ss s s e s s s st et s s s sassssss et et s ssssssssssesasasssssnsssnsases
system_errmsg
SYSTEINL_FCLOSE w.vreeaieeieceeecctte et et
SYSTEIML_TLOCK vttt e e
system_fopenRO
SYSTEM_FOPENRW ..ttt e
SYSTEM_FOPENWA .ottt st e
SYSEEIML_ETEAM .uvveiieeeeereeiciciceee ettt ittt s naes
SYSTEIML_FWTILE voveevuerieiecieeceecieteeect et et s
system_fwrite_atomic
SYStEM_GMUEIME .oueviiiiicccctc e
SYSTEM_IOCAITIIMIE «...voeeeiecetec e e
SYSTEIML_ISCEK .voveciuiieiiciitccecict ettt et
1053 8 T =31 00 L
system_ulock
SYSTEM_UNIX2I0CAL .ueeveiriieciiiiciiei et e
SYSTRIread_attach ..o e
SYSTNIEAA_CUITENL ...t s
SYSThread_getdatac.cvcvcurieeiciiirccicc e e
systhread_init
SYSthread_NEWKEY ..o
SYSTRIEad_SEtAAtac.cvuevrieeeeciiiecciece et e
SYSTNIEAA_SICEP .cvuvrieeieireiicieiic e e
SYSTRTEAA_STATT .ottt ettt
SYSthread_terminatecccoceeeeiereereerieeeeeee e e esenas
SEE ALSO ettt ettt a ettt e e a et s st n s e nantetes

SYSTNIEAd_TIMETSEL w..eovevreereieiieciiree ettt bt e e

Contents

10

USE_NSAPIL _VERSION ..ottt ettt ettt et sat e saa e st s sstesaessssessaeessnesnneanns
UL CAIL EXEC ettt ettt et et et e e et et e st et et e e seeesese et eseeseeseasens et enesseesensesentesesseasen
util_chdir2path

UL COOKIE LI ettt et e et et e e e et ea e et et eaeeseeseenee et eneeseeseneesennesesaeanen

UL OES_PIOCESS_EXIST .uvuuvueriviuireirisciiesiee ettt ettt
UL ENIV_CIEALE .ottt ettt ettt ettt s e e sanseses
UL ENV_TINA 1ttt ettt s s s s s enas
util_env_free
UL ENV_TEPLACE .ttt ettt
UL BIIV_ STE teteiiieeiet ettt ettt st ettt sae et e st e s et et saesse s et ensesessessensentenessesensensensesessesen
UL GOt CUITENT GIMT cooviieieiieeecieeect ettt et
util_get int from_auX_fIle ..o
util_get_int_from_file
util_get long from_aux Il ...
util_get_long from_file ..o
util_get_string from_aux_file ..o
util_get_string from_fIleocceieenirccceee e
util_getline
U] ROSTIAIME ..ottt ettt ettt s e ennsene
UL IS TNIOZIILA ettt ettt ettt s e e s et et eaessesse st entenessessesensensesessensen
UELL IS TEL ceeeeeee ettt ettt et e st et et et saeese st et eseeneesessensentenesseesensesensenesaensen
TEIL TEO@ weeeeeeeeeee ettt ettt et e e et et e e e e e e eue et e et eesee e eese st eeseeneeesesneentesseenseesesntensesneeesenneans
util_later_than
UL MAKE fILENAIIE ettt ettt et ettt e e st e sse st et esessessentensensesesaennen
UL MAKE_ ZIMLE Lo
U] MAKE_LOCAL .eeeiiiie ettt
util_move_dir
util_move_file
UL parse_ NP tIMIE .. e
UHLPUL_INE_T0_FIE ettt
UL PUt_10NG 10110 i
util_put_string t0_auX_fIle ...
UL pUt_StrINg t0_fIle ...oovmiieciciiece e
UELL SECE_ T 1ttt ettt ettt ettt et e s e st et et et saeese st et easeseasessensentenesseesensensensesessensen

UHL S @SCAPE .oeerieieiiict s e

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Contents

UL SIIPIINEE oo e

UHL SPIINTE oot e e
UL SEICASECINP oottt s et
UL SEITEIITIO oottt ettt et et et e eeae et esee e et eseeeeeseneeseeaeeseseeaneneeneeneeseeseneeneensesenseanen
util_strncasecmp
UL UTT CRECK ittt ettt et sa s et et saesse st e s estenessessessensenssnsasensenson
U] UTT_SCAPE cavvivrieiiiieircieice ettt bttt ettt
UL UTT IS @VIL vttt ettt et e st e et e saees et et saeeseste st enteneesessensentenesasesessennen
UHL UTT PATSE ottt st bt
UHL UTT UNESCAPE ittt e
util_url_cmp

util_url_fix_host name

Util_url_has. FQDN ..ottt ae e aes et se st ae s s s seesensssensnnenen 188
UL VSIIPIINEE ottt e 189
UHL VSPIINTE oottt 189

Data StrUCtUr@ REFEIGNCEoeeeeeeeeeeeeeeeeee ettt enenenens

Privatization of Some Data Structures

FilterContext
FIIEILAYRT eevuvreeiecirctieeietreeeietret ettt et seae et ae s ettt sttt sesesacnnes
B LY (16 oTo Yo IO

Contents

12

CacheENtry Data StIUCLUTIEc.cueveeucuieceeireeeicireteeeeictseee ettt sese et sese st esessesseaessessesesscsnes 200
CacheState Data STIUCTUTEovvueueieieeerieeeteeeieiseets ettt sttt ssessassseessssssssssessssnsesssansesnns 201
ConnectMOode Data STIUCLUTEvuceeuricerireeeiricieireeteteietsteset st tsesee et sese e easse et eseseseesesesseaes 202
Using Wildcard Patterns ..ottt et 203
WILACATA PALEITIS ..ottt 203
WIilACard EXAMPLES ...couvevuceieieciiiiecieineicieineiesieteieeseseesese s asese s tes s ese s ses s sesessesnses 204
TIMEFOIMALS ... 207
TIME fOTMAL STIINES w.vrvveveereeieeiretreie ettt ses et ea ettt saeen 207

Hypertext Transfer Protocol

HTTP COMPUAIICE ..ovrveiriieieireieiscireteeeetetsesetetset st seae et sese st ses st sese st sese st essessetsesesacsnes
HTTP REQUESES ..ottt ettt sesesees
Request Method, URI, and Protocol VEISIONc.cccerecuriceeineeenineeeinieieineeesesesenseseiseneaes 210
ReQUESE HEAACTS ...ttt e 210
ReQUESE DALA ..ot 210
Server Responses
HTTP Protocol Version, Status Code, and Reason PRraseccococveeevveevecenceeeeseennes 211
RESPONSE HEAETS ...ttt ettt 212
ReSponse Data ... 213
BUITETed STIEAIMS ...voveieieieieiiciei ettt sttt ss b ss e ss st s nsnsesasanes 213
Alphabetical List of NSAPI Functions and Macrosccocoeeeeinieeiseeeeeeeeeeeenenns 215
INAEX ...t e 223

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Preface

This NSAPI Developer's Guide provides a reference of the NSAPI functions you can use to
define new plugins.

This preface consists of the following sections:

“Who Should Use This Book” on page 13

“How This Book Is Organized” on page 13

“The Proxy Server Documentation Set” on page 14
“Documentation Conventions” on page 15

“Default Paths and File Names” on page 17
“Documentation, Support, and Training” on page 17
“Searching Oracle Product Documentation” on page 18
“Third-Party Web Site References” on page 18

Who Should Use This Book

The intended audience for this guide is the person who develops, assembles, and deploys
NSAPI plug-ins in a corporate enterprise. This guide assumes you are familiar with the

following topics:

= HTTP

= HTML

= NSAPI

= Cprogramming
u

Software development processes, including debugging and source code control

How This Book Is Organized

The following table lists the chapters in the guide and their contents.

TABLEP-1 Guide Organization

Chapter Description
Chapter 1, “Creating Custom SAFs” This chapter discusses how to create your own plug-ins that define
new SAFs to modify or extend the way the server handles requests.

Preface

TABLEP-1 Guide Organization

(Continued)

Chapter 2, “Creating Custom Filters”

This chapter discusses how to create custom filters that you can use to
intercept, and potentially modify, incoming content presented to or
generated by another function.

Chapter 3, “Examples of Custom SAFs
and Filters”

This chapter provides examples of custom SAFs to use at each stage
in the request-handling process.

Chapter 4, “NSAPI Function
Reference”

This chapter presents a reference of the NSAPI functions. You use
NSAPI functions to define SAFs.

Chapter 5, “Data Structure Reference”

This chapter discusses some of the commonly used NSAPI data
structures.

Chapter 6, “Using Wildcard Patterns”

This chapter lists the wildcard patterns you can use when specifying
values in obj . conf and various predefined SAFs.

Chapter 7, “Time Formats”

This chapter lists time formats.

Chapter 8, “Hypertext Transfer
Protocol”

This chapter gives an overview of HTTP.

Appendix A, “Alphabetical List of
NSAPI Functions and Macros”

This appendix provides an alphabetical list of NSAPI functions and
macros.

The Proxy Server Documentation Set

14

The documentation set lists the Oracle documents that are related to Proxy Server. The URL for
Proxy Server 4.0.14 documentation is http://docs.sun.com/coll/1311.14. Foran
introduction to Proxy Server, refer to the books in the order in which they are listed in the

following table.

TABLEP-2 Proxy Server Documentation

DocumentTitle Contents
Oracle iPlanet Web Proxy The Proxy Server release:
Server 4.0.14 Release Notes ® Late-breaking information about the software and the
documentation
B New features
® Supported platforms and environments
® System requirements
® Known issues and workarounds

Oracle iPlanet Web Proxy
Server 4.0.14 Installation and
Migration Guide

Performing installation and migration tasks:

Installing Proxy Server
Migrating from version 3.6 to version 4

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

http://docs.sun.com/coll/1311.14
http://docs.sun.com/doc/821-1888
http://docs.sun.com/doc/821-1888
http://docs.sun.com/doc/821-1885
http://docs.sun.com/doc/821-1885
http://docs.sun.com/doc/821-1885

Preface

TABLEP-2 Proxy Server Documentation

(Continued)

Document Title

Contents

Oracle iPlanet Web Proxy
Server 4.0.14 Administration Guide

Performing administration and management tasks:

Using the administration and command-line interfaces
Configuring server preferences

Managing users and groups

Monitoring and logging server activity

Using certificates and public key cryptography to secure the server
Controlling server access

Proxying and routing URLs

Caching

Filtering content

Using a reverse proxy

Using SOCKS

Oracle iPlanet Web Proxy
Server 4.0.14 Configuration File
Reference

Editing configuration files

Oracle iPlanet Web Proxy
Server 4.0.14 NSAPI Developer’s Guide

Creating custom Netscape Server Application Programming Interface
(NSAPT) plugins

Oracle iPlanet Web Proxy
Server 4.0.14 Performance Tuning,
Sizing, and Scaling Guide

Tuning Proxy Server to optimize performance

Documentation Conventions

This section describes the following conventions used in Proxy Server documentation:

= “Typographic Conventions” on page 15

= “Symbol Conventions” on page 16

= “Shell Prompts in Command Examples” on page 17

Typographic Conventions

The following table describes the typographic changes that are used in this book.

http://docs.sun.com/doc/821-1882
http://docs.sun.com/doc/821-1882
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1886
http://docs.sun.com/doc/821-1886
http://docs.sun.com/doc/821-1887
http://docs.sun.com/doc/821-1887
http://docs.sun.com/doc/821-1887

Preface

TABLEP-3 Typographic Conventions

Typeface Meaning Example
AaBbCc123 The names of commands, files, and Edit your . login file.
directories, and onscreen computer)
Use 1s -a to list all files.
output
machine name% you have mail.
AaBbCc123 What you type, contrasted with onscreen ~ machine_name% su
computer output
Password:
AaBbCc123 A placeholder to be replaced with a real The command to remove a file is rm filename.
name or value
AaBbCc123 Book titles, new terms, and terms to be Read Chapter 6 in the User's Guide.

emphasized (note that some emphasized

items appear bold online) A cacheis a copy that is stored locally.

Do not save the file.

Symbol Conventions

The following table explains symbols that might be used in this book.

TABLEP-4 Symbol Conventions

Symbol Description Example Meaning

[1] Contains optional arguments 1s [-1] The -1 option is not required.
and command options.

{1} Contains a set of choices fora -d {y|n} The -d option requires that you use
required command option. either the y argument or the n

argument.

${ 3} Indicates a variable ${com.sun.javaRoot} References the value of the
reference. com.sun.javaRoot variable.

- Joins simultaneous multiple ~ Control-A Press the Control key while you press
keystrokes. the A key.

+ Joins consecutive multiple Ctrl+A+N Press the Control key, release it, and
keystrokes. then press the subsequent keys.

- Indicates menu item File - New — Templates From the File menu, choose New.
selection in a graphical user From the New submenu, choose
interface. Templates.

16 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Preface

Shell Prompts in Command Examples

The following table shows default system prompts and superuser prompts.

TABLEP-5 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_nameS
C shell superuser on UNIX and Linux systems machine_ name#
Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Default Paths and File Names

The following table describes the default paths and file names used in Proxy Server
documentation.

TABLEP-6 Default Paths and File Names

Placeholder Description Default Value

install-dir Represents the base installation Solaris and Linux installations:
directory for iPlanet Web Proxy $HOME/Oracle/Middleware/ProxyServers
Server.

Windows installations:
C:\Oracle\Middleware\ProxyServer4

Documentation, Support, and Training

The Oracle web site provides information about the following additional resources:

= Documentation (http://docs.sun.com/)

= Support (http://www.sun.com/support/)

= Training (http://education.oracle.com/pls/web_prod-plg-dad/
db_pages.getpage?page id=315)

http://docs.sun.com/
http://www.sun.com/support/
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=315

Preface

Searching Oracle Product Documentation

Besides searching Oracle product documentation from the docs.sun.com web site, you can use
a search engine by typing the following syntax in the search field:

search-term site:docs.sun.com
For example, to search for “proxy,” type the following:
proxy site:docs.sun.com

To include other Oracle web sites in your search (for example, java.sun.com, www.sun.com,
and developers.sun.com), use sun. com in place of docs . sun. com in the search field.

Third-Party Web Site References

Third-party URLs are referenced in this document and provide additional, related information.

Note - Oracle is not responsible for the availability of third-party web sites mentioned in this
document. Oracle does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Oracle will
not be responsible or liable for any actual or alleged damage or loss caused or alleged to be
caused by or in connection with use of or reliance on any such content, goods, or services that
are available on or through such sites or resources.

18 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

http://java.sun.com
http://www.oracle.com/index.html
http://developers.sun.com

CHAPTER 1

Creating Custom SAFs

This chapter describes how to write your own NSAPI plug-ins that define custom Server
Application Functions (SAFs). Creating plug-ins enables you to modify or extend the built-in
functionality of Proxy Server. For example, you can modify the server to handle user
authorization in a special way or generate dynamic HTML pages based on information in a
database.

This chapter contains the following sections:

“Future Compatibility Issues” on page 20

“SAF Interface” on page 20

“SAF Parameters” on page 20

“Result Codes” on page 22

“Creating and Using Custom SAFs” on page 23

“Overview of NSAPI C Functions” on page 30

“Required Behavior of SAFs for Each Directive” on page 33
“CGI to NSAPI Conversion” on page 37

Before writing custom SAFs, you should familiarize yourself with the request-handling process,
as described in Oracle iPlanet Web Proxy Server 4.0.14 Configuration File Reference. Also, before
writing a custom SAF, see whether a built-in SAF already accomplishes the tasks you have in
mind.

For information about predefined SAFs used in the obj . conf file, see Oracle iPlanet Web Proxy
Server 4.0.14 Configuration File Reference.

For a complete list of the NSAPI routines for implementing custom SAFs, see Chapter 4,
“NSAPI Function Reference”

http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883

Future Compatibility Issues

Future Compatibility Issues

The NSAPI interface might change in a future version of Proxy Server. To keep your custom
plug-ins upgradeable :

= Make sure plug-in users know how to edit the configuration files such as magnus . conf and
obj . conf manually. The plug-in installation software should not be used to edit these
configuration files.

= Keep the source code so you can recompile the plug-in.

SAF Interface

All SAFs, both custom and built-in have the same C interface regardless of the request-handling
step for which they are written. These small functions are designed for a specific purpose within
a specific request-response step. They receive parameters from the directive that invokes them
in the obj . conf file, from the server, and from previous SAFs.

The C interface for a SAF:

int function(pblock *pb, Session *sn, Request *rq);
The SAF parameter section discusses the parameters in detail.

The SAF returns a result code that indicates whether and how it succeeded. The server uses the
result code from each function to determine how to proceed with processing the request. See,
for details of the result codes.

SAF Parameters

20

This section discusses the SAF parameters in detail. The parameters are:

= “pb (parameter block)” on page 20 — Contains the parameters from the directive that
invokes the SAF in the obj . conf file.

= “sn (session)” on page 21 — Contains information relating to a single TCP/IP session.

= “rq(request)” on page 21 — Contains information relating to the current request.

pb (parameter block)

The pb parameter is a pointer to a pblock data structure that contains values specified by the
directive that invokes the SAF. A pblock data structure contains a series of name-value pairs.

The following example shows a directive that invokes the basic-nsca function:

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

SAF Parameters

AuthTrans fn=basic-ncsa auth-type=basic dbm=/<Install Root>
/<Instance_Directory>/userdb/rs

In this case, the pb parameter passed to basic-ncsa contains name-value pairs that correspond
to auth-type=basic and dbm=/<Install_Root>/<Instance Directory>/userdb/rs.

NSAPI provides a set of functions for working with pblock data structures. For example,
pblock_findval() returns the value for a given name in a pblock. See “Parameter Block
Manipulation Routines” on page 30, for a summary of the most commonly used functions for
working with parameter blocks.

sh (session)

The sn parameter is a pointer to a session data structure. This parameter contains variables
related to an entire session, that is, the time between the opening and closing of the TCP/IP
connection between the client and the server. The same sn pointer is passed to each SAF called
within each request for an entire session. The following list describes the most important fields
in this data structure see Chapter 4, “NSAPI Function Reference,” for information about NSAPI
routines for manipulating the session data structure.

® sn->client

Pointer to a pblock containing information about the client such as its IP address, DNS
name, or certificate. If the client does not have a DNS name or if the name cannot be found,
it will be set to -none.

B sn->csd

Platform-independent client socket descriptor. This value is passed to the routines for
reading from and writing to the client.

rq (request)

The rq parameter is a pointer to a request data structure. This parameter contains variables
related to the current request, such as the request headers, URI, and local file system path. The
same request pointer is passed to each SAF called in the request-response process for an HTTP
request.

The following list describes the most important fields in this data structure. See Chapter 4,
“NSAPI Function Reference,” for information about NSAPI routines for manipulating the
request data structure.

= rg->vars

Chapter 1 « Creating Custom SAFs 21

Result Codes

Pointer to a pblock containing the server’s working variables. This pblock includes
anything not specifically found in the other three pblocks. The contents of this pblock vary
depending on the specific request and the type of SAE For example, an AuthTrans SAF
might insert an auth-user parameter into rq->vars that can be used subsequently by a
PathCheck SAF.

rq->regpb

Pointer to a pblock containing elements of the HTTP request. This pblock includes the
HTTP method (GET, POST, and so on), the URI, the protocol (normally HTTP/1.0), and the
query string. This pblock does not normally change throughout the request-response
process.

Note - While obtaining the query string associated with a request, the query string is stored
in regpb pblock of the request structure only if the request URL is relative. If the request
URL is absolute, the query string is not separated.

rg->headers

Pointer to a pblock containing all of the request headers, such as User-Agent,
If-Modified-Since, and so on, received from the client in the HTTP request. See

Chapter 8, “Hypertext Transfer Protocol,” for more information about request headers. This
pblock does not normally change throughout the request-response process.

rq->srvhdrs

Pointer to a pblock containing the response headers, such as Server, Date, Content-Type,
Content-Length, and so on, to be sent to the client in the HTTP response. See Chapter 8,
“Hypertext Transfer Protocol,” for more information about response headers.

The rq parameter is the primary mechanism for passing information throughout the
request-response process. On input to a SAE, rq contains the values that were inserted or
modified by previously executed SAFs. On output, rq contains any modifications or additional
information inserted by the SAF. Some SAFs depend on the existence of specific information
provided at an earlier step in the process. For example, a PathCheck SAF retrieves values in
rq->vars that were previously inserted by an AuthTrans SAE.

Result Codes

22

Upon completion, a SAF returns a result code. The result code indicates what the server should
do next. The result codes are:

REQ_PROCEED

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Creating and Using Custom SAFs

Indicates that the SAF achieved its objective. For some request-response steps (AuthTrans,
NameTrans, Service, and Error), this result code tells the server to proceed to the next
request-response step, skipping any other SAFs in the current step. For the other
request-response steps (PathCheck, ObjectType, and AddLog), the server proceeds to the
next SAF in the current step.

= REQ_NOACTION

Indicates that the SAF took no action. The server continues with the next SAF in the current
server step.

= REQ ABORTED

Indicates that an error occurred and an HTTP response should be sent to the client to
indicate the cause of the error. A SAF returning REQ_ABORTED should also set the HTTP
response status code. If the server finds an Error directive matching the status code or
reason phrase, it executes the SAF specified. If no directive is found, the server sends a
default HT'TP response with the status code and reason phrase plus a short HTML page
reflecting the status code and reason phrase for the user. The server then goes to the first
AddLog directive.

= REQ EXIT

Indicates that the connection to the client was lost. This result code should be returned
when the SAF fails in reading or writing to the client. The server then goes to the first AddLog
directive.

Creating and Using Custom SAFs

Custom SAFs are functions in shared libraries that are loaded and called by the server.

v To create a custom SAF

1 “Writing the Source Code” on page 24 using the NSAPI functions. Each SAF is written fora
specific directive.

2 “Compiling and Linking” on page 25 the source code to create a shared library (. so, .s1, or
.d11) file.

3 “Loadingand Initializing the SAF” on page 27 by editing the magnus . conf file to perform the
following actions:

= Load the shared library file containing your custom SAFs
= Initialize the SAFs if necessary

Chapter 1 « Creating Custom SAFs 23

Creating and Using Custom SAFs

4 “Instructing the Server to Call the SAFs” on page 28 by editing obj . conf to call your custom
SAFs at the appropriate time.

5 “Restarting the Server”on page 29.

6 “Testing the SAF”on page 29 by accessing your server from a browser with a URL that triggers
your function.

The following sections describe these steps in greater detail.

Writing the Source Code

Write custom SAFs using NSAPI functions. For a summary of some of the most commonly
used NSAPI functions, see “Overview of NSAPI C Functions” on page 30. For information
about available routines, see Chapter 4, “NSAPI Function Reference”

For examples of custom SAFs, see nsapi/examples/ in the server root directory, and Chapter 3,
“Examples of Custom SAFs and Filters”

The signature for all SAFs is:

int function(pblock *pb, Session *sn, Request *rq);
For more details on the parameters, see “SAF Parameters” on page 20.

Proxy Server runs as a multi-threaded single process. UNIX platforms uses two processes, a
parent and a child, for historical reasons. The parent process performs some initialization and
forks the child process. The child process performs further initialization and handles all of the
HTTP requests.

Keep the following guidelines in mind when writing your SAF:

= Write thread-safe code

= Blocking can affect performance

= Write small functions with parameters and configure them in obj . conf

= Carefully check and handle all errors and log them so you can determine the source of

problems and fix them

If necessary, write an initialization function that performs initialization tasks required by your
new SAFs. The initialization function has the same signature as other SAFs:

int function(pblock *pb, Session *sn, Request *rq);

SAFs work by obtaining certain types of information from their parameters. In most cases,
parameter block (pblock) data structures provide the fundamental storage mechanism for

24 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Creating and Using Custom SAFs

these parameters. A pblock maintains its data as a collection of name-value pairs. For a
summary of the most commonly used functions for working with pblock structures, see
“Parameter Block Manipulation Routines” on page 30.

A SAF, definition does not specifically state which directive it is written for. However, each SAF
must be written for a specific directive such as AuthTrans, Service, and so on. A SAF must
conform behavior consistent wit the directive for which it was written. For more details, see
“Required Behavior of SAFs for Each Directive” on page 33.

Compiling and Linking

Compile and link your code with the native compiler for the target platform. For UNIX, use the
gmake command. For Windows, use the nmake command. For Windows, use Microsoft Visual
C++ 6.0 or newer. You must have an import list that specifies all global variables and functions
to access from the server binary. Use the correct compiler and linker flags for your platform.
Refer to the example Makefile in the server_root/plugins/nsapi/examples directory.

This section provides following guidelines for compiling and linking.

Include Directory and nsapi.h File

Add the server_root/plugins/include (UNIX) or server_root\\plugins\\include
(Windows) directory to your makefile to include the nsapi. h file.

Linker Libraries

Add the server_root/bin/https/1lib (UNIX) or server_roof\\bin\\https\\bin (Windows)
library directory to your linker command.

The following table lists the relevant libraries.

TABLE1-1 Linker Libraries

Platform Library

Windows ns-httpd40.d11 (in addition to the standard Windows libraries)
HP-UX libns-httpd40.sl

All other UNIX platforms libns-httpd40.so

Linker Commands and Options for Generating a Shared Object

To generate a shared library, use the commands and options listed in the following table.

Chapter 1 « Creating Custom SAFs 25

Creating and Using Custom SAFs

26

TABLE1-2 Linker Commands and Options

Platform Options

Solaris Operating System 1d -G or cc -G

(SPARC Platform Edition)

Windows link -LD

HP-UX cc +Z -b -Wl,+s -Wl,-B,symbolic

AIX cc -p 0 -berok -blibpath:$(LD RPATH)
Compaq cc -shared

Linux gcc -shared

IRIX cc -shared

Additional Linker Flags

Use the linker flags in the following table to specify which directories should be searched for
shared objects during runtime to resolve symbols.

TABLE1-3 Linker Flags

Platform Flags

Solaris SPARC -Rdir:dir

Windows no flags, but the ns-httpd40.d11 file must be in the system PATH variable
HP-UX -WL,+b, dir, dir

AIX -blibpath:dir:dir

Compaq -rpath dir: dir

Linux -Wl, -rpath, dir: dir

IRIX -Wl, -rpath, dir: dir

On UNIX, you can also set the library search path using the LD_LIBRARY_PATH environment
variable, which must be set when you start the server.

Compiler Flags

The following table lists the flags and defines you need to use for compilation of your source

code.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Creating and Using Custom SAFs

TABLE 1-4 Compiler Flags and Defines

Parameter Description

Solaris SPARC -DXP_UNIX -D REENTRANT -KPIC -DSOLARIS
Windows -DXP_WIN32 -DWIN32 /MD

HP-UX -DXP_UNIX -D_REENTRANT -DHPUX

AIX -DXP_UNIX -D_REENTRANT -DAIX $(DEBUG)
Compaq -DXP_UNIX -KPIC

Linux -DLINUX -D REENTRANT -fPIC

IRIX -032 -exceptions -DXP_UNIX -KPIC

All platforms -MCC_HTTPD -NET SSL

The following table lists the optional flags and defines you can use.

TABLE 1-5 Optional Flags and Defines

Flag/Define Platforms Description

-DSPAPI20 All Needed for the proxy utilities function
include file putil.h

Loading and Initializing the SAF

For each shared library (plug-in) containing custom SAFs to be loaded into Proxy Server, add
an Init directive that invokes the load-modules SAF to obj . conf.

The syntax for a directive that calls load-modules is:

Init fn=load-modules shlib=[path]sharedlibname funcs="SAFI,...SAFn"

= shlibis thelocal file system path to the shared library (plug-in).

= funcs is a comma-separated list of function names to be loaded from the shared library.
Function names are case sensitive. You may use dash a (-) in place of an underscore (_) in
function names. do not include spaces in the function name list.

If the new SAFs require initialization, be sure that the initialization function is included in
the funcs list.

For example, if you created a shared library animations. so that defines two SAFs
do_small anim() anddo big anim() and also defines the initialization function
init_my_animations, you would add the following directive to load the plug-in:

Chapter 1 « Creating Custom SAFs 27

Creating and Using Custom SAFs

28

Init fn=load-modules shlib=animations.so funcs="do small anim,do big anim,
init _my animations"

If necessary, also add an Init directive that calls the initialization function for the newly loaded
plug-in. For example, if you defined the function init_my_new_SAF () to perform an operation
on the maxAnimLoop parameter, you would add a directive such as the following to
magnus.conf:

Init fn=init my animations maxAnimLoop=5

Instructing the Server to Call the SAFs

Next, add directives to obj . conf to instruct the server to call each custom SAF at the
appropriate time. The syntax for directives is:

Directive fn=function-name [namel="valuel"]...[nameN="valueN"]

m Directive is one of the server directives, such as AuthTrans, Service, and so on.
= function-name is the name of the SAF to execute.

» nameN="valueN" are the names and values of parameters which are passed to the SAE

Depending on what your new SAF does, you might need to add just one directive to obj . conf,
or you might need to add more than one directive to provide complete instructions for invoking
the new SAFE.

For example, if you define a new AuthTrans or PathCheck SAF, you could just add an
appropriate directive in the default object. However, if you define a new Service SAF to be
invoked only when the requested resource is in a particular directory or has a new kind of file
extension, you would need to take extra steps.

If your new Service SAF is to be invoked only when the requested resource has a new kind of
file extension, you might need to add an entry to the MIME types file so that the type value is set
properly during the ObjectType stage. Then you could add a Service directive to the default
object that specifies the desired type value.

If your new Service SAF is to be invoked only when the requested resource is in a particular
directory, you might need to define a NameTrans directive that generates a name or ppath value
that matches another object. Then, in the new object, you could invoke the new Service
function.

For example, suppose your plug-in defines two new SAFs, do_small_anim() and
do_big_anim(), which both take speed parameters. These functions run animations. All files to
be treated as small animations reside in the directory

D:/<Install Root>/<Instance Directory>/docs/animations/small, while all files to be
treated as full-screen animations reside in the directory

D:/<Install Root>/<Instance Directory>/docs/animations/fullscreen.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Creating and Using Custom SAFs

To ensure that the new animation functions are invoked whenever a client sends a request for
either a small or full-screen animation, you would add NameTrans directives to the default
object to translate the appropriate URLs to the corresponding path names and also assign a
name to the request.

NameTrans fn=pfx2dir from="/animations/small"
dir="/<Install Root>/<Instance Directory>/docs/animations/small"
name="small _anim"
NameTrans fn=pfx2dir from="/animations/fullscreen"
dir="<Install Root>/<Instance Directory>docs/animations/fullscreen"
name="fullscreen anim"

You also need to define objects that contain the Service directives that run the animations and
specify the speed parameter.

<Object name="small anim"s>
Service fn=do small anim speed=40
</0bject>

<Object name="fullscreen anim"s
Service fn=do big anim speed=20
</0bject>

Restarting the Server

After modifying obj . conf, you need to restart the server. A restart is required for all plug-ins
that implement SAFs or filters.

Testing the SAF

Test your SAF by accessing your server from a browser with a URL that triggers your function.
For example, if your new SAF is triggered by requests to resources in
http://server-name/animations/small, try requesting a valid resource that starts with that
URL

You should disable caching in your browser so that the server is sure to be accessed. In Netscape
Navigator, Press the Shift key while clicking the Reload button to ensure that the cache is not
used. If the images are already in the cache, this action does not always force the client to fetch
images from the source.

You might also want to disable the server cache using the cache-init SAE

Examine the access log and error log to help with debugging.

Chapter 1 « Creating Custom SAFs 29

Overview of NSAPI C Functions

Overview of NSAPI C Functions

30

NSAPI provides a set of C functions that are used to implement SAFs. These functions serve
several purposes; They provide platform independence across Proxy Server operating system
and hardware platforms. They provide improved performance. They are thread-safe which is a
requirement for SAFs. They prevent memory leaks. And they provide functionality necessary
for implementing SAFs. You should always use these NSAPI routines when defining new SAFs.

This section provides an overview of the function categories available and some of the more
commonly used routines. All of the public routines are described in detail in Chapter 4, “NSAPI
Function Reference”

The main categories of NSAPI functions are:

“Parameter Block Manipulation Routines” on page 30
“Protocol Utilities for Service SAFs” on page 30
“Memory Management” on page 31

“File I/O” on page 31

“Network I/O” on page 32

“Threads” on page 32

“Utilities” on page 32

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating, adding, and
removing entries in a pblock data structure

= “pblock_findval” on page 115 returns the value for a given name in a pblock.
= “pblock_nvinsert” on page 117 adds a new name-value entry to a pblock.

= “pblock_remove” on page 119 removes a pblock entry by name from a pblock. The entry is
not disposed. Use “param_free” on page 111 to free the memory used by the entry.

= “param_free” on page 111 frees the memory for the given pblock entry.

= “pblock_pblock2str” on page 118 creates a new string containing all of the name-value pairs
from a pblock in the form “name=value name=value? This string can be useful for
debugging.

Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Service SAFs

= “request_header” on page 135 returns the value for a given request header name, reading the
headers if necessary. This function must be used when requesting entries from the browser
header pblock (rq->headers).

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Overview of NSAPI C Functions

= “protocol_status” on page 130 sets the HTTP response status code and reason phrase.

= “protocol_start_response” on page 129 sends the HTTP response and all HTTP headers to
the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of the standard
memory management routines. These routines also prevent memory leaks by allocating from a
temporary memory, called “pooled” memory for each request, and then disposing the entire
pool after each request. There are wrappers for standard memory routines for using permanent
memory.

= “MALLOC” on page 101

= “FREE” on page 95

= “PERM_STRDUP” on page 124
= “REALLOC” on page 133

= “CALLOC” on page 77

= “PERM_MALLOC” on page 123
= “PERM_FREE” on page 122

= “PERM_REALLOC” on page 123
= “PERM_CALLOC” on page 121

Filel/O

The file I/O functions provide platform-independent, thread-safe file I/O routines.

= “system_fopenRO” on page 148 opens a file for read-only access.

= “system_fopenRW” on page 149 opens a file for read-write access, creating the file if
necessary.

= “system_fopenWA” on page 149 opens a file for write-append access, creating the file if
necessary.

= “system_fclose” on page 147 closes a file.
= “system_fread” on page 150 reads from a file.
= “system_fwrite” on page 151 writes to a file.

= “system_fwrite_atomic” on page 151 locks the given file before writing to it. This avoids
interference between simultaneous writes by multiple threads.

Chapter 1 « Creating Custom SAFs 31

Overview of NSAPI C Functions

32

Network /0

Network I/O functions provide platform-independent, thread-safe network I/O routines. These
routines work with SSL when SSL is enabled.

“netbuf_grab” on page 108 reads from a network buffer’s socket into the network buffer.
“netbuf_getc” on page 107 gets a character from a network buffer.

“net_flush” on page 102 flushes buffered data.

“net_read” on page 103 reads bytes from a specified socket into a specified buffer.
“net_sendfile” on page 104 sends the contents of a specified file to a specified a socket.

| |
| |
u
u
| |
= “net_write” on page 105 writes to the network socket.

Threads

Thread functions include functions for creating your own threads that are compatible with the
server’s threads. There are also routines for critical sections and condition variables.

= “systhread_start” on page 159 creates a new thread.

= “systhread_sleep” on page 159 puts a thread to sleep for a given time.

= “crit_init” on page 84 creates a new critical section variable.

= “crit_enter” on page 83 gains ownership of a critical section.

m “crit_exit” on page 83 surrenders ownership of a critical section.

m “crit_terminate” on page 84 disposes of a critical section variable.

= “condvar_init” on page 80 creates a new condition variable.

= “condvar_notify” on page 81 awakens any threads blocked on a condition variable.
= “condvar_wait” on page 82 blocks on a condition variable.

= “condvar_terminate” on page 81 disposes of a condition variable.

= “prepare_nsapi_thread” on page 125 allows threads that are not created by the server to act
like server-created threads.

Utilities
Utility functions include platform-independent, thread-safe versions of many standard library
functions (such as string manipulation), as well as new utilities useful for NSAPI.

= “daemon_atrestart” on page 85 (UNIX only) registers a user function to be called when the
server is sent a restart signal (HUP) or at shutdown.

= “condvar_init” on page 80 gets the next line (up to a LF or CRLF) from a buffer.
= “util_hostname” on page 172 gets the local host name as a fully qualified domain name.

= “util_later_than” on page 174 compares two dates.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Required Behavior of SAFs for Each Directive

= “util_snprintf” on page 181 is the same as the standard library routine sprintf ().
= “util_strftime” on page 183 is the same as the standard library routine strftime().

= “util_uri_escape” on page 185 converts the special characters in a string into URI-escaped
format.

= “util_uri_unescape” on page 186 converts the URI-escaped characters in a string back into
special characters.

Note - You cannot use an embedded null in a string, because NSAPI functions assume that a null
is the end of the string. Therefore, passing Unicode-encoded content through an NSAPI
plug-in.

Required Behavior of SAFs for Each Directive

SAF definitions, you should define it to do certain things, depending on which stage of the
request-handling process will invoke the SAFE. For example, SAFs to be invoked during the Init
stage must conform to different requirements than SAFs to be invoked during the Service
stage.

The rq parameter is the primary mechanism for passing information throughout the
request-response process. On input to a SAF, rq contains whatever values were inserted or
modified by previously executed SAFs. On output, rq contains any modifications or additional
information inserted by the SAF. Some SAFs depend on the existence of specific information
provided at an earlier step in the process. For example, a PathCheck SAF retrieves values in
rq->vars that were previously inserted by an AuthTrans SAE

This section outlines the expected behavior of SAFs used at each stage in the request-handling
process.

Init SAFs
AuthTrans SAFs
NameTrans SAFs
PathCheck SAFs
ObjectType SAFs
Input SAFs
Output SAFs
Service SAFs
AddLog SAFs
Error SAFs
Connect SAFs
DNS SAFs

Filter SAFs
Route SAFs

Chapter 1 « Creating Custom SAFs 33

Required Behavior of SAFs for Each Directive

34

For more detailed information about these SAFs, see Oracle iPlanet Web Proxy Server 4.0.14
Configuration File Reference.

Init SAFs

Purpose: Initialize at startup.

Called at server startup and restart.

rqand snare NULL.

Initialize any shared resources such as files and global variables.

Can register callback function with daemon_atrestart () to clean up.

On error, insert error parameter into pb describing the error and return REQ_ABORTED.

If successful, return REQ_PROCEED.

AuthTrans SAFs

Verify any authorization information. Only basic authorization is currently defined in the
HTTP/1.0 specification.

Check for an Authorization header in rq->headers that contains the authorization type
and uu-encoded user and password information. If a header was not sent, return
REQ NOACTION.

If a header exists, check the authenticity of user and password.

If the user name and password are authentic, create an auth-type, plus auth-user or
auth-group parameter in rq->vars to be used later by PathCheck SAFs.

Return REQ_PROCEED if the user was successfully authenticated Return REQ_NOACTION
otherwise.

NameTrans SAFs

Purpose: Convert alogical URI to a physical path.

Perform operations on the logical path (ppath in rq->vars) to convert it into a full local file
system path.

Return REQ_PROCEED if ppath in rq->vars contains the full local file system path, or
REQ NOACTION if not.

To redirect the client to another site, change ppath in rq->vars to /URL. Add url to
rq->vars with full URL (for example, http://home.netscape.com/). Return REQ_PROCEED.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883

Required Behavior of SAFs for Each Directive

PathCheck SAFs

Purpose: Check path validity and user’s access rights.
Check auth-type, auth-user, or auth-group in rq->vars.
Return REQ_PROCEED if the user and group are authorized for this area (ppath in rq->vars).

If not authorized, insert WWW-Authenticate to rq->srvhdrs with a value such as: Basic;
Realm=\\"Our private area\\". Call protocol_status() to set the HTTP response status
to PROTOCOL UNAUTHORIZED. Return REQ ABORTED.

ObjectType SAFs

Purpose: Determine content - type of data.

If content-type in rq->srvhdrs already exists, return REQ_NOACTION.
Determine the MIME type and create content-type in rq->srvhdrs
Return REQ_PROCEED if content-type is created, REQ_NOACTION otherwise.

Input SAFs

Purpose: Insert filters that process incoming (client-to-server) data.

Input SAFsare executed when a plug-in or the server first attempts to read entity body data
from the client.

Input SAFsare executed at most once per request.

Return REQ PROCEED to indicate success, or REQ_NOACTION to indicate that the SAF
performed no action.

Output SAFs

Purpose: Insert filters that process outgoing (server-to-client) data.

Output SAFs are executed when a plug-in or the server first attempts to write entity body
data from the client.

Output SAFs are executed at most once per request.

Return REQ_PROCEED to indicate success, or REQ_NOACTION to indicate the SAF performed no
action.

Service SAFs

Purpose: Generate and send the response to the client.

Chapter 1 « Creating Custom SAFs 35

Required Behavior of SAFs for Each Directive

36

= AService SAFisonly called if each of the optional parameters type, method, and query
specified in the directive in obj . conf match the request.

= Remove existing content-type from rq->srvhdrs. Insert correct content-type in
rq->srvhdrs.

= Create any other headersin rq->srvhdrs.

= Call “protocol_set_finfo” on page 128 to set the HTTP response status.

= Call “protocol_start_response” on page 129 to send the HTTP response and headers.
= Generate and send data to the client using “net_write” on page 105 .

m Return REQ PROCEED if successful, REQ EXIT on write error, or REQ ABORTED on other
failures.

Error SAFs

= Purpose: Respond to an HTTP status error condition.

= TheError SAF is only called if each of the optional parameters code and reason specified in
the directive in obj . conf match the current error.

= Error SAFs perform the same action as Service SAFs, but only in response to an HTTP
status error condition.

AddLog SAFs

= Purpose: Log the transaction to a log file.
= AddLog SAFs can use any data available in pb, sn, or rq to log this transaction.

= Return REQ_PROCEED.

Connect

= Purpose: Call the connect function you specify.

= Only the first applicable Connect function is called, starting from the most restrictive object.
Occasionally you might want to call multiple functions until a connection is established.
The function returns REQ_NOACTION if the next function should be called. If it fails to
connect, the return value is REQ_ABORT. If it connects successfully, the connected socket
descriptor will be returned.

DNS

= Purpose: Calls either the dns - config built-in function or a DNS function that you specify.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

CGl to NSAPI Conversion

Filter

= Purpose: Run an external command and then pipes the data through the external command
before processing that data in the proxy. This process is accomplished using the pre-filter

function.

Route

= Purpose: Specify information about where the proxy server should route requests.

CGIl to NSAPI Conversion

When converting a CGI variable into a SAF using NSAPI, Since the CGI environment variables
are not available to NSAPIL, you’ll retrieve them from the NSAPI parameter blocks. The table
below indicates how each CGI environment variable can be obtained in NSAPI.

TABLE 1-6 Parameter Blocks for CGI Variables

CGl getenv()

NSAPI

AUTH_TYPE

pblock findval("auth-type", rq->vars);

AUTH_USER

pblock findval("auth-user", rq->vars);

CONTENT_LENGTH

pblock findval("content-length", rq->headers);

CONTENT_TYPE

pblock findval("content-type", rq->headers);

GATEWAY_INTERFACE

"c6I/1.1"

HTTP_*

pblock_findval("*", rq->headers); (* is lowercase; dash replaces underscore)

PATH_INFO

pblock findval("path-info", rq->vars);

PATH_TRANSLATED

pblock findval("path-translated", rq->vars);

QUERY_STRING

pblock_findval("query", rq->regpb); (GET only; POST puts query string in
body data)

REMOTE_ADDR

pblock findval("ip", sn->client);

REMOTE_HOST

session dns(sn) ? session dns(sn) : pblock findval("ip", sn->client);

REMOTE IDENT

pblock_findval("from", rg->headers);(not usually available)

REMOTE_USER

pblock findval("auth-user", rq->vars);

REQUEST_METHOD

pblock findval("method", req->reqpb);

SCRIPT_NAME

pblock findval("uri", rq->reqpb);

Chapter 1 « Creating Custom SAFs 37

CGl to NSAPI Conversion

TABLE 1-6 Parameter Blocks for CGI Variables (Continued)
CGl getenv() NSAPI
SERVER_NAME char *util hostname();
SERVER PORT conf_getglobals()->Vport; (asastring)
SERVER PROTOCOL pblock findval("protocol", rq->regpb);
SERVER SOFTWARE MAGNUS_VERSION STRING

Sun ONE-specific:

CLIENT CERT pblock findval("auth-cert", rg->vars)

HOST char *session_maxdns(sn);(may be null)

HTTPS security active ? "ON" : "OFF";

HTTPS KEYSIZE pblock findval("keysize", sn->client);

HTTPS SECRETKEYSIZE pblock findval("secret-keysize", sn->client);

QUERY pblock_findval(query", rq->reqpb); (GET only, POST puts query string in
entity-body data)
SERVER URL http uri2url dynamic("","", sn, rq);

Your code must be thread-safe under NSAPI. You should use NSAPI functions that are
thread-safe. Also, you should use the NSAPI memory management and other routines for speed
and platform independence.

38 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

L K R 4 CHAPTER 2

Creating Custom Filters

This chapter describes how to create custom filters that can be used to intercept and possibly
modify the content presented to or generated by another function.

This chapter contains the following sections:

“Future Compatibility Issues” on page 39

“NSAPI Filter Interface” on page 40

“Filter Methods” on page 40

“Position of Filters in the Filter Stack” on page 43

“Filters That Alter Content-Length” on page 45

“Creating and Using Custom Filters” on page 46

“Overview of NSAPI Functions for Filter Development” on page 49

Future Compatibility Issues

The NSAPI interface might change in a future version of Proxy Server. To keep your custom
plug-ins upgradeable:

= Make sure plug-in users know how to edit the configuration files such as magnus . conf and
obj.conf manually. The plug-in installation software should not be used to edit these
configuration files.

= Keep the source code so you can recompile the plug-in.

39

NSAPIFilter Interface

NSAPI Filter Interface

Proxy Server 4 extends NSAPI by introducing a new filter interface that complements the
existing Server Application Function (SAF) interface. You use filters to intercept and possibly
modify data sent to and from the server. The server communicates with a filter by calling the
filter’s filter methods. Each filter implements one or more filter methods. A filter methodisa C
function that performs a specific operation, such as processing data sent by the server.

Filter Methods

40

This section describes the filter methods that a filter can implement, which are:

= “insert” on page 41

= “remove” on page 41
= “flush” on page 42

= “read” on page 42

= “write” on page 42

= “writev” on page 43
= “sendfile” on page 43

For more information about these methods, see Chapter 4, “NSAPI Function Reference”

C Prototypes for Filter Methods

The C prototypes for the filter methods are:

int insert(FilterLayer *layer, pblock *pb);

void remove(FilterLayer *layer);

int flush(FilterLayer *layer);

int read(FilterLayer *layer, void *buf, int amount, int timeout);

int write(FilterLayer *layer, const void *buf, int amount);

int writev(FilterLayer *layer, const struct iovec *iov, int iov_size);
int sendfile(FilterLayer *layer, sendfiledata *sfd);

The layer parameter is a pointer to a FilterLayer data structure, which contains variables
related to a particular instance of a filter. Following is a list of the most important fields in the
FilterLayer data structure:

= context->sn — Contains information relating to a single TCP/IP session. This pointer is
the same sn pointer that’s passed to SAFs.

= context->rq — Contains information relating to the current request. This pointer is the
same rq pointer that is passed to SAFs.

= context->data — Pointer to filter-specific data.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Filter Methods

= lower — A platform-independent socket descriptor used to communicate with the next
filter in the stack.

The meaning of the context->data field is defined by the filter developer. Filters that must
maintain state information across filter method calls can use context ->data to store that
information.

For more information about FilterLayer, see “FilterLayer” on page 199.

insert

The insert filter method is called when an SAF such as insert-filter calls the
filter_insert function to request that a specific filter be inserted into the filter stack. Each
filter must implement the insert filter method.

When insert is called, this method can determine whether the filter should be inserted into the
filter stack. For example, the filter could inspect the Content-Type header in the rq->srvhdrs
pblock to determine whether the type of data that will be transmitted is relevant. If the filter
should not be inserted, the insert filter method should return REQ_NOACTION.

If the filter should be inserted, the insert filter method provides an opportunity to initialize
this particular instance of the filter. For example, the insert method could allocate a buffer with
MALLOC and store a pointer to that buffer in layer->context->data.

The filter is not part of the filter stack until after insert returns. As a result, the insert method

should not attempt to read from, write to, or otherwise interact with the filter stack.

SeeAlso
“insert” on page 99 in Chapter 4, “NSAPI Function Reference”

remove

The remove filter method is called when a filter stack is destroyed when the corresponding
socket descriptor is closed, when the server finishes processing the request the filter was
associated with, or when an SAF such as remove-filter calls the filter remove function. The
remove filter method is optional.

The remove method can be used to clean up any data the filter allocated in insert and to pass
any buffered data to the next filter by calling net_write(layer->lower, ...).

SeeAlso
“remove” on page 134 in Chapter 4, “NSAPI Function Reference”

Chapter2 - Creating Custom Filters 41

Filter Methods

42

flush

The flush filter method is called when a filter or SAF calls the net _flush function. The flush
method should pass any buffered data to the next filter by calling net_write(layer->lower,
.. .). The flush method is optional, but it should be implemented by any filter that buffers
outgoing data.

SeeAlso
“flush” on page 95 in Chapter 4, “NSAPI Function Reference”

read

The read filter method is called when a filter or SAF calls the net_read function. Filters that
deal with in incoming data (data sent from a client to the server) implement the read filter
method.

Typically, the read method will attempt to obtain data from the next filter by calling
net_read(layer->lower, ...).The read method may then modify the received data before
returning it to its caller.

SeeAlso
“read” on page 132 in Chapter 4, “NSAPI Function Reference”

write

The write filter method is called when a filter or SAF calls the net_write function. Filters that
are deal with outgoing data (data sent from the server to a client) implement the write filter
method.

Typically, the write method will pass data to the next filter by calling
net_write(layer->lower, ...).Thewrite method may modify the data before calling
net_write. For example, the http-compression filter compresses data before passing it on to
the next filter.

If a filter implements the write filter method but does not pass the data to the next layer before
returning to its caller, that is, if the filter buffers outgoing data, the filter should also implement
the flush method.

SeeAlso
“write” on page 190 in Chapter 4, “NSAPI Function Reference”

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Position of Filters in the Filter Stack

writev

Thewritev filter method performs the same function as the write filter method, but the format
of its parameters is different. You do not have to implement the writev filter method. If a filter
implements the write filter method but not the writev filter method, the server uses thewrite
method instead of the writev method. A filter should not implement the writev method unless
italso implements the write method.

Under some circumstances, the server may run slightly faster when filters that implement the
write filter method also implement the writev filter method.

SeeAlso
“writev” on page 191 in Chapter 4, “NSAPI Function Reference”

sendfile

The sendfile filter method performs a function similar to the writev filter method, but it
sends a file directly instead of first copying the contents of the file into a buffer. You do not have
to implement the sendfile filter method. If a filter implements the write filter method but not
the sendfile filter method, the server will use the write method instead of the sendfile
method. A filter should not implement the sendfile method unless it also implements the
write method.

Under some circumstances, the server may run slightly faster when filters that implement the
write filter method also implement the sendfile filter method.

SeeAlso
“sendfile” on page 139 in Chapter 4, “NSAPI Function Reference”

Position of Filters in the Filter Stack

All data sent to the server, such as the result of an HTML form or sent from the server, such as
the output of a JSP page is passed through a set of filters known as a filter stack. The server
creates a separate filter stack for each connection. While processing a request, individual filters
can be inserted into and removed from the stack.

Different types of filters occupy different positions within a filter stack. Filters that deal with
application-level content, such as filters that translates a page from XHTML to HTML, occupy a
higher position than filters that deal with protocol-level issues, such as filters that format HTTP
responses. When two or more filters are defined to occupy the same position in the filter stack,
filters that were inserted later will appear higher than filters that were inserted earlier.

Chapter2 - Creating Custom Filters 43

Position of Filters in the Filter Stack

Filters positioned higher in the filter stack are given an earlier opportunity to process outgoing
data. Filters positioned lower in the stack are given an earlier opportunity to process incoming
data. For example, in the following figure, the xml-to-xhtml filter is given an earlier
opportunity to process outgoing data than the xhtml-to-html filter.

FIGURE 2-1 Position of Filters in the Filter Stack

Service fn = “send-file”

L v

Highest xml-to-xhtml
filter
Content
4} {} translation
filters
xhtml-to-html
L Content
owest http-compression —— coding
filter filter

T v

Incoming Outgoing
request response
data data

When you create a filter with the filter_create function, you specify what position your filter
should occupy in the stack. You can also use the init-filter-order Init SAF to control the
position of specific filters within filter stacks. For example, init-filter-order can be used to
ensure that a filter that converts outgoing XML to XHTML is inserted above a filter that
converts outgoing XHTML to HTML.

For more information, see “filter_create” on page 91

44 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Filters That Alter Content-Length

Filters That Alter Content-Length

Filters that can alter the length of an incoming request body or outgoing response body must
take special steps to ensure interoperability with other filters and SAFs.

Filters that process incoming data are referred to as input filters. If an input filter can alter the
length of the incoming request body (for example, if a filter decompresses incoming data) and
the rq->headers pblock contains a Content-Length header, the filter’s insert filter method
should remove the Content-Length header and replace it with a Transfer-encoding:
identity header as follows:

pb_param *pp;

pp = pblock remove("content-length", layer->context->rq->headers);
if (pp !'= NULL) {
param free(pp);
pblock nvinsert("transfer-encoding", "identity", layer->context->
rq->headers);

Because some SAFs expect a Content-Length header when a request body is present, before
calling the first Service SAF the server will insert all relevant filters, read the entire request
body, and compute the length of the request body after it has been passed through all input
filters. However, by default, the server will read at most 8192 bytes of request body data. If the
request body exceeds 8192 bytes after being passed through the relevant input filters, the
request will be cancelled. For more information, see the description of
ChunkedRequestBufferSize in Oracle iPlanet Web Proxy Server 4.0.14 Configuration File
Reference.

Filters that process outgoing data are referred to as output filters. If an output filter can alter the
length of the outgoing response body (for example, if the filter compresses outgoing data), the
filter’s insert filter method should remove the Content-Length header from rq->srvhdrs as
follows:

pb_param *pp;
pp = pblock remove("content-length", layer->context->rq->srvhdrs);

if (pp '= NULL)
param_free(pp);

Chapter2 - Creating Custom Filters 45

http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883

Creating and Using Custom Filters

Creating and Using Custom Filters

46

Custom filters are defined in shared libraries that are loaded and called by the server.

To create a custom filter

“Writing the Source Code” on page 46 using the NSAPI functions.

“Compiling and Linking” on page 47 the source code to create a shared library (. so, . s, or
.d1) file.

“Loading and Initializing the Filter” on page 47 by editing the magnus . conf file.

“Instructing the Server to Insert the Filter” on page 48 by editing the obj . conf file toinsert
your custom filter(s) at the appropriate time.

“Restarting the Server” on page 48.

“Testing the Filter” on page 48 by accessing your server from a browser with a URL that triggers
your filter.

These steps are described in greater detail in the following sections.

Writing the Source Code

Write your custom filter methods using NSAPI functions. For a summary of the NSAPI
functions specific to filter development, see “Overview of NSAPI Functions for Filter
Development” on page 49. For a summary of general purpose NSAPI functions, see Chapter 4,
“NSAPI Function Reference,” Each filter method must be implemented as a separate function.
See “Filter Methods” on page 40 for the filter method prototypes.

The filter must be created by a call to filter_create. Typically, each plug-in defines an
nsapi_module_init function thatis used to call filter_create and perform any other
initialization tasks. See “nsapi_module_init” on page 109 and “filter_create” on page 91 for
more information.

Filter methods are invoked whenever the server or an SAF calls certain NSAPI functions such as
net_writeor filter_insert. Asaresult, filter methods can be invoked from any thread and
should only block using NSAPI functions, for example, crit_enter and net_read. If a filter
method blocks using other functions, for example, the Windows WaitForMultipleObjects
and ReadFile functions, the server might hang. Also, shared objects that define filters should be
loaded with the NativeThread="no" flag, as described in “Loading and Initializing the Filter” on
page 47

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Creating and Using Custom Filters

Ifa filter method must block using a non-NSAPI function, KernelThreads 1 should be set in
magnus . conf. For more information about KernelThreads, see the description in Chapter 3,
“Syntax and Use of the magnus.conf File,” in Oracle iPlanet Web Proxy Server 4.0.14
Configuration File Reference.

Keep the following in mind when writing your filter:

m Write thread-safe code

= IO should only be performed using the NSAPI functions documented in “File I/O” on
page 31 and “Network I/O” on page 32.

= Thread synchronization should only be performed using the NSAPI functions documented
in “Threads” on page 32.

= Blocking can affect performance.
= Carefully check and handle all errors.

For examples of custom filters, see server_root/plugins/nsapi/examples and also Chapter 3,
“Examples of Custom SAFs and Filters”

Compiling and Linking

Filters are compiled and linked in the same way as SAFs. See “Compiling and Linking” on
page 25, for more information.

Loading and Initializing the Filter

For each shared library (plug-in) containing custom SAFs to be loaded into Proxy Server, add
an Init directive that invokes the load-modules SAF to obj . conf. The syntax for a directive
that loads a filter plug-in is:

Init fn=load-modules shlib=[path]sharedlibname NativeThread="no"

= shlibisthelocal file system path to the shared library (plug-in).

= NativeThread indicates whether the plug-in requires native threads. Filters should be
written to run on any type of thread. For more information, see “Writing the Source Code”
on page 24.

When the server encounters such a directive, server calls the plug-in’s nsapi_module_init
function to initialize the filter.

Chapter2 - Creating Custom Filters 47

http://docs.sun.com/doc/821-1883/aebdh?a=view
http://docs.sun.com/doc/821-1883/aebdh?a=view
http://docs.sun.com/doc/821-1883/aebdh?a=view

Creating and Using Custom Filters

48

Instructing the Server to Insert the Filter

Addan Input orOutput directive to obj . conf to instruct the server to insert your filter into the
filter stack. The format of the directive is as follows:

Directive fn=insert-filter filter="filter-name” [namel="valuel”]...[nameN="valueN"]

® Directiveis Input or Output.
= filter-name is the name of the filter, as passed to filter_create, to insert.

= nameN="valueN" are the names and values of parameters that are passed to the filter’s
insert filter method.

Filters that process incoming data should be inserted using an Input directive. Filters that
process outgoing data should be inserted using an Output directive.

To ensure that your filter is inserted whenever a client sends a request, add the Input or Output
directive to the default object. For example, the following portion of obj . conf instructs the
server to insert a filter named example- replace and pass it two parameters, fromand to:

<Object name="default">

Output fn=insert-filter
filter="example-replace"
from="0ld String"
to="New String"

</0Object>

Restarting the Server

For the server to load your plug-in, you must restart the server. A restart is required for all
plug-ins that implement SAFs and/or filters.

Testing the Filter

Test your SAF by accessing your server from a browser. You should disable caching in your
browser so that the server is sure to be accessed. In Netscape Navigator, press the Shift key while
clicking the Reload button to ensure that the cache is not used. If the images are already in the
cache, this action does not always force the client to fetch images from source. Examine the
access and error logs to help with debugging.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Overview of NSAPI Functions for Filter Development

Overview of NSAPI Functions for Filter Development

NSAPI provides a set of C functions that are used to implement SAFs and filters. This section
lists the functions that are specific to the development of filters. The public routines are
described in detail in Chapter 4, “NSAPI Function Reference.”

The NSAPI functions specific to the development of filters are:

“filter_create” on page 91 — Creates a new filter

“filter_insert” on page 92 — Inserts the specified filter into a filter stack

“filter_remove” on page 94 — Removes the specified filter from a filter stack

“filter_name” on page 94 — Returns the name of the specified filter

“filter_find” on page 92 — Finds an existing filter given a filter name

“filter_layer” on page 93 — Returns the layer in a filter stack that corresponds to the specified
filter

Chapter2 - Creating Custom Filters 49

50

CHAPTER 3

Examples of Custom SAFs and Filters

This chapter provides examples of custom Server Application Functions (SAFs) and filters for
each directive in the request-response process. You can use these examples as the basis for
implementing your own custom SAFs and filters. For more information about creating your
own custom SAFs, see Chapter 2, “Creating Custom Filters”

Before writing custom SAFs, you should be familiar with the request-response process and the
role of the obj . conf configuration file. This file is discussed in Oracle iPlanet Web Proxy
Server 4.0.14 Configuration File Reference.

Before writing your own SAF, whether see if an existing SAF serves your purpose. The
predefined SAFs are discussed in Oracle iPlanet Web Proxy Server 4.0.14 Configuration File
Reference.

For alist of the NSAPI functions for creating new SAFs, see Chapter 4, “NSAPI Function
Reference”

This chapter contains the following sections:

“Examples in the Build” on page 52
“AuthTrans Example” on page 52
“NameTrans Example” on page 55
“PathCheck Example” on page 58
“ObjectType Example” on page 61
“Output Example” on page 63
“Service Example” on page 69
“AddLog Example” on page 72

51

http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883

Examples in the Build

Examples in the Build

The plugins/nsapi/examples subdirectory within the server installation directory contains
examples of source code for SAFs.

You can use the example . mak makefile in the same directory to compile the examples and create
alibrary containing the functions in all of the example files.

To test an example, load the examples shared library into Proxy Server by adding the following
directive in the Init section of obj . conf:

Init fn=load-modules shlib=examples.so/dll
funcs=
functionl,function2,function3

The funcs parameter specifies the functions to load from the shared library.

If the example uses an initialization function, specify the initialization function in the funcs
argument to load-modules. Also, add an Init directive to call the initialization function.

For example, the PathCheck example implements the restrict-by-acf function, which is
initialized by the acf-1init function. The following directive loads both these functions:

Init fn=load-modules youtlibrary funcs=acf-init,restrict-by-acf
The following directive calls the acf-1init function during server initialization:
Init fn=acf-init file=extra-arg

To invoke the new SAF at the appropriate step in the response handling process, add an
appropriate directive in the object to which it applies, for example:

PathCheck fn=restrict-by-acf

After adding new Init directives to obj . conf, restart Proxy Server to load the changes Init
directives are only applied during server initialization.

AuthTrans Example

This simple example of an AuthTrans function demonstrates how to use custom methods to
verify that the user name and password that a remote client provided is accurate. This program
uses a hard-coded table of user names and passwords and checks a given user’s password against
the one in the static data array. The userdb parameter is not used in this function.

52 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

AuthTrans Example

AuthTrans directives work in conjunction with PathCheck directives. An AuthTrans function
checks whether the user name and password associated with the request are acceptable. This
directory does not allow or deny access to the request. Access is handled by a PathCheck
function.

AuthTrans functions get the user name and password from the headers associated with the
request. When a client initially makes a request, the user name and password are unknown. The
AuthTrans function and PathCheck function therefore together to reject the request, because
they can’t validate the user name and password. When the client receives the rejection, the usual
response is to present a dialog box asking the user for the user name and password. The client
then submits the request again, this time including the user name and password in the headers.

In this example, the hardcoded - auth function, which is invoked during the AuthTrans step,
checks whether the user name and password correspond to an entry in the hard-coded table of
users and passwords.

Installing the AuthTrans Example

To install the function on Proxy Server, add the following Init directive to obj . conf to load the
compiled function:

Init fn=load-modules shlib=youtlibrary funcs=hardcoded-auth

Inside the default object in obj . conf, add the following AuthTrans directive:

AuthTrans fn=basic-auth auth-type="basic" userfn=hardcoded-auth
userdb=unused

This function does not enforce authorization requirements. The function only takes given
information and informs the server whether the information is correct or not. The PathCheck
function require-auth performs the enforcement, so add the following PathCheck directive as
well:

PathCheck fn=require-auth realm="test realm" auth-type="basic"

AuthTrans Example Source Code

The source code for this example is in the auth. c file in the nsapi/examples/ or
plugins/nsapi/examples subdirectory of the server root directory.

#include "nsapi.h"
typedef struct {
char *name;

Chapter 3 - Examples of Custom SAFs and Filters 53

AuthTrans Example

char *pw;
} user s;

static user s user set[] = {
{"joe", "shmoe"},
{"suzy", "creamcheese"},
{NULL, NULL}

+s

#include "frame/log.h"

#ifdef cplusplus
extern "C"
#endif
NSAPI PUBLIC int hardcoded auth(pblock *param, Session *sn, Request *rq)
{
/* Parameters given to us by auth-basic */
char *pwfile = pblock findval("userdb", param);
char *user = pblock findval("user", param);
char *pw = pblock findval("pw", param);

/* Temp variables */
register int x;

for(x = 0; user _set[x].name != NULL; ++x) {
/* If this isn’t the user we want, keep going */
if(strcmp(user, user set[x].name) != 0) continue;

/* Verify password */
if(strcmp(pw, user_set[x].pw)) {
log error(LOG SECURITY, "hardcoded-auth", sn, rq,
"user %s entered wrong password", user);
/* This will cause the enforcement function to ask */
/* user again */
return REQ NOACTION;
}
/* If we return REQ PROCEED, the username will be accepted */
return REQ PROCEED;
}
/* No match, have it ask them again */
log_error(LOG SECURITY, "hardcoded-auth", sn, rq,
"unknown user %s", user);
return REQ NOACTION;

54 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

NameTrans Example

NameTrans Example

The ntrans. c filein the plugins/nsapi/examples subdirectory of the server root directory
contains source code for two example NameTrans functions:

m explicit pathinfo
This example allows the use of explicit extra path information in a URL.
= https_redirect
This example redirects the URL if the client is a particular version of Netscape Navigator.

This section discusses the first example. The source code in ntrans. c provides the second
example.

Note - A NameTrans function is used primarily to convert the logical URL in ppath in rq->vars
to a physical path name. However, in the example explicit_pathinfo does not translate the
URL into a physical path name. It changes the value of the requested URL. See the second
example, https_redirect,inntrans.c for an example of a NameTrans function that converts
the value of ppath in rq->vars from a URL to a physical path name.

The explicit_pathinfo example allows URLs to explicitly include extra path information for
use by a CGI program. The extra path information is delimited from the main URL by a
specified separator, such as a comma.

For example:

http://server-name/cgi/marketing,/jan/releases/hardware

In this case, the URL of the requested resource, which would be a CGI program, is
http://server-name/cgi/marketing, and the extra path information to give to the CGI
programis /jan/releases/hardware.

When choosing a separator, use a character that will never be used as part of the real URL.

The explicit_pathinfo function reads the URL, the text following the comma, and puts it in
the path-info field of the vars field in the request object (rq->vars). CGI programs can
access this information through the PATH_INFO environment variable.

When explicit_pathinfo is used the separator character is added to the end of the
SCRIPT NAME CGI environment variable.

NameTrans directives usually return REQ_PROCEED when they change the path, so that the server
does not process any more NameTrans directives. However, in this case name translation should
continue after the path information has been extracted , because the URL has not yet been
translated to a physical path name.

Chapter 3 - Examples of Custom SAFs and Filters 55

NameTrans Example

Installing the NameTrans Example

To install the function on Proxy Server, add the following Init directive to obj.conf to load the
compiled function:

Init fn=load-modules shlib=your-library funcs=explicit-pathinfo

Inside the default object in obj . conf, add the following NameTrans directive:

NameTrans fn=explicit-pathinfo separator=

This NameTrans directive should appear before other NameTrans directives in the default object.

NameTrans Example Source Code

The following example is located in the ntrans. c file in the plugins/nsapi/examples
subdirectory of the server root directory.

#include "nsapi.h"

#include <string.h> /* strchr */

#include "frame/log.h" /* log error */

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int explicit pathinfo(pblock *pb, Session *sn, Request *rq)
{

/* Parameter: The character to split the path by */
char *sep = pblock findval("separator", pb);
/* Server variables */
char *ppath = pblock findval('ppath", rg->vars);
/* Temp var */
char *t;
/* Verify correct usage */
if(!sep) {
log error(LOG MISCONFIG, "explicit-pathinfo", sn, rq,
"missing parameter (need root)");
/* When we abort, the default status code is 500 Server
Error */
return REQ ABORTED;
}
/* Check for separator. If not there, don’t do anything */
t = strchr(ppath, sep[0]);
if('t)
return REQ NOACTION;
/* Truncate path at the separator */
*t++ = \\0';

56 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

NameTrans Example

/* Assign path information */

pblock nvinsert("path-info", t, rq->vars);

/* Normally NameTrans functions return REQ PROCEED when they
change the path. However, we want name translation to
continue after we're done. */

return REQ NOACTION;

}

#include "base/util.h" /* is _mozilla */
#include "frame/protocol.h" /* protocol status */
#include "base/shexp.h" /* shexp_cmp */
#ifdef _ cplusplus

extern "C"

#endif

NSAPI PUBLIC int https redirect(pblock *pb, Session *sn, Request *rq)
{
/* Server Variable */
char *ppath = pblock findval("ppath", rg->vars);
/* Parameters */
char *from = pblock findval("from", pb);
char *url = pblock findval("url", pb);
char *alt = pblock findval("alt", pb);
/* Work vars */
char *ua;
/* Check usage */
if((!from) || (turl)) {
log error(LOG MISCONFIG, "https-redirect", sn, rq,
"missing parameter (need from, url)");
return REQ ABORTED;
}
/* Use wildcard match to see if this path is one we should
redirect */
if(shexp cmp(ppath, from) != 0)
return REQ NOACTION; /* no match */
/* Sigh. The only way to check for SSL capability is to
check UA */
if(request header("user-agent", &ua, sn, rq) == REQ ABORTED)
return REQ ABORTED;
/* The is_mozilla function checks for Mozilla version 0.96
or greater */
if(util is mozilla(ua, "0", "96")) {
/* Set the return code to 302 Redirect */
protocol status(sn, rq, PROTOCOL REDIRECT, NULL);
/* The error handling functions use this to set the
Location: */
pblock nvinsert("url", url, rg->vars);
return REQ_ABORTED;
}
/* No match. Old client. */

Chapter 3 - Examples of Custom SAFs and Filters 57

PathCheck Example

/* If there is an alternate document specified, use it. */
if(alt) {
pb_param *pp = pblock find("ppath", rg->vars);
/* Trash the old value */
FREE (pp->value);
/* We must dup it because the library will later free
this pblock */
pp->value = STRDUP(alt);
return REQ PROCEED;
}
/* Else do nothing */
return REQ NOACTION;

PathCheck Example

58

The example in this section demonstrates how to implement a custom SAF for performing path
checks. This example checks whether the requesting host is on a list of allowed hosts.

The Init function acf-init loads a file containing a list of allowable IP addresses with one IP
address per line. The PathCheck function restrict_by_acf gets the IP address of the host that
is making the request and checks whether it is on the list. If the host is on the list, it is allowed
access; otherwise, access is denied.

For simplicity, the stdio library is used to scan the IP addresses from the file.

Installing the PathCheck Example

To load the shared object containing your functions, add the following line in the Init section
of the obj . conf file:

Init fn=load-modules yourhbrary funcs=acf-init, restrict-by-acf

To callacf-init to read the list of allowable hosts, add the following line to the Init section in
obj.conf. This line must appears after the line that loads the library containing acf-1init).

Init fn=acf-init file=fileContainingHostsList

To execute your custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file:

PathCheck fn=restrict-by-acf

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

PathCheck Example

PathCheck Example Source Code

The source code for this example is located in pcheck. c in the plugins/nsapi/examples
subdirectory within the server root directory.

#include "nsapi.h"
/* Set to NULL to prevent problems with people not calling
acf-init */
static char **hosts = NULL;
#include <stdio.h>
#include "base/daemon.h"
#include "base/util.h" /* util_sprintf */
#include "frame/log.h" /* log error */
#include "frame/protocol.h" /* protocol status */
/* The longest line we’ll allow in an access control file */
#define MAX ACF_LINE 256
/* Used to free static array on restart */
#ifdef cplusplus
extern "C"
#endif
NSAPI PUBLIC void acf free(void *unused)
{
register int x;
for(x = 0; hosts[x]; ++x)
FREE (hosts[x]);
FREE (hosts) ;
hosts = NULL;
}
#ifdef __ cplusplus
extern "C"
#endif
NSAPI PUBLIC int acf init(pblock *pb, Session *sn, Request *rq)
{
/* Parameter */
char *acf file = pblock findval("file", pb);
/* Working variables */
int num_hosts;
FILE *f;
char err[MAGNUS ERROR LEN];
char buf[MAX ACF LINE];
/* Check usage. Note that Init functions have special
error logging */
if(lacf file) {
util sprintf(err, "missing parameter to acf init
(need file)");
pblock nvinsert("error", err, pb);
return REQ_ABORTED;

Chapter 3 - Examples of Custom SAFs and Filters 59

PathCheck Example

f = fopen(acf_file, "r);
/* Did we open it? */
if(!f) {
util sprintf(err, "can’t open access control file %s (%s)",
acf file, system errmsg());
pblock nvinsert('error", err, pb);
return REQ ABORTED;
}
/* Initialize hosts array */
num_hosts = 0;
hosts = (char **) MALLOC(1 * sizeof(char *));
hosts[@] = NULL;
while(fgets(buf, MAX ACF LINE, f)) {
/* Blast linefeed that stdio helpfully leaves on there */
buf[strien(buf) - 1] = "\\0’;
hosts = (char **) REALLOC(hosts, (num hosts + 2) *
sizeof(char *));
hosts[num hosts++] = STRDUP(buf);
hosts[num hosts] = NULL;
}
fclose(f);
/* At restart, free hosts array */
daemon_atrestart(acf free, NULL);
return REQ PROCEED
}
#ifdef _ cplusplus
extern "C"
#endif
NSAPI PUBLIC int restrict by acf(pblock *pb, Session *sn, Request *rq)
{
/* No parameters */
/* Working variables */
char *remip = pblock findval("ip", sn->client);
register int x;
if('hosts) {
log error(LOG _MISCONFIG, "restrict-by-acf", sn, rq,
"restrict-by-acf called without call to acf-init");
/* When we abort, the default status code is 500 Server
Error */
return REQ_ABORTED;
}
for(x = 0; hosts[x] '= NULL; ++x) {
/* If they’re on the list, they’'re allowed */
if(!strcmp(remip, hosts[x]))
return REQ NOACTION;
}
/* Set response code to forbidden and return an error. */
protocol status(sn, rq, PROTOCOL FORBIDDEN, NULL);

60 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

ObjectType Example

return REQ_ABORTED;

ObjectType Example

The example in this section demonstrates how to implement html2shtml, a custom SAF that
instructs the server to treata . html fileas an . shtml file if an . shtml version of the requested file
exists.

The ObjectType function checks whether the content type is already set. If the type is set,
returns ObjectType REQ_NOACTION.

if(pblock findval("content-type", rq->srvhdrs))
return REQ NOACTION;

The primary task an ObjectType directive needs to perform is to set the content type if it is not
already set. This example sets the content type to magnus-internal/parsed-htmlin the
following lines:

/* Set the content-type to magnus-internal/parsed-html */
pblock nvinsert("content-type", "magnus-internal/parsed-html"
rq->srvhdrs);

The html2shtml function checks at the requested file name. If the filename ends with . html, the
function checks for a file with the same base name but with the extension . shtml instead. If
such a file is found, the function uses that path and informs the server that the file is parsed
HTML instead of regular HTML. This process requires an extra stat call for every HTML file
accessed.

Installing the ObjectType Example

To load the shared object containing your function, add the following line in the Init section of
the obj . conf file:

Init fn=load-modules shlib=yourlibrary funcs=html2shtml

To execute the custom SAF during the request-response process for some object, add the
following line to that object in the obj . conf file:

ObjectType fn=html2shtml

Chapter 3 - Examples of Custom SAFs and Filters 61

ObjectType Example

ObjectType Example Source Code

The source code for this example is in otype. c in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

#include "nsapi.h"
#include <string.h> /* strncpy */
#include "base/util.h"

#ifdef cplusplus

extern "C"

#endif

NSAPI PUBLIC int html2shtml(pblock *pb, Session *sn, Request *rq)
{

/* No parameters */

/* Work variables */

pb_param *path = pblock find("path", rg->vars);
struct stat finfo;

char *npath;

int baselen;

/* If the type has already been set, don’t do anything */
if(pblock findval("content-type", rq->srvhdrs))
return REQ NOACTION;

/* If path does not end in .html, let normal object types do
* their job */
baselen = strlen(path->value) - 5;
if(strcasecmp(&path->value[baselen], ".html") !'= 0)
return REQ NOACTION;

/* 1 = Room to convert html to shtml */

npath = (char *) MALLOC((baselen + 5) + 1 + 1);
strncpy(npath, path->value, baselen);
strcpy(&npath[baselen], ".shtml")

/* If it’s not there, don’t do anything */
if(stat(npath, &finfo) == -1) {
FREE (npath);
return REQ NOACTION;
}
/* Got it, do the switch */
FREE (path->value);
path->value = npath;

/* The server caches the stat() of the current path. Update it.
(void) request stat path(NULL, rq);

62 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

*/

Output Example

pblock nvinsert("content-type", "magnus-internal/parsed-html"
rg->srvhdrs) ;
return REQ PROCEED;

Output Example

This section describes an example NSAPI filter named example- replace, which examines
outgoing data and substitutes one string for another. The example shows how you can create a
filter that intercepts and modifies outgoing data.

Installing the Output Example

To load the filter, add the following line in the Init section of the obj . conf file:

Init fn="load-modules" shlib="<path>/replace.
ext" NativeThread="no"

To execute the filter during the request-response process for some object, add the following line
to that object in the obj . conf file:

Output fn="insert-filter" type="text/*" filter="example-replace"
from="iPlanet" to="Sun ONE"

Output Example Source Code

The source code for this example is in the replace. c file in the plugins/nsapi/examples
subdirectory of the server root directory.

#ifdef XP_WIN32

#define NSAPI PUBLIC declspec(dllexport)
#else /* IXP WIN32 */

#define NSAPI PUBLIC

#endif /* !'XP_WIN32 */

/*
* nsapi.h declares the NSAPI interface.
*/

#include "nsapi.h"

Chapter 3 - Examples of Custom SAFs and Filters 63

Output Example

64

/*

* ExampleReplaceData will be used to store information between

* filter method invocations. Each instance of the example-replace
* filter will have its own ExampleReplaceData object.

*/

typedef struct ExampleReplaceData ExampleReplaceData;

struct ExampleReplaceData {

char *from; /* the string to replace */

int fromlen; /* length of "from" */

char *to; /* the string to replace "from" with */

int tolen; /* length of "to" */

int matched; /* number of "from" chars matched */
+
YA example replace insert ------------oommonn */
/*

* example replace insert implements the example-replace filter’s
* insert method. The insert filter method is called before the
* server adds the filter to the filter stack.

*/

#ifdef cplusplus
extern "C"
#endif
int example replace insert(FilterLayer *layer, pblock *pb)
{
const char *from;
const char *to;
ExampleReplaceData *data;

/*
* Look for the string to replace, "from", and the string to
* replace it with, "to". Both values are required.
*/
from = pblock findval("from", pb);
to = pblock findval("to", pb);
if (from == NULL || to == NULL || strlen(from) < 1) {
log error(LOG MISCONFIG, "example-replace-insert",
layer->context->sn, layer->context->rq,
"missing parameter (need from and to)");
return REQ ABORTED; /* error preparing for insertion */

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Output Example

/*

/*
* Allocate an ExampleReplaceData object that will store
* configuration and state information.
*/
data = (ExampleReplaceData *)MALLOC(sizeof(ExampleReplaceData));
if (data == NULL)
return REQ ABORTED; /* error preparing for insertion */

/* Initialize the ExampleReplaceData */
data->from = STRDUP(from);
data->fromlen = strlen(from);

data->to = STRDUP(to);

data->tolen = strlen(to);

data->matched = 0;

/* Check for out of memory errors */
if (data->from == NULL || data->to == NULL) {
FREE (data->from);
FREE (data->to0);
FREE (data);
return REQ ABORTED; /* error preparing for insertion */

/*

* Store a pointer to the ExampleReplaceData object in the

* FilterLayer. This information can then be accessed from other
* filter methods.

*/

layer->context->data = data;

/* Remove the Content-length: header if we might change the
* body length */
if (data->tolen != data->fromlen) {
pb_param *pp;
pp = pblock remove("content-length", layer->context->rq->srvhdrs);
if (pp)
param_free(pp);

return REQ PROCEED; /* insert filter */

Chapter 3 - Examples of Custom SAFs and Filters 65

Output Example

* example replace remove implements the example-replace filter’s
* remove method. The remove filter method is called before the
* server removes the filter from the filter stack.

*/

#ifdef cplusplus

extern "C"

#endif

void example replace_remove(FilterLayer *layer)
{

ExampleReplaceData *data;

/* Access the ExampleReplaceData we allocated in
example replace insert */
data = (ExampleReplaceData *)layer->context->data;

/* Send any partial "from" match */
if (data->matched > 0)
net write(layer->lower, data->from, data->matched);

/* Destroy the ExampleReplaceData object */
FREE (data->from);

FREE (data->to);

FREE (data);

/*

* example replace write implements the example-replace filter’s

* write method. The write filter method is called when there is data
* to be sent to the client.

*/

#ifdef cplusplus
extern "C"
#endif
int example replace write(FilterLayer *layer, const void *buf, int amount)
{
ExampleReplaceData *data;
const char *buffer;
int consumed;
int 1i;
int unsent;
int rv;

/* Access the ExampleReplaceData we allocated in

66 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Output Example

example replace insert */
data = (ExampleReplaceData *)layer->context->data;

/* Check for "from" matches in the caller’s buffer */
buffer = (const char *)buf;
consumed = 0;
for (i = 0; i < amount; i++) {
/* Check whether this character matches */
if (buffer[i] == data->from[data->matched]) {
/* Matched a(nother) character */
data->matched++;

/* If we've now matched all of "from"... */
if (data->matched == data->fromlen) {
/* Send any data that preceded the match */
unsent = 1 + 1 - consumed - data->matched;
if (unsent > 0) {
rv = net write(layer->lower, &buffer[consumed], unsent);
if (rv !'= unsent)
return I0_ERROR;

/* Send "to" in place of "from" */
rv = net write(layer->lower, data->to, data->tolen);
if (rv != data->tolen)

return I0 ERROR;

/* We've handled up to and including buffer[i] */
consumed = i + 1;

/* Start looking for the next "from" match from scratch */
data->matched = 0;

} else if (data->matched > 0) {
/* This match didn’t pan out, we need to backtrack */
int j;
int backtrack = data->matched;
data->matched = 0;

/* Check for other potential "from" matches
* preceding buffer[i] */
for (j = 1; j < backtrack; j++) {
/* Check whether this character matches */
if (data->from[j] == data->from[data->matched]) {
/* Matched a(nother) character */
data->matched++;

Chapter 3 - Examples of Custom SAFs and Filters 67

Output Example

} else if (data->matched > 0) {
/* This match didn’t pan out, we need to
* backtrack */
j -= data->matched;
data->matched = 0;

/* If the failed (partial) match begins before the buffer...

unsent = backtrack - data->matched;
if (unsent > i) {
/* Send the failed (partial) match */
rv = net write(layer->lower, data->from, unsent);
if (rv != unsent)
return IO _ERROR;

/* We've handled up to, but not including,
* buffer[i] */
consumed = 1i;

/* We'’re not done with buffer[i] yet */
i--;

/* Send any data we know won’t be part of a future
* "from" match */
unsent = amount - consumed - data->matched;
if (unsent > 0) {
rv = net write(layer->lower, &buffer[consumed], unsent);
if (rv !'= unsent)
return IO ERROR;

}

return amount;
}
A nsapi module init -----------ommmiia */
/*

* This is the module initialization entry point for this NSAPI
* plugin. The server calls this entry point in response to the
* Init fn="load-modules" line in magnus.conf.

*/

NSAPI PUBLIC nsapi module init(pblock *pb, Session *sn, Request *rq)

68 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

*/

Service Example

{

FilterMethods methods = FILTER METHODS INITIALIZER;

const Filter *filter;

/*

* Create the example-replace filter. The example-replace filter
* has order FILTER CONTENT TRANSLATION, meaning it transforms
* content (entity body data) from one form to another. The
* example-replace filter implements the write filter method,
* meaning it is interested in outgoing data.

*/

methods.insert = &example replace insert;

methods.remove = &example replace remove;

methods.write = &example replace write;

filter = filter create("example-replace"

FILTER CONTENT TRANSLATION,
&methods) ;
if (filter == NULL) {
pblock nvinsert("error", system errmsg(), pb);
return REQ_ABORTED; /* error initializing plugin */
}
return REQ PROCEED; /* success */
}
L]
Service Example

This section discusses a very simple Service function called simple_service. This function
sends a message in response to a client request. The message is initialized by the
init_simple_service function during server initialization.

For a more complex example, see the file service. c in the examples directory, which is
discussed in “More Complex Service Example” on page 71

Installing the Service Example

To load the shared object containing your functions, add the following line in the Init section
of the obj . conf file:

Init fn=1load-modules shlib=
yourlibrary funcs=simple-service-init,simple-service

Chapter 3 - Examples of Custom SAFs and Filters 69

Service Example

70

To call the simple-service-init function to initialize the message representing the generated
output, add the following line to the Init section in obj . conf. This line must appear after the
line thatloads the library containing simple-service-init.)

Init fn=simple-service-init
generated-output="<H1>
Generated output msg</H1>"

To execute the custom SAF during the request-response process for an object, add the following
line to that object in the obj . conf file:

Service type="text/html" fn=simple-service

The type="text/html" argument indicates that this function is invoked during the Service
stage only if the content- type has been set to text/html.

Service Example Source Code

#include <nsapi.h>

static char *simple msg = "default customized content";

/* This is the initialization function.
* It gets the value of the generated-output parameter
* specified in the Init directive in magnus.conf

*/

NSAPI PUBLIC int init-simple-service(pblock *pb, Session *sn,
Request *rq)

{
/* Get the message from the parameter in the directive in
* magnus.conf
*/
simple msg = pblock findval("generated-output", pb);
return REQ_PROCEED;
}

/* This is the customized Service SAF.
* It sends the "generated-output" message to the client.
*/
NSAPI PUBLIC int simple-service(pblock *pb, Session *sn, Request *rq)
{
int return value;
char msg_length[8];
/* Use the protocol status function to set the status of the
* response before calling protocol start_response.
*/
protocol status(sn, rq, PROTOCOL OK, NULL);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Service Example

/* Although we would expect the ObjectType stage to
* set the content-type, set it here just to be
* completely sure that it gets set to text/html.
*/
param_free(pblock remove("content-type", rq->srvhdrs));
pblock nvinsert("content-type", "text/html", rg->srvhdrs);
/* If you want to use keepalive, need to set content-length header.
* The util itoa function converts a specified integer to a
* string, and returns the length of the string. Use this
* function to create a textual representation of a number.
*/
util itoa(strlen(simple msg), msg length);
pblock nvinsert("content-length", msg length, rqg->srvhdrs);
/* Send the headers to the client*/
return value = protocol start response(sn, rq);
if (return_value == REQ NOACTION) {
/* HTTP HEAD instead of GET */
return REQ PROCEED;
}
/* Write the output using net write*/
return_value = net write(sn->csd, simple msg,
strlen(simple msg));
if (return value == IO ERROR) {
return REQ EXIT;
}
return REQ PROCEED;

More Complex Service Example

The send-images function is a custom SAF that replaces the doit.cgi demonstration available
on the iPlanet home pages. When a file is accessed as /dirl/dir2/something.picgroup, the
send-images function checks whether the file is being accessed by a Mozilla/1.1 browser. If the
file is not being accessed, the function sends a short error message. The file
something.picgroup contains a list of lines, each of which specifies a file name followed by a
content-type, for example, one.gif image/gif.

To load the shared object containing your function, add the following line at the beginning of
the obj . conf file:

Init fn=load-modules shlib=yourlibrary funcs=send-images

Also, add the following line to the mime . types file:

type=magnus-internal/picgroup exts=picgroup

Chapter 3 - Examples of Custom SAFs and Filters 71

AddLog Example

To execute the custom SAF during the request-response process for an object, add the following
line to that object in the obj . conf file. send - images takes an optional parameter, delay, which
is not used for this example.

Service method=(GET|HEAD) type=magnus-internal/picgroup fn=send-images

The source code is located in service. c in the plugins/nsapi/examples subdirectory within
the server root directory.

AddLog Example

72

The example in this section demonstrates how to implement brief-log, a custom SAF for
logging only three items of information about a request: the IP address, the method, and the
URYI, for example, 198.93.95.99 GET /jocelyn/dogs/homesneeded.html.

Installing the AddLog Example

To load the shared object containing your functions, add the following line in the Init section
of the magnus. conf file:

Init fn=load-modules shlib=yourlibrary funcs=brief-init,brief-log

To call brief-init to open thelog file, add the following line to the Init sectionin obj.conf.
This line must appear after the line that loads the library containing brief-init.)

Init fn=brief-init file=/tmp/brief.log

To execute your custom SAF during the AddLog stage for an object, add the following line to
that object in the obj . conf file:

AddLog fn=brief-log

AddLog Example Source Code

The source code is in addlog. c is in the plugins/nsapi/examples subdirectory within the
server root directory.

#include "nsapi.h"

#include "base/daemon.h" /* daemon atrestart */
#include "base/file.h" /* system fopenWA, system fclose */

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

AddLog Example

#include "base/util.h" /* sprintf */

/* File descriptor to be shared between the processes */

static SYS FILE logfd = SYS ERROR FD;

#ifdef __ cplusplus
extern "C"
#endif
NSAPI PUBLIC void brief terminate(void *parameter)
{
system fclose(logfd);
logfd = SYS ERROR FD;

}
#ifdef _ cplusplus
extern "C"
#endif
NSAPI PUBLIC int brief init(pblock *pb, Session *sn, Request *rq)
{
/* Parameter */
char *fn = pblock findval("file", pb);
if(!fn) {
pblock nvinsert("error", "brief-init: please supply a file name"
pb); return REQ ABORTED;
}
logfd = system fopenWA(fn);
if(logfd == SYS ERROR FD) {
pblock nvinsert("error", "brief-init: please supply a file name"
pb); return REQ ABORTED;
}
/* Close log file when server is restarted */
daemon atrestart(brief terminate, NULL);
return REQ PROCEED;
}
#ifdef cplusplus
extern "C"
#endif

NSAPI PUBLIC int brief log(pblock *pb, Session *sn, Request *rq)

{

/* No parameters */

/* Server data */

char *method = pblock findval('method", rg->reqpb);

char *uri = pblock findval("uri", rqg->reqpb);

Chapter3 « Examples of Custom SAFs and Filters

73

AddLog Example

char *ip = pblock findval("ip", sn->client);

/* Temp vars */
char *logmsg;
int len;

logmsg = (char *)
MALLOC(strlen(ip) + 1 + strlen(method) + 1 + strlen(uri) + 1 + 1);
len = util sprintf(logmsg, "%s %s %s\\n", ip, method, uri);
/* The atomic version uses locking to prevent interference */
system fwrite atomic(logfd, logmsg, len);
FREE (logmsg) ;

return REQ_PROCEED;

74 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

CHAPTER 4

NSAPI Function Reference

This chapter lists the public C functions and macros of the Netscape Server Applications
Programming Interface (NSAPI) in alphabetic order. You use these functions when writing
your own Server Application Functions (SAFs).

For information about the predefined SAFs used in obj . conf, see Oracle iPlanet Web Proxy
Server 4.0.14 Configuration File Reference.

Each function provides the name, syntax, parameters, return value, a description of what the
function does, and sometimes an example of its use and a list of related functions.

For more information on data structures, see Chapter 5, “Data Structure Reference” Also look
in the nsapi.h header file in the include directory in the build for iPlanet Web Proxy Server
4.0.14.

NSAPI Functions (in Alphabetical Order)

For an alphabetical list of function names, see Appendix A, “Alphabetical List of NSAPI
Functions and Macros”

“C” on page 76 “I” on page 99 “N” on page 102 “S” on page 136
“D” on page 85 “L” on page 100 “P” on page 111 “U” on page 161
“F” on page 86 “M” on page 101 “R” on page 132 “W?” on page 190

75

http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883

cache_digest
The cache_digest function calculates the MD5 signature of a specified URL and stores the

signature in a digest variable.

Syntax

#include <libproxy/cache.h>
void cache digest(char *url, unsigned char digest[16]));

Returns

void
Parameters

char *urlis a string containing the cache file name of a URL.

name *digest is an array to store the MD5 signature of the URL.

SeeAlso
“cache_fn_to_dig” on page 77

cache filename

The cache_filename function returns the cache file name for a given URL, specified by the
MD?5 signature.

Syntax

#include <libproxy/cutil.h>
char *cache filename(unsigned char digest[l6]);

Returns
A new string containing the cache filename.
Parameters

char *digest is an array containing the MD5 signature of a URL.

See Also
“cache_fn_to_dig” on page 77

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

cache_fn_to_dig

The cache_fn_to_dig function converts a cache file name of a URL into a partial MD5 digest.

Syntax

#include <libproxy/cutil.h>
void *cache_fn_to_dig(char *name, unsigned char digest[16]1));

Returns

void

Parameters

char *name is a string containing the cache file name of a URL.

name *digest is an array to receive first 8 bits of the signature of the URL.

CALLOC

The CALLOC macro is a platform-independent substitute for the Clibrary routine calloc. It
allocates num*size bytes from the request’s memory pool. If pooled memory has been disabled
in the configuration file with the pool-init built-in SAF, PERM_CALLOC and CALLOC both obtain
their memory from the system heap.

Syntax

void *CALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the size in bytes of each element.

Example
char *name;name = (char *) CALLOC(100);

SeeAlso

“FREE” on page 95, “REALLOC” on page 133, “STRDUP” on page 146, “PERM_MALLOC” on
page 123, “PERM_FREE” on page 122, “PERM_REALLOC” on page 123, “PERM_STRDUP” on
page 124

Chapter4 - NSAPI Function Reference 77

ce free

The ce_free function releases memory allocated by the ce_lookup function.

Syntax

#include <libproxy/cache.h>
void cd_free(CacheEntry *ce);

Returns

void

Parameters

CacheEntry *ceis a cache entry structure to be destroyed.

SeeAlso
“ce_lookup” on page 78

ce_lookup

The ce_lookup cache entry lookup function looks up a cache entry for a specified URL.

Syntax

#include <libproxy/cache.h>
CacheEntry *ce_lookup(Session *sn, Request *rq, char *url, time t ims_c)

Returns

= NULL if caching is not enabled

= A newly allocated CacheEntry structure, whether or not a copy existed in the cache. Within
that structure, the ce->state field reports about the existence:

CACHE_NO signals that the document is not and will not be cached. Other fields in the cache
structure may be NULL

CACHE_CREATE signals that the cache file doesn’t exist but may be created once the remote
server is contacted. However, during the retrieval it may turn out that the document not be
cacheable.

CACHE_REFRESH signals that the cache file exists but must be refreshed before being used.
The data might still be up to date but the remote server needs to be contacted to find out. If
the file is not up to date, the cache file will be replaced with the new document version sent
by the remote origin server.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

CACHE_RETURN_FROM_CACHE signals that the cache file exists and is up-to-date based on the
configuration and current parameters controlling what is considered fresh.

CACHE_RETURN_ERROR is a signal that happens only if the proxy is set to no-network mode
connect-Modenese, and the document does not exist in the cache.

Parameters

Session *sn identifies the Session structure.
Request *rq identifies the Request structure.
char *url contains the name of the URL for which the cache is being sought.

time-out misc. is the if-modified-since time.

SeeAlso

“ce_free” on page 78

cif_write_entry

The cif_write_entry function writes a CIF entry for a specified CacheEntry structure. The
CIF entry is stored in the cache file itself.

Syntax

#include <libproxy/cif.h>
int cif write entry(CacheEntry *ce,int new cachefile)

Returns

= nonzero if the write was successful
= (if the write was unsuccessful

Parameters

CacheEntry *ceis a cache entry structure to be written to the . cif file.
int new_cachefile The values are 1 or 0:
1 if the file is a new cache file

0 if the file exists and the CIF entry is to be modified

Chapter4 « NSAPI Function Reference

80

cinfo_find

The cinfo_find() function uses the MIME types information to find the type, encoding,
and/or language based on the extensions of the Universal Resource Identifier (URI) or local file
name. Use this information to send headers (rq->srvhdrs) to the client indicating the
content-type, content-encoding, and content-language of the data that the client will be
receiving from the server.

The name used consists of all of the text after the last slash (/) or the whole string if no slash is
found. File name extensions are not case-sensitive. The name may contain multiple extensions
separated by period (.) to indicate type, encoding, or language. For example, the URI
a/b/filename.jp.txt.zip could represent a Japanese language, text/plain type,
.zip-encoded file.

Syntax

cinfo *cinfo_find(char *uri);

Returns
A pointer to a newly allocated cinfo structure if content info was found, or NULL if no content

was found.

The cinfo structure that is allocated and returned contains pointers to the content-type,
content-encoding, and content-language, if found. Each is a pointer into static data in the
types database, or NULL if not found. Do not free these pointers. You should free the cinfo
structure when you are done using it.

Parameters

char *uri is a Universal Resource Identifier (URI) or local file name. Multiple file name
extensions should be separated by periods (.).

condvar_init

The condvar init function is a critical-section function that initializes and returns a new
condition variable associated with a specified critical-section variable. You can use the
condition variable to prevent interference between two threads of execution.

Syntax

CONDVAR condvar_init(CRITICAL id);

Returns
A newly allocated condition variable (CONDVAR).

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Parameters

CRITICAL id is a critical-section variable.

SeeAlso

“condvar_notify” on page 81, “condvar_terminate” on page 81, “condvar_wait” on page 82,
“crit_init” on page 84, “crit_enter” on page 83, “crit_exit” on page 83, “crit_terminate” on
page 84

condvar_notify

The condvar_notify function is a critical-section function that awakens any threads that are
blocked on the given critical-section variable. Use this function to awaken threads of execution
of a given critical section. First, use crit_enter to gain ownership of the critical section. Then
use the returned critical-section variable to call condvar_notify to awaken the threads. Finally,
when condvar_notify returns, call crit_exit to surrender ownership of the critical section.

Syntax
void condvar notify(CONDVAR cv);

Returns

void

Parameters

CONDVAR cv is a condition variable.

SeeAlso

“condvar_init” on page 80, “condvar_terminate” on page 81, “condvar_wait” on page 82,
“crit_init” on page 84, “crit_enter” on page 83, “crit_exit” on page 83, “crit_terminate” on
page 84

condvar_terminate

The condvar_terminate function is a critical-section function that frees a condition variable.
Use this function to free a previously allocated condition variable.

Warning

Terminating a condition variable that is in use can lead to unpredictable results.

Chapter4 - NSAPI Function Reference 81

82

Syntax

void condvar terminate(CONDVAR cv);

Returns

void

Parameters

CONDVAR cv is a condition variable.

SeeAlso

“condvar_init” on page 80, “condvar_notify” on page 81, “condvar_wait” on page 82, “crit_init
on page 84, “crit_enter” on page 83, “crit_exit” on page 83, “crit_terminate” on page 84

condvar_wait

The condvar_wait function is a critical-section function that blocks on a given condition
variable. Use this function to wait for a critical section specified by a condition variable
argument to become available. The calling thread is blocked until another thread calls
condvar_notify with the same condition variable argument. The caller must have entered the
critical section associated with this condition variable before calling condvar_wait.

Syntax

void condvar_wait(CONDVAR cv);

Returns

void

Parameters

CONDVAR cv is a condition variable.

SeeAlso

“condvar_init” on page 80, “condvar_terminate” on page 81, “condvar_notify” on page 81,
“crit_init” on page 84, “crit_enter” on page 83, “crit_exit” on page 83, “crit_terminate” on
page 84

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

»

crit_enter

The crit_enter function is a critical-section function that attempts to enter a critical section.
Use this function to gain ownership of a critical section. If another thread already owns the
section, the calling thread is blocked until the first thread surrenders ownership by calling
crit_exit.

Syntax

void crit _enter(CRITICAL crvar);

Returns

void

Parameters

CRITICAL crvar is a critical-section variable.

SeeAlso

“crit_init” on page 84, “crit_exit” on page 83, “crit_terminate” on page 84

crit_exit

The crit_exit function is a critical-section function that surrenders ownership of a critical
section. Use this function to surrender ownership of a critical section. If another thread is
blocked waiting for the section, the block will be removed and the waiting thread will be given
ownership of the section.

Syntax

void crit exit(CRITICAL crvar);

Returns

void

Parameters

CRITICAL crvar isa critical-section variable.

See Also

“crit_init” on page 84, “crit_enter” on page 83, “crit_terminate” on page 84

Chapter4 « NSAPI Function Reference

84

crit_init

The crit_init function is a critical-section function that creates and returns a new
critical-section variable (a variable of type CRITICAL). Use this function to obtain a new instance
of a variable of type CRITICAL (a critical-section variable) to be used in managing the prevention

of interference between two threads of execution. At the time of its creation, no thread owns the
critical section.

Warning

Threads must not own or be waiting for the critical section when crit_terminate is called.

Syntax

CRITICAL crit init(void);

Returns
A newly allocated critical-section variable (CRITICAL).

Parameters

none

SeeAlso

“crit_enter” on page 83, “crit_exit” on page 83, “crit_terminate” on page 84

crit_terminate

The crit_terminate function is a critical-section function that removes a previously allocated
critical-section variable (a variable of type CRITICAL). Use this function to release a
critical-section variable previously obtained by a call to crit_init.

Syntax

void crit terminate(CRITICAL crvar);

Returns

void

Parameters

CRITICAL crvar is a critical-section variable.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

SeeAlso

“crit_init” on page 84, “crit_enter” on page 83, “crit_exit” on page 83

daemon_atrestart

The daemon_atrestart function enables you to register a callback function named by fn to be
used when the server terminates. Use this function when you need a callback function to
deallocate resources allocated by an initialization function. The daemon_atrestart function is
a generalization of the magnus_atrestart function.

The magnus . conf directives TerminateTimeout and ChildRestartCallback also affect the
callback of NSAPI functions.

Syntax

void daemon_atrestart(void (*fn)(void *), void *data);

Returns

void

Parameters

void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server is restarted.

Example

/* Register the log close function, passing it NULL */ /* to close *a log
file when the server is *//* restarted or shutdown.
*/daemon_atrestart(log close, NULL);NSAPI PUBLIC void log close(void *parameter)
{system fclose(global logfd);}

dns_set hostent

The dns_set_hostent function sets the DNS host entry information in the request. If this
function set, the proxy won’t try to resolve host information by itself. Instead, the function will
use this host information that was already resolved within custom DNS resolution SAE

Syntax

int dns_set hostent(struct hostent *hostent, Session *sn, Request *rq);

Chapter4 « NSAPI Function Reference 85

86

Returns
REQ_PROCEED on success or REQ_ABORTED on error.

Parameters

struct hostent *hostent is a pointer to the host entry structure.
Session *sn identifies the Session structure.

Request *rq identifies the Request structure.

Example

int my dns func(pblock *pb, Session *sn, Request *rq)
{
char *host = pblock findval("dns-host", rqg->vars);
struct hostent *hostent;
hostent = gethostbyname(host);//replace with custom DNS implementation
dns set hostent(hostent, sn, rq);
return REQ PROCEED;

fc_close
The fc_close function closes a file that was opened using fc_open. This function should only

be called with files that were opened using fc_open.

Syntax

void fc close(PRFileDesc *fd, FcHdl *hD1;

Returns

void

Parameters

PRFileDesc *fd is a valid pointer returned from a prior call to fc_open.

FcHd1 *hD1 is a valid pointer to a structure of type FcHdl. This pointer must have been
initialized by a prior call to fc_open.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

fc_open

The fc_open function returns a pointer to PRFileDesc that refers to an open file fileName. The
fileName value must be the full path name of an existing file. The file is opened in read mode
only. The application calling this function should not modify the currency of the file pointed to
by the PRFileDesc * unless the DUP_FILE_DESC is also passed to this function. In other words,
the application at minimum should not issue a read operation based on this pointer that would
modify the currency for the PRFileDesc *. If such a read operation is required that might
change the currency for the PRFileDesc *, then the application should call this function with
the argument DUP_FILE_DESC.

On a successful call to this function, a valid pointer to PRFileDesc is returned and the handle
"FcHdU is properly initialized. The size information for the file is stored in the ’fileSize’
member of the handle.

Syntax

PRFileDesc *fc open(const char *fileName, FcHdl *hDl,PRUint32 flags,
Session *sn, Request *rq);

Returns
Pointer to PRFileDesc, or NULL on failure.

Parameters

const char *fileName is the full path name of the file to be opened.
FcHd1*hD1 is a valid pointer to a structure of type FcHd 1.

PRUint32 flags can be @ or DUP_FILE DESC.

Session *sn is a pointer to the session.

Request *rq is a pointer to the request.

filebuf buf2sd

The filebuf_buf2sd function sends a file buffer to a socket (descriptor) and returns the
number of bytes sent.

Use this function to send the contents of an entire file to the client.

Syntax
int filebuf buf2sd(filebuf *buf, SYS NETFD sd);

Chapter4 - NSAPI Function Reference 87

88

Returns

The number of bytes sent to the socket if successful, or the constant I0_ERROR if the file buffer
could not be sent.

Parameters
filebuf *buf is the file buffer that must already have been opened.

SYS_NETFD sd is the platform-independent socket descriptor. Normally this will be obtained
from the csd (client socket descriptor) field of the sn (session) structure.

Example
if (filebuf buf2sd(buf, sn->csd) == IO ERROR) return(REQ EXIT);

SeeAlso

“filebuf_close” on page 88, “filebuf_open” on page 89, “filebuf_open_nostat” on page 90,
“filebuf_getc” on page 89

filebuf_close
The filebuf close function deallocates a file buffer and closes its associated file.

Use filebuf_open first to open a file buffer, and then filebuf_getc to access the information
in the file. After you have finished using the file buffer, use filebuf close to close t.

Syntax
void filebuf close(filebuf *buf);

Returns

void

Parameters
filebuf *buf is the file buffer previously opened with filebuf_open.

Example
filebuf close(buf);

SeeAlso

“filebuf_open” on page 89, “filebuf_open_nostat” on page 90, “filebuf_buf2sd” on page 87,
“filebuf_getc” on page 89

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

filebuf_getc

The filebuf getc function retrieves a character from the current file position and returns it as
an integer. the function then increments the current file position.

Use filebuf_getc to sequentially read characters from a buffered file.

Syntax
filebuf getc(filebuf b);

Returns

An integer containing the character retrieved, or the constant I0_EOF or I0_ERROR upon an end
of file or error.

Parameters
filebuf b is the name of the file buffer.

SeeAlso

“filebuf_close” on page 88, “filebuf_buf2sd” on page 87, “filebuf_open” on page 89,
“filter_create” on page 91

filebuf_open

The filebuf_open function opens a new file buffer for a previously opened file. The function
returns a new buffer structure. Buffered files provide more efficient file access by guaranteeing
the use of buffered file I/O in environments where it is not supported by the operating system.

Syntax
filebuf *filebuf open(SYS FILE fd, int sz);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no buffer could be
opened.

Parameters

SYS_FILE fd is the platform-independent file descriptor of the file that has already been
opened.

int sz is the size, in bytes, to be used for the buffer.

Chapter4 « NSAPI Function Reference 89

90

Example

filebuf *buf = filebuf open(fd, FILE BUFFERSIZE);if (!buf)
{ system fclose(fd);}

SeeAlso

“filebuf_getc” on page 89, “filebuf_buf2sd” on page 87, “filebuf_close” on page 88,
“filebuf_open_nostat” on page 90

filebuf_open_nostat

The filebuf_open_nostat function opens a new file buffer for a previously opened file. The
function returns a new buffer structure. Buffered files provide more efficient file access by
guaranteeing the use of buffered file I/O in environments where it is not supported by the
operating system.

This function is the same as filebuf open but is more efficient because this function does not
need to call the request_stat_path function. This function requires that the stat information
be passed in.

Syntax

filebuf* filebuf open nostat(SYS FILE fd, int sz, struct stat *finfo);

Returns

A pointer to a new buffer structure to hold the data if successful, or NULL if no buffer could be
opened.

Parameters

SYS_FILE fd is the platform-independent file descriptor of the file that has already been
opened.

int sz is the size, in bytes, to be used for the buffer.

struct stat *finfo is the file information of the file. Before calling the filebuf_open_nostat
function, you must call the request_stat_path function to retrieve the file information.

Example

filebuf *buf = filebuf open nostat(fd, FILE BUFFERSIZE, &finfo);if (!buf)
{ system fclose(fd);}

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

SeeAlso

“filebuf_close” on page 88, “filebuf_open” on page 89, “filebuf_getc” on page 89,
“filebuf_buf2sd” on page 87

filter create

The filter create function defines a new filter.

The name parameter specifies a unique name for the filter. If a filter with the specified name
already exists, that file will be replaced.

Names beginning with magnus - or server- are reserved by the server.

The order parameter indicates the position of the filter in the filter stack by specifying that class
of functionality that the filter implements.

The following table describes parameters that are allowed order constants and their associated
meanings for the filter_create function. The left column lists the name of the constant, the
middle column describes the functionality the filter implements, and the right column lists the
position the filter occupies in the filter stack.

TABLE4-1 filter-create Constants

Constant Functionality Filter Implements Position in Filter Stack
FILTER CONTENT TRANSLATION Translates content from one form Top
to another, for example, XSLT
FILTER CONTENT CODING Encodes content, for example, Middle
HTTP gzip compression
FILTER TRANSFER CODING Encodes entity bodies for Bottom
transmission, for example, HTTP
chunking

The methods parameter specifies a pointer to a FilterMethods structure. Before calling
filter_create, you must first initialize the “FilterMethods” on page 199 structure using the
FILTER METHODS_INITIALIZER macro,and then assign function pointers to the individual
FilterMethods members (for example, insert, read, write, and so on) that correspond to the
filter methods the filter will support.

filter create returns const Filter *, a pointer to an opaque representation of the filter.

This value may be passed to filter_insert to insert the filter in a particular filter stack.

Syntax

const Filter *filter create(const char *name, int order,
const FilterMethods *methods);

Chapter4 - NSAPI Function Reference 91

92

Returns
The const Filter * that identifies the filter or NULL if an error occurred.

Parameters

const char *name is the name of the filter.
int order is one of the order constants above.

const FilterMethods *methods contains pointers to the filter methods that the filter supports.

Example

FilterMethods methods = FILTER METHODS INTIALIZER;

const Filter *filter;

/* This filter will only support the "read" filter method */
methods.read = my input filter read;

/* Create the filter */

filter = filter create("my-input-filter", FILTER CONTENT TRANSLATION,
&methods) ;

filter_find

The filter_find function finds the filter with the specified name.

Syntax

const Filter *filter find(const char *name);

Returns
The const Filter * that identifies the filter, or NULL if the specified filter does not exist.

Parameters

const char *name is the name of the filter of interest.

filter _insert

The filter_insert function inserts a filter into a filter stack, creating a new filter layer and
installing the filter at that layer. The filter layer’s position in the stack is determined by the order
value specified when “filter_create” on page 91 was called, and any explicit ordering configured
by init-filter-order.Ifa filter layer with the same order value already exists in the stack, the
new layer is inserted above that layer.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Parameters may be passed to the filter using the pb and data parameters. The semantics of the
data parameter are defined by individual filters. However, all filters must be able to handle a
data parameter of NULL.

When possible, plug-in developers should avoid calling filter_insert directly, and instead

use the insert-filter SAF applicable in Input-class directives.

Syntax

int filter insert(SYS NETFD sd, pblock *pb, Session *sn, Request *rq,
void *data, const Filter *filter);

Returns

Returns REQ_PROCEED if the specified filter was inserted successfully, or REQ_NOACTION if the
specified filter was not inserted because it was not required. Any other return value indicates an
error.

Parameters

SYS NETFD sd is NULL (reserved for future use).

pblock *pb is a set of parameters to pass to the specified filter’s init method.
Session *sn identifies the Session structure.

Request *rq identifies the Request structure.

void *data is filter-defined private data.

const Filter *filter is the filter to insert.

filter_layer

The filter_layer function returns the layer in a filter stack that corresponds to the specified
filter.

Syntax

FilterLayer *filter layer(SYS _NETFD sd, const Filter *filter);
Returns
The topmost FilterLayer * associated with the specified filter, or NULL if the specified filter is

not part of the specified filter stack.

Chapter4 « NSAPI Function Reference 93

94

Parameters
SYS_NETFD sd is the filter stack to inspect.

const Filter *filter is the filter of interest.

filter name

The filter_name function returns the name of the specified filter. The caller should not free the

returned string.

Syntax

const char *filter name(const Filter *filter);

Returns

The name of the specified filter, or NULL if an error occurred.

Parameters

const Filter *filter is the filter of interest.

filter remove

The filter_remove function removes the specified filter from the specified filter stack,
destroying a filter layer. If the specified filter was inserted into the filter stack multiple times,
only that filter’s topmost filter layer is destroyed.

When possible, plug-in developers should avoid calling filter_remove directly, and instead
use the remove-filter SAF applicable in Input-,Output-, Service-,and Error-class
directives.

Syntax

int filter_remove(SYS NETFD sd, const Filter *filter);

Returns

Returns REQ_PROCEED if the specified filter was removed successfully or REQ_NOACTION if the
specified filter was not part of the filter stack. Any other return value indicates an error.

Parameters
SYS_NETFD sd is the filter stack, sn->csd.

const Filter *filter is the filter to remove.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

flush

The flush filter method is called when buffered data should be sent. Filters that buffer outgoing
data should implement the flush filter method.

Upon receiving control, a flush implementation must write any buffered data to the filter layer
immediately below it. Before returning success, a flush implementation must successfully call
the “net_flush” on page 102 function:

net_flush(layer->lower).

Syntax

int flush(FilterLayer *layer);

Returns

0 on success or -1 ifan error occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

Example
int myfilter flush(FilterLayer *layer)
{
MyFilterContext context = (MyFilterContext *)layer->context->data;
if (context->buf.count) {
int rv;
rv = net write(layer->lower, context->buf.data, context->buf.count);
if (rv !'= context->buf.count)

return -1; /* failed to flush data */
context->buf.count = 0;

}

return net flush(layer->lower);

SeeAlso
“net_flush” on page 102

FREE

The FREE macro is a platform-independent substitute for the Clibrary routine free. This macro
deallocates the space previously allocated by MALLOC, CALLOC, or STRDUP from the request’s
memory pool.

Chapter4 « NSAPI Function Reference 95

96

Syntax
FREE (void *ptr);

Returns

void

Parameters

void *ptrisa (void *) pointer to a block of memory. If the pointer was not created by MALLOC,
CALLOC, or STRDUP, the behavior is undefined.

Example
char *name;name = (char *) MALLOC(256);...FREE(name);

SeeAlso

“CALLOC” on page 77, “REALLOC” on page 133, “STRDUP” on page 146, “PERM_MALLOC”
on page 123, “PERM_FREE” on page 122, “PERM_REALLOC” on page 123, “PERM_STRDUP”
on page 124

fs blk_size

The fs_blk_size function returns the block size of the disk partition on which a specified
directory resides.

Syntax

#include <libproxy/fs.h>
long fs blk size(char *root);

Returns
The block size, in bytes.

Parameters

char *root is the name of the directory.

SeeAlso
“fs_blks_avail” on page 97

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

fs blks avail

The fs_blks avail function returns the number of disk blocks available on the disk partition
on which a specified directory resides.

Syntax

#include <libproxy/fs.h>
long fs blks avail(char *root);

Returns
The number of available disk blocks.

Parameters

char *root is the name of the directory.

SeeAlso
“fs_blk_size” on page 96

func_exec

The func_exec function executes the function named by the fn entry in a specified pblock. If
the function name is not found, the func_exec function logs the error and returns
REQ_ABORTED.

You can use this function to execute a built-in Server Application Function (SAF) by identifying
the SAF in the pblock.

Syntax

int func_exec(pblock *pb, Session *sn, Request *rq);

Returns

The value returned by the executed function, or the constant REQ_ABORTED if no function was
executed.

Parameters
pblock pb is the pblock containing the function name (fn) and parameters.

Session *sn identifies the Session structure.

Request *rq identifies the Request structure.

Chapter4 - NSAPI Function Reference 97

The Session and Request parameters are the same as the parameters passed into your SAE

SeeAlso

“log_error” on page 100

func_find

The func_find function returns a pointer to the function specified by name. If that function
does not exist, the func_find function returns NULL.

Syntax

FuncPtr func find(char *name);

Returns

A pointer to the chosen function, suitable for dereferencing, or NULL if the function could not
be found.

Parameters

char *name is the name of the function.

Example

/* this block of code does the same thing as func_exec */

98

char *afunc = pblock findval("afunction", pb);FuncPtr afnptr = func find(afunc);if (afnptr)
return (afnptr) (pb, sn, rq);

SeeAlso

“func_exec” on page 97

func_insert

The func_insert function dynamically inserts a named function into the server’s table of
functions. This function should only be called during the Init stage.

Syntax

FuncStruct *func _insert(char *name, FuncPtr fn);

Returns

Returns the FuncStruct structure that identifies the newly inserted function. The caller should
not modify the contents of the FuncStruct structure.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Parameters

char *name is the name of the function.

FuncPtr fn is the pointer to the function.

Example

func_insert("my-service-saf", &my service saf);

SeeAlso

“func_exec” on page 97, “func_find” on page 98

insert

The insert filter method is called when a filter is inserted into a filter stack by the “filter_insert”
on page 92 function or insert-filter SAF (applicable in Input-class directives).

Syntax

int insert(FilterLayer *layer, pblock *pb);

Returns

Returns REQ_PROCEED if the filter should be inserted into the filter stack, REQ_NOACTION if the
filter should not be inserted because it is not required, or REQ_ABORTED if the filter should not be
inserted because of an error.

Parameters
FilterLayer *layer is the filter layer at which the filter is being inserted.

pblock *pb is the set of parameters passed to filter_insert or specified by the
fn="insert-filter" directive.

Example

FilterMethods myfilter methods = FILTER METHODS INITIALIZER;
const Filter *myfilter;int myfilter insert(FilterLayer *layer, pblock *pb)
{if (pblock findval("dont-insert-filter", pb)) return REQ NOACTION;
return REQ PROCEED;}...myfilter methods.insert = &myfilter insert;
myfilter = filter create('myfilter", &myfilter methods);...

Chapter4 « NSAPI Function Reference 99

100

log_error

The log_error function creates an entry in an error log, recording the date and the severity of
the error , and a specified message.

Syntax

int log error(int degree, char *func, Session *sn, Request *rq,
char *fmt, ...);

Returns

0 if the log entry was created, or -1 if the log entry was not created.

Parameters

int degree specifies the severity of the error. This value must be one of the following constants:

LOG_WARN — warning LOG_MISCONFIG — Asyntax error or permission violation LOG_SECURITY
— An authentication failure or 403 error from a hostLOG_FAILURE — An internal
problemLOG_CATASTROPHE — A nonrecoverable server errorLOG_INFORM — An informational
message

char *func is the name of the function where the error has occurred.

Session *sn identifies the Session structure.

Request *rq identifies the Request structure.

The Session and Request parameters are the same as the ones passed into your SAFE.
char *fmt specifies the format for the printf function that delivers the message.

.. . represents a sequence of parameters for the printf function.

Example

log error(LOG WARN, "send-file", sn, rq,
"error opening buffer from %s (%s)"), path, system errmsg(fd));

SeeAlso

“func_exec” on page 97

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

magnus_atrestart

Note - Use the daemon-atrestart function in place of the obsolete magnus_atrestart function.

The magnus_atrestart function enables you to register a callback function named by fn to be
used when the server receives a restart signal. Use this function when you need a callback
function to deallocate resources allocated by an initialization function.

Syntax

#include <netsite.h>
void magnus_atrestart(void (*fn)(void *), void *data);

Returns

void
Parameters

void (*fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server is restarted.

Example

/* Close log file when server is restarted */
magnus_atrestart(brief terminate, NULL);return REQPROCEED;

MALLOC

The MALLOC macro is a platform-independent substitute for the Clibrary routine malloc. This
macro normally allocates from the request’s memory pool. If pooled memory has been disabled
in the configuration file with the pool-init built-in SAF, PERM_MALLOC and MALLOC both obtain
their memory from the system heap.

Syntax

void *MALLOC(int size)

Returns

A void pointer to a block of memory.

Chapter4 - NSAPI Function Reference 101

102

Parameters

int size is the number of bytes to allocate.

Example
/* Allocate 256 bytes for a name */char *name;name = (char *) MALLOC(256);

SeeAlso

“FREE” on page 95, “CALLOC” on page 77, “REALLOC” on page 133, “STRDUP” on page 146,
“PERM_MALLOC” on page 123, “PERM_FREE” on page 122, “PERM_CALLOC” on page 121,
“PERM_REALLOC” on page 123, “PERM_STRDUP” on page 124

net_flush

The net_flush function flushes any buffered data. If you require that data be sent immediately,
call net_flush after calling network output functions such as net_write or net_sendfile.

Syntax
int net flush(SYS_NETFD sd);

Returns

0 on success, or a negative value if an error occurred.

Parameters
SYS NETFD sd is the socket to flush.

Example

net write(sn->csd, "Please wait... ", 15);
net_flush(sn->csd);

/* Perform some time-intensive operation */
net write(sn->csd, "Thank you.\\n", 11);

SeeAlso

“net_write” on page 105, “net_sendfile” on page 104

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

net_ip2host

The net_ip2host function transforms a textual IP address into a fully qualified domain name
and returns that name.

Note - This function works only if the DNS directive is enabled in the obj . conf file. For more
information, see Oracle iPlanet Web Proxy Server 4.0.14 Configuration File Reference.

Syntax

char *net ip2host(char *ip, int verify);

Returns

A new string containing the fully qualified domain name if the transformation was
accomplished, or NULL if the transformation was not accomplished.

Parameters
char *ip is the IP address as a character string in dotted-decimal notation: nnn.nnn.nnn.nnn
int verify, if nonzero, specifies that the function should verify the fully qualified domain

name. This parameter requires an extra query but you should use it when checking access
control.

net_read

The net_read function reads bytes from a specified socket into a specified buffer. The function
waits to receive data from the socket until either at least one byte is available in the socket or the
specified time has elapsed.

Syntax

int net read (SYS NETFD sd, char *buf, int sz, int timeout);

Returns

The number of bytes read, which will not exceed the maximum size, sz. A negative value is
returned if an error has occurred, in which case errno is set to the constant ETIMEDOUT if the
operation did not complete before timeout seconds elapsed.

Chapter4 « NSAPI Function Reference 103

http://docs.sun.com/doc/821-1883

104

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer to receive the bytes.
int sz is the maximum number of bytes to read.

int timeout is the number of seconds to allow for the read operation before returning. Do not
use timeout to return because not enough bytes were read in the given time instead, use this
parameter to limit the amount of time devoted to waiting until some data arrives.

SeeAlso

“net_write” on page 105

net_sendfile

The net_sendfile function sends the contents of a specified file to a specified socket. Either the
whole file or a fraction of a file may be sent. The contents of the file may optionally be preceded
or followed by caller-specified data.

Parameters are passed to net_sendfile in the sendfiledata structure. Before invoking
net_sendfile, the caller must initialize every sendfiledata structure member.

Syntax
int net sendfile(SYS NETFD sd, const sendfiledata *sfd);

Returns

A positive number indicates the number of bytes successfully written, including the headers, file
contents, and trailers. A negative value indicates an error.

Parameters
SYS NETFD sd is the socket to write to.

const sendfiledata *sfd identifies the data to send.

Example
The following Service SAF sends a file bracketed by the strings “begin” and “end”

#include <string.h>
#include "nsapi.h"

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

NSAPI PUBLIC int service net sendfile(pblock *pb, Session *sn, Request *rq)

{
char *path;
SYS FILE fd;
struct sendfiledata sfd;
int rv;
path = pblock findval("path", rg->vars);
fd = system fopenRO(path);
if (!fd) {
log_error(LOG MISCONFIG, "service-net-sendfile", sn, rq,
"Error opening %s (%s)", path, system errmsg());
return REQ_ABORTED;
}
sfd.fd = fd; /* file to send */
sfd.offset = 0; /* start sending from the beginning */
sfd.len = 0; /* send the whole file */
sfd.header = "begin"; /* header data to send before the file */
sfd.hlen = strlen(sfd.header); /* length of header data */
sfd.trailer = "end"; /* trailer data to send after the file */
sfd.tlen = strlen(sfd.trailer);/* length of trailer data */
/* send the headers, file, and trailers to the client */
rv = net_sendfile(sn->csd, &sfd);
system fclose(fd);
if (rv < 0) {
log_error(LOG_INFORM, "service-net-sendfile", sn, rg,"Error sending
%s (%s)", path, system errmsg()); return REQ ABORTED;
}
return REQ PROCEED;
}
SeeAlso

“net_flush” on page 102

net_write

The net_write function writes a specified number of bytes to a specified socket from a specified
buffer.

Syntax

int net write(SYS _NETFD sd, char *buf, int sz);

Chapter4 « NSAPI Function Reference

105

106

Returns

The number of bytes written, which may be less than the requested size if an error occurred.

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer containing the bytes.
int sz is the number of bytes to write.

Example

if (net write(sn->csd, FIRSTMSG, strlen(FIRSTMSG)) == IO ERROR)
return REQ EXIT;

SeeAlso
“net_read” on page 103

netbuf buf2sd

The netbuf_buf2sd function sends a buffer to a socket. You can use this function to send data
from IPC pipes to the client.

Syntax
int netbuf buf2sd(netbuf *buf, SYS NETFD sd, int len);

Returns

The number of bytes transferred to the socket, if successful, or the constant I0_ERROR if
unsuccessful.

Parameters
netbuf *buf is the buffer to send.

SYS_NETFD sd is the platform-independent identifier of the socket.

int len is the length of the buffer.
SeeAlso
“netbuf_close” on page 107, “netbuf_getc” on page 107, “netbuf_grab” on page 108,

“netbuf_open” on page 108

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

netbuf close

The netbuf close function deallocates a network buffer and closes its associated files. Use this
function when you need to deallocate the network buffer and close the socket.

You should never close the netbuf parameter in a session structure.

Syntax

void netbuf close(netbuf *buf);

Returns

void

Parameters
netbuf *buf is the buffer to close.

SeeAlso

“netbuf_buf2sd” on page 106, “netbuf_getc” on page 107, “netbuf grab” on page 108,
“netbuf_open” on page 108

netbuf_getc

The netbuf_getc function retrieves a character from the cursor position of the network buffer
specified by b.

Syntax

netbuf getc(netbuf b);

Returns

The integer representing the character if one was retrieved, or the constant I0_EOF or I0_ERROR
for end of file or error.

Parameters

netbuf b is the buffer from which to retrieve one character.
See Also

“netbuf_buf2sd” on page 106, “netbuf _close” on page 107, “netbuf_grab” on page 108,
“netbuf_open” on page 108

Chapter4 - NSAPI Function Reference 107

108

netbuf_grab

The netbuf_grab function reads sz number of bytes from the network buffer’s (buf) socket into
the network buffer. If the buffer is not large enough, it is resized. The data can be retrieved from
buf->inbuf on success.

This function is used by the function netbuf_buf2sd.

Syntax

int netbuf grab(netbuf *buf, int sz);

Returns

The number of bytes actually read (between 1 and sz) if the operation was successful, or the
constant I0_EOF or I0_ERROR for end of file or error.

Parameters
netbuf *buf is the buffer to read into.
int sz is the number of bytes to read.

SeeAlso

“netbuf_buf2sd” on page 106, “netbuf_close” on page 107, “netbuf_grab” on page 108,
“netbuf_open” on page 108

netbuf_open

The netbuf_open function opens a new network buffer and returns it. You can use
netbuf_open to create a netbuf structure and start using buffered I/O on a socket.

Syntax

netbuf* netbuf open(SYS NETFD sd, int sz);

Returns

A pointer to a new netbuf structure (network bufter).

Parameters
SYS_NETFD sd is the platform-independent identifier of the socket.

int sz is the number of characters to allocate for the network buffer.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

SeeAlso

“netbuf_buf2sd” on page 106, “netbuf_close” on page 107, “netbuf_getc” on page 107,
“netbuf_grab” on page 108

nsapi_module_init

plug-in developers may define an nsapi_module_init function, which is a module
initialization entry point that enables a plug-in to create filters when it is loaded. When an
NSAPI module contains an nsapi_module_init function, the server will call that function
immediately after loading the module. The nsapi_module init presents the same interface as
an Init SAF and it must follow the same rules.

The nsapi_module_init function may be used to register SAFs with func_insert, and create
filters with “filter_create” on page 91.

Syntax

int nsapi module init(pblock *pb, Session *sn, Request *rq);

Returns
Returns REQ PROCEED on success, or REQ_ABORTED on error.

Parameters

pblock *pb is a set of parameters specified by the fn="load-modules" directive.
Session *sn (the Session) is NULL.

Request *rq (the Request) is NULL.

NSAPI_RUNTIME_VERSION

The NSAPI_RUNTIME VERSION macro defines the NSAPI version available at runtime. This value
is the same as the highest NSAPI version supported by the server the plug-in is running in. The
NSAPI version is encoded as in USE_NSAPI_VERSION.

The value returned by the NSAPI_RUNTIME_VERSION macro is valid only in Oracle iPlanet Web
Server 7.0.9, Sun Java System Web Server 6.1, Sun iPlanet Web Server 6.0, Netscape Enterprise
Server 6.0, and iPlanet Web Proxy Server 4.0 and higher. The server must support NSAPI 3.1
for this macro to return a valid value. Additionally, to use NSAPI_RUNTIME_VERSION, you must
compile against an nsapi. h header file that supports NSAPI 3.2 or higher.

plug-in developers should not attempt to set the value of the NSAPI_RUNTIME_VERSION macro
directly. Instead, see the USE_NSAPI_VERSION macro.

Chapter4 « NSAPI Function Reference 109

110

Syntax
int NSAPI_RUNTIME_VERSION

Example

NSAPI_PUBLIC int log nsapi_runtime version(pblock *pb, Session *sn,
Request *rq) {log error(LOG INFORM, "log-nsapi-runtime-version", sn, rq,
"Server supports NSAPI version %d.%d\\n"
NSAPI RUNTIME VERSION / 100,
NSAPI RUNTIME VERSION % 100);
return REQ PROCEED;
}

SeeAlso
“NSAPI_VERSION” on page 110

“USE_NSAPI_VERSION” on page 161

NSAPI_VERSION

The NSAPI_VERSION macro defines the NSAPI version used at compile time. This value is
determined by the value of the USE_NSAPI_VERSION macro, or, if the plug-in developer did not
define USE_NSAPI_VERSION, by the highest NSAPI version supported by the nsapi . h header the
plug-in was compiled against. The NSAPI version is encoded as in USE_NSAPI_VERSION.

plug-in developers should not attempt to set the value of the NSAPI_VERSION macro directly.
Instead, see the USE_NSAPI_VERSION macro..

Syntax

int NSAPI_VERSION

Example

NSAPI PUBLIC int log nsapi compile time version(pblock *pb, Session *sn,
Request *rq) {log error(LOG INFORM, "log-nsapi-compile-time-version", sn, rq,
"Plugin compiled against NSAPI version %d.%d\\n"
NSAPI VERSION / 100,
NSAPI VERSION % 100);
return REQ PROCEED;
}

SeeAlso
“NSAPI_RUNTIME_VERSION” on page 109

“USE_NSAPI_VERSION” on page 161

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

param_create

The param_create function creates a pb_param structure containing a specified name and
value. The name and value are copied. Use this function to prepare a pb_param structure to be
used in calls to pblock routines such as pblock pinsert.

Syntax

pb param *param create(char *name, char *value);

Returns

A pointer to a new pb_param structure.

Parameters

char *name is the string containing the name.

char *value is the string containing the value.

Example

pb_param *newpp = param create("content-type","text/plain");
pblock_pinsert(newpp, rq->srvhdrs);

SeeAlso

«

param_free” on page 111, “pblock_pinsert” on page 119, “pblock_remove” on page 119

param_free

The param_free function frees the pb_param structure specified by pp and its associated
structures. Use the param_free function to dispose a pb_param after removing it from a pblock
with pblock_remove.

Syntax

int param free(pb_param *pp);

Returns

1if the parameter was freed or 0 if the parameter was NULL.

Chapter4 - NSAPI Function Reference m

112

Parameters

pb_param *pp is the name-value pair stored in a pblock.

Example

if (param free(pblock remove('content-type", rg-srvhdrs))) return;
/* we removed it */

SeeAlso

“param_create” on page 111, “pblock_pinsert” on page 119, “pblock_remove” on page 119

pblock_copy
The pblock_copy function copies the entries of the source pblock and adds them into the

destination pblock. Any previous entries in the destination pblock are left intact.

Syntax
void pblock copy(pblock *src, pblock *dst);

Returns

void

Parameters

pblock *src is the source pblock.

pblock *dst is the destination pblock.

Names and values are newly allocated so that the original pblock may be freed, or the new

pblock changed without affecting the original pblock.

SeeAlso

“pblock_create” on page 112, “pblock_dup” on page 113, “pblock_free” on page 115,
“pblock_find” on page 113, “pblock_findval” on page 115, “pblock_remove” on page 119,
“pblock_nvinsert” on page 117

pblock_create

The pblock_create function creates a new pblock. The pblock maintains an internal hash table
for fast name-value pair lookups.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Syntax

pblock *pblock create(int n);

Returns
A pointer to a newly allocated pblock.

Parameters

int n is the size of the hash table (number of name-value pairs) for the pblock.

SeeAlso

“pblock_copy” on page 112, “pblock_dup” on page 113, “pblock_find” on page 113,
“pblock_findval” on page 115, “pblock_free” on page 115, “pblock_nvinsert” on page 117,
“pblock_remove” on page 119

pblock_dup
The pblock_dup function duplicates a pblock. This function is equivalent to a sequence of

pblock createand pblock copy.

Syntax
pblock *pblock dup(pblock *src);

Returns
A pointer to a newly allocated pblock.

Parameters

pblock *src is the source pblock.

SeeAlso

“pblock_create” on page 112, “pblock_find” on page 113, “pblock_findval” on page 115,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “pblock_remove” on page 119

pblock_find

The pblock_find function finds a specified name-value pair entry in a pblock, and returns the
pb_param structure. If you only want the value associated with the name, use the
pblock findval function.

Chapter4 - NSAPI Function Reference 113

114

This function is implemented as a macro.

Syntax
pb_param *pblock find(char *name, pblock *pb);

Returns

A pointer to the pb_param structure if one was found, or NULL if name was not found.

Parameters

char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

SeeAlso

“pblock_copy” on page 112, “pblock_dup” on page 113, “pblock_findval” on page 115,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “pblock_remove” on page 119

pblock_findlong

The pblock_findlong function finds a specified name-value pair entry in a parameter block,
and retrieves the name and structure of the parameter block. Use pblock_findlong if you want
to retrieve the name, structure, and value of the parameter block. However, if you want only the
name and structure of the parameter block, use the pblock_find function. Do not use these two
functions in conjunction.

Syntax

#include <libproxy/util.h>
long pblock findlong(char *name, pblock *pb);

Returns

= A long containing the value associated with the name
= -1 ifno match was found

Parameters

char *name is the name of a name-value pair.

pblock *pb is the parameter block to be searched.

SeeAlso
pblock_nlinsert

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

pblock_findval

The pblock_findval function finds the value of a specified name in a pblock. If you just want
the pb_param structure of the pblock, use the pblock_find function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to modify it, do a
STRDUP and modify the copy.

Syntax
char *pblock findval(char *name, pblock *pb);

Returns

A string containing the value associated with the name or NULL if no match was found.

Parameters

char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

Example

see “pblock_nvinsert” on page 117.

SeeAlso

“pblock_create” on page 112, “pblock_copy” on page 112, “pblock_find” on page 113,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “pblock_remove” on page 119,
“request_header” on page 135

pblock_free

The pblock_free function frees a specified pblock and any entries inside it. If you want to save
a variable in the pblock, remove the variable using the function pblock_remove and save the
resulting pointer.

Syntax
void pblock free(pblock *pb);

Returns

void

Chapter4 - NSAPI Function Reference 115

116

Parameters
pblock *pb is the pblock to be freed.

SeeAlso

“pblock_copy” on page 112, “pblock_create” on page 112, “pblock_dup” on page 113,
“pblock_find” on page 113, “pblock_findval” on page 115, “pblock_nvinsert” on page 117,
“pblock_remove” on page 119

pblock_nlinsert

The pblock_nlinsert function creates a new parameter structure with a given name and long
numeric value and inserts the structure into a specified parameter block. The name and value
parameters are also newly allocated.

Syntax

#include <libproxy/util.h>
pb _param *pblock nlinsert(char *name, long value, pblock *pb);

Returns

The newly allocated parameter block structure

Parameters

char *name is the name by which the name-value pair is stored.

long value is the long or integer value being inserted into the parameter block.
pblock *pb is the parameter block into which the insertion occurs.

SeeAlso
“pblock_findlong” on page 114

pblock_nninsert

The pblock_nninsert function creates a new entry with a given name and a numeric value in
the specified pblock. The numeric value is first converted into a string. The name and value
parameters are copied.

Syntax

pb_param *pblock nninsert(char *name, int value, pblock *pb);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Returns

A pointer to the new pb_param structure.

Parameters

char *name is the name of the new entry.

int value is the numeric value being inserted into the pblock. This parameter must be an
integer. If the value you assign is not a number, then instead use the function pblock_nvinsert
to create the parameter.

pblock *pb is the pblock into which the insertion occurs.

SeeAlso

“pblock_copy” on page 112, “pblock_create” on page 112, “pblock_find” on page 113,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “pblock_remove” on page 119,
“pblock_str2pblock” on page 121

pblock_nvinsert

The pblock_nvinsert function creates a new entry with a given name and character value in
the specified pblock. The name and value parameters are copied.

Syntax

pb_param *pblock nvinsert(char *name, char *value, pblock *pb);

Returns

A pointer to the newly allocated pb_param structure.

Parameters

char *name is the name of the new entry.
char *value is the string value of the new entry.

pblock *pb is the pblock into which the insertion occurs.

Example

pblock nvinsert('content-type", "text/html", rqg->srvhdrs);

Chapter4 - NSAPI Function Reference 17

118

SeeAlso

“pblock_copy” on page 112, “pblock_create” on page 112, “pblock_find” on page 113,
“pblock_free” on page 115, “pblock_nninsert” on page 116, “pblock_remove” on page 119,
“pblock_str2pblock” on page 121

pblock_pb2env

The pblock_pb2env function copies a specified pblock into a specified environment. The
function creates one new environment entry for each name-value pair in the pblock. Use this
function to send pblock entries to a program that you are going to execute.

Syntax
char **pblock pb2env(pblock *pb, char **env);

Returns

A pointer to the environment.

Parameters
pblock *pb is the pblock to be copied.

char **env is the environment into which the pblock is to be copied.

SeeAlso

“pblock_copy” on page 112, “pblock_create” on page 112, “pblock_find” on page 113,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “pblock_remove” on page 119,
“pblock_str2pblock” on page 121

pblock_pblock2str

The pblock_pblock2str function copies all parameters of a specified pblock into a specified
string. The function allocates additional nonheap space for the string if needed.

Use this function to stream the pblock for archival and other purposes.

Syntax
char *pblock pblock2str(pblock *pb, char *str);

Returns

The new version of the str parameter. If str is NULL, the string is a new string otherwise, the
string is a reallocated string. In either case, it is allocated from the request’s memory pool.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Parameters
pblock *pb is the pblock to be copied.

char *str is the string into which the pblock is to be copied. The string must have been
allocated by MALLOC or REALLOC, not by PERM_MALLOC or PERM_REALLOC, which allocate from the
system heap.

Each name-value pair in the string is separated from its neighbor pair by a space, and is in the

format name="value."

SeeAlso

“pblock_copy” on page 112, “pblock_create” on page 112, “pblock_find” on page 113,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “pblock_remove” on page 119,
“pblock_str2pblock” on page 121

pblock_pinsert

The function pblock_pinsert insertsapb_param structure into a pblock.

Syntax
void pblock pinsert(pb param *pp, pblock *pb);

Returns

void

Parameters

pb_param *pp is the pb_param structure to insert.

pblock *pb is the pblock.

SeeAlso

“pblock_copy” on page 112, “pblock_create” on page 112, “pblock_find” on page 113,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “pblock_remove” on page 119,
“pblock_str2pblock” on page 121

pblock_remove

The pblock_remove function removes a specified name-value entry from a specified pblock. If
you use this function, you should eventually call param_free to deallocate the memory used by
the pb_param structure.

Chapter4 - NSAPI Function Reference 119

120

Syntax

pb _param *pblock remove(char *name, pblock *pb);

Returns

A pointer to the named pb_param structure if it was found, or NULL if the named pb_param was

not found.

Parameters

char *name is the name of the pb_param to be removed.

pblock *pb is the pblock from which the name-value entry is to be removed.

SeeAlso

“pblock_copy” on page 112, “pblock_create” on page 112, “pblock_find” on page 113,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “param_create” on page 111,
“param_free” on page 111

pblock_replace_name
The pblock_replace_name function replaces the name of a name-value pair, retaining the

value.

Syntax

#include <libproxy/util.h>
void pblock replace name(char *oname,char *nname, pblock *pb);

Returns

void

Parameters
char *oname is the old name of a name-value pair.

char *nname is the new name for the name-value pair.

pblock *pb is the parameter block to be searched.

SeeAlso

“pblock_remove” on page 119

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

pblock_str2pblock

The pblock_str2pblock function scans a string for parameter pairs, adds them to a pblock,
and returns the number of parameters added.

Syntax
int pblock str2pblock(char *str, pblock *pb);

Returns

The number of parameter pairs added to the pblock, if any, or -1 ifan error occurred.

Parameters

char *str is the string to be scanned.
The name-value pairs in the string can have the format name=value or name="value."

All backslashes (\\) must be followed by a literal character. If string values are found with no
unescaped = signs (no name=), it assumes the names 1, 2, 3, and so on, depending on the string
position. For example, if pblock_str2pblock finds "some strings together," the function
treats the strings as if they appeared in name-value pairs as 1="some" 2="strings"
3="together."

pblock *pb is the pblock into which the name-value pairs are stored.

SeeAlso

“pblock_copy” on page 112, “pblock_create” on page 112, “pblock_find” on page 113,
“pblock_free” on page 115, “pblock_nvinsert” on page 117, “pblock_remove” on page 119,
“pblock_pblock2str” on page 118

PERM_CALLOC

The PERM_CALLOC macro is a platform-independent substitute for the Clibrary routine calloc.
This macro allocates int size bytes of memory that persist after the request that is being
processed has been completed. If pooled memory has been disabled in the configuration file
with the pool-init built-in SAF, PERM_CALLOC and CALLOC both obtain their memory from the
system heap.

Syntax

void *PERM CALLOC(int size)

Returns

A void pointer to a block of memory.

Chapter4 - NSAPI Function Reference 121

122

Parameters

int size is the size in bytes of each element.

Example
char **name;name = (char **) PERM CALLOC(100);

SeeAlso

“PERM_FREE” on page 122, “PERM_STRDUP” on page 124, “PERM_MALLOC” on page 123,
“PERM_REALLOC” on page 123, “MALLOC” on page 101, “FREE” on page 95, “CALLOC” on
page 77, “STRDUP” on page 146, “REALLOC” on page 133

PERM_FREE

The PERM_FREE macro is a platform-independent substitute for the C library routine free. It
deallocates the persistent space previously allocated by PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP. If pooled memory has been disabled in the configuration file with the pool-init
built-in SAF, PERM_FREE and FREE both deallocate memory in the system heap.

Syntax

PERM FREE(void *ptr);

Returns

void

Parameters

void *ptrisa (void *) pointer to block of memory. If the pointer is not one created by
PERM_MALLOC, PERM_CALLOC, or PERM_STRDUP, the behavior is undefined.

Example
char *name;name = (char *) PERM MALLOC(256);...PERM _FREE(name);

SeeAlso

“FREE” on page 95, “MALLOC” on page 101, “CALLOC” on page 77, “REALLOC” on page 133,
“STRDUP” on page 146, “PERM_MALLOC” on page 123, “PERM_CALLOC” on page 121,
“PERM_REALLOC” on page 123, “PERM_STRDUP” on page 124

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

PERM_MALLOC

The PERM_MALLOC macro is a platform-independent substitute for the Clibrary routine malloc.
This macro provides allocation of memory that persists after the request that is being processed
has been completed. If pooled memory has been disabled in the configuration file with the
pool-init built-in SAF, PERM_MALLOC and MALLOC both obtain their memory from the system
heap.

Syntax

void *PERM MALLOC(int size)

Returns

A void pointer to a block of memory.

Parameters

int size is the number of bytes to allocate.

Example

/* Allocate 256 bytes for a name */char *name;name = (char *)
PERM MALLOC(256) ;

SeeAlso

“PERM_FREE” on page 122, “PERM_STRDUP” on page 124, “PERM_CALLOC” on page 121,
“PERM_REALLOC” on page 123, “MALLOC” on page 101, “FREE” on page 95, “CALLOC” on
page 77, “STRDUP” on page 146, “REALLOC” on page 133

PERM_REALLOC

The PERM_REALLOC macro is a platform-independent substitute for the Clibrary routine
realloc. This macro changes the size of a specified memory block that was originally created by
MALLOC, CALLOC, or STRDUP. The contents of the object remains unchanged up to the lesser of the
old and new sizes. If the new size is larger, the new space is uninitialized.

Warning

Calling PERM_REALLOC for a block that was allocated with MALLOC, CALLOC, or STRDUP will not
work.

Syntax

void *PERM REALLOC(vod *ptr, int size)

Chapter4 - NSAPI Function Reference 123

124

Returns

A void pointer to a block of memory.

Parameters

void *ptr is a void pointer to a block of memory created by PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP.

int size is the number of bytes to which the memory block should be resized.

Example

char *name;name = (char *) PERM MALLOC(256);if (NotBigEnough())
name = (char *) PERM REALLOC(512);

SeeAlso

“PERM_MALLOC” on page 123,PERM_FREE” on page 122, “PERM_CALLOC” on page 121,
“PERM_STRDUP” on page 124, “MALLOC” on page 101, “FREE” on page 95, “STRDUP” on
page 146, “CALLOC” on page 77, “REALLOC” on page 133

PERM_STRDUP

The PERM_STRDUP macro is a platform-independent substitute for the Clibrary routine strdup.
This macro creates a new copy of a string in memory that persists after the request that is being
processed has been completed. If pooled memory has been disabled in the configuration file
with the pool-init built-in SAF, PERM_STRDUP and STRDUP both obtain their memory from the
system heap.

The PERM_STRDUP routine is functionally equivalent to:

newstr = (char *) PERM MALLOC(strlen(str) + 1);strcpy(newstr, str);

A string created with PERM_STRDUP should be disposed with PERM_FREE.

Syntax

char *PERM STRDUP(char *ptr);

Returns

A pointer to the new string.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Parameters

char *ptr is a pointer to a string.

SeeAlso

“PERM_MALLOC” on page 123,“PERM_FREE” on page 122, “PERM_CALLOC” on page 121,
“PERM_REALLOC” on page 123, “MALLOC” on page 101, “FREE” on page 95, “STRDUP” on
page 146, “CALLOC” on page 77, “REALLOC” on page 133

prepare_nsapi_thread

The prepare_nsapi_thread function enables threads that are not created by the server to act
like server-created threads. This function must be called before any NSAPI functions are called
from a thread that is not server-created.

Syntax

void prepare nsapi thread(Request *rq, Session *sn);

Returns

void

Parameters

Request *rq identifies the Request structure.
Session *sn identifies the Session structure.

The Request and Session parameters are the same as the ones passed into your SAF.

SeeAlso

“protocol_start_response” on page 129

protocol_dump822

The protocol_dump822 function prints headers from a specified pblock into a specific buffer,
with a specified size and position. Use this function to serialize the headers so that they can be
sent, for example, in a mail message.

Syntax

char *protocol dump822(pblock *pb, char *t, int *pos, int tsz);

Chapter4 - NSAPI Function Reference 125

126

Returns

A pointer to the buffer, which will be reallocated if necessary.

The function also adds *pos to the end of the headers in the buffer.

Parameters
pblock *pb is the pblock structure.

char *t is the buffer, allocated with MALLOC, CALLOC, or STRDUP.
int *pos is the position within the buffer at which the headers are to be dumped.

int tsz is the size of the buffer.

SeeAlso

“protocol_start_response” on page 129, “protocol_status” on page 130

protocol_finish_request

The protocol finish request function finishes a specified request. For HTTP, the function

closes the socket.

Syntax

#include <frame/protocol.h>
void protocol finish_request(Session *sn, Request *rgq);

Returns

void

Parameters

Session *sn is the Session that generated the request.

Request *rq is the Request to be finished.
SeeAlso

protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

protocol_handle_session

The protocol_handle_session function processes each request generated by a specified
session.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Syntax

#include <frame/protocol.h>
void protocol handle session(Session *sn);

Parameters

Session *sn is the that generated the requests.

SeeAlso

protocol_scan_headers, protocol_start_response, protocol_status

protocol_parse_request

Parses the first line of an HTTP request.

Syntax

#include <frame/protocol.h>
int protocol_parse_request(char *t, Request *rg, Session *sn);

Returns

Returns REQ_PROCEED if the operation succeeded, or REQ_ABORTED if the operation did not
succeed.

Parameters

char *t defines a string of length REQ_MAX_LINE. This is an optimization for the internal code to
reduce usage of runtime stack.

Request *rq is the request to be parsed.

Session *su is the session that generated the request.

SeeAlso

“protocol_scan_headers” on page 127, “protocol_start_response” on page 129,
“protocol_status” on page 130

protocol_scan_headers

Scans HTTP headers from a specified network buffer, and places them in a specified parameter
block.

Chapter4 - NSAPI Function Reference 127

128

Folded lines are joined and the linefeeds are removed but not the whitespace. Any repeat
headers are joined and the two field bodies are separated by a comma and space. For example,
multiple mail headers are combined into one header and a comma is used to separate the field
bodies.

Syntax

#include <frame/protocol.h>
int protocol_scan_headers(Session *sn, netbuf *buf, char *t, pblock *headers);

Returns

Returns REQ_PROCEED if the operation succeeded, or REQ_ABORTED if the operation did not
succeed.

Parameters

Session *sn is the session that generated the request. The structure named by sn contains a
pointer to a netbuf called inbuf. If the parameter bufis NULL, the function automatically uses
inbuf.

Note that sn is an optional parameter that is used for error logs. Use NULL if you wish.
netbuf *bufis the network buffer to be scanned for HTTP headers.

char *t defines a string of length REQ_MAX_LINE. This is an optimization for the internal code to
reduce usage of runtime stack.

pblock *headers is the parameter block to receive the headers.

SeeAlso

“protocol_handle_session” on page 126, “protocol_start_response” on page 129,
“protocol_status” on page 130

protocol_set_finfo

The protocol set finfo function retrieves the content-length and last-modified date
from a specified stat structure and adds them to the response headers (rq->srvhdrs). Call
protocol_set_finfo before calling protocol_start_response.

Syntax

int protocol set finfo(Session *sn, Request *rq, struct stat *finfo);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Returns

Returns REQ_PROCEED if the request can proceed normally, or REQ_ABORTED if the function
should treat the request normally but not send any output to the client.

Parameters

Session *sn identifies the Session structure.
Request *rq identifies the Request structure.
The Session and Request parameters are the same as the parameter passed into your SAE
stat *finfo is the stat structure for the file.

The stat structure contains the information about the file from the file system. You can get the
stat structure info using request_stat_path.

SeeAlso

“protocol_start_response” on page 129, “protocol_status” on page 130

protocol_sta rt_response

The protocol_start_response function initiates the HTTP response for a specified session
and request. If the protocol version is HTTP/0.9, the function does nothing, because that
version has no concept of status. If the protocol version is HTTP/1.0, the function sends a status
line followed by the response headers. Use this function to set up HTTP and prepare the client
and server to receive the body (or data) of the response.

Syntax

int protocol start response(Session *sn, Request *rq);

Returns

The constant REQ_PROCEED if the operation succeeded, in which case you should send the data
you were preparing to send.

The constant REQ_NOACTION if the operation succeeded but the request method was HEAD, in
which case no data should be sent to the client.

The constant REQ_ABORTED if the operation did not succeed.

Chapter4 - NSAPI Function Reference 129

130

Parameters

Session *sn is the Session.
Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your SAF.

Example

/* A noaction response from this function means the request was HEAD */
if (protocol start response(sn, rq) == REQ NOACTION) { filebuf close(groupbuf);
/* close our file*/ return REQ PROCEED;}

SeeAlso

“protocol_status” on page 130

protocol_status

The protocol_status function sets the session status to indicate whether an error condition
occurred. If the reason string is NULL, the server attempts to find a reason string for the given
status code. If the server finds no string, it returns “Unknown reason.” The reason string is sent
to the client in the HTTP response line. Use this function to set the status of the response before
calling the function protocol_start_response.

For the complete list of valid status code constants, refer to the nsapi.h file in the server
distribution.

Syntax

void protocol status(Session *sn, Request *rq, int n, char *r);

Returns

void, but the function sets values in the Session/Request designated by sn/rq for the status code
and the reason string.

Parameters

Session *sn identifies the Session structure.

Request *rq identifies the Request structure.

The Session and Request parameters are the same as the parameters passed into your SAE

int n is one of the status code constants above.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

char *r is the reason string.

Example

/* if we find extra path-info, the URL was bad so tell the */
/* browser it was not found */if (t = pblock findval("path-info", rqg->vars))
{ protocol status(sn, rg, PROTOCOL NOT FOUND, NULL);
log error(LOG WARN, "function-name", sn, rq, "ss not found", path);
return REQ ABORTED;}

SeeAlso

“protocol_start_response” on page 129

protocol_uri2url

The protocol_uri2url function takes strings containing the given URI prefix and URI suffix,
and creates a newly allocated, fully qualified URL in the form http:// server : port prefix
suffix. See protocol uri2url dynamic.

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the value for either

parameter.

Syntax

char *protocol uri2url(char *prefix, char *suffix);

Returns
A new string containing the URL.

Parameters

char *prefix is the prefix.

char *suffix is the suffix.

SeeAlso

“protocol_start_response” on page 129, “protocol_status” on page 130, “pblock_nvinsert” on
page 117, “protocol_uri2url_dynamic” on page 131

protocol_uri2url_dynamic

The protocol_uri2url function takes strings containing the given URI prefix and URI suffix,
and creates a newly allocated, fully qualified URL in the form http://server:port prefix
suffix.

Chapter4 - NSAPI Function Reference 131

132

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the value for either
parameter.

The protocol _uri2url _dynamic function is similar to the protocol uri2url function, but
should be used whenever the session and request structures are available. This function
ensures that the URL that the function constructs refers to the host that the client specified.

Syntax

char *protocol uri2url(char *prefix, char *suffix, Session *sn, Request *rq);

Returns
A new string containing the URL.

Parameters

char *prefix is the prefix.

char *suffix is the suffix.

Session *sn identifies the Session structure.

Request *rq identifies the Request structure.

The Session and Request parameters are the same as the parameters passed into your SAF.

SeeAlso

“protocol_start_response” on page 129, “protocol_status” on page 130,
“protocol_uri2url_dynamic” on page 131

read

The read filter method is called when input data is required. Filters that modify or consume
incoming data should implement the read filter method.

Upon receiving control, a read implementation should fill buf with up to amount bytes of input
data. This data may be obtained by calling the “net_read” on page 103 function, as shown in the
example below.

Syntax

int read(FilterLayer *layer, void *buf, int amount, int timeout);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Returns

The number of bytes placed in buf on success, 0 if no data is available, or a negative value if an
error occurred.

Parameters
FilterLayer *layer is the filter layer in which the filter is installed.

void *buf is the buffer in which data should be placed.
int amount is the maximum number of bytes that should be placed in the buffer.

int timeout is the number of seconds to allow for the read operation before returning. Do not
use timeoutto return because not enough bytes were read in the given time. Instead, use this
function to limit the amount of time devoted to waiting until some data arrives.

Example

int myfilter read(FilterLayer *layer, void *buf, int amount, int timeout)
{ return net read(layer->lower, buf, amount, timeout);}

SeeAlso
“net_read” on page 103

REALLOC

The REALLOC macro is a platform-independent substitute for the C library routine realloc. It
changes the size of a specified memory block that was originally created by MALLOC, CALLOC, or
STRDUP. The contents of the object remains unchanged up to the lesser of the old and new sizes.
If the new size is larger, the new space is uninitialized.

Warning

Calling REALLOC for a block that was allocated with PERM_MALLOC, PERM_CALLOC, or
PERM_STRDUP will not work.

Syntax

void *REALLOC(void *ptr, int size);

Returns

A pointer to the new space if the request could be satisfied.

Chapter4 « NSAPI Function Reference 133

134

Parameters

void *ptrisa (void *) pointer to a block of memory. If the pointer was not created by MALLOC,
CALLOC, or STRDUP, the behavior is undefined.

int size is the number of bytes to allocate.

Example

char *name;name = (char *) MALLOC(256);if (NotBigEnough())
name = (char *) REALLOC(512);

SeeAlso

“MALLOC” on page 101, “FREE” on page 95, “STRDUP” on page 146, “CALLOC” on page 77,
“PERM_MALLOC” on page 123, “PERM_FREE” on page 122, “PERM_REALLOC” on
page 123, “PERM_CALLOC” on page 121, “PERM_STRDUP” on page 124

remove

The remove filter method is called when the filter stack is destroyed, or when a filter is removed
from a filter stack by the “filter_remove” on page 94 function or remove- filter SAF
(applicable in Input-, Output-, Service-, and Error-class directives).

Waiting to flush buffered data when the remove method is invoked might be too late. For this
reason, filters that buffer outgoing data should implement the flush filter method.

Syntax

void remove(FilterLayer *layer);

Returns

void

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

SeeAlso
“flush” on page 95

request_create

The request_create function is a utility function that creates a new request structure.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Syntax

#include <frame/req.h>
Request *request create(void);

Returns

A Request structure

Parameters

No parameter is required.

SeeAlso

“request_free” on page 135, “request_header” on page 135

request_free

The request_free function frees a specified request structure.

Syntax

#include <frame/req.h>
void request_ free(Request *req);

Returns

void

Parameters

Request *rq is the Request structure to be freed.

SeeAlso
“request_header” on page 135

request_header

The request_header function finds an entry in the pblock containing the client’s HTTP
request headers (rq->headers). You must use this function rather than pblock_findval when
accessing the client headers because the server might begin processing the request before the
headers have been completely read.

Chapter4 « NSAPI Function Reference 135

136

Syntax

int request header(char *name, char **value, Session *sn, Request *rq);

Returns

Returns REQ PROCEED if the header was found, REQ_ABORTED if the header was not found, or
REQ_EXIT if an error occurred reading from the client.

Parameters

char *name is the name of the header.

char **value is the address where the function will place the value of the specified header. If
none is found, the function stores NULL.

Session *sn identifies the Session structure.
Request *rq identifies the Request structure.

The Session and Request parameters are the same as the parameters passed into your SAE

SeeAlso

“request_create” on page 134, “request_free” on page 135

sem_grab

The sem_grab function requests exclusive access to a specified semaphore. If exclusive access is
unavailable, the caller blocks execution until exclusive access becomes available. Use this
function to ensure that only one server processor thread performs an action at a time.

Syntax

#include <base/sem.h>
int sem grab(SEMAPHORE id);

Returns

®m -1lifanerror occurred
= 0 to signal success

Parameters
SEMAPHORE id is the unique identification number of the requested semaphore.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

SeeAlso

“sem_init” on page 137, “sem_release” on page 137, “sem_terminate” on page 138, “sem_tgrab”
on page 138

sem_init

The sem_init function creates a semaphore with a specified name and unique identification
number. Use this function to allocate a new semaphore that will be used with the functions
sem_graband sem release.Call sem_init froman init class function to initialize a static or
global variable that the other classes will later use.

Syntax

#include <base/sem.h>
SEMAPHORE sem_init(char *name, int number) ;

Returns
The constant SEM_ERROR if an error occurred.

Parameters

SEMAPHORE *name is the name for the requested semaphore. The file name of the semaphore
should be a file accessible to the process.

int number is the unique identification number for the requested semaphore.

SeeAlso

“sem_grab” on page 136, “sem_release” on page 137, “sem_terminate” on page 138

sem_release

The sem_release function releases the process’s exclusive control over a specified semaphore.
Use this function to release exclusive control over a semaphore created with the function
sem _grab.

Syntax

#include <base/sem.h>
int sem release(SEMAPHORE id);

Returns

= _lifanerror occurred
= Qifno error occurred

Chapter4 - NSAPI Function Reference 137

138

Parameters
SEMAPHORE id is the unique identification number of the semaphore.

SeeAlso

“sem_grab” on page 136, “sem_init” on page 137, “sem_terminate” on page 138

sem_terminate

The sem_terminate function deallocates the semaphore specified by id. You can use this
function to deallocate a semaphore that was previously allocated with the function sem_init.

Syntax

#include <base/sem.h>
void sem terminate(SEMAPHORE id);

Returns

void

Parameters
SEMAPHORE id is the unique identification number of the semaphore.

SeeAlso

“sem_grab” on page 136, “sem_init” on page 137, “sem_release” on page 137

sem_tgrab

The sem_tgrab function tests and requests exclusive use of a semaphore. Unlike the similar
sem_grab function, if exclusive access is unavailable the caller is not blocked but receives a
return value of - 1. Use this function to ensure that only one server processor thread performs
an action at a time.

Syntax

#include <base/sem.h>
int sem_grab(SEMAPHORE id);

Returns

m -1lifanerror occurred or if exclusive access was not available
= 0 exclusive access was granted

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Parameters
SEMAPHORE id is the unique identification number of the semaphore.

See Also

“sem_grab” on page 136, “sem_init” on page 137, “sem_release” on page 137, “sem_terminate”
on page 138

sendfile

The sendfile filter method is called when the contents of a file are to be sent. Filters that
modify or consume outgoing data might implement the sendfile filter method.

If a filter implements the write filter method but not the sendfile filter method, the server will
automatically translate “net_sendfile” on page 104 calls to “net_write” on page 105 calls. Asa
result, filters interested in the outgoing data stream do not need to implement the sendfile
filter method. However, for performance reasons, filters that implement the write filter method
should also implement the sendfile filter method.

Syntax

int sendfile(FilterLayer *layer, const sendfiledata *data);

Returns

The number of bytes consumed, which may be less than the requested amount if an error
occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

const sendfiledata *sfd identifies the data to send.

Example
int myfilter_sendfile(FilterLayer *layer, const sendfiledata *sfd)
{
return net sendfile(layer->lower, sfd);
H
SeeAlso

“net_sendfile” on page 104

Chapter4 « NSAPI Function Reference 139

140

session_create

The session_create function creates a new Session structure for the client with a specified
socket descriptor and a specified socket address. The function returns a pointer to that
structure.

Syntax

#include <base/session.h>
Session *session_create(SYS_NETFD csd, struct sockaddr_in *sac);

Returns

= A pointer to the new Session structure f one was created.
= NULL if no new Session structure was created.

Parameters
SYS_NETFD csd is the platform-independent socket descriptor.
sockaddr_in *sacis the socket address.

SeeAlso

“session_maxdns” on page 141

session_dns

The session_dns function resolves the IP address of the client associated with a specified
session into its DNS name. The function returns a newly allocated string. You can use
session_dns to change the numeric IP address into something more readable.

The session maxdns function verifies the client identification information. The session dns
function does not perform this verification.

Note - This function works only if the DNS directive is enabled in the obj . conf file. For more
information, see Oracle iPlanet Web Proxy Server 4.0.14 Configuration File Reference.

Syntax

char *session dns(Session *sn);

Returns

A string containing the host name, or NULL if the DNS name cannot be found for the IP
address.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

http://docs.sun.com/doc/821-1883

Parameters

Session *sn identifies the Session structure.

The Session is the same as the Session structure passed to your SAE

session_free

The session_free function frees a specified Session structure. The session_free function
does not close the client socket descriptor associated with the Session structure.

Syntax

#include <base/session.h>
void session free(Session *sn);

Returns

void

SeeAlso

“session_create” on page 140, “session_maxdns” on page 141

Parameters

Session *sn is the Session structure to be freed.

session_maxdns

The session_maxdns function resolves the IP address of the client associated with a specified
session into its DNS name. The function returns a newly allocated string. You can use
session_maxdns to change the numeric IP address into more readable format.

Note - This function works only if the DNS directive is enabled in the obj . conf file. For more
information, see Oracle iPlanet Web Proxy Server 4.0.14 Configuration File Reference.

Syntax

char *session maxdns(Session *sn);

Returns

A string containing the host name, or NULL if the DNS name cannot be found for the IP
address.

Chapter4 - NSAPI Function Reference 141

http://docs.sun.com/doc/821-1883

142

Parameters

Session *sn identifies the Session structure.

The Session is the same as the Session structure passed to your SAE

shexp_casecmp

The shexp_casecmp function validates a specified shell expression and compares it with a
specified string. The function returns one of three possible values representing match, no
match, and invalid comparison. This comparison, in contrast to that of the shexp_cmp function,
is not case sensitive.

Use this function if you have a shell expression like * . netscape. com and you want to make sure
that a string matches it, such as foo.netscape. com.

Syntax

int shexp casecmp(char *str, char *exp);

Returns

0 if a match was found.
1 if no match was found.

-1if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

SeeAlso
“shexp_cmp” on page 142, “shexp_match” on page 143, “shexp_valid” on page 144

shexp_cmp

The shexp_casecmp function validates a specified shell expression and compares the expression
with a specified string. The function returns one of three possible values representing match, no
match, and invalid comparison. This comparison, in contrast to the comparison made by the
shexp_casecmp function, is case sensitive.

Use this function if you have a shell expression like *. netscape. com and you want to make sure
that a string matches it, such as foo.netscape. com.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Syntax

int shexp cmp(char *str, char *exp);

Returns

0 if a match was found.
1 if no match was found.

-1if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

Example

/* Use wildcard match to see if this path is one we want */
char *path;char *match = "/usr/netscape/*";if (shexp_cmp(path, match) != 0)
return REQ NOACTION; /* no match */

SeeAlso
“shexp_casecmp” on page 142, “shexp_match” on page 143, “shexp_valid” on page 144

shexp_match

The shexp_match function compares a specified prevalidated shell expression against a
specified string. The function returns one of three possible values representing match, no
match, and invalid comparison. This comparison, in contrast to the comparison made by the
shexp_casecmp function, is case sensitive.

The shexp_match function doesn’t perform validation of the shell expression. The function
assumes shexp_valid have already been called .

Use this function if you have a shell expression such as *. netscape. com and you want to make
sure that a string matches it, such as foo.netscape. com.

Syntax

int shexp match(char *str, char *exp);

Chapter4 - NSAPI Function Reference 143

144

Returns

0 if a match was found.
1 if no match was found.

-1if the comparison resulted in an invalid expression.

Parameters

char *str is the string to be compared.

char *exp is the prevalidated shell expression (wildcard pattern) to compare against.

SeeAlso
“shexp_casecmp” on page 142, “shexp_cmp” on page 142, “shexp_valid” on page 144

shexp_valid

The shexp_valid function validates a specified shell expression named by exp. Use this
function to validate a shell expression before using the function shexp_match to compare the
expression with a string.

Syntax

int shexp valid(char *exp);

Returns
The constant NON_SXP if exp is a standard string.

The constant INVALID SXP if exp is a shell expression but is invalid.

The constant VALID_SXP if exp is a valid shell expression.

Parameters

char *exp is the shell expression (wildcard pattern) to be validated.

SeeAlso
“shexp_casecmp” on page 142, “shexp_match” on page 143, “shexp_cmp” on page 142

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

shmem_alloc

The shmem_alloc function allocates a region of shared memory of the given size, using the
given name to avoid conflicts between multiple regions in the program. The size of the region
will not be automatically increased if its boundaries are overrun. Use the shmem_realloc
function for that automatic increases.

This function must be called before any daemon workers are spawned in order for the handle to
the shared region to be inherited by the children.

Because the region must be inherited by the children, the region cannot be reallocated with a

larger size when necessary.

Syntax

#include <base/shmem.h>
shmem_s *shmem_alloc(char *name, int size, int expose);

Returns

A pointer to a new shared memory region.

Parameters

char *name is the name for the region of shared memory being created. The value of name must
be unique to the program that calls the shmem_alloc () function or conflicts will occur.

int size is the number of characters of memory to be allocated for the shared memory.

int expose is either zero or nonzero. If nonzero, then on systems that support it, the file that is
used to create the shared memory becomes visible to other processes running on the system.

SeeAlso

“shmem_free” on page 145

shmem_free

The shmem_free function deallocates (frees) the specified region of memory.

Syntax

#include <base/shmem.h>
void *shmem_free(shmem_s *region);

Returns

void

Chapter4 - NSAPI Function Reference 145

146

Parameters

shmem_s *region is a shared memory region to be released.

SeeAlso

“shmem_alloc” on page 145

STRDUP

The STRDUP macro is a platform-independent substitute for the C library routine strdup. It
creates a new copy of a string in the request’s memory pool.

The STRDUP routine is functionally equivalent to:

newstr = (char *) MALLOC(strlen(str) + 1);
strcpy(newstr, str);

A string created with STRDUP should be disposed with FREE.

Syntax

char *STRDUP(char *ptr);

Returns

A pointer to the new string.

Parameters

char *ptrisa pointer to a string.

Example

char *namel = "MyName";char *name2 = STRDUP(namel);

SeeAlso

“MALLOC” on page 101, “FREE” on page 95, “CALLOC” on page 77, “REALLOC” on
page 133, “PERM_MALLOC” on page 123, “PERM_FREE” on page 122, “PERM_CALLOC” on
page 121, “PERM_REALLOC” on page 123, “PERM_STRDUP” on page 124

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

system_errmsg

The system_errmsg function returns the last error that occurred from the most recent system
call. This function is implemented as a macro that returns an entry from the global array
sys_errlist. Use this macro to help with I/O error diagnostics.

Syntax

char *system errmsg(int paraml);

Returns

A string containing the text of the latest error message that resulted from a system call. Do not
FREE this string.

Parameters

int paraml is reserved, and should always have the value 0.

SeeAlso

“system_fopenRO” on page 148, “system_fopenRW” on page 149, “system_fopenWA” on

page 149, “system_lseek” on page 153, “system_fread” on page 150, “system_fwrite” on page 151,
“system_fwrite_atomic” on page 151, “system_flock” on page 148, “system_ulock” on page 154,
“system_fclose” on page 147

system_fclose

The system_fclose function closes a specified file descriptor. The system_fclose function
must be called for every file descriptor opened by any of the system_fopen functions.

Syntax

int system fclose(SYS _FILE fd);

Returns
0 if the close succeeded, or I0_ERROR if the close failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

Example
SYS FILE logfd; system fclose(logfd);

Chapter4 - NSAPI Function Reference 147

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenRW” on

page 149, “system_fopenWA” on page 149, “system_lseek” on page 153, “system_fread” on
page 150, “system_fwrite” on page 151, “system_fwrite_atomic” on page 151, “system_flock” on
page 148, “system_ulock” on page 154

system_flock

The system_flock function locks the specified file against interference from other processes.
Use system_flock if you do not want other processes to use the file you currently have open.
Overusing file locking can cause performance degradation and possibly lead to deadlocks.

Syntax

int system flock(SYS FILE fd);

Returns
Returns I0_OKAY if the lock succeeded, or I0_ERROR if the lock failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenRW” on

page 149, “system_fopenWA” on page 149, “system_lseek” on page 153, “system_fread” on

page 150, “system_fwrite” on page 151, “system_fwrite_atomic” on page 151, “system_ulock” on
page 154, “system_fclose” on page 147

system_fopenRO

The system_fopenR0 function opens the file identified by path in read-only mode and returns a
valid file descriptor. Use this function to open files that will not be modified by your program. In
addition, you can use system_fopenRO to open a new file buffer structure using filebuf_open.

Syntax
SYS FILE system fopenRO(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or @ if the open
failed.

148 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Parameters

char *path is the file name.

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenWA” on

page 149, “system_lseek” on page 153, “system_fread” on page 150, “system_fwrite” on page 151,
“system_fwrite_atomic” on page 151, “system_flock” on page 148, “system_ulock” on page 154,
“system_fclose” on page 147

system_fopenRW

The system_fopenRW function opens the file identified by path in read-write mode and returns
avalid file descriptor. If the file already exists, system_fopenRW does not truncate it. Use this
function to open files that will be read from and written to by your program.

Syntax
SYS FILE system fopenRW(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or 0 if the open
failed.

Parameters

char *path is the file name.

Example
SYS FILE fd;fd = system fopenRO(pathname);if (fd == SYS_ERROR_FD) break;

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenWA” on

page 149, “system_lseek” on page 153, “system_fread” on page 150, “system_fwrite” on page 151,
“system_fwrite_atomic” on page 151, “system_flock” on page 148, “system_ulock” on page 154,
“system_fclose” on page 147

system_fopenWA

The system_fopenWA function opens the file identified by path in write-append mode and
returns a valid file descriptor. Use this function to open those files to which your program will
append data.

Chapter4 - NSAPI Function Reference 149

150

Syntax
SYS FILE system fopenWA(char *path);

Returns

The system-independent file descriptor (SYS_FILE) if the open succeeded, or @ if the open
failed.

Parameters

char *path is the file name.

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenRW” on

page 149, “system_lseek” on page 153, “system_fread” on page 150, “system_fwrite” on page 151,
“system_fwrite_atomic” on page 151, “system_flock” on page 148, “system_ulock” on page 154,
“system_fclose” on page 147

system_fread

The system_fread function reads a specified number of bytes from a specified file into a
specified buffer. It returns the number of bytes read. Before system_fread can be used, you
must open the file using any of the system_fopen functions except system_fopenWA.

Syntax
int system fread(SYS FILE fd, char *buf, int sz);

Returns

The number of bytes read, which might be less than the requested size if an error occurred or
the end of the file was reached before that number of characters were obtained.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer to receive the bytes.

int sz is the number of bytes to read.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenRW” on

page 149, “system_fopenWA” on page 149, “system_lseek” on page 153, “system_fwrite” on
page 151, “system_fwrite_atomic” on page 151, “system_flock” on page 148, “system_ulock” on
page 154, “system_fclose” on page 147

system_fwrite

The system_fwrite function writes a specified number of bytes from a specified buffer into a
specified file.

Before system_fwrite can be used, you must open the file using any of the system_fopen
functions except system_fopenRO.

Syntax

int system fwrite(SYS FILE fd, char *buf, int sz);

Returns
Returns I0 OKAY if the write succeeded, or I0 ERROR if the write failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenRW” on

page 149, “system_fopenWA” on page 149, “system_lseek” on page 153, “system_fread” on
page 150, “system_fwrite_atomic” on page 151, “system_flock” on page 148, “system_ulock” on
page 154, “system_fclose” on page 147

system_fwrite_atomic

The system_fwrite_atomic function writes a specified number of bytes from a specified buffer
into a specified file. The function also locks the file prior to performing the write, and then
unlocks it when done. This process avoids interference between simultaneous write actions.
Before system_fwrite_atomic can be used, you must open the file using any of the
system_fopen functions except system_fopenRO.

Chapter4 - NSAPI Function Reference 151

152

Syntax

int system fwrite atomic(SYS FILE fd, char *buf, int sz);

Returns
Returns I0 OKAY if the write/lock succeeded, or I0 ERROR if the write/lock failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

Example

SYS FILE logfd;char *logmsg = "An error occurred."
system fwrite atomic(logfd, logmsg, strlen(logmsg));

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenRW” on
page 149, “system_fopenWA” on page 149, “system_lseek” on page 153, “system_fread” on
page 150, “system_fwrite” on page 151, “system_flock” on page 148, “system_ulock” on
page 154, “system_fclose” on page 147

system_gmtime

The system gmtime function is a thread-safe version of the standard gmtime function. It returns
the current time adjusted to Greenwich Mean Time.

Syntax

struct tm *system gmtime(const time t *tp, const struct tm *res);

Returns

A pointer to a calendar time (tm) structure containing the GMT time. Depending on your
system, the pointer may point to the data item represented by the second parameter, or it may
point to a statically allocated item. For portability, do not assume either situation.

Parameters

time t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Example

time t tp;struct tm res, *resp;tp = time(NULL);
resp = system gmtime(&tp, &res);

SeeAlso

“system_localtime” on page 153, “util_strftime” on page 183

system_localtime

The system localtime function is a thread-safe version of the standard localtime function. It
returns the current time in the local time zone.

Syntax

struct tm *system localtime(const time t *tp, const struct tm *res);

Returns

A pointer to a calendar time (tm) structure containing the local time. Depending on your
system, the pointer may point to the data item represented by the second parameter, or it may
point to a statically allocated item. For portability, do not assume either situation.

Parameters
time t *tp is an arithmetic time.
tm *res is a pointer to a calendar time (tm) structure.

SeeAlso

“system_gmtime” on page 152, “util_strftime” on page 183

system_lIseek

The system_1lseek function sets the file position of a file. This function affects where data from
system_freador system fwrite isread or written.

Syntax
int system lseek(SYS FILE fd, int offset, int whence);

Returns

The offset, in bytes, of the new position from the beginning of the file if the operation
succeeded, or -1 if the operation failed.

Chapter4 « NSAPI Function Reference 153

154

Parameters
SYS_FILE fd is the platform-independent file descriptor.

int offset is a number of bytes relative to whence. It may be negative.
int whence is one of the following constants:

SEEK_SET, from the beginning of the file.

SEEK_CUR, from the current file position.

SEEK_END, from the end of the file.

SeeAlso

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenRW” on

page 149, “system_fopenWA” on page 149, “system_fread” on page 150, “system_fwrite” on
page 151, “system_fwrite_atomic” on page 151, “system_flock” on page 148, “system_ulock” on
page 154, “system_fclose” on page 147

system_rename

The system_rename function renames a file. This function might not work on directories if the
old and new directories are on different file systems.

Syntax

int system rename(char *old, char *new);

Returns

0 if the operation succeeded, or -1 if the operation failed.

Parameters
char *old is the old name of the file.

char *new is the new name for the file.

system_ulock

The system_ulock function unlocks the specified file that has been locked by the function
system_lock. For more information about locking, see system_flock.

Syntax

int system ulock(SYS FILE fd);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Returns
Returns I0 OKAY if the operation succeeded, or I0 ERROR if the operation failed.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

SeeAlso
system errmsg, system fopenRO, system fopenRW, system fopenWA, system fread,
system fwrite, system fwrite atomic, system flock, system fclose

“system_errmsg” on page 147, “system_fopenRO” on page 148, “system_fopenRW” on

page 149, “system_fopenWA” on page 149, “system_fread” on page 150, “system_fwrite” on
page 151, “system_fwrite_atomic” on page 151, “system_flock” on page 148, “system_fclose” on
page 147

system_unix2local

The system_unix2local function converts a specified UNIX-style path name to a local file
system path name. Use this function when you have a file name in the UNIX format using
forward slashes, and you need to access a file on another system such as Windows. You can use
system_unix2local to convert the UNIX file name into the format that Windows accepts. In
the UNIX environment this function does nothing, but may be called for portability.

Syntax

char *system unix2local(char *path, char *1lp);

Returns
A pointer to the local file system path string.

Parameters
char *path is the UNIX-style path name to be converted.
char *1p is the local path name.

You must allocate the parameter 1p. The parameter must contain enough space to hold the local
path name.

SeeAlso

“system_fclose” on page 147, “system_flock” on page 148, “system_fopenRO” on page 148,
“system_fopenRW” on page 149, “system_fopenWA” on page 149, “system_fwrite” on page 151

Chapter4 « NSAPI Function Reference 155

systhread_attach

The systhread_attach function converts an existing thread into a platform-independent
thread.

Syntax

SYS THREAD systhread attach(void);

Returns
A SYS_THREAD pointer to the platform-independent thread.

Parameters

none

SeeAlso

“systhread_current” on page 156, “systhread_getdata” on page 157, “systhread_init” on
page 157, “systhread_newkey” on page 158, “systhread_setdata” on page 158, “systhread_sleep’
on page 159, “systhread_start” on page 159, “systhread_timerset” on page 160

>

systhread_current

The systhread_current function returns a pointer to the current thread.

Syntax

SYS THREAD systhread current(void);

Returns
A SYS_THREAD pointer to the current thread.

Parameters

none

SeeAlso

“systhread_getdata” on page 157, “systhread_newkey” on page 158, “systhread_setdata” on
page 158, “systhread_sleep” on page 159, “systhread_start” on page 159, “systhread_timerset” on
page 160

156 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

systhread_getdata

The systhread_getdata function gets data that is associated with a specified key in the current
thread.

Syntax

void *systhread getdata(int key);

Returns

A pointer to the data that was earlier used with the systhread_setkey function from the
current thread, using the same value of key if the call succeeds. Returns NULL if the call did not
succeed; for example, if the systhread_setkey function was never called with the specified key
during this session.

Parameters

int key is the value associated with the stored data by a systhread_setdata function. Keys are
assigned by the systhread_newkey function.

SeeAlso

“systhread_current” on page 156, “systhread_newkey” on page 158, “systhread_setdata” on
page 158, “systhread_sleep” on page 159, “systhread_start” on page 159, “systhread_timerset” on
page 160

systhread_init

The systhread_init function initializes the threading system.

Syntax

#include <base/systhr.h>
void systhread init(char *name);

Returns

void

Parameters

char *name is a name to be assigned to the program for debugging purposes.

Chapter4 - NSAPI Function Reference 157

158

Seealso

systhread_attach, systhread_current, systhread_getdata, systhread_newkey, systhread_setdata,
systhread_sleep,systhread_start, systhread_terminate, systhread_ timerset

systhread_newkey

The systhread_newkey function allocates a new integer key (identifier) for thread-private data.
Use this key to identify a variable that you want to localize to the current thread, then use the
systhread_setdata function to associate a value with the key.

Syntax

int systhread newkey(void);

Returns
An integer key.

Parameters

none

SeeAlso

“systhread_current” on page 156, “systhread_getdata” on page 157, “systhread_setdata” on
page 158, “systhread_sleep” on page 159, “systhread_start” on page 159, “systhread_timerset” on
page 160

systhread_setdata

The systhread_setdata function associates data with a specified key number for the current
thread. Keys are assigned by the systhread_newkey function.

Syntax

void systhread setdata(int key, void *data);

Returns

void

Parameters
int key is the priority of the thread.

void *data is the pointer to the string of data to be associated with the value of key.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

SeeAlso

“systhread_current” on page 156, “systhread_getdata” on page 157, “systhread_newkey” on
page 158, “systhread_sleep” on page 159, “systhread_start” on page 159, “systhread_timerset”
on page 160

systhread_sleep

The systhread_sleep function puts the calling thread to sleep for a given time.

Syntax

void systhread sleep(int milliseconds);

Returns

void

Parameters

int milliseconds is the number of milliseconds the thread is to sleep.

SeeAlso

“systhread_current” on page 156, “systhread_getdata” on page 157, “systhread_newkey” on
page 158, “systhread_setdata” on page 158, “systhread_start” on page 159, “systhread_timerset”
on page 160

systhread_start

The systhread_start function creates a thread with the given priority, allocates a stack of a
specified number of bytes, and calls a specified function with a specified argument.

Syntax

SYS_THREAD systhread start(int prio, int stksz, void (*fn)(void *),
void *arg);

Returns

A new SYS_THREAD pointer if the call succeeded, or SYS_THREAD_ERROR if the call did not
succeed.

Chapter4 « NSAPI Function Reference 159

160

Parameters

int prio is the priority of the thread. Priorities are system-dependent.
int stksz is the stack size in bytes. If stksz is zero (0), the function allocates a default size.
void (*fn) (void *) is the function to call.

void *arg is the argument for the fn function.

SeeAlso

“systhread_current” on page 156, “systhread_getdata” on page 157, “systhread_newkey” on
page 158, “systhread_setdata” on page 158, “systhread_sleep” on page 159,
“systhread_timerset” on page 160

systhread_terminate

The systhread_terminate function terminates a specified thread.

Syntax

#include <base/systhr.h>
void systhread terminate(SYS THREAD thr);

Returns

void

Parameters
SYS_THREAD thr is the thread to terminate.

See Also

“systhread_current” on page 156, “systhread_getdata” on page 157, “systhread_newkey” on
page 158, “systhread_setdata” on page 158, “systhread_sleep” on page 159, “systhread_start” on
page 159, “systhread_timerset” on page 160

systhread_timerset

The systhread timerset function starts or resets the interrupt timer interval for a thread
system.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Because most systems don’t allow the timer interval to be changed, this function should be
considered a suggestion rather than a command.

Syntax

void systhread timerset(int usec);

Returns

void

Parameters

int usec is the time, in microseconds

SeeAlso

“systhread_current” on page 156, “systhread_getdata” on page 157, “systhread_newkey” on
page 158, “systhread_setdata” on page 158, “systhread_sleep” on page 159, “systhread_start” on
page 159

USE_NSAPI_VERSION

To request a particular version of NSAPI, define the USE_NSAPI_VERSION macro before
including the nsapi. h header file. The requested NSAPI version is encoded by multiplying the
major version number by 100 and then adding this to the minor version number. For example,
the following code requests NSAPI 3.2 features:

#define USE NSAPI VERSION 302 /* We want NSAPI 3.2 (Web Server 6.1) */
#include "nsapi.h"

To develop a plug-in that is compatible across multiple server versions, define
USE_NSAPI_VERSION to the highest NSAPI version supported by all of the target server versions.

The following table lists server versions and the highest NSAPI version supported by each:

TABLE4-2 NSAPI Versions Supported by Different Servers

Server Version NSAPI Version

Sun iPlanet Web Server 4.1 3.0

Chapter4 - NSAPI Function Reference 161

162

TABLE4-2 NSAPI Versions Supported by Different Servers (Continued)

ServerVersion NSAPIVersion
Sun iPlanet Web Server 6.0 3.1
Netscape Enterprise Server 6.0 3.1
Netscape Enterprise Server 6.1 3.1
Sun ONE Application Server 7.0 3.1
Sun Java System Web Server 6.1 3.2
Oracle iPlanet Web Server 7.0.9 33
iPlanet Web Proxy Server 4 33

Do not request a version of NSAPI higher than the highest version supported by the nsapi.h
header that the plug-in is being compiled against. Additionally, to use USE_NSAPI_VERSION, you
must compile against an nsapi. h header file that supports NSAPI 3.3 or higher.

Syntax
int USE NSAPI VERSION

Example

The following code can be used when building a plug-in designed to work with Proxy Server 4:

#define USE NSAPI VERSION 303 /* We want NSAPI 3.3 (Proxy Server 4) */
#include "nsapi.h"

SeeAlso
“NSAPI_RUNTIME_VERSION” on page 109, “NSAPI_VERSION” on page 110

util can_exec

UNIX Only

The util_can_exec function checks that a specified file can be executed, returning either a 1
(executable) or a 0. The function checks whether the file can be executed by the user with the
given user and group ID.

Use this function before executing a program using the exec system call.

Syntax

int util can exec(struct stat *finfo, uid t uid, gid t gid);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Returns

1if the file is executable, or 0 if the file is not executable.

Parameters

stat *finfo is the stat structure associated with a file.

uid t uid is the UNIX user ID.

gid_t gid is the UNIX group ID. Together with uid, this value determines the permissions of
the UNIX user.

SeeAlso

“util_env_create” on page 164, “util_getline” on page 171, “util_hostname” on page 172

util_chdir2path

The util_chdir2path function changes the current directory to a specified directory where
you will access a file.

When running under Windows, use a critical section to ensure that more than one thread does
not call this function at the same time.

Using util_chdir2path makes file access a little quicker because this function does not require
afull path.

Syntax

int util chdir2path(char *path);

Returns
0 if the directory was changed, or -1 if the directory could not be changed.

Parameters

char *path is the name of a directory.

The parameter must be a writable string because the string is not permanently modified.

util_cookie find

The util_cookie_find function finds a specific cookie in a cookie string and returns its value.

Chapter4 « NSAPI Function Reference 163

164

Syntax

char *util cookie find(char *cookie, char *name);

Returns

If successful, returns a pointer to the NULL-terminated value of the cookie. Otherwise, returns
NULL. This function modifies the cookie string parameter by NULL-terminating the name and
value.

Parameters

char *cookie is the value of the Cookie: request header.

char *name is the name of the cookie whose value is to be retrieved.

util_does_process_exist

The util_does_process_exist function verifies that a given process ID is that of an executing
process.

Syntax

#include <libproxy/util.h>

int util does process exist (int pid)

Returns

= nonzero if the pid represents an executing process

= (ifthe pid does not represent an executing process

Parameters
int pidis the process ID to be tested.

SeeAlso

“util_url_fix_host name” on page 188, “util_uri_check” on page 184

util env create

The util_env_create function creates and allocates the environment specified by env,
returning a pointer to the environment. If the parameter env is NULL, the function allocates a
new environment. Use util_env_create to create an environment when executing a new
program.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Syntax

#include <base/util.h>
char **util_env_create(char **env, int n, int *pos)

Returns

A pointer to an environment.

Parameters

char **env is the existing environment or NULL.
int n is the maximum number of environment entries that you want in the environment.

int *pos is an integer that keeps track of the number of entries used in the environment.

SeeAlso

“util_env_replace” on page 166, “util_env_str” on page 167, “util_env_free” on page 166,
“util_env_find” on page 165

util_env_find
The util_env_find function locates the string denoted by a name in a specified environment

and returns the associated value. Use this function to find an entry in an environment.

Syntax

char *util env_find(char **env, char *name);

Returns

The value of the environment variable if it is found, or NULL if the string was not found.

Parameters

char **env is the environment.

char *name is the name of an environment variable in env.

SeeAlso

“util_env_replace” on page 166, “util_env_str” on page 167, “util_env_free” on page 166,
“util_env_create” on page 164

Chapter4 « NSAPI Function Reference 165

166

util_env_free
The util_env_free function frees a specified environment. Use this function to deallocate an

environment that you created using the function util_env_create.

Syntax

void util env free(char **env);

Returns

void

Parameters

char **env is the environment to be freed.

SeeAlso

“util_env_replace” on page 166, “util_env_str” on page 167, “util_env_create” on page 164,
“util_env_find” on page 165

util_env_replace

The util_env_replace function replaces the occurrence of the variable denoted by aname in a
specified environment with a specified value. Use this function to change the value of a setting
in an environment.

Syntax

void util env_replace(char **env, char *name, char *value);

Returns

void

Parameters

char **env is the environment.

char *name is the name of a name-value pair.

char *value is the new value to be stored.
SeeAlso

“util_env_str” on page 167, “util_env_free” on page 166, “util_env_find” on page 165,
“util_env_create” on page 164

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

util_env_str

The util_env_str function creates an environment entry and returns it. This function does
not check for nonalphanumeric symbols in the name such as the equal sign “=”. You can use
this function to create a new environment entry.

Syntax

char *util env str(char *name, char *value);

Returns

A newly allocated string containing the name-value pair.

Parameters

char *name is the name of a name-value pair.

char *value is the new value to be stored.

SeeAlso

“util_env_replace” on page 166, “util_env_free” on page 166, “util_env_create” on page 164,
“util_env_find” on page 165

util_get_current_gmt

Theutil_get_current_gmt function obtains the current time, represented in terms of GMT
(Greenwich Mean Time).

Syntax

#include <libproxy/util.h>
time_t util_get_current_gmt(void);

Returns
the current GMT

Parameters

No parameter is required.

SeeAlso

“util_make_local” on page 175

Chapter4 - NSAPI Function Reference 167

168

util_get_int_from_aux_file

Theutil_get_int_from_aux_file function is used to get a single line from a specified file and
return it in the form of an integer. This ifunction enables you to store single numbers in a file.

Syntax

#include <libproxy/cutil.h>
int util get int from file(char *root, char *name);

Returns
An integer from the file.

Parameters

char*root is the name of the directory containing the file to be read.

char*name is the name of the file to be read.

SeeAlso

“util_get_long_from_aux_file” on page 169, “util_get_string from_aux_file” on page 170,
“util_get_int_from_file” on page 168, “util_get_long from_file” on page 169,
“util_get_string from_file” on page 171, “util_put_int_to_file” on page 177,
“atil_put_long_to_file” on page 178, “util_put_string to_aux_file” on page 179,
“atil_put_string to_file” on page 179

util_get_int_from_file

Theutil_get_int_from_file function is used to geta single line from a specified file and
return it in the form of an integer. This function enables you to store single numbers in a file.

Syntax

#include <libproxy/cutil.h>
int util_get_int_from_file(char *filename);

Returns

= Aninteger from the file.
® -1ifno value was obtained from the file.

Parameters

char *filename is the name of the file to be read.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

SeeAlso

“util_get_long_from_file” on page 169, “util_get_string from_file” on page 171,
“util_put_int_to_file” on page 177, “util_put_long_to_file” on page 178,
“util_put_string to_file” on page 179

util_get_long_from_aux_file

Theutil_get_long_from_file function is used to get a single line from a specified file and
return it in the form of a long number. This function enables you to store single long numbers
inafile.

Syntax

#include <libproxy/cutil.h>
long util get long from file(char *roof,char *name);

Returns
A long integer from the file.

Parameters

char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.

SeeAlso

“util_get_int_from_aux_file” on page 168, “util_get_string from_aux_file” on page 170,
“util_get_int_from_file” on page 168, “util_get_long_from_file” on page 169,
“util_get_string from_file” on page 171, “util_put_int_to_file” on page 177,
“util_put_long_to_file” on page 178, “util_put_string to_aux_file” on page 179,
“util_put_string to_file” on page 179

util_get_long_from_file

Theutil_get_long_from_file function is used to get a single line from a specified file and
return it in the form of a long number. This function enables you to store single long numbers
inafile.

Syntax

#include <libproxy/cutil.h>
long util_get long_from_file(char *filename);

Chapter4 « NSAPI Function Reference 169

170

Returns

= A long integer from the file.
® -1ifno value was obtained from the file.

Parameters
char *file is the name of the file to be read.

SeeAlso

“atil_get_int_from_file” on page 168, “util_get_string from_file” on page 171,
“util_put_int_to_file” on page 177, “util_put_long_to_file” on page 178,
“util_put_string to_file” on page 179

util_get_string_from_aux_file

Theutil_get_string_from aux_file function is used to get a single line from a specified file
and return it in the form of a word. This function enables you to store single words in a file.

Syntax

#include <libproxy/cutil.h>
char *util_get_string_from_file(char *root, char *name, char *buf, int maxsize);

Returns

A string containing the next line from the file.

Parameters

char *root is the name of the directory containing the file to be read.
char *name is the name of the file to be read.
char *bufis the string to use as the file buffer.

int maxsize is the maximum size for the file buffer.

SeeAlso

“util_get_int_from_aux_file” on page 168, “util_get_long from_aux_file” on page 169,
“util_get_int_from_file” on page 168, “util_get_long_from_file” on page 169,
“util_get_string from_file” on page 171, “util_put_int_to_file” on page 177,
“util_put_long_to_file” on page 178, “util_put_string_to_aux_file” on page 179,
“util_put_string to_file” on page 179

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

util_get_string_from_file

Theutil_get_string_from_file function is used to get a single line from a specified file and
return it in the form of a word. This function enables you to store single words in a file.

Syntax

#include <libproxy/cutil.h>
char *util_get_string_from_file(char *filename, char *buf, int maxsize);

Returns

= A string containing the next line from the file.
= NULL if no string was obtained.

Parameters
char *file is the name of the file to be read.

char *bufis the string to use as the file buffer.

int maxsize is the maximum size for the file buffer.

SeeAlso

“util_get_int_from_file” on page 168, “util_get_long_from_file” on page 169,
“util_put_int_to_file” on page 177, “util_put_long_to_file” on page 178,
“util_put_string_to_file” on page 179

util_getline

The util_getline function scans the specified file buffer to find a line feed or carriage
return/line feed terminated string. The string is copied into the specified buffer, and
NULL-terminates it. The function returns a value that indicates whether the operation stored a
string in the buffer, encountered an error, or reached the end of the file.

Use this function to scan lines out of a text file, such as a configuration file.

Syntax

int util getline(filebuf *buf, int lineno, int maxlen, char *line);

Chapter4 - NSAPI Function Reference 171

172

Returns

0 if successful line contains the string.
1if the end of file was reached line contains the string.

-lifan error occurred line contains a description of the error.

Parameters
filebuf *buf is the file buffer to be scanned.

int lineno is used to include the line number in the error message when an error occurs. The
caller is responsible for making sure that the line number is accurate.

int maxlen is the maximum number of characters that can be written into 1.
char *1 is the buffer in which to store the string. The user is responsible for allocating and

deallocating line.

SeeAlso

“util_can_exec” on page 162, “util_env_create” on page 164, “util_hostname” on page 172

util hostname

The util_hostname function retrieves the local host name and returns it as a string. If the
function cannot find a fully qualified domain name, it returns NULL. You may reallocate or free
this string. Use this function to determine the name of the system you are on.

Syntax

char *util hostname(void);

Returns

If a fully qualified domain name was found, returns a string containing that name. Otherwise,
the function returns NULL if the fully qualified domain name was not found.

Parameters

none

util_is mozilla

The util_is_mozilla function checks whether a specified user-agent header string is a
Netscape browser of at least a specified revision level. The function uses strings to specify the
revision level to avoid ambiguities such as 1.56 > 1.5.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Syntax

int util_is mozilla(char *ua, char *major, char *minor);

Returns

1if the user-agent is a Netscape browser, or 0 if the user-agent is not a Netscape browser.

Parameters

char *ua is the user-agent string from the request headers.
char *major is the major release number to the left of the decimal point.

char *minor is the minor release number to the right of the decimal point.

SeeAlso
“util_is_url” on page 173, “util_later_than” on page 174

util_is_url

The util_is_url function checks whether a string is a URL. The string is a URL if it begins
with alphabetic characters followed by a colon (:).

Syntax

int util is url(char *url);

Returns
1if the string specified by url is a URL, or @ if the string specified by urlis nota URL.

Parameters

char *url is the string to be examined.
SeeAlso

“util_is_mozilla” on page 172, “util_later_than” on page 174

util_itoa

The util_itoa function converts a specified integer to a string, and returns the length of the
string. Use this function to create a textual representation of a number.

Chapter4 - NSAPI Function Reference 173

174

Syntax

int util itoa(int i, char *a);

Returns
The length of the string created.

Parameters

int i is the integer to be converted.

char *a is the ASCII string that represents the value. The user is responsible for the allocation
and deallocation of a. The string should be at least 32 bytes long.

util later _than

The util_later_than function compares the date specified in a time structure against a date
specified in a string. If the date in the string is later than or equal to the one in the time structure,
the function returns 1. Use this function to handle RFC 822, RFC 850, and ctime formats.

Syntax

int util later_than(struct tm *lms, char *ims);

Returns

1if the date represented by ims is the same as or later than that represented by the ms, or 0 if the
date represented by ims is earlier than that represented by the ims.

Parameters

tm *1ms is the time structure containing a date.

char *ims is the string containing a date.

SeeAlso
“util_strftime” on page 183

util_make filename

The util_make_filename function concatenates a directory name and a file name into a newly
created string. This function is useful when you are dealing with a number of files that all go to
the same directory.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Syntax

#include <libproxy/cutil.h>
char *util make filename(char *roof, char *name);

Returns

A new string containing the directory name concatenated with the file name.

Parameters

char *root is a string containing the directory name.

char *name is a string containing the file name.

util_make_gmt
The util_make_gmt function converts a given local time to GMT (Greenwich Mean Time), or

obtains the current GMT.

Syntax

#include <libproxy/util.h>
time t util make gmt(time t t);

Returns

m The GMT equivalent to the local time £, if t is not 0
= Thecurrent GMT if tis 0

Parameters

time ttisatime.

SeeAlso

“util_make_local” on page 175

util_make_local
The util_make_local function converts a given GMT to local time.
Syntax

#include <libproxy/util.h>
time t util make local(time t t);

Chapter4 - NSAPI Function Reference 175

176

Returns
Thelocal equivalent to the GMT t.

Parameters

time_tfisatime.

SeeAlso
“util_make_gmt” on page 175

util_ move dir

The util_move_dir function moves a directory, preserving permissions, creation times, and
last-access times. If renaming fails, for example, if the source and destination are on two
different file systems, the function copies the directory.

Syntax

#include <libproxy/util.h>
int util move dir (char *src, char *dst);

Returns

m @ if the move failed.
= nonzero if the move succeeded.

Parameters

char *src is the fully qualified name of the source directory.

char *dst is the fully qualified name of the destination directory.

SeeAlso

“util_move_file” on page 176

util_ move file

The util_move_dir function moves a file, preserving permissions, creation time, and
last-access time. If renaming fails, for example, if the source and destination are on two different
file systems, the function copies the file.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Syntax

#include <libproxy/util.h>
int util move file (char *src, char *dst);

Returns

= if the move failed.
= nonzero if the move succeeded.

Parameters

char *src is the fully qualified name of the source file.

char *dst is the fully qualified name of the destination file.

SeeAlso

“util_move_dir” on page 176

util_parse_http_time
The util_parse_http_time function converts a given HTTP time string to time_t format.

Syntax

#include <libproxy/util.h>
time t util parse http time(char *date string);

Returns
The time_t equivalent to the GMT ¢.

Parameters

time ttisatime.
SeeAlso

“util_make_gmt” on page 175

util_put_int_to_file

Theutil_put_int_to_file function writes a single line containing an integer to a specified
file.

Chapter4 - NSAPI Function Reference 177

178

Syntax

#include <libproxy/cutil.h>
int util_put_int_to_file(char *filename, int i);

Returns

= nonzero if the operation succeeded
= (if the operation failed

Parameters

char *file is the name of the file to be written.

intiis the integer to write.

SeeAlso

“atil_get_int_from_file” on page 168, “util_get_long_from_file” on page 169,
“util_put_long_to_file” on page 178, “util_put_string to_file” on page 179

util_put_long_to_file
The util_put_long_to_file function writes a single line containing a long integer to a

specified file.

Syntax

#include <libproxy/cutil.h>
ing util_put_long_to_file(char *filename, long I);

Returns

= nonzero if the operation succeeded
= (if the operation failed

Parameters

char *file is the name of the file to be written.

long /is the long integer to write.
SeeAlso
“util_get_int_from_file” on page 168, “util_get_long from_file” on page 169,

“util_put_int_to_file” on page 177, “util_put_string to_file” on page 179

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

util_put_string_to_aux_file

The util_put_string_to_aux_file function writes a single line containing a string to a file
specified by directory name and file name.

Syntax

#include <libproxy/cutil.h>
int util put string to aux file(char *roof, char *name, char *str);

Returns

= non-zero if the operation succeeded.
= @ ifthe operation failed.

Parameters

char *root is the name of the directory where the file is to be written.
char *name is the name of the file is to be written.

char *str is the string to write.

SeeAlso

“util_get_int_from_file” on page 168, “util_get_long from_file” on page 169,
“atil_put_int_to_file” on page 177, “util_put_long_to_file” on page 178,
“util_put_string to_file” on page 179

util_put_string_to_file

The util_put_string_to_file function writes a single line containing a string to a specified
file.

Syntax

#include <libproxy/cutil.h>
int util_put_string to_file(char *filename, char *str);

Returns

= nonzero if the operation succeeded.
= @ ifthe operation failed.

Chapter4 - NSAPI Function Reference 179

180

Parameters
char *file is the name of the file to be read.

char *str is the string to write.

SeeAlso

“atil_get_int_from_file” on page 168, “util_get_long from_file” on page 169,
“atil_put_int_to_file” on page 177, “util_put_long_to_file” on page 178

util_sect_id
Theutil sect id function creates a section ID from the section dim and an index.

Syntax

#include <libproxy/cutil.h>
void util_sect_id(int dim, int idx, char *buf);

Returns

= nonzero if the operation succeeded.
= Qif the operation failed.

Parameters
int dim is the section dim.
int idxis the index.

char *bufis the buffer to receive the section ID.

util_sh_escape

The util_sh_escape function parses a specified string and places a backslash (\\) in front of
any shell-special characters, returning the resultant string. Use this function to ensure that
strings from clients won’t cause a shell to behave unexpectedly.

The shell-special characters are the space plus the following characters:

&N\Q" [*2~<>" () [1{}$\\#!

Syntax

char *util sh escape(char *s);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Returns
A newly allocated string.

Parameters

char *s is the string to be parsed.

SeeAlso

“util_uri_escape” on page 185

util_snprintf

The util_snprintf function formats a specified string, using a specified format, into a
specified buffer using the printf-style syntax and performs bounds checking. The function
returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime library of
your compiler.

Syntax

int util snprintf(char *s, int n, char *fmt, ...);

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.
int n is the maximum number of bytes allowed to be copied.

char *fmt is the format string. The function handles only %d and %s strings. It does not handle
any width or precision strings.

... represents a sequence of parameters for the printf function.

SeeAlso
“util_sprintf” on page 182, “util_vsnprintf” on page 189, “util_vsprintf” on page 189

Chapter4 - NSAPI Function Reference 181

util_sprintf

The util_sprintf function formats a specified string, using a specified format, into a specified
buffer, using the printf-style syntax without bounds checking. The function returns the
number of characters in the formatted buffer.

Because util_sprintf doesn’t perform bounds checking, use this function only if you are
certain that the string fits the buffer. Otherwise, use the function util_snprintf. For more
information, see the documentation on the printf function for the runtime library of your
compiler.

Syntax

int util sprintf(char *s, char *fmt, ...);

Returns

The number of characters formatted into the buffer.
Parameters
char *s is the buffer to receive the formatted string.

char *fmt is the format string. The function handles only %d and %s strings. It does not handle
any width or precision strings.

... represents a sequence of parameters for the printf function.

Example

char *logmsg;int len;logmsg = (char *) MALLOC(256);
len = util sprintf(logmsg, "%s %s %s\\n", ip, method, uri);

SeeAlso
“atil_snprintf” on page 181, “util_vsnprintf” on page 189, “util_vsprintf” on page 189

util_strcasecmp

The util_strcasecmp function performs a comparison of two alphanumeric strings and
returns a -1, @, or 1 to signal which string is larger or that the strings are identical.

The comparison is not case sensitive.

Syntax

int util strcasecmp(const char *sl, const char *s2);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Returns
1if s1is greater than s2.

0ifslisequaltos2.

-lifslislessthans2.

Parameters

char *s1 is the first string.

char *s2 is the second string.

SeeAlso

“util_strncasecmp” on page 184

util_strftime

The util_strftime function translates a tm structure, which is a structure describing a system
time, into a textual representation. This function is a thread-safe version of the standard
strftime function

Syntax

int util strftime(char *s, const char *format, const struct tm *t);

Returns

The number of characters placed into s, not counting the terminating NULL character.

Parameters
char *s is the string buffer to put the text into. The function does not check bounds, so you

must make sure that your buffer is large enough for the text of the date.

const char *format is a format string resembling a printf string in that it consists of text with
certain %x substrings. You may use the constant HTTP_DATE_FMT to create date strings in the
standard Internet format. For more information, see the documentation on the printf
function for the runtime library of your compiler. Refer to Chapter 7, “Time Formats,” for
details on time formats.

const struct tm*t is a pointer to a calendar time (tm) structure, usually created by the
function system localtime or system_gmtime.

SeeAlso

system localtime, system gmtime

Chapter4 « NSAPI Function Reference 183

184

util_strncasecmp

The util_strncasecmp function performs a comparison of the first n characters in the
alphanumeric strings and returns a -1, 0, or 1 to signal which string is larger or that the strings
are identical.

The function’s comparison is not case sensitive.

Syntax

int util strncasecmp(const char *sl, const char *s2, int n);

Returns

1if s1is greater than s2.
0ifslisequaltos2.

-lifslislessthans2.

Parameters

char *s1is the first string.
char *s2 is the second string.

int nis the number of initial characters to compare.

SeeAlso

“util_strcasecmp” on page 182

util_uri_check
The util_uri_check function checks whether a URI has a format conforming to the standard.

At present, the only URI checked for is a URL. The standard format for a URL is

protocol: / /user: password@host : port/url-path

where user:password, :password. :port, or /url-path can be omitted.

Syntax

#include <libproxy/util.h>
int util uri check (char *uri);

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Returns
= @ ifthe URI does not have the proper form.

= ponzero if the URI has the proper form.

Parameters
char *uriis the URI to be tested.

util_uri_escape

The util_uri_escape function converts any special characters in the URI into the URI format,
%XX, where XX is the hexadecimal equivalent of the ASCII character, and returns the escaped
string. The special characters are %?#: +&*"<>, space, carriage return, and line feed.

Useutil_uri_escape before sending a URI back to the client.

Syntax

char *util uri_escape(char *d, char *s);

Returns

The string, possibly newly allocated with escaped characters replaced.

Parameters

char *d is a string. If d is not NULL, the function copies the formatted string into d and returns
it. If d is NULL, the function allocates a properly sized string and copies the formatted special
characters into the new string, then returns it.

The util_uri_escape function does not check bounds for the parameter d. Therefore, if d is
not NULL, it should be at least three times as large as the string s.

char *s is the string containing the original unescaped URL.

SeeAlso

“util_uri_is_evil” on page 185, “util_uri_parse” on page 186, “util_uri_unescape” on page 186

util_uri_is_evil

Theutil_uri_is_evil function checks a specified URI for insecure path characters. Insecure
path charactersinclude //,/./,/../and/., /.. (and for Windows. /) at the end of the URL
Use this function to see whether a URI requested by the client is insecure.

Chapter4 « NSAPI Function Reference 185

186

Syntax

int util uri is evil(char *t);

Returns
1if the URIis insecure, or 0 if the URI is OK.

Parameters
char *t is the URI to be checked.

SeeAlso

“util_uri_escape” on page 185, “util_uri_parse” on page 186

util_uri_parse

The util_uri_parse function converts //,/./,and /*/. ./ into / in the specified URI where *
is any character other than /. You can use this function to convert a URT’s unacceptable
sequences into valid ones. First use the function util uri_is_evil to determine whether the
function has an incorrect sequence.

Syntax

void util uri_parse(char *uri);

Returns

void

Parameters

char *uri is the URI to be converted.

SeeAlso

“util_uri_is_evil” on page 185, “util_uri_unescape” on page 186

util_uri_unescape
Theutil uri_unescape function converts the encoded characters of a URI into their ASCII

equivalents. Encoded characters appear as %XX, where XX is a hexadecimal equivalent of the
character.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Note - You cannot use an embedded null in a string, because NSAPI functions assume that a null
is the end of the string. Therefore, passing Unicode-encoded content through an NSAPI plug-in
doesn’t work.

Syntax

void util uri unescape(char *uri);

Returns

void

Parameters

char *uri is the URI to be converted.

SeeAlso

“atil_uri_escape” on page 185, “util_uri_is_evil” on page 185, “util_uri_parse” on page 186

util_url_cmp
The util_url_cmp function compares two URLs. This function is analogous to the strcmp (

) ()library function of C.

Syntax

#include <libproxy/util.h>
int util url cmp (char *sl1, char *s2);

Returns

= -1ifthefirst URL, s1, isless than the second, s2
= Qiftheyare identical
= 1ifthefirst URL, s1, is greater than the second, s2

Parameters
char *s1 is the first URL to be tested.

char *s2is the second URL to be tested.

SeeAlso

“util_url_fix_host name” on page 188, “util_uri_check” on page 184

Chapter4 - NSAPI Function Reference 187

188

util_url_fix_host name

The util url fix_host name function converts the host name in a URL to lowercase and
removes redundant port numbers.

Syntax

#include <libproxy/util.h>
void util url fix host name(char *url);

Returns

void but changes the value of its parameter string

The protocol specifier and the host name in the parameter string are changed to lowercase. The
function also removes redundant port numbers, such as 80 for HTTP, 70 for gopher, and 21 for
FTP.

Parameters

char *urlis the URL to be converted.

SeeAlso
“atil_url_cmp” on page 187, “util_uri_check” on page 184

util url has FQDN

The util_url_has_FQDN function returns a value to indicate whether a specified URL
references a fully qualified domain name.

Syntax

#include <libproxy/util.h>
int util url has FQDN(char *url);

Returns

= 1ifthe URL hasa fully qualified domain name.
= Qifthe URL does not have a fully qualified domain name.

Parameters

char *urlis the URL to be examined.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

util_vsnprintf

The util_vsnprintf function formats a specified string, using a specified format, into a
specified buffer using the vprintf-style syntax and performs bounds checking. The function
returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime library of

your compiler.

Syntax

int util vsnprintf(char *s, int n, register char *fmt, va list args);

Returns

The number of characters formatted into the buffer.

Parameters

char *s is the buffer to receive the formatted string.
int n is the maximum number of bytes allowed to be copied.

register char *fmt is the format string. The function handles only %d and %s strings. It does
not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to va_start.

SeeAlso
“util_snprintf” on page 181, “util_vsprintf” on page 189

util_vsprintf

The util_vsprintf function formats a specified string, using a specified format, into a
specified buffer using the vprintf-style syntax without bounds checking. The function returns
the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the runtime library of
your compiler.

Syntax

int util vsprintf(char *s, register char *fmt, va_list args);

Returns

The number of characters formatted into the buffer.

Chapter4 « NSAPI Function Reference 189

190

Parameters

char *s is the buffer to receive the formatted string.

register char *fmt is the format string. The function handles only %d and %s strings. It does
not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to va_start.

SeeAlso
“util_snprintf” on page 181, “util_vsnprintf” on page 189

write

The write filter method is called when output data is to be sent. Filters that modify or consume
outgoing data should implement the write filter method.

Upon receiving control, a write implementation should first process the data as necessary, and
then pass it on to the next filter layer; for example, by calling net_write(layer->lower,

...,). If the filter buffers outgoing data, it should implement the “flush” on page 95 filter
method.

Syntax

int write(FilterLayer *layer, const void *buf, int amount);

Returns

The number of bytes consumed, which might be less than the requested amount if an error
occurred.

Parameters
FilterLayer *layer is the filter layer in which the filter is installed.

const void *buf is the buffer that contains the outgoing data.

int amount is the number of bytes in the buffer.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Example

int myfilter write(FilterLayer *layer, const void *buf, int amount)

{

return net write(layer->lower, buf, amount);

}
See Also

“flush” on page 95, “net_write” on page 105, “writev” on page 191

writev

Thewritev filter method is called when multiple buffers of output data are to be sent. Filters
that modify or consume outgoing data might implement the writev filter method.

If a filter implements the write filter method but not the writev filter method, the server
automatically translates net_writev calls to “net_write” on page 105 calls. As a result, filters
that deal with the outgoing data stream do not need to implement the writev filter method.
However, for performance reasons, filters that implement the write filter method should also
implement the writev filter method.

Syntax

int writev(FilterLayer *layer, const struct iovec *iov, int iov_size);

Returns

The number of bytes consumed, which might be less than the requested amount if an error
occurred.

Parameters
FilterLayer *layer is the filter layer the filter is installed in.

const struct iovec *iov is an array of iovec structures, each of which contains outgoing
data.

int iov_size is the number of iovec structures in the iov array.

Example

int myfilter writev(FilterLayer *layer, const struct iovec *iov,
int iov_size)

return net writev(layer->lower, iov, iov size);

Chapter4 - NSAPI Function Reference 191

192

SeeAlso

“flush” on page 95, “net_write” on page 105, “write” on page 190

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

CHAPTER 5

Data Structure Reference

NSAPI uses many data structures that are defined in the nsapi. h header file, which is in the
directory server-root/plugins/include.

The NSAPI functions described in Chapter 4, “NSAPI Function Reference,” provide access to
most of the data structures and data fields. Before directly accessing a data structure in naspi.h,
check whether an accessor function exists for that structure.

For information about the privatization of some data structures in Proxy Server 4, see
“Privatization of Some Data Structures” on page 194

The rest of this chapter describes public data structures in nsapi.h. Data structures in nsapi.h
that are not described in this chapter are considered private and might change incompatibly in
future releases.

This chapter contains the following sections:

“Privatization of Some Data Structures” on page 194
“Session” on page 194

“pblock” on page 195

“pb_entry” on page 195

“pb_param” on page 195
“Session->client” on page 196

“Request” on page 196

“stat” on page 197

“shmem_s” on page 197

“cinfo” on page 198

“sendfiledata” on page 198

“Filter” on page 198

“FilterContext” on page 199

“FilterLayer” on page 199
“FilterMethods” on page 199
“CacheEntry Data Structure” on page 200

193

Privatization of Some Data Structures

= “CacheState Data Structure” on page 201
= “ConnectMode Data Structure” on page 202

Privatization of Some Data Structures

Session

194

The data structures in nsapi_pvt.h are now considered to be private data structures. Do not
write code that accesses them directly. Instead, use accessor functions. This change should have
very little impact on customer-defined plug-ins. Examine nsapi_pvt.h to see which data
structures have been removed from the public domain. You can also see the accessor functions
you can use now to access these dat structures.

Plug-ins written for Enterprise Server 3.x that access contents of data structures defined in
nsapi_pvt.h will not be source compatible with Proxy Server 4 you will have to #include
“nsapi_pvt.h" to build such plug-ins from source. These programs might not be binary
compatible with Proxy Server 4, because some of the data structures in nsapi_pvt.h have
changed size. In particular, the directive structure is larger, which means that a plug-in that
indexes through the directives in a dtable will not work without being rebuilt with
nsapi_pvt.h included.

Because the majority of plug-ins do not reference the internals of data structures in
nsapi_pvt.h, most existing NSAPI plug-ins will be both binary and source compatible with
Proxy Server 4.

Plug-ins written for Sun iPlanet Web Proxy Server 3.6 will not be binary compatible with Proxy
Server 4. These plug-ins will have to be recompiled and relinked using Proxy Server 4’s NSAPI
header files and libraries.

A session is the time between the opening and closing of the connection between the client and
the server. The session data structure holds variables that apply session wide, regardless of the
requests being sent, as shown in the following example.

typedef struct {
/* Information about the remote client */

pblock *client;

/* The socket descriptor to the remote client */
SYS NETFD csd;

/* The input buffer for that socket descriptor */
netbuf *inbuf;

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

pb_param

/* Raw socket information about the remote */
/* client (for internal use) */
struct in addr iaddr;

} Session;

pblock

The parameter block is the hash table that holds pb_entry structures. Its contents are
transparent to most code. This data structure is frequently used in NSAPL. It provides the basic
mechanism for packaging up parameters and values. Many functions exist for creating and
managing parameter blocks, and for extracting, adding, and deleting entries. See the functions
whose names start with pblock in Chapter 4, “NSAPI Function Reference.” You should not
need to write code that accesses pblock data fields directly.

typedef struct {

int hsize;

struct pb _entry **ht;
} pblock;

pb_entry
The pb_entry is a single element in the parameter block.
struct pb entry {
pb_param *param;

struct pb _entry *next;

};

pb_param
The pb_param represents a name-value pair, as storedinapb_entry.
typedef struct {

char *name, *value;
} pb_param;

Chapter 5 - Data Structure Reference 195

Session->client

Session->client

Request

196

The Session->client parameter block structure contains two entries:

= The ip entry is the IP address of the client machine.

= The dns entry is the DNS name of the remote machine. This member must be accessed
through the session_dns function call

/** session_dns returns the DNS host name of the client for this* session
and inserts it into the client pblock. Returns NULL if* unavailable.
*/char *session dns(Session *sn);

Under HTTP protocol, only one request is made per session. The request structure contains
the variables that apply to the request in that session, for example, the variables include the
client’s HTTP headers.

typedef struct {
/* Server working variables */
pblock *vars;

/* The method, URI, and protocol revision of this request */
block *reqgpb;

/* Protocol specific headers */
int loadhdrs;
pblock *headers;

/* Server’s response headers */
int senthdrs;
pblock *srvhdrs;

/* The object set constructed to fulfill this request */

httpd objset *os;
} Request;

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

shmem_s

stat

shmem s

When a program calls the stat() function for a given file, the system returns a structure that
provides information about the file. The specific details of the structure should be obtained
from your platform’s implementation, but the basic outline of the structure is shown in the
following example.

struct stat {
dev_t
inot_t
short
short
short
short
dev_t
off t
time t
time t
time t

st dev; /*
st_ino; /*
st_mode; /*
st nlink; /*
st uid; /*
st _gid; /*
st rdev; /*

st size; /*
st _atime; /*
st mtime; /*
st ctime; /*

device of inode */

inode number */

mode bits */

number of links to file /*
owner’s user id */

owner’s group id */

for special files */

file size in characters */
time last accessed */

time last modified */

time inode last changed*/

The elements that are most significant for server plug-in API activities are st_size, st_atime,
st mtime,and st ctime.

typedef struct {
data; / the data */

void

HANDLE

int

char

SYS FILE
} shmem_s;

fdmap;

size; /* the maximum length of the data */

name; / internal use: filename to unlink if exposed */
fd; /* internal use: file descriptor for region */

Chapter5 « Data Structure Reference

197

cinfo

cinfo

The cinfo data structure records the content information for a file.

typedef struct {
char *type;
/* Identifies what kind of data is in the file*/
char *encoding;
/* encoding identifies any compression or other /*
/* content-independent transformation that’s been /*
/* applied to the file, such as uuencode)*/
char *language;
/* Identifies the language a text document is in. */
} cinfo;

sendfiledata

The sendfiledata data structure is used to pass parameters to the net_sendfile function. It is
also passed to the sendfile method in an installed filter in response to a net_sendfile call.

typedef struct {

SYS FILE fd; /* file to send */

size t offset; /* offset in file to start sending from */
size t len; /* number of bytes to send from file */
const void *header; /* data to send before file */

int hlen; /* number of bytes to send before file */
const void *trailer; /* data to send after file */

int tlen; /* number of bytes to send after file */

} sendfiledata;

Filter

The Filter data structure is an opaque representation of a filter. A Filter structure is created
by calling “filter_create” on page 91.

typedef struct Filter Filter;

198 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

FilterMethods

FilterContext

The FilterContext data structure stores context associated with a particular filter layer. Filter
layers are created by calling “filter_insert” on page 92.

Filter developers may use the data member to store filter-specific context information.

typedef struct {
pool _handle t *pool; /* pool context was allocated from */

Session *sn; /* session being processed */
Request *rq; /* request being processed */
void *data; /* filter-defined private data */

} FilterContext;

FilterLayer

The FilterLayer data structure represents one layer in a filter stack. The FilterLayer
structure identifies the filter installed at that layer. It provides pointers to layer-specific context
and a filter stack that represents the layer immediately below it in the filter stack.

typedef struct {
Filter *filter; /* the filter at this layer in the filter stack */
FilterContext *context; /* context for the filter */
SYS_NETFD lower; /* access to the next filter layer in the stack */
} FilterLayer;

FilterMethods

The FilterMethods data structure is passed to “filter_create” on page 91 to define the filter
methods a filter supports. Each new FilterMethods instance must be initialized with the
FILTER METHODS INITIALIZER macro. For each filter method a filter supports, the
corresponding FilterMethods member should point to a function that implements that filter
method.

typedef struct {
size t size;
FilterInsertFunc *insert;
FilterRemoveFunc *remove;
FilterFlushFunc *flush;

Chapter 5 - Data Structure Reference 199

CacheEntry Data Structure

FilterReadFunc *read;

FilterWriteFunc *write;

FilterWritevFunc *writev;

FilterSendfileFunc *sendfile;
} FilterMethods;

CacheEntry Data Structure

The CacheEntry data structure holds all the information about one cache entry. The structure is
created by the ce_lookup function and destroyed by the ce_free function CacheEntry is
defined in the libproxy/cache.h file.

typedef struct CacheEntry {
CacheState state; /* state of the cache file; DO NOT refer to any
* of the other fields in this C struct if state
* is other than

* CACHE_REFRESH or
* CACHE_RETURN_FROM_ CACHE
*/
SYS FILE fd in; /* do not use: open cache file for reading */
int fd out; /* do not use: open (locked) cache file for writing */
struct stat finfo; /* stat info for the cache file */
unsigned char digest[CACHE DIGEST LEN]; /* MD5 for the URL */
char * url dig; /* URL used to for digest; field #8 in CIF */
char * url cif; /* URL read from CIF file */
char * filname; /* Relative cache file name */
char * dirname; /* Absolute cache directory name */
char * absname; /* Absolute cache file path */
char * lckname; /* Absolute locked cache file path */
char * cifname; /* Absolute CIF path */
int sect idx; /* Cache section index */
int part idx; /* Cache partition index */
CSect * section; /* Cache section that this file belongs to */
CPart * partition;/* Cache partition that this file belongs to */
int xfer_time; /* secs *//* Field #2 in CIF */
time t last modified;/* GMT *//* Field #3 in CIF */
time t expires; /* GMT *//* Field #4 in CIF */
time t last checked; /* GMT *//* Field #5 in CIF */
long content length; /* Field #6 in CIF */
char * content type; /* Field #7 in CIF */
int is auth; /* Authenticated data -- always do recheck */
int auth_sent; /* Client did send the Authorization header */
long min_size; /* Min size for a cache file (in KB) */
long max_size; /* Max size for a cache file (in KB) */

200 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

CacheState Data Structure

time t last_accessed;/* GMT for proxy, local for gc */
time t created; /* localtime (only used by gc, st mtime) */
int removed; /* gc only; file was removed from disk */
long bytes; /* from stat(), using this we get hdr len */
long bytes written; /* Number of bytes written to disk */
long bytes _in_media; /* real fs size taken up */
long blks; /* size in 512 byte blocks */
int category; /* Value category; bigger is better */
int cif entry ok; /* CIF entry found and ok */
time t ims c; /* GMT; Client -> proxy if-modified-since */
time t start time; /* Transfer start time */
int inhibit caching; /* Bad expires/other reason not to cache */
int corrupt cache file; /* Cache file gone corrupt => remove */
int write aborted; /* True if the cache file write was aborted */
int batch _update; /* We’re doing batch update (no real user) */
char * cache exclude; /* Hdrs not to write to cache (RE) */
char * cache replace; /* Hdrs to replace with fresh ones
from 304 response (RE) */
char * cache nomerge; /* Hdrs not to merge with the
cached ones (RE) */
Session * sn;
Request * rq;

} CacheEntry;

CacheState Data Structure

The CacheState data structure is actually an enumerated list of constants. Aways use the
constant names because values are subject to implementation change.

typedef enum {

CACHE_EXISTS NOT = 0, /* Internal flag -- do not use! */

CACHE_EXISTS,
CACHE_NO,
CACHE_CREATE,

CACHE_REFRESH,

/* Internal flag -- do not use! */

/* No caching: don’t read, don’t write cache */
/* Create cache; don’t read */

/* Refresh cache; read if not modified */

CACHE_RETURN_FROM CACHE, /* Return directly, no check */
CACHE_RETURN_ERROR /* With connect-mode=never when not in cache */

} CacheState;

Chapter 5 - Data Structure Reference 201

ConnectMode Data Structure

ConnectMode Data Structure

The ConnectMode data structure is actually an enumerated list of constants. Always use the
constant names because values are subject to implementation change.

typedef enum {

CM_NORMAL = 0, /* normal -- retrieve/refresh when necessary */
CM_FAST DEMO, /* fast -- retrieve only if not in cache already */
CM_NEVER /* never -- never connect to network */

} ConnectMode;

202 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

L K R 4 CHAPTER 6

Using Wildcard Patterns

This chapter describes the format of wildcard patterns used by Proxy Server. These wildcard are
used in:

= Directives in the configuration file obj . conf see Oracle iPlanet Web Proxy Server 4.0.14
Configuration File Reference for detailed information about obj . conf.

= Various built-in SAFs see Oracle iPlanet Web Proxy Server 4.0.14 Configuration File
Reference for more information about these predefined SAFs.

= Some NSAPI functions.

Wildcard patterns use special characters. To use one of these characters without the special
meaning, precede it with a backslash (\\) character.

This chapter contains the following sections:

= “Wildcard Patterns” on page 203
= “Wildcard Examples” on page 204

Wildcard Patterns

The following table describes wildcard patterns, listing the pattern and its use.

TABLE6-1 Wildcard Patterns

Pattern Use
* Match zero or more characters.
? Match exactly one occurrence of any character.

203

http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883
http://docs.sun.com/doc/821-1883

Wildcard Examples

TABLE6-1 Wildcard Patterns (Continued)

Pattern

Use

An or expression. The substrings used with this operator can
contain other special characters such as * or $. The substrings must
be enclosed in parentheses, for example, (a|b|c), but the parentheses
cannot be nested.

Match the end of the string. This wildcard is useful in or
expressions.

[abc]

Match one occurrence of the characters a, b, or c. Within these
expressions, the only character that needs to be treated as a special
character is]. All other characters are not special.

[a-z]

Match one occurrence of a character between a and z.

["az]

Match any character excepta or z.

This expression, followed by another expression, removes any
pattern matching the second expression.

Match zero or more characters.

Wildcard Examples

204

The following table provides wildcard examples, listing the pattern and the result.

TABLE6-2 Wildcard Examples

Pattern

Result

*.netscape.com

Matches any string ending with the characters
.netscape. com.

(quark|energy) .netscape.com

Matches either quark.netscape. comor
energy.netscape.com.

198.93.9[23].77??

Matches a numeric string starting with either 198.93.92 or
198.93.93 and ending with any 3 characters.

Matches any string with a period in it.

~netscape-

Matches any string except those starting with netscape-.

*.netscape.com~quark.netscape.com

Matches any host from domain netscape. com excepta
single host quark.netscape. com.

*.netscape.com~(quark|energy|neutrino) .nedatgeesany host from domain .netscape. com except hosts

quark.netscape.com, energy.netscape. com, and
neutrino.netscape.com.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Wildcard Examples

TABLE6-2 Wildcard Examples (Continued)
Pattern Result

,com~.netscape.com Matches any host from domain . com except hosts from
subdomain netscape. com.

type=*~magnus-internal/* Matches any type that does not start with
magnus-internal/.

This wildcard pattern is used in the file obj . conf in the
catch-all Service directive.

Chapter6 - Using Wildcard Patterns 205

206

L K R 4 CHAPTER 7

Time Formats

This chapter describes the format strings used for dates and times. These formats are used by
the NSAPI function util_strftime, by some built-in SAFs such as append-trailer, and by
server-parsed HTML (parse-html). The formats are similar to those used by the strftime C
library routine, but not identical.

Time format strings
The following table describes the formats, listing the symbols and their meanings.
TABLE7-1 Time Formats
Symbol Meaning
%a Abbreviated weekday name (3 characters)
%d Day of month as decimal number (01-31)
%S Second as decimal number (00-59)
%M Minute as decimal number (00-59)
%H Hour in 24-hour format (00-23)
%Y Year with century, as decimal number, up to 2099
%b Abbreviated month name (3 characters)
%h Abbreviated month name (3 characters)
%T Time "HH:MM:SS"
%X Time "HH:MM:SS"
%A Full weekday name
%B Full month name

207

Time format strings

TABLE7-1 Time Formats (Continued)
Symbol Meaning
%C "%a %b %e %H:%M:%S %Y"
%C Date & time "%m/%d/%y %H:%M:%S"
%D Date "%m/%d/%y"
%e Day of month as decimal number (1-31) without leading zeros
%1 Hour in 12-hour format (01-12)
%j Day of year as decimal number (001-366)
%k Hour in 24-hour format (0-23) without leading zeros
%1 Hour in 12-hour format (1-12) without leading zeros
%m Month as decimal number (01-12)
%n Line feed
%p a.m./p.m. indicator for 12-hour clock
%R Time "%H:%M"
%r Time "%L:%M:%S %p"
st tab
%U Week of year as decimal number, with Sunday as first day of week (00-51)
W Weekday as decimal number (0-6; Sunday is 0)
W Week of year as decimal number, with Monday as first day of week (00-51)
%X Date "%m/%d/%y"
%y Year without century, as decimal number (00-99)
%% Percent sign

208 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

L K R 4 CHAPTER 8

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol that enables a client such as a web
browser and a web proxy server to communicate with each other.

HTTP is based on a request-response model. The browser opens a connection to the server and
sends a request to the server. The server processes the request and generates a response, which it
sends to the browser. The server then closes the connection.

This chapter provides a short introduction to a few HTTP basics. For more information on
HTTP, see the IETF home page at: http://www.ietf.org/home.html.

This chapter contains the following sections:

“HTTP Compliance” on page 209
“HTTP Requests” on page 210
“Server Responses” on page 211
“Buffered Streams” on page 213

HTTP Compliance

Proxy Server 4 supports HTTP/1.1. Previous versions of the server supported HTTP/1.0. The
server is conditionally compliant with the HTTP/1.1 proposed standard, as approved by the
Internet Engineering Steering Group (IESG), and the Internet Engineering Task Force (IETF)
HTTP working group.

For more information on the criteria for being conditionally compliant, see the Hypertext
Transfer Protocol -- HT'TP/1.1 specification (RFC 2068) at:
http://www.ietf.org/rfc/rfc2068.txt?number=2068

209

http://www.ietf.org/home.html

HTTP Requests

HTTP Requests

210

A request from a browser to a server includes the following information:

= “Request Method, URI, and Protocol Version” on page 210
= “Request Headers” on page 210
= “Request Data” on page 210

Request Method, URI, and Protocol Version

A browser can request information using a number of methods. The commonly used methods
are:

® GET — Requests the specified resource such as a document or image
= HEAD — Requests only the header information for the document

m POST — Requests that the server accept some data from the browser, such as form input for a
CGI program

m PUT — Replaces the contents of a server’s document with data from the browser

Request Headers

The browser can send headers to the server. Most headers are optional.

The following table lists some of the commonly used request headers.

TABLES-1 Common Request Headers

Request Header Description
Accept File types the browser can accept.
Authorization Used if the browser wants to authenticate itself with a server. Information

such as the user name and password are included.

User-Agent Name and version of the browser software.
Referer URL of the document where the user clicked the link.
Host Internet host and port number of the resource being requested.

Request Data

If the browser has made a POST or PUT request, it sends data after the blank line following the
request headers. If the browser sends a GET or HEAD request, there is no data to send.

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Server Responses

Server Responses

The server’s response includes the following information:

= “HTTP Protocol Version, Status Code, and Reason Phrase” on page 211
= “Response Headers” on page 212
= “Response Data” on page 213

HTTP Protocol Version, Status Code, and Reason

Phrase

The server sends back a status code in response to a request, which is a three-digit numeric
code. The five categories of status codes are:

100-199 — A provisional response

200-299 — A successful transaction

300-399 — The requested resource should be retrieved from a different location
400-499 — An error was caused by the browser

500-599 — A serious error occurred in the server

The following table lists some common status codes.

TABLE8-2 Common HTTP Status Codes

Status Code

Meaning

200

Request has succeeded for the method used (GET, POST, HEAD).

201

The request has resulted in the creation of a new resource reference by the returned URL

206

The server has sent a response to byte-range requests.

302

Found. Redirection to a new URL. The original URL has moved. This code is not an error
because most browsers will get the new page.

304

Use alocal copy. If a browser already has a page in its cache, and the page is requested again,
some browsers, such as Netscape Navigator, relay to the web server the “last-modified”
timestamp on the browser’s cached copy. If the copy on the server is not newer than the
browser’s copy, the server returns a 304 code instead of returning the page, reducing
unnecessary network traffic. This code is not an error.

400

Sent if the request is not a valid HTTP/1.0 or HTTP/1.1 request. For example HTTP/1.1
requires a host to be specified either in the Host header or as part of the URI on the request
line.

401

Unauthorized. The user requested a document but didn’t provide a valid user name or
password.

403

Forbidden. Access to this URL is forbidden.

Chapter 8 - Hypertext Transfer Protocol 211

Server Responses

TABLE8-2 Common HTTP Status Codes (Continued)

Status Code

Meaning

404

Not found. The document requested isn’t on the server. This code can also be sent if the
server has been instructed to send this response to unauthorized user.

408

If the client starts a request but does not complete it within the keep-alive timeout
configured in the server, then this response will be sent and the connection closed. The
request can be repeated with another open connection.

411

The client submitted a POST request with chunked encoding, which is of variable length.
However, the resource or application on the server requires a fixed length - a
Content-Length header to be present. This code tells the client to resubmit its request with
content-length.

413

Some applications, for example, certain NSAPI plug-ins, cannot handle very large amounts
of data, so these applications will return this code.

414

The URI is longer than the maximum the web server is willing to serve.

416

Data was requested outside the range of a file.

500

Server error. A server-related error occurred. The server administrator should check the
server’s error log.

503

Sent if the quality of service mechanism was enabled and bandwidth or connection limits
were attained. The server will then serve requests with that code. See the "quality of service"
section.

Response Headers

The response headers contain information about the server and the response data.

The following table lists some common response headers.

TABLES-3 Common Response Headers

Response Header

Description

Server

Name and version of the web server

Date

Current date (in Greenwich Mean Time)

Last-Modified

Date when the document was last modified

Expires

Date when the document expires

Content-Length

Length of the data that follows (in bytes)

Content-Type

MIME type of the following data

212 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Buffered Streams

TABLE8-3 Common Response Headers (Continued)
Response Header Description
WwW-Authenticate Used during authentication and includes information that tells the
browser software what is necessary for authentication such as user name
and password.

The server sends a blank line after the last header. The server then sends the response data such
as an image or an HTML page.

Buffered Streams

Buffered streams improve the efficiency of network I/O, for example, the exchange of HTTP
requests and responses, especially for dynamic content generation. Buffered streams are
implemented as transparent NSPR I/O layers, so existing NSAPI modules can use them without
any change.

The buffered streams layer adds the following features to Proxy Server:

= Enhanced keep-alive support. When the response is smaller than the buffer size, the
buffering layer generates the Content-Length header so that the client can detect the end of
the response and reuse the connection for subsequent requests.

= Response length determination. If the buffering layer cannot determine the length of the
response, it uses HTTP/1.1 chunked encoding instead of the Content-Length header to
convey the delineation information. If the client only understands HTTP/1.0, the server
must close the connection to indicate the end of the response.

= Deferred header writing. Response headers are written out as late as possible to give the
servlets a chance to generate their own headers, for example, the session management
header set-cookie.

= Ability to understand request entity bodies with chunked encoding. Though popular clients
do not use chunked encoding for sending POST request data, this feature is mandatory for
HTTP/1.1 compliance.

The improved connection handling and response length header generation provided by
buffered streams also addresses the HT'TP/1.1 protocol compliance issues, where absence of the
response length headers is regarded as a category 1 failure. In previous Enterprise Server
versions, the dynamic content generation programs was expected to send the length headers. If
a CGI script did not generate the Content -Length header, the server had to close the
connection to indicate the end of the response, breaking the keep-alive mechanism. However,
keeping track of response length in CGI scripts or servlets is often very inconvenient, and as an
application platform provider, the web server is expected to handle such low-level protocol
issues.

Chapter 8 - Hypertext Transfer Protocol 213

Buffered Streams

214

Output buffering has been built in to the functions that transmit data, such as “net_write” on
page 105. You can specify the following Service SAF parameters that affect stream buffering,
which are described in detail in Chapter 3, “Syntax and Use of the magnus.conf File,” in Oracle
iPlanet Web Proxy Server 4.0.14 Configuration File Reference.

m UseOQutputStreamSize
®m ChunkedRequestBufferSize
® ChunkedRequestTimeout

The UseOutputStreamSize, ChunkedRequestBufferSize, and ChunkedRequestTimeout
parameters also have equivalent magnus . conf directives, as described in Chapter 3, “Syntax and
Use of the magnus.conf File,” in Oracle iPlanet Web Proxy Server 4.0.14 Configuration File
Reference. The obj . conf parameters override the magnus . conf directives.

The UseOutputStreamSize parameter can be set to zero (@) in the obj . conf file to disable
output stream buffering. For the magnus. conf file, setting UseOutputStreamSize to zero has no
effect.

To override the default behavior when invoking an SAF that uses one of the functions
“net_read” on page 103 or “netbuf_grab” on page 108, you can specify the value of the
parameter in obj . conf, for example:

Service fn="my-service-saf" type=perf UseOutputStreamSize=8192

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

http://docs.sun.com/doc/821-1883/aebdh?a=view
http://docs.sun.com/doc/821-1883/aebdh?a=view
http://docs.sun.com/doc/821-1883/aebdh?a=view
http://docs.sun.com/doc/821-1883/aebdh?a=view
http://docs.sun.com/doc/821-1883/aebdh?a=view

APPENDIX A

Alphabetical List of NSAPI Functions and
Macros

This appendix provides an alphabetical list for the easy lookup of NSAPI functions and macros.

C “cache_digest” on page 76
“cache_filename” on page 76
“cache_fn_to_dig” on page 77
“CALLOC” on page 77
“ce_free” on page 78
“ce_lookup” on page 78
“cif_write_entry” on page 79
“cinfo_find” on page 80
“condvar_init” on page 80
“condvar_notify” on page 81
“condvar_terminate” on page 81
“condvar_wait” on page 82
“crit_enter” on page 83
“crit_exit” on page 83
“crit_init” on page 84
“crit_terminate” on page 84

D “daemon_atrestart” on page 85

215

Alphabetical List of NSAPI Functions and Macros

“dns_set_hostent” on page 85

F “fc_close” on page 86
“fc_open” on page 87
“filebuf_buf2sd” on page 87
“filebuf_close” on page 88
“filebuf_getc” on page 89
“filebuf_open” on page 89
“filebuf_open_nostat” on page 90
“filter_create” on page 91
“filter_find” on page 92
“filter_insert” on page 92
“filter_layer” on page 93
“filter_name” on page 94
“filter_remove” on page 94
“flush” on page 95
“FREE” on page 95
“fs_blk_size” on page 96
“fs_blks_avail” on page 97
“func_exec” on page 97
“func_find” on page 98

“func_insert” on page 98

I “insert” on page 99

L “log error” on page 100

M “magnus_atrestart” on page 101
“MALLOC” on page 101

N “net_flush” on page 102

216 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Alphabetical List of NSAPI Functions and Macros

“net_ip2host” on page 103
“net_read” on page 103
“net_sendfile” on page 104
“net_write” on page 105
“netbuf_buf2sd” on page 106
“netbuf_close” on page 107
“netbuf_getc” on page 107
“netbuf_grab” on page 108
“netbuf_open” on page 108
“nsapi_module_init” on page 109
“NSAPI_RUNTIME_VERSION” on page 109

“NSAPI_VERSION” on page 110

P “param_create” on page 111
“param_free” on page 111
“pblock_copy” on page 112
“pblock_create” on page 112
“pblock_dup” on page 113
“pblock_find” on page 113
“pblock_findlong” on page 114
“pblock_findval” on page 115
“pblock_free” on page 115
“pblock_nlinsert” on page 116
“pblock_nninsert” on page 116
“pblock_nvinsert” on page 117

“pblock_pb2env” on page 118

Appendix A - Alphabetical List of NSAPI Functions and Macros 217

Alphabetical List of NSAPI Functions and Macros

“pblock_pblock2str” on page 118
“pblock_pinsert” on page 119
“pblock_remove” on page 119
“pblock_replace_name” on page 120
“pblock_str2pblock” on page 121
“PERM_CALLOC” on page 121
“PERM_FREE” on page 122
“PERM_MALLOC” on page 123
“PERM_REALLOC” on page 123
“PERM_STRDUP” on page 124
“prepare_nsapi_thread” on page 125
“protocol_dump822” on page 125
“protocol_finish_request” on page 126
“protocol_handle_session” on page 126
“protocol_parse_request” on page 127
“protocol_scan_headers” on page 127
“protocol_set_finfo” on page 128
“protocol_start_response” on page 129
“protocol_status” on page 130
“protocol_uri2url” on page 131

“protocol_uri2url_dynamic” on page 131

R “read” onpage 132
“REALLOC” on page 133
“remove” on page 134

“request_create” on page 134

218 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Alphabetical List of NSAPI Functions and Macros

“request_free” on page 135

“request_header” on page 135

S “sem_grab” on page 136
“sem_init” on page 137
“sem_release” on page 137
“sem_terminate” on page 138
“sem_tgrab” on page 138
“sendfile” on page 139
“session_create” on page 140
“session_dns” on page 140
“session_free” on page 141
“session_maxdns” on page 141
“shexp_casecmp” on page 142
“shexp_cmp” on page 142
“shexp_match” on page 143
“shexp_valid” on page 144
“shmem_alloc” on page 145
“shmem_free” on page 145
“STRDUP” on page 146
“system_errmsg” on page 147
“system_fclose” on page 147
“system_£flock” on page 148
“system_fopenRO” on page 148
“system_fopenRW” on page 149

“system_fopenWA” on page 149

Appendix A - Alphabetical List of NSAPI Functions and Macros 219

Alphabetical List of NSAPI Functions and Macros

“system_fread” on page 150
“system_fwrite” on page 151
“system_fwrite_atomic” on page 151
“system_gmtime” on page 152
“system_localtime” on page 153
“system_lseek” on page 153
“system_rename” on page 154
“system_ulock” on page 154
“system_unix2local” on page 155
“systhread_attach” on page 156
“systhread_current” on page 156
“systhread_getdata” on page 157
“systhread_init” on page 157
“systhread_newkey” on page 158
“systhread_setdata” on page 158
“systhread_sleep” on page 159
“systhread_start” on page 159
“systhread_terminate” on page 160

“systhread_timerset” on page 160
U “USE_NSAPI_VERSION” on page 161

“util_can_exec” on page 162
“util_chdir2path” on page 163
“util_cookie_find” on page 163
“util_does_process_exist” on page 164

“util_env_create” on page 164

220 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Alphabetical List of NSAPI Functions and Macros

“util_env_find” on page 165
“util_env_free” on page 166
“util_env_replace” on page 166
“util_env_str” on page 167
“util_get_current_gmt” on page 167
“util_get_int_from_aux_file” on page 168
“util_get_int_from_file” on page 168
“util_get_long from_aux_file” on page 169
“util_get_long_from_file” on page 169
“util_get_string_from_aux_file” on page 170
“util_get_string_from_file” on page 171
“util_getline” on page 171
“util_hostname” on page 172
“util_is_mozilla” on page 172
“util_is_url” on page 173

“util_itoa” on page 173

“util_later_than” on page 174
“util_make_filename” on page 174
“util_make_gmt” on page 175
“util_make_local” on page 175
“util_move_dir” on page 176
“util_move_file” on page 176
“util_parse_http_time” on page 177
“util_put_int_to_file” on page 177

“util_put_long to_file” on page 178

Appendix A - Alphabetical List of NSAPI Functions and Macros 221

Alphabetical List of NSAPI Functions and Macros

“util_put_string to_aux_file” on page 179
“util_put_string_to_file” on page 179
“util_sect_id” on page 180
“util_sh_escape” on page 180
“util_snprintf” on page 181
“util_sprintf” on page 182
“util_strcasecmp” on page 182
“util_strftime” on page 183
“util_strncasecmp” on page 184
“util_uri_check” on page 184
“util_uri_escape” on page 185
“util_uri_is_evil” on page 185
“util_uri_parse” on page 186
“util_uri_unescape” on page 186
“util_url_cmp” on page 187
“util_url_fix_host name” on page 188
“util_url_has_FQDN” on page 188
“util_vsnprintf” on page 189
“util_vsprintf” on page 189

W “write” on page 190

“writev” on page 191

222 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Index

A

AddLog
example of custom SAE, 72-74
requirements for SAFs, 33-37

API funct, 142

API functions
cache_digest, 76
cache_filename, 76
cache_fn_to_dig, 77
CALLOC, 77
ce_free, 78
ce_lookup, 78-79
cif_write_entry, 79
cinfo_find, 80
condvar_init, 80-81
condvar_notify, 81
condvar_terminate, 81-82
condvar_wait, 82
crit_enter, 83
crit_exit, 83
crit_init, 84
crit_terminate, 84-85
daemon_atrestart, 85
fc_close, 86
filebuf buf2sd, 87
filebuf close, 88
filebuf_getc, 89
filebuf_open, 89-90
filebuf_open_nostat, 90-91
filter_create, 91-92
filter_find, 92
filter_insert, 92-93

API functions (Continued)

filter_layer, 93-94
filter name, 94
filter_remove, 94
flush, 95

FREE, 95-96
fs_blk_size, 96
fs_blks_available, 97
func_exec, 97-98

func_find, 98
func_insert, 98-99
insert, 99

log_error, 100
magnus_atrestart, 101
MALLOC, 101-102
net_ip2host, 103
net_read, 103-104
net_write, 105-106
netbuf buf2sd, 106
netbuf_close, 107
netbuf_getc, 107
netbuf_grab, 108
netbuf open, 108-109
param_create, 111
param_free, 111-112
pblock_copy, 112
pblock_create, 112-113
pblock_dup, 113
pblock_find, 113-114
pblock_findlong, 114
pblock_findval, 115
pblock_free, 115-116

223

Index

API functions (Continued)

224

pblock_nlinsert, 116
pblock_nninsert, 116-117
pblock_nvinsert, 117-118
pblock_pb2env, 118
pblock_pblock2str, 118-119
pblock_pinsert, 119
pblock_remove, 119-120
pblock_replace_name, 120
pblock_str2pblock, 121
PERM_FREE, 122
PERM_MALLOC, 121-122,123
PERM_STRDUP, 124-125
prepare_nsapi_thread, 125
protocol_dump822, 125-126
protocol_set_finfo, 128-129
protocol_start_response, 129-130
protocol_status, 130-131
protocol_uri2url, 131

read, 132-133

REALLOC, 133-134
remove, 134

request_create, 134-135
request_free, 135
request_header, 135-136
sem_grab, 136-137
sem_init, 137

sem_release, 137-138
sem_terminate, 138
sem_tgrab, 138-139
sendfile, 139

session_create, 140
session_dns, 140-141
session_free, 141
session_maxdns, 141-142
shem_alloc, 145
shexp_cmp, 142-143
shexp_match, 143-144
shexp_valid, 144
shmem_free, 145-146
STRDUP, 146
system_errmsg, 147
system_fclose, 147-148
system_flock, 148

API functions (Continued)

system_fopenRO, 148-149
system_fopenRW, 149
system_fopenWA, 149-150
system_fread, 150-151
system_fwrite, 151
system_fwrite_atomic, 151-152
system_gmtime, 152-153
system_localtime, 153
system_lseek, 153-154
system_rename, 154
system_ulock, 153-154, 154
system_unix2local, 155
systhread_attach, 156
systhread_current, 156
systhread_getdata, 157
systhread_newkey, 147,158
systhread_setdata, 158-159
systhread_sleep, 159
systhread_start, 159-160
systhread_terminate, 160
systhread_timerset, 147, 160-161
util_can_exec, 162-163
util_chdir2path, 163
util-cookie_find, 163-164
util_cookie_find, 163-164
util-does_process_exist, 164
util_env_create, 164-165
util_env_find, 165
util_env_free, 166
util_env_replace, 166
util_env_str, 167
util_get_current_gmt, 167
util_get_int_from_file, 171
util_get_long_from_file, 169-170
util_get_string from_file, 171
util_getline, 171-172
util_hostname, 172
util_is_mozilla, 172-173
util_is_url, 173

util_itoa, 173-174
util_later_than, 174
util_make_filename, 174-175
util_make_gmt, 175

Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Index

API functions (Continued)
util_make local, 175-176
util_move_dir, 176
util_move_file, 176-177
util_parse_http_time, 177
util_put_int_to_file, 177-178
util_put_long_to_file, 178
util_put_string to_file, 179-180
util_sect_id, 180
util_sh_escape, 180-181
util_snprintf, 181
util-sprintf, 182
util_strcasecmp, 182-183
util_strftime, 183
util_strncasecmp, 184
util_uri_escape, 185
util_uri_is_evil, 185-186
util_uri_parse, 186
util_uri_unescape, 186-187
util_url fix_hosthame, 188
util_vsnprintf, 189
util_vsprintf, 189-190
write, 190-191
writev, 191-192

AUTH_TYPE environment variable, 37

AUTH_USER environment variable, 37

AuthTrans
example of custom SAF, 52-54
requirements for SAFs, 33-37

B
buffered streams, 213-214

C

cache_digest, API function, 76
cache_filename, API function, 76
cache_fn_to_dig, API function, 77
CALLOC API function, 77
ce_free, API function, 78
ce_lookup, API function, 78-79

CGI

environment variables in NSAPI, 37-38

to NSAPI conversion, 37-38
chunked encoding, 213-214,214
cif_write_entry, API function, 79
cinfo_find API function, 80
cinfo NSAPI data structure, 198
client

field in session parameter, 21

getting DNS name for, 196

getting IP address for, 196

sessions and, 194

CLIENT_CERT environment variable, 38

compatibility issues, 20, 194
compiling custom SAFs, 25-27
condvar_init API function, 80-81
condvar_notify API function, 81

condvar_terminate API function, 81-82

condvar_wait API function, 82

CONTENT_LENGTH environment variable, 37
CONTENT_TYPE environment variable, 37

context->data, 40
context->rq, 40
context->sn, 40
creating

custom filters, 46-48

custom NSAPI plugins, 15
crit_enter API function, 83
crit_exit API function, 83
crit_init API function, 84
crit_terminate API function, 84-85
csd field in session parameter, 21
custom, NSAPI plugins, 15

D
daemon_atrestart API function, 85
data structures

cinfo, 198

compatibility issues, 194

Filter, 198

FilterContext, 199

FilterLayer, 199

FilterMethods, 199-200

225

Index

data structures (Continued)
nsapi.h header file, 193
nsapi_pvt.h, 194
pb_entry, 195
pb_param, 195
pblock, 195
privatization of, 194
removed from nsapi.h, 194
request, 196
sendfiledata, 198
session, 194-195
Session->client, 196
shmem_s, 197
stat, 197

day of month, 207

DNS names, getting clients, 196

E
environment variables, CGI to NSAPI
conversion, 37-38
Error directive
requirements for SAFs, 33-37
errors, finding most recent system error, 147
examples
location in the build, 52
of custom SAFs in the build, 52
wildcard patterns, 204-205

F
fc_close API function, 86
features, Proxy Server, 14
file descriptor
closing, 147-148
locking, 148
opening read-only, 148-149
opening read-write, 149
opening write-append, 149-150
reading into a buffer, 150-151
unlocking, 153-154, 154
writing from a buffer, 151
writing without interruption, 151-152

fileI/O routines, 31
filebuf_buf2sd API function, 87
filebuf close API function, 88
filebuf_getc API function, 89
filebuf_open API function, 89-90
filebuf_open_nostat API function, 90-91
filter_create API function, 91-92
filter_find API function, 92
filter_insert API function, 92-93
filter_layer API function, 93-94
filter methods, 40-43

C prototypes for, 40-41

FilterLayer data structure, 40

flush, 42

insert, 41

remove, 41

sendfile, 43

write, 42

writev, 43
filter_name API function, 94
Filter NSAPI data structure, 198
filter_remove API function, 94
FilterContext NSAPI data structure, 199
FilterLayer NSAPI data structure, 40, 199

context->data, 40

context->rq, 40

context->sn, 40

lower, 41
FilterMethods NSAPI data structure, 199-200
filters

altering Content-length, 45

functions used to implement, 49

input, 45

interface, 40

methods, 40-43

NSAPI function overview, 49

output, 45

stack position, 43-44

using, 46-48
flush API function, 42,95
FREE API function, 95-96
fs_blk_size, API function, 96
fs_blks_available, API function, 97
func_exec API function, 97-98

226 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Index

func_find API function, 98
func_insert API function, 98-99
funcs parameter, 27

G
GATEWAY_INTERFACE environment variable, 37
GMT time, getting thread-safe value, 152-153

H

headers
field in request parameter, 22
request, 210
response, 212-213
HOST environment variable, 38
HTTP
buffered streams, 213-214
compliance with HTTP/1.1, 209
HTTP/1.1 specification, 209
overview, 209
requests, 210
responses, 211-213
status codes, 211
HTTP_* environment variable, 37
HTTPS environment variable, 38
HTTPS_KEYSIZE environment variable, 38
HTTPS_SECRETKEYSIZE environment variable, 38

|

IETF home page, 209

include directory, for SAFs, 25

Init SAFs in magnus.conf
requirements for SAFs, 33-37

initializing
plugins, 27-28
SAFs, 27-28
Input

requirements for SAFs, 33-37
input filters, 45
insert API function, 41,99

IP address, getting client, 196

K

known issues, more information about, 14

L
layer parameter, 40
linking SAFs, 25-27
load-modules function, example, 27
loading
custom SAFs, 27-28
plugins, 27-28
SAFs, 27-28
localtime, getting thread-safe value, 153
log_error API function, 100

M

magnus_atrestart, API function, 101
MALLOC API function, 101-102
matching, special characters, 203-204
memory management routines, 31
month name, 207

N
NameTrans
example of custom SAE, 55-58
requirements for SAFs, 33-37
net_ip2host API function, 103
net_read API function, 103-104
net_write API function, 105-106
netbuf buf2sd API function, 106
netbuf close API function, 107
netbuf_getc API function, 107
netbuf_grab API function, 108
netbuf_open API function, 108-109
network I/O routines, 32
new features, Proxy Server, 14

227

Index

NSAPI
CGI environment variables, 37-38
filter interface, 40
function overview, 30-33
NSAPI filters
interface, 40
methods, 40-43
nsapi.h, 193
NSAPI plugins, custom, 15
nsapi_pvt.h, 194

(0]

obj.conf, adding directives for new SAFs, 28-29

ObjectType
example of custom SAE, 61-63
requirements for SAFs, 33-37

order, of filters in filter stack, 43-44

Output
example of custom SAF, 63-69
requirements for SAFs, 33-37

output filters, 45

P
param_create API function, 111
param_free API function, 111-112
parameter block
manipulation routines, 30
SAF parameter, 20-21
parameters, for SAFs, 20-22
PATH_INFO environment variable, 37
path name, converting UNIX-style tolocal, 155

PATH_TRANSLATED environment variable, 37

PathCheck
example of custom SAF, 58-61
requirements for SAFs, 33-37
pb_entry NSAPI data structure, 195
pb_param NSAPI data structure, 195
pb SAF parameter, 20-21
pblock, NSAPI data structure, 195
pblock_copy API function, 112
pblock_create API function, 112-113

pblock_dup API function, 113
pblock_find API function, 113-114
pblock_findlong, API function, 114
pblock_findval API function, 115
pblock_free API function, 115-116
pblock_nlinsert, API function, 116
pblock_nninsert API function, 116-117
pblock_nvinsert API function, 117-118
pblock_pb2env API function, 118
pblock_pblock2str API function, 118-119
pblock_pinsert API function, 119
pblock_remove API function, 119-120
pblock_replace_name, API function, 120
pblock_str2pblock API function, 121
PERM_FREE API function, 122
PERM_MALLOC API function, 121-122,123
PERM_STRDUP API function, 124-125
platforms, supported, 14
plugins

compatibility issues, 20, 194

creating, 19

instructing the server to use, 28-29

loading and initializing, 27-28

private data structures, 194
prepare_nsapi_thread API function, 125
private data structures, 194
protocol_dump822 API function, 125-126
protocol_set_finfo API function, 128-129
protocol_start_response API function, 129-130
protocol_status API function, 130-131
protocol_uri2url API function, 131
protocol utility routines, 30-31
Proxy Server, features, 14

Q
QUERY environment variable, 38
QUERY_STRING environment variable, 37

R
read API function, 42,132-133
REALLOC API function, 133-134

228 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Index

Release Notes, 14
REMOTE_ADDR environment variable, 37
REMOTE_HOST environment variable, 37
REMOTE_IDENT environment variable, 37
REMOTE_USER environment variable, 37
remove API function, 41,134
replace.c, 63
REQ_ABORTED response code, 23
REQ_EXIT response code, 23
REQ_NOACTION response code, 23
REQ_PROCEED response code, 22
reqpb, field in request parameter, 22
request

NSAPI data structure, 196

SAF parameter, 21-22
request_create, API function, 134-135
request_free, API function, 135
request-handling process, 33-37
request_header API function, 135-136
request headers, 210
REQUEST_METHOD environment variable, 37
request-response model, 209
requests, HTTP, 210
requirements for SAFs, 33-37

AddLog, 36

AuthTrans, 34

Error directive, 36

Init, 34

Input, 35

NameTrans, 34

ObjectType, 35

Output, 35

PathCheck, 35

Service, 35-36
response headers, 212-213
responses, HTTP, 211-213
result codes, 22-23
rq->headers, 22
rq->reqpb, 22
rq->srvhdrs, 22
rq->vars, 21
rq SAF parameter, 21-22

S
s, 196
SAFs

compiling and linking, 25-27

include directory, 25

interface, 20

loading and initializing, 27-28

parameters, 20-22

result codes, 22-23

return values, 22

signature, 20

testing, 29
SCRIPT_NAME environment variable, 37
sem_grab, API function, 136-137
sem_init, API function, 137
sem_release, API function, 137-138
sem_terminate, API function, 138
sem_tgrab, API function, 138-139
semaphore

creating, 137

deallocating, 138

gaining exclusive access, 136-137

releasing, 137-138

testing for exclusive access, 138-139
sendfile API function, 43,139
sendfiledata NSAPI data structure, 198
server, instructions for using plugins, 28-29
SERVER_NAME environment variable, 38
SERVER_PORT environment variable, 38
SERVER_PROTOCOL environment variable, 38
SERVER_SOFTWARE environment variable, 38
SERVER_URL environment variable, 38
Service

directives for new SAFs (plugins), 29

example of custom SAE, 69-72

requirements for SAFs, 33-37
session

defined, 194

NSAPI data structure, 194-195

resolving the IP address of, 140-141, 141-142
Session->client NSAPI data structure, 196
session_create, API function, 140
session_dns API function, 140-141
session_free, API function, 141

229

Index

session_maxdns API function, 141-142

session SAF parameter, 21
session structure
creating, 140
freeing, 141
shared memory
allocating, 145
freeing, 145-146
shell expression

comparing (case-sensitive) to a string, 142-143,

143-144

validating, 144
shexp_casecmp API function, 142
shexp_cmp API function, 142-143
shexp_match API function, 143-144
shexp_valid API function, 144
shlib parameter, 27
shmem_alloc, API function, 145
shmem_free, API function, 145-146
shmem_s NSAPI data structure, 197
sn->client, 21
sn->csd, 21
sn SAF parameter, 21
socket

closing, 107

reading from, 103

sending a buffer to, 106

sending file buffer to, 87

writing to, 105
sprintf, see util_sprintf, 182
srvhdrs, field in request parameter, 22
stat NSAPI data structure, 197
status codes, 211
STRDUP API function, 146
streams, buffered, 213-214
string, creating a copy of, 146
supported platforms, 14
system_errmsg API function, 147
system_fclose API function, 147-148
system_flock API function, 148

system_fopenRO API function, 148-149

system_fopenRW API function, 149

system_fopenWA API function, 149-150

system_fread API function, 150-151

system_fwrite API function, 151
system_fwrite_atomic API function, 151-152
system_gmtime API function, 152-153
system_localtime API function, 153
system_lseek API function, 153-154
system_rename API function, 154

system requirements, 14

system_ulock API function, 153-154, 154
system_unix2local API function, 155
systhread_attach API function, 156
systhread_current API function, 156
systhread_getdata API function, 157
systhread_newkey, API function, 147
systhread_newkey API function, 158
systhread_setdata API function, 158-159
systhread_sleep API function, 159
systhread_start API function, 159-160
systhread_terminate, API function, 160
systhread_timerset, API function, 147
systhread_timerset API function, 160-161

T
testing custom SAFs, 29
thread
allocating a key for, 147, 158
creating, 159-160
getting a pointer to, 156
getting data belonging to, 157
putting to sleep, 159
setting data belonging to, 158-159
setting interrupt timer, 147, 160-161
terminating, 160
thread routines, 32

U

unicode, 33,187

util_can_exec API function, 162-163
util_chdir2path API function, 163
util_cookie_find API function, 163-164
util_does_process_exist, API function, 164
util_env_create, API function, 164-165

230 Oracle iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide « June 2010

Index

util_env_find API function, 165
util_env_free API function, 166
util_env_replace API function, 166
util_env_str API function, 167
util_get_current_gmt, API function, 167
util_get_int_from_file, API function, 171
util_get_long_from_file, API function, 169-170
util_get_string_from_file, API function, 171
util_getline API function, 171-172
util_hostname API function, 172
util_is mozilla API function, 172-173
util_is_url API function, 173
util_itoa API function, 173-174
util_later_than API function, 174
util_make_filename, API function, 174-175
util_make_gmt, API function, 175
util_make_local, API function, 175-176
util_move_dir, API function, 176
util_move_file, API function, 176-177
util_parse_http_time, API function, 177
util_put_int_to_file, API function, 177-178
util_put_long to_file, API function, 178
util_put_string to_file, API function, 179-180
util_sect_id, API function, 180
util_sh_escape API function, 180-181
util_snprintf API function, 181
util_sprintf API function, 182
util_strcasecmp API function, 182-183
util_strftime API function, 183,207
util_strncasecmp API function, 184
util_uri_escape API function, 185
util_uri_is_evil API function, 185-186
util_uri_parse API function, 186
util_uri_unescape API function, 186-187
util_url_fix_hostname

API function, 188
util_vsnprintf API function, 189
util_vsprintf API function, 189-190
utility routines, 32-33

Vv

vars, fleld in request parameter, 21
vsnprintf, see util_vsnprintf, 189

vsprintf, see util_vsprintf, 189-190

w

weekday, 207

workarounds, more information about, 14
write API function, 42,190-191

writev API function, 43,191-192

232

	Oracle® iPlanet Web Proxy Server 4.0.14 NSAPI Developer's Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	The Proxy Server Documentation Set
	Documentation Conventions
	Typographic Conventions
	Symbol Conventions
	Shell Prompts in Command Examples

	Default Paths and File Names
	Documentation, Support, and Training
	Searching Oracle Product Documentation
	Third-Party Web Site References

	Creating Custom SAFs
	Future Compatibility Issues
	SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (session)
	rq (request)

	Result Codes
	Creating and Using Custom SAFs
	To create a custom SAF
	Writing the Source Code
	Compiling and Linking
	Include Directory and nsapi.h File
	Linker Libraries
	Linker Commands and Options for Generating a Shared Object
	Additional Linker Flags
	Compiler Flags

	Loading and Initializing the SAF
	Instructing the Server to Call the SAFs
	Restarting the Server
	Testing the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Input SAFs
	Output SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs
	Connect
	DNS
	Filter
	Route

	CGI to NSAPI Conversion

	Creating Custom Filters
	Future Compatibility Issues
	NSAPI Filter Interface
	Filter Methods
	C Prototypes for Filter Methods
	insert
	See Also

	remove
	See Also

	flush
	See Also

	read
	See Also

	write
	See Also

	writev
	See Also

	sendfile
	See Also

	Position of Filters in the Filter Stack
	Filters That Alter Content-Length
	Creating and Using Custom Filters
	To create a custom filter
	Writing the Source Code
	Compiling and Linking
	Loading and Initializing the Filter
	Instructing the Server to Insert the Filter
	Restarting the Server
	Testing the Filter

	Overview of NSAPI Functions for Filter Development

	Examples of Custom SAFs and Filters
	Examples in the Build
	AuthTrans Example
	Installing the AuthTrans Example
	AuthTrans Example Source Code

	NameTrans Example
	Installing the NameTrans Example
	NameTrans Example Source Code

	PathCheck Example
	Installing the PathCheck Example
	PathCheck Example Source Code

	ObjectType Example
	Installing the ObjectType Example
	ObjectType Example Source Code

	Output Example
	Installing the Output Example
	Output Example Source Code

	Service Example
	Installing the Service Example
	Service Example Source Code
	More Complex Service Example

	AddLog Example
	Installing the AddLog Example
	AddLog Example Source Code

	NSAPI Function Reference
	NSAPI Functions (in Alphabetical Order)
	C
	cache_digest
	Syntax
	Returns
	Parameters
	See Also

	cache_filename
	See Also

	cache_fn_to_dig
	Syntax
	Returns
	Parameters

	CALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	ce_free
	Syntax
	Returns
	Parameters
	See Also

	ce_lookup
	Syntax
	Returns
	Parameters
	See Also

	cif_write_entry
	Syntax
	Returns
	Parameters

	cinfo_find
	Syntax
	Returns
	Parameters

	condvar_init
	Syntax
	Returns
	Parameters
	See Also

	condvar_notify
	Syntax
	Returns
	Parameters
	See Also

	condvar_terminate
	Warning
	Syntax
	Returns
	Parameters
	See Also

	condvar_wait
	Syntax
	Returns
	Parameters
	See Also

	crit_enter
	Syntax
	Returns
	Parameters
	See Also

	crit_exit
	Syntax
	Returns
	Parameters
	See Also

	crit_init
	Warning
	Syntax
	Returns
	Parameters
	See Also

	crit_terminate
	Syntax
	Returns
	Parameters
	See Also

	D
	daemon_atrestart
	Syntax
	Returns
	Parameters
	Example

	dns_set_hostent
	Syntax
	Returns
	Parameters
	Example

	F
	fc_close
	Syntax
	Returns
	Parameters

	fc_open
	Syntax
	Returns
	Parameters

	filebuf_buf2sd
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_close
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_getc
	Syntax
	Returns
	Parameters
	See Also

	filebuf_open
	Syntax
	Returns
	Parameters
	Example
	See Also

	filebuf_open_nostat
	Syntax
	Returns
	Parameters
	Example
	See Also

	filter_create
	Syntax
	Returns
	Parameters
	Example

	filter_find
	Syntax
	Returns
	Parameters

	filter_insert
	Syntax
	Returns
	Parameters

	filter_layer
	Syntax
	Returns
	Parameters

	filter_name
	Syntax
	Returns
	Parameters

	filter_remove
	Syntax
	Returns
	Parameters

	flush
	Syntax
	Returns
	Parameters
	Example
	See Also

	FREE
	Syntax
	Returns
	Parameters
	Example
	See Also

	fs_blk_size
	Syntax
	Returns
	Parameters
	See Also

	fs_blks_avail
	Syntax
	Returns
	Parameters
	See Also

	func_exec
	Syntax
	Returns
	Parameters
	See Also

	func_find
	Syntax
	Returns
	Parameters
	Example
	See Also

	func_insert
	Syntax
	Returns
	Parameters
	Example
	See Also

	I
	insert
	Syntax
	Returns
	Parameters
	Example

	L
	log_error
	Syntax
	Returns
	Parameters
	Example
	See Also

	M
	magnus_atrestart
	Syntax
	Returns
	Parameters
	Example

	MALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	N
	net_flush
	Syntax
	Returns
	Parameters
	Example
	See Also

	net_ip2host
	Syntax
	Returns
	Parameters

	net_read
	Syntax
	Returns
	Parameters
	See Also

	net_sendfile
	Syntax
	Returns
	Parameters
	Example
	See Also

	net_write
	Syntax
	Returns
	Parameters
	Example
	See Also

	netbuf_buf2sd
	Syntax
	Returns
	Parameters
	See Also

	netbuf_close
	Syntax
	Returns
	Parameters
	See Also

	netbuf_getc
	Syntax
	Returns
	Parameters
	See Also

	netbuf_grab
	Syntax
	Returns
	Parameters
	See Also

	netbuf_open
	Syntax
	Returns
	Parameters
	See Also

	nsapi_module_init
	Syntax
	Returns
	Parameters

	NSAPI_RUNTIME_VERSION
	Syntax
	Example
	See Also

	NSAPI_VERSION
	Syntax
	Example
	See Also

	P
	param_create
	Syntax
	Returns
	Parameters
	Example
	See Also

	param_free
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_copy
	Syntax
	Returns
	Parameters
	See Also

	pblock_create
	Syntax
	Returns
	Parameters
	See Also

	pblock_dup
	Syntax
	Returns
	Parameters
	See Also

	pblock_find
	Syntax
	Returns
	Parameters
	See Also

	pblock_findlong
	Syntax
	Returns
	Parameters
	See Also

	pblock_findval
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_free
	Syntax
	Returns
	Parameters
	See Also

	pblock_nlinsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_nninsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_nvinsert
	Syntax
	Returns
	Parameters
	Example
	See Also

	pblock_pb2env
	Syntax
	Returns
	Parameters
	See Also

	pblock_pblock2str
	Syntax
	Returns
	Parameters
	See Also

	pblock_pinsert
	Syntax
	Returns
	Parameters
	See Also

	pblock_remove
	Syntax
	Returns
	Parameters
	See Also

	pblock_replace_name
	Syntax
	Returns
	Parameters
	See Also

	pblock_str2pblock
	Syntax
	Returns
	Parameters
	See Also

	PERM_CALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_FREE
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_MALLOC
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_REALLOC
	Warning
	Syntax
	Returns
	Parameters
	Example
	See Also

	PERM_STRDUP
	Syntax
	Returns
	Parameters
	See Also

	prepare_nsapi_thread
	Syntax
	Returns
	Parameters
	See Also

	protocol_dump822
	Syntax
	Returns
	Parameters
	See Also

	protocol_finish_request
	Syntax
	Returns
	Parameters
	See Also

	protocol_handle_session
	Syntax
	Parameters
	See Also

	protocol_parse_request
	Syntax
	Returns
	Parameters
	See Also

	protocol_scan_headers
	Syntax
	Returns
	Parameters
	See Also

	protocol_set_finfo
	Syntax
	Returns
	Parameters
	See Also

	protocol_start_response
	Syntax
	Returns
	Parameters
	Example
	See Also

	protocol_status
	Syntax
	Returns
	Parameters
	Example
	See Also

	protocol_uri2url
	Syntax
	Returns
	Parameters
	See Also

	protocol_uri2url_dynamic
	Syntax
	Returns
	Parameters
	See Also

	R
	read
	Syntax
	Returns
	Parameters
	Example
	See Also

	REALLOC
	Warning
	Syntax
	Returns
	Parameters
	Example
	See Also

	remove
	Syntax
	Returns
	Parameters
	See Also

	request_create
	Syntax
	Returns
	Parameters
	See Also

	request_free
	Syntax
	Returns
	Parameters
	See Also

	request_header
	Syntax
	Returns
	Parameters
	See Also

	S
	sem_grab
	Syntax
	Returns
	Parameters
	See Also

	sem_init
	Syntax
	Returns
	Parameters
	See Also

	sem_release
	Syntax
	Returns
	Parameters
	See Also

	sem_terminate
	Syntax
	Returns
	Parameters
	See Also

	sem_tgrab
	Syntax
	Returns
	Parameters
	See Also

	sendfile
	Syntax
	Returns
	Parameters
	Example
	See Also

	session_create
	Syntax
	Returns
	Parameters
	See Also

	session_dns
	Syntax
	Returns
	Parameters

	session_free
	Syntax
	Returns
	See Also
	Parameters

	session_maxdns
	Syntax
	Returns
	Parameters

	shexp_casecmp
	Syntax
	Returns
	Parameters
	See Also

	shexp_cmp
	Syntax
	Returns
	Parameters
	Example
	See Also

	shexp_match
	Syntax
	Returns
	Parameters
	See Also

	shexp_valid
	Syntax
	Returns
	Parameters
	See Also

	shmem_alloc
	Syntax
	Returns
	Parameters
	See Also

	shmem_free
	Syntax
	Returns
	Parameters
	See Also

	STRDUP
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_errmsg
	Syntax
	Returns
	Parameters
	See Also

	system_fclose
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_flock
	Syntax
	Returns
	Parameters
	See Also

	system_fopenRO
	Syntax
	Returns
	Parameters
	See Also

	system_fopenRW
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_fopenWA
	Syntax
	Returns
	Parameters
	See Also

	system_fread
	Syntax
	Returns
	Parameters
	See Also

	system_fwrite
	Syntax
	Returns
	Parameters
	See Also

	system_fwrite_atomic
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_gmtime
	Syntax
	Returns
	Parameters
	Example
	See Also

	system_localtime
	Syntax
	Returns
	Parameters
	See Also

	system_lseek
	Syntax
	Returns
	Parameters
	See Also

	system_rename
	Syntax
	Returns
	Parameters

	system_ulock
	Syntax
	Returns
	Parameters
	See Also

	system_unix2local
	Syntax
	Returns
	Parameters
	See Also

	systhread_attach
	Syntax
	Returns
	Parameters
	See Also

	systhread_current
	Syntax
	Returns
	Parameters
	See Also

	systhread_getdata
	Syntax
	Returns
	Parameters
	See Also

	systhread_init
	Syntax
	Returns
	Parameters
	See also

	systhread_newkey
	Syntax
	Returns
	Parameters
	See Also

	systhread_setdata
	Syntax
	Returns
	Parameters
	See Also

	systhread_sleep
	Syntax
	Returns
	Parameters
	See Also

	systhread_start
	Syntax
	Returns
	Parameters
	See Also

	systhread_terminate
	Syntax
	Returns
	Parameters

	See Also
	systhread_timerset
	Syntax
	Returns
	Parameters
	See Also

	U
	USE_NSAPI_VERSION
	Syntax
	Example
	See Also

	util_can_exec
	UNIX Only
	Syntax
	Returns
	Parameters
	See Also

	util_chdir2path
	Syntax
	Returns
	Parameters

	util_cookie_find
	Syntax
	Returns
	Parameters

	util_does_process_exist
	Syntax
	Returns
	Parameters
	See Also

	util_env_create
	Syntax
	Returns
	Parameters
	See Also

	util_env_find
	Syntax
	Returns
	Parameters
	See Also

	util_env_free
	Syntax
	Returns
	Parameters
	See Also

	util_env_replace
	Syntax
	Returns
	Parameters
	See Also

	util_env_str
	Syntax
	Returns
	Parameters
	See Also

	util_get_current_gmt
	Syntax
	Returns
	Parameters
	See Also

	util_get_int_from_aux_file
	Syntax
	Returns
	Parameters
	See Also

	util_get_int_from_file
	Syntax
	Returns
	Parameters
	See Also

	util_get_long_from_aux_file
	Syntax
	Returns
	Parameters
	See Also

	util_get_long_from_file
	Syntax
	Returns
	Parameters
	See Also

	util_get_string_from_aux_file
	Syntax
	Returns
	Parameters
	See Also

	util_get_string_from_file
	Syntax
	Returns
	Parameters
	See Also

	util_getline
	Syntax
	Returns
	Parameters
	See Also

	util_hostname
	Syntax
	Returns
	Parameters

	util_is_mozilla
	Syntax
	Returns
	Parameters
	See Also

	util_is_url
	Syntax
	Returns
	Parameters
	See Also

	util_itoa
	Syntax
	Returns
	Parameters

	util_later_than
	Syntax
	Returns
	Parameters
	See Also

	util_make_filename
	Syntax
	Returns
	Parameters

	util_make_gmt
	Syntax
	Returns
	Parameters
	See Also

	util_make_local
	Syntax
	Returns
	Parameters
	See Also

	util_move_dir
	Syntax
	Returns
	Parameters
	See Also

	util_move_file
	Syntax
	Returns
	Parameters
	See Also

	util_parse_http_time
	Syntax
	Returns
	See Also

	util_put_int_to_file
	Syntax
	Returns
	Parameters
	See Also

	util_put_long_to_file
	Syntax
	Returns
	Parameters
	See Also

	util_put_string_to_aux_file
	Syntax
	Returns
	Parameters
	See Also

	util_put_string_to_file
	Syntax
	Returns
	Parameters
	See Also

	util_sect_id
	Syntax
	Returns
	Parameters

	util_sh_escape
	Syntax
	Returns
	Parameters
	See Also

	util_snprintf
	Syntax
	Returns
	Parameters
	See Also

	util_sprintf
	Syntax
	Returns
	Parameters
	Example
	See Also

	util_strcasecmp
	Syntax
	Returns
	Parameters
	See Also

	util_strftime
	Syntax
	Returns
	Parameters
	See Also

	util_strncasecmp
	Syntax
	Returns
	Parameters
	See Also

	util_uri_check
	Syntax
	Returns
	Parameters

	util_uri_escape
	Syntax
	Returns
	Parameters
	See Also

	util_uri_is_evil
	Syntax
	Returns
	Parameters
	See Also

	util_uri_parse
	Syntax
	Returns
	Parameters
	See Also

	util_uri_unescape
	Syntax
	Returns
	Parameters
	See Also

	util_url_cmp
	Syntax
	Returns
	Parameters
	See Also

	util_url_fix_host name
	Syntax
	Returns
	Parameters
	See Also

	util_url_has_FQDN
	Syntax
	Returns
	Parameters

	util_vsnprintf
	Syntax
	Returns
	Parameters
	See Also

	util_vsprintf
	Syntax
	Returns
	Parameters
	See Also

	W
	write
	Syntax
	Returns
	Parameters
	Example

	writev
	Syntax
	Returns
	Parameters
	Example
	See Also

	Data Structure Reference
	Privatization of Some Data Structures
	Session
	pblock
	pb_entry
	pb_param
	Session->client
	Request
	stat
	shmem_s
	cinfo
	sendfiledata
	Filter
	FilterContext
	FilterLayer
	FilterMethods
	CacheEntry Data Structure
	CacheState Data Structure
	ConnectMode Data Structure

	Using Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Time Formats
	Time format strings

	Hypertext Transfer Protocol
	HTTP Compliance
	HTTP Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Server Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Buffered Streams

	Alphabetical List of NSAPI Functions and Macros
	Index

