

Oracle® Fusion Middleware
Developer’s Guide for Oracle Universal Content Management

11g Release 1 (11.1.1)

E10807-02

January 2011

Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management, 11g Release 1
(11.1.1)

E10807-02

Copyright © 1996, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Bonnie Vaughan

Contributing Authors: Sean Cearley, Sandra Christiansen, Will Harris, Karen Johnson, Jean Wilson

Contributors: Sharmarke Aden, Daniel Lew, Scott Nelson, Rick Petty, David Truckenmiller, Ron van de
Crommert, Peter Walters, Sam White

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. xvii

Audience.. xvii
Document Organization.. xvii
Documentation Accessibility ... xviii
Related Documents ... xix
Conventions ... xix

New and Changed Features.. xxi

New Features for 11g Release 1 (11.1.1) ... xxi
Changed Features for 11g Release 1 (11.1.1)... xxii

1 Introduction to Customizing Your Oracle UCM Instance

1.1 Customization Types.. 1-1
1.2 Customization Planning .. 1-1
1.3 Recommended Skills and Tools.. 1-2
1.4 Troubleshooting .. 1-4
1.4.1 Viewing Server Errors... 1-4
1.4.2 Viewing Page Data .. 1-4
1.4.3 Monitoring Resource Loading ... 1-5

2 Oracle UCM Architecture

2.1 Oracle UCM Directories and Files.. 2-1
2.1.1 Terminology for Oracle UCM Directories.. 2-2
2.1.2 The bin Directory ... 2-2
2.1.3 The config Directory.. 2-3
2.1.4 The components Directory ... 2-5
2.1.5 The resources Directory .. 2-5
2.1.6 The weblayout Directory .. 2-6
2.2 Resources.. 2-6
2.3 Oracle Content Server Behavior ... 2-7
2.3.1 Startup Behavior .. 2-7
2.3.1.1 Startup Steps.. 2-8
2.3.1.2 Effects of Configuration Loading... 2-9
2.3.2 Resource Caching .. 2-9
2.3.3 Oracle Content Server Requests ... 2-10

iv

2.3.3.1 Page Retrieval... 2-11
2.3.3.2 Oracle Content Server Services.. 2-11
2.3.3.3 Search Services ... 2-12
2.3.4 Page Assembly .. 2-12
2.3.5 Database Interaction... 2-13
2.3.6 Localized String Resolution .. 2-13

3 Working with Standard, Server, and Custom Components

3.1 Components Overview .. 3-1
3.1.1 Component Wizard ... 3-2
3.1.2 Advanced Component Manager ... 3-3
3.1.3 ComponentTool ... 3-5
3.1.4 Component Files Overview.. 3-5
3.1.5 Enabling and Disabling Components... 3-5
3.2 About Directories and Files ... 3-6
3.2.1 HDA Files.. 3-6
3.2.1.1 Elements in HDA Files... 3-7
3.2.1.2 The idc_components.hda File ... 3-9
3.2.1.3 Component Definition Files .. 3-9
3.2.2 Custom Resource Files ... 3-10
3.2.3 Data Binder .. 3-11
3.2.3.1 LocalData .. 3-11
3.2.3.2 ResultSets .. 3-11
3.2.3.3 Environment... 3-11
3.2.4 Manifest File .. 3-12
3.2.5 Other Files.. 3-13
3.2.5.1 Customized Site Files .. 3-13
3.2.5.2 Component ZIP File .. 3-13
3.2.5.3 Custom Installation Parameter Files... 3-14
3.2.6 Typical Directory Structure... 3-14
3.3 Development Recommendations .. 3-14
3.3.1 Creating a Component... 3-14
3.3.2 Working with Component Files ... 3-15
3.3.3 Using a Development Instance ... 3-15
3.3.4 Component File Organization .. 3-15
3.3.5 Naming Conventions ... 3-16
3.4 Component File Detail .. 3-17
3.4.1 The idc_components.hda File ... 3-17
3.4.1.1 Contents of idc_components.hda.. 3-17
3.4.1.2 Components ResultSet.. 3-18
3.4.2 Component Definition (Glue) File.. 3-18
3.4.2.1 ResourceDefinition ResultSet .. 3-19
3.4.2.1.1 Example of ResourceDefinition ResultSet .. 3-20
3.4.2.1.2 ResourceDefinition ResultSet Columns .. 3-20
3.4.2.2 MergeRules ResultSet ... 3-21
3.4.2.2.1 Example of MergeRules ResultSet ... 3-21
3.4.2.2.2 MergeRules ResultSet Columns... 3-21

v

3.4.2.3 Filters ResultSet.. 3-22
3.4.2.4 ClassAliases ResultSet .. 3-22
3.5 Resources Detail ... 3-22
3.5.1 HTML Include... 3-23
3.5.1.1 The Super Tag .. 3-24
3.5.1.2 Editing an HTML Include Resource ... 3-24
3.5.2 Dynamic Data Tables ... 3-25
3.5.2.1 Specifying Table Formats ... 3-25
3.5.2.2 Editing a Dynamic Data Table Resource.. 3-26
3.5.2.3 Specifying Table Properties.. 3-27
3.5.2.3.1 Merge Properties .. 3-27
3.5.2.3.2 Assembly Properties .. 3-29
3.5.2.3.3 Sort Properties... 3-30
3.5.2.3.4 Filter and Include Properties .. 3-31
3.5.2.4 Using Dynamicdata Idoc Script Functions .. 3-31
3.5.3 String... 3-32
3.5.3.1 String Parameters .. 3-33
3.5.3.2 Editing a String Resource ... 3-35
3.5.4 Dynamic Tables... 3-35
3.5.4.1 Merge Rules for Dynamic Tables .. 3-35
3.5.4.2 Editing a Dynamic Table Resource ... 3-35
3.5.5 Static Tables ... 3-35
3.5.5.1 Merge Rules for Static Tables... 3-35
3.5.5.2 Editing a Static Table Resource ... 3-35
3.5.6 Query .. 3-36
3.5.6.1 Query Example .. 3-36
3.5.6.2 Editing a Query Resource... 3-37
3.5.7 Service... 3-38
3.5.7.1 Service Example... 3-40
3.5.7.1.1 Attributes... 3-41
3.5.7.1.2 Actions ... 3-41
3.5.7.2 Editing a Service Resource ... 3-44
3.5.8 Templates... 3-45
3.5.8.1 Template and Report Pages ... 3-47
3.5.8.1.1 Template Page Example .. 3-47
3.5.8.1.2 Report Page Example... 3-48
3.5.8.2 Editing a Template Resource ... 3-49
3.5.9 Environment.. 3-50
3.5.9.1 Environment Resource Example ... 3-50
3.5.9.2 Editing an Environment Resource .. 3-51
3.6 Installing Components .. 3-51
3.6.1 Installing a Component with Component Manager.. 3-52
3.6.2 Installing a Component with Component Wizard .. 3-52
3.6.3 Installing a Component with ComponentTool .. 3-53

4 Changing the Look and Navigation of the Oracle Content Server Interface

4.1 Modifying the Oracle Content Server Interface ... 4-1

vi

4.1.1 Skins and Layouts.. 4-1
4.1.1.1 Types of Skins and Layouts .. 4-2
4.1.1.1.1 Skins .. 4-2
4.1.1.1.2 Layouts.. 4-2
4.1.1.2 Selecting Skins and Layouts.. 4-2
4.1.1.3 Configuration Entries... 4-3
4.1.1.4 Anonymous User Interface ... 4-3
4.1.2 Customizing the Interface .. 4-4
4.1.2.1 About Dynamic Publishing... 4-4
4.1.2.2 Creating New Layouts... 4-4
4.1.3 Optimizing the Use of Published Files ... 4-5
4.1.3.1 Bundling Files ... 4-5
4.1.3.2 Referencing Published Files .. 4-6
4.2 Using Dynamic Server Pages to Alter the Navigation of Web Pages 4-7
4.2.1 About Dynamic Server Pages .. 4-7
4.2.2 Page Types .. 4-9
4.2.2.1 IDOC File ... 4-9
4.2.2.2 HCST File ... 4-9
4.2.2.3 HCSP File ... 4-9
4.2.2.4 HCSF File ... 4-9
4.2.3 Creating Dynamic Server Pages .. 4-9
4.2.4 Syntax ... 4-10
4.2.4.1 Idoc Script Tags.. 4-10
4.2.4.2 Comparison Operators ... 4-11
4.2.4.3 Special Characters.. 4-11
4.2.4.4 Referencing Metadata ... 4-12
4.2.5 Idoc Script Functions.. 4-12
4.2.5.1 docLoadResourceIncludes Function... 4-12
4.2.5.1.1 Requirements for Calling the docLoadResourceIncludes Function 4-13
4.2.5.1.2 Parameters ... 4-13
4.2.5.2 executeService Function ... 4-13
4.2.6 Development Recommendations ... 4-14
4.2.6.1 General Tips ... 4-14
4.2.6.2 HCSF Tips... 4-15
4.2.7 HCSF Pages.. 4-15
4.2.7.1 Load Section ... 4-15
4.2.7.1.1 HTML Declaration ... 4-16
4.2.7.1.2 The docLoadResourceIncludes Function.. 4-16
4.2.7.1.3 Meta Tag .. 4-16
4.2.7.1.4 Variables and Includes .. 4-16
4.2.7.2 Data Section.. 4-16
4.2.7.2.1 Data Section Structure ... 4-17
4.2.7.2.2 The idcformrules Tag... 4-17
4.2.7.2.3 Metadata Tags... 4-18
4.2.7.2.4 Nested Tags... 4-18
4.2.7.2.5 Referencing XML Tags .. 4-18
4.2.7.2.6 Form Elements .. 4-19

vii

4.2.7.2.7 ResultSets... 4-19
4.2.7.3 Form Section... 4-21
4.2.7.3.1 Form Begin .. 4-21
4.2.7.3.2 Form Properties .. 4-22
4.2.7.3.3 Form Fields.. 4-22
4.2.7.3.4 Form Buttons... 4-23
4.2.7.3.5 Form End ... 4-23
4.2.8 Working with Dynamic Server Pages.. 4-23
4.2.8.1 HCST and HCSP Example ... 4-23
4.2.8.2 HCSF Example ... 4-24
4.2.8.3 Common Code for Forms... 4-28
4.2.8.3.1 Retrieving File Information... 4-28
4.2.8.3.2 Referencing the File Extension ... 4-29
4.2.8.3.3 Defining Form Information .. 4-29
4.2.8.3.4 Defining Form Fields ... 4-29
4.2.8.3.5 Defining Hidden Fields ... 4-29
4.2.8.3.6 Submitting the Form .. 4-29

5 Modifying System Functionality

5.1 Changing System Settings ... 5-1
5.2 Using Components ... 5-2
5.3 Changing Configuration Information.. 5-4
5.4 Customizing Services ... 5-5
5.5 Generating Action Menus.. 5-6
5.5.1 Creating Display Tables.. 5-6
5.5.1.1 Headline View Tables .. 5-7
5.5.1.2 Thumbnail View Tables... 5-9
5.5.2 Customizing Action Menus ... 5-9

6 Integrating Oracle UCM with Enterprise Applications

6.1 Overview of Integration Methods .. 6-1
6.2 JSP Integration... 6-2
6.2.1 JSP Execution.. 6-2
6.2.2 Tomcat ... 6-3
6.2.3 Features ... 6-3
6.2.4 Configuring JSP Support .. 6-3
6.2.5 Loading Example Pages.. 6-4
6.3 Java 2 Enterprise Edition Integration (J2EE) ... 6-4
6.4 Web Services .. 6-4
6.4.1 Web Services Framework ... 6-4
6.4.2 Virtual Folders and WebDAV Integration... 6-5
6.4.2.1 Virtual Folders .. 6-6
6.4.2.2 WebDAV Integration ... 6-6
6.4.2.2.1 WebDAV Clients ... 6-7
6.4.2.2.2 WebDAV Servers... 6-7
6.4.2.2.3 WebDAV Architecture ... 6-7

viii

7 Using the IdcCommand Utility to Access Services

7.1 Overview of IdcCommand Utility.. 7-1
7.2 IdcCommand Setup and Execution.. 7-2
7.3 Command File ... 7-2
7.3.1 Command File Syntax... 7-3
7.3.2 Precedence .. 7-3
7.3.3 Special Tags and Characters... 7-4
7.4 Configuration Options ... 7-4
7.4.1 Command File .. 7-4
7.4.2 User .. 7-4
7.4.3 Log File .. 7-5
7.4.4 Connection Mode... 7-5
7.5 Running IdcCommand... 7-5
7.6 Using the Launcher... 7-6
7.6.1 Quotation Rules ... 7-7
7.6.2 Computed Settings .. 7-7
7.6.3 Launcher Environment Variables ... 7-9
7.6.4 User Interface .. 7-10
7.6.5 Configuring the Launcher ... 7-11
7.6.6 Configuration File Example .. 7-11
7.7 Calling Services Remotely .. 7-13

8 Using the COM API for Integration

8.1 Introduction to COM Integration ... 8-1
8.2 ActiveX Interface... 8-1
8.2.1 Setting Up IdcCommandUX .. 8-2
8.2.2 Calling IdcCommandUX from a Visual Basic Environment... 8-2
8.2.3 Calling IdcCommandUX from a Visual C++ Environment .. 8-3
8.2.4 Executing Services ... 8-3
8.2.5 Calling IdcCommandUX from an Active Server Page (ASP) 8-3
8.2.6 Formatting with a Resource Include... 8-6
8.2.7 Connecting to Oracle Content Server from a Remote System 8-8
8.3 IdcCommandUX Methods.. 8-11
8.3.1 addExtraheadersForCommand .. 8-11
8.3.2 closeServerConnection... 8-12
8.3.3 computeNativeFilePath ... 8-12
8.3.4 computeURL.. 8-13
8.3.5 computeWebFilePath ... 8-15
8.3.6 connectToServer.. 8-16
8.3.7 executeCommand ... 8-17
8.3.8 executeFileCommand... 8-18
8.3.9 forwardRequest... 8-18
8.3.10 getLastErrorMessage.. 8-18
8.3.11 initRemote.. 8-19
8.4 OCX Interface ... 8-19
8.5 IdcClientOCX Component.. 8-20
8.5.1 IdcClient OCX Description.. 8-20

ix

8.5.1.1 General Description .. 8-20
8.5.1.2 Events, Methods, and Properties... 8-21
8.5.1.3 IdcClient OCX Interface.. 8-22
8.5.2 IdcClient OCX Control Setup.. 8-22
8.5.2.1 Setting Up the IdcClient OCX Component.. 8-22
8.5.2.2 Creating a Visual Interface... 8-23
8.6 IdcClient Events ... 8-32
8.6.1 IntradocBeforeDownload .. 8-33
8.6.2 IntradocBrowserPost .. 8-33
8.6.3 IntradocBrowserStateChange ... 8-33
8.6.4 IntradocRequestProgress... 8-33
8.6.5 IntradocServerResponse .. 8-33
8.7 IdcClient OCX Methods.. 8-34
8.7.1 AboutBox ... 8-35
8.7.2 Back... 8-35
8.7.3 CancelRequest ... 8-35
8.7.4 DoCheckoutLatestRev ... 8-35
8.7.5 DownloadFile .. 8-36
8.7.6 DownloadNativeFile .. 8-36
8.7.7 Drag .. 8-37
8.7.8 EditDocInfoLatestRev .. 8-37
8.7.9 Forward.. 8-38
8.7.10 GoCheckinPage... 8-38
8.7.11 Home .. 8-39
8.7.12 InitiateFileDownload.. 8-39
8.7.13 InitiatePostCommand .. 8-39
8.7.14 Move ... 8-40
8.7.15 Navigate ... 8-40
8.7.16 NavigateCgiPage .. 8-41
8.7.17 Refresh Browser .. 8-41
8.7.18 SendCommand.. 8-41
8.7.19 SendPostCommand .. 8-41
8.7.20 SetFocus.. 8-42
8.7.21 ShowDMS .. 8-42
8.7.22 ShowDocInfoLatestRev.. 8-42
8.7.23 ShowWhatsThis .. 8-43
8.7.24 StartSearch ... 8-43
8.7.25 Stop ... 8-43
8.7.26 UndoCheckout .. 8-44
8.7.27 ViewDocInfo.. 8-44
8.7.28 ViewDocInfoLatestRev .. 8-44
8.7.29 ZOrder .. 8-45
8.8 IdcClient Properties ... 8-45
8.8.1 ClientControlledContextValue ... 8-46
8.8.2 HostCgiUrl... 8-46
8.8.3 Password.. 8-46
8.8.4 UseBrowserLoginPrompt .. 8-46

x

8.8.5 UseProgressDialog ... 8-46
8.8.6 UserName .. 8-46
8.8.7 Working Directory.. 8-47
8.9 ODMA Integration... 8-47
8.9.1 ODMA Client .. 8-47
8.9.2 ODMA Interfaces .. 8-48

9 Using Remote Intradoc Client (RIDC)

9.1 Introduction to RIDC.. 9-1
9.1.1 RIDC Protocols... 9-2
9.1.2 SSL Communication.. 9-2
9.1.3 MBeans Implementation... 9-3
9.2 Initializing RIDC ... 9-3
9.3 Configuring Clients .. 9-4
9.4 Authenticating Users.. 9-5
9.5 Using Services.. 9-6
9.6 Handling Connections ... 9-6
9.6.1 Closing Resources.. 9-7
9.6.2 Handling Connection Pooling ... 9-7
9.7 Sending and Receiving Streams.. 9-7
9.8 Using RIDC Objects in JSP and JSPX Pages .. 9-8
9.9 Reusing Binders for Multiple Requests ... 9-9
9.10 Providing User Security ... 9-9
9.11 Configuring SSL Communication with Oracle Content Server .. 9-11
9.11.1 Installing and Enabling the SecurityProviders Component....................................... 9-11
9.11.2 Configuring an Incoming Provider for SSL Communication 9-12
9.11.3 Creating Self-Signed Key Pairs and Certificates .. 9-13
9.11.3.1 Creating the Client and Server Keys... 9-13
9.11.3.2 Self-Signing the Certificates ... 9-14
9.11.3.3 Exporting the Certificates... 9-15
9.11.3.4 Importing the Certificates .. 9-15
9.12 Using Tables for Content Items, the Search Index, and the File Store 9-16
9.12.1 Finding Information for Each Content Item ... 9-17
9.12.2 Using a Search Index .. 9-18
9.12.3 Using the File Store Provider .. 9-18

10 Using Content Integration Suite (CIS)

10.1 CIS Architecture ... 10-1
10.2 Access Through the UCPM API .. 10-2
10.3 UCPM API Methodology.. 10-2
10.4 CIS Initialization... 10-3
10.4.1 Initialization... 10-3
10.4.2 SCSInitializeServlet .. 10-4
10.5 Integration in a Web Environment.. 10-5
10.6 Class Loading ... 10-6
10.6.1 Custom Class Loader ... 10-6
10.6.2 Class Loader Usage .. 10-7

xi

10.7 Object Creation... 10-7
10.8 Interaction with the UCPM API... 10-7
10.9 IContext Interface... 10-9
10.10 ICISObject Interface ... 10-10
10.10.1 Property Accessors ... 10-10
10.10.2 Property Object Types.. 10-11
10.10.3 Property Collections ... 10-11
10.11 Adapter Configuration File .. 10-11
10.11.1 The adapter Element .. 10-12
10.11.2 The config Element ... 10-12
10.12 Access to the SCS API.. 10-13
10.13 SCS API Objects.. 10-14
10.13.1 ISCSObject Interface ... 10-14
10.13.2 ICISTransferStream Interface.. 10-16
10.13.3 ISCSServerBinder Interface ... 10-16
10.13.4 ISCSServerResponse Interface .. 10-19
10.13.5 ISCSRequestModifier Interface... 10-20
10.14 SCS API Servlets... 10-21
10.14.1 Servlet Descriptions.. 10-21
10.14.2 SCS Servlet Parameters .. 10-21
10.14.2.1 SCSFileDownloadServlet.. 10-22
10.14.2.2 SCSDynamicConverterServlet... 10-22
10.14.2.3 SCSDynamicURLServlet .. 10-23
10.14.3 Servlet Security.. 10-23
10.14.4 Servlets and API Interaction ... 10-23
10.15 SCS APIs.. 10-24
10.15.1 SCS Search API.. 10-25
10.15.2 SCS File API... 10-25
10.15.3 SCS Document APIs ... 10-26
10.15.3.1 ISCSDocumentCheckinAPI.. 10-26
10.15.3.2 ISCSDocumentCheckoutAPI ... 10-27
10.15.4 SCS Workflow API ... 10-27

11 Using the Java Content Repository Adapter

11.1 Introduction to Using the Java Content Repository Adapter.. 11-1
11.1.1 JCR Data Model... 11-1
11.1.2 Oracle Content Server JCR Adapter Data Model... 11-2
11.2 Installing Required APIs and Runtime Libraries .. 11-3
11.2.1 Installing ADF Runtime Libraries .. 11-4
11.2.2 Deploying Remote Intradoc Client (RIDC)... 11-4
11.2.3 Deploying the JCR API .. 11-4
11.2.4 Installing the JCR Integration Libraries... 11-4
11.2.5 Installing the XML Integration Files .. 11-5
11.3 Deploying the JCR Adapter.. 11-5
11.4 Configuring Communication with Oracle Content Server.. 11-5
11.4.1 Supplying a Communication Method ... 11-5
11.4.2 Configuring Socket Communication (Listener Port)... 11-6

xii

11.4.3 Configuring Secure Socket Communication (SSL) .. 11-6
11.4.4 Configuring Web Communication (Web Server Filter) .. 11-6
11.4.5 Configuring the User Agent.. 11-7
11.4.6 Supplying Cache Settings .. 11-7
11.5 Using Tables for Content Items, the Search Index, and the File Store 11-7
11.5.1 Finding Information for Each Content Item ... 11-7
11.5.2 Using a Search Index .. 11-9
11.5.3 Using the File Store Provider .. 11-9

12 Using Oracle UCM Web Services

12.1 Overview of Oracle UCM Web Services... 12-1
12.2 Oracle UCM Web Services.. 12-2
12.3 Installation and Configuration... 12-3
12.4 Security .. 12-4
12.4.1 Configuring WS-Security through WS-Policy.. 12-4
12.4.2 Configuring SAML Support.. 12-4
12.4.2.1 Configuring a Keystore... 12-4
12.4.2.2 Configuring Server JPS to Use the Keystore.. 12-5
12.4.2.3 Creating a Client CSF.. 12-5
12.4.2.4 Configuring a Java Client to Use the Keystore and CSF...................................... 12-6

13 Customizing DesktopTag

13.1 About the DesktopTag Component .. 13-1
13.2 System Requirements .. 13-1
13.3 DesktopTag Component Operation.. 13-2
13.3.1 File Get Operation... 13-2
13.3.2 File Check-In Operation... 13-2
13.4 Using the DesktopTag Component... 13-2
13.4.1 Viewing Custom Properties .. 13-4
13.4.2 Checking in Documents from Outside Oracle Content Server.................................. 13-4
13.5 Configuring the DesktopTag Component.. 13-5
13.5.1 DesktopTagFormats Property... 13-5
13.5.2 DesktopTagPrefix Property... 13-5
13.5.3 DesktopTagFields Property... 13-6
13.5.4 DesktopTagPrefixCustom Property... 13-6
13.5.5 DesktopTagFieldsCustom Property... 13-6
13.5.6 DesktopTagPrefixExtended Property.. 13-7
13.5.7 DesktopTagFieldsExtended Property.. 13-7
13.5.8 DefaultTaskPaneUrl Property... 13-7
13.5.9 DesktopTagLog Property .. 13-7
13.5.10 DesktopTagFormatsExclude Property .. 13-8

A Using WSDL Generator and SOAP

A.1 Overview... A-1
A.2 Using Web Services ... A-2
A.2.1 Web Services Framework .. A-2

xiii

A.2.1.1 XML Data.. A-2
A.2.1.2 WSDL Interface.. A-3
A.2.1.3 SOAP Communication.. A-3
A.2.1.4 UDDI Registry.. A-3
A.2.1.5 DIME: Message Format .. A-3
A.2.1.6 How the Enabling Technologies Work Together.. A-3
A.2.2 Implementation Architecture.. A-4
A.2.3 Implementation on .NET ... A-5
A.2.4 The SOAP Protocol ... A-5
A.3 SOAP Clients .. A-6
A.3.1 Using the Java SOAP Client .. A-6
A.4 SOAP Service Calls .. A-6
A.4.1 SOAP Packet Format .. A-7
A.4.1.1 HTTP Headers.. A-7
A.4.1.2 Namespaces.. A-7
A.4.1.3 Nodes .. A-7
A.4.1.3.1 Service Node ... A-8
A.4.1.3.2 Document Node ... A-8
A.4.1.3.3 User Node.. A-8
A.4.1.3.4 Optionlist Node .. A-8
A.4.1.3.5 Option Subnode.. A-9
A.4.1.3.6 Resultset Subnode .. A-9
A.4.1.3.7 Row Subnode .. A-9
A.4.1.3.8 Field Subnode ... A-9
A.4.2 Special Characters... A-10
A.5 Using Active Server Pages.. A-10
A.5.1 Sample SOAP Request ... A-11
A.5.2 Sample Active Server Page.. A-11
A.6 Using WSDL Files .. A-14
A.6.1 Understanding WSDL Files... A-14
A.6.1.1 WSDL File Structure.. A-14
A.6.1.1.1 Data Type .. A-15
A.6.1.1.2 Message.. A-15
A.6.1.1.3 Port Type ... A-15
A.6.1.1.4 Binding... A-16
A.6.1.1.5 Service and Port.. A-16
A.6.2 Sample WSDL File .. A-16
A.6.3 Generating WSDL Files.. A-19
A.6.4 Generating Proxy Class from WSDL Files .. A-20
A.7 Creating a Custom WSDL Using Administration Pages ... A-20
A.8 Sample Service Calls with SOAP Response/Request .. A-26
A.8.1 Ping the Server .. A-27
A.8.1.1 Required Parameters... A-28
A.8.1.2 SOAP Request .. A-28
A.8.1.3 Response ... A-28
A.8.2 Add a New User ... A-28
A.8.2.1 Required Parameters... A-29

xiv

A.8.2.2 Optional Parameters ... A-29
A.8.2.3 Optional Attribute Information... A-29
A.8.2.4 SOAP Request .. A-30
A.8.2.5 Response ... A-30
A.8.3 Edit Existing User ... A-31
A.8.3.1 Required Parameters... A-32
A.8.3.2 Optional Parameters ... A-32
A.8.3.3 Optional Attribute Information... A-32
A.8.3.4 SOAP Request .. A-33
A.8.3.5 Response ... A-33
A.8.4 Get User Information ... A-34
A.8.4.1 Required Parameters... A-34
A.8.4.2 SOAP Request .. A-35
A.8.4.3 Response ... A-35
A.8.5 Delete User... A-36
A.8.5.1 Required Parameters... A-36
A.8.5.2 SOAP Request .. A-36
A.8.5.3 Response ... A-36
A.8.6 Check in Content Item ... A-37
A.8.6.1 Required Parameters... A-38
A.8.6.2 Additional Parameters.. A-39
A.8.6.3 Optional Parameters ... A-39
A.8.6.4 SOAP Request .. A-39
A.8.6.5 Response ... A-40
A.8.7 Check out Content Item... A-41
A.8.7.1 Required Parameters... A-41
A.8.7.2 Optional Parameters ... A-42
A.8.7.3 SOAP Request .. A-42
A.8.7.4 Response ... A-42
A.8.8 Undo Content Item Checkout ... A-43
A.8.8.1 Required Parameters... A-43
A.8.8.2 Optional Parameters ... A-44
A.8.8.3 SOAP Request .. A-44
A.8.8.4 Response ... A-44
A.8.9 Get Content Item Information .. A-45
A.8.9.1 Required Parameters... A-45
A.8.9.2 SOAP Request .. A-45
A.8.9.3 Response ... A-45
A.8.10 Get File.. A-47
A.8.10.1 Required Parameters... A-47
A.8.10.2 Optional Parameters ... A-48
A.8.10.3 SOAP Request .. A-48
A.8.10.4 Response ... A-48
A.8.11 Get Search Results .. A-50
A.8.11.1 Required Parameters... A-50
A.8.11.2 Optional Parameters ... A-50
A.8.11.3 SOAP Request .. A-51

xv

A.8.11.4 Response ... A-51
A.8.12 Get Table Data... A-53
A.8.12.1 Required Parameters... A-53
A.8.12.2 SOAP Request .. A-53
A.8.12.3 Response ... A-53
A.8.13 Get Criteria Workflow Information ... A-54
A.8.13.1 REquired Parameters .. A-54
A.8.13.2 SOAP Request .. A-55
A.8.13.3 Response ... A-55

Index

xvi

xvii

Preface

While Oracle Universal Content Management (Oracle UCM) is highly functional "out
of the box," there are many ways to tailor it to your site requirements. This guide
provides the background information necessary to customize your Oracle UCM
instance.

Audience
This guide is intended for developers and administrators who want to customize
Oracle UCM software to suit content management needs that are specific to their
business or organization.

Document Organization
This guide includes the following sections:

■ Chapter 1, "Introduction to Customizing Your Oracle UCM Instance," provides an
introduction to the methods and tools you can use to customize Oracle UCM.

■ Chapter 2, "Oracle UCM Architecture," describes the architecture of Oracle UCM
and how that affects the customization you can make.

■ Chapter 3, "Working with Standard, Server, and Custom Components," describes
how to use components to modify or add functionality to Oracle Content Server.

■ Chapter 4, "Changing the Look and Navigation of the Oracle Content Server
Interface," defines the items you can adjust to change the look and navigation of
the Oracle Content Server interface.

■ Chapter 5, "Modifying System Functionality," describes how you can change the
functionality of Oracle UCM settings, components, and configuration variables.

■ Chapter 6, "Integrating Oracle UCM with Enterprise Applications," provides
information about integrating Oracle Content Server with enterprise applications
such as application servers, catalog solutions, and enterprise portals.

■ Chapter 7, "Using the IdcCommand Utility to Access Services," provides
information about using the IdcCommand utility to access Oracle Content Server
services from other applications.

■ Chapter 8, "Using the COM API for Integration," provides information about how
Oracle Content Server utilizes a Component Object Model-based API, which
provides the capability to call functionality from within a Microsoft Component
Object Model (COM) environment.

xviii

■ Chapter 9, "Using Remote Intradoc Client (RIDC)," describes Remote Intradoc
Client (RIDC) and how you can use the RIDC API for communication with Oracle
Content Server.

■ Chapter 10, "Using Content Integration Suite (CIS)," describes the Content
Integration Suite (CIS) API, which you can use to access Oracle Content Server
services and data from a unified object model.

■ Chapter 11, "Using the Java Content Repository Adapter," provides information
about the Java Content Repository API, which was developed under the Java
Community Process as JSR-170 and includes the Content Repository for Java API
and the Java Content Repository (JCR).

■ Chapter 12, "Using Oracle UCM Web Services," discusses using web services and
SOAP (Simple Object Access Protocol) to manage Oracle Content Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

xix

Related Documents
For more information, see the following documents in the Oracle Universal Content
Management 11g Release 1 (11.1.1) documentation set:

■ Oracle Fusion Middleware System Administrator's Guide for Oracle Content Server

■ Oracle Fusion Middleware Application Administrator's Guide for Content Server

■ Oracle Fusion Middleware Idoc Script Reference Guide

■ Oracle Fusion Middleware Services Reference Guide for Oracle Universal Content
Management

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xx

xxi

New and Changed Features

This section introduces the new and changed features of Oracle Universal Content
Management (Oracle UCM) for Oracle Content Server developers that are covered in
this guide.

New Features for 11g Release 1 (11.1.1)
11g Release 1 (11.1.1) includes the following new features in this guide:

■ This guide combines information that was previously contained in the following
documents:

– Dynamic Server Pages Guide

– Getting Started with the Stellent Developer’s Kit (SDK)

– Idc Command Reference Guide

– Modifying the Content Server Interface

– Oracle Fusion Middleware Developer's Guide for Content Integration Suite

– Oracle Fusion Middleware JCR Adapter Guide for Content Server

– Oracle Fusion Middleware Developer's Guide for Remote Intradoc Client (RIDC)

– Using WSDL Generator and SOAP

– Working with Components

■ Web services: Oracle UCM uses Oracle WebLogic Server web services. For more
information, see Chapter 12, "Using Oracle UCM Web Services."

■ ComponentTool: The ComponentTool utility has been added to provide a
command-line tool for installing, enabling, and disabling components. For more
information, see Chapter 3, "Working with Standard, Server, and Custom
Components."

■ Oracle Content Server deployment: Oracle Content Server is deployed with Oracle
UCM to an Oracle WebLogic Server domain, which means changes in configuring
and administering Oracle UCM. For more information, see Oracle Fusion
Middleware System Administrator's Guide for Oracle Content Server.

xxii

Changed Features for 11g Release 1 (11.1.1)
11g Release 1 (11.1.1) includes the following changes:

■ Oracle UCM Directories and Files: Oracle UCM 11g Release 1 (11.1.1) is provided
as part of a full media install of Oracle Enterprise Content Management Suite, with
the Oracle UCM directories and files. The directory structure for an Oracle UCM
11g instance is different from an Oracle UCM 10g instance. The following terms
and path names are important to understanding and working with the Oracle
UCM structure:

■ IdcHomeDir: This variable refers to the ucm/idc directory in the ECM Oracle
home where the Oracle UCM server media is located. The server media can
run Oracle Content Server, Oracle Inbound Refinery, or Oracle Universal
Records Management. This is essentially a read-only directory. The default
location is ECM_ORACLE_HOME/ucm/idc. The variable portion of the
default location can be changed, but the ucm/idc portion is required.

■ DomainHome: This variable refers to the user-specified directory where an
Oracle UCM server is deployed to run on an Oracle WebLogic Server
application server. The DomainHome/ucm/short-product-id/bin directory
contains the intradoc.cfg file and executables. The default location for
DomainHome is MW_HOME/user_projects/domains/base_domain, but you
can change the path and domain name (base_domain) during the
deployment of Oracle UCM to Oracle WebLogic Server.

■ short-product-id: This variable refers to the type of Oracle UCM server
deployed on an Oracle WebLogic Server. Possible values follow:

* cs (Oracle Content Server)

* ibr (Oracle Inbound Refinery)

* urm (Oracle Universal Records Management)

■ IntradocDir: This variable refers to the root directory for configuration and data
files specific to an Oracle Content Server instance that is part of an Oracle
UCM application deployed to an Oracle WebLogic Server domain. This Idoc
Script variable is configured for one type of Oracle Content Server instance:
Oracle Content Server (cs), Oracle Inbound Refinery (ibr), or Oracle
Universal Records Management (urm). This directory can be located
elsewhere, but the default location is DomainHome/ucm/short-product-id/. The
specified directory must be an absolute path to the instance directory, and it
must be unique to a particular server or node. The directory files include
startup files (intradoc.cfg and executables).

■ SOAP: SOAP is provided with Oracle WebLogic Server, not in Oracle UCM.

■ Web Form Editor: The Web Form Editor user interface and FCKEditor are not
supported.

1

Introduction to Customizing Your Oracle UCM Instance 1-1

1Introduction to Customizing Your Oracle
UCM Instance

This chapter provides an overview of Oracle Universal Content Management (Oracle
UCM) customization and describes the tools you need and the resources that are
available.

This chapter includes the following sections:

■ Section 1.1, "Customization Types"

■ Section 1.2, "Customization Planning"

■ Section 1.3, "Recommended Skills and Tools"

■ Section 1.4, "Troubleshooting"

1.1 Customization Types
Three major types of alterations can be made to the core Oracle Content Server
instance:

■ Altering the look and feel of the product: You can customize the look and feel of
the Oracle Content Server interface to meet your organization's specifications.
Interface modifications can be as simple as replacing the icons that appear on the
standard Oracle Content Server web pages or as complex as a complete redesign
of the interface.

■ Modifying the functionality of the product: By changing how the product
functions, you can tailor Oracle Content Server to the way your business or
organization functions. For example, you can change the default date and time
stamp, or change aspects of check-in behavior.

■ Integrating the product into your environment: You can use shell scripts, SOAP,
J2EE, JSP, and clusters to more fully integrate Oracle Content Server into your
site's current environment.

1.2 Customization Planning
Before approaching customization, it is important to clarify exactly why the
customization is being undertaken. For example, to add corporate branding, you can
use the Modify Layout Samples to do so. Or to change security features, you can use
components to modify the default security settings.

Recommended Skills and Tools

1-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Customization often occurs to make Oracle Content Server match the business
practices of an organization. Often, after evaluating your business processes, you may
find that sometimes it is more efficient to slightly alter your procedures before
customizing Oracle Content Server.

There are six major stages in customization:

1. Determine why you want to customize. Is there corporate personalization to be
done? Is there a better way to present navigation options or material? Depending
on what type of need you find, you can determine which tools are best to use.

Oftentimes the cosmetic details that you change are the ones that can most satisfy
your users; changing items such as layout, colors, and images often provide the
effect that users are looking for.

2. Plan the customization carefully, taking into account those aspects of the Oracle
Content Server environment that might be changed even peripherally by the
customization. All customization should be done in a test environment, separate
from the site's production environment.

3. Check to see if a solution may be available. The Samples on the Support web site
contain many types of customization. It's possible that there may be an existing
component that can be used with just a little editing. A number of 'samples' are
provided on an as-is basis. These are components or files that demonstrate,
enhance or extend the functionality of your Oracle UCM products.

4. Evaluate the problem and how essential it is to solve. Some problems may
require more effort to fix than will provide payback. Perhaps customization is not
needed, but simply a minor change in business practices.

5. Test the customization thoroughly in a separate environment. If possible, have
end users assist with the testing. When the testing has passed all criteria for
release, inform users about the changes and how to implement them.

6. Document the customization that you create. All alterations should be
documented as completely as possible, both within the actual customization (for
example, as a comment in a dynamic server page or in a component) and as a
separate README document. This provides an historical audit trail for others
who may need to add to the customization later.

1.3 Recommended Skills and Tools
Oracle UCM brings together a wide variety of technologies to deliver advanced
functionality. To modify the system, certain experience and skills with some or all of
these technologies is required.

The technical skills required to customize your content management system can vary
depending on the complexity of the customization. For example, much customization
can be accomplished with knowledge of HTML and Idoc Script.

This list describes, in descending order of importance, the technologies and experience
you may need to modify Oracle Content Server:

■ Oracle Content Server Architecture

You should thoroughly understand how Oracle Content Server works and how
components and dynamic server pages function before you begin customizing
your system.

Recommended Skills and Tools

Introduction to Customizing Your Oracle UCM Instance 1-3

■ HTML/CSS

You will need a good understanding of HTML and cascading style sheets (CSS) to
make changes to the Oracle Content Server web page templates. The templates are
not complex in their use of HTML, but they make constant use of HTML tables
and frequent use of forms. The std_page.idoc and std_css.idoc files include cascading
style sheets to control the look-and-feel of the default templates, including fonts
and layout.

■ Idoc Script

Idoc Script is the custom, server-side scripting language for Oracle Content Server.
Almost every Oracle Content Server web page includes some IdocScript code,
which provides the methods for processing various page elements.

■ JavaScript

The internal content of most Oracle Content Server pages do not use JavaScript,
but the Search, Check-In, and Update pages are notable exceptions. You must have
an understanding of JavaScript before you create customization that is called in
place of these pages. Also, you must understand JavaScript to alter layouts.
Changing layouts relies heavily on JavaScript and cascading style sheets for design
and navigation.

■ SQL

Oracle Content Server uses Structured Query Language to perform queries on the
database. Knowledge of SQL can help you understand the standard queries and
create your own custom queries.

■ Java programming

Oracle Content Server is implemented with Java classes. You should have a
thorough understanding of Java and the Oracle Content Server Java class files
before attempting to make any changes to the underlying functionality. However,
you can customize the product extensively without working with Java.

■ Other programming

Experience with other tools such as Visual Basic, COM, .Net, C++, VBScript, and
so forth may be helpful if you are doing complex customization or integrating
Oracle UCM with other systems.

You may find the following tools useful when customizing Oracle Content Server:

■ Text editor

Most product customizing can be done with a normal text editor such as Microsoft
WordPad or vi.

■ HTML editor

If you prefer to use a graphical HTML editor to work with HTML pages, use a
nongraphical mode for editing.

Caution: Graphical HTML editor programs often change the source
HTML, which may cause Idoc Script tags to be converted into a string
of characters that are no longer recognized by Oracle Content Server.
If you use a graphical editor, make sure you edit in a nongraphical
mode.

Troubleshooting

1-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ Multiple browsers

You should test customization on multiple versions of any web browsers that
might be used to interface with the content management system. Internet Explorer,
Netscape, Mozilla, and Safari do not display content in the same manner, and
different versions of the same browser may exhibit different behaviors.

■ JavaScript debugger

A JavaScript debugger can ease the task of JavaScript development. A number of
JavaScript debuggers are available for download from the Internet.

■ Integrated Development Environment (IDE) for Java

If your customization requires the development of Java code, you need an
appropriate Java development environment.

1.4 Troubleshooting
Several troubleshooting aids are available to help evaluate Oracle Content Server
pages as they are used. The following sections discuss three broad types of
troubleshooting aids:

■ Section 1.4.1, "Viewing Server Errors"

■ Section 1.4.2, "Viewing Page Data"

■ Section 1.4.3, "Monitoring Resource Loading"

1.4.1 Viewing Server Errors
Syntax errors and other mistakes in component files or dynamic server pages can
cause errors in Oracle Content Server. If the Oracle Content Server instance fails, it
reports the error in the following locations:

■ If you run Oracle Content Server from a command prompt, you can view the error
in the console window.

■ If you can log in to Oracle Content Server and display the Admin Server page, you
can view the Oracle Content Server log by selecting the Oracle Content Server
instance and then clicking View Server Output.

■ You can view the Oracle Content Server log files in the
DomainHome/ucm/cs/weblayout/groups/secure/logs directory.

1.4.2 Viewing Page Data
The IsJava setting displays the local data of an Oracle Content Server web page.

■ In a web browser, add the following code in the Address box to the end of the
page's URL:

&IsJava=1

■ On a template page or in an include, use the following code:

<$IsJava=1$>

Troubleshooting

Introduction to Customizing Your Oracle UCM Instance 1-5

The IsPageDebug setting displays a tree structure view of all includes being called on
an Oracle Content Server web page. The debug trace appears at the bottom of the web
page.

■ In a web browser, add the following code in the Address box to the end of the
page's URL:

&IsPageDebug=1

■ On a template page or in an include, use the following code:

<$IsPageDebug=1$>

■ To place a marker in the script debug trace, place the following code at the point
where you want to see a value or perform a step:

<$trace("marker code")$>

For example, you can use the following code to insert the current user name in the
debug trace (the eval function must be used to evaluate Idoc Script):

<$trace(eval("The user name is <$UserName$>")$>

IsJava and IsPageDebug are discussed in detail in the Oracle Fusion Middleware Idoc
Script Reference Guide.

1.4.3 Monitoring Resource Loading
Three configuration settings enable you to view the loading of resources when you run
Oracle Content Server from a command line. Set any of these variables equal to 1 in
the IntradocDir/config/config.cfg file:

■ TraceResourceLoad logs all resources loaded, resource overrides, resource
conflicts, and resource merges.

■ TraceResourceOverride logs when a system resource is overridden by a
component resource or a component resource is loaded twice.

■ TraceResourceConflict logs when a system resource is overridden twice by
component resources.

These configuration settings are discussed in detail in the Oracle Fusion Middleware Idoc
Script Reference Guide.

The following example shows the command line output when TraceResourceLoad=1.

Loading Java Resources
Loading ConflictTester Component
Loading ConflictTester2 Component
Loading Compression Component
Merging into Filters
MERGE [validateStandard, compression.ConversionParamsFilter, null, 1]
Loading Html Resources
Loading System Resource
c:/intradoc/shared/config/resources/upper_clmns_map.htm
ColumnTranslation
Loading System Resource

Tip: You can also set the IsPageDebug variable in the config.cfg file
if you want the setting to apply for the whole server.

Troubleshooting

1-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

c:/intradoc/shared/config/resources/indexer.htm
IndexerQueryTable
IndexerStatesTable
IndexerTransitionsTable
DefaultIndexerCycles
Loading System Resource
c:/intradoc/shared/config/resources/std_page.idoc
std_html_head_declarations
std_definitions
std_html_head_definition_declarations
std_page_variable_definitions
…

Loading System Resource
c:/intradoc/shared/config/resources/std_docrefinery.htm
AdditionalRenditionsSource
DocumentConversions
ConversionSteps
Loading ConflictTester Component
c:/intradoc/custom/ConflictTester/resources/conflicttester_resource.htm
conflict_tester_include
ConflictTester_Table
Loading ConflictTester2 Component
c:/intradoc/custom/ConflictTester2/resources/conflicttester_resource.htm
OVERRIDE conflict_tester_include
CONFLICT ConflictTester_Table
Loading Compression Component
c:/intradoc/custom/Compression/Compression_resource.htm
OVERRIDE searchapi_result_definitions
OVERRIDE searchapi_thumbnail_result_doc_href_start
OVERRIDE searchapi_result_table_content_begin
compression_thumbnail_img
Loading Compression Component
c:/intradoc/custom/Compression/Compression_handlers.htm
CompressionHandlers
Merging ConflictTester_Templates into IntradocTemplates
MERGE HOME_PAGE
Merging ConflictTester_Templates into IntradocTemplates
MERGE HOME_PAGE
Merging CompressionIntradocTemplates into IntradocTemplates
MERGE COMPRESSION_IMAGE_INFO
Merging CompressionHandlers into ServiceHandlers
MERGE [FileService, compression.CompressionFileServiceHandler, 100]
MERGE [FileService, DocCommonHandler, 100]
MERGE [DocService, compression.CompressionFileServiceHandler, 100]
…

2

Oracle UCM Architecture 2-1

2Oracle UCM Architecture

This chapter describes the architecture of Oracle Universal Content Management
(Oracle UCM) in the context of what you need to know before beginning a
customization project. To create a customization efficiently and effectively, you should
have an understanding of how Oracle UCM works.

This chapter includes the following sections:

■ Section 2.1, "Oracle UCM Directories and Files"

■ Section 2.2, "Resources"

■ Section 2.3, "Oracle Content Server Behavior"

2.1 Oracle UCM Directories and Files
When you create custom components or dynamic server pages, you work primarily
with files in the bin, config, components, resources, and weblayout directories. The
following sections describe these directories:

■ Section 2.1.1, "Terminology for Oracle UCM Directories"

■ Section 2.1.2, "The bin Directory"

■ Section 2.1.3, "The config Directory"

■ Section 2.1.4, "The components Directory"

■ Section 2.1.5, "The resources Directory"

■ Section 2.1.6, "The weblayout Directory"

Caution: Modifying the default variables in these files can cause
Oracle UCM to malfunction. For more information about
configuration variables, see the Oracle Fusion Middleware Idoc Script
Reference Guide.

Oracle UCM Directories and Files

2-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

2.1.1 Terminology for Oracle UCM Directories
Oracle UCM documentation uses the following terms when referring to variables in
the directories associated with the Oracle UCM installation, configuration, and
deployment:

■ IdcHomeDir: This variable refers to the ucm/idc directory in the ECM Oracle home
where the Oracle UCM server media is located. The server media can run Oracle
Content Server, Oracle Inbound Refinery, or Oracle Universal Records
Management. This is essentially a read-only directory. The default location is
ECM_ORACLE_HOME/ucm/idc. The variable portion of the default location can
be changed, but the path cannot be changed at ucm/idc.

■ DomainHome: The user-specified directory where an Oracle UCM server is
deployed to run on an Oracle WebLogic Server application server. The
DomainHome/ucm/short-product-id/bin directory contains the intradoc.cfg file and
executables. The default location for DomainHome is MW_HOME/user_
projects/domains/base_domain/, but you can change the path and domain name
(base_domain) during the deployment of Oracle UCM to Oracle WebLogic Server.

■ short-product-id: An abbreviated name for the type of Oracle UCM server deployed
to an Oracle WebLogic Server domain, and it is used as the context root (default
HttpRelativeWebRoot configuration value). Possible values follow:

■ cs (Oracle Content Server)

■ ibr (Oracle Inbound Refinery)

■ urm (Oracle Universal Records Management)

■ IntradocDir: The root directory for configuration and data files specific to an Oracle
Content Server instance that is part of an Oracle UCM application deployed to an
Oracle WebLogic Server domain. This Idoc Script variable is configured for one
type of Oracle Content Server instance: Oracle Content Server (cs), Oracle
Inbound Refinery (ibr), or Oracle Universal Records Management (urm). This
directory can be located elsewhere, but the default location is
DomainHome/ucm/short-product-id/. The specified directory must be an absolute
path to the instance directory, and it must be unique to a particular server or node.
The directory files include startup files (intradoc.cfg and executables).

2.1.2 The bin Directory
The bin directory is the root directory for Oracle Content Server startup files. It
contains the intradoc.cfg file and the executable files that run Oracle Content Server
services, applets, and utilities. It is located at DomainHome/ucm/short-product-id/bin,
in which short-product-id specifies whether it is for Oracle Content Server, Oracle
Inbound Refinery, or Oracle Universal Records Management.

Oracle UCM Directories and Files

Oracle UCM Architecture 2-3

The intradoc.cfg file is used to define system variables for Oracle Content Server,
including directory, Internet, and refinery settings. Several of these variables can be set
using the Oracle Content Server System Properties utility.

A typical intradoc.cfg file follows:

<?cfg jcharset="Cp1252"?>
#Oracle Content Server Directory Variables
IntradocDir=C:/oracle/idcm1/
WebBrowserPath=C:/Program Files/Internet Explorer/iexplore.exe
CLASSPATH=$COMPUTEDCLASSPATH;$SHAREDDIR/classes/jtds.jar

#Additional Variables
HTMLEditorPath=C:/Program Files/Windows XP/Accessories/wordpad.exe
JAVA_SERVICE_EXTRA_OPTIONS=-Xrs

2.1.3 The config Directory
The config directory stores global configuration information for Oracle Content Server.
This directory can be located elsewhere, but the default location is
DomainHome/ucm/short-product-id/config.

Element Description

Executables Services

■ IdcServer

■ IdcServerNT

Applets

■ IntradocApp (launches all Admin tools)

Utilities

■ Batch Loader

■ Installer

■ IdcAnalyze

■ Component Wizard

■ System Properties

■ IdcCommand

intradoc.cfg file Configuration file that contains the settings for Oracle Content Server
services, applets, and utilities.

Note: If Oracle Content Server is set up as an automatic service and
you attempt to start an Oracle Content Server service (IdcServer or
IdcServerNT) from the command line, you will receive an error
message: The port could not be listened to and is
already is use.

Element Description

config.cfg file Defines system configuration variables.

Oracle UCM Directories and Files

2-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The config.cfg file is used to define global variables for the Oracle Content Server
system. Several of these variables can be set using the Oracle Content Server System
Properties utility or by modifying the variables on the Admin Server General
Configuration page.

A typical config.cfg file follows:

<?cfg jcharset="Cp1252"?>
#Oracle Content Server System Properties
IDC_Name=idcm1
SystemLocale=English-US
InstanceMenuLabel=JeanWTestSystem
InstanceDescription=idcm1
SocketHostAddressSecurityFilter=127.0.0.1|10.10.1.14

#Database Variables
IsJdbc=true
JdbcDriver=com.internetcds.jdbc.tds.Driver
JdbcConnectionString=jdbc:freetds:sqlserver://jwilsonnote:1433/oracle1;charset=UTF
8;TDS=7.0
JdbcUser=sa
JdbcPassword=UADle/+jRz7Fi8D/VzTDaGUCwUaQgQjKOQQEtI0PAqA=
JdbcPasswordEncoding=Intradoc
DatabasePreserveCase=0

#Internet Variables
HttpServerAddress=jwilsonnote
MailServer=mail.example.com
SysAdminAddress=sysadmin@example.com
SmtpPort=25
HttpRelativeWebRoot=/oracle/
CgiFileName=idcplg
UseSSL=No
WebProxyAdminServer=true
NtlmSecurityEnabled=No
UseNtlm=Yes

#General Option Variables
EnableDocumentHighlight=true
EnterpriseSearchAsDefault=0
IsDynamicConverterEnabled=0
IsJspServerEnabled=0
JspEnabledGroups=

#IdcRefinery Variables

#Additional Variables
WebServer=iis
UseAccounts=true
IdcAdminServerPort=4440
SearchIndexerEngineName=DATABASE
VIPApproval:isRepromptLogin=true
Vdk4AppSignature=SF37-432B-222T-EE65-DKST
Vdk4AppName=INTRANET INTEGRATION GROUP
IntradocServerPort=4444

Oracle UCM Directories and Files

Oracle UCM Architecture 2-5

2.1.4 The components Directory
The IntradocDir/data/components directory contains the files that Oracle Content
Server uses to configure system components.

The following example file is a component.hda file that defines the configuration status
for a component called help.

<?hda version="11.1.1.2.0-dev idcprod1 (091209T125156)" jcharset=UTF8
encoding=utf-8?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
@end
@ResultSet Components
2
name
location
help
components/help/help.hda
@end

2.1.5 The resources Directory
The IdcHomeDir/resources directory contains two directories: admin and core.

The resources/core directory contains files that Oracle Content Server uses to assemble
web pages.

Element Description

idcshort-product-id_
components.hda

Identifies components that have been added to the Oracle Content
Server system and whether they are enabled or disabled. Example:
idccs_components.hda.

component.hda Identifies the configuration status for a component.

Element Description

config Holds base configuration files for Oracle Content Server.

idoc Holds IdocScript dynamichtml and dynamicdata definitions.

install Holds files used by the installer and related applications.

javascript Holds files which are processed by the publishing engine and end up in
the weblayout directory as raw javascript files.

jspserver Holds jspserver xml files.

lang Holds localized string definitions for Oracle Content Server.

reports Holds templates for Oracle Content Server reports.

resources Holds resource definitions (queries, page resources, services, and other
resource data) for Oracle Content Server.

tables Holds IdocScript resource table definitions.

templates Holds templates for all Oracle Content Server pages (except reports).

Resources

2-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The resources/admin directory contains the following resource types.

2.1.6 The weblayout Directory
The DomainHome/ucm/short-product-id/weblayout directory contains the files that are
available to the web server for display on the various pages of the Oracle Content
Server web site.

2.2 Resources
Resources are files that define and implement the actual customization you make to
Oracle Content Server. They can be pieces of HTML code, dynamic page elements,
queries that gather data from the database, services that perform Oracle Content
Server actions, or special code to conditionally format information.

Resources are a critical part of the Oracle Content Server software, so you must be
familiar with them before you attempt to create a custom component or dynamic
server page. You can create, edit, or remove a resource file by using the Component
Wizard. You also can use the Component Wizard as a starting point for creating
custom resources.

Resources fall into distinct categories, although the first five types listed in the
following table are also called Resource-type resources.

Element Description

idoc Holds IdocScript dynamichtml and dynamicdata definitions.

tables Holds IdocScript resource table definitions.

templates Holds templates for all Oracle Content Server pages (except reports).

Element Description

groups Holds the web-viewable content items and dynamic server pages.

images Holds images, such as icons and home page graphics.

resources Holds layouts, skins, and schema information.

Resource Type Description Example of Standard Resource

HTML Include Defines pieces of HTML markup
and Idoc Script code that are used
on multiple Oracle Content Server
web pages.

IdcHomeDir/resources/core/idoc/std_page.idoc

Dynamic Data
Table

Defines a table of data in a
dynamicdata include from within
IdocScript to load an HTML table
definition, interface menu actions,
or information about metadata
fields or from within Java code as
an alternative to static tables loaded
into SharedObjects.

IdcHomeDir/resources/core/idoc/std_data.idoc

String Defines localized strings for the user
interface and error messages.

IdcHomeDir/resources/core/lang/cs_strings.htm

Dynamic Table
(HDA format)

Provides dynamic (frequently
changed) content in table format to
Oracle Content Server.

IdcHomeDir/resources/core/datastoredesign/
columnIndexdList.hda

Oracle Content Server Behavior

Oracle UCM Architecture 2-7

2.3 Oracle Content Server Behavior
The following sections describe how Oracle Content Server behaves in different
situations:

■ Section 2.3.1, "Startup Behavior"

■ Section 2.3.2, "Resource Caching"

■ Section 2.3.3, "Oracle Content Server Requests"

■ Section 2.3.4, "Page Assembly"

■ Section 2.3.5, "Database Interaction"

■ Section 2.3.6, "Localized String Resolution"

2.3.1 Startup Behavior
The following steps occur during Oracle Content Server startup:

1. Internal initialization occurs.

2. Configuration variables load.

3. Standard templates, resources, and reports load.

4. Custom components load (templates, resources, configuration variables, and
reports).

Figure 2–1 illustrates these steps in a flowchart. Section 2.3.1.1, "Startup Steps,"
describes each step in more detail.

Static Table
(HTML format)

Provides static (seldom changed)
content in table format to Oracle
Content Server.

IdcHomeDir/resources/core/std_locale.htm

Query Defines database queries. IdcHomeDir/resources/core/tables/query.htm

Service Defines scripts for services that can
be performed by Oracle Content
Server.

IdcHomeDir/resources/core/tables/std_services.htm

Template Defines templates, which contain
the code that Oracle Content Server
uses to assemble a particular web
page.

IdcHomeDir/resources/core/templates/checkin_new.htm

Environment Defines configuration settings for
Oracle Content Server.

IntradocDir/config/config.cfg

Resource Type Description Example of Standard Resource

Oracle Content Server Behavior

2-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Figure 2–1 Oracle Content Server Startup Behavior

2.3.1.1 Startup Steps
Here are descriptions of the steps that an Oracle Content Server instance goes through
during startup:

1. Internal Initialization Occurs: When Oracle Content Server initializes internally,
the Java class files from Oracle Content Server are read and the Java Virtual
Machine (JVM) is invoked. Any variables in the
DomainHome/ucm/short-product-id/intradoc.cfg file initialize as well.

2. Configuration Variables Load: After initializing, Oracle Content Server loads the
config.cfg file from the IntradocDir/config directory. This file stores the system
properties and configuration variables, which are defined by name/value pairs
(such as SystemLocale=English-US).

The default information contained within the configuration file was supplied
during the Oracle Content Server installation process, but you can modify this file
in several ways:

■ By using the Admin Server General Configuration page, accessible from the
Administration menu.

■ By using the System Properties option, which is available from the Start menu
(in Windows) or by running the SystemProperties script, located in the bin
directory of your installation (on a UNIX operating system).

■ By editing the configuration files directly.

■ By using a custom component.

Any time changes are made to the config.cfg file, you must restart Oracle Content
Server for the changes to take effect.

Oracle Content Server Behavior

Oracle UCM Architecture 2-9

3. Standard Resources, Templates, and Reports Load: For Oracle Content Server to
function properly, many standard resources, templates, and reports must be
loaded. After the configuration settings have been loaded, Oracle Content Server
reads the entries in the IdcHomeDir/resources/core/templates/templates.hda file
and the IdcHomeDir/resources/core/reports/reports.hda file. These files tell
Oracle Content Server which templates to load, which in turn loads any standard
resources referenced in the template and report pages.

4. Custom Components Load: Oracle Content Server loads resources in the order
specified in the IntradocDir/custom/components.hda file.

2.3.1.2 Effects of Configuration Loading
It is important to understand the effect of the load order of the different configuration
files because if a variable is set in more than file, the last variable loaded takes
precedence. For example, the IntradocDir/config/config.cfg file is loaded first, and the
IntradocDir/data/components/component_name/config.cfg file is loaded last, so the
component_name/config.cfg can change the value of a variable that was set by the
config/config.cfg file.

Files are loaded in this order (not all files exist for each component):

1. IntradocDir/config/config.cfg.

2. DomainHome/ucm/short-product-id/custom/component_name/*_environment.cfg.
Some components may not have this file or it may be named environment.cfg.

3. IntradocDir/data/components/component_name/install.cfg.

4. IntradocDir/data/components/component_name/config.cfg.

5. DomainHome/ucm/short-product-id/bin/intradoc.cfg is reread at the end of startup
to allow overrides to other settings.

If, for example, a variable was set in each of the files listed previously, the variable in
component_name/config.cfg takes precedence.

To view the configuration, use the GET_SYSTEM_AUDIT_INFO service to show all
configuration entries and where they were set.

To change a component variable, use the Advanced Component Manager and select
Update Component Configuration. This displays values in the component_
name/config.cfg file that are editable. Make the desired changes, and click Update.

You can also edit the configuration file manually. If a component is not displayed in
the drop-down list or if the variables displayed do not include the one to change, make
the change directly in one of the configuration files.

2.3.2 Resource Caching
Oracle Content Server handles caches template pages and resources as follows:

■ When Oracle Content Server loads template pages and resources, they are cached
in memory to accelerate page presentation.

■ If you change a template page, report page, or HTML include resource, or you
check in a revision to a dynamic server page, your changes go into effect
immediately—the next request for the associated web page or refresh of the page
reflects the changes and the new information is cached. This occurs because pages
are assembled dynamically for each page request. You can disable this behavior to
improve performance by setting the config variable DisableSharedCacheChecking.

Oracle Content Server Behavior

2-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ If you change any other component files (including services, queries, environment
variables, tables, components.hda file, and template.hda file), you must restart
Oracle Content Server before the changes go into effect. This is because such
changes could cause Oracle Content Server to malfunction if they were
implemented immediately. You do not need to restart Oracle Content Server when
changing strings; however, you must republish the ww_strings.js files by clicking
publish dynamic files in the Weblayout Publishing area of the Admin Actions
page. For more information, see Chapter 3, "Working with Standard, Server, and
Custom Components."

2.3.3 Oracle Content Server Requests
When a web browser client sends an Oracle Content Server request to the web server,
the instructions are typically communicated through URLs or form fields. The web
server routes the request to Oracle Content Server, which then performs one or more
of the following actions:

■ Retrieves pages

For more information, see Section 2.3.3.1, "Page Retrieval."

■ Runs an Oracle Content Server service

For more information, see Section 2.3.3.2, "Oracle Content Server Services."

■ Runs a search engine service

For more information, see Section 2.3.3.3, "Search Services."

When an Oracle Content Server web page is requested, all of the necessary
information can be sent to Oracle Content Server through the URL. A typical Oracle
Content Server URL follows, the URL for the Home page:

http://cs.example.com/instancename/idcplg?IdcService=GET_DOC_
PAGE&Action=GetTemplatePage&Page=HOME_PAGE

■ http://cs.example.com/instancename is the web address of the Oracle
Content Server instance.

■ IdcService=GET_DOC_PAGE tells Oracle Content Server to execute the GET_
DOC_PAGE service.

■ Action=GetTemplatePage tells Oracle Content Server to return the results
using a specified template page.

■ Page=HOME_PAGE tells Oracle Content Server which template page to use.

■ The question mark (?) indicates the end of the web server path and the beginning
of Oracle Content Server instructions.

■ Ampersands (&) are used as separators between Oracle Content Server
instructions.

Note: Oracle Content Server uses the web server provided by Oracle
WebLogic Server.

Oracle Content Server Behavior

Oracle UCM Architecture 2-11

■ You can include some Idoc Script variables in a URL to affect page display at the
time of the page request. This is useful for troubleshooting or for temporary pages.
For example, the following variables can be used for customization:

– &StdPageWidth=1000

– &dDocAuthor:isHidden

– &dDocType=HRForm

Necessary information can also be sent to Oracle Content Server through form fields
on the page. A typical Oracle Content Server form follows:

<form name=SubscriptionForm action="<$HttpCgiPath$>" Method="GET"">
<input type=hidden name=dID value="<dID>">
<input type=hidden name=dDocName value="<$dDocName$>">
<input type=hidden name=subscribeService value=SUBSCRIBE>
<input type=hidden name=exitUrl value="<$HttpCgiPath$>?IdcService=DOC_
INFO&dID=<dID>&dDocName=<$dDocName$>">
<input type=hidden name=title value="Subscriptions">
<input type=hidden name=unsubscribeService value=UNSUBSCRIBE>
<$if ClientControlled$>
<input type=hidden name=ClientControlled value="<$ClientControlled$>">
<$endif$>
<$if DocHasSubscription$>
<input type=hidden name=IdcService value="UNSUBSCRIBE_FORM">
<input type=submit value="<$lc("wwUnsubscribe")$>">
<$else$>
<input type=hidden name=IdcService value="SUBSCRIBE_FORM">
<input type=submit value="<$lc("wwSubscribe")$>">
<$endif$>
</form>

2.3.3.1 Page Retrieval
When a web page is requested from Oracle Content Server, the page it returns is either
static dynamic:

■ Static page

The content of a static web page is preformatted, and does not change from one
request to the next. On some Oracle Content Server web sites, the only static page
is the Guest Home page
(DomainHome/ucm/short-product-id/weblayout/portal.htm).

■ Dynamic page

A dynamic web page is assembled at the time of the web server request, using
Oracle Content Server services and templates to determine the content and
formatting. For example, each user's portal design page is generated using an
Oracle Content Server service called GET_PORTAL_PAGE and a template called
PNE_PORTAL_DESIGN_PAGE.

2.3.3.2 Oracle Content Server Services
When a web browser requests a dynamic page from Oracle Content Server, the
browser is actually placing a request for an Oracle Content Server service.

Oracle Content Server Behavior

2-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

For example:

1. When a user clicks the Administration link in the navigation area, a request for
the GET_ADMIN_PAGE service is sent to the web server.

2. The web server recognizes this request as an Oracle Content Server function, and
sends the specific request to Oracle Content Server.

3. When Oracle Content Server has processed the request, it passes the result back to
the web server. In the case of the Administration link, the GET_ADMIN_PAGE
service:

■ Provides a login prompt if the user is not currently logged in.

■ Verifies that the user has the admin privilege.

■ Assembles the Administration page, using the ADMIN_LINKS template.

■ Returns the assembled web page to the web server.

4. The web server delivers the results of the Oracle Content Server service to the
originating web browser client.

2.3.3.3 Search Services
A search request is a special kind of Oracle Content Server service. When Oracle
Content Server receives a search request, it sends the request on to the search engine,
using a search engine API. This service makes it possible to use different search
engines with Oracle Content Server.

For example:

1. When a user clicks the Search button on the standard Search page, a request for
the GET_SEARCH_RESULTS service is sent to the web server.

2. The web server recognizes the request as an Oracle Content Server function and
sends the specific request to Oracle Content Server.

3. Oracle Content Server passes the request to the search engine that is configured for
the Oracle Content Server instance.

4. The search engine returns the search results to Oracle Content Server.

5. Based on the user login and security permissions, Oracle Content Server assembles
the search results page and returns it to the web server.

6. The web server delivers the results to the originating web browser client.

2.3.4 Page Assembly
Oracle Content Server uses information from the files in the IdcHomeDir/resources
directory to assemble dynamic web pages.

■ The structure and format of a web page is defined by a particular HTML template
file in either the resources/admin/templates directory or the
resources/core/reports directory.

■ The templates reference resources, which are located in .htm and .idoc files in
subdirectories of the resources directory. Resources can include HTML and Idoc
Script markup, localized strings, queries to gather information from the database,
and special code to conditionally format the information.

Oracle Content Server Behavior

Oracle UCM Architecture 2-13

As a rule, each web page includes the following resources:

■ A standard page header

■ A standard page beginning

■ A standard page ending

Because all of the Oracle Content Server resources are cached in memory at startup,
Oracle Content Server has a definition for the standard pieces that appear on the page.
Oracle Content Server then combines the standard resources with the unique resources
specified in the template to create the web page.

For dynamic server pages, the template page and custom resource files are checked
into Oracle Content Server. When one of these pages is requested by a web browser,
Oracle Content Server recognizes the file extension as a dynamic server page, which
enables special processing. At that point, the page assembly process is the essentially
the same as the standard process, except that the page can use both the standard
resources in the resources directory and the custom resources that are checked in to
Oracle Content Server.

2.3.5 Database Interaction
Some databases, such as Oracle Database, return all column names in uppercase
characters. Therefore, when Oracle Content Server receives query results from these
databases, column names must be mapped from the uppercase characters to the values
used in Oracle Content Server.

Because of this case mapping issue, custom components created for an Oracle Content
Server instance using one database might not work correctly on an Oracle Content
Server instance using a different database.

To map column names, the IdcHomeDir/resources/core/resources/upper_clmns_
map.htm file contains a mapping table named ColumnTranslation. Add the query
values to this file when you create a component that accesses fields that are not Oracle
Content Server database fields (for example, if you create a component that accesses a
custom table within the Oracle Content Server database).

For information about using the upper_clmns_map.htm file, see Section 5, "Modifying
System Functionality."

2.3.6 Localized String Resolution
Localized strings are the means by which the user interface and error messages are
presented in the language specified by the user's locale. Oracle Content Server loads
the string resource files for a base language and also loads resource files for every
supported language. Instead of presenting hard-coded text, the template pages,
applets, and error messages reference string IDs in these resource files, which are then
resolved using the ExecutionContext that contains the locale information for the user.

Oracle Content Server Behavior

2-14 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3

Working with Standard, Server, and Custom Components 3-1

3Working with Standard, Server, and Custom
Components

This chapter describes how to work with Oracle Universal Content Management
(Oracle UCM) components, which are programs used to modify Oracle Content Server
functionality.

This chapter includes the following sections:

■ Section 3.1, "Components Overview"

■ Section 3.2, "About Directories and Files"

■ Section 3.3, "Development Recommendations"

■ Section 3.4, "Component File Detail"

■ Section 3.5, "Resources Detail"

■ Section 3.6, "Installing Components"

3.1 Components Overview
Components are modular programs designed to interact with Oracle Content Server at
runtime. Standard components, system components, and custom components are
included with Oracle Content Server to add or change the core functionality of the
standard Oracle Content Server instance. You can create and use custom components
to modify an Oracle Content Server instance without compromising the system
integrity. Custom components can alter defaults for your system, add new
functionality, or streamline repetitive functions.

This section provides an overview of component management and the files and
directory structure associated with components. It covers these topics:

■ Section 3.1.1, "Component Wizard"

■ Section 3.1.2, "Advanced Component Manager"

■ Section 3.1.3, "ComponentTool"

■ Section 3.1.4, "Component Files Overview"

■ Section 3.1.5, "Enabling and Disabling Components"

Components Overview

3-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3.1.1 Component Wizard
The Component Wizard utility automates the process of creating custom components,
including creating and editing all the files necessary for custom components. You can
also use the Component Wizard to modify existing components and to package and
unpackage components for use on Oracle Content Server instances.

The Component Wizard is discussed in more detail in the Oracle Fusion Middleware
System Administrator’s Guide for Oracle Content Server.

Figure 3–1 Component Wizard Interface

To access the Component Wizard
■ UNIX operating system: Run ComponentWizard, stored in

DomainHome/ucm/short-product-id/bin/.

The Component Wizard main page is displayed.

■ Windows operating system: From the Start menu, choose the instance name, then
Utilities, and then Component Wizard.

The Component Wizard main page is displayed.

Components Overview

Working with Standard, Server, and Custom Components 3-3

3.1.2 Advanced Component Manager
The Advanced Component Manager provides a way to manage custom components in
Oracle Content Server. By using the Advanced Component Manager, you can easily
enable or disable components or add new components to Oracle Content Server.

The Advanced Component Manager is discussed in more detail in the Oracle Fusion
Middleware System Administrator’s Guide for Oracle Content Server.

To use the Advanced Component Manager:
1. In the Administration tray or menu, choose Admin Server.

The Admin Server displays the Component Manager page, which has lists of
enabled and disabled components.

2. In the first paragraph on the Component Manager page, click advanced
component manager.

3. On the Advanced Component Manager page, you can do these tasks:

■ View lists of enabled and disabled components by categories and other filters

■ Select a component to view details about it

■ Enable components

■ Disable components

■ Install custom components

■ Uninstall custom components

Components Overview

3-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Figure 3–2 Advanced Component Manager Page

Components Overview

Working with Standard, Server, and Custom Components 3-5

3.1.3 ComponentTool
ComponentTool is a command-line utility for installing, enabling, and disabling
components in Oracle Content Server. After installing a component, ComponentTool
automatically enables it. ComponentTool is located in the DomainHome/ucm/cs/bin
directory.

3.1.4 Component Files Overview
When you define a custom component, you create or make changes to the following
files:

■ The idcshort-product-id_components.hda file, which tells Oracle Content Server
what components are enabled and where to find the definition file for each
component.

■ The component definition (or glue) file, which tells Oracle Content Server where to
find the resources for the custom component.

■ Different custom resource files, which define your customization to standard
Oracle Content Server resources.

■ Template files, which define custom template pages.

■ Other files which contain customization to Oracle Content Server graphics, Java
code, help files, and so on.

For more detailed information about these files, see Section 3.2, "About Directories and
Files."

Any type of file can be included in a component, but the following file formats are
used most often:

■ HDA

■ HTM

■ CFG

■ Java CLASS

If you build or unpackage components in the Component Wizard, or upload and
download components in the Component Manager, you work with the following files:

■ A compressed ZIP file used to deploy a component on other Oracle Content Server
instances.

■ A manifest.hda file that tells Oracle Content Server where to place the files that are
unpackaged or uploaded from a component ZIP file.

3.1.5 Enabling and Disabling Components
By definition, a component is enabled when it is properly defined in the Components
ResultSet in the idc_components.hda file. A component is disabled if there is no entry
or the entry is not formatted correctly.

There are several ways to enable or disable a component:

■ ComponentTool: Run DomainHome/ucm/short-product-id/bin/ComponentTool to
enable or disable a component. For example, ComponentTool -enable
component_name

About Directories and Files

3-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ Component Wizard: Choose Enable or Disable from the Options menu. For more
information, see Oracle Fusion Middleware System Administrator's Guide for Oracle
Content Server.

■ Component Manager: Select the checkbox next to a component name to enable a
server component specified on the Component Manager screen. Clear the
checkbox next to a component name to disable a server component on the
Component Manager screen. For more information, see Oracle Fusion Middleware
System Administrator's Guide for Oracle Content Server.

■ Advanced Component Manager: On the Advanced Component Manager page,
select a component name, and click Disable to disable the component, or click
Enable to enable the component.

3.2 About Directories and Files
This section provides information about the files used in component creation and the
directory structure used to store those files. It includes the following sections:

■ Section 3.2.1, "HDA Files"

■ Section 3.2.2, "Custom Resource Files"

■ Section 3.2.3, "Data Binder"

■ Section 3.2.4, "Manifest File"

■ Section 3.2.5, "Other Files"

■ Section 3.2.6, "Typical Directory Structure"

3.2.1 HDA Files
A HyperData File (HDA) is used to define properties and tabular data in a simple,
structured ASCII file format. It is a text file that is used by Oracle Content Server to
determine which components are enabled and disabled and where to find the
definition files for that component.

The HDA file format is useful for data that changes frequently because the compact
size and simple format make data communication faster and easier for Oracle Content
Server.

The HDA file type is used to define the following component files:

■ Components file (idc_components.hda)

■ Component definition file

■ Manifest file

■ Dynamic table resource file

■ Template resource file

The following example file is an idccs_components.hda file that points to a component
called customhelp.

<?hda charset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
@end
@ResultSet Components
2
name

About Directories and Files

Working with Standard, Server, and Custom Components 3-7

location
customhelp
custom/customhelp/customhelp.hda
@end

3.2.1.1 Elements in HDA Files
Each HDA file contains a header line and one or more sections. The header line
identifies the Oracle Content Server version, character set, and Java encoding for the
HDA file. If an HDA file contains double-byte (Asian language) characters, the correct
character set and encoding must be specified so that Oracle Content Server can read
the file properly. The header line is not required for single-byte characters, but it is a
good practice to include it in your HDA files.

Two types of sections, Properties and ResultSet, are relevant to component
development. These sections are used to define the properties of the file (name,
location, and so on) and the ResultSet, which defines a table or columns and rows of
data. A ResultSet often represents the results of a query. All other sections tags are for
internal application use only.

Comments are not allowed within a section of an HDA file. However, you can place
comments in the HDA file before the first section, between sections, or after the last
section. Blank lines within a section of an HDA file are interpreted as a NULL value.
Blank lines before the first section, between sections, or after the last section are
ignored. None of the section types are mandatory in an HDA file, so unused sections
can be deleted.

■ The Properties section contains a group of name/value pairs. For a custom
component, the most common name for a Properties section is LocalData,
which means that the name/value pairs are valid only for the current HDA file.

You can also define global name/value pairs in a Properties section called
Environment, but this section is rarely used. The recommended practice is to
define global environment variables in a configuration file, such as config.cfg.

An example of a Properties section in an HDA file follows:

@Properties LocalData
PageLastChanged=952094472723
LocationInfo=Directory,Public,
IsJava=1
refreshSubMonikers=
PageUrl=/intradoc/groups/public/pages/index.htm
LastChanged=-1
TemplatePage=DIRECTORY_PAGE
IdcService=PAGE_HANDLER
LinkSelectedIndex=0
PageName=index
HeaderText=This is a sample page. The Page Name must remain index. The Page
Properties for this index page should be customized.
PageFunction=SavePage
dSecurityGroup=Public
restrictByGroup=1
PageType=Directory
PageTitle=Oracle Content Server Index Page
@end

■ Each ResultSet section of an HDA file defines a table or columns and rows of
data. A ResultSet can be used to pass information to a database or to represent the
result of a database query. A ResultSet section has the following structure:

About Directories and Files

3-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

– The first line defines the name of the ResultSet table, using the format
@ResultSet resultset_name.

– The second line defines the number of columns.

– The next n lines define the column names.

– The remaining lines define the values in each cell of the table.

– The last line of the section ends the table, using the format @end.

The following example shows a ResultSet called Scores that has 4 columns and 3
rows.

@ResultSet Scores
4
name
match1
match2
match3
Margaret
68
67
72
Sylvia
70
66
70
Barb
72
71
69
@end

The following table shows the ResultSet data in a columnar form. A ResultSet can
be given any name.

Oracle Content Server uses some predefined ResultSets with the following names,
which should not be used for custom component table.

name match1 match2 match3

Margaret 68 67 72

Sylvia 70 66 70

Barb 72 71 69

ResultSet Name Location Purpose

Components IntradocDir/data/components/idccustom-name_
components.hda

Defines the name and
location of any custom
components you have
created. You must specify
the short product ID (cs,
ibr, urm) for custom-name.

IntradocReports IdcHomeDir/resources/core/reports/reports.hda Specifies the default report
templates for Oracle
Content Server.

About Directories and Files

Working with Standard, Server, and Custom Components 3-9

3.2.1.2 The idc_components.hda File
The idc_components.hda file is a text file that tells Oracle Content Server which
components are enabled and where to find the definition file for each component.

The idc_components.hda file is always stored in the IntradocDir/data/components
directory. The Component Wizard, Component Manager, and ComponentTool can be
used to make changes to this file if needed.

The following example of an idccs_components.hda file lists several enabled
components, such as schema, configuration migration, and SOAP.

@properties LocalData
blDateFormat=M/d/yy
@end
@ResultSet Components
2
name
location
SchemaDCL
custom/SchemaDCL/SchemaDCL.hda
ConfigMigrationUtility
custom/ConfigMigrationUtility/Cmu.hda
Soap
custom/Soap/Soap.hda
@end

3.2.1.3 Component Definition Files
A component definition file points to the custom resources that you have defined.
This file specifies information about custom resources, ResultSets, and merge rules.
Because it serves as the "glue" that holds a component together, the component
definition file is sometimes called the glue file.

The definition file for a component is typically named component_name.hda, and is
located in the DomainHome/ucm/short-product-id/custom/component_name directory.
The Component Wizard can be used to create and make changes to a definition file.

IntradocTemplates IdcHomeDir/resources/core/templates/templates.hda Specifies all of the default
templates for Oracle
Content Server (except for
search results and report
templates).

ResourceDefinition DomainHome/ucm/short-product-id/custom/component
_name/component_name.hda

Defines resources for a
custom component.

SearchResultTemplates IdcHomeDir/resources/core/templates/templates.hda Specifies the default search
results templates for
Oracle Content Server.

Note: As of release 11gR1, the components.hda file and edit_
components.hda file have been combined into one file called
idcshort-product-name_components.hda. If the Admin Server does not
find the idcshort-product-name_components.hda file but does find the
legacy files, then it will migrate the data from the legacy file and
create an idcshort-product-name_components.hda file containing the
appropriate data.

ResultSet Name Location Purpose

About Directories and Files

3-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The following example of a component definition file points to an environment
resource file called customhelp_environment.cfg.

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
environment
customhelp_environment.cfg
null
1
@end

3.2.2 Custom Resource Files
Custom resource files define your Oracle Content Server customization. They are
usually HDA files but some are HTM files.

The custom resource files for a component are typically located in the
DomainHome/ucm/short-product-id/custom/component_name directory. Some resource
files may be placed in subdirectories such as resources/core/templates.

The following table describes these resources.

For more detailed information about these files, see Section 3.5, "Resources Detail."

In addition, a template.htm page is used by Oracle Content Server to assemble web
pages. For more detailed information about the template.hdm file, see Section 3.5.8,
"Templates."

Note: Do not confuse the idcshort-product-name_components.hda file
with the component_name.hda file. The idcshort-product-name_
components.hda file is used to track all installed components. The
component_name.hda file contains information that is specific to a
single component.

Resource Type File Type Contents

HTML include HTM "Include" definitions

String HTM Localized string definitions

Dynamic table HDA Tables for data that changes often

Static table HTM Tables for data that seldom changes

Query HTM Tables that define queries

Service HTM Tables that define service scripts

Template HDA Tables that specify location and file name for template pages

Environment CFG Configuration variable name/value pairs

About Directories and Files

Working with Standard, Server, and Custom Components 3-11

A ResultSet HTM table file is used by other resources. A ResultSet table in an HTM file
is similar to the ResultSet of an HDA file, except that it uses HTML table tags to lay
out the data. Static table resources, service resources, and query resources all use this
table format.

A ResultSet table in an HTM file begins with <@table table_name@> and ends with
<@end@>. The markup between the start and end tags is an HTML table. Unlike a
ResultSet in an HDA file, the number of columns is implied by the table tags.

Any HTML syntax that does not define the data structure is ignored when the table is
loaded. Therefore, HTML comments are allowed within tables in an HTM file, and
HTML style attributes can be used to improve the presentation of the data in a web
browser.

3.2.3 Data Binder
Oracle Content Server caches data (such as variable values and lookup keys) internally
in a data binder. All data in the data binder is categorized according to where it came
from and how it was created. When a value is required to fulfill a service request, the
data in the data binder is evaluated in the following default order:

1. LocalData

2. ResultSets

3. Environment

This precedence can be changed using Idoc Script functions. For more information, see
the Oracle Fusion Middleware Idoc Script Reference Guide.

3.2.3.1 LocalData
The @Properties LocalData section in an HDA file maps to the LocalData of the
DataBinder. The LocalData information consists of name/value pairs.

LocalData information is maintained only during the lifetime of the Oracle Content
Server request and response. Unlike information about the server environment, which
rarely changes, the LocalData information for each request is dynamic.

From the point of view of an HTTP request, the initial LocalData information is
collected from the REQUEST_METHOD, CONTENT_LENGTH, and QUERY_STRING
HTTP environment variables. As the service request is processed, the LocalData
name/value pairs can be added and changed.

3.2.3.2 ResultSets
Each @ResultSet section of an HDA file maps to a named result in the DataBinder.
Some result sets can be made active, thus taking precedence over other ResultSets
during a value search. A ResultSet becomes active when the ResultSet is looped on
during page assembly. An active ResultSet take precedence over any other ResultSets
during a value search of the DataBinder. When a service request requires data and the
value is not found in the LocalData or an active ResultSet, the remaining ResultSets
(those that are not active) are searched next.

3.2.3.3 Environment
Environment values are placed in the DataBinder as name/value pairs, which are
defined in configuration files such as IntradocDir/config/config.cfg, intradoc.cfg, and
environment-type resource files.

About Directories and Files

3-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3.2.4 Manifest File
Manifest files are used to upload or unpackage a component ZIP file on Oracle
Content Server. This file tells Oracle Content Server where to place the individual files
that are included in the component ZIP file. A manifest file is created automatically
when you build a component in the Component Wizard, or when you download a
component using the Admin Server Advanced Component Manager.

All manifest files must be called manifest.hda. The manifest.hda file is included in the
component ZIP file along with the other component files. It must be at the top level of
the ZIP file directory structure.

The manifest.hda file contains a ResultSet table called Manifest, which consists of
two columns:

■ The entryType column defines the type of entry in the manifest file.

■ The location column defines the directory where the files associated with the
entry are installed and specifies the file name for some entry types.

– For a Component entry type, the location is the path and file name for the
definition file. The definition file then tells Oracle Content Server which
resource files are included in the component.

– For other entry types, the location can be a path without a file name (to specify
all files in a particular subdirectory) or a path with a file name (to specify an
individual file).

– The location should be a path relative to the
DomainHome/ucm/short-product-id/custom directory. You can use an absolute

Entry Type Description Default Path

Classes Java class files DomainHome/ucm/short-product-id/classes

Common Common files DomainHome/ucm/short-product-id/weblayout/common

Component Component
resource files

DomainHome/ucm/short-product-id/custom

ComponentExtra Associated
files, such as a
readme

DomainHome/ucm/short-product-id/custom

Help Online help
files

DomainHome/ucm/short-product-id/weblayout/help

Images Graphics files DomainHome/ucm/short-product-id/weblayout/images

Jsp JavaServer
Pages

DomainHome/ucm/short-product-id/weblayout/jsp

Caution: Avoid using the entry types Common, Help, Images, and
Jsp because they are deprecated in Oracle UCM 11g. Oracle UCM has
a publishing engine that pushes files into the weblayout directory
from components. If you want the same behavior as in a previous
release, use the publishing engine; otherwise, the publishing engine
may place files directly into the weblayout directory from a custom
component, overwriting existing files. The overwritten files could be
permanently lost.

About Directories and Files

Working with Standard, Server, and Custom Components 3-13

path, but then the component can be installed only on Oracle Content Server
instances with the same installation directory path.

An example of a manifest.hda file follows:

@ResultSet Manifest
2
entryType
location
component
MyComponent/MyComponent.hda
componentExtra
MyComponent/readme.txt
images
MyComponent/
@end

3.2.5 Other Files
Your custom components can include any type of file that Oracle Content Server uses
for functionality or to generate its look and feel.

3.2.5.1 Customized Site Files
You can add customized files for your site to change the look or actions of Oracle
Content Server. For example, the following types of files are often referenced in
custom resources:

■ Graphics

Replace the icons, backgrounds, and logos that constitute the standard Oracle
Content Server interface.

■ Help

With the assistance of Consulting Services, you can customize help files for your
content management system.

■ Classes

Java code can change or extend the functionality of Oracle Content Server. Java
class files must be packaged into directories for placement in the
DomainHome/ucm/short-product-id/classes directory.

3.2.5.2 Component ZIP File
A component ZIP file contains all files that define an Oracle Content Server
component. It can be unpackaged to deploy the component on other Oracle Content
Server instances.

Caution: Avoid placing Graphics and Help files in the weblayout
directory manually because your files may be overwritten by the
Oracle UCM 11g publishing engine, which pushes files into the
weblayout directory from components. If you want the same behavior
as in a previous release, use the publishing engine; otherwise, the
publishing engine may place files in this directory directly from a
custom component, overwriting existing files. The overwritten files
could be permanently lost. If you need to place these files in the
weblayout directory manually, contact Oracle Consulting Services.

Development Recommendations

3-14 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3.2.5.3 Custom Installation Parameter Files
When you define one or more custom installation parameters, several additional files
are created in addition to the files that compose the basic component file structure.

If installation parameters are created for the component, then during the component
installation process the component installer automatically places two files in the
directory for the component within the data/components directory. These files hold
the preference data as follows:

■ The config.cfg file: Contains the parameters that can be reconfigured after
installation.

■ The install.cfg file: Contains the preference data definitions and prompt answers.

■ Backup ZIP file: A backup file that is created if the component is currently
installed and is being reinstalled.

3.2.6 Typical Directory Structure
If you use the Component Wizard to create custom components, your files are stored
in the appropriate directory.

Different component directories are established for each custom component in the
DomainHome/ucm/short-product-id/custom directory. Within each component
directory, separate subdirectories are established for reports, templates, and resources,
all named appropriately (for example, component_name/resources/). The component_
name.hda file (the definition file) is stored in the component_name directory.

3.3 Development Recommendations
The following sections provide some guidelines to assist you in developing custom
components:

■ Section 3.3.1, "Creating a Component"

■ Section 3.3.2, "Working with Component Files"

■ Section 3.3.3, "Using a Development Instance"

■ Section 3.3.4, "Component File Organization"

■ Section 3.3.5, "Naming Conventions"

For more detailed information about creating or modifying components, see Oracle
Fusion Middleware System Administrator's Guide for Oracle Content Server or online help.

3.3.1 Creating a Component
To create and enable a custom component, follow this basic procedure:

1. Create a definition file.

2. Add a reference to the definition file in the idcshort-product-id_components.hda file
to enable the component.

3. Restart Oracle Content Server to apply the component.

4. Create resources and other files to define your customization. A good approach is
to copy, rename, and modify standard Oracle Content Server files to create your
custom resource files.

Development Recommendations

Working with Standard, Server, and Custom Components 3-15

5. Test and revise your customization as necessary. You may need to restart Oracle
Content Server to apply your changes.

6. If you want to package the component for later use or for deployment on other
Oracle Content Servers instances, build the component and create a component
ZIP file.

3.3.2 Working with Component Files
Two tools are available for working with component files:

■ Component Wizard

The Component Wizard is an Oracle Content Server utility that can help you
create and edit component files. You can also use the Component Wizard to
package, unpackage, enable, and disable components. For more information about
using this utility, see Oracle Fusion Middleware System Administrator's Guide for
Oracle Content Server.

■ Text editor

Because most component files are plain text files, you can create and edit the files
in your favorite text editor.

You should use the Component Wizard as much as possible when working with
custom components.

The Component Wizard does several tasks for you and minimizes the amount of work
you need to do in a text editor. Using the Component Wizard helps you follow the
recommended file structure and naming conventions. The Component Wizard
automatically adds a readme text file when you build a component, thus helping you to
document your customization. You should also include comments within your
component files.

For information about using the Component Wizard to create components, see Oracle
Fusion Middleware System Administrator's Guide for Oracle Content Server.

3.3.3 Using a Development Instance
Whenever you are customizing Oracle Content Server, you should isolate your
development efforts from your production system. Remember to include the same
custom metadata fields on your development instance as you have defined for your
production instance.

When you have successfully tested your modifications on a development instance, use
the Component Wizard to build a component ZIP file and then unpackage the
component on your production system.

Remember to restart Oracle Content Server after enabling or disabling a component.

If you are having problems with your Oracle Content Server instance after you have
installed a custom component, disable the component and restart the instance. If this
fixes the problem, you probably need to troubleshoot your component. If the problem
is not fixed, you may need to remove the component completely using the Component
Wizard to determine whether there is a problem with the component or with the
Oracle Content Server instance.

3.3.4 Component File Organization
To keep your custom components organized, follow these file structure guidelines. For
more information, see Section 3.2.6, "Typical Directory Structure."

Development Recommendations

3-16 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Place each custom component in its own directory within a directory called
DomainHome/ucm/short-product-id/custom. If your custom component includes
resource-type or template-type resources, or both, the component directory should
have subdirectories that follow the structure of the IdcHomeDir/data/resources/core
directory:

■ resources to hold HTML include and table resource files

■ resources/lang to hold string resource files

■ templates to hold template files

■ reports to hold report files

Keep the following points in mind when considering files and their organization:

■ Place the definition file for each custom component at the top level of the
component’s directory.

■ When referring to other files within a component, use relative path names instead
of absolute path names. Using relative path names enables you to move the
component to a different location without having to edit all of the files in the
component.

■ Oracle Content Server is a Java-based application, so forward slashes must be used
in all path names.

■ Custom components do not have to be stored on the same computer as Oracle
Content Server, but all component files must be accessible to your Oracle Content
Server instance.

■ Images and other objects that are referenced by Oracle Content Server web pages
must reside somewhere in the DomainHome/ucm/short-product-id/weblayout
directory (so they can be accessed by the web server).

3.3.5 Naming Conventions
To keep your component files organized and ensure that the files work properly in
Oracle Content Server, follow these naming conventions for directories, individual
files, and file contents.

■ You should give all of your component directories and files unique and
meaningful names. Keep in mind that as each component is loaded into Oracle
Content Server, it overrides any resources with the same file names, so you should
use duplicate file names only if you want certain components to take precedence.

■ If you are copying a standard Oracle Content Server file, a common practice is to
place the prefix custom_ in front of the original file name. This ensures that you
do not overwrite any default templates, and your customization is easy to identify.

■ HTM file types should have an .htm extension, and HDA file types should have an
.hda extension.

■ If you are creating a new component file with a text editor, like WordPad, place the
file name within quotation marks in the Save dialog box so the proper file
extension is assigned to it (for example, myfile.hda). Failure to use quotation
marks to define the file name may result in a file name such as myfile.hda.txt.

Note: If you use the Component Wizard, it creates component
directories for you and places the component files in the correct
directories.

Component File Detail

Working with Standard, Server, and Custom Components 3-17

■ Oracle Content Server is case sensitive even if your file system is not. For example,
if a file is named My_Template, Oracle Content Server does not recognize case
variations such as my_template or MY_TEMPLATE.

■ For localized string resources, you must follow the standard file naming
conventions for Oracle Content Server to recognize the strings. You should also
use the standard two-character prefix (cs, sy, ap, or ww) when naming your
custom strings. For more information, see Section 2.3.6, "Localized String
Resolution."

3.4 Component File Detail
This section discusses the HDA file type and the component definition (glue) file in
more detail, in the following subsections:

■ Section 3.4.1, "The idc_components.hda File"

■ Section 3.4.2, "Component Definition (Glue) File"

The information in this section is intended as reference material and should not be
used to create files manually. You should always use the Component Wizard to create
your component files.

3.4.1 The idc_components.hda File
The idc_components.hda file tells Oracle Content Server which components are
enabled and where to find the component definition (glue) file for each component. In
11g Release 1 (11.1.1), this file has three forms, one for each of the Oracle UCM
products: idccs_components.hda (for Oracle Content Server), idcibr_components.hda
(for Oracle Inbound Refinery), and idcurm_components.hda (for Oracle Universal
Records Management). The file is always stored in the IntradocDir/data/components
directory.

3.4.1.1 Contents of idc_components.hda
The idc_components.hda file always includes a ResultSet called Components that
defines the name and file path of each definition file. You can use the Component
Wizard or the Component Manager to make changes to the components HDA file. For
more information, see Section 3.1.5, "Enabling and Disabling Components."

In the following example of an idccs_components.hda file, two components called
MyComponent and CustomHelp are enabled.

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet Components
2
name
location
MyComponent
custom/MultiCheckin/my_component.hda
CustomHelp
custom/customhelp/customhelp.hda
@end

Component File Detail

3-18 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3.4.1.2 Components ResultSet
The order that components are listed in the Components ResultSet determines the
order that components are loaded when you start Oracle Content Server. If a
component listed later in the ResultSet has a resource with the same name as an earlier
component, the resource in the later component takes precedence.

A Components ResultSet has two columns:

■ The name column provides a descriptive name for each component, which is used
in the Component Wizard, Component Manager, and Oracle Content Server error
messages.

■ The location column defines the location of the definition file for each
component. The location can be an absolute path or can be a path relative to the
Oracle Content Server installation directory.

3.4.2 Component Definition (Glue) File
A component definition file, or glue file, points to the custom resources that you have
defined. The definition file for a component is named component_name.hda, and is
typically located in the DomainHome/ucm/short-product-id/custom/component_name
directory. The Component Wizard can be used to create and make changes to a
definition file.

A definition file contains a ResourceDefinition ResultSet and may contain a
MergeRules ResultSet, a Filters ResultSet, a ClassAliases ResultSet, or any combination
of these ResultSets.

The following example shows a typical component definition file.

<?hda jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
classpath=$COMPONENT_DIR/classes.jar
ComponentName=Custom DCL Component
serverVersion=7.3
version=2010_10_22
@end
@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm

Note: Always use forward slashes in the location path.

Component File Detail

Working with Standard, Server, and Custom Components 3-19

dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

@ResultSet MergeRules
3
fromTable
toTable
column
DCLCustomTemplates
IntradocTemplates
name
DCLColumnTranslationTable
ColumnTranslation
alias
DCLDataSources
DataSources
name
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
@end

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

3.4.2.1 ResourceDefinition ResultSet
The ResourceDefinition ResultSet table defines the type, file name, table names,
and load order of custom resources.

Component File Detail

3-20 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3.4.2.1.1 Example of ResourceDefinition ResultSet The following example shows the
structure of a ResourceDefinition ResultSet:

@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

3.4.2.1.2 ResourceDefinition ResultSet Columns A ResourceDefinition ResultSet
consists of four columns:

■ The type column defines the resource type, which must be one of the following
values:

– resource, which points to an HTML include (HTM), string (HTM), dynamic
table (HDA), or static table (HTM) resource file.

– environment, which points to an environment resource (CFG) file.

– template, which points to a template resource (HDA) file.

– query, which points to a query resource (HTM) file.

– service, which points to a service resource (HTM) file.

■ The filename column defines the path and file name of the custom resource file.
This can be an absolute path or a relative path. Relative paths are relative to the
DomainHome/ucm/short-product-id/custom/component_name directory.

Component File Detail

Working with Standard, Server, and Custom Components 3-21

■ The tables column defines the ResultSet tables to be loaded from the resource
file. ResultSet names are separated with a comma. If the resource file does not
include ResultSets, this value is null. For example, HTML include resources do not
include table definitions, so the value for the tables column is always null for an
HTML include file.

■ The loadOrder column defines the order in which the resource is loaded.
Resources are loaded in ascending order, starting with resources that have a
loadOrder of 1. If multiple resources have the same loadOrder, the resources are
loaded in the order they are listed in the ResourceDefinition ResultSet. If there are
multiple resources with the same name, the last resource loaded is the one used by
the system. Normally, you should set the loadOrder to 1, unless there is a
particular reason to always load one resource after the others.

3.4.2.2 MergeRules ResultSet
The MergeRules ResultSet table identifies new tables that are defined in a custom
component, and specifies which existing tables the new data is loaded into.
MergeRules are required for custom template resources but are optional for custom
dynamic table and static table resources. MergeRules are not required for custom
service, query, HTML include, string, and environment resources.

3.4.2.2.1 Example of MergeRules ResultSet The following example shows a MergeRules
ResultSet.

@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
DCLCustomTemplates
IntradocTemplates
name
1
DCLColumnTranslationTable
ColumnTranslation
alias
1
DCLDataSources
DataSources
name
1
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
1
@end

3.4.2.2.2 MergeRules ResultSet Columns A MergeRules ResultSet consists of three
columns:

■ The fromTable column specifies a table that was loaded by a custom resource
and contains new data to be merged with the existing data. To properly perform a
merge, the fromTable table must have the same number of columns and the
same column names as the toTable table.

■ The toTable column specifies the name of the existing table into which the new
data is merged. Usually, the toTable value is one of the standard Oracle Content
Server tables, such as IntradocTemplates or QueryTable.

Resources Detail

3-22 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ The column column specifies the name of the table column that Oracle Content
Server uses to compare and update data.

– Oracle Content Server compares the values of column in fromTable and
toTable. For each fromTable value that is identical to a value currently in
toTable, the row in toTable is replaced by the row in fromTable. For each
fromTable value that is not identical to a value currently in toTable, a new
row is added to toTable and populated with the data from the row of
fromTable.

– The column value is usually name. Setting this value to null defaults to the
first column, which is generally a name column.

3.4.2.3 Filters ResultSet
The Filters ResultSet table defines filters, which are used to execute custom Java
code when certain Oracle Content Server events are triggered, such as when new
content is checked in or when the server first starts. The following example shows a
typical Filters ResultSet.

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

3.4.2.4 ClassAliases ResultSet
The ClassAliases ResultSet table points to custom Java class files, which are used to
extend the functionality of an entire Oracle Content Server Java class. The following
example shows a typical ClassAliases ResultSet.

@ResultSet ClassAliases
2
classname
location
WorkflowDocImplementor
WorkflowCheck.CriteriaWorkflowImplementor
@end

3.5 Resources Detail
The information in this section is intended as reference material and should not be
used to create any resource files manually. You should always use the Component
Wizard to create your resource files.

Resources are the files that define and implement the actual customization you make
to Oracle Content Server. Resources can be snippets of HTML code, dynamic page
elements, queries that gather data from the database, services that perform Oracle
Content Server actions, or special code to conditionally format information.

Resources Detail

Working with Standard, Server, and Custom Components 3-23

The custom resource files for a component are typically located in the
DomainHome/ucm/short-product-id/custom/component_name directory. If your
component has more than a few resources, it is easier to maintain the files if you place
them in subdirectories (such as component_name/resources or component_
name/templates) within the component directory.

There are two ways to create and edit a resource file:

■ Component Wizard: You can add, edit, or remove a resource file from a
component using the Component Wizard. The Component Wizard provides code
for predefined resources that you can use as a starting point for creating custom
resources. You can also open resource files in a text editor from within the
Component Wizard. Each resource type described in this section includes
step-by-step instructions for using the Component Wizard to create and edit that
type of resource.

■ Manual editing: After creating a resource file with the Component Wizard, you
can open the resource file in a text editor and edit the code manually, if necessary.

For more information, see Oracle Fusion Middleware System Administrator's Guide for
Oracle Content Server or online help.

The following sections discuss these resource categories:

■ Section 3.5.1, "HTML Include"

■ Section 3.5.2, "Dynamic Data Tables"

■ Section 3.5.3, "String"

■ Section 3.5.4, "Dynamic Tables"

■ Section 3.5.5, "Static Tables"

■ Section 3.5.6, "Query"

■ Section 3.5.7, "Service"

■ Section 3.5.8, "Templates"

■ Section 3.5.9, "Environment"

3.5.1 HTML Include
An include is defined within <@dynamichtml name@> and <@end@> tags in an
HTM resource file. The include is then called using this syntax:

<$include name$>

Includes can contain Idoc Script and valid HTML code, including JavaScript, Java
applets, cascading style sheets, and comments. Includes can be defined in the same file
as they are called from, or they can be defined in a separate HTM file. Standard HTML
includes are defined in the IdcHomeDir/resources/core/idoc files.

HTML includes, strings, and static tables can be present in the same HTM file. An
HTML include resource does not require merge rules.

Note: You must restart Oracle Content Server after changing a
resource file.

Resources Detail

3-24 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3.5.1.1 The Super Tag
The super tag is used to define exceptions to an existing HTML include. The super
tag tells the include to start with an existing include and then add to it or modify using
the specified code.

The super tag is particularly useful when making a small customization to large
includes or when you customize standard code that is likely to change from one
software version to the next. When you upgrade to a new version of Oracle Content
Server, the super tag ensures that your components are using the most recent version
of the include, modifying only the specific code you need to customize your instance.

The super tag uses the following syntax:

<@dynamichtml my_resource@>
<$include super.my_resource$>
exception code

<@end@>

You can use the super tag to refer to a standard include or a custom include. The
super tag incorporates the include that was loaded last.

Example 3–1 Super Tag

In this example, a component defines the my_resource include as follows:

<@dynamichtml my_resource@>
<$a = 1, b = 2$>

<@end@>

Another component that is loaded later enhances the my_resource include using the
super tag. The result of the following enhancement is that a is assigned the value 1
and b is assigned the value 3:

<@dynamichtml my_resource@>
<$include super.my_resource$>
<!--Change "b" but not "a" -->
<$b = 3$>

<@end@>

3.5.1.2 Editing an HTML Include Resource
Use the following procedure to edit an existing HTML include resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If the resource file contains multiple types of resources, click the Includes tab on
the right.

Note: The placement of a super tag will determine how the Idoc
Script is evaluated.

Resources Detail

Working with Standard, Server, and Custom Components 3-25

4. Modify the includes in the Custom HTML Includes list.

■ To edit an existing include, select the include, click Edit, modify the code, and
then click OK.

■ To add an include to the resource file, click Add.

■ To remove an include, select the include, click Delete, and then click Yes to
confirm.

3.5.2 Dynamic Data Tables
A dynamic data table resource is a dynamicdata table. This type of resource enables
you to define tables of data from within Idoc Script to load an HTML table definition,
interface menu actions, or information about metadata fields or from within Java code
as an alternative to static tables loaded into SharedObjects.

While tables loaded into SharedObjects are static and rarely change, a lot of code
within Oracle Content Server will modify the contents of a dynamicdata table when
it is loaded into a user's context. You can use dynamicdata resources to display
different data to users depending on anything from their security attributes to the
specific actions they are performing. Components can do targeted merging into tables
created with this resource type, and Idoc Script pages can select and sort rows.

You can declare a dynamicdata resource as follows in any resource file that can
contain dynamichtml constructions:

<@dynamicdata NameOfTable@>
<?formatoftable properties-of-table?>
table-data
<@end@>

A dynamicdata table is defined within <@dynamicdata name@> and <@end@>
tags in a resource file. To reference dynamicdata tables, you need to use the Idoc
Script functions whose names begin with dd, such as ddLoadResultSet, which
loads a merged dynamicdata table and creates a ResultSet in the current data binder.

The IdcHomeDir/resources/core/idoc files define standard dynamicdata resources.

3.5.2.1 Specifying Table Formats
For the formatoftable parameter in a dynamicdata resource, you can specify either of
two format types:

■ commatable

■ htmltable

The default format is commatable.

commatable
The commatable format is for tables with values that do not have line feeds or
carriage returns. In this format, you enter a comma-separated list of field names on
one line followed by a comma-separated list of values on the following lines, one line
for each field, as in this example:

<@dynamicdata SampleTable@>
<?commatable?>
col1, col2
val1_1, val1_2
val2_1, val2_2
<@end@>

Resources Detail

3-26 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

If you need to insert a comma (,) into a value, then use a circumflex (^) instead of the
comma. If you need to insert a circumflex, then enter the escape sequence
hash-circumflex (#^, and if you need to insert a hash (#) that is followed by a hash or a
circumflex, then enter the escape sequence hash-hash (##). For example:

<@dynamicdata SampleTable@>
field1, field2
A^B, C##^D#^E#F^G
<@end@>
This dynamicdata resource would load a table row whose value for field1 would
be A,B and for field2 would be C#^D^E#F,G.

You cannot escape line feeds or carriage returns. If you need to specify a value that
contains either of those characters, then you should use the htmltable format.

htmltable
The htmltable format is the same as the format used for static HTML table
constructs in Oracle Content Server. For example:

<@dynamicdata SampleTable@>
<?htmltable?>
<table>
<tr>
 <td>col1</td>
 <td>col2</td>
</tr>
<tr>
 <td>val11</td>
 <td>val12</td>
</tr>
<tr>
 <td>val21</td>
 <td>val22</td>
</tr>
</table>
<@end@>

3.5.2.2 Editing a Dynamic Data Table Resource
Use the following procedure to edit an existing dynamicdata resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If the resource file contains multiple types of resources, click the Includes tab on
the right.

4. You can modify any of the dynamicdata tables in the custom resource definition,
add a dynamicdata table, or remove a dynamicdata table:

■ To edit an existing dynamicdata table, choose the table, click Edit, modify
the code, and then click OK.

■ To add a dynamicdata table to the resource file, click Add.

■ To remove a dynamicdata table, choose the table, click Delete, and then click
Yes to confirm.

Resources Detail

Working with Standard, Server, and Custom Components 3-27

3.5.2.3 Specifying Table Properties
The properties-of-table parameter in a dynamicdata resource has this format:

field1="value1" field2="value2" . . .
The properties are like attributes defined in an XML node. For example, here is a
typical table declaration:

<@dynamicdata ExampleTable@>
<?commatable mergeField="fieldA" indexedColumns="fieldA,fieldB"?>
fieldA, fieldB
1, 2
3, 4
<@end@>

The quotation marks that enclose the values are optional for values that have no
spaces, and you can use either single or double quotation marks. Also, the default
property value is "1", so you can omit the assignment of a value for a table property if
it is "1".

Omitting the value is useful for Boolean properties such a notrim and mergeBlanks.
For example, the following declaration specifies a table that is not to trim its values:

<@dynamicdata ExampleTable@>
<?commatable mergeField="fieldA" indexedColumns="fieldA,fieldB" notrim?>
fieldA, fieldB
1, 2
3, 4
<@end@>

In this example, the space would not be trimmed before the 2 or the 4. (Field names
are always trimmed.)

You can specify the following kinds of table properties:

■ Merge properties

■ Assembly properties

■ Sort properties

■ Filter and dynamicdata table properties

3.5.2.3.1 Merge Properties The dynamicdata tables can be merged together
automatically, which is part of the power of using these tables. If two dynamicdata
tables have the same name but are in separate resource files, they will be automatically
merged. You can use the mergeOtherData option to merge another existing table
into the current existing table. Using this technique, you can build very complicated
tables all merged from various other tables. This merging can improve the readability
of the data and enable you to have some tables as subsets of other tables.

You can specify one or more of the following merge properties in the
properties-of-table parameter in a dynamicdata resource:

■ mergeKey -- The name of the field to do a merge on. This value applies to both
this and the existing tables when doing an overlay unless mergeNewKey is set in
which case it only applies to the existing table. If this value is not set, then the
merge key defaults to the first column of this table. If the mergeKey refers to a
column in the existing table that does not exist, then the result will be to append
this table to the existing table unless the mergeRule is set to a value that dictates a
different outcome. This property has merge scope.

Resources Detail

3-28 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ mergeNewKey -- The name of the field in this table to use as a basis of comparison
with the mergeKey column in the existing table. The default is to be the value of
mergeKey. This property has merge scope.

■ mergeRule -- The rule to use when performing a merge of two tables. This
property has three possible values, the default being merge. This property has
merge scope.

■ merge -- Merge using the mergeKey (and if specified, the mergeNewKey)
properties to perform the merge.

■ mergenoappend -- Perform the merge, but do not append any new rows. If there
is no valid merge to perform (for example, if the mergeKey does not refer to a
valid column in the existing table), then the result is to not perform a merge at all
and the overlaying table has no effect on the final result.

■ replace -- Replace the existing table with this table. This option has the outcome of
suppressing any prior table resource. This would be similar to not using the super
include in a dynamichtml resource.

■ mergeBlanks -- By default, when values are merged from this table to the existing
table, any values that are blank in this table do not replace the overlaid value in
the existing table. This allows for targeted replacement of column values in the
existing table by this table. But if this option is enabled (set without a value, or set
with the value 1 or true) then blanks in this table replace non-blank values in the
existing table. The default is 0 (or false) and the property has merge scope.

■ mergeAppendColumns -- This is a comma-separated list of columns in this table.
For any column mentioned in the list, column values in this table for that column
do not replace values in the existing table for that column but instead append or
replace (using comma as the separator) the new value to the current value. Each of
the subvalues in the comma separated list is assumed to be of the form key=value
with =value part being optional. If this table has the same key in its comma
separated list, then that key=value pair will replace the value in the existing table.
For example, if the existing table has a column value of the form a=1,b=2 and this
table has the value b=3,c=4 then the merged result will be a=1,b=3,c=4. This
property has merge scope.

■ cssStyleMergeAppendFormat -- This is a boolean property and changes the
separator values used for the mergeAppendColumns property. Normally the
value of a field mentioned in the mergeAppendColumns is a comma separated list
of name equal value pairs with the equal operator (=) being the assignment
operator. If this property is enabled, then the lists separator becomes a semi-colon
(;) and the name value pairs use a colon (:) for the assignment. So instead of the
field value looking like A=1,B=2 it would instead be A:1;B:2. The default is false
and the property has merge scope.

■ wildcard -- Normally when a merge is performed, the merge test is a case
insensitive match comparison. When this option is enabled, the comparison is a
standard Oracle Content Server wildcard match (* = 0 or more of any character, ? =
any single character). Typically the option is used with mergeNewKey being set to
a column different from mergeKey and in many cases the mergeKey does not even
refer to a valid column in this table. The default is 0 (or false) and the property has
merge scope.

■ mergeOtherData -- A comma separated list of other dynamicdata resources to
merge into this one. Each of the other dynamicdata resources are fully merged
before they are merged into this resource (if those other resources also are using
mergeOtherData, then those merges are done first -- the code does have recursion
detection). If the one of the referenced dynamicdata resources has multiple

Resources Detail

Working with Standard, Server, and Custom Components 3-29

definitions in multiple files, then the merge keys used to merge into this resource
are the ones defined that is highest in merge order (the one that is merged into
last) for that other resource. If this dynamicdata resource (the one that has the
mergeOtherData property on it) has multiple definitions in multiple files, the
mergeOtherData parameter is produced by merging all the referenced named
resources from all the resources in the merge stack. The default is null and has
global scope.

3.5.2.3.2 Assembly Properties You can specify one or more of the following assembly
properties in the properties-of-table parameter in a dynamicdata resource:

■ notrim -- This option only applies to the commatable format. Normally, all the
values that are parsed for a table resource are trimmed. Setting this option
prevents the values from being trimmed. It is presumed that this will be a rarely
used option. The default is 0 (or false) and the property has local table scope.

■ indexedColumns -- This property lists columns that should be optimized for
indexed lookup. Specialized Idoc Script functions exist to take advantage of the
any of the indexed columns. When a lookup is done against an indexed column,
the column name and a value must be specified. A filtered table consisting of just
the rows whose values for the indexed column match (case insensitive) the value
passed in to the function is returned. Note that these indexed column lookups are
all computed at load/merge time and stored in a hash table for fast retrieval. The
list of indexed column values for all the overlaying tables are merged together and
the index computations are done after the merge is finished. This property has
global table scope.

■ countColumn -- This value specifies a column in the fully merged table into which
the values of a row count is put. The count starts at 1 and increments for each row
in the table. Any existing values in that column of the merged table are replaced
by the count value. This property can be used to create a quick unique key for each
row. The default value for this property is "count", so any table with the column
name "count" that does not specify a different countColumn will automatically
have counter values put into that column. If the value of this property does not
match a column name in the final merged table, then it is ignored. If an overlaying
table resource specifies a different countColumn from one specified in a prior table
resource, then the overlaying one will be used. The property has global table
scope.

■ defaultValues -- This property specifies a comma-separated list of default values
to apply to the table. Each default value in this list is of the format
fieldname:value. If the value is an empty string then the colon can be dropped. For
example, the string field1:val1,field2:val2,field3 specifies the default value val1 for
field1, val2 for field2, and the empty string for field3. A colon can be escaped with
a star (*) and a star can be escaped by preceding it with a hash (#). If either a hash
or a star follows a hash, then the hash can be escaped by adding another hash (see
the similar rule for escaping commas given earlier). If a field specified in a default
value construction does not exist in the final merged table, then it is added as a
new field and given the default value for all rows in that table. If the field exists,
then the default value will override any blank values in that table for that field.
The definitions of defaultValues from the newer overlaying tables are collated
with the active definition of the existing table. If there is a conflict in the definition
of a particular default value, the newer overlaying table wins. The default for this
property is null and it has global table scope.

■ derivedColumns -- This property specifies columns to be built up from values
from other columns. The general syntax is a comma separated list of derived
column definitions of the form derivedColumnDef1,derivedColumnDef2,... with

Resources Detail

3-30 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

each column definition being of the form
fieldName:sourceField1+sourceField2+.... The fieldName refers to the name of the
field to be created and the sourceFieldN refer to fields whose value will be sourced
to create the derived column. The derived value will hold the values of the source
fields separated by a double colon (::). If the derived column exists and has a non
empty value, then it is not replaced. As with the defaultValues property, there is a
second pass after the final table is assembled to determine whether any derived
values still need to be filled in. The most typical usage for derived columns is to
allow one dynamicdata resource to use multiple columns for specifying a merge
criteria instead of just one. The derived column is used as the target of a merge
and is defined in the definition of the existing table. The derived column
definitions are inherited into the newer overlaying tables and if there is a conflict
in definition of a particular derived column then the newer table's definition wins.
Otherwise, the definitions of derived columns from the existing and new tables are
collated together. The default value for this property is null and it has global table
scope.

3.5.2.3.3 Sort Properties You can specify one or more of the following sort properties in
the properties-of-table parameter in a dynamicdata resource:

■ sortColumn -- Specifies a column to sort on. If an overlaying table resource
specifies a different sortColumn from one specified in a prior table resource, then
the overlaying one will be used. If the name of the column does not match any
column name in the final merged table, then no sort is performed. The default
value is "sortOrder". So creating a column with this name will cause the table to be
automatically sorted. This property has global table scope

■ sortType -- Specifies what data type should be assumed for the column being
sorted. This type applies to both the sortColumn and the sortParentColumn. The
values can be "int", "string", or "date". The default value for this property is "int".
Rules for overlaying tables both specifying this property are identical to
sortColumn. This property has global table scope.

■ sortOrder -- Specifies what sort order to use when performing a sort. The possible
values are "asc" (for ascending) and "desc" (for descending). The default is "asc".
Rules for overlaying tables both specifying this property are identical to
sortColumn. This property has global table scope.

■ sortIsTree -- Specifies whether the sort is actually a tree sort with a
sortParentColumn being sorted along with the sortChildColumn. The assumption
is that the child to parent row mapping relationship is done by using the child
row's value in the sortParentColumn to the find the parent row with a matching
value in its sortChildColumn field. The sort is performed so that the top level
parents are sorted first, then the children of each parent are sorted as a subgroup
for each parent and so on recursively for all the children of the children. The
default value is 0 (or false). Rules for overlaying tables both specifying this
property are identical to sortColumn. This property has global table scope.

■ sortParentColumn -- This value must be specified if the sortIsTree option is
enabled. If the value of this property is missing or specifies an invalid column,
then the sortIsTree option is ignored and has no effect. For more information about
what it does, see the preceding description of the sortIsTree property. The default
for the sortParentColumn property is null. Rules for overlaying tables both
specifying this property are identical to sortColumn. This property has global
scope.

■ sortChildColumn -- This value must be specified if the sortIsTree option is
enabled. If the value of this property is missing or specifies an invalid column,

Resources Detail

Working with Standard, Server, and Custom Components 3-31

then the sortIsTree option is ignored and has no effect. For more information about
what it does, see the preceding description of the sortIsTree property. The default
for the sortChildColumn property is null. Rules for overlaying tables both
specifying this property are identical to sortColumn. This property has global
scope.

■ sortNestLevelColumn -- This value is only available if the sortIsTree option is
enabled. If the value of this property references an invalid column then it has no
effect. If a valid column is specified, then that column will get an integer value that
specifies its nest level (starting at 0). The nest level is defined as the number of
immediate parents that have to be traversed before reaching a parent that itself has
no parent. The default value for this property is "nestLevel" and it has global
scope.

3.5.2.3.4 Filter and Include Properties You can specify one or more of the following filter
and include properties in the properties-of-table parameter in a dynamicdata
resource:

■ filterInclude -- This property specifies an include to be executed for each row of a
table (or subtable if an indexed column is being used to select a subtable). This
execution will happen when the table is loaded into the current user's context. Its
main purpose is either to create a side effect or to determine if the row should be
excluded. To prevent the row from being loaded into the final result set, you can
set the variable ddSkipRow to 1 (<$ddSkipRow=1$>). During execution of this
include, the table is made active, allowing for easy access and replacement of
values in the table. The default value of this property is null, and it has global
scope.

■ includeColumns -- This property specifies a comma-separated list of columns
whose row values are the names of resource includes to be executed. After the
resource includes are executed, the result is fed back into the result set to become
the new value for that column for that row. The timing and rules for execution are
similar to filterInclude except that includeColumns cannot suppress the
loading of a row. If a filter include is specified and there are active include
columns, then during the looping of the temporary active result set, the include
column values are executed first and then the filter include. If one of the specified
include columns in not present in the final merged table, then it will have no
effect. Empty values in an include column are ignored. The includeColumns
attribute is commonly combined with the defaultValues attribute to create
columns whose values are derived from other columns. The default value of this
property is null, and it has global scope.

3.5.2.4 Using Dynamicdata Idoc Script Functions
For dynamic data tables, you can use the following dynamicdata Idoc Script
functions:

■ ddAppendIndexedColumnResultSet

■ ddAppendResultSet

Note: Using includeColumns may not be as useful as it first
appears. The resource includes are executed at the time the Idoc Script
function is executed to load the table, but a component that
customizes output may determine the value for the column only after
further processing (after other tables are merged into this table,
summaries of row statistics are calculated, and so on).

Resources Detail

3-32 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ ddApplyTableSortToResultSet

■ ddGetFieldList

■ ddIncludePreserveValues

■ ddLoadIndexedColumnResultSet

■ ddLoadResultSet

■ ddMergeIndexedColumnResultSet

■ ddMergeResultSet

■ ddMergeUsingIndexedKey

■ ddSetLocal

■ ddSetLocalByColumnsFromFirstRow

■ ddSetLocalByColumnsFromFirstRowIndexed

■ ddSetLocalEmpty

■ ddSetLocalEmptyByColumns

3.5.3 String
A string resource defines locale-sensitive text strings that are used in error messages
and on Oracle Content Server web pages and applets. Strings are resolved by Oracle
Content Server each time a web page is assembled, an applet is started, or an error
message is displayed.

A string is defined in an HTM file using the following format:

<@stringID=Text string@>

A string is called from an HTM template file using the following Idoc Script format:

<$lc("wwStringID")$>

Standard English strings are defined in the IdcHomeDir/resources/core/lang directory.
Strings for other supported languages are provided by the Localization component.

HTML includes, strings, and static tables can be present in the same HTM file. A
string resource does not require merge rules.

You must use HTML escape encoding to include the following special characters in a
string value.

Note: On Oracle Content Server web pages, you should use only the
strings in the ww_strings.htm file.

Escape Sequence Character

&at; @

\&lf; line feed (ASCII 10)

\&cr; carriage return (ASCII 13)

\&tab; tab (ASCII 9)

\&eatws; Eats white space until the next non-white space character.

\< < (less than)

Resources Detail

Working with Standard, Server, and Custom Components 3-33

You can specify strings for multiple languages in the same resource file using the
language identifier prefix, if the languages all have single-byte characters or all have
multibyte characters. For example:

<@myString=Thank you@>
<@es.myString=Gracias@>
<@fr.myString=Merci@>
<@de.myString=Danke@>

If you are specifying multibyte strings in your custom string resource, ensure that the
character set specification on your HTML pages changes to the appropriate encoding.
Resource files should have a correct http-equiv charset tag so that Oracle
Content Server reads them correctly.

3.5.3.1 String Parameters
Text strings can contain variable parameters, which are specified by placing the
parameter argument inside curly braces (for example, {1}). When a string is localized,
the arguments are passed along with the string ID and the ExecutionContext value
that contains the locale information. The following table describes the syntax for
parameterized strings.

\> > (greater than)

\&sp; space (ASCII 32)

\&#xxx; ASCII character represented by decimal number xxx

Caution: Do not specify single-byte strings and multibyte strings in
the same resource file. You should create separate resource files for
single-byte and multibyte strings.

Syntax Meaning Examples

{{} Opening curly brace. (Note that only
the opening curly brace must be
expressed as a literal.)

{{}Text in braces}

{n} Substitute the nth argument. Content ID {1} not found

{ni} Substitute the nth argument, formatted
as an integer.

dID {1i} does not exist

{nx} Substitute the nth argument, formatted
as an integer in hexadecimal.

{nd} Substitute the nth argument, formatted
as a date.

The release date is {1d}

{nD} Substitute the nth argument, formatted
as a date. The argument should be
ODBC-formatted.

The release date is {1D}

{nt} Substitute the nth argument, formatted
as a date and time.

The release date is {1t}

{ne} Substitute the nth argument, formatted
as elapsed time.

Escape Sequence Character

Resources Detail

3-34 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

{nT} Substitute the nth argument, formatted
as a date and time. The argument
should be ODBC-formatted.

The release date is {1T}

{nfm} Substitute the nth argument, formatted
as a float with m decimal places.

The distance is {1f3} miles.

{nk} Substitute a localized string using the
nth argument as the string ID.

Unable to find {1k} revision
of {2}

{nm} Localize the nth argument as if it were
a string-stack message. (For example,
the argument could include
concatenated text strings and localized
string IDs.)

Indexing internal error: {1m}

{nl} Substitute the nth argument as a list.
The argument must be a list with
commas (,) and carets (^) as the
separators.

Add-ons: {1l}

{nK} Takes a list of localization key names,
separated by commas, and localizes
each key into a list.

Unsupported byte feature(s):
{1K}

{nM} Takes a list of message strings and
localizes each message into a list.

{1q} component, version
{2q}, provides older versions
of features than are currently
enabled. {3M}

{nq} If the nth argument is non-null and
nonzero in length, substitute the
argument in quotation marks.
Otherwise, substitute the string
"syUndefined".

Content item {1q} was not
successfully checked in

{no} Performs ordinal substitution on the
nth argument. For example, 1st, 2nd,
3rd, and so on. The argument must be
an integer.

"I am {1o}." with the
argument 7 would localize
into "I am 7th."

{n?text} If the value of the nth argument is not
1, substitute the text.

{1} file{1?s} deleted

{n?text1:text2} ■ If the value of the nth argument is
not 1, substitute text1.

■ If the value of the nth argument is
1, substitute text2.

The (n?) function can be extended with
as many substitution variables as
required. The last variable in the list
always corresponds to a value of 1.

There {1?are:is} currently {1}
active search{1?es}.

{n?text1:text2:text3} ■ If the value of the nth argument is
not 1 or 2, substitute text1.

■ If the value of the nth argument is
2, substitute text2.

■ If the value of the nth argument is
1, substitute text3.

The (n?) function can be extended with
as many substitution variables as
required. The last variable in the list
always corresponds to a value of 1.

Contact {1?their:her:his}
supervisor.

Syntax Meaning Examples

Resources Detail

Working with Standard, Server, and Custom Components 3-35

3.5.3.2 Editing a String Resource
Use the following procedure to edit an existing string resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If the resource file contains multiple types of resources, click the Strings tab on the
right.

4. Modify the strings in the Custom Strings list.

■ To edit an existing string, select the string, click Edit, modify the string text,
and then click OK.

■ To add a string to the resource file, click Add.

■ To remove a string, select the string, click Delete, and then click Yes to
confirm.

3.5.4 Dynamic Tables
Dynamic table resources are defined in the HDA file format. For more information and
an example of an HDA ResultSet table, see Section 3.2.1.1, "Elements in HDA Files."

3.5.4.1 Merge Rules for Dynamic Tables
Merge rules are required for a dynamic table resource if data from the custom resource
replaces data in an existing table. Merge rules are not required if data from the custom
resource is to be placed in a new table.

3.5.4.2 Editing a Dynamic Table Resource
Use the following procedure to edit an existing dynamic table resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the table in the text editor.

5. Save and close the resource file.

Changes are reflected on the right of the Resource Definition tab.

3.5.5 Static Tables
Static tables, HTML includes, and strings can be present in the same HTM file.

3.5.5.1 Merge Rules for Static Tables
Merge rules are required for a static table resource if data from the custom resource
replaces data in an existing table. Merge rules are not required if data from the custom
resource is to be placed in a new table.

3.5.5.2 Editing a Static Table Resource
Use this procedure to edit an existing static table resource with the Component
Wizard.

Resources Detail

3-36 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the table in the text editor.

5. Save and close the resource file. Changes are reflected in the Resource Tables list.

3.5.6 Query
A query resource defines SQL queries, which are used to manage information in the
Oracle Content Server database. Queries are used with service scripts to perform tasks
such as adding to, deleting, and retrieving data from the database.

The standard Oracle Content Server queries are defined in the QueryTable table in the
IdcHomeDir/resources/core/tables/query.htm file. You also find special-purpose
queries in the indexer.htm and workflow.htm files that are stored in the
IdcHomeDir/resources/core/tables directory. Merge rules are not required for a query
resource.

A query resource is defined in an HTM file using a ResultSet table with three columns:
name, queryStr, and parameters.

■ The name column defines the name for each query. To override an existing query,
use the same name for your custom query. To add a new query, use a unique query
name. When naming a new query, identify the type of query by starting the name
with one of the following characters.

■ The queryStr column defines the query expression. Query expressions are in
standard SQL syntax. If there are any parameter values to pass to the database,
their place is held with a question mark (?) as an escape character.

■ The parameters column defines the parameters that are passed to the query
from a service. A request from a web browser calls a service, which in turn calls
the query. It is the responsibility of the web browser to provide the values for the
query parameters, which are standard HTTP parameters The browser can pass
query parameters from the URL or from FORM elements in the web page. For
example, the QdocInfo query requires the dID (revision ID) to be passed as a
parameter, so the value is obtained from the service request URL.

3.5.6.1 Query Example
The following example shows the standard QdocInfo query as defined in the
IntradocDir/shared/config/resources/query.htm file. This query obtains the metadata
information to display on the DOC_INFO template page, which is the page displayed
when a user clicks the Information icon on a search results page.

The parameter passed from the web browser URL is the dID, which is the unique
identification number for the content item revision. The query expression selects the

First Character Query Type

D Delete

I Insert

Q Select

U Update

Resources Detail

Working with Standard, Server, and Custom Components 3-37

data that matches the dID for the primary revision from the Revisions, Documents,
and DocMeta database tables, if the revision does not have the DELETED status.

Figure 3–3 Standard QDocInfo Query

<HTML>
<HEAD>
<META HTTP-EQUIV='Content-Type' content='text/html; charset=iso-8859-1'>
<TITLE>Query Definition Resources</TITLE>
</HEAD>
<BODY>
<@table QueryTable@>
<table border=1><caption>Query Definition Table</caption>
<tr>

<td>name</td>
<td>queryStr</td>
<td>parameters</td>

</tr>
<tr>

<td>QdocInfo</td>
<td>SELECT Revisions.*, Documents.*, DocMeta.*
FROM Revisions, Documents, DocMeta
WHERE Revisions.dID=? AND Revisions.dID=Documents.dID AND DocMeta.dID =

Documents.dID AND Revisions.dStatus<>'DELETED' AND Documents.dIsPrimary<>0</td>
<td>dID int</td>

</tr>
</table>
<@end@>
</BODY>
</HTML>

3.5.6.2 Editing a Query Resource
Use the following procedure to edit a query resource using the Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If there are multiple tables in the resource, select the query table to edit from the
Table Name list.

4. Modify the selected query table.

■ To add a query to the table, click Add.

■ To edit an existing query, select the query, click Edit, modify the query
expression or parameters or both, and then click OK.

■ To remove a query, select the query, click Delete, and then click Yes to confirm.

Resources Detail

3-38 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3.5.7 Service
A service resource defines a function or procedure that is performed by Oracle
Content Server. A service call can be performed from either the client or server side, so
services can be performed on behalf of the web browser client or within the system
itself. For example:

■ Client-side request: When you click a Search link on an Oracle Content Server
web page, the standard search page is delivered to your web browser by the GET_
DOC_PAGE service, using the following URL segment:

IdcService=GET_DOC_PAGE&Action=GetTemplatePage&Page=STANDARD_QUERY_PAGE

■ Server-side request: You can use the START_SEARCH_INDEX service to update
or rebuild the search index automatically in a background thread.

Services are the only way a client can communicate with the server or access the
database. Any program or HTML page can use services to request information from
Oracle Content Server or perform a specified function.

The standard Oracle Content Server services are defined in the StandardServices
table in the IdcHomeDir/resources/core/tables/std_services.htm file. You can also find
special-purpose services in the workflow.htm file in the
IdcHomeDir/resources/core/tables directory.

Services depend on other resource definitions to perform their functions. Any service
that returns HTML requires a template to be specified. A common exception is the
PING_SERVER service, which does not return a page to the browser.

Most services use a query. A common exception is the SEARCH service, which sends a
request directly to the search collection. Merge rules are not required for a service
resource.

The following table row is an example of a service definition.

Figure 3–4 Service Definition Example

A service resource is defined in an HTM file using a ResultSet table with the following
three columns:

■ The Name column defines the name for each service. For client-side service
requests, this is the name called in the URL. To override an existing service, use the
same name for your custom service. To add a new service, use a unique service
name.

■ The Attributes column defines the following attributes for each service.

Important: This section provides an overview of custom service
resources. For more information about Oracle Content Server services,
see Oracle Fusion Middleware Services Reference Guide for Oracle
Universal Content Management.

Resources Detail

Working with Standard, Server, and Custom Components 3-39

■ The Actions column defines the actions for each service. An action is an
operation to be performed as part of a service script. The action can execute an
SQL statement, perform a query, run code, cache the results of a query, or load an
option list. Each service includes one or more actions, which specify what happens
upon execution.

The
 tags in the Actions column are for browser display purposes only, so
they are optional. However, the </td> tag must occur immediately after the
actions, without a line break in between. An action is defined using the following
format:

type:name:parameters:control mask:error message

Attribute Description
Example (attributes from the DELETE_
DOC service)

Service class Determines, in part, what actions can be performed
by the service.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Access level Assigns a user access level to the service. This
number is the sum of the following possible bit
flags:

READ_PRIVILEGE = 1

WRITE_PRIVILEGE = 2

DELETE_PRIVILEGE = 4

ADMIN_PRIVILEGE = 8

GLOBAL_PRIVILEGE = 16

SCRIPTABLE_SERVICE=32

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Template page Specifies the template that presents the results of the
service. If the results of the service do not require
presentation, this attribute is null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Service type If the service is to be executed inside another service,
this attribute is SubService; otherwise, this
attribute is null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Subjects
notified

Specifies the subjects (subsystems) to be notified by
the service. If no subjects are notified, this attribute
is null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Error message Defines the error message returned by the service if
no action error message overrides it. This can be
either an actual text string or a reference to a
locale-sensitive string. For more information, see
Section 2.3.6, "Localized String Resolution."

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Section Description
Example (first action from the
DELETE_DOC service)

Type Defines the type of action:

QUERY_TYPE = 1

EXECUTE_TYPE = 2

CODE_TYPE = 3

OPTION_TYPE = 4

CACHE_RESULT_TYPE = 5

5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExists

Resources Detail

3-40 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

3.5.7.1 Service Example
The DOC_INFO service provides a good example of how services, queries, and
templates work together. The following figures show the DOC_INFO service
definition from the IntradocDir/config/resources/std_services.htm file.

Figure 3–5 DOC_INFO Service

<HTML>
<HEAD>
<META HTTP-EQUIV='Content-Type' content='text/html; charset=iso-8859-1'>
<TITLE>Standard Scripted Services</TITLE>
</HEAD>
<BODY>
<@table StandardServices@>
<table border=1><caption>Scripts For Standard

Services</caption>
<tr>
<td>Name</td><td>Attributes</td><td>Actions</td>
</tr>
<tr>
<td>DOC_INFO</td>
<td>DocService

33

Name Specifies the name of the action. 5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExist

Parameters Specifies parameters required by the action. If no
parameters are required, leave this part empty (two
colons appear in a row).

5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExist

Control mask Controls the results of queries to the database. This
number is the sum of the following possible bit flags:

No control mask = 0

CONTROL_IGNORE_ERROR = 1

CONTROL_MUST_EXIST = 2

CONTROL_BEGIN_TRAN = 4

CONTROL_COMMIT_TRAN = 8

CONTROL_MUST_NOT_EXIST = 16

5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExist

Error
message

Defines the error message to be displayed by this action.
This error message overrides the error message provided
as an attribute of the service. This can be either an actual
text string or a reference to a locale-sensitive string. For
more information, see Section 2.3.6, "Localized String
Resolution."

5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExist

Section Description
Example (first action from the
DELETE_DOC service)

Resources Detail

Working with Standard, Server, and Custom Components 3-41

DOC_INFO
null
null

!csUnableToGetRevInfo</td>

<td>5:QdocInfo:DOC_INFO:2:!csItemNoLongerExists2
3:mapNamedResultSetValues:DOC_

INFO,dStatus,dStatus,dDocTitle,dDocTitle:0:null
3:checkSecurity:DOC_INFO:0:!csUnableToGetRevInfo2(dDocName)
3:getDocFormats:QdocFormats:0:null
3:getURLAbsolute::0:null
3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null
3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null
3:getWorkflowInfo:WF_INFO:0:null
3:getDocSubscriptionInfo:QisSubscribed:0:null
5:QrevHistory:REVISION_HISTORY:0:!csUnableToGetRevHistory(dDocName)</td>

</tr>
</table>
<@end@>
</BODY>
</HTML>

3.5.7.1.1 Attributes The following table describes the attributes of the DOC_INFO
service shown previously.

3.5.7.1.2 Actions The DOC_INFO service executes the following actions:

■ 5:QdocInfo:DOC_INFO:2:!csItemNoLongerExists2

Attribute Value Description

Service class DocService This service is providing information about a
content item.

Access level 33 32 = This service can be executed with the
executeService Idoc Script function.

1 = The user requesting the service must have
Read privilege on the content item.

Template page DOC_INFO This service uses the DOC_INFO template (doc_
info.htm file). The results from the actions are
merged with this template and presented to the
user.

Service type null This service is not a subservice.

Subjects notified null No subjects are affected by this service.

Error Message !csUnableToGetRevI
nfo

If this service fails on an English Oracle Content
Server system, it returns this error message
string: Unable to retrieve information
about the revision

Action Definition Description

5 Cached query action that retrieves information from the database
using a query.

QDocInfo This action retrieves content item information using the
QDocInfo query in the query.htm file.

DOC_INFO The result of the query is assigned to the parameter DOC_INFO
and stored for later use.

Resources Detail

3-42 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ 3:mapNamedResultSetValues:DOC_
INFO,dStatus,dStatus,dDocTitle,dDocTitle:0:null

■ 3:checkSecurity:DOC_INFO:0:!csUnableToGetRevInfo2(dDocName)

■ 3:getDocFormats:QdocFormats:0:null

2 The CONTROL_MUST_EXIST control mask specifies that either the
query must return a record, or the action fails.

!csItemNoLongerExist
s2

If this action fails on an English Oracle Content Server system, it
returns this error message string: This content item no
longer exists

Action Definition Description

3 Java method action specifying a module
that is a part of the Java class implementing
the service.

mapNamedResultSetValues This action retrieves the values of dStatus
and dDocTitle from the first row of the
DOC_INFO ResultSet and stores them in the
local data. (This increases speed and
ensures that the correct values are used.)

DOC_
INFO,dStatus,dStatus,dDocTitle,dDocT
itle

Parameters required for the
mapNamedResultSetValues action.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part
of the Java class implementing the service.

checkSecurity This action retrieves the data assigned to the DOC_
INFO parameter and evaluates the assigned security
level to verify that the user is authorized to perform
this action.

DOC_INFO Parameter that contains the security information to be
evaluated by the checkSecurity action.

0 No control mask is specified.

!csUnableToGetRevInfo2(dDocN
ame)

If this action fails on an English Oracle Content Server
system, it returns this error message string: Unable
to retrieve information for
''{dDocName}."

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getDocFormats This action retrieves the file formats for the content item using the
QdocFormats query in the query.htm file. A comma-delimited list
of the file formats is stored in the local data as dDocFormats.

Action Definition Description

Resources Detail

Working with Standard, Server, and Custom Components 3-43

■ 3:getURLAbsolute::0:null

■ 3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null

■ 3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null

■ 3:getWorkflowInfo:WF_INFO:0:null

QdocFormats Specifies the query used to retrieve the file formats.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getURLAbsolute This action resolves the URL of the content item and stores it in
the local data as DocUrl.

blank This action takes no parameters.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getUserMailAddress This action resolves the e-mail address of the content item
author.

dDocAuthor,AuthorAddress This action passes dDocAuthor and AuthorAddress as parameters.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part
of the Java class implementing the service.

getUserMailAddress This action resolves the e-mail address of the user
who has the content item checked out.

dCheckoutUser,CheckoutUserAddress This action passes dCheckoutUser and
CheckoutUserAddress as parameters.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

Action Definition Description

Resources Detail

3-44 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ 3:getDocSubscriptionInfo:QisSubscribed:0:null

■ 5:QrevHistory:REVISION_
HISTORY:0:!csUnableToGetRevHistory(dDocName)

3.5.7.2 Editing a Service Resource
Use the following procedure to edit a service resource using the Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If there are multiple tables in the resource, select the service table to edit from the
Table Name list.

getWorkflowInfo This action evaluates whether the content item is part of a
workflow. If the WF_INFO ResultSet exists, then workflow
information is merged into the DOC_INFO template.

WF_INFO This action passes WF_INFO as a parameter.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getDocSubscriptionInfo This action evaluates if the current user has subscribed to the
content item:

■ If the user is subscribed, an Unsubscribe button is displayed.

■ If the user is not subscribed, a Subscribe button is displayed.

QisSubscribed Specifies the query used to retrieve the subscription information.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

5 Cached query action that retrieves information from the
database using a query.

QrevHistory This action retrieves revision history information using the
QrevHistory query in the query.htm file.

REVISION_HISTORY The result the query is assigned to the parameter
REVISION_HISTORY. The DOC_INFO template uses this
parameter in a loop to present information about each
revision.

0 No control mask is specified.

!csUnableToGetRevHistory(dDoc
Name)

If this action fails on an English Oracle Content Server
system, it returns the error message string:

Unable to retrieve revision history for
''{dDocName}.''

Action Definition Description

Resources Detail

Working with Standard, Server, and Custom Components 3-45

4. Modify the selected service table.

■ To add a service to the table, click Add.

■ To edit an existing service, select the service, click Edit, modify the service
attributes or actions or both, and then click OK.

■ To remove a service, select the service, click Delete, and then click Yes to
confirm.

3.5.8 Templates
A template resource defines the names, types, and locations of custom template files to
be loaded for the component.

The actual template pages (.htm files) are separate files that are referenced in the
template resource file. Template HTM files contain the code that the Oracle Content
Server uses to assemble web pages. HTML markup in a template file defines the basic
layout of the page, while Idoc Script in a template file generates additional HTML
code for the web page at the time of the page request. Because HTM template files
contain a large amount of script that is not resolved by Oracle Content Server until the
final page is assembled, these files are not viewable web pages.

The template type of HTM file is used to define the following component files:

■ Template pages: Standard template pages are located in the
IdcHomeDir/resources/core/templates directory.

■ Report pages: Standard report pages are located in the
IdcHomeDir/resources/core/reports directory.

A template resource (templates.hda) is defined in the HDA file format. The standard
templates are defined in the IdcHomeDir/resources/core/templates/templates.hda
file. For more information and an example of an HDA ResultSet table, see
Section 3.2.1.1, "Elements in HDA Files."

Merge rules are required to merge the new template definition into the
IntradocTemplates table or the SearchResultTemplates table. Typically, the merge is
on the name column. The following example shows a MergeRules ResultSet for a
template.

@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
MultiCheckinTemplates
IntradocTemplates
name
1
@end

The standard templates.hda file defines three ResultSet tables:

■ The IntradocTemplates ResultSet table defines the template pages for all Oracle
Content Server web pages except search results pages. This table consists of five
columns:

– The name column defines the name for each template page. This name is how
the template is referenced in the Oracle Content Server CGI URLs and in code.

Resources Detail

3-46 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

– The class column defines the general category of the template. The most
common class type is Document.

– The formtype column defines the specific type of functionality the page is
intended to achieve. The formtype is typically the same as the name of the
form, except in lowercase characters.

– The filename column defines the path and file name of the template file. The
location can be an absolute path or can be relative to the template resource file
when the template page is in the same directory as the template resource file.

– The description column defines a description of the template.

■ The VerifyTemplates ResultSet table is no longer used by Oracle Content Server,
but this table remains in the templates.hda file as legacy code for reverse
compatibility.

■ The SearchResultTemplates table defines the template pages for search results
pages. Template pages define how query results are displayed on the search
results pages in the Library. Query result pages are a special type of search results
page. This table consists of six columns:

– The name column defines the name for each template page. This name is how
the template is referenced in the Oracle Content Server CGI URLs, in code,
and in the Web Layout Editor utility.

– The formtype column defines the specific type of functionality the page is
intended to achieve. ResultsPage is the only form type currently supported for
search results pages.

– The filename column defines the path and file name of the template file. The
location can be an absolute path or can be relative to the template resource file
when the template page is in the same directory as the template resource file.

– The outfilename column is for future use; the value is always null.

– The flexdata column defines the metadata to be displayed for each row on
the search results page. The format of text in the flexdata column follows:

Text1 "text 1 contents"%<Tab>Text2 "text 2 contents"%

In the format, the Text1 value appears on the first line in each search results
row, and the Text2 value appears on the second line. <Tab> represents a literal
tab character.

Idoc Script can be used to define the contents in the flexdata field. You can
also change the flexdata of the StandardResults template through the
Web Layout Editor, but these changes are saved in a separate file
(IntradocDir/data/results/custom_results.hda) rather than in the
SearchResultTemplates table in the templates.hda file.

– The description column defines a description of the template.

Note: The StandardResults template (search_results.htm file) is
typically used as the global template for standard search results pages
and the query results pages in the Library. You can create a new
template or change the "flexdata" of the StandardResults template
through the Web Layout Editor, but these changes are saved in a
separate file (IntradocDir/data/results/custom_results.hda) rather
than in the SearchResultTemplates table in the templates.hda file.

Resources Detail

Working with Standard, Server, and Custom Components 3-47

The following example shows a custom template resource file that points to a custom
Content Management page (multicheckin_doc_man.htm) and a custom search results
page (MultiCheckin_search_results.htm).

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet MultiCheckinTemplates
5
name
class
formtype
filename
description
DOC_MANAGEMENT_LINKS
DocManagement
DocManagementLinks
multicheckin_doc_man.htm
Page containing links to various document management functions
@end
@ResultSet MultiCheckin_2
6
name
formtype
filename
outfilename
flexdata
description
StandardResults
SearchResultsPage
MultiCheckin_search_results.htm
null
Text2 <$dDocTitle$> <$dInDate$>%Text1 <$dDocName$>%
apStandardResultsDesc
@end

3.5.8.1 Template and Report Pages
Template pages and report pages are also called presentation pages, because Oracle
Content Server uses them to assemble, format, and present the results of a web page
request.

The standard template pages are located in the IdcHomeDir/resources/core/templates
directory. The standard report pages are located in the
IdcHomeDir/resource/core/reports directory.

3.5.8.1.1 Template Page Example The following example shows the template file for the
standard Content Management page (doc_man.htm).

Resources Detail

3-48 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Figure 3–6 Template Page Example

3.5.8.1.2 Report Page Example The following example shows the template file for the
standard Document Types report page (doc_types.htm).

Resources Detail

Working with Standard, Server, and Custom Components 3-49

Figure 3–7 Report Page Example

3.5.8.2 Editing a Template Resource
Use the following procedure to edit an existing template resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. To remove a template definition table or edit a template definition manually, click
Launch Editor in the Custom Resource Definition area.

4. If there are multiple tables in the resource, select the template table to edit from the
Table Name list.

5. Modify the selected template table.

■ To add a template definition to the table, click Add.

■ To edit an existing template definition, select the definition, click Edit, modify
the parameters, and then click OK.

Resources Detail

3-50 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ To remove a template definition, select the definition, click Delete, and then
click Yes to confirm.

3.5.9 Environment
An environment resource defines configuration variables, either by creating new
variable values or replacing existing values. Because custom resources are loaded after
the standard config.cfg file is loaded, the variable values defined in the custom
environment resource replace the original variable values.

An environment resource is defined in a CFG file using a name/value pair format:

variable_name=value

After defining a variable value, you can reference the variable in templates and other
resource files with the following Idoc Script tag:

<$variable_name$>

Environment resource files can include comment lines, which are designated with a #
symbol:

#Set this variable to true to enable the function.

3.5.9.1 Environment Resource Example
Example 3–2 shows the contents of an environment resource file.

Example 3–2 Environment Resource

Use this to turn on or off alternate row coloring
nsUseColoredRows=0

These are the nested search field definitions.

nsFld1Caption=Document Text
nsFld1Name=
nsFld1Type=FullText
nsFld1OptionKey=
#
nsFld2Caption=Text
nsFld2Name=xtext
nsFld2Type=Text
nsFld2OptionKey=
#
nsFld3Caption=Date
nsFld3Name=xdate
nsFld3Type=Date
nsFld3OptionKey=
#
nsFld4Caption=Integer
nsFld4Name=xinteger
nsFld4Type=Int
nsFld4OptionKey=
#
nsFld5Caption=Option List
nsFld5Name=xoptionlist
nsFld5Type=OptionList
nsFld5OptionKey=optionlistList
#
nsFld6Caption=Info Topic

Installing Components

Working with Standard, Server, and Custom Components 3-51

nsFld6Name=xwfsInfoTopic
nsFld6Type=OptionList
nsFld6OptionKey=wfsInfoTopicList

The colored_search_resource.htm template resource file in the Nested Search
component references the nsUseColoredRows variable as follows:

<$if isTrue(#active.nsUseColoredRows)$>
<$useColoredRows=1, bkgHighlight=1$>

<$endif$>

Standard configuration variables are defined in the IntradocDir/config/config.cfg file.
For a complete list of configuration variables, see the Oracle Fusion Middleware Idoc
Script Reference Guide.

3.5.9.2 Editing an Environment Resource
Use the following procedure to edit an existing environment resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the configuration variables in the text editor.

5. Save and close the resource file.

Changes are reflected in the Custom Environment Parameters list.

3.6 Installing Components
Server components for Oracle Content Server are installed by default, however,
custom components and components downloaded from Oracle Technology Network
must be installed and enabled before they can be used.

You can install components using one the methods that the following subsections
describe:

■ Section 3.6.1, "Installing a Component with Component Manager"

■ Section 3.6.2, "Installing a Component with Component Wizard"

■ Section 3.6.3, "Installing a Component with ComponentTool"

Before installing a component, you must first download it to your instance. A
component cannot be downloaded unless it meets the following requirements:

■ The component must exist outside of the IdcHomeDir/system directory (that is,
DomainHome/ucm/idc/system). This excludes all packaged components unless a
patch has been uploaded to a component.

Note: The configuration settings might not appear in the Custom
Environment Parameters list in the order they actually appear in the
resource file. For easier viewing, launch the text editor.

Note: If you need only to enable or disable an installed component,
see Section 3.1.5, "Enabling and Disabling Components."

Installing Components

3-52 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ The component must have a ZIP file with the appropriate name and be located
inside the custom component or core component directory.

3.6.1 Installing a Component with Component Manager
Follow these steps to install the component using the Component Manager:

1. Select Admin Server from the Administration tray.

The Admin Server page is displayed with the Advanced Component Manager
screen.

2. Click the Browse button, and find the ZIP file that was downloaded and saved.

3. Highlight the component name, and click Open.

4. Click Install. A message is displayed, detailing what will be installed.

5. Click Continue to continue with installation or Cancel to stop installation.

6. If you click Continue, a message appears after successful installation. You can
select one of two options:

■ To enable the component and restart Oracle Content Server.

■ To return to the Component Manager, where you can continue adding
components. When done, highlight the components you want to enable, and
click Enable. When finished enabling components, restart the server.

3.6.2 Installing a Component with Component Wizard
Follow these steps to install the component using the Component Wizard:

1. Start the Component Wizard:

■ (Windows operating system) From the Start menu, choose Programs, then
Oracle Content Server, then your server instance, then Utilities, and then
Component Wizard.

■ (UNIX operating system) Run the ComponentWizard script in the
DomainHome/ucm/cs/bin directory.

The Component Wizard main screen and the Component List screen are
displayed.

2. On the Component List screen, click Install.

The Install screen is displayed.

1. Click Select.

2. Navigate to the ZIP file that was downloaded and saved, and select it.

3. Click Open.

The ZIP file contents are added to the Install screen list.

4. Click OK. You are prompted to enable the component.

5. Click Yes. The component is listed as enabled on the Component List screen.

6. Exit the Component Wizard.

7. Restart Oracle Content Server.

Depending on the component being installed, a new menu option appears in the
Administration tray or on the Admin Applet page. Some components simply extend

Installing Components

Working with Standard, Server, and Custom Components 3-53

existing functionality and do not appear as separate new options. For more
information, see the component's documentation.

3.6.3 Installing a Component with ComponentTool
Run the ComponentTool utility and specify the ZIP file for the component to install
and enable:

DomainHome/ucm/cs/bin/ComponentTool path_to_file/component.zip

Installing Components

3-54 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

4

Changing the Look and Navigation of the Oracle Content Server Interface 4-1

4Changing the Look and Navigation of the
Oracle Content Server Interface

This chapter provides information about the several different methods that you can
use to change the look and navigation of the Oracle Content Server interface.

This chapter includes the following sections:

■ Section 4.1, "Modifying the Oracle Content Server Interface"

■ Section 4.2, "Using Dynamic Server Pages to Alter the Navigation of Web Pages"

4.1 Modifying the Oracle Content Server Interface
This section describes how to modify the Oracle Content Server interface, in these
subsections:

■ Section 4.1.1, "Skins and Layouts"

■ Section 4.1.2, "Customizing the Interface"

■ Section 4.1.3, "Optimizing the Use of Published Files"

4.1.1 Skins and Layouts
Skins and layouts provide alternate color schemes and alternate navigation designs.
The following sections describe the skins and layouts provided by default with Oracle
Content Server:

■ Section 4.1.1.1, "Types of Skins and Layouts"

■ Section 4.1.1.2, "Selecting Skins and Layouts"

■ Section 4.1.1.3, "Configuration Entries"

■ Section 4.1.1.4, "Anonymous User Interface"

Tip: In addition to the methods discussed here, you can also alter the
metadata fields that are presented to users and modify the type of
presentation used for check-in pages, search pages, and other user
interfaces. For information about creating and modifying metadata
fields and creating content profiles, see "Managing Repository
Content" in Oracle Fusion Middleware Application Administrator's Guide
for Content Server.

Modifying the Oracle Content Server Interface

4-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

4.1.1.1 Types of Skins and Layouts
Some skins and layouts are provided by default with Oracle Content Server. In
addition, you can design custom skins and layouts. When you change the skin or
layout, you change the look and feel of the interface. You can select a skin and layout
from the options provided on the User Profile page.

The only skills required to create and modify skins or layouts is an understanding of
HTML, Cascading Style Sheets, and JavaScript. After altering the appearance, the
edited layouts and skins are published so that others in your environment can use
them.

4.1.1.1.1 Skins Skins define the color scheme and other aspects of appearance of the
layout such as graphics, fonts, or font size. (the default skin is Oracle). You can design
custom skins or modify the existing skins.

4.1.1.1.2 Layouts Layouts define the navigation hierarchy display (the default layout is
Trays) and custom layouts can be designed.

Custom layouts change behavior and the look-and-feel systemwide. If you want your
changes to apply only in limited situations, you might want to consider dynamic
server pages.These layouts are provided:

■ Trays: This layout with the standard Oracle skin is the default interface. High-level
navigation occurs through the navigation trays.

■ Top Menus: This layout provides an alternate look with top menus providing
navigation.

4.1.1.2 Selecting Skins and Layouts
The User Personalization settings available on the User Profile page enable users to
change the layout of Oracle Content Server or the skin.

To change the skin or layout, follow these steps:

1. On the Oracle Content Server Home page, click your_user_name in the top menu
bar. The User Profile page displays.

2. On the Oracle Content Server User Profile page, select the desired skin and layout.

3. Click Update, and view the changes.

Note: Only administrators can make new or custom skins. For more
information about setting the default look and feel of the user
interface, see Section 4.1.1.3, "Configuration Entries."

Important: This personalization functionality works with Internet
Explorer 7+ or Mozilla Firefox 3+ and later versions.

Modifying the Oracle Content Server Interface

Changing the Look and Navigation of the Oracle Content Server Interface 4-3

4.1.1.3 Configuration Entries
These values can be placed in the IntradocDir/config/config.cfg file to alter the default
behavior for the Oracle Content Server instance:

■ LmDefaultLayout: The name of the layout used by guests, and new users. The
default is Trays, but it can be set to Top Menus.

■ LmDefaultSkin: The name of the skin used by guests, and new users. The default
is Oracle.

4.1.1.4 Anonymous User Interface
The ExtranetLook component can be used to change the interface for users who log in
as anonymous random users. An example of this is when a web site based on Oracle
Content Server must be available to external customers without a login, but you want
employees to be able to contribute content to that web site.

When Oracle Content Server is running on Oracle WebLogic Server, the ExtranetLook
component alters privileges for certain pages so that they require write privilege to
access. The component also makes small alterations to the static portal page to remove
links that anonymous, random users should not see.

The ExtranetLook component is installed (disabled) with Oracle Content Server. To
use the component you must enable it with the Component Manager.

You can customize your web pages to make it easy for customers to search for content,
and then give employees a login that permits them to see the interface on login. To do
the customization, modify the ExtranetLook.idoc file, which provides dynamic
resource includes that can be customized based on user login. The IDOC file is
checked in to the Oracle Content Server repository so it can be referenced by the
Oracle Content Server templates.

The following files in the IntradocDir/data/users directory can be altered:

■ prompt_login.htm

■ access_denied.htm

■ report_error.htm

Use the following procedure to update the look-and-feel of the web site based on user
login:

1. Display the Web Layout Editor.

2. From the Options menu, choose Update Portal.

3. Modify the portal page as you wish. You can use dynamic resource includes based
on user login to customize this page.

4. Click OK.

5. Customize the ExtranetLook.idoc file as desired.

6. Check out the ExtranetLook content item from Oracle Content Server.

7. Check in the revised ExtranetLook.idoc file to Oracle Content Server.

Note: The ExtranetLook component does not provide form-based
authentication for Oracle WebLogic Server or provide customizable
error pages.

Modifying the Oracle Content Server Interface

4-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

4.1.2 Customizing the Interface
The Top Menus and Trays layouts are included by default with the system. The two
layouts have two skin options (Oracle and Oracle2). The layouts are written in
JavaScript and the "look" of the skins is created using Cascading Style Sheets.

You can modify layouts and skins by altering the template files provided with Oracle
Content Server or design new skins and layouts by creating components that can be
shared with other users.

The following sections provide an overview of this process.

■ Section 4.1.2.1, "About Dynamic Publishing"

■ Section 4.1.2.2, "Creating New Layouts"

4.1.2.1 About Dynamic Publishing
When the Oracle Content Server starts, or when the PUBLISH_WEBLAYOUT_FILES
service is run, the PublishedWeblayoutFiles table in the std_resource.htm file is used to
publish files to the weblayout directory. To have your custom component use this
publishing mechanism, create a template, and then merge a custom row that uses that
template into the PublishedWeblayoutFiles table.

Other users who want to modify or customize your file can override your template or
your row in the PublishedWeblayoutFiles table. If your template uses any
resource includes, other users can override any of these includes or insert their own
Idoc Script code using the standard super notation. When your component is
disabled, the file is no longer published or modified and Oracle Content Server returns
to its default state.

In addition to giving others an easy way to modify and add to your work, you can also
construct these former static files using Idoc Script. For example, you can have the files
change depending on the value of a custom configuration flag. You can use core Oracle
Content Server objects and functionality by writing custom Idoc Script functions and
referencing them from inside your template.

Because this Idoc Script is evaluated once during publishing, you cannot use Idoc
Script as you would normally do from the IdcHomeDir/resources/core/idoc/std_
page.idoc file. When a user requests that file, it has already been created, so the script
used to create it did not have any access to the current service’s DataBinder or any
information about the current user.

This does limit the type of Idoc Script you can write in these files, so if you are writing
CSS or JavaScript that needs information that dynamically changes with users or
services, consider having the pages that need this code include the code inline. This
increases the size of pages delivered by your web server and thus increases the
amount of bandwidth used.

4.1.2.2 Creating New Layouts
This section describes the general steps needed to create and publish new layouts.

1. Merge a table into the LmLayouts table in
IdcHomeDir/resources/core/tables/std_resources.htm to define the new layout.
Define the layout ID, label, and whether it is enabled (set to 1) or not.

2. Merge a table into the PublishedWeblayoutFiles table in
IdcHomeDir/resources/core/tables/std_resources.htm. This new table describes
the files that are created from Oracle Content Server templates and then pushed
out to the weblayout directory. Specify the necessary skin.css files to push out to
each skin directory.

Modifying the Oracle Content Server Interface

Changing the Look and Navigation of the Oracle Content Server Interface 4-5

3. Merge a table with the PublishStaticFiles table in std_resources.htm. This
lists the directories that contain files, such as images, that should be published to
the weblayout directory.

4.1.3 Optimizing the Use of Published Files
You can direct Oracle Content Server to bundle published files so they can be
delivered as one, thus minimizing the number of page requests to the server. In
addition, you can optimize file use by referencing published pages using Idoc Script.

The following sections describe how to optimize the use of published files:

■ Section 4.1.3.1, "Bundling Files"

■ Section 4.1.3.2, "Referencing Published Files"

4.1.3.1 Bundling Files
Multiple resources may be packaged together into units called bundles. A bundle is a
single file containing one or more published resources. Only JavaScript and css
resources should be bundled and only with other resources of the same type. Bundling
helps reduce the client overhead when pages are loaded but increases client
parse/compile/execute overhead. Generally, it is recommended to bundle resources
that have some thematic similarity or are expected to be included at similar times. For
example, if you know that resources A, B, and C are needed on every page, and
resources D, E, and F are needed rarely but are all needed together, it is recommended
to bundle A, B, and C together and to put D, E, and F into a separate bundle.

Almost all core Oracle Content Server JavaScript resources are bundled into one of two
bundles: yuiBundle.js, which contains script provided by the third-party Yahoo
User Interface library, and bundle.js, which contains the rest of the resources.

The PublishedBundles table is used for determining how resources are bundled.
Essentially a bundle is identified by its target bundlePath, which is the path name to
the bundle (relative to the weblayout directory), and a list of rules detailing which
resource classes are included or excluded. A loadOrder value in this table applies
only to the order in which the filtering rules are applied, not the order in which the
resources appear in the bundle.

Static weblayout file contents are cached on client machines and on web proxies,
significantly lowering the amount of server bandwidth they use. Therefore, the best
practice is to use these types of files wherever possible.

However, each static weblayout file requested by the client’s browser requires a
round-trip to the server just to verify that the client has the most up-to-date version of
the file. This occurs even if the file is cached. Therefore, as the number of these files
grows, so does the number of downloads from the server for each page request.

To help minimize the number of round-trips, Oracle Content Server can bundle
multiple published files so they are delivered as one. This feature can be disabled by
setting the following configuration in the server’s IntradocDir/config/config.cfg file:

BundlePublishedWeblayoutFiles=false

Note: The bundling has changed since Oracle UCM 10g, which used
a different table and had a loadOrder value that determined the
order of resources in each bundle.

Modifying the Oracle Content Server Interface

4-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Bundling is accomplished by using the PublishedBundles table in the
std_resources.htm file.

<@table PublishedBundles@>
<table border=1><caption>

<tr>
<td>bundlePath</td>
<td>includeClass</td>
<td>excludeClass</td>
<td>loadOrder</td>

</tr>
<tr>

<td>resources/bundle.js</td>
<td>javascript:common</td>
<td></td>
<td>128</td>

</tr>
. . .
</table>
<@end@>

The columns in this table are as follows:

■ bundlePath: The eventual location where the bundle is published. This path is
relative to the weblayout directory.

■ includeClass: This is used to determine which resources to include in a bundle.

■ excludeClass: This is used to determine which resources to exclude from a
bundle.

■ loadOrder: The order in which the includeClass and excludeClass filters
are applied.

In the previous example, files of the javascript:common class are published to a
single bundle located at resources/layouts/commonBundle.js. The contents of all
bundled files that match this class are appended to form a single file to be stored at
that location.

4.1.3.2 Referencing Published Files
Most published files (both bundled and unbundled) must be directly referenced from
within HTML to be included in a page. It can therefore be difficult to know exactly
which files to include for a given situation, especially when bundling can be enabled
or disabled by server administrators. A simple Idoc Script method can be used to
easily and transparently include all of the files you need on a given page.

For example, if you write a page that includes all files associated with the
javascript:common bundle (as described previously), then do not write HTML that
includes all of the files mentioned in the first table in addition to the bundle mentioned
in the second, the server is asked for each file. This negates the purpose of bundling
because the server is pinged for each file whether it actually exists or not.

To correctly include these files on a page, use the following Idoc Script and include it
from somewhere within the HEAD of the page:

<$exec createPublishedResourcesList("javascript:common")$>
<$loop PublishedResources$>
<script language="JavaScript" src="<$HttpWebRoot$><$PublishedResources.path$>" />
</script>
<$endloop$>

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-7

This code fragment includes all javascript:common files even if bundling is
switched off. If javascript instead of javascript:common is passed, all files
whose class starts with javascript are included.

This PublishedResources result set is sorted by loadOrder so files and bundles
with the lowest loadOrder are included first. Files with a greater loadOrder can
override JavaScript methods or CSS styles that were declared earlier.

4.2 Using Dynamic Server Pages to Alter the Navigation of Web Pages
This section describes how to use the building blocks necessary for creating dynamic
server pages to alter the navigation of web pages.

This chapter includes the following sections:

■ Section 4.2.1, "About Dynamic Server Pages"

■ Section 4.2.2, "Page Types"

■ Section 4.2.3, "Creating Dynamic Server Pages"

■ Section 4.2.4, "Syntax"

■ Section 4.2.5, "Idoc Script Functions"

■ Section 4.2.6, "Development Recommendations"

■ Section 4.2.7, "HCSF Pages"

■ Section 4.2.8, "Working with Dynamic Server Pages"

4.2.1 About Dynamic Server Pages
Dynamic server pages are files that are checked in to Oracle Content Server and then
used to generate web pages dynamically. Dynamic server pages are typically used to
alter the look-and-feel and navigation of web pages. For example, dynamic server
pages can be used to:

■ Create web pages to be published through Content Publisher

■ Implement HTML forms

■ Maintain a consistent look-and-feel throughout a web site

Dynamic server pages include the following file formats:

■ IDOC: A proprietary scripting language

■ HCST: Hypertext Content Server Template, similar to a standard Oracle Content
Server template page stored in the IdcHomeDir/resources/core/templates
directory.

■ HCSP: Hypertext Content Server Page, an HTML-compliant version of the HCST
page, usually used for published content.

■ HCSF: Hypertext Content Server Form, similar to HCSP and HCST pages, but
containing HTML form fields that can be filled out and submitted from a web
browser

When you use dynamic server pages, Oracle Content Server assembles web pages
dynamically using a custom template (HCST, HCSP, or HCSF file) that you have
checked in to Oracle Content Server. The template calls HTML includes from a text file
(IDOC file) you have also checked in to Oracle Content Server.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

To make changes to the look-and-feel or navigation on a web page, you modify the
HCS* template page, or the IDOC file, or both, and then check in the revised files as
new revisions. Your changes are available immediately.

Using dynamic server pages with Oracle Content Server gives you these advantages:

■ You can introduce and test customizations quickly and easily. Simply checking
in a revision of a dynamic server page implements the changes immediately—you
do not have to restart Oracle Content Server.

■ Your web pages can make use of functionality not found in standard HTML. For
example, HTML forms can be submitted directly to Oracle Content Server without
the need for CGI scripts. Also, Idoc Script enables you to work directly with
environment and state information about Oracle Content Server.

■ You do not have to install or keep track of component files. It can be difficult to
maintain and troubleshoot components if they have a lot of files or your system is
highly customized. Dynamic server pages are easier to work with because you can
check in just a few content items that contain all of your customizations.

■ Customizations can be applied to individual pages. Dynamic server pages
enable you to apply customizations to a single page rather than globally, leaving
the standard Oracle Content Server page coding intact.

Keep the following constraints in mind when deciding whether to use dynamic server
pages:

■ Dynamic server pages cannot be used to modify core functionality of Oracle
Content Server. Dynamic server pages are most useful for customizing your web
design and form pages.

■ Frequent revisions to dynamic server pages can result in a large number of
obsolete content items. You should do as much work on a development system as
possible before deploying to a production instance, and you may need to delete
out-of-date pages regularly.

Figure 4–1 The Dynamic Server Page Process

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-9

4.2.2 Page Types
There are four types of dynamic server pages, which are identified in Oracle Content
Server by their four-character file name extensions:

4.2.2.1 IDOC File
An IDOC file is a text file containing HTML includes that are called by HCST, HCSP,
and HCSF pages.

For more information about includes, see Chapter 3, "Working with Standard, Server,
and Custom Components."

4.2.2.2 HCST File
A Hypertext Content Server Template (HCST) file is a template page, similar to a
standard Oracle Content Server template page, that is used as a framework for
assembling a web page.

■ HCST pages are typically used when the content of the page itself is dynamic or
where Oracle Content Server functionality is needed, such as on a search page,
search results page, or custom check-in page.

■ Because this type of page consists mostly of dynamically assembled code, HCST
files are not indexed in Oracle Content Server.

4.2.2.3 HCSP File
A Hypertext Content Server Page (HCSP) file is a published web page that displays
actual web site content.

■ HCSP files are typically created either by generating the web page through
Content Publisher using an HCST page as a template, or by submittal of a form in
Oracle Content Server through an HCSF page.

■ Because this type of page contains web-viewable content, HCSP files are indexed
in Oracle Content Server.

4.2.2.4 HCSF File
A Hypertext Content Server Form (HCSF) file is similar to an HCSP file, except that it
contains HTML form fields that can be filled out and submitted from a web browser.

■ When a user fills out and submits a form from an HCSF page, an HCSP file is
checked in as a separate content item with metadata defined by XML tags in the
HCSF page.

■ Because this type of page contains web-viewable content, HCSF files are indexed
in Oracle Content Server.

For more information about HCSF pages, see Section 4.2.2.4, "HCSF File."

4.2.3 Creating Dynamic Server Pages
Although dynamic server pages are implemented in Oracle Content Server differently
than custom components, you must be familiar with Oracle UCM component
architecture concepts, particularly Oracle Content Server templates and HTML
includes. For more information, see Chapter 3, "Working with Standard, Server, and
Custom Components."

Use the following basic procedure to customize your Oracle Content Server instance
using dynamic server pages:

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

1. Create an IDOC file with custom includes.

2. Check in the IDOC file to Oracle Content Server.

3. Create an HCST, HCSP, or HCSF file that references the IDOC file.

4. Check in the HCS* file to Oracle Content Server.

5. Display the HCS* file in your web browser by searching for it in Oracle Content
Server or linking to it from a published web page.

4.2.4 Syntax
Because the different types of dynamic server pages are interpreted and displayed
differently, the Idoc Script in the files must be coded differently. The following table
summarizes these differences.

4.2.4.1 Idoc Script Tags
For HCSP and HCSF pages, Idoc Script expressions are generally placed between
HTML comment tags. When viewed statically, this allows a web browser to present
the page content while ignoring any dynamic code that is used to format the content.
This also enables the full-text indexing engine to successfully index the contents of
these pages.

For example:

■ IDOC or HCST file: <$include MyIdocTag$>

■ HCSP or HCSF file: <!--$include MyIdocTag-->

Tip: Using dynamic server pages with Content Publisher can be a
powerful tool for web publishing. For more information, see the
Content Publisher documentation.

File Type .idoc .hcst .hcsp .hcsf

Full Text Indexed? No No Yes Yes

Idoc Script Tags <$ … $> <$ … $> <!--$ … -->

[!--$ … --]

<!--$ … -->

[!--$ … --]

Comparison Operators Symbols (==) Symbols (==) Special operators
(eq)

Special operators
(eq)

Special Characters Symbols (&) Symbols (&) Escape sequence
(&)

Escape sequence
(&)

Referencing Metadata Required Required Required Required

Notes: Idoc uses standard HTML include coding. For more
information, see Section 3.5.1, "HTML Include."

HCST uses standard Oracle Content Server template coding. For more
information, see Section 3.5.8.1, "Template and Report Pages."

Special coding is used with HCSP and HCSF to allow the page to be
rendered both statically and dynamically, and full-text indexed.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-11

In some situations, you may want to control the opening and closing of the HTML
comment. In HCSP and HCSF files, this can be done by substituting other characters
for the dash (-) in the closing tag of an Idoc Script expression.

For example:

<!--$a="ab"##> HTML comment remains open
<a href="<!--$myUrlAsVariable##>">MyUrl Static view does not see this
<!--$dummy=""--> <!—Ended the comment area-->.

In the preceding example, the pound sign (#) is substituted for the dash (-).

Another option in HCSP and HCSF files is to substitute brackets ([]) for the opening
and closing tags (< >) in the standard HTML comment tags. This allows an XHTML
parser to properly identify all the script when viewed statically.

For example:

<!--$a="ab"--] HTML comment remains open
MyUrl Static view does not see this
[!--$dummy=""--> <!—Ended the comment area-->.

4.2.4.2 Comparison Operators
For HCSP and HCSF pages, the standard comparison operators (such as ==) cannot be
used because of their special meaning to HTML parsers. Use the following comparison
operators in dynamic server pages.

For example, the following code evaluates whether the value of the variable count is
greater than 10.

4.2.4.3 Special Characters
For HCSP and HCSF pages, special characters such as the ampersand (&) cannot used
because of their special meaning to HTML parsers. You must use the standard
HTML/XML escape format (such as & or &).

IDOC or HCST File HCSP or HCSF File Description

== eq Tests for equality.

!= ne Tests for inequality.

< lt Tests if less than.

> gt Test if greater than.

<= le Tests if less or equal than.

>= ge Tests if greater or equal than.

IDOC or HCST File HCSP or HCSF File

<$if count > 10$>
<$"Count is greater than"$>

<$endif$>

<!--$if count gt 10-->
<!--$"Count is greater than"-->

<!--$endif-->

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

For example, in Idoc Script, a quotation mark can be included in a string by preceding
it with a backslash escape character. However, in an HCSP or HCSF page, the
quotation mark character must be represented by an HTML escape character:

■ IDOC or HCST file: "Enter \"None\" in this field."

■ HCSP or HCSF file: "Enter "None" in this field."

In an HCST page, a line feed is inserted using \n. In an HCSP page, insert the line feed
directly in the file or encode it in the XML using the numeric ASCII number for a line
feed.

4.2.4.4 Referencing Metadata
For dynamic server pages, several metadata values are stored with a ref: prefix,
which makes them available to the page but does not replace ResultSet values. (This
prevents "pollution" of ResultSets by dynamic server pages.)

When you reference any of the following metadata values on a dynamic server page,
you must include the ref: prefix:

■ hasDocInfo

■ dDocName

■ dExtension

■ dSecurityGroup

■ isLatestRevision

■ dDocType

For example, the following statement determines if the document type is Page:

<$if strEquals(ref:dDocType,"Page"))$>

4.2.5 Idoc Script Functions
The following sections describe two special Idoc Script functions that are required for
dynamic server pages:

■ Section 4.2.5.1, "docLoadResourceIncludes Function"

■ Section 4.2.5.2, "executeService Function"

4.2.5.1 docLoadResourceIncludes Function
To be able to use the HTML includes in an IDOC file, an HCS* file must call the
docLoadResourceIncludes function. This function loads all the includes from the
specified IDOC file for use in assembling the current page.

Note: It is especially important to use the & escape character
when you call the docLoadResourceIncludes function from an HCSP or
HCSF page. For more information, see Section 4.2.5.1,
"docLoadResourceIncludes Function."

Note: You can now substitute the word join for the & string join
operator. For example, you can write [!--$a join b--] instead of [!--$a &
b--]. The first is accepted by an XML parser inside an attribute of a tag,
but the second is not.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-13

For example:

HCST file:

<$docLoadResourceIncludes("dDocName=system_std_
page&RevisionSelectionMethod=Latest")$>

HCSP or HCSF file:

<!--$docLoadResourceIncludes("dDocName=system_std_
page&RevisionSelectionMethod=Latest")-->

4.2.5.1.1 Requirements for Calling the docLoadResourceIncludes Function ■The native file
for the specified content item must have an .idoc extension.

■ The docLoadResourceIncludes call must be placed before the first include call
in the HCS* file. It is recommended that you place this function within the
<HEAD> section of the page.

■ You must use the correct ampersand character when you call the
docLoadResourceIncludes function from an HCS* page. For more
information, see Section 4.2.4.3, "Special Characters."

4.2.5.1.2 Parameters Use the following parameters with the
docLoadResourceIncludes function to specify which IDOC file to call.

■ You must define either a dDocName or a dID; do not use both parameters together.

■ If you define a dDocName, you must define RevisionSelectionMethod to be
Latest or LatestReleased.

■ If you define a dID, do not define a RevisionSelectionMethod, or define the
RevisionSelectionMethod to be Specific.

4.2.5.2 executeService Function
The executeService function executes an Oracle Content Server service from
within a dynamic server page. For example:

HCST file: <$executeService("GET_SEARCH_RESULTS")$>

HCSP or HCSF file: <!--$executeService("GET_SEARCH_RESULTS")-->

Parameter Description

dDocName Specifies the Content ID of the IDOC file.

This parameter should always be present when the Content ID is known. Error
messages assume that it is present, as do other features such as forms.

dID Specifies the unique ID number of a particular revision of the IDOC file.

RevisionSelectionMethod Specifies which revision of the IDOC file to use.

Latest—The latest checked in revision of the document is used (including revisions
in a workflow).

LatestReleased—The latest released revision of the document is used.

Specific—Use only with dID.

Rendition Specifies which rendition of the IDOC file to use.

Primary—The primary (native) file. This is the default if no Rendition is specified.

Web—The web-viewable file.

Alternate—The alternate file.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-14 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ Services that can be called with the executeService function must be
"scriptable", meaning that they do not require parameter input.

■ Scriptable services have an access level of 32 or more. For more information, see
Chapter 6, "Integrating Oracle UCM with Enterprise Applications."

■ For a list of standard Oracle Content Server services, see the
IdcHomeDir/resources/core/tables/std_services.htm file.

■ For more information about the executeService function, see the Oracle Fusion
Middleware Idoc Script Reference Guide.

■ For more information about services, see the Chapter 6, "Integrating Oracle UCM
with Enterprise Applications."

4.2.6 Development Recommendations
This section provides some guidelines to assist you in developing dynamic server
pages. It includes the following sections:

■ Section 4.2.6.1, "General Tips"

■ Section 4.2.6.2, "HCSF Tips"

4.2.6.1 General Tips
The following recommendations apply to the development of all types of dynamic
server pages:

■ Keep templates as simple and free of code as possible. Strive to have only HTML
includes in your templates, with all code and conditionals in an IDOC file. This is
especially helpful for HCSF pages, where submitted forms also reflect changes
made to the IDOC file.

■ Whenever you are customizing an Oracle Content Server instance, you should
isolate your development efforts from your production system. Keep in mind that
frequent revisions to dynamic server pages can result in a large number of
obsolete content items. You should do as much work on a development system as
possible before deploying to a production instance, and you may need to delete
out-of-date pages regularly.

■ When you develop a web site using dynamic server pages, think of the
development and contribution processes in terms of ownership:

– Structure, including site design and navigation, is owned by the webmaster.
When you use dynamic server pages, structure is contained in and controlled
with includes that are defined in IDOC files.

– Content, that is, the actual text of the web pages, is owned by the contributors.
When you use dynamic server pages, content is contained primarily in HCSP
files that make use of the includes in the IDOC files.

■ Using dynamic server pages with Content Publisher can be a powerful tool for
web publishing. You can create content using Word documents or HCSF pages,
and then use Content Publisher to convert the documents to published HCSP files.
You can also use the "include before" and the "include after" options in the SCP
template to insert additional Idoc Script includes.

Performance Tip: Use services sparingly. Too many service calls on a
page can affect performance and limit scalability.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-15

■ If you publish dynamic server pages with Content Publisher, use the prefix option
for easy identification of your documents.

■ Use a consistent naming convention. For example, for "system" level includes, you
could name your IDOC file system_std_page, and then name each include in
that file with the prefix system_. This makes locating the includes easier.

■ You may want to create a content type for each type of dynamic server page (such
as HCSF_templates or submitted_forms).

■ In accordance with good coding practices, you should always put comments in
dynamic server pages to document your customizations.

4.2.6.2 HCSF Tips
The following recommendations apply specifically to the development of HCSF pages:

■ When designing a form, consider how the template will be used:

– Will this template change depending on the role of the user submitting the
form?

– Will the submitted content enter into a criteria workflow?

– What default metadata values should be set?

– Does the form contain ResultSets for multiple line entries?

■ To see the form parameters as they are passed from the web browser to the web
server, filtered through Oracle Content Server, and then passed back to the web
browser, change the METHOD attribute in the include code from a POST to a GET:

<form name="<$formName$>" method="GET" action="<$HttpCgiPath$>">

■ If you add a form field called DataScript to a form being submitted, then any Idoc
Script for that value is evaluated by Oracle Content Server when it processes the
form.

4.2.7 HCSF Pages
In addition to following the standard formatting rules for Oracle Content Server
templates and HTML forms, HCSF pages require several special sections and tags that
enable Oracle Content Server to process them. The following subsections describe
these special sections, in the order that they appear in a typical HCSF file:

■ Section 4.2.7.1, "Load Section"

■ Section 4.2.7.2, "Data Section"

■ Section 4.2.7.3, "Form Section"

For an example of a complete HCSF page, see Section 4.2.2.4, "HCSF File."

4.2.7.1 Load Section
The load section at the beginning of an HCSF page declares the file as an HTML file,
loads an IDOC file, and loads other information about the page. The following
example shows typical load section:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<!--$docLoadResourceIncludes("dDocName=my_idoc_
page&RevisionSelectionMethod=Latest")-->

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-16 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

<meta NAME="idctype" CONTENT="form; version=1.0">
<!--$defaultPageTitle="Department News Form"-->
<!--$include std_html_head_declarations-->
</head>

The load section includes the items described in the following subsections:

■ Section 4.2.7.1.1, "HTML Declaration"

■ Section 4.2.7.1.2, "The docLoadResourceIncludes Function"

■ Section 4.2.7.1.3, "Meta Tag"

■ Section 4.2.7.1.4, "Variables and Includes"

4.2.7.1.1 HTML Declaration The HTML declaration identifies the file as an HTML file
using the following syntax:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

4.2.7.1.2 The docLoadResourceIncludes Function The docLoadResourceIncludes function
loads all the includes from the specified IDOC file for use in assembling the current
page. For more information, see Section 4.2.7.1.2, "The docLoadResourceIncludes
Function."

4.2.7.1.3 Meta Tag The meta tag is used by Content Publisher to identify that this is a
special type of page.

■ This tag is not required if the form is not being published through Content
Publisher.

■ The meta tag must be placed inside the <HEAD> section of your HTML file.

■ Use the following syntax for the meta tag:

<meta NAME="idctype" CONTENT="form; version=1.0">

4.2.7.1.4 Variables and Includes The <HEAD> section of your HCSF page can contain
variable definitions and HTML includes as necessary. For example, the following lines
define the default page title and load the std_html_head_declarations code:

!--$defaultPageTitle="Department News Form"-->
<!--$include std_html_head_declarations-->

4.2.7.2 Data Section
The data section contains rules and metadata information that is used to process the
form. There is a close relationship between the information in the data section and the
presentation of the page:

■ Upon delivery of the HCSF page to the user, the information in the data section is
parsed into a DataBinder and merged into the Form Section.

■ Upon form submittal, the information in the data section is merged with the
request and written out again to the data section. For more information, see
Chapter 3.2.3, "Data Binder," and Section 3.2.1.1, "Elements in HDA Files."

The following subsections describe the Data Section:

■ Section 4.2.7.2.1, "Data Section Structure"

■ Section 4.2.7.2.2, "The idcformrules Tag"

■ Section 4.2.7.2.3, "Metadata Tags"

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-17

■ Section 4.2.7.2.4, "Nested Tags"

■ Section 4.2.7.2.5, "Referencing XML Tags"

■ Section 4.2.7.2.6, "Form Elements"

■ Section 4.2.7.2.7, "ResultSets"

4.2.7.2.1 Data Section Structure The data section consists of XML tags that are placed
between idcbegindata and idcenddata Idoc Script tags. For example:

<!--$idcbegindata-->
<idcformrules isFormFinished="0"/>
<model_number content="html">AB-123</model_number>
<revision>12</revision>
…
<!--$idcenddata-->

■ The data section must be placed inside the <BODY> section of your HTML file,
before the beginning of the form section.

■ You can place Idoc Script variable definitions and includes before or after the data
section, but not within it.

■ Two types of XML tags are used in the data section:

– The idcformrules Tag

– Metadata Tags

■ You can also use the following types of formatting in the data section:

– Nested Tags

– Referencing XML Tags

– Form Elements

– ResultSets

4.2.7.2.2 The idcformrules Tag The idcformrules tag defines Oracle Content Server rules
in the data section. This tag requires one attribute, either isFormFinished or
resultsets.

■ IsFormFinished Attribute: The isFormFinished attribute indicates whether the
form can be submitted again or not.

– Use the following format to specify that the form can be submitted again:

<idcformrules isFormFinished="0"/>

– Use the following format to specify that the form cannot be submitted again.
This results in a read-only form:.

<idcformrules isFormFinished="1"/>

■ resultsets Attribute: The resultsets attribute indicates which XML tags in the data
section are interpreted as ResultSets.

– This attribute specifies one or more XML tag names separated by commas. For
example:

<idcformrules resultsets="volume,chapter">

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-18 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

– During delivery of an HCSF page to the user, Oracle Content Server reads the
resultsets attribute and, if necessary, places empty ResultSets with the
specified names into the DataBinder so they are available for merging.

For more information about ResultSet formatting in the data section, see
Section 4.2.7.2.7, "ResultSets."

4.2.7.2.3 Metadata Tags Metadata tags specify the metadata values that appear in the
form fields when the form is displayed in a browser. For example:

<model_number>AB-123</model_number>

Each metadata tag can be assigned a content attribute that indicates which type of
content the tag contains. For example:

<model_number content="html">AB-123</model_number>

■ The value of the content attribute can be either html or text: Text indicates that
the content of the tag should be interpreted strictly as text. HTML indicates that
the content of the tag should be interpreted as HTML code.

■ If the content attribute is not specified for a metadata tag, it defaults to html.

■ Content Publisher ignores all other attributes except the content attribute.

4.2.7.2.4 Nested Tags If you are not publishing HCSF pages through Content Publisher,
you can use nested XML tags (also called nodes) within the data section. In the
following example, the <section> tag is nested in the <chapter> tag:

<chapter title="Chapter 1">
This is the beginning of the chapter.
<section title="First Section">
This is the first section of the chapter.
</section>
</chapter>

4.2.7.2.5 Referencing XML Tags ■To refer to a nested tag, start with the root-level tag and
use an exclamation point (!) between tag levels. For example:

chapter!section

■ To refer to the attribute of any tag, use a colon (:) after the tag name. For example:

chapter!section:title

■ If you reference a tag in the data section, the tag value can be merged back into the
data section upon form submission only if one of the following are true:

– The root tag has already been referenced in the data area.

– The root tag is referenced in an ExtraRootNodes form element.

– A prefix part of the tag is referenced as a ResultSet in the resultsets form
element.

■ Default values can be specified by applying the :default suffix to a tag path.
Note that default elements may contain Idoc Script for further evaluation. For
example, to specify a default dDocTitle:

<input type=hidden name="dDocTitle:default" value="<$'MyTitle ' &

Note: Nested XML tags are not allowed in Content Publisher.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-19

dateCurrent()$>">0

4.2.7.2.6 Form Elements ■The ExtraRootNodes form element enables you to add tags
by creating an Idoc Script variable and then appending the tag names to it, rather
than specifying the tags in the data section of the form. At the end of your form,
you can substitute a string value in place of the ExtraRootNodes value to be
merged back into the data section.

■ The resultsets form element enables you to add a tag as a ResultSet, rather than
specifying the ResultSet in the data section.

■ Both the ExtraRootNodes and resultset form elements take a comma-delimited list
of tags.

■ For example, the following form elements add the mychapters!chapter tag as
a valid ResultSet if it is not already defined in the idcformrules resultsets
attribute. It also adds, if necessary, the root tag mychapters.

<input type=hidden name="resultsets" value="mychapters!chapter">
<input type=hidden name="ExtraRootNodes" value="mychapters">

4.2.7.2.7 ResultSets You can define a ResultSet using XML tags within the data section.

■ You must use the resultsets attribute of the idcformrules tag to specify a
ResultSet.

■ The tags must be completely qualified, and the full reference path from the root
node must be used.

■ The columns in the ResultSet are the tag content and the tag attributes.

■ For information about limitations on repeating and nesting XML tags in a
ResultSet, see Example 4–2 and Example 4–3.

Example 4–1 Two ResultSets Defined by XML Tags

In the following example, two ResultSets named volume and chapter are defined by
XML tags:

<idcformrules resultsets="volume,chapter">
<volume title="First Volume">

Volume content here
</volume>
<chapter title="First Chapter">

Chapter content here
</chapter>

This evaluates into two ResultSets with two columns each:

@ResultSet volume
2
volume
volume:title
Volume content here
First Volume
@end
@ResultSet chapter
2
chapter
chapter:title
Chapter content here
First Chapter
@end

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-20 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Example 4–2 Repeated Tags in a ResultSet

If you are not publishing HCSF pages through Content Publisher, you can use
repeated tags within a ResultSet in the data section. Repeated tags are typically useful
for looping over code to create the ResultSet.

■ Repeated tags are not allowed unless they are part of a ResultSet.

■ Repeated XML tags are not allowed in Content Publisher.

In the following example, the chapter tag is repeated in the chapter ResultSet:

<idcformrules resultsets="chapter">
<chapter title="First Chapter">

Some content here
</chapter>
<chapter title="Second Chapter">

More content here
</chapter>

This evaluates into a ResultSet with two columns and two rows:

@ResultSet chapter
2
chapter
chapter:title
Some content here
First Chapter
More content here
Second Chapter
@end

Example 4–3 Nested Tags in a ResultSet

A ResultSet can have nested tags, but the nested tags may not be repeated within a
parent tag. For example, an additional <section> tag would not be allowed within
the first <chapter> tag:

<idcformrules resultsets="chapter">
<chapter title="First Chapter">

Some content here
<section title="First Section of First Chapter">
Section content
</section>

</chapter>
<chapter title="Second Chapter">

More content here
</chapter>

This evaluates into a ResultSet with four columns and four rows (the last two cells are
blank):

@ResultSet chapter
4
chapter
chapter:title
chapter!section
chapter!section:title
Some content here
First Chapter
Section Content
First Section of First Chapter
More content here

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-21

Second Chapter

@end

Example 4–4 Editing a ResultSet

■ Updating a specific field in a ResultSet requires that you indicate the ResultSet row
number in the request parameter. The # character is used by Oracle Content Server
to indicate a specific row. If you do not specify a row with the # character, then a
row is appended. If you specify a row # that does not yet exist, then empty rows
are added sufficiently to provide a row to be edited.

For example, to update the first row (row 0) of the ResultSet, you might use the
following code:

<input type="text" name="comment#0"
value="new comment">

<input type="text" name="comment!title#0"
value="new title"

■ Insert new fields into a ResultSet by using the exclamation point character (!). For
example, to insert author and title fields into the comment ResultSet, name the
input fields comment!author and comment!title. If those fields are not in the
ResultSet, they are added when the form is submitted.

■ To delete a row in a ResultSet, empty all the values so they are blank. For example,
to delete the first row entirely:

<input type="hidden" name="comment#0" value="">
<input type="hidden" name="comment!title#0" value="">
<input type="hidden" name="comment!date#0" value="">
<input type="hidden" name="comment!author#0" value="">

Another method for deleting rows from a ResultSet is to set the DeleteRows form
element to a list of comma-delimited pairs of ResultSet name and row number. For
example, to delete row 2 from the comment ResultSet and row 5 from the book
ResultSet, the DeleteRows form element would be set to the following
comma-delimited pairs:

comment:2,book:5.

4.2.7.3 Form Section
The form section contains the code for presentation of the HTML form elements and
any other functionality that the page requires. The form properties, form fields, and
form buttons are placed in an HTML table to control the formatting of the assembled
web page.

For code examples, see Section 4.2.8.3, "Common Code for Forms."

4.2.7.3.1 Form Begin The form section begins with the following Idoc Script:

<!--$formName="HTMLForm"-->
<!--$include std_html_form_submit_start-->

The std_html_form_submit_start include in the std_page.idoc resource file contains
the following code, which creates a standard HTML form using a POST method, sets
the IdcService to SUBMIT_HTML_FORM, and sets the dID variable to the value of the
current HCSF page:

<form name="<$formName$>" method="POST"action="<$HttpCgiPath$>">7

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-22 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

<input type=hidden name="IdcService"value="SUBMIT_HTML_FORM">
<input type=hidden name="dID" value="<$SourceID$>">

4.2.7.3.2 Form Properties The form table typically begins with the following property
definitions, which create the fields as form fields, allow the fields to be edited, and set
the size of the field caption area:

<!--$isFormSubmit=1,isEditMode=1-->
<!--$captionFieldWidth=200, captionEntryWidth=80-->

4.2.7.3.3 Form Fields The following lines are typically used to create each input field:

<!--$eval("<$product_name:maxLength=250$>")-->
<!--$fieldName="model", fieldCaption="Model Number"-->
<!--$include std_display_field-->

■ DataScript: If you add a form field called DataScript to a form being submitted,
then any Idoc Script for that value is evaluated by Oracle Content Server when it
processes the form.

Example 4–5 Changing a Value in a Specific Column and Row in a Second Table When
You Update a Row in the First Table

There are two tables (coming from the data island inside the hcsp form) with an entry
in one table that references entries in the other table. Your goal is to change a value in a
specific column and row in the second table when you update a row in the first table.
To accomplish this value change, you can write javascript to set the DataScript value
with Idoc script:

modifyRowAndColumn(row, column, value)
{
document.myform.DataScript = "<$setValue('#local', 'table2!'"+ column + "#'"+
row +
"','" + value + "')$>";
}

Then, when you call the function with column = "myColumn" and row="1" and
value = "Test" while submitting the update form, the resulting DataScript
value before submit would be as follows:

DataScript.value = <$setValue('#local', 'table2!myColumn#1', 'Test')$>

The result would be the column table2!myColumn in row 1 of the table table2
would be updated with the value Test after the form was submitted.

Another way of saying this is that the DataScript can allow arbitrary edits of other
entries in the data island without having to actually create HTML form fields that
reference their names.

Note: Some fields may require additional code for proper display.
For example, you might need to override the standard std_memo_
entry include to increase the size of text areas. You can do this by
defining a custom include in the IDOC file:

<@dynamicalhtml std_memo_entry@>
<textarea name="<$fieldName$>" rows=15 cols=50
wrap=virtual><$fieldValue$></textarea>
<@end@>

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-23

4.2.7.3.4 Form Buttons The following lines are typically used to create the form
submission and reset buttons:

<input type=submit name=Submit value=" Submit ">
<input type=reset name=Reset value="Reset">

4.2.7.3.5 Form End After all the form elements and default values have been defined,
the form must end with a </form> tag.

4.2.8 Working with Dynamic Server Pages
The following subsections present examples that show how the dynamic server pages
work together to modify Oracle Content Server behavior:

■ Section 4.2.8.1, "HCST and HCSP Example"

■ Section 4–7, "HCSF Example"

■ Section 4.2.8.3, "Common Code for Forms"

4.2.8.1 HCST and HCSP Example
Example 4–6 shows how to create simple HCST and HCSP pages.

Example 4–6 Creating an HCST Page and HCSP Page

1. Create an IDOC file with a custom include.

Figure 4–2 Custom Include

2. Save the file as helloworld.idoc.

3. Check in the IDOC file to Oracle Content Server with a Content ID of
helloworld. The IDOC file is now available to any HCS* pages that reference it.

4. Create an HCST file that references the HelloWorld include:

Figure 4–3 HCST File Referencing Custom Include

5. Save the file as helloworld.hcst.

6. Check in the HCST file to Oracle Content Server.

7. Create an HCSP file that references the HelloWorld include:

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-24 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Figure 4–4 HCSP File Referencing Custom Include

8. Save the file as helloworld.hcsp.

9. Check in the HCSP file to Oracle Content Server.

10. Search for the helloworld content items in Oracle Content Server.

11. Display the HCST file and HCSP files in your web browser. They should both look
like the example in Figure 4–5.

Figure 4–5 HelloWorld Content Item Displayed in a Web Browser

4.2.8.2 HCSF Example
Example 4–7 shows a typical HCSF page and its associated IDOC file. This example
creates a form that users can fill out and submit to enter product descriptions as
content items.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-25

Example 4–7 HCSF Example

1. Create an HCSF file that references an IDOC file named form_std_page, as
Figure 4–6 shows.

Figure 4–6 Product Description Form HCSF File

2. Save the file as product_form.hcsf.

3. Check in the HCSF file to Oracle Content Server.

4. Create an IDOC file with custom includes, as Figure 4–7 shows.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-26 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Figure 4–7 IDOC File with Custom Includes

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-27

5. Save the file as form_std_page.idoc.

6. Check in the IDOC file to Oracle Content Server with a Content ID of form_std_
page. (This is the name that is referenced by the HCSF page.)

7. Search for the HCSF content item in Oracle Content Server.

8. Click the link to display the form to create an HCSF page in your web browser.
The form should look like the sample in Figure 4–8.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-28 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Figure 4–8 Form to Create HCSF Page Displayed in a Web Browser

9. Fill out the form with some sample values, and click Submit.

A content item is created as an HCSP page.

10. Search for the HCSP page in Oracle Content Server.

11. Click the link to display the HCSP page in your web browser. Figure 4–9 shows
how it should look.

Figure 4–9 Link Displaying an HCSP Page

4.2.8.3 Common Code for Forms
This section describes some of the features that are commonly used in HCSF pages and
associated IDOC files.

4.2.8.3.1 Retrieving File Information Executing the service DOC_INFO_SIMPLE makes
metadata from a specific file available to the page. For example:

<$dID=SourceID$>
<$executeService("DOC_INFO_SIMPLE")$>

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Oracle Content Server Interface 4-29

4.2.8.3.2 Referencing the File Extension Use the following statement to determine
whether the form is submitted (hcsp) or unsubmitted (hcsf):

<$if (strEquals(ref:dExtension,"hcsf"))$>
<$isHcsf=1$>

<$else$>
<$isHcsp=1$>

<$endif$>

For information about the ref: prefix, see Section 4.2.4.4, "Referencing Metadata."

4.2.8.3.3 Defining Form Information The following code defines the form name and the
standard include to start an HTML form:

<$formName="HTMLForm"$>
<$include std_html_form_submit_start$>

The following is typical code that defines form properties:

<table border=0 width=100%>
<$isEditMode=1,isFormSubmit=1$>
<$captionFieldWidth="25%", captionEntryWidth="75%"$>

4.2.8.3.4 Defining Form Fields Use standard Idoc Script variables and the std_display_
field include to display the form fields. For example:

<$fieldName="news_
author",fieldDefault=dUser,fieldCaption="Author",isRequired=1,requiredMsg =
"Please specify the author."$>
<$include std_display_field$>

Some fields might require extra code to display the field correctly. For example, the
standard text area for a memo field is 3 rows by 40 columns, but you might need to
override the standard include to increase the size of the text area:

■ Standard std_memo_entry Include

<@dynamichtml std_memo_entry@>
<textarea name="<$fieldName$>" rows=3 cols=40 wrap=virtual> <$fieldValue$></textarea>

<@end@>

■ Custom std_memo_entry Include

<@dynamichtml std_memo_entry@>
<textarea name=<$fieldName$> rows=15 cols=50 wrap=virtual><$fieldValue$></textarea>

<@end@>

4.2.8.3.5 Defining Hidden Fields You can specify metadata for a submitted form (hcsp)
by defining a hidden field, which contributors cannot change. For example, use the
following code to assign the document type News_Forms to each submitted form:

<input type=hidden name="dDocType" value="News_Forms">

To specify the security group of the submitted forms:

<input type=hidden name="dSecurityGroup" value="Public">

4.2.8.3.6 Submitting the Form When a form is submitted, you may want to call a Java
function to perform additional validation or processing. For example:

<input type=button name=Submit value="Save" onClick="postCheckIn(this.form)">

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-30 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

5

Modifying System Functionality 5-1

5Modifying System Functionality

This chapter describes how to change the basic functionality of Oracle Content Server.

This chapter includes the following sections:

■ Section 5.1, "Changing System Settings"

■ Section 5.2, "Using Components"

■ Section 5.3, "Changing Configuration Information"

■ Section 5.4, "Customizing Services"

■ Section 5.5, "Generating Action Menus"

5.1 Changing System Settings
Oracle Content Server has a number of features that you can set up to change features
systemwide according to your needs. For example, you can use the following
administration tools within Oracle Content Server to customize your content
management system settings:

■ Admin Server: The Admin Server is a collection of web pages that you can use to
configure systemwide settings for Oracle Content Server. To access these pages,
click Admin Server from the Administration tray in the portal navigation bar to
display the Admin Server main page. From this page, you can check the status of
each server that is running, and you can check console output.

■ System Properties: The System Properties administration application is used to
configure systemwide Oracle Content Server settings for content security, Internet
settings, localization, and other types of settings. In the System Properties
application, you can set these options:

– Optional functionality for the Oracle Content Server instance

– Options related to content item security

– Options related to the Internet and web interaction

– JDBC connectivity options

– Functionality such as time zones and IP filters

– Localization features

– Directory paths

Using Components

5-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Oracle WebLogic Server is the primary tool for setting system properties for Oracle
UCM; however, for some purposes you must use the System Properties
application. You do not need administrative-level permissions to set these options;
just access to the directory where the instance is installed.

■ Web Layout Editor: The Web Layout Editor is used to customize the Library and
system home (portal) page. To access this editor, click Web Layout Editor on the
Admin Applets page. With the Web Layout Editor, you can change the
organization of local web pages in the Library and build new portal pages for your
site. You can create links to web sites outside your local site. For detailed
information, see Oracle Fusion Middleware Application Administrator's Guide for
Content Server.

■ User administration: You can define security groups, aliases, roles, and accounts
for the users at your site using the User Admin function. To access this screen,
select Admin Applets from Administration tray or menu, then click User Admin
on the Administration Applets for user page. Options on this screen are used to
create aliases, set permissions for security groups, establish roles and permissions
associated with those roles, and customize information that is stored about users.

■ Other administration customizations: In addition to the system settings that are
discussed here, other settings can be changed to match your site's needs:

– Workflows can be designed, customized, and implemented using the
Workflow Admin tool available from the Admin Applets menu

– New custom metadata fields can be created and default values set using the
Configuration Manager

– Customized action screens (such as check-in, search, and check-out) can be
created using Content Profiles

5.2 Using Components
Components are modular programs that are designed to interact with Oracle Content
Server at runtime. The component architecture model is derived from object-oriented
technologies, and encourages the use of small modules to customize Oracle Content
Server as necessary, rather than creation of a huge, all-inclusive (but cumbersome)
application.

Any type of file can be included in a component, but the following file formats are
used most often:

■ HDA

■ HTM

■ CFG

■ Java CLASS

Note: You can create custom components by manually creating the
necessary files and resources. However, the Component Wizard has
no limitations compared to the manual method, and using it prevents
many common mistakes.

Using Components

Modifying System Functionality 5-3

Components are typically used to alter the core functionality of Oracle Content Server.
For example, you could use a component could to perform any of these tasks:

■ Modify the standard security features

■ Change the way search results are requested and returned

■ Enable Oracle Content Server to work with a particular system (such as a
Macintosh client or a proprietary CAD program)

Using component architecture with Oracle Content Server gives you these advantages:

■ You can modify source code without compromising the integrity of the product.
Oracle Content Server loads many of its resources from external text files, so you
can view the files to analyze how the system works, and then copy and modify the
files to your requirements.

■ You can use a custom component on multiple instances across multiple
platforms. When you have created a custom component, you can package it as a
ZIP file and load it on other Oracle Content Server instances. Many custom
components can work on Oracle Content Server platforms other than the original
development platform.

■ You can turn individual components on and off for troubleshooting purposes.
You can group customizations so that each component customizes a specific
Oracle Content Server function or area. If you have problems, disabling
components one at a time can help you quickly isolate the trouble.

■ You can reinstall or upgrade an Oracle Content Server instance without
compromising customizations. Custom components override existing product
resources rather than replace them. Replacing the standard Oracle Content Server
files might not affect your customizations.

Keep the following constraints in mind when deciding whether to use custom
components:

■ Custom components change behavior and look-and-feel systemwide. If you
want your changes to apply only in limited situations, you might want to consider
dynamic server pages.

■ Custom components can be affected by changes to the Oracle Content Server
core functionality. Because new functionality may change the way your
components behave, customizations are not guaranteed to work for future Oracle
Content Server releases. Whenever you upgrade, you should review and test your
custom components.

■ A component may not be necessary for simple customizations. A large number
of simple components could become difficult to manage.

Components must be installed and enabled to be used by Oracle Content Server.
Components provided with Oracle Content Server are automatically installed, and
they are enabled or disabled by default. Custom components must be installed and
enabled to be usable. Several tools are available for working with components:

■ The Component Wizard automates the process of creating custom components.
You can use the Component Wizard to create new components, modify existing
components, and package components for use on other Oracle Content Server
instances. For more information, see Section 3.1.1, "Component Wizard."

Changing Configuration Information

5-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ The Advanced Component Manager provides a way to manage custom
components in Oracle Content Server. By using the Advanced Component
Manager, you can add new components and enable or disable components for
Oracle Content Server. For more information, see Section 3.1.2, "Advanced
Component Manager."

■ The ComponentTool is a command-line utility for installing, enabling, and
disabling components for Oracle Content Server.

For information about component architecture and creation, see Chapter 3, "Working
with Standard, Server, and Custom Components."

5.3 Changing Configuration Information
For advanced customizations and integration with other business systems, Oracle
Content Server supports several development tools and technologies, such as the
following:

■ VBScript

■ ASP

■ J++

■ JavaScript

■ ASP+

■ J2EE

■ Java

■ JSP

■ COM

■ Visual Basic

■ DreamWeaver

■ .Net

■ C++

■ Visual InterDev

In addition to these tools, the proprietary Idoc Script is a server-side custom scripting
language for Oracle Content Server. It is used to reference variables, to conditionally
include content in HTML pages, and to loop over results returned from queries.

Because Idoc Script is evaluated on the server side (rather than the client side), page
elements are processed after the browser has made a request, but before the requested
page is returned to the client.

Idoc Script is primarily used in the following situations:

■ For include code, an include defines pieces of code used to build Oracle Content
Server web pages. They are defined once in a resource file then referenced by
template files as necessary. Includes are used on almost every page of the Oracle
Content Server web site.

A super tag can also be used, which defines exceptions to an existing include. The
super tag tells the include to start with an existing include and add to it or modify
it using the specified code.

Customizing Services

Modifying System Functionality 5-5

■ For variables, you can use variables to customize the Oracle Content Server
behavior. Variable values can be stored in an environment resource, such as the
config.cfg file and many are predefined in Oracle Content Server. You can also
define your own custom variables.

■ For functions, many built-in global functions are used in Oracle Content Server.
These perform actions such as date formatting or string comparisons. Some
functions return results and some are used for personalization functions, such as
those found on the My Profile page.

■ For conditionals, you can use conditionals to test code and include or exclude the
code from an assembled web page.

■ For looping, two types of looping are available using Idoc Script: ResultSet
looping, in which a set of code is repeated for each row in a ResultSet that is
returned from a query and while looping, which is a conditional loop.

■ In Administration areas, such as Workflow customization, web layouts, archiver
and search expressions.

For information about usage, syntax, and configuration variables, see the Oracle Fusion
Middleware Idoc Script Reference Guide.

5.4 Customizing Services
Oracle Content Server services are functions or procedures performed by Oracle
Content Server. Calling an Oracle Content Server service (making a service request) is
the only way to communicate with Oracle Content Server or to access the database.

Any service can be called externally (from outside Oracle Content Server) or internally
(from within Oracle Content Server). Client services are usually called externally while
administrative services are called internally. The service uses its own attributes and
actions to execute the request, based on any parameters passed to the service.

The standard Oracle Content Server services are defined in the StandardServices table
in DomainHome/resources/core/tables/std_services.htm. A service definition contains
three main elements:

■ The service name.

■ The service attributes. The attributes define the following aspects of the service:

– the service class, which specifies which Java class the service has access to.
This determines what actions can be performed by the service.

– the access level, which assigns a user permission level to the service.

– a template page that specifies the template that displays the results of the
service.

– the service type which specifies if the service is to be executed as a subservice
inside another service

– subjects notified, which specifies the subsystems to be notified by the service.

– the error message that is returned by the service if no action error message
overrides it.

Generating Action Menus

5-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ The service action, which is a colon-separated list that defines the following
aspects of the action:

– action type

– action name

– action parameters

– action control mask

– action error message

Understanding and using services is an integral part of creating components and thus
customizing Oracle Content Server. For more information, see Chapter 6, "Integrating
Oracle UCM with Enterprise Applications."

5.5 Generating Action Menus
In previous versions of Oracle Content Server, when a component writer wanted to
create an HTML table like those used on the search results page, HTML code had to be
copied and pasted. The information in the tables was mixed with the HTML, with no
separation between data and display.

The same issue was true for action menus. Data and display for the tables and menus
were tightly coupled, making it impossible to perform global changes to all tables in
Oracle Content Server except for those changes done with CSS modifications. It was
also difficult for components to target and modify specific aspects of both the tables
and the menus.

To customize a page's action menu, a developer can override one of the following
include files then modify the PageMenusData resultset. These includes are all defined
in the DomainHome/resources/core/resources/std_page.idoc file:

■ custom_searchapi_result_menus_setup

■ custom_docinfo_menus_setup

■ custom_query_page_menus_setup

■ custom_audit_info_menus_setup

In addition, tables like the one used on the search results page can be created by
setting up result sets of data then calling specific resource includes which use that data
to display the page. Result sets can also be used to create action menus like those
found on the Workflow In Queue and Search Results pages.

The action menu and HTML table display frameworks allow developers to create
quick and flexible web pages that match the look and feel of the rest of the system.
They also allow component writers to easily extend, add to, and override any or all of
the Headline View or Thumbnail View tables on the server, and any of the action
menus.

5.5.1 Creating Display Tables
Different display tables are used for the search results page for each display type
(Headline or Thumbnail), with an API for each, as the following sections describe:

■ Section 5.5.1.1, "Headline View Tables"

■ Section 5.5.1.2, "Thumbnail View Tables"

Generating Action Menus

Modifying System Functionality 5-7

One of the first steps in any table setup is to retrieve documents to display, as in this
example:

<$QueryText = "dDocAuthor <matches> `sysadmin`"$>
<$executeService("GET_SEARCH_RESULTS")$>

5.5.1.1 Headline View Tables
The following example shows how to create a Headline View table. The concepts
discussed here are also used to create the other table types.

The initial step in this process is to create a result set that describes the columns of the
table, as in this example:

<$exec rsCreateResultSet("ColumnProperties",
"id,width,headerLabel,rowAlign")$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "dDocName"$>
<$ColumnProperties.width = "150px"$>
<$ColumnProperties.headerLabel = lc("wwDocNameTag")$>
<$ColumnProperties.rowAlign = "center"$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "dDocTitle"$>
<$ColumnProperties.width = "auto"$>
<$ColumnProperties.headerLabel = lc("wwTitle")$>
<$ColumnProperties.rowAlign = "left"$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "actions"$>
<$ColumnProperties.width = "75px"$>
<$ColumnProperties.headerLabel = lc("wwActions")$>
<$ColumnProperties.rowAlign = "center"$>

A result set called ColumnProperties is created. Each row in the table corresponds
to a column on the table to be created. Each column can have several attributes
associated with it. Some of the more common attributes are:

■ id: This is a mandatory attribute. Each column in the table being created must
have an ID associated with it. The ID is used later to determine what will be
displayed in every row.

■ width: The width of the column. This can be any CSS width declaration such as
100px, 15em, or auto, which causes the column to auto-size, filling as much of
the table as possible.

■ headerLabel: The text to be displayed in the header of this column.

■ rowAlign: An indication of whether the contents should be left, right, or center
aligned.

■ headerURL: Used to link the column header text to a URL.

The next step is to determine what data will be displayed in each row of the table.

<$exec rsCreateResultSet("RowData","dDocName,dDocTitle,actions")$>
<$exec rsAppendNewRow("RowData")$>
<$RowData.dDocName = "<$dDocName$>"$>
<$RowData.dDocTitle = "<$dDocTitle$>"$>
<$RowData.actions = "<$include doc_info_action_image$>"$>

Generating Action Menus

5-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The ColumnProperties result set technically has a row for each column in the table,
while in RowData, there is only one row. Data entered into this result set is of the
following form:

<$RowData.%COLUMN_ID% = "%IDOCSCRIPT%"$>

Each column in the RowData result set refers to an actual column that will appear in
the final table. Each column in this result set has a corresponding "ID" in the
ColumnProperties result set declared earlier. An Idoc Script expression is assigned
to each cell in this result set. It will then be evaluated during the display of each row as
it is written to the HTML document.

Next the resource include must be created to display each row in the table.

<$include create_slim_table_row_include$>

Calling this resource include creates the slim_table_row_include resource
include. Instead of parsing and evaluating the RowData result set for each row in the
table, it is done once.

Use the following steps to set multiple row includes (for example, for a single table
which displays different rows for different types of items):

1. Delete and re-create the RowData result set.

2. Set rowIncludeName to the name of the resource include to create.

3. Include create_slim_table_row_include again.

The following code displays the table:

<$include slim_table_header$>
<$loop SearchResults$>
<$include slim_table_row_include$>

<$endloop$>
<$include slim_table_footer$>

To make the table look like the table on the search results page, set the following in the
script:

<$UseRowHighlighting = true$>

One special customization with the Headline View table allows any component writer
or administrator to easily override how the data in any column is presented. For
example, a custom include similar to the following can be declared from in a
component:

<@dynamichtml slim_table_title@>
<$dDocTitle$>

<@end@>

If dDocTitle:slimTableCellInclude=slim_table_title is added to the
IntradocDir/config/config.cfg file or set from within a script, all Headline View tables
with a column ID of dDocTitle are displayed using the defined custom include. This
overrides the RowData for these columns.

Generating Action Menus

Modifying System Functionality 5-9

5.5.1.2 Thumbnail View Tables
The table for the Thumbnail View is created differently. The ColumnProperties or
RowData result sets are not constructed. Instead, the number of columns are set and
an Idoc Script include name is used to "paint" each cell. This is less easy to customize
and less data-driven than the other methods, but this type of table is also much less
structured.

<$numDamColumns = 4$>
<$damCellIncludeName = "my_sample_dam_cell"$>
<$include dam_table_header$>
<$loop SearchResults$>
<$include dam_table_item$>

<$endloop$>
<$include dam_table_footer$>

5.5.2 Customizing Action Menus
The first step in customization is to add the action menu icon to the Actions column.
The following example incorporates an action menu into each row of the Headline
View sample table used previously.

<$RowData.actions = "<$include action_popup_image$>" &
" <$include doc_info_action_image$>"$>

This inserts the action image into the appropriate column. However, clicking it does
nothing because the actual menu is not written to the HTML page.

The following code creates the data to be used to construct this menu:

<$exec rsCreateResultSet("PopupProps",
"label,onClick,function,class,id,ifClause")$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwCheckOut")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=CHECKOUT" &
"&dID=<dID>&dDocName=<$url(dDocName)$>" &
"&dDocTitle=<$url(dDocTitle)$>"$>

<$PopupProps.class = "document"$>
<$PopupProps.id = "checkout"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwGetNativeFile")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=GET_FILE" &
"&dID=<dID>&dDocName=<$url(dDocName)$>" &
"&allowInterrupt=1"$>

<$PopupProps.ifClause = "showNativeFileLink"$>
<$PopupProps.class = "document"$>
<$PopupProps.id = "getNativeFile"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwTest")$>
<$PopupProps.function = "javascript:alert('<$js(dDocName)$>');"$>
<$PopupProps.ifClause = "showTestAction"$>
<$PopupProps.class = "debug"$>
<$PopupProps.id = "alertDocName"$>

Generating Action Menus

5-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

This code creates a result set called PopupProps, where each row corresponds to an
action in the menu being created. Each action can have several attributes associated
with it. Some of the more common attributes follow:

■ label: A string displayed as the label for the action.

■ function: The URL or JavaScript method to be associated with this action.

■ class: A classification for this action. It can be something as simple as "search",
"document", "workflow", or even the name of your component. It places the action
into a group so it can be quickly enabled or disabled with the rest of the actions
within that same group.

■ id: Another method of classification, much more specific than "class". This
method should be unique to the application, and you can use it to hide certain
actions from appearing within the menus.

■ ifClause: An optional attribute evaluated every time that action is about to be
written to the HTML document. If the clause evaluates to FALSE, the action is not
displayed.

■ isDisabled: If set to 1, the action is never displayed.

■ linkTarget: Used to make this link open a page in a different window. This
attribute points to any anchor tag target.

After the data is set, it can be used to create an Idoc Script resource that writes this
action menu.

<$include create_action_popup_container_include$>

This resource works like create_slim_table_row_include. It constructs a new
Idoc Script resource called action_popup_container_include. To rename it, set
set <$actionPopupContainerIncludeName = new_include_name$> in the
script.

Use the following code to have this include called for each row of the Headline View
table.

<$exec rsCreateResultSet("PopupData", "actions")$>
<$exec rsAppendNewRow("PopupData")$>
<$PopupData.actions="<$include action_popup_container_include$>"$>

This code creates a PopupData result set similar to the RowData result set. It is
structured in the same way, and is used as a location to print the action menu
containers which are hidden until a user clicks on the action image.

The table created now has action menus, similar to those normally seen on the search
results page whenever the appropriate image is clicked.

Editing these actions is done by adding and deleting rows from the PopupProps
result set or editing rows that already exist. In addition to this type of customization,
actions can be hidden by setting the disabledActionPopupClasses and
disabledActionPopupIds variables. These can be set in the config/config.cfg file
or in the Idoc Script itself. For example:

<$disabledActionPopupClasses = "workflow,folders"$>
<$disabledActionPopupIds = "getNativeFile,alertDocName"$>

Setting these variables causes any actions whose class is either workflow or folders,
or whose ID is getNativeFile or alertDocName, to always be hidden. Using these
variables enable Oracle Content Server administrators and component writers to hide
specific actions either globally or for specific pages.

Generating Action Menus

Modifying System Functionality 5-11

Component writers also can override a number of Idoc Script resource includes to
modify functionality in this area on either a global or targeted scale. The following
includes are just a few of the available resource includes:

■ custom_add_to_action_popup_data

■ custom_modify_action_popup_data

■ classic_table_row_pre_display

■ slim_table_row_pre_display

■ custom_row_pre_display

Generating Action Menus

5-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

6

Integrating Oracle UCM with Enterprise Applications 6-1

6Integrating Oracle UCM with Enterprise
Applications

This chapter describes how to integrate Oracle Universal Content Management (Oracle
UCM) with enterprise applications.

This chapter includes the following sections:

■ Section 6.1, "Overview of Integration Methods"

■ Section 6.2, "JSP Integration"

■ Section 6.3, "Java 2 Enterprise Edition Integration (J2EE)"

■ Section 6.4, "Web Services"

6.1 Overview of Integration Methods
Several easy, flexible methods are available for integrating Oracle Content Server with
enterprise applications such as application servers, catalog solutions, personalization
applications, and enterprise portals, and client-side software.

Oracle Content Server not only serves as a content management solution for
content-centric web sites, but also provides a scalable content management
infrastructure that supports multiple enterprise applications in many diverse
environments and platforms. The integration solutions enable other enterprise
applications to access content managed by the content management system and
provides these applications with critical content management capabilities such as
full-text and metadata searching, library services, workflow, subscription notifications
and content conversion capabilities through a wide array of integration methods.

In general, these integration methodologies serve to translate or pass methods and
associated parameters with the goal of executing Oracle Content Server services. The
various Oracle Content Server services are the "window" for accessing the content and
content management functions within Oracle Universal Content Management. For
example, one simple integration option is to reference content that is managed within
Oracle UCM by persistent URL. Other integration options are to use the Java API, the
Microsoft Component Object Model (COM) interface, or the ActiveX control.

The focus of this chapter is to present the available integration options, suggest an
approach, (like IdcCommand X, or persistent URL, or SOAP), and provide information
about where to get the detailed documentation on that approach. Specifically, this
chapter provides basic conceptual information about the integration of Oracle
Universal Content Management within network system environments using various
protocols, interfaces, and mapping services.

JSP Integration

6-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

For information about using the IdcCommand utility to access Oracle Content Server
services from other applications, see Chapter 7, "Using the IdcCommand Utility to
Access Services."

For information about the COM interface, see Chapter 8, "Using the COM API for
Integration."

For information about Remote Intradoc Client (RIDC) integration, see Chapter 9,
"Using Remote Intradoc Client (RIDC)."

6.2 JSP Integration
You can access the Oracle Content Server core functionality from JavaServer Pages
(JSP) to deliver forms and custom pages using any of these methods:

■ Through the JSP page execution functionality using the built in Apache Jakarta
Tomcat Server

■ Through a separate product, Content Integration Suite

For more information, see Chapter 10, "Using Content Integration Suite (CIS).".

The following subsections describe JSP integration with Oracle Content Server:

■ Section 6.2.1, "JSP Execution"

■ Section 6.2.2, "Tomcat"

■ Section 6.2.3, "Features"

■ Section 6.2.4, "Configuring JSP Support"

6.2.1 JSP Execution
The JSP Execution functionality uses the built-in Apache Jakarta Tomcat Servlet/JSP
Server to access the content and content management functions within Oracle Content
Server.

The Apache Jakarta Tomcat Server is a free, open-source server of Java Servlet and
JavaServer Pages that is run inside of Oracle Content Server when the feature is
enabled. The integration of Tomcat Server with Oracle UCM provides the benefit of
increased performance for content delivery.

Using JSP Execution functionality enables developers to access and modify Oracle
Content Server content, ResultSets, personalization and security definitions, and
predefined variables and configuration settings through JavaServer Pages rather than
through standard component architecture. Services and Idoc Script functions can also
be executed from JSP pages which reside as executable content in Oracle Content
Server.

Important: JSP pages can execute Idoc Script functions only when
the JSP page is being served on Oracle Content Server as part of the
JSP Execution functionality. JSP pages served on a separate JSP server
do not have this functionality. In those cases, checking in a JSP page to
Oracle Content Server provides revision control but does not provide
dynamic execution of Idoc Script functions on the presentation tier
(JSP server).

JSP Integration

Integrating Oracle UCM with Enterprise Applications 6-3

6.2.2 Tomcat
The capability for JSP to call services is provided by integrating the Tomcat 5.025
server with the Oracle Content Server core functionality.

■ Tomcat is a free, open-source server of Java Server and JavaServer Pages; version
5.025 complies with Servlet 2.4 and JSP 2.0 specifications.

■ The main benefit of integrating Tomcat into Oracle Content Server is the increase
in performance of delivering content. The direct integration eliminates the need
for a socket-based interface and enables the use of all Oracle Content Server core
capabilities.

■ Although Tomcat is embedded in Oracle Content Server, you can use server.xml as
the configuration file to modify the internal Tomcat engine to suit your needs.

6.2.3 Features
With JSP support enabled, custom components can include JSP pages of type jsp and
jspx.

■ The DomainHome/ucm/cs/weblayout/jsp directory is able to host JSP pages by
default.

■ The Oracle Enterprise Content Management Suite distribution media also includes
the current Java EE SDK.

6.2.4 Configuring JSP Support
Use the following procedure to enable and configure JSP support.

1. In Oracle Content Server, create a new security group to be used for JSP pages
(called jsp in the subsequent steps). This security group should be restricted to
developers. This step is not required but it is recommended for developer
convenience. Any security groups to be enabled for JSP must be specified in
Step 5.

a. Display the User Admin screen.

b. From the Security menu, choose Permissions by Group.

c. Click Add Group.

d. Enter jsp as the group name, enter a description, and then click OK.

e. Assign Admin permission to the admin role and any developer roles.

f. Assign Read permission to all non-admin roles.

g. Click Close.

2. If you run on AIX, HP-UX, or Linux s390, the Java 2 SDK, which is required for the
JSP integration, is not installed on your system automatically, nor is it provided on
the distribution media. For the internal JSP engine to run on any of these operating
systems, a 1.5 JDK must be present on the server, and the CLASSPATH value in
the intradoc.cfg file must be modified to include the path to the tools.jar file. For
example, for a default 1.5 install on AIX, this file should be in /usr/java15/lib.

3. Click one of the following options:

Note: This product includes software developed by the Apache
Software Foundation (http://www.apache.org/).

Java 2 Enterprise Edition Integration (J2EE)

6-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ On the Admin Server page, click General Configuration.

■ From the System Properties utility, click the Server tab.

4. Enable the JSP prompt:

■ For the Admin Server: click Enable Java Server Page (JSP)

■ For System Properties: click Execute Java Server Page (JSP)

5. Enter the security groups to be enabled for JSP (including the security group you
created in Step 1).

6. Save the settings, and restart Oracle Content Server.

6.2.5 Loading Example Pages
Use either of the following procedures to load example pages into Oracle Content
Server:

■ Check in the .war file in the JSP security group. Make sure to check in other
content to the JSP security group before checking in the war file.

■ Start the JSP Server Web App Admin from the Administration page.

6.3 Java 2 Enterprise Edition Integration (J2EE)
The J2EE integration for Oracle Content Server is available with Content Integration
Suite, a separate product.

Content Integration Suite (CIS) enables communication with Oracle Content Server
and is deployable on a number of J2EE application servers, in addition to working in
non-J2EE environments. A supported version of Oracle Content Server is required.

For more information, see Chapter 10, "Using Content Integration Suite (CIS)."

6.4 Web Services
The following subsections provide an overview of web services, general information
about WSDL files and the SOAP protocol, and several basic implementation
architectures.

■ Section 6.4.1, "Web Services Framework"

■ Section 6.4.2, "Virtual Folders and WebDAV Integration"

6.4.1 Web Services Framework
Web services reside as a layer on top of existing software systems such as application
servers, .NET servers, and Oracle Content Server. Web services can be used as a bridge
to dissimilar operating systems or programming languages.

Web services are adapted to the Internet as the model for communication and rely on
the HyperText Transfer Protocol (HTTP) as the default network protocol. Thus, using
web services, you can build applications using a combination of components.

Oracle Content Server provides some web services built into the core product. Oracle
WebLogic Server provides SOAP capabilities, and Oracle Content Server supports
several SOAP requests through Oracle WebLogic Server. Additionally, the WSDL
Generator component is installed (enabled) by default with Oracle Content Server. For
more information, see Chapter 12, "Using Oracle UCM Web Services."

Web Services

Integrating Oracle UCM with Enterprise Applications 6-5

The core enabling technologies for web services are XML, WSDL, SOAP, and UDDL:

■ XML: Data: The eXtensible Markup Language (XML) is a bundle of specifications
that provides the foundation of all web services technologies. Using the XML
structure and syntax as the foundation allows for the exchange of data between
differing programming languages, middleware, and database management
systems.

■ SOAP: Communication: The Simple Object Access Protocol (SOAP) provides the
Oracle Content Server communication for web services interfaces to communicate
to each other over a network. SOAP is an XML-based communication protocol
used to access web services. Web services receive requests and return responses
using SOAP packets encapsulated within an XML document.

■ UDDI: Registry: The Universal Description Discovery and Integration (UDDI)
service provides registry and repository services for storing and retrieving web
services interfaces. UDDI is a public or private XML-based directory for
registration and lookup of web services.

Public or private UDDI sources are not published. However this does not prevent
users from integrating Oracle Content Server with other applications using web
services.

The XML, WSDL, SOAP, and UDDI technologies work together as layers on the web
services protocol stack. The web services protocol stack consists of these layers:

■ The service transport layer between applications (HTTP). While several protocols
are available as a transport layer (for example, HTTP, SMTP, FTP, BEEP), the HTTP
protocol is most commonly used. The WSDL Generator component relies on the
HTTP protocol as the transport layer.

■ The messaging layer that provides a common communication method (XML and
SOAP).

■ The service description layer that describes the public interface to a specific web
service (WSDL).

■ The service discovery layer that provides registry and repository services for
storing and retrieving web services interfaces (UDDI).

6.4.2 Virtual Folders and WebDAV Integration
The Folders/WebDAV component is available as an extra component for download
from the support site. You can use the Folders component to set up an interface to
Oracle Content Server in the form of virtual folders that enable you to create a
multilevel folder structure and also use the WebDAV component to remotely author
and manage your content using clients that support the WebDAV protocol.

■ The Folders component provides a hierarchical folder interface to content in
Oracle Content Server. The component is required for WebDAV functionality, and
the WebDAV Client product.

■ The WebDAV component enables WebDAV (Web-Based Distributed Authoring
and Versioning) functionality to remotely author and manage your content using
clients that support the WebDAV protocol. For example, you can use Microsoft
Windows Explorer to check in, check out, and modify content in the repository
rather than using a web browser interface.

The option to install the WebDAV component is provided during the
Folders/WebDAV installation process. For more information, see the Oracle Fusion
Middleware Application Administrator’s Guide for Content Server.

Web Services

6-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

6.4.2.1 Virtual Folders
The Folders component sets up an interface to Oracle Content Server in the form of
virtual folders (also called hierarchical folders). Virtual folders enable you to create a
multilevel folder structure.

Virtual folders provide two main benefits:

■ Users can find content by drilling down through a familiar folder-type interface.

■ Users can apply default metadata to content items by checking them in through a
particular folder.

The following structure is used for the Folders component:

■ Each Oracle Content Server instance has a common set of virtual folders. Any
change to the folders is applied systemwide.

■ There is one default system-level folder, called Contribution Folders. If you are
using a custom folders interface, folders for these products may also appear at the
system level of the Folders hierarchy.

■ The system administrator can change the name of a system-level folder, but cannot
delete it or add a custom system-level folder except through changes to the
database. (Deleting a system-level folder disables it, but does not remove it from
the system.)

■ Each folder in the hierarchy contains content items that have the same numeric
Folder value, which is assigned automatically upon creation of the folder.
Changing the value of the Folder field for a content item places it in a different
folder.

■ The number of folders and number of files in each folder can be limited by the
system administrator so that virtual folder functions do not affect system
performance.

6.4.2.2 WebDAV Integration
WebDAV (Web-Based Distributed Authoring and Versioning) provides a way to
remotely author and manage your content using clients that support the WebDAV
protocol. For example, you can use Microsoft Windows Explorer to check in, check
out, and modify content in the repository rather than using a web browser interface.

WebDAV is an extension to the HTTP/1.1 protocol that allows clients to perform
remote web content authoring operations. The WebDAV protocol is specified by RFC
2518.0.

For more information, see the WebDAV Resources web site at

http://www.webdav.org

WebDAV provides support for the following authoring and versioning functions:

■ Version management

■ Locking for overwrite protection

■ Web page properties

■ Collections of web resources

■ Name space management (copy/move pages on a web server)

■ Access control

Web Services

Integrating Oracle UCM with Enterprise Applications 6-7

When WebDAV is used with a content management system such as Oracle Content
Server, the WebDAV client serves as an alternate user interface to the native files in the
content repository. The same versioning and security controls apply, whether an
author uses the Oracle Content Server web browser interface or a WebDAV client.

In Oracle Content Server, the WebDAV interface is based on the hierarchical Folders
interface. For more information, see Section 6.4.2.1, "Virtual Folders."

6.4.2.2.1 WebDAV Clients A WebDAV client is an application that can send requests and
receive responses using a WebDAV protocol (for example, Microsoft Windows
Explorer, Word, Excel, and PowerPoint). Check the current WebDAV client
documentation for supported versions. The Oracle UCM WebDAV Client is a different
product that enhances the WebDAV interface to Oracle Content Server.

You can use WebDAV virtual folders in Windows Explorer to manage files that were
created in a non-WebDAV client, but you cannot use the native application to check
content in to and out of the Oracle Content Server repository.

The Desktop software package also includes a WebDAV Client component and a
Check Out and Open component.

6.4.2.2.2 WebDAV Servers A WebDAV server is a server that can receive requests and
send responses using WebDAV protocol and can provide authoring and versioning
capabilities. Because WebDAV requests are sent over HTTP protocol, a WebDAV server
typically is built as an add-on component to a standard web server. In Oracle Content
Server, the WebDAV server is used only as an interpreter between clients and Oracle
Content Server.

6.4.2.2.3 WebDAV Architecture WebDAV is implemented in Oracle Content Server by the
WebDAV component. The architecture of a WebDAV request follows these steps:

1. The WebDAV client makes a request to Oracle Content Server.

2. The message is processed by the web server (through a DLL in IIS).

3. On Oracle Content Server, the WebDAV component performs these functions:

■ Recognizes the client request as WebDAV.

■ Maps the client request to the appropriate WebDAV service call on Oracle
Content Server.

■ Converts the client request from a WebDAV request to the appropriate Oracle
Content Server request.

■ Connects to the core Oracle Content Server and executes the Oracle Content
Server request.

4. The WebDAV component converts the Oracle Content Server response into a
WebDAV response and returns it to the WebDAV client.

Web Services

6-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

7

Using the IdcCommand Utility to Access Services 7-1

7Using the IdcCommand Utility to Access
Services

This chapter describes how to use the IdcCommand utility to access Oracle Content
Server services from other applications

This chapter includes the following sections:

■ Section 7.1, "Overview of IdcCommand Utility"

■ Section 7.2, "IdcCommand Setup and Execution"

■ Section 7.3, "Command File"

■ Section 7.4, "Configuration Options"

■ Section 7.5, "Running IdcCommand"

■ Section 7.6, "Using the Launcher"

■ Section 7.7, "Calling Services Remotely"

7.1 Overview of IdcCommand Utility
The IdcCommand utility is a standalone Java application that executes Content Server
services. Almost any action you can perform from the Oracle Content Server browser
interface or administration applets can be executed from IdcCommand.

The program reads a Command File, which contains service commands and
parameters, and then calls the specified services. A log file can record the time that the
call was executed, whether the service was successfully executed, and if there were
execution errors.

Note: The IdcCommand utility returns only information about the
success or failure of the command. To retrieve information from
Oracle Content Server in an interactive session, use the Java COM
wrapper IdcCommandX, available on Microsoft Windows platforms.

IdcCommand Setup and Execution

7-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

To run the IdcCommand utility, you must specify the following parameters on the
command line or in the intradoc.cfg configuration file:

■ A command file containing the service commands and parameters.

■ An Oracle Content Server user name. This user must have permission to execute
the services being called.

■ A path and file name for a log file.

■ The connection mode (auto, server, or standalone).

There are certain commands that cannot be executed in standalone mode. In general,
these commands are performed asynchronously by the server in a background thread.
This happens in the update or rebuild of the search index.

For information about using services in custom components, see Chapter 3, "Working
with Standard, Server, and Custom Components." and the Oracle Fusion Middleware
Services Reference Guide for Universal Content Management.

7.2 IdcCommand Setup and Execution
To set up IdcCommand, you must specify the following two things:

■ A Command File, which specifies the services to be executed and any service
parameters.

■ Configuration Options, which specify the command file and other IdcCommand
information. You can set IdcCommand configuration options in two places:

– In a configuration file, using name/value pairs such as:

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/domain/newlog.txt
ConnectionMode=server

– On the command line when running IdcCommand, specifying option flags
such as:

-f newfile.hda -u admin -l C:/domain/newlog.txt -c server

IdcCommand is run from a command line. You can specify the Configuration Options
either from the command line or in a configuration file. For more information, see
Section 7.5, "Running IdcCommand."

7.3 Command File
The command file defines the service commands and parameters that are executed by
the IdcCommand utility. The following subsections describe the rules for command
files:

■ Section 7.3.1, "Command File Syntax"

■ Section 7.3.2, "Precedence"

■ Section 7.3.3, "Special Tags and Characters"

Note: Command-line configuration options override the settings in
the configuration file.

Command File

Using the IdcCommand Utility to Access Services 7-3

7.3.1 Command File Syntax
The command file uses the HDA (hyperdata file) syntax to define service commands.

■ Each service to be executed, along with its parameters, is specified in a
@Properties LocalData section.

■ For some services, a @ResultSet section is used to specify additional
information.

■ Data from one section of the command file is not carried over to the next section.
Each section must contain a complete set of data for the command.

■ Service names and parameters are case sensitive.

■ For example, the following command file executes the ADD_USER service and
defines attributes for two new users:

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
Add users
@Properties LocalData

IdcService=ADD_USER
dName=jsmith
dUserAuthType=Local
dFullName=Jennifer Smith
dPassword=password
dEmail=email@email.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
jsmith
role,contributor,15
@end
<<EOD>>
@Properties LocalData
IdcService=ADD_USER
dName=pwallek
dUserAuthType=Local
dFullName=Peter Wallek
dPassword=password
dEmail=email@email.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
pwallek
role,contributor,15,account,marketing,7
@end
<<EOD>>

7.3.2 Precedence
IdcCommand uses precedence to resolve conflicts among the name/value pairs within
the LocalData section of the command file. When normal name/value pairs are
parsed, they are assumed to be within the @Properties LocalData tag. If the
section contains HDA tags, the normal name/value pairs take precedence over
name/value pairs within the @Properties LocalData tag.

Configuration Options

7-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

For example, if foo=x is in a normal name/value pair and foo=y is within the
@Properties LocalData tag, the name/value pair foo=x takes precedence
because it is outside the tag.

7.3.3 Special Tags and Characters
These special tags and characters can be used in a command file.

7.4 Configuration Options
To run the IdcCommand utility, specify the following parameters on the command line
or in the DomainHome/ucm/cs/bin/intradoc.cfg configuration file.

7.4.1 Command File
You must specify the name of the command file that contains the service commands
and parameters. The command file parameter can specify a full path (such as
C:/command_files/command.txt), or it can specify a relative path. For more
information, see Section 7.3, "Command File."

7.4.2 User
You must specify an Oracle Content Server user name. This user must have permission
to execute the services being called.

Special Character Description

IdcService=service_name Each section of the command file must specify the name of the
service it is calling.

<<EOD>> The end of data marker. The command file can include one or
more sections separated with an end of data marker. For an
example, see Section 7.3.1, "Command File Syntax."

The pound character placed at the beginning of a line indicates
that the line is a comment.

\ The backslash is an escape character.

@Include filename This tag enables you to include content from another file at the
spot where the @Include tag is placed. This tag can be used to
include a complete HDA file or to include shared name/value
pairs. This inclusion takes the exact content of the specified file
and places it in the location of the @Include tag. A file can be
included as many times as desired and an included file may
include other files. However, circular inclusions are not allowed.

Parameter Required? Command Line Syntax Configuration File Syntax

Command File Yes -f name.txt IdcCommandFile=name.txt

User Yes -u sysadmin IdcCommandUserName=sysadmin

Log File No -l C:/logs/log.txt IdcCommandLog=C:/logs/log.txt

Connection Mode No -c auto ConnectionMode=auto

Note: Command-line configuration options override the settings in
the configuration file.

Running IdcCommand

Using the IdcCommand Utility to Access Services 7-5

7.4.3 Log File
You can specify a path and file name for an IdcCommand log file. As each command is
executed, a message is sent to the log file, which records the time the command was
executed and its success or failure status. If the log file already exists, it is overwritten
with the new message. The log file can be used to display processing information to
the user.

■ If the action performed is successful, a "success" message is written to the log file.

■ If the action performed is not successful, an error message is written to the log file.

■ If no log file is specified, information is logged only to the screen.

7.4.4 Connection Mode
You can specify the connection mode for executing the IdcCommand services.

7.5 Running IdcCommand
To run IdcCommand:

1. Create a new IdcCommand working directory.

Use this directory for your command file and configuration file.

2. Create a Command File in the working directory to specify the desired service
commands.

3. Copy the intradoc.cfg configuration file from the DomainHome/ucm/cs/bin
directory into the working directory.

4. Add IdcCommand options to the intradoc.cfg file in the working directory. For
more information, see Section 7.4, "Configuration Options."

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/domain/newlog.txt

5. Run the IdcCommand stored in the DomainHome/ucm/cs/bin directory:

IdcCommand.exe

Connection Mode Description

auto IdcCommand attempts to connect to the Oracle Content Server
instance. If this fails, services are executed in standalone mode.

This is the default connection mode.

server IdcCommand executes services only through Oracle Content
Server.

standalone IdcCommand executes services in a standalone session.

There are certain services that cannot be executed in standalone
mode. In general, these services are performed asynchronously
by the server in a background thread. For example, this happens
during update or rebuild of the search index.

Important: Do not delete the IntradocDir or WebBrowserPath
information.

Using the Launcher

7-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

7.6 Using the Launcher
The Launcher is a native C++ application used to manage services in Windows
environments and to construct command line arguments and environment settings for
the Java VM.

The main operation of the Launcher is to find and read its configuration files, compute
any special values, then launch an executable with a command line that it constructs.
Configuration files support Bourne Shell-like substitutions, all of which start with the
dollar sign ($) followed by an alphanumeric identifier or expression inside
braces ({ }).

The Launcher executable is installed in
DomainHome/ucm/native/platform/bin/Launcher. On UNIX systems, symlinks are
created in the bin directory to Launcher.sh, a Bourne Shell wrapper which executes the
Launcher executable. The purpose of this wrapper is to locate the correct binary
Launcher executable for the platform. The term Launcher is used here to refer to the
native Launcher executable or to the Launcher.sh Bourne Shell script.

The Launcher or the symlink to the Launcher.sh must reside in a directory with a valid
intradoc.cfg configuration file and must have the same name as the Java class file to be
launched (case sensitive). The Launcher uses this name to set the environment variable
STARTUP_CLASS.

On Windows this name is computed by calling GetModuleFileName(). On UNIX
systems, it is computed by inspecting argv[0]. The PLATFORM variable is set to the
Oracle Content Server identifier for the platform. The variable BIN_DIR is set to the
directory where the Launcher is located.

The Launcher reads a file named intradoc.cfg from BIN_DIR. This file should contain
a value for IntradocDir. The IntradocDir is used as the base directory for
resolving relative paths. Any unqualified path in this document should be taken as
relative to the IntradocDir. Future releases of Oracle Content Server may change or
remove these variable names.

If the intradoc.cfg file does not contain a value for IdcResourcesDir, the Launcher
sets IdcResourcesDir to $IntradocDir/resources. If the Launcher is starting a
Windows service, it sets IS_SERVICE to 1. If it is unset, the Launcher also sets PATH_
SEPARATOR to the correct character for the platform.

The Launcher reads the intradoc.cfg file first to find the locations of configuration files,
then reads all available configuration files in this order:

1. $IdcResourcesDir/core/config/launcher.cfg

2. $BIN_DIR/../config/config.cfg

3. $IntradocDir/config/config.cfg

4. $IntradocDir/config/config-$PLATFORM.cfg

5. $IntradocDir/config/state.cfg

6. $IdcResourcesDir/core/config/launcher-$PLATFORM.cfg

7. $BIN_DIR/intradoc.cfg

8. $BIN_DIR/intradoc-$PLATFORM.cfg

9. All files specified on the command line, using the -cfg option.

Using the Launcher

Using the IdcCommand Utility to Access Services 7-7

7.6.1 Quotation Rules
The Launcher uses Bourne Shell-like quotation rules. A string can be inside double
quotation marks (") to escape spaces. A backslash (\) can precede any character to
provide that character. After a final command line is computed, the Launcher
separates it into spaces without quotation marks. Each string is then used without
quotation marks as an entry in the argv array for the command.

7.6.2 Computed Settings
After reading the configuration files, the Launcher processes variable substitutions.
Some variables can have extra computations to validate directories or files, build
command-line argument lists, or construct PATH-like variables.

These special computations are performed for variables based on their type. To set a
type for a variable, set TYPE_variable_name=typename in any of the configuration
files listed previously.

The following list describes Launcher variable types:

■ file

– Examples:

TYPE_PASSWD_FILE=file
PASSWD_FILE_sys5=/etc/passwd
PASSWD_FILE_bsd=/etc/master.passwd

The type looks for a file. If the value of variable_name is a path to an existing
file, it is kept. If not, every variable beginning with variable_name_ is checked.
The last value, which is a path to an existing file, is used for the new value of
variable_name.

In this example PASSWD_FILE is set to /etc/master if /etc/master.passwd
exists, or it is set to /etc/passwd if /etc/passwd exists. Otherwise,
PASSWD_FILE is undefined.

■ directory

– Examples:

TYPE_JDK=directory
JDK_java_home=$JAVA_HOME
IdcNativeDir=$IdcHomeDir/native
DEFAULT_JDK_DIR=$OS_DIR/$PLATFORM
JDK_legacy142=$DEFAULT_JDK_DIR/j2sdk1.4.2_04
JDK_default=$DEFAULT_JDK_DIR/jdk1.5.0_07

In this example JDK id set to the same value as the last of the JDK_ variables that
is a directory. Typically this would point at the JDK installed with Oracle Content
Server. Note that JDK_java_home references $JAVA_HOME; if a variable is not
defined in any configuration file but is in the environment, the environment value
is used.

Tip: You can assign variable values directly on the command line by
using the -cfg option NAME=VALUE.

Using the Launcher

7-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ executable

– Examples:

TYPE_JAVA_EXE=executable
JAVA_EXE_default=java$EXE_SUFFIX
JAVA_EXE_jdk_default=$JDK/bin/java$EXE_SUFFIX

The executable type looks for an executable. It works very much like the file type,
but looks through every directory in $PATH for each candidate value. In this
example JAVA_EXE is set to the Java executable in the JDK if it exists. Otherwise it
is set to the first Java executable in the PATH.

■ list

– Examples:

TYPE_JAVA_OPTIONS=list
JAVA_MAX_HEAP_SIZE=384
DEFINE_PREFIX=-D
JAVA_OPTIONS_BIN_DIR=${DEFINE_PREFIX}idc.bin.dir=$BIN_DIR
JAVA_OPTIONS_maxheap=${JAVA_MAX_HEAP_SIZE+-Xmx${JAVA_MAX_HEAP_SIZE\}m}
JAVA_OPTIONS_service=${IS_SERVICE+$JAVA_SERVICE_EXTRA_OPTIONS}

The list type computes a list of options for an executable. Each value that begins
with variable_name_ becomes a quoted option, and variable_name is set to
the entire list. In this example, JAVA_OPTIONS is set to the string:

"-Didc.bin.dir=/intradocdir/bin/" "-Xmx384m"

■ path

– Examples:

IdcResourcesDir=${IdcResourcesDir-$IdcHomeDir/resources}
BASE_JAVA_CLASSPATH_source=$IdcResourcesDir/classes
BASE_JAVA_CLASSPATH_serverlegacy=$SharedDir/classes/server.zip
BASE_JAVA_CLASSPATH_server=$JLIB_DIR/idcserver.jar

The path type computes a path-like value.The value of each variable starting with
variable_name_ is appended to the value of variable_name separated by the
value of PATH_SEPARATOR. In this example, BASE_JAVA_CLASSPATH is set to a
very long class path.

■ lookupstring

– Examples:

TYPE_VDK_PLATFORM=lookupstring
PARAMETER_VDK_PLATFORM=${PLATFORM}_${UseVdkLegacySearch+vdk27}
VDK_PLATFORM_aix_vdk27=_rs6k41
VDK_PLATFORM_aix_=_rs6k43
VDK_PLATFORM_hpux_vdk27=_hpux11
VDK_PLATFORM_hpux_=_hpux11
VDK_PLATFORM_freebsd_vdk27=_ilnx21
VDK_PLATFORM_freebsd_=_ilnx21
VDK_PLATFORM_linux_vdk27=_ilnx21
VDK_PLATFORM_linux_=_ilnx21
VDK_PLATFORM_solaris_vdk27=_ssol26
VDK_PLATFORM_solaris_=_ssol26
VDK_PLATFORM_win32_vdk27=_nti40
VDK_PLATFORM_win32_=_nti40

Using the Launcher

Using the IdcCommand Utility to Access Services 7-9

The lookupstring uses a second parameter to construct a lookup key for the
final value. The second parameter is the value of $PARAMETER_variable_name.
If this value is undefined, the current value of variable_name is used as the
lookup key. In this example, PARAMETER_VDK_PLATFORM has the value of
${PLATFORM}_ or ${PLATFORM}_vdk27 depending on the value of
UseVdkLegacySearch.

This value is then used to look up the value of the variable VDK_PLATFORM_
${PARAMETER_VDK_PLATFORM} which is then quoted and assigned to VDK_
PLATFORM.

■ lookuplist

– Examples:

TYPE_STARTUP_CLASS=lookuplist
STARTUP_CLASS_version=Installer --version
STARTUP_CLASS_installer=Installer
STARTUP_CLASS_WebLayoutEditor=IntradocApp WebLayout
STARTUP_CLASS_UserAdmin=IntradocApp UserAdmin
STARTUP_CLASS_RepositoryManager=IntradocApp RepositoryManager
STARTUP_CLASS_Archiver=IntradocApp Archiver
STARTUP_CLASS_WorkflowAdmin=IntradocApp Workflow
STARTUP_CLASS_ConfigurationManager=IntradocApp ConfigMan

The lookuplist class uses a second parameter to construct a lookup key for the
final value. The second parameter is the value of $PARAMETER_variable_name.
If this value is undefined, the current value of variable_name is used as the
lookup key.

Unlike lookupstring, lookuplist does not quote the final value. In this
example, assume the current value of STARTUP_CLASS is version. STARTUP_
CLASS is replaced with the value Installer --version.

7.6.3 Launcher Environment Variables
After processing the computed settings, the Launcher iterates over all variables that
begin with the string EXPORT_. The value of each variable is used as an environment
variable name, which has the value of the second half of the EXPORT_ variable
assigned. For example, EXPORT_IDC_LIBRARY_PATH=LD_LIBRARY_PATH exports
the value of the IDC_LIBRARY_PATH variable with the name LD_LIBRARY_PATH.

The variable JAVA_COMMAND_LINE is used to get the command line. Any command
line arguments to the Launcher that have not been consumed are appended to the
command line. On UNIX systems, the command line is parsed and quoting is undone
and then execv is called. On Windows, a shutdown mutex is created and
CreateProcess is called with the command line. Care should be taken because
CreateProcess does not undo backslash-quoting.

The principal mechanism for debugging the Launcher is to add the flag -debug before
any arguments for the final command. You can also create a file named $BIN_
DIR/debug.log which triggers debug mode and contain the debug output.

Using the Launcher

7-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The Launcher has knowledge of the following configuration entries, which it either
sets or uses to control its behavior. Note that these configuration variables may change
or be removed in future releases of Oracle Content Server:

■ IDC_SERVICE_NAME: the name of the win32 service used for service registration,
unregistration, startup, and shutdown.

■ IDC_SERVICE_DISPLAY_NAME: the display name of the win32 used for service
registration.

■ IntradocDir: the base directory for relative path names.

■ IdcBaseDir: an alternate name for IntradocDir.

■ IdcResourcesDir: set to $IdcHomeDir/resources if otherwise undefined.

■ IdcNativeDir: defaults to $IdcHomeDir/native if otherwise unset.

■ PATH_SEPARATOR: set to either colon (:) or semi-colon (;) if otherwise unset.

■ STARTUP_CLASS: set to the name of the Launcher executable.

■ MUTEX_NAME: the name used to create a shutdown mutex on win32.

■ BEFORE_WIN_SERVICE_START_CMD: if set, is a command line that is executed
before a win32 service starts.

■ UseRedirectedOutput: if set tells the Launcher on win32 to redirect the output
from the Java VM to a file.

■ ServiceStartupTimeout: the time out used for waiting for a Java process to
successfully start on win32.

7.6.4 User Interface
The UI for the Launcher is the same as the application it launches. For example, if the
Launcher is renamed to IntradocApp, the following command line arguments are
given to launch the Web Layout Editor:

IntradocApp WebLayout

This launches the Web Layout Editor as a standalone application.

By default, the application is launched without console output. However, when
launching IdcServer, IdcAdmin, IdcCommandX, or the Installer, Java output is printed
to the screen. In all other cases, the output is suppressed for a cleaner interface.

For some applications, such as the Batch Loader and the Repository Manager, it is
desirable to view the Java output from the application. To force the Launcher to dump
the Java output to the screen, use the -console flag in this manner:

IntradocApp RepMan -console

The output is now written to the console from which the Repository Manager was
launched.

Tip: By using Launcher.exe, changing the status.dat file, and
altering the value of the JVM command line, you could theoretically
run any Java program as a Windows service. This is not recommended
for normal use, but it does explain some ways you could configure the
Launcher.

Using the Launcher

Using the IdcCommand Utility to Access Services 7-11

If the Launcher is renamed IdcServer, BatchLoader, SystemProperties, or any other
Java class that requires no additional parameters, it can be launched with a simple
double-click. In other cases, a shortcut can be used to launch them by double-clicking.

7.6.5 Configuring the Launcher
To use the Launcher, you must first rename the Launcher.exe file to an executable with
the same name as the class file to be launched. Typical examples include
IdcServer.exe and IntradocApp.exe.

7.6.6 Configuration File Example
Configuration file example entries:

<?cfg jcharset="Cp1252"?>
#Oracle Content Server Directory Variables
IntradocDir=C:/domain/idcm1/
BASE_JAVA_CLASSPATH_source=$IdcResourcesDir/classes
BASE_JAVA_CLASSPATH_serverlegacy=$SharedDir/classes/server.zip
BASE_JAVA_CLASSPATH_server=$JLIB_DIR/idcserver.jar

This is sufficient to launch nearly all Content Server applications. Others, such as
Oracle Inbound Refinery, require additional classes in the class path. This file can also
be modified to enable Content Server to be run with different Java Virtual Machines.

The CLASSPATH is designed to look for class files in order of the listed entries. In other
words, the Launcher will search the entire DomainHome/ucm/idc/native directory
before it looks in the resources directory or server.zip file. This is desirable if the users
want to overload Java classes without patching the ZIP file.

Additionally, the Launcher can be used to install, uninstall, and run Java applications
as Windows Services, if they follow the correct API for communicating back to the
Launcher. For more details on how to make any Java application run as a Windows
service with the Launcher, see the source code for IdcServer.java or
IdcAdmin.java.

The COMPUTEDCLASSPATH is used to add class files to the CLASSPATH that the
Launcher uses. To add class files, override this flag.

Note: If you want to make a custom application, you must create the
custom directory and rename the Launcher.exe file to the service that
is to be launched. A valid intradoc.cfg file must be in the same
directory as the executable. The only required parameter is
IntradocDir; however, you can include other entries to alter the
way the Java application is launched.

Note: The intradoc.cfg file is usually altered to include the locations
of JDBC drivers for particular databases upon installation. If you want
to use an alternate JDBC driver, place it outside of the IdcHomeDir
directory for the Oracle Content Server instance, IntradocDir, and alter
the JDBC_JAVA_CLASSPATH_customjdbc entry in the intradoc.cfg
file with the location of the driver.

Using the Launcher

7-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

For example, to run Oracle Content Server with the IBM virtual machine on a
Windows operating system, the command line would look like this:

#customized for running the IBM VM
JAVA_EXE=full path

When using a custom JVM, specify the full path to the Java executable file to be used.

You can set JAVA_COMMAND_LINE_SELECTION entry in the configuration file to
idcclassloader or traditional.

If you choose to change which JVM you are using, and if that VM has all the standard
Sun SDK JAR files, then it is better to use the J2SDK configuration entry to relocate the
root directory of the SDK directory rather than use JAVA_EXE to specify the location of
the Java executable. (This is not applicable for the IBM VM.)

The J2SDK variable changes the directory where the Sun SDK libraries are found (such
as tools.jar). If you change this entry without setting the JAVA_EXE entry, then Java
executables are assumed to be in the bin directory of the path in J2SDK. The default
value for J2SDK is ...\shared\os\win32\j2sdk1.4.2_04.

To add a value to JAVA_OPTIONS, use JAVA_OPTIONS_server=-server or another
similar value.

The following are commonly used command line options. Those options noted with
an asterisk (*) are available on a Windows operating system only. Unmarked options
are available for a Windows or UNIX operating system.

Caution: Avoid overriding the JVM command line. Customization is
more complicated because of the custom class loader. If you do
override the JVM command line, start with the
$IdcHomeDir/resources/core/config/launcher.cfg file.

Option Description

-console * Forces the Launcher to keep a Windows console window open
so that the Java output and error streams are printed to the
console.

-debug Shows paths and variables in use at startup, and startup errors.
Also enables Java debugging in Oracle Content Server; when
repeated this increases verbosity.

-fileDebug Similar to the -debug option but this option dumps debug data
to the debug.log file. It is usually only set in JAVA_OPTIONS or
JAVA_SERVICE_EXTRA_OPTIONS in the intradoc.cfg file to
debug Windows services.

-install * Used to install the Java application referred to by the
Launcher as a Windows Service.

-install_autostart * Similar to the -install option but this option installs the
application to start when the server starts.

-uninstall * Used to uninstall the Java application referred to by the
Launcher as a Windows Service.

-remove * Same as -uninstall.

Calling Services Remotely

Using the IdcCommand Utility to Access Services 7-13

If you want to load custom .dll files, you should put them in the
IdcHomeDir/native/win32/lib directory.

7.7 Calling Services Remotely
To use services remotely, you must have these files on the remote system:

■ DomainHome/ucm/cs/bin/IdcCommand.exe

■ DomainHome/ucm/cs/bin/intradoc.cfg (same file as on Oracle Content Server).

■ IntradocDir/config/config.cfg

-dependent service-name * Makes the Windows service dependent on whether the
service service-name is also running.

This command is useful when you want to make a dependent
call for each service.

For example, if you want to launch a database before starting
Oracle Content Server, you can specify the Oracle Content
Server startup to be dependent on the database startup.

-dependent user password * Used with -install, installs the service with the credentials
of the user specified by user with password password.

This command will check the user regardless of the credentials,
but may not install the service. The credentials of the user need
to extend to the service for the auto-start to run the service
automatically.

For certain services, such as Oracle Inbound Refinery, the last
flag is required so the service can run with higher permissions.
The user name must be in the typical Microsoft format
DOMAIN\User. Once users change passwords, the service will
not be able to log in, and therefore will not run.

-help Provides verbose output on Launcher use.

-version Displays the version number for the Launcher and exits.

-asuser user password * Used during an install to install a service as a specified user
with a specific password.

-exec path _name Overrides the argv[0] setting. Used by the Launcher.sh to specify
the target path_name because the target of the symlink does not
know its source.

-cfg configfilename Specifies additional config files to read before determining
computed settings.

-idcServiceName
servicename

* Specifies the name of the Windows service. This can used
with -remove to uninstall another Oracle Content Server
service without using that Oracle Content Server Launcher (for
example, if an entire installation directory has been removed).

Tip: To customize the class path to alter the system path to load
Oracle .dll files, you can set the path as follows:

IDC_LIBRARY_PATH_customfiles=/path-to-customfiles

Custom shared objects and .dll files must not be installed into
IdcHomeDir.

Option Description

Calling Services Remotely

7-14 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

In addition, the following configuration entries must be defined in the #Additional
Variables section of the config.cfg file on the remote system:

■ IntradocServerPort=4444

■ IntradocServerHostName=IP or DNS

8

Using the COM API for Integration 8-1

8Using the COM API for Integration

This chapter describes Microsoft Component Object Model (COM) integration. Oracle
Content Server utilizes a COM-based API, which provides the capability to call
functionality from within a COM environment.

This chapter includes the following sections:

■ Section 8.1, "Introduction to COM Integration"

■ Section 8.2, "ActiveX Interface"

■ Section 8.3, "IdcCommandUX Methods"

■ Section 8.4, "OCX Interface"

■ Section 8.5, "IdcClientOCX Component"

■ Section 8.6, "IdcClient Events"

■ Section 8.7, "IdcClient OCX Methods"

■ Section 8.8, "IdcClient Properties"

■ Section 8.9, "ODMA Integration"

8.1 Introduction to COM Integration
You can use a COM interface to integrate Content Management with Microsoft
environments and applications. An ActiveX control and an OCX component are
provided as interface options to gain access to the content and content management
functions within Oracle Content Server. Additionally, you can communicate with
ODMA-aware applications through a COM interface.

8.2 ActiveX Interface
The IdcCommandUX ActiveX Command Utility is an ActiveX control that enables a
program to execute Oracle Content Server services and retrieve file-path information.
The control serves as a COM wrapper for the standard IdcCommand services used by
Oracle Content Server. IdcCommandUX works with multibyte languages.

Performance Tip: Calling services from a command line on the local
server using the IdcCommandUX ActiveX Command Utility provides
faster execution of commands than calling services remotely using the
IntradocClient OCX component.

ActiveX Interface

8-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

When executing services using the IdcCommandUX ActiveX Command Utility, keep
these items in mind:

■ IdcCommandUX must be initialized with a valid user and the intradoc.cfg
directory.

Outside of the init and connection managing methods, all methods use the
serialized HDA format for communication.

■ IdcCommandUX attempts to establish a connection to a running server.

If a connection is not made, IdcCommandUX fails.

■ The returned serialized HDA format string contains information about the success
or failure of the command.

The StatusCode value will be negative if a failure occurs, and the
StatusMessage value will indicate the error.

The following subsections describe how to configure and use IdcCommandUX:

■ Section 8.2.1, "Setting Up IdcCommandUX"

■ Section 8.2.2, "Calling IdcCommandUX from a Visual Basic Environment"

■ Section 8.2.3, "Calling IdcCommandUX from a Visual C++ Environment"

■ Section 8.2.4, "Executing Services"

■ Section 8.2.5, "Calling IdcCommandUX from an Active Server Page (ASP)"

■ Section 8.2.6, "Formatting with a Resource Include"

■ Section 8.2.7, "Connecting to Oracle Content Server from a Remote System"

8.2.1 Setting Up IdcCommandUX
To set up IdcCommandUX, run the IdcCommandUX setup file, which is stored in
extras/IdcCommandUX/setup.exe in the media.

8.2.2 Calling IdcCommandUX from a Visual Basic Environment
To call IdcCommandUX from a Visual Basic environment:

1. Add IdcCommandUX as a control to the Visual Basic project.

2. Create the control as follows:

Set idcCmd=CreateObject("Idc.CommandUX")

3. Define and initialize the connection by calling the init (deprecated) function and
defining the UserName and DomainDir parameters:

Dim idcCmd
idcCmd.init("UserName", "DomainDir")

■ The UserName parameter specifies a user that has permission to execute the
services being called by IdcCommandUX.

■ The DomainDir parameter specifies the complete path to the Oracle Content
Server directory that contains the intradoc.cfg configuration file.

Note: A Visual Basic or Visual C++ development environment is
required for using IdcCommandUX.

ActiveX Interface

Using the COM API for Integration 8-3

Example:

Dim idcCmd
idcCmd.initRemote("sysadmin", "c:\domain\bin")

8.2.3 Calling IdcCommandUX from a Visual C++ Environment
To call IdcCommandUX from a Visual C++ environment:

1. Add the IdcCommandUX control to the project.

2. Call the desired IdcCommandUX class.

8.2.4 Executing Services
When executing services using IdcCommandUX, keep these points in mind:

■ IdcCommandUX must be initialized with a valid user name and the location of the
intradoc.cfg file.

■ Functions that must use HDA format for communication include
computeWebFilePath, computeNativeFilePath, and computeURL. For more
information about HDA formats, see Chapter 3, "Working with Standard, Server,
and Custom Components."

■ executeCommand can take HDA format or SOAP commands. To use SOAP, you
must use the initRemote function instead of the init (deprecated) function.

■ IdcCommandUX attempts to establish a connection to a running Oracle Content
Server instance. If a connection is not made, it fails.

■ The returned HDA-format string contains information about the success or failure
of the command, using the StatusCode and StatusMessage variables.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

For more information, see the Oracle Fusion Middleware Idoc Script Reference Guide.

For information about using the Launcher (a native C++ application that allows a
Java program to start as a Windows service), see Section 7.6, "Using the Launcher."

8.2.5 Calling IdcCommandUX from an Active Server Page (ASP)
Calling IdcCommandUX from an Active Server Page (ASP) consists of these steps:

1. Creating the COM Object

2. Initializing the Connection

3. Defining Services and Parameters

4. Referencing Custom Resources

5. Executing the Service

6. Retrieving Results

The following examples show how to do these steps.

ActiveX Interface

8-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Example 8–1 SOAP Example

In this SOAP sample:

■ The GET_SEARCH_RESULTS service is called.

■ The parameters for the service are defined using field/value pairs:

– The ResultCount parameter sets the number of returned results to 5.

– The SortField parameter sorts the returned results by release date.

– The SortOrder parameter orders the returned results in descending order.

– The QueryText parameter defines the query expression as "Content Type
matches research."

The initRemote function must be used and isSOAP must be set to TRUE for a
SOAP-formatted request, which is shown in the following example.

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")
' Initialize the connection to the server
x = idcCmd.initRemote("/domain/ ", "sysadmin",
"socket:localhost:4444", true)
' Create the SOAP envelope
cmd = cmd & "<?xml version='1.0' ecoding='UTF-8'?>" + Chr(10)
cmd = cmd & "<SOAP-ENV:Envelope xmlns:SOAP-ENV=""http://
schemas.xmlsoap.org/soap/envelope/"">" + Chr(10)
cmd = cmd & "<SOAP-ENV:Body>" + Chr(10)
' Define the service
cmd = cmd & "<idc:service xmlns:idc=""http://www.oracle.com/
IdcService/""" + Chr(10)
cmd = cmd & "IdcService=""GET_SEARCH_RESULTS"">" + Chr(10)
' Define the service parameters
cmd = cmd & "<idc:document>" + Chr(10)
cmd = cmd & "<idc:field name=""NoHttpHeaders"">1</idc:field>" +
Chr(10)
cmd = cmd & "<idc:field name=""ClientEncoding"">UTF8</idc:field>"
+ Chr(10)
cmd = cmd & "<idc:field name=""QueryText"">dDocType
<matches> research</idc:field>" + Chr(10)
cmd = cmd & "<idc:field name=""ResultCount"">5</idc:field>" +
Chr(10)
cmd = cmd & "<idc:field name=""SortOrder"">Desc</idc:field>" +
Chr(10)
cmd = cmd & "<idc:field name=""SortField"">dInDate</idc:field>" +
Chr(10)
cmd = cmd & "</idc:document>" + Chr(10)
cmd = cmd & "</idc:service>" + Chr(10)
cmd = cmd & "</SOAP-ENV:Body>" + Chr(10)
cmd = cmd & "</SOAP-ENV:Envelope>" + Chr(10)
' End SOAP envelope and execute the command
results= idcCmd.executeCommand(cmd)
' Retrieve results
Response.Write(results)

Example 8–2 HDA Sample

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")
' Initialize the connection to the server
x = idcCmd.initRemote("/domain/", "socket:localhost:4444", "sysadmin", true)
' Define the service

ActiveX Interface

Using the COM API for Integration 8-5

cmd = "@Properties LocalData" + Chr(10)
cmd = cmd + "IdcService=GET_SEARCH_RESULTS" + Chr(10)
' Define the service parameters
cmd = cmd + "ResultCount=5" + Chr(10)
cmd = cmd + "SortField=dInDate" + Chr(10)
cmd = cmd + "SortOrder=Desc" + Chr(10)
cmd = cmd + "QueryText=dDocType=research" + Chr(10)
' Reference a custom component
cmd = cmd + "MergeInclude=ASP_SearchResults" + Chr(10)
cmd = cmd + "ClassStyle=home-spotlight" + Chr(10)
cmd = cmd + "@end" + Chr(10)
' Execute the command
results = idcCmd.executeCommand(cmd)
' Retrieve results
Response.Write(results)

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")

Example 8–3 Creating the COM Object

The first line of code creates the COM object:

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")

Example 8–4 Initializing the Connection

To initialize the connection to Oracle Content Server, call the initRemote function:

' Initialize the connection to the server
x = idcCmd.initRemote("/domain/", "socket:localhost:4444", "sysadmin", false)

This example uses these parameters:

■ The HttpWebRoot parameter specifies a value for the web root as defined in the
config/config.cfg file.

■ The idcReference parameter specifies a string containing information about
connection to the Oracle Content Server instance. This is specified as "socket"
followed by the IntradocServerHostName value and the IntradocServer Port
address.

■ The value of theidcUser parameter, "sysadmin", specifies the user who is
connecting to Oracle Content Server.

■ The isSoap parameter is a Boolean value indicating if the request is in SOAP
XML format or HDA format. In this case, it is false because it is in HDA format.

For information about all the parameters, see Section 8.3.11, "initRemote."

Example 8–5 Defining Services and Parameters

To define the service and parameters, build an HDA-formatted string that contains
with the following lines:

@Properties LocalData
service
parameters
@end

ActiveX Interface

8-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The required and optional parameters vary depending on the service being called. For
more information, see the Oracle Fusion Middleware Services Reference Guide for Universal
Content Management.

In this example, the @end string is created after the optional custom component
reference. For more information, see Section 8.2.6, "Formatting with a Resource
Include."

Example 8–6 Referencing Custom Resources

You can reference custom resources and pass parameters to a resource include from
your ASP as follows:

■ To reference a custom resource include, set the MergeInclude parameter to the
name of the include.

In this example, the ASP_SearchResults include is used to format the output as
HTML rather than a ResultSet. For more information, see Section 8.2.6,
"Formatting with a Resource Include."

■ To pass a parameter to a resource include, set the variable as name/value pair.

In this example, the ClassStyle variable with a value of home-spotlight is
available to the ASP_SearchResults include.

' Reference a custom component
cmd = cmd + "MergeInclude=ASP_SearchResults" + Chr(10)
cmd = cmd + "ClassStyle=home-spotlight" + Chr(10)
cmd = cmd + "@end" + Chr(10)

Example 8–7 Executing the Service

To execute the service, call the executeCommand method.

After executing the service, you could use the closeServerConnection method to make
sure that the connection is closed.

' Execute the service
results = idcCmd.executeCommand(cmd)

Example 8–8 Retrieving Results

The results can either be formatted HTML or a ResultSet.

In this example, the result of the service call is formatted HTML.

' Retrieve results
Response.Write(results)

8.2.6 Formatting with a Resource Include
This section provides an example of a custom resource include that is used to format
the output of a service executed by IdcCommandUX.

In the example described in Section 8.2.5, "Calling IdcCommandUX from an Active
Server Page (ASP),", the ASP_SearchResults resource include is used to format the
output of a search function and return HTML rather than a ResultSet:

Note: The @end code is required to close the @Properties
LocalData section in an HDA-formatted string. For more
information, see Section 8–5, "Defining Services and Parameters."

ActiveX Interface

Using the COM API for Integration 8-7

<@dynamichtml ASP_SearchResults@>
<table border=0>

<$loop SearchResults$>
<tr class="site-default">
<td class="<$ClassStyle$>">
<a href="<URL>" target=new><$dDocTitle$>

<$xAbstract$>
</td>
</tr>
<$endloop$>

</table>
<@end@>

■ The <@dynamichtml ASP_SearchResults@> entry defines the name of the
resource include. The <@end@> entry ends the resource definition.

■ The code defined between the <$loop SearchResults$> and <$endloop$>
entries is executed for each content item in the SearchResults ResultSet, which
includes all documents that matched the query defined for the GET_SEARCH_
RESULTS service.

■ The <td class="<$ClassStyle$>"> entry displays the value of the
<$ClassStyle$> Idoc Script variable. In this example, the ClassStyle value
was passed in on the API call.

■ The <a href="<URL>" target=new><$dDocTitle$> entry displays
the Title of the current content item as a link to the file.

■ The <$xAbstract$> entry displays the Abstract value for the current content
item.

The HTML generated and returned to the Active Server Page from this resource
include would have this format:

<table border=0>
<tr class="site-default">
<td class="home-spotlight">
Article 1

This is the abstract for Article 1
</td>
<td class="home-spotlight">
Article 2

This is the abstract for Article 2
</td>
<td class="home-spotlight">
Article 3

This is the abstract for Article 3
</td>
<td class="home-spotlight">
Article 4

This is the abstract for Article 4
</td>
<td class="home-spotlight">
Article 5

This is the abstract for Article 5
</td>
</tr>
</table>

ActiveX Interface

8-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Displaying this HTML page in a browser would look like this:

8.2.7 Connecting to Oracle Content Server from a Remote System
This section describes how to establish a connection to an Oracle Content Server
instance from a remote system using IdcCommandUX from an Active Server Page.
These steps are required:

1. Creating Variables

2. Creating a COM Object

3. Initializing the Connection

4. Returning the Connection Status

5. Defining the Service and Parameters

6. Executing the Service

7. Retrieving Results

The following examples show how to do these steps.

Example 8–9 Coding the ASP Page

This example calls the CHECKIN_UNIVERSAL service to provide a check-in function
from a remote system. This code does not check for an error condition.

' Create variables
Dim idccommand, sConnect, str
' Create COM object
Set idccommand = Server.CreateObject("idc.CommandUX")
' Initialize the connection to the server
x = idccommand.initRemote ("/domain/ ", "sysadmin", "socket:localhost:4444",
false)
' Return connection status (optional)
sConnect = idccommand.connectToServer
if sConnect then
Response.Write "Connected"
else
Response.Write "Not Connected"
end if
str = "@Properties LocalData" & vbcrlf
' Define the service
str = str + "IdcService=" & "CHECKIN_UNIVERSAL" & vbcrlf
' Define the service parameters
str = str + "doFileCopy=1" & vbcrlf
str = str + "dDocName=RemoteTestCheckin23" & vbcrlf
str = str + "dDocTitle=Test1" & vbcrlf
str = str + "dDocType=ADACCT" & vbcrlf
str = str + "dSecurityGroup=Public" & vbcrlf
str = str + "dDocAuthor=sysadmin" & vbcrlf
str = str + "dDocAccount=" & vbcrlf
str = str + "primaryFile:path=C:/inetpub/Scripts/query2.asp" & vbcrlf
str = str + "@end" & vbcrlf
' Execute the command

ActiveX Interface

Using the COM API for Integration 8-9

res=idccommand.executeCommand(str)
' Return connection status
sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if
' Retrieve results
Response.Write(res)

Example 8–10 Creating Variables

The following variables must be created:

■ idccommand: The name of the COM object.

■ sConnect: The status of the connection to the Oracle Content Server instance.

■ str: The HDA-formatted string that defines the service and its parameters.

' Create variables
Dim idccommand, sConnect, str

Example 8–11 Creating a COM Object

The following variables must be created:

■ idccommand: The name of the COM object.

■ sConnect: The status of the connection to the Oracle Content Server instance.

■ str: The HDA-formatted string that defines the service and its parameters.

' Create variables
Dim idccommand, sConnect, str

Example 8–12 Initializing the Connection

Initialize the connection to the Oracle Content Server instance.

' Initialize the connection to the server
x = idccommand.initRemote ("/domain/ ", "sysadmin", "socket:localhost:4444", false)

Example 8–13 Returning the Connection Status

In this example, the connectToServer and closeServerConnection methods are used to
return connection status information before and after the service is executed.

' Return connection status
sConnect = idccommand.connectToServer
if sConnect then
Response.Write "Connected"
else
Response.Write "Not Connected"
end if
...
' Return connection status
sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if

ActiveX Interface

8-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Example 8–14 Defining the Service and Parameters

To define the service and parameters, build an HDA-formatted string that contains the
following lines:

@Properties LocalData
service
parameters
@end

The required and optional parameters vary depending on the service being called. For
more information, see the Oracle Fusion Middleware Services Reference Guide for Universal
Content Management.

In this example:

■ The CHECKIN_UNIVERSAL service is called.

■ The parameters for the service are defined using field/value pairs:

– The doFileCopy parameter is set to TRUE (1), so the file will not be deleted
from hard drive after successful check in.

– The dDocName parameter defines the Content ID.

– The dDocTitle parameter defines the Title.

– The dDocType parameter defines the Type.

– The dSecurityGroup parameter defines the Security Group.

– The dDocAuthor parameter defines the Author.

– The dDocAccount parameter defines the security account. (If accounts are
enabled, this parameter is required.)

– The primaryFile parameter defines original name for the file and the
absolute path to the location of the file as seen from the server.

str = "@Properties LocalData" & vbcrlf
' Define the service
str = str + "IdcService=" & "CHECKIN_UNIVERSAL" & vbcrlf
' Define the service parameters
str = str + "doFileCopy=1" & vbcrlf
str = str + "dDocName=RemoteTestCheckin23" & vbcrlf
str = str + "dDocTitle=Test1" & vbcrlf
str = str + "dDocType=ADACCT" & vbcrlf
str = str + "dSecurityGroup=Public" & vbcrlf
str = str + "dDocAuthor=sysadmin" & vbcrlf
str = str + "dDocAccount=" & vbcrlf
str = str + "primaryFile:path=C:/inetpub/Scripts/query2.asp" & vbcrlf
str = str + "@end" & vbcrlf

Example 8–15 Executing the Service

To execute the service, call the executeCommand method.

' Execute the service
res=idccommand.executeCommand(str)

Important: The required parameters vary depending on the service
called. For more information, see the Oracle Fusion Middleware Services
Reference Guide for Universal Content Management.

IdcCommandUX Methods

Using the COM API for Integration 8-11

Example 8–16 Retrieving Results

In this example, the result of the CHECKIN_UNIVERSAL service call is formatted
HTML.

' Retrieve results
Response.Write(res)

8.3 IdcCommandUX Methods
The following subsections describe the IdcCommandUX methods:

■ Section 8.3.1, "addExtraheadersForCommand"

■ Section 8.3.2, "closeServerConnection"

■ Section 8.3.3, "computeNativeFilePath"

■ Section 8.3.4, "computeURL"

■ Section 8.3.5, "computeWebFilePath"

■ Section 8.3.6, "connectToServer"

■ Section 8.3.7, "executeCommand"

■ Section 8.3.8, "executeFileCommand"

■ Section 8.3.9, "forwardRequest"

■ Section 8.3.10, "getLastErrorMessage"

■ Section 8.3.11, "initRemote"

8.3.1 addExtraheadersForCommand
This command adds extra HTTP-like headers to a command.

■ For security reasons, some parameters can only be passed in the headers.

■ The most common use for this command is to set the values for EXTERNAL_ROLES
and EXTERNAL_ACCOUNTS in a request.

■ Values must be all on one string and separated by a carriage return and a line feed.

Example
The following is an ASP example:

extraHeaders = "EXTERNAL_ROLES=contributor" _
+ vbcrlf _
+ "EXTERNAL_ACCOUNTS=my_account"

idcCmd.addExtraHeadersForCommand(extraHeaders)

Important: All parameters are required unless otherwise indicated.

IdcCommandUX Methods

8-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

8.3.2 closeServerConnection
Public Sub closeServerConnection()

Description
Closes the server connection.

■ This method does not have to be called, because the executeCommand method
automatically closes a connection after executing a service. It is provided only as a
convenience for managing the state of the connection.

Parameters
None

Output
■ Returns TRUE if the connection is closed.

■ Returns FALSE if the connection failed to close.

Example
This ASP example passes the result of the closeServerConnection method to a
variable and uses an if/else statement to return a connection status message:

sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if

8.3.3 computeNativeFilePath
Public Function computeNativeFilePath(Data As String) As String

Description
HDA-only function.

Returns the URL of a native file as a string.

■ This function is generally used for processing native files to perform actions such
as bulk file loading or retrieval.

■ To determine the values for the required parameters (such as dDocType and dID),
you can reference the ResultSet returned from a DOC_INFO or SEARCH_
RESULTS service call.

– The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

– The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

Parameters
■ Data: An HDA-formatted string that defines the content item:

– dDocType: The content item Type, such as ADACCT or FILES.

– dID: The generated content item revision ID.

IdcCommandUX Methods

Using the COM API for Integration 8-13

– dExtension: The file extension, such as HCSF, DOC, or TXT.

– dDocAccount: The account for the content item. If accounts are enabled, this
parameter must be defined.

Output
■ Returns a string that defines NativeFilePath as the value of the string passed in as a

parameter. For example:

NativeFilePath=c:\domain\vault\adacct\1.doc

■ Returns an HDA string containing StatusCode and StatusMessage.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

– Returns FALSE if there is a connection failure.

Example
This is an example of an HDA-formatted string:

String str = "@Properties LocalData\n"+
"dDocType=ADACCT\n"+
"dID=67\n"+
"dExtension=DOC\n"+
"dDocAccount=mainaccount\n"+
"@end\n";

8.3.4 computeURL
Public Function computeURL(Data As String, IsAbsolute As Boolean) As String

Description
HDA-only function.

Returns the URL of a content item as a string.

■ A relative or absolute URL can be supplied to Oracle Content Server.

– When a relative URL is defined, the function evaluates the URL as a location
valid on the local server.

– For example:

/domain/groups/Public/documents/FILE/doc.txt

– When an absolute URL is defined, the function returns the absolute URL path.

– For example:

http://server/domain/groups/Public/documents/FILE/doc.txt

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID value is a generated
reference to a specific revision of a content item.

IdcCommandUX Methods

8-14 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ To determine the values for the Oracle Content Server parameters
(HttpRelativeWebRoot and HttpServerAddress), you can reference the
properties data returned from a GET_DOC_CONFIG_INFO service call.

■ To determine the values for the required content item parameters (such as
dSecurityGroup and dDocType), you can reference the ResultSet returned from a
DOC_INFO or SEARCH_RESULTS service call.

– The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

– The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

■ To return the URL for a specific revision and rendition, use the content item
revision label (dRevLabel) and the file extension (dWebExtension) entries. For
example:

dDocName=test10
dRevLabel=2
dWebExtension=pdf

■ To return the URL for the most recent revision, the content item revision label
(dRevLabel) entry can be omitted. For example, defining just the Content ID
(dDocName) and the file extension (dWebExtension) returns the most recent
revision:

dDocName=test11
dWebExtension=html

Parameters
■ Data: An HDA-formatted string that defines the content item:

– HttpRelativeWebRoot: The web root directory as a relative path, such as
/stellent/. This entry is required for a relative URL, and is optional for an
absolute URL.

– HttpServerAddress: The domain name of the Oracle Content Server instance,
such as testserver17 or example.com. (The server address is specified as
a partial URL such as example.com rather than a full address such as
http://www.example.com/). This entry is required for an absolute URL,
and is optional for a relative URL.

– dSecurityGroup: The security group, such as Public or Secure.

– dDocType: The Type, such as ADACCT or FILES.

– dDocName: The Content ID, such as test10 or hr_0005467.

– dWebExtension: The file extension of the web-viewable file, such as xml, html,
or txt.

– dDocAccount: The account for the content item. If accounts are enabled, this
parameter must be defined.

– dRevLabel (optional): The revision label for the content item. If defined, the
specific revision will be referenced.

IdcCommandUX Methods

Using the COM API for Integration 8-15

■ IsAbsolute: Set to TRUE (1) to define an absolute URL address.

Output
■ Returns a string that defines URL as the value of the string passed in as a

parameter. For example:

URL=http://server/domain/groups/public/documents/FILE/doc.txt

■ Returns an HDA string containing StatusCode and StatusMessage.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

– Returns FALSE if there is a connection failure.

Example
This is an example of an HDA-formatted string:

String str = "@Properties LocalData\n"+
"HttpServerAddress=testserver17\n"+
"HttpRelativeWebRoot=/domain/\n"+
"dDocAccount=mainaccount\n"+
"dSecurityGroup=Public\n"+
"dDocType=ADACCT\n"+
"dDocName=test11\n"+
"dWebExtension=html\n"+
"@end\n";

8.3.5 computeWebFilePath
Public Function computeWebFilePath(Data As String) As String

Description
HDA-only function.

Returns the path of a web-viewable file as a string.

■ This function is generally used for processing web-viewable text files (such as
XML) to perform actions such as bulk file loading or retrieval.

■ Using computeWebFilePath instead of computeNativeFilePath provides the
advantage of needing only the Content ID (dDocName) rather than the specific
revision ID (dID) to return the most recent revision.

■ To determine the values for the required parameters (such as dSecurityGroup and
dDocType), you can reference the ResultSet returned from a DOC_INFO or
SEARCH_RESULTS service call.

– The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

– The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID value is a generated
reference to a specific revision of a content item.

IdcCommandUX Methods

8-16 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Parameters
■ Data: An HDA-formatted string that defines the content item:

– dSecurityGroup: The security group, such as Public or Secure.

– dDocType: The content item Type, such as ADACCT or FILES.

– dDocName: The Content ID, such as test10 or hr_0005467.

– dWebExtension: The file extension of the web-viewable file, such as xml, html,
or txt.

– dDocAccount: The account for the content item. If accounts are enabled, this
parameter must be defined.

Output
■ Returns a string that defines WebFilePath as the value of the string passed in as a

parameter. For example:

WebFilePath=http:\\testserver17.example.com\domain\groups\main\documents\test.xml

■ Returns an HDA string containing StatusCode and StatusMessage.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

– Returns FALSE if there is a connection failure.

Example
This is an example of an HDA-formatted string:

String str = "@Properties LocalData\n"+
"dDocAccount=mainaccount\n"+
"dSecurityGroup=Public\n"+
"dDocType=ADACCT\n"+
"dDocName=test11\n"+
"dWebExtension=xml\n"+
"@end\n";

8.3.6 connectToServer
Public Function connectToServer() As Boolean

Description
Establishes a connection to the server.

■ The connection is held open until a command is executed. After a command is
executed, the connection is closed automatically.

■ This method does not have to be called, because the executeCommand method
automatically opens a connection to execute a service. It is provided only as a
convenience for managing the state of the connection.

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID value is a generated
reference to a specific revision of a content item.

IdcCommandUX Methods

Using the COM API for Integration 8-17

Parameters
None

Output
■ Returns TRUE if the connection is opened.

■ Returns FALSE if there is a connection failure.

Example
This ASP example passes the result of the connectToServer method to a variable and
uses an if/else statement to return a connection status message:

sConnect = idcCmd.connectToServer
if sConnect then
Response.Write "Connected"
else
Response.Write "Not Connected"
end if

8.3.7 executeCommand
Public Sub executeCommand(Data As String)

Description
Executes an Oracle Content Server service.

■ This method evaluates whether a connection has already been established with a
connectToServer call. If a connection exists, it will use the open connection. If a
connection does not exist, it will establish a connection.

■ On completion of the command, the connection will be closed.

Parameters
■ Data: An HDA-formatted string that defines the IdcService command and any

service parameters. For example:

@Properties LocalData
IdcService=GET_SEARCH_RESULTS
ResultCount=5
SortField=dInDate
SortOrder=Desc
QueryText=dDocType=research
@end@

This can also be a SOAP-formatted message, as shown in Example 8–1. For more
information, see Section 8.3.11, "initRemote."

Output
■ Returns a string representing an HDA file that holds the original request and the

results.

■ Returns an HDA string containing StatusCode and StatusMessage.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

IdcCommandUX Methods

8-18 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

– Returns FALSE if there is a connection failure.

■ The return string is SOAP-formatted XML if a SOAP request was sent.

Example
This ASP example executes the command specified in the data string defined by the
cmd variable:

results = idcCmd.executeCommand(cmd)

8.3.8 executeFileCommand
executeFileCommand (requestString)

Description
This function is used to execute a service request, then pipe the raw response to the
client. This command is identical to executeCommand but can only be called on an
Active Server Page (ASP).

■ The response from Oracle Content Server is redirected back to the client's browser
(this is different from the response through executeCommand, in which the
response is given as a string which can then be manipulated on the ASP).

■ This is useful for GET_FILE and similar services in which you need to transfer
binary files from Oracle Content Server to a client browser through an ASP.

■ This function returns extra headers unless the request parameters are passed as
environment variables.

■ requestString is the name of the service request.

■ For more information, see Section 8.3.7, "executeCommand."

Parameters
None

8.3.9 forwardRequest
forwardRequest()

Description
This function is used to forward a multipart form post to Oracle Content Server. This
is useful for executing check-ins.

Parameters
None

8.3.10 getLastErrorMessage
getLastErrorMessage()

Description
This method retrieves the specific error details for a communication or configuration
error. For example, if you do not put in the correct hostname for making a connection,
this method returns the connection error. It does not return a value if the error is
returned by Oracle Content Server as part of the return value for a request.

OCX Interface

Using the COM API for Integration 8-19

Parameters
None

Example
This example creates an object and initializes a connection to the server.

Set idcCmd = Server.CreateObject("Idc.CommandUX")

x = idcCmd.init("sysadmin", "c:\domain\bin")
If x = false Then
y = idcCmd.getLastErrorMessage()
Response.Write(y)
End If

8.3.11 initRemote
initRemote(HttpWebRoot, idcReference, idcUser, isSoap)

Description
This function initializes the module to connect to an Oracle Content Server instance.
Note that you must first declare idcCmd.

Required Parameters
■ HttpWebRoot: The Idoc Script value for HttpWebRoot.

■ idcReference: A string containing information about how to connect to the Oracle
Content Server instance, in the form socket:hostname:port. This is typically
socket:localhost:4444. The hostname should be identical to
IntradocServerHostName and port identical to IntradocServerPort.

■ idcUser: The user you are connecting as.

■ isSoap: A Boolean value indicating if the request is in SOAP XML format or HDA
format. If this is set to TRUE, it indicates the SOAP XML format.

Example
Dim idcCmd
idcCmd.initRemote("domain", "socket:test204:4444", "sysadmin", "false")

8.4 OCX Interface
The IntradocClient OCX component is used within a Windows Visual Basic
development environment to gain access to the content and content management
functions within Oracle Content Server. The OCX integration is designed to call
services in a visual development environment, or to connect to a remote Oracle
Content Server instance.

The IntradocClient OCX component provides functionality that you can access with a
method call. Methods perform actions and often return results. Information is passed to
methods using parameters. Some functions do not take parameters; some functions
take one parameter; some take several.

The IntradocClient OCX component requires a username and password to execute the
commands. The user must have the appropriate permissions to execute the
commands. Some commands will require an administrative access level, other
commands may require only write permission.

IdcClientOCX Component

8-20 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Outside of the init and connection managing methods, all methods use the
serialized HDA format for communication. The returned serialized HDA format string
contains information about the success or failure of the command. The StatusCode
will be negative if a failure occurs, and StatusMessage indicates the error.

For more information, see the Oracle Fusion Middleware Services Reference Guide for
Universal Content Management. This guide also contains information about the
IntradocClient OCX API specifications listing the properties, methods, and events.

8.5 IdcClientOCX Component
An Object Linking and Embedding Control Extension (OCX) control is provided for
connecting to a remote Oracle Content Server instance and executing Oracle Content
Server services. The IdcClient OCX control is used within a Windows Visual Basic
development environment to gain access to the content and content management
functions within Oracle Content Server.

This section provides a description of the IdcClient OCX control, setup instructions,
and lists the events, methods, and properties. The IdcClient.ocx control is used to
connect to a remote Oracle Content Server instance and perform typical server
functions.

The following subsections describe the IdcClientOCX component and how to set it up:

■ Section 8.5.1, "IdcClient OCX Description"

■ Section 8.5.2, "IdcClient OCX Control Setup"

8.5.1 IdcClient OCX Description
This section provides a general description of the IdcClient OCX control and basic
information about events, methods, and properties. The IdcClient OCX interface is
also discussed.

8.5.1.1 General Description
IdcClient is an ActiveX control that allows a program to perform actions such as
executing a service and retrieving file path information. The IdcClient control is also a
wrapper for the Microsoft Internet Explorer browser.

The IdcClient OCX control is designed to use the Unicode standard and in most cases
exchanges data with Oracle Content Server in UTF-8 format. Unicode uses two bytes
(16 bits) of storage per character and can represent characters used in a wide range of
languages (for example, English, Japanese, Arabic). Since English language ASCII
(American Standard Code for Information Interchange) characters only require one
byte (8 bits), when an ASCII character is represented the upper byte of each Unicode
character is zero.

See the Unicode Consortium on the Web for additional information about the Unicode
standard at http://www.unicode.org/.

Note: A Visual Basic or Visual C++ development environment is
required for using the IdcClient OCX component.

IdcClientOCX Component

Using the COM API for Integration 8-21

In most cases, the methods use the serialized HDA format for communication. A
serialized HDA format is a Java method used for communication. The returned
serialized HDA format string contains information about the success or failure of the
command.

The IdcClient OCX control provides functionality that can be performed with a
method call. Methods perform actions and often return results. Information is passed
to methods using parameters. Some functions do not take parameters; some functions
take one parameter; some take several. For example, a function with two parameters
passed as strings would use this format:

Function(Parameter As String, Parameter As String) As String

■ IdcClient OCX enables users to write client applications to execute services. The
OCX control takes name/value pairs containing commands and parameters and
calls the specified services. Execution results are passed back to the calling
program.

■ IdcClient OCX requires a username and password to execute the commands. The
user must have the appropriate permissions to execute the commands. Some
commands will require an administrative access level, other commands may
require only write permission.

For more information, see Oracle Fusion Middleware Services Reference Guide for Universal
Content Management.

8.5.1.2 Events, Methods, and Properties
The IdcClient OCX control is used to connect to a remote Oracle Content Server
instance and perform server functions. This section provides a basic overview on
Visual Basic events, methods, and properties.

OCX Events
Events are executed when the user or server performs an action.

For example:

■ The IntradocBrowserPost event executes every time a user submits a form
from within a browser.

■ The IntradocServerResponse event executes after the server completes a
requested action.

For more information, see Section 8.5.1.2, "Events, Methods, and Properties."

Example 8–17 OCX Methods

The Visual Basic Standard Controls provide methods that are common to every Visual
Basic development environment. In addition, the IdcClient OCX control provides
methods that are private and unique to this specific control. These methods are used to
perform or initiate an action rather than setting a characteristic.

Important: IdcClient OCX is built atop the Microsoft Layer for
Unicode, which allows Unicode applications to run on Win9x
platforms. When distributing the IdcClient OCX Control on 9x
platforms, the "unicows.dll" must also be distributed. This companion
DLL cannot be distributed on Windows-based systems.

IdcClientOCX Component

8-22 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

For example:

■ The AboutBox() method launches the About box containing product version
information.

■ The GoCheckinPage method checks in a new content item or a content item
revision.

For more information, see Section 8.5.1.2, "Events, Methods, and Properties."

Example 8–18 OCX Properties

Properties describe or format an object and can be modified with code or by using the
property window in the Visual Basic development environment. Properties describe
the basic characteristic of an object.

For example:

■ The UserName property provides the assigned user name.

■ The WorkingDir property specifies the location where downloaded files are
placed.

For more information, see Section 8.5.1.2, "Events, Methods, and Properties."

8.5.1.3 IdcClient OCX Interface
The IdcClient OCX control is used within a Windows Visual Basic development
environment to gain access to the content and content management functions within
Oracle Content Server. The OCX integration is designed to call services in a visual
development environment, or to connect to a remote Oracle Content Server instance.

In most cases, methods use the serialized HDA format for communication. The
returned serialized HDA format string contains information about the success or
failure of the command. The StatusCode will be negative if a failure occurs, and
StatusMessage will indicate the error. If the returned HDA does not contain a
StatusCode parameter, the service call succeeded.

8.5.2 IdcClient OCX Control Setup
This section provides a the steps required to setup the IdcClient OCX component and
also provides information about creating a visual interface in the Microsoft Visual
Basic development environment.

8.5.2.1 Setting Up the IdcClient OCX Component
Follow these steps to set up the IdcClient OCX component in the Microsoft Visual
Basic development environment:

1. Create a new project.

2. Select Project, and then choose Components.

3. Browse to the IdcClient.ocx file on your system, and click Open.

The IdcClient module is added to the Component Controls list.

4. Ensure that the checkbox for the IdcClient ActiveX Control module is enabled,
and click OK.

The IdcClient OCX control is placed in the list of controls.

IdcClientOCX Component

Using the COM API for Integration 8-23

5. (Optional) You can use the Visual Basic development environment to build your
own visual interface or follow the steps provided in Section 8.5.2.2, "Creating a
Visual Interface," to build a basic visual interface.

8.5.2.2 Creating a Visual Interface
The following procedure for creating a visual interface is based on the assumption that
a Visual Basic project has been created and the IdcClient OCX control has been placed
in the list of controls. For more information, see Section 8.5.2.1, "Setting Up the
IdcClient OCX Component."

Follow these steps to build a basic visual interface:

1. Select the control, and draw it on the Visual Basic form, as Figure 8–1 shows.

Figure 8–1 OCX Control Drawn on a Visual Basic Form

IdcClientOCX Component

8-24 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

2. From the drop-down list of the Properties window, choose IdcClient OCX.

If the Properties window is not currently displayed, select View, and then choose
Properties Window from the main menu.

3. Rename the IdcClient OCX control IdcClientCtrl.

4. Define HostCgiUrl to reference the iss_idc_cgi.dll for your particular
instance.

For example:

http://testserver/intradoc-cgi/iss_idc_cgi.dll

Figure 8–2 Edited IdcClient Properties

IdcClientOCX Component

Using the COM API for Integration 8-25

5. On the form, draw a text box, and name it CgiUrl.

6. For the text field, enter the HostCgiUrl value as the text to be displayed.

For example:

http://testserver/intradoc-cgi/iss_idc_cgi.dll

Figure 8–3 Edited CgiUrl TextBox Properties

IdcClientOCX Component

8-26 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

7. On the form, draw a text box, and name it Command.

8. Clear the entry for the text field (leave blank), and set MultiLine to True.

Figure 8–4 Edited Command TextBox Properties

IdcClientOCX Component

Using the COM API for Integration 8-27

9. On the form, draw a text box, and name it Response.

10. Clear the entry for the text field (leave blank).

Figure 8–5 Edited Response TextBox Properties

IdcClientOCX Component

8-28 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

11. On the form, draw a button, and name it SendPostCommand.

12. For the Caption field, enter "Send Post Command" as the text to be displayed.

Figure 8–6 Edited SendPostCommand CommandButton Properties

IdcClientOCX Component

Using the COM API for Integration 8-29

13. On the form, select View, and then choose Code.

14. Select SendPostCommand, and then click the drop-down lists and modify the
code to perform these actions:

■ Set the Host Cgi URL value.

■ Issue the command.

■ (Optional) Replace LF with CRLF to make the presentation in the edit control
more readable.

■ Display the response.

For example:

Dim R As String
IdcClientCtrl.HostCgiUrl = CgiUrl.Text
R = IdcClientCtrl.1.SendPostCommand(Command.Text)
R = Replace(R, vbLf, vbCrLf
Response.Text = R

Figure 8–7 Edited SendPostCommand_Click Code

15. Choose Form and then Load from the drop-down lists, and add the following lines
to set the login prompt for the Oracle Content Server instance:

IdcClientCtrl.UseBrowserLoginPrompt = True
IdcClientCtrl.UseProgressDialog = True

Figure 8–8 Edited Form_Load Code

IdcClientOCX Component

8-30 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

16. (Optional) Add appropriate descriptive labels, such as Cgi Url, Command, and
Response.

Figure 8–9 Visual Interface with a Descriptive Label

17. Select Run, and then choose Start to test the visual interface.

Figure 8–10 Completed Visual Interface

IdcClientOCX Component

Using the COM API for Integration 8-31

18. Enter a formatted command in the Command field.

For example, this command adds a user:

@Properties LocalData
IdcService=ADD_USER
dName=user99
dUserAuthType=Local
@end

For more information about the ADD_USER service, see the Oracle Fusion
Middleware Services References Guide.

Figure 8–11 Visual Interface with Defined Command

IdcClient Events

8-32 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

19. Click the Send Post Command button to execute the command. The returned
results are displayed in the Response field.

Figure 8–12 Visual Interface with Returned Results

Verify the Command
1. In a web browser, log in to Oracle Content Server as an administrator.

2. In the Administration tray, select Admin Applets.

3. Click User Admin. The applet launches and displays the added user (for example,
user99).

8.6 IdcClient Events
Events are executed when the user or server performs an action. The following
subsections describe the IdcClient OCX events:

■ Section 8.6.1, "IntradocBeforeDownload"

■ Section 8.6.2, "IntradocBrowserPost"

■ Section 8.6.3, "IntradocBrowserStateChange"

■ Section 8.6.4, "IntradocRequestProgress"

■ Section 8.6.5, "IntradocServerResponse"

IdcClient Events

Using the COM API for Integration 8-33

8.6.1 IntradocBeforeDownload
Executes before a file is downloaded.

■ Initiates the server actions and updates required before a download.

Parameters
The event passes these parameters:

■ ByVal params As String

■ cancelDownload As Boolean

8.6.2 IntradocBrowserPost
Executes every time a form is submitted from within a browser.

Parameters
The event passes these parameters:

■ ByVal url As String

■ ByVal params As String

■ cancelPost As Boolean

8.6.3 IntradocBrowserStateChange
Executes whenever the browser state changes.

Parameters
The event passes these parameters:

■ ByVal browserStateItem As String

■ ByVal enabled As Boolean

8.6.4 IntradocRequestProgress
Executes a request for a progress report to be sent from the server. This event occurs
only after a method has been called.

Parameters
The event passes these parameters:

■ ByVal statusData As String

■ ByVal isDone As Boolean

8.6.5 IntradocServerResponse
Executes after the server completes a requested action. For example, after a file has
been downloaded. This event handles HDA encoded data that is a response from the
server. This event only occurs when an action is performed in the browser.

Parameters
The event passes one parameter:

■ ByVal response As String

IdcClient OCX Methods

8-34 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

8.7 IdcClient OCX Methods
The following IdcClient OCX methods are available:

■ AboutBox

■ Back

■ CancelRequest*

■ DoCheckoutLatestRev

■ DownloadFile

■ DownloadNativeFile

■ Drag

■ EditDocInfoLatestRev

■ Forward

■ GoCheckinPage

■ Home

■ InitiateFileDownload*

■ InitiatePostCommand*

■ Move

■ Navigate

■ NavigateCgiPage

■ Refresh Browser

■ SendCommand*

■ SendPostCommand*

■ SetFocus

■ ShowDMS

■ ShowDocInfoLatestRev

■ ShowWhatsThis

■ StartSearch

■ Stop

■ UndoCheckout

■ ViewDocInfo

■ ViewDocInfoLatestRev

■ ZOrder

Methods marked with an asterisk (*) are ones which are not related to browser activity
and which return a value.

Important: All parameters are required unless otherwise indicated.

IdcClient OCX Methods

Using the COM API for Integration 8-35

8.7.1 AboutBox
Sub AboutBox()

Description
Launches the About box containing product version information.

■ This method displays the product About box.

■ The method returns FALSE if the call cannot be executed.

Parameters
None

8.7.2 Back
Sub Back()

Description
Displays the previous HTML page.

■ Returns the user to the previous screen.

■ The method retrieves the previous HTML page from cached information for
display to the user.

Parameters
None

8.7.3 CancelRequest
Function CancelRequest() As Boolean

Description
This method cancels the currently active request. Returns FALSE if the function is
unable to cancel the request or if there is no request currently active.

Parameters
None

Output
Returns a Boolean value:

■ Returns TRUE if request is canceled.

■ Returns FALSE if the cancel request is not performed.

8.7.4 DoCheckoutLatestRev
Sub DoCheckoutLatestRev(docName As String, curID As String)

Description
Checks out or locks the latest content item revision.

■ Given a content item name and the version label, the method checks out the latest
content item revision.

IdcClient OCX Methods

8-36 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ Executes the IntradocServerResponse event. The event is executed before the
method occurs. For details, see Section 8.6, "IdcClient Events."

This function returns the following values:

■ Serialized HDA containing dID and dDocName.

■ FALSE if the latest revision cannot be checked out or cannot be found in the
system.

■ The data that was passed in as parameters.

Parameters
■ docName: The user-assigned content item name.

■ curID: The unique identifier for the latest revision. Optional.

8.7.5 DownloadFile
Function DownloadFile(command As String, filename As String) As String

Description
Downloads the defined file.

■ Given a currently associated command and the file type, this method performs a
file download of the postconversion file (compare DownloadNativeFile).

■ Executes the IntradocBeforeDownload event. The event is executed before the
method occurs. For details, see Section 8.6, "IdcClient Events."

This function returns the following:

■ Serialized HDA containing the status code and status method.

■ The data that was passed in as parameters.

■ FALSE if it is unable to download the specified file.

Parameters
■ command: The currently associated command.

■ filename: The file format. This is the file type such as PDF, HTM, or other
supported format.

8.7.6 DownloadNativeFile
Function DownloadNativeFile(id As String, docName As String, filename As String) As String

Description
Downloads the defined native file.

■ Given a content item revision ID, a content item name, and a file type, this method
performs a file download of the native file (compare DownloadFile).

■ Executes the IntradocBeforeDownload event. The event is executed before the
method occurs. For details, see Section 8.6, "IdcClient Events.".

Note: The curID value is the content item version label, not the
generated content item revision ID.

IdcClient OCX Methods

Using the COM API for Integration 8-37

This function returns the following:

■ Serialized HDA containing dID and dDocName.

■ The data that was passed in as parameters.

■ FALSE if it is unable to download the specified file.

Parameters
■ id: The unique identifier for the latest revision.

■ docName: The user-assigned content item name.

■ filename: The file format. This is the file type such as DOC, RTF, or any other
supported format.

8.7.7 Drag
Sub Drag([nAction])

Description
Begins, ends, or cancels a drag operation.

■ The Drag method is handled the same as a Standard Control implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
■ nAction: Indicates the action to perform. If you omit nAction, nAction is set to

1.

The settings for the Drag method are:

■ 0: Cancel drag operation; restore original position of control.

■ 1: (Default) Begin dragging the control.

■ 2: End dragging, that is, drop the control.

8.7.8 EditDocInfoLatestRev
Sub EditDocInfoLatestRev(docName As String, curID As String, activateAction As String)

Description
Edits the content item information for the latest revision.

■ ODMA related.

■ Given a content item name, the version label, and the currently active requested
action, the method edits the content item information for the latest revision.

■ The function returns FALSE if the content item information for the latest revision
cannot be edited or cannot be found in the system.

Note: The id value is the generated content item revision ID, not the
content item version label.

Note: The curID value is the content item version label, not the
generated content item revision ID.

IdcClient OCX Methods

8-38 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Parameters
■ curID: The unique identifier for the latest revision.

■ activateAction: Passed to ODMActivate. This can be used as Idoc Script. Optional.

■ docName: The user-assigned content item name. Optional.

8.7.9 Forward
Sub Forward()

Description
Displays the next HTML page.

■ Moves the user to the next screen.

■ This method retrieves cached information for the next HTML page for display to
the user.

Parameters
None

8.7.10 GoCheckinPage
Sub GoCheckinPage(id As String, docName As String, isNew As Boolean, params As String)

Description
Checks in a new content item or a content item revision.

■ Given the content item revision ID and the content item name, the function checks
in a new content item or a content item revision.

■ This method opens the content item check-in page and enters the unique content
item identifier, user-assigned content item name, and any assigned content item
parameters into the associated text fields. It is also specified whether this is a new
content item or a revision.

Output
This function returns the following:

■ FALSE if it is unable to check in the specified file.

■ Serialized HDA containing dID and dDocName.

■ The data that was passed in as parameters.

Parameters (All Optional)
■ id: The unique identifier for the latest revision.

■ docName: The user-assigned content item name.

Note: The id value is the generated content item revision ID, not the
content item version label.

IdcClient OCX Methods

Using the COM API for Integration 8-39

■ IsNew: Defines whether the content item to be checked in is a new content item or
a revision.

– If TRUE, a new unique content item version label is assigned.

– Default is TRUE.

■ params: The parameters that prefill the Check In page.

8.7.11 Home
Sub Home()

Description
Returns the user to the defined home page.

■ Moves the user to the home screen.

■ Executes an HTML page request and displays the defined home page to the user.

Parameters
None

8.7.12 InitiateFileDownload
Function InitiateFileDownload(command As String, filename As String) As String

Description
Initiates a file download.

■ Given the currently associated command and the file type, the function initiates a
file download. This method initiates a file download of a specific rendition of a
content item, the latest revision, or the latest released revision.

■ Executes the IntradocServerResponse event. The event is executed before the
method occurs. For details, see Section 8.6, "IdcClient Events."

Parameters
■ command: The currently associated command.

■ filename: The file format. This is the file type, such as PDF, HTM, or another
supported format.

Output
■ Returns serialized HDA containing the requested information.

■ Returns the data that was passed in as parameters.

8.7.13 InitiatePostCommand
Function InitiatePostCommand(postData As String) As String

Description
Initiates a post command.

■ Initiates a service call. Given assigned post data, this method initiates a post
command.

IdcClient OCX Methods

8-40 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ Executes the IntradocServerResponse event. The event is executed before the
method occurs. For details, see Section 8.6, "IdcClient Events."

Parameters
■ postData: The serialized HDA containing the service command and any necessary

service parameters.

Output
■ Returns serialized HDA containing the requested information.

■ Returns StatusCode and StatusMessage.

– The StatusCode will be negative if a failure occurs, and StatusMessage will
indicate the error.

– If the returned HDA does not contain a StatusCode parameter, the service call
succeeded.

8.7.14 Move
Sub Move(Left As Single, [Top], [Width], [Height])

Description
Moves an object.

■ The Move method is handled the same as a Standard Control implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
■ nLeft: Specifies the horizontal coordinate for the left edge of the object. This is a

single-precision value.

■ nTop: Specifies the vertical coordinate for the top edge of the object. This is a
single-precision value.

■ nWidth: Specifies the new width of the object. This is a single-precision value.

■ nHeight: Specifies the new height of the object. This is a single-precision value.

8.7.15 Navigate
Sub Navigate(url As String

Description
Computes the URL path.

■ Given a complete URL, this method computes the URL from the serialized HDA
and returns the value as a string.

This function returns the following:

■ Serialized HDA containing the requested information.

■ The data that was passed in as parameters.

Parameters
■ url: The complete URL path.

IdcClient OCX Methods

Using the COM API for Integration 8-41

8.7.16 NavigateCgiPage
Sub NavigateCgiPage(params As String)

Description
Computes the CGI path.

■ Given defined content item parameters, this method computes the CGI path from
the serialized HDA and returns the value as a string.

Parameters
■ params: The assigned content item parameters.

8.7.17 Refresh Browser

Description
Refreshes the browser.

■ This method refreshes the web browser and updates dynamic information.

Parameters
None

8.7.18 SendCommand
Function SendCommand(params As String) As String

Description
Issues a service request to Oracle Content Server.

■ Given defined content item parameters, the function executes a service from
Oracle Content Server related to content item handling.

Parameters
■ params: The CGI URL encoded parameters.

Output
■ Returns serialized HDA containing the requested information.

■ Returns the data that was passed in as parameters.

8.7.19 SendPostCommand
Function SendPostCommand(postData As String) As String

Description
Sends a post command.

■ Executes a service call.

■ Executes the IntradocBrowserPost event. The event is executed before the
method occurs. For details, see Section 8.6, "IdcClient Events."

IdcClient OCX Methods

8-42 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Parameters
■ postData: The serialized HDA containing the service command and any necessary

service parameters.

Output
■ Returns serialized HDA containing the requested information.

■ Returns StatusCode and StatusMessage.

– The StatusCode will be negative if a failure occurs, and StatusMessage
will indicate the error.

– If the returned HDA does not contain a StatusCode parameter, the service call
succeeded.

8.7.20 SetFocus
Sub SetFocus()

Description
Assigns the focus to a control.

■ The SetFocus method is handled the same as a Standard Control
implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
None

8.7.21 ShowDMS
Sub ShowDMS()

Description
Opens the HTML page associated with the Content Manager.

■ ODMA related.

■ Displays the Content Manager access page in a browser.

Parameters
None

8.7.22 ShowDocInfoLatestRev
Sub ShowDocInfoLatestRev(docName As String, curID As String, activateAction As String)

Description
Displays the content item information for the latest revision.

Note: The curID value is the content item version label, not the
generated content item revision ID.

IdcClient OCX Methods

Using the COM API for Integration 8-43

Parameters
■ docName: The user-assigned content item name.

■ curID: The unique identifier for the latest revision. Optional.

■ activateAction: The currently active requested action. Optional.

8.7.23 ShowWhatsThis
Sub ShowWhatsThis()

Description
Displays the What's This Help topic specified for an object with the WhatsThisHelpID
property.

■ The ShowWhatsThis method is handled the same as a Standard Control
implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
■ Object: Specifies the object for which the What's This Help topic is displayed.

8.7.24 StartSearch
Sub StartSearch()

Description
Displays the query page in the browser control.

■ Preforms browser manipulation.

Parameters
None

8.7.25 Stop
Sub Stop()

Description
Stops the browser.

■ This method stops or cancels the loading of information in the browser.

Parameters
None

IdcClient OCX Methods

8-44 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

8.7.26 UndoCheckout
Sub UndoCheckout(docName As String, curID As String)

Description
This service reverses a content item checkout.

■ Given a content item name and a version label, this service attempts to locate the
content item in the system and undo the check out. The service fails if the content
item does not exist in the system, if the content item is not checked out or the user
does not have sufficient privilege to undo the checkout.

■ Executes the IntradocServerResponse event. The event is executed before
the method occurs. For details, see Section 8.6, "IdcClient Events."

Parameters
■ curID: The unique identifier for the latest revision.

■ docName: The user-assigned content item name. Optional.

8.7.27 ViewDocInfo
Sub ViewDocInfo(id As String)

Description
Navigates to the content item information page and displays content item information
in a browser.

■ Performs browser manipulation.

■ Given a content item revision ID, the method displays content item information in
a browser.

Parameters
■ id: The unique identifier for the latest revision.

8.7.28 ViewDocInfoLatestRev
Sub ViewDocInfoLatestRev(docName As String, curID As String)

Description
Navigates to the content item information page and displays content item information
for the latest revision.

■ Given a content item name and a version label, the method displays the content
item information for the latest revision.

Note: The curID value is the content item version label, not the
generated content item revision ID.

Note: The id value is the generated content item revision ID, not the
content item version label.

IdcClient Properties

Using the COM API for Integration 8-45

This function returns the following:

■ Serialized HDA containing dID and dDocName.

■ The data that was passed in as parameters.

Parameters
■ docName: The user assigned content item name.

■ curID: The unique identifier for the latest revision.

8.7.29 ZOrder
Sub ZOrder([Position])

Description
Places a specified form or control at the front or back of the z-order within its graphical
level.

■ The ZOrder method is handled the same as a Standard Control implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
■ nOrder: Specifies an integer indicating the position of the object relative to other

objects. If you omit nOrder, the setting is 0.

The settings for the ZOrder method are:

■ 0: (Default) The object is positioned at the front of the z-order.

■ 1: The object is positioned at the back of the z-order.

8.8 IdcClient Properties
Each data item or attribute is implemented as a property in Visual Basic. Properties are
exposed through the Public Interface of an object within the Visual Basic development
environment. These attributes can be used to further describe elements.

These are the IdcClient OCX Properties:

■ ClientControlledContextValue

■ HostCgiUrl

■ Password

■ UseBrowserLoginPrompt

■ UseProgressDialog

■ UserName

■ Working Directory

Note: The curID value is the content item version label, not the
generated content item revision ID.

IdcClient Properties

8-46 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

8.8.1 ClientControlledContextValue
Provides the user-supplied context value. This value becomes available to Idoc Script
as the variable ClientControlled in any web page delivered by Oracle Content
Server.

■ Returns the value as a string.

■ Takes no parameters.

8.8.2 HostCgiUrl
Provides the complete URL path of the host CGI bin.

■ Returns the value as a string.

■ Takes no parameters.

8.8.3 Password
Provides the assigned user password.

■ Returns the value as a string.

■ Takes no parameters.

8.8.4 UseBrowserLoginPrompt
Allows the use of a browser login prompt. Defines whether a dialog box for user
authentication will display.

■ If set to TRUE, control will open a dialog box for user authentication.

■ The default value is TRUE.

Returns a Boolean value:

■ TRUE if the login was successful

■ FALSE if the login was denied

8.8.5 UseProgressDialog
Enables the use of a user progress dialog. Defines whether a dialog box for user
authentication will display.

■ If set to TRUE, control will open a dialog box for user progress.

■ Default is TRUE.

Returns a Boolean value:

■ Returns TRUE if the action was completed.

■ Returns FALSE if the action failed.

8.8.6 UserName
Provides the assigned user name.

Returns the value as a string.

Takes no parameters.

ODMA Integration

Using the COM API for Integration 8-47

8.8.7 Working Directory
Specifies the working directory as a full path. This is the location where downloaded
files are placed.

■ Returns the value as a string.

■ Takes no parameters.

8.9 ODMA Integration
The Open Document Management Application (ODMA) is a standard API used to
interface between desktop applications and file management software. The ODMA
integration for Oracle Content Server is available with Desktop, a separate product.
Use the ODMA-integration products to gain access to the content and content
management functions within Oracle Content Server (for ODMA-compliant desktop
applications).

You can publish files to your web repository directly from any ODMA-compliant
application, such as Microsoft Word, Corel WordPerfect, and Adobe FrameMaker.
With the web-centric adoption of ODMA, you can check in and publish information
directly to the Web. This is a significant advancement over traditional ODMA
client/server implementations, where information is published first to a server and is
not immediately available on the Web for consumption.

For more information, refer to the ODMA or ODMA/FrameMaker online help.

8.9.1 ODMA Client
The ODMA Client is a separate product and does not ship with the core product. It is
used to check in and publish information directly to the Web from your desktop
applications. ODMA Client surpasses traditional ODMA client–server models, which
publish information to a server and not immediately to the Web for consumption. You
can use ODMA Client from within your desktop application to perform many tasks
which interact with Oracle Content Server, for example:

■ Save a file and immediately check it in to Oracle Content Server.

■ Save a file to check in later.

■ Check out a file from Oracle Content Server.

■ Update a file's metadata (content information).

■ Save the file to your local file system and bypass the ODMA Client system.

ODMA Integration

8-48 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

8.9.2 ODMA Interfaces
These ODMA interfaces are available:

■ ODMA Client Interface: The Select Document screen with the Recent Files option
selected displays a list of files that you recently used through ODMA. This screen
is displayed instead of the typical Open dialog box. If a file does not display on
this screen, you can search for it in Oracle Content Server or on the local file
system.

■ ODMA Desktop Shell Interface: The Client Desktop Shell provides a
drag-and-drop check-in functionality, and access to the ODMA Client - Select
Document screen from outside of your desktop application. Through the Desktop
Shell, you can:

– Select a file from your desktop or a Windows Explorer window and drag it to
the Desktop Shell to check it into Oracle Content Server.

– Select and open a file from the Recent Files list or from Oracle Content Server.

■ Oracle Content Server Interface with ODMA: You can open and check out an
ODMA file directly from the Oracle Content Server Content Information page.
When you open a file from Oracle Content Server, it opens in its native application
so you can edit it and quickly check the file back into Oracle Content Server.

Note: You can also open and check out a file from within an
ODMA-compliant application, and you can open a copy of a file
instead of checking it out. For more information, see the ODMA
Online Help.

9

Using Remote Intradoc Client (RIDC) 9-1

9Using Remote Intradoc Client (RIDC)

This chapter describes how to initialize and use Remote Intradoc Client (RIDC), which
provides a thin communication API for communication with Oracle Content Server.

This chapter includes the following sections:

■ Section 9.1, "Introduction to RIDC"

■ Section 9.2, "Initializing RIDC"

■ Section 9.3, "Configuring Clients"

■ Section 9.4, "Authenticating Users"

■ Section 9.5, "Using Services"

■ Section 9.6, "Handling Connections"

■ Section 9.7, "Sending and Receiving Streams"

■ Section 9.8, "Using RIDC Objects in JSP and JSPX Pages"

■ Section 9.9, "Reusing Binders for Multiple Requests"

■ Section 9.10, "Providing User Security"

■ Section 9.11, "Configuring SSL Communication with Oracle Content Server"

■ Section 9.12, "Using Tables for Content Items, the Search Index, and the File Store"

9.1 Introduction to RIDC
The RIDC communication API removes data abstractions to Oracle Content Server
while still providing a wrapper to handle connection pooling, security, and protocol
specifics. If you want to use a native Java API, then RIDC is recommended.

RIDC has these key features:

■ Support is provided for Intradoc socket-based communication and the HTTP and
JAX-WS protocols.

■ Client configuration parameters include setting the socket time outs, connection
pool size, and so forth.

■ All calls to RIDC require some user identity for authentication. For Intradoc URLs,
no credentials are required because the request is trusted between Oracle Content
Server and the client. For HTTP URLs, the context requires credentials.

■ To invoke a service, you can use the ServiceRequest object, which can be
obtained from the client.

Introduction to RIDC

9-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ The RIDC client pools connections, which requires that the caller of the code close
resources when done with a response.

■ Streams are sent to Oracle Content Server through the TransferStream
interface.

■ The RIDC objects follow the standard Java Collection paradigms, which makes
them extremely easy to consume from a JSP/JSPX page.

■ Binders can be reused among multiple requests.

■ RIDC allows Secure Socket Layer (SSL) communication with Oracle Content
Server.

9.1.1 RIDC Protocols
RIDC supports three protocols: Intradoc, HTTP, and WebServices/JAX-WS.

Intradoc: The Intradoc protocol communicates with Oracle Content Server over the
Intradoc socket port (typically, 4444). This protocol does not perform password
validation and so requires a trusted connection between the client and Oracle Content
Server. Clients that use this protocol are expected to perform any required
authentication. Intradoc communication can also be configured to run over SSL.

HTTP: RIDC communicates with the web server for Oracle Content Server using the
Apache HttpClient package. Unlike Intradoc, this protocol requires authentication
credentials for each request.

For more information, see the Jakarta Commons HttpClient documentation on the
HttpClient Home page of the Apache HttpClient web site at

http://hc.apache.org/httpclient-3.x

JAX-WS: The JAX-WS protocol is supported only in Oracle UCM 11g with Oracle
Content Server running in Oracle WebLogic Server. To provide JAX-WS support,
several additional JAR archives are required. These JAR archives are provided with the
ecm-client.zip distribution, which is available from the Oracle Technology Network
(OTN).

These additional JAR archives are required for JAX-WS support:

■ oracle.webservices.standalone.client.jar

■ wseeclient.jar

■ jps-az-api.jar

These JAR archives should be placed in the /src/lib/jaxws subdirectory of the RIDC
installation directory.

9.1.2 SSL Communication
RIDC allows Secure Socket Layer (SSL) communication with Oracle Content Server
using the Intradoc communication protocol.

Note: You must install and enable the SecurityProviders component
in the Oracle Content Server instance that you want to access, and you
must configure Oracle Content Server for SSL communication.

Initializing RIDC

Using Remote Intradoc Client (RIDC) 9-3

An example of using the IDC protocol over a secure socket (SSL) follows:

// build a secure IDC client as cast to specific type
IntradocClient idcClient = (IntradocClient
 manager.createClient("idcs://localhost:54444");

// set the SSL socket options
config.setKeystoreFile("ketstore/client_keystore"); //location of keystore file
config.setKeystorePassword ("password"); // keystore password
config.setKeystoreAlias("SecureClient"); //keystore alias
config.setKeystoreAliasPassword("password"); //password for keystore alias

For more information, see Section 9.11, "Configuring SSL Communication with Oracle
Content Server."

9.1.3 MBeans Implementation
RIDC provides an MBeans implementation allowing administrators to change
properties of an RIDC connection at runtime using JMX and MBeans.

To register and enable MBeans, add the following to your code:

import oracle.stellent.ridc.convenience.adf.mbeans.IdcMBeanManager;
...
//connection name is the connection in the ADFContext you want to manage
IdcMBeanManager mbeanManager = IdcMBeanManager.getInstance(connectionName);
mbeanManager.register();

Once the application has started, edit the connection using a tool such as JConsole to
connect to your application and change connection information while the application
is running.

9.2 Initializing RIDC
To initialize RIDC, you will need the ECM Client libraries, which are shipped with the
RIDC distribution, in your class path.

For the JAX-WS protocol, you also need to configure Oracle WebLogic Server security
for the Oracle UCM web services. The security configuration includes these tasks:

■ Setting up the policy for the login service

■ Creating a new keystore file (or adding credentials to your existing keystore),
which will be used by both the server and the client

■ Setting up an Oracle wallet by adding the credentials

The client requires the following items:

■ The JPS configuration file

■ The keystore

■ The Oracle wallet from the server

For information about configuring the server and client for web services, see the Oracle
Fusion Middleware Services Reference Guide for Oracle Universal Content Management.

The following table shows the URL formats that are supported.

URL Description

http://host/cs/idcplg URL to the Oracle Content Server CGI path.

Configuring Clients

9-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

This example code initializes RIDC for an Intradoc connection:

// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the intradoc protocol
IdcClient idcClient = manager.createClient("idc://localhost:4444");

This example code initializes an HTTP connection (the only difference from an
Intradoc connection is the URL):

// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the HTTP protocol
IdcClient idcClient = manager.createClient("http://localhost/idc/idcplg");

This example code initializes a JAX-WS client. These two web services are exposed by
Oracle Content Server: the login service and the request service. You will need the
web context root that these web services use. By default, this is idcnativews.

// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the JAXWS protocol
IdcClient idcClient = manager.createClient("http://wlsserver:7044/idcnativews");

9.3 Configuring Clients
Configuration of the clients can be done after they are created. Configuration
parameters include setting the socket time outs, connection pool size, and so on. The
configuration is specific to the protocol; if you cast the IdcClient object to the specific
type, then you can retrieve the protocol configuration object for that type.

This example code sets the socket time out and wait time for Intradoc connections:

// build a client as cast to specific type
IntradocClient idcClient = (IntradocClient)manager.createClient
 ("http://host/cs/idcplg");

// get the config object and set properties
idcClient.getConfig ().setSocketTimeout (30000); // 30 seconds
idcClient.getConfig ().setConnectionSize (20); // 20 connections

https://host/cs/idcplg Uses SSL over HTTP; requires extra configuration to
load the SSL certificates.

idc://host:4444 Uses the Intradoc port; requires only the hostname
and the port number.

idcs://host:4444 Uses SSL over the Intradoc port; requires extra
configuration to load the SSL certificates.

http://wlsserver:7044/idcnativews Uses the JAX-WS protocol to connect to Oracle
Content Server.

URL Description

Authenticating Users

Using Remote Intradoc Client (RIDC) 9-5

These JAX-WS specific configurations can be set after you have created the client:

// build a client as a cast for jaxws type
JaxWSClient jaxwsClient = (JaxWSClient) manager.createClient(
 ("http://wlsserver:7044/idcnativews");
JaxWSClientConfig jaxwsConfig = jaxwsClient.getConfig();

You can set the name of the Oracle Content Server instance that you want to connect
to. By default, this is /cs/, which is the default web context for an Oracle UCM
installation. If the server web context is different than the default, then you can set the
the web context by editing a property. This example code sets your web context root:

// set the property
jaxwsConfig.setServerInstanceName("/mywebcontext/");

A JPS configuration file is required for most policies, such SAML or Message Token.
This example code sets the location of the JPS configuration file:

jaxwsConfig.setJpsConfigFile("/my/path/to/the/jps-config.xml");

This example code sets the security policy:

jaxwsConfig.setClientSecurityPolicy
 ("policy:oracle/wss11_username_token_with_message_protection_client_policy");

RIDC uses the default values for the installed web services. If, for some reason, the
web services have been modified and do not conform to the default URIs or URLs, you
may need to modify the default values. This example code changes the login and
request service URLs:

// login port wsdl url
jaxwsConfig.setLoginServiceWSDLUrl(new URL
 ("http://server:7044/webservices/loginPort?WSDL"));

//request port wsdl url
jaxwsConfig.setRequestServiceWSDLUrl(new URL
 ("http://server:7044/anotherservice/myrequestport?WSDL"));

The default streaming chunk size is set to 8192. This example code changes the
streaming chunk size:

jaxwsConfig.setStreamingChunkSize(8190);

9.4 Authenticating Users
All calls to RIDC require some user identity. Optionally, this identity can be
accompanied by credentials as required by the protocol. The user identity is
represented by the IdcContext object; once created, it can be reused for all
subsequent calls. To create an identity, you pass in the user name and, optionally, some
credentials:

//create a simple identity with no password (for idc:// urls)
IdcContext userContext = new IdcContext("sysadmin");

// create an identity with a password
IdcContext userPasswordContext = new IdcContext("sysadmin", "idc");

For Intradoc URLs, you do not need any credentials because the request is trusted
between Oracle Content Server and the client.

For HTTP and JAX-WS URLs, the context needs credentials.

Using Services

9-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

For HTTP URLs, the credentials can be a simple password or anything that the
HttpClient package supports.

For JAX-WS URLs, the requirement for credentials will be dependent on the service
policy that the web service is configured to use by the server.

9.5 Using Services
To invoke a service, use the ServiceRequest object, which you can obtain from the
client. Creating a new request will also create a new binder and set the service name in
the binder, along with any other default parameters. From that point, you can
populate the binder as needed for the request.

This example code executes a service request and gets back a DataBinder object with
the results:

// get the binder
DataBinder binder = idcClient.createBinder();

// populate the binder with the parameters
binder.putLocal ("IdcService", "GET_SEARCH_RESULTS");
binder.putLocal ("QueryText", "");
binder.putLocal ("ResultCount", "20");

// execute the request
ServiceResponse response = idcClient.sendRequest (userContext, binder);

// get the binder
DataBinder serverBinder = response.getResponseAsBinder ();

The ServiceResponse object contains the response from Oracle Content Server.
From the response, you can access the stream from Oracle Content Server directly, or
you can parse it into a DataBinder object and query the results.

This example code takes a ServiceResponse and gets the search results, printing
out the title and author values:

// get the binder
DataBinder binder = response.getResponseAsBinder ();
DataResultSet resultSet = binder.getResultSet ("SearchResults");

// loop over the results
for (DataObject dataObject : resultSet.getRows ()) {
 System.out.println ("Title is: " + dataObject.get ("dDocTitle"));
 System.out.println ("Author is: " + dataObject.get ("dDocAuthor"));
}

9.6 Handling Connections
The RIDC client pools connections, meaning that the caller of the code must close
resources when it is done with a response. This is done by calling
getResponseAsBinder, which closes resources automatically, or by calling close
on the stream returned from a call to getResponseStream. If you do not want to
examine the results, close must still be called, either by getting the stream and
closing it directly or by calling close on the ServiceResponse object.

Sending and Receiving Streams

Using Remote Intradoc Client (RIDC) 9-7

9.6.1 Closing Resources
The following examples show how to use the options for closing resources.

To close resources through getResponseAsBinder:
// execute the request
ServiceResponse response = idcClient.sendRequest (userContext, binder);

// get a binder closes the response automatically
response.getResponseAsBinder ();

To close resources by closing the stream:
// execute the request
ServiceResponse response = idcClient.sendRequest (userContext, binder);

// get the result stream and read it
InputStream stream = response.getResponseStream ();
int read = 0;
while ((read = stream.read ()) != -1)
{
}

//close the stream
stream.close ();

To close resources by calling the close method on the ServiceResponse object:
// execute the request
ServiceResponse response = idcClient.sendRequest (userContext, binder);

// close the response (which closes the stream directly)
response.close ();

9.6.2 Handling Connection Pooling
The IdcClientConfig#getConnectionPool property determines how RIDC will
handle the pooling of connections. There are two options, pool and simple.

■ Pool is the default, and it means to use an internal pool that allows a configurable
number of active connections at a time (configurable via the
IdcClientConfig#getConnectionSize property), with the default active
size set to 20.

■ Simple does not enforce a connection maximum and rather lets every connection
proceed without blocking.

You can register a different pool implementation through the
IdcClientManager#getConnectionPoolManager()#registerPool()
method, which maps a name to an implementation of the ConnectionPool interface.
Then you can use the name in the IdcClientConfig object to select that pool for a
particular client.

9.7 Sending and Receiving Streams
Streams are sent to Oracle Content Server through the TransferStream interface.
This interface wraps the actual stream with metadata about the stream (length, name,
and so on).

Using RIDC Objects in JSP and JSPX Pages

9-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

This example code performs a check-in to Oracle Content Server:

// create request
DataBinder binder = idcClient.createBinder();
binder.putLocal ("IdcService", "CHECKIN_UNIVERSAL");

// get the binder
binder.putLocal ("dDocTitle", "Test File");
binder.putLocal ("dDocName", "test-checkin-6");
binder.putLocal ("dDocType", "ADACCT");
binder.putLocal ("dSecurityGroup", "Public");

// add a file
binder.addFile ("primaryFile", new TransferFile ("test.doc"));

// check in the file
idcClient.sendRequest (userContext, binder);

You can receive a stream from Oracle Content Server through the ServiceResponse
object; the response is not converted into a DataBinder object unless you specifically
request it. If you just want the raw HDA data, you can get that directly, along with
converting the response to a String or DataBinder object:

// create request
DataBinder binder = idcClient.createBinder ();

// execute the service
ServiceResponse response = idcClient.sendRequest (userContext, binder);

// get the response stream
InputStream stream = response.getResponseStream ();

// get the response as a string
String responseString = response.getResponseAsString ();

// parse into data binder
DataBinder dataBinder = response.getResponseAsBinder ();

9.8 Using RIDC Objects in JSP and JSPX Pages
The RIDC objects all follow the standard Java Collection paradigms, which makes
them extremely easy to consume from a JSP or JSPX page. Assume the
ServerResponse object (used in the previous example) was available in the
HttpServletRequest object in an attribute called idcResponse. This example
JSPX code will iterate over the response and create a small table of data:

<table>
 <tr>
 <th>Title</th>
 <th>Author</th>
 <th>Release Date</th>
 </tr>
<c:forEach var="row" items="${idcResponse.dataBinder.SearchResults.rows}">
 <tr>
 <td>${row.dDocTitle}</td>
 <td>${row.dDocAuthor}</td>
 <td>${row.dInDate}</td>
 </tr>
</c:forEach>
</table>

Providing User Security

Using Remote Intradoc Client (RIDC) 9-9

9.9 Reusing Binders for Multiple Requests
The binders can be reused among multiple requests. A binder from one request can be
sent in to another request. For example, this example code pages the search results by
reusing the same binder for multiple calls to Oracle Content Server:

// create the user context
IdcContext idcContext = new IdcContext ("sysadmin", "idc");

// build the search request binder
DataBinder binder = idcClient.createBinder();
binder.putLocal("IdcService", "GET_SEARCH_RESULTS");
binder.putLocal("QueryText", "");
binder.putLocal("ResultCount", "20");

// send the initial request
ServiceResponse response = idcClient.sendRequest (binder, idcContext);
DataBinder responseBinder = response.getResponseAsBinder();

// get the next page
binder.putLocal("StartRow", "21");
response = idcConnection.executeRequest(idcContext, binder);
responseBinder = response.getResponseAsBinder();

// get the next page
binder.putLocal("StartRow", "41");
response = idcConnection.executeRequest(binder, idcContext);
responseBinder = response.getResponseAsBinder();

9.10 Providing User Security
Oracle UCM has several security models that are controlled by settings in Oracle
Content Server. To resolve if a particular user has access to a document, three things
are needed: the user's permission controls, the document's permission controls, and
the Oracle Content Server security environment settings.

It is assumed that the application program calling the UserSecurity module will
fetch documents and the DOC_INFO metadata (in the document's binder, typically the
result of a search) as some superuser and cache this information. When the application
needs to know if a particular user has access to the document, a call is made to Oracle
Content Server as that user to fetch that user's permissions. Once the user's permission
controls are known, then they can be matched to the information in the document's
metadata to resolve the access level for that user. The available access levels follow:

■ READ

■ READ/WRITE

■ READ/WRITE/DELETE

■ READ/WRITE/DELETE/ADMIN

It is preferable to reduce the number of calls to Oracle Content Server (using a cache)
and to provide a default implementation for matching the user's permissions
information with the document's permission information. One limitation is that Oracle
Content Server controls which types of security are used in some server environment
properties: UseAccounts=true and UseCollaboration=true.

Providing User Security

9-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The user security convenience is accessed through the IUserSecurityCache
interface. Three concrete classes implement the optional Oracle Content Server
security:

■ The UserSecurityGroupsCache class simply keeps a cache of user permissions
and will match documents considering only Security Group information.

■ The UserSGAccountsCache class adds a resolver to also consider Account
information if Oracle Content Server has the UseAccounts=true setting.

■ The UserSGAcctAclCache class adds a resolver to also consider ACL
permissions if UseCollaboration=true.

The IAccessResolver interface allows the addition of classes that can participate in
the resolution of the access levels for a document.

This example code uses the three classes for implementing security:

IdcClientManager m_clientManager = new IdcClientManager ();
IdcClient m_client = m_clientManager.createClient
 ("http://localhost/scs/idcplg");

//RIDC superuser context
IdcContext m_superuser = new IdcContext("sysadmin", "idc");

//Examples of the three concrete cache classes
IUserSecurityCache m_SGCache = new UserSecurityGroupsCache
 (m_client, 20, 1000);
IUserSecurityCache m_SGAcctCache = new UserSGAccountsCache
 (m_client, 20, 1000, 20000);
IUserSecurityCache m_SGAcctAclCache = new UserSGAcctAclCache
 (m_client, 20, 1000, 20000, m_superuser);

//Example test
testDocPermission () {
 DataBinder m_doc1 = getDataBinder ("TEST");

 //Get the document information (typically in the first row of DOC_INFO)
 DataObject docInfo = m_doc1.getResultSet ("DOC_INFO").getRows ().get (0);

 //Get the cache id for this user
 //Important: this makes a live call to Oracle Content Server
 //to get the user ID for "Acme1")
 //CacheId acme1 = m_SGAcctAclCache.getCacheIdForUser
 // (new IdcContext("Acme1", "idc"));
 //You may want to include this:

 IdcContext context = new IdcContext("Acme1", "idc");
 CacheId acme1 = new CacheId (context.getUser (), context);

 //Get the access level for this document by this user
int access = m_SGAcctAclCache.getAccessLevelForDocument (acme1, docInfo);
 }

//Example code to get a Document's DOC_INFO databinder
DataBinder getDataBinder (String dDocName) throws IdcClientException {
 DataBinder dataBinder = m_client.createBinder ();
 dataBinder.putLocal ("IdcService", "DOC_INFO_BY_NAME");
 dataBinder.putLocal ("dDocName", dDocName);

Configuring SSL Communication with Oracle Content Server

Using Remote Intradoc Client (RIDC) 9-11

 ServiceResponse response = m_client.sendRequest
 (m_superuser, dataBinder);
 return response.getResponseAsBinder ();
}

//Example code to create a DataObject
DataObject dataObject = m_client.getDataFactory ().createDataObject ();
dataObject.put ("dSecurityGroup", "public");
dataObject.put ("dDocAccount", "Eng/Acme");

Internally, these fields from the document are examined during
getAccessLevelForDocument() processing:

■ For the AccessResolverSecurityGroups class: dSecurityGroup

■ For the AccessResolverAccounts class: dDocAccount

■ For the AccessResolverSecurityGroups class: xClbraUserList and
xClbraAliasList

The preceding IAccessResolver classes determine if they should participate based
on cached information from Oracle Content Server. If they do participate, the access
levels are put together with the AND operator.

9.11 Configuring SSL Communication with Oracle Content Server
RIDC allows Secure Socket Layer (SSL) communication with Oracle Content Server.
This section provides basic information about SSL communication, including how to
set up a sample implementation for testing purposes.

For SSL communication, you must install and enable the SecurityProviders
component, configure Oracle Content Server with a new incoming provider, and
specify the truststore or keystore information. You must have a valid keystore or trust
manager with signed, trusted certificates on both the client and Oracle Content Server.

The sample implementation uses a JDK utility to create a self-signed key pair and
certificates. Oracle does not provide signed certificates. For most implementations, you
will want a certificate signed by a universally recognized Certificate Authority.

The following subsections describe how to configure SSL communication with Oracle
Content Server:

■ Section 9.11.1, "Installing and Enabling the SecurityProviders Component"

■ Section 9.11.2, "Configuring an Incoming Provider for SSL Communication"

■ Section 9.11.3, "Creating Self-Signed Key Pairs and Certificates"

9.11.1 Installing and Enabling the SecurityProviders Component
You must install and enable the SecurityProviders component in the Oracle Content
Server instance you want to access. This component is installed and enabled by default
in Oracle Content Server 11gR1.

In Oracle Content Server 10gR3, you need to install and enable the component
manually. For information about installing and enabling components, see the Oracle
UCM 10gR3 installation documentation.

Configuring SSL Communication with Oracle Content Server

9-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

9.11.2 Configuring an Incoming Provider for SSL Communication
You can set up a new keepalive incoming socket provider or a new SSL incoming
socket provider. The setup steps for both providers follow. Using keepalive improves
the performance of a session and is recommended for most implementations.

To set up a new incoming provider:
1. Log in to Oracle Content Server as an administrator.

2. Click Administration and then Providers.

Figure 9–1 List of Providers in Oracle Content Server

3. Click Add for the sslincoming provider.

The Add Incoming Provider page opens.

4. Enter a provider name and description.

5. Enter an open server port.

6. Enter configuration information for either a new SSL keepalive incoming socket
provider or a new SSL incoming socket provider. The setup steps for both
providers are listed in the following text. Using keepalive improves the
performance of a session and is recommended for most implementations.

SSL keepalive incoming socket provider

■ Provider Class: idc.provider.ssl.SSLSocketIncomingProvider

■ Connection Class:
idc.provider.KeepaliveSocketIncomingConnection

■ Server Thread Class: idc.server.KeepaliveIdcServerThread

SSL incoming socket provider

■ Provider Class: idc.provider.ssl.SSLSocketIncomingProvider

■ Connection Class: intradoc.provider.SocketIncomingConnection

■ Server Thread Class: intradoc.server.IdcServerThread

7. Click Add.

Configuring SSL Communication with Oracle Content Server

Using Remote Intradoc Client (RIDC) 9-13

After you have completed setting up a new incoming provider, you must also specify
truststore and keystore information.

9.11.3 Creating Self-Signed Key Pairs and Certificates
For most implementations, you will want a certificate signed by a universally
recognized Certificate Authority. However, if you control both the client and server
and want only to ensure that your transmissions are not intercepted, or if you are
simply testing your implementation, you can create your own self-signed key pairs
and certificates by using the JDK utility called keytool.

Key and Certificate Management Tool (keytool) is a key and certificate management
utility that enables users to administer their own public and private key pairs and
associated certificates for use in self-authentication. It is provided as part of the Sun
JDK. Keytool is a command-line utility. The executable is located in the bin
subdirectory.

9.11.3.1 Creating the Client and Server Keys
From a command-line prompt, navigate to the JDK-Home/bin subdirectory, and issue
the -genkey command. This command generates a new key and takes several
arguments. The arguments in the following table are used with this command.

Generate a separate key pair for both the client and the server. To do this, you will
need to run the -genkey command twice, each time placing the key pair into a
separate keystore.

You will need to specify the alias, the algorithm to use, the keystore name, the
distinguished name, and passwords for the keys and the keystore. This example uses
RSA as the algorithm and idcidc as the password for the key and the keystore.

Use these argument values for the client:

■ -alias SecureClient

■ -keyalg RSA

■ -keystore client_keystore

■ -dname "cn=SecureClient"

■ -keypass idcidc

■ -storepass idcidc

keytool -genkey -alias SecureClient -keyalg RSA -keystore client_keystore -dname
"cn=SecureClient" -keypass idcidc -storepass idcidc

Argument Description

-alias Alias of the key being created. This is the way a keystore knows which
element in the file you are referring to when you perform operations
on it.

-keyalg Encryption algorithm to use for the key.

-keystore Name of the binary output file for the keystore.

-dname Distinguished name that identifies the key.

-keypass Password for the key that is being generated.

-storepass Password used to control access to the keystore.

Configuring SSL Communication with Oracle Content Server

9-14 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Use these argument values for the server:

■ -alias SecureServer

■ -keyalg RSA

■ -keystore server_keystore

■ -dname "cn=SecureServer"

■ -keypass idcidc

■ -storepass idcidc

keytool -genkey -alias SecureClient -keyalg RSA -keystore client_keystore -dname
"cn=SecureClient" -keypass idcidc -storepass idcidc

keytool -genkey -alias SecureServer -keyalg RSA -keystore server_keystore -dname
"cn=SecureServer" -keypass idcidc -storepass idcidc

Each of these commands will generate a key pair wrapped in a self-signed certificate
and stored in a single-element certificate chain.

9.11.3.2 Self-Signing the Certificates
Keys are unusable unless they are signed. The keytool utility will self-sign them for
you so that you can use the certificates for internal testing. However, these keys are not
signed for general use.

From a command line prompt, issue the -selfcert command (this command
self-signs your certificates and takes several arguments). Run the -selfcert
command twice, once for the client and again for the server.

Use these argument values for the client:

■ -alias SecureClient

■ -keystore client_keystore

■ -keypass idcidc

■ -storepass idcidc

Use these argument values for the server:

■ -alias SecureServer

■ -keystore server_keystore

■ -keypass idcidc

■ -storepass idcid

Examples of -selfcert commands follow:

keytool -selfcert -alias SecureClient -keystore client_keystore -keypass idcidc
-storepass idcidc

keytool -selfcert -alias SecureServer -keystore server_keystore -keypass idcidc
-storepass idcidc

The certificate is now signed by its private and public key, resulting in a single-element
certificate chain. This replaces the one that you generated previously.

Configuring SSL Communication with Oracle Content Server

Using Remote Intradoc Client (RIDC) 9-15

9.11.3.3 Exporting the Certificates
After you have created the client and server keys and self-signed the certificates, you
now have two key pairs (public and private keys) in two certificates locked in two
keystores. Since each application will need to have the public key of the other to
encrypt and decrypt data, you need to place a copy of each public key in the other
application’s keystore.

From a command-line prompt, issue the -export command (this command exports
your certificates and takes several arguments). Run the -export command twice,
once for the client and again for the server. Use the -file argument to redirect the
output to a file instead of the console.

Use these argument values for the client:

■ -alias SecureClient

■ -file client_cert

■ -keystore client_keystore

■ -storepass idcidc

Use these argument values for the server:

■ -alias SecureServer

■ -file server_cert

■ -keystore server_keystore

■ -storepass idcidc

Examples of -export commands follow:

keytool -export -alias SecureClient -file client_cert -keystore client_keystore
-storepass idcidc

(Certificate stored in the file client_cert)

keytool -export -alias SecureServer -file server_cert -keystore server_keystore
-storepass idcidc

(Certificate stored in the file server_cert)

The certificate (containing the public key and signer information) has now been
exported to a binary certificate file.

9.11.3.4 Importing the Certificates
The final step in setting up your self-signed certificates is to import the public
certificates of each program into the keystore of the other. Keytool will present you
with the details of the certificates you are requesting to be imported and provide a
request confirmation.

From a command line prompt, issue the -import command (this command imports
your certificates and takes several arguments). Run the -import command twice,
once for the client and again for the server. Notice that the -keystore values are
reversed.

Using Tables for Content Items, the Search Index, and the File Store

9-16 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Use these argument values for the client:

■ -alias SecureClient

■ -file client_cert

■ -keystore server_keystore

■ -storepass idcidc

Use these argument values for the server:

■ -alias SecureServer

■ -file server_cert

■ -keystore client_keystore

■ -storepass idcidc

Examples of -import commands follow:

keytool -import -alias SecureClient -file client_cert -keystore server_keystore
-storepass idcidc

Owner: CN=SecureClient
Issuer: CN=SecureClient
Serial number: 3c42e605
Valid from: Mon Jan 14 08:07:01 CST 2002 until: Sun Apr 14 09:07:01 CDT 2002
Certificate fingerprints:
 MD5: 17:51:83:84:36:D2:23:A2:8D:91:B7:14:84:93:3C:FF
 SHA1: 61:8F:00:E6:E7:4B:64:53:B4:6B:95:F3:B7:DF:56:D3:4A:09:A8:FF
Trust this certificate? [no]: y
Certificate was added to keystore

keytool -import -alias SecureServer -file server_cert -keystore client_keystore
-storepass idcidc

Owner: CN=SecureServer
Issuer: CN=SecureServer
Serial number: 3c42e61e
Valid from: Mon Jan 14 08:07:26 CST 2002 until: Sun Apr 14 09:07:26 CDT 2002
Certificate fingerprints:
 MD5: 43:2F:7D:B6:A7:D3:AE:A7:2E:21:7C:C4:52:49:42:B1
 SHA1: ED:B3:BB:62:2E:4F:D3:78:B9:62:3B:52:08:15:8E:B3:5A:31:23:6C
Trust this certificate? [no]: y
Certificate was added to keystore

The certificates of each program have now been imported into the keystore of the
other.

9.12 Using Tables for Content Items, the Search Index, and the File Store
The following subsections describe how to search tables for information about content
items:

■ Section 9.12.1, "Finding Information for Each Content Item"

■ Section 9.12.2, "Using a Search Index"

■ Section 9.12.3, "Using the File Store Provider"

Using Tables for Content Items, the Search Index, and the File Store

Using Remote Intradoc Client (RIDC) 9-17

9.12.1 Finding Information for Each Content Item
Content managed by Oracle Content Server is primarily tracked by four tables:

■ Revisions

■ Documents

■ DocMeta

■ RevClasses

These tables track the content's metadata, state, and actions as well as information that
is associated with each file.

Revisions
This table tracks core information about each revision of the content:

■ One row per revision

■ Different revisions with the same content that share the same content ID and
RevClass ID

■ System metadata for each revision:

– Metadata for revisions: content ID, title, author, check-in date, and so on

– Metadata for categorization and security: type, security group, doc account

■ State information for various actions:

– Indexing

– Workflow

– Document conversion

■ Numeric IDs and text labels to help track and retrieve a revision:

– A unique dID value for each revision (the primary key in the table)

– A unique dRevClassID value for the content

– A revision ID to mark the revision number for each revision

Documents
This table tracks information for files that are associated with each content revision.

■ One row per revision

■ Multiple rows per revision, with one row for each of these files:

– Primary

– Alternate

– Web-viewable

■ File information: original name, location, language, size, and so on

DocMeta
This table contains extended metadata fields:

■ One row for each revision

■ One column for each metadata field

■ Definition of each field, stored in the DocMetaDefinition table

Using Tables for Content Items, the Search Index, and the File Store

9-18 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

RevClasses
This table tracks information for each content revision:

■ One row per content item

■ Row locked for content modification

■ Unique dDocName and RevClassId values

■ Current indexed revision

■ Dates and users:

– Creation date and creator

– Last modified date and user

– Owner

9.12.2 Using a Search Index
Oracle Content Server provides various ways to search the repository. Metadata
searches can be based on the Revisions, Documents, DocMeta, and RevClasses tables.
To efficiently perform text searches, the full-text search feature of Oracle Database can
be utilized, and the IdcText table can be created to hold the search index.

IdcText
This table contains selected columns from the Revisions, Documents, DocMeta, and
RevClasses tables as well as columns for other data:

■ It contains a predefined list from the Revisions, RevClasses, and Documents
tables.

■ It contains custom metadata that is indicated as searchable from the DocMeta
table.

■ The OtsMeta column (CLOB field) contains an SDATA section and additional
indexable fields that are not in the other columns. However, SDATA has significant
limitations.

The SDATA section has significant limitations.

■ The OtsContent column contains an indexable document.

■ The ResultSetInterface column can be used for sorting or count estimation, or to
drill down.

9.12.3 Using the File Store Provider
The File Store Provider can be used to distribute files managed by Oracle Content
Server on the file system, a database, other devices, or any combination of these. The
files are stored in SecureFiles in Oracle Content Server 11g. For database-backed file
storage, the FileStorage and FileCache tables store the information related to each file.

Using Tables for Content Items, the Search Index, and the File Store

Using Remote Intradoc Client (RIDC) 9-19

FileStorage
This table stores file information and some additional information:

■ File stored in a BLOB field (SecureFiles in Oracle Content Server 11g)

The database administrator can turn on additional BLOB optimizations. For
example, deduplication, compression, and encryption with SecureFiles.

■ Values for dID and dRenditionID that point to a particular file managed by
Oracle Content Server

■ Tracking information in a small number of fields: last modified date and file size

FileCache
This table stores pointers for files cached on the file system, for certain types of
processing (extraction, conversion, and so on), and for quick access by the web server.
This pointer is also used to perform cleanup.

Using Tables for Content Items, the Search Index, and the File Store

9-20 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

10

Using Content Integration Suite (CIS) 10-1

10Using Content Integration Suite (CIS)

This chapter describes how to use the Content Integration Suite (CIS), which offers
access to Oracle Content Server by exposing its services and data in a unified object
model. The Universal Content and Process Management (UCPM) API is modeled into
a set of services APIs, which are API calls that communicate with the target server, and
the returned value objects from the server.

This chapter includes the following sections:

■ Section 10.1, "CIS Architecture"

■ Section 10.2, "Access Through the UCPM API"

■ Section 10.3, "UCPM API Methodology"

■ Section 10.4, "CIS Initialization"

■ Section 10.5, "Integration in a Web Environment"

■ Section 10.6, "Class Loading"

■ Section 10.7, "Object Creation"

■ Section 10.8, "Interaction with the UCPM API"

■ Section 10.9, "IContext Interface"

■ Section 10.10, "ICISObject Interface"

■ Section 10.11, "Adapter Configuration File"

■ Section 10.12, "Access to the SCS API"

■ Section 10.13, "SCS API Objects"

■ Section 10.14, "SCS API Servlets"

■ Section 10.15, "SCS APIs"

10.1 CIS Architecture
CIS has a layered architecture that allows for its deployment in a number of different
configurations. The architecture, at its core, is based on the standard J2EE Command
Design Pattern. The layers on top of the commands provide the APIs that are exposed
to the end user.

CIS uses the Universal Content and Process Management (UCPM) API, which uses the
SCS API for communication to Oracle Content Server. The SCS API wraps
communication from Oracle Content Server into an object model that allows access to
the individual object metadata.

Access Through the UCPM API

10-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The UCPM API enables application developers to focus on presentation issues rather
than being concerned with how to access Oracle Content Server services
(IdcCommand services). It comprises a set of command objects which encapsulate
distinct actions that are passed to the UCPM API and then mapped to Oracle Content
Server. These commands include common content management functions such as
search, check-out, and workflow approval. Each command is tied to one or more
service calls. The UCPM API command objects have been developed in accordance
with the J2EE Command Design Pattern.

This infrastructure is deployable in any J2EE-compliant application server or
stand-alone JVM application. When deployed, the UCPM API leverages the features in
the environment, whether this is a J2EE application server or non-J2EE server.

The UCPM API encapsulates Oracle Content Server business logic and validates the
parameters of the incoming calls. It also handles communication with Oracle Content
Server, encapsulates socket communication logic (opening, validating, and streaming
bits through the socket), and provides a strongly typed API to the available services.

Internationalization and Character Encoding
Oracle recommends that encoding for CIS should be set to the same encoding as the
Java Virtual Machine running Oracle Content Server. However, if CIS is
communicating with multiple Oracle Content Server instances in different languages,
then the ISCSContext.setEncoding method can be used to set the encoding to match
that of the JVM running CIS.

Deprecated FixedAPI
The Fixed API available in CIS releases before for communication with the Image
Server has been deprecated. Calling getFixedAPI() throws an error.

10.2 Access Through the UCPM API
The Universal Content and Process Management (UCPM) API offers access to Oracle
Content Server instances by exposing their services and data in a unified object model.
The UCPM API is modeled into a set of services APIs that communicate with the
target server, which are API calls that communicate with the target server, and into
ICISObject objects, which are the value objects returned from the server.

The UCPM API is available on the ICISApplication class via the get UCPMAPI()
method. The getUCPMAPI() method returns a reference to the IUCPMAPI object,
allowing access to all UCPM API objects. The IUCPMAPI public interface is the locator
for the getActiveAPI object; getActiveAPI() returns a reference to the SCSActiveAPI
object. The SCS API classes communicate with, and handle content stored on, Oracle
Content Server.

10.3 UCPM API Methodology
The UCPM API is stateless; all method calls pass in the necessary state to the method.
This means that you can share the reference to the CISApplication class across threads.

■ ISCSContext for the SCS API. The ISCSContext interface is the context object used
for communicating with Oracle Content Server.

■ ICISCommonContext for calling some of the CIS APIs. The ICISCommonContext
interface identifies which adapters to query and what user information to use.

CIS Initialization

Using Content Integration Suite (CIS) 10-3

The first parameter for all methods is an IContext bean. The IContext bean holds
context information, such as user name and session ID, that is used in the underlying
service APIs to identify the user invoking the given command.

The UCPM API is a service-oriented API that returns value objects, implemented as
ICISObject objects (name changed from the 7.6 API). However, calling methods on the
value objects themselves do not modify content on the server; one must call the UCPM
API and pass in the value object as a parameter before the changes can be applied.

Example:

SCSActiveAPI activeAPI = m_cisApplication.getUCPMAPI ().getActiveAPI ();
ISCSDocumentID documentID = (ISCSDocumentID) m_cisApplication.getUCPMAPI ().
 createObject(ISCSDocumentID.class);
documentID.setDocumentID("10");
ISCSDocumentInformationResponse docResponse =
 activeAPI.getDocumentInformationAPI ().
 getDocumentInformationByID(m_context, documentID);
ISCSContent content = docResponse.getDocNode();

// call does not change object on server
 content.setTitle ("New Title");

// now item is updated on server after this call
 activeAPI.getDocumentUpdateAPI ().updateInfo (m_context, content);

10.4 CIS Initialization
Content Integration Suite (CIS) is initialized by accessing the CISApplicationFactory
class, which resides in the com.stellent.cis.impl package, as the following subsections
describe:

■ Section 10.4.1, "Initialization"

■ Section 10.4.2, "SCSInitializeServlet"

10.4.1 Initialization
CIS initialization should happen once per application. The CIS APIs are stateless and
the initialized CISApplication instance can therefore be safely shared between threads.

To initialize CIS, you must define a number of properties. The cis.config.type value
should be server, and the cis.config.server.type value should be standalone. The
adapter configuration file contains configuration information in XML format for
communicating with Oracle Content Server instances.

Initialization Examples
The following properties initialize the system and read the adapterconfig.xml file from
the class path:

cis.config.type=server
cis.config.server.type=standalone
cis.config.server.adapterconfig=classpath:/adapterconfig.xml

Code example:

ICISApplication application;
 URL xmlRes = new File ("adapterconfig.xml").toURL()
 Properties properties = new Properties();
 properties.setProperty(ICISApplication.PROPERTY_CONFIG_TYPE, "server");

CIS Initialization

10-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

 properties.setProperty(ICISApplication.PROPERTY_CONFIG_SERVER_ADAPTER_CONFIG,
 xmlRes.toExternalForm());

properties.setProperty(ICISApplication.PROPERTY_CONFIG_SERVER_TYPE, "standalone");
application = CISApplicationFactory.initialize(properties);

Property Definitions
The properties are defined in the following table.

10.4.2 SCSInitializeServlet
The SCSInitializeServlet is a convenient way to initialize a CISApplication instance
from within a web application. Any of the properties described can be used by the
SCSInitializeServlet. The SCSInitializeServlet can be configured externally via a
properties file. The cis.initialization.file property can be set with a path
(either a web-relative path or a class path reference), to a property file containing the
initialization properties. This allows you to easily externalize the initialization to a
properties file.

By default, if SCSInitializeServlet finds no properties in the web.xml file, it will
attempt to load a properties file from the WAR and then from the class path using the
default value /cis-initialization.properties. Thus, if you place a file called
cis-initialization.properties in your class path (that is, in the same directory as the
adapterconfig.xml file), that file will be read during startup.

This properties file can hold all the standard initialization properties as defined in the
CISApplication class. This allows you to move the configuration of how CIS initializes
outside the scope of the EAR/WAR file.

Server Property Definitions
The server properties are defined in the following table. The defaults can be
overridden by creating a file named cis-initialization.properties and saving the file to
the server-ear directory of the unbundled CIS distribution file (this is the directory
containing the adapterconfig.xml file).

Property Description

cis.config.type Should be set to server.

cis.config.server.type Should be set to standalone.

cis.config.server.adapterconfig The URL pointing to the adapter configuration file. In
addition to standard URLs, this can be in class path
form (classpath:/) or file form (file:/)

cis.config.server.temporarydirectory The location of the temporary directory used for file
transfers, streaming, and file caching.

Property Description

cis.config.type Must be set to server (default).

cis.config.server.adapterconfig The URL pointing to the adapterconfig.xml file. In
addition to standard URLs, this can also be in class
path form (that is, classpath:/)

cis.config.server.type.options.ejb=true Default is true (EJBs enabled).

cis.config.server.type.options.rmi=true Default is true (MI enabled).

Integration in a Web Environment

Using Content Integration Suite (CIS) 10-5

Initialization Process
At startup, the SCSInitializeServlet servlet begins the CIS server initialization process.
It attempts to load various properties from the web.xml file and class path (that is,
cis-initialization.properties). It then passes those properties to the static method
CISApplicationFactory.initialize(…). This section describes the order of operation.

SCSIntitialize init(ServletConfig)
Called by the web application container during initialization of the web application.

1. Load properties from web.xml.

2. Load properties from classpath: /cis-initialization.properties.

3. Call CISApplicationFactory.initialize(properties).

4. Via the CISWebHelper class, it sets the CISApplication and the command
application instance as an attribute on the servlet context.

CISApplicationFactory initialize(properties)
Called by the init(…) method of an object instance of SCSInitialize.
Calls CISApplicationFactory.initializeCisApplication(properties).

CISApplicationFactory initializeCisApplication(properties)
Determines if CIS should be started in client or server mode.
Calls CISApplicationFactory.initializeServer(properties).

CISApplicationFactory initializeServer(properties)
Called by CISApplicationFactory.initialize(properties).

1. Creates the adapter config URL (used to eventually load the adapterconfig).

2. Loads IsolatedJarClassloader.

3. Calls CISApplication.initialize(properties).

10.5 Integration in a Web Environment
This is what you would put in the web.xml file if you wanted the SCSInitializeServlet
to start up and register the CIS application:

<servlet id="scsInitialize">
 <servlet-name>scsInitialize</servlet-name>
 <display-name>SCS Initialize Servlet</display-name>
 <servlet-class>com.stellent.cis.web.servlets.SCSInitializeServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

If you add a new JSP page called search.jsp, it would look like this code:

<%-- JSTL tag library --%>
<%@ taglib uri="/WEB-INF/tlds/c.tld" prefix="c" %>

<%-- CIS Application object placed in servlet context by the SCSInitialize
servlet. Get the CIS Application and make a query --%>

<%
ICISApplication cisApplication =
 (ICISApplication) request.getSession().getServletContext().

Class Loading

10-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

 getAttribute ("CISApplication");
ISCSSearchAPI searchAPI =
 cisApplication.getUCPMAPI ().getActiveAPI ().getSearchAPI ();

// create a context
ISCSContext context =
 cisApplication.getUCPMAPI ().getActiveAPI ()._createSCSContext ();
 context.setUser ("sysadmin");

// execute the search
ISCSSearchResponse response =
 searchAPI.search (context, "dDocAuthor substring 'sysadmin'", 20);
%>
<!-- model the search results as desired -->

The SCSInitializeServlet places the initialized CISApplication class as an attribute in
the javax.servlet.ServletContext with the name CISApplication. The CISApplication
instance is available to the entire web application and is thread-safe; the one instance
can be shared across the application.

10.6 Class Loading
The UCPM 8.0.0 API uses a custom class loader to isolate dependencies on specific
libraries from any application that uses the CIS API. For more information, see the
Java 2 Platform API specification on the ClassLoader page of Oracle Sun Technology
Network at

http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Class
Loader.html

The following subsections describe the custom class loader and how to use it:

■ Section 10.6.1, "Custom Class Loader"

■ Section 10.6.2, "Class Loader Usage"

10.6.1 Custom Class Loader
The implementation of this paradigm is found in the
com.stellent.cis.impl.IsolatedJarClassLoader object. This custom class loader allows for
a JAR to have a nested set of JAR files that serve as the library. This is the structure of
the nested JAR files:

+ cis-application-8.0.0.jar
 +-- com/stellent/cis/...
 +-- META-INF
 +-- lib/
 +-- spring-1.1.5.jar
 +-- log4j-1.0.3.jar
 +-- ...

All libraries that live in the lib directory will be the class path for the CIS objects. The
class loader will query this local directory first before loading files from the parent
classloader.

However, all of the JAR files cannot be isolated as the consuming client needs to have
access to some API classes so they can be imported into their application space.
Therefore, only the interfaces are exposed in the application space, keeping the

http://download.oracle.com/javase/1.4.2/docs/api/java/lang/ClassLoader.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/ClassLoader.html

Interaction with the UCPM API

Using Content Integration Suite (CIS) 10-7

implementation and associated dependencies isolated. Because the class loader for the
dependencies and implementation has access to the parent loader, it can access the
same versions of the interfaces as the application that is using the APIs. This also
implies that a client will be able to access only the interfaces of the UCPM API. Any
attempt to create an implementation class using the new keyword will result in a
ClassNotFoundException error.

10.6.2 Class Loader Usage
To use this class loader, use the new com.stellent.cis.impl.CISApplicationFactory object
to initialize the system. This object will automatically detect and use the
IsolatedJarClassLoader if required. This means that you can still deploy CIS in the
original format, with all the class files and libraries at the application level, if you so
desire.

In the current version, CIS only needs the cis-client-8.0.0.jar file in the class path; no
other libraries are needed. Once cis-client-8.0.0.jar is in the application class path, you
initialize CIS using the following code:

// the initialization properties (as defined in ICISApplication)
 Properties properties = new Properties ();
 ICISApplication cisApplication = CISApplicationFactory.initialize(properties);

Once you have a reference to com.stellent.cis.ICISApplication, you can interact with
the APIs. The difference is that now you only have access to interface objects
(everything in com.stellent.cis.client) and not the implementation objects.

If you implement custom commands, your public interfaces will also need to be in the
class path, and the implementation classes packaged in the cis-client-8.0.0.jar.

10.7 Object Creation
The UCPM 8.0.0 API uses a customized classloader to hide library dependencies and
implementation classes. Only the client interface classes are exposed to the user.
However, this implies that you cannot use the new keyword to instantiate UCPM API
objects. Therefore, in the UCPM API framework, use the generic _create methods
available on the IUCPMAPI object to tell the system to instantiate an instance of the
given object.

Because objects are mutable and only the interfaces are exposed, use the createObject
method and set the properties that you need:

ISCSDocumentID docID =
 (ISCSDocumentID)ucpmAPI.createObject(ISCSDocumentID.class);
docID.setDocumentID("20");

10.8 Interaction with the UCPM API
With an initialized CISApplication instance, the getUCPMAPI () method (of the
CISApplication object) returns a reference to the IUCPMAPI object, allowing access to
all UCPM API objects. The IUCPMAPI interface is the locator for the various API
objects in the UCPM API.

The IUCPMAPI object has methods to get references to the Active API; getActiveAPI ()
returns a reference to the SCSActiveAPI object for communicating with Oracle Content
Server. This enables you to access the necessary APIs and begin making calls through
the UCPM API to the target server.

Interaction with the UCPM API

10-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Calling API Objects Using Newly Instantiated ICISObject Objects
Many UCPM API calls take in an ICISObject or an interface that inherits from
ICISObject. For example, in the ISCSDocumentInformationAPI (SCS API) the
getDocumentInformationByID () method takes as a parameter a ISCSDocumentID
object.

The fully qualified method name is:

ICISApplication.getUCPMAPI ().getActiveAPI ().getDocumentInformationAPI ()

In such cases, to obtain a reference to a valid object to pass in as a parameter, you can
either retrieve the object reference from another ICISObject or create a new instance of
the ICISObject using the generic createObject method available in the UCPM API. In
CIS 11gR1, a customized classloader is used to hide the library dependencies and
implementation classes. Only the client interface classes are exposed to the user.
However, this implies that you cannot use the new keyword to instantiate UCPM API
objects. Therefore, in the CIS API framework, you use the generic create method
available on the IUCPMAPI object to tell the system to instantiate an instance of the
given object. The createObject method will let you create a new instance of any
ICISObject.

For example, if you wanted to query for document information, but only had the
document ID, you would do the following:

ISCSDocumentInformationAPI documentInfoAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentInformationAPI ();

// create the document ID
ISCSDocumentID documentID =
 (ISCSDocumentID) m_cisApplication.getUCPMAPI ().
 createObject (ISCSDocumentID.class);
 documentID.setDocumentID("12345");

ISCSDocumentInformationResponse docResponse =
 documentInfoAPI.getDocumentInformationByID(m_context, documentID);

For any API that requires an ICISObject object, you can use the createObject method,
which enables you to create a new instance of the API object. The createObject method
is a client-side method; it does not make a call to the target server. It is to be treated as
a constructor for the ICISObject implementations.

Building a More Complex Object
If you needed to build up a more complex object such as a new content item to be
checked in to Oracle Content Server, you would need to create several objects and
populate the data:

// Create an empty content object
ISCSContent content =
 (ISCSContent) m_cisApplication.getUCPMAPI ().createObject(ISCSContent.class);

// Create an empty content ID object, and then give it a content ID
ISCSContentID contentID = (ISCSContentID) m_cisApplication.getUCPMAPI ().
 createObject(ISCSContentID.class);
 contentID.setContentID("my_document");

// Set all of the properties of the content item required for check in
 content.setContentID(contentID);
 content.setAuthor (context.getUser ());
 content.setTitle ("Document Title");

IContext Interface

Using Content Integration Suite (CIS) 10-9

 content.setSecurityGroup ("Public");
 content.setType ("ADACCT");
 content.setProperty ("xCustomProperty", "Value for custom property");

10.9 IContext Interface
The IContext interface is the generic context used for communication with the
Command APIs. This interface handles contextual information to determine the
current caller identity, the target adapter, and so on.

The context should be populated with the user name and adapter name. The adapter
name is determined by the adapterconfig.xml file, and the user name can be any valid
user ID for the target server.

IContext has the subinterfaces SCSContext and ISISContext, which extends the
IContext interface. ISCSContext is the context object used for the SCS APIs and
represents a user’s operating context during communication with Oracle Content
Server.

The context object can be created by using the _create method. Thus, ISCSContext
can be created from SCSActiveAPI.

// create an ISCSContext
 ISCSContext context =
 m_cisApplication.getUCPMAPI ().getActiveAPI ()._createSCSContext ();

Once the context is created, it should be populated with a user name and the adapter
name. This can be done by using the accessor methods on the IContext bean.

 context.setUser ("sysadmin");
 context.setAdapterName ("myadapter");

The CIS API will take either an ICISCommonContext object or an IContext object.
ICISCommonContext is a special kind of context that is used as a container for
ISCSContext and ISISContext. It is required in APIs that federate information between
a number of different adapters; it identifies which adapters to query and what user
information to use. In instances where the call only operates against one adapter at a
time, a single IContext is required.

// create an ICommonContext
 ICISCommonContext m_commonContext =
 m_cisApplication.getUCPMAPI ().getCommonAPI ()._createCommonContext ();

Once the ICISCommonContext adapter is created, multiple adapters can be added to
it. This is done using the ICISCommonContext.addContext() method. Any number of
adapters can be added; all the adapters added to the ICISCommonContext are then
used individually during a Common API call.

The same ISCSContext object can be used for multiple queries and across threads. In a
web application context, the easiest method is to add the IContext object to the session
and retrieve it from the session for each query.

An sample web application has been provided (located in SDK/Samples/WebSample)
which has a login method that first validates the username against Oracle Content
Server and, if successful, adds the IContext object to the HttpSession object. For more
details, see the LoginActionHandler class in the
src/com/stellent/sdk/web/sampleapp/handlers/login directory.

ICISObject Interface

10-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

10.10 ICISObject Interface
ICISObject is the base interface for all objects with metadata in the UCPM API. Thus,
all UCPM API objects are inherited from ICISObject. The ICISObject interface allows
for the retrieval and setting of the object properties. The objects returned from calls to
the UCPM API are value objects in the form of beans (reusable software components)
that encapsulate data from the server call, not live objects. Updating or modifying the
objects in any fashion will not affect server data; only by directly calling a method on a
given UCPM API can the server data be modified.

The following subsections describe property accessors, object types, and collections:

■ Section 10.10.1, "Property Accessors"

■ Section 10.10.2, "Property Object Types"

■ Section 10.10.3, "Property Collections"

10.10.1 Property Accessors
Most implementations of ICISObject have their own specific property accessor
methods. However, all properties can be retrieved by calling the getProperty () method
on the ICISObject. The ICISObject.getProperty () method will return an ICISProperty
object. From this object you can get the property value or property information using
these methods:

■ getValue() returns the property value. If the property has a null value, calling
getValue () will result in a null reference.

■ getDescriptor() returns the property descriptor that describes the contents of the
property value.

// use the response object from the previous example - retrieve the content object
 ISCSContent content = docResponse.getDocNode ();

// get the title property
 String title = content.getTitle ();

// get the title by using the ICISObject getProperty method
 title = content.getProperty ("title").getValue ().getStringValue ();

The ICISObject property methods may throw a PropertyRetrievalException if an error
occurs during the lookup of a given property. Since the PropertyRetrievalException is
a RuntimeException, it does not have to be caught directly in your code. Common
cases for the exception to be thrown is when a property is asked for but does not exist
or when the property value contains invalid data. For more information about the
specific reason for the error, you can catch this exception and then query the exception
class.

ISCSProperty also allows for setting property values back into the property object. To
do this, you can use an appropriate set method or call setProperty () and pass in the
bean property name (both are valid and both will set the property value on the target
object).

// set the title - using the content object from the previous example
 content.setTitle ("My New Title");

// set using the setProperty method
 content.setProperty ("title", "My New Title");

Adapter Configuration File

Using Content Integration Suite (CIS) 10-11

10.10.2 Property Object Types
A property object type is determined by the return value of the property method on
the ICISObject. When using the generic getProperty() method, the ISCSPropertyValue
has methods to get both the value of the property and the value as a specific object
type (for example, Boolean, float, or long).

The ISCSPropertyValue is retrieved through the getValue() method on the returned
ISCSProperty object.

When you set a property through the generic setProperty() method, it is important that
the property value passed into the method is of the correct type or can be converted to
the appropriate type through simple BeanUtils property conversion.

Apache BeanUtil is a utility for populating bean properties from the
org.apache.commons project.

In the ISCSContent object, the property readOnly is type Boolean. Therefore, in the
following example, the first three methods will successfully set the property value and
the last method will not:

// correct
 content.setReadOnly (true);
 content.setProperty ("readOnly", Boolean.TRUE);
 content.setProperty ("readOnly", "true");

// incorrect
 content.setProperty ("readOnly", "not a boolean");

Since the setProperty () method takes an object as the second parameter, the Boolean
encapsulation must be used. Also, as mentioned, the method uses the BeanUtils
property conversion and therefore the string true converts to the Boolean value
TRUE. As shown in the preceding example, passing a property value that cannot be
converted (for example, not a Boolean value) will result in an exception.

10.10.3 Property Collections
The available list of properties can be retrieved using the getProperties() method on
the ICISObject interface. This will return all of the available properties for a given
object.

// using the content item from the previous example
 Collection properties = content.getProperties ();

// iterate through the collection
for (Iterator it = properties.iterator (); it.hasNext ();) {
 ISCSProperty property = (ISCSProperty)it.next ();
 String name = property.getDescriptor ().getName ();
 ICISPropertyValue value = property.getValue ();
 if (value != null) {
 System.out.println (name + " = " + value.getStringValue ());
 }
}

10.11 Adapter Configuration File
The adapter configuration file (adapterconfig.xml) contains XML-formatted
configuration information for communicating with your Oracle Content Server
instance. It specifies the CIS layer that servers use to open communications.

Adapter Configuration File

10-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A single connection to a server is called an adapter. Any number of adapters can be
configured in the adapterconfig.xml file. The adapterconfig.xml file is required to
initialize the CISApplication instance.

The following subsections describe the elements in the adapter configuration file:

■ Section 10.11.1, "The adapter Element"

■ Section 10.11.2, "The config Element"

10.11.1 The adapter Element
Each adapter configuration is a separate element in the XML markup. The adapter
element has four attributes as shown in the following table.

A sample adapter element follows:

<adapter type="scs" default="true" name="myadapter">

10.11.2 The config Element
The config element includes a set of property elements that define the adapter-specific
properties. These configuration elements are described in the following text.

SCS Adapter Configuration Elements
An SCS adapter communicates with Oracle Content Server. The configuration element
for the SCS adapter has four general attributes, as shown in the following table.

A sample SCS configuration element follows:

<adapter name="myadapter" type="scs" default="true">
 <config>
 <property name="host">localhost</property>
 <property name="port">4444</property>
 <property name="type">socket</property>
 <property name="version">75</property>
 </config>

Adapter Attributes Description

type Should be scs for a connection to Oracle Content Server.

default If true, then this is the default adapter for this type. Only one
default adapter for a given type is allowed.

name The adapter name.

Property Name Description

port The port for Oracle Content Server instance.

host The host name or IP address of Oracle Content Server.

type These values may be used:

socket: Uses the Oracle Content Server socket communication layer.

mapped: Uses shared directories to transfer the files for file upload
and download.

web: Uses HTTP requests to transfer files; requires an Oracle
Content Server username and password for Basic HTTP
Authentication (file download only).

Access to the SCS API

Using Content Integration Suite (CIS) 10-13

 <beans template=
 "classpath:/META-INF/resources/adapter/adapter-services-scs.jxml"/>
</adapter>

By default, the Oracle Content Server socket communication layer is used to stream
files to and from Oracle Content Server. However, for high-volume check in or file
retrieval, you can set the mapped or web optimized file transfer options.

A mapped transfer loads the files from a shared directory on Oracle Content Server;
this results in much faster file transfers and does not tie up a socket that could be used
for other requests. To use mapped transfer, you must define these properties.

A web transfer uses HTTP requests to the Oracle Content Server web server to
download files. To use web transfer, you must define these properties.

A sample SCS configuration element using web transfer follows:

<adapter type="scs" default="true" name="myadapter">
 <config>
 <property name="port">4444</property>
 <property name="host">localhost</property>
 <property name="type">web</property>
 <property name="contentServerAdminID">sysadmin</property>
 <property name="contentServerAdminPassword">idc</property>
 </config>
</adapter>

10.12 Access to the SCS API
The UCPM API is available on the CISApplication class via the getUCPMAPI ()
method. The getUCPMAPI () method returns a reference to the IUCPMAPI object,
allowing access to all UCPM API objects. The IUCPMAPI public interface is the locator
for the SCS, SIS, and CIS API objects. The SCS API is available via getActiveAPI (),
which returns a reference to the SCSActiveAPI object.

The fully qualified method name follows:

CISApplication.getUCPMAPI ().getActiveAPI ()

Property Name Description

contentServerMappedVault The Oracle Content Server vault directory as seen from
the application server.

appServerMappedVault The application server vault directory as seen from Oracle
Content Server.

Property Name Description

contentServerAdminID The Oracle Content Server administrator ID to use to
authenticate against Oracle Content Server.

contentServerAdminPassword The Oracle Content Server administrator password to use
to authenticate against Oracle Content Server. This
password is encrypted.

SCS API Objects

10-14 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The SCS API comprises the following APIs:

■ ISCSSearchAPI: This is the command API implementation of the search
commands.

■ ISCSFileAPI: Deals with the retrieval of files, and the dynamic conversions of
files, from Oracle Content Server.

■ ISCSWorkflowAPI: Deals with the workflow commands such as approval and
rejection, viewing a user's workflow queue, and interacting with the Oracle
Content Server workflow engine.

■ SCS Document APIs (ISCSDocumentCheckinAPI and
ISCSDocumentCheckoutAPI), which deal with active content in Oracle Content
Server, including checking in and out of content, content information, and deletion
of content.

■ Various APIs for the implementation of the administrative commands, component
commands, and so on.

The ICommandFacade interface is the entry point into the command interface. It
allows for interaction with the command layer, including command retrieval,
registration, and execution. Commands are referenced by name, where a name can be
any string. A name consisting of the dot character (".") will be treated in a hierarchy,
where the first segment is the top-level category, and the next segment is the
second-level category, and so on. Commands can either be retrieved by their full
command name or by browsing all available commands.

The fully qualified class name is

com.stellent.command.ICommandFacade

The following example uses ISCSDocumentCheckinCommandAPI:

ISCSDocumentCheckinCommandAPI commandAPI =
 (ISCSDocumentCheckinCommandAPI)m_commandFacade.
 getCommandAPI ("document.checkin");

10.13 SCS API Objects
The SCS API is responsible for formulating requests to Oracle Content Server. SCS API
calls translate into one or more IDC Service (Oracle Content Server service) calls.

The following subsections describe the SCS API objects:

■ Section 10.13.1, "ISCSObject Interface"

■ Section 10.13.3, "ISCSServerBinder Interface"

■ Section 10.13.3, "ISCSServerBinder Interface"

■ Section 10.13.4, "ISCSServerResponse Interface"

■ Section 10.13.5, "ISCSRequestModifier Interface"

10.13.1 ISCSObject Interface
The ISCSObject interface is the base interface for all objects in the SCS API. It inherits
from ICISObject and adds some specific functionality relative to Oracle Content Server
objects. It allows access to the ISCSServerResponse object that created the object, and it
also allows access to a collection of properties that have been modified since the object
was initialized via the getModifiedProperties() method.

SCS API Objects

Using Content Integration Suite (CIS) 10-15

The ICISObject class name is new for UCPM 8.0.0 API.

ISCSObject objects have the concept of native property names. Specifically, properties
that are available on ISCSObject are available by two different names: the Java
property name and the Oracle Content Server native name. For example, to get the
title of a ISCSContent item, the following three methods are equal:

String title = content.getTitle ();
title = content.getProperty ("title").getValue ().getStringValue ();
title = content.getProperty ("dDocTitle").getValue ().getStringValue ();

Oracle Content Server supports a metadata model that can be extended. ISCSObject
objects can have more properties than those exposed via the getProperty () methods.
The ISCSObject implementations expose the most common properties, but other
properties, such as the extended metadata, are only available via the getProperty ()
method. Also, the getProperties() method will list all the properties on the object,
including properties without a corresponding getter or setter method.

for (Iterator it = content.getProperties ().iterator (); it.hasNext ();) {
 ISCSProperty property = (ISCSProperty)it.next ();
 ISCSPropertyDescriptor descriptor = property.getActiveDescriptor ();
 if (descriptor.isBeanProperty ()) {
 System.out.println ("Property is available via get or set: " +
 property.getDescriptor().getName ());
 } else {
 System.out.println ("Property is a hidden or extended property: " +
 property.getDescriptor().getName ());
 }
 System.out.println ("Native property name: " + descriptor.getNativeName ());
}

The properties returned from ISCSObject implement the ISCSProperty interface, which
adds the getActiveDescriptor() method. The ISCSPropertyDescriptor adds the
beanProperty and nativeName properties to the available properties on an item.

The beanProperty property determines if the current property object has an available
getter or setter method; if the property is false, this property object is available only
via the getProperty() method.

The nativeName property returns the Oracle Content Server property name for the
given property.

Date Objects
Date fields in the SCS API are handled as Java Date objects in Coordinated Universal
Time (UTC time). All dates passed into the various properties of ISCSObject must be in
UTC time. All date objects returned from the SCS API are in UTC time and need to be
converted into the appropriate time zone for the particular application.

Date releaseDate = content.getReleaseDate ();

// convert from UTC time to Pacific Time Zone
 Calendar calendar = Calendar.getInstance ();
 calendar.setTime (releaseDate);
 calendar.setTimeZone (TimeZone.getTimeZone ("America/Los_Angeles"));
// use calendar to display date...

SCS API Objects

10-16 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

10.13.2 ICISTransferStream Interface
File streams to and from Oracle Content Server have changed. In an effort to keep with
the interface-only approach to the CIS APIs, all streams are sent through the
ICISTransferStream interface. This interface represents the actual physical stream
object and additionally some metadata, including filename, content length and
mime-type. Because ICISTransferStream is an interface, it cannot extend InputStream
directly. Therefore, when using this object, you must first obtain the stream via a call to
ICISTransferStream.getStream() and then manipulate the stream appropriately.

Some commands that in previous versions would return an InputStream now return
ICISTransferStream objects. For example, if calling getFile() in the FileAPI, to access
the stream from Oracle Content Server, your code would look like:

ICISTransferStream transferStream = fileAPI.getFile (context, documentID);
InputStream inputStream = transferStream.getInputStream();

The implementation of ICISTransferStream contains all the necessary plumbing to
transfer the stream to and from the command client to command server. Since
InputStream objects are not directly serializable, it does some extra work to put
streams into places where the server can access them. All of the logic is hidden from
the user of the API.

The stream instance can be obtained from the root IUCPMAPI interface using the
method createTransferStream. That returns an empty instance of the stream container,
which you can then use the accessors methods to set the stream properties. The
following example creates a transfer stream and points it at a local file:

// create the stream implementation
ICISTransferStream transferStream = ucpmAPI.createTransferStream ();

// point it at a file
transferStream.setFile (new File ("mytestdoc.doc"));

If you had a stream in memory already rather than a file handle, and you wanted to
check in the content in that stream into Oracle Content Server, you would need to
specify all of the attributes for the stream such as a filename, content type, and the
length of the stream.

ICISTransferStream transferStream = ucpmAPI.createTransferStream ();
 transferStream.setFileName ("sample.txt");
 transferStream.setInputStream (inputStream);
 transferStream.setContentType ("text/plain");
 transferStream.setContentLength (length);
 checkinAPI.checkinFileStream (context, content, transferStream);

10.13.3 ISCSServerBinder Interface
The CIS 8.0.0 API provides a new object, ISCSServerBinder, which is the root object
used for all communication to and from Oracle Content Server. The ISCSServerBinder
object encapsulates a message both to and from Oracle Content Server. It is a collection
of properties, result sets, files, option lists and other specific type of information
needed by Oracle Content Server.

All API calls into Oracle Content Server will create an instance of the
ISCSServerBinder. Each API call, for example ISCSSearchAPI.search(), will use the
supplied ISCSObject parameters to populate a binder and possibly add in other
particular information. Likewise, all responses from Oracle Content Server that are not
streams are ISCSServerResponse objects which extend ISCSServerBinder.

SCS API Objects

Using Content Integration Suite (CIS) 10-17

As all ISCSObjects are collections of arbitrary metadata, the ISCSServerBinder is a
collection of a number of objects metadata contained within one object. A particular
ISCSServerBinder might contain the metadata for an Oracle Content Server query (see
ISCSSearchQuery), metadata concerning a piece of content, and a list of objects dealing
with user data. As each ISCSObject contains the particular metadata for its object, the
ISCSServerBinder is responsible for the metadata of many objects.

Properties
As ISCSServerBinder extends the core ISCSObject interface, it has the ability to get and
set arbitrary properties via the getProperty and setProperty methods. These arbitrary
properties are usually where arguments for a particular Oracle Content Server instance
are placed. They can be added directly, via the setProperty method as shown in the
following code example.

// create an empty binder
ISCSServerBinder binder =
 (ISCSServerBinder)getUCPMAPI ().createObject (ISCSServerBinder.class);

// set some properties
 binder.setProperty ("dDocTitle", "test");
 binder.setProperty ("dSecurityGroup", "Public");

Alternatively, properties can be set using the mergeObject functionality available on
the ISCSObject interface. The following example shows creating another object, setting
some properties on that object, and then using merge to put those properties into the
server binder.

// create an empty content item
ISCSContent content = (ISCSContent)getUCPMAPI ().createObject (ISCSContent.class);

// set some properties
content.setTitle ("test");
content.setSecurityGroup ("Public");

// merge into binder; this copies all the properties from content into the binder
binder.mergeObject (content);

The preceding two examples are identical: they both result in setting the content item
title (dDocTitle) and security group (dSecurityGroup) in the ISCSServerBinder object.
However, the second method is an abstraction from the specifics of naming. The
ISCSContent object handles the mapping of standard Java properties into Oracle
Content Server metadata.

Result Sets
A result set represents a collection of rows returned from an Oracle Content Server
query. This is exposed in ISCSServerBinder through the getResultSet and setResultSet
methods. A result set in the SCS API is then exposed as a homogeneous list, containing
a type of object the represents a single row of the result set. Many items returned from
Oracle Content Server queries come back as result sets. As all the result sets are lists of
ISCSObject objects, the items from the result sets can be used in other calls. For
example, look at the following code snippet where a search is executed and the first
item then has its contents updated:

// create an simple query
ISCSSearchQuery query =
 (ISCSSearchQuery)getUCPMAPI ().createObject (ISCSSearchQuery.class):
 query.setQueryText ("dDocName substring 'test' ");

SCS API Objects

10-18 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

// execute a search
ISCSSearchResponse response =
 getUCPMAPI ().getActiveAPI ().getSearchAPI ().search (context, query);

// search results come back as a result set of ISCSSearchResult items
ISCSSearchResult result = (ISCSSearchResult)response.getResults ().get (0);

// change the title and check it in
result.setTitle ("new title");
getUCPMAPI ().getActiveAPI ().getDocumentUpdateAPI ().
 updateInfo (context, result);

File Objects
The ISCSServerBinder allows files to be sent to Oracle Content Server through the
addFile method. This method takes an ICISTransferStream. The resulting file is sent to
Oracle Content Server, along with the binder, during the request. Adding a file is
similar to adding a property:

// create an empty stream
ICISTransferStream stream = getUCPMAPI ().createTransferStream ();

// point the stream at a local file
stream.setFile (new File ("testfile.txt"));

// add the stream to the binder
serverBinder.addStream ("myFile", stream);

When the preceding binder is sent to Oracle Content Server, the stream will be
transferred along with the binder. Inside Oracle Content Server, the stream will be
available under the "myFile" key which was specified when adding the stream to the
binder.

Object Copying and Casting
Each ISCSObject in the SCS API has an object that holds the data in a low-level format
compatible with Oracle Content Server. This object, referred to as a data object, is used
by all ISCSObject implementations. This implies that any ISCSObject can be mutated
to any other type of ISCSObject. There are two methods that expose this functionality:
the castObject and copyObject methods available on the ISCSObject interface.

Both methods take in a single parameter: a class type representing the type of object
that should be created. A call to castObject will result in the creation of a new object
that points at the same backing data of the object it was invoked against. This implies
that changes to the original object will be reflected in the object returned from the
castObject call as well. A call to copyObject will result in a copy of the backing data
being made, allowing the newly created object to act independently from the original
object.

For example, imagine a custom Oracle Content Server service called "MY_DOC_INFO"
that is similar to the standard "DOC_INFO" but does some extra business logic
processing. However, the returned binder from the "MY_DOC_INFO" call is very close
to the "DOC_INFO" call. Because there is no explicit API call in the SCS API to call this
"MY_DOC_INFO" service, the generic executeIDCService call has to be used. But the

SCS API Objects

Using Content Integration Suite (CIS) 10-19

castObject method can be used to change the return type into something more user
friendly:

// build the custom call
ISCSServerBinder binder =
 (ISCSServerBinder)getUCPMAPI ().createObject (ISCSServerBinder.class);
 binder.setService ("MY_DOC_INFO");

// create a document ID and add it to the binder
ISCSDocumentID documentID =
 (ISCSDocumentID)getUCPMAPI ().createObject (ISCSDocumentID.class);
 documentID.setDocumentID ("12345");
 binder.mergeObject (documentID);

// execute the call
ISCSServerResponse response =
 (ISCSServerResponse)getUCPMAPI ().getAdministrativeAPI ().
 executeIDCService (context, binder);

// use the cast to change it to a ISCSDocumentInformationResponse
ISCSDocumentInformationResponse infoResponse =
 (ISCSDocumentInformationResponse)response.
 castObject (ISCSDocumentInformationResponse.class);

// use the info response as usual
System.out.println ("Title: " + infoResponse.getDocNode ().getTitle ());

As mentioned in the preceding text, the castObject call links the two objects by sharing
the same backing data. In the preceding example, any changes made to the response
object would be reflected in the infoResponse object as well:

// set a property on the response
response.setProperty ("customProperty", "customValue");

// value is then available in the infoResponse object
String value = infoResponse.getPropertyAsString ("customProperty");

If copyObject was called instead, the response and infoResponse would be
independent of each other. The castObject creates a smaller memory footprint than
copyObject, since the result from a castObject call does not create a new backing data
object.

10.13.4 ISCSServerResponse Interface
The result of a call to the SCS API is usually an ISCSServerResponse object.
ISCSServerReponse is the base interface for all the response objects. It encapsulates the
response from Oracle Content Server for the last request. Most methods have specific
implementations of this interface, which provide properties that are specific to those
responses. For the specific response objects and the properties available for each
response object, see the Javadocs.

In the current release, some calls that previously returned references to an InputStream
now return a ICISTransferStream object instead. For information about how to use the
new transfer stream interface, see Section 10.13.5, "ISCSRequestModifier Interface."

SCS API Objects

10-20 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

10.13.5 ISCSRequestModifier Interface
All requests to Oracle Content Server through the SCS API result in the creation of an
ISCSServerBinder object. In certain situations, it becomes necessary to change the
binder contents for a given API call to match the requirements of a specific Oracle
Content Server instance. The ISCSRequestModifier interface is designed for this very
purpose: to augment a call to Oracle Content Server with custom modifications.

All APIs in the SCS API have a corresponding method that takes as the first parameter
an ISCSRequestModifier object. Look at the API for ISCSSearchAPI:

/**
 * Command the implements searching against Oracle Content Server.
 * @param SCSContext the context object representing the current user
 * @param searchQuery the Oracle Content Server query object
 */

public com.stellent.cis.client.api.scs.search.
 ISCSSearchResponse search (com.stellent.cis.client.api.scs.context.
 ISCSContext SCSContext,
 com.stellent.cis.client.api.scs.search.ISCSSearchQuery searchQuery)
 throws com.stellent.cis.client.command.CommandException;

/**
 * Command the implements searching against Oracle Content Server.
 * @param requestModifier modify the request
 * @param SCSContext the context object representing the current user
 * @param searchQuery the Oracle Content Server query object
 * @see com.stellent.cis.server.api.scs.commands.search.SearchCommand
 */

public com.stellent.cis.client.api.scs.search.
 ISCSSearchResponse search (com.stellent.cis.client.api.scs.
 ISCSRequestModifier requestModifier, com.stellent.cis.client.api.scs.context.
 ISCSContext SCSContext, com.stellent.cis.client.api.scs.search.I
 SCSSearchQuery searchQuery)
 throws com.stellent.cis.client.command.CommandException;

The second API takes all the parameters of the first, with the additional
ISCSRequestModifier argument. The standard Search API, and all its logic, can be
used and custom logic added. For example, imagine a custom component installed on
Oracle Content Server that will do some extra processing if it find the
myCustomProperty property set during a search query. To do this with CIS, the
ISCSRequestModifier can be used to change the binder, as follows:

// build a search query
ISCSSearchQuery query =
 (ISCSSearchQuery)getUCPMAPI ().createObject (ISCSSearchQuery.class);
 query.setQueryText ("dDocName substring `test`");

// build a request modifier
ISCSRequestModifier modifier =
 (ISCSRequestModifier)getUCPMAPI ().createObject (ISCSRequestModifier.class);

// access the binder off the modifier and add in the custom data
modifer.getServerBinder().setProperty ("myCustomProperty", "customValue");

// execute the search as normal
getUCPMAPI ().getActiveAPI ().getSearchAPI ().search (modifier, context, query);

SCS API Servlets

Using Content Integration Suite (CIS) 10-21

Now the modified binder will be used during the search call. The custom property
value will get sent along with the standard search call. This same method can be used
to set any properties, add files, set result sets or even override which service call is
being made on Oracle Content Server.

10.14 SCS API Servlets
The SCS API requires that a number of servlets be available to the system while
operating in a J2EE/web environment and running in server mode.

The following subsections describe the SCS API servlets and how they work:

■ Section 10.14.1, "Servlet Descriptions"

■ Section 10.14.2, "SCS Servlet Parameters"

■ Section 10.14.3, "Servlet Security"

■ Section 10.14.4, "Servlets and API Interaction"

10.14.1 Servlet Descriptions
This table lists the servlet names and the appropriate configuration information
needed in the web.xml file for a given web application.

10.14.2 SCS Servlet Parameters
This section provides a description of the parameters for these servlets:

■ SCSFileDownloadServlet

■ SCSDynamicConverterServlet

■ SCSDynamicURLServlet

Fully Qualified Name Mapping Description

SCSFileDownloadServlet

com.stellent.web.servlets.
SCSFileDownloadServlet

/getfile Allows clients to retrieve files
from Oracle Content Server.

SCSCommandClientServlet

com.stellent.web.servlets.
SCSCommandClientServlet

/scscommandclient Publishes the CIS server
configuration information for
CIS clients.

SCSFileTransferServlet

com.stellent.web.servlets.
SCSFileTransferServlet

/scsfiletransfer Enables APIs in the UCPM API
to transfer files to a CIS client.

SCSInitialize

com.stellent.web.servlets.
SCSInitialize

N/A Initializes the CIS Application
instance. Should be set as a
LoadOnStartup servlet.

SCSDynamicConverterServlet

com.stellent.web.servlets.
SCSDynamicConverterServlet

/getdynamicconversion/* Executes a dynamic conversion
and streams the result to the
client.

SCSDynamicURLServlet

com.stellent.web.servlets.
SCSDynamicURLServlet

/scsdynamic/* Retrieves dynamic files from
Oracle Content Server; used
when rewriting the
dynamically converted
document URLs.

SCS API Servlets

10-22 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

This section does not specify any of the available security parameters, which are
described in Section 10.14.3, "Servlet Security." All calls made to Oracle Content Server
use the identity as specified in the servlet security section.

10.14.2.1 SCSFileDownloadServlet

10.14.2.2 SCSDynamicConverterServlet

Property Required Description

adapterName true The adapter name to query for the
document.

dDocName n/a The content ID of the document to
retrieve.

rendition false The content rendition; valid only
when specifying the dDocName.

revisionSelection false The revisionSelection to use when
selecting content; valid only when
specifying the dDocName.

forceStream false If true, the contents are streamed
from Oracle Content Server via the
GET_FILE call regardless of
optimized file transfer settings for
the adapter; defaults to false.

Property Required Description

adapterName true The adapter name to query for the
document.

contentID Either contentID or
documentID is required.

The content ID (dDocName) of the
document to retrieve.

documentID n/a The document ID (dID) of the
document to retrieve.

rendition false The rendition of the document to
retrieve; valid only if contentID is
specified.

revisionSelectionMethod false The revisionSelectionMethod to use
to select the document; valid only if
a contentID value is specified.

viewFormat false The view format of the conversion
(that is, Native or WebViewable).

useAlternate false If true, use the alternate file for
conversion; default is false.

SCS API Servlets

Using Content Integration Suite (CIS) 10-23

10.14.2.3 SCSDynamicURLServlet

10.14.3 Servlet Security
All servlets, except for SISFileDownloadServlet and SCSInitializeServlet, make UCPM
API calls and therefore must have a user context. By default, they will use the
HttpServletRequest.getUserPrincipal() method to determine the user ID and pass that
ID via the ISCSContext object to the UCPM API call. This behavior can be overridden
by specifying a couple of initialization parameters to the servlet:

■ principalLookupAllowed: If set to TRUE, the servlet will look for a user ID in the
configured scope. The default scope is session.

■ principalLookupScope: The scope of the lookup. Valid if
principalLookupAllowed is TRUE. The defined scope will be used to call the
getAttribute() method to discover the name of the current user; can be either
request, session, or application. The default is session.

■ principalLookupName: The name of the scoped parameter that holds the user ID.
Valid if principalLookupAllowed is TRUE. The default is principal.

■ getUserPrincipalEnabled: If set to FALSE, no call will be made to the
HttpServletRequest.getUserPrincipal() method to determine the user ID. The
default is TRUE.

■ principal: The default user ID if no user ID can be determined. The default is
guest.

To determine the current user ID, the servlets will first check the status of the
principalLookupAllowed flag. If TRUE, it looks up the name of the user by
determining the scope as set by the parameter principalLookupScope. With the current
scope, the getAttribute() method is called, using principalLookupName as the
parameter. If it is unable to locate a principal, it then checks the status of the
getUserPrincipalEnabled flag. If that flag is TRUE, it calls the
HttpServletRequest.getUserPrincipal() method. If that returns null, it uses the default
principal to execute the request.

Without any changes to the servlet, the default behavior is to check the
HttpServletRequest.getUserPrincipal() method and then use the default, if necessary.
The other checks on the request, session, and application are done only if specified in
the init-param of the servlet definition in the web.xml file.

10.14.4 Servlets and API Interaction
The ISCSFileAPI.getDynamicConversion() method performs a dynamic conversion of
the given document (assuming the Dynamic Converter component is installed on
Oracle Content Server). The getDynamicConversion() call will also rewrite the
returned URLs, so that they point back to the CIS servlets (as opposed to pointing

Property Required Description

adapterName true The adapter name to query for the
document; not passed in as a
parameter, but, rather, specified as
the last segment on the URL:

/cis-server/scsdynamic/
adaptername?...

fileUrl true The relative path to the Oracle
Content Server file to retrieve.

SCS APIs

10-24 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

directly to Oracle Content Server) and display properly in the web/Portal
environment when they are rendered.

The rewritten URLs point back to SCSDynamicURLServlet, which then retrieves the
item from Oracle Content Server, through the SCS API, and streams it back to the
client. The servlet determines the user ID for the context by the method described in
Section 10.14.3, "Servlet Security."

Since the servlet determines the user ID, the user who executed the
getDynamicConversion() call might not have the same user ID as the user clicking a
link on the rendered HTML. This would be the case if the
HttpServletRequest.getUserPrincipal() user ID does not match the ISCSContext user
ID

In that event, the SCSDynamicURLServlet can be directed to look for a user parameter
on the session by customizing the servlet with the methods described in
Section 10.14.3, "Servlet Security." Alternatively, SCSDynamicURLServlet can call the
getDynamicConversion() and pass in an ISCSConvertedUrlInfo object that allows a
user to optionally add parameters to the URL, which can then be used by your
application to identify the context.

For example, if your application stored the current User ID in a session attribute
named stellentPrincipal, you would modify the web.xml for the
SCSDynamicURLServlet (and other servlets, as necessary) as follows:

<servlet>
 <servlet-name>scsdynamic</servlet-name>
 <servlet-class>com.stellent.web.servlets.SCSDynamicURLServlet</servlet-class>
 <init-param>
 <param-name>sessionPrincipalAllowed</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>sessionPrincipalName</param-name>
 <param-value>stellentPrincipal</param-value>
 </init-param>
</servlet>

10.15 SCS APIs
The SCS Search, SCS File, SCS Document, and SCS Workflow APIs are discussed and
sample code provided. These APIs perform task such as searching, checking in and
out of content, and workflow approval and rejection.

It is assumed that you have initialized a CISApplication instance (referred to as m_
cisApplication) and created a context object (referred to as m_context). Additional
samples can be found in the SDK/Samples/CodeSamples directory.

The following subsections describe the SCS APIs:

■ Section 10.15.1, "SCS Search API"

■ Section 10.15.2, "SCS File API"

■ Section 10.15.3, "SCS Document APIs"

■ Section 10.15.4, "SCS Workflow API"

SCS APIs

Using Content Integration Suite (CIS) 10-25

10.15.1 SCS Search API
The ISCSSearchAPI is the command API implementation of the search commands. You
can use ISCSSearchAPI to search Oracle Content Server with the following code:

// get a handle to the SCS Search API
ISCSSearchAPI searchAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getSearchAPI ();
ISCSSearchResponse searchResponse =
 searchAPI.search (m_context, "dDocTitle substring 'HR'", 25);

// iterate all results
for (Iterator it = searchResponse.getResults ().iterator (); it.hasNext ();) {
 ISCSSearchResult searchResult = (ISCSSearchResult)it.next ();

// print out the title and author
System.out.println ("Found result: " + searchResult.getTitle () + " by " +
 searchResult.getAuthor ());
}

10.15.2 SCS File API
The ISCSFileAPI deals with the retrieval of files, and the dynamic conversions of files,
from Oracle Content Server. A file can be retrieved simply by passing in the ID for the
content. Alternatively, different versions of the file can be retrieved by using the
optional ISCSFileInfo object to obtain references to the Web and Alternate versions
of the file.

// get the SCS File API
ISCSFileAPI fileAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getFileAPI ();

ICISTransferStream transferStream =
 fileAPI.getFile (m_context, content.getDocumentID ());

InputStream stream = transferStream.getInputStream();
// do something with the stream...

You can also use the _createFileInfo() method to get an ISCSFileInfo object. This object
has several properties, which enable you to further select which rendition of a file to
retrieve. The following sample uses the fileinfo object to get the web-viewable
rendition of a file. A similar process can be used to get the Alternate rendition.

// get the web-viewable version of the file
ISCSFileInfo fileInfo =
 (ISCSFileInfo) m_cisApplication.getUCPMAPI ().createObject(ISCSFileInfo.class);
 fileInfo.setRendition ("Web");

// get the file
ICISTransferStream transferStream =
 fileAPI.getFile (m_context, content.getDocumentID (), fileInfo);
 InputStream stream = transferStream.getInputStream();
// do something with the stream...

The SCS File API can be used to generate HTML renditions of the content via the
Dynamic Converter component of Oracle Content Server (you must have the Dynamic
Converter component installed).

In a similar fashion to the getFile() calls, you can either call getDynamicConversion()
with an ID to retrieve the HTML conversion, or you can use the ISCSFileInfo and

SCS APIs

10-26 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

ISCSConvertedFileInfo objects to pass information into the API to process conversion
rules and apply explicit templates.

ICISTransferStream transferStream =
 fileAPI.getDynamicConversion (m_context, content.getDocumentID ());
// process the stream...

The following sample combines the preceding features in one method that
dynamically converts the alternate rendition of a given content object by using a
custom conversion template.

// create the converted file bean and set the properties
ISCSConvertedFileInfo convertedInfo = fileAPI.__createConvertedFileInfo ();
convertedInfo.setConversionLayout ("custom_layout");
convertedInfo.setRendition ("Alternate");

// execute the dynamic conversion
ICISTransferStream transferStream =
 fileAPI.getDynamicConversion (m_context, content.getDocumentID (),
 convertedInfo);
// do something with the stream...

10.15.3 SCS Document APIs
The SCS Document APIs deal with content in Oracle Content Server, including the
checking in and out of content, content information, and the deletion of content.

The following subsections describe these APIs:

■ Section 10.15.3.1, "ISCSDocumentCheckinAPI"

■ Section 10.15.3.2, "ISCSDocumentCheckoutAPI"

10.15.3.1 ISCSDocumentCheckinAPI
This API deals with the check-in of all content to Oracle Content Server. For a simple
check-in of a file from disk, the following code will work:

// get the checkin api
ISCSDocumentCheckinAPI checkinAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckinAPI ();

// create an empty content object with the specified content ID
ISCSContent content =
(ISCSContent) m_cisApplication.getUCPMAPI ().createObject(ISCSContent.class);

ISCSContentID contentID =
(ISCSContentID) m_cisApplication.getUCPMAPI ().createObject(ISCSContentID.class);
 contentID.setContentID("my_test_file");
 content.setContentID(contentID);
 content.setAuthor (m_context.getUser ());
 content.setTitle ("Custom Title");
 content.setSecurityGroup ("Public");
 content.setType ("ADACCT");

// get the file stream
File myFile = new File ("c:/test/testcheckin.txt");
ICISTransferStream transferStream =
 m_cisApplication.getUCPMAPI ().createTransferStream();
 transferStream.setFile(myFile);

SCS APIs

Using Content Integration Suite (CIS) 10-27

// execute the checkin
checkinAPI.checkinFileStream (m_context, content, transferStream);

In many deployments of Oracle Content Server, some required extended properties
need to be set for a new piece of content. These properties can be set on the content
object through the setProperty() call available to all ICISObject objects. For example,
some custom properties can be set as follows:

// set an extended property
 content.setProperty ("xCustomProperty", "Custom Value");

You can use the setProperty() method to set all the properties as opposed to calling the
setter methods. You can use either the JavaBean name (for example, title) or the native
Oracle Content Server property name that the JavaBean property corresponds to (that
is, dDocTitle). In the next sample, the title property will be set in three ways, all
equivalent:

// set through a standard property setter
 content.setTitle ("My Title");

// set a standard property using the JavaBean property name
 content.setProperty ("title", "My Title");

// set a property using the native Oracle Content Server property name
 content.setProperty ("dDocTitle", "My Title");

10.15.3.2 ISCSDocumentCheckoutAPI
This API deals with checking out content from Oracle Content Server. Content items
are identified by their ID.

// get the checkout api
ISCSDocumentCheckoutAPI checkoutAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI ().getDocumentCheckoutAPI ();

// checkout the file
checkoutAPI.checkout (m_context, content.getDocumentID ());

10.15.4 SCS Workflow API
The ISCSWorkflowAPI deals with the workflow commands such as approval and
rejection, viewing a user's workflow queue, and interacting with the Oracle Content
Server workflow engine. The following sample code shows an example of querying
the workflow engine for the workflows currently active in the system:

// get the workflow API
ISCSWorkflowAPI workflowAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI().getWorkflowAPI ();
ISCSWorkflowResponse workflowResponse =
 workflowAPI.getActiveWorkflows (m_context);

// iterate through the workflows
for (Iterator it = workflowResponse.getActiveWorkflows().iterator();
 it.hasNext ();) {
 ISCSWorkflow workflow = (ISCSWorkflow)it.next ();
 String name = workflow.getName ();
 String status = workflow.getWorkflowStatus ();
 System.out.println ("SCS workflow: " + name + "; status = " + status);
}

SCS APIs

10-28 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

The most common interaction with workflows is to reject them or approve them and
advance them to the next step in the workflow. The following code illustrates how to
get a user's personal workflow queue and approve all workflows pending:

// get the workflow API
ISCSWorkflowAPI workflowAPI =
 m_cisApplication.getUCPMAPI ().getActiveAPI().getWorkflowAPI ();

// get the workflow queue
ISCSWorkflowQueueResponse queueResponse =
 workflowAPI.getWorkflowQueueForUser (m_context);
for (Iterator it = queueResponse.getWorkflowInQueue().iterator(); it.hasNext();) {
ISCSWorkflowQueueItem queueItem =
 (ISCSWorkflowQueueItem)it.next();

// approve the workflow
workflowAPI.approveWorkflow(m_context, queueItem.getDocumentID ());
}

11

Using the Java Content Repository Adapter 11-1

11Using the Java Content Repository Adapter

This chapter describes how to use the Oracle Content Server Java Content Repository
(JCR) adapter.

This chapter includes the following sections:

■ Section 11.1, "Introduction to Using the Java Content Repository Adapter"

■ Section 11.2, "Installing Required APIs and Runtime Libraries"

■ Section 11.3, "Deploying the JCR Adapter"

■ Section 11.4, "Configuring Communication with Oracle Content Server"

■ Section 11.5, "Using Tables for Content Items, the Search Index, and the File Store"

11.1 Introduction to Using the Java Content Repository Adapter
The Java Content Repository API is a specification for accessing content repositories in
a standardized manner. This specification was developed under the Java Community
Process as JSR-170 and includes the Content Repository for Java API and the Java
Content Repository (JCR).

The standard APIs associated with the JSR-170 specification are functional and
exposed in the JCR adapter for Oracle Content Server. The JCR 1.0 API is required and
must be predeployed and integrated as part of the underlying framework.

Oracle adapters are fully standards based and compliant with both the J2EE Connector
Architecture and the Web Services Architecture. The JCR adapter can be deployed on
any JSR-170-compliant application to enable communication with Oracle Content
Server through the standards-based JCR specification.

11.1.1 JCR Data Model
The JCR standard uses a hierarchical data model based on extensible node types and
content properties. This data model is used by the repository's underlying storage
subsystems. For more information, see the JCR and JSR-170 standards.

■ The nt:folder node type represents a structured collection of nodes. It is closely
related to the directory or folder concept found in many file systems and is the
node type that is normally used when mapping file system directories to a content
repository.

■ The nt:resource child node is normally used instead of a plain binary property
when more resource metadata is required.

■ The nt:file node type represents a file with some content.

Introduction to Using the Java Content Repository Adapter

11-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ The nt:unstructured node type permits all kinds of properties and child nodes to
be added to a node. It is normally used when nothing is known about the content
that will be stored within a node.

11.1.2 Oracle Content Server JCR Adapter Data Model
This is the data model for the Oracle Content Server JCR adapter:

A Folder [nt:folder]
+- jcr:content [nt:resource]
 +- jcr:created DATE
 <returns dCreateDate for the folder>
 +- ojcr:owner STRING
 <returns dCollectionOwner for the folder>
 +- ojcr:creator STRING
 <returns dCollectionCreator if it is available,
 otherwise it returns dCollectionOwner>
 +- ojcr:lastModifier STRING
 <returns dCollectionModifier if it is available,
 otherwise it returns dCollectionOwner
 +- ojcr:lastModified STRING
 <returns dLastModifiedDate>
 +- ojcr:displayName STRING
 <returns dCollectionName for the folder>
 +- idc:defaultMetadata [nt:unstructured]
 <metadata that should by default be applied to content checked
 into this folder. see idc:metadata under nt:file/jcr:content for
 example fields>
 +- idc:folderMetadata [nt:unstructured]
 +- idc:dCollectionName STRING
 +- idc:dCreateDate DATE
 +- idc:dCollectionPath STRING
 +- idc:dLastModifiedDate DATE
 +- idc:dCollectionOwner STRING
 +- idc:dCollectionGUID STRING
 +- idc:dParentCollectionID INTEGER
 +- idc:dCollectionQueries INTEGER
 +- idc:dCollectionEnabled INTEGER
 +- idc:dCollectionInherit INTEGER
 +- idc:dChildManipulation INTEGER
 +- idc:dCollectionID INTEGER
 +- idc:dCollectionCreator STRING
 +- idc:dCollectionModifier STRING
 +- idc:folderPermissions [nt:unstructured]
 +- idc:userCanRead INTEGER
 +- idc:userCanWrite INTEGER
 +- idc:userCanDelete INTEGER

A Document.txt [nt:file]
+- jcr:content [nt:resource]
 +- jcr:data=...
 +- jcr:created DATE
 <returns dDocCreatedDate from the RevClasses table>
 +- ojcr:creator STRING
 <returns dDocCreator from the RevClasses table>
 +- ojcr:lastModifier STRING
 <returns dDocLastModifier from the RevClasses table>
 +- ojcr:lastModified STRING
 <returns dDocLastModifiedDate >
 +- ojcr:author STRING

Installing Required APIs and Runtime Libraries

Using the Java Content Repository Adapter 11-3

 <returns dDocAuthor for the document>
 +- ojcr:comment STRING
 <if xComments exists as a metadata field, that is returned>
 +- ojcr:displayName STRING
 <returns the filename>
 +- ojcr:language STRING
 <if xIdcLanguage exists as a metadata field, that is returned>
 +- idc:metadata [nt:unstructured]
 <returns values for everything in the RevClasses table,
 please see the definition of that table to see exactly what is defined
 +- idc:dID INTEGER
 +- idc:dDocName STRING
 +- idc:dDocTitle STRING
 +- idc:dDocAuthor STRING
 +- idc:dRevClassID INTEGER
 +- idc:dRevisionID INTEGER
 +- idc:dRevLabel STRING
 +- idc:dIsCheckedOut INTEGER
 +- idc:dSecurityGroup STRING
 +- idc:dCreateDate DATE
 +- idc:dInDate DATE
 +- idc:dOutDate DATE
 +- idc:dStatus STRING
 +- idc:dReleaseState STRING
 +- idc:dWebExtension STRING
 +- idc:dProcessingState STRING
 +- idc:dMessage STRING
 +- idc:dDocAccount STRING
 +- idc:dReleaseDate DATE
 +- idc:dRendition1 STRING
 +- idc:dRendition2 STRING
 +- idc:dIndexerState STRING
 +- idc:dPublishType STRING
 +- idc:dPublishState STRING
 +- idc:dWorkflowState STRING
 +- idc:dRevRank INTEGER
 <all custom metadata properties for a revision
 like idc:xComments STRING>

11.2 Installing Required APIs and Runtime Libraries
The JCR adapter can be used with any application that supports the JSR-170
specification, but the adapter requires a custom integration. This custom integration
requires that an underlying framework consisting of several APIs and runtime
libraries be installed.

The following subsections describe how to install or deploy these APIs and runtime
libraries:

■ Section 11.2.1, "Installing ADF Runtime Libraries"

■ Section 11.2.2, "Deploying Remote Intradoc Client (RIDC)"

■ Section 11.2.3, "Deploying the JCR API"

■ Section 11.2.4, "Installing the JCR Integration Libraries"

■ Section 11.2.5, "Installing the XML Integration Files"

Installing Required APIs and Runtime Libraries

11-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

11.2.1 Installing ADF Runtime Libraries
Several of the Application Development Framework (ADF) runtime libraries are
required and must be installed on your application. These files are available in your
Oracle JDeveloper instance. You can perform the installation using the ADF Runtime
Installer wizard in JDeveloper, or you can do it manually.

The following ADF runtime libraries must be deployed on your application:

■ adf-share-base.jar

■ adf-share-ca.jar

■ adf-share-support.jar

■ adflogginghandler.jar

If you choose to manually install these libraries on your application, they must be
installed in the lib directory. For example, an installation on Tomcat would use the
TOMCAT_HOME/common/lib directory, and an installation on Oracle WebLogic
Server would use the WL_HOME/ADF/lib directory. (For Oracle WebLogic Server,
you must create the ADF and lib directories.)

11.2.2 Deploying Remote Intradoc Client (RIDC)
Remote Intradoc Client must be deployed on your application. RIDC provides a thin
communication API for communication with Oracle Content Server. This API removes
data abstractions to the Oracle Content Server instance while still providing a wrapper
to handle connection pooling, security, and protocol specifics. RIDC is included with
the JCR adapter distribution file and is available from the Oracle Technology Network
(OTN).

For more information, see Chapter 9, "Using Remote Intradoc Client (RIDC)."

11.2.3 Deploying the JCR API
The Java Content Repository (JCR) API must be deployed on your application. The
JCR API is available from Oracle JDeveloper or for download from The Apache
Software Foundation web site at http://www.apache.org/

The JCR API is also part of the JSR-170 specifications download from the Java
Community Process web site at

http://www.jcp.org/

11.2.4 Installing the JCR Integration Libraries
The following JCR integration libraries are required and must be deployed on your
application:

■ jcr-common-runtime.jar

■ ojcr.jar

■ ojdbc5.jar

These files are available in your Oracle JDeveloper instance.

Note: All of these APIs and runtime libraries are provided with
Oracle JDeveloper and WebCenter, with the exception of the JCR
adapter and Remote Intradoc Client (RIDC).

Configuring Communication with Oracle Content Server

Using the Java Content Repository Adapter 11-5

11.2.5 Installing the XML Integration Files
The following XML integration libraries are required and must be deployed on your
application:

■ xmlparserv2.jar

■ xquery.jar

These files are available in your Oracle JDeveloper instance.

11.3 Deploying the JCR Adapter
The JCR adapter must be deployed on your application to enable communication with
an Oracle Content Server instance. The JCR adapter utilizes Remote Intradoc Client
(RIDC) as part of the underlying framework and works in conjunction with the
general JSR-170 architecture.

Follow the general instructions of your specific JSR-170-compliant application for
deploying JCR adapters. The JCR adapter uses an embedded deployment descriptor
(rep_descriptor.xml). Upon deployment, many applications will use the deployment
descriptor to populate the configuration entries as part of an administration interface
or deployment wizard. If your application does not use an administration interface or
deployment wizard, you will need to edit the deployment descriptor directly and
provide the required values.

11.4 Configuring Communication with Oracle Content Server
You must supply several configuration values to enable communication between the
JCR adapter and Oracle Content Server. The following subsections describe these
configuration values:

■ Section 11.4.1, "Supplying a Communication Method"

■ Section 11.4.2, "Configuring Socket Communication (Listener Port)"

■ Section 11.4.3, "Configuring Secure Socket Communication (SSL)"

■ Section 11.4.4, "Configuring Web Communication (Web Server Filter)"

■ Section 11.4.5, "Configuring the User Agent"

■ Section 11.4.6, "Supplying Cache Settings"

11.4.1 Supplying a Communication Method
You must supply the provider name and communication method with this
configuration setting:

CIS_SOCKET_TYPE_CONFIG: This configuration setting defines the communication
method with Oracle Content Server. The options are socket, socketssl, and web.
For example:

oracle.stellent.jcr.configuration.cis.config.socket.type

■ The socket (listener port) communication method specifies that RIDC should use
the Oracle Content Server listener port. If socket is used as the communication
method, you must provide the required configuration values.

Configuring Communication with Oracle Content Server

11-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ The socketssl communication method specifies that secure socket
communication (SSL) be used as the communication protocol. If socketssl is
used as the communication method, you must provide configuration values for
both socket communication and secure socket communication.

■ The web (web server filter) communication method specifies that RIDC should
communicate through the web server filter, which requires individual
authentication for each request. If web is used as the communication method, you
must provide the required configuration value.

11.4.2 Configuring Socket Communication (Listener Port)
You must supply values for these configuration settings if Oracle Content Integration
Suite (CIS) is connecting through the Oracle Content Server listener port (socket
communication) or if secure socket communication (SSL) is used as the
communication protocol:

■ SERVER_HOST_CONFIG: The hostname of the machine on which Oracle Content
Server is running. The default value is localhost.

oracle.stellent.jcr.configuration.server.host

■ SERVER_PORT_CONFIG: The port on which Oracle Content Server is listening.
The default value is 16200.

oracle.stellent.jcr.configuration.server.port

11.4.3 Configuring Secure Socket Communication (SSL)
You must supply values for both socket communication (listener port) and these
configuration settings if secure socket communication (SSL) is used as the
communication protocol:

■ KEYSTORE_LOCATION: The location and name of the keystore file.

oracle.stellent.jcr.configuration.ssl.keystore.location

■ KEYSTORE_PASSWORD: The password for the keystore file.

oracle.stellent.jcr.configuration.ssl.keystore.password

■ PRIVATE_KEY_ALIAS: The private key alias for authentication.

oracle.stellent.jcr.configuration.ssl.privatekey.alias

■ PRIVATE_KEY_PASSWORD: The private key password.

oracle.stellent.jcr.configuration.ssl.privatekey.password

For information about socket communication values, see Section 11.4.2, "Configuring
Socket Communication (Listener Port)."

11.4.4 Configuring Web Communication (Web Server Filter)
You need to supply a value for one of these configuration settings if CIS is connecting
through the web server filter (web communication):

■ SERVER_WEB_CONTEXT_ROOT_CONFIG: The web server context root for the
Oracle Content Server instance, in the format /context_root. This setting

Using Tables for Content Items, the Search Index, and the File Store

Using the Java Content Repository Adapter 11-7

provides a more seamless integration for Oracle WebCenter and for other
application integrations.

For example: /cs

■ SERVER_WEB_URL_CONFIG: The full URL to the Oracle Content Server web
server extension. Include the protocol (usually http or https), host name, port,
relative web root, and extension root (usually idcplg). If a port other than port 80
is used, the port number needs to be specified.

For example: http://myserver.example.com:8080/cs/idcplg/

oracle.stellent.jcr.configuration.server.web.url

11.4.5 Configuring the User Agent
You can optionally supply a value for this configuration setting to identify JCR
requests:

■ CIS_USER_AGENT_CONFIG: A string to append to the RIDC user agent. This
value can be set to help identify requests made by the JCR adapter.

oracle.stellent.jcr.configuration.cis.config.userAgent

11.4.6 Supplying Cache Settings
You can optionally supply values for these cache settings:

■ VCR_CACHE_INVALIDATION_INTERVAL: Polling interval used by the Oracle
UCM SPI to check for cache invalidations, in minutes. Defaults to 0 (zero), cache
invalidation disabled. The minimum value is 2 minutes.

com.oracle.content.spi.ucm.CacheInvalidationInterval

■ VCR_BINARY_CACHE_MAX_SIZE: Maximum size of documents stored in the
VCR binary cache, in bytes. The default value is 102400 (800 KB).

com.bea.content.federated.binaryCacheMaxEntrySize

11.5 Using Tables for Content Items, the Search Index, and the File Store
The following subsections describe how to search tables for information about content
items:

■ Section 11.5.1, "Finding Information for Each Content Item"

■ Section 11.5.2, "Using a Search Index"

■ Section 11.5.3, "Using the File Store Provider"

11.5.1 Finding Information for Each Content Item
Content managed by Oracle Content Server is primarily tracked by four tables:

■ Revisions

■ Documents

■ DocMeta

■ RevClasses

These tables track the content's metadata, state, and actions as well as information that
is associated with each file.

Using Tables for Content Items, the Search Index, and the File Store

11-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Revisions
This table tracks core information about each revision of the content:

■ One row per revision

■ Different revisions with the same content that share the same content ID and
RevClass ID

■ System metadata for each revision:

– Metadata for revisions: content ID, title, author, check-in date, and so on

– Metadata for categorization and security: type, security group, doc account

■ State information for various actions:

– Indexing

– Workflow

– Document conversion

■ Numeric IDs and text labels to help track and retrieve a revision:

– A unique dID value for each revision (the primary key in the table)

– A unique dRevClassID value for the content

– A revision ID to mark the revision number for each revision

Documents
This table tracks information for files that are associated with each content revision:

■ One row per revision

■ Multiple rows per revision, one row for each of these files:

– Primary

– Alternate

– Web-viewable

■ File information: original name, location, language, size, and so on

DocMeta
This table contains extended metadata fields:

■ One row per revision

■ One column per metadata field

■ Definition for each field stored in the DocMetaDefinition table

RevClasses
This table tracks information for each content revision:

■ One row per content item

■ Row locked for content modification

■ Unique dDocName and RevClassId values

Using Tables for Content Items, the Search Index, and the File Store

Using the Java Content Repository Adapter 11-9

■ Current indexed revision

■ Dates and users:

– Creation date and creator

– Last modified date and user

– Owner

11.5.2 Using a Search Index
Oracle Content Server provides various ways to search the repository. Metadata
searches can be based on the Revisions, Documents, DocMeta, and RevClasses tables.
To efficiently perform text searches, the full-text search feature of Oracle Database can
be utilized, and the IdcText table can be created to hold the search index.

IdcText
This table contains selected columns from the Revisions, Documents, DocMeta, and
RevClasses tables as well as columns for other data:

■ It contains a predefined list from the Revisions, RevClasses, and Documents
tables.

■ It contains custom metadata that is indicated as searchable from the DocMeta
table.

■ The OtsMeta column (CLOB field) contains an SDATA section and additional
indexable fields that are not in the other columns. However, SDATA has significant
limitations.

■ The OtsContent column contains an indexable document.

■ The ResultSetInterface column can be used for sorting or count estimation, or to
drill down.

11.5.3 Using the File Store Provider
The File Store Provider can be used to distribute files managed by Oracle Content
Server on the file system, a database, other devices, or any combination of these. The
files are stored in SecureFiles in Oracle Content Server 11g. For database-backed file
storage, the FileStorage and FileCache tables store the information related to each file.

FileStorage
This table stores file information and some additional information:

■ File stored in a BLOB field (SecureFiles in Oracle Content Server 11g)

The database administrator can turn on additional BLOB optimizations. For
example, deduplication, compression, and encryption with SecureFiles.

■ Values for dID and dRenditionID that point to a particular file managed by
Oracle Content Server

■ Tracking information in a small number of fields: last modified date and file size

FileCache
This table stores pointers for files cached on the file system, for certain types of
processing (extraction, conversion, and so on), and for quick access by the web server.
This pointer is also used to perform cleanup.

Using Tables for Content Items, the Search Index, and the File Store

11-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

12

Using Oracle UCM Web Services 12-1

12Using Oracle UCM Web Services

This chapter describes how to use Oracle Universal Content Management (Oracle
UCM) web services with Oracle WebLogic Server web services to manage Oracle
Content Server.

This chapter includes the following sections:

■ Section 12.1, "Overview of Oracle UCM Web Services"

■ Section 12.2, "Oracle UCM Web Services"

■ Section 12.3, "Installation and Configuration"

■ Section 12.4, "Security"

12.1 Overview of Oracle UCM Web Services
Web services reside as a layer on top of existing software systems such as application
servers, .NET servers, Oracle WebLogic Server, and Oracle Content Server. Web
services can be used as a bridge to dissimilar operating systems or programming
languages. Web services are adapted to the Internet as the model for communication
and rely on the HyperText Transfer Protocol (HTTP) as the default network protocol.
Thus, using web services, you can build applications using a combination of
components.

Oracle UCM web services work with Oracle WebLogic Server web services to perform
management functions for Oracle Content Server installed on Oracle WebLogic Server.
Oracle WebLogic Server web services provide SOAP capabilities, and Oracle UCM
web services include several built-in SOAP requests. Oracle UCM web services are
automatically installed with an Oracle UCM instance, but they require additional
configuration to set up security.

Core enabling technologies for Oracle UCM web services include:

■ SOAP (Simple Object Access Protocol) is a lightweight XML-based messaging
protocol used to encode the information in web service request and response
messages before sending them over a network. SOAP requests are sent by the
Oracle UCM web services to the Oracle WebLogic Server web services for
implementation. For more information about SOAP, see Simple Object Access
Protocol (SOAP) at http://www.w3.org/TR/soap12.

■ Web Services Security (WS-Security) is a standard set of SOAP extensions for
securing web services for confidentiality, integrity, and authentication. For Oracle
UCM web services, WS-Security is used for authentication, either for a client to
connect to the server as a particular user or for one server to talk to another as a
user. For more information, see the OASIS Web Service Security web page at

http://www.w3.org/TR/soap12

Oracle UCM Web Services

12-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wss.

■ Web Service Policy (WS-Policy) is a standard for attaching policies to web services.
For Oracle UCM web services, policies are used for applying WS-Security to web
services. The two supported policies are username-token security and Security
Assertion Markup Language (SAML) security.

Historically, Oracle used Oracle Web Services Manager (OWSM) to secure its web
services, and Oracle WebLogic Server used Web Services Security Policy
(WS-SecurityPolicy) to secure its web services. Because web services security is
partially standardized, some OWSM and WS-SecurityPolicy policies can work
with each other.

Oracle UCM web services (/idcws as context root) are SOAP based, while Oracle
UCM native web services (/idcnativews as context root) are JAX_WS based. Both
kinds of web services can be assigned OWSM policies through the Oracle
WebLogic Server Administration Console.

The generic Oracle UCM web services are JAX-WS based and can be assigned
OWSM policies and managed by OWSM. The native Oracle UCM web Services are
SOAP based and can only support WS-Policy policies managed through the
Oracle WebLogic Server Administration Console.

For more information about OWSM, see the Oracle Fusion Middleware Security and
Administrator’s Guide for Web Services.

A subset of WebLogic web service policies interoperate with OWSM policies. For
more information, see "Interoperability with WebLogic Web Service Policies" in
Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

Web Services Security Policy (WS-SecurityPolicy) is a set of security policy
assertions for use with the WS-Policy framework. For more information, see Web
Services Security Policy (WS-SecurityPolicy) specification at
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
securitypolicy-1.2-spec-os.html.

■ SAML is an XML standard for exchanging authentication and authorization
between different security domains. For more information, see the Security
Assertion Markup Language (SAML) specification at
http://docs.oasis-open.org/security/saml/v2.0/.

■ WebLogic Scripting Tool (WLST) is a command-line tool for managing Oracle
WebLogic Server. For more information, see Oracle Fusion Middleware WebLogic
Scripting Tool Command Reference.

12.2 Oracle UCM Web Services
Oracle UCM provides two types of web services: a general (generic) JAX-WS based
web service, and a native SOAP based web service. The two types of web services
reside in two different context roots. The context root is the primary identifier in the
URL for accessing the web services.

The context roots follow:

Note: Use OWSM policies over Oracle WebLogic Server web services
whenever possible. You cannot mix your use of OWSM and Oracle
WebLogic Server web services policies in the same web service.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html

Installation and Configuration

Using Oracle UCM Web Services 12-3

■ /idcws/ - Use this context root for general access to an Oracle Content Server
instance through any regular web services client.

■ /idcnativews/ - The Remote IDC client (RIDC) uses the native web services. It
is recommended that you do not develop custom client against these services.

The following table describes the Oracle UCM web service in the /idcws/ context
root.

The following table describes the Oracle UCM web services in the idcnativews/
context root.

12.3 Installation and Configuration
The Oracle UCM web services are installed and ready to use by default with the
Oracle UCM EAR. However, unless you configure WS-Security on any of the Oracle
UCM web services, all connections to Oracle Content Server will use the “anonymous”
user. Additional configuration is required to enable authentication.

Oracle UCM Web Service Descriptions

GenericSoapService This service uses a generic format similar to HDA for its SOAP
format. It is almost identical to the generic SOAP calls that you
can make to Oracle Content Server when you set IsSoap=1.
Details of the format can be found in the published WSDL at
idcws/GenericSoapPort?WSDL.

You can apply WS-Security to GenericSoapService through
WS-Policy. Oracle Content Server supports Oracle Web Services
Manager (OWSM) policies for Security Assertion Markup
Language (SAML) and username-token.

As a result of allowing WS-Security policies to be applied to this
service, streaming Message Transmission Optimization
Mechanism (MTOM) is not available for use with this service.
Very large files (greater than the memory of the client or the
server) cannot be uploaded or downloaded.

Oracle UCM Web
Services Descriptions

IdcWebRequestService This is the general Oracle UCM service. Essentially it is a normal
socket request to Oracle Content Server, wrapped in a SOAP
request. Requests are sent to Oracle Content Server using
streaming Message Transmission Optimization Mechanism
(MTOM) in order to support large files.

Streaming MTOM and WS-Security do not mix. As a result, do not
apply WS-Security to this service, because it will break the
streaming file support. In order to achieve security, you must first
log in using the IdcWebLoginService, then use the same
JSESSIONID received from that service in the next call to
IdcWebRequestService as a cookie.

IdcWebLoginService This service is solely for adding security to IdcWebRequestService
calls. There are no parameters for this service; it simply creates a
session. The important field to retrieve is the JSESSIONID for
future calls to IdcWebRequestService.

If you want to use WS-Security with IdcWebRequestService, then
apply it here. Oracle Content Server supports Oracle Web Services
Manager (OWSM) policies for Security Assertion Markup
Language (SAML) and username-token.

Security

12-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

12.4 Security
The following subsections describe how to configure security for Oracle UCM web
services.

■ Section 12.4.1, "Configuring WS-Security through WS-Policy"

■ Section 12.4.2, "Configuring SAML Support"

12.4.1 Configuring WS-Security through WS-Policy
Web service security (WS-Security) is set through the use of web service policies
(WS-Policy). Security policies can be set to web services in order to define their
security protocol. In particular, the Oracle UCM web services support OWSM policies.

Two general classes of policies are supported: username-token, and SAML. The
following is a list of supported OWSM policies:

■ oracle/wss11_saml_token_with_message_protection_service_policy

■ oracle/wss11_username_token_with_message_protection_service_policy

To set WS-Policy
1. Access the Oracle WebLogic Server Administration Console.

2. Select Deployments from the side panel, then expand either the Oracle UCM
native web services or the Oracle UCM generic web services.

3. Select IdcWebLogicService or GenericSoapService, then click the Configuration
tab, and then click the WS-Policy tab.

4. Click the main service. From here you can choose which OWSM policies to add.

5. When you have finished adding OWSM policies, you must update the Oracle
UCM native web services or the Oracle UCM generic web services.

12.4.2 Configuring SAML Support
To provide SAML support so that the client can be the identity provider (that is, assert
credentials) then additional steps must be taken to configure a keystore, configure a
JPS provider to use the keystore, create a client credential store (CSF), and configure a
Java client to use the keystore and CSF.

12.4.2.1 Configuring a Keystore
Both the server and client need a copy of a keystore. The server uses the keystore to
authenticate the credentials passed by the client. A self-signed certificate can work for
this situation, because the keystore is used only as a shared secret.

You can use the keytool utility to generate a self-signed certificate. Many of the
values used in the following example are the defaults for the domain’s
config/fmwconfig/jps-config.xml file (explained in the next section):

$ keytool -genkey -alias orakey -keyalg RSA -keystore default-keystore.jks
-keypass welcome -storepass welcome

Any relevant data can be entered in the keytool command, but the specifics do not
matter except for the passwords for the keystore and the certificate, which the client
uses.

Security

Using Oracle UCM Web Services 12-5

12.4.2.2 Configuring Server JPS to Use the Keystore
Configuring the keystore on the Oracle WebLogic Server domain involves editing the
$domain/config/fmwconfig/jps-config.xml file.

A provider must be defined in <serviceProviders>. A provider should be defined by
default.

<serviceProvider type="KEY_STORE" name="keystore.provider"
 class="oracle.security.jps.internal.keystore.KeyStoreProvider">
 <description>PKI Based Keystore Provider</description>
 <property name="provider.property.name" value="owsm"/>
</serviceProvider>

When you have verified the provider, or created or modified a provider, a keystore
instance must be defined in <serviceInstances>. A keystore instance should be defined
by default.

<serviceInstance name="keystore" provider="keystore.provider"
 location="./default-keystore.jks">
 <description>Default JPS Keystore Service</description>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
</serviceInstance>

The location of the keystore instance must be set to the same location as when you
created the keystore.

Additionally, the keystore must be added to <jpsContexts>. This setting should be in
the jps-config.xml file by default.

<jpsContext name="default">
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="keystore"/>
 <serviceInstanceRef ref="policystore.xml"/>
 <serviceInstanceRef ref="audit"/>
 <serviceInstanceRef ref="idstore.ldap"/>
</jpsContext>

12.4.2.3 Creating a Client CSF
On the client, there must be a credential store to store the keys to unlock the keystore.
A Credential Store Framework (CSF) can be made in a variety of ways, but one way is
to use the Oracle WebLogic Server Scripting Tool (WLST). You must use the wlst
command from the EM interface.

In order to use WLST to create a credential, you must be connected to the Oracle
WebLogic Server domain. Note that the resulting wallet can be used only on the client.

$./wlst.sh

$ connect()

$ createCred(map="oracle.wsm.security", key="keystore-csf-key", user="keystore",
password="welcome")
$ createCred(map="oracle.wsm.security", key="sign-csf-key", user="orakey", password="welcome")
$ createCred(map="oracle.wsm.security", key="enc-csf-key", user="orakey", password="welcome")

The preceding example creates a CSF wallet at
$domain/config/fmwconfig/cwallet.sso that must be given to the client. You need to

Security

12-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

change the values from the example to match the alias and passwords from the
keystore you created.

12.4.2.4 Configuring a Java Client to Use the Keystore and CSF
In order to configure a Java client to use the keystore and CSF, there are two
requirements:

■ The Java client must have a copy of both the keystore and the CSF wallet.

■ There must be a client version of the jps-config.xml file. This file must contain
entries for locating the keystore as well as the CSF wallet. To configure security,
the Java system property “oracle.security.jps.config” must point towards the
jps-config.xml file. This can be set during execution in the client.

System.setProperty("oracle.security.jps.config", “jps-config.xml”);

The following example shows a jps-config.xml file for clients based on the
configuration provided in previous examples.

<jpsConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="jps-config.xsd">
 <serviceProviders>
 <serviceProvider name="credstoressp"
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider">
 <description>SecretStore-based CSF Provider</description>
 </serviceProvider>

 <serviceProvider type="KEY_STORE" name="keystore.provider"
class="oracle.security.jps.internal.keystore.KeyStoreProvider">
 <description>PKI Based Keystore Provider</description>
 <property name="provider.property.name" value="owsm"/>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <serviceInstance name="credstore" provider="credstoressp" location="./">
 <description>File Based Credential Store Service Instance</description>
 </serviceInstance>

 <serviceInstance name="keystore" provider="keystore.provider"
location="./default-keystore.jks">
 <description>Default JPS Keystore Service</description>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="keystore"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

13

Customizing DesktopTag 13-1

13Customizing DesktopTag

This chapter describes how to customize the DesktopTag component of Oracle Content
Server to specify properties for checked out versions of Microsoft Word, Excel, and
PowerPoint files.

This chapter includes the following sections:

■ Section 13.1, "About the DesktopTag Component"

■ Section 13.2, "System Requirements"

■ Section 13.3, "DesktopTag Component Operation"

■ Section 13.4, "Using the DesktopTag Component"

■ Section 13.5, "Configuring the DesktopTag Component"

13.1 About the DesktopTag Component
DesktopTag is an Oracle Content Server component that manages custom properties in
files created using the default formats of Microsoft Office applications (2002 or later
versions). The component adds custom properties to Word documents (DOC, DOCX,
and DOT files), Excel spreadsheets (XLS, XLSX, and XLT files), and PowerPoint
presentations (PPT and PPTX files) when they are checked out of Oracle Content
Server, and removes this information when they are checked in again.

The properties to be added to the Microsoft Office files are specified in the DesktopTag
configuration file. For more information, see Section 13.5, "Configuring the
DesktopTag Component."

The custom properties provide information about where a content item resides in
Oracle Content Server so that the file can be checked in to the right location, with the
right content management parameters, and so on. This is particularly useful if the
content item is processed outside of Oracle Content Server after check-out; for
example, in an external workflow (that is, one that is not managed by Oracle Content
Server). Also, the information can be exposed to users; for example, in the task area of
Microsoft Office applications.

DesktopTag uses the Oracle Clean Content technology to add custom properties to and
remove them from Microsoft Office files.

13.2 System Requirements
The DesktopTag component is included with Oracle Content Server 11gR1. It must be
enabled on Oracle Content Server because it is not enabled by default. The DesktopTag
component requires that the OracleCleanContent component is enabled as well. The

DesktopTag Component Operation

13-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

OracleCleanContent component is enabled with typical Oracle Content Server
installations.

You can enable components using Component Manager, which is launched from the
Content Admin Server page. For more information about enabling components, see
"Enabling and Disabling a Component" in the Oracle Fusion Middleware System
Administrator's Guide for Oracle Content Server.

DesktopTag can add custom properties to the following Microsoft Office applications:

■ Microsoft Word 2002 (XP) and later versions

■ Microsoft Excel 2002 (XP) and later versions

■ Microsoft PowerPoint 2002 (XP) and later versions

13.3 DesktopTag Component Operation
The DesktopTag component modifies the check-out (file get) and check-in operations
for Oracle Content Server.

13.3.1 File Get Operation
The DesktopTag component installs a service handler override for the createFileName
method, which should be called for all file get operations that go through the server
(native URL requests do not call this method). If the file type is supported by the
configuration, a set of custom properties are added to the file. These custom properties
are used in various ways by the DesktopIntegrationSuite component and are made
available to other components.

13.3.2 File Check-In Operation
The DesktopTag component installs an extension filter that hooks the
validateCheckinData filter, which is part of the DesktopIntegrationSuite component. It
removes the custom properties that were added by a file get operation before the data
is checked in to the server.

The result set returned for this operation includes the properties that would be added
to the Microsoft Office file in a subsequent file get operation. This is provided to allow
the client to modify the file rather than having to get a new copy. This method calls the
desktopTagGetFilter extension filter, just like the file get operation.

13.4 Using the DesktopTag Component
The functionality offered by the DesktopTag component is provided entirely in the
background. There is no direct user interaction. It is typically used for content tracking
purposes, although the information can be exposed to users.

Figure 13–1 shows an example of a Word 2003 document without custom properties
added by DesktopTag, and Figure 13–2 shows a number of custom properties added.

The properties that are added to the Microsoft Office files depend on the settings in the
DesktopTag configuration file (see Section 13.5, "Configuring the DesktopTag
Component"). In Figure 13–2, the content ID (dDocName), user name (dUser), and
unique content item identifier (dID) are added to the Word document. The
DISProperties custom property is always added. It lists all custom properties added
by DesktopTag (as specified in the configuration file), and is used to ensure that the
correct custom properties are deleted when a file is checked into Oracle Content Server
again.

Using the DesktopTag Component

Customizing DesktopTag 13-3

Figure 13–1 Word 2003 Document Without Custom Properties Added by DesktopTag

Figure 13–2 Word 2003 Document with Custom Properties Added by DesktopTag

Using the DesktopTag Component

13-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

13.4.1 Viewing Custom Properties
Users can view the custom properties of a Microsoft Office file as follows:

■ Microsoft Office XP (2002) and 2003: Choose File, then Properties, and then click
the Custom tab.

■ Microsoft Office 2007: Click the Office button in the application, then choose
Prepare, then Properties, then Document Properties, then Advanced Properties,
and then click the Custom tab.

■ Microsoft Office 2010: Open the File panel, then click Info, then Properties, then
Advanced Properties, and then click the Custom tab.

Figure 13–3 Custom Document Properties (Microsoft Word 2003)

13.4.2 Checking in Documents from Outside Oracle Content Server
These custom document properties allow Desktop Integration Suite to keep track of
where a managed file resides in an Oracle Content Server instance. This, in turn,
enables users to check a Microsoft Office document back in to Oracle Content Server
even from outside a content management integration context. This feature can be
useful in a number of situations; for example:

■ A user receives a managed Word document from someone else, as an attachment
to an e-mail.

■ A user copies a managed Word document from a server in the integration
hierarchy to a folder outside that hierarchy.

Configuring the DesktopTag Component

Customizing DesktopTag 13-5

In either case, users can open the file in Microsoft Word, make changes, and then check
the file back in to the server using the Oracle UCM menu or ribbon in Word. Desktop
Integration Suite checks the custom properties embedded in the Word document to
find out where to upload the file to.

13.5 Configuring the DesktopTag Component
The DesktopTag component is configured using a configuration file, desktoptag_
environment.cfg, which is located in the component installation directory. This is a
plain-text file that you can edit in any text editor. The component installation directory
is MW_HOME/ECM_ORACLE_HOME/ucm/idc/components/DesktopTag.

The following properties can be set in the configuration file:

■ DesktopTagFormats

■ DesktopTagPrefix

■ DesktopTagFields

■ DesktopTagPrefixCustom

■ DesktopTagFieldsCustom

■ DesktopTagPrefixExtended

■ DesktopTagFieldsExtended

■ DefaultTaskPaneUrl

■ DesktopTagLog

■ DesktopTagFormatsExclude

13.5.1 DesktopTagFormats Property
The value of the DesktopTagFormats property is a comma-separated list of MIME
data types that are processed for tagging. If the data type is not in the list, it is not
processed. If this parameter is commented out (using #), empty, or not included in the
configuration file at all, then all supported data types are processed.

Example:
DesktopTagFormats=application/msword,application/ms-excel

If you include a nonsupported MIME data type in the list, DesktopTag will attempt to
process the file, and an error event is included in the log file if logging is enabled.

13.5.2 DesktopTagPrefix Property
The value of the DesktopTagPrefix property is the prefix added to the names of all
standard Oracle Content Server metadata fields in the list of standard DesktopTag
fields (see Section 13.5.3, "DesktopTagFields Property"). This prefix is not added if a
specific property name is defined.

If this parameter is commented out (using #), empty, or not included in the
configuration file at all, then DIS is used as the default.

Example: DesktopTagPrefix=STD

Note: Make sure that you restart Oracle Content Server after making
changes to the DesktopTag configuration file.

Configuring the DesktopTag Component

13-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

13.5.3 DesktopTagFields Property
The value of the DesktopTagFields property is a comma-separated list of all
standard Oracle Content Server metadata fields that are added to Microsoft Office files
as custom properties. You should use the server-internal field names (for example,
dDocName for the content ID). See the Oracle Fusion Middleware Idoc Script Reference
Guide for the internal field names of the standard metadata fields.

You can set a specific property name for a metadata field by adding it in parentheses
after the field name. This is especially useful if the property name will be exposed to
end users (for example, in the task area in Microsoft Office 2007 applications).

Example: DesktopTagFields=dID,dDocName,dUser(User Name)

Figure 13–4 shows the result of the preceding DesktopTagFields definition
(assuming the default DIS prefix is used).

Figure 13–4 Example of Property Names

13.5.4 DesktopTagPrefixCustom Property
The value of the DesktopTagPrefixCustom property is the prefix added to the
names of all custom Oracle Content Server metadata fields in the list of custom
DesktopTag fields (see Section 13.5.4, "DesktopTagPrefixCustom Property"). This
prefix is not added if a specific property name is defined.

If this parameter is commented out (using #), empty, or not included in the
configuration file at all, then DISC is used as the default.

Example: DesktopTagPrefixCustom=CST

13.5.5 DesktopTagFieldsCustom Property
The value of the DesktopTagFieldsCustom property is a comma-separated list of
all custom Oracle Content Server metadata fields that will be added to Microsoft
Office files as custom properties. You define these fields in exactly the same manner as
standard metadata fields (see Section 13.5.3, "DesktopTagFields Property").

Example: DesktopTagFieldsCustom=xComments(Extra
Info),xArchiveStatus

Note: The DISProperties custom property is always added. Its
value is a list of all properties added by DesktopTag.

Note: The standard and custom Oracle Content Server metadata
fields are processed exactly the same by DesktopTag. The separate
configuration entries are there only to make it easier to distinguish
between these fields.

Configuring the DesktopTag Component

Customizing DesktopTag 13-7

13.5.6 DesktopTagPrefixExtended Property
The value of the DesktopTagPrefixExtended property is the prefix added to the
names of all custom Oracle Content Server metadata fields in the list of extended
DesktopTag fields (see Section 13.5.7, "DesktopTagFieldsExtended Property"). This
prefix is not added if a specific property name is defined.

If this parameter is commented out (using #), empty, or not included in the
configuration file at all, then DISX is used as the default.

Example: DesktopTagPrefixExtended=EXT

13.5.7 DesktopTagFieldsExtended Property
The value of the DesktopTagFieldsExtended property is a comma-separated list
of property definitions that come from the ExtendedUserAttributes component. The
general form of a property definition is type/key/subkey(name). The type, key,
and subkey values are the parameters used by the EC_GET_PROPERTY service. If
any of these values begins with the character @, then the parameter value is taken from
the specified Oracle Content Server metadata field (see the following example).

You can set a specific property name for a metadata field by adding it in parentheses
after the field name.

Example: DesktopTagFieldsExtended=account/@dSecurityGroup/WCTPUrl
(DIS_Task_Pane_Url)

This example specifies that the property will be named DIS_Task_Pane_Url, and its
value will be the ExtendedUserAttributes item with the type account, the key
value specified by the dSecurityGroup metadata field (the security group of the
content item), and the subKey WCTPUrl.

13.5.8 DefaultTaskPaneUrl Property
The value of the DefaultTaskPaneUrl property is a string that defines the default
URL to use in setting the DISTaskPaneUrl property, which is required to display a
web page for a file in the task area of Microsoft Office applications. Any words
beginning with the character @ are replaced by the values from the binder or by other
means (currently, this applies only to @cgiUrl).

Example: DefaultTaskPaneUrl=@cgiUrl?IdcService=GET_TASK_PANE
&dID=@dID

In this example, @cgiUrl would be replaced by the Oracle Content Server Cgi URL
value, and @dID would be replaced by the value of the server-internal, unique content
item identifier (dID).

As another example, if there is an extended user attribute called WebCenterUrl, then
adding the string "WebCenterUrl(DISTaskPaneUrl)" will set the
DISTaskPaneUrl property to the value of the extended user attribute called
WebCenterUrl.

13.5.9 DesktopTagLog Property
The value of the DesktopTagLog property is a Boolean value that indicates whether
or not to log the operations and results of the DesktopTag component (1 = yes, 0 = no).

If this parameter is commented out (using #), empty, or not included in the
configuration file at all, then the component operations and results are not logged. The

Configuring the DesktopTag Component

13-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

DesktopTag log information is included in the standard Oracle Content Server log files
(accessible from the server’s administration pages).

Figure 13–5 DesktopTag Event in Oracle Content Server Log File

13.5.10 DesktopTagFormatsExclude Property
The value of the DesktopTagFormatsExclude property is a comma-separated list
of MIME data types that are not processed for tagging. If the data type is not in the list,
it is processed.

Example: DesktopTagFormatsExclude=application/ms-excel

There is no reason to use both DesktopTagFormats and
DesktopTagFormatsExclude.

A

Using WSDL Generator and SOAP A-1

AUsing WSDL Generator and SOAP

This chapter describes using WSDL Generator and SOAP to manage Oracle Content
Server. This feature is supported in Oracle Universal Content Management (Oracle
UCM) 11g for backward compatibility.

This appendix includes the following sections:

■ Section A.1, "Overview"

■ Section A.2, "Using Web Services"

■ Section A.3, "SOAP Clients"

■ Section A.4, "SOAP Service Calls"

■ Section A.5, "Using Active Server Pages"

■ Section A.6, "Using WSDL Files"

■ Section A.7, "Creating a Custom WSDL Using Administration Pages"

■ Section A.8, "Sample Service Calls with SOAP Response/Request"

A.1 Overview
Web Services Definition Language (WSDL) files and SOAP (Simple Object Access
Protocol) can be used to manage Oracle Content Server. SOAP is a lightweight
XML-based messaging protocol used to encode the information in web service request
and response messages before sending them over a network. The WSDL Generator
component, which is installed (enabled) by default with Oracle Content Server, allows
for creating WSDLs for the services of Oracle Content Server. Users can then take the
WSDLs and plug them into APIs to create web services that can be used with Oracle
Content Server.

Some SOAP functionality has been built into the core Oracle Content Server. The
WSDL Generator component is not essential to use SOAP; administrators can still
write or call Oracle Content Server service calls in SOAP if needed. The WSDL
Generator provides flexibility in altering existing client applications.

Oracle UCM has a WSDL 1.1 implementation that exposes the Oracle UCM
IDCService (Internet Distributed Content Service), which in turn extends all of the
capabilities of the Unversal Content Management (UCM) system. Using the
IDCService, content can be checked out and checked in, workflows can be created, run
and approved, content can be made available for publishing, and content can be
searched by category (metadata), content (full-text), or a combination of both.

Using Web Services

A-2 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

You can use WSDL files to map to Oracle UCM and the SOAP to access the content
and content management functions within Oracle UCM and to deploy your content
management capabilities as a web service.

A.2 Using Web Services
This section provides an overview of web services, general information about WSDL
files and the SOAP protocol, and installation information.

This section covers the following topics:

■ Section A.2.1, "Web Services Framework"

■ Section A.2.2, "Implementation Architecture"

■ Section A.2.3, "Implementation on .NET"

■ Section A.2.4, "The SOAP Protocol"

A.2.1 Web Services Framework
Web services reside as a layer on top of existing software systems such as application
servers, .NET servers, and Oracle Content Server. Web services can be used as a bridge
to dissimilar operating systems or programming languages. Web services are adapted
to the Internet as the model for communication and rely on the HyperText Transfer
Protocol (HTTP) as the default network protocol. Thus, using web services, you can
build applications using a combination of components.

The core enabling technologies for web services are XML Data, WSDL Interface, SOAP
Communication, and UDDI Registry. This section provides a general overview of the
technologies in these sections:

■ Section A.2.1.1, "XML Data"

■ Section A.2.1.2, "WSDL Interface"

■ Section A.2.1.3, "SOAP Communication"

■ Section A.2.1.4, "UDDI Registry"

■ Section A.2.1.5, "DIME: Message Format"

■ Section A.2.1.6, "How the Enabling Technologies Work Together"

A.2.1.1 XML Data
The eXtensible Markup Language (XML) is a bundle of specifications that provides the
foundation of all web services technologies. Using the XML structure and syntax as the
foundation allows for the exchange of data between differing programming languages,
middleware, and database management systems.

The XML syntax incorporates instance data, typing, structure, and semantic
information associated with data. XML describes data independently and also
provides information for mapping the data to software systems or programming
languages. Because of this flexibility, any software program can be mapped to web
services.

When web services are invoked, the underlying XML syntax provides the data
encapsulation and transmission format for the exchanged data. The XML elements and
attributes define the type and structure information for the data. It is XML that
provides the capability to model data and define the structure specific to the
programming language (for example, Java, C#, or Visual Basic), the database

Using Web Services

Using WSDL Generator and SOAP A-3

management system, or software application. web services use the XML syntax to
specify how data is represented, how the data is transmitted, and how the service
interacts with the referenced application.

A.2.1.2 WSDL Interface
The Web Services Description Language (WSDL) provides the interface that is exposed
to web services. It is the WSDL layer that enables web services to be mapped to
underlying programs and software systems. A WSDL file is an XML file that describes
how to connect to and use a web service.

A.2.1.3 SOAP Communication
The Simple Object Access Protocol (SOAP) provides communication for web services
interfaces to communicate to each other over a network. SOAP is an XML-based
communication protocol used to access web services. Web services receive requests
and return responses using SOAP packets encapsulated within an XML document.

A.2.1.4 UDDI Registry
The Universal Description Discovery and Integration (UDDI) service provides registry
and repository services for storing and retrieving web services interfaces. UDDI is a
public or private XML-based directory for registration and lookup of web services.

Oracle Content Server currently does not publish to any public or private UDDI
sources. However this does not prevent users from integrating Oracle UCM with other
applications using web services.

A.2.1.5 DIME: Message Format
DIME is a lightweight, binary message format that can be used to encapsulate one or
more application-defined groups of arbitrary type and size into a single message
construct. This format can be used when uploading or downloading content. The
payloads consist of the SOAP message and one or more groups of file content.

A.2.1.6 How the Enabling Technologies Work Together
The XML, WSDL, SOAP, and UDDI technologies work together as layers on the web
services protocol stack. The web services protocol stack consists of these layers.

■ The service transport layer between applications (HTTP).

■ The messaging layer that provides a common communication method (XML and
SOAP).

■ The service description layer that describes the public interface to a specific web
service (WSDL).

■ The service discovery layer that provides registry and repository services for
storing and retrieving web services interfaces (UDDI).

Using Web Services

A-4 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Figure A–1 Web Service Protocol Stack

To help grasp the connection between these technologies, consider this simple analogy:
Think of HTTP as the telephone wire (transport between applications) and UDDI as a
telephone book (where a developer can browse a UDDI registry to locate a registered
service). SOAP could be described as the voices of the people talking on the telephone
(the exchange of information), and XML as the language they are speaking in (the
underlying structure for the exchange of data). To continue with the telephone
analogy, WSDL would be the phone number that calls a specific web service (of
course, WSDL is more than just a phone number as it includes information such as the
available functions and data types).

A.2.2 Implementation Architecture
Web services are not executable, but rather exchange data within the development
environment. Thus, web services are a means to exchange information with an
application server or software package that is performing the communication between
the programs exchanging data.

The following scenario provides a web services implementation architecture for the
Oracle Content Server application. The primary value of this architecture remains in
the features and functions of Oracle Content Server. Web services access Oracle
Content Server through the WSDL Generator component and use the exposed Oracle
Content Server services to execute actions and provide data transaction between the
user employing web services and Oracle Content Server.

Note: While several protocols are available as a transport layer (for
example, HTTP, SMTP, FTP, and BEEP), the HTTP protocol is most
commonly used. The WSDL Generator component relies on the HTTP
protocol as the transport layer.

Using Web Services

Using WSDL Generator and SOAP A-5

Figure A–2 Web Service Implementation Architecture

A.2.3 Implementation on .NET
The Microsoft .NET products including the .NET platform, .NET Framework, and
Visual Studio .NET all support the XML schema, WSDL, and SOAP specifications:

■ The .NET platform is a designed as a programming model that enables developers
to build XML web services and applications. The platform provides a set of servers
that integrates, executes, and manages XML web services and applications.

■ The .NET Framework product enables developers to build and deploy web
services and applications. It provides a structured environment for integrating
web services and consists of a common language run-time, unified class libraries,
and includes the ASP .NET server.

■ The Visual Studio .NET product provides the tools for developers to write
application software according to the XML-based web service specifications.

Using the .NET architecture, development and deployment of a web service are
integrated as a single step. Because every program written in a .NET language is
designed to function as a web service, the .NET server is able to easily create and
deploy the program as a web service.

A.2.4 The SOAP Protocol
Employing a SOAP integration provides a standardized interface for executing Oracle
UCM services using the Java API (IdcCommand) and provides XML and non-XML
content managed by Oracle Content Server.

Because SOAP uses the Hypertext Transfer Protocol (HTTP) for data transmission, it
can be invoked across the Web and enable content to be accessible over a network in a
platform-independent and language-neutral way.

SOAP is an XML-based messaging protocol consisting of these parts:

■ an envelope that defines what is in a message and how to process it

■ a set of encoding rules for defining application data types

■ a convention for representing remote procedure calls and responses

Using SOAP to access content management capabilities as a web service enables
real-time programmatic interaction between applications and enables the integration
of business processes and facilitates information exchange.

Web services are modular components that are contained in an XML wrapper and
defined by the Web Services Description Language (WSDL) specifications. The

SOAP Clients

A-6 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Universal Description Discovery and Integration (UDDI) Web-based registry system is
used to locate these services.

A.3 SOAP Clients
You can use SOAP to access the content and content management functions within
Oracle Content Server and to deploy your content management capabilities as a web
service.

A.3.1 Using the Java SOAP Client
These are the command line parameters used as arguments for the Java programs.

A.4 SOAP Service Calls
This section discusses executing various Oracle Content Server IdcCommand services
using the SOAP interface. Oracle Content Server IdcCommand services can be
executed using the SOAP interface. The user must have appropriate permissions to
execute the commands. Some commands require administrative access, other
commands may require only write permission.

The WSDL Generator component is installed (enabled) by default with Oracle Content
Server, and it must remain enabled to call services. See the Oracle Fusion Middleware
Services Reference Guide for a list of available services and the required parameters.

This section covers these topics:

■ Section A.4.1, "SOAP Packet Format"

■ Section A.4.2, "Special Characters"

Tip: While .NET servers support WSDL and integrate with the SOAP
Toolkit, you must specify that the SOAP packet is sending a Remote
Procedure Call (RPC). The default is to evaluate SOAP messages as
document-style SOAP messages, rather than Remote Procedure Call
(RPC) style SOAP messages. Using the SOAP Toolkit client with a
.NET developed web service returns an error reading the WSDL
document. To permit the SOAP Toolkit to read the generated WSDL
and call your .NET web service, you must specify the
SoapRpcService() attribute in your web service class.

Note: If you are developing SOAP client implementations, make
sure that chunking is disabled in your client API code.

Parameters Description

-c <config file> The configuration file containing server settings (host, port, and
so on).

-x <xml file> The XML file containing the SOAP request to pass to Oracle
Content Server.

-p <primary file> The filename to upload as the primary file.

-a <alternate file> The filename to upload as the alternate file (optional).

-l <log file> The filename containing the request and response data
(optional).

SOAP Service Calls

Using WSDL Generator and SOAP A-7

A.4.1 SOAP Packet Format
A SOAP request is an XML-based Remote Procedure Call (RPC) sent using the HTTP
transport protocol. The payload of the SOAP packet is an XML document that specifies
the call being made and the parameters being passed.

A.4.1.1 HTTP Headers
This entry is required in a SOAP request HTTP header:

Content-Type: text/xml; charset="utf-8"

This SOAPAction header is suggested, but not required:

SOAPAction: "http://www.oracle.com/IdcService"

A.4.1.2 Namespaces
Within the body of a SOAP message the SOAP message XML namespaces are used to
qualify element and attribute names within the parts of the document. Element names
can be global (referenced throughout the SOAP message) or local. The local element
names are provided by namespaces and are used in the particular part of the message
where they are located. Thus, SOAP messages use namespaces to qualify element
names in the separate parts of a message. Application specific namespaces are used to
qualify application specific element names. Namespaces also identify the envelope
version and encoding style.

Oracle Content Server defines a namespace called idc that explains the schema and
allowable tags for the SOAP content.

A.4.1.3 Nodes
A SOAP node is the entity that processes a SOAP message according to the rules for
accessing the services provided by the underlying protocols through the SOAP
bindings. Thus, message processing involves mapping to the underlying services. The
SOAP specification defines a correlation between the parts of a SOAP message and the
software handlers that will process each part of the message.

The following nodes may be required for a service request or may be returned in the
response:

■ Service Node

■ Document Node

■ User Node

■ Optionlist Node

■ Option Subnode

■ Resultset Subnode

■ Row Subnode

■ Field Subnode

Note: On requests, Oracle Content Server services are lenient
regarding where data is specified. If you specify a data field in a field
node and it is supposed to be a document attribute, or vice versa, the
service still processes the data correctly. The response puts the data in
the correct node.

SOAP Service Calls

A-8 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A.4.1.3.1 Service Node This is the main node of the IDC namespace.

■ This node must exist to process a request.

■ The required attribute IdcService defines the service you are requesting.

■ It is not required that the subnodes of <service> carry the namespace in their tags.
For example, <document> can be used rather than <idc:document>. However if
you do define the namespace identifier in the child nodes, it must match the one
specified in the service tag.

For example:

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_
SERVER">
</idc:service>

A.4.1.3.2 Document Node This node contains all content item information and is the
parent node of all data nodes.

Attributes that are valid for your content items are defined by your particular Oracle
Content Server instance. For example, dID, dDocTitle, and dDocType are common
attributes.

■ Custom content item information such as xSpec is valid if defined as metadata.

■ All known document fields can be used as attributes.

In the following document node example, the CHECKOUT_BY_NAME service is
used:

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_
BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>

A.4.1.3.3 User Node This is the node to contain all user information:

■ Attributes that are valid for users are defined by your specific Oracle Content
Server instance. For example, dName, dFullName, and dEmail are common
attributes.

■ Custom user information is valid if defined as metadata.

■ All known user fields may be used as attributes.

For example:

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_
INFO">
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>

A.4.1.3.4 Optionlist Node This is the node to contain any option lists. The name attribute
specifies the name of the option list. Each option subnode contains a value in the
optionlist node.

SOAP Service Calls

Using WSDL Generator and SOAP A-9

For example:

<idc:optionlist name="Users_UserLocaleList">
<idc:option>
English-US
</idc:option>
</idc:optionlist>

A.4.1.3.5 Option Subnode This subnode is specified within the <optionlist> node. The
option attribute specifies the name of the option for the option list.

For example:

<idc:optionlist name="dDocType">
<idc:option>ADACCT</idc:option>
<idc:option>ADHR</idc:option>
<idc:option>ADSALES</idc:option>
</idc:optionlist>

A.4.1.3.6 Resultset Subnode This subnode can be specified within a <document> or
<user> node.

■ This subnode contains result set information in a request or response.

■ The name attribute specifies the name of the result set.

For example:

<idc:resultset name="REVISION_HISTORY">
<idc:row dFormat="text/plain" dInDate="4/12/02 1:27 PM" dOutDate=""
dStatus="RELEASED" dProcessingState="Y" dRevLabel="1" dID="6" dDocName="stellent"
dRevisionID="1">
</idc:row>
</idc:resultset>

A.4.1.3.7 Row Subnode This subnode is specified within a <resultset> subnode.

■ This subnode can appear multiple times within <resultset> and specifies each row
in the result set.

■ Attributes that are valid are defined by your specific Oracle Content Server
instance. These are the same fields that can appear as attributes in a document or
user node.

For example:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contributor,15">
</idc:row>
</idc:resultset>

A.4.1.3.8 Field Subnode This subnode can be specified within a <document>, <user>,
or <row> node. The name attribute specifies the name of the field.

It often represents data such as refreshSubjects or dSubscriptionID.

For example:

<idc:field name="dSubscriptionID">
stellent
</idc:field>

■ It may represent document or user metadata that is user configurable or custom
metadata such as xComments.

Using Active Server Pages

A-10 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

■ It is used to pass search result values such as QueryText and OriginalQueryText. For
example:

<idc:field name="QueryText">
dDocType <Substring> "ADSALES&"
</idc:field>

A.4.2 Special Characters
When passing special characters, such as a left angle bracket (<) or right angle bracket
(>), to Oracle UCM, you must use the XML-encoding format.

This example passes a string submitted for a Oracle Content Server content item query
(using universal query syntax) as both a standard formatted string and an
XML-encoded format:

■ Parameter with standard formatted string

QueryText=dDocType <Substring> "ADSALES"

■ Parameter with XML-encoded string

<idc:field name="QueryText">
dDocType <Substring> `ADSALES`
</idc:field>

A.5 Using Active Server Pages
You can execute Oracle Content Server IdcCommand services from an Active Server
Page by encapsulating a SOAP packet that defines the service to execute and the
required parameters. You must have appropriate permissions to execute the
commands. Some commands require administrative access, other commands may
require only write permission.

This section covers these topics:

■ Section A.5.1, "Sample SOAP Request"

■ Section A.5.2, "Sample Active Server Page"

For information about formatting XML-encoded strings, see Section A.4.2, "Special
Characters."

Standard Format XML-Encoding

< <

> >

" "

` (use back quote if using universal query syntax)

& &

\ '

Note: Some search result values, such as the QueryText and
OriginalQueryText values, are URL-encoded in the response.

Using Active Server Pages

Using WSDL Generator and SOAP A-11

A.5.1 Sample SOAP Request
This section provides an example Active Server Page that calls a service from Oracle
Content Server. A description of the service is provided including the required and
optional parameters. This section also provides an XML-formatted version of the
embedded SOAP request.

For more information about service calls, including required and optional parameters,
see Section A.8, "Sample Service Calls with SOAP Response/Request."

In the following example, an XML-formatted SOAP request uses the GET_SEARCH_
RESULTS service to retrieve the search results for the passed query text.

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_SEARCH_RESULTS">
<idc:document>
<idc:field name="QueryText">
dDocType <Substring> "ADSALES"
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.5.2 Sample Active Server Page
The embedded SOAP request forms the basis of the Active Server Page. The following
sample executes the GET_SEARCH_RESULTS.

For more information about service calls and examples of SOAP response/request
messages, see Section A.8, "Sample Service Calls with SOAP Response/Request."

<%

‘ Sample ASP page of sending a DOC_INFO Soap request.

Option Explicit

Response.Write("Search Results")

%>

<%

‘ Construct the Soap request.
Dim strSoapRequest, strQueryText

strQueryText = Request.Form("QueryText")
strQueryText = Server.HtmlEncode(strQueryText)

strSoapRequest = "<?xml version=’1.0’ ?>" _
& "<SOAP-ENV:Envelope xmlns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"">" _
& "<SOAP-ENV:Body>" _
& "<idc:service xmlns:idc=""http://www.oracle.com/IdcService/"" IdcService=""GET_SEARCH_
RESULTS"">" _
& "<idc:document>" _
& "<idc:field name=""QueryText"">" & strQueryText & "</idc:field>" _
& "<idc:field name=""SortField"">" & Request.Form("SortField") & "</idc:field>" _
& "<idc:field name=""SortOrder"">" & Request.Form("SortOrder") & "</idc:field>" _
& "<idc:field name=""ResultCount"">" & Request.Form("ResultCount") & "</idc:field>" _
& "<idc:field name=""Auth"">Internet</idc:field>" _
& "</idc:document>" _

Using Active Server Pages

A-12 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

& "</idc:service>" _
& "</SOAP-ENV:Body>" _
& "</SOAP-ENV:Envelope>"

‘ Send the Soap request.
Dim objXmlHttp
Set objXmlHttp = Server.CreateObject("MSXML2.ServerXMLHTTP")
objXmlHttp.open "POST", "http://localhost/stellent/idcplg", False, "sysadmin", "idc"
objXmlHttp.setRequestHeader "Content-Type", "text/xml; charset=utf-8"
objXmlHttp.send(strSoapRequest)

‘ Parse the Soap response.
Dim objXmlDoc
Set objXmlDoc = Server.CreateObject("Msxml2.DOMDocument")
objXmlDoc.async = False
objXmlDoc.Load objXmlHttp.responseXml

‘ Check for errors.
Dim strResponseError
strResponseError = objXmlDoc.parseError.reason
If strResponseError <> "" Then
Response.Write(objXmlHttp.ResponseText)
DisplayBackButton()
Response.End
End If

‘ Check for a fault string.
Dim objXmlFaultNode
Set objXmlFaultNode =
objXmlDoc.documentElement.selectSingleNode("//SOAP-ENV:Fault/faultstring")
If (Not (objXmlFaultNode Is Nothing)) Then
Response.Write(objXmlFaultNode.Text)
DisplayBackButton()
Response.End
End If

‘ Check the status code.
Dim objXmlStatusCodeNode, objXmlStatusMessageNode, strStatusCode, nStatusCode,
strStatusMessage
Set objXmlStatusCodeNode =
objXmlDoc.documentElement.selectSingleNode("//idc:field[@name=’StatusCode’]")
If (Not objXmlStatusCodeNode Is Nothing) Then
nStatusCode = CInt(objXmlStatusCodeNode.Text)
If (nStatusCode < 0) Then
Response.Write(objXmlDoc.documentElement.selectSingleNode("//idc:field[@name=’StatusMessage’]
").Text)
DisplayBackButton()
Response.End
End If
End If

‘ Display search results
Dim strDocName, strDocTitle, strDocType, strInDate, strComments, nCurRow, nTotalRows
Dim objXmlResultNodeList, objXmlCommentNode

Set objXmlResultNodeList =
objXmlDoc.documentElement.selectNodes("//idc:resultset[@name=’SearchResults’]/idc:row")
nTotalRows = objXmlResultNodeList.Length

%>
<table>
<tr>
<td>Content ID</td>
<td> </td>
<td>Title</td>
<td> </td>

Using Active Server Pages

Using WSDL Generator and SOAP A-13

<td>Type</td>
<td> </td>
<td>Release Date</td>
<td> </td>
<td>Comments</td>
</tr>

<%
For nCurRow = 0 To (nTotalRows - 1)
strDocName = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocName")
strDocTitle = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocTitle")
strDocType = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocType")
strInDate = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dInDate")
strComments = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "xComments")

%>

<tr>
<td><%=strDocName%></td>
<td> </td>
<td><%=strDocTitle%></td>
<td> </td>
<td><%=strDocType%></td>
<td> </td>
<td><%=strInDate%></td>
<td> </td>
<td><%=strComments%></td>
</tr>
<%
Next
%>

</table>

<%

DisplayBackButton()
‘----------------------------
Function GetXmlNodeValue(objXmlRowNode, strNodeName)
‘----------------------------
Dim objXmlNode, objXmlNodeValue

Set objXmlNode = objXmlRowNode.selectSingleNode("@" & strNodeName)
If (objXmlNode Is Nothing) Then
Set objXmlNode = objXmlRowNode.selectSingleNode("idc:field[@name=’" & strNodeName & "‘]")
End If

If (Not (objXmlNode Is Nothing)) Then
GetXmlNodeValue = objXmlNode.Text
End If
‘----------------------------
End Function
‘----------------------------

‘----------------------------
Sub DisplayBackButton()
‘----------------------------
%>
<form method=POST action="request.asp">
<table>
<tr>
<td><input type=submit value="Back"></td>
</tr>
</table>
</form>
<%

Using WSDL Files

A-14 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

‘----------------------------
End Sub
‘---------------------------
%>

A.6 Using WSDL Files
This section provides an overview of the Oracle Content Server WSDL files. In
addition, information about generating WSDL files for interfacing with Oracle UCM
services is provided.

This section covers these topics:

■ Section A.6.1, "Understanding WSDL Files"

■ Section A.6.2, "Sample WSDL File"

■ Section A.6.3, "Generating WSDL Files"

■ Section A.6.4, "Generating Proxy Class from WSDL Files"

A.6.1 Understanding WSDL Files
WSDL files provide the ability to pass data that can be understood by Oracle Content
Server services, which enables access to the content and content management
functions within Oracle UCM. The WSDL files provided with the component are
stored in the IntradocDir/weblayout/groups/secure/wsdl/custom directory.

These WSDL files are provided with the WSDL Generator component:

■ CheckIn.wsdl

■ DocInfo.wsdl

■ GetFile.wsdl

■ MetaData.wsdl

■ PortalInfo.wsdl

■ Search.wsdl

■ Subscription.wsdl

■ Workflow.wsdl

Additional WSDL files can be generated using the Soap Custom WSDL administrative
pages. See Section A.6.2, "Sample WSDL File," for additional information.

A.6.1.1 WSDL File Structure
WSDL files are formally structured with elements that contain a description of the data
to be passed to the web service. This structure enables both the sending application
and the receiving application to interpret the data being exchanged.

WSDL elements contain a description of the operation to perform on the data and a
binding to a protocol or transport. This permits the receiving application to both
process the data and interpret how to respond or return data. Additional subelements
may be contained within each WSDL element.

The WSDL file structure includes these major elements:

■ Data Types: Generally in the form of XML schema to be used in the messages.

■ Message: The definition of the data in the form of a message either as a complete
document or as arguments to be mapped to a method invocation.

Using WSDL Files

Using WSDL Generator and SOAP A-15

■ Port Type: A set of operations mapped to an address. This defines a collection of
operations for a binding.

■ Binding: The actual protocol and data formats for the operations and messages
defined for a particular port type.

■ Service and Port: The service maps the binding to the port and the port is the
combination of a binding and the network address for the communication
exchange.

A.6.1.1.1 Data Type The Data Type <types> defines the complex types and associated
elements. Web services supports both simple data types (such as string, integer, or
boolean) and complex data types. A complex type is a structured XML document that
contains several simple types or an array of subelements.

The following code fragment for the ContentInfo set defines the Name, Title, Author,
and Group elements and specifies that they are strings.

<s:complexType name="ContentInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocTitle" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocType" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocAuthor" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string"/>
</s:sequence>
</s:complexType>

A.6.1.1.2 Message The Message <message> defines the data as arguments to be
mapped to a method invocation.

<message name="DocInfoByIDSoapIn">
<part name="parameters" element="s0:DocInfoByID" />
</message>
<message name="DocInfoByIDSoapOut">
<part name="parameters" element="s0:DocInfobyIDResponse" />
</message>

A.6.1.1.3 Port Type The Port Type <portType> defines a collection of operations for a
binding. The DocInfo.wsdl file provides the DocInfoSoap and the DocInfo operation
name (method name) with I/O information for processing the message.

<portType name="DocInfoSoap">
<operation name="DocInfoByID">
<input message="s0:DocInfoByIDSoapIn" />
<output message="s0:DocInfoByIDSoapOut" />
</operation>
</portType>

Note: The code fragments in this section are from the DocInfo.wsdl
file provided with the WSDL Generator component. For a complete
WSDL file, see Section A.6.2, "Sample WSDL File."

Note: While a port type is a collection of operations (like classes in
Java), WSDL is an independent data abstraction that provides more
functionality than simply mapping to .NET, EJB, or CORBA objects.

Using WSDL Files

A-16 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A.6.1.1.4 Binding The binding <binding> defines the actual protocol and data formats
for the operations and messages for the particular port type.

<binding name="DocInfoSoap" type="s0:DocInfoSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="DocInfoByID">
<soap:operation soapAction="http://wwww.oracle.com/Soap/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>

A.6.1.1.5 Service and Port The service <service> maps the binding to the port. The port
is the combination of a binding and the network address for the communication
exchange. The port is used to expose a set of port types (operations) on the defined
transport.

<service name="DocInfo">
<port name="DocInfoSoap" binding="s0:DocInfoSoap">
<soap:address location="http://myhost.example.com:16200/_dav/cs/idcplg" />
</port>
</service>

A.6.2 Sample WSDL File
This sample code presents the complete DocInfo.wsdl file. This file and the
CheckIn.wsdl, GetFile.wsdl, and Search.wsdl files are found in the
IntradocDir/weblayout/groups/secure/wsdl/custom directory for the Oracle Content
Server instance.

<?xml version='1.0' encoding='utf-8' ?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://wwww.oracle.com/DocInfo/"
targetNamespace="http://wwww.oracle.com/DocInfo/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<s:schema elementFormDefault="qualified" targetNamespace="http://www.oracle.com/DocInfo/">
<s:element name="DocInfoByID">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="extraProps" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="DocInfoByIDResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="DocInfoByIDResult" type="s0:DocInfoByIDResult"
/>
</s:sequence>
</s:complexType>
</s:element>

Tip: You can add &IsSoap=1 to the URL of an Oracle Content
Server browser window to view the underlying SOAP code for that
page.

Using WSDL Files

Using WSDL Generator and SOAP A-17

<s:complexType name="DocInfoByIDResult">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="ContentInfo" type="s0:ContentInfo" />
<s:element minOccurs="0" maxOccurs="unbounded" name="Revisions" type="s0:Revisions" />
<s:element minOccurs="0" maxOccurs="unbounded" name="WorkflowInfo" type="s0:WorkflowInfo" />
<s:element minOccurs="0" maxOccurs="1" name="StatusInfo" type="s0:StatusInfo" />
</s:sequence>
</s:complexType>
<s:element name="DocInfoByName">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="extraProps" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="DocInfoByNameResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="DocInfoByNameResult"
type="s0:DocInfoByNameResult" />
</s:sequence>
</s:complexType>
</s:element>
<s:complexType name="DocInfoByNameResult">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="ContentInfo" type="s0:ContentInfo" />
<s:element minOccurs="0" maxOccurs="unbounded" name="Revisions" type="s0:Revisions" />
<s:element minOccurs="0" maxOccurs="unbounded" name="WorkflowInfo" type="s0:WorkflowInfo" />
<s:element minOccurs="0" maxOccurs="1" name="StatusInfo" type="s0:StatusInfo" />
</s:sequence>
</s:complexType>
<s:complexType name="ContentInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocTitle" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocAuthor" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocAccount" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevClassID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevisionID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevLabel" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIsCheckedOut" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dCheckoutUser" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dCreateDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dInDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOutDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dReleaseState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dFlag1" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWebExtension" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProcessingState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dMessage" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dReleaseDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRendition1" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRendition2" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIndexerState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dPublishType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dPublishState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dIsPrimary" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dIsWebFormat" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dLocation" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOriginalName" type="s:string" />

Using WSDL Files

A-18 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

<s:element minOccurs="0" maxOccurs="1" name="dFormat" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dExtension" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dFileSize" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="CustomDocMetaData" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
<s:complexType name="Revisions">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dFormat" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dInDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOutDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProcessingState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRevLabel" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRevisionID" type="s:int" />
</s:sequence>
</s:complexType>
<s:complexType name="WorkflowInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dWfID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfDocState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfComputed" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfCurrentStepID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dWfDirectory" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dClbraName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfDescription" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dCompletionDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProjectID" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIsCollaboration" type="s:boolean" />
</s:sequence>
</s:complexType>
<s:complexType name="StatusInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="statusCode" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="statusMessage" type="s:string" />
</s:sequence>
</s:complexType>
<s:complexType name="IdcPropertyList">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="property" type="s0:IdcProperty" />
</s:sequence>
</s:complexType>
<s:complexType name="IdcProperty">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="name" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="value" type="s:string" />
</s:sequence>
</s:complexType>
</s:schema>
</types>
<message name="DocInfoByIDSoapIn">
<part name="parameters" element="s0:DocInfoByID" />
</message>
<message name="DocInfoByIDSoapOut">
<part name="parameters" element="s0:DocInfoByIDResponse" />
</message>
<message name="DocInfoByNameSoapIn">
<part name="parameters" element="s0:DocInfoByName" />
</message>

Using WSDL Files

Using WSDL Generator and SOAP A-19

<message name="DocInfoByNameSoapOut">
<part name="parameters" element="s0:DocInfoByNameResponse" />
</message>
<portType name="DocInfoSoap">
<operation name="DocInfoByID">
<input message="s0:DocInfoByIDSoapIn" />
<output message="s0:DocInfoByIDSoapOut" />
</operation>
<operation name="DocInfoByName">
<input message="s0:DocInfoByNameSoapIn" />
<output message="s0:DocInfoByNameSoapOut" />
</operation>
</portType>
<binding name="DocInfoSoap" type="s0:DocInfoSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="DocInfoByID">
<soap:operation soapAction="http://www.oracle.com/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="DocInfoByName">
<soap:operation soapAction="http://www.oracle.com/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<service name="DocInfo">
<port name="DocInfoSoap" binding="s0:DocInfoSoap">
<soap:address location="http://myhost.example.com:16200/_dav/cs/idcplg/idc_cgi_isapi.dll" />
</port>
</service>
</definitions>

A.6.3 Generating WSDL Files
When the WSDL Generator component is installed and enabled during Oracle Content
Server installation, several folders and related HDA files are generated that expose
several Services as web services. Two directories are created in the
IntradocDir/data/soap directory. The /generic directory contains a generic.hda file
and the /custom directory contains a wsdl_custom.hda file. Administrators can
customize or add WSDL files using the Soap Wsdl administration pages. These pages
are accessed by clicking the Soap WSDL link from the Administration section of the
Admin Applet page.

For step-by-step instructions on creating and editing a custom WSDL using the Soap
Custom Wsdl administration pages, see Section A.7, "Creating a Custom WSDL Using
Administration Pages."

Note: The WSDL Generator component must be enabled to generate
WSDL files.

Creating a Custom WSDL Using Administration Pages

A-20 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A.6.4 Generating Proxy Class from WSDL Files
Using the WSDL files, developers may choose to create proxy classes to plug into a
development tool. A number of software products and tool kits are available for
converting WSDL files to programming class files in languages such as Java, Visual
Basic, and C#. For example, Apache AXIS provides a SOAP to Java toolkit, and
Microsoft .NET Development Environment provides functionality to convert WSDL
files to C#.

If you are using Microsoft .NET, you can use utilitywsdl.exe to generate the proxy
classes:

wsdl /l:CS DocInfo.wsdl

This utility generates the file DocInfoService.cs (C# class) which contains the class
DocInfoService and the function DocInfo with the parameters specified. The return
value is the DocInfoSet class, which is all the response parameters specified, along
with ErrorCode and ErrorMessage values. If the ErrorCode is less than zero, an error
has occurred in the service call, and you can see the specifics of it in the value
ErrorMessage.

A.7 Creating a Custom WSDL Using Administration Pages
The Soap Custom Wsdl administration pages provide an administrator with the ability
to edit and customize WSDL files. This chapter provides an administrative tutorial
that gives step-by-step instructions on creating and editing a custom WSDL.

The WSDL Generator component must be enabled to generate WSDL files. In addition
to the WSDL files provided with the WSDL Generator component, you can generate
additional WSDL files for any Oracle UCM service. See Section A.6.3, "Generating
WSDL Files," for additional information.

See the Oracle Fusion Middleware Services Reference Guide for a list of available services
and the required parameters.

This section provides step-by-step instructions on creating and editing a custom
WSDL using the Soap Custom WSDL administration pages.

1. In a web browser, log in to Oracle Content Server as an administrator.

2. In the Administration tray, choose Soap Wsdls.

The Wsdl List page is displayed.

Note: In addition to the WSDL files provided with the WSDL
Generator component, you can generate WSDL files for any Oracle
UCM service. For more information, see Section A.6.3, "Generating
WSDL Files."

Creating a Custom WSDL Using Administration Pages

Using WSDL Generator and SOAP A-21

Figure A–3 Wsdl List Page

3. Click Data Lists from the Action menu.

The Data Lists page is displayed.

Data Lists are global lists of data that can be used with complex types, service
parameters, or other DataLists. When a DataList is specified as a parameter or a
subtype of a complex type, all the subtypes of the DataList will appear as data
types. DataLists are defined once but can be referenced multiple times with
different WSDLs and services. All the DataLists have a prefix of "d:" in the data
type list.

Figure A–4 DataLists Page

Creating a Custom WSDL Using Administration Pages

A-22 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

4. Select Add Data List from the Actions menu.

The Add Data List page is displayed.

5. Enter the following information:

Name: UserMetaFields

Description: User Metadata Fields

6. Click Add.

The Data List Information / Data List Elements page is displayed.

7. Enter the following Data Elements information, selecting the Type from the menu.

Figure A–5 DataList Elements

8. Click Update.

You are returned to the updated Data Lists page. Note that UserMetaFields
now appears at the bottom of the list.

9. Select Wsdls List from the Actions menu.

The Wsdl List page is displayed.

Note: System-specific WSDLs cannot be deleted. You can, however,
edit the WSDL and enable or disable the complex type elements for
that WSDL.

Name Type Idc Name

dName field:string

dFullName field:string

dPassword field:string

dEmail field:string

dUserAuthType field:string

Creating a Custom WSDL Using Administration Pages

Using WSDL Generator and SOAP A-23

Figure A–6 Wsdl List Page Redisplayed

10. Select Add Wsdl from the Actions menu.

The Add Wsdl page is displayed.

11. Enter the following information:

Name: UserInfo

Description: User Services

12. Click Add.

The Wsdl Information page is displayed.

Figure A–7 Wsdl Information Page

13. Select Add Complex Type from the Actions menu.

The Add Complex Type page is displayed.

Creating a Custom WSDL Using Administration Pages

A-24 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

14. Enter the following Complex Type information:

Name: UserAttribInfo

Type: select resultset from the menu

15. Click Add.

The Wsdl Information page is displayed.

Figure A–8 Wsdl Information Page Redisplayed

16. Select Edit from the UserAttribInfo line.

The Complex Type Information/Complex Type Elements page is displayed.

17. Enter the following Complex Type Elements, selecting the Type from the menu.

18. Click Update in the Complex Type Elements section.

You are returned to the updated Wsdl Information page. Note that User
AttribInfo now appears as a complex type.

19. Select Add Service from the Actions menu.

The Add Service page is displayed.

20. Enter the following information:

Name: AddUser

IdcService: ADD_USER

Note: Complex types contain other data types as subtypes. After
these are created, any service in the WSDL can use these complex
types as parameters.

Name Type Idc Name

dUserName field:string

AttributeInfo field:string

Creating a Custom WSDL Using Administration Pages

Using WSDL Generator and SOAP A-25

21. Click Add.

The Wsdl Information page is displayed.

22. Select Edit from the AddUser Service line.

The Service Information page is displayed.

Figure A–9 Service Information Page

23. Select Update Request Parameters from the Actions menu.

The Request Parameters page is displayed.

24. Enter the following information, selecting the Type from the menu.

25. Click Update.

You are returned to the updated Service Information page. Note that DataList
and CustomUserData now appear in the Request Parameters section.

26. Click Update.

You are returned to the updated Wsdl Information page, showing the service that
you just added.

27. Click Update again.

You are returned to the updated Wsdl List page. UserInfo appears at the bottom of
the list.

Note: When you create a WSDL, you create services that correspond
to the IdcServices feature of Oracle Content Server. You also specify
the request and response parameters that you want the service to pass
and receive from the Web Service call.

Name Type Idc Name

DataList d:UserMetaFields

CustomUserData propertylist:CustomUserMeta

Sample Service Calls with SOAP Response/Request

A-26 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

28. Select Generate Wsdls from the Actions menu.

A confirmation message displays after the Wsdls are generated successfully.

29. Click Back.

You are returned to the Wsdl List page.

30. Click the UserInfo link in the Name column.

The source code for the generated Wsdl file is displayed (a portion is shown in
Example A–1).

Example A–1 Partial source code, Wsdl file

 <?xml version="1.0" encoding="utf-8" ?>
- <definitions xmins:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.smlsoap.org/wsdl/soap/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:s0="http://www.stellent.com/UserInfo/"
 targetNamespace="http://www.stellent.com/UserInfo/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 - <types>
 - <s:schema elementFormDefault="qualified"
 targetNamespace="http://www.stellent.com/UserInfo/">
 - <s:element name="AddUser">
 - <s:complexType>
 - <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="dName"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dFullName"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dPassword"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dEmail"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dUserAuthType"
 type="s:string: />
 <s:element minOccurs="0" maxOccurs="1" name="CustomUserData"
 type="s0:IdcPropertyList" />
 <s:element minOccurs="0" maxOccurs="1" name="extraProps"
 type="s0:IdcPropertyList" />
 </s:sequence>
 </s:complexType>
 </s:element>

31. Click the browser Back button.

You are returned to the Soap Custom Wsdl page.

A.8 Sample Service Calls with SOAP Response/Request
This section provides sample service calls with SOAP response/request and presents
information about executing Oracle Content Server services in a SOAP request. See the
Oracle Fusion Middleware Services Reference Guide for a list of available services and the
required parameters.

Tip: You can right click View and save the Wsdl file to your desktop
(for use with .NET, and so on). However, be sure to save the file with a
.wsdl file extension rather than the default .XML file extension.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-27

These IdcCommand services are used as SOAP request examples.

A.8.1 Ping the Server
The PING_SERVER service evaluates whether a connection to the server exists.

■ This service returns status information for Oracle Content Server.

■ If this service is unable to execute, this message is displayed to the user: Unable
to establish connection to the server.

IdcCommand Description

PING_SERVER This service evaluates whether a connection to
the server exists. See Section A.8.1, "Ping the
Server,".

ADD_USER This service adds a new user to the system.
See "Add a New User" on page A-28.

EDIT_USER This service edits an existing user. See "Edit
Existing User" on page A-31.

GET_USER_INFO This service retrieves the user list. See "Get
User Information" on page A-34.

DELETE_USER This service deletes an existing user. See
"Delete User" on page A-36.

CHECKIN_UNIVERSAL This service performs an Oracle Content
Server controlled check in. See "Check in
Content Item" on page A-37.

CHECKOUT_BY_NAME This service marks the latest revision of the
specified content item as locked. See "Check
out Content Item" on page A-41.

UNDO_CHECKOUT_BY_NAME This service reverses a content item checkout
using the Content ID. See "Undo Content Item
Checkout" on page A-43.

DOC_INFO This service retrieves content item revision
information. See "Get Content Item
Information" on page A-45.

GET_FILE This service retrieves a copy of a content item
without performing a check out. See "Get File"
on page A-47.

GET_SEARCH_RESULTS This service retrieves the search results for the
passed query text. See "Get Search Results" on
page A-50.

GET_TABLE This service exports the specified table in
Oracle Content Server database. See "Get Table
Data" on page A-53.

GET_CRITERIA_WORKFLOWS_FOR_GROUP This service returns criteria workflow
information. See "Get Criteria Workflow
Information" on page A-54.

Tip: Execute a PING_SERVER request before calling other services to
ensure that there is a connection to the Oracle Content Server instance
and that you are logged in as a user authorized to execute commands.

Sample Service Calls with SOAP Response/Request

A-28 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A.8.1.1 Required Parameters
These parameters must be specified.

A.8.1.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_SERVER">
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope

A.8.1.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_SERVER">
<idc:document>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="StatusMessage">
You are logged in as 'sysadmin'.
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.2 Add a New User
The ADD_USER service adds a new user to the system.

■ Given a user name, the service determines if the user is in the system. If the user
does not exist, the service will add the user.

■ The most likely error is when the user name is not unique. If this service is unable
to execute, an error message is displayed to the user.

Parameter Description

IdcService Must be set to PING_SERVER.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-29

A.8.2.1 Required Parameters
These parameters must be specified.

A.8.2.2 Optional Parameters
These optional parameters may be specified.

A.8.2.3 Optional Attribute Information
This optional data defines the user's attribute information, the roles the user belongs
to, and the accounts the user has access to. Attribute information consists of a list of
three comma-delimited strings. The first string indicates the type of attribute, the
second the name of the attribute, and the third is the access number.

Access Number
These access numbers can be assigned to the user.

Parameter Description

dName The unique name.

dUserAuthType The user authorization type. This value must be set to either
LOCAL or GLOBAL.

IdcService Must be set to ADD_USER.

Parameter Description

dEmail The email address for the user.

dFullName The full name of the user.

dPassword The password for the user.

Important: The user attribute information is not pre-defined. The
user by default will belong to no roles or accounts, and will become a
guest in the system.

Attribute Information Description

Access Number The access number determines the level of access or privileges
assigned to the user

Attribute Name The attribute name is the name of the role or account to be
assigned. For example, admin, contributor, or editor may be
assigned.

Attribute Type The attribute types consists of role or account.

Access Level Flags Description

1 Read only.

3 Read and write.

7 Read, write, and delete.

15 Administrative privileges.

Sample Service Calls with SOAP Response/Request

A-30 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

Attribute Name
A user can belong to multiple roles and accounts, there may be multiple role and
account information strings separated by commas in the attribute information column.

■ If the user is to have the admin role, define the user attribute information as
follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contributor,15">

■ If the user is to belong to both the contributor and editor roles and has read
privilege on the account books, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith"
AttributeInfo="role,contributor,15,role,editor,15,account,books,1">

Attribute Type
When defining a role, the first string specifies that this is a role attribute, the second
string is the name of the role, and the third is the default entry of 15.

When defining an account, the first string specifies that this is an account attribute, the
second string is the name of the account, and the third is the access level.

■ For an attribute role, the information is in this form:

role,contributor,15

■ For an attribute account where the access level determines the users rights to the
named account, the information is in this form:

account,books,1

A.8.2.4 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="ADD_USER">
<idc:user dName="Jennifer" dFullName="Jennifer Anton" dPassword="password"
dEmail="email@email.com" dUserAuthType="local">
<idc:resultset name="UserAttribInfo">
<idc:row dUserName="Jennifer" AttributeInfo="role,contributor,3">
</idc:row>
</idc:resultset>
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.2.5 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="ADD_USER">
<idc:document>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-31

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="isAdd">
1
</idc:field>
<idc:field name="copyAll">
1
</idc:field>
<idc:field name="alwaysSave">
1
</idc:field>
<idc:field name="dAttributeName">
contributor
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="doAdminFields">
1
</idc:field>
<idc:field name="dAttributePrivilege">
3
</idc:field>
<idc:field name="dAttributeType">
role
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
userlist,1018884022874
</idc:field>
</idc:document>
<idc:user dUserAuthType="local" dEmail="email@email.com" dFullName="Jennifer
Anton" dUser="sysadmin" dPassword="password" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.3 Edit Existing User
The EDIT_USER service edits the information for an existing user.

■ Given a user name and user authorization type, the service determines if the user
is in the system. If the user does not exist, the service fails. Otherwise the user
information is updated and replaced.

■ The most likely error is the user does not have the security level to perform this
action. If this service is unable to execute, an error message is displayed to the
user.

Note: The user attribute information replaces the current attributes.
It does not add to the list. Consequently, if the user attribute
information is not defined, the user will become a guest in the system.

Sample Service Calls with SOAP Response/Request

A-32 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A.8.3.1 Required Parameters
These parameters must be specified.

A.8.3.2 Optional Parameters
These optional parameters may be specified.

A.8.3.3 Optional Attribute Information
A result set containing the user's attribute information and referencing the roles the
user belongs to and the accounts the user has access to. Attribute information consists
of a list of three comma-delimited strings. The first string indicates the type of
attribute, the second the name of the attribute, and the third is the access number.

Access Number
These access numbers can be assigned to the user.

Parameter Description

dName The unique name.

dUserAuthType The user authorization type. This value must be set to either
LOCAL or GLOBAL.

IdcService Must be set to EDIT_USER.

Parameter Description

dEmail The email address of the user.

dFullName The full name of the user.

dPassword The password for the user.

dUserLocale The locale designation such as English-US, English-UK, Deutsch,
Français, Español.

dUserType The defined user type.

Important: The user attribute information is not pre-defined. The
user by default will belong to no roles or accounts, and will become a
guest in the system

Attribute Information Description

Access Number The access number determines the level of access or privileges
assigned to the user

Attribute Name The attribute name is the name of the role or account to be
assigned. For example, admin, contributor, or editor may be
assigned.

Attribute Type The attribute types consist of role or account.

Access Level Flags Description

1 Read only.

3 Read and write.

7 Read, write, and delete.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-33

A user can belong to multiple roles and accounts, there may be multiple role and
account information strings separated by commas in the attribute information column.

■ If the user is to have the admin role, define the user attribute information as
follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contribut
or,15">

■ If the user is to belong to both the contributor and editor roles and has read
privilege on the account books, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith"
AttributeInfo="role,contributor,15,role,editor,15,account,books,1">

Attribute Type
When defining a role, the first string specifies that this is a role attribute, the second
string is the name of the role, and the third is the default entry of 15.

When defining an account, the first string specifies that this is an account attribute, the
second string is the name of the account, and the third is the access level.

■ For an attribute role, the information is in this form:

role,contributor,15

■ For an attribute account where the access level determines the users rights to the
named account, the information is in this form:

account,books,1

A.8.3.4 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="EDIT_USER">
<idc:user dName="Jennifer" dFullName="Jennifer Anton" dPassword="password"
dEmail="jennifer@email.com" dUserAuthType="local">
<idc:resultset name="UserAttribInfo">
<idc:row dUserName="Jennifer" AttributeInfo="role,guest,1">
</idc:row>
</idc:resultset>
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.3.5 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="EDIT_USER">
<idc:document>

15 Administrative privileges.

Access Level Flags Description

Sample Service Calls with SOAP Response/Request

A-34 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="alwaysSave">
1
</idc:field>
<idc:field name="dAttributeName">
guest
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="doAdminFields">
1
</idc:field>
<idc:field name="dAttributePrivilege">
1
</idc:field>
<idc:field name="dAttributeType">
role
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
userlist,1018884022877
</idc:field>
</idc:document>
<idc:user dUserAuthType="local" dEmail="jennifer@email.com" dFullName="Jennifer
Anton" dUser="sysadmin" dPassword="password" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.4 Get User Information
The GET_USER_INFO service retrieves the user list.

■ Given a defined user, the service retrieves the user list.

■ If this service is unable to execute, this message is displayed to the user: Unable to
retrieve user list.

A.8.4.1 Required Parameters
These parameters must be specified.

Parameter Description

dUser The defined user.

IdcService Must be set to GET_USER_INFO.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-35

A.8.4.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_
INFO">
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.4.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_
INFO">
<idc:document>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:optionlist name="Users_UserLocaleList">
<idc:option>
English-US
</idc:option>
</idc:optionlist>
</idc:document>
<idc:user dUser="sysadmin" dName="sysadmin">
<idc:resultset name="UserMetaDefinition">
<idc:row umdName="dFullName" umdType="BigText" umdCaption="apTitleFullName"
umdIsOptionList="0" umdOptionListType="0" umdOptionListKey="" umdIsAdminEdit="0"
umdOverrideBitFlag="1">
</idc:row>
<idc:row umdName="dEmail" umdType="BigText" umdCaption="apTitleEmailAddress"
umdIsOptionList="0" umdOptionListType="" umdOptionListKey="" umdIsAdminEdit="0"
umdOverrideBitFlag="2">
</idc:row>
<idc:row umdName="dUserType" umdType="Text" umdCaption="apTitleUserType"
umdIsOptionList="1" umdOptionListType="combo" umdOptionListKey="Users_
UserTypeList" umdIsAdminEdit="0" umdOverrideBitFlag="4">
</idc:row>
<idc:row umdName="dUserLocale" umdType="Text" umdCaption="apTitleUserLocale"
umdIsOptionList="1" umdOptionListType="choice,locale" umdOptionListKey="Users_

Sample Service Calls with SOAP Response/Request

A-36 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

UserLocaleList" umdIsAdminEdit="0" umdOverrideBitFlag="8">
</idc:row>
</idc:resultset>
<idc:resultset name="USER_INFO">
<idc:row dName="sysadmin" dFullName="System Administrator" dEmail=""
dPasswordEncoding="" dPassword="-----" dUserType="" dUserAuthType="LOCAL"
dUserOrgPath="" dUserSourceOrgPath="" dUserSourceFlags="0" dUserArriveDate=""
dUserChangeDate="" dUserLocale="" dUserTimeZone="">
</idc:row>
</idc:resultset>
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.5 Delete User
The DELETE_USER service deletes an existing user.

■ Given a user name, the service deletes the user from the system.

■ The most likely error is when the user has been assigned to an alias.If this service
is unable to execute, an error message is returned.

A.8.5.1 Required Parameters
These parameters must be specified.

A.8.5.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DELETE_
USER">
<idc:user dName="Jennifer" >
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.5.3 Response
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DELETE_
USER">
<idc:document>
<idc:field name="changedSubjects">
userlist,1018884022876
</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>

Parameter Description

dName The unique name.

IdcService Must be set to DELETE_USER.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-37

<idc:field name="changedMonikers">

</idc:field>
<idc:field name="dUserName">
Jennifer
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
</idc:document>
<idc:user dUser="sysadmin" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.6 Check in Content Item
The CHECKIN_UNIVERSAL service performs an Oracle Content Server controlled
check-in.

■ This service determines if the content item is new or already exists in the system
by querying the database using the content ID (dDocName) as the key.

■ If the content item exists in the system, the publish state (dPublishState) must be
empty.

■ If a revision label (dRevLabel) is specified, this service will check if the content
revision exists in the system; an exception is thrown if the revision exists.

■ This service will dispatch this request to one of these subservices:

– CHECKIN_NEW_SUB - If the content item does not exist in the server.

– CHECKIN_SEL_SUB - If the content item exists on the system and no valid
revision was specified and the content item is checked out.

– WORKFLOW_CHECKIN_SUB - If the content item exists and is part of a
workflow.

■ The most likely errors are mismatched parameters or when the content item was
not successfully checked in. If this service is unable to execute, this message is
displayed to the user: Content item ''{dDocName}'' was not
successfully checked in.

The CHECKIN_UNIVERSAL service is an Oracle Content Server controlled check-in.
The check in will fall into either a new, selected, or workflow check in process and
follow the same logic as a check in through the browser or Repository Manager
application. If the content item to be checked in already exists in the system, the
content item must be checked out for the check in to succeed.

These are essentially the same subservices used during an Oracle Content Server
controlled check-in. However, these subservices are not called during a BatchLoad or
Archive import. This service will check security to determine if the user has sufficient
privilege to perform a check in on the content item and if the content item (if it exists)
has been checked out. Also, it will determine if the content item matches a workflow
criteria or belongs to an active basic workflow.

Sample Service Calls with SOAP Response/Request

A-38 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

If the content item is not found the content item is checked in using the CHECKIN_
NEW_SUB subservice. This subservice validates the check in data and determines if this
content item belongs to a criteria workflow. If the content item already exists in the
system and the content item does not belong to a workflow, the CHECKIN_SEL_SUB is
used. Otherwise the content item exists and belongs to a workflow and the
WORKFLOW_CHECKIN_SUB is used.

A.8.6.1 Required Parameters
These parameters must be specified.

Note: All paths use the slash (/) as the file separator, because the
backslash (\) is an escape character. For example,
primaryFile=d:/temp/myfile.txt should point to the primary
file to check in.

Parameter Description

dDocAuthor The content item author (contributor).

dDocName The content item identifier (Content ID).

■ This field is optional if the system has been configured with
IsAutoNumber set to TRUE. In this scenario, if the
dDocName is not specified, the check in will always be new,
and the system will generate a new name for the content
item.

■ Otherwise, if dDocName is specified, the service will use this
key to do a look up to determine what type of check in to
perform.

dDocTitle The content item title.

dDocType The content item type.

doFileCopy Set this flag to TRUE (1) or the file will be removed from your
hard drive.

dSecurityGroup The security group such as PUBLIC or SECURE.

IdcService Must be set to CHECKIN_UNIVERSAL.

primaryFile The absolute path to the location of the file as seen from the
server. Use the slash as the file separator.

A primary file must be specified unless checking in metadata
only. If an alternate file is specified with the primary file, the
content refinery will convert the alternate file. Otherwise, the
primary file will be converted.

■ If a primary file is not specified, a metafile can be used in its
place. Only one metafile can exist though for each content
item (that is, a primary AND alternate meta file cannot
coexist).

■ If both a primary and alternate file is specified, their
extensions must be different.

Important: Custom metadata fields that are defined must also be
specified.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-39

A.8.6.2 Additional Parameters
This parameter may be required.

A.8.6.3 Optional Parameters
These optional parameters may be specified.

A.8.6.4 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKIN_
UNIVERSAL">
<idc:document dDocName="SoapUpload2" dDocAuthor="sysadmin" dDocTitle="Soap Upload
2 Document" dDocType="ADACCT" dSecurityGroup="Public" dDocAccount="">
<idc:file name="primaryFile"
href="C:/stellent/custom/Soap/JavaSamples/SoapClientUpload/soaptest.doc">
</idc:file>
</idc:document>

Parameter Description

dDocAccount The security account for the content item.

If you have accounts enabled, you must pass this parameter.

Parameter Description

alternateFile The alternate file for conversion.

■ Only one metafile can exist though for each content item (a
primary AND alternate meta file cannot coexist.)

■ If an alternate file is specified with the primary file, the
content refinery will convert the alternate file. Otherwise, the
primary file will be converted.

dCreateDate The date the content item was created. By default, this is the
current date.

dInDate The content release date. The date the content item is to be
released to the web. By default, this is the current date.

If the content release date (dInDate) is not specified, the creation
date (dCreateDate) is used. This value is auto generated if it is
not supplied.

dOutDate The content expiration date. By default, this is blank and does
not specify an expiration date.

If the content expiration date (dOutDate) is not entered, the value
remains empty. This is a valid state.

dRevLabel The revision label for the content item. If set, the label will be
used to locate the specified revision.

isFinished Set to TRUE (1) if this is a workflow check-in and you have
finished editing it.

See WORKFLOW_CHECKIN for additional information.

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID value is a generated
reference to a specific rendition of a content item

Sample Service Calls with SOAP Response/Request

A-40 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.6.5 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKIN_
UNIVERSAL">
<idc:document dDocAuthor="sysadmin" dDocName="SoapUpload2" dExtension="doc"
dDocAccount="" dIsPrimary="1" dRevisionID="1" dPublishType="" dInDate="4/22/02
1:31PM" dReleaseState="N" dRevClassID="12" dCreateDate="4/22/02 1:31 PM"
dIsWebFormat="0" dPublishState="" dLocation="" dStatus="DONE"
dOriginalName="12.doc" dOutDate="" dDocID="24" dRevLabel="1" dProcessingState="Y"
dDocTitle="Soap Upload 2 Document" dID="12" dDocType="ADACCT"
dSecurityGroup="Public" dFileSize="19456" dFormat="application/msword">
<idc:field name="primaryFile:path">
c:/stellent/vault/~temp/1230750423.doc
</idc:field>
<idc:field name="dRawDocID">
23
</idc:field>
<idc:field name="changedSubjects">
documents,1019482656706
</idc:field>
<idc:field name="StatusCode">
0
</idc:field>
<idc:field name="soapFile:path">
c:/stellent/vault/~temp/1230750422.xml
</idc:field>
<idc:field name="xComments">

</idc:field>
<idc:field name="soapStartContentID">
SoapContent
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 1:31 PM
</idc:field>
<idc:field name="dActionMillis">
30263
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="WebfilePath">
c:/stellent/weblayout/groups/public/documents/adacct/soapupload2~1.doc
</idc:field>
<idc:field name="StatusMessage">
Successfully checked in content item 'SoapUpload2'.
</idc:field>

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-41

<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="dConversion">
PASSTHRU
</idc:field>
<idc:field name="primaryFile">
C:/stellent/custom/Soap/JavaSamples/SoapClientUpload/soaptest.doc
</idc:field>
<idc:field name="dAction">
Checkin
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="VaultfilePath">
c:/stellent/vault/adacct/12.doc
</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.7 Check out Content Item
The CHECKOUT_BY_NAME checks out the latest revision of the specified content item.

■ Given a content item revision ID, this service attempts to locate the content item in
the system and undo the checkout.

■ The service fails if the content item does not exist in the system, if the content item
is not checked out, or the user does not have sufficient privilege to undo the
checkout.

■ The most likely error is a content item name that does not exist. If this service is
unable to execute, an error message is displayed to the user.

A.8.7.1 Required Parameters
These parameters must be specified.

Note: This service only marks the content item as locked. It does not
perform a download.

Parameter Description

dDocName The content item identifier (Content ID).

IdcService Must be set to CHECKOUT_BY_NAME.

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID value is a generated
reference to a specific rendition of a content item.

Sample Service Calls with SOAP Response/Request

A-42 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A.8.7.2 Optional Parameters
This optional parameter may be specified.

A.8.7.3 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_
BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.7.4 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_
BY_NAME">
<idc:document dDocTitle="soap_sample" dID="10" dRevLabel="1" dDocAccount=""
dRevClassID="10" dDocName="soap_sample" dOriginalName="soap_sample.txt"
dSecurityGroup="Public">
<idc:field name="dActionMillis">
39964
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 12:20 PM
</idc:field>
<idc:field name="latestID">
10
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="CurRevID">
10
</idc:field>
<idc:field name="CurRevIsCheckedOut">
0
</idc:field>
<idc:field name="dAction">
Check out
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>

Parameter Description

dDocTitle The content item title.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-43

<idc:field name="CurRevCheckoutUser">
sysadmin
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
documents,1019482656687
</idc:field>
<idc:resultset name="DOC_INFO">
<idc:row dID="10" dDocName="soap_sample" dDocType="ADACCT" dDocTitle="soap_sample"
dDocAuthor="sysadmin" dRevClassID="10" dRevisionID="1" dRevLabel="1"
dIsCheckedOut="1" dCheckoutUser="sysadmin" dSecurityGroup="Public"
dCreateDate="4/22/02 12:18 PM" dInDate="4/22/02 12:18 PM" dOutDate=""
dStatus="RELEASED" dReleaseState="Y" dFlag1="" dWebExtension="txt"
dProcessingState="Y" dMessage="" dDocAccount="" dReleaseDate="4/22/02 12:19 PM"
dRendition1="" dRendition2="" dIndexerState="" dPublishType="" dPublishState=""
dDocID="19" dIsPrimary="1" dIsWebFormat="0" dLocation="" dOriginalName="soap_
sample.txt" dFormat="text/plain" dExtension="txt" dFileSize="12">
<idc:field name="xComments">

</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.8 Undo Content Item Checkout
The UNDO_CHECKOUT_BY_NAME service reverses a content item checkout using the
Content ID.

■ Given a content item name, this service attempts to locate the content item in the
system and undo the checkout.

■ The service fails if the content item does not exist in the system, if the content item
is not checked out, or if the user does not have sufficient privilege to undo the
checkout.

■ This service is used by an applet or application.

■ If this service is unable to execute, this message is displayed to the user: Unable
to undo checkout for ''{dDocName}''.

A.8.8.1 Required Parameters
These parameters must be specified.

Parameter Description

dDocName The content item identifier (Content ID).

IdcService Must be set to UNDO_CHECKOUT_BY_NAME.

Sample Service Calls with SOAP Response/Request

A-44 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A.8.8.2 Optional Parameters
This optional parameter may be specified.

A.8.8.3 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="UNDO_
CHECKOUT_BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.8.4 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="UNDO_
CHECKOUT_BY_NAME">
<idc:document dCheckoutUser="sysadmin" dPublishState="" dDocTitle="soap_sample"
dID="10" dRevLabel="1" dDocAccount="" dDocName="soap_sample" dRevClassID="10"
dOriginalName="soap_sample.txt" dSecurityGroup="Public">
<idc:field name="dActionMillis">
5317
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 12:23 PM
</idc:field>
<idc:field name="latestID">
10
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="CurRevID">
10
</idc:field>
<idc:field name="CurRevIsCheckedOut">
1
</idc:field>

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID value is a generated
reference to a specific rendition of a content item.

Parameter Description

dDocTitle The content item title.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-45

<idc:field name="dAction">
Undo Checkout
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="CurRevCheckoutUser">
sysadmin
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
documents,1019482656689
</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.9 Get Content Item Information
The DOC_INFO service retrieves content item revision information.

■ Given a content item revision ID, the service retrieves content item revision
information

■ The most likely errors are when the content item no longer exists in the system or
when the user does not have the security level to perform this action. If this service
is unable to execute, an error message is displayed to the user.

A.8.9.1 Required Parameters
These parameters must be specified.

A.8.9.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DOC_INFO">
<idc:document dID="6">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.9.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DOC_INFO">

Parameter Description

dID The generated content item revision ID.

IdcService Must be set to DOC_INFO.

Sample Service Calls with SOAP Response/Request

A-46 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

<idc:document dStatus="RELEASED" dDocFormats="text/plain" dID="6"
DocUrl="HTTP://wharristest/stellent/groups/public/documents/adacct/stellent.txt"
dDocTitle="stellent">
<idc:field name="dSubscriptionAlias">
sysadmin
</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="dSubscriptionID">
stellent
</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dSubscriptionType">
Basic
</idc:field>
<idc:resultset name="REVISION_HISTORY">
<idc:row dFormat="text/plain" dInDate="4/12/02 1:27 PM" dOutDate=""
dStatus="RELEASED" dProcessingState="Y" dRevLabel="1" dID="6" dDocName="stellent"
dRevisionID="1">
</idc:row>
</idc:resultset>
<idc:resultset name="WF_INFO">
</idc:resultset>
<idc:resultset name="DOC_INFO">
<idc:row dID="6" dDocName="stellent" dDocType="ADACCT" dDocTitle="stellent"
dDocAuthor="sysadmin" dRevClassID="6" dRevisionID="1" dRevLabel="1"
dIsCheckedOut="0" dCheckoutUser="" dSecurityGroup="Public" dCreateDate="4/12/02
1:27 PM" dInDate="4/12/02 1:27 PM" dOutDate="" dStatus="RELEASED"
dReleaseState="Y" dFlag1="" dWebExtension="txt" dProcessingState="Y" dMessage=""
dDocAccount="" dReleaseDate="4/12/02 1:27 PM" dRendition1="" dRendition2=""
dIndexerState="" dPublishType="" dPublishState="" dDocID="11" dIsPrimary="1"
dIsWebFormat="0" dLocation="" dOriginalName="stellent.txt" dFormat="text/plain"
dExtension="txt" dFileSize="8">
<idc:field name="xComments">
stellent
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-47

A.8.10 Get File
The GET_FILE service returns a specific rendition of a content item, the latest revision,
or the latest released revision. A copy of the file is retrieved without performing a
check out.

■ This command computes the dID (content item revision ID) for the revision, and
then determines the filename of a particular rendition of the revision with the
computed dID. A specified dID or a dDocName (content item name) along with a
RevisionSelectionMethod parameter can be used.

■ Given a dID or a dDocName along with a RevisionSelectionMethod parameter, the
service determines the filename of a particular rendition of the revision and
returns that file to the client.

■ The most likely errors are some form of mismatched parameters or a request for a
revision or rendition that does not exist. If this service is unable to execute, an
error message is displayed to the user.

A.8.10.1 Required Parameters

Note: Use dDocName in all requests for content items where the
requester knows the dDocName value. Error messages in Oracle
Content Server are based on the assumption that it is present, as are
other features, such as forms.

Important: Either the content item revision ID (dID) must be
specified or a content item name (dDocName) along with a
RevisionSelectionMethod parameter must be defined.

Parameter Description

dDocName The content item identifier (Content ID).

■ If dDocName is not present, dID must be present and
RevisionSelectionMethod must not be present.

■ If RevisionSelectionMethod is present, a rendition of a
revision of the content item with this name will be returned,
if it exists.

■ If RevisionSelectionMethod is not present, dDocName may
be used in error messages.

dID The generated content item revision ID.

■ If dID is not specified, dDocName and
RevisionSelectionMethod must specified.

■ A rendition of the revision of the content item with this ID
will be returned, if it exists, and the
RevisionSelectionMethod parameter does not exist or has
the value Specific.

Sample Service Calls with SOAP Response/Request

A-48 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

A.8.10.2 Optional Parameters
These optional parameters may be specified.

A.8.10.3 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.10.4 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10">
</idc:document>
</idc:service>
</SOAP-ENV:Body>

RevisionSelection Method The revision selection method.

If present, dDocName must be present. The value of this variable
is the method used to compute a dID from the specified
dDocName. Its value may be Specific, Latest, or LatestReleased.

■ If the value is Specific, the dDocName is ignored, and dID is
required and is used to get a rendition.

■ If the value is Latest, the latest revision of the content item is
used to compute the dID.

■ If the value is LatestReleased, the latest released revision of
the content item is used to compute the dID.

IdcService Must be set to GET_FILE.

Parameter Description

Rendition The content item rendition. This parameter specifies the rendition
of the content item and can be set to Primary, Web, or Alternate. If
Rendition is not present, it defaults to Primary.

■ If the value is Primary, the primary rendition of the selected
revision is returned.

■ If the value is Web, the web viewable rendition of the
selected revision is returned.

■ If the value is Alternate, the alternate rendition of the selected
revision is returned.

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID value is a generated
reference to a specific rendition of a content item.

Parameter Description

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-49

</SOAP-ENV:Envelope>

Receving response...
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Connection: keep-alive
Date: Mon, 29 Apr 2002 16:09:42 GMT
Content-type: Multipart/Related; boundary=-----------------4002588859573015789;
type=text/xml; start="<SoapContent>"
Content-Length: 1717

-------------------4002588859573015789
Content-Type: text/xml; charset=utf-8
Content-ID: <SoapContent>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10" dExtension="txt">
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="FILE_DOC_INFO">
<idc:row dID="10" dDocName="soap_sample" dDocType="ADACCT" dDocTitle="soap_sample"
dDocAuthor="sysadmin" dRevClassID="10" dRevisionID="1" dRevLabel="1"
dIsCheckedOut="0" dCheckoutUser="" dSecurityGroup="Public" dCreateDate="4/22/02
12:18PM" dInDate="4/22/02 12:18 PM" dOutDate="" dStatus="RELEASED"
dReleaseState="Y" dFlag1="" dWebExtension="txt" dProcessingState="Y" dMessage=""
dDocAccount="" dReleaseDate="4/22/02 12:19 PM" dRendition1="" dRendition2=""
dIndexerState="" dPublishType="" dPublishState="" dDocID="19" dIsPrimary="1"
dIsWebFormat="0" dLocation="" dOriginalName="soap_sample.txt" dFormat="text/plain"
dExtension="txt" dFileSize="12">
<idc:field name="xComments">

</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Service Calls with SOAP Response/Request

A-50 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

-------------------4002588859573015789
Content-Type: text/html
Content-ID: <soap_sample.txt>

...File content...
-------------------4002588859573015789--

A.8.11 Get Search Results
The GET_SEARCH_RESULTS service retrieves the search results for the passed query
text.

■ Used to display the search results to a user making a content item query.

■ You can append values for Title, Content ID, and so on, on the QueryText
parameter to refine this service.

The QueryText parameter defines the query. For use in a SOAP message, this
query must be XML-encoded. This example passes a string submitted for a content
item query as both a standard formatted string and XML-encoded format:

– Parameter with standard formatted string.

QueryText=dDocType <Substring> "ADSALES"

– Parameter with XML-encoded string

<idc:field name="QueryText">
dDocType <Substring> `ADSALES`
</idc:field>

For more information about formatting XML-encoded strings, see
Section A.4.2, "Special Characters."

■ If this service is unable to execute, this message is displayed to the user: Unable to
retrieve search results.

A.8.11.1 Required Parameters
These parameters must be specified.

A.8.11.2 Optional Parameters
These parameters may be specified.

Parameter Description

IdcService Must be set to GET_SEARCH_RESULTS.

QueryText The user supplied text submitted for the content item query.

Parameter Description

resultCount The number of results to return, defaults to 25.

sortField The name of the metadata field to sort on.

■ Examples: dInDate, dDocTitle, Score.

■ Defaults to dInDate.

sortOrder The sort order. Allowed values are ASC (ascending) and DES
(descending).

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-51

A.8.11.3 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_SEARCH_
RESULTS">
<idc:document>
<idc:field name="QueryText">
dDocType <Substring> "ADSALES"
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.11.4 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_SEARCH_
RESULTS">
<idc:document StartRow="1" TotalDocsProcessed="6" TotalRows="0"
QueryText="dDocType+%3cSubstring%3e+%22ADSALES%22" EndRow="25"
SearchProviders="Master_on_wharristest" NumPages="0" PageNumber="1">
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="EnterpriseSearchMaxRows">
4
</idc:field>
<idc:field name="FullRequest">
&QueryText=dDocType+%3cSubstring%3e+%22ADSALES%22
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="Text2">
<$dDocTitle$>
</idc:field>
<idc:field name="Text1">
<$dDocName$>

startRow The row to begin the search results. For example, if a result
returns 200 rows, and resultCount is 25, set startRow to 26 to
obtain the second set of results.

Parameter Description

Sample Service Calls with SOAP Response/Request

A-52 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

</idc:field>
<idc:field name="OriginalQueryText">
dDocType+%3cSubstring%3e+%22ADSALES%22
</idc:field>
<idc:resultset name="SearchResults">
</idc:resultset>
<idc:resultset name="NavigationPages">
</idc:resultset>
<idc:resultset name="Master_on_wharristest">
</idc:resultset>
<idc:resultset name="EnterpriseSearchResults">
<idc:row ProviderName="Master_on_wharristest" IDC_Name="Master_on_wharristest"
TotalRows="0" TotalDocsProcessed="6">
<idc:field name="ProviderDescription">
!csProviderLocalContentServerLabel
</idc:field>
<idc:field name="InstanceMenuLabel">
Master_on_wharristest
</idc:field>
<idc:field name="InstanceDescription">
Master_on_wharristest
</idc:field>
<idc:field name="IntradocServerHostName">
wharristest
</idc:field>
<idc:field name="HttpRelativeWebRoot">
/stellent/
</idc:field>
<idc:field name="IsImplicitlySearched">

</idc:field>
<idc:field name="UserAccounts">
#all
</idc:field>
<idc:field name="IsLocalCollection">
true
</idc:field>
<idc:field name="Selected">

</idc:field>
<idc:field name="StatusMessage">
Success
</idc:field>
<idc:field name="ResultSetName">
Master_on_wharristest
</idc:field>
<idc:field name="SearchCgiWebUrl">
/idcplg/idc_cgi_isapi.dll/stellent/pxs
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-53

A.8.12 Get Table Data
The GET_TABLE service exports the specified table in the Oracle Content Server
database.

■ Exports the specified table by creating a result set and adding it to the serialized
hda. If the table is not found, the service will fail. It is up to the calling program
receiving the serialized hda to store this result set for later usage.

■ The most likely error is a table name that does not exist. If this service is unable to
execute, an error message is displayed to the user.

A.8.12.1 Required Parameters
These parameters must be specified.

A.8.12.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_TABLE">
<idc:document>
<idc:field name="tableName">
DocTypes
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.12.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_TABLE">
<idc:document>
<idc:field name="tableName">
DocTypes
</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>

Parameter Description

IdcService Must be set to GET_TABLE.

tableName The name of table to export.

Sample Service Calls with SOAP Response/Request

A-54 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="DocTypes">
<idc:row dDocType="ADACCT" dDescription="Acme Accounting Department"
dGif="adacct.gif">
</idc:row>
<idc:row dDocType="ADCORP" dDescription="Acme Corporate Department"
dGif="adcorp.gif">
</idc:row>
<idc:row dDocType="ADENG" dDescription="Acme Engineering Department"
dGif="adeng.gif">
</idc:row>
<idc:row dDocType="ADHR" dDescription="Acme Human Resources Department"
dGif="adhr.gif">
</idc:row>
<idc:row dDocType="ADMFG" dDescription="Acme Manufacturing Department"
dGif="admfg.gif">
</idc:row>
<idc:row dDocType="ADMKT" dDescription="Acme Marketing Department"
dGif="admkt.gif">
</idc:row>
<idc:row dDocType="ADSALES" dDescription="Acme Sales Department"
dGif="adsales.gif">
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.13 Get Criteria Workflow Information
The GET_CRITERIA_WORKFLOWS_FOR_GROUP service returns criteria workflow
information.

■ Given a named security group, this service returns a list of workflows and related
steps.

■ Returns the result sets WorkflowsForGroup and WorkflowStepsForGroup:

– WorkflowsForGroup lists all of the workflows for this group (dWfID,
dWfName).

– WorkflowStepsForGroup lists all of the steps in all of the workflows for this
group (dWfID, dWfName, dWfStepID, dWfStepName).

■ Criteria workflows and subworkflows can be added, edited, enabled, disabled,
and deleted from the Criteria tab of the Workflow Admin administration applet.

■ The most likely error is a named security group that does not exist or a user failing
the security check. The service throws reasonable exceptions for display to the
user in these situations.

A.8.13.1 REquired Parameters
These parameters must be specified.

Sample Service Calls with SOAP Response/Request

Using WSDL Generator and SOAP A-55

A.8.13.2 SOAP Request
<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_
CRITERIA_WORKFLOWS_FOR_GROUP">
<idc:document dSecurityGroup="Public" />
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

A.8.13.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_
CRITERIA_WORKFLOWS_FOR_GROUP">
<idc:document dSecurityGroup="Public">
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="WorkflowStepsForGroup">
<idc:row>
<idc:field name="dWfID">
1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
<idc:field name="dWfStepID">
1
</idc:field>
<idc:field name="dWfStepName">
contribution
</idc:field>
</idc:row>
<idc:row>
<idc:field name="dWfID">

Parameter Description

dSecurityGroup The security group such as PUBLIC or SECURE.

IdcService Must be set to GET_CRITERIA_WORKFLOWS_FOR_GROUPS.

Sample Service Calls with SOAP Response/Request

A-56 Oracle Fusion Middleware Developer's Guide for Oracle Universal Content Management

1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
<idc:field name="dWfStepID">
2
</idc:field>
<idc:field name="dWfStepName">
StepOne
</idc:field>
</idc:row>
</idc:resultset>
<idc:resultset name="WorkflowsForGroup">
<idc:row>
<idc:field name="dWfID">
1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Index-1

Index

A
AboutBox method, IdcClient OCX, 8-35
access level attribute, 3-39
access numbers, A-29
accessibility, xviii
accessing services, 7-1
accessor methods, 10-10
action format, 3-39
action menus

customizing, 5-9
generating, 5-6
icon in Actions column, 5-9
overview, 5-6

actions
control mask, 3-40
error message, 3-40
name, 3-40
parameters, 3-40
service resource, 3-41
type, 3-39

Actions column
action menu icon, 5-9
service ResultSet, 3-39

Active Server Pages
calling IdcCommandUX, 8-3
coding example, 8-8
embedded SOAP request, A-11
service execution, A-10

ActiveX Command Utility. See IdcCommandUX
utility

ActiveX control
IdcClient OCX, 8-22
IdcCommandUX utility, 8-1

ActiveX interface. See IdcCommandUX utility
adapter configuration file, 10-11
adapter element, 10-12
ADD_USER service, A-28
addExtraheadersForCommand method,

IdcCommandUX, 8-11
ADF runtime libraries, installing for JCR

adapter, 11-4
Advanced Component Manager

overview, 3-3
page, 3-4

anonymous user interface

customization, 4-3
external customers without login, 4-3
ExtranetLook component for changing, 4-3

Apache Jakarta Tomcat Server, 6-2
API objects

calling, 10-8
ISCSObject, 10-14
ISCSServerResponse, 10-14

APIs, installing for JCR adapter, 11-3
applets, 2-3
architecture

Content Integration Suite, 10-1
Oracle Universal Content Management, 2-1
WebDAV, 6-7

Asian language, 3-7
ASP. See Active Server Pages
assembling pages, 2-12
assembly properties, 3-29
attributes

ClientControlledContextValue, 8-46
HostCgiUrl, 8-46
name, A-30
Password, 8-46
service resources, 3-41
type, A-30, A-33
UseBrowserLoginPrompt, 8-46
UseProgressDialog, 8-46
UserName, 8-46
WorkingDir, 8-47

audience, xvii

B
Back method, IdcClient OCX, 8-35
Batch Loader utility, 2-3
beginning form section, 4-21
behavior, Oracle Content Server, 2-7
bin directory, 2-2
binders for multiple requests, reusing, RIDC, 9-9
Binding element, WSDL file structure, A-15
browsers

multiple, 1-4
requests, 2-10

bundling files, 4-5
order of filters, 4-6
overview, 4-5

Index-2

PublishedBundles table, 4-6
buttons, form, 4-23

C
-c connection_mode

auto, 7-5
server, 7-5
standalone, 7-5

C# class files, A-20
cache settings, JCR adapter, 11-7
caching resources, 2-9
calling services remotely, 7-6
CancelRequest method, IdcClient OCX, 8-35
cascading style sheets, 1-3
certificates

exporting, 9-15
importing, 9-15
self-signed

creating, 9-13
keytool utility, 9-14

CFG file, 3-50
CgiUrl TextBox properties, edited, 8-25
changed features, xxi, xxii
character encoding, 10-2
characters, special, command-file syntax, 7-4
CHECKIN_UNIVERSAL service, WSDL, A-37
CheckIn.wsdl file, A-14
CHECKOUT_BY_NAME service, WSDL, A-41
CIS. See Content Integration Suite
class loader

custom
isolating dependencies on libraries, 10-6
UCPM API, 10-6

UCPM API, 10-6
usage, UCPM API, 10-7

ClassAliases ResultSet, 3-22
classes

com.stellent.web.servlets.SCSCommandClientServ
let, 10-21

com.stellent.web.servlets.SCSDynamicConverterSe
rvlet, 10-21

com.stellent.web.servlets.SCSDynamicURLServlet,
10-21

com.stellent.web.servlets.SCSFileDownloadServlet,
10-21

com.stellent.web.servlets.SCSFileTransferServlet,
10-21

com.stellent.web.servlets.SCSInitialize, 10-21
client keys, creating, 9-13
ClientControlledContextValue property, 8-46
clients

configuration, 9-4
WebDAV, 6-7

closeServerConnection method,
IdcCommandUX, 8-12

closing resources, RIDC, 9-7
coding ASP page, example, 8-8
COM integration

API, 8-1

introduction, 8-1
COM interface, 8-1
COM object, example of creating, 8-5, 8-9
Command Design Pattern, 10-1, 10-2
command file

IdcCommand parameters, 7-2
IdcCommand service commands, 7-2
IdcCommand utility option, 7-4
syntax

precedence, 7-3
service commands, 7-3
special characters, 7-4

command file syntax, special tags, 7-4
Command TextBox properties, edited, 8-26
command-file

syntax
special characters, 7-4

command-line utility
ComponentTool

description of, 3-5
installing component with, 3-53

options, 7-2
commands, verifying, 8-32
common code forms, 4-28
communication

CIS connection, 11-6
JCR adapter configuration, 11-5
method, JCR adapter, 11-5

comparison operators, dynamic server pages, 4-10,
4-11

component definition file, 3-9, 3-18
Component Manager

Advanced, 3-3, 5-4
custom components, 5-4
disabling components, 3-6
enabling components, 3-6
installing components with, 3-52

Component Wizard
creating a dynamic table, 3-35
custom components, 3-15, 5-3
description of, 3-2
disabling components, 3-6
editing dynamic tables, 3-35
editing environment resources, 3-51
editing HTML includes, 3-24, 3-26, 3-35
editing service resources, 3-44
editing static tables, 3-35
editing template resources, 3-49
enabling components, 3-6
installing component, 3-52
interface, 3-2
Oracle UCM utility, 2-3
overview of, 3-2
tool for working with component files, 3-15
working with resources, 3-23

components
Advanced Component Manager, 3-3
Component Manager, 3-3
ComponentTool command-line utility, 3-5
creating, 3-14

Index-3

custom
Component Wizard, 3-15, 5-3
development recommendations, 3-14
managing, 5-4
working with, 3-1

directories, 3-6, 3-14
disabling, 3-5
enabling, 3-5
files

changing, 2-9
component creation, 3-6
Component Wizard, 3-15
development recommendations, 3-14
organization, 3-15
overview, 3-5
text editor, 3-15
working with, 3-15

functionality, 5-3
HDA file, 3-13, 3-17
IdcClient OCX, 8-22
installation

ComponentTool utility, 3-53
overview, 3-51

limitations, 5-3
loading, 2-9
naming conventions, 3-16
overview, 3-1
SecurityProviders

enabling, 9-11
installing, 9-11

standard, 3-1
system, 3-1
using, 5-2
working with, 3-1
working with files, 3-15
ZIP file for deployment, 3-13

components directory, 2-5
Components ResultSet, 3-8, 3-18
components, custom

directories and files, 3-6
components.hda file, 3-13, 3-17
ComponentTool command-line utility

description of, 3-5
installing component, 3-53

computed settings, Launcher, 7-7
computeNativeFilePath method,

IdcCommandUX, 8-12
computeURL method, IdcCommandUX, 8-13
computeWebFilePath method,

IdcCommandUX, 8-15
com.stellent.web.servlets.SCSCommandClientServlet

class, 10-21
com.stellent.web.servlets.SCSDynamicConverterServl

et class, 10-21
com.stellent.web.servlets.SCSDynamicURLServlet

class, 10-21
com.stellent.web.servlets.SCSFileDownloadServlet

class, 10-21
com.stellent.web.servlets.SCSFileTransferServlet

class, 10-21

com.stellent.web.servlets.SCSInitialize class, 10-21
config directory, 2-3, 2-5
config element, 10-12
config.cfg configuration file, 4-3
configuration

changing information, 5-4
clients, 9-4
config.cfg file, 4-3
entries in configuration file, 4-3
JCR adapter communication, 11-5
JSP support, 6-3
Launcher, 7-11
options, idcCommand utility, 7-4
SSL communication

incoming provider, 9-12
Oracle Content Server, 9-11

configuration files
adapter, 10-11
environment resources, 3-50
example, 7-11
load order, 2-9

configuration variables, loading, 2-8
connecting to Oracle Content Server from remote

system, 8-8
connections

handling with RIDC, 9-6
mode, IdcCommand utility option, 7-5
pooling, with RIDC, 9-7
status, example of returning, 8-9

connectToServer method, IdcCommandUX, 8-16
content attribute, metadata tag, 4-18
Content Integration Suite

API
calling methods, 10-3
command objects, 10-2
ICISCommonContext bean, 10-2
IContext bean, 10-3
object metadata, 10-1
object model, 10-1

architecture, 10-1
initialization, 10-3

CISApplicationFactory class, 10-3
SCSInitializeServlet, 10-4

integration, web environment, 10-5
J2EE standards, 6-4
layered architecture, 10-1
using, 10-1

content items
example, HelloWorld displayed in web

browser, 4-24
finding information for

JCR, 11-7
RIDC, 9-17

tables
JCR, 11-7
RIDC, 9-16

Content Publisher, 4-14
dynamic server pages, 4-10
nested tags, 4-18
repeated ResultSet tags, 4-20

Index-4

context roots, 12-2
Contribution Folders, default system-level

folder, 6-6
control mask, 3-40
controls, IdcClient OCX, 8-20
conventions

naming, 3-16, 4-15
text, xix

creating and executing IdcCommand
parameters, 7-5

CSS, 1-3
custom components

Advanced Component Manager, 5-4
Component Wizard, 3-15, 5-3
development recommendations, 3-14
directories and files, 3-6
loading, 2-9
understanding, 3-6, 3-14
working with, 3-1

custom includes
examples of, 4-23
HCSP file references, 4-24
HCST file references, 4-23
IDOC files, 4-26

custom installation parameter files, 3-14
custom resource files, 3-10, 3-13
custom resources, example of referencing, 8-6
customization

Oracle Content Server interface, 4-1, 4-4
Oracle Content Server navigation, 4-1
Oracle UCM instance, 1-1
popup menus, 5-9
services, 5-5
site files, 3-13
skills recommended for, 1-2
stages, 1-2
system settings, 5-1
tips, 1-1
tools recommended for, 1-2
types, 1-1

D
data binder, 3-11
data section

overview of, 4-16
structure, 4-17

Data Types element, WSDL file structure, A-14
database interaction, 2-13
dDocName parameter, 4-13
debug trace, 1-5
default suffix, 4-18
DefaultTaskPaneUrl property, DesktopTag, 13-7
defining

form fields, 4-29
form information, 4-29
hidden fields, 4-29

definition file, 3-9
DELETE_USER service, A-36
deployment

JCR adapter, 11-5
JCR API for JCR adapter, 11-4
JCR integration libraries for JCR adapter, 11-4,

11-5
RIDC for JCR adapter, 11-4

deprecated in CIS, FixedAPI, 10-2
DesktopTag

check-in, 13-2
check-out, 13-2
configuration file, 13-1, 13-5
configuring, 13-5
custom fields, 13-6
ExtendedUserAttributes component and, 13-7
fields, 13-5
File Check-In operation, 13-2
File Get operation, 13-2
log, 13-7
metadata fields

MicroSoft Office file properties, 13-6
processing, 13-6

properties
DefaultTaskPaneUrl, 13-7
DesktopTagFields, 13-6
DesktopTagFieldsCustom, 13-6
DesktopTagFieldsExtended, 13-7
DesktopTagFormats, 13-5
DesktopTagFormatsExclude, 13-8
DesktopTagLog, 13-7
DesktopTagPrefix, 13-5
DesktopTagPrefixCustom, 13-6
DesktopTagPrefixExtended, 13-7
DISProperties, 13-6
DISTaskPaneUrl property, 13-7

DesktopTagFields property, 13-6
DesktopTagFieldsCustom property, 13-6
DesktopTagFieldsExtended property, 13-7
DesktopTagFormats property

description, 13-5
DesktopTagFormatsExclude and, 13-8

DesktopTagFormatsExclude property
description, 13-8
DesktopTagFormats and, 13-8

DesktopTagLog property, 13-7
DesktopTagPrefix property, 13-5
DesktopTagPrefixCustom property, 13-6
DesktopTagPrefixExtended property, 13-7
development

dynamic server pages, 4-14
HCSF pages, 4-15
instance, Oracle Content Server, 3-15

dID parameter, 4-13
DIME message format, A-3
directories, 2-1

bin, 2-2
components, 2-5
config, 2-3
groups, 2-6
idoc, 2-5
images, 2-6
install, 2-5

Index-5

javascript, 2-5
jspserver, 2-5
lang, 2-5
naming conventions, 3-16
Oracle UCM, 2-1
organization, 3-15
reports, 2-5
resources, 2-5, 2-6
shared/config, 2-5
structure, 3-14
templates, 2-5, 2-6
terminology, 2-2
weblayout, 2-6

disabling components, 3-5
display tables, creating, 5-6
DISProperties custom property, 13-6
DISTaskPaneUrl property and DesktopTag, 13-7
DOC_INFO service

content item information retrieval, A-45
example, 3-40

DOC_INFO_SIMPLE service, 4-28
DoCheckoutLatestRev method, IdcClient OCX, 8-35
DocInfo.wsdl file, A-14
docLoadResourceIncludes function

description, 4-12
HCSF pages, 4-16
parameters, 4-13
requirements for calling, 4-13

document node, A-8
document node, SOAP, A-8
document organization, xvii
double-byte characters, 3-7
DownloadFile method, IdcClient OCX, 8-36
DownloadNativeFile method, IdcClient OCX, 8-36
Drag method, IdcClient OCX, 8-37
dynamic data table resources, 2-6, 3-25
dynamic server pages

altering navigation of web pages, 4-7
comparison operators, 4-10, 4-11
Content Publisher, 4-10
creating, 4-9
development recommendations, 4-14
docLoadResourceIncludes function, 4-12
examples, 4-23
Idoc Script

functions, 4-12
tags, 4-10

naming conventions, 4-15
overview, 4-7
page types, 4-9
process, 4-8
referencing metadata, 4-10, 4-12
special characters, 4-10, 4-11
syntax, 4-10
tips, 4-14
types, 4-9

dynamic table resources
creating, 3-35
editing, 3-35
HDA file format, 3-35

merge rules, 3-35
overview, 2-6

dynamic web pages, assembly, 2-12
Dynamicdata Idoc Script functions, 3-31
dynamicdata includes, 2-6

E
EDIT_USER service, A-31
EditDocInfoLatestRev method, IdcClient OCX, 8-37
editing

dynamic data table resource, 3-26
dynamic table resource, 3-35
environment resource, 3-51
HTML include resource, 3-24
ResultSet, 4-21
service resource, 3-44
static table, 3-35
string resource, 3-35
template resource, 3-49

elements in HDA files, 3-7
embedded SOAP request, A-11
enabling components, 3-5
end of form, 4-23
enterprise application integration, 6-1
environment, 3-11
environment resources

description, 3-50
editing, 3-51
example, 3-50
file contents, 3-50
overview, 2-7

environment variables, Launcher, 7-9
EOD

command-file tag, 7-4
end of data marker, 7-4

error message section, service resource, 3-40
error message service attribute, 3-39
errors, server, 1-4
events

IdcClient OCX, 8-21
IntradocBeforeDownload, 8-33
IntradocBrowserPost, 8-33
IntradocBrowserStateChange, 8-33
IntradocRequestProgress, 8-33
IntradocServerResponse, 8-33

examples
changing a foreign key value, 4-22
ClassAliases ResultSet, 3-22
code for HCSF pages, 4-28
coding ASP page, 8-8
COM object, creating, 8-5
component definition file, 3-10, 3-18
components HDA file, 3-17
configuration file, 7-11
connection to Oracle Content Server, 8-9
content item displayed in web browser, 4-24
creating COM object, 8-9
creating variables, 8-9
defining a service, 8-10

Index-6

defining parameters, 8-10
dynamic server pages, 4-23
environment resource, 3-50
executing a service, 8-6, 8-10
Filters ResultSet, 3-22
form fields, 4-29
Form_Load code, edited, 8-29
glue file, 3-10, 3-18
HCSF page, 4-24
HCSP page, 4-23
HCST page, 4-23
HDA file, 2-5, 3-6
HDA sample, 8-4
HelloWorld displayed in web browser, 4-24
HTML includes, 3-24
IdcClient OCX component

methods, 8-21
properties, 8-22

IDOC pages, 4-23, 4-25
initializing connection to Oracle Content

Server, 8-5
JSP pages, loading, 6-4
LocalData section, 3-7
MergeRules ResultSet, 3-21, 3-45
OCX methods, 8-21
OCX properties, 8-22
parameters, defining, 8-5
Properties section, 3-7
query resource, 3-36
referencing custom resources, 8-6
report page, 3-48, 3-49
ResourceDefinition ResultSet, 3-20
ResultSet section, 3-8
retrieving results, 8-6, 8-11
returning the connection status, 8-9
SendPostCommand_Click code, edited, 8-29
services

actions, 3-41
attributes, 3-41
defining, 8-5
definition, 3-38
resource, 3-38, 3-40

SOAP, 8-4
super tag, 3-24
template page, 3-47, 3-48

executeCommand method
example of executing services, 8-6, 8-10
IdcCommandUX, 8-17

executeFileCommand method,
IdcCommandUX, 8-18

executing services with IdcCommandUX utility
caveats, 8-2
Visual C++ environment, 8-3

exporting certificates, 9-15
ExtendedUserAttributes component and

DesktopTag, 13-7
ExtranetLook component

changing anonymous user interface, 4-3
overview, 4-3

ExtraRootNodes form element, 4-18, 4-19

F
features

changed, xxi
JSP, 6-3
new, xxi

field subnode, SOAP, A-9
fields, form input, 4-22
file extension, referencing, 4-29
file store provider, using

JCR, 11-9
RIDC, 9-18

file store tables
JCR, 11-7
RIDC, 9-16

files
bundling, 4-5
command, 7-4
command file, IdcCommand utility, 7-3
component definition, 3-9, 3-18
component ZIP, 3-13
components HDA, 3-13, 3-17
config.cfg, 4-3
configuration, 3-50
custom installation parameter, 3-14
custom resource, 3-10, 3-13
customized for site, 3-13
environment, 3-50
glue, 3-9
HCSF

description, 4-9
product description form, 4-25

HCSP
custom include references, 4-24
description, 4-9

HCST
custom include references, 4-23
description, 4-9

HDA
description, 3-6
sample, 8-4

IDOC
custom includes, 4-26
description, 4-9

information retrieval, 4-28
log, IdcCommand utility option, 7-5
manifest, 3-12
naming conventions, 3-16
optimizing published files, 4-5
Oracle UCM, 2-1
organization, 3-15
referencing published, 4-6
search_results.htm, 3-46
types, 3-5
usage, 4-6
working with in components, 3-15

filter properties, 3-31
Filters ResultSet, 3-22
FixedAPI deprecated in CIS, 10-2
Folders component

benefits of virtual folders, 6-6

Index-7

structure, 6-6
virtual folders interface, 6-6

foreign key, changing value of, 4-22
form properties, 4-22
form section, 4-21

begin, 4-21
form buttons, 4-23
form end, 4-23
properties, 4-22

Form_Load code, edited, 8-29
formats

action, 3-39
table specification, 3-25

formatting resource include, service output from
IdcCommandUX, 8-6

forms
buttons, 4-23
common code, 4-28
defining form information, 4-29
elements, 4-19
end of form section, 4-23
fields

defining, 4-29
example, 2-11
for input, 4-22

properties, 4-29
submitting, 4-29

Forward method, IdcClient OCX, 8-38
forwardRequest method, IdcCommandUX, 8-18
functionality, modifying, 5-1
functions

docLoadResourceIncludes, 4-12
Dynamicdata Idoc Script, 3-31
Idoc Script, 4-12

G
generating action menus, 5-6
generating proxy class from WSDL files, A-20
generating WSDL files, A-19
GenericSoapService, 12-3
GET_CRITERIA_WORKFLOWS_FOR_GROUP

service, A-54
GET_FILE service, A-47
GET_SEARCH_RESULTS service, A-50
GET_TABLE service, A-53
GET_USER_INFO service, A-34
GetFile.wsdl file, A-14
getLastErrorMessage method,

IdcCommandUX, 8-18
getProperty method, 10-11, 10-15
getUCPMAPI method, 10-2, 10-13
getUserPrincipalEnabled, 10-23
getValue method, 10-11
glue file, 3-9
GoCheckinPage method, IdcClient OCX, 8-38
groups directory, 2-6

H
HCSF files

description, 4-9
product description form, 4-25
syntax, 4-10

.hcsf files. See HCSF files
HCSF pages

common code, 4-28
creating, 4-25
data section, 4-16, 4-17
defining form fields, 4-29
defining form information, 4-29
defining hidden fields, 4-29
description, 4-15
docLoadResourceIncludes function, 4-16
example, 4-24
form buttons, 4-23
form elements, 4-19
form end, 4-23
form properties, 4-22
form section, 4-21
form to create in web browser, 4-28
HTML declaration, 4-16
HTML includes, 4-16
isFormFinished attribute, 4-17
load section, 4-15
meta tag, 4-16
metadata tags, 4-18
nested tags, 4-18
referencing file extensions, 4-29
referencing XML tags, 4-18
ResultSets, 4-19
resultsets attribute, 4-17
retrieving file information, 4-28
submitting forms, 4-29
tips, 4-15
variables, 4-16

HCSP files
custom include reference, 4-24
description, 4-9
syntax, 4-10

.hcsp files. See HCSP files
HCSP pages

creating, 4-23
example, 4-23
link to display, 4-28

HCST files
custom include reference, 4-23
description, 4-9
syntax, 4-10

.hcst files. See HCST files
HCST pages

creating, 4-23
examples, 4-23

HDA files
component definition, 3-17
description, 3-6
elements, 3-7
example, 2-5, 3-6
idc_components.hda, 3-9, 3-17

Index-8

ResultSet section, 3-7
.hda files. See HDA files
HDA sample, 8-4
HEAD section, HCSF page, 4-16
Headline View tables, 5-7
HelloWorld content item displayed in web

browser, 4-24
hidden fields, defining, 4-29
hierarchical folders, 6-6
Home method, IdcClient OCX, 8-39
HostCgiUrl property, IdcClient, 8-46
HTML declaration, HCSF pages, 4-16
HTML editor, 1-3
HTML in templates, 1-3
HTML includes, 3-23

creating, 3-35
editing, 3-24, 3-26, 3-35
example, 3-24
HCSF pages, 4-16
overview, 2-6
standard, 3-23, 3-25, 3-32
super tag, 3-24

HTTP headers, A-7

I
ICISCommonContext bean, 10-2
ICISCommonContext object, 10-9
ICISObject interface

API call parameters, 10-8
objects, 10-3
overview, 10-10
property object types, 10-10

ICISTransferStream interface, 10-16
IContext interface

bean, 10-3
overview, 10-9

idc namespace, A-7
idc_components.hda file, 2-5, 3-9, 3-17
IdcAnalyze Oracle UCM utility, 2-3
idcbegindata tag, 4-17
IdcClient ActiveX Control module, 8-22
IdcClient events, 8-32
IdcClient OCX component

control setup, 8-22
description, 8-20
interface, 8-22
methods, 8-21

AboutBox, 8-35
Back, 8-35
CancelRequest, 8-35
DoCheckoutLatestRev, 8-35
DownloadFile, 8-36
DownloadNativeFile, 8-36
Drag, 8-37
EditDocInfoLatestRev, 8-37
Forward, 8-38
GoCheckinPage, 8-38
Home, 8-39
InitiateFileDownload, 8-39

InitiatePostCommand, 8-39
Move, 8-40
Navigate, 8-40
NavigateCgiPage, 8-41
RefreshBrowser, 8-41
SendCommand, 8-41
SendPostCommand, 8-41
SetFocus, 8-42
ShowDMS, 8-42
ShowDocInfoLatestRev, 8-42
ShowWhatsThis, 8-43
StartSearch, 8-43
Stop, 8-43
UndoCheckout, 8-44
ViewDocInfo, 8-44
ViewDocInfoLatestRev, 8-44
ZOrder, 8-45

Oracle Content server functions, 8-21
properties

example, 8-22
overview, 8-22

setting up, 8-22
IdcClient OCX control

description, 8-20
events, 8-21

IdcClient OCX methods, 8-34
IdcClient properties

edited, 8-24
overview, 8-45

IdcCommand utility
accessing services, 7-1
calling services remotely, 7-6
command-file syntax, 7-2, 7-3
command-line options, 7-2
configuration options, 7-4
execution, 7-2
options

command file, 7-4
connection mode, 7-5
log file, 7-5
user, 7-4

Oracle UCM, 2-3
overview, 7-1
repository server, 7-5
setup, 7-2
using the Launcher, 7-13

IdcCommandUX utility
Active Server Pages, 8-3
ActiveX control, 8-1
calling from Active Server Pages, 8-3
calling from Visual Basic environment, 8-2
calling from Visual C++ environment, 8-3
caveats, 8-2
description, 8-1
executing services, Visual C++ environment, 8-3
methods

addExtraheadersForCommand, 8-11
closeServerConnection, 8-12
computeNativeFilePath, 8-12
computeURL, 8-13

Index-9

computeWebFilePath, 8-15
connectToServer, 8-16
executeCommand, 8-17
executeFileCommand, 8-18
forwardRequest, 8-18
getLastErrorMessage, 8-18
initRemote, 8-19
overview, 8-11

repository server, 8-11
service output, formatting with resource

include, 8-6
services, 8-3
setting up, 8-2
setup.exe file, 8-2
Visual Basic environment, 8-2
Visual C++ environment, 8-3

idcenddata tag, 4-17
idcformrules tag, 4-17
IdcServer service, 2-3
IdcServerNT service, 2-3
IdcService command-file syntax tag, 7-4
IdcWebLoginService web service, 12-3
IdcWebRequestService web service, 12-3
IDE, 1-4
idoc directory, 2-5
IDOC files

custom includes, 4-26
description, 4-9
syntax, 4-10

.idoc files. See IDOC files
IDOC pages

creating, 4-23, 4-25
examples, 4-23, 4-25

idoc resource type, 2-6
Idoc Script

description, 1-3
functions, dynamic server pages, 4-12
tags, dynamic server pages, 4-10

images directory, 2-6
implementation architectures, web services mapped

to Oracle Content Server, A-4
importing certificates, 9-15
includes

custom
examples of, 4-23
IDOC file, 4-26

properties, 3-31
incoming provider for SSL communication, 9-12
initialization

CIS, 10-3
overview, 10-3
SCSInitializeServlet, 10-4

RIDC, 9-3
initialization parameters

getUserPrincipalEnabled, 10-23
principal, 10-23
principalLookupAllowed, 10-23
principalLookupName, 10-23
principalLookupScope, 10-23

initializing connection to Oracle Content Server

example, 8-5, 8-9
remote system, 8-8

InitiateFileDownload method, IdcClient OCX, 8-39
InitiatePostCommand method, IdcClient OCX, 8-39
initRemote method, IdcCommandUX, 8-19
install directory, 2-5
installation

Component Manager, 3-52
Component Wizard, 3-52
components

ComponentTool utility, 3-53
overview, 3-51

JCR adapter
ADF runtime libraries, 11-4
APIs required, 11-3
runtime libraries required, 11-3

Installer, 2-3
Integrated Development Environment, 1-4
integration

CIS, web environment, 10-5
COM API, 8-1
enterprise applications with Oracle UCM, 6-1
J2EE, 6-4
JSP, 6-2
methods, overview, 6-1
ODMA, 8-47
Oracle UCM with enterprise applications, 6-1
WebDAV, 6-6

interface, Oracle Content Server
anonymous user interface, changing, 4-3
changing look and feel, 4-1
changing navigation, 4-1
customizing

layouts and skins, 4-4
overview, 4-1

modifying, 4-1
interfaces

ICISTransferStream, 10-16
ISCSObject, 10-14
ISCSRequestModifier, 10-20
ISCSServerBinder, 10-16
ISCSServerResponse, 10-19

internal initialization, 2-8
internationalization (character encoding), 10-2
IntradocApp applet, 2-3
IntradocBeforeDownload event, IdcClient, 8-33
IntradocBrowserPost event, IdcClient, 8-33
IntradocBrowserStateChange event, IdcClient, 8-33
IntradocClient OCX component, 8-19
IntradocReports ResultSet, 3-8
IntradocRequestProgress event, IdcClient, 8-33
IntradocServerResponse event, IdcClient, 8-33
IntradocTemplates ResultSet, 3-9
ISCSDocumentCheckinAPI, 10-26
ISCSDocumentCheckoutAPI, 10-27
ISCSFileAPI, 10-25
ISCSObject interface, 10-14
ISCSObject object, 10-14
ISCSRequestModifier interface, 10-20
ISCSSearchAPI, 10-25

Index-10

ISCSServerBinder interface, 10-16
ISCSServerResponse, 10-14
ISCSServerResponse interface, 10-19
ISCSSFileAPI, 10-25
ISCSSSearchAPI, 10-25
ISCSWorkflowAPI, 10-27
isEditMode variable, 4-29
isFormFinished attribute, 4-17
isFormSubmit variable, 4-29
IsJava setting, 1-4

J
J2EE

Command Design Pattern, 10-1, 10-2
compliant application server, 10-2
integration, 6-4

Java Content Repository Adapter
introduction, 11-1
using, 11-1

Java SOAP Client, A-6
Java Virtual Machine application, 10-2
JavaScript

debugger, 1-4
Oracle Content Server use of, 1-3

javascript directory, 2-5
JavaServer Pages. See JSP
JCR

content items
finding information for, 11-7
tables, 11-7

file store provider, using, 11-9
file store tables, 11-7
search index

tables, 11-7
using, 11-9

tables
content items, 11-7
file store, 11-7
search index, 11-7

JCR adapter
communication

CIS connection, 11-6
configuring, 11-5
configuring socket communication, 11-6
configuring SSL, 11-6
listener port, 11-6
method, 11-5
provider, 11-5

configuration
cache settings, 11-7
user agent, 11-7
web communication, 11-6
web server filter, 11-6

data model
code, 11-2
Oracle Content Server, 11-2

deploying, 11-5
deploying JCR API, 11-4
deploying RIDC, 11-4

installing ADF runtime libraries, 11-4
installing required APIs and runtime

libraries, 11-3
JCR integration libraries, 11-4, 11-5

JCR API, deploying for JCR adapter, 11-4
JCR data model, 11-1
JCR integration libraries, deploying for JCR

adapter, 11-4, 11-5
JSP

access to Oracle Content Server, 6-2
execution, 6-2
features, 6-3
integration

configuring JSP support, 6-3
loading example pages, 6-4
overview, 6-2

support, configuration, 6-3
JSP pages, RIDC objects in, 9-8
jspserver directory, 2-5
JSPX pages, RIDC objects in, 9-8
JVM application, 10-2

K
key pairs, creating self-signed, 9-13
keytool utility

client and server keys, creating, 9-13
self-signed key pairs and certificates,

creating, 9-13

L
labels, visual interface, 8-30
lang directory, 2-5
Launcher

computed settings, 7-7
configuration, 7-11
environment variables, 7-9
quotation rules, 7-7
user interface, 7-10
using the, 7-13

layouts
creating new, 4-4
description, 4-2
overview, 4-1
selection, 4-2
Top Menus, 4-2
Trays, 4-2
types, 4-2

link, HCSP page display, 4-28
listener port, JCR adapter communication, 11-6
load section, 4-15
loading

configuration variables, 2-8
custom components, 2-9
monitoring resources, 1-5
standard reports, 2-9
standard resources, 2-9
standard templates, 2-9

LocalData, 3-11

Index-11

data binder evaluation of, 3-11
properties section name, 3-7

localization, resolving strings, 2-13
log file, IdcCommand utility option, 7-5
look and feel, customizing Oracle Content

server, 4-1

M
manifest file, 3-12
Manifest ResultSet, 3-12
manifest.hda file, 3-12
marker, trace, 1-5
MBeans implementation, RIDC, 9-3
menus, action, generation of, 5-6
merge properties, 3-27
merge rules

dynamic table resources, 3-35
static tables, 3-35

MergeRules ResultSet, 3-21
columns, 3-21
example, 3-21
template resource, 3-45
toTable column, 3-21

Message element, WSDL file structure, A-14
messaging protocol, A-5
meta tag, 4-16
metadata

referencing, 4-10, 4-12
tags

content attribute, 4-18
form field values, 4-18

MetaData.wsdl file, A-14
Methods

CancelRequest, 8-35
DoCheckoutLatestRev, 8-35
DownloadFile, 8-36
DownloadNativeFile, 8-36
Drag, 8-37
EditDocInfoLatestRev, 8-37
Forward, 8-38
GoCheckinPage, 8-38
InitiateFileDownload, 8-39
InitiatePostCommand, 8-39
Move, 8-40
Navigate, 8-40
NavigateCgiPage, 8-41
RefreshBrowser, 8-41
SendCommand, 8-41
SendPostCommand, 8-41
SetFocus, 8-42
ShowDocInfoLatestRev, 8-42
ShowWhatsThis, 8-43
StartSearch, 8-43
Stop, 8-43
UndoCheckout, 8-44
ViewDocInfo, 8-44
ViewDocInfoLatestRev, 8-44
Zorder, 8-45

methods

IdcClient OCX
AboutBox, 8-35
Back, 8-35
CancelRequest, 8-35
DoCheckoutLatestRev, 8-35
DownloadFile, 8-36
DownloadNativeFile, 8-36
Drag, 8-37
EditDocInfoLatestRev, 8-37
Forward, 8-38
GoCheckinPage, 8-38
Home, 8-39
InitiateFileDownload, 8-39
InitiatePostCommand, 8-39
Move, 8-40
Navigate, 8-40
NavigateCgiPage, 8-41
RefreshBrowser, 8-41
SendCommand, 8-41
SendPostCommand, 8-41
SetFocus, 8-42
ShowDMS, 8-42
ShowDocInfoLatestRev, 8-42
ShowWhatsThis, 8-43
StartSearch, 8-43
Stop, 8-43
UndoCheckout, 8-44
ViewDocInfo, 8-44
ViewDocInfoLatestRev, 8-44
ZOrder, 8-45

IdcCommand utility
closeServerConnection, 8-12
computeNativeFilePath, 8-12

IdcCommandUX utility
addExtraheadersForCommand, 8-11
closeServerConnection, 8-12
computeNativeFilePath, 8-12
computeURL, 8-13
computeWebFilePath, 8-15
connectToServer, 8-16
executeCommand, 8-17
executeFileCommand, 8-18
forwardRequest, 8-18
getLastErrorMessage, 8-18
initRemote, 8-19

Microsoft .NET, A-5
Microsoft Visual Basic, 8-22
monitoring resource loading, 1-5
Move method, IdcClient OCX, 8-40

N
namespaces, A-7
name/value pair, 3-50
naming conventions

directories, 3-16
dynamic server pages, 4-15
files, 3-16

Navigate method, IdcClient OCX, 8-40
NavigateCgiPage method, IdcClient OCX, 8-41

Index-12

navigation
customizing Oracle Content Server, 4-1
dynamic server pages, 4-7

nested tags
ResultSets, 4-20
XML nodes, 4-18

.NET architecture, A-5

.NET Framework, A-5

.NET platform, A-5
new features, xxi
nodes, SOAP

packet format, A-7
service, A-8

nonactive ResultSets, 3-11

O
objects

ICISObject interface, 10-10
ISCSContext, 10-9
SCS API, 10-14

ICISTransferStream interface, 10-16
ISCSObject interface, 10-14
ISCSRequestModifier interface, 10-20
ISCSServerBinder interface, 10-16
ISCSServerResponse interface, 10-19

UCPM API, creation, 10-7
OCX Component. See IdcClient OCX component
OCX control, Visual Basic form, 8-23
OCX events, 8-21
OCX examples

methods, 8-21
properties, 8-22

OCX interface, 8-19
ODMA Client, 8-47
ODMA Client Interface, 8-48
ODMA Desktop Shell Interface, 8-48
ODMA integration, 8-47
ODMA interfaces, 8-48
operators, dynamic server pages, 4-10
optimization, published files, 4-5
option subnode, SOAP, A-9
optionlist node, A-8

SOAP, A-8
Oracle Content Server

access through UCPM API, 10-2
ActiveX interface, 8-1
behavior, 2-7
configuration variables, loading, 2-8
configuring JCR adapter communication, 11-5
connecting from remote system, 8-8
Content Integration Suite, access through, 6-2
custom components, loading, 2-9
development instance, 3-15
initializing connection, example, 8-5, 8-9
interface, 8-48

changing look and feel, 4-1
changing navigation, 4-1
customizing, 4-4
ODMA files, 8-48

interface, Oracle Content Server
anonymous user interface, changing, 4-3
modifying, 4-1

internal initialization, 2-8
JCR adapter data model, 11-2
modifying system functionality, 5-1
providers, 9-12
remote connection, 8-8
reports, loading, 2-9
requests, 2-10
resources, loading, 2-9
services, 2-11
SSL communication, configuring, 9-11
startup behavior, 2-8
startup steps, 2-8
templates, loading, 2-9
URLs, 2-10

Oracle UCM web services, with Oracle WebLogic
Server web services, 12-1

Oracle Universal Content Management
architecture, 2-1
customization, 1-1
directories, 2-1

components, 2-5
terminology, 2-2

files, 2-1
integration with enterprise applications, 6-1

Oracle Web Services Manager, 12-2
organization, component files, 3-15

P
page retrieval, 2-11
pages

dynamic server, types, 4-9
dynamic web, assembly, 2-12
HCSF

description, 4-15
form to create in web browser, 4-28

HCSP, link to display, 4-28
report, 3-45, 3-47
retrieving, 2-11
template, 3-45, 3-47

parameters
action, 3-40
docLoadResourceIncludes function, 4-13
example of defining, 8-5, 8-10
SCS API servlets, 10-21

SCSDynamicConverterServlet, 10-22
SCSDynamicURLServlet, 10-23
SCSFileDownloadServlet, 10-22

string, 3-33
password, 8-46
PING_SERVER service, A-27
popup menus. See action menus
Port element, WSDL file structure, A-15
Port Type element, WSDL file structure, A-15
PortalInfo.wsdl, A-14
precedence, 7-3
predefined ResultSets, 3-8

Index-13

presentation pages, 3-47
principal default user id, 10-23
principalLookupAllowed, 10-23
principalLookupName, 10-23
principalLookupScope, 10-23
product description form, HCSF file, 4-25
programming

Java, 1-3
other, 1-3

properties
assembly, 3-29
CgiUrl TextBox, edited, 8-25
collections, 10-11
Command TextBox, edited, 8-26
filter, 3-31
forms, 4-22, 4-29
IdcClient OCX component, 8-22
idcClient, edited, 8-24
include, 3-31
merge, 3-27
object types, 10-11
Response TextBox, edited, 8-27
SendPostCommand CommandButton,

edited, 8-28
sort, 3-30
table, specification, 3-27

property accessors, 10-10
PropertyRetrievalException, 10-10
provider

JCR adapter communication, 11-5
providers

Oracle Content Server, 9-12
public files, bundling for optimization, 4-5
published files

optimizing use of, 4-5
referencing, 4-6

PublishedBundles table, 4-6
PublishedResources, 4-6

Q
QDocInfo query, standard, 3-37
queries, QDocInfo, standard, 3-37
query resources, 3-36

editing, 3-37
example, 3-36
overview, 2-7

quotation rules, Launcher, 7-7

R
recommended skills, 1-2
ref prefix

referencing file extensions, 4-29
referencing metadata, 4-12

referencing metadata
dynamic server pages, 4-10, 4-12
ref prefix, 4-12

referencing XML tags, 4-18
RefreshBrowser method, IdcClient OCX, 8-41

related documents, xix
remote connection to Oracle Content Server, 8-8
Remote Intradoc Client

deploying for JCR adapter, 11-4
using, 9-1

Remote Procedure Call, A-6
Rendition parameter, 4-13
repeated tags in ResultSets, 4-20
report pages

example, 3-48, 3-49
location, 3-45
presentation pages, 3-47
results of web page request, 3-47

reports
directory, 2-5
loading, 2-9

requests
browser, 2-10
Oracle Content Server, 2-10

resource categories, 3-23
resource include, formatting service output from

IdcCommandUX, 8-6
resource loading, monitoring, 1-5
resource types

idoc, 2-6
tables, 2-6
templates, 2-6

ResourceDefinition ResultSet
columns, 3-20
description, 3-19
example, 3-20
location, 3-9
purpose, 3-9

resources, 3-22
caching, 2-9
changing, 2-9
closing, RIDC, 9-7
custom

example of referencing, 8-6
other files, 3-13

directory, 2-5
dynamic table, 3-35
environment, 3-50
overview, 2-6
query

editing, 3-37
overview, 3-36

service, 3-38
standard, 2-6
static table, 3-35
string, 3-32

resources directory, 2-6
Response TextBox properties, edited, 8-27
results, example of retrieving, 8-6, 8-11
ResultSet section, HDA file, 3-7
resultset subnode, SOAP, A-9
ResultSets, 3-11

ClassAliases, 3-22
Components, 3-8, 3-18
defined by XML tags, 4-19

Index-14

editing, 4-21
Filters, 3-22
IntradocReports, 3-8
IntradocTemplates, 3-9
Manifest, 3-12
MergeRules, 3-21
nested tags, 4-20
nonactive, 3-11
predefined, 3-8
repeated tags, 4-20
ResourceDefinition, 3-9, 3-19
SearchResultTemplates, 3-9
XML tags, 4-19

resultsets attribute, 4-17
resultsets form element, 4-18, 4-19
retrieving file information, 4-28
retrieving pages, 2-11
returning connection status example, 8-9
RevisionSelectionMethod parameter, 4-13
RIDC

binders for multiple requests, reusing, 9-9
closing resources, 9-7
communication, 9-2
content items

finding information for, 9-17
tables, 9-16

file store provider, using, 9-18
file store, tables, 9-16
handling connection pooling, 9-7
handling connections, 9-6
initialization, 9-3
Introduction, 9-1
MBeans implementation, 9-3
protocols, 9-2
search index

tables, 9-16
using, 9-18

services, 9-6
streams

receiving, 9-7
sending, 9-7

tables
content items, 9-16
file store, 9-16
search index, 9-16

user authentication, 9-5
user security, providing, 9-9

RIDC objects
JSP pages, 9-8
JSPX pages, 9-8

RIDC. See Remote Intradoc Client
row subnode, SOAP, A-9
RPC, A-6
runtime libraries

ADF, installing for JCR adapter, 11-4
installing for JCR adapter, 11-3

S
SAML, 12-2

sample service calls, GET_USER_INFO, A-34
Sample WSDL File, A-16
scriptable services, 4-13
SCS API

access to, 10-13
date format, 10-15
explained, 10-13
interaction with servlets, 10-23
ISCSFileAPI, 10-25
ISCSSearchAPI, 10-25
objects

ICISTransferStream interface, 10-16
ISCSObject interface, 10-14
ISCSRequestModifier interface, 10-20
ISCSServerBinder interface, 10-16
ISCSServerResponse interface, 10-19
overview, 10-14

SCS API servlets
descriptions, 10-21

SCSCommandClientServlet, 10-21
SCSDynamicConverterServlet, 10-21
SCSDynamicURLServlet, 10-21
SCSFileDownloadServlet, 10-21
SCSFileTransferServlet, 10-21
SCSInitialize, 10-21

overview, 10-21
parameters, 10-21

SCSDynamicConverterServlet, 10-22
SCSDynamicURLServlet, 10-23
SCSFileDownloadServlet, 10-22

security, 10-23
SCS APIs

Document, 10-24, 10-26
File, 10-24, 10-25
ISCSDocumentCheckinAPI, 10-26
ISCSDocumentCheckoutAPI, 10-27
ISCSSFileAPI, 10-25
ISCSSSearchAPI, 10-25
ISCSWorkflowAPI, 10-27
Search, 10-24, 10-25
Workflow, 10-24, 10-27

SCSCommandClientServlet description, 10-21
SCSDynamicConverterServlet

description, 10-21
parameters, 10-22

SCSDynamicURLServlet
description, 10-21
parameters, 10-23

SCSFileDownloadServlet
description, 10-21
parameters, 10-22

SCSFileTransferServlet description, 10-21
SCSInitialize servlet description, 10-21
SCSInitializeServlet, CIS initialization, 10-4
search index

tables
JCR, 11-7
RIDC, 9-16

using
JCR, 11-9

Index-15

RIDC, 9-18
search services, 2-12
search_results.htm file, 3-46
SearchResultTemplates ResultSet, 3-9
Search.wsdl, A-14
Search.wsdl file, A-14
sections

data, 4-16, 4-17
form, 4-21
HEAD, HCSF page, 4-16
load, 4-15
LocalData, 3-7
ResultSet, 3-7

secure socket communication (SSL)
JCR adapter, 11-6

secure socket communication (SSL), JCR
adapter, 11-6

Security Assertion Markup Language, 12-2
security, SCS API servlets, 10-23
SecurityProviders component

enabling, 9-11
installing, 9-11

self-signed certificates
creating, 9-13
keytool utility, 9-14

self-signed key pairs
creating, 9-13

SendCommand method, IdcClient OCX, 8-41
SendPostCommand CommandButton properties,

edited, 8-28
SendPostCommand method, IdcClient OCX, 8-41
SendPostCommand_Click code, edited, 8-29
server errors, viewing, 1-4
server keys, creating, 9-13
servers, WebDAV, 6-7
service attributes

access level, 3-39
error message, 3-39
service class, 3-39
service type, 3-39
subjects notified, 3-39
template page, 3-39

Service Calls
ADD_USER, A-28
CHECKIN_UNIVERSAL, A-37
CHECKOUT_BY_NAME, A-41
DELETE_USER, A-36
DOC_INFO, A-45
EDIT_USER, A-31
GET_CRITERIA_WORKFLOWS_FOR_

GROUP, A-54
GET_FILE, A-47
GET_SEARCH_RESULTS, A-50
GET_TABLE, A-53
UNDO_CHECKOUT_BY_NAME, A-43

service calls
PING_SERVER, A-27
samples, A-26
SOAP response/request, A-26

service class attribute, 3-39

service definition table, 3-38
Service element, WSDL file structure, A-15
service node, A-8
service node, SOAP, A-8
service resource attributes, 3-41
service resources, 3-38

actions, 3-41
editing, 3-44
example, 3-38, 3-40
overview, 2-7

service ResultSet, Actions column, 3-39
service type attribute, 3-39
services

accessing, IdcCommand Utility, 7-1
actions, 3-39
add user, A-28
customizing, 5-5
DOC_INFO, 3-40, A-45
DOC_INFO_SIMPLE, 4-28
example of defining, 8-10
example of executing, 8-6, 8-10
examples

actions, 3-41
attributes, 3-41
defining, 8-5
definition, 3-38
resource, 3-38

executables, 2-3
executeCommand method example, 8-6, 8-10
Oracle Content Server, 2-11
output from IdcCommandUX, formatting with

resource include, 8-6
RIDC, 9-6
scriptable, 4-13
search, 2-12
startup error, 2-3

servlets
SCS API

descriptions, 10-21
overview, 10-21
parameters, 10-21
SCSCommandClientServlet description, 10-21
SCSDynamicConverterServlet

description, 10-21
SCSDynamicConverterServlet

parameters, 10-22
SCSDynamicURLServlet description, 10-21
SCSDynamicURLServlet parameters, 10-23
SCSFileDownloadServlet description, 10-21
SCSFileDownloadServlet parameters, 10-22
SCSFileTransferServlet description, 10-21
SCSInitialize description, 10-21
security, 10-23

security, SCS API, 10-23
Servlets and API interaction, 10-23
SetFocus method, IdcClient OCX, 8-42
setProperty () method, 10-11
settings

IsJava, 1-4
TraceResourceConflict, 1-5

Index-16

TraceResourceOverride, 1-5
shared/config directory, 2-5
short, xxii
ShowDMS method, IdcClient OCX, 8-42
ShowDocInfoLatestRev method, IdcClient

OCX, 8-42
ShowWhatsThis method, IdcClient OCX, 8-43
Simple Object Access Protocol, 12-1
Simple Object Access Protocol. See SOAP
skills for customization, 1-2
skins

description, 4-2
overview, 4-1
selection, 4-2
types, 4-2

SOAP
communication, 6-5, A-3
Data List Elements page, A-22
definition, A-1
example, 8-4
messages, A-6
nodes

packet format, A-7
service, A-8

packet format
document, A-8
field, A-9
HTTP headers, A-7
idc namespace, A-7
namespaces, A-7
nodes, A-7
optionlist, A-8
overview, A-7
resultset, A-9
service, A-8
user, A-8

request, A-7
web services, accessing, special characters, A-10

sort properties, 3-30
Special Characters, A-10
special characters

command file syntax
#, 7-4

command-file syntax
\, 7-4
description, 7-4
EOD, 7-4

dynamic server pages, 4-10, 4-11
EOD command-file tag, 7-4
IdcService command-file tag, 7-4
in strings, 3-32
SOAP

passing with XML format, A-10
web services, accessing, A-10

special tags, command-file syntax, 7-4
SSL communication

configuring incoming provider for, 9-12
configuring, Oracle Content Server, 9-11
RIDC, 9-2

standard components, 3-1

standard page beginning, 2-13
standard page ending, 2-13
standard page header, 2-13
standard report pages, 3-47
standard resources

examples, 2-6
loading, 2-9

standard template pages, 3-47
StandardResults template, 3-46
StartSearch method, IdcClient OCX, 8-43
startup behavior, Oracle Content Server, 2-7, 2-8
startup steps, Oracle Content Server, 2-8
static table resource, 2-7
static tables, 3-35

editing, 3-35
merge rules, 3-35

Stop method, IdcClient OCX, 8-43
streams

receiving, RIDC, 9-7
sending, RIDC, 9-7

string parameters, 3-33
strings

overview, 2-6
resolving, 2-13
resource files, 3-32
special characters, 3-32
structure, 3-32

structure, files and directories, 3-15
subjects notified attribute, 3-39
submitting forms, 4-29
subnodes, SOAP

field, A-9
option, A-9
resultset, A-9
row, A-9

super tag, 3-24
syntax

dynamic server pages, 4-10
HCSF file, 4-10
HCSP file, 4-10
HCST file, 4-10
IDOC file, 4-10
service action, 3-39

system components, 3-1
system functionality, modifying, 5-1
System Properties utility, 2-3, 5-1
system settings, changing, 5-1

T
tables

content items
JCR, 11-7
RIDC, 9-16

display, creating, 5-6
dynamic data, 3-25
file store

JCR, 11-7
RIDC, 9-16

formats, specification, 3-25

Index-17

Headline View, 5-7
properties, specification, 3-27
resource types, 2-6
search index

JCR, 11-7
RIDC, 9-16

Thumbnail View, 5-9
tables directory, 2-5
tags

idcformrules, 4-17
Idoc Script, 4-10
ResultSets

nested in, 4-20
repeated in, 4-20

special, command-file syntax, 7-4
XML definitions of ResultSets, 4-19

template pages
attributes, 3-39
example, 3-47
location of standard, 3-45
presentation pages, 3-47
results of web page request, 3-47

template resources, 3-45
editing, 3-49
MergeRules ResultSet, 3-45
overview, 2-7

templates
loading, 2-9
page, example, 3-48
resource types, 2-6

templates directory, 2-5
terminology, Oracle UCM directories, 2-2
text editor, 1-3
text editor, editing component files, 3-15
Thumbnail View tables, 5-9
tips

dynamic server pages, 4-14
HCSF pages, 4-15

Tomcat server, 6-2, 6-3
tools, customization, 1-2
toTable column, 3-21
trace marker, 1-5
TraceResourceConflict setting, 1-5
TraceResourceOverride setting, 1-5
troubleshooting, 1-4
types

customization, 1-1
dynamic server pages, 4-9
layouts, 4-2
skins, 4-2

U
UCPM API

access to Oracle Content Server, 10-2
calls, 10-8
class loader

custom, 10-6
usage, 10-7

explained, 10-1, 10-2

ICISObject, 10-8
interaction, 10-7
methodology, 10-2
object creation, 10-7
SCS API, 10-13

UDDI service registry, 6-5, A-3, A-6
UNDO_CHECKOUT_BY_NAME service, A-43
UndoCheckout method, IdcClient OCX, 8-44
URL encoding

, XML format, A-10
UseBrowserLoginPrompt property, 8-46
user administration, 5-2
user agent, JCR adapter configuration, 11-7
user authentication, RIDC, 9-5
user interface, Launcher, 7-10
user node

SOAP, A-8
user node, SOAP, A-8
User Personalization settings, 4-2
user profile personalization settings, 4-2
user security, providing, RIDC, 9-9
user, IdcCommand utility option, 7-4
UserName property, IdcClient OCX, 8-46
UTC time, 10-15
utilities, 2-3

IdcCommand
accessing services, 7-1

V
value objects, 10-10
variables

configuration, 3-50
environment, 3-50
example of creating, 8-9
HCSF pages, 4-16

verify command, 8-32
ViewDocInfo method, IdcClient OCX, 8-44
ViewDocInfoLatestRev method, IdcClient OCX, 8-44
virtual folders, 6-6
Visual Basic, 8-22
Visual Basic environment

calling IdcCommandUX utility, 8-2
visual interface for development, 8-22

Visual Basic form, OCX control, 8-23
Visual C++ environment

calling IdcCommandUX utility, 8-3
services, executing, 8-3

visual interface
command defined, 8-31
creating, 8-23
descriptive label, 8-30
returned results, 8-32
testing, 8-30

Visual Studio .NET, A-5

W
web browser requests, 2-10
web communication, JCR adapter

Index-18

configuration, 11-6
web environment, CIS integration, 10-5
Web Layout Editor, 3-46
web pages

altering navigation with dynamic server
pages, 4-7

web pages, assembly of dynamic, 2-12
web resource publishing, 4-4
web server filter, 11-6
Web Service Policy standard, 12-2
web services, 6-4

context roots, 12-2
GenericSoapService, 12-3
IdcWebLoginService, 12-3
IdcWebRequestService, 12-3
.NET, implementing, A-5
Oracle UCM with Oracle WebLogic Server web

services, 12-1
Oracle WebLogic Server

Oracle UCM web services, using with, 12-1
overview, 12-1
OWSM, 12-2
SAML, 12-2
security, 12-1
SOAP, accessing

overview, 12-1
special characters, A-10

WS-Policy standard, 12-2
WS-Security standard, 12-1

Web Services Definition Language. See WSDL
web services framework, 6-4

SOAP communication, 6-5, A-3
UDDI service registry, 6-5, A-3
WSDL interface, A-3
XML data, 6-5, A-2

WebDAV
architecture, 6-7
clients, 6-7
functions, 6-6
integration, 6-5, 6-6
servers, 6-7

WebDAV Client, 6-7
WebDAV client, 6-7
WebDAV component, 6-5
weblayout directory, 2-6
Workflow.wsdl file, A-14
working with component files, 3-15
WSDL

definition, A-1
interface, A-3
specifications, A-5

WSDL elements
Binding, A-15
Data Types, A-14
Message, A-14
Port, A-15
Port Type, A-15
Service, A-15

WSDL file structure, A-14
Binding element, A-16

Data Type element, A-15
Message element, A-15
Port type, A-15
Service and Port elements, A-16

WSDL files
CheckIn.wsdl, A-14
DocInfo.wsdl, A-14
GetFile.wsdl, A-14
MetaData.wsdl, A-14
PortalInfo.wsdl, A-14
Search.wsdl, A-14
Workflow.wsdl, A-14

wsdl.hda file, A-19

X
XML data, 6-5, A-2
XML tags, 4-17, 4-18

definitions of ResultSets, 4-19
referencing, 4-18

XML-based messaging protocol, A-5
XML-based Remote Procedure Call, A-7
XML-encoding for special characters, SOAP, A-10

Z
ZIP file, 3-13
ZOrder method, IdcClient OCX, 8-45

	Contents
	Preface
	Audience
	Document Organization
	Documentation Accessibility
	Related Documents
	Conventions

	New and Changed Features
	New Features for 11g Release 1 (11.1.1)
	Changed Features for 11g Release 1 (11.1.1)

	1 Introduction to Customizing Your Oracle UCM Instance
	1.1 Customization Types
	1.2 Customization Planning
	1.3 Recommended Skills and Tools
	1.4 Troubleshooting
	1.4.1 Viewing Server Errors
	1.4.2 Viewing Page Data
	1.4.3 Monitoring Resource Loading

	2 Oracle UCM Architecture
	2.1 Oracle UCM Directories and Files
	2.1.1 Terminology for Oracle UCM Directories
	2.1.2 The bin Directory
	2.1.3 The config Directory
	2.1.4 The components Directory
	2.1.5 The resources Directory
	2.1.6 The weblayout Directory

	2.2 Resources
	2.3 Oracle Content Server Behavior
	2.3.1 Startup Behavior
	2.3.1.1 Startup Steps
	2.3.1.2 Effects of Configuration Loading

	2.3.2 Resource Caching
	2.3.3 Oracle Content Server Requests
	2.3.3.1 Page Retrieval
	2.3.3.2 Oracle Content Server Services
	2.3.3.3 Search Services

	2.3.4 Page Assembly
	2.3.5 Database Interaction
	2.3.6 Localized String Resolution

	3 Working with Standard, Server, and Custom Components
	3.1 Components Overview
	3.1.1 Component Wizard
	3.1.2 Advanced Component Manager
	3.1.3 ComponentTool
	3.1.4 Component Files Overview
	3.1.5 Enabling and Disabling Components

	3.2 About Directories and Files
	3.2.1 HDA Files
	3.2.1.1 Elements in HDA Files
	3.2.1.2 The idc_components.hda File
	3.2.1.3 Component Definition Files

	3.2.2 Custom Resource Files
	3.2.3 Data Binder
	3.2.3.1 LocalData
	3.2.3.2 ResultSets
	3.2.3.3 Environment

	3.2.4 Manifest File
	3.2.5 Other Files
	3.2.5.1 Customized Site Files
	3.2.5.2 Component ZIP File
	3.2.5.3 Custom Installation Parameter Files

	3.2.6 Typical Directory Structure

	3.3 Development Recommendations
	3.3.1 Creating a Component
	3.3.2 Working with Component Files
	3.3.3 Using a Development Instance
	3.3.4 Component File Organization
	3.3.5 Naming Conventions

	3.4 Component File Detail
	3.4.1 The idc_components.hda File
	3.4.1.1 Contents of idc_components.hda
	3.4.1.2 Components ResultSet

	3.4.2 Component Definition (Glue) File
	3.4.2.1 ResourceDefinition ResultSet
	3.4.2.2 MergeRules ResultSet
	3.4.2.3 Filters ResultSet
	3.4.2.4 ClassAliases ResultSet

	3.5 Resources Detail
	3.5.1 HTML Include
	3.5.1.1 The Super Tag
	3.5.1.2 Editing an HTML Include Resource

	3.5.2 Dynamic Data Tables
	3.5.2.1 Specifying Table Formats
	3.5.2.2 Editing a Dynamic Data Table Resource
	3.5.2.3 Specifying Table Properties
	3.5.2.4 Using Dynamicdata Idoc Script Functions

	3.5.3 String
	3.5.3.1 String Parameters
	3.5.3.2 Editing a String Resource

	3.5.4 Dynamic Tables
	3.5.4.1 Merge Rules for Dynamic Tables
	3.5.4.2 Editing a Dynamic Table Resource

	3.5.5 Static Tables
	3.5.5.1 Merge Rules for Static Tables
	3.5.5.2 Editing a Static Table Resource

	3.5.6 Query
	3.5.6.1 Query Example
	3.5.6.2 Editing a Query Resource

	3.5.7 Service
	3.5.7.1 Service Example
	3.5.7.2 Editing a Service Resource

	3.5.8 Templates
	3.5.8.1 Template and Report Pages
	3.5.8.2 Editing a Template Resource

	3.5.9 Environment
	3.5.9.1 Environment Resource Example
	3.5.9.2 Editing an Environment Resource

	3.6 Installing Components
	3.6.1 Installing a Component with Component Manager
	3.6.2 Installing a Component with Component Wizard
	3.6.3 Installing a Component with ComponentTool

	4 Changing the Look and Navigation of the Oracle Content Server Interface
	4.1 Modifying the Oracle Content Server Interface
	4.1.1 Skins and Layouts
	4.1.1.1 Types of Skins and Layouts
	4.1.1.2 Selecting Skins and Layouts
	4.1.1.3 Configuration Entries
	4.1.1.4 Anonymous User Interface

	4.1.2 Customizing the Interface
	4.1.2.1 About Dynamic Publishing
	4.1.2.2 Creating New Layouts

	4.1.3 Optimizing the Use of Published Files
	4.1.3.1 Bundling Files
	4.1.3.2 Referencing Published Files

	4.2 Using Dynamic Server Pages to Alter the Navigation of Web Pages
	4.2.1 About Dynamic Server Pages
	4.2.2 Page Types
	4.2.2.1 IDOC File
	4.2.2.2 HCST File
	4.2.2.3 HCSP File
	4.2.2.4 HCSF File

	4.2.3 Creating Dynamic Server Pages
	4.2.4 Syntax
	4.2.4.1 Idoc Script Tags
	4.2.4.2 Comparison Operators
	4.2.4.3 Special Characters
	4.2.4.4 Referencing Metadata

	4.2.5 Idoc Script Functions
	4.2.5.1 docLoadResourceIncludes Function
	4.2.5.2 executeService Function

	4.2.6 Development Recommendations
	4.2.6.1 General Tips
	4.2.6.2 HCSF Tips

	4.2.7 HCSF Pages
	4.2.7.1 Load Section
	4.2.7.2 Data Section
	4.2.7.3 Form Section

	4.2.8 Working with Dynamic Server Pages
	4.2.8.1 HCST and HCSP Example
	4.2.8.2 HCSF Example
	4.2.8.3 Common Code for Forms

	5 Modifying System Functionality
	5.1 Changing System Settings
	5.2 Using Components
	5.3 Changing Configuration Information
	5.4 Customizing Services
	5.5 Generating Action Menus
	5.5.1 Creating Display Tables
	5.5.1.1 Headline View Tables
	5.5.1.2 Thumbnail View Tables

	5.5.2 Customizing Action Menus

	6 Integrating Oracle UCM with Enterprise Applications
	6.1 Overview of Integration Methods
	6.2 JSP Integration
	6.2.1 JSP Execution
	6.2.2 Tomcat
	6.2.3 Features
	6.2.4 Configuring JSP Support
	6.2.5 Loading Example Pages

	6.3 Java 2 Enterprise Edition Integration (J2EE)
	6.4 Web Services
	6.4.1 Web Services Framework
	6.4.2 Virtual Folders and WebDAV Integration
	6.4.2.1 Virtual Folders
	6.4.2.2 WebDAV Integration

	7 Using the IdcCommand Utility to Access Services
	7.1 Overview of IdcCommand Utility
	7.2 IdcCommand Setup and Execution
	7.3 Command File
	7.3.1 Command File Syntax
	7.3.2 Precedence
	7.3.3 Special Tags and Characters

	7.4 Configuration Options
	7.4.1 Command File
	7.4.2 User
	7.4.3 Log File
	7.4.4 Connection Mode

	7.5 Running IdcCommand
	7.6 Using the Launcher
	7.6.1 Quotation Rules
	7.6.2 Computed Settings
	7.6.3 Launcher Environment Variables
	7.6.4 User Interface
	7.6.5 Configuring the Launcher
	7.6.6 Configuration File Example

	7.7 Calling Services Remotely

	8 Using the COM API for Integration
	8.1 Introduction to COM Integration
	8.2 ActiveX Interface
	8.2.1 Setting Up IdcCommandUX
	8.2.2 Calling IdcCommandUX from a Visual Basic Environment
	8.2.3 Calling IdcCommandUX from a Visual C++ Environment
	8.2.4 Executing Services
	8.2.5 Calling IdcCommandUX from an Active Server Page (ASP)
	8.2.6 Formatting with a Resource Include
	8.2.7 Connecting to Oracle Content Server from a Remote System

	8.3 IdcCommandUX Methods
	8.3.1 addExtraheadersForCommand
	8.3.2 closeServerConnection
	8.3.3 computeNativeFilePath
	8.3.4 computeURL
	8.3.5 computeWebFilePath
	8.3.6 connectToServer
	8.3.7 executeCommand
	8.3.8 executeFileCommand
	8.3.9 forwardRequest
	8.3.10 getLastErrorMessage
	8.3.11 initRemote

	8.4 OCX Interface
	8.5 IdcClientOCX Component
	8.5.1 IdcClient OCX Description
	8.5.1.1 General Description
	8.5.1.2 Events, Methods, and Properties
	8.5.1.3 IdcClient OCX Interface

	8.5.2 IdcClient OCX Control Setup
	8.5.2.1 Setting Up the IdcClient OCX Component
	8.5.2.2 Creating a Visual Interface

	8.6 IdcClient Events
	8.6.1 IntradocBeforeDownload
	8.6.2 IntradocBrowserPost
	8.6.3 IntradocBrowserStateChange
	8.6.4 IntradocRequestProgress
	8.6.5 IntradocServerResponse

	8.7 IdcClient OCX Methods
	8.7.1 AboutBox
	8.7.2 Back
	8.7.3 CancelRequest
	8.7.4 DoCheckoutLatestRev
	8.7.5 DownloadFile
	8.7.6 DownloadNativeFile
	8.7.7 Drag
	8.7.8 EditDocInfoLatestRev
	8.7.9 Forward
	8.7.10 GoCheckinPage
	8.7.11 Home
	8.7.12 InitiateFileDownload
	8.7.13 InitiatePostCommand
	8.7.14 Move
	8.7.15 Navigate
	8.7.16 NavigateCgiPage
	8.7.17 Refresh Browser
	8.7.18 SendCommand
	8.7.19 SendPostCommand
	8.7.20 SetFocus
	8.7.21 ShowDMS
	8.7.22 ShowDocInfoLatestRev
	8.7.23 ShowWhatsThis
	8.7.24 StartSearch
	8.7.25 Stop
	8.7.26 UndoCheckout
	8.7.27 ViewDocInfo
	8.7.28 ViewDocInfoLatestRev
	8.7.29 ZOrder

	8.8 IdcClient Properties
	8.8.1 ClientControlledContextValue
	8.8.2 HostCgiUrl
	8.8.3 Password
	8.8.4 UseBrowserLoginPrompt
	8.8.5 UseProgressDialog
	8.8.6 UserName
	8.8.7 Working Directory

	8.9 ODMA Integration
	8.9.1 ODMA Client
	8.9.2 ODMA Interfaces

	9 Using Remote Intradoc Client (RIDC)
	9.1 Introduction to RIDC
	9.1.1 RIDC Protocols
	9.1.2 SSL Communication
	9.1.3 MBeans Implementation

	9.2 Initializing RIDC
	9.3 Configuring Clients
	9.4 Authenticating Users
	9.5 Using Services
	9.6 Handling Connections
	9.6.1 Closing Resources
	9.6.2 Handling Connection Pooling

	9.7 Sending and Receiving Streams
	9.8 Using RIDC Objects in JSP and JSPX Pages
	9.9 Reusing Binders for Multiple Requests
	9.10 Providing User Security
	9.11 Configuring SSL Communication with Oracle Content Server
	9.11.1 Installing and Enabling the SecurityProviders Component
	9.11.2 Configuring an Incoming Provider for SSL Communication
	9.11.3 Creating Self-Signed Key Pairs and Certificates
	9.11.3.1 Creating the Client and Server Keys
	9.11.3.2 Self-Signing the Certificates
	9.11.3.3 Exporting the Certificates
	9.11.3.4 Importing the Certificates

	9.12 Using Tables for Content Items, the Search Index, and the File Store
	9.12.1 Finding Information for Each Content Item
	9.12.2 Using a Search Index
	9.12.3 Using the File Store Provider

	10 Using Content Integration Suite (CIS)
	10.1 CIS Architecture
	10.2 Access Through the UCPM API
	10.3 UCPM API Methodology
	10.4 CIS Initialization
	10.4.1 Initialization
	10.4.2 SCSInitializeServlet

	10.5 Integration in a Web Environment
	10.6 Class Loading
	10.6.1 Custom Class Loader
	10.6.2 Class Loader Usage

	10.7 Object Creation
	10.8 Interaction with the UCPM API
	10.9 IContext Interface
	10.10 ICISObject Interface
	10.10.1 Property Accessors
	10.10.2 Property Object Types
	10.10.3 Property Collections

	10.11 Adapter Configuration File
	10.11.1 The adapter Element
	10.11.2 The config Element

	10.12 Access to the SCS API
	10.13 SCS API Objects
	10.13.1 ISCSObject Interface
	10.13.2 ICISTransferStream Interface
	10.13.3 ISCSServerBinder Interface
	10.13.4 ISCSServerResponse Interface
	10.13.5 ISCSRequestModifier Interface

	10.14 SCS API Servlets
	10.14.1 Servlet Descriptions
	10.14.2 SCS Servlet Parameters
	10.14.2.1 SCSFileDownloadServlet
	10.14.2.2 SCSDynamicConverterServlet
	10.14.2.3 SCSDynamicURLServlet

	10.14.3 Servlet Security
	10.14.4 Servlets and API Interaction

	10.15 SCS APIs
	10.15.1 SCS Search API
	10.15.2 SCS File API
	10.15.3 SCS Document APIs
	10.15.3.1 ISCSDocumentCheckinAPI
	10.15.3.2 ISCSDocumentCheckoutAPI

	10.15.4 SCS Workflow API

	11 Using the Java Content Repository Adapter
	11.1 Introduction to Using the Java Content Repository Adapter
	11.1.1 JCR Data Model
	11.1.2 Oracle Content Server JCR Adapter Data Model

	11.2 Installing Required APIs and Runtime Libraries
	11.2.1 Installing ADF Runtime Libraries
	11.2.2 Deploying Remote Intradoc Client (RIDC)
	11.2.3 Deploying the JCR API
	11.2.4 Installing the JCR Integration Libraries
	11.2.5 Installing the XML Integration Files

	11.3 Deploying the JCR Adapter
	11.4 Configuring Communication with Oracle Content Server
	11.4.1 Supplying a Communication Method
	11.4.2 Configuring Socket Communication (Listener Port)
	11.4.3 Configuring Secure Socket Communication (SSL)
	11.4.4 Configuring Web Communication (Web Server Filter)
	11.4.5 Configuring the User Agent
	11.4.6 Supplying Cache Settings

	11.5 Using Tables for Content Items, the Search Index, and the File Store
	11.5.1 Finding Information for Each Content Item
	11.5.2 Using a Search Index
	11.5.3 Using the File Store Provider

	12 Using Oracle UCM Web Services
	12.1 Overview of Oracle UCM Web Services
	12.2 Oracle UCM Web Services
	12.3 Installation and Configuration
	12.4 Security
	12.4.1 Configuring WS-Security through WS-Policy
	12.4.2 Configuring SAML Support
	12.4.2.1 Configuring a Keystore
	12.4.2.2 Configuring Server JPS to Use the Keystore
	12.4.2.3 Creating a Client CSF
	12.4.2.4 Configuring a Java Client to Use the Keystore and CSF

	13 Customizing DesktopTag
	13.1 About the DesktopTag Component
	13.2 System Requirements
	13.3 DesktopTag Component Operation
	13.3.1 File Get Operation
	13.3.2 File Check-In Operation

	13.4 Using the DesktopTag Component
	13.4.1 Viewing Custom Properties
	13.4.2 Checking in Documents from Outside Oracle Content Server

	13.5 Configuring the DesktopTag Component
	13.5.1 DesktopTagFormats Property
	13.5.2 DesktopTagPrefix Property
	13.5.3 DesktopTagFields Property
	13.5.4 DesktopTagPrefixCustom Property
	13.5.5 DesktopTagFieldsCustom Property
	13.5.6 DesktopTagPrefixExtended Property
	13.5.7 DesktopTagFieldsExtended Property
	13.5.8 DefaultTaskPaneUrl Property
	13.5.9 DesktopTagLog Property
	13.5.10 DesktopTagFormatsExclude Property

	A Using WSDL Generator and SOAP
	A.1 Overview
	A.2 Using Web Services
	A.2.1 Web Services Framework
	A.2.1.1 XML Data
	A.2.1.2 WSDL Interface
	A.2.1.3 SOAP Communication
	A.2.1.4 UDDI Registry
	A.2.1.5 DIME: Message Format
	A.2.1.6 How the Enabling Technologies Work Together

	A.2.2 Implementation Architecture
	A.2.3 Implementation on .NET
	A.2.4 The SOAP Protocol

	A.3 SOAP Clients
	A.3.1 Using the Java SOAP Client

	A.4 SOAP Service Calls
	A.4.1 SOAP Packet Format
	A.4.1.1 HTTP Headers
	A.4.1.2 Namespaces
	A.4.1.3 Nodes
	A.4.1.3.1 Service Node
	A.4.1.3.2 Document Node
	A.4.1.3.3 User Node
	A.4.1.3.4 Optionlist Node
	A.4.1.3.5 Option Subnode
	A.4.1.3.6 Resultset Subnode
	A.4.1.3.7 Row Subnode
	A.4.1.3.8 Field Subnode

	A.4.2 Special Characters

	A.5 Using Active Server Pages
	A.5.1 Sample SOAP Request
	A.5.2 Sample Active Server Page

	A.6 Using WSDL Files
	A.6.1 Understanding WSDL Files
	A.6.1.1 WSDL File Structure
	A.6.1.1.1 Data Type
	A.6.1.1.2 Message
	A.6.1.1.3 Port Type
	A.6.1.1.4 Binding
	A.6.1.1.5 Service and Port

	A.6.2 Sample WSDL File
	A.6.3 Generating WSDL Files
	A.6.4 Generating Proxy Class from WSDL Files

	A.7 Creating a Custom WSDL Using Administration Pages
	A.8 Sample Service Calls with SOAP Response/Request
	A.8.1 Ping the Server
	A.8.1.1 Required Parameters
	A.8.1.2 SOAP Request
	A.8.1.3 Response

	A.8.2 Add a New User
	A.8.2.1 Required Parameters
	A.8.2.2 Optional Parameters
	A.8.2.3 Optional Attribute Information
	A.8.2.4 SOAP Request
	A.8.2.5 Response

	A.8.3 Edit Existing User
	A.8.3.1 Required Parameters
	A.8.3.2 Optional Parameters
	A.8.3.3 Optional Attribute Information
	A.8.3.4 SOAP Request
	A.8.3.5 Response

	A.8.4 Get User Information
	A.8.4.1 Required Parameters
	A.8.4.2 SOAP Request
	A.8.4.3 Response

	A.8.5 Delete User
	A.8.5.1 Required Parameters
	A.8.5.2 SOAP Request
	A.8.5.3 Response

	A.8.6 Check in Content Item
	A.8.6.1 Required Parameters
	A.8.6.2 Additional Parameters
	A.8.6.3 Optional Parameters
	A.8.6.4 SOAP Request
	A.8.6.5 Response

	A.8.7 Check out Content Item
	A.8.7.1 Required Parameters
	A.8.7.2 Optional Parameters
	A.8.7.3 SOAP Request
	A.8.7.4 Response

	A.8.8 Undo Content Item Checkout
	A.8.8.1 Required Parameters
	A.8.8.2 Optional Parameters
	A.8.8.3 SOAP Request
	A.8.8.4 Response

	A.8.9 Get Content Item Information
	A.8.9.1 Required Parameters
	A.8.9.2 SOAP Request
	A.8.9.3 Response

	A.8.10 Get File
	A.8.10.1 Required Parameters
	A.8.10.2 Optional Parameters
	A.8.10.3 SOAP Request
	A.8.10.4 Response

	A.8.11 Get Search Results
	A.8.11.1 Required Parameters
	A.8.11.2 Optional Parameters
	A.8.11.3 SOAP Request
	A.8.11.4 Response

	A.8.12 Get Table Data
	A.8.12.1 Required Parameters
	A.8.12.2 SOAP Request
	A.8.12.3 Response

	A.8.13 Get Criteria Workflow Information
	A.8.13.1 REquired Parameters
	A.8.13.2 SOAP Request
	A.8.13.3 Response

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

