MySQL 9.3 Reference Manual Including MySQL NDB Cluster 9.3
You can extract metadata about schema objects managed by
InnoDB
using InnoDB
INFORMATION_SCHEMA
tables. This information
comes from the data dictionary. Traditionally, you would get this
type of information using the techniques from
Section 17.17, “InnoDB Monitors”, setting up
InnoDB
monitors and parsing the output from the
SHOW ENGINE INNODB
STATUS
statement. The InnoDB
INFORMATION_SCHEMA
table interface allows you
to query this data using SQL.
InnoDB
INFORMATION_SCHEMA
schema object tables include the tables listed here:
INNODB_DATAFILES
INNODB_TABLESTATS
INNODB_FOREIGN
INNODB_COLUMNS
INNODB_INDEXES
INNODB_FIELDS
INNODB_TABLESPACES
INNODB_TABLESPACES_BRIEF
INNODB_FOREIGN_COLS
INNODB_TABLES
The table names are indicative of the type of data provided:
INNODB_TABLES
provides metadata
about InnoDB
tables.
INNODB_COLUMNS
provides metadata
about InnoDB
table columns.
INNODB_INDEXES
provides metadata
about InnoDB
indexes.
INNODB_FIELDS
provides metadata
about the key columns (fields) of InnoDB
indexes.
INNODB_TABLESTATS
provides a view
of low-level status information about
InnoDB
tables that is derived from
in-memory data structures.
INNODB_DATAFILES
provides data
file path information for InnoDB
file-per-table and general tablespaces.
INNODB_TABLESPACES
provides
metadata about InnoDB
file-per-table,
general, and undo tablespaces.
INNODB_TABLESPACES_BRIEF
provides
a subset of metadata about InnoDB
tablespaces.
INNODB_FOREIGN
provides metadata
about foreign keys defined on InnoDB
tables.
INNODB_FOREIGN_COLS
provides
metadata about the columns of foreign keys that are defined on
InnoDB
tables.
InnoDB
INFORMATION_SCHEMA
schema object tables can be joined together through fields such as
TABLE_ID
, INDEX_ID
, and
SPACE
, allowing you to easily retrieve all
available data for an object you want to study or monitor.
Refer to the InnoDB
INFORMATION_SCHEMA
documentation for information about the columns of each table.
Example 17.2 InnoDB INFORMATION_SCHEMA Schema Object Tables
This example uses a simple table (t1
) with a
single index (i1
) to demonstrate the type of
metadata found in the InnoDB
INFORMATION_SCHEMA
schema object tables.
Create a test database and table t1
:
mysql>CREATE DATABASE test;
mysql>USE test;
mysql>CREATE TABLE t1 (
col1 INT,
col2 CHAR(10),
col3 VARCHAR(10))
ENGINE = InnoDB;
mysql>CREATE INDEX i1 ON t1(col1);
After creating the table t1
, query
INNODB_TABLES
to locate the
metadata for test/t1
:
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLES WHERE NAME='test/t1' \G
*************************** 1. row ***************************
TABLE_ID: 71
NAME: test/t1
FLAG: 1
N_COLS: 6
SPACE: 57
ROW_FORMAT: Compact
ZIP_PAGE_SIZE: 0
INSTANT_COLS: 0
Table t1
has a
TABLE_ID
of 71. The
FLAG
field provides bit level information
about table format and storage characteristics. There are
six columns, three of which are hidden columns created by
InnoDB
(DB_ROW_ID
,
DB_TRX_ID
, and
DB_ROLL_PTR
). The ID of the table's
SPACE
is 57 (a value of 0 would indicate
that the table resides in the system tablespace). The
ROW_FORMAT
is Compact.
ZIP_PAGE_SIZE
only applies to tables with
a Compressed
row format.
INSTANT_COLS
shows number of columns in
the table prior to adding the first instant column using
ALTER TABLE ... ADD
COLUMN
with ALGORITHM=INSTANT
.
Using the TABLE_ID
information from
INNODB_TABLES
, query the
INNODB_COLUMNS
table for
information about the table's columns.
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_COLUMNS where TABLE_ID = 71\G
*************************** 1. row ***************************
TABLE_ID: 71
NAME: col1
POS: 0
MTYPE: 6
PRTYPE: 1027
LEN: 4
HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
*************************** 2. row ***************************
TABLE_ID: 71
NAME: col2
POS: 1
MTYPE: 2
PRTYPE: 524542
LEN: 10
HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
*************************** 3. row ***************************
TABLE_ID: 71
NAME: col3
POS: 2
MTYPE: 1
PRTYPE: 524303
LEN: 10
HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
In addition to the TABLE_ID
and column
NAME
,
INNODB_COLUMNS
provides the
ordinal position (POS
) of each column
(starting from 0 and incrementing sequentially), the column
MTYPE
or “main type” (6 =
INT, 2 = CHAR, 1 = VARCHAR), the PRTYPE
or “precise type” (a binary value with bits
that represent the MySQL data type, character set code, and
nullability), and the column length
(LEN
). The HAS_DEFAULT
and DEFAULT_VALUE
columns only apply to
columns added instantly using
ALTER TABLE ... ADD
COLUMN
with ALGORITHM=INSTANT
.
Using the TABLE_ID
information from
INNODB_TABLES
once again, query
INNODB_INDEXES
for information
about the indexes associated with table
t1
.
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_INDEXES WHERE TABLE_ID = 71 \G
*************************** 1. row ***************************
INDEX_ID: 111
NAME: GEN_CLUST_INDEX
TABLE_ID: 71
TYPE: 1
N_FIELDS: 0
PAGE_NO: 3
SPACE: 57
MERGE_THRESHOLD: 50
*************************** 2. row ***************************
INDEX_ID: 112
NAME: i1
TABLE_ID: 71
TYPE: 0
N_FIELDS: 1
PAGE_NO: 4
SPACE: 57
MERGE_THRESHOLD: 50
INNODB_INDEXES
returns data for
two indexes. The first index is
GEN_CLUST_INDEX
, which is a clustered
index created by InnoDB
if the table does
not have a user-defined clustered index. The second index
(i1
) is the user-defined secondary index.
The INDEX_ID
is an identifier for the
index that is unique across all databases in an instance.
The TABLE_ID
identifies the table that
the index is associated with. The index
TYPE
value indicates the type of index (1
= Clustered Index, 0 = Secondary index). The
N_FILEDS
value is the number of fields
that comprise the index. PAGE_NO
is the
root page number of the index B-tree, and
SPACE
is the ID of the tablespace where
the index resides. A nonzero value indicates that the index
does not reside in the system tablespace.
MERGE_THRESHOLD
defines a percentage
threshold value for the amount of data in an index page. If
the amount of data in an index page falls below the this
value (the default is 50%) when a row is deleted or when a
row is shortened by an update operation,
InnoDB
attempts to merge the index page
with a neighboring index page.
Using the INDEX_ID
information from
INNODB_INDEXES
, query
INNODB_FIELDS
for information
about the fields of index i1
.
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FIELDS where INDEX_ID = 112 \G
*************************** 1. row ***************************
INDEX_ID: 112
NAME: col1
POS: 0
INNODB_FIELDS
provides the
NAME
of the indexed field and its ordinal
position within the index. If the index (i1) had been
defined on multiple fields,
INNODB_FIELDS
would provide
metadata for each of the indexed fields.
Using the SPACE
information from
INNODB_TABLES
, query
INNODB_TABLESPACES
table for
information about the table's tablespace.
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESPACES WHERE SPACE = 57 \G
*************************** 1. row ***************************
SPACE: 57
NAME: test/t1
FLAG: 16417
ROW_FORMAT: Dynamic
PAGE_SIZE: 16384
ZIP_PAGE_SIZE: 0
SPACE_TYPE: Single
FS_BLOCK_SIZE: 4096
FILE_SIZE: 114688
ALLOCATED_SIZE: 98304
AUTOEXTEND_SIZE: 0
SERVER_VERSION: 8.4.0
SPACE_VERSION: 1
ENCRYPTION: N
STATE: normal
In addition to the SPACE
ID of the
tablespace and the NAME
of the associated
table, INNODB_TABLESPACES
provides tablespace FLAG
data, which is
bit level information about tablespace format and storage
characteristics. Also provided are tablespace
ROW_FORMAT
, PAGE_SIZE
,
and several other tablespace metadata items.
Using the SPACE
information from
INNODB_TABLES
once again, query
INNODB_DATAFILES
for the
location of the tablespace data file.
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_DATAFILES WHERE SPACE = 57 \G
*************************** 1. row ***************************
SPACE: 57
PATH: ./test/t1.ibd
The datafile is located in the test
directory under MySQL's data
directory.
If a
file-per-table
tablespace were created in a location outside the MySQL data
directory using the DATA DIRECTORY
clause
of the CREATE TABLE
statement, the tablespace PATH
would be a
fully qualified directory path.
As a final step, insert a row into table
t1
(TABLE_ID = 71
) and
view the data in the
INNODB_TABLESTATS
table. The
data in this table is used by the MySQL optimizer to
calculate which index to use when querying an
InnoDB
table. This information is derived
from in-memory data structures.
mysql>INSERT INTO t1 VALUES(5, 'abc', 'def');
Query OK, 1 row affected (0.06 sec) mysql>SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESTATS where TABLE_ID = 71 \G
*************************** 1. row *************************** TABLE_ID: 71 NAME: test/t1 STATS_INITIALIZED: Initialized NUM_ROWS: 1 CLUST_INDEX_SIZE: 1 OTHER_INDEX_SIZE: 0 MODIFIED_COUNTER: 1 AUTOINC: 0 REF_COUNT: 1
The STATS_INITIALIZED
field indicates
whether or not statistics have been collected for the table.
NUM_ROWS
is the current estimated number
of rows in the table. The
CLUST_INDEX_SIZE
and
OTHER_INDEX_SIZE
fields report the number
of pages on disk that store clustered and secondary indexes
for the table, respectively. The
MODIFIED_COUNTER
value shows the number
of rows modified by DML operations and cascade operations
from foreign keys. The AUTOINC
value is
the next number to be issued for any autoincrement-based
operation. There are no autoincrement columns defined on
table t1
, so the value is 0. The
REF_COUNT
value is a counter. When the
counter reaches 0, it signifies that the table metadata can
be evicted from the table cache.
Example 17.3 Foreign Key INFORMATION_SCHEMA Schema Object Tables
The INNODB_FOREIGN
and
INNODB_FOREIGN_COLS
tables provide
data about foreign key relationships. This example uses a parent
table and child table with a foreign key relationship to
demonstrate the data found in the
INNODB_FOREIGN
and
INNODB_FOREIGN_COLS
tables.
Create the test database with parent and child tables:
mysql>CREATE DATABASE test;
mysql>USE test;
mysql>CREATE TABLE parent (id INT NOT NULL,
PRIMARY KEY (id)) ENGINE=INNODB;
mysql>CREATE TABLE child (id INT, parent_id INT,
->INDEX par_ind (parent_id),
->CONSTRAINT fk1
->FOREIGN KEY (parent_id) REFERENCES parent(id)
->ON DELETE CASCADE) ENGINE=INNODB;
After the parent and child tables are created, query
INNODB_FOREIGN
and locate the
foreign key data for the test/child
and
test/parent
foreign key relationship:
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN \G
*************************** 1. row ***************************
ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
N_COLS: 1
TYPE: 1
Metadata includes the foreign key ID
(fk1
), which is named for the
CONSTRAINT
that was defined on the child
table. The FOR_NAME
is the name of the
child table where the foreign key is defined.
REF_NAME
is the name of the parent table
(the “referenced” table).
N_COLS
is the number of columns in the
foreign key index. TYPE
is a numerical
value representing bit flags that provide additional
information about the foreign key column. In this case, the
TYPE
value is 1, which indicates that the
ON DELETE CASCADE
option was specified
for the foreign key. See the
INNODB_FOREIGN
table definition
for more information about TYPE
values.
Using the foreign key ID
, query
INNODB_FOREIGN_COLS
to view
data about the columns of the foreign key.
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN_COLS WHERE ID = 'test/fk1' \G
*************************** 1. row ***************************
ID: test/fk1
FOR_COL_NAME: parent_id
REF_COL_NAME: id
POS: 0
FOR_COL_NAME
is the name of the foreign
key column in the child table, and
REF_COL_NAME
is the name of the
referenced column in the parent table. The
POS
value is the ordinal position of the
key field within the foreign key index, starting at zero.
Example 17.4 Joining InnoDB INFORMATION_SCHEMA Schema Object Tables
This example demonstrates joining three
InnoDB
INFORMATION_SCHEMA
schema object tables
(INNODB_TABLES
,
INNODB_TABLESPACES
, and
INNODB_TABLESTATS
) to gather file
format, row format, page size, and index size information about
tables in the employees sample database.
The following table aliases are used to shorten the query string:
An IF()
control flow function is
used to account for compressed tables. If a table is compressed,
the index size is calculated using
ZIP_PAGE_SIZE
rather than
PAGE_SIZE
.
CLUST_INDEX_SIZE
and
OTHER_INDEX_SIZE
, which are reported in
bytes, are divided by 1024*1024
to provide
index sizes in megabytes (MBs). MB values are rounded to zero
decimal spaces using the ROUND()
function.
mysql>SELECT a.NAME, a.ROW_FORMAT,
@page_size :=
IF(a.ROW_FORMAT='Compressed',
b.ZIP_PAGE_SIZE, b.PAGE_SIZE)
AS page_size,
ROUND((@page_size * c.CLUST_INDEX_SIZE)
/(1024*1024)) AS pk_mb,
ROUND((@page_size * c.OTHER_INDEX_SIZE)
/(1024*1024)) AS secidx_mb
FROM INFORMATION_SCHEMA.INNODB_TABLES a
INNER JOIN INFORMATION_SCHEMA.INNODB_TABLESPACES b on a.NAME = b.NAME
INNER JOIN INFORMATION_SCHEMA.INNODB_TABLESTATS c on b.NAME = c.NAME
WHERE a.NAME LIKE 'employees/%'
ORDER BY a.NAME DESC;
+------------------------+------------+-----------+-------+-----------+ | NAME | ROW_FORMAT | page_size | pk_mb | secidx_mb | +------------------------+------------+-----------+-------+-----------+ | employees/titles | Dynamic | 16384 | 20 | 11 | | employees/salaries | Dynamic | 16384 | 93 | 34 | | employees/employees | Dynamic | 16384 | 15 | 0 | | employees/dept_manager | Dynamic | 16384 | 0 | 0 | | employees/dept_emp | Dynamic | 16384 | 12 | 10 | | employees/departments | Dynamic | 16384 | 0 | 0 | +------------------------+------------+-----------+-------+-----------+