Oracle® Fusion Middleware

Developer's Guide for Oracle Information Rights Management
Server

Release 11.1.1.2.1
E12326-01

January 2010

ORACLE

Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server, Release
11.1.1.2.1

E12326-01

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.
Primary Author: Martin Wykes

Contributing Author: James Leask

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

ORACLE

Contents

PIROIACE ...ttt ettt neen iX
AN S Lo 1= V< T RSRRRTT ix
Documentation AcCesSSIDILItYcccciiiiiiiiiiiiiiiii e iX
ReElated DOCUITIEIESeeveieeiieceeeeeeeeeee ettt ettt et e e e e ae e ete e e saeeeaeeeteseseeeabeesssessseesesenseensessnseenseesneeenees iX
(@03 4 T£=3 015 (o) 0 IR RRU O ORPRRRRPRRN X

1 Introduction

2 Working with Sealed Content

2.1 CONCEPLS ..ttt 2-1
2.1.1 SEALING ...t 2-1
2.1.1.1 Metadata: The Public HEAdercccovueiviiiriiiriiieieieeeieeee et 2-1
21.1.2 Encrypted Content ... 2-3
2.1.2 UNSEALINE ...ttt 2-3
2.1.3 PEEKING ...ttt 2-3
214 RESEALINEceviiiee e 2-3
2.1.5 RECIASSIICATION ...vveveeeiieieetteteetee ettt ettt ettt et et e st e st eseesessessesessansensensesenns 2-3
2.2 SEALING SEIVET ...ttt 2-4
2.2.1 Sealing Web Service.........cciiiiiiiiiiiiiiiiic s 2-4
2211 AUTNENTICATION ..viviiieiiieieteiete ettt ettt eseesessesbesbessessensensennans 2-4
2212 AUTNOTIZATION ..ttt ettt nan 2-5
2.2.1.3 IMTOM ...ttt ettt ettt ettt ettt es b e s et e s e saeseebesaesesaesesessenseseneeseneas 2-6
222 Desktop Web SeIVICE.......coiiiiiiiiiiiiciiiicicriccrc s 2-6
2.3 EXQIMIPLES ... 2-6
2.3.1 Finding File Extensions (Remote and Local)cccccoceiiiiiiiiiiniiiiiiiiis 2-7
2.3.1.1 File EXTEINSIONS ..veviieiiieieieieiteteiceeteteete sttt ettt ettt ssessessessesse s essanaennennens 2-7
2.3.1.2 MIME TYPES ..ttt 2-7
2.3.1.3 Using the Sealing Server...........ooiic e 2-8
2.3.14 Using Java LIDIaries ... 2-8
2.3.2 Sealing (REMOLE)coueviviiiiiiiiiiiieiciciicc s 2-9
2.3.21 Uploading Content...........oocueuoiiirieieiice s 2-9
2322 Calling SEAL....ciiiiiiiiiiiiic s 2-9
2.3.2.3 MIME TYPE..cuiiiiiiiiiiiiiii s 2-9
2.3.24 Sealing OPtioNSccruiiiicieiect s 2-9
2.3.3 Peeking (REMOLE)cceuiuiiiiiiiiiiiiii s 2-18
2.3.3.1 Uploading Sealed Contentc.couiiiiiiiiiiiiicc e 2-13
2.3.3.2 CalliNg PEEK.......coiiiiiii s 2-14
2.3.3.3 Calling validatedPeek ... s 2-14
2.3.34 Examining the Classification ... 2-14
2.3.35 Reading Labels.........cccccooiiiiiiiiiiiiiiiccs 2-15
2.3.3.6 Accessing the COOKIecccceuiiiiiiiiiiiiic s 2-15
2.3.3.7 Large Files........ooi 2-15

2.34

2.3.4.1
2.3.5

2.3.5.1
2.3.5.2
2.3.5.3
2.3.6

2.3.6.1
2.3.6.2
2.3.6.3
2.3.7

2.3.7.1
2.3.7.2
2.3.7.3

Peeking (Local).....coiiiiiiiiiciiiciciciciic s 2-15

Calling PEEK......cocviviiiiiiici s 2-16
Resealing (REMOLE)c.c.cuiuiiiiiiiiiiriciciciieeeice e 2-16
Uploading Content...........cooueiiiiieieiiicic 2-16
Calling reS@aL.......cccovviiiiiiiiii s 2-16
Extracting the CONtentc.ccccceiiiiiiiiiiccccceeeeeee s 2-17
Reclassifying (REMOLe)........ccoviuiuiiiiiiiiiiic s 2-17
Uploading Content...........cccuoiiiiieieiicci e 2-17
Calling reClasSify ..o 2-17
Extracting the Content ... 2-18
Unsealing (REMOLE)cccouiuiiiiiiiiiiiiiiiiiiiiicc s 2-18
Uploading Sealed COontentccccciiiiiiiiiiiciieeeeeeeeeee e nenenes 2-18
Calling UNS@AL.......coviiiiiiiiiee s 2-19
Extracting the Content............cccocoviiiiiiiiiiiis 2-19

3 Working with Domains, Contexts, Roles, and Rights

3.1
3.1.1
3.1.1.1
3.1.1.2
3.1.2
3.1.2.1
3.1.2.2
3.1.3
3.1.3.1
3.1.3.2
3.1.4
3.1.4.1
3.1.4.2
3.1.5
3.1.5.1
3.1.5.2
3.2
3.2.1
3.2.1.1
3.2.2
3.2.2.1
3.2.3
3.24
3.2.5

CONCEPLS .ttt 3-1
DOIMNAINS ..ttt ettt ettt ettt b bbb b et e ettt e e bt e ae 3-1
DOMAINRETE ..ottt sttt e s e 3-1
DOMAITN..c.eeiiiiiiiiiiie ettt ettt et e s e st e s bt e et e et s bt e e bt e st e e sbae e bt e ebee st e enbee e 3-1
Context TEMPIALESc.cucuiuiiiiiiciccicieeeceee e 3-2
ContextTempPlateReEcccoooiiiiiiceee et e e et ee e s e ara e e e e neraees 3-2
CONtEXETEMP LAt @ ..ot e e et e e e e e arbe e e e e e raaeeas 3-2
COMEEXES .ttt ettt ettt ettt b ettt e st et e bt e bt bt e bt st b et e e et et et et ebeebenae 3-2
ContextInstanceRef ...t 3-2
CONELEXREINSLANICE ..ottt sttt et sbe st e b e b ebee e 3-2
Roles (DOCUMENT ROLES)cciviirieieieieeieeieiieieeteereietessessesseaeseesessessessassessessessessessessessesens 3-2
DocUMENEROLERESE ..ottt ettt 3-2
DOCUMENEROLE ..ottt ettt ettt et sttt st sbe e st e e sbeeesaeesbeesmbeeaneenas 3-3
Rights (Document Rights)cccccccciiiiiiiiiiiiiiiceeeccceeeee e 3-3
DocumentRIGREREE ... e aaae s 3-3
DOCUMENERIGRE .. .ooiiiiii e e e e et e e nraee s 3-3
EXQIMIPIES ... 3-3
Creating a Context from a Template...........cocoooeveiiiiiiiiii 3-4
Calling createContexXtFromTemPLlate ... 3-4
Searching for Journal ENtries ... 3-4
Calling 5€archJIouTrnAL ..ot 3-5
AsSIZNINEG @ ROLE ... 3-5
Listing the Rights Assigned to a User or Groupc.ccccoeeueucueieieeeicienececeecenenenenes 3-6
Unassigning @ ROIEcoiiiiiiiiiiiiiiiiiiicce s 3-7

4 Working with Users and Groups

vi

41

411
41.2
4.1.3
41.4

The AccountReE TYPe.....ocoooiiiiii e 4-1
About the AccountRef TYPe.....ccccciiiiiiiiiiiiiic e 4-1
Creating an AccountRef Using a GUIDcccccoviiiiiniiiiniiiicccces 4-1
Creating an AccountRef Using a User Name........c.cccooeeiiiiiiiiiiiiiccicce, 4-1
Creating an AccountRef Using a Group Name.........ccccooeiiiiiiiiicie, 4-1

4.2

Obtaining User and Group Namescccceeueieiiiieieiiiiiceeee s 4-1

5 Code Samples for Web Services

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12
5.2.13
5.2.14
5.2.15
5.2.16
5.2.17
5.2.18
5.2.19
5.2.20
5.2.21
5.2.22
5.3
5.3.1
5.3.2
5.3.3
5.34
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19

WWED SEIVICES ..o 5-1
Using JDeveloper Generated Web Services Proxiesccccooeeueieieicieiiinicicececcciecccne 5-2
INErOdUCHION ..o 5-2
Using the Samples ... 5-2
Generating a Web Service PIOXYccococueioiiiiiiiicicc 5-3
Creating @ DOMAIN.........cccoiiiiiiiiiii e 5-3
Creating @ ROLe ... 5-4
Creating a Context Templatec.coooiiiiii e, 5-6
Creating @ ConteXt........couviiiiiiiiiiiiic e 5-6
Assigning a Role t0 @ USeT.........ccoiiiiiiiiiii s 5-8
Listing Rights Assigned to a User or GIoUp........ccceueioiicieicicccicecce e 5-9
Altering the Role Assigned to a User 0 GIOUPcccceuvueueuiurireriiiceenieicieeieeeeeeeeeeeees 5-11
Sealing @ File.......cuouiiiii e 5-12
Peeking a Sealed File...........ccocoooiiiiiii e 5-16
Peeking a Sealed File and Checking the Digital Signature..........ccccccccecevvvvicnnnnne. 5-17
Changing Item Restrictions Associated with a Right...........ccccooon 5-19
Unassigning Rights Assigned to @ USerccccouoiiiieioiiiieiiiic 5-20
Reclassifying a Filecccccociiiiiiiiiiceccceceee s 5-22
Resealing a File with Different Custom Datac.cooooeiiiiiii 5-24
Unsealing @ File........ooouoiiii s 5-26
Listing ClassifiCationsccccevururiiiririrririiirececerreeee s 5-27
Searching the Context Journal Using Web Servicescccooieieiiiiciciniincine 5-28
Checking in LICENSESoorueiiiiieeieie et 5-30
Deleting @ DOmMainc.c.cciuiuiiiiiiiiciiccceeceeiee et 5-31
Using the Oracle IRM Web Service Code.........coiiiiiiiiiiiniiicici s 5-32
INErOdUCHON ..o 5-33
Class Pathi........ccooiiiiiic s 5-33
Differences from the JDeveloper Generated Codecccoviiviviniininiiiiicnne 5-33
Creating @ DOMaIN.........cccoiiiiiiiiiiii s 5-33
Creating @ ROLEcciiiiiiiice e 5-34
Creating a Context Templatecccooiiiiiiii e 5-36
Creating @ ConteXt........coviiiiiiiiiiicc s 5-37
Assigning a Role t0 @ USET......c.cccuiiiiiiiiiiiiiiiicieiiciccecee s 5-38
Listing Rights Assigned to a User or GIoup.......ccccoeueiimieieiiiiciciinceec e 5-39
Altering the Role Assigned to a User o GIoUpcccccevevviviviriiiviiinininiiicccceees 5-40
Sealing @ File.......c.oiiiiiiiiiiiiicccce s 5-41
Peeking a Sealed File ..o 5-44
Peeking a Sealed File and Checking the Digital Signature.............ccooevviininnnnnen. 5-45
Changing Item Restrictions Associated with a Right.........ccccccoceiiiiiiinnnine 5-46
Unassigning Rights Assigned to @ USerc.ccccouiiieieiiiciiiiiicc 5-47
Reclassifying a File ... 5-48
Resealing a File with Different Custom Datacccooevrvvinnnnnniirrrceeene 5-49
Unsealing @ File.........ooouiiiiiiiii s 5-51
Listing ClassifiCationscccocvuviviiiriiininiiiiiiiiiiiis s 5-52

vii

5.3.20 Searching the Context Journal Using Web Servicescccooeiiiiiiiiiniinicienennnn, 5-53
5.3.21 Checking in LICENSESc.ciuiiiiimiiiiiiiiiiiiiicii s 5-54
5.3.22 Deleting @ DOMainc.ccocuiuiiiiiiiiiiicicceeeeeee e 5-54

6 Code Samples for Java Applications

6.1 INETOAUCHION ..o s 6-1
6.2 Peeking a Sealed File ..o 6-1

7 Status Page Customization

7.1 OVEIVIEW ..ottt 7-1
7.2 Customizing Status Pages..........ccciiiiiiiiiiiii 7-1
7.2.1 Redirection of Status Page Requests Using HTTP GETccccccccoevviicnnviincnne 7-2
7.2.2 Redirection of Status Page Requests Using HTTP POST.........cccccoooiriiiiiiiiiiinnnnn, 7-2
7.3 Configuring Oracle IRM for Custom Status Pagescccoooeeeieiiiiceiniicccee 7-3
7.4 Creating Custom Status Pages Using the HTTP GET Methodccccccovvvinnnnnnnene. 7-3
7.5 Creating Custom Status Pages Using the HTTP POST Methodccccoooeveiiiriiiinnne 7-3
7.6 Reference Information and Examples..........cccooiiiiiiiiiiiiiiccc e 7-3
7.6.1 List of Built-in Parameters..........ccccooviieiiiiiiininiiic e 7-3
7.6.2 List of Status Page TYPesccoeeurieiiiicieccici e 7-5
7.6.3 Example of Oracle IRM Desktop State in XML..........ccccoooiiiiiiiiiicc 7-6

8 Reference

8.1 TermINOLOZYcvoviiiiiiiiiiiiiiic s 8-1

8.2 LT R AU i o Yo (<< SR 8-2

8.3) G Y=Y Ll e Yo <= J RS 8-3
Index

viii

Audience

Preface

This guide describes how to create code that will perform sealing and related tasks for
protecting the content of files under Oracle IRM control.

This guide is for developers who want to create tools for sealing and unsealing
protected content, or who want to adapt existing tools to support content protected by
Oracle IRM. Users of this guide need basic familiarity with Oracle IRM, should be
competent Java developers familiar with a Java IDE, and should know how to call web
services from Java.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support for Hearing-Impaired Customers

Oracle customers have access to electronic support through My Oracle Support or by
calling Oracle Support at 1.800.223.1711. Hearing-impaired customers in the U.S. who
wish to speak to an Oracle Support representative may use a telecommunications relay
service (TRS). Information about the TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of telephone
numbers is available at http: //www. fcc.gov/cgb/dro/trsphonebk.html.
International hearing-impaired customers should use the TRS at +1.605.224.1837. An
Oracle Support engineer will respond to technical issues according to the standard
service request process.

Related Documents

For more information, see the following documentation:

» Oracle Fusion Middleware Administrator’s Guide for Oracle IRM Server
This guide is also available as the online help for the Oracle IRM Server product.
» Oracle Fusion Middleware External Users Support Guide for Oracle IRM Desktop
» Oracle Fusion Middleware User’s Guide for Oracle IRM Desktop
This guide is also available as the online help for the Oracle IRM Desktop product.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

The following conventions are used throughout this guide:

= The notation <Install_Dir> is used to refer to the location on your system where
Oracle IRM Server is installed.

» Forward slashes (/) are used to separate the directory levels in a path name. This
is true when referring to files on a Windows file system or on a UNIX system. A
forward slash will always appear after the end of a directory name.

Introduction

This guide covers all of the development topics relating to the Oracle IRM J2EE
application (Oracle IRM Server).

The guide describes how to use the following:

= Web services. The Oracle IRM Web services, for example, include operations that
allow content to be sealed and unsealed, contexts to be created and rights to be
assigned.

= Java APIs. Certain operations, such as peeking the metadata of sealed content, can
be performed using the IRM Java APL

= Status page customization. On-line Oracle IRM Desktop status pages can be
customized allowing an organization to offer a branded or personal experience to
the end users when working with sealed content.

Where appropriate, sample code is also provided.

Introduction 1-1

1-2 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Concepts

Working with Sealed Content

This section contains the following topics:
= Concepts
= Sealing Server

= Examples

2.1 Concepts

2.1.1 Sealing

This section contains the following topics:
= Sealing

s Unsealing

s Peeking

= Resealing

» Reclassification

Sealing is the process of transforming plaintext content into encrypted and signed
content. The sealing process adds metadata, signs this metadata and encrypts the
content. The result of this transformation is called sealed content. Sealed content can
be opened only with Oracle IRM Desktop, the Oracle IRM client application. Oracle
IRM Desktop checks the digital signature, decrypts the content, and maintains the
protection of the sealed content while in use. One of the other changes currently made
during sealing is to alter the file extension. For example, a sealed HTML document has
a stml file extension rather than a html or htm file extension. Oracle IRM Desktop
identifies sealed content using these different file extensions.

2.1.1.1 Metadata: The Public Header

The metadata added to sealed content is called the public header. It is a
human-readable XML document that appears near the top of the sealed content. The
public header is digitally signed so that tampering of sealed content can be detected by
Oracle IRM Desktop.

21.1.1.1 Classification The public header contains a section called the classification.
The classification is used by the Oracle IRM Desktop to determine whether the
authenticated user can access the sealed content. Rights are expressed in terms of the
classification, for example John can access all Top Secret classified content. The
classification also includes information about which server (Oracle IRM Server) to
contact for rights, and which cryptography keys were used to seal the content.

Classification Cookie

To allow content to be classified in different ways, the classification contains a section
of XML data called the classification cookie. The classification cookie contains data
that is used by Oracle IRM Desktop and the Oracle IRM J2EE application to associate
rights with content. The data contained in the classification cookie is defined by the
classification system.

Working with Sealed Content 2-1

Concepts

Context Classified Content

Sealed content that uses the context classification system has a classification cookie
that contains a UUID value (to identify a context) and an item code that identifies the
document. This allows rights to be expressed either at the context level or for a
particular document (for example, John can access any document sealed to context Top
Secret or Mary can access the top secret document named secrets.sdoc).

21.1.1.2 Custom Metadata Additional data can be tagged to sealed content using
custom metadata. Custom metadata can be added by third party systems that perform
sealing. This allows tamper proof metadata to be added to sealed content, which in
turn can be extracted by these applications. For example, a content management
system could add additional properties to the sealed content, such as the original
author or document version.

Oracle IRM Desktop also uses custom metadata when displaying the poster page for
sealed movies. When movie content is sealed the poster page can be specified as
custom metadata.

2.1.1.1.3 Content Schema Sealed content contains a version number called the content
schema. This version number helps the Oracle IRM Desktop determine what features
are supported in the sealed content.

2.1.1.1.4 Creation Time Sealed content contains a record of when the content was first
sealed and when subsequent edits were made.

2.1.1.1.5 Example Public Header The following XML document is an example of a public
header one might see in an HTML document sealed against the Top Secret context.

<?xml version="1.0" ?>
<content:PublicHeader xmlns:content="http://xmlns.oracle.com/irm/content">
<contentDescription>
<schema>
<schemaVersion>
<version>6.0</version>
</schemaVersion>
</schema>
<classification>
<1d>588403f9-9cff-4cce-88ed-e030cch7282a</1id>
<system>
<uuid>37c8da32-5420-4146-816c-27£63de27250</uuid>
</system>
<keySet>
<uuid>213£8f65-c5d1-4868-9fff-adl56daa2dd6</uuid>
</keySet>
<uri>http://irm.example.com/irm_desktop</uri>
<classifications:ContextCookie
xmlns:classifications="http://xmlns.oracle.com/irm/classifications">
<context>
<uuid>588403£9-9cff-4cce-88e4-e030cc57282a</uuid>
</context>
<itemCode>
<value>example.stml</value>
</itemCode>
</classifications:ContextCookie>
<classificationTime>2008-02-01T13:00:00.000+01:00</classificationTime>
<labels>
<locale>en</locale>
<name>Top Secret</name>
</labels>

2-2 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Concepts

</classification>
<customData>
<uuid>2b8cd20a-d4£5-47b6-9097-d12547£2b707</uuid>
<acme>
<author>John Smith</author>
<version>2</version>
</acme>
</customData>
<creationTime>2009-01-01T12:00:00.000+01:00</creationTime>
<editTime>2009-01-01T12:00:00.000+01:00</editTime>
<sealedMime>application/vnd.sealedmedia.softseal .html</sealedMime>
<unsealedSize>2367</unsealedSize>
</contentDescription>
<i1v>d2hhdCB3aWxsIHByaW50IG91dA==</1iv>
<sessionKey>SGVsbG8gTWIVbiBNb25rzXk=</sessionKey>
<publicHeaderPeriod>1024</publicHeaderPeriod>
<encryptedContentBlockSize>16384</encryptedContentBlockSize>
</content:PublicHeader>

2.1.1.2 Encrypted Content

The following is an example snippet of the encrypted section of a sealed file.

Of ‘—&#Dmbg. . . 1]>: z+V&RTZXcU0P6« >@02 Y7 « xD3
Joo| (0r8C230ATV' #my7 {+2V-$°A1§0*0aY¢a) SuRTN
< - 118%$<66PVECI-@P0, - A-:n«HC"+>eUNp ®"
o FAX%[0@» " CVHEWLYMIAGSEY) & {O=Ya®fyADQD , oLP
'd4Itw) <.14BAb< EleIJfiud@ ' :" V. }eTS padeJ
«; Yeu, <°R¢hZ_-1geID&hi§@F+wse\ (%' £ ' é6fUGK

2.1.2 Unsealing

2.1.3 Peeking

Unsealing is the process of taking sealed content and extracting the original, plaintext
content. Unsealing can be considered the reverse process of sealing. Unsealing is
typically used when content no longer requires Oracle IRM protection or when the
content needs to be processed by a third party system, for example an application
producing a search index for sealed content.

Peeking is the process of extracting the classification and custom metadata from sealed
content. The process is called peeking because the process examines only the public
header of the sealed content, not the encrypted data. Peeking is typically used to
identify the classification of the sealed content without opening or viewing the
content. Peeking can also check the digital signature: this is called validated peek.
Peeking of this form requires the cryptography keys to be available to the caller, which
typically means the authenticated user must have rights to open the sealed content.

2.1.4 Resealing

Resealing is the process of saving a sealed file with some modifications. Oracle IRM
Desktop allows certain formats, such as Microsoft Office, to be edited in sealed form:
the process of saving edits is called resealing.

2.1.5 Reclassification

Reclassifying sealed content is the process of altering the classification of the sealed
content. Reclassification usually means re-signing and re-encrypting the content as

Working with Sealed Content 2-3

Sealing Server

most classifications have their own set of cryptography keys. Reclassifying is typically
used when content changes sensitivity (for example, a top secret document becomes a
company confidential document).

2.2 Sealing Server

The sealing server is a J2EE application that runs on an application server and
provides sealing, unsealing, peeking, and reclassification services. Operations such as
sealing content can be accomplished by uploading a file to the sealing server: the
relevant metadata will be added and digitally signed, and the contents encrypted. The
resultant sealed content is then returned to the caller. The sealing operations are
exposed as web services. The typical use for the sealing server is for integrations that
want to seal, unseal or examine sealed content. Oracle IRM Desktop users typically
create sealed content on their local machines and would not use the sealing server.

The sealing server exposes two web services: the sealing web service and the desktop
web service. The sealing web service allows sealed content to be manipulated (for
example, sealing and unsealing content). The desktop web service allows licenses
checked out to the sealing server to be queried and checked in. The desktop web
service also provides classification details.

2.2.1 Sealing Web Service

The sealing server provides a number of web services operations that allow the
following tasks to be performed:

= Sealing unsealed content

= Unsealing sealed content

= Resealing or reclassifying sealed content
= Peeking sealed content metadata

The sealing services WSDL file can be downloaded from the sealing server using the
following URL, replacing irm.example.com with the host and port name of the
sealing server:

http://irm.example.com/irm_sealing/sealing_services?wsdl

2.2.1.1 Authentication

The sealing services web service calls require authentication. The current release
supports HTTP basic authentication. When rights are requested and operations
performed on sealed content, they are performed as the authenticated user.

2.2.1.1.1 Setting the Username and Password using JAX-WS There are two main ways to set
the username and password with a JAX-WS generated web service proxy. The first
approach requires the user name and password to be set using the
java.net.Authenticator class. This approach provides a user name and
password for all HTTP requests for the running JVM instance.

java.net.Authenticator.setDefault (new java.net.Authenticator() {
@Ooverride
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication("username",
"password".toCharArray()) ;
}
i

2-4 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Sealing Server

The other approach is to set the user name and password directly on the web services
port object. This is the approach used in the web service sample code.

java.util.Map<String, Object> requestContext =
(javax.xml.ws.BindingProvider)port) .getRequestContext () ;
s

requestContext.put (javax.xml.ws.BindingProvider .USERNAME_PROPERTY,
"username") ;

requestContext.put (javax.xml.ws.BindingProvider.PASSWORD_PROPERTY,
"password") ;

2.2.1.2 Authorization

The sealing services web service calls are authorized in the same way that Oracle IRM
Desktop authorizes sealed content access. The authenticated user must have a valid
license that allows an appropriate feature for the specified classification.

= Sealing - requires a license that allows the seal feature.

In the context classification system, this means the user has to have a role assigned
that allows the seal feature.

= Unsealing - requires a license that allows the save unsealed feature.

In the context classification system, this means the user has to have a role that has
export constraints set as none.

= Resealing - requires a license that allows the reseal feature.

In the context classification system, this means the user has to have a role that
allows the reseal feature.

= Reclassification - requires a license that allows the copy to feature with an
appropriate trusted destination in the source classification license and the seal
feature in the target classification license.

In the context classification system, this means the user has to have a role that has
export constraints set as trusted with the target context being a trusted context of
the source context, or that the role has export constraints set as none.

s Peeking - can be performed without having a license (unless the digital signature
is checked, in which case the open feature is required).

In the context classification system, this means that the user does not need a role
assigned within a context.

If the same user account is used to authenticate with the sealing server and the Oracle
IRM Desktop, the user may have to perform a check-in when switching between
Oracle IRM Desktop and the sealing server. It is advisable to use a different user
account when using the sealing server, to avoid having to check in licenses. When
requests are made to the sealing server, the sealing server requests the licenses and
cryptography keys for the related classification from the Oracle IRM server. These
licenses are checked out to the sealing server for the authenticated user. A record of
these keys and rights is stored in memory and, if the license specifies, also on the file
system. These licenses and keys are then used to process the content for this call and
subsequent requests relating to the same classification (for the same user). Licenses
that expire are re-requested by the sealing server. License rules, such as time
constraints, are fully interpreted by the sealing server. License and key details are
stored per authenticated user - there is an isolated store of rights and keys for any user
that uses the sealing server. This is identical to the way that Oracle IRM Desktop
requests licenses and keys. Oracle IRM Desktop also has an offline database in which
keys and licenses are stored.

Working with Sealed Content 2-5

Examples

s ™y
Sealing
Services
Application
|__Desktop - Desktop
Services Operations
Desktop Store
2.2.1.3 MTOM

The sealing server supports MTOM (SOAP Message Transmission Optimization
Mechanism). This web service feature allows content to be transmitted as a raw binary
attachment to the SOAP message rather than using in-line base 64 encoded data. This
not only reduces the amount of data sent to the server, it also allows larger files to be
uploaded and downloaded. It is strongly recommended to enable MTOM support
when using the sealing web service operations.

For example, when using a JAX-WS client the MTOM feature can be enabled when
obtaining the port:

service.getPort (SealingServices.class, new javax.xml.ws.soap.MTOMFeature());

If MTOM support is not enabled, the uploaded file size will be limited to the available
memory in the client JVM.

2.2.2 Desktop Web Service

The sealing server also exposes a number of operations for managing licenses checked
out to the sealing server and listing classification details. These operations are similar
to the operations a user can perform using Oracle IRM Desktop. When licenses are
checked out to the sealing server, the licences cannot be used by Oracle IRM Desktop
unless the device count configuration setting has been configured to allow licenses to
be used on multiple devices. The desktop services web service allows licenses to be
checked in from the sealing server. In the same way that Oracle IRM Desktop can list
classification details (contexts) when the user wants to seal content, the sealing server
also provides an operation that lists classification details.

A couple of simple diagnostic pages are also made available on the sealing server so
you can find out what licenses are checked out to the sealing server, and what
classifications are currently available:

http://irm.example.com/irm_sealing/licenses
http://irm.example.com/irm_sealing/classifications

The desktop services WSDL file can be downloaded from the sealing server using the
following URL, replacing irm. example.com with the host and port name of the
sealing server.

http://irm.example.com/irm_sealing/desktop_services?wsdl

2.3 Examples

This section contains the following topics:

2-6 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

» Finding File Extensions (Remote and Local)
= Sealing (Remote)

s Peeking (Remote)

s Peeking (Local)

= Resealing (Remote)

= Reclassifying (Remote)

= Unsealing (Remote)

2.3.1 Finding File Extensions (Remote and Local)

When sealing content, it is useful to be able to look up the file extension that Oracle
IRM Desktop uses. The content operations described later in this section provide
useful operations for obtaining file extension information, such as looking up sealed
file extensions.

2.3.1.1 File Extensions

Sealed content uses file extensions that differ from the ones used for unsealed files. For
example, a PDF file has the file extension .pdf, whereas a sealed PDF file has the file
extension .spdf. The sealed file extension allows Oracle IRM Desktop to identify what
file format the sealed content is, and display appropriate sealed file icons. The table
below shows some example file extensions and the corresponding sealed file
extension.

Table 2-1 Example file formats and extensions

File format File extension Sealed file extension

DOC doc sdoc
PPT ppt sppt
HTML html, htm stml
PDF pdf spdf
GIF gif sgif

2.3.1.2 MIME Types

Sealed content includes a MIME type in the sealed content metadata. This MIME type
is used by Oracle IRM Desktop to identify the format of the unsealed content. The
MIME type is an alternative way of detecting the file format when the content is not
stored in a file (for example, a stream of data downloaded from a HTTP server).
Unsealed MIME types vary and there are many examples where a single file format
has more than one MIME type. For this reason the sealed content contains a sealed
MIME type rather than the unsealed content MIME type. For example, a PDF file has
the MIME type application/pdf, whereas a sealed PDF file will have a MIME type
of application/vnd.sealedmedia.softseal.pdf added to the metadata.

Opening up sealed content in an editor will show that a sealed MIME type is added to
the metadata. For example, the public header of a sealed PDF file:

<?xml version="1.0" ?>

<content :PublicHeader xmlns:content="http://xmlns.oracle.com/irm/content"

xmlns:classifications="http://xmlns.oracle.com/irm/classifications">
<contentDescription>

Working with Sealed Content 2-7

Examples

<sealedMime>application/vnd.sealedmedia.softseal .pdf</sealedMime>

</contentDescription>
</content :PublicHeader>

2.3.1.3 Using the Sealing Server

The sealing server provides a web service that can be used to query file and MIME
type information. Sealed content file format information is immutable, so consider
retrieving this information once and using a local copy when processing sealed files.
This will avoid potentially expensive remote calls to a sealing server.

23.1.3.1 Finding the Corresponding Sealed File Name When sealing a file a common
scenario is to create the corresponding sealed file next to the original. The
getSealedFileName operation takes a path and file name or just a file name and
provides the equivalent sealed file name.

ContentTypeOperations contentTypeOperations = new
ContentTypeOperationsService () .getContentTypeOperations () ;

String results =
contentTypeOperations.getSealedFileName (" /usr/home/john/sample.html") ;

In the example above the results of calling the method would be
"/usr/home/john/sample.stml".

2.3.1.3.2 Obtaining Content Type Information A content type object contains all the file
type information for content that can be sealed. The content type specifies the file
extension(s), its sealed file extension, and the associated MIME types. Content type
objects can be obtained using the file extension or the MIME type of the sealed or
unsealed content.

ContentTypeOperations contentTypeOperations = new
ContentTypeOperationsService () .getContentTypeOperations () ;

ContentType results = contentTypeOperations.getContentTypeFromExtension ("pdf");

2.3.1.4 Using Java Libraries

The content type operations can be used locally within Java applications. To use these
methods requires irm-common. jar and irm-engine. jar to be present in the
classpath of the calling application.

2.3.1.4.1 Finding the Corresponding Sealed File Name The content type operations are
locally available on the content type operations instance.

import static
oracle.irm.engine.content.type.ContentTypeOperationsInstance.getSealedFileName;

String results = getSealedFileName ("/usr/home/john/sample.html");

2.3.1.4.2 Obtaining Content Type Information Content type information can be obtained
locally using the content type operations instance.

import static
oracle.irm.engine.content.type.ContentTypeOperationsInstance.getContentTypeFromExt
ension;

ContentType results = getContentTypeFromExtension ("pdf");

2-8 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

2.3.2 Sealing (Remote)

The sealing server supports sealing. Content is uploaded to the sealing server,
encrypted and signed, and the sealed content returned to the caller.

2.3.2.1 Uploading Content

For JAX-WS generated web service proxies the content is provided as a
javax.activation.DataHandler parameter. Using a data handler allows the web
service stack to stream the binary content to the server without having to load the
complete file into memory.

javax.activation.DataHandler input = new javax.activation.DataHandler (new
FileDataSource ("example.html"));

The data source does not have to be a file.

2.3.2.2 Calling seal

A call to the seal method requires the unsealed data (in the form of a DataHandler),
the MIME type of the unsealed or sealed content (either is fine) and the sealing
options. The sealing options contain the classification details, custom metadata, and a
few other attributes, such as the time the sealed file was created.

SealingServices sealingServices = new
SealingServicesService() .getSealingServices (new javax.xml.ws.soap.MTOMFeature());

DataHandler results = sealingServices.seal (input, "txt/html", options);

It is important to enable the MTOM web service feature. This ensures the sealed
content is uploaded to the server in the most optimal form. It also avoids
java.lang.OutOfMemoryException exceptions if the uploaded file is large.

To call the seal operation, the authenticated user needs rights that allow the seal
feature for the specified classification.

2.3.2.3 MIME Type

The seal method requires the MIME type of the unsealed or sealed content to be
specified, for example:

s For HTML content either the txt /html or application/vnd.sealed. txt
MIME types can be used.

s For text content either the txt /plain or
application/vnd.sealedmedia.softseal.html MIME types can be used.

For more information about how to obtain sealed content MIME types and what
MIME types are supported, see "File Extensions" on page 2-7.

2.3.2.4 Sealing Options

The sealing options contain the classification, custom metadata and settings that affect
how the content is encrypted. The classification is the most important part of the
sealed content metadata. The classification contains the opaque XML document called
the classification cookie. The classification cookie is the data used by Oracle IRM
Desktop and the Oracle IRM J2EE application when associating rights with content.
The classification cookie XML structure is defined by the classification system of the
sealed content. The context classification system, for example, has an XML structure
that includes a UUID to identify the context and a value called the item code which

Working with Sealed Content 2-9

Examples

can be used to identify an individual document. The following is an example context
cookie that might appear in sealed content:

<?xml version="1.0" ?>
<classifications:ContextCookie
xmlns:classifications="http://xmlns.oracle.com/irm/classifications">
<context>
<uuid>588403£9-9cff-4cce-88e4-e030cc57282a</uuid>
</context>
<itemCode>
<value>sample.sdoc</value>
<time>2007-05-10T12:00:00.000+00:00</time>
</itemCode>
</classifications:ContextCookie>

Rights for the context classification system are expressed using this information, for
example:

John can access all documents with a context UUID of f3cd57c1-f495-48aa-b008-f23afa4d6b07
or:

Mary can access documents with a context UUID of f3c¢d57c1-f495-48aa-b008-f23afa4d6b07
and an item code value of plan001.sdoc or plan002.sdoc.

The classification is mandatory and must be specified in the sealing options. The other
sealing option properties are optional.

SealingOptions options = new SealingOptions();
options.setClassification(classification);

2.3.24.1 Classification ID The classification ID is a simple string value that is used to
uniquely identify the classification. The contents and format of the classification ID
differ depending on what classification system is used. The classification ID is used to
match classification details with master classification details stored on the server.
During the seal operation, if the classification labels and key set are not specified the
sealing server looks up the master classification definition by classification ID and uses
the labels and key set defined on the master classification.

classification.setId("a4905cd7-7405-469e-b72c-78d11e959b3a") ;

The classification ID value for the context classification system should be set as the
context UUID value. If this value is not set correctly, labels and key set details cannot
be automatically set.

23.24.2 Classification System A classification must specify what classification system
is being used to seal the content. A classification system is identified with a UUID
value.

ClassificationSystemRef system = new ClassificationSystemRef () ;
system.setUuid("37c8da32-5420-4146-816c-27£63de27250") ;

classification.setSystem(system) ;

The classification system defines what value should be used as the classification ID, as
well as what XML data should be set in the classification cookie. When sealed content
is opened in Oracle IRM Desktop this information is sent to the Oracle IRM J2EE
application. The Oracle IRM J2EE application then uses the classification system and
classification cookie data to determine how rights are obtained for the authenticated
user.

2-10 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

The UUID value for the context classification system is
37¢8da32-5420-4146-816c-27£63de27250. This value is immutable and will
never change.

2.3.24.3 Key Set When content is sealed, the cryptography keys used to encrypt and
sign the content are specified using a key set. This value should be set to null, and is
provided for future feature enhancements.

classification.setKeySet (null);
2.3.2.4.4 Server When sealed content is opened or created, the rights to open or seal
the content must be obtained from an IRM server. A classification has a URI property

which must be set to the URI of an IRM server that will provide the licenses and
cryptography keys needed to open or seal content for the classification.

classification.setUri("https://irm.example.com/irm desktop");
It is important that this value is the same as the the "Server URL" property configured

on the General Settings page of the Oracle IRM Server Control Console (the Oracle
IRM pages of the Oracle Enterprise Manager Fusion Middleware Control Console).

23.24.5 Classification Time Rights to access sealed content can include time
constraints. One such constraint can be based on the classification time, for example:
allow John to access any sealed content up to one month after the classification time

or:

allow Mary to access any content classified in 2008

The classification time can be set during the sealing process:
classification.setClassificationTime (new java.util.Date());

If the classification time is not specified, it defaults to the current time by the sealing
server.

classification.setClassificationTime (null);
In the 10g Oracle IRM release the classification time was called the publication time.

23.24.6 Labels A classification can contain a set of human-readable strings called
labels. The classification labels are used by Oracle IRM Desktop to show the user
classification details, for example informing the user that a document is sealed to the
Top Secret classification. If no labels are specified for the classification provided to the
seal operation, the sealing server will attempt to fill in the labels from the master
classification definition. To allow for multi-language support, labels have a locale
property. If the classification can be translated into multiple languages, multiple labels
can be provided, each one specifying the appropriate locale (for example, en for
English or zh-CN for traditional Chinese - see Locale Codes). Oracle IRM Desktop
picks the most appropriate label based on the installed Oracle IRM Desktop language.

For the context classification system, the context labels defined on the Oracle IRM
Server Management Console are the ones that are sealed into content.

Empty labels are specified by setting an empty set of labels using null.

classification.setLabels (null);

Labels can also be provided during the sealing process: these override any master
classification definition.

Working with Sealed Content 2-11

Examples

Label label = new Label();

label.setLocale("en");

label.setName ("Top Secret");

label.setDescription("Top Secret - this is a top secret document");

classification.setLabels (new Label[] {label});

2.3.2.4.7 Classification Cookie The classification cookie is defined by the classification
XML schema as an <any> element, that is, an XML element of any form. The structure
of this XML document is defined by the classification system being used. Depending
on the web service proxy generator used, the cookie XML is typically provided as a
org.w3c.dom.Element or Object. The following code snippet shows a
classification cookie for the context classification system. The cookie XML document is
created using standard Java document object model (DOM) APIs. It does not matter
how the XML document object is created: loaded from a file, created from a string,
loaded in from a stream, etc. This example shows the cookie XML being created from a
string.

String xml =
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>" +
"<classifications:ContextCookie
xmlns:classifications=\"http://xmlns.oracle.com/irm/classifications\">" +
" <context>" +
" <uuid>a4905cd7-7405-469e-b72c-78d11e959b3a</uuid>" +
! </context>" +
" <itemCode>" +
" <value>sample.shtml</value>" +
" <time>2007-05-10T12:00:00.000+00:00</time>" +
" </itemCode>" +
"</classifications:ContextCookie>";

java.io.ByteArrayInputStream stream = new
java.io.ByteArrayInputStream(xml.getBytes ("utf-8"));

javax.xml.parsers.DocumentBuilderFactory documentBuilderFactory =
javax.xml.parsers.DocumentBuilderFactory.newInstance() ;

// As the context classification cookie uses namespaces, ensure these are
maintained on parsing the XML
documentBuilderFactory.setNamespaceAware (true) ;

javax.xml.parsers.DocumentBuilder documentBuilder =
documentBuilderFactory.newDocumentBuilder () ;

org.w3c.dom.Document document = documentBuilder.parse(stream);

2.3.2.4.8 Providing Custom Metadata Custom metadata can be specified during the
sealing process. Custom metadata is an optional property on the SealingOptions.
Custom metadata is added as an XML element together with a UUID value that can be
used to identify the custom data when peeking the sealed content.

Element element = document.createElement ("SampleCustomData") ;
element.setTextContent ("Some example custom data provided as an XML element
containing this text");

CustomData data = new CustomData() ;

// UUID identifies the custom data, this example uses a fixed example UUID value
data.setUuid("7£79d1e8-fc07-464c-8477-834951e07060") ;

2-12 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

// Custom data is XML document
data.setData (element) ;

// Set on the options before sealing
options.setCustomData (new CustomData[] {data});

2.3.2.4.9 Sealed Movie Poster Page A poster page is the image shown before a sealed
movie is started. Oracle IRM Desktop loads the optional poster page from the custom
metadata section of the public header. A poster page must be a JPEG or GIF image.
The image is provided in the custom data as base 64 encoded data together with the
file type.

// UUID for poster page image
CustomData image = new CustomData();
image.setUuid("6f2c8fba-a2cb-4493-8861-45e5cbdalbac") ;

// Custom data is base 64 encoded data for image

Element imageElement = document.createElement ("item");
imageElement.setTextContent ("RO1GOD1hhQASAPCAAP. XENIQAAAOwW==") ;
image.setData (imageElement) ;

// UUID for poster page file type - either 'gif' or 'jpeg'
CustomData fileType = new CustomData();
fileType.setUuid("38663feb-5df9-4cl14-bd75-b557b6dfeal8") ;

// Custom data is XML document

Element imageElement = document.createElement ("item");
imageElement.setTextContent ("gif");

image.setData (imageElement) ;

// Set on the options before sealing
options.setCustomData (new CustomData[] {image, fileType});

2.3.3 Peeking (Remote)

Peeking is the process of extracting metadata from sealed content. This metadata
includes the classification details and any custom metadata supplied during the
sealing process. Peeking is typically used to extract information from the sealed
content without decrypting the file. Peeking is used by Oracle IRM Desktop when
sealed file properties are displayed.

The sealing server supports both peeking and validated peek (where the digital
signature of the sealed content is validated). In both cases the sealed content is
uploaded to the sealing server, the content is examined, and the sealed content
metadata is returned to the caller.

2.3.3.1 Uploading Sealed Content

For JAX-WS generated web service proxies, the sealed content is provided as a
DataHandler parameter. Using a data handler allows the web service stack to stream
the binary content to the server without having to load the complete file into memory.

javax.activation.DataHandler input = new javax.activation.DataHandler (new
FileDataSource ("example.stml"));

The data source does not have to be a file.

Working with Sealed Content 2-13

Examples

2.3.3.2 Calling peek

A call to the peek method results in the metadata being returned as a
ContentDescription object. This object contains the classification details, custom
metadata and a few other attributes, such as the time the sealed file was created.

SealingServices sealingServices = new
SealingServicesService () .getSealingServices (new javax.xml.ws.soap.MTOMFeature());

ContentDescription results = sealingServices.peek (input);

It is important to enable the MTOM web service feature. This ensures the sealed
content is uploaded to the server in the most optimal form. It also avoids
java.lang.OutOfMemoryException exceptions if the uploaded file is large.

To call the peek operation the authenticated user does not need any rights to access the
sealed content.

2.3.3.3 Calling validatedPeek

A call to the validatedPeek method results in the metadata being returned as a
ContentDescription object in the same way as peek. If the digital signature has
been tampered with, or the file is corrupt, a ContentParseFault exception is
thrown. This exception will detail the reason for the sealed content parsing failure. A
successful invocation of this operation signifies that the metadata signature has been
verified.

SealingServices sealingServices = new
SealingServicesService() .getSealingServices (new javax.xml.ws.soap.MTOMFeature());

ContentDescription results = sealingServices.validatedPeek (input) ;

To call the validated peek operation, the authenticated user must have the rights to
open the sealed content.

2.3.3.4 Examining the Classification

The classification is the most important part of the sealed content metadata. The
classification contains the opaque XML document called the classification cookie. The
classification cookie is the data used by Oracle IRM Desktop and the Oracle IRM J2EE
application when associating rights with content. The classification cookie XML
structure is defined by the classification system of the sealed content. The context
classification system has an XML structure that includes a UUID to identify the context
and a value called the item code which can be used to identify an individual
document. The following is a sample context cookie that might appear in sealed
content:

<?xml version="1.0" ?>
<classifications:ContextCookie
xmlns:classifications="http://xmlns.oracle.com/irm/classifications">
<context>
<uuid>588403f9-9cff-4cce-88e4-e030cc57282a</uuid>
</context>
<itemCode>
<value>sample.sdoc</value>
<time>2007-05-10T12:00:00.000+00:00</time>
</itemCode>
</classifications:ContextCookie>

Rights for the context classification system are expressed using this information, for
example:

2-14 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

John can access all documents with a context UUID of f3cd57c1-f495-48aa-b008-f23afa4d6b07
or:

Mary can access documents with a context UUID of f3c¢d57c1-f495-48aa-b008-f23afa4d6b07
and an item code value of plan001.sdoc or plan002.sdoc

The classification metadata also contains the human-readable labels for the
classification. There may be multiple labels if the labels have been translated into
multiple languages. These labels are used to display a friendly name and description
to a user, rather than showing raw computer oriented data from the classification
cookie.

2.3.3.5 Reading Labels

The classification contains a set of human-readable strings called labels. The
classification labels can be used to inform the user which classification the sealed
content was sealed against.

Classification classification = results.getClassification();
Label[] labels = classification.getLabels();

if (labels != null) {
for (Label label : labels) {
System.out.println(label.getLocale() .getDisplayName() + " : " +
label .getName ()) ;
}
}

2.3.3.6 Accessing the Cookie

The classification cookie is defined in the classification XML schema as an <any>
element. The cookie XML can be accessed from the classification object and is typically
returned as a org.w3c.dom. Element. The following code snippet shows a context
UUID being extracted from a context classification cookie using the DOM.

Classification classification = results.getClassification();
org.w3c.dom.Element element = (org.w3c.dom.Element)results.getAny();

org.w3c.dom.NodeList nodes = element.getElementsByTagName ("context");
org.w3c.dom.Node node = nodes.item(0);
String uuid = node.getTextContent () ;

2.3.3.7 Large Files

If the file is large there is no need to send the complete file to the sealing server.
Peeking only requires the portion of the file that contains the metadata. This portion of
the file is dynamic in size, but limited to 1MB in size. A pessimistic view would be to
send the first IMB of the file contents (or the complete contents if this is less than
1MB). In reality the sealed content preamble and metadata are usually a lot smaller, so
16K to 32K is usually sufficient. If the metadata section of the sealed content sent to the
sealing server is truncated, the peek or validatedPeek call will throw a
ContentParseFault.

2.3.4 Peeking (Local)

Peeking is the process of extracting metadata from sealed content. This metadata
includes the classification details and any custom metadata supplied during the
sealing process. Peeking is typically used to extract information from the sealed

Working with Sealed Content 2-15

Examples

content without decrypting the file. Peeking is used by Oracle IRM Desktop when
sealed file properties are displayed.

The IRM Java libraries allow peeking (but not validated peeking) to be performed
locally. This can be used where performance is an issue and the overhead of sending
content to the sealing server is undesirable. The functionality is identical to that
provided by remote peeking.

Local peeking requires irm-common. jar and irm-engine. jar to be present in the
classpath of the calling application.

2.3.4.1 Calling peek

Local peeking is performed using the SealingOperations interface rather than the
sealing services web service. Sealed content is provided as an InputStream rather
than a DataHandler.

import static oracle.irm.engine.content.sealing.SealingOperationsInstance.peek;
InputStream fileInputStream = new FileInputStream("example.stml");
ContentDescription results = peek(fileInputStream);

The result can be examined in the same manner as for remote peeking.

2.3.5 Resealing (Remote)

Resealing is the process of altering the custom metadata or editing the encrypted
content. Oracle IRM Desktop allows certain formats, such as Microsoft Office, to be
edited in sealed form. The process of saving edits is called resealing.

The sealing server supports resealing to update the custom metadata but does not
support updating the encrypted content of the sealed file. Content is uploaded to the
sealing server, the custom metadata is updated, and the sealed content is returned to
the caller.

2.3.5.1 Uploading Content

For JAX-WS generated web service proxies, the content is provided as a
DataHandler parameter. Using a data handler allows the web service stack to stream
the binary content to the server without having to load the complete file into memory.

javax.activation.DataHandler input = new javax.activation.DataHandler (new

FileDataSource ("example.stml"));

The data source does not have to be a file.

2.3.5.2 Calling reseal

A call to reseal requires the sealed data (in the form of a DataHandler) and the
custom data for the update. The following demonstrates how to reseal a sealed file
using the reseal method adding XML-based custom data to the sealed file.

The XML based custom data is provided as an XML element.

Element element = document.createElement ("SampleCustomData") ;
element.setTextContent ("Some example custom data provided as an XML element
containing this text");

CustomData data = new CustomData() ;

2-16 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

// UUID identifies the custom data, this example uses a fixed example UUID value
data.setUuid("7£79d1e8-£c07-464c-8477-834951e07060") ;

// Custom data is XML document

data.setData (element) ;

Then the reseal operation is called to reseal the content and re-sign the metadata.
SealingServices sealingServices = new

SealingServicesService() .getSealingServices (new javax.xml.ws.soap.MTOMFeature());

DataHandler results = sealingServices.reseal (input, new CustomData[] {data});

To call the reseal operation, the authenticated user needs rights that allow the reseal
feature to be performed for the classification of the sealed content.

2.3.5.3 Extracting the Content

The DataHandler class can be used to write out the resealed content to an output
stream of the programmer's choice. This example shows the resealed content being
written out to a file.

java.io.FileOutputStream outputStream = new
java.io.FileOutputStream("example.stml");

results.writeTo (outputStream) ;

outputStream.close();

2.3.6 Reclassifying (Remote)

Reclassifying sealed content is the process of altering the classification of the sealed
content. Reclassification usually means re-signing and re-encrypting the content,
because most classifications have a dedicated set of cryptography keys. Reclassifying
is typically used when content changes sensitivity, for example when a top secret
document becomes a company confidential document.

The sealing server supports reclassifying. Content is uploaded to the sealing server,
the classification is updated, and the updated sealed content is returned to the caller.

2.3.6.1 Uploading Content

For JAX-WS generated web service proxies, the content is provided as a
DataHandler parameter. Using a data handler allows the web service stack to stream
the binary content to the server without having to load the complete file into memory.

javax.activation.DataHandler input = new javax.activation.DataHandler (new
FileDataSource ("example.stml"));

The data source does not have to be a file.

2.3.6.2 Calling reclassify

A call to reclassify requires the sealed data (in the form of a DataHandler) and the
new classification details. Refer to the sealing example for details about how to specify
a classification in code.

SealingServices sealingServices = new
SealingServicesService() .getSealingServices (new javax.xml.ws.soap.MTOMFeature());

DataHandler results = sealingServices.reclassify(input,classification);

Working with Sealed Content 2-17

Examples

It is important to enable the MTOM web service feature. This ensures the sealed
content is uploaded to the server in the most optimal form. It also avoids
java.lang.OutOfMemoryException exceptions if the uploaded file is large.

To call the reclassify operation, the authenticated user needs either:

= Rights that allow the copy to feature for the source classification with a trusted
destination that allows the target classification, and rights that allow the seal
feature for the target classification.

In the context classification system, this means the user has to have a role that has
export constraints set as trusted with the target context being a trusted context of
the source context, or that the role has export constraints set as none.

= Rights that allow the unseal feature for the specified classification and the seal
feature for the target classification.

In the context classification system, this means the user has to have a role that has
export constraints set as none.

When using the Oracle IRM Server Management Console, the copy fo and unseal
features are enabled and controlled using the export constraints defined on a role.

2.3.6.3 Extracting the Content

The DataHandler class can be used to write out the resealed content to an output
stream of the programmer's choice. This example shows the resealed content being
written out to a file.

java.io.FileOutputStream outputStream = new
java.io.FileOutputStream("example.stml");

results.writeTo (outputStream) ;

outputStream.close();

2.3.7 Unsealing (Remote)

Unsealing is the process of converting sealed content back into the original, plaintext
content. Unsealing is typically used to convert sealed content that is no longer
sensitive back into normal content. Unsealing is an operation that is supported by both
Oracle IRM Desktop and the sealing server.

The sealing server supports unsealing. The sealed content is uploaded to the sealing
server, the content is decrypted, and the unsealed content is returned to the caller.

2.3.7.1 Uploading Sealed Content

For JAX-WS generated web service proxies, the sealed content is provided as a
DataHandler parameter. Using a data handler allows the web service stack to stream
the binary content to the server without having to load the complete file into memory.

javax.activation.DataHandler input = new javax.activation.DataHandler (new
FileDataSource ("example.stml"));

The data source does not have to be a file.

2-18 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

2.3.7.2 Calling unseal

A call to the unseal method results in the unsealed data being returned as a
javax.activation.DataHandler. This object can be used to stream the unsealed
data into a file or buffer.

SealingServices sealingServices = new
SealingServicesService() .getSealingServices (new javax.xml.ws.soap.MTOMFeature());

javax.activation.DataHandler results = sealingServices.unseal (input);

It is important to enable the MTOM web service feature. This ensures the sealed
content is uploaded to the server in the most optimal form. It also avoids
java.lang.OutOfMemoryException exceptions if the uploaded file is large.

To call the unseal operation, the authenticated user needs rights that allow the unseal
feature to be performed for the classification of the sealed content.

When using the Oracle IRM Server Management Console, the unseal feature is enabled
when a role has export constraints of none.

2.3.7.3 Extracting the Content

The DataHandler class can be used to write out the unsealed content to an output
stream of the programmer's choice. This example shows the unsealed content being
written out to a file.

java.io.FileOutputStream outputStream = new
java.io.FileOutputStream("example.html");

results.writeTo (outputStream) ;

outputStream.close();

Working with Sealed Content 2-19

Examples

2-20 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Concepts

Working with Domains, Contexts, Roles, and
Rights

This section contains the following topics:
s Concepts

= Examples

3.1 Concepts
This section contains the following topics:
= Domains
= Context Templates
= Contexts
= Roles (Document Roles)
= Rights (Document Rights)

Access to context-classified documents is governed by rights, such as the right to open
a document, the right to print it, and the right to copy information from it and paste it
into another document. The rights are defined and assigned centrally by
administrators, who group combinations of rights and end user identities into one or
more "contexts".

3.1.1 Domains

A domain is the top level entity that contains document roles and context templates.

3.1.1.1 DomainRef

Domains are identified by a UUID value. Web services operations that need to identify
a domain use the DomainRef type. A DomainRef contains only the information
required to uniquely identify a domain; the UUID. The other properties of a domain,
such as its labels, are not part of a DomainRef type.

DomainRef domainReference = new DomainRef () ;
domainReference.setUuid("29499ec3-4ded-4138-9ead-cclfbdbf8dbl") ;

An example method that uses a DomainRef typeis the delete domain method:

DomainOperations domainOperations = new
DomainOperationService () .getDomainOperations () ;
domainOperations.deleteDomain (domainReference) ;

3.1.1.2 Domain

A Domain contains all the information about a domain, including the UUID. For
operations that require or return all the domain properties, a Domain is used.

An example that uses the Domain type is the 1ist domains method:

DomainOperations domainOperations = new
DomainOperationService () .getDomainOperations() ;
Domain[] results = domainOperations.listDomains();

Working with Domains, Contexts, Roles, and Rights 3-1

Concepts

3.1.2 Context Templates

Context templates are identified by a UUID value within the owning domain. Web
services operations that need to identify a template use the ContextTemplateRef
type. A ContextTemplateRef contains the information required to uniquely
identify a template: the UUID and the owning domain. The other properties of a
template, such as its labels and roles, are not part of a ContextTemplateRef type.

3.1.2.1 ContextTemplateRef
ContextTemplateRef templateReference = new ContextTemplateRef () ;

templateReference.setUuid("96c512a7-e44b-47d5-a70d-0ef2c0283£25") ;
templateReference.setDomain (domainReference) ;

It is valid for two templates in different domains to have the same UUID value. The
templates that are automatically installed when the first domain is created all have
fixed UUID values. For example, the standard template has the UUID value
474dbb07-718b-4cde-8£43-d2b723469573. Using these predefined UUID values
means there is no need to look up a context template UUID before creating a
ContextTemplateRef type.

3.1.2.2 ContextTemplate

A ContextTemplate contains all the information about a context template, including
the UUID and domain. For operations that require or return all the context template
properties, a ContextTemplate is used.

3.1.3 Contexts

Contexts are identified by a UUID value. Web services operations that need to identify
a context use the ContextInstanceRef type. A ContextInstanceRef contains
the information required to uniquely identify a context, the UUID. The other
properties of a context, such as labels and item exclusions, are not part of a
ContextInstanceRef type.

3.1.3.1 ContextInstanceRef

ContextInstanceRef contextReference = new ContextInstanceRef();
contextReference.setUuid("a3c4la86-alb4d-4d5d-9fe5-£4077bbc2bl7") ;

3.1.3.2 ContextInstance

A ContextInstance contains all the information about a context, including the
UUID and labels. For operations that require or return all the context properties, a
ContextInstance is used.

3.1.4 Roles (Document Roles)

A document role defines a set of criteria that specify how sealed content can be used.
A document role is assigned to a user or group, allowing the user to use sealed content
in the way the role defines.

3.1.4.1 DocumentRoleRef

Document roles are identified by a UUID value within the owning domain. Web
services operations that need to identify a role use the DocumentRoleRef type. A
DocumentRoleRef contains the information required to uniquely identify a role; the
UUID and the owning domain. The other properties of a role, such as its labels and
features, are not part of a DocumentRoleRef type.

3-2 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

DocumentRoleRef roleReference = new DocumentRoleRef () ;
roleReference.setUuid("96c512a7-e44b-47d5-a70d-0ef2c0283£25") ;
roleReference.setDomain (domainReference) ;

It is valid for two roles in different domains to have the same UUID value. The roles
that are automatically installed when the first domain is created all have fixed UUID
values. For example, the contributor role has the UUID value
a456140d-24dc-4cc2-8£23-1a72fb6c2d81. Using these predefined UUID values
means there is no need to look up a context template UUID before creating a
ContextTemplateRef type.

3.1.4.2 DocumentRole

A DocumentRole contains all the information about a role, including the UUID and
domain. For operations that require or return all the document role properties a
DocumentRole is used.

3.1.5 Rights (Document Rights)

Rights are identified by a UUID value. Web services operations that need to identify a
right use the DocumentRightRef type. A DocumentRightRef contains the
information required to uniquely identify a right, the UUID. The other properties of a
right, such as assigned account and role, are not part of a DocumentRightRef type.

3.1.5.1 DocumentRightRef

DocumentRightRef rightReference = new DocumentRightRef () ;
rightReference.setUuid("35aa8611-abff-43e3-abae-ffe71345d9d4");

3.1.5.2 DocumentRight

A DocumentRight contains all the information about a right, including the UUID,
account and role. For operations that require or return all the right properties, a
DocumentRight is used.

3.2 Examples
This section contains the following topics:
s Creating a Context from a Template
= Searching for Journal Entries
= Assigning a Role
= Listing the Rights Assigned to a User or Group
= Unassigning a Role

The context operations web service provides operations that a domain manager,
inspector or context manager would typically perform. This includes creating contexts,
altering context labels, and adding or removing context managers.

The document right operations web service provides operations that allow a context
manager to manage the rights users have within a context. Document right operations
include assigning rights, checking in rights, and listing rights.

A document role can be assigned, within a context, to one or more accounts. This can
be performed by users that have the Context Manager role within the context. An
account can only have one role assigned within a context.

Working with Domains, Contexts, Roles, and Rights 3-3

Examples

3.2.1 Creating a Context from a Template

A context is created from a context template. The template defines the structure of the
context and what roles are available to assign to users and groups. Only active
templates can be used when creating contexts. Changes to the template after the
context is created are dynamically picked up in the context. For example, adding a role
to the template makes the role available to the context.

3.2.1.1 Calling createContextFromTemplate

When creating a context, the relevant context template must be identified using a
ContextTemplateRef type. This type includes the template UUID and owning domain.
The domain created on installation has a fixed UUID value of
dcfef562-971d-401b-81£9-86700573b£f8b. If other domains are used, the
domain UUID can be found by using operations such as 1istDomains.

DomainRef domainReference = new DomainRef () ;
domainReference.setUuid("dcfef562-971d-401b-81£9-86700573bf8b") ;

The standard templates installed in the installation domain also have fixed UUID
values.

m 474dbb07-718b-4cde-8f43-d2b723469573 for the standard context
template.

= 1a05b98d-b415-4c38-9b7a-9d0adl9eele for the export context template.

If other templates are used, the template UUID can be obtained using the
listActiveTemplates operations.

ContextTemplateRef templateRef = new ContextTemplateRef () ;
templateRef.setUuid("474dbb07-718b-4cde-8£43-d2b723469573");
templateRef.setDomain (domainReference) ;

Once the template has been identified, a context can be created. The authenticated user
will automatically be made the context manager.

ContextOperations contextOperations = new
ContextOperationsService() .getContextOperations();

Label english = new Label();
english.setLocale("en");
english.setName ("Top Secret");

Label german = new Label();
english.setLocale("de");
english.setName ("Strenges Geheimnis");

ContextInstance context = contextOperations.createContextFromTemplate (
null, // automatically generate a UUID value for the context
templateRef,
new Label[] { english, german },

Visibility.DOMAIN,
null); // no additional context managers

3.2.2 Searching for Journal Entries

The context journal contains records of actions performed on sealed content of the
context classification system. This information is available to administrators in the
Reports tab of the Oracle IRM Server Management Console. The context journal can be
searched for activity on content for the specified accounts and/or document items.

3-4 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

This search is restricted to the contexts available to the caller. That is, the caller must be
a context manager or inspector.

3.2.2.1 Calling searchJournal

Searching for journal entries may produce a large result set. For this reason a page
range (starting from 1) must be provided.

PageRange pageRange
pageRange.setFirst (1

= new PageRange() ;
)i
pageRange.setLast (100) ;

A time range to filter the search is also required. The following example is a time range
for the last twenty-four hours.

Date end = new Date();

// Use a calendar to work out the time range
Calendar calendar = Calendar.getInstance();

calendar.setTime (end) ;
calendar.add(Calendar.DAY OF MONTH, -1);

Date begin = calendar.getTime();

TimeRange timeRange = new TimeRange() .
timeRange.setBegin (begin);

timeRange.setEnd(end) ;

If no sort order is specified, the results are sorted by time.
ContextOperations contextOperations = new

ContextOperationsService () .getContextOperations();

ContextJournalEntry[] journalResults = contextOperations.searchJournal (
null, // no accounts filter
null, // no item codes filter
timeRange,
pageRange,
null); // no sorting details

3.2.3 Assigning a Role

A document role can be assigned to a user or group. Document roles are identified
with a UUID and a domain. The domain created on installation has a fixed UUID
value of dcfef562-971d-401b-81£9-86700573bf8b. If other domains are used,
the domain UUID can be found by using operations such as 1istDomains.

DomainRef domainReference = new DomainRef () ;
domainReference.setUuid("dcfef562-971d-401b-81£9-86700573bf8b") ;

The standard roles installed in the installation domain also have fixed UUID values.
m a456140d-24dc-4cc2-8£23-1a72fb6c2d81 for the contributor role.

m 6dbedbcl-6a45-4dal-9aff-c8£1b4d856c4 for the contributor with export
role.

m b68278al-70d1-4f24-aae2-2803729a6674 for the item reader role.
m 48c2e03c-9cd3-4bbl-91db-3eaad564adc? for the reader role.
m 37646b77-aee3-418c-8664-4101fa7b44df for the reader with export role.

Working with Domains, Contexts, Roles, and Rights 3-5

Examples

» e70daaal-0c27-4f8e-aa8b-d8dfc34c4579 for the reader no print role.
m 7d25eda0-2641-445£-9c94-45798165b262 for the reviewer role.

If other roles are used, the role UUID can be obtained using the 1istDocumentRoles
operations.

DocumentRoleRef roleReference = new DocumentRoleRef () ;
roleReference.setUuid("a456140d-24dc-4cc2-8f23-1a72fb6c2d81") ;
roleReference.setDomain (domainReference) ;

The context is also identified with a UUID. If the context was created using the web
services, the UUID value may already be known. If not, use the 1istContexts
operations to identity the context required.

ContextInstanceRef contextReference = new ContextInstanceRef();
contextReference.setUuid("9¢c8d7£1£-9819-4c8e-833£-380£3141e2b6");

The user or group can be identified by GUID or name. See Working with Users and
Groups for more details.

AccountRef userl = new AccountRef () ;
userl.setUuid("9c8d7£f1f-9819-4c8e-833f-380f3141e2b6");

AccountRef user2 = new AccountRef();
user2.setUuid("urn:user:john.smith");

Once the context, role, and accounts have been identified, the role can be assigned.

DocumentRightOperations rightOperations = new
DocumentRightOperationsService () .getDocumentRightOperations () ;

rightOperations.assignRole (
contextInstanceRef,
roleRef,
new AccountRef[] {userl, user2},
null); // no item constraints

If the role is item locked, items can also be specified. The item code values may be well
known or can be obtained by peeking sealed content. See "Peeking" on page 2-3.

ItemCode itemCode = new ItemCode();
itemCode.setValue ("example.stml");

rightOperations.assignRole (
contextInstanceRef,
roleRef,
new AccountRef[] {userl, user2},
new ItemCode[] {itemCode});

3.2.4 Listing the Rights Assigned to a User or Group

A context manager or inspector can list the rights for the contexts that they are allowed
to see. Rights listed for a user or group include rights obtained indirectly through
group membership.

AccountRef user = new AccountRef();
user.setUuid("urn:user:john.smith");

DocumentRightOperations rightOperations = new
DocumentRightOperationService() .getDocumentRightOperations () ;

3-6 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Examples

// Get all of the rights assigned to the account
DocumentRight [] rights = rightOperations.listRightsByAccount (user);
Or for a group:

AccountRef group= new AccountRef();
group.setUuid("urn:group:everyone") ;

DocumentRightOperations rightOperations = new
DocumentRightOperationService () .getDocumentRightOperations() ;

// Get all of the rights assigned to the account
DocumentRight[] rights = rightOperations.listRightsByAccount (group) ;

3.2.5 Unassigning a Role

A context manager can remove roles that have already been assigned within the
context to an account. This is performed using the unassignRights method. The
assignment of a document role to an account is stored as a document right identified
by a UUID.

DocumentRightRef rightRef = new DocumentRightRef () ;
rightRef.setUuid("ff34e6£f9-364b-550d-dfa7-bdf56b0c8188") ;

DocumentRightOperations rightOperations = new
DocumentRightOperationsService () .getDocumentRightOperations () ;

rightOperations.unassignRights (new DocumentRightRef([] { rightRef });

The UUID for the relevant right can be obtained by using methods such as
listRightsByAccount or l1istRightsByContext.

Working with Domains, Contexts, Roles, and Rights 3-7

Examples

3-8 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Obtaining User and Group Names

Working with Users and Groups

This section contains the following topics:
s The AccountRef Type

s Obtaining User and Group Names

41 The AccountRef Type
This section contains the following topics:
= About the AccountRef Type
s Creating an AccountRef Using a GUID
s Creating an AccountRef Using a User Name

s Creating an AccountRef Using a Group Name

4.1.1 About the AccountRef Type

The AccountRef type contains all the information needed to identify a user or group.
Typically this type contains a GUID value, but also allows the user or group name to
be used. The following code snippets show how to create an AccountRef using a
GUID or a user name or a group name.

4.1.2 Creating an AccountRef Using a GUID

AccountRef accountReference = new AccountReference();
accountReference.setUuid("c9d55dc2-92f6-405d-aa52-ff12ab2792ef") ;

The GUID format may differ depending on the identity store used.

4.1.3 Creating an AccountRef Using a User Name

The user name must be URL encoded. For example, 'John Smith' could be encoded as
Tohn+Smith'.

AccountRef accountReference = new AccountReference();
accountReference.setUuid("urn:user:john.smith");

4.1.4 Creating an AccountRef Using a Group Name
The group name must be URL encoded.

AccountRef accountReference = new AccountReference();
accountReference.setUuid("urn:group:everyone") ;

4.2 Obtaining User and Group Names

The IRM web services typically returns user and group GUID values rather than user
and group names. Rather than having to perform direct lookups of user and group
names against the identity store, the Oracle IRM web services includes a user and
group lookup mechanism. The web service method takes a list of GUID values (in the
form of AccountRef types) and returns the user or group name. The following code

Working with Users and Groups 4-1

Obtaining User and Group Names

example shows the domain administrator user names being looked up with the
listAccountDetails web service operation.

DomainOperations domainOperations = new
DomainOperationsService () .getDomainOperations () ;

AccountRef[] accounts =
domainOperations.listDomainAdministrators (domainReference);

Account[] results = domainOperations.listAccountDetails (accounts);
for (Account account : results)

{

System.out.println(account.getName() + " : " + account.getType());

To call this method the authenticated user must have the domain administrator,
domain manager, inspector, or context manager roles in any domain.

4-2 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Web Services

Code Samples for Web Services

This section contains the following topics:
= Web Services
= Using JDeveloper Generated Web Services Proxies

= Using the Oracle IRM Web Service Code

5.1 Web Services

The following table lists all the web services available from a deployed Oracle IRM

J2EE application.

Name

Description

WSDL Document URL / Web Service
Endpoint

Sealing Services

Provides sealed
content processing
operations such as
sealing, unsealing
and reclassification.

http:/ /irm.example.com/irm_sealing/sealing_

services?wsdl

https:/ /irm.example.com/irm_sealing/sealing_

services

Desktop Services

Provides license
management
operations for the
sealing server.

http:/ /irm.example.com/irm_sealing/desktop_

services?wsdl

https:/ /irm.example.com/irm_
sealing /desktop_services

Context Operations

Provides operations
for creating, editing
and deleting
contexts, context
managers and

http:/ /irm.example.com/irm_services/context_

operations?wsdl

https:/ /irm.example.com/irm_
services/context_operations

inspectors.
Context Template Provides operations http://irm.example.com/irm_services/context_
Operations for creating, editing ~ template_operations?wsdl

and deleting context https:/ /irm.example.com/irm_

templates. ; .

services/context_template_operations

Document Right Provides operations http://irm.example.com/irm_
Operations for assigning roles, services/document_right_operations?wsdl

unassigning rights
and altering item
restrictions.

https://irm.example.com/irm_
services/document_right_operations

Document Role
Operations

Provides operations
for creating, editing
and deleting
document roles.

https:/ /irm.example.com/irm_
services/document_role_operations?wsdl

http:/ /irm.example.com/irm_
services/document_role_operations

Domain Operatons

Operations for
creating, altering and
deleting domains.

https:/ /irm.example.com/irm_
services/domain_operations?wsdl

http:/ /irm.example.com/irm_
services/domain_operations

Code Samples for Web Services 5-1

Using JDeveloper Generated Web Services Proxies

5.2 Using JDeveloper Generated Web Services Proxies

This section contains the following topics:

5.2.1 Introduction
The following section provides sample code that can be used with JAX-WS web

Introduction

Using the Samples

Generating a Web Service Proxy

Creating a Domain

Creating a Role

Creating a Context Template

Creating a Context

Assigning a Role to a User

Listing Rights Assigned to a User or Group
Altering the Role Assigned to a User or Group
Sealing a File

Peeking a Sealed File

Peeking a Sealed File and Checking the Digital Signature
Changing Item Restrictions Associated with a Right
Unassigning Rights Assigned to a User
Reclassifying a File

Resealing a File with Different Custom Data
Unsealing a File

Listing Classifications

Searching the Context Journal Using Web Services
Checking in Licenses

Deleting a Domain

service proxies generated using JDeveloper 11g.

5.2.2 Using the Samples

The JDeveloper 11g sample code comes packaged with a pre-generated set of web
service proxy code so there is no need to generate the web service proxy code. The
code samples in this document do not show this generated code, but assume this code
is present in a package called generated. The easiest way to use the samples is to
import them directly into a new or existing JDeveloper 11g project using the File >

Import > Java Source menu.

5-2 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Note: Before running each sample, check the code to see what

command line arguments the sample requires.

Using JDeveloper Generated Web Services Proxies

5.2.3 Generating a Web Service Proxy

If the web service proxy code needs to be generated by hand, these are the steps to
follow within JDeveloper 11g;:

1. From the File menu, select New, then Business Tier, then Web Services, then Web
Service Proxy.

2. Select a JAX-WS Style client and press Next.

3. Enter the required WSDL document URL as listed in the Web Services section of
this document.

For example, http:/ /irm.example.com/irm_sealing/sealing_services?wsdl
There is no need to copy the WSDL into the project.

4. DPress Next.

5. Select Run against a service deployed to an external server.

6. Press Finish.

5.2.4 Creating a Domain

The following code demonstrates how to create a domain. The sample code uses a
fixed domain UUID so that all sample code can work against a known domain. A new
domain would typically be given a new random UUID value. The authenticated user
becomes the domain administrator. When a domain is created, a set of
human-readable labels can be given to the domain for the target language audience.

Example 5-1

import generated.Domain;

import generated.DomainOperations;

import generated.DomainOperationsService;
import generated.Label;

import java.net.Authenticator;
import java.net.PasswordAuthentication;
import java.util.Locale;
import java.util.Map;
import javax.xml.ws.BindingProvider;
public class SaveNewDomain {

public static void main(String[] args) throws Exception {

final String endpointAddress

final String username = args[1]
final String password = args[2]

args([0];

’
’

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {
@override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray()) ;
}
1)

Code Samples for Web Services 5-3

Using JDeveloper Generated Web Services Proxies

5.2.5 Creating a Role

The following code demonstrates how to create a role. The sample code uses a fixed
role UUID so that all sample code can work with a known role. A new role would
typically be given a new random UUID value. The sample role is set up to allow all the
content operations required by the sample code. When assigned to a user, this role
allows sealing, unsealing, resealing and (validated) peeking. This is done by a
providing an appropriate set of features and export constraints.

Example 5-2

import generated.DocumentRole;

import generated.DocumentRoleExportConstraints;
import generated.DocumentRoleOperations;

import generated.DocumentRoleOperationsService;
import generated.DomainRef;

import generated.Feature;

import generated.FeatureUse;

import generated.ItemConstraintsType;

import generated.Label;

import generated.LicenseCriteriaStorage;

import generated.TimePeriod;

import generated.TimePeriodUnits;

import java.net.Authenticator;

import java.net.PasswordAuthentication;
import java.util.List;

import java.util.Locale;

import java.util.Map;

import javax.xml.ws.BindingProvider;

public class SaveNewRole {
public static void main(String[] args) throws Exception {
final String endpointAddress

final String username = args([1];
final String password = args([2];

args([0];

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {
@override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray()) ;
}
)

// Get the document role operations web service
DocumentRoleOperationsService service = new
DocumentRoleOperationsService() ;

DocumentRoleOperations roleOperations =
service.getDocumentRoleOperations () ;

// Set the end point address

Map<String, Object> requestContext =
((BindingProvider)roleOperations) .getRequestContext () ;

5-4 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

requestContext.put (BindingProvider.ENDPOINT ADDRESS_PROPERTY,

endpointAddress) ;

// The Role UUID value - that identifies this role within the domain -
// is fixed for sample code
DocumentRole role = new DocumentRole();

role.setUuid("ee82c3£9-152b-440d-afd7-db£36b0c8188") ;

// Role has one English label
Label label = new Label();

label.setLocale(Locale.ENGLISH. toString());
label.setName ("Sample Role");
label.setDescription("This is a role created from sample code.");

role.getLabels () .add(label) ;

// This role allows the user to access content while offline by persisting

licenses on the desktop

copying)

allowed

role.setStorage (LicenseCriteriaStorage.PERSISTENT) ;
// This role allows content to be saved in the clear (unsealing and
role.setExportConstraints (DocumentRoleExportConstraints.NONE) ;

// This role allows opening,
Feature open = new Feature();

open.setId("oracle.irm.generic.Open");
open.setUse (FeatureUse.IMMEDIATE) ;

open.setRecord(false);

// sealing,
Feature seal = new Feature();

seal.setId("oracle.irm.generic.Seal");
seal.setUse (FeatureUse.IMMEDIATE) ;

seal.setRecord(false);

// and resealing.
Feature reseal = new Feature();

reseal.setId("oracle.irm.generic.Reseal");

reseal.setUse (FeatureUse.IMMEDIATE) ;

reseal.setRecord(false);

List<Feature> features = role.getFeatures();

features.add (open) ;

features.add(seal);

features.add(reseal) ;

// Role allows document exclusions to be listed, by default all items are

role.setItemConstraints (ItemConstraintsType.EXCLUSIONS) ;

// This role allows content to be opened for one hour before refreshing

the rights from the server

Code Samples for Web Services 5-5

Using JDeveloper Generated Web Services Proxies

// This role has no additional time constraints
TimePeriod value = new TimePeriod();

value.setAmount (1) ;
value.setUnits (TimePeriodUnits.HOURS) ;

role.setRefreshPeriod(value) ;

// Domain UUID is fixed for sample code
DomainRef domain = new DomainRef () ;

domain.setUuid("6fab93£fd-2858-461la-alb3-34e261dbf8fd") ;

// Save the new role
roleOperations.saveNewRole (domain, role);

5.2.6 Creating a Context Template

The following code demonstrates how to create a context template. The sample code
uses a fixed template UUID so that all sample code can work with a known template.
A new template would typically be given a new random UUID value. The sample
template has one role and is active. This template is used to create contexts in the
create context code sample.

Example 5-3

import static
oracle.irm.j2ee.jws.rights.context.ContextTemplateOperations.getContextTemplateOpe
rationsEndpoint;

5.2.7 Creating a Context

The following code demonstrates how to create a context from a context template. The
sample code uses a fixed context template reference (information that identifies the
template) and provides a fixed UUID value for the new context. The authenticated
user becomes the context manager. The context is created with two labels, English and
German. This context is used in the sample code that assigns a role, as well as the
sealing, unsealing, resealing, reclassification and peeking code samples.

Example 5—4

import generated.ContextInstanceVisibility;
import generated.ContextOperations;

import generated.ContextOperationsService;
import generated.ContextTemplateRef;

import generated.DomainRef;

import generated.Label;

import java.net.Authenticator;

import java.net.PasswordAuthentication;
import java.util.ArrayList;

import java.util.List;

import java.util.Locale;

import java.util.Map;

import javax.xml.ws.BindingProvider;

5-6 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

public class CreateContextFromTemplate {
public static void main(String[] args) throws Exception {
final String endpointAddress = args[0];
final String username = args[l];
final String password = args[2];
// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {
@override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray()) ;
}
i

// Get the content operations endpoint
ContextOperationsService service = new ContextOperationsService();

ContextOperations contextOperations = service.getContextOperations();
// Set the end point address
Map<String, Object> requestContext =

((BindingProvider) contextOperations) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress) ;

// Domain UUID is fixed for sample code
DomainRef domain = new DomainRef () ;

domain.setUuid("6fab93£fd-2858-461la-alb3-34e261dbf8fd") ;

// Create the context template reference
ContextTemplateRef templateRef = new ContextTemplateRef () ;

templateRef.setDomain (domain) ;

// Context Template UUID is for the "standard" template automatically
installed with a domain

templateRef.setUuid("930876e6-a505-4a10-8d93-bcd3d9a37c23");

templateRef.setDomain (domain) ;

// Context UUID is fixed for sample code
String contextUUID = "46£910d9-dd30-476e-b060-4d01£88£8b05";

// Context has two labels, English and German
Label english = new Label();

english.setLocale(Locale.ENGLISH.toString());
english.setName ("Sample Classification");
english.setDescription("Created from sample code.");

Label german = new Label () ;

german.setLocale (Locale.GERMAN. toString());
german.setName ("Beispielklassifikation");

Code Samples for Web Services 5-7

Using JDeveloper Generated Web Services Proxies

german.setDescription ("Verursacht vom Beispielcode.");
List<Label> labels = new ArrayList<Label>();

labels.add(english) ;
labels.add (german) ;

// Create a context based on that template
contextOperations.createContextFromTemplate (
contextUUID, // context UUID value
templateRef, // context template
labels, // labels
ContextInstanceVisibility.DOMAIN, // visibility
null); // additional context managers

5.2.8 Assigning a Role to a User

The following code demonstrates how to assign a role to a user. To assign a role, the
role, context and user or group must be specified. If the role is restricted to individual
items then items can also be specified as in the assign role method.

Example 5-5

import generated.AccountRef;

import generated.ContextInstanceRef;

import generated.DocumentRightOperations;

import generated.DocumentRightOperationsService;
import generated.DocumentRoleRef;

import generated.DomainRef;

import java.net.Authenticator;

import java.net.PasswordAuthentication;
import java.net.URLEncoder;

import java.util.Collections;

import java.util.Map;

import javax.xml.ws.BindingProvider;

public class AssignRole {
public static void main(String[] args) throws Exception {
final String endpointAddress

final String username = args[1]
final String password = args[2]

args[0];

i
i

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {
@override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray()) ;
}
i

// Get the document right operations endpoint
DocumentRightOperationsService service = new

5-8 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

DocumentRightOperationsService() ;

DocumentRightOperations rightOperations =
service.getDocumentRightOperations () ;

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider)rightOperations) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress) ;

// Domain UUID is fixed for sample code
DomainRef domainRef = new DomainRef () ;

domainRef.setUuid("6fab93fd-2858-461la-a0b3-34e261dbf8fd") ;

// Document Role UUID is for the "Sample Role" role
DocumentRoleRef roleRef = new DocumentRoleRef () ;

roleRef.setUuid("ee82¢c3£9-152b-440d-afd7-dbf36b0c8188") ;
roleRef.setDomain (domainRef) ;

// Context UUID is fixed for sample code
ContextInstanceRef contextInstanceRef = new ContextInstanceRef();

contextInstanceRef.setUuid("46£91049-dd30-476e-b060-4401£88£8b05") ;

// Reference the account by user name
AccountRef accountRef = new AccountRef();

accountRef.setUuid("urn:user:" + URLEncoder.encode (username, "utf-8"));

// Assign the role to the account
rightOperations.assignRole (
contextInstanceRef,
roleRef,
Collections.singletonList (accountRef),
null); // no item constraints

5.2.9 Listing Rights Assigned to a User or Group

The following code demonstrates how to list the rights that have been assigned to a
user or group. The code displays the role label and the context UUID from each right.

Example 5-6

import generated.AccountRef;

import generated.DocumentRight;

import generated.DocumentRightOperations;

import generated.DocumentRightOperationsService;
import generated.ItemCode;

import java.net.Authenticator;

import java.net.PasswordAuthentication;
import java.net.URLEncoder;

import java.util.Collection;

import java.util.Map;

Code Samples for Web Services 5-9

Using JDeveloper Generated Web Services Proxies

import javax.xml.ws.BindingProvider;
public class ListRightsByAccount {
public static void main(String[] args) throws Exception {
final String endpointAddress = args[0];
final String username = args([1];
final String password = args[2];
// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() ({
@Override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray());

}
i

// Get the document right operations endpoint
DocumentRightOperationsService service = new
DocumentRightOperationsService() ;

DocumentRightOperations rightOperations =
service.getDocumentRightOperations () ;

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider)rightOperations) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT ADDRESS_PROPERTY,
endpointAddress) ;

// Reference the account by user name, allowed formats are
// urn:user:xxxx

// urn:group:Xxxx

// 00000000-0000-0000-0000-000000000000

AccountRef accountRef = new AccountRef () ;

accountRef.setUuid("urn:user:" + URLEncoder.encode (username, "utf-8"));

// Get all of the rights assigned to the account
Collection<DocumentRight> rights =
rightOperations.listRightsByAccount (accountRef) ;

// Display a summary of each right

for (DocumentRight right : rights) ({
System.out.println("Account: " + right.getAccount().getUuid());
System.out.println("Context: " + right.getContext ().getUuid());
System.out.println("Role: " + right.getRole().getUuid());

// Show items
Collection<ItemCode> itemCodes = right.getItemCodes();

if (itemCodes != null) {

for (ItemCode itemCode : itemCodes) {
System.out.println(" ItemCode: " + itemCode.getValue());

5-10 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

5.2.10 Altering the Role Assigned to a User or Group

The following code demonstrates how to alter a role assignment using the
reassignRole method over web services. The sample code adds an item code exclusion
to a role assignment. Typically this method is used to alter the role, but as the sample
code only has one demonstration role it shows how to alter the item restrictions.

Example 5-7

import generated.AccountRef;

import generated.DocumentRight;

import generated.DocumentRightOperations;

import generated.DocumentRightOperationsService;
import generated.DocumentRightRef;

import generated.DocumentRoleRef;

import generated.DomainRef;

import generated.ItemCode;

import java.net.Authenticator;

import java.net.PasswordAuthentication;
import java.net.URLEncoder;

import java.util.Collections;

import java.util.List;

import java.util.Map;

import javax.xml.ws.BindingProvider;

public class ReassignRole {
public static void main(String[] args) throws Exception {
final String endpointAddress

final String username = args[1]
final String password = args[2]

args([0];

’
’

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() ({
@Override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray()) ;
}
i

// Get the document right operations endpoint
DocumentRightOperationsService service = new
DocumentRightOperationsService() ;

DocumentRightOperations rightOperations =
service.getDocumentRightOperations () ;

// Set the end point address

Map<String, Object> requestContext =
((BindingProvider)rightOperations) .getRequestContext () ;

Code Samples for Web Services 5-11

Using JDeveloper Generated Web Services Proxies

requestContext.put (BindingProvider.ENDPOINT ADDRESS_PROPERTY,
endpointAddress) ;

// Reference the account by user name
AccountRef accountRef = new AccountRef () ;

accountRef.setUuid("urn:user:" + URLEncoder.encode (username, "utf-8"));

// Get all rights assigned to the account
List<DocumentRight> rights =
rightOperations.listRightsByAccount (accountRef) ;

// Take the first one on the list
DocumentRight right = rights.get(0);

DocumentRightRef rightRef = new DocumentRightRef () ;
rightRef.setUuid(right.getUuid());

// Get a reference to the role to be reassigned
DomainRef domainRef = right.getRole().getDomain();

DocumentRoleRef roleRef = new DocumentRoleRef () ;

roleRef.setUuid(right.getRole() .getUuid());
roleRef.setDomain (domainRef) ;

// Change the item exclusion list to contain one sample item
TtemCode itemCode = new ItemCode();
itemCode.setValue("sample-item-code") ;

// Reassign the role to the account
rightOperations.reassignRole(Collections.singletonList (rightRef),
roleRef, Collections.singletonList (itemCode));

5.2.11 Sealing a File

The following code demonstrates how to seal a file. The content to seal can be
provided as any type of InputStream; this example uses a file input stream. The
sample writes the resulting stream out as a file with a sealed file name inferred from
the unsealed file name. The file is sealed using the context classification system,
specifying a context with a known UUID value and an item code.

Example 5-8

import generated.Classification;

import generated.ClassificationSystemRef;
import generated.ContentType;

import generated.ContentTypeOperations;

import generated.ContentTypeOperationsService;
import generated.SealingOptions;

import generated.SealingServices;

import generated.SealingServicesService;

import java.io.File;

import java.io.FileOutputStream;
import java.io.StringReader;

import java.util.GregorianCalendar;

5-12 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

import java.util.Map;

import javax.activation.DataHandler;

import javax.activation.FileDataSource;

import javax.xml.datatype.DatatypeFactory;
import javax.xml.datatype.XMLGregorianCalendar;
import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.ws.BindingProvider;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.xml.sax.InputSource;

import com.sun.xml.ws.developer.JAXWSProperties;

public class SealFile {

/**
* MTOM threshold.
*
* The size in bytes that binary data should be before being sent as an
attachment in the
* web service request or response.
*
*

Value: <tt>{@value}</tt>
*/
static public final int MTOM_THRESHOLD = 16384;

public static void main(String[] args) throws Exception {
String hostPort = args([0];

String username = args[l];
String password = args(2];

// The server URI. e.g. https://irm.example.com/irm desktop
String serverURI = args[3];

// The filename to seal
String filename = args[4];

// Context UUID is fixed for sample code
String contextUUID = "46£91049-dd30-476e-b060-4d01£88£8b05";

// Date for the item code time stamp
DatatypeFactory dataTypeFactory = DatatypeFactory.newInstance();

XMLGregorianCalendar date = dataTypeFactory.newXMLGregorianCalendar (
new GregorianCalendar());

// Create a context cookie for the classification - this specifies which
context to use as
// well as the item code for the content.
//
// Specifies an explicit item code value and time.
String cookieXMLText =
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>" +
"<classifications:ContextCookie
xmlns:classifications=\"http://xmlns.oracle.com/irm/classifications\">" +
" <context>" +

Code Samples for Web Services 5-13

Using JDeveloper Generated Web Services Proxies

" <uuid>" + contextUUID + "</uuid>" +

" </context>" + " <itemCode>" +

<value>" + new File(filename).getName() + "</value>" +
" <time>" + date.toString() + "</time>" +

" </itemCode>" + "</classifications:ContextCookie>";

DocumentBuilderFactory factory = DocumentBuilderFactory.newlInstance();
DocumentBuilder builder = factory.newDocumentBuilder () ;

Document document = builder.parse(new InputSource (new StringReader (
cookieXMLText.toString())));

Element cookieElement = document.getDocumentElement () ;

// Create the classification details used in the sealing options
Classification classification = new Classification();

// For the context classification system the classification Id is the
context UUID value.
classification.setId("46£91049-dd30-476e-b060-4d01£88£8b05") ;

// Context classification system
ClassificationSystemRef contextSystemRef = new ClassificationSystemRef ();
contextSystemRef.setUuid("37c8da32-5420-4146-816c-27£63de27250") ;

classification.setSystem(contextSystemRef) ;

// As the key set is not known get the sealing process to automatically
fill this in
classification.setKeySet (null);

// URL sealed into content that tells the desktop where to go to get
licenses
classification.setUri (serverURI);

// Classification time set explicitly to the current time
classification.setClassificationTime (date);

// Set the context and item code details
classification.setAny (cookieElement) ;

// The classification is the only mandatory property for sealing options
SealingOptions sealingOptions = new SealingOptions();

sealingOptions.setClassification(classification);
// Get the content type operations web service proxy
ContentTypeOperationsService contentTypeOperationsService =

new ContentTypeOperationsService();

ContentTypeOperations contentTypeOperations =
contentTypeOperationsService.getContentTypeOperations () ;

// Set the end point address for content type operations
Map<String, Object> requestContext =

((BindingProvider) contentTypeOperations) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY, hostPort +
"/irm_sealing/content_type_operations");

5-14 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

// Set the user name and password for content type operations
requestContext.put (BindingProvider .USERNAME_PROPERTY, username) ;
requestContext.put (BindingProvider.PASSWORD_PROPERTY, password);

// Get the MIME type of the file to seal, this is inferred from the
unsealed file name

ContentType contentType =
contentTypeOperations.getContentTypeFromPath (filename) ;

String mimeType = contentType.getMimeTypes().get(0);

// Get the sealing services web service proxy
SealingServicesService sealingServicesService = new
SealingServicesService();

SealingServices sealingServices =
sealingServicesService.getSealingServices (
new javax.xml.ws.soap.MTOMFeature (true, MTOM_THRESHOLD)) ;

// Set the end point address for sealing services
requestContext = ((BindingProvider)sealingServices).getRequestContext();

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY, hostPort +
"/irm_sealing/sealing_services");

// Set the user name and password for sealing services
requestContext.put (BindingProvider .USERNAME_PROPERTY, username) ;
requestContext.put (BindingProvider.PASSWORD_PROPERTY, password);

// Without this setting the client may get an
java.lang.OutOfMemoryException

// when large files are buffered into memory by the HTTP stack.

//

// For more information see:

// https://jax-ws.dev.java.net/guide/HTTP_client_streaming_support.html

// https://jax-ws.dev.java.net/guide/Large_Attachments.html

requestContext.put (JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE,
4096) ;

// Send the file contents to the server for sealing
DataHandler input = new DataHandler (new FileDataSource(filename));

DataHandler results = sealingServices.seal (input, mimeType,
sealingOptions) ;

// Get the sealed equivalent of the unsealed filename
String sealedFilename = contentTypeOperations.getSealedFileName (filename);

// Write the stream out to a file
FileOutputStream outputStream = new FileOutputStream(sealedFilename);

results.writeTo (
outputStream) ;

// Close the streams
outputStream.close();

Code Samples for Web Services 5-15

Using JDeveloper Generated Web Services Proxies

5.2.12 Peeking a Sealed File

The following code demonstrates how to extract the metadata from sealed content
using the peek method. This method sends the sealed content to the sealing server, the
server extracts the metadata and returns this information to the caller. The sealed
content can be provided as any type of InputStream; this example uses a file input
stream. Once peeked the file metadata, which includes the Classification details, can be
examined. The sample code prints out the human readable classification details (the
labels) that were sealed into the content.

Example 5-9

import generated.Classification;

import generated.ContentDescription;
import generated.Label;

import generated.SealingServices;

import generated.SealingServicesService;

import java.util.Map;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import javax.xml.ws.BindingProvider;

import com.sun.xml.ws.developer.JAXWSProperties;

public class PeekFile {
/’k*
* MTOM threshold.
*
* The size in bytes that binary data should be before being sent as an
attachment in the
* web service request or response.
*
*

Value: <tt>{@value}</tt>
*/
static public final int MTOM_THRESHOLD = 16384;

public static void main(String[] args) throws Exception ({

String endpointAddress =
String username = args[l];
String password = args[2

// The name of the file to peek
String filename = args[3];

// Get the sealing services web service proxy
SealingServicesService sealingServicesService = new
SealingServicesService();

SealingServices sealingServices =
sealingServicesService.getSealingServices (
new javax.xml.ws.soap.MTOMFeature (true, MTOM_THRESHOLD)) ;
// Set the end point address
Map<String, Object> requestContext =

((BindingProvider) sealingServices) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

5-16 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

endpointAddress) ;

// Set the user name and password
requestContext.put (BindingProvider.USERNAME_PROPERTY, username);
requestContext.put (BindingProvider.PASSWORD_PROPERTY, password) ;

// Without this setting the client may get an

java.lang.OutOfMemoryException

4096) ;

// when large files are buffered into memory by the HTTP stack.

//

// For more information see:

// https://jax-ws.dev.java.net/guide/HTTP_client_streaming_support.html
// https://jax-ws.dev.java.net/guide/Large_Attachments.html
requestContext.put (JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE,

// Perform the peek, providing a stream to the sealed file
DataHandler input = new DataHandler (new FileDataSource(filename));
ContentDescription results = sealingServices.peek(input) ;

// Extract the classification details from the content
Classification classification = results.getClassification();

// Show all the labels sealed into content (assumes labels are available)
for (Label label : classification.getLabels()) {
System.out.println(label.getLocale() + " : " + label.getName());

5.2.13 Peeking a Sealed File and Checking the Digital Signature

The following code demonstrates how to extract the metadata from sealed content
using the validatedPeek method. This method sends the sealed content to the sealing
server, the server extracts the metadata and returns this information to the caller. The
sealed content can be provided as any type of InputStream; this example uses a file
input stream. Once peeked the file metadata, which includes the Classification details,
can be examined. The sample code prints out the human readable classification details
(the labels) that were sealed into the content.

Example 5-10

import
import
import
import
import

import
import
import
import
import
public

/**

generated.Classification;
generated.ContentDescription;
generated.Label;
generated.SealingServices;
generated.SealingServicesService;

java.util.Map;
javax.activation.DataHandler;
javax.activation.FileDataSource;
javax.xml.ws.BindingProvider;

com.sun.xml .ws.developer.JAXWSProperties;

class ValidatedPeekFile {

Code Samples for Web Services 5-17

Using JDeveloper Generated Web Services Proxies

* MTOM threshold.

*

* The size in bytes that binary data should be before being sent as an
attachment in the

* web service request or response.

*

*

Value: <tt>{@valuel}</tt>

*/

static public final int MTOM_THRESHOLD = 16384;

public static void main(String[] args) throws Exception {

String endpointAddress =
String username = args[1];
String password = args([2];

// The name of the file to peek
String filename = args(3];

// Get the sealing services web service proxy
SealingServicesService sealingServicesService = new
SealingServicesService() ;

SealingServices sealingServices =
sealingServicesService.getSealingServices (
new javax.xml.ws.soap.MTOMFeature (true, MTOM_THRESHOLD)) ;

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider) sealingServices) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT ADDRESS_PROPERTY,
endpointAddress) ;

// Set the user name and password
requestContext.put (BindingProvider.USERNAME_PROPERTY, username);
requestContext.put (BindingProvider .PASSWORD_PROPERTY, password) ;

// Without this setting the client may get an
java.lang.OutOfMemoryException

// when large files are buffered into memory by the HTTP stack.

//

// For more information see:

// https://jax-ws.dev.java.net/guide/HTTP_client_streaming_support.html

// https://jax-ws.dev.java.net/guide/Large_Attachments.html

requestContext.put (JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE,
4096) ;

// Send the file contents to the server for peeking
DataHandler input = new DataHandler (new FileDataSource(filename));

ContentDescription results = sealingServices.validatedPeek (input) ;

// Extract the classification details from the content
Classification classification = results.getClassification();

// Show all the labels sealed into content (assumes labels are available)

for (Label label : classification.getLabels()) {
System.out.println(label.getLocale() + " : " + label.getName());

5-18 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

5.2.14 Changing Item Restrictions Associated with a Right

The following code demonstrates how to alter the item locks or exclusions associated
with a right. The sample code replaces one item code with two item codes.

Example 5-11

import generated.AccountRef;

import generated.DocumentRight;

import generated.DocumentRightOperations;

import generated.DocumentRightOperationsService;
import generated.DocumentRightRef;

import generated.ItemCode;

import java.net.Authenticator;

import java.net.PasswordAuthentication;
import java.net.URLEncoder;

import java.util.ArrayList;

import java.util.Collections;

import java.util.GregorianCalendar;
import java.util.List;

import java.util.Map;

import javax.xml.datatype.DatatypeFactory;
import javax.xml.ws.BindingProvider;

public class SaveChangesToItems {
public static void main(String[] args) throws Exception {
final String endpointAddress

final String username = args[1]
final String password = args[2]

args([0];

’
’

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {
@Override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray()) ;
}
)

// Get the document right operations endpoint
DocumentRightOperationsService service = new
DocumentRightOperationsService() ;

DocumentRightOperations rightOperations =
service.getDocumentRightOperations() ;

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider)rightOperations) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress) ;

Code Samples for Web Services 5-19

Using JDeveloper Generated Web Services Proxies

// Reference the account by user name
AccountRef accountRef = new AccountRef () ;

accountRef.setUuid("urn:user:" + URLEncoder.encode (username, "utf-8"));

// Get all rights assigned to the account
List<DocumentRight> rights =
rightOperations.listRightsByAccount (accountRef) ;

// Take the first one on the list
DocumentRight right = rights.get(0);

DocumentRightRef rightRef = new DocumentRightRef () ;
rightRef.setUuid(right.getUuid());

// The save change method allows items to be added and/or removed in the

same call.
// It does this be comparing two sets of items and applying the
differences.

// Item codes
ItemCode sampleItemCode = new ItemCode();
sampleItemCode.setValue ("sample-item-code") ;

DatatypeFactory datatypeFactory = DatatypeFactory.newInstance();

ItemCode sampleItemCodeOne = new ItemCode() ;

sampleItemCodeOne.setValue ("sample-item-code-one") ;

sampleItemCodeOne.setTime (datatypeFactory.newXMLGregorianCalendar (new
GregorianCalendar()));

ItemCode sampleItemCodeTwo = new ItemCode();

sampleItemCodeTwo.setValue ("sample-item-code-two") ;

sampleItemCodeTwo.setTime (datatypeFactory.newXMLGregorianCalendar (new
GregorianCalendar()));

// This example shows a delta where item "sample-item-code" is removed
// and items "sample-item-code-one" and "sample-item-code-two" are added.
List<ItemCode> itemCodes = Collections.singletonList (sampleItemCode) ;

List<ItemCode> deltaltemCodes = new ArrayList<ItemCode>();

deltaltemCodes.add (sampleItemCodeOne) ;
deltaltemCodes.add (sampleItemCodeTwo) ;

// Alter the items
rightOperations.saveChangesToIltems (Collections.singletonList (rightRef),
itemCodes, deltaItemCodes);

5.2.15 Unassigning Rights Assigned to a User

The following code demonstrates how to unassign rights that have been assigned to a
user. The sample first lists all the rights directly assigned to the user and unassigns
them. To unassign the right the authenticated user must be a context manager for the
related context.

5-20 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

Example 5-12

import generated.AccountRef;

import generated.DocumentRight;

import generated.DocumentRightOperations;

import generated.DocumentRightOperationsService;
import generated.DocumentRightRef;

import java.net.Authenticator;

import java.net.PasswordAuthentication;
import java.net.URLEncoder;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import javax.xml.ws.BindingProvider;
public class UnassignRights {
public static void main(String[] args) throws Exception {

final String endpointAddress = args[0];
final String username = args[l];
final String password = args[2];

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {
@override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray()) ;
}
i

// Get the document right operations endpoint
DocumentRightOperationsService service = new
DocumentRightOperationsService() ;

DocumentRightOperations rightOperations =
service.getDocumentRightOperations () ;

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider)rightOperations) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress) ;

// Reference the account by user name
AccountRef accountRef = new AccountRef () ;

accountRef.setUuid("urn:user:" + URLEncoder.encode (username, "utf-8"));
// Get all rights assigned to the account
List<DocumentRight> rights =

rightOperations.listRightsByAccount (accountRef) ;

List<DocumentRightRef> rightRefs = new
ArrayList<DocumentRightRef> (rights.size());

Code Samples for Web Services 5-21

Using JDeveloper Generated Web Services Proxies

for (DocumentRight right : rights) {
DocumentRightRef rightRef = new DocumentRightRef () ;
rightRef.setUuid(right.getUuid());

rightRefs.add(rightRef) ;

// Unassign the rights
rightOperations.unassignRights (rightRefs) ;

5.2.16 Reclassifying a File

The following code demonstrates how to reclassify a sealed file using the reclassify
method. The content to reclassify can be provided as any type of InputStream; this
example uses a file input stream. The sample changes the labels of the classification
and then writes the resulting stream out as a file.

Example 5-13

import generated.Classification;

import generated.ContentDescription;
import generated.Label;

import generated.SealingServices;

import generated.SealingServicesService;

import java.io.FileOutputStream;
import java.util.Locale;
import java.util.Map;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import javax.xml.ws.BindingProvider;

import com.sun.xml.ws.developer.JAXWSProperties;
public class ReclassifyFile {

/**
* MTOM threshold.

*
* The size in bytes that binary data should be before being sent as an

attachment in the

* web service request or response.
*

*

Value: <tt>{@value}</tt>
*/
static public final int MTOM_THRESHOLD = 16384;
public static void main(String[] args) throws Exception {
String endpointAddress = args([0];
String username = args([1];

String password = args[2];

// Get the file to reclassify
String filename = args[3];

// Get the label to apply to the classification

5-22 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

String labelName = args([4];

// Get the sealing services web service proxy
SealingServicesService sealingServicesService = new
SealingServicesService() ;

SealingServices sealingServices =
sealingServicesService.getSealingServices (
new javax.xml.ws.soap.MTOMFeature (true, MTOM_THRESHOLD)) ;

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider) sealingServices) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT ADDRESS_PROPERTY,
endpointAddress) ;

// Set the user name and password
requestContext.put (BindingProvider .USERNAME_PROPERTY, username) ;
requestContext.put (BindingProvider.PASSWORD_PROPERTY, password);

// Without this setting the client may get an
java.lang.OutOfMemoryException

// when large files are buffered into memory by the HTTP stack.

//

// For more information see:

// https://jax-ws.dev.java.net/guide/HTTP_client_streaming_support.html

// https://jax-ws.dev.java.net/guide/Large_Attachments.html

requestContext.put (JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE,

4096) ;
// Peek the contents of the file to obtain the classification details
DataHandler input = new DataHandler (new FileDataSource(filename));
ContentDescription contentDescription = sealingServices.peek (input) ;
// Extract the classification from the content description
Classification classification = contentDescription.getClassification();
// Replace the labels with one
Label label = new Label();
label.setLocale(Locale.ENGLISH. toString()) ;
label.setName (labelName) ;
classification.getLabels().add(label);
// Reclassify the sealed file with the new classification
DataHandler results = sealingServices.reclassify(input,classification);
// Write the stream out to the same file
FileOutputStream outputStream = new FileOutputStream(filename);
results.writeTo(
outputStream) ;
// Close the streams
outputStream.close();

}

}

Code Samples for Web Services 5-23

Using JDeveloper Generated Web Services Proxies

5.2.17 Resealing a File with Different Custom Data

The following code demonstrates how to reseal a sealed file using the reseal method.
The content to reseal can be provided as any type of InputStream; this example uses a
file input stream. The sample adds XML-based custom data to the sealed file.

Example 5-14

import generated.CustomData;
import generated.SealingServices;
import generated.SealingServicesService;

import java.io.FileOutputStream;
import java.util.Collections;
import java.util.Map;

import java.util.UUID;

import javax.activation.DataHandler;

import javax.activation.FileDataSource;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.ws.BindingProvider;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import com.sun.xml.ws.developer.JAXWSProperties;

public class ResealFile {

/**
* MTOM threshold.
*
* The size in bytes that binary data should be before being sent as an
attachment in the
* web service request or response.
*
*

Value: <tt>{@value}</tt>
*/
static public final int MTOM_THRESHOLD = 16384;

public static void main(String[] args) throws Exception {

String endpointAddress = args([0];
String username = args([l];
String password = args[2];

// Get the file to reseal
String filename = args(3];

// Get the sealing services web service proxy
SealingServicesService sealingServicesService = new
SealingServicesService();

SealingServices sealingServices =
sealingServicesService.getSealingServices (

new javax.xml.ws.soap.MTOMFeature (true, MTOM_THRESHOLD)) ;

// Set the end point address
Map<String, Object> requestContext =

5-24 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

((BindingProvider) sealingServices) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress) ;

// Set the user name and password
requestContext.put (BindingProvider .USERNAME_PROPERTY, username) ;
requestContext.put (BindingProvider.PASSWORD_PROPERTY, password);

// Without this setting the client may get an
java.lang.OutOfMemoryException

// when large files are buffered into memory by the HTTP stack.

//

// For more information see:

// https://jax-ws.dev.java.net/guide/HTTP_client_streaming_ support.html

// https://jax-ws.dev.java.net/guide/Large_Attachments.html

requestContext.put (JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE,
4096) ;

// Custom data is provided as XML

DocumentBuilderFactory documentBuilderFactory =
DocumentBuilderFactory.newInstance() ;

DocumentBuilder documentBuilder =
documentBuilderFactory.newDocumentBuilder () ;

Document document = documentBuilder.newDocument () ;

Element element = document.createElement ("SampleCustomData") ;

element.setTextContent ("Some example custom data provided as an XML text
element") ;

CustomData data = new CustomData() ;

// UUID identifies the custom data, in this example just use a random UUID
value

data.setUuid (UUID.randomUUID () .toString());

// Custom data is XML document
data.setAny(element) ;

// Send the sealed file contents to the server for resealing
DataHandler input = new DataHandler (new FileDataSource(filename));

DataHandler results = sealingServices.reseal (input,
Collections.singletonList(data));

// Write the stream out to a file
FileOutputStream outputStream = new FileOutputStream(filename);

results.writeTo (
outputStream) ;

// Close the streams
outputStream.close();

Code Samples for Web Services 5-25

Using JDeveloper Generated Web Services Proxies

5.2.18 Unsealing a File

The following code demonstrates how to unseal a sealed file using the unseal method.
The content to unseal can be provided as any type of InputStream; this example uses a
file input stream. The sample writes the resulting unsealed stream out to a file.

Example 5-15

import generated.SealingServices;
import generated.SealingServicesService;

import java.io.FileOutputStream;
import java.util.Map;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import javax.xml.ws.BindingProvider;

import com.sun.xml.ws.developer.JAXWSProperties;

public class UnsealFile {

/**
* MTOM threshold.
*
* The size in bytes that binary data should be before being sent as an
attachment in the
* web service request or response.
*
*

Value: <tt>{@value}</tt>
*/
static public final int MTOM_THRESHOLD = 16384;

public static void main(String[] args) throws Exception {
String endpointAddress

String username = args[1]
String password = args[2]

args[0];

// The file to unseal
String sealedFilename = args([3];

// The unsealed file name
String unsealedFilename = args([4];

// Get the sealing services web service proxy
SealingServicesService sealingServicesService = new
SealingServicesService();

SealingServices sealingServices =
sealingServicesService.getSealingServices (
new javax.xml.ws.soap.MTOMFeature (true, MTOM_THRESHOLD)) ;

// Set the end point address
Map<String, Object> requestContext =

((BindingProvider) sealingServices) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress) ;

5-26 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

// Set the user name and password
requestContext.put (BindingProvider .USERNAME_PROPERTY, username) ;
requestContext.put (BindingProvider.PASSWORD_PROPERTY, password);

// Without this setting the client may get an

java.lang.OutOfMemoryException

4096) ;

// when large files are buffered into memory by the HTTP stack.

//

// For more information see:

// https://jax-ws.dev.java.net/guide/HTTP_client_streaming_support.html
// https://jax-ws.dev.java.net/guide/Large_Attachments.html
requestContext.put (JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE,

// Send the file contents to the server for unsealing
DataHandler input = new DataHandler (new FileDataSource (sealedFilename));
DataHandler results = sealingServices.unseal (input);

// Write the stream out to a file
FileOutputStream outputStream = new FileOutputStream(unsealedFilename) ;

results.writeTo(
outputStream) ;

// Close the streams
outputStream.close() ;

5.2.19 Listing Classifications

The following code demonstrates how to list classification details from a sealing server
using the listClassifications method. The sample code displays the list of
Classifications details available to the authenticated user.

Example 5-16

import
import
import
import

import
import
import
import

import

public

generated.Classification;
generated.DesktopServices;
generated.DesktopServicesService;
generated.Label;

java.net.Authenticator;
java.net.PasswordAuthentication;
java.util.Collection;
java.util.Map;

javax.xml.ws.BindingProvider;

class ListClassifications {

public static void main(String[] args) throws Exception {

final String endpointAddress = args[0];
final String username = args[l];
final String password = args[2];

// Configure an authenticator to provide the credentials
// for the web service

Code Samples for Web Services 5-27

Using JDeveloper Generated Web Services Proxies

Authenticator.setDefault (new Authenticator() {
@Override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray());
}
)

// Get the desktop services web service
DesktopServicesService desktopServicesService = new
DesktopServicesService() ;

DesktopServices desktopServices =
desktopServicesService.getDesktopServices () ;

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider)desktopServices) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT ADDRESS_PROPERTY,
endpointAddress) ;

// The server URI. e.g. https://irm.example.com/irm desktop
String serverURI = args[3];

// List classifications available to the account
Collection<Classification> classifications =
desktopServices.listClassifications (serverURI) ;

// Display the labels of the classifications
for (Classification classification : classifications) {

for (Label label : classification.getLabels()) {
System.out.println(label.getLocale() + " : " + label.getName());

5.2.20 Searching the Context Journal Using Web Services

The following code demonstrates how to search the content usage for context
classified content. The sample code searches for all entries for the last twenty-four
hours and displays a short summary for the first one hundred entries.

Example 5-17

import generated.ContextJournalEntry;
import generated.ContextOperations;

import generated.ContextOperationsService;
import generated.PageRange;

import generated.TimeRange;

import java.net.Authenticator;

import java.net.PasswordAuthentication;
import java.util.Calendar;

import java.util.GregorianCalendar;
import java.util.List;

import java.util.Map;

5-28 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

import javax.
import javax.
import javax.

public class

xml.datatype.DatatypeFactory;
xml .datatype.XMLGregorianCalendar;
xml.ws.BindingProvider;

SearchJournal {

public static void main(String[] args) throws Exception {

// The server address. e.g. https://irm.example.com

final String endpointAddress =
final String username = args[1]
final String password = args[2]

args([0];

’
'

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {

@override
protected PasswordAuthentication getPasswordAuthentication() {

return new PasswordAuthentication (username,

password. toCharArray()) ;

i

// Get the content operations endpoint
ContextOperationsService service = new ContextOperationsService();

ContextOperations contextOperations = service.getContextOperations();

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider) contextOperations) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT ADDRESS_PROPERTY,
endpointAddress) ;

// Use a calendar to work out the time range
GregorianCalendar calendar = new GregorianCalendar();

DatatypeFactory datatypeFactory = DatatypeFactory.newInstance();

// Search for all records from the last 24 hours
XMLGregorianCalendar end =
datatypeFactory.newXMLGregorianCalendar (calendar) ;

calendar.add(Calendar.DAY_OF_MONTH, -1);

XMLGregorianCalendar begin =
datatypeFactory.newXMLGregorianCalendar (calendar) ;

TimeRange timeRange = new TimeRange();

timeRange.setBegin (begin) ;
timeRange.setEnd(end) ;

// Search the context journal
PageRange pageRange = new PageRange() ;

pageRange.setFirst(1);
pageRange.setLast (100) ;

Code Samples for Web Services 5-29

Using JDeveloper Generated Web Services Proxies

List<ContextJournalEntry> journalResults =
contextOperations.searchJournal (
null, // no accounts filter
null, // no item codes filter
timeRange,
pageRange,
null); // no sorting details

if (journalResults.size() == 0)
return;

// Display the timestamp, URI and and feature for each entry
for (ContextJournalEntry entry : journalResults) {

System.out.print ("Timestamp : " + entry.getTime());
System.out.print (" Account : " + entry.getAccount () .getName());
System.out.print (" Content : " + (entry.getUri() != null ?
entry.getUri() : ""));
System.out.print (" Feature : " + entry.getFeature() .getId());
}
}
}

5.2.21 Checking in Licenses

The following code demonstrates how to check in licenses currently checked out to a
sealing server. When the sealing server processes content it will usually check out
licenses for the authenticated user. These licenses can no longer be used from other
locations (for example, the Oracle IRM Desktop) until they expire or are manually
checked in.

Example 5-18

import generated.DesktopServices;
import generated.DesktopServicesService;

import java.net.Authenticator;
import java.net.PasswordAuthentication;
import java.util.Map;
import javax.xml.ws.BindingProvider;
public class CheckIn {
public static void main(String[] args) {
final String endpointAddress

final String username = args[1]
final String password = args[2]

args[0];

1
i

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {
@Override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password. toCharArray());
}
i

5-30 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using JDeveloper Generated Web Services Proxies

// Get the desktop services web service
DesktopServicesService desktopServicesService = new
DesktopServicesService() ;

DesktopServices desktopServices =
desktopServicesService.getDesktopServices () ;

// Set the end point address
Map<String, Object> requestContext =
((BindingProvider)desktopServices) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
endpointAddress) ;

// The server URI. e.g. https://irm.example.com/irm_desktop
String serverURI = args[3];

// Check in all the licenses currently within the
// desktop store for the given server
desktopServices.checkIn(serverURI) ;

5.2.22 Deleting a Domain

The following code demonstrates how to delete a domain. The sample code uses a
fixed domain UUID for the new domain so that all sample code can work with a
known domain. A new domain would typically be given a new random UUID value.
The authenticated user must be a domain administrator. When a domain is deleted all
the associated roles, templates and contexts are also deleted.

Example 5-19

import generated.DomainOperations;
import generated.DomainOperationsService;
import generated.DomainRef;

import java.net.Authenticator;
import java.net.PasswordAuthentication;
import java.util.Map;
import javax.xml.ws.BindingProvider;
public class DeleteDomain {
public static void main(String[] args) throws Exception {
final String endpointAddress

final String username = args[l];
final String password = args[2];

args([0];

// Configure an authenticator to provide the credentials
// for the web service
Authenticator.setDefault (new Authenticator() {
@override
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username,
password.toCharArray()) ;
}
i

Code Samples for Web Services 5-31

Using the Oracle IRM Web Service Code

// Get the domain operations web service
DomainOperationsService service = new DomainOperationsService();

DomainOperations domainOperations = service.getDomainOperations();

// Set the end point address
Map<String, Object> requestContext =

((BindingProvider)domainOperations) .getRequestContext () ;

requestContext.put (BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

endpointAddress) ;

// Domain UUID is fixed for sample code
DomainRef domain = new DomainRef () ;

domain.setUuid("6fab93£fd-2858-461la-alb3-34e261dbf8£fd") ;

// Delete the domain using the domain reference
domainOperations.deleteDomain (domain) ;

5.3 Using the Oracle IRM Web Service Code

This section contains the following topics:

Introduction

Class Path

Differences from the JDeveloper Generated Code
Creating a Domain

Creating a Role

Creating a Context Template

Creating a Context

Assigning a Role to a User

Listing Rights Assigned to a User or Group
Altering the Role Assigned to a User or Group
Sealing a File

Peeking a Sealed File

Peeking a Sealed File and Checking the Digital Signature
Changing Item Restrictions Associated with a Right
Unassigning Rights Assigned to a User
Reclassifying a File

Resealing a File with Different Custom Data
Unsealing a File

Listing Classifications

Searching the Context Journal Using Web Services

5-32 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

s Checking in Licenses

s Deleting a Domain

5.3.1 Introduction

The following section provides example code that can be used with IRM provided
JAX-WS web service proxies.

5.3.2 Class Path

The code samples in this section require the following jar files to be added to the class
path. These jar files contain the web service proxy code and objects equivalent to those
that would be generated with a web service proxy generated.

s irm-common.jar
s irm-engine.jar
s irm-ws.jar

These jar files also provide the WSDL and XSD files required to use the web service
proxies.

Note: These jar files are not required if other WSDL web service
proxy code generators are used (such as the JDeveloper web service
proxy generator).

5.3.3 Differences from the JDeveloper Generated Code

The Oracle IRM provided web service proxies are functionality identical to the ones
generated by JDeveloper (or any other web service proxy generator). However there
are a few code differences:

s UUID types use java.util.UUID rather than java.lang.String.

= Date types use java.util.Date rather than
javax.xml.datatype.XMLGregorianCalendar.

= The classification cookie can be provided as a ContextCookie object rather than
an XML document.

s The classification cookie property modifier is called setCookie rather than
setAny.

= Objects that represent XML types have a constructor that allows all the properties
to be provided on construction.

s Constant values, such as the context classification UUID are available as static final
variables.

5.3.4 Creating a Domain

The following code demonstrates how to create a domain. The sample code uses a
fixed domain UUID so that all sample code can work against a known domain. A new
domain would typically be given a new random UUID value. The authenticated user
becomes the domain administrator. When a domain is created, a set of
human-readable labels can be given to the domain for the target language audience.

Code Samples for Web Services 5-33

Using the Oracle IRM Web Service Code

Example 5-20

import static
oracle.irm.j2ee.jws.rights.context.DomainOperations.getDomainOperationsEndpoint;

import java.util.Locale;
import java.util.UUID;

import oracle.irm.engine.types.core.general.Label;
import oracle.irm.engine.types.rights.context.Domain;
import oracle.irm.j2ee.jws.rights.context.DomainOperationsEndpoint;
public class SaveNewDomainWS {
public static void main(String[] args) throws Exception {
String hostPort = args[0];

String username = args([1];
String password = args([2];

// Get the domain operations web service
DomainOperationsEndpoint domainOperations =
getDomainOperationsEndpoint (hostPort, username, password);

// Domain has one English label
Label label = new Label (Locale.ENGLISH, "Sample Domain", "This is a
domain created from sample code.");

// Domain UUID is fixed for sample code
UUID domainUUID =
UUID. fromString ("6fab93fd-2858-461la-alb3-34e261dbf8£fd") ;

Domain domain = new Domain (domainUUID,new Label[] { label });

// Save the new domain
domainOperations.saveNewDomain (domain) ;

5.3.5 Creating a Role

The following code demonstrates how to create a role. The sample code uses a fixed
role UUID so that all sample code can work with a known role. A new role would
typically be given a new random UUID value. The sample role is set up to allow all the
content operations required by the sample code. When assigned to a user, this role
allows sealing, unsealing, resealing and (validated) peeking. This is done by a
providing an appropriate set of features and export constraints.

Example 5-21

import static oracle.irm.engine.core.feature.FeatureConstants.OPEN_FEATURE_ID;
import static oracle.irm.engine.core.feature.FeatureConstants.RESEAL_FEATURE_ID;
import static oracle.irm.engine.core.feature.FeatureConstants.SEAL_FEATURE_ID;
import static
oracle.irm.j2ee.jws.rights.context.DocumentRoleOperations.getDocumentRoleOperation
sEndpoint;

import java.util.Locale;
import java.util.UUID;

5-34 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

import oracle.irm.engine.types.classifications.item.ItemConstraints;
import oracle.irm.engine.types.core.feature.Feature;

import oracle.irm.engine.types.core.general.Label;

import oracle.irm.engine.types.core.license.LicenseCriteria;

import oracle.irm.engine.types.core.time.TimePeriod;

import oracle.irm.engine.types.rights.context.DocumentRole;

import oracle.irm.engine.types.rights.context.DomainRef;

import oracle.irm.j2ee.jws.rights.context.DocumentRoleOperationsEndpoint;

public class SaveNewRoleWS {
public static void main(String[] args) throws Exception {
String hostPort = args([0];

String username = args[l];
String password = args([2];

// Document Role UUID is fixed for sample code
UUID documentRoleUUID =
UUID. fromString ("ee82c3f9-152b-440d-afd7-dbf36b0c8188") ;

DocumentRole role = new DocumentRole();

// The UUID value that identifies this role within the domain
role.setUuid (documentRoleUUID) ;

// Role has one English label
Label label = new Label (Locale.ENGLISH, "Sample Role", "This is a role
created from sample code.");

// The human readable labels
role.setlLabels(new Label[] { label });

// This role allows the user to access content while offline by
persisting licenses on the desktop

role.setStorage (LicenseCriteria.Storage.PERSISTENT) ;

// This role allows content to be saved in the clear (unsealing and

copying)

role.setExportConstraints (DocumentRole.ExportConstraints.NONE) ;

// This role allows opening, sealing, resealing

Feature open = new Feature(OPEN_FEATURE_ID, Feature.Use.IMMEDIATE,
false);

Feature seal = new Feature(SEAL_FEATURE_ID, Feature.Use.IMMEDIATE,
false);

Feature reseal = new Feature(RESEAL_FEATURE_ID, Feature.Use.IMMEDIATE,
false);

role.setFeatures(new Feature[] { open, seal, reseal });

// Role allows document exclusions to be listed, by default all items are
allowed

role.setItemConstraints (ItemConstraints.Type.EXCLUSIONS) ;
// This role allows content to be opened for one hour before refreshing
the rights from the server

TimePeriod value = new TimePeriod(l, TimePeriod.Units.HOURS) ;

role.setRefreshPeriod(value) ;

Code Samples for Web Services 5-35

Using the Oracle IRM Web Service Code

// This role has no additional time constraints
role.setTimeSpans (null) ;

// Get the document role operations web service
DocumentRoleOperationsEndpoint roleOperations =
getDocumentRoleOperationsEndpoint (hostPort, username, password);

// Domain UUID is fixed for sample code
UUID domainUUID =
UUID. fromString ("6fab93fd-2858-461la-a0b3-34e261dbf8£d") ;

DomainRef domain = new DomainRef (domainUUID) ;

// Save the new role
roleOperations.saveNewRole (domain, role);

5.3.6 Creating a Context Template

The following code demonstrates how to create a context template. The sample code
uses a fixed template UUID so that all sample code can work with a known template.
A new template would typically be given a new random UUID value. The sample
template has one role and is active. This template is used to create contexts in the
create context code sample.

Example 5-22

import static
oracle.irm.j2ee.jws.rights.context.ContextTemplateOperations.getContextTemplateOpe
rationsEndpoint;

import java.util.Locale;
import java.util.UUID;

import oracle.irm.engine.types.core.general.Label;

import oracle.irm.engine.types.rights.context.ContextTemplate;

import oracle.irm.engine.types.rights.context.DocumentRoleRef;

import oracle.irm.engine.types.rights.context.DomainRef;

import oracle.irm.j2ee.jws.rights.context.ContextTemplateOperationsEndpoint;

public class SaveNewContextTemplateWS {
public static void main(String[] args) throws Exception {
String hostPort = args[0];

String username = args[l];
String password = args([2];

// Context Template UUID is fixed for sample code
UUID contextTemplateUUID =
UUID. fromString ("930876e6-a505-4a10-8d93-bc43d9%9a37c23") ;

ContextTemplate template = new ContextTemplate();

// The UUID value that identifies this role within the domain
template.setUuid(contextTemplateUUID) ;

// Context Template has one English label

5-36 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

Label label = new Label (Locale.ENGLISH, "Sample Template", "This is a
template created from sample code.");

// The human readable labels
template.setLabels(new Label[] { label });

// The template is active
template.setStatus (ContextTemplate.Status.ACTIVE) ;

// Domain UUID is fixed for sample code
UUID domainUUID =
UUID. fromString ("6fab93fd-2858-461la-a0b3-34e261dbf8£d") ;

DomainRef domain = new DomainRef (domainUUID) ;

// Document Role UUID is fixed for sample code
UUID documentRoleUUID =
UUID. fromString ("ee82c3f9-152b-440d-afd7-dbf36b0c8188") ;

DocumentRoleRef documentRole = new DocumentRoleRef (documentRoleUUID,
domain) ;

// Template has one role
template.setRoles(new DocumentRoleRef[] { documentRole });

// Get the context template operations web service
ContextTemplateOperationsEndpoint templateOperations =
getContextTemplateOperationsEndpoint (hostPort, username, password);

// Save the new template
templateOperations.saveNewContextTemplate (domain, template);

5.3.7 Creating a Context

The following code demonstrates how to create a context from a context template. The
sample code uses a fixed context template reference (information that identifies the
template) and provides a fixed UUID value for the new context. The authenticated
user becomes the context manager. The context is created with two labels, English and
German. This context is used in the sample code that assigns a role, as well as the
sealing, unsealing, resealing, reclassification and peeking code samples.

Example 5-23

import static
oracle.irm.j2ee.jws.rights.context.ContextOperations.getContextOperationsEndpoint;

import java.util.Locale;
import java.util.UUID;

import oracle.irm.engine.types.core.general.Label;

import oracle.irm.engine.types.rights.context.ContextTemplateRef;

import oracle.irm.engine.types.rights.context.DomainRef;

import oracle.irm.engine.types.rights.context.ContextInstance.Visibility;
import oracle.irm.j2ee.jws.rights.context.ContextOperationsEndpoint;

public class CreateContextFromTemplateWS {

public static void main(String[] args) throws Exception {

Code Samples for Web Services 5-37

Using the Oracle IRM Web Service Code

String hostPort = args([0];
String username = args[l];
String password = args[2];

// Domain UUID is fixed for sample code
UUID domainUUID =
UUID. fromString ("6fab93fd-2858-461la-a0b3-34e261dbf8fd") ;

// Context Template UUID is for the "standard" template automatically
installed with a domain

UUID templateUUID =
UUID. fromString ("930876e6-a505-4a10-8d93-bc43d9a37¢c23");

// Context UUID is fixed for sample code
UUID contextUUID =
UUID. fromString ("46£910d9-dd30-476e-b060-4d01£88£8b05") ;

// Use the first domain available
DomainRef domainRef = new DomainRef (domainUUID) ;

// Use the first template available
ContextTemplateRef templateRef = new ContextTemplateRef (templateUUID,
domainRef) ;

// Get the context operations web service
ContextOperationsEndpoint contextOperations =
getContextOperationsEndpoint (hostPort, username, password);

// Context has two labels, English and German

Label english = new Label (Locale.ENGLISH, "Sample Classification",
"Created from sample code.");

Label german = new Label (Locale.GERMAN, "Beispielklassifikation",
"Verursacht vom Beispielcode.");

// Create a context based on that template
contextOperations.createContextFromTemplate (
contextUUID, // context UUID value
templateRef, // context template
new Label[] { english, german }, // labels
Visibility.DOMAIN, // visibility
null); // additional context managers

5.3.8 Assigning a Role to a User

The following code demonstrates how to assign a role to a user. To assign a role, the
role, context and user or group must be specified. If the role is restricted to individual
items then items can also be specified as in the assign role method.

Example 5-24

import static
oracle.irm.j2ee.jws.rights.context.DocumentRightOperations.getDocumentRightOperati
onsEndpoint;

import java.net.URLEncoder;
import java.util.UUID;

5-38 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

import oracle.irm.engine.types.core.account.AccountRef;

import oracle.irm.engine.types.rights.context.ContextInstanceRef;

import oracle.irm.engine.types.rights.context.DocumentRoleRef;

import oracle.irm.engine.types.rights.context.DomainRef;

import oracle.irm.j2ee.jws.rights.context.DocumentRightOperationsEndpoint;

public class AssignRoleWS {
public static void main(String[] args) throws Exception {

String hostPort = args[0];
String username = args([l];
String password = args([2];

// Domain UUID is fixed for sample code
UUID domainUUID =
UUID. fromString ("6fab93fd-2858-461la-a0b3-34e261dbf8£d") ;

DomainRef domainRef = new DomainRef (domainUUID) ;

// Document Role UUID is for the "Sample Role" role
UUID documentRoleUUID =
UUID. fromString ("ee82c3f9-152b-440d-afd7-dbf36b0c8188") ;

DocumentRoleRef roleRef = new DocumentRoleRef (documentRoleUUID,
domainRef) ;

// Context UUID is fixed for sample code
UUID contextUUID =
UUID. fromString ("46£91049-dd30-476e-b060-4d01£88£8b05") ;

ContextInstanceRef contextInstanceRef = new
ContextInstanceRef (contextUUID) ;

// Get the document right operations endpoint
DocumentRightOperationsEndpoint rightOperations =
getDocumentRightOperationsEndpoint (hostPort, username, password);

// Reference the account by user name
AccountRef accountRef = new AccountRef ("urn:user:" +
URLEncoder.encode (username, "utf-8"));

// Assign the role to the account
rightOperations.assignRole (
contextInstanceRef,
roleRef,
new AccountRef[] { accountRef }
null); // no item constraints

5.3.9 Listing Rights Assigned to a User or Group

The following code demonstrates how to list the rights that have been assigned to a
user or group. The code displays the role label and the context UUID from each right.

Example 5-25

import static
oracle.irm.j2ee.jws.rights.context.DocumentRightOperations.getDocumentRightOperati

Code Samples for Web Services 5-39

Using the Oracle IRM Web Service Code

onsEndpoint;

import java.net.URLEncoder;

import oracle.irm.engine.types.classifications.item.ItemCode;

import oracle.irm.engine.types.core.account.AccountRef;

import oracle.irm.engine.types.rights.context.DocumentRight;

import oracle.irm.j2ee.jws.rights.context.DocumentRightOperationsEndpoint;
public class ListRightsByAccountWsS {

public static void main(String[] args) throws Exception {
String hostPort = args([0];

String username = args[l];
String password = args([2];

// Get the document right operations web service
DocumentRightOperationsEndpoint rightOperations =
getDocumentRightOperationsEndpoint (hostPort, username, password);

// Reference the account by user name, allowed formats are

// urn:user:xXxxx

// urn:group:XxXxxx

// 00000000-0000-0000-0000-000000000000

AccountRef accountRef = new AccountRef ("urn:user:" +
URLEncoder.encode (username, "utf-8"));

// Get all of the rights assigned to the account
DocumentRight [] rights = rightOperations.listRightsByAccount (accountRef) ;

// Display a summary of each right

for (DocumentRight right : rights) {
System.out.println("Account: " + right.getAccount().getUuid());
System.out.println(" Context: " + right.getContext().getUuid());
System.out.println(" Role: " + right.getRole().getUuid());

// Show items
ItemCode[] itemCodes = right.getItemCodes();

if (itemCodes !'= null) {
for (ItemCode itemCode : itemCodes) {
System.out.println(" ItemCode: " + itemCode.getValue());
}
}

5.3.10 Altering the Role Assigned to a User or Group

The following code demonstrates how to alter a role assignment using the
reassignRole method over web services. The sample code adds an item code exclusion
to a role assignment. Typically this method is used to alter the role, but as the sample
code only has one demonstration role it shows how to alter the item restrictions.

Example 5-26

import static
oracle.irm.j2ee.jws.rights.context.DocumentRightOperations.getDocumentRightOperati

5-40 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

onsEndpoint;

import

import
import
import
import
import
import
import

public

java.net.URLEncoder;

oracle.irm.engine.types.classifications.item.ItemCode;
oracle.irm.engine.types.core.account.AccountRef;
oracle.irm.engine.types.rights.context.DocumentRight;
oracle.irm.engine.types.rights.context.DocumentRightRef;
oracle.irm.engine.types.rights.context.DocumentRoleRef;
oracle.irm.engine.types.rights.context.DomainRef;
oracle.irm.j2ee.jws.rights.context.DocumentRightOperationsEndpoint;

class ReassignRoleWS ({

public static void main(String[] args) throws Exception {

String hostPort = args[0];
String username = args(l];
String password = args([2];

// Get the document right operations web service
DocumentRightOperationsEndpoint rightOperations =

getDocumentRightOperationsEndpoint (hostPort, username, password);

// Reference the account by user name
AccountRef accountRef = new AccountRef ("urn:user:" +

URLEncoder.encode (username, "utf-8"));

// Get all rights assigned to the account
DocumentRight [] rights = rightOperations.listRightsByAccount (accountRef) ;

// Take the first one on the list
DocumentRight right = rights([0];

DocumentRightRef rightRef = new DocumentRightRef (right.getUuid());

// Get a reference to the role to be reassigned
DomainRef domainRef = right.getRole().getDomain();

DocumentRoleRef roleRef = new DocumentRoleRef (right.getRole().getUuid(),

domainRef) ;

// Change the item exclusion list to contain one sample item
ItemCode itemCode = new ItemCode();
itemCode.setValue ("sample-item-code") ;

// Reassign the role to the account
rightOperations.reassignRole (new DocumentRightRef[] { rightRef },

roleRef, new ItemCode[] { itemCode });

}

5.3.11 Sealing a File

The following code demonstrates how to seal a file. The content to seal can be
provided as any type of InputStream; this example uses a file input stream. The
sample writes the resulting stream out as a file with a sealed file name inferred from
the unsealed file name. The file is sealed using the context classification system,
specifying a context with a known UUID value and an item code.

Code Samples for Web Services 5-41

Using the Oracle IRM Web Service Code

Example 5-27

import static oracle.irm.engine.classifications.context.ContextConstants.CONTEXT_
CLASSIFICATION_SYSTEM_UUID;

import static
oracle.irm.engine.content.type.ContentTypeOperationsInstance.getContentTypeFromPat
h;

import static
oracle.irm.engine.content.type.ContentTypeOperationsInstance.getSealedFileName;

import static
oracle.irm.engine.core.classification.ClassificationConstants.UNSPECIFIED_KEY_SET
UUID;

import static
oracle.irm.j2ee.jws.content.sealing.SealingServices.getSealingServicesEndpoint;

import java.io.File;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.net.URI;

import java.util.Date;

import java.util.UUID;

import oracle.irm.engine.content.type.ContentType;

import oracle.irm.engine.types.classifications.context.ContextCookie;
import oracle.irm.engine.types.classifications.context.ContextRef;

import oracle.irm.engine.types.classifications.item.ItemCode;

import oracle.irm.engine.types.content.key.KeySetRef;

import oracle.irm.engine.types.content.sealing.SealingOptions;

import oracle.irm.engine.types.core.classification.Classification;

import oracle.irm.engine.types.core.classification.ClassificationSystemRef;
import oracle.irm.j2ee.jws.content.sealing.SealingServicesEndpoint;

public class SealFile {
public static void main(String[] args) throws Exception {
String hostPort = args([0];

String username = args([l];
String password = args[2];

// The server URI. for example https://irm.example.com/irm_desktop
URI serverURI = URI.create(args[3]);

// The filename to seal
String unsealedFilename = args[4];

// Context UUID is fixed for sample code
ContextRef context = new
ContextRef (UUID. fromString ("46£91049-dd30-476e-b060-4d01£88£8b05")) ;

// Provide an explicit item code value and time
ItemCode itemCode = new ItemCode();
itemCode.setValue (new File(unsealedFilename) .getName()) ;
itemCode.setTime (new Date());

// Create a context cookie for the classification - this specifies which
context to use as

// well as the item code for the content.

ContextCookie cookie = new ContextCookie();

cookie.setContext (context) ;

5-42 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

cookie.setItemCode (itemCode) ;

// Create the classification details used in the sealing options
Classification classification = new Classification();

// For the context classification system the classification Id is the
context UUID value.
classification.setId("46£910d9-dd30-476e-b060-4d01£88£8b05") ;

// Context classification system
classification.setSystem(new ClassificationSystemRef (CONTEXT
CLASSIFICATION_SYSTEM UUID));

// As the key set is not known get the sealing process to automatically
fill this in
classification.setKeySet (null);

// URL sealed into content that tells the desktop where to go to get
licenses
classification.setUri (serverURI) ;

// Classification time set explicitly to the current time
classification.setClassificationTime (new Date());

// As the labels are not known get the sealing process to automatically
fill these in

classification.setlLabels (null);

// Set the context and item code details
classification.setCookie(cookie);

// The classification is the only mandatory property for sealing options
SealingOptions sealingOptions = new SealingOptions();

sealingOptions.setClassification(classification);

// Get the MIME type of the file to seal, this is inferred from the
unsealed file name

ContentType contentType = getContentTypeFromPath (unsealedFilename) ;

String mimeType = contentType.getMimeTypes () [0];

// Seal the file

FileInputStream unsealedInputStream = new
FileInputStream(unsealedFilename) ;

// Get the sealing services web service

SealingServicesEndpoint sealingServices =

getSealingServicesEndpoint (hostPort, username, password);

InputStream sealedInputStream = sealingServices.seal (unsealedInputStream,
mimeType, sealingOptions);

// Close the file stream
unsealedInputStream.close() ;

// Get the sealed equivalent of the unsealed filename
String sealedFilename = getSealedFileName (unsealedFilename) ;

// Write the sealed stream out to a file

Code Samples for Web Services 5-43

Using the Oracle IRM Web Service Code

FileOutputStream sealedOutputStream = new
FileOutputStream(sealedFilename) ;

int start = 0;
int read = 0;

byte buffer[] = new byte[8194];
while ((read = sealedInputStream.read(buffer, start, buffer.length)) !=

sealedOutputStream.write (buffer, 0, read);

sealedInputStream.close();
sealedOutputStream.close() ;

5.3.12 Peeking a Sealed File

The following code demonstrates how to extract the metadata from sealed content
using the peek method. This method sends the sealed content to the sealing server, the
server extracts the metadata and returns this information to the caller. The sealed
content can be provided as any type of InputStream; this example uses a file input
stream. Once peeked the file metadata, which includes the Classification details, can be
examined. The sample code prints out the human readable classification details (the
labels) that were sealed into the content.

Example 5-28

import static
oracle.irm.j2ee.jws.content.sealing.SealingServices.getSealingServicesEndpoint;

import java.io.FileInputStream;

import oracle.irm.engine.types.content.sealing.ContentDescription;
import oracle.irm.engine.types.core.classification.Classification;
import oracle.irm.engine.types.core.general.Label;

import oracle.irm.j2ee.jws.content.sealing.SealingServicesEndpoint;

public class PeekFile {

public static void main(String[] args) throws Exception {

String hostPort = args[0];
String username = args[l];
String password = args([2];

// The name of the file to peek
String unsealedFilename = args[3];

// Get the sealing services web service
SealingServicesEndpoint sealingServices =

getSealingServicesEndpoint (hostPort, username, password);

// Perform the peek, providing a stream to the sealed file
FileInputStream stream = new FileInputStream(unsealedFilename) ;

ContentDescription contentDescription = sealingServices.peek(stream);

5-44 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

// Close the file stream
stream.close();

// Extract the classification details from the content
Classification classification = contentDescription.getClassification();

// Show all the labels sealed into content (assumes labels are available)
for (Label label : classification.getLabels()) {
System.out.println(label.getLocale().getDisplayName() + " : " +

label.getName ()) ;

}

5.3.13 Peeking a Sealed File and Checking the Digital Signature

The following code demonstrates how to extract the metadata from sealed content
using the validatedPeek method. This method sends the sealed content to the sealing
server, the server extracts the metadata and returns this information to the caller. The
sealed content can be provided as any type of InputStream; this example uses a file
input stream. Once peeked the file metadata, which includes the Classification details,
can be examined. The sample code prints out the human readable classification details
(the labels) that were sealed into the content.

Example 5-29

import static
oracle.irm.j2ee.jws.content.sealing.SealingServices.getSealingServicesEndpoint;

import

import
import
import
import

public

java.io.FileInputStream;

oracle.irm.engine.types.content.sealing.ContentDescription;
oracle.irm.engine.types.core.classification.Classification;
oracle.irm.engine.types.core.general.Label;
oracle.irm.j2ee.jws.content.sealing.SealingServicesEndpoint;

class ValidatedPeekFile ({

public static void main(String[] args) throws Exception {

String hostPort = args([0];
String username = args([1];
String password = args[2];

// The name of the file to peek
String unsealedFilename = args[3];

// Get the sealing services web service
SealingServicesEndpoint sealingServices =

getSealingServicesEndpoint (hostPort, username, password);

// Perform the peek, providing a stream to the sealed file
FileInputStream stream = new FileInputStream(unsealedFilename) ;

ContentDescription contentDescription =

sealingServices.validatedPeek (stream) ;

// Close the file stream
stream.close();

Code Samples for Web Services 5-45

Using the Oracle IRM Web Service Code

// Extract the classification details from the content
Classification classification = contentDescription.getClassification();

// Show all the labels sealed into content (assumes labels are available)
for (Label label : classification.getLabels()) {
System.out.println(label.getLocale().getDisplayName() + " : " +
label .getName ()) ;
}

5.3.14 Changing Item Restrictions Associated with a Right

The following code demonstrates how to alter the item locks or exclusions associated
with a right. The sample code replaces one item code with two item codes.

Example 5-30

import static
oracle.irm.j2ee.jws.rights.context.DocumentRightOperations.getDocumentRightOperati
onsEndpoint;

import java.net.URLEncoder;
import java.util.Date;

import oracle.irm.engine.types.classifications.item.ItemCode;

import oracle.irm.engine.types.core.account.AccountRef;

import oracle.irm.engine.types.rights.context.DocumentRight;

import oracle.irm.engine.types.rights.context.DocumentRightRef;

import oracle.irm.j2ee.jws.rights.context.DocumentRightOperationsEndpoint;

public class SaveChangesToItemsWS {

public static void main(String[] args) throws Exception {

String hostPort = args([0];
String username = args([l];
String password = args[2];

// Get the document right operations web service
DocumentRightOperationsEndpoint rightOperations =
getDocumentRightOperationsEndpoint (hostPort, username, password);

// Reference the account by user name
AccountRef accountRef = new AccountRef ("urn:user:" +
URLEncoder.encode (username, "utf-8"));

// Get all rights assigned to the account
DocumentRight [] rights = rightOperations.listRightsByAccount (accountRef);

// Take the first one on the list
DocumentRight right = rights[0];

DocumentRightRef rightRef = new DocumentRightRef (right.getUuid());
// The save change method allows items to be added and/or removed in the
same call.

// It does this be comparing two sets of items and applying the
differences.

5-46 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

// Item codes
ItemCode sampleIltemCode = new ItemCode();
sampleItemCode.setValue ("sample-item-code") ;

ItemCode sampleItemCodeOne = new ItemCode() ;
sampleItemCodeOne.setValue ("sample-item-code-one");
sampleItemCodeOne.setTime (new Date());

ItemCode sampleIltemCodeTwo = new ItemCode();
sampleItemCodeTwo.setValue ("sample-item-code-two") ;
sampleItemCodeTwo.setTime (new Date());

// This example shows a delta where item "sample-item-code" is removed

// and items "sample-item-code-one" and "sample-item-code-two" are added.

ItemCode[] itemCodes = new ItemCode[] { sampleItemCode };

ItemCode[] deltaltemCodes = new ItemCode[] { sampleItemCodeOne,
sampleItemCodeTwo };

// Alter the items
rightOperations.saveChangesToItems (new DocumentRightRef[] { rightRef
},itemCodes, deltaltemCodes);
}

5.3.15 Unassigning Rights Assigned to a User

The following code demonstrates how to unassign rights that have been assigned to a
user. The sample first lists all the rights directly assigned to the user and unassigns
them. To unassign the right the authenticated user must be a context manager for the
related context.

Example 5-31

import static
oracle.irm.j2ee.jws.rights.context.DocumentRightOperations.getDocumentRightOperati
onsEndpoint;

import java.net.URLEncoder;
import oracle.irm.engine.types.core.account.AccountRef;
import oracle.irm.engine.types.rights.context.DocumentRight;
import oracle.irm.engine.types.rights.context.DocumentRightRef;
import oracle.irm.j2ee.jws.rights.context.DocumentRightOperationsEndpoint;
public class UnassignRightsWS {

public static void main(String[] args) throws Exception {

String hostPort = args([0];

String username = args[l];
String password args[2];

// Get the document right operations web service
DocumentRightOperationsEndpoint rightOperations =
getDocumentRightOperationsEndpoint (hostPort, username, password);

// Reference the account by user name

AccountRef accountRef = new AccountRef ("urn:user:" +
URLEncoder.encode (username, "utf-8"));

Code Samples for Web Services 5-47

Using the Oracle IRM Web Service Code

// Get all rights assigned to the account
DocumentRight[] rights = rightOperations.listRightsByAccount (accountRef);

DocumentRightRef[] rightRefs = new DocumentRightRef[rights.length];

for (int 1 = 0; 1 < rightRefs.length; ++i) {
rightRefs[i] = new DocumentRightRef (rights[i].getUuid());

// Unassign the rights
rightOperations.unassignRights (rightRefs);

5.3.16 Reclassifying a File

The following code demonstrates how to reclassify a sealed file using the reclassify
method. The content to reclassify can be provided as any type of InputStream; this
example uses a file input stream. The sample changes the labels of the classification
and then writes the resulting stream out as a file.

Example 5-32

import static
oracle.irm.j2ee.jws.content.sealing.SealingServices.getSealingServicesEndpoint;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.util.Locale;

import oracle.irm.engine.types.content.sealing.ContentDescription;
import oracle.irm.engine.types.core.classification.Classification;
import oracle.irm.engine.types.core.general.Label;

import oracle.irm.j2ee.jws.content.sealing.SealingServicesEndpoint;

public class ReclassifyFile {
public static void main(String[] args) throws Exception {
String hostPort = args([0];
String username = args([1];

String password = args([2];

// Get the file to reclassify
String filename = args[3];

// Get the label to apply to the classification
String labelName = args[4];

// Get a sealing services end point
SealingServicesEndpoint sealingServices =
getSealingServicesEndpoint (hostPort,username, password) ;

// Peek the contents of the file to obtain the classification details of
the provided file

FileInputStream inputStream = new FileInputStream(filename);

ContentDescription contentDescription =

sealingServices.peek (inputStream) ;

5-48 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

inputStream.close() ;

// Extract the classification from the content description
Classification classification = contentDescription.getClassification();

// Replace the labels with one
Label label = new Label (
Locale.ENGLISH,
labelName,
null);

classification.setLabels (new Label[] { label });

// Reclassify the sealed file with the new classification
inputStream = new FileInputStream(filename) ;

InputStream reclassifiedStream =
sealingServices.reclassify(inputStream,classification);

inputStream.close() ;
// Write the stream out to a file
FileOutputStream reclassifiedOutputStream = new

FileOutputStream(filename) ;

int start = 0;
int read = 0;

byte buffer[] = new byte[8194];

while ((read = reclassifiedStream.read(buffer, start, buffer.length)) !=

-1)

{
reclassifiedOutputStream.write (buffer, 0, read);
}
reclassifiedStream.close();
reclassifiedOutputStream.close();
}
}

5.3.17 Resealing a File with Different Custom Data

The following code demonstrates how to reseal a sealed file using the reseal method.
The content to reseal can be provided as any type of InputStream; this example uses a
file input stream. The sample adds XML-based custom data to the sealed file.

Example 5-33

import static
oracle.irm.j2ee.jws.content.sealing.SealingServices.getSealingServicesEndpoint;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.util.UUID;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

Code Samples for Web Services 5-49

Using the Oracle IRM Web Service Code

import oracle.irm.engine.types.content.sealing.CustomData;
import oracle.irm.j2ee.jws.content.sealing.SealingServicesEndpoint;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

public class ResealFile {
public static void main(String[] args) throws Exception {

String hostPort = args[0];
String username = args[l];
String password = args([2];

// Get the file to reseal
String filename = args[3];

// Get a sealing services end point
SealingServicesEndpoint sealingServices =
getSealingServicesEndpoint (hostPort,username, password) ;

// Custom data is provided as XML

DocumentBuilderFactory documentBuilderFactory =
DocumentBuilderFactory.newInstance() ;

DocumentBuilder documentBuilder =
documentBuilderFactory.newDocumentBuilder () ;

Document document = documentBuilder.newDocument () ;

Element element = document.createElement ("SampleCustomData") ;

element.setTextContent ("Some example custom data provided as an XML text
element") ;

CustomData data = new CustomDatal();

// UUID identifies the custom data, in this case just use a random UUID
value

data.setUuild (UUID.randomUUID()) ;

// Custom data is XML document
data.setData (element) ;

// Reseal the sealed file with the new custom data
InputStream inputStream = new FilelInputStream(filename);

InputStream reclassifiedStream = sealingServices.reseal (inputStream, new
CustomData[] {data});

inputStream.close();
// Write the stream out to a file
FileOutputStream reclassifiedOutputStream = new

FileOutputStream(filename) ;

int start = 0;
int read = 0;

byte buffer[] = new byte[8194];

while ((read = reclassifiedStream.read(buffer, start, buffer.length)) !=

5-50 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

_1)
{
reclassifiedOutputStream.write (buffer, 0, read);
}
reclassifiedStream.close();
reclassifiedOutputStream.close();
}
}

5.3.18 Unsealing a File

The following code demonstrates how to unseal a sealed file using the unseal method.
The content to unseal can be provided as any type of InputStream; this example uses a
file input stream. The sample writes the resulting unsealed stream out to a file.

Example 5-34

import static
oracle.irm.j2ee.jws.content.sealing.SealingServices.getSealingServicesEndpoint;

import java.io.FilelInputStream;

import java.io.FileOutputStream;

import java.io.InputStream;

import oracle.irm.j2ee.jws.content.sealing.SealingServicesEndpoint;

public class UnsealFile {

public static void main(String[] args) throws Exception {

String hostPort = args[0];
String username = args[l];

String password = args([2];

// The file to unseal
String sealedFilename = args([3];

// The unsealed file name
String unsealedFilename = args[4];

// Get the sealing services web service
SealingServicesEndpoint sealingServices =

getSealingServicesEndpoint (hostPort, username, password);

// Unseal the sealed file
FileInputStream sealedFileStream = new FilelInputStream(sealedFilename) ;

InputStream unsealedStream = sealingServices.unseal (sealedFileStream);

// Close the file stream
sealedFileStream.close();

// Write the stream out to a file
FileOutputStream unsealedStreamOutputStream = new

FileOutputStream(unsealedFilename) ;

int start = 0;
int read = 0;

Code Samples for Web Services 5-51

Using the Oracle IRM Web Service Code

byte buffer[] = new byte[8194];
while ((read = unsealedStream.read(buffer, start, buffer.length)) != -1)

unsealedStreamOutputStream.write (buffer, 0, read);

// Close the streams
unsealedStream.close();
unsealedStreamOutputStream.close() ;

5.3.19 Listing Classifications

The following code demonstrates how to list classification details from a sealing server
using the listClassifications method. The sample code displays the list of
Classifications details available to the authenticated user.

Example 5-35

import static
oracle.irm.j2ee.jws.core.storage.DesktopServices.getDesktopServicesEndpoint;

import java.net.URI;
import oracle.irm.engine.types.core.classification.Classification;
import oracle.irm.engine.types.core.general.Label;
import oracle.irm.j2ee.jws.core.storage.DesktopServicesEndpoint;
public class ListClassificationsWS {
public static void main(String[] args) throws Exception {
String hostPort = args([0];

String username = args[1];
String password = args[2];

// The server URI. for example https://irm.example.com/irm desktop
URI serverURI = URI.create(args[3]);

// Get the desktop services web service
DesktopServicesEndpoint desktopServices =
getDesktopServicesEndpoint (hostPort, username, password);

// Synchronize with the specified server
Classification[] classifications =
desktopServices.listClassifications (serverURI) ;

// Display the labels of the classifications
for (Classification classification : classifications) {

for (Label label : classification.getLabels()) {
System.out.println(label.getLocale().getDisplayName() + " : " +
label.getName()) ;
}

5-52 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

5.3.20 Searching the Context Journal Using Web Services

The following code demonstrates how to search the content usage for context
classified content. The sample code searches for all entries for the last twenty-four
hours and displays a short summary for the first one hundred entries.

Example 5-36

import static
oracle.irm.j2ee.jws.rights.context.ContextOperations.getContextOperationsEndpoint;

import
import

import
import
import
import

public

java.util.Calendar;
java.util.Date;

oracle.irm.engine.types.core.general.PageRange;
oracle.irm.engine.types.core.time.TimeRange;
oracle.irm.engine.types.rights.journal.ContextJournalEntry;
oracle.irm.j2ee.jws.rights.context.ContextOperationsEndpoint;

class SearchJournalWS {

public static void main(String[] args) throws Exception {

// The server address. for example https://localhost
String hostPort = args[0];
String username = args[l];
String password = args[2];

// Search for all records from the last 24 hours
Date end = new Date();

// Use a calendar to work out the time range
Calendar calendar = Calendar.getInstance();

calendar.setTime (end) ;
calendar.add(Calendar.DAY_OF_MONTH, -1);

Date begin = calendar.getTime();
TimeRange timeRange = new TimeRange (begin, end);

// Get the context operations web service
ContextOperationsEndpoint contextOperations =

getContextOperationsEndpoint (hostPort, username, password);

// Search the context journal
PageRange pageRange = new PageRange(l, 100);

ContextJournalEntry[] journalResults = contextOperations.searchJournal (
null, // no accounts filter
null, // no item codes filter
timeRange,
pageRange,
null); // no sorting details

if (journalResults.length == 0)
return;

// Display the timestamp, URI and and feature for each entry
for (ContextJournalEntry entry : journalResults) {

Code Samples for Web Services 5-53

Using the Oracle IRM Web Service Code

System.out.print ("Timestamp : " + entry.getTime());

System.out.print ("Account : " + entry.getAccount () .getName());

System.out.print ("Content : " + entry.getUri() !'= null ?
entry.getUri() : "");

System.out.print ("Feature : " + entry.getFeature());

5.3.21 Checking in Licenses

The following code demonstrates how to check in licenses currently checked out to a
sealing server. When the sealing server processes content it will usually check out
licenses for the authenticated user. These licenses can no longer be used from other
locations (for example, the Oracle IRM Desktop) until they expire or are manually
checked in.

Example 5-37

import static
oracle.irm.j2ee.jws.core.storage.DesktopServices.getDesktopServicesEndpoint;

import java.net.URI;
import oracle.irm.j2ee.jws.core.storage.DesktopServicesEndpoint;
public class CheckInWS {
public static void main(String[] args) {
String hostPort = args[0];

String username = args[l];
String password = args[2];

// Get the desktop services web service
DesktopServicesEndpoint desktopServices =
getDesktopServicesEndpoint (hostPort, username, password);

// The server URI. for example https://irm.example.com/irm_desktop
URI serverURI = URI.create(args[3]);

// Check in all the licenses currently within the
// desktop store for the given server
desktopServices.checkIn (serverURI) ;

5.3.22 Deleting a Domain

The following code demonstrates how to delete a domain. The sample code uses a
fixed domain UUID for the new domain so that all sample code can work with a
known domain. A new domain would typically be given a new random UUID value.
The authenticated user must be a domain administrator. When a domain is deleted all
the associated roles, templates and contexts are also deleted.

Example 5-38

import static
oracle.irm.j2ee.jws.rights.context.DomainOperations.getDomainOperationsEndpoint;

5-54 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Using the Oracle IRM Web Service Code

import java.util.UUID;

import oracle.irm.engine.types.rights.context.DomainRef;
import oracle.irm.j2ee.jws.rights.context.DomainOperationsEndpoint;

public class DeleteDomainWS {

public static void main(String[] args) throws Exception {

String hostPort = args[0];
String username = args[l];
String password = args([2];

// Domain UUID is fixed for sample code
UUID domainUUID =
UUID. fromString ("6fab93fd-2858-461la-a0b3-34e261dbf8£d") ;

// Get the domain operations web service
DomainOperationsEndpoint domainOperations =
getDomainOperationsEndpoint (hostPort, username, password);

DomainRef domain = new DomainRef (domainUUID) ;

// Delete the domain using the domain reference
domainOperations.deleteDomain (domain) ;

Code Samples for Web Services 5-55

Using the Oracle IRM Web Service Code

5-56 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Peeking a Sealed File

Code Samples for Java Applications

This section contains the following:
= Introduction

= Peeking a Sealed File

6.1 Introduction

Required Jar Files
These code samples require the following jar files to be added to the class path:

= irm-common.jar
= irm-enginejar
= irm-clientjar

= irm-wsjar

Local Sealing Operations

Certain operations on sealed content can be performed locally within a J2SE or J2EE
application. These local versions are provided as an alternative to sending the content
to a server to be processed.

Currently only local peeking is supported.

6.2 Peeking a Sealed File

The following code demonstrates how to extract the metadata from sealed content
using the peek method. The sealed content can be provided as any type of
InputStream; this example uses a file input stream. Once peeked the file metadata,
which includes the Classification details, can be examined. The sample code prints out
the human-readable classification details (the labels) that were sealed into the content.

Example 6—1

import static oracle.irm.engine.content.sealing.SealingOperationsInstance.peek;

import java.io.FilelInputStream;
import java.io.IOException;

import oracle.irm.engine.content.sealing.ContentDescription;
import oracle.irm.engine.core.classification.Classification;
import oracle.irm.engine.core.general.Label;
public class PeekFile ({
public static void main(String[] args) throws IOException {
// The name of the file to peek is the first
// command line argument

FileInputStream stream = new FileInputStream(args[0]);

// Perform the peek, providing a stream to the sealed file

Code Samples for Java Applications 6-1

Peeking a Sealed File

ContentDescription contentDescription = peek(stream);

// Close the file stream
stream.close();

// Extract the classification details from the content
Classification classification = contentDescription.getClassification();

// Show all the labels sealed into content
for (Label label : classification.getLabels()) {
System.out.println(label.getLocale() .getDisplayName() + " : " +
label.getName()) ;

}

6-2 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Customizing Status Pages

Status Page Customization

This section contains the following topics:

n Overview

= Customizing Status Pages

= Configuring Oracle IRM for Custom Status Pages

» Creating Custom Status Pages Using the HTTP GET Method
s Creating Custom Status Pages Using the HTTP POST Method

= Reference Information and Examples

7.1 Overview

Oracle IRM displays status pages to users whenever they are denied access to sealed
content. This may be because they do not have the correct rights to view the content,
or because their rights have expired and could not be refreshed.

Status pages are HTML pages displayed by Oracle IRM Desktop (the Oracle IRM
client software) in a dialog containing an embedded instance of Microsoft Internet
Explorer. There are offline and online status pages. Offline pages are generated locally
by Oracle IRM Desktop, are of a standard layout, and contain only information that
Oracle IRM Desktop has available. Online pages are generated by a web server, where
Oracle IRM Server resides.

If the Oracle IRM Desktop computer is not connected to the network, then the offline
page is displayed. If the computer is connected to the network, then Oracle IRM
Desktop will try to display an online page, and if that fails to load it will fall back to
displaying an offline page.

Note: Only online status pages are customizable.

When Oracle IRM Desktop wants to show an online status page, it sends an XML
document (via a POST) to a status page hosted on the web server where Oracle IRM
Server resides. The standard response is to render an appropriate status page using the
XML data. For example, if the user has no licenses, the status page will show a
message such as "No licenses available for Top Secret context", using the XML to
determine what content was being opened. For customers that wish to provide their
own status pages, configuration settings are provided on the Oracle IRM pages of the
Oracle Enterprise Manager Fusion Middleware Control Console.

7.2 Customizing Status Pages

Customizing status pages is achieved by hosting equivalents of the standard status
pages on your own web server. This gives full flexiblility of what can be displayed on
a custom status page.

When you have created custom status pages, Oracle IRM Server can be made to
redirect status page requests to a specified URL. The redirection includes information
about the operation that was being performed by Oracle IRM Desktop. This allows the
custom status pages to be at least as informative as the supplied status pages.

Status Page Customization 7-1

Customizing Status Pages

The redirection of the status page requests can be performed using either of two HTTP
methods: HTTP GET or HTTP POST.

7.2.1 Redirection of Status Page Requests Using HTTP GET

When the redirection of status page requests is performed using HTTP GET, all of the
information about the state of Oracle IRM Desktop must be encoded in the query
string of the URL that is to serve the custom page. To avoid overly long query strings
containing information that is not required by the custom page, only the configured
redirection URL acts as a template for the URL that is used.

For example, consider a status page that is only concerned with the type of status page
requested and the classification name. If the page is to be served by a page at
http://some.example.com/statusPage then the URL could be configured as
below:

http://some.example.com/statusPage?page=&irm-classification-name=
When the redirection is for a classification called "Top Secret' and where a license has
expired, the request would be populated as below:

http://some.example.com/statusPage?page=LICENSE_
EXPIRED=&irm-classification-name=Top+Secret

The parameters can be chosen from a list of built-in parameters, and from all of the
content attributes supported by the server. In the above example, page is a built-in
parameter and irm-classification-name is a content attribute.

Note: You can design the redirection query string to contain other
parameters. Parameters that have already been populated by Oracle
IRM and parameters not recognized by Oracle IRM will be left
untouched.

The maximum size of URL that can be processed by Microsoft Internet
Explorer is 2048 characters.

7.2.2 Redirection of Status Page Requests Using HTTP POST

The HTTP POST method sends all of the available Oracle IRM Desktop state
information as a form to the configured URL. The advantage is that all of the Oracle
IRM Desktop state information is available without having to consider the size of the
URL. JavaScript must be available on the client computer.

The page parameter is passed as part of the URL. So:
http://some.example.com/status

will result in a post to:
http://some.example.com/status?page=LICENSE_EXPIRED

The Oracle IRM Desktop state is provided as XML, with the relevant information
picked out by the developer of the custom status page. The page parameter is still sent
as part of the URL query string, because this is how it is received from Oracle IRM
Desktop.

See Example 7-1, "Desktop State in XML Form".

7-2 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Reference Information and Examples

7.3 Configuring Oracle IRM for Custom Status Pages

A server-wide setting affects all status page requests relating to the Context
classification system. Custom classification systems (if any), and the built-in Oracle
IRM test content page system, are not affected by the setting.

Configuration consists of choosing whether to redirect using HTTP GET or HTTP
POST, and setting the URL of the server hosting the custom status pages.

To configure using the Oracle IRM pages on Oracle Enterprise Manager Fusion
Middleware Control Console, see the Oracle IRM Server Administrator’s Guide.

To configure using WLST, see the Oracle Enterprise Manager Fusion Middleware WLST
Command Reference.

7.4 Creating Custom Status Pages Using the HTTP GET Method

The page developer will need to pick which parameters they will need to build an
appropriate status page for the user. The page will then be developed and a URI with
the required parameters configured on the Oracle IRM server.

The parameters that are available are all content attributes and the built-in parameters
listed in the StatusPageOperations Javadoc. The Javadoc for the
populateRedirectionURI method of StatusPageOperations contains details
on how the URI is populated to perform the redirect.

7.5 Creating Custom Status Pages Using the HTTP POST Method

The page developer will post a form with an input field called desktop. state. This
DesktopState will be the XML string that Oracle IRM Desktop posted to the Oracle
IRM server.

The XML document can be parsed by the page and an appropriate page built. The
Javadoc for desktop state contains details on what is in the XML string.

7.6 Reference Information and Examples
This section contains the following:
s List of Built-in Parameters
= List of Status Page Types
= Example of Oracle IRM Desktop State in XML

7.6.1 List of Built-in Parameters

Table 7-1 and Table 7-2 contain the built-in parameters that can be used with the
HTTP GET method of redirection.

Table 7-1 Built-in Parameters (A)

Parameter Description

application.container The container application can be considered the application
hosting the desktop logic, such as a browser or word processor.

application.name The application name can be used to identify the application
used to access the sealed content.

Status Page Customization 7-3

Reference Information and Examples

Table 7-1 (Cont.) Built-in Parameters (A)

Parameter

Description

desktop.operating.system
desktop.uuid

desktop.version

page

The value can be used to determine the operating system that is
hosting the desktop logic.

The desktop UUID is used to identify a particular desktop
independently of the product version number.

The desktop version identifies the product version of the
desktop used to access the sealed content.

The status pages provided by the desktop web site. See
Table 7-3, " Status Page Types".

Table 7-2 Built-in Parameters (B)

Parameter Name Description
irm-time Current Time The time on the Oracle IRM server.
irm-locale Desktop Locale The locale of the desktop installation.

irm-location

irm-mime

irm-extension

irm-account-uuid
irm-account-name
irm-creation-time
irm-edit-time
irm-schema-version
irm-classification-name

irm-classification-descriptio
n

irm-classification-keyset

irm-classification-system

irm-classification-time

irm-classification-url

irm-host

irm-context-uuid
irm-context-itemcode-value

irm-context-itemcode-time

Content Location

Sealed MIME Type

Sealed File
Extension

Account UUID
User Name
Creation Time
Edit Time
Schema Version
Sealed To

Description

Key Set UUID

Classification
System

Classification Time

Server Address

Desktop Host
Name

Context UUID
Item Code Value

Item Code Time
Stamp

The location the sealed content was opened
on the desktop.

The sealed content MIME type.

The sealed content file extension.

The UUID value that identifies the user.
The user name of the user.

The sealed content creation time.

The sealed content last edit time.

The sealed content schema version.

The classification label.

The classification label description.

The classification key set UUID that
identifies which key set was used to seal
the content.

The classification system UUID. This value
identifies the type of classification, for
example, context classified content.

The classification time is set when sealed
content is sealed.

The server URI sealed into content.

The desktop host name.

The UUID value that identifies the context.
The item code value.

The item code time stamp, if provided.

7-4 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Reference Information and Examples

7.6.2 List of Status Page Types

Table 7-3 contains the status page types for use with the page built-in parameters in

Table 7-1 and Table 7-2.

When the Oracle IRM desktop requests a status page it will set the appropriate status
using a query parameter. For example, if the user is using content, but the license they
are using expired, Oracle IRM Desktop will request a status page with a query
parameter set as page=LICENSE_EXPIRED. Table 7-3 lists all the status pages the
Oracle IRM desktop can send.

Table 7-3 Status Page Types

Status Description

DIAGNOSTICS When the self-test action is performed within the desktop, one of
the steps is to contact the desktop web site. In this scenario the
desktop will ask for the diagnostic status page.

INFORMATION When the user clicks on the 'information' button or link the

GENERAL_ERROR
UNKNOWN
PRIVACY
LICENSE_EXPIRED

LICENSES_CHECKED_IN

LICENSE_CHANGED

NO_LICENSES
NO_LICENSES_OFFLINE

UPGRADE

REPUDIATED
SERVER_CONNECTION

AUTHENTICATION_
ANONYMOUS

AUTHENTICATION_
FAILED

UNKNOWN_
CLASSIFICATION

UNSUPPORTED_FORMAT

OFFICE_PASSWORD_
PROTECTED

information status page is requested. The information status
page should provide details about the content's classification.

A general desktop error has occurred.
Unknown status page.
Privacy statement status page.

When a user is using sealed content, their license-based rights
may expired. If the license cannot be refreshed from the server
this status page will be displayed.

A license is applicable, but in use on another device. This status
page will display details about the other device or devices.

When a user is using sealed content, their license-based rights
may be refreshed from the server. If these rights change, for
example allowing printing, this status page will be displayed.

The user has no rights to access the content.

The user has no rights stored off-line to access the content. The
server cannot be contacted to see if there are licenses available.

The server has prompted the desktop to perform a mandatory
upgrade.

The server has denied access to the desktop.
The server cannot be contacted.

The user has accessed content but chosen to cancel the
authentication process.

The user has accessed content, authenticated, but failed to
authenticate (for example, a bad password).

The server does not know about the classification of the content.
This would typically occur if the classification has been removed
from the server after creating sealed content.

The desktop cannot render the content format. For example,
occurs when the application that normally renders the content
has not been installed.

The desktop attempts to protect the content with password
protection. If this password protection cannot be applied, this
status page is displayed.

Status Page Customization 7-5

Reference Information and Examples

Table 7-3 (Cont.) Status Page Types

Status Description

OFFICE_PLUGIN_NOT_ A third party plug-in is not trusted and is preventing the sealed
TRUSTED content from being accessed.

MOVIE_BEFORE_MOVIE This status page is displayed before a sealed movie has been
started.

MOVIE_AFTER_MOVIE This status page is displayed after a sealed movie has been
shown.

7.6.3 Example of Oracle IRM Desktop State in XML

The following XML document shows an example Oracle IRM Desktop state in XML
form:

Example 7-1 Desktop State in XML Form

<?xml version="1.0" encoding="UTF-8"?>
<core:DesktopState xmlns:core="http://xmlns.oracle.com/irm/core">

<desktop>
<uuid>70678535-0a6f-4cf9-9411-2c05ed8d989</uuid>
<version>
<version>11.1.1.1.0</version>
</version>

<operatingSystem>Microsoft XP SP 2</operatingSystem>
<locale>en</locale>
<device>
<uuid>a7352732-dcd0-43af-93c5-0cbc7¢c1£203d</uuid>
<name>machine</name>
</device>
<application>
<name>desktop</name>
<container>browser</container>
</application>
</desktop>
<contentDescription>
<schema>
<schemaversion>
<version>6.0</version>
</schemaVersion>
</schema>
<classification>
<i1d>7eclc191-0531-4876-813e-c554676df09b</id>
<system>
<uuid>588403f9-9cff-4cce-88ed4-e030cc57282a</uuid>
</system>
<keySet>
<uuid>213f8f65-c5d1-4868-9fff-adl56daa2dd6</uuid>
</keySet>
<uri>http://irm.example.com/irm desktop</uri>
<classifications:ContextCookie
xmlns:classifications="http://xmlns.oracle.com/irm/classifications">
<context>
<uuid>588403f9-9cff-4cce-88e4-e030cc57282a</uuid>
</context>
<itemCode>
<value>sample.sdoc</value>
</itemCode>
</classifications:ContextCookie>

7-6 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Reference Information and Examples

<classificationTime>2008-02-01T13:00:00.000+01:00</classificationTime>
<labels>
<locale>en</locale>
<name>Top Secret</name>
</labels>
</classification>
<creationTime>2007-01-01T12:00:00.000+01:00</creationTime>
<editTime>2007-01-01T12:00:00.000+01:00</editTime>
<sealedMime>application/vnd.sealed.doc</sealedMime>
<unsealedSize>1234567</unsealedSize>
</contentDescription>
<contentUri>http://server/files/fish.sdoc</contentUri>
<account>
<uuid>17f45d8d-d5¢c9-4970-8808-daa0fc893¢c33</uuid>
<type>USER</type>
<name>John Smith</name>
</account>
</core:DesktopState>

Status Page Customization 7-7

Reference Information and Examples

7-8 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Terminology

Reference

This section contains contains the following topics:

s Terminology
s Feature Codes

s Locale Codes

8.1 Terminology

The following table explains the main terms used in this Developer's Guide.

Table 8—-1 Terminology

Term

Description

Classification System

Classification

Classification Cookie

Public Header

Custom Data

Sealed Content

Peeking

Sealing

Unsealing

Resealing

Reclassification

Sealing Server

A classification system describes a model for classifiying
content. A classification system defines what metadata is sealed
into content, how that metadata is used to grant access to that
content and how cryptography is used with that content.

The set of metadata that tells the Oracle IRM Desktop what
server to contact for rights, what cryptography keys to use to
encrypt/decrypt/sign/verify the content, and the metadata
used to associate rights with content (the classification cookie).

The set of metadata added to sealed content that is used by the
Oracle IRM Desktop and IRM J2EE application to associate
rights with content. The cookie is an opaque string of XML
whose structure is defined by the classification system.

The complete set of metadata added to sealed content, this
includes the classification and custom data.

The set of metadata added to sealed content by third parties.
This metadata is also signed and tamperproof, but the contents
are ignored by the Oracle IRM products.

Content that has been encrypted using Oracle IRM. Sealed
content also contains signed metadata that is used by Oracle
IRM.

Peeking is the process of extracting the classification and custom
data metadata from sealed content.

Sealing is the process of taking content, adding metadata,
signing this metadata and encrypting the content. The result of
this transformation is called sealed content.

Unsealing is the process of taking sealed content and extracting
the original, plaintext content. Unsealing can be considered the
reverse process of sealing.

Resealing is the process of altering the custom metadata or
editing the encrypted content.

Reclassifying sealed content is the process of altering the
classification of the sealed content. Reclassificating is typically
used when content changes sensitivity, for example when a top
secret document becomes a company confidential document.

The sealing server is a J2EE application that allows sealed
content to be processed remotely.

Reference 8-1

Feature Codes

Table 8-1 (Cont.) Terminology

Term Description

Context Journal The context journal contains records of actions performed on
context classified sealed content. The Oracle IRM Desktop
maintains an audit of activity and uploads this to the IRM J2EE
application. Context related activity is then stored in the context
journal.

8.2 Feature Codes

The following feature codes can be used with the Feature type when creating or
editing a DocumentRole.

Table 8-2 Feature codes

Feature Description Code

Open Open and read a sealed file oracle.irm.generic.Open

Seal Create a new sealed file or seal an oracle.irm.generic.Seal
existing file

Reseal Save changes to a sealed file oracle.irm.generic.Reseal

Search Search sealed files oracle.irm.generic.Search

Copy Copy the contents of a sealed file to the oracle.irm.generic.Copy

unprotected clipboard

Edit Edit the contents of the sealed file and oracle.irm.generic.Edit
control change tracking

Print Print the contents of a sealed file oracle.irm.generic.Print

Print To File Print the contents of a sealed file to a file oracle.irm.generic.PrintToFile
or virtual print device, such as Acrobat

Screen Capture the contents of a sealed file with oracle.irm.generic.ScreenCapture
Capture Print Screen'
Set Item Users are allowed to provide item codes oracle.irm.generic.Setltem

when creating or saving sealed content.
Without this option, sealed content is
allocated an automatic item code

Accessibility Relaxes protection in sealed content to oracle.irm.generic.Accessibility
enable accessibility features to function
fully

Copy To Copy the contents of a sealed file to the oracle.irm.generic.CopyTo

sealed clipboard. The documents to
which the content can be copied are
configured separately

Save Save the contents of a sealed file into an oracle.irm.generic.SaveUnsealed

Unsealed unprotected file

Annotate Add comments to sealed Word and Excel oracle.irm.office. Annotate
documents

Edit Tracked Edit the contents of the sealed file with all oracle.irm.office.EditTracked
changes tracked

Interact Enter data in form fields (Word) and oracle.irm.office.Interact
unprotected cells (Excel)

Formulae View formulae (formulas) oracle.irm.office.excel. Formulae

8-2 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

Locale Codes

Table 8-2 (Cont.) Feature codes

Feature Description Code
Reply Edit the contents of sealed email and oracle.irm.office.email. Reply
control change tracking
Reply Edit the contents of the sealed email with oracle.irm.office.email.ReplyTracked
Tracked all changes tracked
Program Access content programmatically via the oracle.irm.office.Program

document object model

8.3 Locale Codes

The following locale codes are used in Oracle IRM.

Table 8-3 Locale Codes

Locale code Language or language group
ar Arabic

cs Czech

da Danish

de German

el Greek

en English

es Spanish

fi Finnish

fr French

hu Hungarian

it Italian

iw

ja Japanese

ko Korean

nl Netherlands/Dutch
no Norwegian

pl Polish

pt-BR Brazilian Portuguese
pt Portuguese

ro Romanian

ru Russian

sk Slovak

sv Swedish

th Thai

tr Turkish

zh-CN Traditional Chinese
zh-TW Simplified Chinese

Reference 8-3

Locale Codes

8-4 Oracle Fusion Middleware Developer's Guide for Oracle Information Rights Management Server

A

AccountRef type, 4-1
authentication, 2-4
authorization, 2-5

Cc

class path, 5-33
classification, 2-1

cookie, 2-1
classifications

listing, 5-52

listing using JDeveloper, 5-27
code samples

java applications, 6-1

web services, 5-1
content

encrypted, 2-3

sealing, 2-1
context classified content, 2-2
context journal

searching, 5-28, 5-53
context templates, 3-2

creating, 5-36

creating with JDeveloper, 5-6
contexts, 3-1,3-2

creating, 5-37

creating from template, 3-4

creating with JDeveloper, 5-6
cookie

classification, 2-1

D

desktop web service, 2-6
digital signatures
checking, 5-45
checking using JDeveloper, 5-17
document rights, 3-3
document roles, 3-2
domains, 3-1
creating, 5-33
creating with JDeveloper, 5-3
deleting, 5-54
deleting using JDeveloper, 5-31

Index

E

encrypted content, 2-3

F

feature codes, 8-2
file extensions
finding, 2-7
files
peeking, 5-44,5-45,6-1
peeking using JDeveloper, 5-16, 5-17
reclassifying, 5-48
reclassifying using JDeveloper, 5-20, 5-22
resealing, 5-49
resealing using JDeveloper, 5-24
sealing, 5-41
sealing using JDeveloper, 5-12
unsealing, 5-51
unsealing using JDeveloper, 5-26
finding file extensions, 2-7

G

groups, 4-1
altering role assignments, 5-40
listing rights, 3-6, 5-39
obtaining names, 4-1

H

HTTP GET, 7-2,7-3
HTTP POST, 7-2,7-3

item restrictions, 5-19, 5-46

J

jar files, 6-1

java applications, 6-1

JDeveloper, 5-2
generating web service proxy, 5-3
using samples, 5-2

journal entries
searching for, 3-4

Index-1

L

licenses

checking in, 5-54

checking in using JDeveloper, 5-30
local peeking, 2-15
locale codes, 8-3

metadata
custom, 2-2
public header, 2-1

MTOM, 2-6

P

peeking, 2-3
local, 2-15

remote, 2-13
proxy generation, 5-3
public header, 2-1

R

reclassification, 2-3
reclassifying
remote, 2-17
remote peeking, 2-13
remote reclassifying, 2-17
remote resealing, 2-16
remote sealing, 2-9
remote unsealing, 2-18
resealing
remote, 2-16
sealed content
resealing, 2-3
rights, 3-1,3-3
changing item restrictions, 5-46
changing item restrictions using JDeveloper, 5-19
listing, 5-39
listing assigned, 3-6
listing using JDeveloper, 5-9
unassigning, 5-47
unassigning using JDeveloper, 5-20
roles, 3-1,3-2
altering assignment using JDeveloper, 5-11
altering assignments, 5-40
assigning, 3-5
assigning to user, 5-38
assigning to user with JDeveloper, 5-8
creating, 5-34
creating with JDeveloper, 5-4
unassigning, 3-7

S

sealed content, 2-1
concepts, 2-1
content classified, 2-2
peeking, 2-3

Index-2

reclassification, 2-3
sealing, 2-1
unsealing, 2-3
sealed files
peeking, 5-44,5-45, 6-1
sealing, 2-1
remote, 2-9
sealing content, 2-1
sealing server, 2-4
searching
for journal entries, 3-4
server, 2-4
status pages, 7-1
built-in parameters, 7-3
custom configuration, 7-3
customizing, 7-1
HTTP GET method, 7-3
HTTP POST method, 7-3
overview, 7-1
page types, 7-5

T

terminology, 8-1

U

unsealing, 2-3
remote, 2-18

unsealing files, 5-26

users, 4-1
altering role assignments, 5-40
listing rights, 3-6, 5-39
obtaining names, 4-1

w

web service, 2-4
authentication, 2-4
authorization, 2-5
desktop, 2-6
MTOM, 2-6
proxy generation, 5-3
web service code, 5-32
differences from JDeveloper code,
web services, 5-1
code samples, 5-1

5-33

	Contents
	Preface
	1 Introduction
	2 Working with Sealed Content
	2.1 Concepts
	2.1.1 Sealing
	2.1.1.1 Metadata: The Public Header
	2.1.1.2 Encrypted Content

	2.1.2 Unsealing
	2.1.3 Peeking
	2.1.4 Resealing
	2.1.5 Reclassification

	2.2 Sealing Server
	2.2.1 Sealing Web Service
	2.2.1.1 Authentication
	2.2.1.2 Authorization
	2.2.1.3 MTOM

	2.2.2 Desktop Web Service

	2.3 Examples
	2.3.1 Finding File Extensions (Remote and Local)
	2.3.1.1 File Extensions
	2.3.1.2 MIME Types
	2.3.1.3 Using the Sealing Server
	2.3.1.4 Using Java Libraries

	2.3.2 Sealing (Remote)
	2.3.2.1 Uploading Content
	2.3.2.2 Calling seal
	2.3.2.3 MIME Type
	2.3.2.4 Sealing Options

	2.3.3 Peeking (Remote)
	2.3.3.1 Uploading Sealed Content
	2.3.3.2 Calling peek
	2.3.3.3 Calling validatedPeek
	2.3.3.4 Examining the Classification
	2.3.3.5 Reading Labels
	2.3.3.6 Accessing the Cookie
	2.3.3.7 Large Files

	2.3.4 Peeking (Local)
	2.3.4.1 Calling peek

	2.3.5 Resealing (Remote)
	2.3.5.1 Uploading Content
	2.3.5.2 Calling reseal
	2.3.5.3 Extracting the Content

	2.3.6 Reclassifying (Remote)
	2.3.6.1 Uploading Content
	2.3.6.2 Calling reclassify
	2.3.6.3 Extracting the Content

	2.3.7 Unsealing (Remote)
	2.3.7.1 Uploading Sealed Content
	2.3.7.2 Calling unseal
	2.3.7.3 Extracting the Content

	3 Working with Domains, Contexts, Roles, and Rights
	3.1 Concepts
	3.1.1 Domains
	3.1.1.1 DomainRef
	3.1.1.2 Domain

	3.1.2 Context Templates
	3.1.2.1 ContextTemplateRef
	3.1.2.2 ContextTemplate

	3.1.3 Contexts
	3.1.3.1 ContextInstanceRef
	3.1.3.2 ContextInstance

	3.1.4 Roles (Document Roles)
	3.1.4.1 DocumentRoleRef
	3.1.4.2 DocumentRole

	3.1.5 Rights (Document Rights)
	3.1.5.1 DocumentRightRef
	3.1.5.2 DocumentRight

	3.2 Examples
	3.2.1 Creating a Context from a Template
	3.2.1.1 Calling createContextFromTemplate

	3.2.2 Searching for Journal Entries
	3.2.2.1 Calling searchJournal

	3.2.3 Assigning a Role
	3.2.4 Listing the Rights Assigned to a User or Group
	3.2.5 Unassigning a Role

	4 Working with Users and Groups
	4.1 The AccountRef Type
	4.1.1 About the AccountRef Type
	4.1.2 Creating an AccountRef Using a GUID
	4.1.3 Creating an AccountRef Using a User Name
	4.1.4 Creating an AccountRef Using a Group Name

	4.2 Obtaining User and Group Names

	5 Code Samples for Web Services
	5.1 Web Services
	5.2 Using JDeveloper Generated Web Services Proxies
	5.2.1 Introduction
	5.2.2 Using the Samples
	5.2.3 Generating a Web Service Proxy
	5.2.4 Creating a Domain
	5.2.5 Creating a Role
	5.2.6 Creating a Context Template
	5.2.7 Creating a Context
	5.2.8 Assigning a Role to a User
	5.2.9 Listing Rights Assigned to a User or Group
	5.2.10 Altering the Role Assigned to a User or Group
	5.2.11 Sealing a File
	5.2.12 Peeking a Sealed File
	5.2.13 Peeking a Sealed File and Checking the Digital Signature
	5.2.14 Changing Item Restrictions Associated with a Right
	5.2.15 Unassigning Rights Assigned to a User
	5.2.16 Reclassifying a File
	5.2.17 Resealing a File with Different Custom Data
	5.2.18 Unsealing a File
	5.2.19 Listing Classifications
	5.2.20 Searching the Context Journal Using Web Services
	5.2.21 Checking in Licenses
	5.2.22 Deleting a Domain

	5.3 Using the Oracle IRM Web Service Code
	5.3.1 Introduction
	5.3.2 Class Path
	5.3.3 Differences from the JDeveloper Generated Code
	5.3.4 Creating a Domain
	5.3.5 Creating a Role
	5.3.6 Creating a Context Template
	5.3.7 Creating a Context
	5.3.8 Assigning a Role to a User
	5.3.9 Listing Rights Assigned to a User or Group
	5.3.10 Altering the Role Assigned to a User or Group
	5.3.11 Sealing a File
	5.3.12 Peeking a Sealed File
	5.3.13 Peeking a Sealed File and Checking the Digital Signature
	5.3.14 Changing Item Restrictions Associated with a Right
	5.3.15 Unassigning Rights Assigned to a User
	5.3.16 Reclassifying a File
	5.3.17 Resealing a File with Different Custom Data
	5.3.18 Unsealing a File
	5.3.19 Listing Classifications
	5.3.20 Searching the Context Journal Using Web Services
	5.3.21 Checking in Licenses
	5.3.22 Deleting a Domain

	6 Code Samples for Java Applications
	6.1 Introduction
	6.2 Peeking a Sealed File

	7 Status Page Customization
	7.1 Overview
	7.2 Customizing Status Pages
	7.2.1 Redirection of Status Page Requests Using HTTP GET
	7.2.2 Redirection of Status Page Requests Using HTTP POST

	7.3 Configuring Oracle IRM for Custom Status Pages
	7.4 Creating Custom Status Pages Using the HTTP GET Method
	7.5 Creating Custom Status Pages Using the HTTP POST Method
	7.6 Reference Information and Examples
	7.6.1 List of Built-in Parameters
	7.6.2 List of Status Page Types
	7.6.3 Example of Oracle IRM Desktop State in XML

	8 Reference
	8.1 Terminology
	8.2 Feature Codes
	8.3 Locale Codes

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	P
	R
	S
	T
	U
	W

