MySQL AI User Guide
This topic describes how to generate recommended items for users.
For known users and known items, the output includes a list of items that the user will most likely give a high rating and the predicted rating or ranking.
For a new user, and an explicit feedback model, the prediction is the global top K items that received the average highest ratings.
For a new user, and an implicit feedback model, the prediction is the global top K items with the highest number of interactions.
For a user who has tried all known items, the prediction
is an empty list because it is not possible to recommend
any other items. Set remove_seen to
false to repeat existing interactions
from the training table.
Review and complete the following tasks:
When you run
ML_PREDICT_TABLE
to generate item recommendations, a default value of three
items are recommended. To change this value, set the
topk parameter.
You have the option to include item and user metadata when generating predictions. These steps include that metadata in the command to generate predictions.
If not already done, load the model. You can use the
session variable for the model that is valid for the
duration of the connection. Alternatively, you can use
the model handle previously set. For the option to set
the user name, you can set it to
NULL.
The following example uses the session variable.
mysql> CALL sys.ML_MODEL_LOAD(@model, NULL);
The following example uses the model handle.
mysql> CALL sys.ML_MODEL_LOAD('recommendation_use_case', NULL);
Make predictions for the test dataset by using the
ML_PREDICT_TABLE
routine.
mysql> CALL sys.ML_PREDICT_TABLE(table_name, model_handle, output_table_name), [options]);
Replace table_name,
model_handle, and
output_table_name with your
own values. Add options as
needed.
You have the option to specify the input table and output table as the same table if specific conditions are met. See Input Tables and Output Tables to learn more.
The following example runs
ML_PREDICT_TABLE
on the testing dataset previously created and sets the
topk parameter to 2, so only two
items are recommended.
mysql> CALL sys.ML_PREDICT_TABLE('recommendation_data.testing_dataset', @model, 'recommendation_data.item_recommendations',
JSON_OBJECT('recommend', 'items',
'topk', 2,
'user_metadata', JSON_OBJECT('table_name', 'recommendation_data.users'),
'item_metadata', JSON_OBJECT('table_name', 'recommendation_data.items')));Where:
recommendation_data.testing_dataset
is the fully qualified name of the input table that
contains the data to generate predictions for
(database_name.table_name).
@model is the session variable
for the model handle.
recommendation_data.item_recommendations
is the fully qualified name of the output table with
recommendations
(database_name.table_name).
JSON_OBJECT('recommend', 'items', 'topk',
2) sets the recommendation task to
recommend items to users. A maximum of two items to
recommend is set.
'user_metadata', JSON_OBJECT('table_name',
'recommendation_data.users') specifies the
table that has user metadata to use when generating
predictions.
'item_metadata', JSON_OBJECT('table_name',
'recommendation_data.items') specifies the
table that has item metadata to use when generating
predictions.
Query the output table to review the recommended top two items for each user in the output table.
mysql> SELECT * from item_recommendations;
+---------+---------+--------+--------------------------------------------------------------------+
| user_id | item_id | rating | ml_results |
+---------+---------+--------+--------------------------------------------------------------------+
| 1 | 2 | 4.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}} |
| 1 | 4 | 7.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}} |
| 1 | 6 | 1.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}} |
| 1 | 8 | 3.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.7, 3.48]}} |
| 10 | 18 | 1.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}} |
| 10 | 2 | 6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}} |
| 10 | 5 | 3.0 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}} |
| 10 | 6 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.9, 4.65]}} |
| 2 | 1 | 5.0 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}} |
| 2 | 3 | 8.0 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}} |
| 2 | 5 | 2.5 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}} |
| 2 | 7 | 6.5 | {"predictions": {"item_id": ["3", "17"], "rating": [4.65, 3.38]}} |
| 3 | 18 | 7.0 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}} |
| 3 | 2 | 3.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}} |
| 3 | 5 | 6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}} |
| 3 | 8 | 2.5 | {"predictions": {"item_id": ["20", "3"], "rating": [4.39, 4.17]}} |
| 4 | 1 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}} |
| 4 | 3 | 8.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}} |
| 4 | 6 | 2.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}} |
| 4 | 7 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.71, 5.42]}} |
| 5 | 12 | 5.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5 | 2 | 7.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5 | 4 | 1.5 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 5 | 6 | 4.0 | {"predictions": {"item_id": ["20", "18"], "rating": [5.05, 3.74]}} |
| 6 | 3 | 6.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}} |
| 6 | 5 | 1.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}} |
| 6 | 7 | 4.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}} |
| 6 | 8 | 7.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.25, 4.98]}} |
| 7 | 1 | 6.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}} |
| 7 | 4 | 3.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}} |
| 7 | 5 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}} |
| 7 | 9 | 8.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.41, 5.13]}} |
| 8 | 2 | 8.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8 | 4 | 2.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8 | 6 | 5.0 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 8 | 9 | 3.5 | {"predictions": {"item_id": ["20", "18"], "rating": [4.53, 3.35]}} |
| 9 | 1 | 5.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}} |
| 9 | 3 | 8.0 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}} |
| 9 | 7 | 2.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}} |
| 9 | 8 | 5.5 | {"predictions": {"item_id": ["20", "3"], "rating": [5.09, 4.83]}} |
+---------+---------+--------+--------------------------------------------------------------------+
40 rows in set (0.0387 sec)
Review the recommended items in the
ml_results column next to
item_id. For example, user 1 is
predicted to like items 20 and 18. Review the ratings in
the ml_results column to review the
expected ratings for each recommended item. For example,
user 1 is expected to rate item 20 with a value of 4.7,
and item 18 with a value of 3.48.
Learn how to generate different types of recommendations:
Learn how to Score a Recommendation Model.