

[image: Oracle Corporation]

Oracle® Fusion Middleware

User's Guide for Oracle Business Rules

11g Release 1 (11.1.1)

E10228-02

October 2009

Oracle Fusion Middleware User's Guide for Oracle Business Rules 11g Release 1 (11.1.1)

E10228-02

Copyright © 2005, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Van Raalte

Contributing Author: Peter Purich

Contributors: Chris Cowell-Shah, Ching Luan Chung, Kathryn Gruenefeldt, Gary Hallmark, Joe Rosinski, Phil Varner, Neal Wyse

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

1 Overview of Oracle Business Rules

	1.1 What are Business Rules?
	1.1.1 What Are Rule Conditions?
	1.1.2 What Are Rule Actions?
	1.1.3 What Are Decision Tables?
	1.1.4 What Are Facts and Bucketsets?
	1.1.5 What Are Rulesets?
	1.1.6 What Are Decision Functions?
	1.1.7 What Are Decision Points?
	1.1.8 What Are Dictionaries?

	1.2 Oracle Business Rules Runtime and Design Time Elements
	1.2.1 Decision Component (Business Rules) in an SOA Composite Application
	1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application
	1.2.3 Oracle Business Rules RL Language
	1.2.4 Oracle Business Rules SDK
	1.2.5 Rules Designer
	1.2.6 Oracle SOA Composer Application

	1.3 Oracle Business Rules Engine Architecture
	1.3.1 Declarative Rules
	1.3.2 The RETE Algorithm
	1.3.3 What Is Working Memory?
	1.3.4 Rule Firing and Rule Sessions

2 Working with Data Model Elements

	2.1 Introduction to Working with Data Model Elements
	2.2 Working with a Dictionary and Dictionary Links
	2.2.1 Introduction to Dictionaries and Dictionary Links
	2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer
	2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer
	2.2.4 How to View and Edit Dictionary Settings
	2.2.5 How to Rename a Dictionary or Rename a Dictionary Package
	2.2.6 How to Link to a Dictionary
	2.2.7 How to Update a Linked Dictionary
	2.2.8 What You Need to Know About Dictionary Linking
	2.2.9 What You Need to Know About Dictionary Linking and Dictionary Copies
	2.2.10 What You Need to Know About Dictionary Linking to a Deployed Dictionary
	2.2.11 What You Need to Know About Business Rules Inputs and Outputs with BPEL

	2.3 Working with Oracle Business Rules Globals
	2.3.1 How to Add Oracle Business Rules Globals
	2.3.2 How to Edit Oracle Business Rules Globals
	2.3.3 What You Need to Know About the Final and Constant Options

	2.4 Working with Decision Functions
	2.5 Working with Oracle Business Rules Functions
	2.5.1 Introduction to Oracle Business Rules Functions
	2.5.2 How to Add an Oracle Business Rules Function

3 Working with Facts and Bucketsets

	3.1 Introduction to Working with Facts and Bucketsets
	3.2 Working with XML Facts
	3.2.1 How to Import XML Schema and Add XML Facts
	3.2.2 How to Display and Edit XML Facts
	3.2.3 How to Reload XML Facts with Updated Schema
	3.2.4 What You Need to Know About XML Facts

	3.3 Working with Java Facts
	3.3.1 How to Import Java Classes and Define Java Facts
	3.3.2 How to Display and Edit Java Facts
	3.3.3 What You Need to Know About Java Facts

	3.4 Working with RL Facts
	3.4.1 How to Define RL Facts
	3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties
	3.4.3 What You Need to Know About RL Facts

	3.5 Working with ADF Business Components Facts
	3.5.1 How to Import and Define ADF Business Components Facts
	3.5.2 What You Need to Know About ADF Business Components Fact Classpaths
	3.5.3 What You Need to Know About ADF Business Components Circular References
	3.5.4 What You Need to Know About ADF Business Components Facts

	3.6 Working with Bucketsets
	3.6.1 How to Define a List of Values Global Bucketset
	3.6.2 How to Define a List of Ranges Global Bucketset
	3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types
	3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types
	3.6.5 What You Need to Know About List of Values Bucketsets
	3.6.6 What You Need to Know About Range Bucketsets
	3.6.7 What You Need to Know About Bucketset Allowed in Actions Option
	3.6.8 What You Need to Know About Bucket Values

	3.7 Associating a Bucketset with Facts and Functions
	3.7.1 How to Associate a Bucketset with a Fact Property
	3.7.2 How to Associate a Bucketset with Functions or Function Arguments

4 Working with Rulesets and Rules

	4.1 Introduction to Working with Rulesets and Rules
	4.2 Working with Rulesets
	4.2.1 How to Create a Ruleset
	4.2.2 How to Set the Effective Date for a Ruleset
	4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset

	4.3 Working with Rules
	4.3.1 How to Add Rules
	4.3.2 How to Define a Test in a Rule
	4.3.3 How to Define Range Tests in Rules
	4.3.4 How to Define Set Tests in Rules
	4.3.5 How to Define Actions in Rules
	4.3.6 What You Need to Know About Rule Actions

	4.4 Validating Dictionaries
	4.4.1 Understanding Data Model Validation
	4.4.2 Understanding Rule Validation
	4.4.3 Understanding Decision Table Validation
	4.4.4 How to Validate a Dictionary

	4.5 Using Advanced Settings with Rules and Decision Tables
	4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table
	4.5.2 How to Select the Advanced Mode Option
	4.5.3 How to Select the Active Option
	4.5.4 How to Select the Logical Option
	4.5.5 How to Set a Priority for a Rule
	4.5.6 How to Specify Effective Dates

	4.6 Working with Nested Tests
	4.6.1 How to Use Nested Tests

	4.7 Working with Advanced Mode Rules
	4.7.1 How to Use Advanced Mode Pattern Matching Options
	4.7.2 How to Use Advanced Mode Matched Fact Naming
	4.7.3 How to Use Advanced Mode Action Forms
	4.7.4 How to Use Advanced Mode Aggregate Conditions
	4.7.5 What You Need to Know About Advanced Mode Rules

	4.8 Working with Tree Mode Rules
	4.8.1 Introduction to Tree Mode Rules
	4.8.1.1 Understanding Tree Mode Rules (Non-Advanced Mode)
	4.8.1.2 Understanding Advanced Tree Mode Rules

	4.8.2 How to Create Simple Tree Mode Rules
	4.8.3 How to Create Advanced Tree Mode Rules
	4.8.4 What You Need to Know About Tree Mode Rules

	4.9 Using Date Facts, Date Functions, and Specifying Effective Dates
	4.9.1 How to Use the Current Date Fact
	4.9.2 How to Set the Effective Date for a Rule
	4.9.3 What You Need to Know About Effective Dates
	4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

	4.10 Working with Expression Builder
	4.10.1 Introduction to the Expression Builder
	4.10.2 How to Use the Expression Builder
	4.10.3 What You Need to Know About Working with Expressions

	4.11 Using Bucketsets as Constraints for Options Values in Rules
	4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Fact Property
	4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property
	4.11.3 How to Use Bucketsets to Provide Options for Test Expressions

5 Working with Decision Tables

	5.1 Introduction to Working with Decision Tables
	5.1.1 What is a Decision Table?
	5.1.1.1 What You Need to Know About Decision Table Conditions
	5.1.1.2 What You Need to Know About Decision Table Actions
	5.1.1.3 What You Need to Know About Decision Table Rules

	5.1.2 Understanding Decision Table Values
	5.1.3 What You Need to Know About Decision Table Loops

	5.2 Creating Decision Tables
	5.2.1 How to Create a Decision Table
	5.2.2 How to Add Condition Rows to a Decision Table
	5.2.3 How to Add Actions to a Decision Table
	5.2.4 How to Add a Rule to a Decision Table

	5.3 Performing Operations on Decision Tables
	5.3.1 Introduction to Decision Table Operations
	5.3.1.1 Understanding Decision Table Split and Compact Operations
	5.3.1.2 Understanding Decision Table Move Operations
	5.3.1.3 Understanding Decision Table Gap Analysis
	5.3.1.4 Understanding Decision Table Conflict Analysis

	5.3.2 How to Compact or Split a Decision Table
	5.3.3 How to Merge or Split Conditions in a Decision Table
	5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells
	5.3.5 How to Perform Decision Table Gap Analysis
	5.3.6 How to Perform Decision Table Manual Conflict Resolution
	5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy
	5.3.8 How to Set the Decision Table Ignore Conflicts Policy

	5.4 Creating and Running an Oracle Business Rules Decision Table Application
	5.4.1 How to Obtain the Source Files for the Order Approval Application
	5.4.2 How to Create an Application for Order Approval
	5.4.3 How to Create a Business Rule Service Component for Order Approval
	5.4.4 How to View Data Model Elements for Order Approval
	5.4.5 How to Add Bucketsets to the Data Model for Order Approval
	5.4.6 How to Associate Bucketsets with Order and CreditScore Properties
	5.4.7 How to Add a Decision Table for Order Approval
	5.4.7.1 Split the Cells in the Decision Table and Add Actions
	5.4.7.2 Compact the Decision Table
	5.4.7.3 Replace Several Specific Rules with One General Rule
	5.4.7.4 Add a General Rule

	5.4.8 How to Check the Business Rule Validation Log for Order Approval
	5.4.9 How to Deploy the Order Approval Application
	5.4.10 How to Test the Order Approval Application

6 Working with Decision Functions

	6.1 Introduction to Decision Functions
	6.2 Working with Decision Functions
	6.2.1 How to Add or Edit a Decision Function

	6.3 What You Need to Know About Decision Functions
	6.3.1 What You Need to Know About Using Undo Operation with Decision Functions
	6.3.2 What You Need to Know About Rule Firing Limit Option for Debugging Rules
	6.3.3 What You Need to Know to About Decision Function Arguments
	6.3.4 What You Need to Know About the Will Be Invoked As Web Service Option
	6.3.5 What You Need to Know About the Decision Function Stateless Option

7 Working with Rules SDK Decision Point API

	7.1 Introduction to Rules SDK and the Car Rental Sample Application
	7.1.1 Introduction to Decision Point API
	7.1.2 How to Obtain the Car Rental Sample Application
	7.1.3 How to Open the Car Rental Sample Application and Project

	7.2 Creating a Dictionary for Use with a Decision Point
	7.2.1 How to Create Data Model Elements for Use with a Decision Point
	7.2.2 How to View a Decision Function to Call from the Decision Point
	7.2.3 How to Create Rules or Decision Tables for the Decision Function
	7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table

	7.3 Creating a Java Application Using Rules SDK Decision Point
	7.3.1 How to Add a Decision Point Using Decision Point Builder
	7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary
	7.3.3 How to Use Executor Service to Run Threads with Decision Point
	7.3.4 How to Create and Use Decision Point Instances

	7.4 Running the Car Rental Sample
	7.5 What You Need to Know About Using Decision Point in a Production Environment
	7.6 What You Need to Know About Decision Point and Decision Tracing

8 Testing Business Rules

	8.1 Testing Oracle Business Rules at Design Time
	8.1.1 How to Test Rules Using a Test Function in Rules Designer
	8.1.2 What You Need to Know About Testing Using an Oracle Business Rules Function
	8.1.3 How to Test a Decision Function Using an Oracle Business Rules Function
	8.1.4 What You Need to Know About Testing Decision Functions

	8.2 Testing Oracle Business Rules at Runtime

9 Creating a Rule-enabled Non-SOA Java EE Application

	9.1 Introduction to the Grades Sample Application
	9.2 Creating an Application and a Project for Grades Sample Application
	9.2.1 How to Create a Fusion Web Application for the Grades Sample Application
	9.2.2 How to Create the Grades Project
	9.2.3 How to Add the XML Schema and Generate JAXB Classes in the Grades Project
	9.2.4 How to Create an Oracle Business Rules Dictionary in the Grades Project

	9.3 Creating Data Model Elements and Rules for the Grades Sample Application
	9.3.1 How to Create Bucketsets for Grades Sample Application
	9.3.2 How to Add a Decision Table for Grades Sample Application
	9.3.3 How to Add Actions in the Decision Table for Grades Sample Application
	9.3.4 How to Rename the Decision Function for Grades Sample Application

	9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application
	9.4.1 How to Add a Servlet to the Grades Project

	9.5 Adding an HTML Test Page for Grades Sample Application
	9.5.1 How to Add an HTML Test Page to the Grades Project

	9.6 Preparing the Grades Sample Application for Deployment
	9.6.1 How to Create the WAR File for the Grades Sample Application
	9.6.2 How to Add the Rules Library to the Grades Sample Application
	9.6.3 How to Add the MDS Deployment File to the Grades Sample Application
	9.6.4 How to Add the EAR File to the Grades Sample Application

	9.7 Deploying and Running the Grades Sample Application
	9.7.1 How to Deploy to Grades Sample Application
	9.7.2 How to Run the Grades Sample Application

10 Working with Oracle Business Rules and ADF Business Components

	10.1 Introduction to Using Business Rules with ADF Business Components
	10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types
	10.1.2 Understanding Oracle Business Rules Decision Point Action Type

	10.2 Using Decision Points with ADF Business Components Facts
	10.2.1 How to Call a Decision Point with ADF Business Components Facts
	10.2.1.1 Setting the Decision Point Transaction
	10.2.1.2 Setting Runtime Properties
	10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule
	10.2.1.4 What You Need to Know About Decision Point Invocation

	10.2.2 How to Call a Decision Function with Java Decision Point Interface
	10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

	10.3 Creating a Business Rules Application with ADF Business Components Facts
	10.3.1 How to Create an Application That Uses ADF Business Components Facts
	10.3.2 How to Add the Chapter10 Generic Project
	10.3.3 How to Create ADF Business Components Application for Business Rules
	10.3.4 How to Update View Object Tuning for Business Rules Sample Application
	10.3.5 How to Create a Dictionary for Oracle Business Rules
	10.3.6 How to Add Decision Point Dictionary Links
	10.3.7 How to Import the ADF Business Components Facts
	10.3.8 How to Add and Run the Outside Manager Ruleset
	10.3.8.1 How to Add the Outside Manager Ruleset and Add a Decision Function
	10.3.8.2 How to Create the ActionType Java Implementation Class
	10.3.8.3 How to Import the Message Action Java Fact
	10.3.8.4 How to Add the Find Managers Rule
	10.3.8.5 How to Add the Outside Manager Finder Class
	10.3.8.6 How to Update ADF META INF for Local Dictionary Access
	10.3.8.7 How to Build and Run the Project to Check the Outside Manager Finder

	10.3.9 How to Add and Run the Department Manager Ruleset
	10.3.9.1 How to Add the Department Manager Finder Ruleset
	10.3.9.2 How to Add the Find Rule in the Department Manager Finder Ruleset
	10.3.9.3 How to Add Retract Employees Ruleset
	10.3.9.4 How to Add the Find Department Managers Decision Function
	10.3.9.5 How to Add the Department Manager Finder Java Class
	10.3.9.6 How to Copy the Dictionary to an MDS Accessible Location
	10.3.9.7 How to Build and Run the Project to Check the Find Managers Rule

	10.3.10 How to Add and Run the Raises and Retract Employees Rulesets
	10.3.10.1 How to Add the Raises Ruleset
	10.3.10.2 How to Create the Raise ActionType Java Implementation Class
	10.3.10.3 How to Import the Raise Action Java Fact
	10.3.10.4 How to Add the 12 Year Raise Rule
	10.3.10.5 How to Add the Employee Raises Decision Function
	10.3.10.6 How to Add the Employee Raises Java Class
	10.3.10.7 How to Copy Dictionary
	10.3.10.8 How to Build and Run the Project to Check the Raises Rule

11 Working with Decision Components in SOA Applications

	11.1 Introduction to Decision Components
	11.2 Working with a Decision Component
	11.2.1 Working with Decision Component Metadata
	11.2.1.1 Decision Service Metadata (.decs) File
	11.2.1.2 SCA Component Type (.componentType) File
	11.2.1.3 Decision Component Entry in composite.xml

	11.2.2 Working with Decision Components that Expose a Decision Function
	11.2.3 Using Stateful Interactions with a Decision Component
	11.2.4 What You Need to Know About Stateful Interactions with Decision Components

	11.3 Decision Service Architecture

12 Using Oracle SOA Composer with Oracle Business Rules

	12.1 Introduction to SOA Composer
	12.2 Using SOA Composer User Authentication
	12.2.1 What You Need to Know About SOA Composer Access Control and User Authentication

	12.3 Opening and Viewing an Oracle Business Rules Dictionary at Runtime
	12.3.1 Opening an Oracle Business Rules Dictionary at Runtime
	12.3.2 What You Need to Know When You Open an Oracle Business Rules Dictionary
	12.3.3 What You Need to Know to Obtain the Dictionary Path from the Open Dialog
	12.3.4 Viewing Globals in an Oracle Business Rules Dictionary at Runtime
	12.3.5 Viewing Bucketsets in an Oracle Business Rules Dictionary at Runtime
	12.3.6 Viewing Rulesets in an Oracle Business Rules Dictionary at Runtime

	12.4 Getting Started with Editing and Saving a Dictionary at Runtime
	12.4.1 Editing Bucketsets in an Oracle Business Rules Dictionary at Runtime
	12.4.2 What You Need to Know About Editing Bucketsets
	12.4.3 Editing Rules in an Oracle Business Rules Dictionary at Runtime

	12.5 Committing Changes for an Oracle Business Rules Dictionary at Runtime
	12.5.1 What You Need to Know About Editing With Multiple Users at Runtime

	12.6 Editing Rules in an Oracle Business Rules Dictionary at Runtime
	12.6.1 Adding a Rule at Runtime
	12.6.2 Deleting a Rule at Runtime
	12.6.3 Showing and Editing Advanced Settings for Rules at Runtime
	12.6.4 Adding Rule Conditions at Runtime
	12.6.5 Deleting Rule Conditions at Runtime
	12.6.6 Modifying Rule Conditions at Runtime
	12.6.7 Adding Rule Actions at Runtime
	12.6.8 Deleting Rule Actions at Runtime
	12.6.9 Modifying Rule Actions at Runtime
	12.6.10 Working with Advanced Mode Rules at Runtime
	12.6.11 Working with Tree Mode Rules at Runtime

	12.7 Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime
	12.7.1 Adding a Decision Table at Runtime
	12.7.2 Deleting a Decision Table at Runtime
	12.7.3 Modifying a Decision Table at Runtime

	12.8 Validating an Oracle Business Rules Dictionary at Runtime
	12.9 Obtaining Composite and Dictionary Information at Runtime

A Oracle Business Rules Files and Limitations

	A.1 Rules Designer Naming Conventions
	A.1.1 Ruleset Naming
	A.1.2 Dictionary Naming
	A.1.3 Alias Naming
	A.1.4 XML Schema Target Package Naming

B Rules Extension Methods

	B.1 Duration Extension Methods (oracle.rules.rl.extensions.Duration)
	B.2 JavaDate Extension Methods (oracle.rules.rl.extensions.JavaDate)
	B.3 XMLDate Extension Methods (oracle.rules.rl.extensions.XMLDate)
	B.4 OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate)
	B.5 OracleDuration Methods (oracle.rules.sdk2.extensions.OracleDuration)

C Oracle Business Rules Frequently Asked Questions

	C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?
	C.2 What are the Differences Between Oracle Business Rules RL Language and Java?
	C.3 How Does a RuleSession Handle Concurrency and Synchronization?
	C.4 How Do I Correctly Express a Self-Join?
	C.5 How Do I Use a Property Change Listener in Oracle Business Rules?
	C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?
	C.7 How Do I Change the Name of a Dictionary or Dictionary Package?
	C.8 How Do I Put Java Code in a Rule?
	C.9 Can I Use Java Based Facts in a Decision Service with BPEL?
	C.10 How Do I Enable Debugging in a BPEL Decision Service?
	C.11 How Do I Support Versioning with Oracle Business Rules?
	C.12 What is the Priority Order Using Priorities with Rules and Decision Tables?
	C.13 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?
	C.14 Why Are Changes to My Java Classes Not Reflected in the Data Model?
	C.15 How Do I Use Rules SDK to Include a null in an Expression?
	C.16 Is WebDAV Supported as a Repository to Store a Dictionary?
	C.17 Using a Source Code Control System with Rules Designer

D Oracle Business Rules Troubleshooting

	D.1 Getter and Setter Methods are not Visible
	D.2 Java Class with Only a Property Setter
	D.3 Renaming a Dictionary or Dictionary Package
	D.4 Runtime NoClassDefFound Error
	D.5 RL Specific Keyword Naming Conflict Errors
	D.6 java.lang.IllegalAccessError from Business Rules Service Runtime
	D.7 JAXB 1.0 Dictionaries and RL MultipleInheritanceException
	D.8 Why Does XML Schema with Underscores Fail JAXB Compilation?
	D.9 How Are Decision Service Input Output Element Types Restricted?
	D.10 How Are Decision Service Input Output Schema Restricted?
	D.11 How Do I Handle Java Reserved Names in an Imported Fact Type?

E Working with Oracle Business Rules and JSR-94 Execution Sets

	E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets
	E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets
	E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text
	E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL
	E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

	E.3 Using the JSR-94 Interface with Oracle Business Rules
	E.3.1 Creating a Rule Execution Set with createRuleExecutionSet
	E.3.2 Creating a Rule Session with createRuleSession
	E.3.3 Working with JSR-94 Metadata
	E.3.4 Using Oracle Business Rules JSR-94 Extensions
	E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set
	E.3.4.2 Invoking an RL Language Function in JSR-94

F Working with Rule Reporter

	F.1 Introduction to Working with Rule Reporter
	F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets
	F.1.2 What You Need to Know About RuleReporter API
	F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files

	F.2 Using Rule Reporter Command Line Interface
	F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line

	F.3 Using Rule Reporter with Java
	F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java

Index

Preface

This Preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documentation

	
Conventions

Audience

Oracle Fusion Middleware User's Guide for Oracle Business Rules is intended for application programmers, system administrators, and other users who perform the following tasks:

	
Create Oracle Business Rules programs

	
Modify or customize existing Oracle Business Rules programs

	
Create Java applications using rules programs

	
Add rules programs to existing Java applications

To use this document, you need a working knowledge of Java programming language fundamentals.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documentation

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/index.html

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Overview of Oracle Business Rules

Oracle Business Rules enable dynamic decisions at runtime allowing you to automate policies, computations, and reasoning while separating rule logic from underlying application code. This allows more agile rule maintenance and empowers business analysts with the ability to modify rule logic without programmer assistance and without interrupting business processes.

This guide describes how to:

	
Work with the Oracle Business Rules Designer (Rules Designer) extension to Oracle JDeveloper to create Oracle Business Rules artifacts

	
Work with the Oracle SOA Composer application to view and update a deployed dictionary that is part of an SOA composite application

	
Use Oracle Business Rules as part of an Oracle SOA Suite composite application as a Decision component

	
Use Oracle Business Rules as part of Java EE application with the Oracle Business Rules SDK

	
Use the Oracle Business Rules SDK (Rules SDK)

	
Access the Oracle Business Rules Rules Engine using the JSR-94 Java Rule Engine API

This chapter includes the following sections:

	
Section 1.1, "What are Business Rules?"

	
Section 1.2, "Oracle Business Rules Runtime and Design Time Elements"

	
Section 1.3, "Oracle Business Rules Engine Architecture"

For more information, see:

	
Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

	
Oracle Fusion Middleware Java API Reference for Oracle Business Rules

	
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1.1 What are Business Rules?

Business rules are statements that describe business policies or describe key business decisions. For example, business rules include:

	
Business policies such as spending policies and approval matrices.

	
Constraints such as valid configurations or regulatory requirements.

	
Computations such as discounts or premiums.

	
Reasoning capabilities such as offers based on customer value.

For example, a car rental company might use the following business rule:

[image: Description of intro_driver.gif follows]

An airline might use a business rule such as the following:

[image: Description of intro_fyer.gif follows]

A financial institution could use a business rule such as:

[image: Description of intro_loan.gif follows]

These examples represent individual business rules. In practice, you can use Oracle Business Rules to combine many business rules or to use more complex tests.

For the car rental example, you can name the rule the Driver Age Rule. Traditionally, business rules such as the Driver Age Rule are buried in application code and might appear in a Java application as follows:

public boolean checkDriverAgeRule (Driver driver) {
 boolean declineRent = false;
 int age = driver.getAge();
 if(age < 21) {
 declineRent = true;
 }
 return declineRent;
}

This code is not easy for nontechnical users to read and can be difficult to understand and modify. For example, suppose that the rental company changes its policy so that all drivers under 18 are declined using the Driver Age Rule. In many production environments the developer must modify the application, recompile, and then redeploy the application. Using Oracle Business Rules, this process can be simplified because a business rules application is built to support easily changing business rules.

Oracle Business Rules allows a business analyst to change policies that are expressed as business rules, with little or no assistance from a programmer. Applications using Oracle Business Rules support continuous change that allows the applications to adapt to new government regulations, improvements in internal company processes, or changes in relationships between customers and suppliers.

A rule follows an if-then structure and consists of the following parts:

	
IF part: a condition or pattern match (see Section 1.1.1, "What Are Rule Conditions?").

	
THEN part: a list of actions (see Section 1.1.2, "What Are Rule Actions?").

Alternatively, you can express rules in a spreadsheet-like format called a Decision Table (see Section 1.1.3, "What Are Decision Tables?").

You write rules and Decision Tables in terms of fact types and properties. Fact types are often imported from the Java classes, XML schema, Oracle ADF Business Components view objects, or may be created in Rules Designer. Fact properties have a name, value, data type, and an optional bucketset. A bucketset splits the value space of the data type into buckets that can be used in Decision Tables, choice lists, and for design time validation (see Section 1.1.4, "What Are Facts and Bucketsets?").

You group rules and Decision Tables in an Oracle Business Rules object called a ruleset (see Section 1.1.5, "What Are Rulesets?").

You group one or more rulesets and their facts and bucketsets in an Oracle Business Rules object called a dictionary (see Section 1.1.8, "What Are Dictionaries?").

For more information, see Section 1.2, "Oracle Business Rules Runtime and Design Time Elements".

1.1.1 What Are Rule Conditions?

The rule IF part is composed of conditional expressions, rule conditions, that refer to facts. For example:

IF Rental_application.driver age < 21

The conditional expression compares a business term (Rental_application.driver age) to the number 21 using a less than comparison.

The rule condition activates the rule whenever a combination of facts makes the conditional expression true. In some respects, the rule condition is like a query over the available facts in the Rules Engine, and for every row returned from the query the rule is activated.

For more information, see:

	
Chapter 4, "Working with Rulesets and Rules"

	
"Rule Conditions" in the Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

1.1.2 What Are Rule Actions?

The rule THEN part contains the actions that are executed when the rule is fired. A rule is fired after it is activated and selected among the other rule activations using conflict resolution mechanisms such as priority. A rule might perform several kinds of actions. An action can add facts, modify facts, or remove facts. An action can execute a Java method or perform a function which may modify the status of facts or create facts.

Rules fire sequentially, not in parallel. Note that rule actions often change the set of rule activations and thus change the next rule to fire.

For more information, see:

	
Section 1.3.4, "Rule Firing and Rule Sessions"

	
Chapter 4, "Working with Rulesets and Rules"

	
"Ordering Rule Firing" in the Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

1.1.3 What Are Decision Tables?

A Decision Table is an alternative business rule format that is more compact and intuitive when many rules are needed to analyze many combinations of property values. You can use a Decision Table to create a set of rules that covers all combinations or where no two combinations conflict.

For more information, see Chapter 5, "Working with Decision Tables".

1.1.4 What Are Facts and Bucketsets?

In Oracle Business Rules, facts are the objects that rules reason on. Each fact is an instance of a fact type. You must import or create one or more fact types before you can create rules.

In Oracle Business Rules a fact is an asserted instance of a class. The Oracle Business Rules runtime or a developer writing in the RL Language uses the RL Language assert function to add an instance of a fact to the Oracle Business Rules Engine.

In Rules Designer you can define a variety of fact types based on, XML Schema, Java classes, Oracle RL definitions, and ADF Business Components view objects. In the Oracle Business Rules runtime such fact type instances are called facts.

You can create bucketsets to define a list of values or a range of values of a specified type. After you create a bucketset you can associate the bucketset with a fact property of matching type. Oracle Business Rules uses the bucketsets that you define to specify constraints on the values associated with fact properties in rules or in Decision Tables. You can also use bucketsets to specify constraints for variable initial values and function return values or function argument values.

For more information, see:

	
Section 1.3, "Oracle Business Rules Engine Architecture"

	
Chapter 3, "Working with Facts and Bucketsets"

1.1.5 What Are Rulesets?

A ruleset is an Oracle Business Rules container for rules and Decision Tables. A ruleset provides a namespace, similar to a Java package, for rules and Decision Tables. In addition you can use rulesets to partially order rule firing.

For more information, see:

	
Chapter 4, "Working with Rulesets and Rules"

	
"Ordering Rule Firing" in the Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

1.1.6 What Are Decision Functions?

A decision function provides a contract for invoking rules from Java or SOA (from an SOA composite application or from a BPEL process). The contract includes input fact types, rulesets to run, and output fact types. For more information, see Chapter 6, "Working with Decision Functions".

1.1.7 What Are Decision Points?

Oracle Business Rules SDK (Rules SDK) provides APIs that let you write applications that access, create, modify, and execute rules in Oracle Business Rules dictionaries (and all the contents of a dictionary). The Rules SDK provides the Decision Point API to access and run rules or Decision Tables from a Java application. For more information, see Chapter 7, "Working with Rules SDK Decision Point API".

1.1.8 What Are Dictionaries?

A dictionary is an Oracle Business Rules container for facts, functions, globals, bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that stores the application's rulesets and the data model. Dictionaries can link to other dictionaries. Oracle JDeveloper creates an Oracle Business Rules dictionary in a .rules file. You can create as many dictionaries as you need. A dictionary may contain any number of rulesets. For more information, see Section 2.2, "Working with a Dictionary and Dictionary Links".

1.2 Oracle Business Rules Runtime and Design Time Elements

Oracle Business Rules provides support for using business rules as a Decision component or as a library in a Java application. A Decision component is a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes. To create and use rules in the Oracle SOA Suite, or to create rules and integrate these rules into your applications, Oracle Business Rules provides the following runtime and design time elements:

	
Decision Component (Business Rules) in an SOA Composite Application

	
Using Rules Engine with Oracle Business Rules in a Java EE Application

	
Oracle Business Rules RL Language

	
Oracle Business Rules SDK

	
Rules Designer

	
Oracle SOA Composer Application

1.2.1 Decision Component (Business Rules) in an SOA Composite Application

Oracle SOA Suite provides support for Decision components that support Oracle Business Rules. A Decision component is a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is a SCA component that can be used within a composite and wired to a BPEL component. Apart from that, Decision components are used for dynamic routing capability of Mediator and Advanced Routing Rules in Human Workflow.

Oracle Business Rules Rules Engine (Rules Engine) is available in an SOA composite application using the SOA Business Rule service engine that efficiently applies rules to facts and defines and processes rules.

Rules Engine has the following features:

	
High performance: Rules Engine implements specialized matching algorithms for facts that are defined in the system.

	
Thread-safe execution suitable for a parallel processing architecture: Rules Engine provides one thread that can assert facts while another is evaluating the network.

For more information, see Section 1.3, "Oracle Business Rules Engine Architecture".

1.2.2 Using Rules Engine with Oracle Business Rules in a Java EE Application

Oracle Business Rules Rules Engine (Rules Engine) is available as a library for use in a Java EE application (non-SOA). Rules Engine efficiently applies rules to facts and defines and processes rules. Rules Engine defines a Java-like production rule language called Oracle Business Rules RL Language (RL Language), provides a language processing engine (inference engine), and provides tools to support debugging.

Oracle JDeveloper Rules Designer allows business rules to be specified separately from application code. Separating the business rules from application code allows business analysts to change business policies quickly with graphical tools. The Rules Engine evaluates the business rules and returns decisions or facts that are then used in the business process.

Rules Engine has the following features:

	
High performance: Rules Engine implements specialized matching algorithms for facts that are defined in the system.

	
Thread-safe execution suitable for a parallel processing architecture: Rules Engine provides one thread that can assert facts while another is evaluating the network.

A rule-enabled Java application can load and run rules programs. The rule-enabled application passes facts and rules to the Rules Engine (facts are asserted in the form of Java objects or XML documents). The Rules Engine runs in the rule-enabled Java application and uses the Rete algorithm to efficiently fire rules that match the facts.

For more information, see Section 1.3, "Oracle Business Rules Engine Architecture" and Section 1.2.4, "Oracle Business Rules SDK".

1.2.3 Oracle Business Rules RL Language

Oracle Business Rules supports a high-level Java-like language called Oracle Business Rules RL Language (RL Language). RL Language defines the valid syntax for Oracle Business Rules programs. RL Language includes an intuitive Java-like syntax for defining rules that supports the power of Java semantics, providing an easy-to-use syntax for application developers. RL Language consists of a collection of text statements that can be generated dynamically or stored in a file.

Using RL Language application programs can assert Java objects as facts, and rules can reference object properties and invoke methods. Likewise, application programs can use XML documents or portions of XML documents as facts.

Programmers can use RL Language as a full-featured rules programming language both directly and as part of the Oracle Business Rules SDK (Rules SDK).

Business analysts can use Rules Designer to work with rules. In this case, the business analyst does not need to directly view or write RL Language programs. For more information, see Section 1.2.5, "Rules Designer".

For detailed information about RL Language, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

1.2.4 Oracle Business Rules SDK

Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule management features that a developer can use to write a rule-enabled program that accesses a dictionary, or to write customized rules programs that add rules or modify existing rules. Rules Designer uses Rules SDK to create, modify, and access rules and the data model using well-defined interfaces. Customer applications can use Rules SDK to access, display, create, and modify collections of rules and the data model.

You can use the Rules SDK APIs in a rule-enabled application to access rules or to create and modify rules. The rules and the associated data model could be initially created in a custom application or using Rules Designer.

This guide describes the Oracle Business Rules SDK Decision Point API. Using a Decision Point you can access a dictionary and run the rules in the dictionary. For complete Oracle Business Rules SDK API information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

For more information, see Chapter 7, "Working with Rules SDK Decision Point API".

1.2.5 Rules Designer

The Oracle Business Rules Designer (Rules Designer) extension to JDeveloper is an editor that enables you to create and edit rules as Figure 1-1 shows.

Figure 1-1 Oracle JDeveloper with Rules Designer

[image: Description of Figure 1-1 follows]

Rules Designer provides a point-and-click interface for creating rules and editing existing rules. Using Rules Designer you can work directly with business rules and a data model. You do not need to understand the RL Language to work with Rules Designer. Rules Designer provides an easy way for you to create, view, and modify business rules.

Rules Designer supports several types of users, including the application developer and the business analyst. The application developer uses Rules Designer to define a data model and an initial set of rules. The business analyst uses Rules Designer either to work with the initial set of rules or to modify and customize the initial set of rules according to business needs. Using Rules Designer a business analyst can create and customize rules with little or no assistance from a programmer.

1.2.6 Oracle SOA Composer Application

When a dictionary is deployed in an SOA composite application, Oracle Business Rules lets you view the dictionary or edit and save changes to the dictionary. You can use the SOA Composer application (SOA Composer) to work with a deployed dictionary that is part of an SOA composite application, as Figure 1-2 shows.

Figure 1-2 Using Oracle SOA Composer to View or Edit a Dictionary at Runtime

[image: Description of Figure 1-2 follows]

For more information, see Chapter 12, "Using Oracle SOA Composer with Oracle Business Rules".

1.3 Oracle Business Rules Engine Architecture

A rule-based system using the Rete algorithm is the foundation of Oracle Business Rules. A rule-based system consists of the following:

	
The rule-base: Contains the appropriate business policies or other knowledge encoded into IF/THEN rules and Decision Tables.

	
Working memory: Contains the information that has been added to the system. With Oracle Business Rules you add a set of facts to the system using assert calls.

	
Inference Engine: The Rules Engine, which processes the rules, performs pattern-matching to determine which rules match the facts, for a given run through the set of facts.

In Oracle Business Rules the rule-based system is a data-driven forward chaining system. The facts determine which rules can fire. When a rule fires that matches a set of facts, the rule may add facts. These facts are again run against the rules. This process repeats until a conclusion is reached or the cycle is stopped or reset. Thus, in a forward-chaining rule-based system, facts cause rules to fire and firing rules can create more facts, which in turn can fire more rules. This process is called an inference cycle.

1.3.1 Declarative Rules

With Oracle Business Rules you can use declarative rules, where you create rules that make declarations based on facts rather than coding. For an example of declarative rules,

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount

In declarative rules:

	
Statements are declared without any control flow

	
Control flow is determined by the Rules Engine

	
Rules are easier to maintain than procedural code

	
Rules relate well to business user work methods

When a rule adds facts and these facts run against the rules, this process is called an inference cycle. An inference cycle uses the initial facts to cause rules to fire and firing rules can create more facts, which in turn can fire more rules. For example, using the initial facts, Rules Engine runs and adds an additional fact, and an additional rule tests for conditions on this fact creating an inference cycle:

IF a Customer is a Premium customer, offer them 10% discount
IF a Customer is a Gold customer, offer them 5% discount
IF a Customer spends > 1000, make them Premium customer

The inference cycle that Oracle Business Rules provides enables powerful and modular declarative assertions.

1.3.2 The RETE Algorithm

The Rete algorithm was first developed by artificial intelligence researchers in the late 1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules uses the Rete algorithm to optimize the pattern matching process for rules and facts. The Rete algorithm stores partially matched results in a single network of nodes in working memory.

By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when facts are deleted, added, or modified. To process facts and rules, the Rete algorithm creates and uses an input node for each fact definition and an output node for each rule.

Fact references flow from input to output nodes. In between input and output nodes are test nodes and join nodes. A test occurs when a rule condition has a Boolean expression. A join occurs when a rule condition ANDs two facts. A rule is activated when its output node contains fact references. Fact references are cached throughout the network to speed up recomputing activated rules. When a fact is added, removed, or changed, the Rete network updates the caches and the rule activations; this requires only an incremental amount of work.

The Rete algorithm provides the following benefits:

	
Independence from rule order: Rules can be added and removed without affecting other rules.

	
Optimization across multiple rules: Rules with common conditions share nodes in the Rete network.

	
High performance inference cycles: Each rule firing typically changes just a few facts and the cost of updating the Rete network is proportional to the number of changed facts, not to the total number of facts or rules.

1.3.3 What Is Working Memory?

Oracle Business Rules uses working memory to contain facts (facts do not exist outside of working memory). A RuleSession contains the Oracle Business Rules working memory.

1.3.4 Rule Firing and Rule Sessions

A Rule Session consists of rules, facts and an agenda. An assert or retract adds or removes fact instances from working memory.

When facts in working memory are changed:

	
Conditions for rules are evaluated

	
Matching rules are added to the agenda (Activated)

	
Rules which no longer match are removed from agenda

	
Rules Engine runs and executes actions (fires), for activated rules

Figure 1-3 shows these parts of Oracle Business Rules runtime.

Figure 1-3 Rules in Rule Session with Working Memory and Facts

[image: Description of Figure 1-3 follows]

A rule action may assert, modify, or retract facts and cause activations to be added or removed from the agenda. There is a possible loop if a rule's action causes it to fire again. Rules are fired sequentially, but in no pre-defined order. The rule session includes a ruleset stack. Activated rules are fired as follows:

	
Rules within top-of-the-stack ruleset are fired

	
Within a ruleset, firing is ordered by user-defined priority

	
Within the same priority, the most recently activated rule is fired first

Only rules within rulesets on the stack are fired, but all rules in a rule session are matched and, if matched, activated.

2 Working with Data Model Elements

In Oracle Business Rules the data model consists of fact types, functions, globals, bucketsets, decision functions, and dictionary links.

This chapter includes the following sections:

	
Section 2.1, "Introduction to Working with Data Model Elements"

	
Section 2.2, "Working with a Dictionary and Dictionary Links"

	
Section 2.3, "Working with Oracle Business Rules Globals"

	
Section 2.4, "Working with Decision Functions"

	
Section 2.5, "Working with Oracle Business Rules Functions"

For more information, see Section 1.1.8, "What Are Dictionaries?".

2.1 Introduction to Working with Data Model Elements

To implement the data model portion of an Oracle Business Rules application you create a dictionary and add data model elements. To complete the dictionary, you create one or more rulesets containing rules that use or depend upon these data model elements.

For more information, see:

	
Chapter 3, "Working with Facts and Bucketsets"

	
Chapter 4, "Working with Rulesets and Rules"

	
Chapter 5, "Working with Decision Tables"

2.2 Working with a Dictionary and Dictionary Links

A dictionary is an Oracle Business Rules container for facts, functions, globals, bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that stores the rulesets and the data model for an application. Dictionaries can link to other dictionaries. You can create as many dictionaries as you need. A dictionary may contain any number of rulesets. Using Oracle Business Rules, a data model is contained in one or more dictionaries. All the data model elements referenced by the rulesets must be available in the dictionary.

A dictionary is stored in a *.rules file.

2.2.1 Introduction to Dictionaries and Dictionary Links

Each Oracle Business Rules dictionary lets you include links to other dictionaries. Each dictionary that you create also includes the built-in dictionary; this dictionary includes standard functions and types that all Oracle Business Rules applications need. In addition to the main dictionary, you create one or more application-specific dictionaries, such as PurchaseItems.rules. You can read and write the properties of these dictionaries.

The complete data model defined by a dictionary and its linked dictionaries is called a combined dictionary. You can create multiple links to the same dictionary; in this case, all but the first link is ignored.

For more information, see Section 2.2.8, "What You Need to Know About Dictionary Linking".

2.2.2 How to Create a Dictionary in the SOA Tier Using Rules Designer

Oracle JDeveloper provides many ways to create a dictionary for Oracle Business Rules. This shows one way you can create a dictionary in an SOA project. You can create a dictionary for use in an SOA application.

A typical SOA composite design pattern is to provide each application with its own dictionary. When different applications need access to the same parts of a common data model, you can use dictionary links to include a target application's dictionary in the dictionary of a source application. Doing so copies the target application's dictionary into the source application. Therefore, when you work with a dictionary that contains links the linked contents are referred to as local contents.

You may also create a dictionary in the business tier, for use outside of an SOA application. For more information, see Section 9.2.4, "How to Create an Oracle Business Rules Dictionary in the Grades Project".

To create a dictionary in the SOA Tier using Rules Designer:

	
In the Application Navigator, select an SOA application and select or create an SOA project.

	
Right-click, and from the dropdown list select New....

	
In the New Gallery select the Current Project Technologies tab and, in the Categories area, expand SOA Tier as shown in Figure 2-1.

Figure 2-1 Creating a Business Rules Dictionary for an SOA Project

[image: Description of Figure 2-1 follows]

	
In the New Gallery window, in the Items area, select Business Rules.

	
Click OK. This displays the Create Business Rules dialog.

	
In the Create Business Rules dialog, enter fields as shown in Figure 2-2:

	
In the Name field, enter the name of your dictionary. For example, enter PurchaseItems.

	
In the Package field, enter the Java package to which your dictionary belongs. For example, com.example.

Figure 2-2 Create Business Rules Dialog

[image: Description of Figure 2-2 follows]

	
To specify the inputs and outputs:

	
Click the Add icon and select Input to create an input or Output, to create an output.

	
In the Type Chooser dialog, expand the appropriate XSD and select the appropriate type.

	
Click OK to close the Type Chooser dialog.

You can later add inputs or outputs, or remove the inputs or outputs. For more information, see Chapter 6, "Working with Decision Functions".

	
In the Create Business Rules dialog, click OK to create the Decision component and the Oracle Business Rules dictionary.

Oracle JDeveloper creates the dictionary in a file with a .rules extension, and starts Rules Designer as shown in Figure 2-3.

Figure 2-3 Creating a New Oracle Business Rules Dictionary PurchaseItems

[image: Description of Figure 2-3 follows]

	
Oracle JDeveloper also creates a Decision component in composite.xml. To view this component double-click the composite.xml file, as Figure 2-4 shows.

Figure 2-4 Decision Component Shown in Composite Editor

[image: Description of Figure 2-4 follows]

2.2.3 How to Create a Dictionary in the Business Tier Using Rules Designer

The simplest way to create a rules dictionary is using Rules Designer. You can create a dictionary for use in the business tier, outside of an SOA application. For information on using Oracle Business Rules without SOA, see Chapter 9, "Creating a Rule-enabled Non-SOA Java EE Application".

2.2.4 How to View and Edit Dictionary Settings

You can view and edit dictionary settings using the Dictionary Settings icon.

To change the dictionary alias:

	
In Oracle JDeveloper, select an Oracle Business Rules dictionary.

	
In Rules Designer, click the Dictionary Settings icon.

	
In the Dictionary Settings dialog, in the Alias field, change the alias to the name you want to use. This field is shown in Figure 2-5.

Figure 2-5 Dictionary Settings Dialog to Change Dictionary Alias or Description

[image: Description of Figure 2-5 follows]

	
Click OK.

2.2.5 How to Rename a Dictionary or Rename a Dictionary Package

In the Application Navigator you can rename a dictionary or rename a dictionary package name. Note that this the rename operation changes the name of the dictionary but not the alias. Change the alias from the Dictionary Settings dialog. In general, these should be set the same value. For more information, see Section 2.2.4, "How to View and Edit Dictionary Settings".

To rename a dictionary package:

	
In Oracle JDeveloper, in Application Navigator select the dictionary, as shown in Figure 2-6.

Figure 2-6 Selecting an Oracle Business Rules Dictionary to Rename

[image: Description of Figure 2-6 follows]

	
If the dictionary is open, select the tab showing the dictionary name and click the Close icon to close the dictionary.

	
In the Application Navigator, select the dictionary name.

	
From the File menu select Rename.... This displays the Rename Oracle Business Rules Dictionary dialog, as shown in Figure 2-7.

Figure 2-7 Rename Oracle Business Rules Dialog

[image: Description of Figure 2-7 follows]

	
To rename the dictionary, in the Name field, enter a name.

	
To rename the dictionary package, in the Package field, enter a name.

	
Click OK.

2.2.6 How to Link to a Dictionary

You can link to a dictionary in the same application or in another application using the Links navigation tab in Rules Designer. To link to another dictionary you need at least one other dictionary available.

To link to a dictionary using resource picker:

	
In Rules Designer, click the Links navigation tab as shown in Figure 2-8.

Figure 2-8 Rules Designer Links Tab

[image: Description of Figure 2-8 follows]

	
In the Links area, click the Create icon and from the dropdown list select Resource Picker. This displays the SOA Resource Browser dialog.

	
In the SOA Resource Browser dialog navigate to select the dictionary you want to link to as shown in Figure 2-9.

Figure 2-9 Resource Picker

[image: Description of Figure 2-9 follows]

	
Click OK.

When you work with ADF Business Components Facts you should create a link to the Decision Point Dictionary. For more information, see Chapter 10, "Working with Oracle Business Rules and ADF Business Components".

To link to the decision point dictionary:

	
In Rules Designer, click the Links navigation tab.

	
In the Links area, click Create and from the dropdown list select Decision Point Dictionary. This operation takes awhile. You need to wait for the Decision Point Dictionary to load.

2.2.7 How to Update a Linked Dictionary

When you have a dictionary, for example a dictionary named Project_rules1 that links to a another dictionary, for example a dictionary named Shared_rules you need to see any changes made to either dictionary in both dictionaries. Using Rules Designer you can modify the Shared_rules dictionary and see those modifications in Project1_rules1 by updating the Project_rules1 dictionary, or you can close and then reopen Rules Designer.

To update a linked dictionary:

	
Using these sample dictionary names click the Save icon to save the Shared_rules dictionary.

	
Select the Project_rules1 dictionary.

	
Select the Links navigation tab.

	
Click the Dictionary Cache... icon.

	
In the Dictionary Finder Cache dialog, select the appropriate linked dictionary.

	
Click the Clear icon.

	
In the Dictionary Finder Cache dialog, click Close.

	
Click the Validate icon.

2.2.8 What You Need to Know About Dictionary Linking

Using a dictionary with links to another dictionary is useful in the following cases:

	
Data Model Sharing, to share portions of a data model within a project. When you link to a dictionary in another project it is copied to the local project.

For example, consider a project where you would like to share some Oracle Business Rules Functions. You can create a dictionary that contains the functions, and name it DictCommon. Then, you can create two dictionaries, DictApp1 and DictApp2 that both link to DictCommon, and both can use the same Oracle Business Rules functions. When you want to change one of the functions, you only change the version in DictCommon. Then, both dictionaries use the updated function the next time RL Language is generated from either DictApp1 or DictApp2.

In Oracle Business Rules a fully qualified dictionary name is called a DictionaryFQN and this consists of two components:

	
Dictionary Package: The package name

	
Dictionary Name: The dictionary name

A dictionary refers to a linked dictionary using its DictionaryFQN and an alias. Oracle Business Rules uses the DictionaryFQN to find a linked dictionary.

Note the following naming constraints for combined dictionaries:

	
Within a combined dictionary the full names of the dictionaries, including the package and name, must be distinct. In addition, the dictionary aliases must be distinct.

	
Oracle Business Rules requires that the aliases of data model definitions of a particular kind, for example, function, Oracle RL class, or bucketset, must be unique within a dictionary.

	
Within a combined dictionary, a definition may be qualified by the alias of its immediately containing dictionary. Definitions in the top and main dictionaries do not have to be qualified. Definitions in other dictionaries must be qualified.

	
Ruleset names must be unique within a dictionary. When RL Language for a ruleset is generated, the dictionary alias is not part of any generated name. For example, if the dictionary named dict1 links to dict2 to create a combined dictionary, and dict1 contains ruleset_1 with rule_1 and dict2 also contains ruleset_1 with rule_2, then in the combined dictionary both of these rules, rule_1 and rule_2 are in the same ruleset (ruleset_1).

	
All rules and Decision Tables must have unique names within a ruleset.

For example, within a combined dictionary that includes dictionary d1 and dictionary d2, dictionary d1 may have a ruleset named Ruleset_1 with a rule rule_1. If dictionary d2 also has a ruleset named Ruleset_1 with a rule_2, then when Oracle Business Rules generates RL Language from the combined, linked dictionaries, both rules rule_1 and rule_2 are in the single ruleset named Ruleset_1. If you violate this naming convention and do not use distinct names for the rules within a ruleset in a combined dictionary, Rules Designer reports a validation warning similar to the following:

RUL-05920: Rule Set Ruleset_1 has two Rules with name rule_1

For more information, see Appendix A, "Oracle Business Rules Files and Limitations".

2.2.9 What You Need to Know About Dictionary Linking and Dictionary Copies

When you create a dictionary link using the resource picker, the dictionary is copied to the source project (the project where the dictionary that you are linking from resides). Thus, this type of linking creates a local copy of the dictionary in the project. This is not a link to the original target, no matter where the target dictionary is. Thus, Rules Designer uses a copy operation for the link if you create a link with the resource picker.

2.2.10 What You Need to Know About Dictionary Linking to a Deployed Dictionary

When you are using Rules Designer you can browse a deployed composite application and any associated Oracle Business Rules dictionaries in the MDS connection. However, you cannot create a dictionary link to a dictionary deployed to MDS.

2.2.11 What You Need to Know About Business Rules Inputs and Outputs with BPEL

Oracle Business Rules accesses input and output variables by type only, and not by name. Thus, if you have two inputs of the same type, input1 and input2, the rules are not able to distinguish which is input1 and which is input2. The variable names are only useful in the BPEL process definition. The mapping for the Oracle Business Rules business terms default to fact type.property, and there may be no relationship to the BPEL variable name.

2.3 Working with Oracle Business Rules Globals

You can use Rules Designer to add Oracle Business Rules globals.

In Oracle Business Rules a global is similar to a public static variable in Java. You can specify that a global is a constant or is modifiable.

You can use global definitions to share information among several rules and functions. For example, if a 10% discount is used in several rules you can create and use a global Gold Discount, so that the appropriate discount is applied to all the rules using the global.

Using global definitions can make programs modular and easier to maintain.

2.3.1 How to Add Oracle Business Rules Globals

You can use Rules Designer to add globals.

To add a global:

	
In Rules Designer, select the Globals navigation tab.

	
In the globals table, click the Create icon. This adds a global and displays the Edit Global dialog, as shown in Figure 2-10.

Figure 2-10 Adding a Global in Rules Designer

[image: Description of Figure 2-10 follows]

	
In the Name field, enter a name or accept the default value.

	
In the Type field, select the type from the dropdown list.

	
Optionally, in the Bucketset field, select a value from the dropdown list.

	
In the Value field, enter a value, select a value from the dropdown list, or click the Expression Builder icon to enter an expression. For more information, see Section 4.10, "Working with Expression Builder".

	
If the global is a constant, then select the Constant checkbox. When selected, this option specifies that the global is a constant value. For more information, see Section 2.3.3, "What You Need to Know About the Final and Constant Options".

	
If the global is a nonfinal, then deselect the Final checkbox. When unselected, this option specifies that the global is modifiable, for instance, in an assign action.

2.3.2 How to Edit Oracle Business Rules Globals

You can use Rules Designer to edit globals.

To edit a Global:

	
In Rules Designer, select the Globals navigation tab.

	
Double-click the globals icon in a row in the Globals table. When you double-click the globals icon in a row this displays the Edit Global - Global Name window as shown in Figure 2-11. In this window you can edit a global and change field values, including the Final field and the Constant field (the Constant field is only shown when you double-click a global to display the Edit Global dialog.

Figure 2-11 Edit Global Window

[image: Description of Figure 2-11 follows]

2.3.3 What You Need to Know About the Final and Constant Options

The Edit Global dialog shows the Constant and Final checkboxes that you can select for a global.

Note the following when you use globals:

	
When you deselect Final, this specifies that the global is modifiable, for instance, in an assign action.

	
When you select Final, this specifies that you can use the globals in a test in a rule (nonfinal globals cannot be used in a test in a rule).

	
When you select Final, this specifies that the global is initialized one time at runtime and cannot be changed.

When you select the Constant option in the Edit Global dialog, this specifies the global is a constant. In Oracle Business Rules a constant is a string or numeric literal, a final global whose value is a constant, or a simple expression involving constants and +, -, *, and /.

Selecting the Constant option for a global has three effects:

	
You do not have to surround string literals with double quotes.

	
Only constants appear in the expression value choice list.

	
The expression value must be a constant to be valid.

Selecting the Constant option is optional. Note that bucket values, bucket range endpoints, and ruleset filter values are always constant.

2.4 Working with Decision Functions

The data model includes decision functions. For information on working with decision functions, see Section 6.1, "Introduction to Decision Functions".

2.5 Working with Oracle Business Rules Functions

Oracle Business Rules provides functions to hide complexity when you create rules. Oracle Business Rules lets you use built-in or user-defined functions in rule and Decision Table conditions and actions.

2.5.1 Introduction to Oracle Business Rules Functions

In Oracle Business Rules you define a function in a manner similar to a Java method, but an Oracle Business Rules function does not belong to a class. You can use Oracle Business Rules functions to extend a Java application object model so that users can perform operations in rules without modifying the original Java application code.

You can use an Oracle Business Rules function in a condition or in an action associated with a rule or a Decision Table.

You can also use an Oracle Business Rules function definition to share the same or a similar expression among several rules, and to return results to the application.

An Oracle Business Rules function includes the following:

	
Name: The Oracle Business Rules function name.

	
Return Type: A return type for the Oracle Business Rules function, or void if there is no return value.

	
Bucketset: The bucketset to associate with the Oracle Business Rules function.

	
Arguments: The function arguments. Each function argument includes a name and a type.

	
Function Body: The function body includes predefined actions. Using predefined actions Rules Designer assures that an Oracle Business Rules function is well formed and can be validated.

You can also use functions to test rules from within Rules Designer. For more information, see Section 8.1.1, "How to Test Rules Using a Test Function in Rules Designer".

2.5.2 How to Add an Oracle Business Rules Function

You use Rules Designer to add an Oracle Business Rules function.

To add an Oracle Business Rules Function:

	
In Rules Designer, select the Functions navigation tab.

	
Select the Create... icon.

	
Enter the function name in the Name field, or use the default name.

	
Select the return type from the Return Type dropdown list. For example, select void.

	
Optionally, select a bucketset to associate with the function return type from the dropdown list in the Bucketset field.

	
Optionally, in the Description field enter a description.

	
In the Arguments table, click Add to add one or more arguments for the function.

	
For each argument in the Type field, select the type from the dropdown list.

	
For each argument in the Bucketset field, to limit the argument values as specified by a bucketset constraint, select a bucketset from the dropdown list.

	
In the Body area, enter actions and arguments for the function body. For example, see Figure 2-12.

Figure 2-12 Adding an Oracle Business Rules Function

[image: Description of Figure 2-12 follows]

3 Working with Facts and Bucketsets

Facts are the objects that rules reason on and bucketsets define groupings of fact property values.

This chapter includes the following sections:

	
Section 3.1, "Introduction to Working with Facts and Bucketsets"

	
Section 3.2, "Working with XML Facts"

	
Section 3.3, "Working with Java Facts"

	
Section 3.4, "Working with RL Facts"

	
Section 3.5, "Working with ADF Business Components Facts"

	
Section 3.6, "Working with Bucketsets"

	
Section 3.7, "Associating a Bucketset with Facts and Functions"

3.1 Introduction to Working with Facts and Bucketsets

In Oracle Business Rules facts that you can run against the rules are data objects that have been asserted. Each object instance corresponds to a single fact. If an object is re-asserted (whether it has been changed or not), the Rules Engine is updated to reflect the new state of the object. Re-asserting the object does not create a fact. To have multiple facts of a particular fact type separate object instances must be asserted.

In Rules Designer, you make business objects and their methods known to Oracle Business Rules using fact definitions that are part of a data model.

You must create one or more facts, and optionally bucketsets, before you can create rules.

In Rules Designer you can work with the following types of facts:

	
XML Facts: XML Facts are imported from existing sources by specifying XML Schema. You can add aliases to imported XML Facts or use XML Facts with RL Facts to change the data model according to your business needs.

For more information, see Section 3.2, "Working with XML Facts".

	
Java Facts: Java Facts are imported from existing sources. You can add aliases to Java Facts or use them with RL Facts to target the data model to business needs. Java Facts are also used to import supporting Java classes for use with the rules or Decision Tables that you create.

For more information, see Section 3.3, "Working with Java Facts".

	
RL Facts: RL Facts are the only kind of facts that you can create directly and do not have an external source. All other types of Oracle Business Rules facts are imported. An RL Fact is similar to a relational database row or a JavaBean without methods. An RL Fact contains a list of properties of types available in the data model, either RL Facts, Java Facts, or primitive types. You can use RL Facts to extend a Java application object model by providing virtual dynamic types.

For more information, see Section 3.4, "Working with RL Facts".

	
ADF Business Components Facts: ADF Business Components Facts allow you to use ADF Business Components as Facts in rules and in Decision Tables. By using ADF Business Components Facts you can assert view object graphs representing the business objects upon which rules should be based, and let Oracle Business Rules deal with the complexities of managing the relationships between the various related view objects in the view object graph.

For more information, see Section 3.5, "Working with ADF Business Components Facts".

You typically use Java fact types and XML fact types to create rules that examine the business objects in a rule-enabled application, or to return results to the application. You use RL Language fact type definitions to create intermediate facts that can trigger other rules in the Rules Engine.

You can create bucketsets to define a list of values or a range of values of a specified type. After you create a bucketset you can associate the bucketset with a fact property of matching type. When a bucketset is associated with a fact property Oracle Business Rules uses the buckets that you define as constraints for the values for the fact properties in rules or in Decision Tables.

For more information, see:

	
Section 3.6, "Working with Bucketsets"

	
Section 3.7, "Associating a Bucketset with Facts and Functions"

3.2 Working with XML Facts

The XML fact type allows XML Schema types, elements, and attributes to be used when writing rules. Elements and types defined in XML Schema can be imported into the data model and can then be used to create rules and Decision Tables, just as with Java fact types and RL Fact types. The mapping between the XML Schema definition and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and conventions in an XML Schema definition and the available types, allowed names and conventions in Java. For example, an element named order-id and of type xsd:integer is mapped to a Java Bean property named orderID of type BigInteger (and xsd:int type maps to Java int).

Thus, with Oracle Business Rules if you have an XML document that contains data associated with your application and you have the schema associated with the XML document then you can use Rules Designer to define rules based on elements that you specify from the XML Schema.

To create XML fact types, perform the following steps:

	
Define or obtain an XML Schema.

	
Use Rules Designer to import the XML Schema into a dictionary. This step uses the JAXB compiler to generate Java classes from the XML Schema. After you compile the XML Schema, you select the desired elements from the schema to add XML Facts in the data model and import the generated JAXB classes into the data model. For more information on these steps, see Section 3.2.1, "How to Import XML Schema and Add XML Facts".

	
Write rules or create Decision Tables based on these XML Facts that you added to the data model. For more information, see Section 4.3, "Working with Rules" and Section 5.2, "Creating Decision Tables".

Elements and types defined in XML Schema can be imported into the data model so that instances of types can be created, asserted, modified, and retracted by rules. Most XML documents describe hierarchical information, where each element contains subelements. It is common for users to want to write individual rules based on multiple elements in this hierarchy, and the hierarchical relationship among the elements. In Oracle Business Rules the default behavior when you assert a fact is to only assert the single fact instance, and none of the child objects it may reference in the hierarchy of subelements. When you create rules or a Decision Table it is often desirable to assert an entire hierarchy of elements based on a reference to a root element. Oracle Business Rules provides the assertTree action type that allows for a recursive assert for a hierarchy. For more information, see Section 4.8, "Working with Tree Mode Rules".

3.2.1 How to Import XML Schema and Add XML Facts

Before you can use XML Schema definitions in a data model you must import XML schema. This step generates the JAXB classes and makes the generated classes and packages associated with the XML schema visible in Rules Designer.

To import XML schema and add XML facts:

	
In Rules Designer, select the Facts navigation tab.

	
Select the XML Facts tab on the Facts navigation tab, as shown in Figure 3-1.

Figure 3-1 The XML Facts Tab in Rules Designer

[image: Description of Figure 3-1 follows]

	
In the XML Facts tab, click Create.... This displays the Create XML Fact dialog.

	
In the Create XML Fact dialog, in the Source Schemas area, click Add Source Schema.... This displays the Add Source Schema dialog, as shown in Figure 3-2.

Figure 3-2 XML Fact: Add Source Schema Dialog

[image: Description of Figure 3-2 follows]

	
In the Add Source Schema dialog, in the Schema Location field, enter the location of the XML Schema you want to import, or click Browse to locate the XML schema. During the import the file is copied into the project.

	
In the Add Source Schema dialog, in the JAXB Classes Directory field, accept the default or enter the directory where you want Rules Designer to store the JAXB-generated Java source and class files.

	
In the Add Source Schema dialog, in the Target Package field, enter a target package name or leave this field empty. If you leave this field empty the JAXB classes package name is generated from the XML target namespace of the XML schema using the default JAXB XML-to-Java mapping rule or explicitly defined package name using annotations, or "generated" if no namespace or annotation is defined. Using the schema namespace is preferred.

For example, the namespace http://www.oracle.com/as11/rules/demo is mapped to com.oracle.as11.rules.demo.

	
Click OK. Rules Designer processes the schema and compiles the JAXB, so depending on the size of the schema this step may take some time to complete. When this step completes Rules Designer displays the Create XML Fact dialog with the Target Classes area updated to include the JAXB classes, as shown in Figure 3-3.

Figure 3-3 XML Fact: Create XML Fact Dialog

[image: Description of Figure 3-3 follows]

	
In the Create XML Fact dialog, in the Target Classes area, select the classes you want to import as XML fact types.

	
Click OK.

3.2.2 How to Display and Edit XML Facts

To work with an XML Fact, in Rules Designer open the Edit XML Fact dialog.

To display and edit XML facts:

	
In Rules Designer, select the Facts navigation tab.

	
Select the XML Facts tab on the Facts navigation tab.

	
In the XML Facts table, double-click the icon for the XML Fact you want to edit. This displays the Edit XML Fact dialog, as shown in Figure 3-4.

Figure 3-4 Edit XML Fact Dialog

[image: Description of Figure 3-4 follows]

The Edit XML Fact dialog includes the fields shown in Table 3-1.

Table 3-1 XML Fact: Edit XML Fact Dialog Fields

	Field	Description
	
Name

	
Displays the XML Fact name. You cannot change the name of JAXB generated class.

	
Alias

	
Enter the XML Fact alias. You can change this value. This defaults to the unqualified name of the class.

	
Super Class

	
Displays Java super class associated with this fact.

	
Description

	
Enter the XML Fact description.

	
XML Name

	
Displays the XML name associated with the XML Fact.

	
Generated From

	
Displays the XML schema file that was the source for the XML Fact when it was copied into the business rules data model.

	
Visible

	
Select to show the XML Fact in dropdown lists in Rules Designer. XML Facts often reference other XML Facts, forming a tree. You should make all the XML fact types visible that contain properties that you reference in rules.

	
Support XPath Assertion

	
Select to enable XPath assertion for the fact. This feature is provided for backward compatibility only. Typically, this option is not used.

	
Attributes area

	
Select the available constructors, properties, methods, or fields associated with the JAXB class for the XML Fact to display or edit.

3.2.3 How to Reload XML Facts with Updated Schema

If an XML schema changes in a project, the schema must be reimported into the Oracle Business Rules dictionary. When you reimport the schema Oracle Business Rules uses JAXB to recompile all source schemas for every XML fact type and updates the XML fact type definitions with the updated XML Schema definitions. You should reimport facts if you changed the schema or classes and you want to use the changed schema or classes at runtime.

To reimport XML facts:

	
In Rules Designer, select the Facts navigation tab.

	
Select the XML Facts tab on the Facts navigation tab.

	
On the XML Facts page, click the Reload XML Facts from Updated Schemas icon.

After the reimport operation you need to correct any validation warnings that may be caused by incompatible changes (for example, the updated schema may include a change that removed a property that is referenced by a rule).

3.2.4 What You Need to Know About XML Facts

Keep the following points in mind when you work with XML Facts:

	
When writing rules, the assertTree action type is available only in advanced mode. For more information on creating rules using assertTree, see Section 4.8, "Working with Tree Mode Rules".

	
When creating a decision function, the tree option for the input types defines whether assert or assertTree is used to put the input facts in working memory. For more information on assertTree, see Section 4.8, "Working with Tree Mode Rules".

	
When XML Schema contain a restriction definition, this allows a user to restrict the types that are valid for use in an element. A common use of restriction is to define an enumeration of strings which can be used for an element, as shown in Example 3-1.

Example 3-1 XML Schema Restriction Example

<xs:simpleType name="status-type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="manual"/>
 <xs:enumeration value="approved"/>
 <xs:enumeration value="rejected"/>
 </xs:restriction>
</xs:simpleType>

Oracle JAXB 2.0 maps a restriction to a Java enum type. When you use Rules Designer to import either a Java enum type or an element with an XML restriction, the static final fields representing the enums are available for use in expressions. Additionally, Oracle Business Rules creates a bucketset for each enum containing all of the enum values and null. For more information on bucketsets, see Section 3.6, "Working with Bucketsets".

	
There is a default version of the JAXB binding compiler supplied with Oracle Application Server. You can use a different JAXB binding compiler. However, to use a different JAXB binding compiler you must manually perform the XML schema processing and then import the generated Java packages and classes into the data model as Java Facts.

For more information about JAXB, see

http://java.sun.com/webservices/jaxb/

	
You should reimport facts if you changed the schema or classes and you want to use the changed schema or classes at runtime. You should correct any validation warnings that may be caused by incompatible changes (for example, removing a property that is referenced by a rule). For more information, see Section 3.2.3, "How to Reload XML Facts with Updated Schema".

	
Most users should not need to use the ObjectFactory or import it. If you do need to import and use the ObjectFactory, then use a different package name for every XML Schema that you import; otherwise the different ObjectFactory classes conflict.

	
The use of XML schema with elements that have minOccurs="0" and nillable="true" has special handling in JAXB. For more information, see Section C.13, "Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?".

	
The default element naming conventions for JAXB can cause XML schema containing the underscore character in XML-schema element names to fail to compile. For more information, see Section D.8, "Why Does XML Schema with Underscores Fail JAXB Compilation?".

	
There are certain restrictions on the types and names of inputs for the Decision Service. For more information, see Section D.9, "How Are Decision Service Input Output Element Types Restricted?".

	
The built-in dictionary includes support for the Java wrappers Integer, Long, Short, Float, Double, BigDecimal, and BigInteger. These types can appear in XML Fact Types.

3.3 Working with Java Facts

In Rules Designer, importing a Java Fact makes the Java classes and their methods become visible to Rules Designer. Rules Designer does not copy the Java code or bytecode into the data model or into the dictionary.

A Java fact type allows selected properties and methods of a Java class to be imported to the Rules Engine so that rules can access, create, modify, and delete instances of the Java class.

Importing a Java fact type allows the Rules Engine to access and use public attributes, public methods, and bean properties defined in a Java class (bean properties are preferable because they can be modified using the modify action).

3.3.1 How to Import Java Classes and Define Java Facts

Before you can use Java Facts in rules and in Decision Tables, you must make the classes and packages that contain the Java Facts available to Rules Designer. To do this you use Rules Designer to specify the classpath that contains the Java classes, and then you import the Java Facts.

To import and define Java Facts:

	
In Rules Designer, select the Facts navigation tab.

	
Select the Java Facts tab on the Facts navigation tab as shown in Figure 3-5.

Figure 3-5 The Java Facts Table in the Facts Navigation Tab

[image: Description of Figure 3-5 follows]

	
In the Java Facts tab, click Create.... This displays the Create Java Fact dialog, as shown in Figure 3-6.

Figure 3-6 Adding a Java Fact

[image: Description of Figure 3-6 follows]

	
In the Create Java Fact dialog, if the classpath that contains the classes you want to import is not shown in the Classpath area, then click Add to Classpath. This displays the Choose Directory/Jar dialog.

The default Rules Designer classpath includes three packages, java, javax, and org. These packages contain classes that Rules Designer lets you import from the Java runtime library (rt.jar). Rules Designer does not let you remove these classes from the Classes area (and the associated classpaths are not shown in the Classpaths area).

	
In the Choose Directory/Jar dialog, browse to select the classpath or jar file to add. By default, the output directory for the project is on the import classpath and any Java classes in the project should appear in the Classes importer. If they do not appear, execute the Build action for the project.

	
Click Open. This adds the classpath or jar file and updates the Classes area.

	
In the Create Java Fact dialog, in the Classes area select the packages and classes to import as shown in Figure 3-7.

Figure 3-7 Selecting Java Classes for Java Facts

[image: Description of Figure 3-7 follows]

	
Click OK. This updates the Java Facts table in the Java Facts tab.

3.3.2 How to Display and Edit Java Facts

To display or edit Java Facts after you import the Java Facts, use the Edit Java Fact dialog.

To display and edit Java facts:

	
In Rules Designer, click the Facts navigation tab.

	
Select the Java Facts tab in the Facts navigation tab.

	
In the Java Facts table, double-click the Java Fact you want to edit. This displays the Edit Java Fact dialog as shown in Figure 3-8.

Figure 3-8 Edit Java Fact Dialog

[image: Description of Figure 3-8 follows]

The Edit Java Fact dialog includes the fields shown in Table 3-2.

Table 3-2 Edit Java Fact Dialog Fields

	Field	Description
	
Class

	
Displays the Java Fact class for the source associated with the Java Fact.

	
Alias

	
Enter the Java Fact alias.

	
Super Class

	
Displays Java super class associated with this fact.

	
Description

	
Enter the Java Fact description.

	
Visible

	
Select to show the Java Fact in dropdown lists in Rules Designer.

	
Attributes area

	
Select the available class properties, constructors, methods, or fields associated with the Java class for the Java Fact act to display or edit.

3.3.3 What You Need to Know About Java Facts

When you define Java Facts you need to know the following:

	
On Windows systems, you can use a backslash (\) or a slash (/) to specify the classpath in the Classpath area. Rules Designer accepts either path separator.

	
Classes and interfaces that you use in Rules Designer must adhere to the following rules: If you are using a class or interface, only its superclass or one of its implemented interfaces may be made visible.

	
When you specify the classpath you can specify a JAR file, a ZIP file, or a full path for a directory.

	
When you specify a directory name for the classpath, the directory specifies the classpath that ends with the directory that contains the "root" package (the first package in the full package name). Thus, if the classpath specifies a directory, Rules Designer looks in that tree for directory names matching the package name structure.

For example, to import a class cool.example.Test1 located in c:\myprj\cool\example\Test1.class, specify the classpath value, c:\myprj.

	
You should reimport facts if you change the classes. After the reimport operation you may see validation warnings due to class changes. You should correct any validation warnings that may be caused by incompatible changes (for example, removing a property that is referenced by a rule).

3.4 Working with RL Facts

RL Facts are the only kind of facts that you can create directly and do not have an external source. All other types of Oracle Business Rules facts are imported. An RL Fact is similar to a relational database row or a JavaBean without methods. An RL Fact contains a list of properties of types available in the data model, either RL Fact, Java Fact, or primitive types. You can use an RL Fact to extend a Java application object model by providing virtual dynamic types.

For example:

IF customer spent $500 within past 3 months

THEN customer is a Gold Customer

This rule might use a Java Fact to specify the customer data and also use an action that creates an RL Fact, Gold Customer. A rule might be defined to use a Gold Customer fact, as follows:

IF customer is a Gold customer

THEN offer 10% discount

This rule uses the RL Fact named Gold Customer. This rule then infers, using the Gold Customer fact, that if a customer spent $500 within the past 3 months, then the customer is eligible for a 10% discount. In addition rules could specify other ways that a customer becomes a Gold Customer.

For testing and prototyping with Rules Designer you can create RL Facts and use the RL Facts to write and test rules before you import a schema and switch to XML Facts (you might need to wait for an approved XML schema to be created or to be made available). Switching from RL Facts to corresponding XML Facts involves the following steps:

	
Delete the RL Facts (this action shows validation warnings in the rules or Decision Tables you created that use these RL Facts).

	
Import the XML Facts and give the facts and their properties aliases that match the names of the RL Facts and properties you deleted in step 1.

	
This process should remove the validation warnings if the XML Fact and property aliases and types match those of the RL Facts that you remove.

3.4.1 How to Define RL Facts

You add RL Facts from the Facts navigation tab.

To define RL facts:

	
In Rules Designer, select the Facts navigation tab.

	
Select the RL Facts tab in the Facts navigation tab as shown in Figure 3-9.

Figure 3-9 RL Facts Tab in Rules Designer

[image: Description of Figure 3-9 follows]

	
In the RL Facts tab, click Create.

	
In the RL Facts table, in the Name field, enter the name for the RL Fact or accept the default name.

	
In the RL Facts table, in the Description field, enter a description or accept the default, no description.

3.4.2 How to Display and Edit RL Facts and Add RL Fact Properties

You add properties to RL Facts using the Edit RL Facts dialog.

To display and edit RL facts and add RL fact properties:

	
In Rules Designer, select the Facts navigation tab.

	
In the RL Facts tab, double-click the icon for the RL Fact to display or edit the fact. This displays the Edit RL Fact dialog, as shown in Figure 3-10.

Figure 3-10 Edit RL Fact Dialog

[image: Description of Figure 3-10 follows]

	
To add RL Fact properties, on the Edit RL Fact dialog in the Properties area, click Create.

	
In the Name field, enter the property name.

	
In the Type field, select a type from the dropdown list or enter a property type.

	
To associate a bucketset with the property, from the dropdown list in the Bucketset field, select a bucketset.

	
To associate an initial value with the property enter a value in the Initial Value field.

	
Add additional properties by repeating these steps, as required.

	
Click OK.

3.4.3 What You Need to Know About RL Facts

When you add properties to RL Facts using the Edit RL Facts dialog, in the Properties area the Initial Value field provides a dropdown list of possible values as shown in Figure 3-11.

Figure 3-11 Setting RL Fact Property Initial Value

[image: Description of Figure 3-11 follows]

When you are working with some fields in Rules Designer, the initial values dropdown list or other dropdown lists may be empty as shown in Figure 3-12. In this case the dropdown list is an empty box. Thus, when Rules Designer does not find options to assist you in entering values, you must supply a value directly in the text entry area or click the Expression Builder icon to display the expression builder dialog.

Figure 3-12 RL Fact Empty List Options for Initial Value Field

[image: Description of Figure 3-12 follows]

3.5 Working with ADF Business Components Facts

ADF Business Components Facts allow you to use ADF Business Components as Facts in rules and in Decision Tables. By using ADF Business Components Facts you can assert view object graphs representing the business objects upon which rules should be based, and let Oracle Business Rules deal with the complexities of managing the relationships between the various related view objects in the view object graph.

For more information, see Chapter 10, "Working with Oracle Business Rules and ADF Business Components".

3.5.1 How to Import and Define ADF Business Components Facts

When an ADF Business Components view object is imported, an ADF Business Components fact type is created which has a property corresponding to each attribute of the view object.

To add ADF Business Components facts:

	
Click the Facts navigation tab and select the ADF-BC Facts tab. This displays the ADF-BC Facts table, as shown in Figure 3-13.

Figure 3-13 ADF Business Components Facts Tab

[image: Description of Figure 3-13 follows]

	
Click Create.... This displays the ADF Business Components Fact dialog, as shown in Figure 3-14.

Figure 3-14 Create ADF-BC Fact Dialog

[image: Description of Figure 3-14 follows]

	
In the Connection field, from the dropdown list, select the connection which your ADF Business Components objects use. The Search Classpath area shows a list of classpaths. For more information, see Section 3.5.2, "What You Need to Know About ADF Business Components Fact Classpaths".

	
In the View Definition field, select the name of the view object to import.

	
Click OK. This displays the Facts navigation tab, as shown in Figure 3-15. Note that the imported fact includes a validation warning. For information on how to remove this validation warning, see Section 3.5.3, "What You Need to Know About ADF Business Components Circular References".

Figure 3-15 ADF Business Components Facts in Rules Designer

[image: Description of Figure 3-15 follows]

3.5.2 What You Need to Know About ADF Business Components Fact Classpaths

In the classpath list shown in the Search Classpath area in the Create ADF Business Components Fact dialog one of the listed classpaths allows you to see the view object definitions available in your project. In this dialog you only need to click Add to Classpath when you need to use a classpath that is not available to your project (this case should be very rare).

3.5.3 What You Need to Know About ADF Business Components Circular References

ADF Business Components Facts can include a circular reference, as shown in Figure 3-15. When this warning is shown in the Business Rule validation log you need to manually resolve the circular reference. To do this you must deselect the Visible checkbox for one of the properties that is involved in the circular reference.

3.5.4 What You Need to Know About ADF Business Components Facts

Each ADF Business Components fact type contains a property named ViewRowImpl that references the oracle.jbo.Row instance that the fact instance represents and a property named key_values which points to an oracle.rules.sdk2.decisionpoint.KeyChain object that may be used to retrieve the set of key-values for this row and its parent rows.

When working with ADF Business Components Facts you should know the following:

	
Relationships between view object definitions are determined by introspection of attributes on the View Definition, specifically, those attributes which are View Link Accessors.

The ADF Business Components fact type importer correctly determines which relationships are 1-to-1 and which are 1-to-many, and generates definitions in the dictionary accordingly. For 1-to-many relationships the type of the property generated is a List, which contains facts of the indicated type at runtime.

	
It is not possible to use ADF Business Components fact types which have cyclic type dependencies. These cycles must be broken by the deselecting the Visible checkbox for at least one property involved in the cycle.

	
ADF Business Components fact types are not Java fact types and do not allow invoking methods on any explicitly created implementation classes for the view object.

If you need to call such methods then add the view object implementation to the dictionary as a Java fact type instead of as an ADF Business Components fact type. In this case, all getters and setters and other methods become available but the trade-off is that related view objects become inaccessible and, should related view object access be required, these relationships must be explicitly managed.

	
Internally, ADF Business Components fact types are instances of RL fact types.

Thus, you cannot assert ADF Business Components view object instances directly to a Rule Session, but must instead use the helper methods provided in the MetadataHelper and ADFBCFactTypeHelper classes. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

3.6 Working with Bucketsets

You can create a bucketset to define a list of values or a list of value ranges to limit the acceptable set of values for a fact or a property of a fact in Oracle Business Rules. You can define a bucketset as a Global Bucketset that allows reuse, where a bucketset is named and stored in the data model, or as a Local Bucketset that is specified when you define a Decision Table and only applies to one condition expression. For more information on using a local bucketset, see Section 5.2.2, "How to Add Condition Rows to a Decision Table".

You can use Bucketsets for the following:

	
You can associate fact type properties with bucketsets. This allows you to limit the acceptable set of values for a property of a fact. For more information, see Section 3.7.1, "How to Associate a Bucketset with a Fact Property".

	
In a Decision Table a bucketset defines a list of values or value ranges in the condition expressions that are part of the Decision Table. The bucketset values or ranges determine, for each condition expression in a Decision Table, that it has two or more possibilities. Using a bucketset each possibility in a condition expression is divided into groups or ranges where a cell specifies one Bucket of values from the bucketset (or possibly multiple buckets of values per cell). For example, if a bucketset is defined for colors, then the buckets could include a list of strings: "blue", "red", and "orange". A bucketset that includes integers could have three buckets, less than 1, 1 to 10, and greater than 10. For more information, see Section 5.2.2, "How to Add Condition Rows to a Decision Table".

	
You can associate globals, functions, and function arguments with bucketsets. Associating a bucketset with a global allows for design-time validation that an assigned value is limited to the values specified in the bucketset. Associating a bucketset with a function argument validates that the function is only called with values in the bucketset. Using bucketsets in this manner allows Rules Designer to report validation warnings for global values and function arguments that are assigned or passed a constant argument value that is not allowed. This type of bucketset validation is "weak" in the sense that only design-time constant values are validated. No runtime checks are applied based on the globals or function arguments associated with bucketsets. Associating a bucketset with a function automatically sets a Decision Table condition row to use that bucketset when the function is used as the expression for that condition row. For more information, see Section 3.7.2, "How to Associate a Bucketset with Functions or Function Arguments".

	
In addition to design-time validation you can use an LOV bucketset to provide options that are displayed in lists when entering expressions in IF/THEN rule tests and actions. For more information, see Section 4.11.3, "How to Use Bucketsets to Provide Options for Test Expressions".

There are three forms for bucketsets:

	
LOV: Defined by a list of values (see Section 3.6.1, "How to Define a List of Values Global Bucketset").

	
Range: Defined by a list of value ranges, defined by the range endpoints (see Section 3.6.2, "How to Define a List of Ranges Global Bucketset").

	
Enum: Defined by a list of enumerated types that is imported from either of:

	
XML types (see Section 3.6.3, "How to Define an Enumerated Type (Enum) Bucketset from XML Types").

	
Java facts (see Section 3.6.4, "How to Define an Enumerated Type (Enum) Bucketset from Java Types").

3.6.1 How to Define a List of Values Global Bucketset

A list of values bucketset lets you specify the type and the list of buckets for the bucketset.

For more information, see Section 3.6.5, "What You Need to Know About List of Values Bucketsets".

To define a list of values (LOV) global bucketset:

	
From Rules Designer select the Bucketsets navigation tab.

	
From the dropdown list next to the Create BucketSet... icon, select List of Values, as shown in Figure 3-16.

Figure 3-16 Adding a List of Values Bucketset

[image: Description of Figure 3-16 follows]

	
Double-click the bucket icon for the bucket. This displays the Edit Bucketset dialog.

	
In the Edit Bucketset dialog, enter the bucketset name in the Name column.

	
In the Data Type column select a data type from dropdown list.

For example, select String from the dropdown list.

	
Click the Create icon to add a value.

	
For each bucket that you add, do the following:

	
In the Value field, enter a value. Note that for String type values in an LOV bucket, you can select the entire string with three clicks. This allows you to enter the string and Rules Designer adds the same alias without quotation marks, as shown in Figure 3-17.

	
In the Alias field, enter an alias.

	
In the Allowed in Actions field, select this if the value is an allowable value.

For more information on the Allowed in Actions field and the Include Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know About Bucketset Allowed in Actions Option".

	
In the Description field, enter a description.

	
Add additional values by clicking the Create icon as needed for the bucketset, as shown in Figure 3-17.

Figure 3-17 Create List of Values Bucketset

[image: Description of Figure 3-17 follows]

	
On the Edit Bucketset window, click OK.

You can control rule ordering in a Decision Table by changing the relative position of the buckets in an LOV bucketset associated with a condition expression in a Decision Table.

To change the order of buckets in a list of values bucketset:

	
In the Edit Bucketset dialog for the bucketset, select the bucket you want to reorder.

	
Click the Move Down icon to reorder the bucket down.

	
Click the Move Up icon to reorder the bucket up.

	
Click OK.

3.6.2 How to Define a List of Ranges Global Bucketset

A list of ranges bucketset lets you specify the type and the endpoints for buckets in the bucketset.

For more information, see Section 3.6.6, "What You Need to Know About Range Bucketsets".

To define a list of ranges (range) global bucketset:

	
From Rules Designer select the Bucketsets navigation tab.

	
From the dropdown list next to the Create BucketSet... icon, select List of Ranges.

	
Double-click in the Data Type field. This displays the Edit Bucketset dialog, as shown in Figure 3-18.

Figure 3-18 Edit Bucketset: List of Ranges

[image: Description of Figure 3-18 follows]

	
In the Edit Bucketset dialog, enter the bucketset name in the Name field.

	
In the Edit Bucketset dialog, in the Data Type field, from the dropdown list, select the appropriate data type for the bucketset.

In this example, select int.

	
Click the Add Bucket icon repeatedly to add the number of buckets you need in the bucketset as shown in Figure 3-19.

Figure 3-19 Edit Bucketset: Adding Required Buckets

[image: Description of Figure 3-19 follows]

In these steps you add three buckets. You start with the default values, as shown in Figure 3-19. After changing the default buckets, the buckets have the following values:

	
greater than 1000

	
between 500 and 1000, inclusive

	
less than 500

Rules Designer added the buckets with the default values of 50 and 0 and a negative Infinity (-Infinity) bucket.

	
Starting at the first or top bucket, in the Endpoint field, double-click the default value and enter the top value bucket endpoint, and press Enter.

In this example, enter 1000 for the first bucket.

	
In the Included Endpoint field, select the checkbox as appropriate to include or exclude the bucket endpoint.

In this example, you can leave this checkbox checked to include the bucket endpoint.

	
In the Allowed in Actions field select the checkbox as appropriate to include the bucket in the bucketset allowable values.

For more information on the Allowed in Actions field and the Include Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know About Bucketset Allowed in Actions Option".

	
Optionally, in the Alias field double-click the default value and enter the desired bucket alias, and press Enter.

The alias appears in Decision Tables that use this bucketset. Use an alias to give a more meaningful name to the bucket than the default value (the range-based Range value).

The Range field is read-only: it clearly identifies the actual range associated with the bucket regardless of the Alias value. For more information, see Section 3.6.6, "What You Need to Know About Range Bucketsets").

	
Moving down the list of buckets, for each subsequent bucket, repeat from Step 7. For the second bucket, enter the endpoint value 500.

Figure 3-20 shows the completed bucketset.

Figure 3-20 Edit Bucketset: Completed Range Buckets

[image: Description of Figure 3-20 follows]

	
In the Edit Bucketset dialog, click OK.

3.6.3 How to Define an Enumerated Type (Enum) Bucketset from XML Types

When you import an XML schema, if the XSD contains enumeration values Rules Designer automatically creates an enumerated type bucketset for each enumeration. Although enumerated type bucketsets are read-only, you can change the order of buckets.

For more information, see Section 3.2.4, "What You Need to Know About XML Facts".

To define an enumerated type (enum) bucketset from XML types:

	
Obtain an XSD with the desired enumerations.

Example 3-2 shows the order.xsd schema file which contains the enumeration Status.

Example 3-2 Order.xsd Schema

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>
 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>
 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
</schema>

	
Open a dictionary in Rules Designer and create XML facts using the specified schema that contains the enumeration. For more information, see Section 3.2, "Working with XML Facts".

	
Click the Bucketsets navigation tab and select the Enum bucketset to see the bucketset, as shown in Figure 3-21. In Figure 3-21, notice that the imported Status enumeration values shown in Example 3-2 are imported as buckets with the XSD-specified values.

Figure 3-21 Bucketset Showing the Form Enum with Imported Values

[image: Description of Figure 3-21 follows]

You can control rule ordering in a Decision Table by changing the relative position of the buckets in an enum bucketset associated with a condition expression in a Decision Table.

To change the order of buckets in an enum bucketset:

	
In the Edit Bucketset dialog for the bucketset, select the bucket you want to reorder.

	
Click the Move Down icon to reorder the bucket down.

	
Click the Move Up icon to reorder the bucket up.

	
Click OK.

3.6.4 How to Define an Enumerated Type (Enum) Bucketset from Java Types

When you import a Java enum, Rules Designer automatically creates an enumerated type bucketset for each Java enum. Although enumerated type bucketsets are read-only, you can change the order of buckets.

To define an enumerated type (enum) bucketset from Java facts:

	
Create or obtain the Java class with the desired enumerations.

Example 3-3 shows the RejectPurchaseItem.java class which contains enumeration OrderSize.

Example 3-3 Java Fact with enum OrderSize

package com.example;

public class Class1
{
 public enum OrderSize { SMALL, MEDIUM, LARGE };
 public Class1()
 {
 }
}

	
In Rules Designer open a dictionary and create a Java Fact using the Java class. For more information, see Section 3.3, "Working with Java Facts".

Figure 3-22 shows a how to create a Java fact for the Java enumeration Class1$OrderSize.

Figure 3-22 Creating a Java Fact

[image: Description of Figure 3-22 follows]

	
In Rules Designer click the Bucketsets navigation tab and select the Enum bucketset, as shown in Figure 3-23. Note that the Class1$OrderSize enumeration from the enumeration in Example 3-3 is now a bucketset with the Java enum-specified values.

Figure 3-23 Edit Bucketset Dialog for Java Enum

[image: Description of Figure 3-23 follows]

You can control rule ordering in a Decision Table by changing the relative position of the buckets in an enum bucketset associated with a condition expression in a Decision Table.

To change the order of buckets in an enumerated type (enum) bucketset:

	
In the Edit Bucketset dialog for the bucketset, select the bucket you want to reorder.

	
Click the Move Down icon to reorder the bucket down.

	
Click the Move Up icon to reorder the bucket up.

	
Click OK.

3.6.5 What You Need to Know About List of Values Bucketsets

In a Decision Table the order of the buckets in a bucketset associated with a condition expression determines the order of the condition cells, and thus the order of the rules. You can control rule ordering in a Decision Table by changing the relative position of the buckets in a list of values bucketset associated with a condition expression; however, you cannot reorder range buckets.

Figure 3-24 shows a bucketset definition in Rules Designer for a bucketset named colors using a list of values.

Figure 3-24 Bucketset Definition Using List of Values

[image: Description of Figure 3-24 follows]

As shown in Figure 3-24, by default with a List of Values bucketset there is a value otherwise included with the list of values (LOV). This value, otherwise, is distinct from all other values and matches all values of the type that have no other bucket. Thus, with otherwise in the list of values a condition expression that uses the bucketset can handle every value and provides a match for every value of the specified type, where a match is either a defined value or the otherwise bucket. The otherwise value cannot be removed from an LOV bucketset but it can be excluded by clearing the Allowed in Actions checkbox (when otherwise is excluded an attempt to assign any value that is not in the list of buckets in the bucketset causes a validation warning).

Table 3-3 shows the bucketset values that Rules Designer supports for LOV bucketsets.

Table 3-3 Supported Types for LOV Bucketsets

	Type	Description
	
Java primitive types

	
This includes int, double, boolean, char, byte, short, long, and float

	
String

	
Contains String types

	
Calendar

	
Contains Calendar types in the current locale

	
Note:

You are not required to specify an LOV bucketset when you use a boolean type in a Decision Table. For boolean types, Oracle Business Rules provides built-in buckets for the possible values (true and false).

3.6.6 What You Need to Know About Range Bucketsets

When you add a bucket to a List of Ranges bucketset, the value is calculated based on the currently selected bucket value and the next highest bucket value. When you change the endpoint value the value is automatically sorted in the bucketset; thus, it does not matter where a bucket is added. However, it is possible for Rules Designer to not have spaces between the current bucketset endpoint value and the endpoint value. In this case, Rules Designer shows a validation warning of the following form:

RUL-05849: Bucketset has duplicate bucket value "4999"

To correct this problem you must modify bucket endpoints to remove the duplicate bucket.

Figure 3-25 shows the Edit Bucketset window for a bucketset with an integer, int, range.

Figure 3-25 Bucketset Definition Using List of Ranges and Three Endpoints

[image: Description of Figure 3-25 follows]

Table 3-4 shows the types Rules Designer supports for Range buckets.

Table 3-4 Supported Types for Range Buckets

	Type	Description
	
Selected primitive types

	
This includes: int, double, short, long, and float

	
Calendar

	
Contains Calendar types in the current locale

Note the following conventions for the Range field:

	
Logical operator: specifies a range with respect to positive or negative infinity. For example, ">=25" means "from 25 to positive infinity" and "<18" means from negative infinity up to but not including 18.

	
Square bracket "[": specifies a range that includes this end point value. For example, "[18..25)" means "from 18 up to but not including 25".

	
Round bracket ")": specifies a range that excludes this end point value. For example, "(18..25]" means "over 18, not including 18, up to and including 25".

3.6.7 What You Need to Know About Bucketset Allowed in Actions Option

When you define buckets in a bucketset you might define some buckets corresponding to non-permissible values. For example, in a bucketset for driver ages you would typically not allow a bucket that contains values less than 0. Thus, when a fact with driver data includes an age property associated with a driver ages bucketset, then you should not be able to create or modify a fact that has the age property set to a value such as -1. In a bucketset you select Allowed in Actions for valid buckets and deselect this option for invalid buckets.

The bucketset option Include Disallowed Buckets in Tests allows you to include all the buckets, whether Allowed in Actions is selected or not, in Decision Table conditions and in rule tests. By including all buckets you can explicitly test for illegal values. Using the option Include Disallowed Buckets in Tests you can handle two possible cases:

	
The input data for the Oracle Business Rules Engine is clean and does not contain invalid data (such as a negative age). In this case, you should deselect the Include Disallowed Buckets in Tests. Note: the reason you do not want to make age < 0 an Allowed in Actions is this provides design time validation warnings if you try to create an action that uses an invalid value, such as the following: modify(driver, age: -1)). For more information, see Section 4.11, "Using Bucketsets as Constraints for Options Values in Rules".

	
You want to consider excluded buckets in rule tests and in Decision Tables. In this case, you should select Include Disallowed Buckets in Tests. This is useful when the input data for the Oracle Business Rules Engine may not be clean and may contain invalid data (for example an invalid negative age). A Decision Table that provides actions for all bucketsets could include cases for excluded buckets and provide an appropriate action, such as asserting an error fact. To handle this you could either select the Allowed in Actions field for every bucket in the bucketset, or, leave the Allowed in Actions field configured as is and select the Include Disallowed Buckets in Tests field. Using the Include Disallowed Buckets in Tests field is not only convenient, you do not need to reconfigure every bucket, it also preserves the configuration of Allowed in Actions so that you can easily reuse this bucketset to handle the first case (when you deselect Include Disallowed Buckets in Tests).

3.6.8 What You Need to Know About Bucket Values

When you enter a bucket value in a bucketset, the value you supply must be valid for the type specified for the bucketset. If the value you enter is not valid for the bucketset type, Rules Designer makes the value you supply a string by adding quotation marks. Adding quotation marks is the only way to make a legal literal when the user provided data is not appropriate for the specified type. For example, if you add an int type LOV bucketset, and then supply a value 2.2 to a bucket, Rules Designer shows a warning such as the following:

RUL-05833: Invalid characters "2.2" in bucket value

To fix this problem either enter a valid value for the bucket value, for example in this case the value 2, or change the type of the bucketset.

For an additional example, when you enter a value for a bucket, for example if you enter a bucket value with bucketset with data type short and add a bucket with the value 999999, Rules Designer assigns this the value "999999". The maximum value for a short is 32767. In this case you see a warning related to the bucket value, similar to the previous example, because a String is not a valid bucket value for a bucketset with data type short. The solution to this is to enter appropriate values for all buckets (in this example, enter a value less than or equal to 32767).

3.7 Associating a Bucketset with Facts and Functions

After you define a global bucketset you can associate parts of the data model with the global bucketset (if their types are compatible). In this way, condition cells in the Conditions area can automatically be assigned a bucketset when you define a Decision Table. Also, when a bucketset is associated with a fact property Oracle Business Rules uses the buckets that you define as constraints for the values for expressions for the fact property in rules.

3.7.1 How to Associate a Bucketset with a Fact Property

To prepare for creating Decision Tables you can associate a global bucketset with fact properties in the data model.

To associate a bucketset with a fact property:

	
From Rules Designer select the Facts navigation tab.

	
Select the fact type you are interested. This displays the appropriate Edit Fact dialog for the fact type you select.

	
In the Properties table, under Bucketset, select the cell for the appropriate fact property and from the dropdown list select the bucketset you want to associate with the property. For example, see Figure 3-26.

Figure 3-26 Defining a Bucketset for a Property

[image: Description of Figure 3-26 follows]

	
On the Edit Fact page, click OK.

3.7.2 How to Associate a Bucketset with Functions or Function Arguments

To prepare for creating Decision Tables you can associate a global bucketset with functions in the data model.

To associate a bucketset with a function return value:

	
From Rules Designer select the Functions tab.

	
Select the function to edit. This shows the function arguments and the function body for the specified function.

	
In the Functions table, under Bucketset, select the cell and from the dropdown list select the bucketset you want to use. For example, see Figure 3-27.

Figure 3-27 Defining a Bucketset for a Function Return Value

[image: Description of Figure 3-27 follows]

To associate a bucketset with a function argument:

	
From Rules Designer select the Functions navigation tab.

	
Select the function to edit. This shows the function arguments and the function body for the specified function.

	
In the Functions table, in the Arguments area select the appropriate argument.

	
For the specified argument, under Bucketset, select the cell and from the dropdown list select the bucketset you want to use.

4 Working with Rulesets and Rules

A ruleset is an Oracle Business Rules object that you use to group one or more rules and Decision Tables.

This chapter includes the following sections:

	
Section 4.1, "Introduction to Working with Rulesets and Rules"

	
Section 4.2, "Working with Rulesets"

	
Section 4.3, "Working with Rules"

	
Section 4.4, "Validating Dictionaries"

	
Section 4.5, "Using Advanced Settings with Rules and Decision Tables"

	
Section 4.6, "Working with Nested Tests"

	
Section 4.7, "Working with Advanced Mode Rules"

	
Section 4.8, "Working with Tree Mode Rules"

	
Section 4.9, "Using Date Facts, Date Functions, and Specifying Effective Dates"

	
Section 4.10, "Working with Expression Builder"

	
Section 4.11, "Using Bucketsets as Constraints for Options Values in Rules"

For more information, see Section 1.1.5, "What Are Rulesets?".

4.1 Introduction to Working with Rulesets and Rules

You can use business rules to define key decisions and policies for a business, including:

	
Business Policies: for example spending policies and approval matrices

	
Constraints: for example valid configurations or regulatory requirements

	
Computations: for example discounts, premiums, or scores

	
Reasoning Capabilities: for example offers based on customer value

Oracle Business Rules provides two ways to work with rules:

	
Using IF/THEN rules

	
Using rules in a Decision Table

This chapter describes working with IF/THEN rules. For information on Decision Tables, see Chapter 5, "Working with Decision Tables".

4.2 Working with Rulesets

A ruleset provides a unit of execution for rules and for Decision Tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of rules applies to specify the order of firing of the rules in the ruleset. Rulesets also provide an effective date specification that identifies that the ruleset is always active, or that the ruleset is restricted based on a time and date range, or a starting or ending time and date.

4.2.1 How to Create a Ruleset

All rules and Decision Tables are created in a ruleset. A ruleset organizes rules and Decision Tables into a unit of execution.

To create a ruleset:

	
In Rules Designer, go to the Rulesets navigation tab.

	
Click the Create Ruleset... icon. This displays the Create Ruleset dialog.

	
Enter a name in the Name field.

	
Enter a description in the Description field, as shown in Figure 4-1.

Figure 4-1 Adding a Ruleset

[image: Description of Figure 4-1 follows]

	
Click OK.

4.2.2 How to Set the Effective Date for a Ruleset

Effective date support provides the ability to specify a start date and an end date for a ruleset, a rule or a Decision Table. For a ruleset the effective date defines the date range in which the rules and Decision Tables within the ruleset are effective. For more information on effective dates, see Section 4.9, "Using Date Facts, Date Functions, and Specifying Effective Dates".

To set the effective date for a ruleset:

	
Select the ruleset name from the Rulesets navigation tab.

	
Click the navigation icon next to the ruleset name to expand the ruleset information to show the ruleset Name, Description, and Effective Date fields, as shown in Figure 4-2.

Figure 4-2 Ruleset Showing Effective Date Field

[image: Description of Figure 4-2 follows]

	
Select the Effective Date entry. This displays the Set Effective Date dialog, as shown in Figure 4-3.

Figure 4-3 Using the Set Effective Date Dialog

[image: Description of Figure 4-3 follows]

	
Use the Set Effective Date dialog to specify the effective dates for the ruleset. Clicking the Set Date icon displays a calendar to assist you in entering the From and To field data.

4.2.3 How to Use a Filter to Display Matching Rules in a Ruleset

As the number of rules in a ruleset increases, it can be difficult to navigate the list of rules. You can instruct Rules Designer to filter the list of rules, to display only rules of interest. For example, you can display only active rules or only rules that have validation warnings.

For more information on creating rules, see Section 4.3, "Working with Rules".

To use a filter to display matching rules in a ruleset:

	
In Rules Designer, select a ruleset from the Rulesets navigation tab.

	
To show the rule filter settings, next to the ruleset name, click Show Filter Query as Figure 4-4 shows.

Figure 4-4 Showing a Filter Query in a Ruleset

[image: Description of Figure 4-4 follows]

	
In the Filter Query field, click <insert test> to insert a default test as Figure 4-5 shows.

Figure 4-5 Inserting a Default Filter Query Test

[image: Description of Figure 4-5 follows]

	
Configure the default test.

In this case, as shown in Figure 4-6, when you click an <operand> you can choose from the rule-specific options shown in Table 4-1.

Table 4-1 Rule Filter Query Operands

	Operand	Description
	
name

	
Matches against the rule name.

	
description

	
Matches against the rule description.

	
priority

	
Matches against the rule priority. For more information, see Section 4.5.5, "How to Set a Priority for a Rule".

	
start date

	
Matches against the rule start date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule".

	
end date

	
Matches against the rule end date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule".

	
minutes until start date

	
Matches against a specified number of minutes until the rule start date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule".

	
minutes until end date

	
Matches against a specified number of minutes until the rule end date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule".

	
days until start date

	
Matches against a specified number of days until the rule start date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule"

	
days until end date

	
Matches against a specified number of days until the rule end date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule"

	
years until start date

	
Matches against a specified number of years until the rule start date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule"

	
years until end date

	
Matches against a specified number of years until the rule end date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule"

	
is active

	
Matches against whether the rule is active. For more information, see Section 4.5.3, "How to Select the Active Option".

	
is valid

	
Matches against whether the rule has validation warnings. For more information, see Section 4.4.2, "Understanding Rule Validation".

	
referenced fact types

	
Matches against one or more fact types.

Figure 4-6 Filter Query Operands

[image: Description of Figure 4-6 follows]

For more information, see Section 4.3.2, "How to Define a Test in a Rule".

	
Select the operator to choose an operator for the comparison. For example, for the name you can select startsWith from the operand list.

	
Enter a comparison operand for the right-hand-side of the filter test. For example, enter the string Customer.

	
When the filter query is complete you can apply the filter to the rules in the ruleset:

	
To apply the filter, select the Filter On checkbox.

Rules Designer displays only the rules that match the filter query as Figure 4-7 shows.

Figure 4-7 Enable Filter Query in a Ruleset with Filter On Option

[image: Description of Figure 4-7 follows]

	
To disable the filter query, deselect the Filter On checkbox.

Rules Designer displays all the rules in the ruleset.

	
To delete the filter query, select it and press Delete or click the Clear Filter icon.

4.3 Working with Rules

You create business rules to process facts and to obtain intermediate conclusions that Oracle Business Rules can process. You create rules in a ruleset, so before working with rules you need to create a ruleset (or use the default ruleset). For more information on creating a ruleset, see Section 4.2, "Working with Rulesets".

You can easily test your rules as you are designing them without having to deploy your application. For more information, see Section 8.1.1, "How to Test Rules Using a Test Function in Rules Designer".

Rules Designer rule validation can assist you when you work with rules. To show the validation log window, click the Validate icon or select View>Log and select the Business Rule Validation tab. This displays warnings for incorrect or incomplete rules. Note that you must correct all warnings before you can test or deploy rules. For more information on rule validation, see Section 4.4.2, "Understanding Rule Validation".

As the number of rules in a ruleset increases, you can configure Rules Designer to filter the list of rules to show only rules of interest. For more information, see Section 4.2.3, "How to Use a Filter to Display Matching Rules in a Ruleset".

4.3.1 How to Add Rules

To create a rule you first add the rule to a ruleset, and then you insert tests and actions. The actions are associated with pattern matches. At runtime when a test in the IF area of a rule matches, the Rules Engine activates the THEN action and prepares to run the actions associated with the rule.

Rules Designer lets you create a rule where by default the rule fires for each matching fact. To enable other options, where the same fact type matches more than once, or never, you select Advanced Mode. For more information on advanced mode and showing advanced settings, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".

To add rules in a ruleset:

	
In Rules Designer, select a ruleset from the Rulesets navigation tab.

	
In the View field, select IF/THEN Rules.

	
Click Add to add a rule. For example, click Add to add a rule named Rule_1, as shown in Figure 4-8.

Figure 4-8 Adding a Rule in a Ruleset

[image: Description of Figure 4-8 follows]

4.3.2 How to Define a Test in a Rule

To create a test in a rule you add conditions for facts. For example, with a sample CustomerOrder fact with an annual spending property, you can add a test to determine if a customer order is associated with a high value of spending, based on the annual spending for the customer. Note that you can use bucketsets to limit the values for tests and actions in rules. For more information, see Section 4.11, "Using Bucketsets as Constraints for Options Values in Rules".

Figure 4-9 shows this sample rule.

Figure 4-9 Adding a Test to a Rule

[image: Description of Figure 4-9 follows]

At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts. For this sample rule, Rule_1, when a fact matches the Rules Engine modifies the fact and then modifies the value property to "High".

To define tests in rules:

	
In Rules Designer, select a ruleset from the Rulesets navigation tab.

	
In the View field, select IF/THEN Rules (this is the Rules Designer default).

	
Add or select the rule you want to use, for example, select Rule_1.

	
In Rule_1, in the IF area, select <insert test>.

	
For a test, the IF area of a rule includes a left-hand-side <operand> and a right-hand-side <operand>, as shown in Figure 4-10.

Figure 4-10 Rule Test with Left-hand-side operand and Right-hand-side operand

[image: Description of Figure 4-10 follows]

	
In a test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and a dropdown list, as shown in Figure 4-11:

Figure 4-11 Configuring the Left-hand-side Operand of a Test in a Rule

[image: Description of Figure 4-11 follows]

	
To enter a value use the dropdown list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.

	
To enter a literal value, type the value into the text entry area and press Enter.

The value you enter must agree with the type of the corresponding operand. For example, in the test IF CustomerOrder.annualSpending > <operand>, valid values for <operand> must agree with the type of CustomerOrder field annualSpending.

	
In a test, you replace the operator with the desired logical operator or accept the default (==). To do this, select the default == operator. This displays a text entry area and a dropdown list, as shown in Figure 4-12.

To test a logical condition between the left-hand and right-hand operands, select one of the logical operators as shown in Figure 4-12: == (equality), != (not equal), > (greater than), >= (greater than or equal to), < (less than), <= (less than or equal to).

Figure 4-12 Configuring the Operator of a Test in a Rule

[image: Description of Figure 4-12 follows]

	
In a test, you replace the right-hand-side operand with a value.

Configure the <operand> placeholder as you would for any operand.

For example, enter 2000 into the text entry area and press Enter or Return, as shown in Figure 4-13.

Figure 4-13 Configuring the Right-hand-side Operand of a Test in a Rule

[image: Description of Figure 4-13 follows]

4.3.3 How to Define Range Tests in Rules

To create a range test in a rule, you add conditions for facts. For example, with a sample CustomerOrder fact with an annual spending property, you can add a test to determine if the value of a customer order falls between an upper and lower range.

The following summarizes this sample rule:

IF
 CustomerOrder.annualSpending between 100 and 2000
THEN
 Modify CustomerOrder.value = "Normal"

At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts.

To define range tests in rules:

	
In Rules Designer, select a ruleset from the Rulesets navigation tab.

	
In the View field, select IF/THEN Rules (this is the Rules Designer default).

	
Add or select the rule you want to use, for example, select Rule_1.

	
In Rule_1, in the IF area, select <insert test>.

	
The test in the IF area of a rule includes a left-hand side <operand> and a right-hand-side <operand>, as shown in Figure 4-14.

Figure 4-14 Rule Test with Left-hand-side operand and Right-hand-side operand

[image: Description of Figure 4-14 follows]

	
In a range test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and a dropdown list, as shown in Figure 4-15:

Figure 4-15 Adding a Test Left-hand-side Operand to a Rule

[image: Description of Figure 4-15 follows]

	
To enter a value use the dropdown list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.

	
To enter a literal value, type the value into the text entry area and press Enter. The value you enter must agree with the type of the corresponding operand.

For example, in the test IF CustomerOrder.annualSpending > <operand>, valid values for <operand> must agree with the type of CustomerOrder field annualSpending.

	
In a range test, you choose the between operator. To do this, select the default == operator. This displays a text entry area and a dropdown list. Select between as shown in Figure 4-16.

Figure 4-16 Configuring the Operator of a Range Test in a Rule

[image: Description of Figure 4-16 follows]

This adds two more <operand> placeholders as shown in Figure 4-17.

Figure 4-17 Between Operator in a Range Test

[image: Description of Figure 4-17 follows]

	
Configure the <operand> placeholders as you would for any operand as shown in Figure 4-18.

Figure 4-18 Configuring the Operand of a Range Test in a Rule

[image: Description of Figure 4-18 follows]

The test is true when the left-most operand (CustomerOrder.annualSpending) is between the values 100 and 2000.

4.3.4 How to Define Set Tests in Rules

To create a set test in a rule, you add conditions for facts. For example, with a sample CustomerOrder fact with a line item property you can add a test to determine if the line item belongs to an arbitrary set of products.

The following summarizes this sample rule:

IF
 CustomerOrder.lineItem.sku in 12345, 43255, 76348
THEN
 Modify CustomerOrder.value = "High"

At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts.

To define set tests in rules:

	
In Rules Designer, select a ruleset from the Rulesets navigation tab.

	
In the View field, select IF/THEN Rules (this is the Rules Designer default).

	
Add or select the rule you want to use, for example select Rule_1.

	
In Rule_1, in the IF area select <insert test>.

	
The test in the IF area of a rule includes a left-hand side <operand> and a right-hand-side <operand>, as shown in Figure 4-10.

Figure 4-19 Rule Test with Left-hand-side operand and Right-hand-side operand

[image: Description of Figure 4-19 follows]

	
In a set test, you replace the left-hand-side operand with a value.

To do this, select the left-hand-side <operand>. This displays a text entry area and a dropdown list as shown in Figure 4-20:

Figure 4-20 Adding a Test Left-hand-side Operand to a Rule

[image: Description of Figure 4-20 follows]

	
To enter a value use the dropdown list to select an item from the value options.

You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.

	
To enter a literal value, type the value into the text entry area and press Enter.

	
In a set test, you use the in operator. To do this, select the default == operator. This displays a text entry area and a dropdown list. Select in as shown in Figure 4-21.

Figure 4-21 Configuring the Operator of a Set Test in a Rule

[image: Description of Figure 4-21 follows]

This adds two more <operand> placeholders in a comma separated list and an <insert> placeholder as shown in Figure 4-22.

Figure 4-22 In Operator in a Set Test

[image: Description of Figure 4-22 follows]

To add another operand to the list, click <insert>.

To delete an operand from the list, right-click the operand and select Delete Test Expression.

	
Configure the <operand> placeholders as you would for any operand as shown in Figure 4-23.

Figure 4-23 Configuring the Operands of a Set Test in a Rule

[image: Description of Figure 4-23 follows]

The test is true when the value of the left-most operand (CustomerOrder.lineItem.sku) is any of 12345, 43255, or 76348.

4.3.5 How to Define Actions in Rules

To create a rule you insert tests and you insert actions. The actions are associated with pattern matches. When a test in the IF area of a rule matches, the Rules Engine activates the THEN action and prepares to run the actions associated with the rule.

When you add an action, you use one of the forms of actions shown in Table 4-2. For each form shown in Table 4-2 the options that Rules Designer presents are context sensitive, so the lists and the number of items you work with may be different, depending on which action you add and the choices you make while you enter the action. Table 4-2 shows the basic actions; additional actions are available with Advanced Mode. For more information on advanced mode see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".

Table 4-2 Rule Action Choices

	Action Form	Description
	
Assert New

	
Assert a new fact

	
Modify

	
Modify a data value associated with a matched fact

	
Retract

	
Retract a fact

	
Call

	
Call a function

To define actions in rules:

	
In Rules Designer, select a ruleset from the Rulesets navigation tab.

	
In a rule, in the THEN area, select <insert action>. This displays the add action list as shown in Figure 4-24.

Figure 4-24 Adding a Modify Action to a Rule

[image: Description of Figure 4-24 follows]

	
In the add action list, select the type of action you want to add. For example, select modify.

	
In the THEN area, select <target> to display the option list. For example, select customerOrder as shown in Figure 4-25.

Figure 4-25 Adding Modify Action to a Rule and Selecting the Target

[image: Description of Figure 4-25 follows]

	
Select <add property>. This displays the Properties dialog.

	
In the Properties dialog, in the Value column, enter "High" (include the double quotation marks) and press Enter or Return as shown in Figure 4-26.

Figure 4-26 Adding Modify Action Property and Value to a Rule

[image: Description of Figure 4-26 follows]

	
In the Properties dialog, click Close. This displays the rule as shown in Figure 4-27.

Figure 4-27 Rule with Test and Action Added

[image: Description of Figure 4-27 follows]

4.3.6 What You Need to Know About Rule Actions

A rule loop occurs when the value for a condition is changed by an action. Loops can occur across rules in a single rule, spread over several Decision Tables, or spread over rules and Decision Tables in the same ruleset. You need to avoid creating rule actions that modify fact properties that are used in rule conditions. At runtime, such rules could cause an infinite loop.

4.4 Validating Dictionaries

Rules Designer performs dictionary validation when you make any change to the dictionary. Rules Designer validation can assist you when you work with rules or Decision Tables. To show the validation log window, click the Validate icon or select View>Log and select the Business Rule Validation tab. This displays warnings for incorrect or incomplete rules. Note that you must correct all warnings before you can test or deploy rules.

When a dictionary is invalid, Rules Designer produces a list of warning messages and lists the associated dictionary objects. You can use the validation message information to locate the dictionary object and to correct problems. In addition, Rules Designer flags objects with validation warnings with a validation indicator (a red, wavy underline), as shown in Figure 4-28.

Figure 4-28 Validation Warnings Shown in Log and On Screen with Wavy Underline

[image: Description of Figure 4-28 follows]

If a dictionary is invalid, you can save the dictionary. However, you can only generate RL Language for a dictionary that is valid and does not display warnings in the Rules Designer validation log.

In the validation log, each validation message includes the following:

	
Message: The message provides details on the Oracle Business Rules exception that describes the problem.

	
Dictionary Object: This field displays a path that indicates details that should allow you to identify a component in the dictionary.

	
Property: provides information on a property of the object associated with the warning message.

When you are viewing the validation log, if you select an item and then right-click and select from the dropdown list Select and Highlight Object in Editor, Rules Designer moves the cursor to select the dictionary object. Note that for some validation warnings this functionality is not possible.

4.4.1 Understanding Data Model Validation

Rules Designer performs dictionary validation when you make any change to the dictionary. When Rules Designer displays a warning message, the validation log includes a message that should assist you in locating the dictionary object that caused the validation warning. For example, the following string indicates that the warning originates from the data model object named RLFact_1. In addition, the problem is in the property named test_int:

CarRental/Data Model/RLFact_1/test_int/Expression

Table 4-3 specifies the parts of the dictionary object name specified in a validation message.

Table 4-3 Data Model Dictionary Property in Validation Log

	Name	Description
	
CarRental

	
Dictionary Name

	
Data Model

	
Data Model component in dictionary.

	
RLFact_1

	
Element name in data model

	
test_int

	
Property name in the specified element.

	
Expression

	
Expression part of property.

For more information, see:

	
Section 4.4.2, "Understanding Rule Validation"

	
Section 4.4.3, "Understanding Decision Table Validation"

	
Section 4.4.4, "How to Validate a Dictionary"

4.4.2 Understanding Rule Validation

When you click the Validate icon Rules Designer displays the validation log. When you first add a rule you see validation warnings similar to those shown in Figure 4-29.

Figure 4-29 Rules Validation Messages

[image: Description of Figure 4-29 follows]

The dictionary object name part of a validation message for a rule includes details that help you to identify the ruleset, the rule, and an area in the rule that is associated with the validation warning. For example, the following dictionary object specification indicates a problem:

OracleRules1/Ruleset_2/Rules_1/Pattern[1]

In validation messages, the dictionary object name for a rule uses indexes that start at 1. Thus, the first pattern is Pattern[1].

In addition to validating rules, you can also test them in Rules Designer as you are designing them. For more information, see Section 8.1.1, "How to Test Rules Using a Test Function in Rules Designer".

4.4.3 Understanding Decision Table Validation

When you click the Validate icon Rules Designer displays the validation log. When you first add a Decision Table you see validation warnings similar to those shown in Figure 4-30.

Figure 4-30 Decision Table Validation Messages

[image: Description of Figure 4-30 follows]

The dictionary object name part of a validation message for a Decision Table includes details that help you to identify the area of the Decision Table that is associated with the validation warning. For example, the following dictionary object specification indicates a problem in the first action row, and the first action cell of the Decision Table:

OR1/Ruleset_1/DecisionTable_1/Action[1]/Action Cell[1]

In validation messages the dictionary object name for a Decision Table object uses indexes that start at 1. For example, to indicate the first condition cell in the first row in the Conditions area, the message is as follows:

OracleRules1/Ruleset_1/DecisionTable_2/Condition[1]/Condition Cell[1]

This specification indicates the condition cell for the rule with the label R1 in the first row of the Conditions area in a Decision Table as shown in Figure 4-31.

Figure 4-31 Decision Table with Warning on a Condition Cell

[image: Description of Figure 4-31 follows]

4.4.4 How to Validate a Dictionary

Rules Designer performs dictionary validation when you make any change to the dictionary.

To validate a dictionary:

	
In Rules Designer, click the Validate icon (a checkmark).

	
Select the Business Rule Validation log from the messages area.

	
When you are viewing the validation log, if you select an item and then right-click and select from the dropdown list Select and Highlight Object in Editor, Rules Designer moves the cursor to select the dictionary object. Note that for some validation warnings this functionality is not possible.

4.5 Using Advanced Settings with Rules and Decision Tables

Advanced settings for rules and Decision Tables let you work with features that provide advanced options that not all Oracle Business Rules users need. These features include:

	
Advanced Mode: allows additional pattern matching options and nested tests in rules.

For more information, see:

	
Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table"

	
Section 4.5.2, "How to Select the Advanced Mode Option"

	
Section 4.7.5, "What You Need to Know About Advanced Mode Rules"

	
Tree Mode: makes it easier to work with master detail hierarchy, nested elements that map to a parent child relationship. These parent child relationships among facts are common with XML and ADF Business Components fact types. You can use this option with the Advanced Mode option.

For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".

	
Rule Active: specifies that a rule or Decision Table is active or inactive. When Rule Active is unselected, Rules Designer does not validate the specified rule or Decision Table.

For more information, see Section 4.5.3, "How to Select the Active Option".

	
Logical: allows you to enable or disable logical dependence between the facts that trigger a rule and the facts asserted by a rule.

For more information, see Section 4.5.4, "How to Select the Logical Option".

	
Allow Gaps (available only with Decision Table advanced settings). This checkbox determines if validation messages are reported when gaps are detected in a Decision Table. The specific validation message is:

RUL-05852: Decision Table has gaps

For more information, see Section 5.3.1.3, "Understanding Decision Table Gap Analysis" and Section 5.3.5, "How to Perform Decision Table Gap Analysis".

	
Priority: specifies the priority for a rule or a Decision Table. Higher priority rules run before lower priority rules, within a ruleset.

For more information, see Section 4.5.5, "How to Set a Priority for a Rule".

	
Conflict Policy: (available only with Decision Table advanced settings). Specifies the Decision Table conflict policy, one of the following:

	
manual: Conflicts are resolved by manually specifying a conflict resolution for each conflicting rule.

	
auto override: Conflicts are resolved automatically using an override conflict resolution when this is possible, using the automatic conflict resolution policies.

	
ignore: Conflicts are ignored.

For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

	
Effective Date: specifies effective dates for a rule or a Decision Table.

For more information, see, Section 4.5.6, "How to Specify Effective Dates".

4.5.1 How to Show and Hide Advanced Settings in a Rule or Decision Table

In Rules Designer, next to each rule name and Decision Table name, the show or hide advanced settings icon lets you show and hide advanced settings.

To show and hide advanced settings in a rule or decision table:

	
Select the ruleset where you want to show advanced settings.

	
In the View field, from the dropdown list, select either IF/THEN Rules or select a Decision Table.

	
	
To show the advanced settings, next to the rule name click Show Advanced Settings, as shown in Figure 4-32 (there is a highlighted icon shown next to the rule name, Rule_1).

Figure 4-32 Showing Rules Advanced Settings

[image: Description of Figure 4-32 follows]

	
To hide the advanced settings, next to the rule name click Hide Advanced Settings, as shown in Figure 4-33 (there is a highlighted icon shown next to the rule name, Rule_1).

Figure 4-33 Hiding Advanced Settings in a Rule

[image: Description of Figure 4-33 follows]

4.5.2 How to Select the Advanced Mode Option

Select Advanced Mode to use Rule or Decision Table features that provide additional pattern matching options and additional actions. For more information, see Section 4.7, "Working with Advanced Mode Rules".

To select the advanced mode option:

	
Select the rule or Decision Table where you want to set Advanced Mode.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Select Advanced Mode, as shown in Figure 4-34.

Figure 4-34 Setting Advanced Mode Option

[image: Description of Figure 4-34 follows]

4.5.3 How to Select the Active Option

Oracle Business Rules includes the ability to specify that a rule or a Decision Table is active or inactive. The active option is set independent of the effective dates and may be set without changing or removing previously specified effective dates. When Rule Active is unselected, Rules Designer does not validate the rule.

To select the active option:

	
Select the rule or Decision Table where you want to set the Rule Active option.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Select Rule Active.

4.5.4 How to Select the Logical Option

A ruleset or Decision Table with the Logical option selected specifies that rules in the generated RL Language use the logical property. The logical property allows you to enable or disable logical dependence between the facts that trigger a rule and the facts asserted by a rule.

A rule with the logical property enabled makes all facts that are asserted by an action block in the rule dependent on facts matched in the rule condition. Anytime a fact referenced in the rule condition changes, such that the rule's conditions no longer apply, the facts asserted by the rule condition are automatically retracted. For more information on the logical property, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

Using the ruleset and Decision Table Logical option you can enable or disable the logical property for the generated RL Language associated with the rules in the ruleset or the Decision Table. By default, the Logical option is not selected.

To select the logical option:

	
Select the rule or Decision Table where you want to set the Logical option.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Select Logical.

4.5.5 How to Set a Priority for a Rule

You can set the priority for a rule or a Decision Table. You can select from a predefined named priority list as shown in Table 4-4, or enter a positive or negative integer to specify your own priority level. Higher priority rules run before lower priority rules, within a ruleset. The default priority is medium (with the integer value 0).

Table 4-4 Priority String Value Mapping

	Named Priority	Integer Value
	
highest

	
3000

	
higher

	
2000

	
high

	
1000

	
medium (Default Priority)

	
0

	
low

	
-1000

	
lower

	
-2000

	
lowest

	
-3000

To set a priority for a rule:

	
Select the rule or Decision Table where you want to set the priority.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
In the Priority field, specify the priority value:

	
To specify a named priority, select a named priority from the Priority dropdown list as Figure 4-35 shows.

Figure 4-35 Choosing a Predefined Named Priority

[image: Description of Figure 4-35 follows]

	
To specify an integer priority, click in the Priority field and enter a positive or negative integer value and press Enter, as Figure 4-36 shows.

Figure 4-36 Choosing a User Defined Numeric Priority

[image: Description of Figure 4-36 follows]

4.5.6 How to Specify Effective Dates

You can specify effective dates for a ruleset, a rule, or a Decision Table.

To specify effective dates:

	
Select the rule or Decision Table where you want to set the effective date.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Select the Effective Date field. This displays the Set Effective Date dialog.

	
Use the Set Effective Date dialog to set the effective date.

For more information on using effective dates, see Section 4.9, "Using Date Facts, Date Functions, and Specifying Effective Dates" and Section 4.2.2, "How to Set the Effective Date for a Ruleset".

4.6 Working with Nested Tests

In a rule or a Decision Table you can create more complicated tests using the nested tests feature.

4.6.1 How to Use Nested Tests

To use nested tests:

	
Select the rule where you want to use a nested test.

	
In the IF area, select a test. This surrounds the test with a highlighted box.

	
With a test selected right-click to display the dropdown list, as shown in Figure 4-37.

Figure 4-37 Adding a Nested Test to a Rule

[image: Description of Figure 4-37 follows]

	
To add the nested test, from the dropdown list select either Insert Before or Insert After and then select Nested Test. A nested test is shown in Figure 4-38.

Figure 4-38 A Nested Test Added to a Rule

[image: Description of Figure 4-38 follows]

4.7 Working with Advanced Mode Rules

Oracle Business Rules provides features that allow you to create advanced rules that add support for the following Oracle Business Rules features:

	
Additional Pattern Match options (see Section 4.7.1, "How to Use Advanced Mode Pattern Matching Options")

	
Additional Matched Fact Naming options (see Section 4.7.2, "How to Use Advanced Mode Matched Fact Naming")

	
Additional Supported Action forms (see Section 4.7.3, "How to Use Advanced Mode Action Forms")

	
Pattern Match Aggregate Function options (see Section 4.7.4, "How to Use Advanced Mode Aggregate Conditions")

For more information, see Section 4.7.5, "What You Need to Know About Advanced Mode Rules".

4.7.1 How to Use Advanced Mode Pattern Matching Options

The advanced mode pattern matching options specify when a rule should fire. Table 4-5 shows the available options.

Table 4-5 Advanced Mode Pattern Matching Options

	Option	Description
	
for each case where

	
This is the default pattern matching option. A rule should fire each time there is a match (for all matching cases).

	
there is a case where

	
This option selects one firing of the rule if there is at least one match.

	
there is no case where

	
The value specifies that the rule fires once if there are no such matches.

	
aggregate

	
This specifies an aggregate function is applied to all matches. For more information, see Section 4.7.4, "How to Use Advanced Mode Aggregate Conditions".

To use advanced mode pattern matching options:

	
Select the rule or Decision Table where you want to use pattern matching options.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Select Advanced Mode.

	
Right-click a test pattern and select Surround With... as shown in Figure 4-39.

Figure 4-39 Surrounding With Option

[image: Description of Figure 4-39 follows]

The Surround With dialog appears as shown in Figure 4-40.

Figure 4-40 Surround With Dialog

[image: Description of Figure 4-40 follows]

	
Choose the Pattern Block option from the Surround With dialog and click OK.

The pattern is surrounded by a nested pattern with the default (for each case where) as shown in Figure 4-41.

Figure 4-41 Default Pattern Matching Option: for each case where

[image: Description of Figure 4-41 follows]

	
Select the default (for each case where) option and select the desired pattern matching option from the list as shown in Figure 4-42.

Figure 4-42 Adding an Advanced Pattern Match Option

[image: Description of Figure 4-42 follows]

4.7.2 How to Use Advanced Mode Matched Fact Naming

The matched fact name field, pattern binding variable, in a rule or a Decision Table lets you test multiple instances of the same type in a single rule. The matched fact name lets you enter a temporary name for the matched fact to use in a test. For example, the rules shown in Figure 4-43 show the use of pattern binding variables in a rule that applies a discount on a shoe item when an order includes at least one "matching" hat item.

Figure 4-43 Rule Using a Pattern Binding Variable

[image: Description of Figure 4-43 follows]

For example, you can create the rule, as shown in Figure 4-44 to find duplicate items in a customer order. This example shows the use of matched in a rule.

Figure 4-44 Rule to Find Duplicate Items in an Order

[image: Description of Figure 4-44 follows]

To use advanced mode matched fact naming:

	
Select the rule or Decision Table where you want to add a matched fact name.

	
Click the Show Advanced Settings icon next to the rule name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Select Advanced Mode.

	
Select the <fact type> and enter a fact type from the dropdown list.

	
Select the supplied matched fact name and modify it as needed, as shown in Figure 4-45. For example, enter the matched fact name Order$LineItem1 and then press Enter.

Figure 4-45 Adding a Matched Fact Variable Name

[image: Description of Figure 4-45 follows]

	
Create the rule as Figure 4-46 shows. Note that you can choose a matched fact name as an operand. Choose the LineItem1 and LineItem2 operands as needed to create the rule.

Figure 4-46 Choosing a Matched Fact Variable Name as an Operand

[image: Description of Figure 4-46 follows]

Note in Figure 4-46 that the test checking:

RL.get fact ID(Order$LineItem1) > RL.get fact ID(Order$LineItem2)

Prevents a single instance of an Order$LineItem from matching both patterns that match the Order$LineItem fact type. The ">" is required so that the rule does not fire for different permutations of different instances. For more information, see Appendix C, "How Do I Correctly Express a Self-Join?".

4.7.3 How to Use Advanced Mode Action Forms

When you create a rule with Advanced Mode, Rules Designer presents a list with the available actions shown in Table 4-6. For each form shown in Table 4-6, the options that Rules Designer presents are context sensitive. Thus, the lists and the number of items you see when you work with the action types are context sensitive, depending on which action you add and the choices you make while you enter the action.

Table 4-6 Advanced Mode Action Options

	Action Form	Description
	
Assert

	
Assert a fact

	
Assert Tree

	
Asserts a tree of facts given the root.

	
Assert New

	
Assert a new fact.

	
Assign

	
Assign a value to a variable.

	
Assign New

	
Assign a value to a new variable.

	
Expression

	
Perform expression.

	
Call

	
Call a function.

	
For

	
Oracle RL, like Java, has a for loop. A for loop includes a type with a variable and a collection. The type and variable defines the loop variable that holds the collection value used within the loop. Collection is an expression that evaluates to a collection of the correct type for the loop variable. You can use a for loop to iterate through any collection.

A return, throw, or halt may exit the action block.

	
If

	
Using the if else action, if the test is true, execute the first action block, and if the test is false, execute the optional else part, which may be another if action or an action block. Oracle RL, unlike Java, requires action blocks and does not allow a single semicolon terminated action.

	
Modify

	
Modify a data value associated with a matched fact.

	
Retract

	
Retract a fact.

	
Return

	
The return action returns from the action block of a function or a rule. A return action in a rule pops the ruleset stack, so that execution continues with the activations on the agenda that are from the ruleset that is currently at the top of the ruleset stack.

	
rl

	
Use an Oracle RL expression that you supply.

	
synchronized

	
As in Java, the synchronized action is useful for synchronizing the actions of multiple threads. The synchronized action block lets you acquire the specified object's lock, then execute the action-block, then release the lock.

	
throw

	
Throw an exception, which must be a Java object that implements java.lang.Throwable. A thrown exception may be caught by a catch in a try action block.

	
try

	
The try, catch, and finally in Oracle RL is like Java both in syntax and in semantics. There must be at least one catch or finally clause.

	
while

	
While the test is true, execute the action block. A return, throw, or halt may exit the action block.

To use advanced mode action forms:

	
In Rules Designer, select a ruleset from the Rulesets navigation tab.

	
Select or add a rule or a Decision Table.

	
In the rule or Decision Table click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Select Advanced Mode.

	
With the insertion areas showing, in a rule in the THEN area select <insert action>. This displays the action list, as shown in Figure 4-47.

Figure 4-47 Adding an Action to a Rule in Advanced Mode

[image: Description of Figure 4-47 follows]

	
In the dropdown list select the action you want to add.

For example, select assign new.

	
In the THEN area, select the context sensitive parameters for the action and enter appropriate values.

4.7.4 How to Use Advanced Mode Aggregate Conditions

When you create a rule with Advanced Mode, Rules Designer supports the pattern matching aggregate option. When you write rule conditions that are based not only on one fact, but on many facts, you can use an aggregate. You use aggregate functions when the conditions have a view spanning multiple facts.

Table 4-7 shows the available aggregate functions.

Table 4-7 Aggregate Functions for Advanced Mode Rules

	Function	Description
	
count

	
Count of matching facts.

	
average

	
Average of matching facts.

	
maximum

	
Maximum value of matching facts.

	
minimum

	
Minimum value of matching facts.

	
sum

	
Sum of matching facts.

	
collection

	
Builds a list of matching facts.

For example, to write a rule that specifies a special order as follows:

IF
 an order has more than 5 line items whose price is above a certain value
THEN
 the order requires manual approval

The five line items may span multiple facts. Thus, you can use the count aggregate function to write this sample special order rule.

When you use an aggregate function, do the following:

	
Select aggregate for the pattern.

	
Enter a function from the list shown in Table 4-7

	
Enter or select values from the context sensitive menus:

	
<variable> A name for the aggregate value.

	
<expression> The value to aggregate, for example driver.age. When the aggregate function you select is the count function the <expression> is not used.

For example, you can compute the sum of the cost all the line items with color "red", as shown in Figure 4-48.

Figure 4-48 Using Aggregate Functions with Rules Red Color Total Cost Rule

[image: Description of Figure 4-48 follows]

To use advanced mode aggregates:

	
Select or create the rule or Decision Table where you want to use an aggregate function.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Select Advanced Mode.

	
Enter the fact type you want to work with.

	
Select <insert pattern> to add a pattern.

	
Select the new pattern.

	
Right-click the pattern and select Surround With.... This displays the Surround With dialog.

	
In the Surround With dialog select Pattern Block. For more information, see Section 4.7.1, "How to Use Advanced Mode Pattern Matching Options".

	
Click OK.

	
In the pattern select the first field. By default this field contains (for each case where), as shown in Figure 4-49.

Figure 4-49 Adding an Advanced Pattern Match Option

[image: Description of Figure 4-49 follows]

	
Select the aggregate option. This adds the context sensitive fields for an aggregate, as shown in Figure 4-50.

Figure 4-50 Using Aggregate Functions in a Rule

[image: Description of Figure 4-50 follows]

	
Click <function> and select a function from the dropdown list.

	
In the condition, click <fact type> and select a fact type from the dropdown list.

	
Click <expression> and select an expression from the dropdown list.

	
Rules Designer by default constructs variable names as you create the aggregate pattern. If needed for the rule you are constructing enter variable names to replace the default variable names. Figure 4-51 shows a completed rule using aggregate. In this example, for clarity the rule shows the variable names total_cost and item_x.

Figure 4-51 Completed Aggregate Function in a Rule

[image: Description of Figure 4-51 follows]

	
Enter additional tests as required. For this example you enter the test for items with color "red", as Figure 4-52 shows.

Figure 4-52 Using Aggregate Functions with Rules Red Color Total Cost Rule

[image: Description of Figure 4-52 follows]

4.7.5 What You Need to Know About Advanced Mode Rules

There are some special cases to keep in mind when you work with Advanced Mode rules, including the following:

	
When you work with aggregates, in actions, you do not see pattern variables. The pattern variables are only shown for action lists when you use (foreach...) patterns. Thus, you cannot see pattern variables in aggregate, "there is a case", or "there is no case patterns".

	
After you select Advanced Mode the Advanced Mode stays selected and inactive (gray), as long as your rule uses advanced options such as advanced pattern matching. To deselect Advanced Mode you must remove or undo the advanced mode features (sometimes it is easier to start over by creating a non-advanced mode rule and then delete the advanced mode rule).

To deselect the advanced mode option:

	
Select the rule or Decision Table where you want to deselect Advanced Mode.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name (see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table").

	
Consider the state of the rule:

	
If you can simplify the rule to enable the Advanced Mode option (such that the Advanced Mode icon changes from gray to enabled). Then simplify the rule and when Advanced Mode is enabled, deselect Advanced Mode.

	
If you can use Undo to undo the steps you used to create the Advanced Mode rule, to get to a state where the rule is no longer in Advanced Mode, then use this technique to simplify the rule.

	
If you cannot simplify the rule, then delete the rule and re-create it.

4.8 Working with Tree Mode Rules

Tree Mode rules make it easier to work with a master detail hierarchy, where there are nested elements that map to a parent child relationship.

4.8.1 Introduction to Tree Mode Rules

To introduce tree mode rules, it is instructive to work with an example. Consider the lifecycle of an application fragment that uses business processes and rules to process a retail purchase order (PO). The purchase order has a header with business terms that apply to the entire PO. The PO also contains a list of shipping destinations. Each destination has an address, a list of items to be shipped to the destination's address, and a list of shipments.

Consider the business rule: the status of a PO is "fully shipped" if the status of every item is either "shipped" or "canceled".

Figure 4-53 shows a sample XML schema representation for the PO example. The XML documents for the PO are tree structured. This allows a natural representation for the PO. For example, the PO itself is the top level document element and destinations are nested elements that contain item elements and shipment elements. Shipment elements also contain item elements that reference the ordered items. Status has a list of valid values.

Figure 4-53 PO Schema for Tree Mode Rules Sample

[image: Description of Figure 4-53 follows]

Example 4-1 shows the sample purchase order XML schema as represented in Figure 4-53.

Example 4-1 Sample Purchase Order (PO) Schema

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://www.example.org"
targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="PO">
 <xsd:annotation>
 <xsd:documentation>A sample element</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="header">
 <xsd:complexType>
 <xsd:attribute name="status" type="Status"/>
 <xsd:attribute name="order-date" type="xsd:date"/>
 <xsd:attribute name="customer-value"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="billing">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address"/>
 <xsd:element name="payment"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="destination" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="address"/>
 <xsd:element name="item" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="ID"/>
 <xsd:attribute name="status"/>
 <xsd:attribute name="quantity" type="xsd:int"/>
 <xsd:attribute name="availability-date" type="xsd:date"/>
 <xsd:attribute name="qoh" type="xsd:int"/>
 <xsd:attribute name="price"
 type="xsd:decimal"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="shipment" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="item" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="ID"/>
 <xsd:attribute name="quantity"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="ship-date"/>
 <xsd:attribute name="method"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="status" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:simpleType name="Status">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="open"/>
 <xsd:enumeration value="partially shipped"/>
 <xsd:enumeration value="fully shipped"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Example 4-2 shows part of the XML for an instance of the PO schema. To use tree mode rules you can create a rule that tests one or more business terms and if the tests pass, one or more business terms are added or changed. Oracle Business Rules has special support to enable error-free authoring of rules on fact trees like the sample PO instance.

For example, consider creating a rule for an instance of the PO schema that states:

IF the time between the order date and the date for availability of an item is more than 30 days
THEN cancel the item

Example 4-2 Sample Abbreviated PO XML Instance

<PO xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org ../../../../Temp/PO.xsd"
 xmlns="http://www.example.org">
 <header/>
 <billing>
 <address/>
 <payment/>
 </billing>
 <destination>
 <address/>
 <item ID="a01"/>
 <item ID="a02"/>
 <item ID="a03"/>
 <shipment>
 <item ID="a01"/>
 <item ID="a02"/>
 </shipment>
 </destination>
</PO>

4.8.1.1 Understanding Tree Mode Rules (Non-Advanced Mode)

You use non-advanced tree mode, or simple tree mode, when the Advanced Mode option is not selected and Tree Mode is selected. With this mode Rules Designer shows ROOT: <fact type> where you enter the root fact type, as shown in Figure 4-54.

Figure 4-54 Simple Tree Mode Rule with Tree Mode Selected

[image: Description of Figure 4-54 follows]

When you create rules with Tree Mode selected and Advanced Mode unselected you can reference properties in the tree using qualified names, for example:

	
PO/destination/item.quantity that is similar to item.quantity but only items that are a destination of PO are matched.

	
PO$Destination$item.quantity that refers to a List<item>. This reference is unchanged from non-tree mode.

With Simple Tree Mode you can only choose terms that do not require many-to-many joins or aggregation.

For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".

4.8.1.2 Understanding Advanced Tree Mode Rules

You use advanced tree mode when the Advanced Mode option is selected and the Tree Mode option is selected. With this mode Rules Designer shows ROOT: <fact type> where you enter the root fact type, as shown in Figure 4-55. Rules Designer shows patterns for the tree structured facts but the simple tests that join the parent and child facts are hidden.

Figure 4-55 Advanced Tree Mode

[image: Description of Figure 4-55 follows]

In advanced tree mode the tree mode patterns, except for the root, display as:

<operator> <variable> is a <fact path>

Where the <fact path> is an XPath-like path through the 1-to-1 and 1-to-many relationships starting at the root. For example, each fact path has a name like PO/destination, where PO is the root fact type and the destination is a property of type List. A 1-to-many relationship in a fact path is indicated with a "/", as in PO/destination.

A 1-to-1 relationship in a fact path is indicated with "." This unchanged from non-tree mode. For example, item.availabilityDate.

Advanced mode exposes the concept of a pattern, the simplest of which is is a. For example, p is a PO causes p to match, iterate over, all the PO facts, and d is a p/destination causes d to match all the destinations of p. The left side of is a is a variable, and the right side is a fact type or a fact path. By default, Oracle Business Rules sets the variable name equal to the fact type or path. For example, PO is a PO. A pattern can also be a pattern block. A pattern block has a logical quantifier, negation, or aggregation that applies to the patterns and tests nested inside the block.

For more information, see Section 4.8.3, "How to Create Advanced Tree Mode Rules".

When you work with advanced tree mode rules, Rules Designer expects you to use an aggregation pattern, including exists and not exists to combine terms from different child forests into the same rule while avoiding a Cartesian product.

4.8.2 How to Create Simple Tree Mode Rules

Given the XML schema shown in Example 4-1 and the schema instance shown in Example 4-2, the following procedure creates the PO rule to cancel non 30-day availability items.

IF the time between the order date and the date for availability of an item is more than 30 days
THEN cancel the item

To create simple tree mode rules:

	
Create an IF/THEN rule in your ruleset.

For more information, see Section 4.3.1, "How to Add Rules".

	
View advanced settings.

For more information, see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table".

	
Select Tree Mode as Figure 4-56 shows.

Figure 4-56 Simple Tree Mode Advanced Settings

[image: Description of Figure 4-56 follows]

	
Next to ROOT:, click the <fact type> place holder and select PO from the dropdown list as Figure 4-57 shows.

Figure 4-57 Simple Tree Mode: Configuring the Root

[image: Description of Figure 4-57 follows]

	
Select <insert test>.

The IF statement now reads IF <operand> == <operand>.

	
Select the left-hand <operand>.

	
In the dropdown list, select PO/destination/item.availabilityDate.

	
Select Expression Builder icon, as shown in Figure 4-58.

Figure 4-58 Adding Simple Tree Mode Expression

[image: Description of Figure 4-58 follows]

	
In the Expression Builder dialog, copy and delete the item shown in the Expression area.

	
In the Expression Builder, select the Functions tab.

	
In the navigator, expand Duration and double-click the daysbetween function.

	
Remove the daysbetween argument templates, as shown in Figure 4-59.

Figure 4-59 Using Expression Builder to Add a Simple Tree Mode Rule

[image: Description of Figure 4-59 follows]

	
In the daysbetween function, paste the value you previously cut as the second argument.

	
In the Expression Builder dialog, select the Variables tab.

	
For the daysbetween function first argument, use the navigator to expand PO and expand header, and double-click orderDate.

	
In the Expression Builder dialog, click OK.

	
In the dropdown list, in the expression area and press Enter.

	
Select the operator and enter >.

	
Select the right-hand <operand> and enter the value 30 and press Enter, as shown in Figure 4-60.

Figure 4-60 Simple Tree Mode: Right-Hand Operand with Value 30

[image: Description of Figure 4-60 follows]

	
Click <insert action> and from the dropdown list select modify.

The THEN statement now reads: THEN modify <target>.

	
Click <target> and from the dropdown list select PO/destination/item. The THEN statement now reads:

THEN modify PO/destination/item (<add property>)

	
Click <add property>. This displays the properties dialog.

	
In the properties dialog for the status name, enter the value "canceled", as Figure 4-61 shows.

Figure 4-61 Simple Tree Mode: Action

[image: Description of Figure 4-61 follows]

	
In the Properties dialog, click Close.

	
This displays the finished rule, as shown in Figure 4-62.

Figure 4-62 Simple Tree Mode Rule Final Rule

[image: Description of Figure 4-62 follows]

Note that in the modify statement, PO/destination/item refers to the particular item instance member.

4.8.3 How to Create Advanced Tree Mode Rules

Given the XML schema shown in Example 4-1 and the instance of these facts shown in Example 4-2, the following procedure creates a free shipping rule that can be summarized as:

IF the total cost of "free shipping eligible" items to a given destination is greater than $40
THEN shipping of those items is free

To create advanced tree mode rules:

	
Create an IF/THEN rule in your ruleset.

For more information, see Section 4.3.1, "How to Add Rules".

	
View advanced settings.

For more information, see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table".

	
Select Advanced Mode and select Tree Mode as Figure 4-63 shows.

Figure 4-63 Advanced Tree Mode Rule for Free Shipping

[image: Description of Figure 4-63 follows]

	
Select the <fact type> place holder and from the dropdown list, select PO.

	
Complete the free shipping rule, as shown in Figure 4-64.

Figure 4-64 Advanced Tree Mode Free Shipping Rule

[image: Description of Figure 4-64 follows]

4.8.4 What You Need to Know About Tree Mode Rules

When you select Tree Mode and select a root fact type, the options lists show all available fact types (not just the children of the root fact type). This allows you to view all available fact types as well as the children of the root fact type. There is no option to limit the option list to only show the children of the selected root fact type.

4.9 Using Date Facts, Date Functions, and Specifying Effective Dates

Oracle Business Rules provides functions that make it easier for you to work with times and dates, and provides effective date features to let you determine when rules are effective, based on times and dates:

	
The CurrentDate fact allows you to reason on a fact representing the current date.

	
The Effective Date value lets you specify a start date and end date that defines a date or date and time range when all the rules and Decision Tables in a ruleset, an individual rule, or an individual Decision Table are effective.

Table 4-8 describes the available Effective Date options.

Table 4-8 Effective Date Possible Values

	Effective Date	Description
	
Always Valid

	
Specifies to set neither "From" nor "To" dates.

	
From (without To date set)

	
Valid from a certain date indefinitely into the future.

	
To (without a From date set)

	
Valid from now until a certain date.

	
From Set and To set

	
Valid only between two dates.

An effective date specification other than Always can be one of the following:

	
Date only, with no time specification: In this case, an effective date assumes a time of midnight of that date in each time zone.

	
Date, time zone, with no time specification: In this case, an effective date assumes a time of midnight as of the specified date in the specified time zone.

	
Date, time zone, time specification: In this case, the date and time is fully specified.

	
Time specification only, with no date and no time zone: applies for all days at the specified time.

	
Time and time zone specified, with no date: applies for all days at the specified time.

4.9.1 How to Use the Current Date Fact

You can use the current date fact in a rule or a Decision Table.

To use the CurrentDate fact:

	
Select a ruleset from the Rulesets navigation tab.

	
Select a rule within the ruleset.

	
In the IF area, add a condition that uses the CurrentDate fact and the date method of Calendar type, as shown in Figure 4-65.

Figure 4-65 Rule with Condition Using CurrentDate Fact

[image: Description of Figure 4-65 follows]

4.9.2 How to Set the Effective Date for a Rule

You can specify an effective start date and or an effective end date for a ruleset, a rule, or a Decision Table. For information on specifying the effective date for a ruleset, see Section 4.2.2, "How to Set the Effective Date for a Ruleset".

To set the effective date for a rule:

	
Select the ruleset name from the Rulesets navigation tab.

	
Select a rule within the ruleset.

	
Next to the rule name click Show Advanced Settings, as shown highlighted in Figure 4-66.

Figure 4-66 Showing Advanced Settings in a Rule

[image: Description of Figure 4-66 follows]

	
Select the Effective Date field. This displays the Set Effective Date dialog, as shown in Figure 4-67.

Figure 4-67 Setting the Effective Date for a Rule

[image: Description of Figure 4-67 follows]

	
Use the Set Effective Date dialog to specify the effective dates for the rule. Clicking the Set Date icon displays a calendar to assist you in entering the From and To field data.

	
In the Set Effective Date dialog, click OK.

4.9.3 What You Need to Know About Effective Dates

By default, the Oracle Business Rules Engine implicitly manages the clock associated with the CurrentDate fact and the effective date, setting each to the value of the system date. Using the RL Language functions setCurrentDate() and setEffectiveDate() you can explicitly set the current date and the effective date. For more information, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

An effective start date is defined as the first point in time at which a rule, Decision Table, or ruleset may actively participate in rule evaluations and fire. Thus, if a rule is effective it may fire if its condition is satisfied and if the rule is not effective, it does not fire whether the condition is satisfied or not.

An effective end date is the first moment in time at which the rule, Decision Table, or ruleset no longer actively participates in rule evaluations (not effective means the rule does not fire).

The effective start and end date can be set on a Decision Table, but these dates cannot be set individually for the rules within a Decision Table.

Rules and Decision Tables also include the Rule Active option. This option is set independent of the effective dates and makes dates effective without changing or removing the specified effective date. For more information on using the Rule Active option, see Section 4.5.3, "How to Select the Active Option".

The precedence of the effective date, when it is defined for both a ruleset and for the rules or Decision Tables within a ruleset, is as follows (with the top precedence being 1):

	
If the ruleset Rule Active option is unselected, then RL Language is not generated for that entity.

	
If one or both of the effective date properties are selected for a ruleset, then those effective start dates and effective end dates define the range of effective dates allowable for rules or Decision Tables that are defined within the ruleset (that is, if in the ruleset the From checkbox, the To checkbox, or both checkboxes are selected in the Set Effective Date dialog).

Thus, the effective dates specified for rules or Decision Tables within a ruleset must not violate the boundaries established by the ruleset that contains the rules or Decision Tables. For example, a rule may not have an effective end date that is later than the effective end date specified for a ruleset.

	
If any individual rule or Decision Table has Rule Active unselected, then RL Language is not generated for that rule or Decision Table.

	
If the Set Effective Date dialog for a ruleset includes Time selected or this option is selected on a rule or a Decision Table in the ruleset, then all instances of rules or Decision Tables in the ruleset must have Time selected when effective dates are specified. In this case, if Both or Date is selected then Rules Designer shows a validation warning:

RUL-05742: Calendar form incompatibility detected with forms Time and DateTime.
If the calendar form is set to Time on a rule set or any of the rules or
decision tables within that ruleset then the calendar form for that entire
rule set is restricted to Time.

4.9.4 How to Use Duration, JavaDate, OracleDate, and XMLDate Methods

You can use the Duration, JavaDate, and XMLDate, OracleDate, and OracleDuration extension methods in a rule or a Decision Table. For more information, see Appendix B, "Rules Extension Methods".

To use a Duration method:

	
Select ruleset from the Rulesets navigation tab.

	
Select a rule within the ruleset (you can also use Duration methods in a Decision Table).

	
In the IF area, add a condition.

	
Select an operand in the rule condition.

	
From the dropdown list, select Expression Builder.... For more information, see Section 4.10, "Working with Expression Builder".

	
In the Expression Builder, select the Functions tab.

	
In the Expression Builder, in the Navigator, expand the Duration folder.

	
Double-click to select and insert the appropriate method as needed for your duration test.

	
Provide the appropriate arguments for the method. For example, see Figure 4-68.

	
This allows you to create a rule such as that shown in Figure 4-69.

Figure 4-68 Using Duration Methods in a Rule

[image: Description of Figure 4-68 follows]

Figure 4-69 Adding a Rule Using Duration Function

[image: Description of Figure 4-69 follows]

4.10 Working with Expression Builder

Use the expression builder to create and edit expressions for Oracle Business Rules.

4.10.1 Introduction to the Expression Builder

You can access the expression builder from different parts of Rules Designer, including in the Edit Globals dialog, and in the conditions area when you work with conditions in Decision Tables, and when you enter rules and Decision Tables in advanced mode with free form expressions selected.

Figure 4-70 shows the Rules Designer expression builder.

Figure 4-70 Rules Designer Expression Builder

[image: Description of Figure 4-70 follows]

4.10.2 How to Use the Expression Builder

In the expression builder when you double-click items in the Variables or Functions navigation trees, or in the Operators tab, or in the Constants tab, this inserts the item into the expression in the Expression area. You can also create or edit expressions directly by entering text in the Expression area.

When you enter an expression, note that Variables are valid assignment targets and Constants are not valid assignment targets. Thus, you should use both tabs if you are unsure what type of item you want to add to the expression you are building.

Specify an argument for a selected function by placing the cursor inside the function in the Expression field and double-clicking the expression or function to insert. For example, place the cursor inside the parentheses of a function and select a variable. This inserts the variable in the expression at the cursor position.

4.10.3 What You Need to Know About Working with Expressions

XML fact types allow XML Schema types, elements, and attributes to be used when writing rules. Elements and types defined in XML Schema can be imported into the data model and can then be used to create rules and Decision Tables, just as with Java fact types and RL Fact types. The mapping between the XML Schema definition and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and conventions in an XML Schema definition and the available types, allowed names and conventions in Java. For example, an element named order-id and of type xsd:integer is mapped to a Java Bean property named orderID of type BigInteger (and xsd:int type maps to Java int).

You can use expressions in Oracle Business Rules. Expressions allow arithmetic using the operators *, +, /, %, and other supported operators on primitive numerics, for example double, int, and the numeric types Integer, Long, Short, Float, Double BigDecimal, and BigInteger that are available in the builtin dictionary. For more information on supported primitive numerics, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

Expressions allow casting between any two numeric types, for example, (short)((BigInteger)1 + (Long)2). Example 4-3 shows a few additional sample expressions.

The expression processor uses the XPath/Xquery rules for type promotion (XML Path Language (XPath) 2.0). For example, BigDecimal is promoted to float/double; type promotion going the other direction requires a cast, except for literals such as 3.3.

Example 4-3 Sample Expressions in Actions with Types and Casting

assign new double db = 3.3
assign new BigDecimal bd = 3.3 // no cast required
assign db = bd // no cast required
assign bd = (BigDecimal)db // cast is required

4.11 Using Bucketsets as Constraints for Options Values in Rules

You can use List of Values Bucketsets and List of Ranges Bucketsets to specify constraints for fact properties in rules. This allows you to use Rules Designer to produce validation warnings for possible errors where a value supplied is out of range, or not within a set of possible values as specified in a bucketset. Oracle Business Rules also lets you use bucketsets to specify constraints for global initial values, function return values, or function argument values. For more information, see Section 2.3, "Working with Oracle Business Rules Globals" and Section 3.7, "Associating a Bucketset with Facts and Functions".

4.11.1 How to Use a List of Ranges Bucketset as a Constraint for a Fact Property

You can use a list of ranges bucketset as a constraint for a fact property.

For more information on using a list of values bucket set as a constraint, see Section 4.11.2, "How to Use a List of Values Bucketset as a Constraint for a Fact Property".

To use a List of Ranges bucketset as a constraint for a fact property:

	
Specify a bucketset that includes the ranges you want to include and select Allowed in Actions for all valid ranges. To include a range, deselect Allowed in Actions for the top and bottom endpoints.

	
Select Included Endpoint as needed for the application.

	
Deselect Include Disallowed Buckets in Tests. For example, for a bucketset that defines valid grades and that does not allow values greater than 100, or less than 0, define the bucketset endpoints as shown in Figure 4-71.

Figure 4-71 Valid Grades Bucketset for Fact Property

[image: Description of Figure 4-71 follows]

	
Associate this bucketset with a fact property. For example, associate the bucketset with test_math1 as shown in Figure 4-72.

Figure 4-72 Associating a Bucketset with a Fact Property

[image: Description of Figure 4-72 follows]

Now, if you define a rule with a test that uses the fact property you receive a validation warning when a value is out of range. For example if you define a rule with an expression with the value -10, Rules Designer shows a validation warning as shown in Figure 4-73.

Figure 4-73 Using a Fact Property Value that is not in the Allowed in Actions for Associated Bucketset

[image: Description of Figure 4-73 follows]

4.11.2 How to Use a List of Values Bucketset as a Constraint for a Fact Property

You can use a list of values bucketset as a constraint for a fact property.

For more information on using a list of ranges bucket set as a constraint, see Section 4.11.1, "How to Use a List of Ranges Bucketset as a Constraint for a Fact Property".

To use a List of Values bucketset as a constraint for a fact property:

	
Specify an LOV bucketset that includes the values you want to include, and select Allowed in Actions for all valid values. For more information, see Section 3.6.1, "How to Define a List of Values Global Bucketset".

	
Deselect Allowed in Actions for the otherwise bucket.

	
Deselect Include Disallowed Buckets in Tests.

	
Associate this bucketset with a fact property.

4.11.3 How to Use Bucketsets to Provide Options for Test Expressions

You can use LOV bucketsets to provide options for expressions and actions.

How to use bucketsets to provide options for rule expressions and actions:

	
In Rules Designer, define an LOV bucketset of a type corresponding to a fact property. For more information, see Section 3.6.1, "How to Define a List of Values Global Bucketset".

	
Associate the bucketset with a fact property. For more information, see Section 3.7.1, "How to Associate a Bucketset with a Fact Property".

	
When you enter expressions, Rules Designer shows the bucket values in the values options. For example, when you associate a fact property Driver.eye_test with an LOV bucketset named eyes, with values: pass, fail, and glasses_required, and then you use Driver.eye_test in a test expression, the bucket values are limited as shown in Figure 4-74.

Figure 4-74 Using a Bucketset to Provide Options for a Rule Test Expression

[image: Description of Figure 4-74 follows]

5 Working with Decision Tables

Using a Decision Table you can create and use business rules in an easy to understand format that provides an alternative to the IF/THEN rule format. The Decision Table format is intuitive for business analysts who are familiar with spreadsheets. The formal structure that a Decision Table provides makes it easier to author, understand, and change multiple similar rules and lets software check for rule completeness and consistency.

This chapter includes the following sections:

	
Section 5.1, "Introduction to Working with Decision Tables"

	
Section 5.2, "Creating Decision Tables"

	
Section 5.3, "Performing Operations on Decision Tables"

	
Section 5.4, "Creating and Running an Oracle Business Rules Decision Table Application"

5.1 Introduction to Working with Decision Tables

Businesses invest in software to automate their business processes. Historically, this automation focused on the collection, presentation, and manipulation of data to facilitate human decision-making about that data. Increasingly, however, software designers and developers are called upon to automate the decision making process by putting detailed rules about business processes into software architectures. In addition, many enterprises are experiencing increasing pressure to make software systems more responsive to business changes. In some cases, the role of writing and testing business rules is no longer assigned to software engineers, but is passed to trained business users. Alternatively, some organizations attempt to separate changes in the business behavior of software from the traditional software development cycles, and tie changes to business driven imperatives like product or sales cycles.

A Decision Table provides a mechanism for describing data processing tasks, especially when that description is done by business analysts rather than computer programmers.

Oracle Business Rules Decision Tables provide the following features:

	
Powerful Visualization: Compact and structured presentation. This visualization matches the way real world business policies are expressed: with many tables, declarative, and organized into simple steps.

	
Error Prevention: Avoids incompleteness and inconsistency. Because a Decision Table is well structured, automated tools can check for conflicts, redundancy, and incompleteness to speed development of valid, consistent business rules.

	
Modular Knowledge Organization: Group rules into a single table. A spreadsheet metaphor puts groups of rules that work together onto a single viewable pane. For example, if there are six rules that check an applicant's eligibility, it is more convenient to see all the rules than to view the rules as individual but related rules.

	
Optimization of Rules and Performance Benefits: Oracle Business Rules Decision Tables provide automated features that can reduce the number of required rules, as compared to the IF/THEN rules (this is called rule coalescing).

	
Rule Validation and Verification: Provides capabilities for ensuring the logical consistency of rules before deployment. Automated tools for checking conflicts, incompleteness, or gaps, help speed development of valid, consistent business rules.

Ease of verification and visualization are the major reasons for using Decision Tables.

For information, see Chapter 4, "Working with Rulesets and Rules".

5.1.1 What is a Decision Table?

A Decision Table displays multiple related rules in a single spreadsheet-style view. In Rules Designer a Decision Table presents a collection of related business rules with condition rows, rules, and actions presented in a tabular form that is easy to understand. Business users can compare cells and their values at a glance and can use Decision Table rule analysis features by clicking icons and selecting values in Rules Designer to help identify and correct conflicting or missing cases.

To help understand Decision Table concepts, consider a set of IF/THEN rules that determine if a driver is eligible for a license, and an equivalent Decision Table. Note if a driver has taken a driver training class then the driver has training certification.

The IF/THEN rules follow:

if driver.age < 20 and driver.has training then driver.eligible = true
if driver.age < 20 and driver.has training = false then driver.eligible = false
if driver.age >= 20 then driver.eligible = true (do not care about training for this case)

Figure 5-1 shows a Decision Table representation of these rules that includes areas for Decision Table Conditions and Actions.

Figure 5-1 Sample Decision Table with Conditions and Actions

[image: Description of Figure 5-1 follows]

5.1.1.1 What You Need to Know About Decision Table Conditions

The Conditions area in a Decision Table includes one or more condition rows. Each condition row has a condition expression and, for each rule, a condition cell. A condition expression is an expression that you build in Rules Designer. Usually a condition expression is shown in a condition row and applies to a data model fact, either, a Java Fact, an XML Fact, an RL Fact, or an ADF Business Components fact. A bucketset is associated with every condition expression and you can define the bucketset on the fly using a local bucketset or you can use a global bucketset. The value or the range for a given condition cell takes its value or its range from one or more buckets in the associated LOV or Ranges bucketset. For more information on bucketsets, see Section 3.6, "Working with Bucketsets".

For example, Figure 5-1 shows the condition expression for a Driver fact with the Driver.age property. The corresponding row in the Decision Table shows condition cells including buckets for the ranges <20, and >=20. The values in the cells come from the global bucketset named driver_ages.

Figure 5-1 also shows a condition row for the Driver fact with the Driver.has_training property. This condition row shows condition cells with the values, true, false, and -. The hyphen (-) means "do not care" (that is Driver.has_training could be true or false in this case). The values for these condition cells come from the default bucketset associated with boolean types (this consists of default buckets for the values true and false).

Decision Tables show rules in bucket order, and to change the order of rules you need to change the order of buckets in the bucketsets. Thus, the order of the buckets in the bucketset associated with a condition row determines the order of the condition cells, and thus the order of the rules. You can control rule ordering in a Decision Table by changing the relative position of the buckets in an LOV bucketset associated with a condition row; however, you cannot reorder range buckets. For information on ordering buckets in a bucketset, see Section 3.6.1, "How to Define a List of Values Global Bucketset".

5.1.1.2 What You Need to Know About Decision Table Actions

Actions are associated with rules in a Decision Table. At runtime, when facts match for condition cells, the Rules Engine prepares to run the actions associated with the rule.

Table 5-1 shows the types of actions you can choose in the Actions area. Thus, in an action you can call a function, assert a new fact, retract a fact, or modify a fact. In the Actions area the cells corresponding to an individual action for a rule are called action cells. Note, in advanced mode there are additional options for actions. For more information on advanced mode, see Section 4.5.2, "How to Select the Advanced Mode Option".

Table 5-1 Decision Table Actions for Action Cells

	Action	Description
	
assert new

	
Assert a new fact

	
call

	
Call a function

	
retract

	
Retract a fact

	
modify

	
Modify a data value associated with a matched fact

When you add multiple actions the actions that you add in the Actions area are ordered; actions appearing in the higher rows run before actions in the following rows.

The Decision Table actions such as modify can refer to facts matched in the condition cells. For example, given a Decision Table with condition rows on the Driver fact that includes condition rows for Driver.age and Driver.has_training, actions can modify the property Driver.eligible and you can specify a value for Driver.eligible for each action cell.

Certain types of actions in the Actions area include a Parameterized checkbox. This checkbox specifies that a property from the action can have its value set in the action cell associated with a rule in the Decision Table. When the parameterized checkbox is selected the value you supply for the expression value in the action, in the Actions area, becomes the default value for the property if a value is not supplied in the action cell. For example, see Figure 5-2 where the value false is assigned as the default value for the action property eligible.

Figure 5-2 Action Editor Showing Parameterized Action with Default Value

[image: Description of Figure 5-2 follows]

5.1.1.3 What You Need to Know About Decision Table Rules

A ruleset contains a Decision Table; this provides a way to group the Decision Table along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset, the IF/THEN rules and the Decision Table rules all execute as a set of interrelated rules.

A rule in a Decision Table is not named. Although Rules Designer shows rules in a Decision Table with labels, for example, R1, R2, and R3, these rule labels are not names for individual rules but are labels derived from the current ordering of the rules in the Decision Table. Thus, a rule with the label R1 could be moved to position 3 and then Rules Designer relabels this rule R3.

Rules in a Decision Table are organized as a table that contains a tree of condition cells. The condition cells in the first row span the cells of later condition rows. A parent cell in row i spans its children in row i+1.

Figure 5-3 shows rules in a Decision Table where each rule consists of one cell from each row in the Conditions area, and an associated action cell in the same column in the Actions area. Figure 5-3 shows the rule with the label R3 defined by the first cell from condition 1 (the Driver.age < 20 bucket), the second cell from condition 2 (the Driver.eye_test equals fail bucket), and the third cell from condition 3 (the Driver.has_training equals true bucket). Likewise for each of the other rules, R1 to R12, there is a unique path through the Decision Table.

Figure 5-3 Rules in a Decision Table

[image: Description of Figure 5-3 follows]

As shown in Figure 5-3, it is significant for a cell to be a parent of another cell and a parent cell spans lower cells. In the Conditions area, when condition cells have the same parent condition cell the cells are called siblings. Certain operations only apply for condition cells that are siblings. For example, Figure 5-4 shows two sibling cells that are selected; with these cells selected the Merge Selected Cells operation is valid. For these cells, the corresponding bucket with the value fail for Driver.eye_test is also a sibling (as shown in the R3 and R4 columns in Figure 5-4). For more information, see Section 5.3.3, "How to Merge or Split Conditions in a Decision Table".

Figure 5-4 Sibling Condition Cells in a Decision Table

[image: Description of Figure 5-4 follows]

Rules Designer lets you easily reorder rows by selecting the row and clicking a Move icon. By reordering rows in the Conditions area you can perform operations on condition cells at the desired granularity. Thus, the move operations can assist you when you want to split, merge, or assign certain values that might only be appropriate at a particular level in the tree, depending on the location of a condition cell or depending on the location of the parent, children, or siblings of a condition cell.

5.1.2 Understanding Decision Table Values

By default, when you create a condition row Rules Designer creates a single condition cell and assigns the "-" value to the cell. A condition cell with the value "-" means "do not care" or "match any bucket" in the bucketset. For example, Figure 5-5 shows a "do not care" value for Driver.age.

Figure 5-5 Sample Decision Table Showing Do Not Care Value in Condition Cell

[image: Description of Figure 5-5 follows]

In the Decision Table Actions area you can specify that an action cell "do nothing". In this case, deselect the action cell. When the action cell checkbox is unselected this means do not perform this action when the pattern matches for the specified condition values in the Decision Table. Thus, for each action cell you can specify whether the rule associated with the action cell should activate the action, or does not perform the action.

In a Decision Table when a condition cell represents a bucket that has been removed from the bucketset, Rules Designer provides a validation warning such as the following:

RUL-05831: Decision table bucket reference not found

To fix this type of validation warning you can do one of the following:

	
Define a value by double-clicking the condition cell and selecting one or more buckets from the dropdown list.

	
Add the missing bucket to the bucketset or associate the condition with another bucketset that contains the missing bucket.

5.1.3 What You Need to Know About Decision Table Loops

A Decision Table loop occurs when the value for a condition row is changed by an action. Loops can occur across the rules in a single Decision Table or spread over several Decision Tables, or spread over rules and Decision Tables in the same ruleset. Try not to create Decision Table actions that modify fact properties that are used in Decision Table conditions. This could cause an infinite loop.

5.2 Creating Decision Tables

You add a Decision Table by performing several steps. These steps include:

	
Create a Decision Table

	
Add conditions to the Decision Table

	
Add actions to the Decision Table

	
Use Decision Table operations to validate, correct, and modify the Decision Table

5.2.1 How to Create a Decision Table

To work with a Decision Table you start by creating a Decision Table in a ruleset.

To create a decision table:

	
From Rules Designer select an existing ruleset from the rulesets tab or create a ruleset by clicking Create Ruleset....

	
Click the Add icon and from the dropdown list select Create Decision Table, as shown in Figure 5-6. This creates a Decision Table.

Figure 5-6 Adding a Decision Table

[image: Description of Figure 5-6 follows]

	
Note:

When you add a Decision Table the rules validation log displays validation warnings. The Decision Table is not complete and does not validate without warnings until you add conditions and actions to the Decision Table.

5.2.2 How to Add Condition Rows to a Decision Table

A Decision Table includes a Conditions area where you specify Decision Table condition rows. The condition rows determine the facts that the Oracle Rules Engine matches at runtime. To create a Decision Table you need to add one or more condition rows to the Decision Table.

To add condition rows to a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add conditions.

	
In the Decision Table area, from the dropdown list next to the Add icon select Condition.

	
In the Conditions area, double-click <edit-condition> to display the navigator to select or enter an expression as shown in Figure 5-7.

Figure 5-7 Adding a Condition to a Decision Table

[image: Description of Figure 5-7 follows]

	
Enter an expression by clicking in the navigator to select a variable or click the Expression Builder icon to display the Expression Builder window. The Expression Builder lets you build expressions.

	
Each condition row requires a bucketset from which to draw the values for each cell. When the value you select has an associated global bucketset, then by default the bucketset is associated with the condition row.

	
Repeat Step 2 through Step 5, as required to add additional condition rows in the Decision Table.

To use a local bucketset or specify the bucketset for a decision table condition:

	
Each condition row requires a bucketset from which to draw the values for each cell. When the value you select has an associated global bucketset, then by default the bucketset is associated with the condition row.

	
If there is no global bucketset associated with the value, then after you add a condition row to a Decision Table you need to specify either a Local List of Values or a Local List of Ranges bucketset to associate with the condition row, or specify an existing global bucketset. To add a bucketset for the condition, in the Conditions area select the condition and then select from the Bucketset dropdown list to associate a bucketset, as shown in Figure 5-8. The bucketset list includes available global bucketsets of the appropriate type.

Figure 5-8 Specifying a Bucketset For a Condition Row in a Decision Table

[image: Description of Figure 5-8 follows]

	
If you do not specify a global bucketset, then you can create and use a local bucketset by selecting either Local List of Values or Local List of Ranges to create and use the specified type of bucketset.

	
Repeat Step 2 through Step 3, as required to define additional condition rows in the Decision Table.

For more information on creating bucketsets, see Section 3.6, "Working with Bucketsets".

5.2.3 How to Add Actions to a Decision Table

A Decision Table includes an Actions area where you specify Decision Table actions. The actions determine actions for rules in a Decision Table.

To create a valid Decision Table you need to do the following:

	
Add actions to a Decision Table.

	
For each action cell, where specific values apply, set the values for the action cells.

	
For each action cell, when the action does not apply to the rule, deselect the action cell. By default when you add an action to a Decision Table, actions for all the rules are unselected.

To add actions to a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add actions.

	
From the dropdown list next to the Add icon select Action and select an available action from the dropdown list. Table 5-1 lists the available actions. For example, select Modify. Rules Designer displays the Action Editor dialog as shown in Figure 5-9.

Figure 5-9 Adding an Action to a Decision Table

[image: Description of Figure 5-9 follows]

	
In the Action Editor dialog select the action target in the Target area. This specifies the data model object the action applies to.

	
For the specified target, as needed to make the action do what is required, modify the fields in the Arguments table. In the Action Editor dialog the Arguments table includes the fields shown in Table 5-2.

Table 5-2 Action Editor Dialog Arguments Fields

	Field	Description
	
Property

	
Displays the property names for the specified target.

	
Type

	
Displays the type for the property.

	
Value

	
Select the default value for the action from the dropdown list of available actions. The specified value applies to either the entire action, as the default value, or when a particular action cell is selected, the value specified applies for that particular action cell.

	
Parameterized

	
This specifies a parameterized value. A parameterized value displays in a Decision Table action cell. When you select parameterized value for a property, this generally means that each rule supplies a different parameter value.

	
Constant

	
Select to specify a constant value.

	
In the Action Editor dialog, to select action cells for all the rules, select the Always Selected checkbox.

	
Repeat Step 2 through Step 5, as required to define additional actions for the Decision Table.

To set values for action cells in a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to specify action cell values.

	
In the Actions area, check that the appropriate action cells are selected. If the Always Selected checkbox is specified in the Action Editor dialog, then all action cells should be selected. If Always Selected is not selected, then select the appropriate action cells using the action cell checkbox.

	
In the Actions area, enter the appropriate value for parameterized properties for each selected action cell. To do this select the action cell property cell, and either enter a value, select a value from the dropdown list, or click the Expression Builder icon to use the Expression Builder dialog.

To deselect an action cell in a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want deselect an action cell.

	
In the Actions area, select the action cell and deselect the checkbox in the action cell. You are not allowed to deselect action cell values when Always Selected is selected for the action.

When you add actions, you may need to change the order of the actions. In Rules Designer you can use the Move Down icon or Move Up icon to change the order of actions.

5.2.4 How to Add a Rule to a Decision Table

You can add a rule to a Decision Table. Rules Designer shows a column for the rule and each condition cell is initialized to "-" do not care.

To add a rule to a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to add the rule.

	
From the dropdown list next to the Add icon, select Rule.

	
Enter values for the condition cells. Notice that the rule moves as required to keep bucket values in their defined order.

	
Enter values for the action cells.

5.3 Performing Operations on Decision Tables

After you create a Decision Table there are operations that you may want to perform on the Decision Table, including the following:

	
Compact or split cells in a Decision Table

	
Merge a condition or split a condition in a Decision Table

	
Finding and resolving conflicts between rules in a Decision Table

	
Find and fix gaps in a Decision Table

5.3.1 Introduction to Decision Table Operations

After you create a Decision Table you may want to modify the contents of the Decision Table to produce a Decision Table that includes a complete set of rules for all cases, or to produce a Decision Table that provides the least number of rules for the cases.

5.3.1.1 Understanding Decision Table Split and Compact Operations

The split and compact operations allow you to manipulate the contents of the condition cells in a Decision Table.

The split table operation creates a rule for every combination of buckets across the conditions. For example, in a Decision Table with 3 boolean conditions, 2 x 2 x 2 = 8 rules are created. In a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion rules are created. Thus, you only use split table when the number of rules created is small enough that filling in the action cells is feasible.

When you want to apply match conditions for the "do not care" values in a Decision Table and create a match case for each cell, you use the split table operation.

Split can be applied to an entire Decision Table or to a single condition row. Additionally, split may be performed on an individual condition cell.

Depending on what is selected in the Decision Table, the split operation can create condition cells. Thus, using the split operation you can create rules in a Decision Table. Table 5-3 summarizes the split operation for a selected condition cell, condition row, or for a complete Decision Table.

Table 5-3 Summary of Split Operation

	Operator	Description
	
Condition Cell

	
Creates one sibling condition cell for each bucket value represented by the cell.

If the condition cell value is "do not care", then the cell is split into one sibling cell for each bucket in the bucketset that is not represented by a sibling condition cell, and "do not care" is no longer represented.

	
Condition Row

	
For each condition cell in the proceeding condition expression, create a sibling group which contains a cell for each value in the bucketset. The effect of this operation is the same as adding a "do not care" to each sibling group and calling split on each condition cell in each sibling group.

	
Decision Table

	
Same as calling split on each condition row in the Decision Table.

Depending on what is selected in the Decision Table, the compact table or merge cells operations remove condition cells. The compact table operation can be applied to an entire Decision Table. Additionally, the merge operation may be performed on sibling cells or on an entire condition row. Thus, using compact table or merge you can remove rules from a Decision Table. Table 5-4 summarizes the compact table and merge operations.

Table 5-4 Summary of Merge Operation

	Operator	Description
	
Condition Cell

	
Merging two or more condition cells adds all buckets in the cells to a single cell, and removes all but one of the cells. If one of the cells represents "do not care", then the merged cell represents "do not care".

This operation may merge action cells and this can create warnings for duplicate action cells, such as, RUL-05847: Duplicate decision table action parameter.

	
Condition Row

	
Combine all values in each sibling group into a single "do not care" cell for each condition cell in the proceeding condition expression. The effect of this is the same as calling merge on all cells in each sibling group.

This operation may merge action cells and this can create warnings for duplicate action cells, such as, RUL-05847: Duplicate decision table action parameter.

	
Decision Table

	
Compacts the Decision Table by merging conditions of rules with identical actions.

Split and merge are inverse operations when conflicting action cells are not associated with the operation. In this case, without conflicting action cells, a merge operation combines all the values from the siblings into one sibling, and discards the other sibling condition cells, and as a result of merging the condition cells, when a Decision Table contains action cells, the action cells are also merged. Thus, the merge operation combines multiple condition cells into a single condition cell and adds all buckets to the single cell.

When there are conflicting values for the action cells, a merge operation merges the action cells in a form that requires additional manual steps. Thus, if two action cells have conflicting parameters, after the merge the action cell contains multiple conflicting parameter values. These conflicting values are appended to the action cell and must be manually resolved by selecting and deleting the unwanted duplicate parameters. For example, see Figure 5-10 that shows conflicting values in an action cell.

An action cell that contains multiple values for a property is invalid. When you select the action cell Rules Designer shows a popup window with checkboxes to allow you to select a single value for the action cell. As shown in the validation log in Figure 5-10, Rules Designer shows a validation warning until you select a single value.

Figure 5-10 Conflicting Properties to be Resolved for a Merged Action Cell

[image: Description of Figure 5-10 follows]

5.3.1.2 Understanding Decision Table Move Operations

You can move the conditions or actions in a Decision Table. The Move icons let you reorder condition rows in the Conditions area and actions in the Actions area. Moving conditions up or down may reorder visual display of the rules, but these operations does not change the logic in any way. For example, if (x.a == 1 and x.b == 1) is logically the same as if (x.b == 1 and x.a == 1).

When you work with Decision Tables some operations only apply for condition cells that are siblings. Using the Move icon you can reorder rows so that Decision Table operations apply to the tree at the desired granularity. For example, when you want to change the action of a condition cell for a single rule, then you need to move that condition cell to the last row in the Decision Table Conditions area. For example, consider the Decision Table shown in Figure 5-11.

Figure 5-11 Rules in a Decision Table

[image: Description of Figure 5-11 follows]

To view this table with granularity for the Driver.age, move the Driver.age condition from the first row to the third row, as shown in Figure 5-12.

Figure 5-12 Decision Table After Move Down with Age Condition Last

[image: Description of Figure 5-12 follows]

Now to make the Driver.age conditions "do not care" for the first two rules, where the driver passes the eyesight test and has had driver training is true, you can easily apply changes to these particular conditions when the Driver.age condition is in the last row. Thus, in this table, it is easier to view and modify age related rules when Driver.age is in the last row, with the finest granularity.In general, the move operations can assist you when you want to split, merge, or assign certain values that might only be appropriate at a particular level in the tree, depending on the location of a condition cell, or depending on the location of the parent, children, or siblings of a condition cell.

For actions in the Actions area, clicking Move Up or Move Down lets you reorder the actions. Actions are ordered so that when multiple actions apply, the first action runs before subsequent actions. Thus, using the Move Up or Move Down operation on an action may be appropriate, depending on your application.

5.3.1.3 Understanding Decision Table Gap Analysis

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a combination of buckets, one from each condition, that is not covered by an existing rule. Rules Designer provides Gap Analysis to check for gaps. When you click the Gap Analysis icon Rules Designer finds gaps and presents a dialog to fix any gaps that are found.

You can choose to make existence of gaps a validation warning. When you deselect Allow Gaps in the Advanced Settings area, the Decision Table reports a validation warning when a gap is found. For more information, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".

For example, using the Driver example if you create a gap by deleting the rule that covers the case for Driver.age < 20 and Driver.has_training false, and then you click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in Figure 5-13. Clicking OK with the checkboxes selected adds either all rules or the selected rules to the Decision Table (this example only shows a single rule to add).

Figure 5-13 Using Gap Analysis

[image: Description of Figure 5-13 follows]

Gap analysis generates different new rules for the following cases:

	
Sibling rules: multiple missing sibling rules are added as a single new rule. For example, consider a rule with two conditions, Driver.age and Driver.hair. When there are two missing rules for different hair colors and the rules are siblings, that is, they have a common parent, then gap analysis shows a single rule as shown in Figure 5-14.

	
Non-sibling rules: multiple missing non-sibling rules are added as individual new rules. For example, when there are two different rules missing that do not have the same parent, then gap analysis provides two rules, as shown in Figure 5-15.

Figure 5-14 Gap Analysis with Missing Sibling Rules

[image: Description of Figure 5-14 follows]

Figure 5-15 Gap Analysis with Missing Non-Sibling Rules

[image: Description of Figure 5-15 follows]

In both of these cases shown in Figure 5-14 and Figure 5-15 there are two missing buckets, but for sibling rules the multiple buckets are combined in a single new rule. Thus, in general gap analysis suggests fewer more general rules in preference to many more specific rules.

For sibling rules you can add multiple rules then edit each cell to pick the buckets you want. Alternatively, you can use Find Gaps to add a rule and then split the cell with multiple values, and delete the rules you do not want to keep.

5.3.1.4 Understanding Decision Table Conflict Analysis

The rules in a Decision Table can conflict. Two rules conflict when they overlap and they have different actions. Two rules overlap when at least one of their condition cells has a bucket in common. Overlap is common when a Decision Table contains "do not care" condition cells. Overlap without conflict is common and harmless.

Rules Designer finds conflicts and you can see the conflicts in the Conflict Resolution row in the Decision Table when you click Show Conflicts. How you handle and resolve conflicts depends on the specified conflict policy. You can choose a conflict policy or use the default manual conflict policy. When you set a conflict policy using the Conflict Policy option in the Advanced Settings area, Rules Designer sets the conflict policy for the Decision Table. The Conflict Policy specifies the Decision Table conflict policy and is one of the following:

	
manual: Conflicts are resolved by manually specifying a conflict resolution for each conflicting rule.

	
auto override: Conflicts are resolved automatically using an override conflict resolution when this is possible, using the Oracle Business Rules automatic conflict resolution policies.

	
ignore: Conflicts are ignored.

For more information, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables". For example, Figure 5-16 shows a Decision Table with conflicting rules that you resolve with the default manual conflict policy.

Figure 5-16 Decision Table Showing Conflicting Rules in the Conflicts Area

[image: Description of Figure 5-16 follows]

By clicking on the cells in the Decision Table Conflict Resolution area Rules Designer lets you resolve conflicts between rules as follows:

	
Override (Override and OverriddenBy): You override one rule with the other. Override specifies that one rule fires. Override is a combination of prioritization and mutual exclusion. Prioritization is transitive and not symmetric. Mutual exclusion is both transitive and symmetric. If A overrides C and B overrides C, then A or B runs before C but only one of A, B, or C runs.

	
Run Before (RunBefore and RunAfter): You prioritize the rules. Run before lets the two rules fire in a prescribed order. Prioritization is transitive but not symmetric. That is, if A runs before B runs before C, then A runs before C but B does not run before A. This uses a Decision Table runBefore list specifying that the rule that runs before has a higher priority than rules in the list.

	
Ignore (NoConflict): You OK the conflict. Ignore lets the two rules fire in arbitrary order. For example, consider the following conflicting rules in a decision table:

rule1: everybody gets a 10% raise (as specified with a do not care value in a decision table condition cell)
rule2: employee with Top Performer set to true gets a 5% raise

In these rules, if rule2 overrides rule1, then a top performer gets a 5% raise, and everyone else gets a 10% raise. However, in this case, you would like to have both rules fire. Because it does not matter which rule fires first, and there is no conflict, then a top performer gets a 15.5% raise either way. In this case, use the NoConflict list to remove the conflict. Note that no conflict is what you get with IF/THEN rules with equal priorities, only you are not warned of a conflict and you have to think carefully if you want one rule to override the other.

Figure 5-17 shows the Rules Designer Conflict Resolution dialog shown when you select a conflicting rule in the Conflict Resolution area. This dialog lets you resolve conflicts between rules by selecting overrides, prioritization with RunBefore or RunAfter options, and a NoConflict option.

Figure 5-17 Using the Decision Table Conflict Resolution Dialog

[image: Description of Figure 5-17 follows]

You can use the Decision Table Advanced Settings Conflict Policy auto override option to specify that, where possible, conflicts are automatically resolved. The automatic override conflict resolution policy specifies that a special case overrides a more general case. For more information, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".

Thus, when there are conflicts in a Decision Table, you can do one or more of the following to resolve the conflicts:

	
Use auto override conflict resolution by selecting the Conflict Policy dropdown auto override option in the Decision Table.

	
Ignore conflicts by selecting the Conflict Policy dropdown ignore option in the Decision Table.

	
Use manual conflict resolution by selecting the Conflict Policy dropdown manual option in the Decision Table and set Conflict Resolution for each conflicting rule in the dialog by selecting cells in the Conflict Resolution area with the Show Conflicts checkbox selected.

	
Change the Decision Table to remove an overlap.

	
Combine actions to remove conflicts.

5.3.2 How to Compact or Split a Decision Table

Use the Compact Table and Split Table icons to compact or split cells in a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split and Compact Operations."

To compact a decision table:

	
In Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table to compact.

	
Click the Compact Table icon.

To split cells in a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table to split.

	
Click the Split Table icon.

5.3.3 How to Merge or Split Conditions in a Decision Table

Use the merge condition and split condition operations to merge or split a condition in a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split and Compact Operations."

To merge a condition in a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to merge a condition.

	
In the Conditions area, select the condition you want to merge.

	
Right-click, and from the dropdown list select Merge Condition.

To split a condition in a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to split a condition.

	
In the Conditions area, select the condition you want to split.

	
Right-click and from the dropdown list select Split Condition.

5.3.4 How to Merge, Split, and Specify Do Not Care for Condition Cells

Use the condition cell operations to split a condition cell, to merge sibling condition cells, or to specify a "do not care" value for a condition cell in a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split and Compact Operations."

To merge sibling cells in a condition in a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to merge condition cells.

	
Select the sibling condition cells to merge.

	
Right-click, and from the dropdown list select Merge selected cells.

To split a cell in a condition in a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to split a condition cell.

	
Select the cell to split.

	
Right-click, and from the dropdown list select Split selected cell.

To specify a "Do Not Care" value for a cell in a condition in a decision table:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to set the "do not care" value.

	
Select the appropriate condition cell.

	
Right-click, and from the dropdown list select Do Not Care.

To select all buckets to specify a "Do Not Care" value for a cell in a condition:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to set the "do not care" value.

	
Select the appropriate condition cell.

	
Double-click, and from the dropdown list select all the available checkboxes for all possible values.

5.3.5 How to Perform Decision Table Gap Analysis

A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a combination of buckets, one from each condition, that is not covered by an existing rule. Rules Designer provides Gap Analysis to check for gaps. When you use this operation Rules Designer presents a window to fix gaps. For more information, see Section 5.3.1.3, "Understanding Decision Table Gap Analysis".

You can choose to make existence of gaps a validation warning. When you deselect Allow Gaps in the Advanced Settings area, the Decision Table reports a validation warning when a gap is found. For more information, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".

To perform decision table gap analysis:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to perform.

	
Click the Gap Analysis icon.

5.3.6 How to Perform Decision Table Manual Conflict Resolution

The rules in a Decision Table can conflict. Two rules conflict when they overlap and they have different actions. Two rules overlap when at least one of their condition cells has a bucket in common. For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

To perform manual decision table conflict resolution:

	
From Rules Designer select a ruleset from the Rulesets navigation tab and select the Decision Table where you want to check conflicts.

	
Set the conflict policy to manual (this is the default conflict policy). For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

	
In the Conditions area, in the conflicts area, when conflicts exist for each rule with a conflict double-click the appropriate condition cell to display the Conflict Resolution dialog.

	
In the Conflict Resolution dialog, for each conflicting rule, in the Resolution field select a resolution from the dropdown list.

5.3.7 How to Set the Decision Table Auto Override Conflict Resolution Policy

When you select the Advanced Settings option in a Decision Table, you can select that Decision Table conflicts are automatically resolved using the auto override conflict policy (this applies only when it is possible to resolve the conflict using the Oracle Business Rules automatic conflict resolution policies). The automatic override conflict resolution uses a policy where when there is a rule conflict a special case overrides a more general case. For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

To select the auto override policy:

	
Select the rule or Decision Table where you want to use ignore conflict policy.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name.

	
From the Conflict Policy option select auto override.

5.3.8 How to Set the Decision Table Ignore Conflicts Policy

When you select the Advanced Settings option in a Decision Table, you can select that the Decision Table conflicts are ignored using the ignore conflict policy. The ignore policy tells Oracle Business Rules to ignore conflicts in the Decision Table. For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".

To select the ignore conflict policy:

	
Select the rule or Decision Table where you want to use the ignore conflicts policy.

	
Click the Show Advanced Settings icon next to the rule or Decision Table name.

	
From the Conflict Policy option select ignore.

5.4 Creating and Running an Oracle Business Rules Decision Table Application

The Order Approval application demonstrates the integration of an SOA composite application with Oracle Business Rules and the use of a Decision Table.

In this application a process is modeled that uses the decision component to:

	
Process rules from XML inputs including: a credit score and the annual spending of a customer, and the total cost of the incoming order.

	
Provide output that determines if an order is approved, rejected, or requires manual processing.

To complete this procedure, you need to:

	
Obtain the Source Files for the Order Approval Application

	
Create an Application for Order Approval

	
Create a Business Rule Service Component for Order Approval

	
View Data Model Elements for Order Approval

	
Add Bucketsets to the Data Model for Order Approval

	
Associate Bucketsets with Order and CreditScore Properties

	
Add a Decision Table for Order Approval

	
Split the Cells in the Decision Table and Add Actions

	
Compact the Decision Table

	
Replace Several Specific Rules with One General Rule

	
Add a General Rule

	
Check Dictionary Business Rule Validation Log for Order Approval

	
Deploy the Order Approval Application

	
Test the Order Approval Application

5.4.1 How to Obtain the Source Files for the Order Approval Application

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

To work with the Order Approval application, you first need to obtain the order.xsd schema file either from the sample project that you obtain online or you can create the schema file and create all the application, project, and other files in Oracle JDeveloper. You can save the schema file provided in Example 5-1 locally to make it available to Oracle JDeveloper.

Example 5-1 shows the order.xsd schema file.

Example 5-1 Order.xsd Schema

<?xml version="1.0" ?>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://example.com/ns/customerorder"
 xmlns:tns="http://example.com/ns/customerorder"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="CustomerOrder">
 <complexType>
 <sequence>
 <element name="name" type="string" />
 <element name="creditScore" type="int" />
 <element name="annualSpending" type="double" />
 <element name="value" type="string" />
 <element name="order" type="double" />
 </sequence>
 </complexType>
 </element>
 <element name="OrderApproval">
 <complexType>
 <sequence>
 <element name="status" type="tns:Status"/>
 </sequence>
 </complexType>
 </element>
 <simpleType name="Status">
 <restriction base="string">
 <enumeration value="manual"/>
 <enumeration value="approved"/>
 <enumeration value="rejected"/>
 </restriction>
 </simpleType>
 </schema>

5.4.2 How to Create an Application for Order Approval

To work with Oracle Business Rules, you first create an application in Oracle JDeveloper.

To create an application for order approval:

	
In the Application Navigator, click New Application.

	
In the Name your application dialog, enter the name and location for the new application.

	
In the Application Name field, enter an application name. For example, enter OrderApprovalApp.

	
In the Directory field, specify a directory name or accept the default.

	
In the Application Package Prefix field, enter an application package prefix, for example com.example.order.

The prefix, followed by a period, applies to objects created in the initial project of an application.

	
For an SOA composite with Oracle Business Rules, in the Application Template area select SOA Application for the application template. For example, see Figure 5-18.

	
Click Next.

Figure 5-18 Adding the Order Approval Application

[image: Description of Figure 5-18 follows]

	
In the Name your project page enter the name and location for the project.

	
In the Project Name field, enter a name. For example, enter OrderApproval.

	
Enter or browse for a directory name, or accept the default.

	
For an Oracle Business Rules project, in the Project Technologies area ensure that SOA, ADF Business Components, Java, and XML are in the Selected area on the Project Technologies tab, as shown in Figure 5-19. If an item is missing, select it in the Available pane and add it to the Selected pane using the Add button.

Figure 5-19 Adding a Project to an Application

[image: Description of Figure 5-19 follows]

	
Click Finish.

5.4.3 How to Create a Business Rule Service Component for Order Approval

After creating a project in Oracle JDeveloper you need to create a Business Rule Service component within the project. When you add a business rule you can create input and output variables to provide input to the service component and to obtain results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

	
Add a business rules service component

	
Create input and output variables for the service component

	
Create an Oracle Business Rules dictionary in the project

To create a business rule service component:

	
In the Application Navigator, in the OrderApproval project expand SOA Content and double-click composite.xml to launch the SOA composite editor (this may already be open after you create the project).

	
From the Component Palette, drag-and-drop a Business Rule from the Service Components area of the SOA menu to the Components lane of the composite.xml editor.

Oracle JDeveloper displays a Create Business Rules page, as shown in Figure 5-20.

Figure 5-20 Adding a Business Rule Dictionary with the Create Business Rules Dialog

[image: Description of Figure 5-20 follows]

	
To add an input, from the dropdown list next to the Add icon select Input to enter input for the business rule.

	
In the Type Chooser dialog, click the Import Schema File... icon. This displays the Import Schema File dialog, as shown in Figure 5-21.

Figure 5-21 Import Schema File with Type Chooser

[image: Description of Figure 5-21 follows]

	
In the Import Schema dialog click Browse Resources to choose the XML schema elements for the input variable of the process. This displays the SOA Resource Lookup dialog.

	
In the SOA Resource Lookup dialog, navigate to find the order.xsd schema file and click OK.

	
In the Import Schema File dialog, make sure Copy to Project is selected, as shown in Figure 5-22.

Figure 5-22 Importing the Order.xsd Schema File

[image: Description of Figure 5-22 follows]

	
In the Import Schema File dialog, click OK.

	
If the Localize Files dialog displays, click OK to copy the schema to the composite process directory.

	
In the Type Chooser, navigate to the Project Schemas Files folder to select the input variable.

For this example, select CustomerOrder as the input variable.

	
On the Type Chooser window, click OK. This displays the Create Business Rules dialog, as shown in Figure 5-23.

Figure 5-23 Create Business Rules Dialog with CustomerOrder Input

[image: Description of Figure 5-23 follows]

	
In a similar manner, add the output fact type OrderApproval from the imported order.xsd.

	
In the Create Business Rules dialog, select Expose as Composite Service, as shown in Figure 5-24.

Figure 5-24 Create Business Rules Dialog with Input and OrderApproval Output

[image: Description of Figure 5-24 follows]

	
Click OK. This creates the Business Rule component and Oracle JDeveloper shows the Business Rule in the canvas workspace, as shown in Figure 5-25.

Figure 5-25 Business Rules Component in OrderApproval Composite

[image: Description of Figure 5-25 follows]

The business rule service component enables you to integrate your SOA composite application with a business rule. This creates a business rule dictionary and enables you to execute business rules and make business decisions based on the rules.

5.4.4 How to View Data Model Elements for Order Approval

Before adding rules you need to create the Oracle Business Rules data model. The data model contains the business data definitions (types) and definitions for facts that you use to create rules. For example, for this sample the data model includes the XML schema elements from order.xsd that you specify when you define inputs and outputs for the business rule activity.

At times when you work with Rules Designer to create a rule or a Decision Table, you may need to create or modify elements in the data model.

To view data model elements for Oracle business rules:

	
Select the composite tab with the value composite.xml, and in the Components lane select the business rule (this surrounds the component, OracleRules1 with a dashed selection box).

	
Double-click the selection box to launch Rules Designer.

	
In Rules Designer select the Facts navigation tab.

	
Select XML Facts tab in the Facts navigation tab as shown in Figure 5-26.

Figure 5-26 Opening a Business Rules Dictionary with Rules Designer

[image: Description of Figure 5-26 follows]

5.4.5 How to Add Bucketsets to the Data Model for Order Approval

To use a Decision Table you need to define bucketsets that specify how to draw values for each cell for the conditions that constitute the Decision Table. For this example the bucketsets are defined with a list of ranges that you define in Rules Designer.

To add OrderAmount bucketset to the data model:

	
In Rules Designer, select the Bucketsets navigation tab.

	
From the dropdown next to the Create BucketSet... icon, select List of Ranges.

	
In the Name field, enter OrderAmount (In Rules Designer be sure to press Enter to accept the name).

	
Double-click the OrderAmount bucketset icon to display the Edit Bucketset dialog.

	
Click Add Bucket to add a bucket.

	
Click Add Bucket again to add another bucket.

	
In the Range Bucket Values area, in the top Endpoint field enter 1000 for the endpoint value.

	
In the Range Bucket Values area, for the middle bucket in the Endpoint field enter 500 for the endpoint value.

	
In the Included Endpoint field for each bucket ensure the checkbox is selected, as shown in Figure 5-27.

Figure 5-27 Adding the OrderAmount Bucketset

[image: Description of Figure 5-27 follows]

	
Modify the Alias field for each value to High, Medium, and Low, as shown in Figure 5-28.

Figure 5-28 Adding the OrderAmount Bucketset with Low Medium and High Aliases

[image: Description of Figure 5-28 follows]

	
Click OK.

To add CreditScore bucketset to data model:

	
In Rules Designer select the Bucketsets navigation tab.

	
From the dropdown next to the Create BucketSet... icon, select List of Ranges.

	
In the Name field, enter CreditScore.

	
Double-click the CreditScore bucketset icon to display the Edit Bucketset dialog.

	
Click Add Bucket to add a bucket.

	
Click Add Bucket again to add another bucket.

	
In the top bucket, in the Endpoint field enter 750.

	
For the middle bucket, in the Endpoint field enter 400.

	
In the Included Endpoint field for each bucket, ensure the checkbox is selected as shown in Figure 5-29.

Figure 5-29 Adding the CreditScore Bucketset

[image: Description of Figure 5-29 follows]

	
Modify the Alias field for each endpoint value to solid for 750, avg for 400, and risky for -Infinity as shown in Figure 5-30.

	
Click OK.

Figure 5-30 Adding the CreditScore Bucketset with Risky Avg and Solid Aliases

[image: Description of Figure 5-30 follows]

5.4.6 How to Associate Bucketsets with Order and CreditScore Properties

To prepare for creating Decision Tables you can associate a bucketset with fact properties in the data model. In this way condition cells in a Decision Table Conditions area can use the bucketset when you create a Decision Table.

Note that the OrderApproval.status property is associated with the Status bucketset when the OrderApproval fact type is imported from the XML schema. In the schema, Status is a restricted String type and is therefore represented as an enum bucketset. Rules Designer creates the status bucketset. For more information, see Section 3.2.4, "What You Need to Know About XML Facts".

To associate bucketsets with Order and CreditScore properties:

	
In Rules Designer select the Facts navigation tab.

	
Select the XML Facts tab in the Facts navigation tab as shown in Figure 5-31.

Figure 5-31 Opening a Business Rules Dictionary with Rules Designer

[image: Description of Figure 5-31 follows]

	
Select the type you want to modify. For example in the XML Facts table double-click the icon next to the CustomerOrder entry. This displays the Edit XML Fact dialog.

	
In the Edit XML Fact dialog, in the Properties table in the Bucketset column select the cell for the appropriate property and from the dropdown list select the bucketset you want to use. For example, for the property order select the OrderAmount bucketset, as shown in Figure 5-32.

Figure 5-32 Associating the OrderAmount Bucketset with CustomerOrder.order

[image: Description of Figure 5-32 follows]

	
In a similar manner, for the property creditScore select the CreditScore bucketset.

	
Click OK.

5.4.7 How to Add a Decision Table for Order Approval

You create a Decision Table to process input facts and to produce output facts, or to produce intermediate conclusions that Oracle Business Rules can further process using additional rules or in another Decision Table.

While you work with rules you can use the rule validation features in Rules Designer to assist you. Rules Designer performs dictionary validation when you make any change to the dictionary. To show the validation log window, click the Validate icon or select View>Log and select the Business Rule Validation tab. If you view the rules validation log you should see warning messages. You remove these warning messages as you create the Decision Table. For more information on rule validation see Section 4.4.2, "Understanding Rule Validation".

To use a Decision Table for rules in this sample application you work with facts representing a customer spending level and a customer credit risk for a particular customer and a particular order. Then, you use a Decision Table to create rules based on customer spending, the order amount, and the credit risk of the customer.

To add a decision table for order approval:

	
In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

	
Click the Add icon and from the dropdown list and select Create Decision Table.

	
In the Decision Table, click the Add icon and from the dropdown list select Condition.

	
In the Decision Table, double-click <edit condition>. Then, in the navigator expand CustomerOrder and select creditScore. This enters the expression CustomerOrder.creditScore in the Conditions column.

	
Again, in the Decision Table, click the Add icon and from the dropdown list select Condition.

	
In the Decision Table, in the Conditions area double-click the <edit condition>. Then, in the dropdown navigator expand CustomerOrder and select order. This enters the expression CustomerOrder.order.

	
Again, in the Decision Table, click the Add icon and from the dropdown list select Condition.

	
In the Decision Table, double-click <edit condition>.

	
In the dropdown navigator expand CustomerOrder and select annualSpending. In the text entry area, add >2000 as shown in Figure 5-33.

Figure 5-33 Adding the Annual Spending Entry to a Decision Table

[image: Description of Figure 5-33 follows]

	
Type Enter to accept the value, as shown in Figure 5-34. If you view the rules validation log you should see the warning messages as shown in Figure 5-34. You remove these warning messages as you modify the Decision Table in later steps.

Figure 5-34 Adding Conditions to the CustomerOrder Decision Table

[image: Description of Figure 5-34 follows]

To create an action in a decision table:

	
In the Decision Table click the Add icon and from the dropdown list select Action > Assert New.

	
In the Actions area, double-click assert new(. This displays the Action Editor dialog.

	
In the Action Editor dialog, in the Facts area select OrderApproval.

	
In the Action Editor dialog, in the Properties table for the property status select the Parameterized checkbox and the Constant checkbox. This specifies that each rule independently sets the status.

	
In the Action Editor dialog, select the Always Selected checkbox as shown in Figure 5-35.

Figure 5-35 Adding an Action to a Decision Table with the Action Editor Dialog

[image: Description of Figure 5-35 follows]

	
In the Action Editor dialog, click OK.

Next you need to add rules to the Decision Table and specify an action for each rule.

5.4.7.1 Split the Cells in the Decision Table and Add Actions

You can use the Decision Table split operation to create rules for the bucketsets associated with the condition rows in the Decision Table. This creates one rule for every combination of condition buckets. There are three order amount buckets, three credit score buckets, and two boolean buckets for the annual spending amount for a total of eighteen rules (3 x 3 x 2 = 18).

To split cells in a decision table:

	
Select the Decision Table.

	
In the Decision Table, click the Split Table icon and from the dropdown list select Split Table. The split table operation eliminates the "do not care" cells from the table. The table now shows eighteen rules that cover all ranges as shown in Figure 5-36.

These steps produce validation warnings for action cells with missing expressions. You fix these in later steps.

Figure 5-36 Splitting a Decision Table Using Split Table Operation

[image: Description of Figure 5-36 follows]

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the status property associated with OrderApproval for each action cell in the Actions area. The possible choices are: Status.MANUAL, Status.REJECTED, or Status.ACCEPTED. In this step you fill in a value for status for each of the 18 rules. The values you enter correspond to the conditions that form each rule in the Decision Table.

	
In the Actions area, double-click the action cell for the rule you want to work with, as shown in Figure 5-37.

Figure 5-37 Adding Action Cell Values to a Decision Table

[image: Description of Figure 5-37 follows]

	
In the dropdown list, select and enter a value for the action cell. For example, enter Status.MANUAL.

	
For each action cell, enter the appropriate value as determined by the logic of your application. For this sample application use the values for the Decision Table actions as shown in Table 5-5.

	
Select Save All from the File main menu to save your work.

Table 5-5 Values for Decision Table Actions

	Rule	C1 creditScore	C2 order	C3 annualSpending > 2000	A1 OrderApproval status
	
R1

	
risky

	
Low

	
true

	
Status.MANUAL

	
R2

	
risky

	
Low

	
false

	
Status.MANUAL

	
R3

	
risky

	
Medium

	
true

	
Status.MANUAL

	
R4

	
risky

	
Medium

	
false

	
Status.REJECTED

	
R5

	
risky

	
High

	
true

	
Status.MANUAL

	
R6

	
risky

	
High

	
false

	
Status.REJECTED

	
R7

	
avg

	
Low

	
true

	
Status.APPROVED

	
R8

	
avg

	
Low

	
false

	
Status.MANUAL

	
R9

	
avg

	
Medium

	
true

	
Status.APPROVED

	
R10

	
avg

	
Medium

	
false

	
Status.MANUAL

	
R11

	
avg

	
High

	
true

	
Status.MANUAL

	
R12

	
avg

	
High

	
false

	
Status.MANUAL

	
R13

	
solid

	
Low

	
true

	
Status.APPROVED

	
R14

	
solid

	
Low

	
false

	
Status.APPROVED

	
R15

	
solid

	
Medium

	
true

	
Status.APPROVED

	
R16

	
solid

	
Medium

	
false

	
Status.APPROVED

	
R17

	
solid

	
High

	
true

	
Status.APPROVED

	
R18

	
solid

	
High

	
false

	
Status.MANUAL

5.4.7.2 Compact the Decision Table

In this step you compact the rules to merge from eighteen rules to nine rules. This automatically eliminates the rules that are not needed and preserves the no gap, no conflict properties for the Decision Table.

To compact the decision table:

	
Select the Decision Table.

	
Click the Resize All Columns to Same Width icon.

	
Click the Compact Table icon and from the dropdown list select Compact Table. The compact table operation eliminates rules from the Decision Table. The Decision Table now shows nine rules, as shown in Figure 5-38.

Figure 5-38 Compacting a Decision Table Using Compact Table

[image: Description of Figure 5-38 follows]

5.4.7.3 Replace Several Specific Rules with One General Rule

Notice that five of the nine remaining rules result in a manual order approval status. You can reduce the number of rules by deleting these five rules. Note it is often best practice to not do this (that is not replace several specific rules with one general rule). You need to compare the benefits of having fewer rules with the added complexity of managing the conflicts introduced when you reduce the number of rules.

To replace several specific rules with one general rule:

	
Select the Decision Table.

	
In the Decision Table, select a rule with OrderApproval status action set to Status.MANUAL. To select a rule, click the column heading. For example, click rule R2 as shown in Figure 5-39.

	
Click Delete to remove a rule in the Decision Table. Be careful to click the delete icon in the Decision Table area to delete a rule in the decision table (there is also a delete icon shown in the Ruleset area that deletes the complete Decision Table).

Figure 5-39 Deleting Rules from a Decision Table

[image: Description of Figure 5-39 follows]

	
Repeat these steps to delete all the rules with action set to Status.MANUAL. This should leave the Decision Table with four rules as shown in Figure 5-40.

Figure 5-40 Decision Table After Manual Actions Removed

[image: Description of Figure 5-40 follows]

5.4.7.4 Add a General Rule

Now you can add a single rule to handle the manual case. After adding this rule you set the conflict policy with the option Conflict Policy auto override for conflict resolution.

To add a general rule:

	
In the Decision Table, click the Add icon and from the dropdown list select Rule.

	
In the Conditions area, for the three conditions leave the "-" do not care value for each cell in the rule.

	
In the Actions area, enter Status.MANUAL, as shown in Figure 5-41. Notice that the Business Rule Validation log includes the warning RUL-05851 for unresolved conflicts.

Figure 5-41 Decision Table with Conflicting Rules

[image: Description of Figure 5-41 follows]

	
Show the conflicting rules by clicking the Toggle Display of Conflict Resolution icon, as shown in Figure 5-42.

Figure 5-42 Adding a Rule to Handle Status Manual

[image: Description of Figure 5-42 follows]

To enable the auto override conflict resolution policy:

	
In the Decision Table click Show Advanced Settings (the icon next to the Decision Table name).

	
In the Conflict Policy dropdown list, select auto override. After adding the manual case rule and selecting auto override, notice that the conflicts are resolved and special cases override the general case, as shown in Figure 5-43.

Figure 5-43 Adding a Rule to Handle Status Manual with Auto Override Conflict Policy

[image: Description of Figure 5-43 follows]

5.4.8 How to Check the Business Rule Validation Log for Order Approval

Before you can deploy the application you need to make sure the dictionary validates without warnings. If there are any validation warnings you need fix any associated problems.

To validate the dictionary:

	
In the Business Rule Validation Log, check for validation warnings.

	
If there are validation warnings, perform appropriate actions to correct the problems.

5.4.9 How to Deploy the Order Approval Application

Business rules created in an SOA application are deployed as part of the SOA composite when you create a deployment profile in Oracle JDeveloper. You deploy an SOA composite application to Oracle WebLogic Server.

To deploy and run the order approval application:

	
If you have not started your application server instance, then start the Oracle WebLogic Server.

	
In the Application Navigator, right-click the OrderApproval project and select Deploy > OrderApproval > to > WLS Server Name.

Then the SOA Deployment Configuration dialog displays.

	
Click OK.

	
In the Authorization Request dialog, enter your authorization.

	
Click OK.

5.4.10 How to Test the Order Approval Application

After deploying the application you can test the Decision Table in the SOA composite application with the Oracle Enterprise Manager Fusion Middleware Control Console.

To test the application:

	
Open the composite application in Oracle Enterprise Manager Fusion Middleware Control Console, as shown in Figure 5-44.

Figure 5-44 Testing the Order Approval Application

[image: Description of Figure 5-44 follows]

	
Click Test.

	
In the Input Arguments area, select XML View. Replace the XML with the contents of example Example 5-2.

Example 5-2 Sample Input for Testing Order Approval Application

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body xmlns:ns1="http://xmlns.oracle.com/OracleRules1/OracleRules1_DecisionService_1">
 <ns1:callFunctionStateless name="OracleRules1_DecisionService_1">
 <ns1:parameterList xmlns:ns3="http://example.com/ns/customerorder">
 <ns3:CustomerOrder>
 <ns3:name>Gary</ns3:name>
 <ns3:creditScore>600</ns3:creditScore>
 <ns3:annualSpending>2001.0</ns3:annualSpending>
 <ns3:value>High</ns3:value>
 <ns3:order>100.0</ns3:order>
 </ns3:CustomerOrder>
 </ns1:parameterList>
 </ns1:callFunctionStateless>
 </soap:Body>
</soap:Envelope>

	
Replace the values in the input shown in Example 5-2 as desired for your test.

	
Click Test Web Service.

	
In the Response tab, view the results. For example, for this input:

/OracleRules1_DecisionService_1" xmlns:ns2="http://xmlns.oracle.com/bpel">
 <resultList>
 <OrderApproval:OrderApproval xmlns:OrderApproval="http://example.com/ns/customerorder"
xmlns="http://example.com/ns/customerorder">
 <status>approved</status>
 </OrderApproval:OrderApproval>
 </resultList>
 </callFunctionStatefulDecision>

6 Working with Decision Functions

Use a decision function to call rules from a Java application, from a composite, or from a BPEL process.

This chapter includes the following sections:

	
Section 6.1, "Introduction to Decision Functions"

	
Section 6.2, "Working with Decision Functions"

	
Section 6.3, "What You Need to Know About Decision Functions"

6.1 Introduction to Decision Functions

A decision function is a function that is configured declaratively. A decision function performs the following operations:

	
Collects rulesets and other decision functions under a single executable umbrella

	
Handles the assertion of inputs as rule facts into the Oracle Business Rules Engine working memory

	
Collects the consequent actions to be executed

	
Runs rulesets

	
Returns results

You can create a decision function to simplify the use of Oracle Business Rules from a Java application or from a BPEL process. In a decision function the rules you want to use can be organized into several rulesets, and those rulesets can be executed in a prescribed order. Facts may flow to the first ruleset, and this ruleset may assert additional facts that flow to the second and subsequent rulesets until finally facts flow back to the decision function as decision function output.

6.2 Working with Decision Functions

A decision function is a function that is configured declaratively.

6.2.1 How to Add or Edit a Decision Function

You use Rules Designer to add a decision function.

To add a decision function:

	
In Rules Designer, select the Decision Functions navigation tab.

	
In the Decision Functions area, click Create....

	
Enter the decision function name in the Name field, or use the default name as Figure 6-1 shows.

Figure 6-1 The Decision Functions Area in Rules Designer

[image: Description of Figure 6-1 follows]

	
In the decision functions table, double-click the decision function icon. For example, double-click the decision function icon for DecisionFunction_1. This displays the Edit Decision Function dialog, as shown in Figure 6-2.

Figure 6-2 Edit Decision Function Dialog

[image: Description of Figure 6-2 follows]

	
In the Name field, enter a name or accept the default value.

	
In the Description field, optionally enter a description.

	
In the Rule Firing Limit field, select unlimited. In some cases when you are debugging a decision function, you may want to enter a value other than unlimited for the rule firing limit. For more information, see Section 6.3.2, "What You Need to Know About Rule Firing Limit Option for Debugging Rules".

	
Select the appropriate decision function options:

	
Will be invoked as a Web Service: select whether the decision function will be invoked as a Web Service. For more information, see Section 6.3.4, "What You Need to Know About the Will Be Invoked As Web Service Option".

	
Check Rule Flow: when selected, this option specifies that the rule flow is checked to ensure that facts of the appropriate type are either explicit inputs to the decision function or are asserted by rules in the rule flow. However, when this is selected this does not always produce useful information; there are cases where facts can be asserted in Java code that uses the decision function, but this code might not be available at design time. In this case, validation warnings may produced with Check Rule Flow selected may not be useful.

	
Stateless: when selected specifies the decision function is stateless. For more information, see Section 6.3.5, "What You Need to Know About the Decision Function Stateless Option".

	
In the Inputs Table, click Add to add inputs. For each input in the Inputs Table, select the appropriate options:

	
Name - enter an input name and press Enter or accept the default name.

	
Fact Type - select the appropriate fact type from the dropdown list.

	
Tree - When unselected, the input is asserted using the assert function. When selected, the input is asserted using the assertTree function. When selected it is expected that the input object or objects are the root of an object tree that is connected in one-to-many relationships with other objects using List or array type properties. For more information, see Section 4.8, "Working with Tree Mode Rules".

	
List - When unselected, the input must be a single object and the assertion applies only to that single input object. When selected, the input must be a List of objects and the assertion applies to each object in the input List (java.util.List).

	
In the Outputs Table, click Add to add outputs. For each output in the Outputs Table, select the appropriate options:

	
Name - enter an output name and press Enter or accept the default name.

	
Fact Type - select the appropriate fact type from the dropdown list.

	
Tree - When selected, this option sets a flag that enables certain design-time decision function argument checking. For an output argument, this option has no effect on runtime behavior. However, at design time in the case where several decision functions are called in a sequence, it is useful to notate explicitly that the output of one decision function is a tree. This implies that the input of another decision function in the sequence is expecting a tree as an input. For more information, see Section 4.8, "Working with Tree Mode Rules".

	
List - When unselected the output is a single object. When selected the output is a group of objects. For more information on the behavior of the List option on an output argument, see Section 6.3.3, "What You Need to Know to About Decision Function Arguments".

	
In the Rulesets and Decision Functions area, use the shuttle to move items from the Available box to the Selected box.

	
Select an item in the Selected box, and click Move Up or Move Down as appropriate to order the rulesets and the decision functions.

To edit an existing decision function:

	
In Rules Designer, select the Decision Functions navigation tab.

	
Select the decision function to edit and click the Edit icon or double-click the decision function icon.

	
Edit the appropriate decision function fields in the same manner as you would when you add a decision function.

To change the order of inputs:

	
In Rules Designer, select the Decision Functions navigation tab.

	
Select the decision function to edit and click the Edit icon or double-click the decision function icon.

	
Select the input argument you want to move. Click either Move Up or Move Down to reorder the input argument.

To change the order of outputs:

	
In Rules Designer, select the Decision Functions navigation tab.

	
Select the decision function to edit and click the Edit icon or double-click the decision function icon.

	
Select the output argument you want to move. Click either Move Up or Move Down to reorder the output argument.

6.3 What You Need to Know About Decision Functions

A decision function is a function that is configured declaratively.

6.3.1 What You Need to Know About Using Undo Operation with Decision Functions

Rules Designer enables the option to undo and redo a delete operation on a decision function. You can perform this operation by clicking the Undo Decision Function Changes icon. However, if you perform the undo operation after deleting a decision function, this operation shows the decision function you deleted but can cause serious dictionary problems and can make the dictionary unusable.

In Rules Designer, do not use the Undo Decision Function icon after you delete a decision function.

6.3.2 What You Need to Know About Rule Firing Limit Option for Debugging Rules

The Rule Firing Limit allows you to set the maximum number of steps (rule firings) that are allowed at runtime. Using this option and specifying a value other than unlimited can help you debug certain rule design problems and in some cases might help prevent java.lang.OutOfMemoryError errors at runtime. This is can be useful when debugging infinitely recursive rule firings.

6.3.3 What You Need to Know to About Decision Function Arguments

Oracle Business Rules generates a corresponding RL Language function for each decision function.

The signature of a generated decision function is similar to:

function <name>(InputFactType1 input1, ... InputFactTypeN inputN) returns List

In a decision function, each parameter is generated depending on the List option, with the decision function input, as follows:

	
Input argument, List option unselected: for FactTypei the input must be a single object and the assertion applies only to that single input object.

	
Input List option selected: List<FactTypei> the input must be a List of objects and the assertion applies to each object in the input List (java.util.List).

The generated RL Language function includes calls either to assert or assertTree for each argument, depending on the decision function Input option, Tree. When Tree is unselected the input is asserted using the assert function. When Tree is selected, the input is asserted using the assertTree function. When Tree is selected it is expected that the input object or objects are the root of an object tree that is connected in one-to-many relationships with other objects using List or array type properties.

For the decision function selected rulesets, as specified in the Rulesets and Decision Functions area Selected box, the generated RL Language function includes a call to run() with the selected rulesets in the selected ruleset stack order.

The generated RL Language function includes output for the decision function Outputs, depending on the number of output parameters. Table 6-1 describes the decision function output options.

Table 6-1 Decision Function Output Options Depending on Number of Outputs

	Output Parameters	Description
	
0

	
The return value is null.

	
1

	
Exactly 1 element it is returned.

	
More than 1

	
The output then depends on the value of the list property:

	
true: a List[OutputFactTypei] is built for each decision function output.

	
false: a OutputFactTypei is built for each decision function output.

After you edit a decision function, for example, to change or add inputs and outputs, the changes are visible in BPEL for new Business Rule activities. However, the changes are not visible to existing Business Rule activities. For more information, see "Getting Started with Oracle Business Rules" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

6.3.4 What You Need to Know About the Will Be Invoked As Web Service Option

When the decision function option Will be invoked as a Web Service is selected, Oracle Business Rules generates an RL Language function which has input and output as XML datatypes. This option supports using a decision function from a Web Service.

This additional RL Language function has the following signature:

function <name>Service(T1 input1, ... Tn inputN, org.w3.dom.Node outputParentNode)

Ti expands depending on the value of the decision function Input List option for input, input i, such that:

	
List option unselected: org.w3.dom.Element

	
List option selected: java.util.List<org.w3.dom.Element>

Input Element arguments are unmarshalled to result in InputFactType inputs. The resulting fact types are each marshalled to an Element and returned. These are passed to the generated function, which returns no result, an OutputFactType, or a List.

The marshalled output elements, if any, are added as child elements to the value passed in as the last argument of the function, outputParentNode. This node must be an Element, Document, or DocumentFragment.

For complete API information on DecisionFunction, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

6.3.5 What You Need to Know About the Decision Function Stateless Option

A decision function supports either stateful or stateless operation. The Stateless checkbox in the Edit Decision Function dialog provides support for these two modes of operation.

By default the Stateless checkbox is selected which indicates stateless operation. With stateless operation, at runtime, the rule session is released after each invocation of the decision function.

When Stateless is deselected the underlying Oracle Business Rules object is kept in the memory of the Business Rules service engine, so that it is not given back to the Rule Session Pool when the operation is finished. A subsequent use of the decision function re-uses the cached RuleSession object, with all its state information from the previous invocation. Thus, when Stateless is deselected the rule session is saved for a subsequent request and a sequence of decision function invocations from the same process should always end with a stateless invocation.

7 Working with Rules SDK Decision Point API

Oracle Business Rules SDK (Rules SDK) lets you write applications that access, create, modify, and execute rules in Oracle Business Rules dictionaries (and work with the contents of a dictionary). This chapter provides a brief description of Rules SDK and shows how to work with the Rules SDK Decision Point API.

This chapter includes the following sections:

	
Section 7.1, "Introduction to Rules SDK and the Car Rental Sample Application"

	
Section 7.2, "Creating a Dictionary for Use with a Decision Point"

	
Section 7.3, "Creating a Java Application Using Rules SDK Decision Point"

	
Section 7.4, "Running the Car Rental Sample"

	
Section 7.5, "What You Need to Know About Using Decision Point in a Production Environment"

	
Section 7.6, "What You Need to Know About Decision Point and Decision Tracing"

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

7.1 Introduction to Rules SDK and the Car Rental Sample Application

The Rules SDK consists of four areas:

	
Engine: provides for rules execution

	
Storage: provides access to rule dictionaries and repositories

	
Editing: provides a programatic way to create and modify dictionary components

	
Decision Point: provides an interface to access a dictionary and execute a decision function

Other than for explanation purposes, there is not an explicit distinction between these areas in Rules SDK. For example, to edit rules you also need to use the storage area of Rules SDK to access a dictionary. These parts of the Rules SDK are divided to help describe the different modes of usage, rather than to describe distinct Rules SDK APIs.

7.1.1 Introduction to Decision Point API

The Decision Point API provides a concise way to execute rules. Most users create Oracle Business Rules artifacts, including data model elements, rules, Decision Tables, and rulesets using the Rules Designer extension to Oracle JDeveloper. Thus, most users do not need to work directly with the engine, storage, or editing parts of Rules SDK.

To work with the Rules SDK Decision Point package you need to understand three important classes:

	
DecisionPoint: is a helper class that follows the factory design pattern to create instances of DecisionPointInstance. In most applications there should be one DecisionPoint object that is shared by all application threads. A caller uses the getInstance() method of DecisionPoint to get an instance of DecisionPointInstance which can be used to call the defined Decision Point.

	
DecisionPointBuilder: follows the Builder design pattern to construct a Decision Point.

	
DecisionPointInstance: users call invoke() in this class to assert facts and execute a decision function.

The DecisionPoint classes support a fluent interface model so that methods can be chained together. For more information, see

http://www.martinfowler.com/bliki/FluentInterface.html

A Decision Point manages several aspects of rule execution, including:

	
Use of oracle.rules.rl.RuleSession objects

	
Reloading of a dictionary when the dictionary is updated

To create a Decision Point in a Java application you need the following:

	
Either the name of a dictionary to be loaded from an MDS repository or a pre-loaded oracle.rules.sdk2.dictionary.RuleDictionary instance.

	
The name of a decision function stored in the specified dictionary.

7.1.2 How to Obtain the Car Rental Sample Application

This chapter shows a car rental application that demonstrates the use of Rules SDK and the Decision Point API. You can obtain the sample application in a ZIP file, CarRentalApplication.zip. This ZIP contains a complete JDeveloper application and project.

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

To work with the sample unzip CarRentalApplication.zip into an appropriate directory. The car rental application project contains a rules dictionary and several Java examples using Rules SDK.

7.1.3 How to Open the Car Rental Sample Application and Project

The Car Rental sample application shows you how to work with the Rules SDK Decision Point API.

To open the car rental sample application:

	
Start Oracle JDeveloper.

	
Open the car rental application in the directory where you unzipped the sample. For example, from the File menu select Open... and in the Open dialog navigate to the CarRentalApplication folder.

	
In the Open dialog select CarRentalApplication.jws and click Open.

	
In the Application Navigator, expand the CarRentalApplication, expand Application Sources and Resources. This displays the Oracle Business Rules dictionary named CarRental.rules and several Java source files.

7.2 Creating a Dictionary for Use with a Decision Point

The car rental sample uses the Rules SDK Decision Point API with either a pre-loaded Oracle Business Rules dictionary or a repository stored in MDS. When you are working in a development environment you can use the Decision Point API with the pre-loaded dictionary signature. In a production environment you would typically use a Decision Point with the MDS repository signature.

The CarRental dictionary is pre-defined and is available in the car rental sample application.

To work with the Decision Point API you need to create a dictionary that contains a decision function (the car rental sample application comes with a predefined dictionary and decision function).

You perform the following steps to create a dictionary and a decision function:

	
Section 7.2.1, "How to Create Data Model Elements for Use with a Decision Point"

	
Section 7.2.2, "How to View a Decision Function to Call from the Decision Point"

	
Section 7.2.3, "How to Create Rules or Decision Tables for the Decision Function"

7.2.1 How to Create Data Model Elements for Use with a Decision Point

You need the following to add to a decision function when you create an application with a Decision Point.

	
A dictionary containing data model elements that you use to create rules or Decision Tables and when working with ADF Business Components fact types, you need to add links for the Decision Point support dictionary. For more information, see Chapter 2, "Working with Data Model Elements". For more information, see Chapter 10, "Working with Oracle Business Rules and ADF Business Components".

	
A dictionary containing fact definitions. For more information, see Chapter 3, "Working with Facts and Bucketsets".

To view the data model in the supplied car rental sample application:

	
In Rules Designer, click the Facts navigation tab.

	
Select the Java Facts tab, as shown in Figure 7-1.

The Java Facts tab shows four fact types imported, in addition to the fact types provided as built-in to the dictionary.

The Driver Java Fact is imported from the Driver Java class in the project.

The Denial Java Fact is imported from Denial Java class in the project.

The LicenseType and VehicleType facts are imported from the nested enum classes defined in the Driver class.

Figure 7-1 Defined Java Facts for the Car Rental Sample Application

[image: Description of Figure 7-1 follows]

When you use a Decision Point with Rules SDK, you call a decision function in a specified dictionary. The decision function that you call can contain one or more rulesets that are executed as part of the Decision Point.

To view the ruleset in the supplied car rental sample application:

	
In Rules Designer, expand the CarRentalApplication.

	
In the CarRentalApplication, expand Resources.

	
Double-click the CarRental.rules.

7.2.2 How to View a Decision Function to Call from the Decision Point

When you work with the Decision Point API you use decision functions to expose an Oracle Business Rules dictionary. For more information on decision functions, see Chapter 6, "Working with Decision Functions".

To view the decision function in the car rental sample application:

	
In Rules Designer, click the Decision Functions navigation tab. This displays the available decision functions in the CarRental dictionary, as shown in Figure 7-2.

Figure 7-2 Car Rental Sample Decision Function

[image: Description of Figure 7-2 follows]

	
Select the row with CarRentalDecisionFunction and double-click the decision function icon. This opens the Edit Decision Function dialog as shown in Figure 7-3.

The decision function Inputs table includes a single argument for a Driver fact type.

The decision function Outputs table includes a single argument for a Denial fact type.

The decision function Rulesets and Decision Functions area shows Denial Rules:if-then in the Selected box.

Figure 7-3 Car Rental Decision Function for the Car Rental Sample Application

[image: Description of Figure 7-3 follows]

7.2.3 How to Create Rules or Decision Tables for the Decision Function

The car rental sample includes two rulesets, one with IF/THEN rules and another containing a Decision Table. You can use either IF/THEN rules or Decision Tables or both in your application if you are using a Decision Point.

To view the rules in the car rental sample application:

	
In Rules Designer click the Denial Rules:if-then ruleset, as shown in Figure 7-4.

Figure 7-4 Ruleset with IF/THEN Rules for the Car Rental Sample Application

[image: Description of Figure 7-4 follows]

The Denial Rules:if-then ruleset includes two rules:

	
under age: this rule defines the minimum age of the driver. The rule compares the Driver instance age property to the global Minimum driver age. If the driver is under this age, then a new Denial fact is asserted. A call to the decision function collects this Denial fact, as defined in its output. The rule also calls a user-defined function, audit, to provide some auditing output about why the Denial is created.

	
too many accidents: this rule defines an upper threshold for the number of accidents a driver can have before a rental for the driver is denied. The rule also calls a user-defined function, audit, to provide some auditing output about why the Denial is created.

To view the Decision Table in the car rental application:

	
In Rules Designer, click the Denial Rules:decision table ruleset, as shown in Figure 7-5.

Figure 7-5 Ruleset with Decision Table for the Car Rental Sample Application

[image: Description of Figure 7-5 follows]

7.2.4 What You Need to Know About Using Car Rental Sample with a Decision Table

The car rental sample application includes the Denial Rules: decision table ruleset. To switch to use a Decision Table in the supplied decision function sample, move the Denial Rules:if-then from the Selected area in the decision function and add the Denial Rules: decision table ruleset, which uses a Decision Table to define similar rules, as shown in Figure 7-6.

Figure 7-6 Decision Function for Car Rental Sample with Decision Table Ruleset

[image: Description of Figure 7-6 follows]

7.3 Creating a Java Application Using Rules SDK Decision Point

When use Rules SDK in a development environment you of the option of using Decision Point API with a pre-loaded dictionary. In a production environment you typically use the Decision Point API with the MDS repository signature and the dictionary is stored in MDS. For more information on using a Decision Point with , see Section 7.5, "What You Need to Know About Using Decision Point in a Production Environment".

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

The CarRentalProject project includes the com.example.rules.demo package that includes the car rental sample file, CarRentalWithDecisionPointUsingPreloadedDictionary.java. The project also includes several .java source files that support different variations for using Decision Point. Table 7-1 provides a summary of the different versions of the car rental sample.

For more information on working with the Rules SDK Decision Point API, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

Table 7-1 Java Files in the Decision Point Sample CarRentalProject

	Base Java Filename	Description
	
CarRental

	
This is the base class for all of the examples. It contains constant values for using the CarRental dictionary and a method createDrivers which creates instances of the Driver class.

	
CarRentalWithDecisionPoint

	
Contains a static attribute of type DecisionPoint and a method checkDriver() that invokes a Decision Point with a specified instance of the Driver class. This class includes these methods for the sample application so that both the MDS repository and pre-loaded dictionary examples can share the same checkDriver() implementation.

	
CarRentalWithDecisionPointUsingMdsRepository

	
Contains an example of creating a Decision Point that uses MDS to access and load the rule dictionary. In a production environment, most applications use the Decision Point API with MDS.

	
CarRentalWithDecisionPointUsingPreloadedDictionary

	
Contains an example of creating a Decision Point from an instance of the RuleDictionary class. This example also contains code for manually loading the dictionary to create a RuleDictionary instance.

	
CarRentalWithRuleSession

	
Contains an advanced usage of the Engine API that is documented further in the comments.

	
CarRentalWithRuleSessionPool

	
Contains an advanced usage of the Engine API that is documented further in the comments.

	
Denial

	
Contains the class that defines the Denial fact type used to create the rules and Decision Table.

	
Driver

	
Contains the class that defines the Driver fact type used to create the rules and Decision Table.

	
DriverCheckerRunnable

	
Contains the class which can be used as a thread for simulating concurrent users invoking the Decision Point.

7.3.1 How to Add a Decision Point Using Decision Point Builder

To use a Decision Point you create a DecisionPoint instance using DecisionPointBuilder, as shown in Example 7-1.

Example 7-1 Using the Decision Point Builder

 static {
 try {
 // specifying the Decision Function and a pre-loaded
 // RuleDictionary instance
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(loadRuleDictionary())
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " + e.getMessage());
 e.printStackTrace();
 }
 }

Example 7-1 shows the DecisionPointBuilder supports a fluent interface pattern, so all methods can easily be chained together when you create a Decision Point. The three most common methods for configuring the Decision Point with DecisionPointBuilder are overloaded to have the name with(). Each with() method takes a single argument of type RuleDictionary, DictionaryFQN, or String. The DecisionPointBuilder also supports similar set and get methods: getDecisionFunction(), setDecisionFunction(), getDictionary(), setDictionary(), getDictionaryFQN(), setDictionaryFQN().

This chain shown in Example 7-1 includes the following steps:

	
The first step is to create a DecisionPointBuilder instance with code such as the following:

new DecisionPointBuilder()

	
The with() method using a String argument defines the name of the decision function that the Decision Point executes. Calling this method is mandatory.

.with(DF_NAME)

The DF_NAME specifies the name of the decision function you define for your application. For example for the sample car rental application DF_NAME is defined in CarRental.java as CarRentalDecisionFunction.

	
Call only one of the other two with() methods. In this case the sample code uses a pre-loaded Rule Dictionary instance, containing the specified decision function. The loadDictionary() method loads an instance of RuleDictionary from a file. Example 7-2 shows the loadDictionary() method. For more information, see Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary".

.with(loadRuleDictionary())

	
Call the build() method to construct and return a DecisionPoint instance.

The DecisionPoint instance is shared among all instances of the application, which is why it is a static attribute and created in a static block. Another way of initializing the DecisionPoint would be to initialize the m_decisionPoint attribute with a static method that created and returned a DecisionPoint instance.

7.3.2 How to Use a Decision Point with a Pre-loaded Dictionary

Example 7-2 shows the loadRuleDictionary() method that loads an instance of RuleDictionary from a file.

When reading or writing a dictionary directly from a file as shown in Example 7-2, ensure to set the encoding to UTF-8. If this is not done, Unicode characters used in the dictionary are corrupted. The UTF-8 option must be set explicitly in the FileInputStream or OutputStreamWriter constructor. Do not use Java classes such as FileReader and FileWriter, as these classes always use the platform default encoding which is usually an ASCII variant rather than a Unicode variant.

Example 7-2 Load Rule Dictionary Method

private static RuleDictionary loadRuleDictionary(){
 RuleDictionary dict = null;
 BufferedReader reader = null;
 try {
 reader = new BufferedReader(
 new InputStreamReader(
 new FileInputStream(
 new File(DICT_LOCATION)), "UTF-8"));
 dict = RuleDictionary.readDictionary(reader,
 new
DecisionPointDictionaryFinder(null));

 List<SDKWarning> warnings = new ArrayList<SDKWarning>();

 dict.update(warnings);
 if (warnings.size() > 0) {
 System.err.println("Validation warnings: " + warnings);
 }
 } catch (SDKException e){
 System.err.println(e);
 } catch (FileNotFoundException e){
 System.err.println(e);
 } catch (IOException e){
 System.err.println(e);
 } finally {
 if (reader != null) { try { reader.close(); } catch (IOException
ioe) {ioe.printStackTrace();}}
 }
 return dict;
 }

7.3.3 How to Use Executor Service to Run Threads with Decision Point

The car rental sample allows you to use Oracle Business Rules and simulate multiple concurrent users. Example 7-3 shows use of the Java ExecutorService interface to execute multiple threads that invoke the Decision Point. The ExecutorService is not part of the Rules SDK Decision Point API.

Example 7-3 Checking Drivers with Threads that Invoke Decision Point

 ExecutorService exec = Executors.newCachedThreadPool();
 List<Driver> drivers = createDrivers();

 for (int i = 0; i < NUM_CONCURRENT; i++) {
 Driver driver = drivers.get(i % drivers.size());
 exec.execute(new DriverCheckerRunnable(driver));
 }

Example 7-3 includes the following code for the sample application:

	
Create the Executor Service:

ExecutorService exec = Executors.newCachedThreadPool();

	
Call method createDrivers(), defined in CarRental.java, to create a list of Driver instances.

List<Driver> drivers = createDrivers();

	
A loop through a list of Driver instances to fill the driver list with drivers.

	
A loop to start multiple threads from DriverCheckerRunnable instances. These instances open a Decision Point and run the rules on each driver. For information on this code, see Section 7.3.4, "How to Create and Use Decision Point Instances".

Example 7-4 shows the code that waits for the threads to complete.

Example 7-4 Code to Await Thread Termination

 try {
 exec.awaitTermination(5, TimeUnit.SECONDS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 exec.shutdown();
 }

7.3.4 How to Create and Use Decision Point Instances

The DriverCheckerRunnable instances call the checkDriver() method. Example 7-5 shows the checkDriver() method that is defined in CarRentalWithDecisionPoint. The checkDriver() method handles invoking Decision Point with a Driver instance.

Example 7-5 Code to Create a Decision Point Instance with getInstance()

public class CarRentalWithDecisionPoint extends CarRental {

 protected static DecisionPoint m_decisionPoint;

 public static void checkDriver(final Driver driver) {
 try {
 DecisionPointInstance instance = m_decisionPoint.getInstance();
 instance.setInputs(new ArrayList<Object>() {
 {
 add(driver);
 }
 });
 List<Object> outputs = instance.invoke();

 if (outputs.isEmpty())
 System.err.println("Oops, no results");

 java.util.List<Denial> denials =
 (java.util.List<Denial>)outputs.get(0);
 if (denials.isEmpty()) {
 System.out.println("Rental is allowed for " +
 driver.getName());
 } else {
 for (Denial denial : denials) {
 System.out.println("Rental is denied for " +
 denial.getDriver().getName() +
 " because " + denial.getReason());
 }
 }
 } catch (RLException e) {
 e.printStackTrace();
 } catch (SDKException e) {
 e.printStackTrace();
 }
 }

}

Example 7-5 shows the following:

	
Getting a DecisionPointInstance from the static DecisionPoint defined with the DecisionPointBuilder, with the following code.

 DecisionPointInstance instance = m_decisionPoint.getInstance();

	
Add inputs according to the signature of the decision function associated with the Decision Point. This defines one argument of type List as the input. This List contains the Driver instances:

 instance.setInputs(new ArrayList<Object>() {
 {
 add(driver);
 }
 });

	
Invoke the Decision Point and store the return value. The return type follows the same pattern as the decision function which is being called in the Decision Point.

 List<Object> outputs = instance.invoke();

In this case the invoke() returns a List of length one, containing a List of Denial instances.

	
If the return is a List of any other size than one, then this is an error:

if (outputs.isEmpty())
 System.err.println("Oops, no results");

	
The first entry that is returned from the Decision Point is caste it to a List of type List<Denial>:

 java.util.List<Denial> denials =
 (java.util.List<Denial>)outputs.get(0);

	
If the denials list is empty, then no Denial instances were asserted by the rules. This indicates that it is OK to rent a car to the driver. Otherwise, print the reasons why the driver rental was rejected:

 if (denials.isEmpty()) {
 System.out.println("Rental is allowed for " +
 driver.getName());
 } else {
 for (Denial denial : denials) {
 System.out.println("Rental is denied for " +
 denial.getDriver().getName() +
 " because " + denial.getReason());
 }
 }

7.4 Running the Car Rental Sample

In the car rental sample installed on your system, for the code shown in Example 7-2, modify the value of DICT_LOCATION to match the location of the dictionary on your system.

To run the car rental sample on your system:

	
In the Application Navigator, select the dictionary and from the Edit menu select Copy Path.

	
In the CarRental.java file, paste the path value into the DICT_LOCATION value.

	
In the CarRentalProject select the CarRentalWithDecisionPointUsingPreloadedDictionary.java file.

	
Right-click and in the dropdown list select Run.

Example 7-6 shows sample output.

Example 7-6 Output from Car Rental Sample

Rental is allowed for Carol
Rental is allowed for Alice
Rental is allowed for Alice
Rental is allowed for Carol
Rental is denied for Bob because under age, age was 15, minimum age is 21
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush
INFO: Fired: under age because driver age less than minimum threshold for license number d222
Mar 13, 2009 11:18:00 AM oracle.rules.rl.exceptions.LogWriter flush
INFO: Fired: under age because driver age less than minimum threshold for license number d222
Rental is denied for Bob because under age, age was 15, minimum age is 21
Rental is allowed for Alice
Rental is allowed for Eve

7.5 What You Need to Know About Using Decision Point in a Production Environment

In a production environment you can use an MDS repository to store Oracle Business Rules dictionaries. When you use an MDS repository to store the dictionary, the steps shown in Section 7.3.1, "How to Add a Decision Point Using Decision Point Builder" and Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary" change to access the dictionary. The CarRentalWithDecisionPointUsingMdsRepository shows sample code for using Decision Point with MDS.

To see a complete example with deployment steps showing the use of a Decision Point to access a dictionary in MDS, see Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades Sample Application".

Example 7-7 shows the use of DictionaryFQN with DecisionPointBuilder to access a dictionary in an MDS repository. The complete example is shown in the sample code in CarRentalWithDecisionPointUsingMdsRepository.

Example 7-7 Using Decision Point Builder with MDS Repository

 static {
 try {
 // specifying the Decision Function and Dictionary FQN
 // loads the rules from the MDS repository.
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
 e.getMessage());

Similar to the steps in Example 7-1, Example 7-7 shows the following:

	
The first step is to create a DecisionPointBuilder instance with.

new DecisionPointBuilder()

	
The with() method using a String argument defines the name of the decision function that the Decision Point executes. Calling this method is mandatory.

.with(DF_NAME)

The DF_NAME specifies the name of the decision function you define for your application. For example for the car rental application this is defined in CarRental.java a CarRentalDecisionFunction.

	
Call only one of the other two with() methods. In this case the sample code calls a DictionaryFQN to access an MDS repository. Example 7-8 shows the routing that uses the dictionary package and the dictionary name to create the DictionaryFQN.

.with(DICT_FQN)

	
Call the build() method to construct and return a DecisionPoint instance.

Example 7-8 Using the DictionaryFQN Method with MDS Repository

 protected static final String DICT_PKG = "com.example.rules.demo";
 protected static final String DICT_NAME = "CarRental";

 protected static final DictionaryFQN DICT_FQN =
 new DictionaryFQN(DICT_PKG, DICT_NAME);
 protected static final String DF_NAME = "CarRentalDecisionFunction";

7.6 What You Need to Know About Decision Point and Decision Tracing

The Rules SDK API contains methods to assist with processing a decision trace. These methods process a decision trace to replace the RL names used in the trace with the aliases used in the associated dictionary. This makes the decision trace naming consistent with the naming used in the Oracle Business Rules dictionary.

The basic API for processing a decision trace requires a RuleDictionary object and a DecisionTrace object:

RuleDictionary dict = ...;
DecisionTrace trace = ...;
dict.processDecisionTrace(trace);

This code shows the processing call that converts the naming in the decision trace to use the same names, with aliases, as in the dictionary.

The Rules SDK Decision Point API contains methods that allow you configure decision tracing and retrieve the resulting trace when you invoke a decision point. The trace you retrieve from the Decision Point is internally processed using the processDecisionTrace() method, thus you do not need to call this method to process the decision trace when you are working with a decision trace from a Decision Point.

Table 7-2 shows the Decision Point API methods for setting decision trace options. For more information on these methods, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

Table 7-2 Decision Point Decision Tracing Methods

	Method	Description
	
decisionTrace

	
Get the decision trace produced from the call to invoke.

Returns DecisionTrace

	
getDecisionTraceLevel

	
Get the decision trace level to be used by the RuleSession. This value defaults to DECISION_TRACE_OFF, which means no trace information is gathered. Possible values are: DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT

DECISION_TRACE_PRODUCTION

Return Type: String

	
getDecisionTraceLimit

	
Get the decision trace limit, or maximum number of trace elements which are retrieved for the trace.

Return Type: int

	
setDecisionTraceLevel

	
Set the decision trace level to be used by the RuleSession. This parameter value is a String. Possible values are: DECISION_TRACE_OFF

DECISION_TRACE_DEVELOPMENT

DECISION_TRACE_PRODUCTION

	
setDecisionTraceLimit

	
Set the decision trace limit, or maximum number of trace elements which are retrieved for the trace.

Example 7-9 shows a sample usage of decision tracing with DecisionPoint API.

Example 7-9 Using Decision Trace from Decision Point API

DecisionPoint dp = new DecisionPointBuilder()
 .with(new DictionaryFQN("com.foo", "Bar"))
 .with("MyDecisionFunction")
 .setDecisionTraceLevel(DecisionPointBuilder.DECISION_TRACE_DEVELOPMENT)
 .setDecisionTraceLimit(24000)
 .build();

...

DecisionPointInstance dpi = dp.getInstance();

dpi.invoke();

DecisionTrace trace = dpi.decisionTrace(); // with aliases replaced

8 Testing Business Rules

You can test your rules and Decision Tables from Rules Designer by creating an Oracle Business Rules Function. In an SOA application or in an application that accesses Oracle Business Rules with a decision function with a web service, you can test the rules at runtime with Oracle Enterprise Manager Fusion Middleware Control Console using the Test function.

This chapter includes the following sections:

	
Section 8.1, "Testing Oracle Business Rules at Design Time"

	
Section 8.2, "Testing Oracle Business Rules at Runtime"

8.1 Testing Oracle Business Rules at Design Time

You can define a test function to run without deploying an application. This allows you to call a decision function at runtime and to test data model elements and rulesets.

8.1.1 How to Test Rules Using a Test Function in Rules Designer

You can use Oracle Business Rules Functions to test rules from within Rules Designer. The Test Function icon is active only for functions that take no parameters and return boolean. In the body of the function you create input facts, call a decision function, and check the output to validate the facts the decision function returns are as expected.

To enable logging you call RL.watch.all(). To run the function you click the Test Function icon in the Functions table.

For more information about functions, see Section 2.5, "Working with Oracle Business Rules Functions".

To test rules using a test function:

	
Confirm that your dictionary is valid.

For more information on dictionary validation, see Section 4.4.4, "How to Validate a Dictionary".

	
In Rules Designer, select the Functions navigation tab.

	
In the Functions area click Create....

	
Enter the function name in the Name field, or use the default name.

	
Select the return type from the Return Type dropdown list.

For a test function, select boolean.

	
In the Arguments table, confirm that there are no arguments. For a test function, you cannot specify any arguments.

	
In the Body area, enter the test function body.

In the body of the function you can call a decision function using assign new to call and get the return value of the decision function. Thus, to test a decision function you create the input data and call the decision function.

Example 8-1 shows a simple test function that calls print. Figure 8-1 shows the test function definition. For information on adding a test function that calls a decision function, see Section 8.1.3, "How to Test a Decision Function Using an Oracle Business Rules Function".

Example 8-1 Test Function Body

call print("Hello World")
return true

Figure 8-1 Adding a Test Function

[image: Description of Figure 8-1 follows]

	
In the Functions table select the function and click the Test Function icon.

The output is displayed in a Function Test Result dialog, as Figure 8-2 shows.

Figure 8-2 Test Function Results Dialog

[image: Description of Figure 8-2 follows]

	
Click OK to dismiss the Function Test Result dialog.

8.1.2 What You Need to Know About Testing Using an Oracle Business Rules Function

The Test Function icon is only active when the dictionary is valid (the Business Rule validation log is empty). The Test Function icon is gray if the dictionary associated with the function contains any validation warnings.

8.1.3 How to Test a Decision Function Using an Oracle Business Rules Function

You can test rulesets by creating a decision function and calling the decision function from Rules Designer with an Oracle Business Rules function. In the body of the Oracle Business Rules function you create input facts, call a decision function, and validate the facts output from the decision function. For more information, see Section 6.1, "Introduction to Decision Functions" and Section 2.5, "Working with Oracle Business Rules Functions".

To test a decision function using an Oracle Business Rules function:

	
Confirm that your dictionary is valid.

For more information on dictionary validation, see Section 4.4.4, "How to Validate a Dictionary"

	
In Rules Designer, select the Functions navigation tab.

	
In the Functions area click the Create... icon.

	
Enter the function name in the Name field, or use the default name.

	
Select the return type from the Return Type dropdown list.

For a test function, select boolean.

	
In the Arguments table, confirm that there are no arguments. For a test function, you cannot specify any arguments.

	
In the Body area, enter the test function body.

In the body of the test function you can call a decision function using assign new to call and get the return value of the decision function (in the body of the test function you create input facts, call a decision function, and validate the facts output from the decision function).

A decision function call returns a List. Thus, to test a decision function in a test function you do the following:

	
You create the input data as required for the decision function input arguments.

	
You call the decision function with the arguments you create in the test function.

	
You place results in a List, for example, in the following:

assign new List resultsList = DecisionFunction_1(testScore)

Figure 8-3 shows a test function that calls a decision function.

Figure 8-3 Test Function to Call a Decision Function that Returns a List

[image: Description of Figure 8-3 follows]

	
Select the function and click the Test Function icon.

The function is executed. The output is shown in a Function Test Result dialog, as Figure 8-4 shows.

Figure 8-4 Test Function Results for Grade Test

[image: Description of Figure 8-4 follows]

	
Click OK to dismiss the Function Test Result dialog.

8.1.4 What You Need to Know About Testing Decision Functions

You can use Oracle Business Rules Functions to test decision functions from within Rules Designer. Keep the following points in mind when using a test function:

	
The Test Function icon is gray if the dictionary associated with the test Oracle Business Rules Function contains any validation warnings. The Test Function icon is only shown when the dictionary validates without warnings.

	
To enable logging you can call RL.watch.all(). For more information on RL Language functions, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules. In this guide, RL.watch.all() is an alias for the RL Language function watchAll().

	
As an alternative to the example shown in Figure 8-3, you can enter the function body that is shown in Example 8-2. This function runs and shows the RL.watch.all() output. The dialog shows "Test Passed" when the grade is in the B range as shown in Figure 8-5. The dialog shows "Test Failed" when the grade asserted is not in the B range, as shown in Figure 8-6.

Example 8-2 Function Body with True or False Return Value

call RL.watch.all()
assign new TestScore testScore = new TestScore()
modify (testScore, name: "Bill Reynolds", testName: "Math Test", testScore: 81)
assign new TestGrade testGrade = (TestGrade)DecisionFunction_1(testScore).get(0)
return testGrade.grade == Grade.B

For the testScore value 81, this function returns "Test Passed" as shown in Figure 8-5. For the testScore value 91, this returns "Test Failed", as shown in Figure 8-6.

Figure 8-5 Test Passed Test Function Output

[image: Description of Figure 8-5 follows]

Figure 8-6 Test Failed Test Function Output

[image: Description of Figure 8-6 follows]

8.2 Testing Oracle Business Rules at Runtime

In an SOA application that uses Oracle Business Rules with a Decision Service you can test rules at runtime with Oracle Enterprise Manager Fusion Middleware Control Console Test function.

For more information on using the Test function, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite.

9 Creating a Rule-enabled Non-SOA Java EE Application

You can use Oracle JDeveloper to create a rule-enabled non-SOA Java EE application with Oracle Business Rules. This chapter shows a sample application, a Java Servlet, that runs as a Java EE application using Oracle Business Rules (this describes using of Oracle Business Rules without an SOA composite).

This chapter includes the following sections:

	
Section 9.1, "Introduction to the Grades Sample Application"

	
Section 9.2, "Creating an Application and a Project for Grades Sample Application"

	
Section 9.3, "Creating Data Model Elements and Rules for the Grades Sample Application"

	
Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades Sample Application"

	
Section 9.5, "Adding an HTML Test Page for Grades Sample Application"

	
Section 9.6, "Preparing the Grades Sample Application for Deployment"

	
Section 9.7, "Deploying and Running the Grades Sample Application"

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

9.1 Introduction to the Grades Sample Application

The Grades application provides a sample use of Oracle Business Rules in a Java Servlet. The servlet uses Rules SDK Decision Point API. This sample demonstrates the following:

	
Creating rules in an Oracle Business Rules dictionary using an XSD schema that defines the input and the output data, and the facts for the data model. In this case you provide the XSD schema in the file grades.xsd.

	
Creating a servlet that uses Oracle Business Rules to determine a grade for each test score that is input.

	
Creating a test page to supply input test scores and to submit the data to the grades servlet.

	
Deploying the application, running it, submitting test values, and seeing the output.

9.2 Creating an Application and a Project for Grades Sample Application

To create the application and the project for the grades sample application, you do the following:

	
Create a Fusion Web Application (ADF)

	
Create a project in the application

	
Add the schema to define the inputs, outputs, and the objects for the data model

	
Create an Oracle Business Rules dictionary in the project

9.2.1 How to Create a Fusion Web Application for the Grades Sample Application

To work with Oracle Business Rules and create a Java EE application, you first need to create the application in Oracle JDeveloper.

To create a fusion web application (ADF) for grades:

	
Create an application. You can do this in the Application Navigator by selecting New Application..., or from the Application menu dropdown by selecting New Application....

	
In the Name your application dialog enter the application options, as shown in Figure 9-1:

	
In the Application Template area, select Fusion Web Application.

	
In the Application Name field, enter an application name. For example, enter GradeApp.

	
In the Directory field, specify a directory name or accept the default.

	
In the Application Package Prefix field, enter an application package prefix. For example, com.example.grades.

The prefix, followed by a period applies to objects created in the initial project of an application.

Figure 9-1 Adding GradeApp Application

[image: Description of Figure 9-1 follows]

	
Click Finish. After creating the application Oracle JDeveloper displays the file summary, as shown in Figure 9-2.

Figure 9-2 New Grades Application Named GradeApp

[image: Description of Figure 9-2 follows]

9.2.2 How to Create the Grades Project

In the Grades sample application you do not use the Model or ViewController projects. You create a project in the application for the grades sample project.

To create a grades project:

	
In the GradeApp application, in the Application Navigator, from the Application Menu select New Project....

	
In the New Gallery, in the Items area select Generic Project.

	
Click OK.

	
In the Name your project page enter the values as shown in Figure 9-3:

	
In the Project Name field, enter a name. For example, enter Grades.

	
Enter or browse for a directory name, or accept the default.

	
Select the Project Technologies tab.

	
In the Available area double-click ADF Business Components to move this item to the Selected area. This also adds Java to the Selected area as shown in Figure 9-3.

Figure 9-3 Adding Generic Project to the Grades Application

[image: Description of Figure 9-3 follows]

	
Click Finish. This adds the Grades project.

9.2.3 How to Add the XML Schema and Generate JAXB Classes in the Grades Project

To create the Grades sample application you need to use the grades.xsd file, shown in Example 9-1. You can create and store the schema file locally and then use Oracle JDeveloper to copy the file to your project.

Example 9-1 grades.xsd Schema

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xs:schema targetNamespace="http://example.com/grades"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://example.com/grades"
 attributeFormDefault="qualified" elementFormDefault="qualified"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:extensionBindingPrefixes="xjc"
 jaxb:version="2.0">

 <xs:element name="TestScore">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="testName" type="xs:string"/>
 <xs:element name="testScore" type="xs:double"/>
 <xs:element name="testCurve" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="TestGrade">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="grade" type="tns:Grade"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="Grade">
 <xs:restriction base="xs:string">
 <xs:enumeration value="A"/>
 <xs:enumeration value="B"/>
 <xs:enumeration value="C"/>
 <xs:enumeration value="D"/>
 <xs:enumeration value="F"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

To add the XML schema to the grades project:

	
Save the schema file shown in Example 9-1 to a local file named grades.xsd .

	
In the Application Navigator select the Grades project.

	
Right-click and in the context menu select New....

	
In the New Gallery select the All Technologies tab.

	
In the Categories area, expand General and select XML.

	
In the Items area, select XML Schema.

	
Click OK.

	
In the Create XML Schema dialog, in the File Name field enter grades.xsd.

	
In the Create XML Schema dialog, in the Directory field add the xsd directory to the Grades project path name, as shown in Figure 9-4.

Figure 9-4 Adding Schema to Grades Project in xsd Directory

[image: Description of Figure 9-4 follows]

	
Click OK.

	
In the grades.xsd file, select the Source tab.

	
Copy the schema shown in Example 9-1 to the grades.xsd in the Grades project, as shown in Figure 9-5.

Figure 9-5 Shows the Grades.xsd Schema File in the Grades Project

[image: Description of Figure 9-5 follows]

To generate JAXB 2.0 content model from grades schema:

	
In the Application Navigator, in the Grades project expand Resources and select grades.xsd.

	
Right-click and in the context menu select Generate JAXB 2.0 Content Model.

	
In the JAXB 2.0 Content Model from XML Schema dialog, click OK.

9.2.4 How to Create an Oracle Business Rules Dictionary in the Grades Project

After creating a project in Oracle JDeveloper create business rules within the Grades project.

To use business rules with Oracle JDeveloper, you do the following:

	
Add a business rule to the project and import grades.xsd schema

	
Create input and output variables

	
Create an Oracle Business Rules dictionary in the project

To create a business rules dictionary in the business tier:

	
In the Application Navigator, select the Grades project.

	
Right-click and in the context menu select New....

	
Select the All Technologies tab.

	
In the New Gallery, in the Categories area, expand Business Tier and select Business Rules.

	
In the New Gallery, in the Items area, select Business Rules.

	
Click OK. Oracle JDeveloper displays the Create Business Rules dialog, as shown in Figure 9-6.

Figure 9-6 Adding a Business Rule to Grades with the Create Business Rules Dialog

[image: Description of Figure 9-6 follows]

	
In the Name field, enter a name to name the dictionary. For example, enter GradingRules.

	
To add an input, from the dropdown list next to the Add icon select Input....

	
In the Type Chooser, expand the Project Schemas Files folder and expand grades.xsd.

	
Select the input TestScore, as shown in Figure 9-7.

Figure 9-7 Shows the Type Chooser Dialog with TestScore Element

[image: Description of Figure 9-7 follows]

	
On the Type Chooser window, click OK. This displays the Create Business Rules dialog.

	
In the Create Business Rules dialog, in a similar manner to the input add the output by selecting Output... to add the output element TestGrade from the grades.xsd schema.

The resulting Create Business Rules dialog is shown in Figure 9-8.

Figure 9-8 Create Business Rules Dialog with Grades Input and Output

[image: Description of Figure 9-8 follows]

	
Click OK. Oracle JDeveloper creates the GradingRules dictionary as shown in Figure 9-9.

	
In the File menu, select Save All to save your work.

Figure 9-9 Shows the New Grading Rules Dictionary

[image: Description of Figure 9-9 follows]

Note that the business rule validation log area for the new dictionary shows several validation warnings. You remove these validation warning messages as you modify the dictionary in later steps.

9.3 Creating Data Model Elements and Rules for the Grades Sample Application

To create the data model and the business rules for the Grades sample application, you do the following:

	
Create Bucketsets for grades

	
Create rules by adding a Decision Table for grades

	
Split the Decision Table and add actions for rules

	
Rename the default decision function

9.3.1 How to Create Bucketsets for Grades Sample Application

In this example you associate a bucketset with a fact type. This supports using a Decision Table where you need bucketsets that specify how to draw values for each cell in the Decision Table (for the conditions in the Decision Table).

To create the bucketset for the grades sample application:

	
In Rules Designer, select the Bucketsets navigation tab.

	
From the dropdown list next to the Create BucketSet... icon, select List of Ranges.

	
For the bucketset, double-click in the Name field to select the default name.

	
Enter Grade Scale, and press Enter to accept the bucketset name.

	
In the Bucketsets table, double-click the bucket icon for the Grade Scale bucketset to display the Edit Bucketset dialog as shown in Figure 9-10.

Figure 9-10 Grade Scale Bucketset

[image: Description of Figure 9-10 follows]

	
In the Edit Bucketset dialog, click Add Bucket to add a bucket.

	
Click Add Bucket three times to add three more buckets.

	
In the Endpoint field, enter 90 for the top endpoint and press Enter to accept the new value.

	
For the next bucket, in the Endpoint field enter 80 and press Enter to accept the new value.

	
Similarly, for the next two buckets enter values in the Endpoint field, values 70 and 60.

	
In the Included Endpoint field for each bucket select each checkbox.

	
Modify the Alias field for each value to enter the values A, B, C, D, and F, for each corresponding range, as shown in Figure 9-11 (press Enter after you add each alias).

Figure 9-11 Grade Scale Bucketset with Grade Values Added

[image: Description of Figure 9-11 follows]

To associate a bucketset with a fact property:

To prepare for creating Decision Tables you can associate a global bucketset with fact properties in the data model. In this way condition cells in a Decision Table Conditions area can use the bucketset when you create a Decision Table.

	
In Rules Designer, select the Facts navigation tab.

	
In the Facts navigation tab select the XML Facts tab.

	
Double-click the XML fact icon for the TestScore fact. This displays the Edit XML Fact dialog.

	
In the Edit XML Fact dialog select the testScore property.

	
In the Bucketset field, from the dropdown list select Grade Scale.

	
Click OK.

9.3.2 How to Add a Decision Table for Grades Sample Application

You create rules in a Decision Table to process input facts and to produce output facts, or to produce intermediate conclusions that Oracle Business Rules can further process using additional rules or in another Decision Table.

To use a Decision Table for rules in this application you work with facts representing a test score. Then, you use a Decision Table to create rules based on the test score to produce a grade.

To add a decision table for Grades application:

	
In Rules Designer, select Ruleset_1 under the Rulesets navigation tab.

	
In Ruleset_1, click the Add icon and from the dropdown list select Create Decision Table. This creates DecisionTable_1. You can ignore the warning messages shown in the Business Rule Validation log area. You remove these warning messages in later steps.

	
In the Decision Table, DecisionTable_1, click the Add icon and from the dropdown list select Condition.

	
In the Decision Table, double-click <edit condition>. Then, in the dropdown variables navigator expand TestScore and select testScore. This enters the expression TestScore.testScore for condition C1.

If you view the rules validation log, you should see warning messages. You remove these warning messages as you modify the Decision Table in later steps.

To add an action to a decision table:

You add an action to the Decision Table to assert a new Grade fact.

	
In the Decision Table, click the Add icon and from the dropdown list select Action and select Assert New.

	
In the Actions area, double-click assert new (.

This displays the Action Editor dialog.

	
In the Action Editor dialog, in the Facts area select TestGrade.

	
In the Action Editor dialog, in the Properties table for the property grade, select the Parameterized checkbox and the Constant checkbox.

This specifies that each rule independently sets the grade.

	
In the Action Editor dialog select the Always Selected checkbox.

	
In the Action Editor dialog click OK.

	
Select Save All from the File main menu to save your work.

Next you add rules to the Decision Table and specify an action for each rule.

9.3.3 How to Add Actions in the Decision Table for Grades Sample Application

You can use the Decision Table split operation to create rules for the bucketset associated with the conditions row in the Decision Table. This creates one rule for every bucket.

To split the decision table:

	
Select the Decision Table.

	
Click the Split Table icon and from the dropdown list select Split Table.

The split operation eliminates the "do not care" cells from the table. The table now shows five rules that cover all ranges, as shown in Figure 9-12.

These steps produce validation warnings for action cells with missing expressions. You fix these problems in later steps when you define actions for each rule.

Figure 9-12 Splitting a Decision Table Using Split Table Operation for Grades

[image: Description of Figure 9-12 follows]

To add actions for each rule in the decision table:

In the Decision Table you specify a value for the result, a grade property, associated with TestGrade for each action cell in the Actions area. The possible choices for each grade property are the valid grades. In this step you fill in a value for each of the rules. The values you enter correspond to the conditions that form each rule in the Decision Table.

	
In the Actions area, double-click the action cell for rule R1 as shown in Figure 9-13.

Figure 9-13 Adding Action Cell Values to Grades Decision Table

[image: Description of Figure 9-13 follows]

	
In the dropdown list select the corresponding value for the action cell. For example, select Grade.F.

	
For each of the remaining action cells select the appropriate value for the buckets for TestScore: D, C, B, and A.

9.3.4 How to Rename the Decision Function for Grades Sample Application

The name you specify when you use a decision function with a Rules SDK Decision Point must match the name of a decision function in the dictionary. To make the name match, you can rename the decision function to any name you like. Thus, for this example you rename the default decision function to use the name GradesDecisionFunction.

To rename the decision function:

	
In the Application Navigator, in the Grades project, expand the Resources folder and double-click the dictionary GradingRules.rules.

	
Select the Decision Functions navigation tab.

	
In the Name field in the Decision Functions table edit the decision function name to enter the value GradesDecisionFunction, and then press Enter, as shown in Figure 9-14.

Figure 9-14 Renaming Decision Function in Rules Designer

[image: Description of Figure 9-14 follows]

9.4 Adding a Servlet with Rules SDK Calls for Grades Sample Application

The Grades sample application includes a servlet that uses the Rules Engine.

To add this servlet with Oracle Business Rules you need to understand the important Rules SDK methods. Thus, to use the Oracle Business Rules dictionary you created with Rules Designer, you do the following:

	
Create initialization steps that you perform one time in the servlet init routine.

	
Create a servlet service routine using the Rules SDK Decision Point API.

	
Perform steps to add the servlet code in the project.

For more information on Rules SDK Decision Point API, see Chapter 7, "Working with Rules SDK Decision Point API".

9.4.1 How to Add a Servlet to the Grades Project

You add a servlet to the grades project using the Create HTTP Servlet wizard.

To add a servlet to the Grades project with Oracle JDeveloper:

	
In the Application Navigator, select the Grades project.

	
Right-click the Grades project and in the context menu select New....

	
In the New Gallery, select the All Technologies tab.

	
In the New Gallery, in the Categories area expand Web Tier and select Servlets.

	
In the New Gallery, in the Items area select HTTP Servlet.

	
Click OK.

Oracle JDeveloper displays the Create HTTP Servlet Welcome page, as shown in Figure 9-15.

Figure 9-15 Create HTTP Servlet Wizard - Welcome

[image: Description of Figure 9-15 follows]

	
Click Next.

This displays the Web Application page, as shown in Figure 9-16.

Figure 9-16 Create HTTP Servlet Wizard - Web Application

[image: Description of Figure 9-16 follows]

	
Select Servlet 2.5\JSP 2.1 (Java EE 1.5) and click Next.

This displays the Create HTTP Servlet - Step 1 of 3: Servlet Information page.

	
Enter values in Create HTTP Servlet - Step 1 of 3: Servlet Information page, as follows, and as shown in Figure 9-17.

	
Class: GradesServlet

	
Package: com.example.grades

	
Generate Content Type: HTML

	
Generate Header Comments: unchecked

	
Implement Methods: service() checked and all other checkboxes unchecked

Figure 9-17 Create HTTP Servlet Wizard - Step 1 of 3: Servlet Information

[image: Description of Figure 9-17 follows]

	
Click Next.

This displays the Create HTTP Servlet: Step 2 of 3: Mapping Information dialog as shown in Figure 9-18.

Figure 9-18 Create HTTP Servlet Wizard - Step 2 of 3: Mapping Information

[image: Description of Figure 9-18 follows]

	
Configure this dialog as follows:

	
Name: GradesServlet

	
URL Pattern: /gradesservlet

	
Click Finish.

JDeveloper adds a Web Content folder to the project and creates a GradesServlet.java file and opens the file in the editor as shown in Figure 9-19.

Figure 9-19 Generated GradesServlet.java

[image: Description of Figure 9-19 follows]

	
Replace the generated servlet with the source shown in Example 9-2.

Example 9-2 Business Rules Using Servlet for Grades Application

package com.example.grades;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.ArrayList;
import java.util.List;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class GradesServlet extends HttpServlet {

 private static final String CONTENT_TYPE = "text/html";
 private static final String DICT_PKG = "com.example.grades";
 private static final String DICT_NAME = "GradingRules";
 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN(DICT_PKG, DICT_NAME);
 private static final String DF_NAME = "GradesDecisionFunction";

 private DecisionPoint m_decisionPoint = null; // init in init()

 public void init(ServletConfig config) throws ServletException {
 super.init(config);

 try {

 // specifying the Decision Function and Dictionary FQN
 // load the rules from the MDS repository.
 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)
 .build();
 } catch (SDKException e) {
 System.err.println("Failed to build Decision Point: " +
 e.getMessage());
 throw new ServletException(e);
 }
 }

 public void service(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 // retrieve parameters
 String name = request.getParameter("name");
 String strScore = request.getParameter("testScore");

 // open output document
 StringBuilder doc = new StringBuilder();
 addHeader(doc);

 // create TestScore object to assert
 final TestScore testScore = new TestScore();
 testScore.setName(name);

 try {
 testScore.setTestScore(Integer.parseInt(strScore));
 } catch (NumberFormatException e){ /* use default val */ }

 // get DecisionPointInstance for invocation
 DecisionPointInstance point = m_decisionPoint.getInstance();

 // set input parameters
 point.setInputs(new ArrayList() {{ add(testScore); }});

 // invoke decision point and get result value
 TestGrade testGrade = null;
 try {

 // invoke the decision point with our inputs
 List<Object> result = point.invoke();
 if (result.size() != 1){
 error(doc, testScore.getName(), "bad result", null);
 }
 // decision function returns a single TestGrade object
 testGrade = (TestGrade)result.get(0);
 } catch (RLException e) {
 error(doc, testScore.getName(), "RLException occurred: ", e);
 } catch (SDKException e) {
 error(doc, testScore.getName(), "SDKException occurred", e);
 }

 if (testGrade != null){
 // create output table in document
 openTable(doc);
 addRow(doc, testScore.getName(), strScore, testGrade.getGrade());
 closeTable(doc);
 }

 addFooter(doc);

 // write document
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println(doc);
 out.close();
 }

 public static void addHeader(StringBuilder doc) {
 doc.append("<html>");
 doc.append("<head><title>GradesServlet</title></head>");
 doc.append("<body>");
 doc.append("<h1>Test Results</h1>");
 }

 public static void addFooter(StringBuilder doc) {
 doc.append("</body></html>");
 }

 public static void openTable(StringBuilder doc) {
 doc.append("<table border=\"1\"");
 doc.append("<tr>");
 doc.append("<th>Name</th>");
 doc.append("<th>Score</th>");
 doc.append("<th>Grade</th>");
 doc.append("</tr>");
 }

 public static void closeTable(StringBuilder doc) {
 doc.append("</table>");
 }

 public static void addRow(StringBuilder doc, String name, String score, Grade grade){
 doc.append("<tr>");
 doc.append("<td>"+ name +"</td>");
 doc.append("<td>"+ score +"</td>");
 doc.append("<td>"+ grade.value() +"</td>");
 doc.append("</tr>");
 }

 public static void error(StringBuilder doc, String name, String msg, Throwable t){
 doc.append("<tr>");
 doc.append("<td>"+ name +"</td>");
 doc.append("<td colspan=2>"+ msg + " " + t +"</td>");
 doc.append("</tr>");
 }
}

Example 9-2 includes a Oracle Business Rules Decision Point, that uses an MDS repository to access the dictionary. For more information, see Section 7.5, "What You Need to Know About Using Decision Point in a Production Environment".

When you add the Servlet shown in Example 9-2, note the following:

	
In the init() method the servlet uses the Rules SDK Decision Point API for Oracle Business Rules. For more information on using the Decision Point API, see Chapter 7, "Working with Rules SDK Decision Point API".

	
The DecisionPointBuilder() requires arguments including a decision function name and, in a production environment a dictionary FQN to access a dictionary in an MDS repository, as shown:

 m_decisionPoint = new DecisionPointBuilder()
 .with(DF_NAME)
 .with(DICT_FQN)

For more information on using the Decision Point API, see Chapter 7, "Working with Rules SDK Decision Point API".

9.5 Adding an HTML Test Page for Grades Sample Application

The Grades sample application includes an HTML test page that you use to invoke the servlet you created in Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades Sample Application".

9.5.1 How to Add an HTML Test Page to the Grades Project

To add an HTML page to the servlet you use the Create HTML File wizard.

To add an HTML test page:

	
In the Application Navigator, in the Grades project select the Web Content folder.

	
Right-click the Web Content folder project and in the context menu select New....

	
In the New Gallery, select the All Technologies tab.

	
In the New Gallery, in the Categories area expand Web Tier and select HTML.

	
In the New Gallery, in the Items area select HTML Page.

	
In the New Gallery click OK.

Oracle JDeveloper displays the Create HTML File dialog.

	
Configure this dialog as follows and as shown in Figure 9-20:

	
File Name: index.html

	
Directory: C:\JDeveloper\mywork\GradeApp\Grades\public_html

Figure 9-20 Create HTML File Dialog

[image: Description of Figure 9-20 follows]

	
Click OK.

JDeveloper adds index.html to the Web Content folder and opens the editor.

	
In the editor for index.html, select the Source tab.

	
Copy and paste the HTML code from Example 9-3 to replace the contents of the index.html file.

Note that in the form element action attribute uses the URL Pattern you specified in Figure 9-18.

Example 9-3 HTML Test Page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"></meta>
 <title>Test Grade Example Servlet</title>
 </head>
 <body>
 <form name="names_and_scores"
 method="post"
 action="/grades/gradesservlet" >
 <p>Name: <input type="text" name="name" /></p>
 <p>Test Score: <input type="text" name="testScore"/></p>
 <input type="submit" value="Submit">
 </form>
 </body>
</html>

	
Select Save All from the File main menu to save your work.

9.6 Preparing the Grades Sample Application for Deployment

Business rules are deployed as part of the application for which you create a deployment profile in Oracle JDeveloper. You deploy the application to Oracle WebLogic Server.

9.6.1 How to Create the WAR File for the Grades Sample Application

You deploy the GradeApp sample application using JDeveloper with Oracle WebLogic Server.

To create the WAR file for the grades sample application:

	
In the Application Navigator, select the Grades project.

	
Right-click the Grades project and in the context menu select Project Properties.... This displays the Project Properties dialog for the project.

	
In the Project Properties navigator, select the Deployment item as shown in Figure 9-21.

Figure 9-21 Project Properties - Deployment

[image: Description of Figure 9-21 follows]

	
In the Project Properties dialog, click New....

This displays the Create Deployment Profile dialog.

	
In the Create Deployment Profile dialog, in the Archive Type dropdown list, select WAR File.

	
In the Create Deployment Profile dialog, in the Name field enter grades, as shown in Figure 9-22. Note the Name value uses the package value that you specified in the form element action attribute in Example 9-3.

Figure 9-22 Create Deployment Profile Dialog for WAR File

[image: Description of Figure 9-22 follows]

	
Click OK.

This displays the Edit WAR Deployment Profile Properties dialog.

	
In the Edit War Deployment Profile Properties dialog, select General and configure the General page as follows, as shown in Figure 9-23:

	
Set the WAR File: C:\JDeveloper\mywork\GradeApp\Grades\deploy\grades.war

	
In the Web Application Context Root area, select Specify Java EE Web Context Root:

	
In the Specify Java EE Web Context Root: text entry area, enter grades.

	
In the Deployment Client Maximum Heap Size (in Megabytes): dropdown list select Auto

Figure 9-23 Edit WAR Deployment Properties - General

[image: Description of Figure 9-23 follows]

	
In the Edit WAR Deployment Profile Properties dialog, click OK.

JDeveloper creates a deployment profile named grades (WAR File) as shown in Figure 9-24.

Figure 9-24 Project Properties - Deployment Profile Created

[image: Description of Figure 9-24 follows]

	
In the Project Properties dialog, click OK.

9.6.2 How to Add the Rules Library to the Grades Sample Application

To add the rules library to the weblogic-application file:

	
In the GradeApp application, in the Application Navigator expand Application Resources.

	
Expand Descriptors and expand META-INF and double-click to open weblogic-application.xml.

	
Add the oracle.rules library reference to the weblogic-application.xml file. Add the following lines, as shown in Figure 9-25.

<library-ref>
 <library-name>oracle.rules</library-name>
</library-ref>

Figure 9-25 Adding Oracle Rules Library Reference to WebLogic Descriptor

[image: Description of Figure 9-25 follows]

	
Save the weblogic-application.xml file.

9.6.3 How to Add the MDS Deployment File to the Grades Sample Application

To add the MDS deployment file:

	
In the Application Navigator, select the GradeApp application.

	
Right-click the GradeApp application and in the context menu select Application Properties....

This displays the Application Properties dialog.

	
In the Application Properties navigator select the Deployment item, as shown in Figure 9-26.

Figure 9-26 Application Properties - Deployment

[image: Description of Figure 9-26 follows]

	
In the Application Properties dialog, click New....

This displays the Create Deployment Profile dialog.

	
Configure this dialog as follows, as shown in Figure 9-27:

	
Archive Type: MAR File

	
Name: metadata1

Figure 9-27 Create Deployment Profile Dialog for MAR File

[image: Description of Figure 9-27 follows]

	
Click OK.

This displays the Edit MAR Deployment Properties dialog as shown in Figure 9-28.

Figure 9-28 Edit MAR Deployment Profile Properties - MAR Options

[image: Description of Figure 9-28 follows]

	
Expand the Metadata File Groups item and select the User Metadata item.

	
Click Add....

This displays the Add Contributor dialog.

	
In the Add Contributor dialog, click the Browse button and navigate to the directory for the project that contains the GradingRules.rules dictionary file.

In this example, navigate to C:\JDeveloper\mywork\GradeApp\Grades and click Select.

	
In the Add Contributor dialog, click OK to close the dialog. This displays the Edit MAR Deployment Properties dialog as shown in Figure 9-29

Figure 9-29 Edit MAR Deployment Profile Properties - User Metadata

[image: Description of Figure 9-29 follows]

	
In the Edit MAR Deployment Profile Properties dialog, expand the Metadata File Groups and expand the User Metadata item and select Directories.

This displays the Directories page as shown in Figure 9-30.

Figure 9-30 Edit MAR Deployment Profile Properties - Directories

[image: Description of Figure 9-30 follows]

	
Select the oracle directory checkbox. This selects the GradingRules.rules dictionary to be included in the MAR.

	
Click OK.

JDeveloper creates an application deployment profile named metadata1 (MAR File) as shown in Figure 9-31.

Figure 9-31 Application Properties - Deployment - MAR

[image: Description of Figure 9-31 follows]

	
In the Application Properties dialog, click OK.

9.6.4 How to Add the EAR File to the Grades Sample Application

Add an EAR file to the Grades sample application.

To add the ear file to the grades sample application:

	
In the Application Navigator, select the GradeApp application.

	
Right-click and in the context menu select Application Properties....

	
In the Application Properties dialog, select Deployment and click New.... This displays the Create Deployment Profile dialog.

	
Configure this dialog as follows, as shown in Figure 9-32.

	
Archive Type: EAR

	
Name: grades

Figure 9-32 Create Deployment Profile Dialog for EAR File

[image: Description of Figure 9-32 follows]

	
Click OK. This displays the Edit EAR Deployment Profile Properties dialog.

	
In the Edit Ear Deployment Profile Properties dialog, in the navigator select Application Assembly as shown in Figure 9-33.

Figure 9-33 Edit EAR Deployment Profile Properties - Application Assembly

[image: Description of Figure 9-33 follows]

	
Configure this dialog as follows:

	
Select the metadata1 checkbox.

	
Expand the Grades.jpr item and select the grades checkbox.

	
In the Edit EAR Deployment Profile Properties dialog, click OK.

JDeveloper creates an application deployment profile named grades(EAR File) as shown in Figure 9-34.

Figure 9-34 Application Properties - Deployment - EAR

[image: Description of Figure 9-34 follows]

	
Click OK to close the Application Properties dialog.

	
Select Save All from the File main menu to save your work.

9.7 Deploying and Running the Grades Sample Application

You can now deploy and run the grades sample application on Oracle WebLogic Server.

9.7.1 How to Deploy to Grades Sample Application

To deploy the grades sample application:

	
In the Application Navigator, select the GradeApp application.

	
Right-click the GradeApp application and in the context menu select Deploy > grades > to > and select either an existing connection or New Connection... to create a connection for the deployment. This starts the deployment to the specified Oracle WebLogic Server.

	
As the deployment proceeds, Oracle JDeveloper shows the Deployment Configuration dialog.

	
In the Deployment Configuration dialog enter the following values, as shown in Figure 9-32:

	
In the Repository Name field, from the dropdown list, select: mds-soa

	
In the Partition Name field, enter grades

Figure 9-35 Deployment Configuration Dialog for MDS with Repository and Partition

[image: Description of Figure 9-35 follows]

	
In the Deployment Configuration dialog, click Deploy.

9.7.2 How to Run the Grades Sample Application

After you deploy the grades sample application, you can run the application.

To run the grades sample application:

	
Point a web browser at,

http://yourServerName:port/grades/

This displays the test servlet as shown in Figure 9-36.

Figure 9-36 Grades Sample Application Servlet

[image: Description of Figure 9-36 follows]

	
Enter a name and test score and click Submit. This returns results as shown in Figure 9-37.

The first time you run the servlet there may be a delay before any results are returned. The first time the servlet is invoked, during servlet initialization the runtime loads the dictionary and creates a rule session pool. Subsequent invocations do not perform these steps and should run much faster.

Figure 9-37 Grades Sample Application Servlet with Results

[image: Description of Figure 9-37 follows]

10 Working with Oracle Business Rules and ADF Business Components

Oracle Business Rules allows you to use Oracle ADF Business Components view objects as facts. By using ADF Business Components facts you can assert trees of view object graphs representing the business objects upon which rules should be based, and let Oracle Business Rules handle the complexities of managing the relationships between the various related view objects in the main view object's tree.

This chapter includes the following sections:

	
Section 10.1, "Introduction to Using Business Rules with ADF Business Components"

	
Section 10.2, "Using Decision Points with ADF Business Components Facts"

	
Section 10.3, "Creating a Business Rules Application with ADF Business Components Facts"

10.1 Introduction to Using Business Rules with ADF Business Components

The ADF Business Components rule development process can be summarized as follows:

	
Create view object definitions.

	
Create action types.

	
Create rule dictionary.

	
Register view object fact types.

	
Register Java fact types for actions.

	
If you are invoking from Java:

	
If the view object is already instantiated at the Decision Point, code the Decision Point invocation passing the view object instance.

	
If the view object is not instantiated at the Decision Point, code the Decision Point invocation passing the view object key values.

10.1.1 Understanding Oracle Business Rules ADF Business Components Fact Types

When an ADF Business Components view object is imported into an Oracle Business Rules data model, an ADF Business Components fact type is created which has a property corresponding to each attribute of the view object, as shown in Figure 10-1.

Additionally, the ADF Business Components fact type contains the following:

	
A property named ViewRowImpl which points directly to the oracle.jbo.Row instance that each fact instance represents.

	
A property named key_values which points to an oracle.rules.sdk2.decisionpoint.KeyChain object. You can use this property to retrieve the set of key-values for this row and its parent rows.

Figure 10-1 ADF Business Components Sample Fact Type

[image: Description of Figure 10-1 follows]

Note the following:

	
Relationships between view object definitions are determined by introspection of attributes on the View Definition, specifically, those attributes which are View Link Accessors.

The ADF Business Components fact type importer correctly determines which relationships are 1-to-1 and which are 1-to-many and generates definitions in the dictionary accordingly. For 1-to-many relationships the type of the property generated is a List which contains facts of the indicated type at runtime.

	
ADF Business Components fact types are not Java fact types and do not allow invoking methods on any explicitly created implementation classes for the view object.

If you need to call such methods then add the view object implementation to the dictionary as a Java fact type instead of as an ADF Business Components fact type. In this case, all getters and setters and other methods become available but the trade-off is that related view objects become inaccessible and, should related view object access be required, these relationships must be explicitly managed.

	
Internally in Oracle Business Rules, when you use ADF Business Components fact types these fact types are created as instances of RL fact types. Thus, you cannot assert ADF Business Components view object instances directly to a Rule Session, but must instead use the helper methods provided in the MetadataHelper and ADFBCFactTypeHelper classes. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

10.1.2 Understanding Oracle Business Rules Decision Point Action Type

With Rules SDK, the primary way to update a view object within a Decision Point is with an action type. An action type is a Java class that you import into the rule dictionary data model in the same way you import a rule pattern fact type Java class. A new instance of this action type is then asserted in the action of a rule and then processed by the Postprocessing Ruleset in the DecisionPointDictionary.

A Java class to be used as an action type must conform to the following requirements:

	
The Java fact type class must subclass oracle.rules.sdk2.decisionpoint.ActionType or oracle.rules.sdk2.decisionpoint.KeyedActionType.

By subclassing KeyedActionType the Java class inherits a standard oracle.rules.sdk2.decisionpoint.KeyChain attribute, which may be used to communicate the rule fact's primary keys and parent-keys to the ActionType instance.

	
The class has a default constructor.

	
The class implements abstract exec method for the ActionType. The exec method should contain the main action which you want to perform.

	
The Java class must have properties which conform to the JavaBean interface (that is, each property must have a getter and setter method).

Example 10-1 shows a sample ActionType implementation.

Example 10-1 Implementing an ActionType

package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
 private double raisePercent;

 public void exec(DecisionPointInstance dpi) {
 Number salary = (Number)getViewRowImpl().getAttribute("Salary");
 salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new boolean[]{false});
 dpi.addResult("raise for " + this.getViewRowImpl().getAttribute("EmployeeId"),
 getRaisePercent() + "=>" + salary);
 getViewRowImpl().setAttribute("Salary", salary);
 }

 public void setRaisePercent(double raisePercent) {
 this.raisePercent = raisePercent;
 }

 public double getRaisePercent() {
 return raisePercent;
 }
}

In Example 10-1, there is an oracle.rules.sdk2.decisionpoint.DecisionPointInstance as a parameter to the exec method. Table 10-1 shows the methods in DecisionPointInstance that an application developer might need when implementing the ActionType exec.

Table 10-1 DecisionPointInstance Methods

	Method	Description
	
getProperties

	
Supplies a HashMap<String,Object> object containing any runtime-specified parameters that the action types may need.

If you intend to use the decision function from a Decision service, use only String values.

	
getRuleSession

	
Gives access to the Oracle Business Rules RuleSession object from which static configuration variables in the Rule Dictionary may be accessed.

	
getActivationID

	
If populated by the caller, supplies a String value to be used for Set Control indirection.

	
getTransaction

	
Provides a transaction object so that action types may make persistent changes in the back end.

	
addResult

	
Adds a named result to the list of output values in the form of a String key and Object value.

Output is assembled as a List of oracle.rules.sdk2.decisionpoint.DecisionPointInstance.NamedValue objects as would be the case in a pure map implementation. The NamedValue objects are simple data-bearing classes with a getter each for the name and value. Output values from one action types instance are never allowed to overwrite each other, and in this regard, the action type implementations should be considered completely independent of each other.

Using Rules Designer you can select parameters appropriate for the ActionType you are configuring.

10.2 Using Decision Points with ADF Business Components Facts

You can use a Decision Point to execute a decision function. There are certain Decision Point methods that only apply when working with ADF Business Components Fact types. For more information on decision functions, see Chapter 6, "Working with Decision Functions".

10.2.1 How to Call a Decision Point with ADF Business Components Facts

When you use ADF Business Components fact types you invoke a decision function using the Rules SDK Decision Point interface.

To call a decision function using the Rules SDK Decision Point interface:

	
Construct and configure the template DecisionPoint instance using the DecisionPointBuilder.

For more information, see Section 7.3.1, "How to Add a Decision Point Using Decision Point Builder".

	
Create a DecisionPointInstance using the DecisionPoint method getInstance.

	
Add the fact objects you want to use to the DecisionPointInstance using DecisionPointInstance method addInput, setInputs, or setViewObject. These are either ViewObject or ViewObjectReference instances. These must be added in the same order as they are declared in the decision function input. For more information, see Section 10.2.1.3, "Calling the Invoke Method for an ADF Business Components Rule"

	
Set the transaction to be used by the DecisionPointInstance.

For more information, see Section 10.2.1.1, "Setting the Decision Point Transaction".

	
Set any runtime properties the consequent application actions may expect.

For more information, see Section 10.2.1.2, "Setting Runtime Properties".

	
Call the DecisionPointInstance method invoke.

For more information, see:

	
Section 10.2.1.3, "Calling the Invoke Method for an ADF Business Components Rule"

	
Section 10.2.1.4, "What You Need to Know About Decision Point Invocation"

10.2.1.1 Setting the Decision Point Transaction

The Oracle Business Rules SDK framework requires an oracle.jbo.server.DBTransactionImpl2 instance to load a ViewObject and to provide ActionType instances within a transactional context. The class oracle.jbo.server.DBTransactionImpl2 is the default JBO transaction object returned by calling the ApplicationModule method getTransaction. Setting the transaction requires calling the DecisionPointInstance method setTransaction with the Transaction object as a parameter.

Should a DBTransaction instance not be available for some reason, the Oracle Business Rules SDK framework can bootstrap one using any of the three provided overrides of the setTransaction method.

These require one of:

	
A JDBC URL, user name, and password.

	
A JDBC connection object.

	
A javax.sql.DataSource object and a flag to specify whether the DataSource represents a JTA transaction or a local transaction.

10.2.1.2 Setting Runtime Properties

Runtime properties may be provided with the setProperty method. These can then be retrieved by ActionType instances during their execution. If no runtime properties are needed, you may safely omit these calls.

10.2.1.3 Calling the Invoke Method for an ADF Business Components Rule

The ViewObject to be used in a Decision Point invocation can be specified in one of two ways, as shown in Table 10-2.

Table 10-2 Setting the View Object for a Decision Point Invocation

	ViewObject Set Method	Description
	
setViewObject

	
The decision function is invoked once for each ViewObject row. This the preferred way to use view objects. Between each invocation of the decision function, the rule session is not reset so any asserted facts from previous invocations of the decision function are still in working memory. In most cases, users should write rules that retract the asserted facts before the decision function call completes. For example, you can have a cleanup ruleset that retracts the ViewObject row that runs before the Postprocessing decision function is called.

Section 10.3.9.3, "How to Add Retract Employees Ruleset" shows this usage. To use setViewObject, the ViewObject must be the first entry in the decision function InputTable.

	
addInput

setInputs

	
The decision function is invoked once with all of the ViewObject rows loaded at the same time. This is generally not a scalable operation, since hundreds of thousands of rows can be loaded at the same time. There are some cases where there are a known small number of rows in a ViewObject that this method of calling the ViewObject can be useful.

Example 10-2 shows how to invoke a Decision Point with a ViewObject instance using the setInputs method. For the complete example, see Example 10-5.

Example 10-2 Invoking a Decision Point Using setInputs Method

public class OutsideManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private static final String DF_NAME = "FindOutsideManagers";

 private DecisionPoint dp = null;

 public OutsideManagerFinder() {
 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();
 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setInputs(new ArrayList<Object>(){{ add(vo); }});
 try {
 List<Object> invokeList = point.invoke();

List<DecisionPoint.NamedValue> results = point.getResults();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

Example 10-3 shows how to invoke a DecisionPoint using the setViewObject method to set the ViewObject.

Example 10-3 Invoking a Decision Point Using setViewObject Method

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 List<Object> invokeList = point.invoke();
List<DecisionPoint.NamedValue> results = point.getResults();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

10.2.1.4 What You Need to Know About Decision Point Invocation

Care must be taken when invoking Decision Points using a view object that loads large amounts of data, since the default behavior of the JBO classes is to load all data eagerly. If a view object with many rows and potentially very many child rows is loaded into memory, not only is there risk of memory-exhaustion, but DML actions taken based on such large data risk using all rollback segments.

10.2.2 How to Call a Decision Function with Java Decision Point Interface

To call a decision function with a ruleset using ADF Business Components fact types with the Oracle Business Rules SDK Decision Point interface you must configure the decision function with certain options. For more information on using decision functions, see Chapter 6, "Working with Decision Functions".

To define a decision function using the Java Decision Point interface:

	
Double-click the decision function icon to the left of the decision function item or select this item and click the Edit icon. The Edit Decision Function dialog appears.

	
In the Edit Decision Function dialog, configure the decision function:

	
Input Fact Types: names the fact types to use in the configured business rules.

The inputs, when working with an application using ADF Business Components fact types, are the ADF Business Components view objects used in your rules.

When you use the setViewObject method with a Decision Point, the List attribute should be unselected. Each Input fact type should have the List attribute selected when you are using addInput or setInputs methods with the Decision Point. Optionally, depending on the usage of the view objects, select the Tree attribute:

	
List: defines that a list of ADF Business Components fact types are passed to the decision function.

	
Tree: defines that all objects in the master-detail hierarchy should be asserted, instead of only the top-level object.

For more information, see Section 10.2.1, "How to Call a Decision Point with ADF Business Components Facts".

	
Output Fact Types: defines the fact types that the caller returns.

When calling a decision function using the Java Decision Point interface for a decision function that uses ADF Business Components fact types, Output Fact Types should be left empty. The view object is updated using an ActionType. For more information, see Section 10.1.2, "Understanding Oracle Business Rules Decision Point Action Type".

	
RuleSets and Decision Functions: an ordered list of the rulesets and other decision functions that this decision function executes. The rulesets DecisionPointDictionary.Preprocessing and DecisionPointDictionary.Postprocessing from the DecisionPoint dictionary must be added so that they run before and after, respectively, the application-specific rulesets and decision functions.

10.2.3 What You Need to Know About Decision Function Configuration with ADF Business Components

Both rulesets and decision functions may be included in the definition of a decision function. It is common for an application to require some rules or decision functions which act as "plumbing code". Such applications include components that perform transformations on the input data, assert auxiliary facts, or process output facts. The plumbing code may need to run before or after the rules that contain the core business rules of the application. You can separate these application concerns and their associated rules from the application functional concerns using nested decision functions. Using nested decision functions, the inner decision function does not contain the administrative, plumbing-oriented concerns, and thus only presents those rules which define the core logic of the application. This design eliminates the need for the user to understand the administrative rules and prevents a user from inappropriately modifying these rules (and possibly rendering the system inoperable due to these changes).

To create a configuration using multiple rulesets and nested decision functions, create two decision functions and add one to the other. A good naming scheme is to suffix the nested inner decision function with the name Core. The user specified rulesets can be added to the inner Core decision function. For example, DecisionFunction_1 can be defined to run the DecisionPointDictionary.Preprocessing decision function, the DecisionFunction_1Core decision function, and the DecisionPointDictionary.Postprocessing decision function. For this example, DecisionFunction_1Core contains the core business logic rulesets.

It is also common for the input of a Decision Point to be an ADF Business Components fact type that is the root of a tree of ADF Business Components objects. However, the user might only write business rules that match on a subset of the types found in the tree. In this case, it is a good practice to define the inputs of the nested decision functions to be only the types which are actually matched in the contained rulesets. For example, consider a Decision Point calling a decision function whose input is an Employee fact type with the Tree option selected; if this decision function includes a nested decision function with rulesets that only matched on the Department fact type. In this case, the nested decision function could either have as its input specified as an Employee fact type with the Tree option selected, or a Department fact type with the List option selected. For this example, the Tree option causes the children of the Employee instances, including the Department instances to be asserted (due to the one-to-many relationship between these types). If Employee is an input to the outer decision function and the Tree option is selected, the then Department fact type instances are asserted, and you can identify the signature on the inner decision function as a list of Department instances (these are the exact types which are being matched on for this decision function).

10.3 Creating a Business Rules Application with ADF Business Components Facts

The ADF Business Components sample application shows the use of ADF Business Component fact types.

The source code for Oracle Business Rules-specific samples is available online at

http://www.oracle.com/technology/sample_code/products/rules

For SOA samples online visit

http://www.oracle.com/technology/sample_code/products/soa

10.3.1 How to Create an Application That Uses ADF Business Components Facts

To work with Oracle Business Rules with ADF Business Components facts, you first need to create an application and a project in Oracle JDeveloper.

To create an application that uses ADF Business Components facts:

	
Start Oracle JDeveloper. This displays the Oracle JDeveloper start page.

	
In the Application Navigator, in the application menu click New Application....

	
In the Name your application page enter the name and location for the new application:

	
In the Application Name field, enter an application name. For example, enter Chapter10.

	
In the Directory field, enter or browse for a directory name or accept the default.

	
In the Application Package Prefix field, enter an application package prefix. For example, enter com.example.

This should be a globally unique prefix and is commonly a domain name owned by your company. The prefix, followed by a period, applies to objects created in the initial project of an application.

In this sample, use the prefix com.example.

	
In the Application Template field, select Fusion Web Application (ADF).

	
Click Finish.

10.3.2 How to Add the Chapter10 Generic Project

You need to add a new project named Chapter10.

Add a new project:

	
In the Chapter10 application, select the Application Menu.

	
In the Application Menu dropdown list, select New Project....

	
In the New Gallery, in the Items area select Generic Project.

	
Click OK.

	
On the Name your project page, in the Project Name field enter Chapter10.

	
Click Finish.

10.3.3 How to Create ADF Business Components Application for Business Rules

You need to add ADF Business Components from a database table. For this example we use the standard HR database tables.

To add ADF Business Components:

	
In the Application Navigator, select the Chapter10 project.

	
Right-click and from the menu select New....

	
In the New Gallery, in the Categories area expand Business Tier and select ADF Business Components.

	
In the Items area select Business Components from Tables.

	
Click OK.

	
In the Initialize Business Components Project dialog, enter the required connection information to add a connection.

	
Click OK. This displays the Create Business Components from Tables wizard.

	
In the Entity Objects page, select the desired objects by moving objects from the Available box to the Selected box. You may need to click Query to see the complete list. For example, select DEPARTMENTS and EMPLOYEES, as shown in Figure 10-2.

Figure 10-2 Selecting Entity Objects for Sample Application

[image: Description of Figure 10-2 follows]

	
Click Next. This displays the Updatable View Objects page.

	
In the Updatable View Objects page select Departments and Employees, as shown in Figure 10-3.

Figure 10-3 Adding Updatable View Objects for Sample Application

[image: Description of Figure 10-3 follows]

	
Click Next. This displays the Read-Only View Objects page.

	
Click Next. This displays the Application Module page.

	
Click Finish.

10.3.4 How to Update View Object Tuning for Business Rules Sample Application

You should tune the ViewObject to meet the performance requirements of your application.

To set tuning options for EmployeesView:

	
In the Application Navigator, double-click EmployeesView.

	
In the General navigation tab, expand Tuning.

	
In the Tuning area, select All Rows.

	
In the Tuning area, in the Batches of: field, enter 128.

	
In the Tuning area, select All at Once.

To set tuning options for DepartmentsView:

	
In the Application Navigator, double-click DepartmentsView.

	
In the General navigation tab, expand Tuning.

	
In the Tuning area, select All Rows.

	
In the Tuning area, in the Batches of: field, enter 128.

	
In the Tuning area, select All at Once.

10.3.5 How to Create a Dictionary for Oracle Business Rules

You use Oracle JDeveloper to create an Oracle Business Rules dictionary.

To create a dictionary:

	
In the Application Navigator, select the Chapter10 project.

	
Right-click, and from the dropdown list select New....

	
In the New Gallery, select the All Technologies tab and in the Categories area expand Business Tier and select Business Rules.

	
In the New Gallery, in the Items area select Business Rules.

	
Click OK.

	
In the Create Business Rules dialog enter the dictionary name and package, as shown in Figure 10-4:

	
For example, in the Name field enter Chapter10Rules.

	
For example, in the Package field enter com.example.

Figure 10-4 Create Business Rules for Chapter10Rules Dictionary

[image: Description of Figure 10-4 follows]

	
Click OK.

JDeveloper creates the dictionary and opens the Chapter10Rules.rules file in Rules Designer, as shown in Figure 10-5.

Figure 10-5 Adding the Rules Dictionary

[image: Description of Figure 10-5 follows]

10.3.6 How to Add Decision Point Dictionary Links

You need to add a dictionary links to the Oracle Business Rules supplied Decision Point Dictionary. This dictionary supports features for working with the Decision Point interface with ADF Business Components objects.

Add decision point dictionary links:

	
In the Rules Designer, click the Links navigation tab.

	
From the dropdown menu next to the Create icon, select Decision Point Dictionary. This operation can take awhile to complete. After waiting, Rules Designer adds a link to the Decision Point Dictionary as shown in Figure 10-6.

Figure 10-6 Adding a Dictionary Link to Decision Point Dictionary

[image: Description of Figure 10-6 follows]

10.3.7 How to Import the ADF Business Components Facts

You import ADF Business Components facts with Rules Designer to make these objects available when you create rules.

Import the ADF Business Components facts:

	
In Rules Designer, select the Facts navigation tab.

	
Select the ADF-BC Facts tab.

	
Click the Create... icon. This displays the ADF Business Components Fact page.

	
In the Connection field, from the dropdown list select the connection which your ADF Business Components objects use. The Search Classpath area shows a list of classpaths.

	
In the View Definition field, select the name of the view object to import. For example, select com.example.EmployeesView.

	
Click OK. This displays the Facts navigation tab, as shown in Figure 10-7.

Figure 10-7 ADF Business Components Facts in Rules Designer

[image: Description of Figure 10-7 follows]

ADF Business Components Facts can include a circular reference, as indicated with the validation warning:

RUL-05037: A circular definition exists in the data model

When this warning is shown in the Business Rule validation log, you need to manually resolve the circular reference. To do this you deselect the Visible checkbox for one of the properties that is involved in the circular reference.

To mark a property as non-visible:

	
Select the Facts navigation tab and select the ADF Business Components Facts tab.­

	
Double-click the icon in the DepartmentsView row.

	
In the Properties table, in the EmployeesView row deselect the Visible checkbox.

	
Click OK.

To set alias for DepartmentsView and EmployeesView:

	
Select the Facts navigation tab and select the ADF Business Components Facts tab.

	
In the Alias column, replace EmployeesView with Employee.

	
In the Alias column, replace DepartmentsView with Department.

10.3.8 How to Add and Run the Outside Manager Ruleset

The sample code that runs the outside manager ruleset invokes the Decision Point with the view object set using the setInputs method. This invokes the decision function once, with all of the view object rows loaded in a List. Note that invoking the Decision Point this way is not scalable, because all of the view object rows must be loaded into memory at the same time, which can lead to OutOfMemory exceptions. Only use this invocation style when there are a small and known number of view object rows. You can also use a Decision Point with setViewObject. For more information, see Section 10.2.1, "How to Call a Decision Point with ADF Business Components Facts".

10.3.8.1 How to Add the Outside Manager Ruleset and Add a Decision Function

After the view objects are imported as facts, you can rename the ruleset and create the decision function for the application.

To rename the ruleset:

	
In Rules Designer, select the Ruleset_1 navigation tab.

	
Select the ruleset name and enter Outside Manager Ruleset to rename the ruleset.

To add a decision function:

	
Click the Decision Functions navigation tab.

	
In the Decision Functions area, click Create.... This displays the Edit Decision Function dialog.

	
Edit the decision function fields as follows, as shown in Figure 10-8.

	
Enter Name value FindOutsideManagers.

	
In the Inputs area, click the Add Input icon and edit the input information as follows:

	
Click the Fact Type field and select Employee from the dropdown list.

	
Select the List checkbox.

In this decision function you do not define any outputs because you use the ActionType API for taking action rather than producing output. For more information, see Section 10.1.2, "Understanding Oracle Business Rules Decision Point Action Type".

	
In the Rulesets & Decision Functions area move the following items from the Available area to the Selected area, in the specified order:

	
DecisionPointDictionary.Preprocessing

	
Outside Manager Ruleset

	
DecisionPointDictionary.Postprocessing

Figure 10-8 Adding the Find Outside Managers Decision Function

[image: Description of Figure 10-8 follows]

	
Ensure that the items in the Selected area are in the order shown in Figure 10-8.

If they are not, select an item and use the Move Up and Move Down buttons to correct the order.

	
Click OK.

Several warnings appear. These warnings are removed in later steps when you add rules to the ruleset.

10.3.8.2 How to Create the ActionType Java Implementation Class

To create the sample application and to modify the view object in a rule, you need to create a Java implementation class for abstract class oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of ActionType must implement the abstract exec method.

To create the ActionType Java implementation class:

	
In Oracle JDeveloper, select the project named Chapter10.

	
In the Application Navigator, select the Application Sources folder.

	
Right-click and from the dropdown list select New....

	
In the New Gallery, in the Categories area select General.

	
In the New Gallery, in the Items area select Java Class.

	
Click OK.

	
In the Create Java Class dialog, configure the following properties as shown in Figure 10-9:

	
Enter the Name value MessageAction.

	
Enter the Package value com.example.

	
Enter the Extends value oracle.rules.sdk2.decisionpoint.ActionType.

Figure 10-9 Creating the Message Action Type Java Class

[image: Description of Figure 10-9 follows]

	
Click OK.

Oracle JDeveloper displays the Java Class.

	
Replace this code with the code shown in Example 10-4.

Example 10-4 ActionType Java Implementation

package com.example;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class MessageAction extends ActionType {
 public MessageAction() {
 super();
 }

 public void exec(DecisionPointInstance decisionPointInstance) {
 System.out.println(message);
 }

 private String message = null;

 public void setMessage(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
}

	
In the Application Navigator, right click the MessageAction.java and from the dropdown list select Make.

10.3.8.3 How to Import the Message Action Java Fact

You just created a new Java class and you need to add this class as a Java fact type in Rules Designer to use later when you create rules.

To create the Java fact type:

	
In Rules Designer, click the Facts navigation tab.

	
Select the Java Facts tab.

	
Click Create....

	
In the Create Java Fact dialog, in the Classes area navigate in the tree and expand com and example to display the MessageAction checkbox.

	
Select the MessageAction checkbox, as shown in Figure 10-10.

Figure 10-10 Create Java Fact with Message Action Type

[image: Description of Figure 10-10 follows]

	
Click OK.

This adds the fact to the table, as shown in Figure 10-11.

Figure 10-11 Adding the Message Action Type Java Fact

[image: Description of Figure 10-11 follows]

10.3.8.4 How to Add the Find Managers Rule

You add the rule to find the managers that are in a different departments than their employees.

To add the find managers in different departments rule:

	
In Rules Designer, select the Outside Manager Ruleset tab.

	
Click Add and from the dropdown list select Create Rule.

	
Rename the rule by selecting the default rule name Rule_1. This displays a text entry area. You enter a name. For example, enter Find managers in different department. Press Enter to apply the name.

	
Click Show Advanced Settings. For more information, see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table".

	
In the rule select Advanced Mode, as shown in Figure 10-12.

Figure 10-12 Adding the Find Managers in Different Departments Rule

[image: Description of Figure 10-12 follows]

	
Enter the rule as shown in Figure 10-13. The action for the rule shown in the THEN area is too long to show in the figure. The complete action that you build includes the following items:

"Employee " + Employee.FirstName + " " + Employee.LastName + "(" +
 Employee.EmployeeId + ")"+ " in dept " + Employee.DepartmentId + " has
 manager outside of department, " + Manager.FirstName + " " + Manager.LastName
 + "(" + Manager.EmployeeId + ")" + " in dept " + Manager.DepartmentId

Figure 10-13 Find Managers in Different Departments Rule

[image: Description of Figure 10-13 follows]

10.3.8.5 How to Add the Outside Manager Finder Class

Add the outside manager finder class. This uses the Decision Point to execute a decision function.

To add the Outside Manager Finder Class:

	
Select the Chapter10 project.

	
Right-click and select New....

	
In the New Gallery, in the Categories area select General.

	
In the New Gallery, in the Items area select Java Class.

	
Click OK.

	
In the Name field, enter OutsideManagerFinder.

	
Click OK.

	
Replace the contents of this class with the code shown in Example 10-5.

Example 10-5 Outside Manager Finder Java Class with Decision Point

package com.example;

import java.util.ArrayList;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class OutsideManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private static final String DF_NAME = "FindOutsideManagers";

 private DecisionPoint dp = null;

 public OutsideManagerFinder() {
 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();
 point.setInputs(new ArrayList<Object>(){{ add(vo); }});
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public static void main(String[] args) {
 OutsideManagerFinder omf = new OutsideManagerFinder();
 omf.run();
 }

}

10.3.8.6 How to Update ADF META INF for Local Dictionary Access

You need to update the ADF-META-INF file with MDS information for accessing the dictionary. You can use a local file with MDS to access the Oracle Business Rules dictionary. However, this procedure is not the usual dictionary access method with Oracle Business Rules in a production environment. For information on using a Decision Point to access a dictionary with MDS in a production environment, see Section 7.5, "What You Need to Know About Using Decision Point in a Production Environment".

Update ADF-META-INF:

	
In the Application Navigator, expand Application Resources.

	
Expand Descriptors and ADF META-INF folders.

	
Double-click adf-config.xml to open this file.

	
Click the Source tab to view the adf-config.xml source.

	
Add the MDS information to adf-config.xml, before the closing </adf-config> tag, as shown in Example 10-6.

Example 10-6 Adding MDS Elements to adf-config.xml for Local Dictionary Access

 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/config">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="mstore-usage_1" path="/"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage id="mstore-usage_1">
 <metadata-store class-name="oracle.mds.persistence.stores.file.FileMetadataStore">
 <property name="metadata-path"
 value="C:\jdevinstance\mywork\Chapter10\.adf\"/>
 </metadata-store>
 </metadata-store-usage>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>

	
In the <property> element with the attribute metadata-path, change the path to match .adf directory in the application on your system.

Copy definitions to MDS accessible location:

	
In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10 application, and in the Chapter10 project, in the src folder select and copy the com folder.

	
In the application directory for Chapter10, above the Chapter10 project, navigate to the .adf directory.

	
Copy the com folder to this directory.

Copy dictionary to MDS accessible location:

	
In a file system navigator, outside of Oracle JDeveloper navigate to the Chapter10 application and in the Chapter10 project, copy the oracle directory that contains the Oracle Business Rules dictionary.

	
In the application directory for Chapter10, above the Chapter10 project, navigate to the .adf directory.

	
Copy the oracle folder to this directory.

10.3.8.7 How to Build and Run the Project to Check the Outside Manager Finder

You can build and test the project by running the find managers with employees in different departments rule.

Build the OutsideManagerFinder configuration:

	
From the dropdown menu next to Run icon, select Manage Run Configurations....

	
In the Project Properties dialog, click New....

	
In the Create Run Configuration dialog, enter a name. For example, enter OutsideManagerFinder.

	
Click OK.

	
With OutsideManagerFinder selected, click Edit....

	
In the Default Run Target field, click Browse....

	
Select OutsideManagerFinder.java from the src\com\example folder.

	
Click Open.

	
In the Edit Run Configuration dialog, click OK.

	
In the Project Properties dialog, click OK.

Run the project:

	
In the dropdown menu next to the Run project icon, select OutsideManagerFinder.

	
Running this configuration generates output, as shown in Example 10-7.

Example 10-7 Running the OutsideManagerFinder Ruleset

Emp Shelley Higgins(205) in dept 110 manager outside of department, Neena Kochhar(101) in dept 90
Emp Hermann Baer(204) in dept 70 manager outside of department, Neena Kochhar(101) in dept 90
Emp Susan Mavris(203) in dept 40 manager outside of department, Neena Kochhar(101) in dept 90
Emp Michael Hartstein(201) in dept 20 manager outside of department, Steven King(100) in dept 90
Emp Jennifer Whalen(200) in dept 10 manager outside of department, Neena Kochhar(101) in dept 90
Emp Kimberely Grant(178) in dept null manager outside of department, Eleni Zlotkey(149) in dept 80
Emp Eleni Zlotkey(149) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Gerald Cambrault(148) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Alberto Errazuriz(147) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Karen Partners(146) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp John Russell(145) in dept 80 manager outside of department, Steven King(100) in dept 90
Emp Kevin Mourgos(124) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Shanta Vollman(123) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Payam Kaufling(122) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Adam Fripp(121) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Matthew Weiss(120) in dept 50 manager outside of department, Steven King(100) in dept 90
Emp Den Raphaely(114) in dept 30 manager outside of department, Steven King(100) in dept 90
Emp Nancy Greenberg(108) in dept 100 manager outside of department, Neena Kochhar(101) in dept 90
Emp Alexander Hunold(103) in dept 60 manager outside of department, Lex De Haan(102) in dept 90

10.3.9 How to Add and Run the Department Manager Ruleset

The sample code that runs the department manager ruleset invokes the Decision Point with the view object set using the setViewObject method. This invokes the decision function once for each row in the view object. All decision function calls occur in the same RuleSession. Between decision function calls, the RuleSession preserves all state from the previous decision function call. Thus, any objects asserted during the previous call remain in working memory for the next call unless they are explicitly retracted by rulesets that you supply. When the state is maintained, you can retract all facts or selectively retract facts between calls by running a ruleset with rules that use the retract action. This ruleset is run as part of the same decision function that you use with the Decision Point. The retract all employees ruleset demonstrates retracting these facts, as shown in Figure 10-15. For more information, see Section 10.2.1, "How to Call a Decision Point with ADF Business Components Facts".

10.3.9.1 How to Add the Department Manager Finder Ruleset

You now add the department manager finder ruleset.

To add the department manager finder ruleset:

	
In Rules Designer, click Create Ruleset....

	
In the Create Ruleset dialog, in the Name field enter Department Manager Finder Ruleset.

	
Click OK.

10.3.9.2 How to Add the Find Rule in the Department Manager Finder Ruleset

Next you add the Find rule to find department managers. This rule demonstrates the use of Tree Mode rules with Oracle ADF Business Components fact types.

Add department manager finder rule:

	
In Rules Designer select the Department Manager Finder Ruleset.

	
In the dropdown menu next to the Add icon, click Create Rule.

	
Change the rule name by selecting the name Rule_1, and entering Find.

	
Click Show Advanced Settings. For more information, see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table".

	
In the rule, select Tree Mode.

	
Enter the Find rule tests and actions, as shown in Figure 10-14. The THEN area includes the assert that is too wide for the figure. The following shows the complete text of this rule, which is missing in Figure 10-14:

Employee.FirstName + " " + Employee.LastName + " is the manager of dept " + Employee/DepartmentsView.DepartmentName

Figure 10-14 Adding the Find Rule to the Department Manager Finder Ruleset

[image: Description of Figure 10-14 follows]

10.3.9.3 How to Add Retract Employees Ruleset

You add a ruleset to retract the employee fact type instances. This ensures that the Employee fact type is removed between invocations of the decision function.

To add the retract employee ruleset:

	
Add the Retract Employees Ruleset.

	
In the Retract Employees Ruleset, add a rule and name it Retract all employees, as shown in Figure 10-15.

Figure 10-15 Adding the Retract All Employees Rule

[image: Description of Figure 10-15 follows]

10.3.9.4 How to Add the Find Department Managers Decision Function

Now you create the decision function for the department manager finder ruleset. You use this decision function to execute the ruleset from a Decision Point.

To add a decision function for department manager finder ruleset:

	
Click the Decision Functions navigation tab.

	
In the Decision Functions area, click Create.... This displays the Edit Decision Function dialog.

	
Update the decision function fields as follows, as shown in Figure 10-16.

	
Enter Name value FindDepartmentManagers.

	
In the Inputs area, click the Add Input and edit the input information as follows:

	
Click the Fact Type field and select Employee from the dropdown list.

	
Select the Tree checkbox.

In this decision function you do not define any outputs, because you use the ActionType API for taking action rather than producing output.

	
In the Rulesets & Decision Functions area, move the following items from the Available area to the Selected area, in the specified order:

	
DecisionPointDictionary.Preprocessing

	
Department Manager Finder Ruleset

	
Retract Employees

	
DecisionPointDictionary.Postprocessing

Figure 10-16 Adding the Find Department Managers Decision Function

[image: Description of Figure 10-16 follows]

	
Ensure that the items in the Selected area are in the order shown in Figure 10-16.

If they are not, select an item and use the Move Up and Move Down buttons to correct the order.

	
Click OK.

10.3.9.5 How to Add the Department Manager Finder Java Class

Add the department manager finder class. This class include the code with the Decision Point that executes the decision function.

Add the department manager finder class:

	
In the Application Navigator, select the Chapter10 project.

	
Right-click and select New....

	
In the New Gallery, in the Categories area select General.

	
In the New Gallery, in the Items area, select Java Class.

	
Click OK.

	
In the Name field, enter DeptManagerFinder.

	
Click OK.

	
Replace the contents of this class with the code shown in Example 10-8.

Example 10-8 Department Manager Finder Class

package com.example;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class DeptManagerFinder {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";

 private static final String DF_NAME = "FindDepartmentManagers";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private DecisionPoint dp = null;

 public DeptManagerFinder() {

 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public static void main(String[] args) {
 new DeptManagerFinder().run();
 }
}

10.3.9.6 How to Copy the Dictionary to an MDS Accessible Location

Copy the updated dictionary to an MDS accessible location.

Copy dictionary to MDS accessible location:

	
In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10 application, and project and copy the oracle directory that contains the dictionary.

	
In the application directory for Chapter10, above the Chapter10 project, navigate to the .adf directory.

	
Copy the oracle folder to this directory.

10.3.9.7 How to Build and Run the Project to Check the Find Managers Rule

You can build and test the project to execute the department manager finder ruleset.

Build the project:

	
From the dropdown menu next to Run icon, select Manage Run Configurations....

	
In the Project Properties dialog, click New....

	
In the Create Run Configuration dialog, enter the name. For example, enter DeptManagerFinder.

	
In the Copy Settings From field, enter Default.

	
Click OK.

	
With DeptManagerFinder selected, click Edit....

	
In the Default Run Target field, click Browse....

	
Select DeptManagerFinder.java from the src\com\example directory.

	
Click Open.

	
In the Edit Run Configuration dialog, click OK.

	
In the Project Properties dialog, click OK.

Run the project:

	
In the dropdown menu next to the Run project icon, select DeptManager Finder.

	
Running the decision point generates output, as shown in Example 10-9.

Example 10-9 Output from Department Manager Finder Ruleset

Michael Hartstein is the manager of dept Marketing
John Russell is the manager of dept Sales
Adam Fripp is the manager of dept Shipping
Den Raphaely is the manager of dept Purchasing
Alexander Hunold is the manager of dept IT
Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Steven King is the manager of dept Executive
Shelley Higgins is the manager of dept Accounting
Hermann Baer is the manager of dept Public Relations
Susan Mavris is the manager of dept Human Resources
Jennifer Whalen is the manager of dept Administration
Nancy Greenberg is the manager of dept Finance
Alexander Hunold is the manager of dept IT
Alexander Hunold is the manager of dept IT
Nancy Greenberg is the manager of dept Finance
Den Raphaely is the manager of dept Purchasing
Adam Fripp is the manager of dept Shipping
John Russell is the manager of dept Sales
Jennifer Whalen is the manager of dept Administration
Michael Hartstein is the manager of dept Marketing
Susan Mavris is the manager of dept Human Resources
Hermann Baer is the manager of dept Public Relations
Shelley Higgins is the manager of dept Accounting

When you see duplicate entries in the output, when working with tree mode rules in this example, the duplicate entries are due to multiple rule firings on the same data in a different part of the view object graph.

10.3.10 How to Add and Run the Raises and Retract Employees Rulesets

The sample code that runs the raises ruleset invokes the Decision Point by specifying the view object using the setViewObject method. This invokes the decision function once for each row in the view object. The retract employees ruleset retracts all instances of Employee asserted for each call, so that they do not remain in working memory between calls to the decision function. The action type shown in Example 10-10 shows how to change the ViewRowImpl attribute values with a ActionType. For more information, see Section 10.2.1, "How to Call a Decision Point with ADF Business Components Facts".

10.3.10.1 How to Add the Raises Ruleset

You now add the raises ruleset.

To add the raises ruleset:

	
In Rules Designer, click Create Ruleset....

	
In the Create Ruleset dialog, in the Name field enter Raises Ruleset.

	
Click OK.

10.3.10.2 How to Create the Raise ActionType Java Implementation Class

To create this part of the sample application and to modify the view object in the raises rule, you need to create a Java implementation class for the abstract class oracle.rules.sdk2.decisionpoint.ActionType. All subclasses of ActionType must implement the abstract exec method.

To create the raise ActionType Java implementation class:

	
In Oracle JDeveloper, select the project named Chapter10.

	
In the Application Navigator, select the Application Sources folder.

	
Right-click and from the dropdown list select New....

	
In the New Gallery, in the Categories area select General.

	
In the New Gallery, in the Items area select Java Class.

	
Click OK.

	
In the Create Java Class dialog, configure the following properties as shown in Figure 10-17:

	
Enter the Name value RaiseAction.

	
Enter the Package value com.example.

	
Enter the Extends value oracle.rules.sdk2.decisionpoint.ActionType.

Figure 10-17 Creating the Raise ActionType Java Class

[image: Description of Figure 10-17 follows]

	
Click OK.

Oracle JDeveloper displays the Java Class.

	
Replace this code with the code shown in Example 10-10.

Example 10-10 ActionType Java Implementation

package com.example;

import oracle.jbo.domain.Number;

import oracle.rules.sdk2.decisionpoint.ActionType;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;

public class RaiseAction extends ActionType {
 private double raisePercent;

 public void exec(DecisionPointInstance dpi) {
 Number salary = (Number)getViewRowImpl().getAttribute("Salary");
 salary = (Number)salary.multiply(1.0d + getRaisePercent()).scale(100,2, new boolean[]{false});
 dpi.addResult("raise for " + this.getViewRowImpl().getAttribute("EmployeeId"),
 getRaisePercent() + "=>" + salary);
 getViewRowImpl().setAttribute("Salary", salary);
 }

 public void setRaisePercent(double raisePercent) {
 this.raisePercent = raisePercent;
 }

 public double getRaisePercent() {
 return raisePercent;
 }
}

	
In the Application Navigator, right click the RaiseAction.java and from the dropdown list select Make.

10.3.10.3 How to Import the Raise Action Java Fact

You just created a new Java class. You import this class as a Java fact type in Rules Designer to use later when you create rules.

To create the Java fact type:

	
In Rules Designer, select the ManagerRules.rules dictionary.

	
Click the Facts navigation tab and select the Java Facts tab.

	
Click Create....

	
In the Create Java Fact dialog, in the Classes area navigate in the tree and expand com and example to display the RaiseAction checkbox.

	
Select the RaiseAction checkbox as shown in Figure 10-18.

Figure 10-18 Create Java Fact from Raise Action Class

[image: Description of Figure 10-18 follows]

	
Click OK.

This adds the Raise Action fact type to the Java Facts table.

10.3.10.4 How to Add the 12 Year Raise Rule

This rule shows how to use action types to update database entries.

To add 12 year raise rule:

	
In Rules Designer in the Raises Ruleset, click Create Rule.

	
Change the rule name by selecting Rule_1 and entering the value: Longer than 12 years.

	
Click Show Advanced Settings. For more information, see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table".

	
Select Advanced Mode.

	
Enter the 12 year raise rules, as shown in Figure 10-19.

Figure 10-19 Adding the Longer Than 12 Years Rule to the Raises Ruleset

[image: Description of Figure 10-19 follows]

10.3.10.5 How to Add the Employee Raises Decision Function

Now create the decision function for the employee raises and the retract all employees rulesets.

To add a decision function:

	
Click the Decision Functions navigation tab.

	
In the Decision Functions area, click Create.... This displays the Edit Decision Function dialog.

	
Update the decision function fields as shown in Figure 10-20.

	
Enter Name value EmployeeRaises.

	
In the Inputs area, click the Add Input and edit the input information as follows:

	
Click the Fact Type field and select Employee from the dropdown list.

In this decision function you do not define any outputs, because you use the ActionType API for taking action rather than producing output.

	
In the Rulesets & Decision Functions area, move the following items from the Available area to the Selected area, in the specified order.

	
DecisionPointDictionary.Preprocessing

	
Raises Ruleset

	
Retract Employees Ruleset

	
DecisionPointDictionary.Postprocessing

Figure 10-20 Adding the Employee Raises Decision Function

[image: Description of Figure 10-20 follows]

	
Ensure that the items in the Selected area are in the order shown in Figure 10-20.

If they are not, select an item and use the Move Up and Move Down buttons to correct the order.

	
Click OK.

10.3.10.6 How to Add the Employee Raises Java Class

Add the employee raises class. This executes the decision function.

To add the employee raises class:

	
Select the Chapter10 project.

	
Right-click and select New....

	
In the New Gallery, in the Categories area select General.

	
In the New Gallery, in the Items area, select Java Class.

	
Click OK.

	
In the Name field, enter EmployeeRaises.

	
Click OK.

	
Replace the contents of this class with the code shown in Example 10-11.

Example 10-11 DeptManagerFinder Class

package com.example;

import oracle.jbo.ApplicationModule;
import oracle.jbo.ViewObject;
import oracle.jbo.client.Configuration;
import oracle.jbo.server.DBTransactionImpl2;

import oracle.rules.rl.exceptions.RLException;
import oracle.rules.sdk2.decisionpoint.DecisionPoint;
import oracle.rules.sdk2.decisionpoint.DecisionPointBuilder;
import oracle.rules.sdk2.decisionpoint.DecisionPointInstance;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.repository.DictionaryFQN;

public class EmployeeRaises {
 private static final String AM_DEF = "com.example.AppModule";
 private static final String CONFIG = "AppModuleLocal";
 private static final String VO_NAME = "EmployeesView1";
 private static final String DF_NAME = "EmployeeRaises";

 private static final DictionaryFQN DICT_FQN =
 new DictionaryFQN("com.example", "Chapter10Rules");

 private DecisionPoint dp = null;

 public EmployeeRaises() {

 try {
 dp = new DecisionPointBuilder()
 .with(DICT_FQN)
 .with(DF_NAME)
 .build();
 } catch (SDKException e) {
 System.err.println(e);
 }
 }

 public void run() {
 final ApplicationModule am =
 Configuration.createRootApplicationModule(AM_DEF, CONFIG);
 final ViewObject vo = am.findViewObject(VO_NAME);
 final DecisionPointInstance point = dp.getInstance();

 point.setTransaction((DBTransactionImpl2)am.getTransaction());
 point.setAutoCommit(true);
 point.setViewObject(vo);
 try {
 point.invoke();
 } catch (RLException e) {
 System.err.println(e);
 } catch (SDKException e) {
 System.err.println(e);
 }

 for (DecisionPoint.NamedValue result : point.getResults()){
 System.out.println(result.getName() + " " + result.getValue());
 }

 }

 public static void main(String[] args) {
 new EmployeeRaises().run();
 }
}

10.3.10.7 How to Copy Dictionary

Copy the updated dictionary to the MDS accessible location.

Copy dictionary to MDS accessible location:

	
In a file system navigator, outside of Oracle JDeveloper, navigate to the Chapter10 folder and the Chapter10 project and copy the oracle directory that contains the dictionary.

	
In the application directory for Chapter10, above the Chapter10 project, navigate to the .adf directory.

	
Copy the oracle folder to this directory.

10.3.10.8 How to Build and Run the Project to Check the Raises Rule

You can build and test the project by running employee raises ruleset.

Build the project:

	
From the dropdown menu next to Run icon, select Manage Run Configurations....

	
In the Project Properties dialog, click New....

	
In the Create Run Configuration dialog, enter the name. For example, enter EmployeeRaises.

	
In the Copy Settings From field, enter Default.

	
Click OK.

	
With EmployeeRaises selected, click Edit....

	
In the Default Run Target field, click Browse....

	
Select EmployeeRaises.java from the src\com\example folder.

	
Click Open.

	
In the Edit Run Configuration dialog, click OK.

	
In the Project Properties dialog, click OK.

Run the project:

	
In the dropdown menu next to the Run project icon, select EmployeeRaises.

	
Oracle JDeveloper displays the output as shown in Example 10-12.

Example 10-12 Output from Raises Ruleset

raise for 100 0.03=>81.7
raise for 101 0.03=>1872.46
raise for 102 0.03=>60596.78
raise for 103 0.03=>31146.26
raise for 104 0.03=>20159.43
raise for 108 0.03=>35822.68
raise for 109 0.03=>26084.5
raise for 114 0.03=>27500.92
raise for 115 0.03=>7524.5
raise for 120 0.03=>16262.34
raise for 121 0.03=>16183.41
raise for 122 0.03=>15591.35
raise for 131 0.03=>3671.33
raise for 133 0.03=>4567.98
raise for 137 0.03=>4838.1
raise for 141 0.03=>4703.71
raise for 142 0.03=>4044.79
raise for 145 0.03=>17734.79
raise for 146 0.03=>17101.39
raise for 147 0.03=>15201.23
raise for 150 0.03=>12667.7
raise for 151 0.03=>12034.32
raise for 156 0.03=>13047.73
raise for 157 0.03=>12395.35
raise for 158 0.03=>11400.93
raise for 159 0.03=>10134.16
raise for 168 0.03=>14567.86
raise for 174 0.03=>13934.48
raise for 175 0.03=>11147.58
raise for 184 0.03=>5480.03
raise for 185 0.03=>5193.76
raise for 192 0.03=>5219.1
raise for 193 0.03=>4940.41
raise for 200 0.03=>5740.99
raise for 201 0.03=>16962.05
raise for 203 0.03=>8481.03
raise for 204 0.03=>13047.73
raise for 205 0.03=>15657.27
raise for 206 0.03=>10829.62

11 Working with Decision Components in SOA Applications

Oracle SOA Suite provides support for Decision components that support Oracle Business Rules. A Decision component is a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes.

A Decision Component is a SCA component that can be used within a composite and wired to a BPEL component. Apart from that, Decision Components are used for dynamic routing capability of Mediator and Advanced Routing Rules in Human Workflow.

This chapter includes the following sections:

	
Section 11.1, "Introduction to Decision Components"

	
Section 11.2, "Working with a Decision Component"

	
Section 11.3, "Decision Service Architecture"

11.1 Introduction to Decision Components

A Decision component is a Web service that wraps a rule session to the underlying decision function.

A Decision component consists of the following:

	
Rules or Decision Tables that are evaluated using the Rules Engine. These are defined using Rules Designer and stored in a business rules dictionary.

	
Metadata that describes facts required for specific rules to be evaluated. Each ruleset that contains rules or Decision Tables is exposed as a service with facts that are input and output. These facts must be exposed through XSD definitions.

For example, a credit rating ruleset may expect a customer ID and previous loan history as facts, but a pension payment ruleset may expect a value with the years of employee service, salary, and age as facts.

For more information, see Section 11.2.1, "Working with Decision Component Metadata".

	
A Web service wraps the input, output, and the call to the underlying rule engine.

This service lets business processes assert and retract facts as part of the process. In some cases, all facts can be asserted from the business process as one unit. In other cases, the business process can incrementally assert facts and eventually consult the rule engine for inferences. Therefore, the service has to support both stateless and stateful interactions.

You can create a variety of such business rules service components.

For more information, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

11.2 Working with a Decision Component

Using Oracle JDeveloper with Rules Designer these tools automatically generate all required metadata and WSDL operations. The Decision component can be integrated into an SOA composite application in the following ways:

	
Create a Decision component as a standalone component in the SOA Composite Editor. In this scenario, the Decision Service is exposed on the composite level and thus can be invoked from any Web service client.

For more information, see "Getting Started with Oracle Business Rules" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

	
Create a Decision component in the SOA Composite Editor that you later associate with a BPEL process. In this scenario the Decision Service is not exposed on the composite level. However it can be wired to any other component within the composite, such as BPEL, Oracle Mediator, and Oracle Human Workflow.

For more information, see "Getting Started with Oracle Business Rules" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

	
Create a Decision component within the Human Task editor of a human task component.

This integration provides the following benefits:

	
Dynamic processing: provides for intelligent routing, validation of policies within a process, and constraint checks.

	
Integration with ad hoc human tasks: provides policy-based task assignment, various escalation policies, and load balancing of tasks.

11.2.1 Working with Decision Component Metadata

A Decision component is defined by the following files:

	
Decision Service Metadata (.decs) File

	
SCA Component Type (.componentType) File

	
Decision Component Entry in composite.xml

Typically, Oracle JDeveloper generates and maintains these files.

11.2.1.1 Decision Service Metadata (.decs) File

Every Decision component within a composite comprises one business rule metadata file. The business rule metadata file provides information about the location of the component business rule dictionary and the Decision Services exposed by the Decision component.

One Decision component might expose one or more Decision Services. For example a CreditRating Decision component might expose two services, CheckEligibility and CalculateCreditRating.In Oracle Fusion Middleware 11g Release 1 (11.1.1), the Decision Service metadata comprises the decision function name that is being exposed as a Web service. For projects that are migrated from older releases of Oracle SOA Suite, the Decision Service metadata typically has more information depending on the interaction pattern used in 10.1.3.x.

The business rule metadata file (business_rule_name.decs) defines the contract between the components involved in the interaction of the business rule with the design time and back-end Oracle Rules Engine.

This file is in the SOA Content area of the Application Navigator in Oracle JDeveloper for your SOA composite application. Table 11-1 describes the top-level elements in the Decision service .decs file.

Table 11-1 Decision Metadata File (.decs) Top-level Elements

	Element	Description
	
ruleEngineProvider

	
The business_rule_name.decs file ruleEngineProvider element includes details about the rule dictionary to use:

<ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
 <repository type="SCA-Archive">
 <path>AutoLoanComposite/oracle/rules/AutoLoanRules.rules</path>
 </repository>
</ruleEngineProvider>

The repository type is set to SCA-Archive for Decision components. This indicates that the rule dictionary is located in the service component architecture archive. The path is relative and interpreted differently by the following:

	
Design time — The path is prefixed with Oramds:/. Metadata service (MDS) APIs open the rule dictionary. Therefore, the full path to the dictionary is as follows:

Oramds:/AutoLoanComposite/oracle/rules/AutoLoanRules.rules

	
Runtime (business rule service engine) — The business rule service engine uses the Oracle Business Rules SDK RuleRepository API to open the rule dictionary located in MDS. The composite name prefix, for example (AutoLoanComposite) is removed from the path and the metadata manager assumes the existence of oracle/rules/AutoLoanRules.rules relative to the composite home directory.

	
decisionService

	
A Decision service is a Web service (or SOA) enabler of business rules. It is a service in the sense of a Web service, thus opening the world of business rules to service-oriented architectures (SOA). In 11g Release 1 (11.1.1), a Decision service consists of metadata and a WSDL contract for the service.

The business_rule_name.decs file decisionService element defines the metadata that describes business rules exposed as a Web service.

In general, a Decision service includes the following elements:

	
Target namespace

	
Reference to the back-end Oracle Rules Engine (this is the link to the rule dictionary). Note that OracleRulesSDK is the reference name that matches the name of the Oracle Rules Engine provider in ruleEngineProvider element.

	
Name (CreditRatingService in the following example)

	
Additional information about the dictionary name and ruleset to use

	
List of supported operations (patterns)

Apart from the operations (patterns), the parameter types (or fact types) of operations are specified (and validated later at runtime). Therefore, every Decision service exposes a strongly-typed contract.

11.2.1.2 SCA Component Type (.componentType) File

An SCA business_rule_name.componentType file is included with each Decision component. This file lists the services exposed by the business rules service component. In the following sample, two services are exposed: CreditRatingService and LoanAdvisorService.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [5/24/07 9:27 AM]. -->
<componentType xmlns="http://xmlns.oracle.com/sca/1.0">
 <service name="CreditRatingService">
 <interface.wsdl
interface="http://xmlns.oracle.com/creditrating/Rating#wsdl.interface(IDecisionSer
vice)"/>
 </service>
 <service name="LoanAdvisorService">
 <interface.wsdl
interface="http://xmlns.oracle.com/loanoffer/Advisor#wsdl.interface(IDecisionServi
ce)"/>
 </service>
</componentType>

11.2.1.3 Decision Component Entry in composite.xml

An entry in composite.xml is created for a decision component. For example,

<component name="OracleRules1">
 <implementation.decision src="OracleRules1.decs"/>
</component>

The business rules service engine uses the information from this implementation type to process requests for the Service Engine. From an SCA perspective, a Decision Component is a new "implementation type".

11.2.2 Working with Decision Components that Expose a Decision Function

You can use a Decision service to expose an Oracle Business Rules Decision Function as a service. A decision function is a function that is configured declaratively, without using RL Language programming that you use to call rules from a Java EE application or from a BPEL process.

Example 11-1 shows a business_rule_name.decs file decisionServices element that defines the metadata for an Oracle Business Rules Decision Function exposed as a service.

Example 11-1 decisionService for Decision Function Execution

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules" name="PurchaseItems">
 <ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0">
 <repository type="SCA-Archive">
 <path>PurchasingSampleProject/oracle/rules/com/example/PurchaseItems.rules</path>
 </repository>
 </ruleEngineProvider>
 <decisionService targetNamespace="http://xmlns.oracle.com/PurchaseItems/PurchaseItems_DecisionService_ValidatePurchasesDF"
ruleEngineProviderReference="OracleRulesSDK" name="PurchaseItems_DecisionService_ValidatePurchasesDF">
 <catalog>PurchaseItems</catalog>
 <pattern name="CallFunctionStateless">
 <arguments>
 <call>com.example.PurchaseItems.ValidatePurchasesDF</call>
 </arguments>
 </pattern>
 <pattern name="CallFunctionStateful">
 <arguments>
 <call>com.example.PurchaseItems.ValidatePurchasesDF</call>
 </arguments>
 </pattern>
 </decisionService>
</decisionServices>

In this case, the decision function ValidatePurchasesDF itself is specified entirely in the PurchaseItems.rules file.

For more information, see, Chapter 6, "Working with Decision Functions".

11.2.3 Using Stateful Interactions with a Decision Component

To provide a stateful Decision service you create a decision function and specify that the decision function is not stateless. To do so you deselect the Stateless checkbox in a decision function.

Note the following details about stateful interactions with a decision component (also see Figure 11-2):

	
Rule sessions from the cache and those from the pool are mutually exclusive:

	
The rule session pool is for simple, stateless interactions only

	
The rule session cache keeps the state of a rule session across Decision service requests

11.2.4 What You Need to Know About Stateful Interactions with Decision Components

A Decision Component running in a Business Rules service engine supports either stateful or stateless operation. The Reset Session (stateless) checkbox in the Create Business Rules dialog provides support for these two modes of operation.

When the Reset Session (stateless) checkbox selected, this indicates stateless operation.

When Reset Session (stateless) checkbox is unselected, the underlying Oracle Business Rules object is kept in memory of the Business Rules service engine at a separate location (so that it is not given back to the Rule Session Pool when the operation is finished). Only use stateful operation if you know you need this option (some errors can occur at runtime when using stateful operation and these errors could use a significant amount of service engine memory).

When Reset Session (stateless) checkbox is unselected, a subsequent use of the Decision component reuses the cached RuleSession object, with all its state information from the callFunctionStateful invocation, and then releases it back to the Rule Session pool after the callFunctionStateless operation is finished.

11.3 Decision Service Architecture

A Decision service consists only of the service description. All other artifacts are shared within a decision component as shown in Figure 11-1.

Figure 11-1 Decision Service Architecture

[image: Description of Figure 11-1 follows]

The heart of runtime is the Decision service cache, which is organized in a tree structure. Every decision component owns a subtree of that cache (depending on the composite distinguished name (DN), component, and service name). In this regard, Decision services of a decision component share the following data:

	
Metadata of the decision component

	
Fact type metadata

	
Function metadata

	
Ruleset metadata

	
Rule session pool

	
One rule session pool is created per decision component

	
The rule sessions in the pool are pre-initialized with the data model Oracle RL and the ruleset Oracle RL already executed

	
New rule sessions are created on demand

	
Rule sessions can be reused for a configurable number of times

	
The initial size of the rule session pool is configurable

	
Stateful rule session cache

	
A special cache is maintained for stateful rule sessions.

For more information, see Section 11.2.3, "Using Stateful Interactions with a Decision Component".

	
Deployment artifacts

	
Decision component deployment can end up in class generation for JAXB fact types. The classes can be shared across the composite.

Figure 11-2 shows how both stateless and stateful rule sessions interact with the rule session pool and how stateful rule sessions interact with the stateful rule session cache during a Decision service request.

Figure 11-2 Stateless and Stateful Rule Session Usage for a Decision Service Request

[image: Description of Figure 11-2 follows]

12 Using Oracle SOA Composer with Oracle Business Rules

Oracle Business Rules lets you create rules at design-time with the Oracle Business Rules Designer (Rules Designer) extension to JDeveloper. Rules Designer is an editor that enables you to create and edit rules with Oracle JDeveloper, and store the rules in a rules dictionary. When a dictionary is deployed in an SOA composite application Oracle Business Rules lets you use SOA Composer to view, edit, and commit changes to a dictionary. This chapter shows you how to use the SOA Composer application (SOA Composer) to work with a deployed dictionary that is part of an SOA composite application.

This chapter includes the following sections:

	
Section 12.1, "Introduction to SOA Composer"

	
Section 12.2, "Using SOA Composer User Authentication"

	
Section 12.3, "Opening and Viewing an Oracle Business Rules Dictionary at Runtime"

	
Section 12.4, "Getting Started with Editing and Saving a Dictionary at Runtime"

	
Section 12.5, "Committing Changes for an Oracle Business Rules Dictionary at Runtime"

	
Section 12.6, "Editing Rules in an Oracle Business Rules Dictionary at Runtime"

	
Section 12.7, "Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime"

	
Section 12.8, "Validating an Oracle Business Rules Dictionary at Runtime"

	
Section 12.9, "Obtaining Composite and Dictionary Information at Runtime"

12.1 Introduction to SOA Composer

Oracle SOA Composer allows you to work with Oracle Business Rules dictionaries for deployed applications. Figure 12-1 shows how SOA Composer accesses a dictionary in an MDS repository.

Figure 12-1 SOA Composer Architecture

[image: Description of Figure 12-1 follows]

12.2 Using SOA Composer User Authentication

Figure 12-2 shows the SOA Composer login page. This page allows SOA Composer to authenticate the specified user.

Figure 12-2 Oracle SOA Composer Login Page

[image: Description of Figure 12-2 follows]

To login to SOA Composer:

	
In the SOA Composer login page in the Username field, enter a user name.

	
In the Password field, enter a password.

	
Click Login.

For information on creating and managing users and groups, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

12.2.1 What You Need to Know About SOA Composer Access Control and User Authentication

SOA Composer supports user and password access control and only authenticated users can use SOA Composer. However, SOA Composer does not provide finer grained access control. For example, SOA Composer does not support access control for individual rulesets or rules within a dictionary.

SOA Composer does support access control to metadata. Using SOA Composer, only users with the SOADesigner application role can access the metadata from SOA Composer. By default all the users with the WLS Administrator privileges have this role.

If a user without the SOADesigner role logs into SOA Composer, a message is shown indicating the user is not authorized to modify the SOA metadata, as shown in Figure 12-3.

Figure 12-3 SOA Composer Unauthorized Metadata Access Message

[image: Description of Figure 12-3 follows]

12.3 Opening and Viewing an Oracle Business Rules Dictionary at Runtime

After you login to SOA Composer you can select a document to open. SOA Composer supports viewing and editing different types of metadata, including a DVM document or an Oracle Business Rules dictionary. In SOA Composer you can open either an Oracle Business Rules dictionary or a DVM file with the Open menu as shown in Figure 12-4.

Figure 12-4 Oracle SOA Composer Open Menu Options

[image: Description of Figure 12-4 follows]

12.3.1 Opening an Oracle Business Rules Dictionary at Runtime

To open an Oracle Business Rules dictionary using the Open menu:

	
In SOA Composer, from the Open menu select Open Rules.

	
When you select Open Rules SOA Composer connects to MDS and presents the available composite applications that contain dictionaries, as shown in Figure 12-5.

Figure 12-5 SOA Composer with Oracle Business Rules Dictionaries

[image: Description of Figure 12-5 follows]

	
To open a dictionary select an entry in the table and click Open or double-click an item. This opens the dictionary in view mode, as shown in Figure 12-6.

Figure 12-6 Oracle Business Rules Dictionary Open in SOA Composer View Mode

[image: Description of Figure 12-6 follows]

As shown in Figure 12-6, SOA Composer shows a dictionary that displays a left-side panel with a list of tabs and links. Dictionary details for the selected item are shown on the right-hand side. SOA Composer includes the following tabs:

	
Globals

	
Bucketsets

	
Rulesets

SOA Composer supports two modes for viewing a dictionary, view and edit. If you have not previously opened a dictionary in Edit mode, then by default the dictionary opens in view mode. For more information on Edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Runtime".

To open an Oracle Business Rules dictionary directly using a known URL:

If you know the URL for a document that stores an Oracle Business Rules dictionary, you can start SOA Composer and open the document by supplying the URL.

	
Obtain the URL for the document you want to open in SOA Composer.

	
With an Open document you can obtain the URL from the SOA Composer Bookmarkable Link. Click Bookmarkable Link to obtain the URL information for an open dictionary, as shown in Figure 12-7.

Figure 12-7 Using Link Dialog to Obtain the URL for an Open Dictionary

[image: Description of Figure 12-7 follows]

	
Enter the URL and append the document path in a browser to open SOA Composer with the specified document.

For example,

http://www.example.com:8001/soa/composer?docPath=/deployed-composites/RulesHelloWorld_rev1.0/rules/AdvancedRules.rules

To open and edit a recently edited dictionary using the My Edits option:

If you recently edited a dictionary, then you can use the Open menu My Edits option to open and edit a dictionary.

	
In SOA Composer, from the Open menu select My Edits and select a dictionary from the list, as shown in Figure 12-8.

Figure 12-8 Using Open My Edits Option to Open a Dictionary

[image: Description of Figure 12-8 follows]

	
SOA Composer opens the specified dictionary in edit mode.

To open a ruleset in an Oracle Business Rules dictionary:

	
In SOA Composer, from the Open menu select Open Rules.

	
When you select Open Rules SOA Composer connects to MDS and presents the available composite applications that contain dictionaries.

	
To open a ruleset, if the ruleset you want to open is shown in the Contents field then select the ruleset. If the ruleset is not shown then click Show All as shown in Figure 12-9.

Figure 12-9 Opening a Ruleset from the Contents Field in SOA Composer

[image: Description of Figure 12-9 follows]

	
Select a ruleset from the Name field in the dropdown list. This opens the rules editor with the specified ruleset selected.

12.3.2 What You Need to Know When You Open an Oracle Business Rules Dictionary

When you use the Open menu and select Open Rules to open a dictionary, SOA Composer shows you all the metadata artifacts associated with the soa-infra that is co-located with the running SOA Composer application. From the supplied list, as shown in Figure 12-9, you select the composite, dictionary, and ruleset to open.

12.3.3 What You Need to Know to Obtain the Dictionary Path from the Open Dialog

The Open Dialog includes a Rules File field. When you hold the mouse over the values in the Rules File field, SOA Composer shows a "Complete Path" popup that includes the dictionary path, as shown in Figure 12-10.

Figure 12-10 Showing the Dictionary Rules File Complete Path from the Open Dialog

[image: Description of Figure 12-10 follows]

12.3.4 Viewing Globals in an Oracle Business Rules Dictionary at Runtime

When you open a dictionary SOA Composer displays the Globals tab. The Globals tab only shows final global variables (global variables with Final option selected). You cannot create or delete global variables. From the Globals tab, in edit mode you can edit the Name, Description, and Value fields. For the Value field, you can use the expression builder to set the value. To check for validity, you can click Validate icon above the table. In view mode, the edit operations are not available. For information on using the SOA Composer edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Runtime".

To view globals in SOA Composer:

	
In SOA Composer, from the Open menu select Open Rules.

	
After you open a dictionary, select the Globals tab from the left-side pane. This displays the Globals table, as shown in Figure 12-11.

Figure 12-11 Using the SOA Composer Rules Dictionary Globals Tab

[image: Description of Figure 12-11 follows]

12.3.5 Viewing Bucketsets in an Oracle Business Rules Dictionary at Runtime

When you open a dictionary and select the Bucketsets tab, if the dictionary contains bucketsets the table shows all the bucketsets. For information on the SOA Composer edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Runtime".

To view bucketsets in SOA Composer:

	
In SOA Composer, from the Open menu select Open Rules.

	
After you open a dictionary, select the Bucketsets tab from the left-side pane. This displays the Bucketsets table, as shown in Figure 12-12.

Figure 12-12 Using the SOA Composer Rules Dictionary Bucketsets Tab

[image: Description of Figure 12-12 follows]

12.3.6 Viewing Rulesets in an Oracle Business Rules Dictionary at Runtime

SOA Composer displays the rulesets in the dictionary on the left-side panel, as shown in Figure 12-13. You can select a ruleset to display a detailed view of the ruleset. In view mode all the rules in the ruleset are displayed but they are not editable. For information on the SOA Composer Edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Runtime".

	
Note:

Using SOA Composer in edit mode you cannot create or delete rulesets. You can view and modify rulesets.

Figure 12-13 Using the SOA Composer Rules Dictionary Rulesets Tab to View Rules

[image: Description of Figure 12-13 follows]

To select the next ruleset or previous ruleset:

	
In SOA Composer open a dictionary and select a ruleset.

	
When you are viewing a ruleset, you can click Select Next Ruleset or Select Previous Ruleset to view the next or the previous ruleset, as shown in Figure 12-14.

Figure 12-14 Using the SOA Composer Rules Dictionary Rulesets Tab to Select Next Ruleset

[image: Description of Figure 12-14 follows]

12.4 Getting Started with Editing and Saving a Dictionary at Runtime

When you select and open a dictionary SOA Composer shows the dictionary in read only mode. From each tab in view mode you enter edit mode for the dictionary item by selecting the Edit menu. In edit mode, after you make changes select Save to save your changes. Saving changes saves the dictionary to a work area. To apply the changes to the runtime version of the dictionary, select Commit. If you decide you do not want to apply the changes, select Revert.

12.4.1 Editing Bucketsets in an Oracle Business Rules Dictionary at Runtime

In SOA Composer, selecting the Bucketsets tab shows you a table listing the bucketsets in the dictionary. To edit a bucketset, select the appropriate row and click the Edit icon. Depending on the type of the bucketset, Range, Enum, or LOV, this displays a corresponding Edit bucketset page. You can create a Range Bucketset by clicking Add in the menu bar and selecting a type. This adds a new row in the Bucketsets table. Adding a bucket automatically adds an end point for a range bucket and a value for an LOV bucket based on the datatype. You can modify the newly added bucket end point or value. Note that the alias is modified when an end point or value is changed.

To delete a bucketset, select a row and click Delete.

To Edit a Range Bucketset:

	
To edit a Range bucketset, in SOA Composer select the Bucketsets tab. This displays a table listing the bucketsets in the dictionary.

	
To edit a Range bucketset, select the appropriate Range bucketset row and click the Edit Bucketset icon. This displays the Bucketset Editor page, as shown in Figure 12-15.

Figure 12-15 Bucketset Editor Dialog to Edit a Range Bucketset

[image: Description of Figure 12-15 follows]

	
Use the Bucketset Editor to edit the appropriate fields in the bucketset.

	
Click OK to confirm the changes.

To Edit an LOV Bucketset:

	
To edit an LOV bucketset, in SOA Composer select the Bucketsets tab. This displays a table listing the bucketsets in the dictionary.

	
To edit an LOV bucketset, select the appropriate LOV bucketset row and click the Edit Bucketset icon. This displays the Bucketset Editor page, as shown in Figure 12-16.

Figure 12-16 Bucketset Editor Dialog to Edit an LOV Bucketset

[image: Description of Figure 12-16 follows]

	
Use the Bucketset Editor to edit the appropriate fields in the bucketset.

12.4.2 What You Need to Know About Editing Bucketsets

Only when a bucket has the Allowed in Actions field selected does the bucketset display in the condition cell drop-down in a Decision Table.

Click Validate to validate the dictionary while making changes to a bucketset.

12.4.3 Editing Rules in an Oracle Business Rules Dictionary at Runtime

SOA Composer allows you to edit the rules in a dictionary.

To edit a rule with SOA Composer:

	
In SOA Composer with an Oracle Business Rules dictionary open, select a ruleset.

	
Click the Edit menu item.

	
SOA Composer shows a confirm dialog if another user is currently editing the same dictionary. In the confirm dialog, click No or Yes, depending on whether you want to edit the document (if you click Yes, your changes could conflict with another user's changes). For more information, see Section 12.5.1, "What You Need to Know About Editing With Multiple Users at Runtime".

	
SOA Composer creates an area to save any modifications you make to the dictionary, and the Edit menu changes to a Save menu.

	
Note:

The Edit view provides an interface to the dictionary that allows you to edit most dictionary components (you can only create and edit some dictionary components at design-time using the Rules Designer extension to JDeveloper).

	
To edit an item in the dictionary, in the navigation tab select the item of interest. For example, see Figure 12-17 with the ruleset Ruleset_3 selected.

Figure 12-17 Using SOA Composer to Edit a Ruleset in a Dictionary

[image: Description of Figure 12-17 follows]

	
Click the Save menu item to save your changes in the work area.

12.5 Committing Changes for an Oracle Business Rules Dictionary at Runtime

After you verify dictionary modifications you can commit those changes to the MDS repository.

To commit changes to an Oracle Business Rules dictionary:

	
Click the Commit menu item.

	
In the Confirm dialog, click No if you do not want to make the changes in the MDS repository.

	
In the Confirm dialog, click Yes if you do want to make the changes in the MDS repository.

12.5.1 What You Need to Know About Editing With Multiple Users at Runtime

When multiple users are editing the same dictionary, SOA Composer shows a message that the dictionary is being edited by another user and asks for a confirmation. When multiple users work on a single dictionary, only the last commit is persisted.

12.6 Editing Rules in an Oracle Business Rules Dictionary at Runtime

In SOA Composer with edit mode you can edit, add, and delete rules in a ruleset. For more information on how to use edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Runtime".

12.6.1 Adding a Rule at Runtime

In SOA Composer you can add rules to a ruleset.

To add a rule in a ruleset:

	
In edit mode, select a ruleset of interest.

	
In the rule area, click New Rule as shown in Figure 12-18.

Figure 12-18 Adding a Rule in a Ruleset

[image: Description of Figure 12-18 follows]

12.6.2 Deleting a Rule at Runtime

In SOA Composer you can delete rules in a ruleset.

To delete a rule in a ruleset:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule you want to delete and click Delete Rule, as shown in Figure 12-19.

Figure 12-19 Deleting a Rule in a Ruleset

[image: Description of Figure 12-19 follows]

12.6.3 Showing and Editing Advanced Settings for Rules at Runtime

In SOA Composer you can edit advanced settings for rules in a ruleset. For more information on advanced settings, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".

To show and edit advanced settings in a rule:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule you want to show or change advanced settings.

	
Click the Show Advanced Settings icon next to the rule name. This displays the advanced settings, as shown in Figure 12-20.

Figure 12-20 Showing and Editing Rule Advanced Settings

[image: Description of Figure 12-20 follows]

12.6.4 Adding Rule Conditions at Runtime

In SOA Composer you can add conditions to a rule in a ruleset. For more information on working with rule conditions, see Section 4.3, "Working with Rules".

To add rule conditions:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule where you want to add a condition.

	
Next to the rule condition, click Add Condition as shown in Figure 12-21.

Figure 12-21 Adding a New Rule Condition in a Ruleset

[image: Description of Figure 12-21 follows]

12.6.5 Deleting Rule Conditions at Runtime

In SOA Composer you can delete conditions for a rule in a ruleset. For more information on working with rule conditions, see Section 4.3, "Working with Rules".

To delete rule conditions:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule where you want to delete a condition.

	
Click Delete Condition next to the rule condition, as shown in Figure 12-22.

Figure 12-22 Deleting a Rule Condition in a Ruleset

[image: Description of Figure 12-22 follows]

12.6.6 Modifying Rule Conditions at Runtime

Using SOA Composer you can edit conditions in a rule. You can select a rule condition for nesting or modify expression values within the condition. For more information on working with rule conditions, see Section 4.3, "Working with Rules".

To modify a condition in a rule:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule where you want to modify conditions.

	
In the IF area, use the controls, icons, and selection boxes, including the Left Value expression icon, dropdown list for an operator, and Right Value expression icon to modify the condition.

12.6.7 Adding Rule Actions at Runtime

In SOA Composer you can add actions to a rule. For more information on working with rule actions, see Section 4.3, "Working with Rules".

To add rule actions:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule where you want to add an action.

	
In the THEN area for the rule, next to the rule action click Add Action, as shown in Figure 12-23.

Figure 12-23 Adding a Rule Action in a Ruleset

[image: Description of Figure 12-23 follows]

12.6.8 Deleting Rule Actions at Runtime

In SOA Composer you can delete actions in a rule. For more information on working with rule actions, see Section 4.3, "Working with Rules".

To delete rule actions:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule where you want to delete an action.

	
In the THEN area for the rule, next to the rule action click Delete Action, as shown in Figure 12-24.

Figure 12-24 Deleting a Rule Action in a Ruleset

[image: Description of Figure 12-24 follows]

12.6.9 Modifying Rule Actions at Runtime

In SOA Composer you can modify actions in a rule. For more information on working with rule actions, see Section 4.3, "Working with Rules".

To delete rule actions:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule where you want to modify an action.

	
In the THEN area for the rule, next to the rule action click a dropdown list for the action type or click Edit Properties.

12.6.10 Working with Advanced Mode Rules at Runtime

In SOA Composer you can work with advanced mode rules in a ruleset. For more information on working with advanced mode rules, see Section 4.7, "Working with Advanced Mode Rules".

To show and modify advanced mode rules:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule where you want to show or modify advanced mode rules.

	
Select Advanced Settings icon to show advanced settings. For more information on showing advanced settings, see Section 12.6.3, "Showing and Editing Advanced Settings for Rules at Runtime".

	
If the Advanced Mode icon is not selected, then select the Advanced Mode icon. This shows the advanced mode rule options, as shown in Figure 12-25.

Figure 12-25 Showing Advanced Mode Rule Options

[image: Description of Figure 12-25 follows]

12.6.11 Working with Tree Mode Rules at Runtime

In SOA Composer you can work with tree mode rules in a ruleset. For more information on working with tree mode rules, see Section 4.8, "Working with Tree Mode Rules".

To show and modify tree mode rules:

	
In edit mode, select a ruleset of interest.

	
In the rule area locate the rule where you want to show or modify tree mode rules.

	
Select Advanced Settings icon to show advanced settings. For more information on showing advanced settings, see Section 12.6.3, "Showing and Editing Advanced Settings for Rules at Runtime".

	
If the Tree Mode icon is not selected, then select the Tree Mode icon. This shows the tree mode rule options, as shown in Figure 12-26.

Figure 12-26 Show the Tree Mode Rule Area in a Rule

[image: Description of Figure 12-26 follows]

12.7 Editing Decision Tables in an Oracle Business Rules Dictionary at Runtime

In SOA Composer in edit mode you can edit, add, and delete a Decision Table in a ruleset. For more information on how to use edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Runtime".

12.7.1 Adding a Decision Table at Runtime

In SOA Composer you can add a Decision Table to a ruleset. For more information on working with Decision Tables, see Section 5.1, "Introduction to Working with Decision Tables".

To add a decision table in a ruleset:

	
In edit mode, select a ruleset of interest.

	
In the ruleset area click New Decision Table, as shown in Figure 12-27.

Figure 12-27 Adding a Decision Table in a Ruleset

[image: Description of Figure 12-27 follows]

12.7.2 Deleting a Decision Table at Runtime

In SOA Composer you can delete Decision Table in a ruleset. For more information on working with Decision Tables, see Section 5.1, "Introduction to Working with Decision Tables".

To delete a decision table in a ruleset:

	
In edit mode, select a ruleset of interest.

	
In the ruleset area, in the View field from the dropdown list select the Decision Table you want to delete.

	
Click Delete Decision Table, as shown in Figure 12-28.

Figure 12-28 Select the Delete Decision Table Icon

[image: Description of Figure 12-28 follows]

12.7.3 Modifying a Decision Table at Runtime

In SOA Composer you can modify a Decision Table in a ruleset. For more information on working with Decision Tables, see Section 5.1, "Introduction to Working with Decision Tables".

To modify a decision table in a ruleset:

	
In edit mode, select a ruleset of interest.

	
In the ruleset area, in the View field from the dropdown list select the Decision Table you want to work with, as shown in Figure 12-29.

	
Use the Decision Table controls to modify the decision table. For more information on working with Decision Tables, see Chapter 5, "Working with Decision Tables".

Figure 12-29 Editing a Decision Table

[image: Description of Figure 12-29 follows]

12.8 Validating an Oracle Business Rules Dictionary at Runtime

In SOA Composer you can validate a dictionary. For more information on validation, see Section 4.4, "Validating Dictionaries".

To validate a dictionary:

	
In edit mode, select a ruleset of interest.

	
In the ruleset area click Validate, as shown in Figure 12-30.

Figure 12-30 Validating a Dictionary at Runtime

[image: Description of Figure 12-30 follows]

12.9 Obtaining Composite and Dictionary Information at Runtime

When a dictionary is open, you can obtain dictionary and composite details from the Info dialog.

To obtain dictionary information:

	
With an Open document you can obtain the document type, composite details, and document path by clicking Info. This displays the SOA Composer open file information, as shown in Figure 12-31.

Figure 12-31 Using Info Dialog to Obtain the Document Path for an Open Dictionary

[image: Description of Figure 12-31 follows]

A Oracle Business Rules Files and Limitations

This appendix lists known naming constraints for Rules Designer files and names, and certain Rules SDK limitations.

This appendix includes the following sections:

	
Section A.1, "Rules Designer Naming Conventions"

A.1 Rules Designer Naming Conventions

This section covers Rules Designer naming conventions.

A.1.1 Ruleset Naming

Rules Designer enforces a limitation for ruleset names; a ruleset name must start with a letter and contain only letters, numbers, or the following characters: ".", "-", "_","", ":", "/", and single spaces. Letters include the characters (a to z and A to Z) and numbers (0 to 9).

A.1.2 Dictionary Naming

Rules Designer dictionary names can contain only the following characters, upper and lowercase letters (a to z and A to Z), numbers (0 to 9), and the underscore (_). Special characters are not valid in a dictionary name.

Rules Designer dictionary names are case preserving but case-insensitive. For example, the dictionary names Dictionary and DICT are both valid. If you create a dictionary named Test, then you can create another dictionary named TEST only if you first delete the dictionary named Test.

A.1.3 Alias Naming

Rules Designer alias names must begin with a letter and contain only letters, numbers, ".", "-", "_","", ":", "/", and single spaces.

A.1.4 XML Schema Target Package Naming

The Target Package Name that you specify for an XMLFact on the XML Schema Selector page is limited to ASCII characters, digits, and the underscore character.

B Rules Extension Methods

This appendix lists the extension methods. This appendix includes the following sections:

	
Section B.1, "Duration Extension Methods (oracle.rules.rl.extensions.Duration)"

	
Section B.2, "JavaDate Extension Methods (oracle.rules.rl.extensions.JavaDate)"

	
Section B.3, "XMLDate Extension Methods (oracle.rules.rl.extensions.XMLDate)"

	
Section B.4, "OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate)"

	
Section B.5, "OracleDuration Methods (oracle.rules.sdk2.extensions.OracleDuration)"

B.1 Duration Extension Methods (oracle.rules.rl.extensions.Duration)

Table B-1 lists the Duration methods.

Use the Duration methods to calculate a duration between two dates. The Duration methods all take two date arguments. The Duration methods are overloaded so that the first argument is one of, java.util.Calendar or javax.xml.datatype.XMLGregorianCalendar, and the second argument is one of java.util.Calendar or javax.xml.datatype.XMLGregorianCalendar.

Rules Designer lists the arguments and valid types for each method in the list.

Table B-1 Oracle Business Rules Duration Methods

	Method	Returns	Description
	
compare

	
int

	
Compares two dates and returns an int value of 0 if they are equal, less than 0 if date1 represents a point in time before date2, greater than 0 if date1 represents a point in time after date2.

	
daysBetween

	
int

	
Returns the difference between the two dates in days.

	
hoursBetween

	
long

	
Returns the difference between the two dates in hours.

	
millisecondsBetween

	
long

	
Returns the difference between the two dates in milliseconds.

	
minutesBetween

	
long

	
Returns the difference between the two dates in minutes.

	
monthsBetween

	
int

	
Returns the difference between the two dates in months.

	
secondsBetween

	
long

	
Returns the difference between the two dates in seconds.

	
weeksBetween

	
int

	
Returns the difference between the two dates in weeks.

	
yearsBetween

	
int

	
Returns the difference between the two dates in years.

B.2 JavaDate Extension Methods (oracle.rules.rl.extensions.JavaDate)

Table B-2 lists the JavaDate add and subtract methods. Table B-3 lists the JavaDate to and from string methods. For details see the ISO 8601 numeric representation of dates and times, at

http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm.

Use the JavaDate add and subtract methods to return an updated calendar. Each method in Table B-2 returns a java.util.Calendar. Each method takes a first argument of java.util.Calendar, and a second argument that is either an int or a long, depending on the method.

Table B-2 JavaDate Add To and Subtract From Calendar Methods

	Method	Arguments	Description
	
addDaysTo

	
Calendar,int

	
Returns a new Calendar that is the result of adding the specified number of days to the specified date.

	
addHoursTo

	
Calendar,long

	
Returns a new Calendar that is the result of adding the specified number of hours to the specified date.

	
addMillisecondsTo

	
Calendar,long

	
Returns a new Calendar that is the result of adding the specified number of milliseconds to the specified date.

	
addMinutesTo

	
Calendar,long

	
Returns a new Calendar that is the result of adding the specified number of minutes to the specified date.

	
addMonthsTo

	
Calendar,int

	
Returns a new Calendar that is the result of adding the specified number of months to the specified date.

	
addSecondsTo

	
Calendar,long

	
Returns a new Calendar that is the result of adding the specified number of seconds to the specified date.

	
addWeeksTo

	
Calendar,int

	
Returns a new Calendar that is the result of adding the specified number of weeks to the specified date.

	
addYearsTo

	
Calendar,int

	
Returns a new Calendar that is the result of adding the specified number of years to the specified date.

	
subtractDaysFrom

	
Calendar,int

	
Returns a new Calendar that is the result of subtracting the specified number of days from the specified date.

	
subtractHoursFrom

	
Calendar,long

	
Returns a new Calendar that is the result of subtracting the specified number of hours from the specified date.

	
subtractMillisecondsFrom

	
Calendar,long

	
Returns a new Calendar that is the result of subtracting the specified number of milliseconds from the specified date.

	
subtractMinutesFrom

	
Calendar,long

	
Returns a new Calendar that is the result of subtracting the specified number of minutes from the specified date.

	
subtractMonthsFrom

	
Calendar,int

	
Returns a new Calendar that is the result of subtracting the specified number of months from the date.

	
subtractSecondsFrom

	
Calendar,long

	
Returns a new Calendar that is the result of subtracting the specified number of seconds from the specified date.

	
subtractWeeksFrom

	
Calendar,int

	
Returns a new Calendar that is the result of subtracting the specified number of weeks from the specified date.

	
subtractYearsFrom

	
Calendar,int

	
Returns a new Calendar that is the result of subtracting the specified number of years from the specified date.

Table B-3 JavaDate Date and Time String Methods

	Method	Returns	Description
	
fromDateString

	
Calendar

	
Creates a Calendar instance for the specified ISO 8601 date. The argument is a String.

	
fromDateTimeString

	
Calendar

	
Creates a Calendar instance for the specified ISO 8601 date and time. The argument is a String.

	
fromTimeString

	
Calendar

	
Creates a Calendar instance for the specified ISO 8601 time. The argument is a String.

	
toDateString

	
String

	
Return the ISO 8601 representation of the specified date. The argument is a Calendar.

	
toDateTimeString

	
String

	
Return the ISO 8601 representation of the specified date and time. The argument is a Calendar.

	
toTimeString

	
String

	
Return the ISO 8601 representation of the specified time. The argument is a Calendar.

B.3 XMLDate Extension Methods (oracle.rules.rl.extensions.XMLDate)

Table B-4 lists the XMLDate add and subtract methods. Table B-5 lists the XMLDate to and from string methods. For details see the ISO 8601 numeric representation of dates and times, at

http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm.

Use the XMLDate add and subtract methods to return an updated XMLGregorianCalendar. Each method in Table B-4 returns a javax.xml.datatype.XMLGregorianCalendar. Each method takes a first argument of javax.xml.datatype.XMLGregorianCalendar, and a second argument that is either an int or a long, depending on the method.

Table B-4 XMLDate Add To and Subtract From Methods

	Method	Arguments	Description
	
addDaysTo

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of adding the specified number of days to the specified XMLGregorianCalendar.

	
addHoursTo

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of adding the specified number of hours to the specified XMLGregorianCalendar.

	
addMillisecondsTo

	
XMLGregorianCalendar, long

	
Returns a new XMLGregorianCalendar that is the result of adding the specified number of milliseconds to the specified XMLGregorianCalendar.

	
addMinutesTo

	
XMLGregorianCalendar, long

	
Returns a new XMLGregorianCalendar that is the result of adding the specified number of minutes to the specified XMLGregorianCalendar.

	
addMonthsTo

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of adding the specified number of months to the specified XMLGregorianCalendar.

	
addSecondsTo

	
XMLGregorianCalendar, long

	
Returns a new XMLGregorianCalendar that is the result of adding the specified number of seconds to the specified XMLGregorianCalendar.

	
addWeeksTo

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of adding the specified number of weeks to the specified XMLGregorianCalendar.

	
addYearsTo

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of adding the specified number of years to the specified XMLGregorianCalendar.

	
subtractDaysFrom

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of subtracting the specified number of days from the specified XMLGregorianCalendar.

	
subtractHoursFrom

	
XMLGregorianCalendar, long

	
Returns a new XMLGregorianCalendar that is the result of subtracting the specified number of hours from the specified XMLGregorianCalendar.

	
subtractMillisecondsFrom

	
XMLGregorianCalendar, long

	
Returns a new XMLGregorianCalendar that is the result of subtracting the specified number of milliseconds from the specified XMLGregorianCalendar.

	
subtractMinutesFrom

	
XMLGregorianCalendar, long

	
Returns a new XMLGregorianCalendar that is the result of subtracting the specified number of minutes from the specified XMLGregorianCalendar.

	
subtractMonthsFrom

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of subtracting the specified number of months from the specified XMLGregorianCalendar.

	
subtractSecondsFrom

	
XMLGregorianCalendar, long

	
Returns a new XMLGregorianCalendar that is the result of subtracting the specified number of seconds from the specified XMLGregorianCalendar.

	
subtractWeeksFrom

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of subtracting the specified number of weeks from the specified XMLGregorianCalendar.

	
subtractYearsFrom

	
XMLGregorianCalendar, int

	
Returns a new XMLGregorianCalendar that is the result of subtracting the specified number of years from the specified XMLGregorianCalendar.

Table B-5 XMLDate To and From String Methods

	Method	Returns	Description
	
fromString

	
XMLGregorianCalendar

	
Creates an XMLGregorianCalendar instance from specified ISO 8601 date, datetime or time. Takes a single String argument.

	
toString

	
String

	
Return the ISO 8601 representation of the specified XMLGregorianCalendar.Takes a single XMLGregorianCalendar argument.

B.4 OracleDate Methods (oracle.rules.sdk2.extensions.OracleDate)

Table B-6 lists the OracleDate add and subtract methods. Table B-7 lists the OracleDate to and from string methods. For details see the ISO 8601 numeric representation of dates and times, at http://www.iso.org/iso/support/faqs/faqs_widely_used_standards/widely_used_standards_other/date_and_time_format.htm.

Use the OracleDate add and subtract methods to return an updated Timestamp. Each method in Table B-6 returns an oracle.jbo.domain.Timestamp. Each method takes a first argument of oracle.jbo.domain.Timestamp, and a second argument that is either an int or a long, depending on the method.

Table B-6 OracleDate Add To and Subtract From Methods

	Method/Arguments	Description
	
addDaysTooracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of adding the specified number of days to the specified Timestamp instance.

	
addHoursTooracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of adding the specified number of hours to the specified Timestamp instance.

	
addMillisecondsTooracle.jbo.domain.Timestamp, int

	
Returns a Timestamp instance that is the result of adding the specified number of milliseconds to the Timestamp instance.

	
addMinutesTooracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of adding the specified number of minutes to the specified Timestamp instance.

	
addMonthsTooracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of adding the specified number of months to the specified Timestamp instance.

	
addSecondsTooracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of adding the specified number of seconds to the specified Timestamp instance.

	
addWeeksTooracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of adding the specified number of weeks to the specified Timestamp instance.

	
addYearsTooracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of adding the specified number of years to the specified Timestamp instance.

	
subtractDaysFromoracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of subtracting the specified number of days from the specified Timestamp instance.

	
subtractHoursFromoracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of subtracting the specified number of hours from the specified Timestamp instance.

	
subtractMillisecondsFromoracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of subtracting the specified number of milliseconds from the Timestamp instance.

	
subtractMinutesFromoracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of subtracting the specified number of minutes from the specified Timestamp instance.

	
subtractMonthsFromoracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of subtracting the specified number of months from the date.

	
subtractSecondsFromoracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of subtracting the specified number of seconds from the specified Timestamp instance.

	
subtractWeeksFromoracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of subtracting the specified number of weeks from the specified Timestamp instance.

	
subtractYearsFromoracle.jbo.domain.Timestamp, int

	
Returns a new Timestamp instance that is the result of subtracting the specified number of years from the specified Timestamp instance.

Table B-7 OracleDate To String and From String Methods

	Method	Returns	Description
	
fromString

	
oracle.jbo.domain.Timestamp

	
Creates a Timestamp instance for the specified ISO 8601 date and time string. Takes a single String argument.

	
toGregorianCalendar

	
java.util.GregorianCalendar

	
Return a GregorianCalendar representing the specified Timestamp. Takes a single oracle.jbo.domain.Timestamp argument.

	
toString

	
java.lang.String

	
Return the ISO 8601 representation of the specified Timestamp instance. Takes a single oracle.jbo.domain.Timestamp argument.

B.5 OracleDuration Methods (oracle.rules.sdk2.extensions.OracleDuration)

Use the Duration methods to calculate a duration between two dates. The Duration methods all take two date arguments. The Duration methods are overloaded so that the first argument is one of, java.util.Calendar, oracle.jbo.domain.Timestamp, javax.xml.datatype.XMLGregorianCalendar, and the second argument is one of java.util.Calendar, oracle.jbo.domain.Timestamp, or javax.xml.datatype.XMLGregorianCalendar. Note that one argument for the methods must be a Timestamp (oracle.jbo.domain.Timestamp).

Rules Designer lists the arguments and valid types for each method in the list.

Table B-8 lists the OracleDuration methods.

Table B-8 OracleDuration Methods

	Method	Returns	Description
	
compare()

	
int

	
Compares two dates and returns an int value of 0 if they are equal, less than 0 if date1 represents a point in time before date2, greater than 0 if date1 represents a point in time after date2.

	
daysBetween()

	
int

	
Returns the difference between the two dates in days.

	
hoursBetween()

	
long

	
Returns the difference between the two dates in hours.

	
millisecondsBetween()

	
long

	
Returns the difference between the two dates in milliseconds.

	
minutesBetween()

	
long

	
Returns the difference between the two dates in minutes

	
monthsBetween()

	
int

	
Returns the difference between the two dates in months.

	
secondsBetween()

	
long

	
Returns the difference between the two dates in seconds.

	
weeksBetween()

	
int

	
Returns the difference between the two dates in weeks.

	
yearsBetween()

	
int

	
Returns the difference between the two dates in years.

C Oracle Business Rules Frequently Asked Questions

This appendix contains frequently asked questions about Oracle Business Rules.

	
Section C.1, "Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?"

	
Section C.2, "What are the Differences Between Oracle Business Rules RL Language and Java?"

	
Section C.3, "How Does a RuleSession Handle Concurrency and Synchronization?"

	
Section C.4, "How Do I Correctly Express a Self-Join?"

	
Section C.5, "How Do I Use a Property Change Listener in Oracle Business Rules?"

	
Section C.6, "What Are the Limitations on a Decision Service with Oracle Business Rules?"

	
Section C.7, "How Do I Change the Name of a Dictionary or Dictionary Package?"

	
Section C.8, "How Do I Put Java Code in a Rule?"

	
Section C.9, "Can I Use Java Based Facts in a Decision Service with BPEL?"

	
Section C.10, "How Do I Enable Debugging in a BPEL Decision Service?"

	
Section C.11, "How Do I Support Versioning with Oracle Business Rules?"

	
Section C.12, "What is the Priority Order Using Priorities with Rules and Decision Tables?"

	
Section C.13, "Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?"

	
Section C.14, "Why Are Changes to My Java Classes Not Reflected in the Data Model?"

	
Section C.15, "How Do I Use Rules SDK to Include a null in an Expression?"

	
Section C.16, "Is WebDAV Supported as a Repository to Store a Dictionary?"

	
Section C.17, "Using a Source Code Control System with Rules Designer"

C.1 Why Do Rules Not Fire When A Java Object is Asserted as a Fact and Then Changed Without Using the Modify Action?

When a Java object has been asserted and then the object is changed without using the modify action, the object must be re-asserted in the Rules Engine. Therefore, if a rule associated with the changed Java object does not fire, this means that the Rules Engine did not reevaluate any rule conditions and did not activate any rules. Thus, when a Java object changes without using the modify action, the object must be re-asserted in the Rules Engine.

C.2 What are the Differences Between Oracle Business Rules RL Language and Java?

For more information on the differences between Oracle Business Rules RL Language and Java, see Appendix A in Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

C.3 How Does a RuleSession Handle Concurrency and Synchronization?

Method calls on an Oracle Business Rules RuleSession object are thread-safe such that calls by multiple threads do not cause exceptions at the RuleSession level. However, there are no exclusivity or transactional guarantees on the execution of methods. The lowest-level run method in the Rules Engine is synchronized, so two threads with a shared RuleSession cannot both simultaneously execute run. One call to run must wait for the other to finish.

Oracle Business Rules functions are not synchronized by default. Like Java methods, Oracle Business Rules functions can execute concurrently and it is the programmer's responsibility to use synchronized blocks to protect access to shared data (for instance, a HashMap containing results data).

Any set of actions that a user wants to be executed as in a transaction-like form must synchronize around the shared object. Users should not synchronize around a RuleSession object because exceptions thrown when calling RuleSession methods may require the RuleSession object to be discarded.

For most uses of a RuleSession object in Oracle Business Rules, each thread or servlet instance should create and use a local RuleSession object. This usage pattern is roughly analogous to using a JDBC connection in this manner.

The following examples demonstrate how to use a shared RuleSession object.

For the case where Thread-1 includes the following:

ruleSession.callFunctionWithArgument("assert", singleFact1);
ruleSession.callFunctionWithArgument("assert", singleFact2);

and Thread-2 includes the following:

ruleSession.callFunction("run");
ruleSession.callFunction("clear");

In this case, the execution of the two threads might proceed as shown in Example C-1.

Example C-1 Using a Shared RuleSession Object in Oracle Business Rules

Thread-1: ruleSession.callFunctionWithArgument("assert", singleFact1);
Thread-2: ruleSession.callFunction("run");
Thread-2: ruleSession.callFunction("clear");
Thread-1: ruleSession.callFunctionWithArgument("assert", singleFact2);

In Example C-1, the two facts Thread-1 asserted are never both in the RuleSession during a call to run. Notice also that only one thread calls the run method. If you use a design where multiple threads can call run on a shared RuleSession, this can create extremely hard to find bugs and there is usually no gain in performance.

All accesses to a shared RuleSession object must be synchronized to ensure the intended behavior. However, a RuleSession instance may throw an exception and not be recoverable, so do not use this object as the synchronization object. Instead, use another shared object as the synchronization point.

One can envision a shared server process producer-consumer model for RuleSession use. In this model, multiple threads assert facts to a shared RuleSession and one thread periodically calls run, reads any results, and outputs them. This ensures that thread conflicts cannot occur, because the two code segments must be executed serially and cannot be intermingled. For example, the code with shared objects, producer code, and consumer code in Example C-2, Example C-3, and Example C-4.

Example C-2 RuleSession Shared Objects

RuleSession ruleSession;
Object ruleSessionLock = new Object();

Example C-3 RuleSession Producer Code

public String addFacts(FactTypeA fa, FactTypeB fb, FactTypeC fc){
 String status = "";
 synchronized(ruleSessionLock){
 try {
 ruleSession.callFunctionWithArgument("assert", fa);
 ruleSession.callFunctionWithArgument("assert", fb);
 status = "success";
 } catch (Exception e) {
 // a method that creates a new RuleSession loads it with rules
 initializeRuleSession();
 status = "failure";
 }
 return status;
}

Example C-4 RuleSession Consumer Code

public List exec(){
 synchronized(ruleSessionLock){
 try {
 ruleSession.callFunction("run");
 List results = (List)ruleSession.callFunction("getResults");
 ruleSession.callFunction("clearResults");
 return results;
 } catch (Exception e) {
 // a method that creates a new RuleSession loads it with rules
 initializeRuleSession();
 return null;
 }
 }
}

	
Note:

When multiple threads are sharing a RuleSession object, if more than one of the threads calls the run method, this can create extremely hard to find bugs and there is usually no gain in performance.

C.4 How Do I Correctly Express a Self-Join?

When working with facts, there are cases where the runtime behavior of Oracle RL may produce surprising results.

Consider the Oracle RL code in Example C-5.

Example C-5 Self-Join Using Fact F

class F {int i; };
rule r1 {
 if (fact F f1 && fact F f2) {
 println("Results: " + f1.i + ", " + f2.i);
 }
}
assert(new F(i:1));
assert(new F(i:2));
run();

How many lines print in the Example C-5 output? The answer is 4 lines because the same fact instance can match for both f1 and f2.

Thus, Example C-5 gives the following output:

Results: 2, 2
Results: 2, 1
Results: 1, 2
Results: 1, 1

Using the same example with a third F, for example (assert(new F(i:3));) then nine lines are printed and if, at the same time, a third term && fact F F3 is added then 27 lines are printed.

If you are attempting to find all combinations and orders of distinct facts, you need an additional term to in the test, as shown in Example C-6.

Example C-6 Find All Combinations of Fact F

rule r1 {
 if (fact F F1 && fact F F2 && F1 != F2) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

The code in Example C-6 gives the following output:

Results: 2, 1
Results: 1, 2

The simplest, although not the fastest way to find all combinations of facts, regardless of their order, is to use the code shown in Example C-7.

Example C-7 Finding Combinations of Fact F

rule r1 {
 if (fact F F1 && fact F F2 && id(F1) < id(F2)) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

Because the function id() shown in Example C-7 takes longer to execute in a test pattern than a direct comparison, the fastest method is to test on a unique value in each object. For example, you could add an integer value property "oid" to your class that is assigned a unique value for each instance of the class.

Example C-8 shows the same rule using the oid value.

Example C-8 Fast Complete Comparison

rule r1 {
 if (fact F F1 && fact F F2 && F1.oid < F2.oid) {
 println("Results: " + F1.i + ", " + F2.i);
 }
}

This problem may also arise if you attempt to remove all duplicate facts from the Oracle Rules Engine, using a function as shown Example C-9.

Example C-9 Retracting Duplicate Facts Incorrect Sample

rule rRemoveDups {
 if (fact F F1 && fact F F2 && F1.i == F2.i) {
 retract(F2);
 }
}

However, this rule removes all facts of type F, not just the duplicates because F1 and F2 may be the same fact instance. Example C-10 shows the correct version of this rule.

Example C-10 Retracting Duplicate Facts Corrected Sample

rule rRemoveDups {
 if (fact F F1 && fact F F2 && F1 != F2 && F1.i == F2.i) {
 retract(F2);
 }
}

C.5 How Do I Use a Property Change Listener in Oracle Business Rules?

The Oracle Rules Engine supports the Java PropertyChangeListener design pattern. This allows an instance of a Java fact that uses the PropertyChangeSupport class to automatically notify the Oracle Rules Engine when property values have changed. Java facts are not required to implement this pattern to be used by Oracle Rules Engine.

Typically, changes made to values of a property of a Java object that has previously been asserted to the Oracle Rules Engine requires that the object be re-asserted in order for rules to be reevaluated with the new property value. For properties that fire PropertyChangeEvent, changing the value of those properties both changes the value and re-asserts the fact to the Oracle Rules Engine.

To implement the PropertyChangeListener design pattern in a class, do the following:

	
Import this package in the class:

import java.beans.PropertyChangeSupport;

	
Add a private member variable to the class:

private PropertyChangeSupport m_pcs = null;

	
In the constructor, create a new PropertyChangeSupport object:

m_pcs = new PropertyChangeSupport(this);

	
Then for each setter, add the call to firePropertyChange:

public void setName(String name){
 String oldVal = m_name;
 m_name = name;
 m_pcs.firePropertyChange("name", oldVal, m_name);
}

	
Implement addPropertyChangeListener method (delegate to m_pcs):

public void addPropertyChangeListener(PropertyChangeListener pcl){
 m_pcs.addPropertyChangeListener(pcl);
}

	
Implement removePropertyChangeListener method (delegate to m_pcs):

public removePropertyChangeListener(PropertyChangeListener pcl){
 m_pcs.removePropertyChangeListener(pcl);
}

When deciding whether to design your application to always explicitly re-assert modified objects or implement the PropertyChangeListener design pattern, consider the following:

	
Explicitly re-asserting modified objects allows a user to group several property changes and making them visible to the rules all at once. This is most useful when a concurrent thread is executing rules, and the rules should see only a complete group of property changes.

	
Explicit assert reduces the computational cost of rule re-evaluation when multiple properties are changed. If multiple properties are changed at the same time, this results in multiple re-evaluations of rule conditions that reference the fact type. This occurs because each property change event results in a re-assertion of the object. Using an explicit assert instead of the PropertyChangeListener pattern eliminates this extra computational cost.

	
Explicit assert is required when a rule modifies a fact that is also tested in its condition, but the automatic reassert triggered by the PropertyChangeListener before a guard condition property is set would cause the rule to refire itself endlessly.

	
Explicit assert must be used when modifying Oracle RL facts and XML facts, because these cannot be defined to support the PropertyChangeListener design pattern.

	
PropertyChangeListener-enabled facts allow a Java application to communicate property changes to the rule engine without having to change the application to perform explicit asserts. This also means that code that modifies a property of an object does not need to have a reference to the RuleSession object in scope.

	
PropertyChangeListener support prevents the common error of neglecting to re-assert a fact after changing its properties.

C.6 What Are the Limitations on a Decision Service with Oracle Business Rules?

There are some limitations for using Business Rules with a BPEL process, including the following:

	
Only visible XML fact types may be specified as the input for a decision service.

	
Only visible XML fact types may be specified as the output of a decision service.

For an additional restriction, see Appendix D, "How Are Decision Service Input Output Element Types Restricted?".

For information on setting XML fact type visible option, see Section 3.2, "Working with XML Facts".

C.7 How Do I Change the Name of a Dictionary or Dictionary Package?

To change the name of a dictionary or a dictionary package name, you use JDeveloper option File > Rename. Do not use Refactor > Rename. The refactor option does not apply to dictionaries or dictionary packages.

For more information, see Section 2.2.5, "How to Rename a Dictionary or Rename a Dictionary Package" and Section D.3, "Renaming a Dictionary or Dictionary Package".

C.8 How Do I Put Java Code in a Rule?

You do not actually put Java code in a rule. However, you can invoke a Java method from a rule condition or action.

C.9 Can I Use Java Based Facts in a Decision Service with BPEL?

Oracle BPEL PM can invoke only decision functions exposed as a decision service, and this means that the decision function inputs and outputs must be XML fact types.

You can use an existing ruleset or decision function that uses Java fact types if you convert the input XML facts to Java facts. For example, you could create some rules in a ruleset, named convertFromXML, and put this ruleset before the Java ruleset in the decision function ruleflow. Similarly, you could create a ruleset to convert from Java facts to output XML facts and put this ruleset after the Java ruleset in the decision function ruleflow.

Alternatively, if your rules use only properties, and no methods or fields, from the Java fact types you can replace the Java fact types with XML fact types as follows:

	
Delete the Java fact types (first making careful note of the aliases of the fact types and properties).

	
Import similar XML fact types and edit the aliases of the fact types and properties to be the same as the deleted Java fact types and properties.

C.10 How Do I Enable Debugging in a BPEL Decision Service?

To enable debugging output during ruleset execution for a BPEL Decision Service, you enable the SOA rules logger. When the SOA rules logger is set to TRACE level then the output of watchAll is logged to the SOA diagnostic log. When you change the logging level using Fusion Middleware Control Console, you do not need to redeploy the application to use the specified level.

For information on using the SOA oracle.soa.service.rules and oracle.soa.services.rules.obrtrace loggers, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite.

C.11 How Do I Support Versioning with Oracle Business Rules?

Versioning is supported in Oracle Business Rules in two ways:

	
At design time, the dictionary is stored as an XML file in a JDeveloper project. The dictionary can be versioned in a source control system in the same way as any other source file.

	
At runtime, the dictionary is stored in MDS. If MDS is database backed then versioning is supported using MDS.

Note: It is possible for a server application to respond to dictionary changes as they are made visible to the application in MDS. The rule service engine (decision service) does this automatically. For non-SCA application, this can be done using the RuleRepository interface. At this time, they way to support an "in-draft" version is by using the sandbox feature of MDS. The Oracle Business Rules RuleRepository interface supports this.

C.12 What is the Priority Order Using Priorities with Rules and Decision Tables?

The priority for rules and decision tables is highest to lowest, with the higher priority rule or Decision Table executing first. For example, if you create rules with priorities 1-4, they would be executed in the execution priority order 4,3,2,1. Using Rules Designer you can select a priority from a predefined named priority list or enter a positive or negative integer to specify your own priority level. The default priority is medium (with the integer value 0). For more information, see Section 4.5.5, "How to Set a Priority for a Rule".

Note, however, you should try to avoid priorities as much as possible since they break the purely declarative model of rules. If you find yourself using a lot of priorities, then generally it is best to try to restructure your rule patterns and tests to avoid conflicts, or divide the rules into multiple rulesets using ruleflow if they are intended to be run in a certain order. A conflict is a case when more than one rule in a ruleset is able to fire. For example, if a "gold customer" rule says to make a customer that spends over $1000 a gold customer, and a "silver customer" rule says to make a customer that spends over $500 a silver customer, then when a customer spends $1100 there is a conflict. Rather than prioritize the rules, it is more declarative to change the "silver customer" rule to test for customers that spend between $500 and $1000. This conflict analysis and conflict avoidance is particularly easy if you use Decision Tables. For more information on Decision Tables, see Chapter 5, "Working with Decision Tables".

You use ruleflow, that is the ruleset stack, to order rulesets. For information on working with the ruleset stack, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

C.13 Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?

According to the JAXB 2.0 spec, the default type mapping for elements that have minOccurs="0" and nillable="true" is JAXBElement<T>, where T is the default mapping of the type defined for the element. For example, xsd:string maps to JAXBElement<String>, xsd:int maps to JAXBElement<Integer>, and xsd:integer maps to JAXBElement<BigInteger>. This is because nillable="true" means the user has defined a semantic difference between a element not being defined in a document, with minOccurs=0, it does not have to be defined, and an element being defined but having the attribute nil="true". This is a subtle difference and is often used to define the difference between an unknown value and a value known to be "no value".

To use the JAXBElement-typed property in a rule, the property must be first checked for non-null, and then the "value" property or getValue() method can be used retrieve a value of the underlying type:

fact FactType1 &&
 FactType1.prop1 != null &&
 FactType1.prop1.value == "abc"

Alternatively, you may want to define a customized JAXB binding so nillable elements are mapped to type T rather than JAXBElement<T>. However, this is a lossy conversion, as you no longer are able to determine the difference between a non-existent element and a nil one. This does make the nillable attribute less useful, but it does allow you to explicitly define an element as nil in your document, similarly to how in Java an Object-typed field is initialized to null by default or you can explicitly initialize it to null.

There are several ways to do this. In both cases, add these attributes to the toplevel xsd:schema element start tag:

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0"

	
To specify ALL properties to use the binding, add this immediately inside the xsd:schema opening tag:

<xsd:annotation>
 <xsd:appinfo>
 <jaxb:globalBindings generateElementProperty="false"/>
 </xsd:appinfo>
</xsd:annotation>

	
To specify only specific properties use the binding, add an annotation like this to each desired element:

<xsd:element name="stringElement2" type="xsd:string" minOccurs="0" nillable="true">
 <xsd:annotation>
 <xsd:appinfo>
 <jaxb:property generateElementProperty="false" />
 </xsd:appinfo>
 </xsd:annotation>
</xsd:element>

	
Add the definitions to an external customizations file and pass it as an argument when adding the schema to the datamodel. This can only be done when programmatically calling the SchemaBrowser class and is not exposed in Rule Designer.

C.14 Why Are Changes to My Java Classes Not Reflected in the Data Model?

Do not import classes that have been compiled into the "SCA-INF/classes" directory. Classes in this directory cannot be reloaded into the datamodel when they change.

C.15 How Do I Use Rules SDK to Include a null in an Expression?

You can use the following Rules SDK code to include a null value:

SimpleTest test = pattern.getSimpleTestTable().add();
test.getLeft().setValue(attr);
test.setOperator(Util.TESTOP_NE);
test.getRight().setValue("null");

C.16 Is WebDAV Supported as a Repository to Store a Dictionary?

The Web Distributed Authoring and Versioning (WebDAV) repository is not supported to store a dictionary in Oracle Fusion Middleware 11g Release 1 (11.1.1) Oracle Business Rules. Oracle Business Rules supports using an MDS (file backed or Database backed) repository for storing dictionaries.

C.17 Using a Source Code Control System with Rules Designer

There are special considerations when you use Rules Designer and a source control system, such as CVS or Subversion. When you use a source code control system with Rules Designer you need to specify that rule dictionary files in your project are recognized as "binary" files instead of "text" files. The rule dictionary files are XML documents and by default the source code control system treats these files as text files. However, rule dictionary files cannot be merged because the files contain semantic structure. If a rule dictionary file is treated as a text file and then changed, the source control system attempts to merge the file with a "trivial" merge. Using a trivial merge creates a semantically invalid dictionary file which cannot be unmarshalled into a RuleDictionary object.

Thus, when you use a source code control system with rule dictionary files, .rules files, you need to make sure the source code control system treats the files as binary files. There are configuration options you need to set to specify that the system treats dictionary files as binary files. For example, in the Subversion source code control system you can set the MIME type with the svn:mime-type file property. For more information, see

http://svnbook.red-bean.com/nightly/en/svn.advanced.props.file-portability.html#svn.advanced.props.special.mime-type

When you set the source code control system options to specify the binary file type, this allows the source code control system, for example tortiseSVN, to treat the rules dictionary files correctly, as binary files.

D Oracle Business Rules Troubleshooting

This appendix contains workarounds and solutions for issues you may encounter when using Oracle Business Rules. The following topics are covered:

	
Section D.1, "Getter and Setter Methods are not Visible"

	
Section D.2, "Java Class with Only a Property Setter"

	
Section D.3, "Renaming a Dictionary or Dictionary Package"

	
Section D.4, "Runtime NoClassDefFound Error"

	
Section D.5, "RL Specific Keyword Naming Conflict Errors"

	
Section D.6, "java.lang.IllegalAccessError from Business Rules Service Runtime"

	
Section D.7, "JAXB 1.0 Dictionaries and RL MultipleInheritanceException"

	
Section D.8, "Why Does XML Schema with Underscores Fail JAXB Compilation?"

	
Section D.9, "How Are Decision Service Input Output Element Types Restricted?"

	
Section D.10, "How Are Decision Service Input Output Schema Restricted?"

	
Section D.11, "How Do I Handle Java Reserved Names in an Imported Fact Type?"

D.1 Getter and Setter Methods are not Visible

Rules Designer does not list the methods supporting a Java bean property in choice lists; only the bean properties are visible. For example, a Java bean with a property named Y must have at least a getter method getY() and may also have a setter method setY(y-type-param). All of properties and methods (including getter and setter that compose the properties) are displayed when viewing the Java FactType. Only the properties of Java Classes (not the getter and setter methods) are displayed in choice lists. When attempting to control the visibility of the property it is best to use the properties visibility flag. Marking a getter or a setter method as not visible may not remove the properties from choice lists.

D.2 Java Class with Only a Property Setter

In Java the Java Bean introspector includes write-only properties. Oracle RL does not include such properties as Beans, because they cannot be reasoned on in a rule. Thus, in order for Java fact type bean properties to be properly accessed in Oracle RL they must have both a getter and setter. Properties which have a setter but not a getter, that is write-only properties, are not allowed in the Oracle RL "new" syntax.

For example, if a bean Foo only has the method setProp1(int i), then you cannot use the following in Oracle RL:

Foo f = new Foo(prop1: 0)

D.3 Renaming a Dictionary or Dictionary Package

When renaming a dictionary or dictionary package, using JDeveloper Refactor > Rename has no affect on the dictionary or dictionary package name. To change the name of a dictionary or a dictionary package name, you use File > Rename. Do not use Refactor > Rename. The refactor option does not apply to dictionaries or dictionary packages.

Note that this the rename operation changes the name of the dictionary but not the alias. The alias can be changed through the Dictionary Settings dialog. In general, these should be set to the same value. For more information, see Section 2.2.4, "How to View and Edit Dictionary Settings".

For more information, see Section 2.2.5, "How to Rename a Dictionary or Rename a Dictionary Package".

To rename a dictionary that is part of a composite application that uses a Business Rules component, as part of a non-BPEL composite, you can rename a dictionary with the following steps.

To rename a dictionary in a composite application that does not use BPEL, do the following:

To rename a dictionary that is in a composite application with business rules:

	
Select the dictionary file and then select File > Rename to rename the dictionary file.

	
Open the dictionary and change the alias to match the dictionary name, using the Dictionary Settings dialog. For more information, see Section 2.2.4, "How to View and Edit Dictionary Settings".

	
In the project, rename the dictionaryName.decs file to correspond with the new dictionary name.

	
In the project, open the dictionaryName.decs file and change the <path> element value to match the renamed dictionary name.

	
In the project, rename the dictionaryName.componentType file to correspond with the new dictionary name.

	
In the project, open composite.xml, select the Source tab and edit the <component> element name attribute to match the renamed dictionary.

	
In the composite.xml file, edit the <implementation.decision> element src attribute to match the renamed dictionary name, with a .decs extension.

D.4 Runtime NoClassDefFound Error

Sometimes when working with XML facts, you might receive an error of the form:

Exception in thread "main" java.lang.NoClassDefFoundError:

The java.lang.NoClassDefFoundError is very likely due to required classes not in classpath. Try checking the following:

	
Add xml.jar to your classpath when executing.

	
Add the directory where the generated and compiled JAXB classes are placed to the classpath.

D.5 RL Specific Keyword Naming Conflict Errors

Oracle Business Rules escapes RL specific keywords when generating RL from Rules Designer. In most cases, RL specific keywords can be used without causing errors. One exception is using a keyword as the name of a class. This is unlikely for Java classes because by convention they start with an upper case letter and RL specific keywords are all lowercase. For more information, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.

D.6 java.lang.IllegalAccessError from Business Rules Service Runtime

Problem: I receive an error such as the following:

java.lang.IllegalAccessError: tried to access class
com.sun.xml.bind.v2.runtime.reflect.opt.Const from class:...

Reason: This can be due to JAXB 2.1.6 issue 490, caused when unmarshalling incorrect, for example letter characters when float is expected, data as described at the following site,

https://jaxb.dev.java.net/issues/show_bug.cgi?id=490

Workaround: the workaround for this problem is to assign a value to the appropriate element, as shown in Figure D-1 and Figure D-2 where approvalRequired is assigned a default value false().

Figure D-1 Adding an Expression to Initialize a Value for a Business Rules Service Input

[image: Description of Figure D-1 follows]

Figure D-2 Expression Assigned to Input Variable for Business Rules Service

[image: Description of Figure D-2 follows]

D.7 JAXB 1.0 Dictionaries and RL MultipleInheritanceException

Dictionaries which have been migrated from 10.1.3 use JAXB 1.0 instead of JAXB 2.0, which is the default for Oracle Fusion Middleware 11g Release 1 (11.1.1) dictionaries. Because of this use of JAXB 1.0, the migrated dictionaries may contain Element types. If your dictionary has Element types marked as visible, generated RL may throw MultipleInheritanceException.

The solution to this issue is to mark the Element fact types non-visible or remove them from the datamodel. Only the Type classes generated by JAXB should be used to write rules, so there is no functionality loss from deleting the Element types.

D.8 Why Does XML Schema with Underscores Fail JAXB Compilation?

The defined behavior of JAXB is to fail when a name of the form '_' + number is found. In this case JAXB cannot generate an "obvious" Java class name from this string. The default behavior of JAXB for '_' + char is to treat it as a word boundary (underscoreBinding="asWordSeparator"), which means the underscore is stripped and the char is UpperCamelCased. For example, _fooBar is mapped to FooBar.

To fix this problem, you need to provide a schema customization to direct JAXB to generate the names differently. The default value for underscoreBinding is specified as "asWordSeparator", which does not allow an underscore to be used at the beginning of a name.

The global annotation underscoreBinding="asCharInWord" causes the '_' to be preserved in the classname and UpperCamelCase after the number:

<xsd:annotation><xsd:appinfo>
 <jaxb:globalBindings underscoreBinding="asCharInWord" />
</xsd:appinfo></xsd:annotation>

With this global annotation, the mapping for _1foo_bar_baz is _1Foo_Bar_Baz.

D.9 How Are Decision Service Input Output Element Types Restricted?

Using the Decision Service to run business rules with XML schema defining the input, for any given complexType "tFoo" in an XML-Schema file Foo.xsd there can only be one XML-Schema element "foo" of type "tFoo". The Decision Service does not allow you to use two elements "foo" and "bar" of the same type "tFoo.

D.10 How Are Decision Service Input Output Schema Restricted?

When you use the Decision Service a schema must define a complexType or import another schema which defines a complexType. You cannot use schemas which do not define complexType, such as the following:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
 elementFormDefault="qualified">
 <xsd:element name="count" type="xsd:int"/>
</xsd:schema>

D.11 How Do I Handle Java Reserved Names in an Imported Fact Type?

In Oracle Business Rules, when you import fact type properties which would have the same name as a Java language reserved word are excluded. For a complete list of Java reserved words, see

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

A workaround is to rename the getter and setter method pair that produce the excluded property. If these methods names cannot be changed, the methods should be used in rules instead of the properties.

For example, if a property named continue is excluded, you can create rules that use getContinue() and setContinue() methods instead of using the property.You can do this by rewriting a pattern. For example, replace:

fact IncrCount ic && ic.continue == "foo"

with:

fact IncrCount ic && ic.getContinue() == "foo"

For another example, in an action, replace:

[assert new] IncrCount(continue:"bar")

with:

[assign new] IncrCount ic = new IncrCount()
[call] ic.setContinue("bar")
[assert] ic

E Working with Oracle Business Rules and JSR-94 Execution Sets

The specification for the Java Rule Engine API (JSR-94) defines a standard Java runtime API to access a rule engine from a Java SE or Java EE client. You can access Oracle Business Rules using JSR-94.

This chapter includes the following sections:

	
Section E.1, "Introduction to Oracle Business Rules and JSR-94 Execution Sets"

	
Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets"

	
Section E.3, "Using the JSR-94 Interface with Oracle Business Rules"

For more information, see:

	
http://jcp.org/en/jsr/detail?id=94

	
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

E.1 Introduction to Oracle Business Rules and JSR-94 Execution Sets

Oracle Business Rules provides JSR-94 support. This allows you to create more portable rule-enabled applications.

You can create JSR-94 execution sets from Oracle Business Rules rulesets and you can create JSR-94 rule sessions from these execution sets. For more information, see Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets".

You can access Oracle Business Rules rulesets and execute them against the Oracle Business Rules Engine using the JSR-94 API. For more information, see Section E.3, "Using the JSR-94 Interface with Oracle Business Rules".

Oracle Business Rules also provides extensions to the JSR-94 API that you may find useful. For more information, see Section E.3.4, "Using Oracle Business Rules JSR-94 Extensions".

E.2 Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets

To use JSR-94 with rules in RL Language text, you must map the rules to a JSR-94 rule execution set.

A JSR-94 rule execution set (rule execution set) is a collection of rules that are intended to be executed together. You also must register a rule execution set before running it. A registration associates a rule execution set with a URI; using the URI, you can create a JSR-94 rule session.

	
Note:

In Oracle Business Rules, a JSR-94 rule execution set registration is not persistent. Thus, you must register a rule execution set programmatically using a JSR-94 RuleExecutionSetProvider interface.

For more information, see Section E.3.1, "Creating a Rule Execution Set with createRuleExecutionSet".

E.2.1 Creating Rule Execution Set with Oracle Business Rules RL Language Text

You can use JSR-94 with RL Language rulesets saved as text, where the Oracle RL text is directly included in the rule execution set. For more information, see "Using the Extended createRuleExecutionSet to Create a Rule Execution Set" for information about JSR-94 extensions that assist you in including RL Language text.

To create a rule execution set from Oracle Business Rules Oracle RL language text:

	
Specify the RL Language mapping information in an XML document. Table E-1 shows the mapping elements required to construct a rule execution set. Example E-1 shows a sample XML document for mapping RL Language text to a JSR-94 rule execution set.

	
You then use the XML document with the JSR-94 administration APIs to create a rule execution set. The resulting rule execution set is registered with a JSR-94 runtime (using a RuleAdministration instance).

Table E-1 Oracle Business Rules Oracle RL Language Text XML Mapping Elements for JSR-94

	Element	Description
	
<rule-source>

	
Includes an <rl-text> tag containing explicit RL Language text containing an Oracle Business Rules ruleset. Multiple <rule-source> tags can be used to specify multiple rulesets (specified in the order in which they are interpreted).

	
<ruleset-stack>

	
Specifies a list of rulesets that form the initial ruleset stack. The order of the rulesets in the list is from the top of the stack to the bottom of the stack.

	
Note:

In the <rl-text> element the contents must escape XML predefined entities. This includes the characters '&', '>', '<', '"', and '\''.

Example E-1 XML Mapping File for Rulesets Defined in an Oracle RL Program

<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <rl-text>
 ruleset DM {
 fact class carrental.Driver {
 hide property ableToDrive, driverLicNum, licIssueDate, licenceType,
 llicIssueDate, numPreAccidents, numPreConvictions,
 numYearsSinceLicIssued, vehicleType;
 };

 final String DeclineMessage = "Rental declined ";

 public class Decision supports xpath {
 public String driverName;
 public String type;
 public String message;
 }

 function assertXPath(String package,
 java.lang.Object element, String xpath) {
 //RL literal statement
 main.assertXPath(package, element, xpath);
 }

 function println(String message) {
 //RL literal statement
 main.println(message);
 }

 function showDecision(DM.Decision decision) {
 //RL literal statement
 DM.println("Rental decision is " + decision.type +
 " for driver " + decision.driverName +
 " for reason " + decision.message);
 }
 }
 </rl-text>
 </rule-source>
 <rule-source>
 <rl-text>
 ruleset vehicleRent {
 rule UnderAge {
 priority = 0;
 if ((fact carrental.Driver v0_Driver &&
 (v0_Driver.age < 19))) {
 DM.println("Rental declined: " + v0_Driver.name +
 " Under age, age is: " + v0_Driver.age);
 retract(v0_Driver);
 }
 }
 }
 </rl-text>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

E.2.2 Creating a Rule Execution Set from Oracle RL Text Specified in a URL

You can use JSR-94 with Oracle RL rulesets specified using a URL. For more information, see "Using the Extended createRuleExecutionSet to Create a Rule Execution Set" for information about JSR-94 extensions that assist you in specifying a URL.

To create a rule execution set from Oracle RL text specified in a URL:

	
Specify the Oracle RL mapping information in an XML document. Table E-2 shows the mapping elements required to construct a rule execution set. Example E-2 shows a sample XML document for mapping Oracle RL text to a JSR-94 rule execution set.

	
You then use the XML document with the JSR-94 administration APIs to create a rule execution set. The resulting rule execution set is registered with a JSR-94 runtime (using a RuleAdministration instance).

Table E-2 Oracle Business Rules Oracle RL URL XML Mapping Elements for JSR-94

	Element	Description
	
<rule-source>

	
Includes an <rl-url> tag containing a URL that specifies the location of RL Language text. Multiple <rule-source> tags can be used to specify multiple rulesets (in the order in which they are interpreted).

	
<ruleset-stack>

	
Specifies a list of rulesets that form the initial ruleset stack. The order of the rulesets in the list is from the top of the stack to the bottom of the stack.

Example E-2 XMP Mapping File for Rulesets Defined in a URL

<?xml version="1.0" encoding="UTF-8"?>
<rule-execution-set xmlns="http://xmlns.oracle.com/rules/jsr94/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0">
 <name>CarRentalDemo</name>
 <description>The Car Rental Demo</description>
 <rule-source>
 <rl-url>
 file:rl/DM.r1
 </rl-url>
 </rule-source>
 <rule-source>
 <rl-url>
 file:r1/VehicleRent.r1
 </rl-url>
 </rule-source>
 <ruleset-stack>
 <ruleset-name>vehicleRent</ruleset-name>
 </ruleset-stack>
</rule-execution-set>

E.2.3 Creating Rule Execution Sets with Rulesets from Multiple Sources

A rule execution set may contain rules that are derived from multiple sources and the sources may be a mix of Rules Designer defined rulesets and RL Language rulesets. In this case, the XML element <rule-execution-set> set contains multiple <rule-source> elements, one for each source of rules. You must list each <rule-source> in the order in which they are to be interpreted in Rules Engine.

	
Note:

For this Oracle Business Rules release, a JSR-94 rule execution set can only reference one Rules Designer dictionary.

E.3 Using the JSR-94 Interface with Oracle Business Rules

This section describes some Oracle Business Rules specific details for JSR-94 interfaces.

E.3.1 Creating a Rule Execution Set with createRuleExecutionSet

The RuleExecutionSetProvider and LocalRuleExecutionSetProvider interfaces in javax.rules.admin include the createRuleExecutionSet to create a RuleExecutionSet object.

For the remaining createRuleExecutionSet methods, the first argument is interpreted as shown in Table E-3.

Table E-3 First Argument Types for createRuleExecutionSet Method

	Argument	Description
	
org.w3c.dom.Element

	
Specifies an instance of the <rule-execution-set> element from the configuration schema.

	
java.lang.String

	
Specifies a URL that specifies the location of an XML document that is an instance of the <rule-execution-set> element from the configuration schema.

	
java.io.InputStream

	
Specifies an input stream that is used to read an XML document that is an instance of the <rule-execution-set> element from the configuration schema.

	
java.io.Reader

	
Specifies a character reader that is used to read an XML document that is an instance of the <rule-execution-set> element from the configuration schema.

	
Note:

JSR-94 also includes createRuleExecutionSet methods that take a java.lang.Object argument, which is intended to be an abstract syntax tree for the rule execution set. In Oracle Business Rules for Oracle Fusion Middleware 11g Release 1 (11.1.1), using these methods with this argument is not supported. Invoking these methods with a java.lang.Object argument gives a RuleExecutionSetCreateException exception.

The second argument to the createRuleExecutionSet methods is a java.util.Map of vendor-specific properties.

E.3.2 Creating a Rule Session with createRuleSession

Clients create a JSR-94 rule session using the createRuleSession method in the RuleRuntime class. This method takes a java.util.Map argument of vendor-specific properties. This argument can be used to pass in any of the properties defined for the Oracle Business Rules oracle.rules.rl.RuleSession. If a rule execution set contains URL or repository rule sources, the rules from those sources are fetched on the creation of each new RuleSession.

E.3.3 Working with JSR-94 Metadata

JSR-94 allows for metadata for rule execution sets and rules within a rule execution set. The Oracle Business Rules implementation does not add any additional metadata beyond what is in the JSR-94 specification. The rule execution set description is an optional item and thus may not be present. If it is not present, the empty string is returned. For rules, only the rule name is available and the description is initialized with an empty string.

E.3.4 Using Oracle Business Rules JSR-94 Extensions

This section covers the following extensions provided in the JSR-94 implementation classes.

	
Using the Extended createRuleExecutionSet to Create a Rule Execution Set

	
Invoking an RL Language Function in JSR-94

E.3.4.1 Using the Extended createRuleExecutionSet to Create a Rule Execution Set

Oracle Business Rules provides a helper function to facilitate creating the XML control file required as input to create a RuleExecutionSet.

The helper method createRuleExecutionSet is available in the RLLocalRuleExecutionSetProvider class. The createRuleExecutionSet method has the following signature:

RuleExecutionSet createRuleExecutionSet(String name,
 String description,
 RuleSource[] sources,
 String[] rulesetStack,
 Map properties)

Table E-4 describes the createRuleExecutionSet arguments.

Table E-4 createRuleExecutionSet Arguments

	Argument	Description
	
name

	
Specifies the name of the rule execution set.

	
description

	
Specifies the description of the rule execution set.

	
sources

	
Specifies an array of specifications for the sources of rules. The RuleSource is an interface that the following classes implement:

	
RLTextSource: RL Language text for RL Language text.

	
RLUrlSource: RL Language URL for a URL to RL Language text.

For more information, see the oracle.rules.jsr94.admin package in Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

	
rulesetstack

	
Specifies the initial contents of the RL Language ruleset stack to be set before each time the rules are executed. The contents of the array should be ordered from the top of stack (0th element) to the bottom of stack (last element).

	
properties

	
Oracle specific properties.

E.3.4.2 Invoking an RL Language Function in JSR-94

In a stateful interaction with a JSR-94 rule session, a user may want the ability to invoke an arbitrary RL Language function. The class that implements the JSR-94 StatefulRuleSession interface provides access to the callFunction methods in the oracle.rules.rl.RuleSession class.

Example E-3 shows how you can to invoke an RL Language function with no arguments in a JSR-94 StatefulRuleSession.

Example E-3 Using CallFunction with a StatefulRuleSession

import javax.rules.*;
...
StatefulRuleSession session;
...
((oracle.rules.jsr94.RLStatefulRuleSession) session).callFunction("myFunction");

F Working with Rule Reporter

This appendix includes the following sections:

	
Section F.1, "Introduction to Working with Rule Reporter"

	
Section F.2, "Using Rule Reporter Command Line Interface"

	
Section F.3, "Using Rule Reporter with Java"

F.1 Introduction to Working with Rule Reporter

As the size and complexity of an Oracle Business Rules dictionary grows, documenting the dictionary and communicating with others about the contents of the rules dictionary can be important. Using the RuleReporter class you can create lists or reports of the contents of a rules dictionary. You can use these reports to document your design and to communicate about the dictionary contents.

There are two ways to use Rule Reporter:

	
Execute RuleReporter on the command line

	
Create custom reports using the RuleReporter API in a Java program

Rule Reporter is written in the Groovy programming language using the MarkupBuilder class, making it easy to create custom reporters whether you simply want to have differently formatted HTML or use an entirely different markup language. Groovy is a Java-like dynamic language which runs on the JVM and interacts seamlessly with Java objects.

F.1.1 What You Need to Know About Rule Reporter HTML Style Sheets

The JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1/reporter.jar file contains style sheet oracle/rules/tools/reporter/style.css. When you place this file in the same directory as the HTML output file that Rule Reporter generates, this provides definitions to render the page. You can modify the style sheet to change the HTML layout.

F.1.2 What You Need to Know About RuleReporter API

For complete details on the RuleReporter API, see the Oracle Fusion Middleware Java API Reference for Oracle Business Rules.

F.1.3 What You Need to Know About Rule Reporter Dependent Jar Files

The command-line or Java API use of Rule Reporter needs to have the classpath include all required JAR files.

F.2 Using Rule Reporter Command Line Interface

You can execute a command line script to use Rule Report to list the contents of a dictionary.

F.2.1 How to List the Contents of a Dictionary with Rule Reporter Command Line

You can execute a command line script to use Rule Report to list the contents of a dictionary.

To list the contents of a dictionary with Rule Reporter using the command line:

	
Open a terminal shell window on your system.

	
Update your classpath to include RuleReporter dependencies as Example F-1 shows.

For more information, see Section F.1.3, "What You Need to Know About Rule Reporter Dependent Jar Files".

	
Run RuleReporter with the following command line as Example F-1 shows:

java oracle.rules.tools.reporter.RuleReporter DICT-NAME DEST-FILE LINK-PATHS

Where:

	
DICT-NAME: the name of the rules dictionary you want to generate a report on.

For example: C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\OracleRules1.rules.

	
DEST-FILE: the name of the destination file for the generated Rule Reporter output, usually suffixed with .html.

For example: C:\Temp\report.html.

	
LINK-PATHS: a list of the locations on the file system which may contain dictionaries that DICT-NAME links to.

For example: C:\Temp.

If DICT-NAME does not link to any dictionaries, you must still specify at least one path.

Example F-1 shows how to generate a report for a dictionary.

Example F-1 Executing RuleReporter on the Command Line

C:\> set CLASSPATH=%CLASSPATH%;C:\Oracle\Middleware\jdeveloper\modules\oracle.adf.model_
11.1.1\adfm.jar;C:\Oracle\Middleware\jdeveloper\modules\oracle.adf.model_
11.1.1\groovy-all-1.5.4.jar;C:\Oracle\Middleware\wlserver_
10.3\server\lib\ojdbc6.jar;C:\Oracle\Middleware\jdeveloper\soa\modules\oracle.rules_
11.1.1\rules.jar;C:\Oracle\Middleware\jdeveloper\modules\oracle.xdk_11.1.1\xmlparserv2.jar

C:\> java oracle.rules.tools.reporter.RuleReporter
C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\OracleRules1.rules C:\Temp\report.html C:\Temp

	
Optionally, copy the JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1\reporter.jar file oracle/rules/tools/reporter/style.css

to the same directory as the HTML output file. In this example, copy the style.css file to C:/Temp.

This causes a web browser to use the definitions to render the page. You can modify the style sheet to change the visual layout of the HTML as shown in Figure F-1.

Figure F-1 RuleReporter report.html with style.css

[image: Description of Figure F-1 follows]

F.3 Using Rule Reporter with Java

You can quickly and easily create a basic report of the contents of a dictionary using a Java application with the oracle.rules.tools.reporter.RuleReporter class.

F.3.1 How to List the Contents of a Dictionary Using Rule Reporter with Java

You can use the RuleReporter class to list the contents of a dictionary. This class, oracle.rules.tools.reporter.RuleReporter takes several arguments, as shown:

 RuleReporter ruleReporter = new RuleReporter(
 DICT-NAME,
 DEST-FILE,
 LINK-PATHS
);

Where:

	
DICT-NAME: the name of the rules dictionary you want to generate a report on.

For example: C:\\JDeveloper\\mywork\\GradeApp\\Grades\\oracle\\rules\\grades\\OracleRules1.rules.

	
DEST-FILE: the name of the destination file for the generated Rule Reporter output, usually suffixed with .html.

For example: C:\\Temp\\report.html.

	
LINK-PATHS: a list of the locations on the file system which may contain dictionaries that DICT-NAME links to.

For example: new ArrayList<String>(Arrays.asList("C:\\Temp")).

If DICT-NAME does not link to any dictionaries, you must still specify at least one path.

When you supply these arguments and call the RuleReporter.report() method, this produces a dictionary report for the specified dictionary.

To list the contents of a dictionary using rule reporter with Java:

	
Start Oracle JDeveloper, this displays the Oracle JDeveloper start page.

	
In the Application Navigator, click New Application if no applications have been created, or if applications have been created, click Applications and from the dropdown list choose New Application.

	
In the Create Application wizard, enter the name and location for the application:

	
In the Application Name field, enter an application name. For example, enter ReportApplication.

	
Enter or browse for a directory name, or accept the default.

	
Enter an application package prefix or accept the default, no prefix.

This should be a globally unique prefix and commonly uses a domain name owned by your company. The prefix, followed by a period, applies to objects created in the initial project of an application.

In this sample, you use the prefix com.example.

	
For this Oracle Business Rules project, select Generic Application for the application template, as shown in Figure F-2.

Figure F-2 Adding the Report Application

[image: Description of Figure F-2 follows]

	
Click Next.

	
In the Create Generic Application wizard - Name your Generic project page, enter the name and location for the project as shown in Figure F-3:

	
In the Project Name field, enter an application name. For example, enter ReportProject.

	
Enter or browse for a directory name, or accept the default.

	
On the Project Technologies tab, in the Available list, select Java and click Add to add it to the Selected area.

Figure F-3 Specifying Technologies in a Project

[image: Description of Figure F-3 follows]

	
Click Finish.

	
In Oracle JDeveloper, select the project named ReportProject.

	
Right-click and from the dropdown list select Project Properties.

	
Select the Libraries and Classpath item.

	
Add the libraries Adfm Designtime API, JAXB, ADF Model Runtime, Oracle XML Parser v2, Oracle JDBC, and Oracle Rules.

	
Click OK.

	
In Oracle JDeveloper, select the project named ReportProject.

	
Right-click and from the dropdown list select New.

	
In the New Gallery, in the Categories area, select General.

	
In the New Gallery, in the Items area, select Java Class.

	
Click OK.

	
In the Create Java Class window, configure the following properties as shown in Figure F-4:

	
Enter the Name value Report.

	
Check the following checkboxes:

	
Public

	
Main Method

Figure F-4 Creating the Report.java Class

[image: Description of Figure F-4 follows]

	
Click OK.

Oracle JDeveloper displays the Java Class, as shown in Example F-2.

Example F-2 Code Created for New Report.java Class

package com.example;

public class Report {
 public static void main(String[] args) {
 Report report = new Report();
 }
}

	
Use the RuleReporter class as shown in Example F-3. Replace the first argument to the RuleReporter constructor with the location of your dictionary.

Example F-3 Report.java Completed

package com.example;

import java.util.List;
import java.util.Arrays;
import java.util.ArrayList;

import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.tools.reporter.RuleReporter;

public class Report {
 public Report() throws SDKException {
 try {

 RuleReporter ruleReporter = new RuleReporter(
 "C:\\JDeveloper\\mywork\\GradeApp\\Grades\\oracle\\rules\\grades\\OracleRules1.rules",
 "C:\\Temp\\report.html",
 Arrays.asList("C:\\Temp")
);

 ruleReporter.report();

 } catch (Exception e) {
 System.out.println(e);
 }
 }

 public static void main(String[] args) throws SDKException {
 Report report = new Report();
 }
}

	
In the Application Navigator, right-click ReportProject and select Make.

	
In the Application Navigator, right-click Report.java and select Run.

In this example, the Report.java class generates the report in C:\Temp\report.html

	
Optionally, copy the JDEV_INSTALL/jdeveloper/soa/modules/oracle.rules_11.1.1\reporter.jar file oracle/rules/tools/reporter/style.css style sheet to the same directory as the HTML output file. In this example, copy the style.css file to C:/Temp.

This causes a web browser to use the definitions to render the page. You can modify the style sheet to change the visual layout of the HTML as shown in Figure F-5.

Figure F-5 RuleReporter report.html with style.css

[image: Description of Figure F-5 follows]

Index

A B C D E F G H I J K L M N O P R S T U V W X Y

A

	actions
	
	advanced, 4.7.3
	area, 5.1.1.2
	cell, 5.1.1.2
	decision table, 5.1.1.2
	definition, 4.3.5
	do nothing value, 5.1.2
	fact type, 10.1.2

	active option, 4.5.3
	addDaysTo JavaDate function, B.2
	addDaysTo XMLDate function, B.3
	addHoursTo JavaDate function, B.2
	addHoursTo XMLDate function, B.3
	addMillisecondsTo JavaDate function, B.2
	addMillisecondsTo XMLDate function, B.3
	addMinutesTo JavaDate function, B.2
	addMinutesTo XMLDate function, B.3
	addMonthsTo JavaDate function, B.2
	addMonthsTo XMLDate function, B.3
	addSecondsTo JavaDate function, B.2
	addSecondsTo XMLDate function, B.3
	addWeeksTo JavaDate function, B.2
	addWeeksTo XMLDate function, B.3
	addYearsTo JavaDate function, B.2
	addYearsTo XMLDate function, B.3
	ADF Business Components Fact
	
	action fact type, 10.1.2
	creating, 10.3
	definition, 10.1
	importing, 3.5.1
	key_values, 3.5.4, 10.1.1
	types, 3.5

	ADF Business Components Fact ViewRowImpl, 3.5
	advanced actions, 4.7.3
	advanced mode, 4.5.2
	advanced settings, 4.5
	aggregates
	
	average, 4.7.4
	collection, 4.7.4
	count, 4.7.4
	maximum, 4.7.4
	minimum, 4.7.4
	sum, 4.7.4

	aliases, A.1.3
	allow gaps option, 5.3.1.3, 5.3.5
	application-specific dictionary, 2.2.1
	auto override conflict resolution
	
	setting option, 5.3.7, 5.3.8

	average aggregate, 4.7.4

B

	batch invocation, 10.2.1.4
	BigDecimal type, 3.2.4
	BigInteger type, 3.2.4
	BPEL
	
	decision functions, 6.3.3
	Human Tasks, 11.2
	java.lang.IllegalAccessError, D.6
	service component, 11.2

	bucketsets
	
	adding Enum type, 3.6.3
	adding list of ranges (Range), 3.6.2
	adding list of values (LOV), 3.6.1
	allowed in actions field, 3.6.7
	associating with facts, 3.7
	creating, 3.6
	definition, 1.1.4, 3.1
	duplicate bucket value, 3.6.6
	global, 3.6
	Include Disallowed Buckets in Tests field, 3.6.7
	list of values (LOV) adding, 3.6.1
	local, 3.6

	built-in dictionary, 2.2.1
	
	Java wrappers, 3.2.4

	business rules
	
	activity, 6.3.3
	decision function, 6.3.3
	definition, 1.1
	deployment and runtime, 9.6
	dictionary, 1.1.8
	in a Java EE application, 9.1
	RL Language, 1.2.3

C

	calendar type
	
	with CurrentDate fact, 4.9

	check rule flow option, 6.2.1
	classpath
	
	Java facts, 3.3.1
	Rule Reporter, F.2.1

	collection aggregate, 4.7.4
	combined dictionary, 2.2.1
	compare duration function, B.1, B.5
	com.sun.xml.bind.v2.runtime.reflect.opt.Const errors, D.6
	condition expressions
	
	cell, 5.1.1.1
	definition, 5.1.1.1

	conflict analysis, 5.3.1.4
	
	decision table, 5.3.6

	conflict policy option, 5.3.1.4
	conflict resolution, 5.3.1.4
	constant option for globals, 2.3.3
	count aggregate, 4.7.4
	CurrentDate fact, 4.9

D

	data model
	
	definition, 2.1
	sharing, 2.2.8

	data types
	
	bucketset, 1.1
	fact properties, 1.1

	dates
	
	reasoning with CurrentDate fact, 4.9

	daysBetween duration function, B.1, B.5
	decision functions, 6.1, 6.3
	
	adding, 6.2
	adding to a dictionary, 6.2.1
	as decision service, 11.2.2
	BPEL, 6.3.3
	Business Rule activity, 6.3.3
	calling with Java decision point interface, 10.2.2
	check rule flow option, 6.2.1
	definition, 1.1.6
	rule firing limit option, 6.3.2
	stateless option, 6.2.1
	understanding, 6.1
	Web service, 6.2.1, 6.2.1, 6.3.4

	decision point API
	
	batch invocation, 10.2.1.4
	definition, 1.1.7
	production dictionary, 7.5
	rules SDK, 7.1.1
	runtime properties, 10.2.1.2
	transaction, 10.2.1.1
	with MDS repository, 7.5

	decision service
	
	decision function, 11.2.2

	decision table
	
	action cell, 5.1.1.2
	
	do nothing value, 5.1.2

	actions, advanced, 4.7.3
	active option, 4.5.3
	adding a rule, 5.2.4
	adding actions, 5.2.3
	adding condition expressions, 5.2.2
	advanced mode, 4.5.2
	advanced settings, 4.5
	aggregates, 4.7.4
	allow gaps option, 5.3.1.3, 5.3.5
	auto override conflict resolution, 5.3.7, 5.3.8
	cell values, 5.1.2
	condition expression, 5.1.1.1
	condition expression cell, 5.1.1.1
	conflict analysis, 5.3.1.4, 5.3.6
	conflict policy option, 5.3.1.4
	conflict resolution, 5.3.1.4
	creating, 5.2
	decision tree, 5.1.1.3
	definition, 1.1.3
	do not care values, 5.1.2
	effective dates, 4.5.6
	expression builder, 4.10
	find gaps, 5.3.1.3, 5.3.5
	gap analysis, 5.3.1.3, 5.3.5
	logical option, 4.5.4
	move operation, 5.3.1.2
	priority, 4.5.5
	rules, 5.1.1.3
	show conflicts, 5.3.1.4
	sibling cell, 5.3.1.1
	understanding, 5.1
	validation, 4.4.3

	decision tree, 5.1.1.3
	DecisionPoint class, 7.1.1
	DecisionPointBuilder class, 7.1.1
	DecisionPointInstance class, 7.1.1
	.decs file, 11.2.1.1
	deployment
	
	EAR file, 9.6.4
	MAR file, 9.6.3

	dictionary
	
	application-specific, 2.2.1
	built-in, 2.2.1
	combined, 2.2.1
	data model sharing, 2.2.8
	decision function, 6.1, 6.2.1, 6.3
	definition, 1.1.8, 1.1.8, 2.1, 2.2
	globals, 2.3
	link, 2.2.1
	main, 2.2.1
	naming conventions, 2.2.8, A.1.2
	package, 2.2.8
	reading
	
	UTF-8 character encoding, 7.3.2

	renaming, 2.2.5, D.3
	runtime editing, 12
	validation, 4.4, 4.4.1, 4.4.4
	viewing and editing settings, 2.2.4

	dictionary links
	
	updating, 2.2.7

	do nothing value, 5.1.2
	Double type, 3.2.4
	duplicate bucket values, 3.6.6
	duration
	
	compare function, B.1, B.5
	daysBetween function, B.1, B.5
	hoursBetween function, B.1, B.5
	millisecondsBetween function, B.1, B.5
	minutesBetween function, B.1, B.5
	monthsBetween function, B.1, B.5
	secondsBetween function, B.1, B.5
	yearsBetween function, B.1, B.5

E

	EAR file, 9.6.4
	effective dates, 4.2.2, 4.5.6
	expression
	
	constant, 2.3.3

	expression builder
	
	about, 4.10

F

	fact type
	
	ADF Business Components, 3.5
	Java, 3.3
	RL, 3.4
	XML, 3.2.1

	facts
	
	and working memory, 1.3.3
	associating with bucketsets, 3.7
	definition, 1.1.4, 3.1

	FileInputStream
	
	UTF-8, 7.3.2

	filtering rules, 4.2.3
	final option for globals, 2.3.3
	Float type, 3.2.4
	forward-chaining system, 1.3
	frequently asked questions, C
	fromDateString JavaDate function, B.2
	fromDateTimeString JavaDate function, B.2
	fromString XMLDate function, B.3
	fromTimeString JavaDate function, B.2
	functions
	
	decision, 6.3
	oracle business rules, 2.5
	testing, 8, 8.1.1

G

	gap analysis, 5.3.1.3, 5.3.5
	global bucketset, 3.6
	globals
	
	constant option, 2.3.3
	defined, 2.3
	final option, 2.3.3

H

	hoursBetween duration function, B.1, B.5
	Human Tasks, 11.2

I

	importing XML schema, 3.2.3
	Include Disallowed Buckets in Tests option, 3.6.7
	inference cycle, 1.3, 1.3
	Integer type, 3.2.4

J

	Java EE application
	
	with business rules, 9.1

	Java Fact
	
	adding, 3.3.1
	getter method visibility, D.1
	setter method visibility, D.1
	types, 3.3
	using a Property Change Listener with, C.5

	JavaDate
	
	addDaysTo function, B.2
	addHoursTo function, B.2
	addMillisecondsTo function, B.2
	addMinutesTo function, B.2
	addMonthsTo function, B.2
	addSecondsTo function, B.2
	addWeeksTo function, B.2
	addYearsTo function, B.2
	fromDateString function, B.2
	fromDateTimeString function, B.2
	fromTimeString function, B.2
	subtractDaysFrom function, B.2
	subtractHoursFrom function, B.2
	subtractMillisecondsFrom function, B.2
	subtractMinutesFrom function, B.2
	subtractMonthsFrom function, B.2, B.2, B.2
	subtractYearsFrom function, B.2, B.2, B.2
	toDateTimeString function, B.2
	toTimeString function, B.2

	java.lang.IllegalAccessError, D.6
	java.lang.NoClassDefFoundError, D.4
	JAXB
	
	generated classes, 3.2.1
	issue 490 troubleshooting, D.6
	limitations with XML facts, 3.2.4
	with XML facts, 3.2

	JSR-94
	
	definition, E
	extensions, E.3.4
	rule execution set, E.2
	with RL Language text, E.2.1
	with URL, E.2.2

K

	key_values, 3.5.4, 10.1.1

L

	links
	
	dictionary, 2.2.1
	to a dictionary in the same application, 2.2.6

	list tests, 4.8
	local bucketset, 3.6
	logical option, 4.5.4, 4.5.4
	Long type, 3.2.4

M

	main dictionary, 2.2.1
	MAR file, 9.6.3
	matched fact naming, 4.7.2
	maximum aggregate, 4.7.4
	metadata
	
	.decs file, 11.2.1.1
	EAR file, 9.6.4
	MAR file, 9.6.3
	service component, 11.1, 11.2.1.1

	millisecondsBetween duration function, B.1, B.5
	minimum aggregate, 4.7.4
	minutesBetween duration function, B.1, B.5
	monthsBetween duration function, B.1, B.5
	move operation, 5.3.1.2

N

	named priority, 4.5.5
	naming conventions
	
	alias, A.1.3
	dictionary, 2.2.8, A.1.2
	matched fact, 4.7.2
	RL Language keywords, D.5
	Rule Designer, A.1.1
	rulesets, A.1.1
	XML schema target package name, A.1.4

	nested tests, 4.6
	numeric priority, 4.5.5

O

	Oracle Business Rules Function, 2.5
	
	testing, 8, 8.1.1

	Oracle Business Rules function
	
	creating, 2.5.2

	Oracle Business Rules RL Language. See RL Language
	Oracle Business Rules Rules Engine. See Rules Engine
	Oracle Business Rules SDK2. See SDK
	Oracle Business Rules service component. See service component

P

	pattern binding variable, 4.7.2
	pattern matching, 4.7.1
	priority
	
	default, 4.5.5
	definition, 4.5.5
	high, 4.5.5
	higher, 4.5.5
	highest, 4.5.5
	integer value, 4.5.5
	low, 4.5.5
	lower, 4.5.5
	lowest, 4.5.5
	medium, 4.5.5
	named, 4.5.5
	numeric, 4.5.5
	order, C.12

	Property Change Listener, C.5
	prototying
	
	rules, 3.4

R

	range tests, 4.3.3
	reload XML facts from updated schemas, 3.2.3
	renaming
	
	dictionary, 2.2.5

	Rete algorithm, 1.3.2
	RL Fact
	
	adding, 3.4.1
	types, 3.4

	RL Language
	
	definition, 1.2.3, 1.2.3
	self-join, C.4

	rule language. See RL Language
	Rule Reporter
	
	classpath, command line, F.2.1
	command line, F.2.1

	RuleDictionary
	
	UTF-8 character encoding, 7.3.2

	rules
	
	actions, 1.1.2, 4.3.5
	active option, 4.5.3
	adding actions, 4.3.5, 4.3.5
	advanced mode, 4.5.2
	
	actions, 4.7.3
	aggregates, 4.7.4
	matched fact naming, 4.7.2
	pattern matching, 4.7.1
	setting, 4.7.5
	simple tree mode, 4.8.1.1
	tree mode, 4.8.1

	advanced settings, 4.5, 4.5
	aggregate, 4.7.1
	conflicts, C.12
	creating, 4.3.1
	data driven, 1.3
	definition, 1.1, 4.1
	effective dates, 4.5.6
	engine, 1.2.1, 1.2.2
	expression builder, 4.10
	filtering, 4.2.3
	firing, 1.3
	for each case where, 4.7.1
	forward-chaining, 1.3
	generating reports with SDK, F.1
	list tests, 4.8
	logical option, 4.5.4
	nested tests, 4.6
	pattern binding variable, 4.7.2
	pattern block, 4.7.1
	priority, 4.5.5, C.12
	prototyping, 3.4
	range tests, 4.3.3
	reporter, F.1
	rule actions, 1.1
	rule conditions, 1.1, 1.1.1
	SDK, 1.2.4
	service component, 11.1
	set tests, 4.3.4
	testing, 8, 8.1.1
	tests, 4.3.2
	there is a case where, 4.7.1
	there is no case where, 4.7.1
	tree mode, 4.8.1
	validation, 4.4.2

	Rules Designer
	
	introduction, 1.2.5
	rule actions, 1.1.2
	rule conditions, 1.1.1
	rules, 1.1
	service component metadata, 11.2
	WSDL, 11.2

	Rules Engine
	
	architecture, 1.3
	definition, 1.2.1, 1.2.2

	rules SDK
	
	decision point API, 7.1.1
	definition, 1.2.4

	rulesets
	
	creating, 4.2.1
	definition, 1.1.5, 4.1
	effective dates, 4.2.2
	filtering, 4.2.3
	naming, A.1.1

S

	SDK
	
	definition, 1.2.4, 1.2.4
	generating reports, F.1
	rule reporter, F.1

	secondsBetween duration function, B.1, B.5
	self-join in Oracle RL, C.4
	service component
	
	BPEL, 11.2
	definition, 1.2.1, 11
	Human Tasks, 11.2
	metadata, 11.1, 11.2.1.1
	rules, 11.1
	SOA composite application integration, 11.2
	standalone component, 11.2
	Web service, 11.1, 11.1

	set tests, 4.3.4
	Short type, 3.2.4
	simple tree mode, 4.8.1.1
	SOA Composer
	
	application, 12
	Bookmarkable Link, 12.3.1
	commit menu, 12.5
	dictionary path, 12.3.3
	edit menu, 12.4
	open menu, 12.3

	SOADesigner role
	
	SOA Composer
	
	authentication and SOADesigner role, 12.2.1

	stateless option
	
	decision functions, 6.2.1

	subtractDaysFrom JavaDate function, B.2
	subtractDaysFrom XMLDate function, B.3
	subtractHoursFrom JavaDate function, B.2
	subtractHoursFrom XMLDate function, B.3
	subtractMillisecondsFrom JavaDate function, B.2
	subtractMillisecondsFrom XMLDate function, B.3
	subtractMinutesFrom JavaDate function, B.2
	subtractMinutesFrom XMLDate function, B.3
	subtractMonthsFrom JavaDate function, B.2
	subtractMonthsFrom XMLDate function, B.3
	subtractSecondsFrom JavaDate function, B.2
	subtractSecondsFrom XMLDate function, B.3
	subtractWeeksFrom JavaDate function, B.2
	subtractWeeksFrom XMLDate Function, B.3
	subtractYearsFrom JavaDate function, B.2, B.2
	subtractYearsFrom XMLDate function, B.3
	sum aggregate, 4.7.4

T

	testing
	
	rules, 8, 8.1.1
	with a test function, 8, 8.1.1

	tests
	
	in rules, 4.3.2
	list, 4.8
	range, 4.3.3
	set, 4.3.4

	toDateString JavaDate function, B.2
	toDateTimeString JavaDate function, B.2
	toTimeString JavaDate function, B.2
	transactions, 10.2.1.1
	tree mode
	
	creating tree mode rules, 4.8.2
	simple, 4.8.1.1
	with decision tables, 4.8.1
	with rules, 4.8.1

	troubleshooting, D
	
	getter method visibility, D.1
	java.lang.IllegalAccessError, D.6
	java.lang.NoClassDefFoundError, D.4
	renaming dictionary, D.3
	setter method visibility, D.1

U

	Unicode characters, 7.3.2
	updated XML schema with XML facts, 3.2.3
	UTF-8 characters, 7.3.2

V

	validation
	
	data model, 4.4.1
	decision table, 4.4.3
	dictionaries, 4.4, 4.4.1, 4.4.4
	rules, 4.4.2

	variable, 4.7.2
	visibility
	
	getter methods, D.1
	setter methods, D.1

W

	Web service
	
	decision function, and, 6.2.1, 6.2.1, 6.3.4
	service component, 11.1, 11.1
	WSDL, 11.1, 11.2

	WebDAV repository support, C.16
	weeksBetween duration function
	
	duration
	
	weeksBetween function, B.1, B.5

	working memory, 1.3.3
	WSDL
	
	Rules Designer, 11.2
	service component metadata, 11.1

X

	XML Fact
	
	adding, 3.2.1
	java.lang.NoClassDefFoundError, D.4
	JAXB-generated classes, 3.2.1
	reload XML facts from updated schemas, 3.2.3
	support XPath assertion, 3.2.2
	XPath, 3.2.2

	XMLDate
	
	addDaysTo function, B.3
	addMillisecondsTo function, B.3
	addMinutesTo function, B.3
	addMonthsTo function, B.3
	addSecondsTo function, B.3
	addWeeksTo function, B.3
	addYearsTo function, B.3
	fromString function, B.3
	subtractDaysFrom function, B.3
	subtractHoursFrom function, B.3
	subtractMillisecondsFrom function, B.3
	subtractMinutesFrom function, B.3
	subtractMonthsFrom function, B.3
	subtractSecondsFrom function, B.3
	subtractWeeksFrom function, B.3
	subtractYearsFrom function, B.3

	XMLDate addHoursTo function, B.3
	XPath
	
	RL program, E.2.1
	support assertion, 3.2.2
	XML Fact, 3.2.2

Y

	yearsBetween duration function, B.1, B.5

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/rtdt_5.gif
ORACLE’ SOA Composer @ Bockmarkable Link Logout ©

Logged in as workspacel

AdvancedRules.rules

—
(x) Globals () lobals

7 Bucketsets @

Rulesets [ome pescrption [value [pucketset [ryee T

© ruser 1) temn st oo Rangets m
@ resss () obal 2 abe 5

= (6) Humber OF Rows el 2420 s i
@ Thsis arealylon

© Ruleset s
© Ruleset 6
© Ruleset 7
© Ruleset 8
© Ruleset 9
£ Ruleset_10
© Ruleset_11
© Ruleset_12
© Ruleset_13 < >
© Ruleset_14
© Ruleset_is

char

N »

OEBPS/img/orderapp26.gif
=l & Farm_base_domain

#Application Deployments

son

88 sosa (Adminserver)
of AutoloanComposte [2.
off soacompostet [1.0]
off soACompositet [4.0

£ webloge bomain

Metadata Repostaories

User Messaging serice

offf 50a Composite v Page Refreshed Mar 25, 2009 5:
Rurring rstances 0 | Totl 5 | Actve | Retie shutoown... || Test | | setngs.. - (@ @ |
Dashboard | Instances | Fauks snd Rejcted Messages | Unit Tests | Polies
ERecent Instances
Show Only Running Instances [Running 0 Totsl 3
Instance 10 Name Comversation > state StatTine
20000 1zamzsH0540 e 25, 2003 S08:24 it
20007 szamnzsarrass e 25, 2003 555,00 it
20006 1zaenzssss3s e 25, 2008 4:53:06 it
U] »showal

ERecent Faults and Rejected Messages

Shaw orly system Fauks

Ertor Message Recovery

o Fauks found

 showal

EComponent Metrics

Composte Instance

Fault Tie FautLocation <

Logs

st pmeoT 0

OEBPS/img/deccomparch.gif
Decision Service 1

Decision Service 2

Decision Service 3

| Reuest-

| Reuest-

| Reuest-

Decision Service N

st

Fules
Engine

Decision Compaert
Metadata

Stateless Rule Session
Pool

Stateful Rule Session
Cache

Depoyment aritacts
(Generated
JAXB Classes)

OEBPS/img/grade_app7.gif
radngRules.res

v Des @0
e —
? o e J4-x
b rncions St R 4
b S R T
£ nters wiei S XaviEiR GZEA
o © conatans m w w© o .
2 I . > ¢ 5 5
& Decision Functions.
wesets & R
 Ruleset_t
i
ey
i
L.
==
==
==
==
==
=3

OEBPS/img/orderapp13a.gif
' AutoLoanProcess. bpel

vipEg

|Elorderapprovalapp.ws | sficomposite.xnl | QOracieRulest.rules

0%

®g

& Facts

i Functions
(x) Globals
& Bucketsets
D inks.

B Decson Functions

Rulesets

© Ruleset_t

+x

v & DecisionTable 1 <nter description>

caru[-[v) [l tocallstofvaes] 2 R AvIE R QD
> Conditions R~

£1 Custamerorder redtiore, =
C2_Custonerorderader.

Custamerncer.anudlspending >2000 |

Q valie options
a Cstomerorder
Onderpprove
Curentoate
"
[e—
Sgbecnal
Colener
stis

Design

OEBPS/img/rddtmov2.gif
Ruleset_t e [DecsionTale_t R

¥ % DecisionTable_1 <erter description>

driver_ages

< Mt 7 +Riav ¥ i-RREER
& Conditions R Rz RS R4 RS R6 R7 | RS | R9 | R10 | R11 | Riz
glasses required

CL Driver.eye_test pass fal
C2_Driver.has_training true false true false true fabe

EaETr— T T T T T T T T RN BT RN T

X Conflict Resolution

- Actions
AL modfy Driver(
elgble:) tue | tne | fabe | tue | fake fabe fabe fake tne | tue | fase | fake

Bt Columns To Widkh

OEBPS/img/orderapp18.gif
% Ruleset 1 Yew: I DechionTable_t e

¥ & DecisionTable 1 <enter description=
ALRI + X B R ZTEA
S Conditions R Rz | R3 | Re | RS | Re | R7 | RS | R9 R10 | Ri | R1z | Ri3 | Ri4 | RIS Ri6 | R17 | RIS
€L CustomerOrder creditscore risky avg salid

€2 CustomerOrder.crder Low Medum Hgh Low Medum Hgh Low Medum Hoh

€3 CustomerOrder annualspending >2000 | true | false | true | false | tus | fabe | trus | fake true | foke true |fabe trus | fake tue fake tue | fabe

- Actions
AL gssert e Orderdpprayall,
statusi<1o1.)

Orderapproval.status
Status. MANDAL
Status. APPROVED
Status REECTED

Bt Coluns To Widkh

OEBPS/img/dict_rename2.gif
& Rename Oracle Business Rules Dictionary

projectt

OEBPS/img/adfbc_brd2.gif
B cheptern] (haptevm
hoess B @V

=-(3 Application Sources

1 com.example.
= £ Resources.

< Chapter10Rules.us
o
Yotz

1 Applcaton Resources
» Data Controls
1 Recently Opened Files

|application Navigator () [Elchapterto.jws
viHEg

< ChopteriORues.rles

(G]
@

& Facts

i Functons
(x) Globals
27 Budketsets
D inks.

£l Decison Functions

Rulesets

© Ruleset_t

Desian

+ X

Ruleset_1

v Clgteron vew [Qrimenrues | - X BEE& A v

To create a Rule or Decision Table, please click the plus sign above.

OEBPS/img/rules_test_function_out2.gif
& Function Test Result

@ 1t

Qutput

Bl Reynolds scored 51,0 an test Math Test and received a grade of B

OEBPS/img/orderapp11.gif
Edit Bucketset - CreditScore

Neme: |Credtscore

osta Type: [t
[Include Disallowed Bucksts in Tests

Range Bucket yalues:

ax

Endpoint Included Endpoint Alowed in Actons Range

= 750

Infinty

Description

OEBPS/img/servlet6.gif
Greate HTHL File.

Enter the name, and directary for the HTHL Fie,

Flle Name:

index.html

Drectory;

Ci\TDevelopermywork|GradeAppiGradesipublc_him

[o

[[] Create as K fie (*.<htm)

He

OEBPS/img/rules_r2.gif
o suses v Ciwron o [Quimevnes k- X wEEm@a v

=¥ Rule 1
Senter description>

*
Soperandz, =

nsert test>

Soperandz,

THEN

insert action>

OEBPS/img/rules_r9_2.gif
Ruleset_t ¥ []karon e X BBEOAv

=¥ Rule_1
<enter description>

¥
CustomerOrder.annualspending > 2000

dnsert test>
THEN
modfy CustomerOrder (<add property> value : "High')

<insert action>

OEBPS/img/adfbc13.gif
& Edit Decision Function,

e

Description

Rule Eving Lt [uriimied

7] e ok s A Wi

Check Rule Elow

Servic Name:

Stateless

© Inputs

Chapter 10R s_Decisianservice FindDepartmentifanagers

Name

Fact e
) 1ot

Employee

Outputs

Name Fact Type

) Rulesets & Decision Functions

avalstle

[becsionport_Postprocessng

43 edsonpont._Pastprocessing Webservice

3 edisonPont_Preprocessing_Webservice

€9 Outside Hanager Rleset

$p Raises Ruleset
FidoutsdeManagers

EmployeeRases
DecisonPinDictonsry.Postprocessing_Websaric

I's|

Selected:
DecisonPanDonsry Preprocessng
I ————
190 Retract Enployees
DecisonPainDictonsry Postprcessing

OEBPS/img/servlet20.gif
Edit EAR Deployment Profile Properties

(8 o Application Assembly

Select the Java EE modules that you wouldlike to assemble nto your Java EE applicaton,

General

Java EE Modles:

AR Optons
Fie roups
5 Appcaion Descrors Grades.for
- Contrtutors 1 arsces
Fiters odelr
Plaform] Gradaion odel_scbcradeappt
Websphere 6.x VewCortroler
]] Gradepp_viewController_webappt

Path inEAR:

OEBPS/img/rules_effective2.gif
< Set Effective Date

[From: [2008-02-16 | [[13:42:00[2] [(GMT-08:00) Pacfic Standard Time

[@Ate: [z0080223 | [[13:42:00 [[(GMT-08:00) Pacic Standard Time

O bate O Time @ goth

OEBPS/img/bucketset_enum.gif
& Edit Bucketset - Status

pame;[Status

Fam: [Enm

Data Type: [Status

[Include Disallowed Bucksts in Tests

Bucket yalues:

+xXav

Ve
® tatus MANUAL

Status REECTED
® ol

Alias Alowed i Actions.
MANDAL

lAPPROVED

REJECTED

ol

Description

OEBPS/img/orderapp6.gif
& Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nflunce the behavor of your business

Create Ditionary () Ipart Dictonary

Specify the name and package for the dictionary that wil be created.

Nome: [OracleRulest

package: [orderapproval

Profect; | C:1Developerimywork\OrderapprovalApp|OrderApprovallOrderApproval.jpr

Inputs/Outputs; X+ 3
Drection Hame Type

nput Customerorder {Petpi e customer.comfnsfcustomeror der}CustomerOrder

output orderigproval et customer.comfn customeror der}OrderApproval

= el

OEBPS/img/dm4.gif
@ applcation Navigetor 5]
5083 ~&
= Projects B Y- E-
Projctt
B3 508 Content:
22 dlasses
23 testsutes.
xsd
sl
& () Business Rukes
-0 projectt
@ Purchaseltems s
off composte.sal
-Gk Purchaseltems.companentType
(] Puchaseltems.decs

1 Applcaton Resources
» Data Controls
. Recently Opened Files

StartPage | s0a3jws |officompositesml |)Purchaseltems.rules

G]

YINBBX0O BaKBED

Composie: SOAComposite1

Exposed Services Components

External References

Desian [Souwee Ftery

OEBPS/img/rules_grades1.gif
Edit Bucketset - valid_grades

vald_grades

e

st Type: it
[Include Disallowed Bucksts in Tests

Range Bucket yalues:

ax

Endpoint Included Endpoint | Allowed n Actions

100 O O

e
E

Renge Alias Description
100 >100 Kot Valid

[o0..100]

[50..30)

[70..80)

[60..70)

[0..60)

OEBPS/img/servlet15.gif
& Edit MAR Deployment Profile Properties

55 Metadata Fle Groups
5 User Metadata
Directories

55+ HTHL Rook D for Gradss
Directories

MAR Options

MR File

Ci\Develaperimywork|Gradenppdeployimetadatal mar

Browse,

7] compress rcive

[Enablecustomizations fo ADF metaata

OEBPS/img/rddec2.gif
& Action Editor

walue: [Modiy Driver (eligble:?)

Target:

arguments:

Property Type Porameterized | Constent
fage int O

bhas_traing boolean]

leigtle baclean

1] hnays Seected

OEBPS/img/rules_mfact2.gif
Ruleset 2 ¥ []Ekeron ew

5 A Rulet
<enter descrption>
[Tree Mode

[Jusgeal - mrty: [mechm |

Effective Date: Always Valid
¥
OrderfLineltem is a OrderfLineltem

dnsert test>
and

OrderfLineltem2 s a OrderfLineltem and

OrderfLinelteml.sku == OrdergLineltem2.sku and

OrderfLineltem color

RLget fact ID(OrderLineltemt) > RL.get fact ID(Orderéinelten?)

OrderfLineltem.colr and

dnsert test>

insert pattem>
THEN

callprint(message : "Dupicate Iter; Do you wank to order two of the same item?")

<insert action>

OEBPS/img/rs_editxmlfact.gif
Edit XMLFact - com,customer, ns.customerorder. CustomerOrder.

e
alas:

Super

Class:

Description

XL Name;

Generated From:

Attributes

Customerorder

Object

Iixsielement{@nam

Customerorder.xsd

[support et Assetion

Properties

Alias

credtscare
order
value

vishle Name.

@ annustspendng arnualspendng

creditscare.
order
value

Type Bucketset
doule

int

string

doule

string

List Cantent Type|

Bt Coluns To Widkh

OEBPS/img/dp5.gif
D CarRentatrules

G]

vi9Ea

@

@razs
i Functions

(6) Gobals

7 bucketsats

D ks

60 ecsion Functions
Rulesets + X
$ Denial Rules:
€ enal Rues: dec

Denial Rules: if-then ¥ [|iter On View: [<) IF/THEN Rules

+-X BRBoAv

=¥ underage
Rentals should not be mads to crivers under 21 per Renting Guidslnes section 34.6

¥

Driver.age < inimum driver age
dnsert test>

THEN

assert new Derial (<l property> driver : Driver , reason : "under age, age was "

Driver.age + ", minifum age s " + Minimum driver age)
call audt rul : "under age" nfo : "iver age less then minimum threshold or icense number "+ Diver censehiumber)
insert action>

5 ¥ too many accidents
<enter description>
¥
Driver previousacadents > 5
dnsert test>

THEN

‘assert new Derial (<l propety > driver: Drive , reason : 'too many accidents

insert action>

Desian

OEBPS/img/gr3.gif
& Create Generic Project - Step 1 of 2

Name your project

6, Project Name. Broject Name: [Grades

Directory: [t 2Developerimywork|GradefpplGrades [srowse,

& Project Java Settings

avalable: Selected

ADF Faces
/ADF Library Web Appication Support
/ADF Page Flow
/ADF Swing
ant
Database (Offine)
=
L
Beans

Technology Descripton

ADF Desktop Integration with Microsolt Offce.

OEBPS/img/rules_r9.gif
Ruleset 1 ¥ []theron vew X wmmeav

Rule_1
<enter description>

[] Advenced tode [] Tree Mode

Rule active [Logial Briorty: [medum

Effective Date: Always Valid

¥
CustomerOrder.annualspending > 2000
dnsert test>

THEN
modfy CustomerOrder (<add property> value : "High')

<insert action>

OEBPS/img/stmaction.gif
(startpage | PorackeRuiest ries | OradeRulest.rues | Sorder.xsd | ef3composteml | £4p0.xsd

S
Ev 9EH BO % @
-

B

N
Facts
- Ruleset_t ¥ [Jeeron Yew + X wamRAv| |-
i Functons
5% Rule2
Gl <enter description>
7 Bucketsets
© ROOT: PO
D ks *
Decision Functions Duration.days between(PO.header.orderDate, PO{destinationitem. avaiabiityDate) > 30
Resets g | et
$ Ruleset_1 THEN
ey POfdestinaionieem ([EEATEEAREIS atatus : conceled)
<inset acton>
& Properties 13 X
e Trpe value Constant
o string u]
< MLGregorsnCaender I
=S = Javalang.Integer 0
luantty Jovalang.integer O
Eleusiness Ry Liarue string “canceled” [l
SOK Warrings: 0 Last valdation Time: 904554 P PST

| Messages |BPEL | Extensions | Feedback | Business Rule Validation | Inncl

OEBPS/img/adfbc_brd.gif
@ Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nfluence the behaviar of your business

(@ greate Dictionary O Import Ditonary

Specifythe name and package for the dictionary that wil be created.

Neme: [ChaptertRues]

package: [com.example

Project; [CiIDeveloperlmywork\Chapter 10}Chapter D|Chapter 10.jor

InputsfOutputs:
Direction

OEBPS/img/orderapp22.gif
® Ruleset 1 View: ([DecisonTable_t

T4 x

¥ &, DecionTable L <enter cescrpion>

ates +RiaviEERBIEQ
5 Conditons i w2 " " "
C1 Cstomeronder aediseore sy g st -
2 Costomeronderader Wedun,figh Low,Medum Low ecum o -
€3 Customerorder anuatpending 52000 tate e - e -

X Conflict Resolution

- Actions

AL assert new Orderapproval(
statust =)

|91 cobanns To vt

Status REECTED

Status. APPROVED

Status. APPROVED

Status. APPROVED

OEBPS/img/servlet10b.gif
pplcation Navigetor |) es | Blindexhinl | [BlGradesservietiava | (3] Gradesservietjova [weblogic-applicationasmi | (D))

Grodedpp ~[@ - @ X)) ~
= Projects AR 7-E- <oxml version = '1.0' encoding = 'windows-1252'2>
= - 5 <weblogic-application xulns:xsi="htep: //ww. u3. 0£g/2001 /XMLchena-instance” xsi
=-(0 Application Sources E <listemer>
5 com.example.grades <listener-class>oracle.nds. Lou. veblogic. ULLi fecyelelistenere /listener -class

Bl <istener>
8] radesserviet v e Lo att.snare mebtagie oFAgpLteattonttfecyen
listener -class>oracle. aif. share. veblogic. Listeners. ADFAppLicationlicecycle
ot repetes e i o ¥
(8] ObjectFactory java

- pa B Qirary-res>
package-info Java <library-name>adf.oracle. domain</library-name>
] TestGrade.java - v

Cimplenentation-version>LL.1.1. 1.0 /implenentat ion-version>
&l Testscore.java e
& B3 Resources
& rades.xsd
< GrodingRues.rles
53 Web Content
£ wee-F v
~ Application Resources. </weblogic-application>
23 Connections i
-E3 escrptors
& 03 M
% weblogic-appcaton i
(1 ADF META-IVE

63 ef-confin sl ~A
» Data Controls

1 Recently Opened Files

Library-name>oracle. rule:
Library-res:

Library-nane:

Source

OEBPS/img/report.gif
Report - Mozilla Firefox

fe Edt Yew Hgory ooknaks Lok Heb
c - @) [flepiciTempireport bt

[Report a

grades.OracleRules1 (OracleRules1)

DataModel

Variables

Alias |Description BucketSet Type |visible

Functions

Fact Types

TestScore
TestScore extends Object
Imported from class com.grade ns testscore. TestScore
from location file:///C:/TDeveloper fmywork /GradeApp/Grades/classes/
isabstract? 0 isenum? [isfinal? g is interface? O
Generated from XML Schema

file:/C:/TDeveloper fmywork,(GradeApp/Grades/xsdgraces xsd
into default target package
Using JAXB 2.0

in namespace http: /fwww arade.comjns/testscore

OEBPS/img/orderapp9.gif
Edit Bucketset - OrderAmount

Nome: OrderAmount

osta Type: [t
[Include Disallowed Bucksts in Tests

Range Bucket yalues:

ax

Endpoint Included Endpoint Alowed in Actons Range

= 10m

nfinty

Description

OEBPS/img/adfbc17.gif
& Edit Decision Function,

e

Description

Rule Eving Lt [uriimied

7] e ok s A Wi
Check Rule Flow

Stateless

© Inputs

Service Name: [Chapter10Rules_Decisionservice_EmployesRaises

Name

Fact e
) 1ot

Employee

Outputs

Name Fact Type

) Rulesets & Decision Functions

avalable:

[becsionport_Postprocessng
43 edsonpont._Pastprocessing Webservice
3 edsonPont_Preprocessing_Webservice
/9 Depsrnen: Mansgr Finder Ruleset
€9 Outside Hanager Reset
FidoutsdeManagers
Fidoepsrtmetitanagers
DecisonPinDictonsry Postprocessing_Websaric

el

Selected

DecisionPointDictionary. Preprocessing

| @ Rabes s

190 RetractEnployees
i DecisionPaintDictionary.Postprocessing

OEBPS/img/rules_operator2.gif
 Rueset 1 v Clgkeron vow [QEimenndes - X BEERAw

=¥ Rule 1
Senter description>

¥
Clatamarorn:
nsert test>

THEN

insert action>

OEBPS/img/dp6.gif
[Dcormentalrules | E

vi9e
@ racs

i Functions

Denial Rules:

jecisiontable View

Derial DT

2 . Demial DT <erier cescrption

(x) Globals

o [] Advenced tode [] Tree Mode] Auto Conflct Resoution (7] Rule Active [] Logical (] Allow Geps

 Bucketsets need tode.

Briority: [medium [v] Effective Date: Always Valid

D inks. —

B0 Dscsion Furcons FxiavirEnBinw
E Conditions RL R2 R3 Re RS Re R7 Rs RS

Rulesets TR e <18 16..40) o

€ Denial Rules: iF-then 2 Driver.previoushccidents = < .5 >=5 < [1.5) >=5

£ Denial Rules: decision table | €3 Driver.veficeType - - TRUCK,... MOTOR. s TRUCK SPORTS SEDAN -

X Conflct Resolution

- Actions
AL assert new Demial(O | o O | o
vr:
reason:) "under a. “higher ri... "too ma., “higher ri... "too ma.,

Bt Coluns To Widkh

Desian

OEBPS/img/rules_r6.gif
o suses v Ciwron o [Qumenies < - % B EEOA v

=¥ Rule 1
Senter description>

¥
CustomerOrder.annualspending > 2000

dnsert test>

THEN

ainsent] |

B

<

OEBPS/img/rtdt_ruledelaction.gif
v Rk s 3@x
3 (g s
O [y

O [ordervalue
O [Customer Rating

Q [sameorssthen v 10000
Q [same orlssthan ¥ | 1000000
Q et vl [0

THEN

call ~ | Customer.Name.trim v 07 4

Qe
Q) and

+

OEBPS/img/rddt12.gif
Qoriver.es iG]
vip@ag (] @
e Ruleset_1 Wiew: | [DecisionTable_1
& +-RioaviE-il-RREEE-@

€2 Driver.age < =20 < -

@ Conflict Resolution

Below arethe rules that conflct it ule R3 and the confict resolution
methads to resolve possble corfict accurrances. To change the resalution @)
methad, please cick the Resalution column and select the methad you would

ke to use to resolve the conflct.

Rule: [23

Conflcting Rue Resolutian

INoConfict
loverrde
loverriddengy
[Rungefore.
[Runater

fake true

Desian

[Elousiness ol Yedaton - Log o

Dictonary - Driver.rus Display New Warrings First

Message Dictonary Object Property
&) RUL-058S1: The decision table has unresalved conflcts Driver{Ruleset_t [Decision Table(DecsionTable_t)

Last Valdation Tine: 11:26:17 AMPDT

SDK Warnings: 1

[Fiessanmsii] susvess v vation [Exrdiors [Fostbadk [00]

OEBPS/img/rtdt_decdel.gif
Ruleset_3

Effective Date | Alnays v

¥ [DecisionTable_2

&~ % | Hl- ®- &

Conditions

vow [Decontobe 2 ¥ 3

4

Defote Deciion Table

Swikch Rows to Columns

T
resonon Q)

Actions

Callprint
message:string

<

“Female”
[0..50)

VoungWoman ™+ Pers)

Rules
" x

Tk

>=50 0.5

er Woman Q[

| >

OEBPS/img/servlet16.gif
& Edit MAR Deployment Profile Properties

AR Options
55+ Metadata Fie Groups
& [
Directories
55+ HTHL Rook D for Gradss
Directories
55+ HTML Rook Di For Vewcor
Directories

User Metadata

Elle Group Narre: User Metadata

Target Directory i Archive:

Order of Contributors:

C:\JDeve Loper\nywork\Gradepp\Grades

add,
Remove
Wave L

Move Down

OEBPS/img/rules_test_function_p.gif
& Function Test Result

@ 1t

Qutput

> F-1 com.arade.nis.testscore. Testcore(name : "Bil Reynolds" testCurve 0.0, testiame : ‘Math Test’,
testscore £ 89.0)
Actvation: Ruleset_{ DecisionTable_7Rul3 : F-1
Focus Ruleset_1, Ruleset stack: {'Ruleset_1"
Fire 1 Ruleset_t DecisionTable_7Rule3 F-1
-2 com grade.ns.testscore. TestGrade(arade B)
ocus Rulsset_, Ruleset stack: {'main'}
ocus main, Ruleset stack: {}

OEBPS/img/fact_lovcreate.gif
artPage | <)OrackRulestrues [(PPurchaseltems.rules & @k

v 9 e PO 8

@razs

S Functions

(6) Gobals

7 Bucketsets

Dk

6l Decsion Functions
Rulesets @b %

© Rueser_t

b My
= I

TR N

Bucletsets
e Datatype Form

7 Orderfmout in: Range Ranges

& Crediscore in: Range

Design

OEBPS/img/rules_duration2.gif
Ruleset 2 ¥ [Jeiteron siew: | Q) IFJTHEN Rules YR BERERAv

5 A Rulet
<enter description>
[] Advenced tode [] Tree Mods

Rule Active [Logical rorkty: [medum [v]

Effective Date: Always Valid

¥
Duration.days between(CurrentDate.date, Driver LicenseExpies) <= 30
dnsert test>

THEN
callprint{ message : "Natice: License expires within 30 days.")

insert action>

OEBPS/img/orderapp14.gif
a Autolosrprocess.bpel | Elorderapprovalapp.us |ofcomposte.l[(DOracleRulest.rules | (G]

v Hea 6
95 pussets +- %
o oot)
[
P /. A RaviER eTEA
o w
: :
®
o Actans i
iy
pesin

[Elousiness Rl Vedaton - Log o

Dictonary - OracleRules1 rules isplay New Warrings First

Message Dictonary Object 2
RUL-0164: The fact type "Orderppraval' s referenced, but i not asserted nar input. OracleRules1 /Data Model/Decision
RUL-05835: Allrles have "do nat care” set ar condtion "CustomerOrder.credtScore”. ... OracleRules1 Ruleset_L/DecisionT,
RUL-0S835: Allules have. set for candition "CustomerOrder.order'. Select.. OracleRules1 Ruleset_L/DecisionT,
RUL-05835: Allrles have "do nat care” set ar condion "CustomerOrder. annualspendi... OracleRules1 [Ruleset_LjDecisianT,
RUL-0838: The decison table has no actins. OracleRulestjRuleset_i[Decison T
RUL-0164: The fact type I'is referenced, but i not asserted norinput. OracleRulest[Data Model/Decision

SOK Warrings: & Last valdtion Tame: 319:17 PHFDT
Vessages [BPEL [Feedback | Busness Rule Validation [ODG)

OEBPS/img/grade_app3.gif
@ Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nfluence the behaviar of your business

(@ Greate pictionary O Import Ditonary

Specifythe name and package for the dictionary that wil be created.

Nome: [OracleRulest

Package: |com.example.arades

Profect; [1Developerlmywork\GradeAppGradesirades.or

InputsfOutputs:
Direction

OEBPS/img/rulesession.gif
Client

Assert

—

—>

Rule Firing

Rule Session

Rulesets
(RL) "

Matching

H —
Agenda

Fact
Fact

Fact

@

Activation
Activation
Activation

Activation

Working Memory

I Action }--

OEBPS/img/rules_r16.gif
rueset_t ¥ CJpheron se + X BRBoAv
% et

<enter descrption>
Advancedtlods [Tree Mode

Rule active [Logial Brioty:

Effective Date: Always Valid
¥
CustomerOrder s a CustomerOrder

dnsert test>

insert pattem>
THEN

insert action>

assert
assert tree
assert new
assign new
expression
cal

for

¥

modfy
retract
retum

1
synchrorized
throw

try

whie

OEBPS/img/adfbc7.gif
Create Java Fact

Select Java Fact Classes

Select the Java classes you would ke to be used as Java Facts inthe rules engie.
Vou can add a JAR fileor directory to the classpath and then check the class files andjor packages you
wart o create facts from.

Classpath: F XD Gosses
C File/C: [0eveloperjmyworkiChapter 10/Chapter 10jcl [, Classes
&[] @ com
&1 (] exanple

(] Add roject Lirary to lasspath

OEBPS/img/rdgap2.gif
& Gap Analysis
There are 2 missing ules i the dicison tabe

Please selct the ruls you want to add by selecting the checkboxes inthe table
header columns,

@

Conditions
Driver.age
Driver.hair

Bt Colurns To Widkh

|

OEBPS/img/rtdt_ruleval.gif
Ruleset_3

Effective Date | Alnays v

7 ¥ [Ruet

13

order.aty
O [order.value

THEN

<insert sction>

View [IF/THEN Rules

EBx

Q[more thon

Q [more thon

¥ 3%

Vaidate

O O

10000
1000000

Qand

OEBPS/img/ruleset_filterquery.gif
< DracleRules1.rules
v HE B0

@

ErE

¢Eed

Fier Query:
ansert test>

Reset 1 A Clpheron tew X BBTeAv

¢

¥ CustomerOrder_Rule1
<enter description>

CustomerOrder_Rule2
<enter description>

LineItem _Rule1
<enter description>

¥ LineltemRulez
<enter description>

Rule_5
<enter description>

Desian

OEBPS/img/rtdt_decadd.gif
Ruleset_3

Effective Date | Alnays v

¥ [DecisionTable_2

#- % | Hl- ®- &

View |DeckianTable 2 ¥

R

New Decision Table

Sikch Rows to Columns

Rules
Conditions S I o i
Person.Gender A, /7 “Female” = "Ml
Person.age A 7/ [0..50) ERRE] [
Actions

Calprint 5

message:Siring “oung Woman" + Perss O ["Older womar ol

] i | >

OEBPS/img/rules_r12.gif
Ruleset 2 v [Jpkeron Yew: [I/TrenRuks +] g - R T3 B 3 60 A @

5 A Rulet
<enter descrption>
[Tree Mode

Rule active [Logial oty

Effective Date: Always Valid

¥

(Order$Lineltem is a OrdersLineltem

Matched Fact Name (HI Enter Key To Save)
Orderftineltemt

OrderfLineltem s a OrdersLineltem and

OrderfLineltemt sku

OrderfLineltem.sku and
OrderfLineltem color

RLget fact ID(OrderLineltemt) > RL.get fact ID(Orderéinelten?)

OrderfLineltem.colr and

dnsert test>

insert pattem>
THEN

callprint(message : "Dupicate Iter; Do you wank to order two of the same item?")

insert action>

OEBPS/img/dm_df.gif
@stotpoge _|[ETESTSOM M5 |oficomposte.xml_[(QOradeRulestrules | ®
v HEe DO % @

& Facts

f Functions
(0) alobas Dectson Functios: YA

Description web Service

Decision Functions

£ Budketsats
D ks

[pecision Functions
Rulesets @k 3
© Rueser_t

OEBPS/img/dmglobal1.gif
(DstartPage |[Hsonziws |oficomposte.ml Purchaseltems.des |]
v DEE PO % @
C Jress (x) Globals
ey EVE)
e Type vaue | ucketset | Descrption | Final

et o) R I I S N N
D Links

(> BLe il © Edit Global - Global 1
Rulesets o

@ Rulest e

Description

Type:

Bucketset:

value:

[constan:

Design

OEBPS/img/orderapp2.gif
& Create SOA Application - Step 2 of 4

Name your project

e

S ProfctNome

fE——

O Project 50A Settings

Project Name: [Orderapproval

Directory: [C:ATDeveloperimywork|OrderapprovalapplOrderApproval

Browse,

(Swing/AWT

Selected

Technology Descripton

50L documents combine XML (Extensible Markup Language) and SQL (Structured
Query Lanauage)to provide a lanauage- and detabase-independent means for

OEBPS/img/rtdt_ruleaddv.gif
Ruleset_3 vew e Rules) [3 3 &
tectve Date | Avays

v (Rt &%

Description

Effective [aways @
Date =

prrty [medum v lRude acve [acvanced iode [res vade
I3
Order so ok Wt B 0 [X
0 [ordercey Q [more than ! 10080 Qg+
O [ordervae Q [more than I 1000000 Q L+
THEN

insert action>

OEBPS/img/servlet2.gif
& Web Application

Web Application

#web applicaion does ot yet exst i thisproject. Selectthe version to create,
eb Appication Version

(O Serdet 2,315 1.2 (026E 1.3)

(O Serviet 2.4115 2.0 (2EE 1.4)

@ Serviet 2,515 2.1 (JavaEE 1.5)

OEBPS/img/rdtd_myedit.gif
ORACLE" SOA Composer

B Oven
() Open Rues
E Open oW

P sookmatatie ik Logout O

Logged in as workspacel

T —
&7 budketsets

Rulesets
© Ruleset 1
© Ruleset 3
€ Thiss arealy lon
© Ruleset 5
© Ruleset 6

© Ruleset 7
© Ruleset 8

© Ruleset 9

£ Ruleset_10
© Ruleset_11
© Ruleset_12
£ Ruleset_13
© Ruleset_14
© Ruleset_is

PvEws > Dscndronaryes

<

e

[ossarptin

[vake

[pudetest

%) temp
(%) Giobal_2
(%) Number Of Rows

test
ahe

100

lobal_2+20

ntRangess

ntes

OEBPS/img/adfbcfact.gif
@i+ R

Top Level

USRI ON o oxanple. managerfinder.model £

alas: Employee

wisble

Propertis;

Alias Name Prinary Key | Bucketset Type List Cantent Typ)
ViewRowlmpl viewRonlng oradle.joo.ser.
keyvalues ey values orade.rus.sd.
Employeeld erployeeld Javamath.gig.
Frstame frstiiame Javalang String

Javalang String

Javalang String

Javalang String

Java.ui. Calen.

Javalang String
Javamath.ig.
Javamath.ig.
Javamath.ig.
Javamath.ig.
JavaltlLst Department
javatilst Employee

Lasthame [astiame
Emal emal
Phonetiumber phonetiuriber
HreDate. hireDate

Jab1d jobid

Salary salary
CommissionPet commissionpet
Managerld mangerid
Departmentld cpartmentid
Departmentsii.. dzpartrentsiizw
Employeesiiew ermplayzestien

000000000000 0006
5) e e

Bt Colurns To Widkh

OEBPS/img/dm1.gif
& New Gallery.

(i Technolagies | Currert Project Technologies

This st i Fitered accarding ta the current projects selected technologies.

(@ e

(Cateqgories

tems:] show Al Descrpions

=5 General
-~ Applcatons
Connections
- Deployment Descriptors
Deployment Profies
- Projects
55508 Tier

Transformations
- lTtems

 BPEL process

% Business Rules
Opens the Create Busines Rules dilog, uhich lows you t define a ditonary
o businessrles based on the Orack buines s engin,

To enabl this option, you mustselect a project or a il within project nthe
Applcation Navigator

53 busines Rul Data Contol
EventDefrtion

8 Hman Task

& Mediotor

504 Composte

OEBPS/img/rules_operator_in.gif
1
SustomerQrder.neltemsku in soperandz, Sopgiandz, <insert>

dnsert test>
THEN
nsert action>

OEBPS/img/fact_adfbc4.gif
approvalipp. s |ofScomposte xnl () OracleRulestrules | sficomposte xrl | ofScomposte xnl | sfScomposte. sl (IBJE)

Qv HEs D0 & @

& Facts
e Functions ADF-BC Facts: @R
(0) alobas A Vew einion Top Level
2 & pepartmentsvien orderapprovalDepartnentaiion.
(FerzEs orderapproval Emplo
D inks.
Bl Decision Functions
Rulesets o 3
€ Ruleset 1

ADF-BC Farts

Desian I

OEBPS/img/bucketset_dictjava.gif
& Create Java Fact

Select Java Fact Classes

Select the Java classes you would ke to be used as Java Facts inthe rules engie.
Vou can add a JAR file or directory to the classpath and then check the class files andjor packages you

wart o create facts from.

Classpath: +x0

Classes:

CJ e/ C:DevelopermymorkiSOR/Projectt rulesdesig
0 fils/C:fTempjprojec.jor

A Clasaes
Rl ifor
I8 dlasst
[B dasstgordersice
O java
O @ javax
O o

[[] A roject Lirary to Classpath

OEBPS/img/adfbc_fact2.gif
lpepartmentsyisw | &lemployessyiew.xm

| @racs
fe Functions ADF-BC Facts:
(x) Globals Alias View Definition
& Enplyessven comsxaneleansgefoderEloysssven

3 ospartmertsvien o v mansge s Deparment e

2 bucketsats

D ks

B Decson Functions

Rulesets G 3
© Reser_t

ADF-6C Farts

Design

OEBPS/img/rtdt_1.gif
ORACLE'’ Ccomposer

* Username.

* Passward

2Z

OEBPS/img/intro_rd.gif
|Applcation Navigator

foplcaiont EEE
 Projects. AR7-E-
et
Pz

-G projects
5-£3 50 Content:
20 dlasses
20 testsutes
Cxed
Ll
5 £ Business Rules
-0 projects
<P OradeRulest rules
G EPELProcess1companentType
o composte. i
4 OradeRulest compenentType
(] OraceRulest.decs

1 Applcaton Resources
» Data Contrals
1 Recently Opened Fles

0 @stert Page

| QorackRulest rules | D OraceRulest rules | OrackeRulest rules

DoracleRulest.rules | cf3composte i (J0))

@

@ racts

i Functions
(x) Globals
& Bucketsets
D inks.

Rulesets
© Ruleset_
© Rueser 2
© Rueser 3

B ecison Functions.

Ruleset_t ¥ []Eiteron Yiew: [IFTHEN Rules YR BRERAw

¥ Driver Age Rule
Determing F driver i oid enaugh to rent

Frequent Flyer Rule
<enter description>

«

Loan Income Rule

<enter description>

+ X

1

Desian

OEBPS/img/orderapp5.gif
® Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nflunce the behavar of your business

(General | Advanced

Create Ditionary () Ipart Dictonary

Specify the name and package for the dictionary that wil be created.

Nome: [OracleRulest

Package: [orderapproval

Profect; | C:IDeveloperlmywork\OrderapprovalApp|OrderApprovallOrderApproval.jpr

InputsjOutputs: X+ 8

Direction Name Type
fnput Customerorder {http: . customer.cominsu

[] Expose as Compaste Service

|

OEBPS/img/grade_app8.gif
GradesServlet - Mozilla Firefox.
Ele Edt View Hstory Bookmarks Ioos Help

@] G ([rewiiimyserver.sxample.com700u yadesforadesserviet 7 -

(0ot it [Avin [Overvio (Orac .. [Accoun Reuest) G Tkt (8] Grade] NevorkReguest

ORACLE' - v|i Q search - § ariaSearch - Bugld - % Prob)

) Gradesserviet

Test Results

[Name [Score [Grade
Pri [s4 [B

OEBPS/img/servlet9.gif
& Create Deployment Profile

Clck OF to create your new deployment profil and immediately open I o see s configuration

archive Type:
WiR Fe

Neme:
rades

Description

Creates a profle for deploying the Java EE web mads (WAR) to an application server, The WAR
consists o the web components (15Ps and servlets) and the corresponing deployment descrptors.

OEBPS/img/orderapp19.gif
Ruleset 1 View

+- X

¥ %, DecisionTable 1 <crizr descrption

Conditions
€L CustomerOrder creditscare
€2 CustomerOrder.order

€3 CustomerOrder annualspending >2000

Bt Columns To Widkh

R

Low

R R3 Re RS
risky avg
Medum,Heh LowMedum
true fabe true fabe

TR AvIHTR QD

@

Re R7 Re Rs
salid
Hoh | LowMedum Hgh
B 5 true fabe

OEBPS/img/rtdt_ruledelcond.gif
Ruleset_3

Effective Date | Alnays v

7 v [Rulet
13
O [order.aty

O [order.value

THEN

I

view |IF/THENRules v [§ 3¢ o

EBx
(£
Q [more than ! 10000
Q[more than ! 1000000

Q and

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware
User's Guide for Oracle
Business Rules, 11g
Release 1 (11.1.1)

OEBPS/img/rdexpressionb.gif
& Expression Builder

Expression:

Driver.age|

A Insert Into Expressian

Q options
&£ over
i fage]
' has._training
ey test
sigble
LeanseType

o

Operators

Constants

Content Preview:

Description

Driver.age

SDK Vrlable Option

OEBPS/img/rules_operator_between2.gif
Ry ¥ Omtwon fon[Qumeives b X BEBe A

=¥ Rule 1
Senter description>

¥

Customerorder.annualspending between 100 and [ZEE2000]

dnsert test>
THEN

insert action>

2000]

Q valie options
=@ CustomerOrder
= annustencing
a crediscore
@ name.length()
o order
@ value length()
- Curentate.date melnils
aR
= tgozanal
a Caendar

isttiew (3 Tree View

[Constant [Customigable

OEBPS/img/rules_test_function.gif
[DGradingRules.rules | #fcompostte.xml S

Qv 9e8 80 @
& Farts
% Functions
() Gobas Functons T @ X
{7 Bucketsats Name Return Type. Bucketset. Description
Duss £
B pecison Functions

Rulesets 4 X =

Rt argumerts
Nome Tipe Budetset
D Rkt 2

£ Functions

*+XaAav

N Sody

callprink{ message

nsert action>

OEBPS/img/bp_ds_flow2.gif

OEBPS/img/orderapp10.gif
Edit Bucketset - OrderAmount

Nome: OrderAmount

osta Type: [t
[Include Disallowed Bucksts in Tests

Range Bucket yalues:

ax

Included Endpoint Alowed in Actons Range
>=1000
[500..1000)

Endpoint
= 10m
= s

Description

OEBPS/img/rddtmov1.gif
Ruleset 1 View

3 DecisionTable_t

MK A%

¥ % DecisionTable_1 <erter description>

7 FRiav §i-RREER

T — N R R

tue | fake | tue | fase | tme | fabe

X Conflict Resolution

Actions
AL modfy Driver(
elgble:) tue | folse | fabe | fabe

tue | fake | tue | tue | fake | fabe | tue | fake

: Columns To Wickh

OEBPS/img/orderapp21a.gif
1 Autooarprocess ol

| Elorderapprovalagp.jus

Ifgcomposte.sal

D OracleRulest.rules

viHE PO &

&

Ruleset_1

e |

DecisionTable_{

aL

'
Desian

. DedisionTable 1 <ericr descrpion -

Conditions
Customerorder.credscore
Customerorder.order
Customerorder.annualspending >2000

Actions
assert new Orderapproval(
statusi 1)

RI
risky
Medum,Heh
fabe

Status REECTED

R
avg
LowMedum
true

Status. APPROVED

R AavIiE RIS

R3

LowMedum

Status. APPROVED

Re
salid s
High s
true =

Status. APPROVED

[ElBusiness Rule Validation - Log

Dictonary - OracleRulest rules

(5]

[7]Dspley New Wrrings st

Message

&) RUL-058S1: The decision table has unresolved corficts,

Dictionary Object

Property.

OracleRules1Rulset_tDecisin Table(DecisinTable_t)

SDK Warnings: 1

Messages

BPEL | Feedback

Business Rule Validation

Last Valdation Tine: 4:03:23 PM PDT

[ODG]

OEBPS/img/rules_aggsel.gif
Bdeset s, v [Jgheron wew [Qurmennies <] - X BHBo v

5 A Rule 1
St descrption>
[Tree Mode

Rule active []Logial Briorty: [medum

Effective Date: Always Valid

¥
Orderis 2 Order

dnsert test>
and

For sach case where) {

(for each case where)

there i a case where.
there i no case where

insert pattem>
THEN

insert action>

OEBPS/img/adfbc10.gif
 [Elcheptertous < Chapter10Rues.rues

© OutsideMenager Ruleset. ¥ [Igkeron uew (refmeries < k- R BEEE A v

= 2 Find managers in different department.

Senter description’>
[7] Advenced Mods [] Tree Mode [¥]Rule Active [Loical Brorty: [medum

Effective Date: | Always Valid

¥
<variable> s a sfact ypen
dnsert test>
insert patem>
THEN

<insert action>

OEBPS/img/ruleset_showfilterquery.gif
DOracleRules1.rules
v Hea

() @

$EEREMG

Ruleset_t ¥ [heron % BEEG A

¥ Customero]Show Fiter Query.

<enter description>

CustomerOrder_Rule2
<enter description>

LineItem _Rule1
<enter description>

«

LineItemRule2
<enter description’>

«

Rule_5
<enter description>

OEBPS/img/bucketset_editor_def.gif
Edit Bucketset - bucketset_{

;IR

osta Type: it
(] Include Disallowed Bucksts in Tests

Range Bucket yalues:

ax

Included Endpoin Alowed n Action: Range

Endpoint
ctheruse

® -Infinity

Alias
ctherwise

Description

OEBPS/img/rules_atm.gif
| @startpage | QOrackRuest s

@razs
i Functons

(x) Globals

£ Bucketsets

D inks.

0 Decision Functions

Ruesets 4 X

| Rulese

[DoracieRulest.rules | Sorder xsd |efeompostesnl | £po.xsd

Reset 1 ¢ [theron vew X wmmeav

52 free shipping

Senter description>
[V] Advenced Mods (] Tree Mode [¥]Rule Active [Logical Briorty: [medum

Effective Date: | Always Valid

ROOT: <fact type>
¥

<varisble> s 2 <fack pathz.

dnsert test>

insert patterm>
THEN

<nsert action>

OEBPS/img/rules_r8.gif
Ruleset 1 ¥ []

=¥ Rule1
<enter description>

¥

CustomerOrder.annualspending > 2000
dnsert test>

THEN
modfy CustomerOrder (<add property> value : "High')

<insert action>

OEBPS/img/stm.gif
) stomerorderssd | Syschemat.ssd [QOracieRulestrates | Spossd | trieczcnl_[sfgcon OIC) |
av 9o 90 % @

G et v (oo o Qe <4 X BEH@OA v

i Functions
| =4 Rue2

(e Serter descrpion>
7 Budketsats [advanced tode (] Tres Mode (] Rule Active [JLogical Eriorty [medum |+]
(s Effective Date: Always vald
Decison Functions
Miests | OO
£ Ruleset_t dnsert test>
THEN

insert action>

Design

OEBPS/img/adfbc_brd3.gif
i Functions. @ inks
) Gobat ks YT

{7 Bucketssts Alias. Name Package Name

B Decson Functons

Rulesets o 3
© Reser_t

OEBPS/img/linkresource.gif
SOA Resource Browser.

] Appication

ot pr
@ Purchasetems.ries

OEBPS/img/gr4.gif
Greate XML Schema

Enter the detals of your new fe.

il Name:

rades.xsd

Drectory;

\IDevelopermywork|GradeApplGradesixsd

[o

el Gl |

Cancel

OEBPS/img/rddt14.gif
| radeRulst s | DPuchasettems.nies () DracleRulestrules | OrackRuest.rues |)oradeRulest nes | oracieruest rle: (OIS
Qv iH e iEHO % @

P ey v [@omme 4%
Goews Ol DEaweme D)/ X av E A TR
D Links - Conditions m =

oL prverz.ace, =2 I

A ecison Functons.

Rulesets & X
© Ruleset_t
© Rueser 2

N - Actions
AL mody Driverz(

elgble:) true true

Desian

(ElBusiness Rul vaidaton - Log

(5]

E2) Dictionary - OrackeRulest rulss isplay New Warrings First

Wessage Ditonary Object Propert
& RUL-05831; The decision table bucket eference cannot be found. OracleRulest [Ruleset_i[DecisionTable_tConition{/Contion Cel[1]
SOk Warnings: 1 Last valdtion Tane: 208132 YD

Business Rul Valdation | Extensions | Feschack | (504 | @BSearching for Driver2 (oG]

Edting § Hesp

OEBPS/img/rtdt_6.gif
ORACLE" SOA Composer @ Bockmarkable Link Logout ©

Logged in as workspacel

(x) abat

uleset jen TN Rues %
2 Bkt e e [IFITHEN R Bxe

Rulesets Effectve Date | Aways ¥
& Rulset_L v v (R 1 B

£ Ruleset_3 .

= ® LR

& Thsis arealylon

© Rulest.5 O [oreray Q [rore than i [0
g’*u‘m’—ﬁ [[order.value Q [mors then ~ [too00m0
Ruesst 7 WL TG

£ Ruleset 8
£ Ruleset_9

£ Ruleset_i0
ez L — T
@ Ruleset_12
@ Ruleset_13
@ Ruleset_14

nsert action>

00 ¢ [orderiy Q [sameorkssthen v 10000

g’*“‘“*’ﬁ O [odervaie Q [same orlessthan v [000000
Ruest_is

© Ruleset 17 e
£ Ruleset 1z

P\reencen
a v

[[Customer Rating v [0

OEBPS/img/rdrlfunc1.gif
@startPage _|[Hs0n3.jns

av 9oa

|eficomposite.xml | JPurchaseltems.rules [C]
o %

@razs
. Functions

(6) Gobals

7 bucketsats

D ks

& Decision Functions
Rulesets &b %
© Rueser_t

£ Functions

Functons Qe @R

Name ReturnType Bucketset Description

£ T S

Arguments; +Rav
e e Bucketset

@ arg_t Suing
__[

@ arg3 Sting

Gody:

insert action>

Desian

OEBPS/img/rddt13.gif
[ElBusiness Rule Validation - Log

Dictonary - OracleRulest rules

(5]

isplay New Warrings First

Message
& RUL-05837: The decision table has o condtions o rues.

&) RUL-D5838: The decison table has no actons,

& RUL-DS703: The rule o decsian table must have at least one pattern or test,

Dictionary Object
OracleRules1Ruleset_2/Decision Table(DecisionTable_)
OracleRules1Ruleset_2/Decision Table(DecisionTable_t)
OracleRules1 Ruleset_2/Decision Table(DecisionTable_t)

Property.

SDK Warnings: 3

Messages | Business Rule Validation | Extensions | Feedback

Last Valdation Tine: 1:32:46 PM PST

[DOS]

OEBPS/img/adfbc6.gif
Greate Java Class.

Enter the detalls of your new clss.

Neme:
Package:

Extends:

MessageAction

cam example

Optional Attributes

Implements:

Access Modfiers

© publc
O package protected

Congtructorsfrom Superclass
Inplement Abstact Hethods
] i ethod

other Hodifers
(@) <Mgne>
O sbatract
Otnal

OEBPS/img/rules_date1.gif
Ruleset_t ¥ [Jkaron e X BBEOAv

=¥ Rule1
<enter description>

¥
Clrrerbate dats > Uene oxpres,

CurrentDate.date.

T @ vlue oprions
@ License

o expres e
@ CurrentDate:

o tine
a timelnils

Olist¥ien @ Tree view

[constort [Customigable

OEBPS/img/grade_app4.gif
® Create By

usiness Rules

Business Rule

O geae

Ditionary) Import Dictinary

Specifythe name and package for the dictionary that wil be created.

Neme:

GradingRules

Package:

com.example grades

Project

Ci\TDeveloper|mywork|GradeApplGrades!Grades.jr

InputsfOutputs:

Direction
rput
Output

[TestScore
TestGrade

{http:jexample.comjgrades} TestGrade:

OEBPS/img/rules_duration1.gif
& Expression Builder

Expression

Duration.days betwesn(CurrentDate.date, river LicenseExpies)

A Insert Ito Expression

=3 Duration

compare(Calendar 4L GregorianC alendaroracle jbo.domain.Timestartp,Calendar XML GregorianCalendar [oraclejbo.domain. Tmestar

minutes between(Calendr XM, GregorianCalendar o acl. o, domain. Tmestamp, Calendar | L GregorianCalendar racle. joo.domain,
ears between(Calendar| ML GregorianCalendar|racle. joo.domain. Tmestamp, Calendar 41 GregorianCalender|oracle. oo, domain. Ti
hours between(Calendar|HLGregorianCalendar|racle. joo.domain. Timestamp, Calendar 41 GregorianCalender|oracle. jbo.domain. Ti
miliseconds between(Calendar L GregorianCalendar|racle. oo.domain. Timestamp, Calendar <ML GregorianC alenderoracle. jbo.dor
months between(Calendar|xMLGregorianCalendar oracle. o, domain. Tmestarmp, Calendar L GregorianCalendar|racle.oo.domain.

TR rorctees

Operators

Constants

Content Preview:

Description

Duration.days betwesn(Calendar| XML GregorianCalendar oracle.jbo.dor

OEBPS/img/bucketset_editor_buck.gif
Edit Bucketset - bucketset_1

Nome: bucketset

osta Type: it

(] Include Disallowed Bucksts in Tests

Range Bucket yalues:

alx

Endpoint Included Endpoint Alowed in Actions Range

® -Infinity

I I - N N = T =

Alias Description

[0..50)
<«

OEBPS/img/servlet5.gif
Draingrulesiiies | oradeRuiest s | [Boradeovs [[]Gradesservietiava S

(- DS L BUREE ARkl @ "
Backagelcon-exeny T raness) Show Selected Element Orly
aport
Spwblic class Gradssserviet extends Hecpserviet (
Drivate static final String COMINE TYPE = "text/htul; charsetsvindovs-1252%5
=] public void init{ServletConfig config) throws ServletException {
swer. intt (contig)
¥
public void service (HorpServiethaquest equest,
HecpServletResponse response] throws ServietException,
=] T0Exception {
cesponse. setContentType (CONTIT. T06E)
Printbriter out = response. getUricer (15
out.prinsin("<htai>"
out. printin"<head>< T tle> GradesServlete/ ciple< nead>") I
out.printin("<bods>")
out.printin("<psThe Serviet has reseived a BOST ox GET. This is the reply.c/ps"

Source | Design | History.

out.println("</body></htnl>") ;
out.close(];

OEBPS/img/bucket_enum2.gif
Edit Bucketset - Class1$0rderSize

Nome: [Classt§Ordersize

Fam: [Enm

Data Type: [Qass1§ordersie

[Include Disallowed Bucksts in Tests
Bucket yalues: +xXav
value Az Allowed in Actions_ Description
ass1 §ncersize SALL e
T I - T
@ Class1f0rdersize LARGE LaRGE
@ ol ul

OEBPS/img/rules_grades3.gif
ar PP e e — T T

i Functons
(x) Globals
£ Buctetsets

5% Rule 1
St descrption>

®

& Links Grades test_matht

B osconFunctons | <insert test>

Rulesets X THEN

© Ruleset_t <t actan>
D Reset 2

(ElBusiness Rul vaidaton - Log

Dictonary - OracleRulest rules

isplay New Warrings First

Message
) RUL-DS715: The value ™10" s excuded by bucket set "vald_grades’.

Dictonary Object Property
OracleRulest Ruleset_tRule_/Grades{Test[1 jExpression[2]

SDK Warnings: 1

Last Valdation Tine: 4:12/51 PMPDT

Business Rule Validation

@8 Searching for valid_grades

OEBPS/img/fact_rledit2.gif
& Edit RL Fact - Driver

e Driver

Description

Super Class: (OB 3

Broperties: + X
Name Tre Budetsst | Inkilvahae Lt Content Type

@ e in: v _ages

@ hes_teaiing boolean boclean
ere test suing

@ clgble boolean boclean

& =L

licenseTypet truck %

licenseTypet truckis

Bt Columns To Widkh licenseTypet motorcycle
LicenseType1 bicycle:

IRL get strateay()

IRL.get strategy() tolowerCase()

OEBPS/img/report_app.gif
& Create Generic Application - Step 1 of 2

Narme your application

‘Applcation Name:
Reportappication

121 Application Name

& Project Name
Drectory;

Ci\TDeveloperimyworkiReportappication Browse,

Applcation Package Prefi
com example

‘Applcation Templae:

Generic Application
Creates an application which includes a single project, The profect is not
preconfigured with JDeveloper technologies, but can be customized to nclude any.
technolodies

Fusion Web Appicaion (ADF)
Creates a data-bound ADF web appication. The applcation conists o one project
for the view and controler components (ADF Faces and ADF Page Flow), and
anther project Fo the data model (ADF BLsiness Components).

3ava Desktop Applation
Creates an applation configured or bulding a generic Java sppcation. The nen

OEBPS/img/rules_poschema.gif
<schema>

targetNamespace

ity dhwew. example.org

PO

L enumeration

open

heatler.

status.
type Status

order-date
type xstdate

customer-value

T (o>2)

destination

address

nayment

item

auantity
pe xstint

status.
type xstistring

enumeration

partially shipped

enumeration

fully shipped

ty

availabiliy-date

type xstdate
doh

type xstint

price
type xstdecimal

shipment

OEBPS/img/rules_r3.gif
 Ruesett v Clakeron vowr [QErm. <] - X BEER A v

=¥ Rule 1
Senter description>

"
stenordsranusomdrg | B

™ @ value oprions
=@ CustomerOrder

 [snnualEpending

e credtscore

e order

a vale
Orderapproval
CurentDate

Olist¥ien @ Tree view

[constort [Customigable

OEBPS/img/adfbc14.gif
Greate Java Class.

Enter the detalls of your new class.

Neme:
Package:

Extends:

RaiseAction

cam example

oracle.ruls.sch2. decisionpoint. ActonType

Optional Attributes

Implements:

Access Modfiers Other Modfirs

(&) public &) <Nane>
O package protected O sharact

Oftia

Congtructorsfrom Superclass
Inplement Abstact Hethods
] i ethod

OEBPS/img/rules_r7.gif
(D)startpage | OrackRulest ries]

viDEE B0 @

Facts
o Rueser 1 v [Ekron e [QFeNRdes <] - X B B 60 A v
& Functions
= ¥ Rule 1
(B@s=s <enter description>
7 Bucketsets
© ¥
s CustomerOrder.annualSpending > 2000
B Decionrunctons | <iserttest>
Rulesets o 3 THEN
$ Ruleset 1 ety Customerorder ([EEEAERRTE])

cinsert action>

& Properties

Name Constant
lonnusispending

frediscare.

frder

T — =i

Message Dictionary Object Property
) RUL-05810: The action "modify” requires at least one property be... OracleRules1 /Ruleset_1 /Rule_1 /Action[1]

SDK Warnings: 1 Last Valdation Tine: 1:38:05 PM PDT

| Fieasanaai oveL [pusivess Ruls veldation [Exterwiors [rasiback [G50A | [DG]

OEBPS/img/adfbc18.gif
D ChapterioRules.ules | [BlDepthanagerFinder.java

v Hea

[C]

@

@ Facts

i Functons

(x) Globals

¢ Budketsets

D inks.

Decison Functions

Rulesets + X
€9 Outside Manager &

£ Depsrtment vansge.
© Raises Ruleset

 Retract Employees...

Retract Employees Ruleset ¥ [Jpkeron Yew: [QIFTEN.. -] b~ X BEE R A v

5 % Retract all employees
<enter description’>

Advancedtlods [Tree Mode

Rule Active,
Effective Date: | Always Valid
¥
Employes s a Employes.

dnsert test>

insert patem>
THEN

retract Employes.

insert action>

[loges

priority:

Design

OEBPS/img/fact_func1.gif
| B classt java (D))

Page | OradeRulest.rles | DracleRuleskrules | <) OrackRulest s | OradeRulest rles
@

Qv 968 B0 %

Bl £ Functions

. Functions
(0) alobas Functons

Return Type

£ Bucketsets e
Dk E
Do e £ Functon_test2 float

Ruesets X | =

@ Resett Arquments:
Name Type Bucketset
@ erg_t int
Body:

callprint{ message : "test")

retun arg_1

insert action>

Design

OEBPS/img/dp7.gif
Edit Decision Function

e CorRentalDecksionFunction

Description

Rule Eving Lt [uriimied

Wi ovoked As A Webservie. et e

Check Rule Elow

Stateless

© Inputs

CarRental_Decisiongervice_CarRentalDecisionFunctian

Moo
8 dwermp

Fact Type
Driver

Outputs

Name

B denids

Fact Type
Derial

) Rulesets & Decision Functions

avalable:

Selected

(€ Deria Fues: Fthen

1€ Derial Fues:decison bl

OEBPS/img/gr5.gif
() [ElGradeipp.iws | Shorades.xsd
(@8- LX)

 Projects ER7-E- <ol version= 'L.0' encoding= 'UTF-5' 2>
= <xs:schema targetlianespace="hrtp: //exauple. con/grades”
5 Resources *ulnstxa="rep: / /. u3. org/200L /ML chena”
2 orades xsd *ulns: ths="http: //axanple. con/grades”
s atcribuceForaDefault="qualified” elenentFornbefault="alified”
S *ulnstiic="hetp: //3ava. sun. con/sul /ns,/ axb /X)"
*ulns:axh="http: //Iava. sun. con/xul /ns e’

Jaxb: extensionBindingPrefixes="xjc"
Jaxbiversion="2.0"

<xs:element name="Testicore™
<xs:complexType>
<xs:sequence>
<xs:element naus

Dom

mane” type=xs:string”/>
<xs:element name="testliane” type="s:string”/>
<xs:element testScore” type="xs:double"/>
<xs:element ‘testCurve" type="xs:double"/>
1 Applcaton Resources </xs:5equence>
» Data Controls </xs:complextype>
1 Recently Opened Fles </xs:element>
Design | source | Hstory. 0

OEBPS/img/fact_javaedit.gif
@ Edit Java Fact - carrental. Driver

Class:

alas: Driver

Super Class:

Description

Attributes

Properties

Hies
@ aberoorve
@ =

@ Hensetuber

lcenseType

@ rame
@ previousaceidents
@ vehickType

visble

Name
ableTarive

oo
lcensetumber
lcenseType.
previousicidents
vehickType

Type
boalean

int

string
DrivergiicenseType
string

int

DrivergshiceType

Bucketset
boalean

DrivergticenseType

DrivergehiceType

List Cantent Type

Bt Coluns To Widkh

OEBPS/img/servlet12.gif
Test Grade Example Serviet - Mozilla Firefox
Ele Edt Vew Hstory Bookmarks Ioos Help

@ . C Zar [L/ hitp:ffmyserver example.com:7001| sradesfindex.html 7~

0ot isted [Avin [Overvio (Ora ..) Account Reuest) v Tkes]y crade [ReworkReguest

v | Q) search ~ § AriaSearch - ¥ Bugld

Mame:

Test Score:

OEBPS/img/servlet17.gif
Edit MAR Deployment Profile Properties.
(8 o)| Dpirectories

AR Options
55 Metadata Fie Groups
5 User Metadata

[et | [peselect Al Customizations

55 HTHL Rook D for Gradss designer
Directories 1 E) GradingRules_graphics.xml

=) HTML Root Dir for ViewCor =[] 00 dlasses
Directories

&[]0 orade
(163 nes
=[]0 publec_himl

1D gadesd

Expand All Nodes Collapse All Hodes

OEBPS/img/stmr1.gif
(DstartPage | pOrackeRulestries | (PDracleRulestrules | Soorderxsd | offfcomposite.ml | SAPO.xsd
@ 2 00 & <

G Rt v Citeron s + X whmeav
e Functions
= ¥ Rule_2
(e <enter description>
"7 Bucketsets
© ROOT: PO
D ks B
B8 ecison Functons Duration. days between(PO header orderDate,POjdestinationjitem. availabityDate) > 30
b Ruleset_1 .
‘madify POjdestinationfitem { <add property > status : "canceled”)

Desian

OEBPS/img/dm_df1.gif
Edit Decision Function

e DecisionFunction_t

Description

Rule Eving Lt [uriimied

(OracleRules1_Deckianservice DecisionFunctian_I

[Wiise Ivoked As A Webservie. Serice e

Check Rule Elow

Stateless

Fact Type

Outputs

Name Fact Type

) Rulesets & Decision Functions

Selected

19 Ruleset 1

avalable:

OEBPS/img/dp2.gif
Gracs
i Functions

(6) Gobals

7 bucketsats

Dk

8 Decision Functions
Rulesets @k %
€ enal s -

€ enal Rues: dec

Decision Functions

Decision Functions:

®+s/x

Nome
B Comentabedsonruncion

Description

web Service

]

OEBPS/img/rtdt_2.gif
ORACLE" SOA Composer @ Bookmarkable Lk Logout ©

Logged in as workspacel

B 0pen
(EE10pen Rules
A Open D

7

OEBPS/img/rtdt_auth.gif
ORACLE' SOA Composer @ Bookmarkable Link Logout ©
Logged in a5 nonadmin

Currently logged in user s not authorized to madfy SOA metadata

OEBPS/img/rtdt_ruledel.gif
Ruleset 3 view |IF/THENRules v [§ 3¢ &

Effective Date | Alnays v

v [Riet @
. Dekts Rk 0 O
0 [oderaey Q [more than ! 10000 Qg+

O [ordervae Q[more than ! 1000000 Q L+

OEBPS/img/fact_rledit.gif
& Edit RL Fact - Driver

e

Description

Sper Class: [GH

Propertis:

+ X

Type
int

has traiing boolean

eye_test string

elgble boalean

LicenseType String

Bucketset Inkial Value
driver_ages
boalean

boalean

List Cantent Type

Bt Coluns To Widkh

OEBPS/img/editwargen.gif
& Edit WAR Deployment Profile Properties

WAR Options

=5 e Groups

5 Web Files
Contributars
Fiters
) WEB-INFidasses
- Contributars
Fiters
5 WEBTNFib
Contributars
Fiters
Profile Dependencies

- Platform

Websphere 6.x

General

WAR Fie:

Ci\TDeveloper|mywork|GradeApplGradesideploy|gradss.wer

Browse,

Web Applctin's Conest Rook:
(O Use roject’s Jova EE Web Context Root

Gradefpp-Grades-context-root

5) Speciy Java EE Web Context Roat

arsces]

Deployment Clint Maximum Heap Size (in Megabytes) Auto

OEBPS/img/intro_loan.gif
= ¥ Loan Income Rule
Loan minimum income

¥
‘Applcation_losn.income < 10000

THEN

modfy Applcation_loan (deny : trus)

OEBPS/img/rules_r13.gif
P orackRuest es
viDEEH B0

G}
@
© rulsser 1 ¥ Cokwron wows [Qummenmdes] X h@%u«vﬂ

=¥ Rule 1
Senter description>
¥
Customerorder.annualspending > 9003
dnsert test>

9
£
()
&
&2

& TN

modfy CustomerOrder (<add property> value : "High')

ansert action>

Desian

Dictonary - OracleRules1 rules Display New Warrings First

Message Dictonary Object Property]

This i & new exception since the last update!

SDK Warnings: 1 Last Validation Time: 7:58:28 AM PDT

Business Rule Validation [0S

OEBPS/img/rtdt_openshow.gif
ORACLE" SOA Composer

JEdt | B

£ OrderBooking.rules
© Selecta dictionary to open

lﬂ
&
Rules

&

Shaw [Al ! [Search camposite

@ Bockmarkable Link Logout O

Lagged in as workspacel

ble

Composte oitonery

[Conters [rules e

FODOrderPracessingComposte_revl.0 _ DiscountDitionary.
WRulesProject_revi.0 CresitRatingRules
RulesHeliarld_rev1.0 test
RulesHeliarld_rev1.0 Approvalules
RulesHeliarld_rev1.0 test

Hja DynamicRouting

Ruleset_I DiscountDitionary rules
Ruleset_1 CreditRatingRues.ules
Shaw Ally Ruleset_1 Rulset_10 Ruleset_11 AdvancecRules.rus
ﬁﬁwame

Ruleset Ruleset_I

Ruleset Ruleset_10

Ruleset Ruleset_i1

Ruleset Ruleset_12

Ruleset Ruleset_13

Ruleset Ruleset_14,

Ruleset Ruleset IS

Ruleset Ruleset 16,

Ruleset Ruleset_17

Ruleset Ruleset 15

Ruleset Ruleset_19

Ruleset Ruleset_20

Ruleset Ruleset_21

Ruleset Ruleset 22

Ruleset Ruleset 23 el

Ruleset Ruleset 24

Ruleset Ruleset 25

OEBPS/img/orderapp21.gif
Ruleset_ Yow: I Decisnatle 1

«

DecisionTable_1 <erfer descrpion

Conditions
€L CustomerOrder creditscore
€2 CustomerOrder.order

€3 CustomerOrder annualspending >2000

Actions
AL assert new Orderapproval(
statusi 1)

Bt Columns To Widkh

RI
risky
Medum,Hh
fabe

Status REECTED

R
avg
LowMedum

true

Status. APPROVED

+- R
- % iR eFER

Status. APPROVED Status. APPROVED

OEBPS/img/rules_mfact.gif
Ruleset_t v [Jpkeron ew: [I/irENRues ~] b - R T2 B 63 A v

=¥ Rule1
<enter description>

¥
Orderis 2 Order
and
there s a case where {
OrderfLineltem is a OrderfLineltem and

OrderfLineltemt sku == "HATIZS"

¥

and

there s a case where {
OrderfLineltem2 s a OrderfLineltem and

OrderfLineltem.sku == "SHOE46"

THEN

modfy Order (dscount : 0.05)

OEBPS/img/orderapp1.gif
& Create SOA Application - Step 1 of 3

Narme your application

‘applcation Name:
Orderapprovalipp

151 Application Name

Protect Name
Drectory;

< R DeveloperlmyworkiOrderfpprovalipn Browse,

‘Applcation Package Prefi
com example.order

‘Applcation Templae:

Java Desktop Application (ADF)
Creates databound rich lent pplcaton, The applicationconssts of one project
For the client (ADF Swing), and another project for the ADF Model (ADF Business.
Camponerts)

Java EE Web Applcation
Creates a databound web applcation. The pplication consists of ane project for the
view and controlr components (15F), and ancther project For the data model (EJ6
session beans and JPA entiis).

5] 508 applcation
Creses .50 (ervie-ariented archtactre)splcato, The apliation consts of
e SOA o o the SOR composte, companents, and scaptrs J

OEBPS/img/adfbc7a.gif
frwcios || everes @ F/ XS

(x) Glbals Alias Class Descriptio
Wessageiction com example Messagedction (A
actonType orade. s, sck2 decisonpant.ActonType

KeyChan orade, s, sck2. decisonpoint KeyChan

KeyedactonType orade s, sck2. decisonpoint. KeyedictionType

DecisirPoint orade s, sck2, decisonpoit DecisonPoit

DecisirPoitinstance crace.ules. k2. decisanpaint DecisinPointinstance

DecisrPointsulder orade, s, sck2. decisonpoint DecisonPointBulder

Object Javaeng Object

suing Javaang String

Bginteger Java.math Sigteger

Ggpecinal Java.math igDecinl

Calendr vt Calendar o

JavaFacts [[RUFaRE) ADFECFaEET]

7 bucketsats
D ks

B Decson Functions

Rulesets + %
€ Outside Hanager R

(R R

OEBPS/img/jdimportschema.gif
& Type Chooser

A Type Explorer

O o saiarisy

& Import Schema File

Type:

[how Detaled o Information

OEBPS/img/rules_test1.gif
Ruleset 1 ¥ [Jokeron Yew + X wBBeav

=¥ Rule1
<enter description>

¥
CustomerOrder.annualspending > 2000

THEN

modfy Customerorder (value : 'High')

OEBPS/img/adfbc11.gif
DChapteriORules.rules | []OutsidetanagerFinder java [C]
v 9@ (] @

? Outside Manager Ruleset ¥ [giteron Yeow: [@ FienRde:] - X BB A v

= % Find managers in different department

) Senter desrpton>
© [Jrestiode (V1R Active [bogicl prionty: [medumn [+]
<2

Effective Date: Always Valid
¥
Employes s a Employes.

dnsert test>
and

Manager i a Employes and

Manager Emplayeeld

Employee. Managerld and

Manager Departmertid I= Employee.Departmentld

dnsert test>

insert paterm>
THEN

assert new MessageActon <add property > message ; "Employee "+ Employee.Firsthame + "+ Employes.Lastfiame + (" + Er

<nsert action>

OEBPS/img/rtdt_showpath.gif
Select a dictionary to open

show [al . [Saarch composte »le

Coreee) Complete Path [deployedk-composites/RulesHelotorld rev . jrulesfAdvancedRules.rues [Rues File

RulesHelowarld_rev1.0 test Shaw Al Ruleset_1 Ruleset 10 Ruleset_11 AdvancecRules.ruls
RulesHeliarld_rev1.0 Approvalules Ruleset_I ApprovalRulest es
RulesHeliarld_rev1.0 test Ruleset_1 OrderBooking.rules
FODOrderPracessingComposite_revi0.0 DiscountDictionary. Ruleset_1 DiscauntDictianary es
Hja DynamicRouting DynamicRatingCreator

DynamicRauting.rues

OEBPS/img/grade_app9.gif
Elaradesservietsavs _[DGradingRulessules ®

viDE: 8O €]

I

f Functions
(0 Gobale Decison Functios: EYE]
{2 Budetsets Name Desciption Wb Service

D ks
| pecision Functions
Rulesets & %
© Reser_t

Design

OEBPS/img/fact_rl.gif
(@)start Page

Shordertest.xsd

|effcomposte.xml

| QPurchaseltems.ries

[C]

i Functions
(6) Gobals
2 bucketsats
D tiks
60 ecsion Functions
Rulesets o %
© Rueser_t
© Rueser 2

BLFacts:

Qi+sx

Thame.

Drver
Driverz
Ttem
Shipment
order

| Descriptian

Tsuper Clss
Object
Object
Object
Object
Object

RLFacts

OEBPS/img/adfbca.gif
& Create Business Components from Tables - Step 1,of 6

Entity Objects

R T G
ot cm.conol =

Entity Objects

Updatable iew Obiects|
Filter the types of schems objects to diplay s available then selectthe schems object() and clck'>' o create entiy objects,
Read-Orly View Object

Spplcaton e | Sehemss [HR Type Fiter; OFF: | _Fiter Types

g am Fier: [Auto-Query [Query

Sunmary. Ayalable: Selected

[EPARTMENTS
EMP_DETAILS_VIEW

[085

JE 108_HISTORY
[LocaTons
JE ReGIONS

Entity Name: [Employees

OEBPS/img/rules_lovlimit.gif
Rz v [Jsbwon dov[Qrmenne | #-X @m0

=¥ Rule 1
Senter description>
¥
Driver.eye_test
dnsert test>

THEN Q valie options
<insert action>> e eyes
a ps
[y
a glasses requred
a orver
aR

Olist¥ien @ Tree view

[Constant] Customigable

OEBPS/img/rules_test_function_dec.gif
D GradingRules.rules | officomposice sl

Qv 9e8 80

@razs
. Functions

(6) Gobals

£ bucketsats

D ks

8 Deciion Functions
Rulesets G %
| % Resers

£ Functions

Functions Qe @I+ X

are Return Type Bucketset Descrption

£ T T T I

£ PrieTestarade void

Arguments; +XaAav
Nate e Bucketset

Gody:

assion new TestScore testScore = new Testscore()

assign testscore.name = Bl Reynalds”
assion testscore testilame = "Math”
assign testscore testcore = 81

assign new TestGrade testGrad

en TestGrade()

assign new Lstresultist = GradeTestFuncitestScore)

assign testGrade

(Testaradejresultist. get(0)
call PrintTestGrade(score testscore , grade : testrads)
retun true

insert action>

Design

OEBPS/img/servlet1.gif
& Create HTTP Servlet - Welcome

Welcome

Welcome to the Create HTTP Servlet Wizard

This wizard wil help you to create a new HITP Servet

[k tis Page Next Time

OEBPS/img/orderapp4.gif
& Type Chooser

A Type Explorer

O o sairis]

& Import Schema File

ywork{Orderpprovalapp/Orderipprovaljsdjorder.xsd

Type:

[how Detaled o Information

OEBPS/img/linkstab.gif
(startPage_[{POracleRulest.rules | effcomposte i | poracisRuest rles | Sorderasd | lapplcationts s [IIE)
v Hea He % @
@rats D

f Functions
(0) alobas ks @ /RG
{7 Bucketsets Alias MName Package Name

2 Links 2
B pecision Functions
Rulesets & %
© Rueser_t

© Rueser 2

© Rueser 3

Design

OEBPS/img/stmexp1.gif
sstomerorder xsd | P schemat.xsd (QOradeRulest.des | FPO.xsd

Qv H ey

< | of5compost (I
o % €]

o R = (taon o [Qrrees o 4% BH@@ A
(x) Giobals Sentar description>

7 Budketsats [Advancedtode [¥] Tree Mode (] Rule Active [Logical rioity: [medum

D Links

Effective Date: | Always Valid
Decison Functions

Ruesets 3¢ | ROOTRO

© Ruleset_t TE e S

T @ vlue oprions
=@ POjdestination/item
aD
BT
a o
e quentry

Expression Bulder.

- a status
5+ POfdestination

a address

Desian

[ElBusinessRul Vaidaton - Log

(5]

a shipment isplay New Warrings First

Message E Property

&) RUL-05711: The expre| a biling et_1/Rule_2/PD/destination/item; Test[1]/Exy
a destination

a header

POfHeader

POfDestinationgShipmentfltem

Pogailing

PO$Destinationgshipment

POfDestinationgtem

POfDestination

Curentpate

a tem
Dictionary - OracleRulest.rul

Olistview @ Tree View
SOK Warnings: 1 e Last Validation Time: 5:28:12 PM PST
[T —— T T [Customizable oo

OEBPS/img/stmroot.gif
sstomerOrderxsd | Sschemalxsd (DOrackRulest.rules | SAPO.xsd | (] untitiedz.xml | offcomposit (ORI

Qv HEs D0 & @
(s Ruleset_t ¥ (lteron Wow [QFmenrde: <] - X BEEE A v

i Functions

54 Rule2
(Dexsh Senter descrpion>
7 Budketsats [Advanced tode we fctive [JLogical Brcny: [medum_|v)
(o Effective Date: Always valid
Decison Functions
Rulesets & % |ROOTRO
3
D Ruleset_t <52 pOgreader
TN | PODestinationgshpmenstem
Postilng
<inse POSDestinatonfshipment
Po
Pofestnatnditem
POfDastination
CureriDate

Desian

OEBPS/img/rddt5.gif
DoracleRulest.rules

Qv iH e iHO %

G]
@

Qrecs Ruleset 1 Yiew: [DecionTable_t - R
i Functons Sired
i ¥ O DecisionTable 1 <erter cescrpion
7 Budketsets CHEH BT + RiAaviH G
- Conditions rt
ks <

? [BEEROEsS €2 Driver.has_training true
Rulesets + X

$ Ruleset_1

D Reset 2

AL modfy Driver(
clgble:)

RI0ZER

R2

false

false B

Desian
[ElBusiness Rule Validation - Log

Dictonary - OracleRulest rules

(5]

Display New Warrings First

Message Dictonary Object

) RUL-05835: All ules have "do not care” set For condion "Driver.age”, Select one or more buckets n 0., OracleRules1 Ruleset_i[DeciionTable_i/

2

SDK Warnings: 1 Last Valdation Tine: 12:48:35 PHM PDT

Messages | usiness ulevaidation |Feedback | oPeL | @8Sesrching foreye et

[0S

OEBPS/img/rtdt_3.gif
ORACLE SOA Composer

Open a document to e,
Select a dictionary to open
Shaw [Al v

Composte

Search compasite

ble

@ EookmarkabieLink. Logaut ©

Lagged in as workspacel

FODOrderProcessingComposte_revi.0

oitonery

[Cortents

[ruls i

WRulesProject_rev1.0
RulesHeliarld_rev1.0
RulesHeliarld_rev1.0
RulesHeliarld_rev1.0
A

DiscountDictionary.
CredtRatingRues
test
Approvalules
test
DynamicRouting

st §
reru
Soudi

Rt §
Rt
S

Ruleset_1 Rulset_10 Ruleset_11 AdvancecRules.rues

DiscauntDictianary.ules
CrediRatingRules.ules

ApprovalRulest es
OrderBooking rules
DynaicRauting.rues

_open |_cance |

OEBPS/img/rules_createruleset.gif
& Create Ruleset

Neme:

Description

A set of ules to execute

OEBPS/img/grade_app5.gif
Edit Bucketset - Grade Scale.

e

Data Type:

Grade Scale

ot

(] Include Disallowed Bucksts in Tests

Range Bucket yalues:

ax

Endpoint

£
E

Included Endpoint Allowed n Actions Range
0

[50..30)
[70..80)
[60..70)

Description

OEBPS/img/rtdt_editrangebs.gif
e

ucketset Editor

" Name: Age Group
| Descrption: | Test
DataType: [int v

Include Disallowed Buckets in Tests [

Range Bucket Valuss:

ax

EndPont [tndoced Encpone. | Alonedin Actons [Range [pies Posapton |
B =50 > T
[Co— [0..50) [osy [
ey < CE— —

Y

OEBPS/img/servlet8.gif
& Project Properties - C:\Developer\myworkiGradeApp\Grades\Grades. jpr

Deployment

Project Source Paths O Use Custom Settings

AOF Hodel (©) LseProectSettings
A0F iew
o Oeployment rofes:

Business Components
Compier
Dependencies

EJ6 Mode.
Extension

Javadac

Java EE Applcation
35 Tag Lbraries

35 isual Edtor
Libraries and Classpath
Resource Bunde
RunjoebugiProfie
08

Technology Scope:

OEBPS/img/rs_createxml.gif
& Create XML Fact

Select Source Schemas

Select the schemas you would ke to use as XML facts, The schemas wil be converted to JAXE classes
‘which you can create XML facts from.

Source Schemes: % Torget Classes:
File:/C:/ Developer/myworklApplcation1aj50ACq [¥] () xmiFactst
=8 myFact

05 [obiectractar

OEBPS/img/rules_r10.gif
v Opmor v Qv |4 %X B@Beav

Serter descrption>
Advancedtlods [Tree Mode

we fctive [JLogical prcrty: [medum

Effective Date: Always Valid
¥
<variable> s a gfact bypen

dnsert test>

insert pattem>
THEN

<insert action>

OEBPS/img/stmexp.gif
& Expression Builder

Expression

Ourstion.days betneent}

A Insert Into Expressian

=3 buration

 compare(Calendar |40 GregorianCalendr|oracle. joo.domain. Timestarp, Calendar XML GregorianCalendaroracle jbo.
[Gays between(Calendar [XMLGregorianCalendar [oratie oo dormain: Tiestaimp, alender AMLGr gorienCalendar orach
mintes between(Calendar XML GregorianCalendar orack. o, domain.Timestamp, Calendar| 0L GregorianC alendar or|
‘years between(Calendar ML GregorianCalendar|racle. oo.domain. Timestamp, Calendar |41 GregorianCalendr|orac.

millseconds between{Calendar| ML GregorianCalendar|racle. oo, domain. Testamp, Calendar | XMLGregarianCalenda

 hours between(Calendar| XML GregorianCalendar|orace. oo.domain.Timestamp, Calendar |44 GregorianCalendr|orac.
a months betwesn(Calendar XL GregorianCalendaroracle jbo.domain.Timestamp, Calendr XML GregorianCalendaror:

WaaBEE1] ucions |\ opararl] Comtans

Content Preview: Description

Duration.days betwesn(Calendar|MLGregorianCalendar oracle!

OEBPS/img/faq2.gif
 Edit Copy Operation

From

Type: [Expression

Expression @
false() |

Ve
= g Process
.
5[5 Scope - BusinessRule_t
i
- (x) com_example_globalcompany_ns_or:
e s
e s
<
(x) com_example_globalcompany_ns_or:
(x) dsIn
(x) dsout

7] show Detaed ode nfarmation
wah

/nsL:approve /nsL: approvalRequired

Lo Il]

OEBPS/img/rtdt_viewrs2.gif
ORACLE" SOA Composer @ Bookmarkable Link Logout ©

Logged in as workspacel

AdvancedRules.rules

(x) Gobals
Ruleset_3 View [FTHEN Rules)

{7 Bucketsets =

Rulesets Effective Date Aays

£ Ruleset_1 ety

| Ruleset 3 3

£ Ruleset 5 Order.value - more than 1000000

£ Ruleset 6

£ Ruleset_7

£ Ruleset 8

£ Ruleset_9

£ Ruleset_10

(Order.gty same orless than 10000

Select Next Ruleset

OEBPS/img/rddt9.gif
Boewraez 4%

Ruleset 1 ew
¥ @ DecisionTable 2 <erter cescriion
ALRS: - Xiav @ iH-RIBE
> Conditions R1 Rz (3
£

CL Driver.age

€2 Driver.has_training true fabe

true

& Gap Analysis
Y G Tore There i 1 missing e inthe decision table,
ou can add the missig e to the decsion table by selecting the checkbox in
the table header cou.

Conditions
- Actions Driver.age
AL modfy Driver(Driver.has training

elgble:)

Bt Columns To Width

OEBPS/img/servlet4.gif
& Create HTTP Servlet - Step 2 of 3: Mapping Information

Create HTTP Servlet - Step 2 of 3: Mapping Information

Enter serviet mapping.
While this s nct required to create a servlet, t s requed ta run a serviet.

Specify a ame and mapping for the serviet

Hiapping Detals

Neme: Gradesserviet

URL pattern: [jaradesserviet

EIrs

OEBPS/img/fact_adfbc2.gif
® Create ADF-BC Fact
ADF-BC Fact

Select the database connection and speciy the view defintion in which ta base the fact type on

opeton: B

o Dfirtn: [exdrepove Enpapeesven 3

Search Classpath +[x D
| [CifOracke{Middiewarsajideveloper/idev/extensionsforacls. sca.modsler jar

) Ic:forade{Middiewarealideveloper/soaimodulesiorace.soa.fabric_t1.1.1/fabric-runtime. jar

(D [CifOracle{Middiewarsajideveloper modulesioracle.fabriccommon_t1,1.1/fabric-common. jar

D [CifOracls{Middiewarsajideveloper/soajmodulesioracle.soa bpel_t1.1.1jorabpel jar

() ICifOracle{Middiewarssjideveloper/soamodulesoracle.soa.mediator_11.1.1fmediator_client.jar
) Ic:foracle{Middiewarealideveloper modulesforacle.mds_t1.1.1jmdsrt.jar

() fc:forade{Middiewarealideveloperfmodulesoracle.idm_11.1.1/identitystore jar

Q) Ic:/oradke{Middiewarealideveloper/modulesiorace. adf. model _t1.1.1]adfm.jar

) Ic:forace{Middiewareajideveloper modulesforacle. adf. model_t1.1.1jgroovy-all-1.5.4.jar

() fC:fOrackefMiddewareaiideveloperiadeabac dt-at1t.far

OEBPS/img/rules_grades2.gif
& Edit RL Fact - Grades

e

Description

Super Class: [Object

Propertis:

+ X

ame Type Bucketset

-ﬁ

Intial Value List Content Type

Bt Coluns To Widkh

OEBPS/img/fact_rledit3.gif
& Edit RL Fact - Driver

e Driver

Description

+ X

Super Class: [Object

Propertis:

Moo Tipe Budetset Voo Lt Corert Type
@ hes taning _bodean bookan

driver_ages

Bt Coluns To Widkh

OEBPS/img/report_proj.gif
& Create Generic Application - Step 2 of 2

Name your Generic project

T

‘Aoplcation Name.

Project Name

Project Name: [RepartProject

Directoryi [i\ IDeveloperimyworkiReportapplctioniReportproject || erouse.

{ Frofec Technologes | Genarated Companents | Acsodated Lrares |

Avalable: Selected

/ADF Deskiop Integration
ADF Faces

/ADF Library Web Appication Support
ADF Page Flow

ADF Swing

ant

BILADF Components

Database (Offine)

Technology Descripton

ADF Business Companents is the business services API provided by the Oracke
‘Appication Development Framework (Oracls ADF). ADF Business Components
crwetns nterartinn hebween th e of the anriicainn et the ot storerinthe

OEBPS/img/bucketset_editor_buck2.gif
Edit Bucketset - bucketset_1

Nome: bucketset

osta Type: it
(] Include Disallowed Bucksts in Tests

ax

Range Bucket yalues:
Endpoint Included Endpoint Alowed in Actons Range Description

nfinty

OEBPS/img/rules_operator.gif
Rueset 1 ¥ [Jokeron Yo X Bh@EeAv

=¥ Rule 1
Senter description>

¥
Clstamarordar A
nsert test>

THEN

insert action>

between

OEBPS/img/adfbc15.gif
@ Create Java Fact

Select Java Fact Classes

Select the Java classes you would ke to be used as Java Facts inthe rules engie.
Vou can add a JAR fileor directory to the classpath and then check the class files andjor packages you

wart o create facts from.

Classpath: +x0

Classes:

CJ Fles i 30eveloperjmyworkiChapter 0jChepter 10/
() fles i 0eveloperjmyworkiChapter 0jChapter 10/

A Clasaes
&[] @ com
&[] () example
- C1 1 Deptianagerfinder
] B Messagection - Fact Created
- [1E OutsideManagerFinder
[J B0 outsideManagerFinderst

[[] A roject Lirary to lasspath

OEBPS/img/rules_atm1.gif
Ruleset 1 ¥ []bheron vew X Bmmeav

52 Rule?
<enter description>
Advanced tode

Tree Made

Rule active [Logial Briorty: [medum

Effective Date: Always Valid

ROOT:PO
¥

PO aFO

dnsert test>
and

POdestination s 3 POjdestination and

dnsert test>
and

POjdsstinationfitenis 3 POJdestinationjitem and
Durstion.days betwesn(PO header.orderDate, POjdestinstionjtem. avalabityDate) > 30

dnsert test>

insert pattem>
THEN

modfy POjdsstinationjiter (<add property» status : "canceled)

<insert action>

OEBPS/img/servlet13.gif
& Application Properties -

Appication Content

Resource Bundies
Run
W Polcy Store

:\JDeveloperimyworkiGradeApp\GradeApp. jws.

Deployment

(©)Use Custon Setings Custonigs Settings

(© se Applcation setings

Deployment Profes:

‘Auto Generate and Synchronize weblogi-jdbc.xnl Descrptors During Deployment

Securiy Deployment Options
Decide whether to overarie the following securiy obijects they were previously
deployed,
Applcation Polcies
Credentials

Decide whether to migrate the folowing securty objects.
Users and Groups

OEBPS/img/ruleset_filterqueryon.gif
]

® Ruleset_1

Fier Query:

¢

name startsWith "Customer’ <insert test>

EA-ESS

Customer0rder_Rule1
<enter description>

CustomerOrder_Rule2
<enter description>

OEBPS/img/rules_agg1.gif
Rleset 1. ¢ []theron sew X BBTeAv

=2 Rule 1
Senter description>

7] clvanced tiod= (] Tree Mode

e Active

Effective Date: Always Valid

®
<varisbe> i the [FRRGEBRBIoF <2 :presson where {
<varisble> s » sfact e,
<nserttest>
<t pattern>
} <inserttest>

insert pattem>
THEN

insert action>

[

OEBPS/img/rddtadd3.gif
Ruleset 1 Yows [becsonTabe 2

x

nTable 2 <erter description>

Local Lt of vakes___~] /
=) Local it of values
) Local Lt of Ranges

[He create st of valuss.

) driver_ages

Conflict Rl

Actions
dnsert action>

- Riav §Gi-RREER

OEBPS/img/rtdt_ruleaddaction.gif
v v [fakss &%

3 (g s

O ¢ oy Q [sameorlessthen v [f0000 Q oo+
O [orervaie Q [same orlssthan ¥ | 1000000 Q) wd +
O [Costomeratng @ [t vl [0 Q +
THEN

Gl w (Csmomertsmerm v 0P 4=l

OEBPS/img/dp3.gif
Edit Decision Function

e

Description

Rule Eving Lt [uriimied

7] vokad s A ebservice Soruce e | ke Do e ke

Check Rule Elow

Stateless

© Inputs

Moo
8 dwermp

Fact Type
Driver

Outputs

Name

B denids

Fact Type
Derial

) Rulesets & Decision Functions

avalable:

Selected

(G Derial Fues:decison bl

1€ Denia Fues: Fthen

OEBPS/img/gr1.gif
& Create Fusion Web Application (ADF) - Step 1

Narme your application

2, Application Name
Project 1 Name
Project 1 Java Settings

S Project 2 ame

O Project 2 Java settings

‘applcation Name:

Gradespn

Drectory;

Ci\Developerimywork|Gradefpp Browse,

‘Applcation Package Prefi

comexample.grades]

Applcation Templae:

Generic Application
Creates an application which includes a single project. The project is not
preconfigured with Developer technologies, but can be customized to include any
technologies

Fusion Web Application (ADF)
Creates a databound ADF web appication. The appliction consiss o one project
for the view and controle components (ADF Faces and ADF Task Fions), and
another brofect For the dta mdel (ADF Business Camponents).

Java Desktop Appication
Creates an applcation carfigured for bulding a generic Java applcatian. The new
pplcaion wil nclude a project that s preconfiaured to use Javs, Swing, and

OEBPS/img/grade_app1.gif
Type Chooser

L Type Explrer

Projec Schems s
5@ rades.nsd

& Testtrade

B coscore]

Type: [{httpi/jexample.com/orades}Testscore

[how Detaled et Information

OEBPS/img/rules_surround.gif
e n o v [Quprmine kX BEE0av

=2 Rule 1
Senter description>

Advancedtlods [Tree Mode

we fctive [JLogical prcrty: [medum

Effective Date: | Always Valid

¥

<variable> 1 & <120 AR,

dnsert test>

 yalidate Pattern

Advanced Pattern Test Made

insert pattem>

THEN Insert Before »

Insert After »

insert action>

cony
R pelte patem

OEBPS/img/rddt10.gif
< DDriver.rules

b |

Facts
e Ruleset_1 Yiew:
S Functions e
- v & Dedsiontable 1 <erter cescrptions
47 Bucketsets B B +Riav Hi-RBE
- Conditions ["z (5
Dk <
: C1 Onverage £
& Decsion Functions | 5 priver.has_training = &m feie)
Rulesets + X
© Ruleset_t
X Conflict Resolution
- Actions
AL ot
cigbles o) e e
Selec th vakes you wank o keep
Ve Keen
true [k
e
< it Colums To Width
Design

[ElBusiness Rule Validation - Log

Dictonary - Driver.rules

(5]

Display New Warrings First

Message Dictionary Object

&) RUL-05847: The decision table acton parameter "sigble" i a dupicate,

DriverfRuleset_1 [DecsionTable_i Acton{1]/Action Cel[1]

Property.

SDK Warnings: 1

| Messages _ Feedback

Business Rule Validation

Last Validation Time: 8:27:45 AM PDT

[OG]

OEBPS/img/ruleset_filterqueryops.gif
[G]
Qv 98 B0 @

7 Roleset 1, A [Beron Yo X RhReav
0| Fter guery ¢
©
2

‘

([Eeperands] == opeiands] cinsert test>

Q valse options
a dascrpton

ity

st dste

end date
minutes unt stert date

minutes untl end date:

days uni start date

days unt end date:

years unti start date:

@ years untilend date.
a adtive

e ks vald
a referenced fact types

Olist¥ien @ Tree view

[constort [Customigable

Desian

OEBPS/img/gr6.gif
{@lapplication Navigator () [Eloradeapp.jws | 2 orades.xsd]

B V& [av e B o @
= Projcs @ @ Vv B s
2[5 Grades Ruleset_t ¥ [JEiteron tiew X BHBRAv
= {3 Resources. f« Functions
- grodes.xsd .
Mad? GradingRules.rules :l/ ;(msets To create a Rule or Decision Table, please click the plus sign above.
Viewcontroler D ks

[ecison Functons.
Rulesets dk %

% Ruleset_1

1 Applcaton Resources

1 Data Controls

1 Recently Opened Fes «
Desian

radingRules. s - | (2] Elpusiness Rule validetion - Log

Dictonary - GradngRules.ules isplay New Warrings First

+/% Message Dictionary Object o
RUL-0163: TheFacttype "TestScore” is not used n any et caled by... GradingRues{Data ModelDecison Function(Dec
he 4 feset caledlby.. GradngRuk el
) RUL-DS164: The Fact type "TestGrads" is referenced, but is not asserted ... GradingRules/Data ModeljDecision Function(Deci,

[Dictionary - GradingRules. rules.

Facts

Functions
Giobals

Bucketsets
Links
Decison Functions

[Rulesets SDK Warnings: 2 Last Valdation Tine: 10:15:47 AM PDT

Messages | Fesdback | Business Ruls Valdation @

OEBPS/img/adfbc_df_fom.gif
Edit Decision Function

e FindoutsideManagers

Description

Rule Eving Lt [uriimied

[Wiice Ivoked As A Webservies 5eruce e

ManagerRles Derisionervice _DecisionFunction_{

Check Rule Elow

Stateless

© Inputs

Name

Fact e
) ot Erployes

Outputs

Name Fact Type

) Rulesets & Decision Functions

avalable:

Selected:
(€ Deconpont_Postocessig

Ossrmpon Oy PR
& onbon_postorocssng_ebsrves e
 DecisonPint_Preprocessing_Webservice

B DecisionPaintDictionary. Pastpracessing
|EQ ecisonPintDictonary Pastprocessing_Webservic ¥ Postprocessing

OEBPS/img/stmr2.gif
+- X BhERav

Ruleset_1 ¥ []Fiteron ew: [IF/THEN Rules

5 A Rz
<enter descrption>
[Advanced tiode

Rule Active [JLogical Priority: [medum |+

Tree Mode

Effective Date: Always Valid

ROOT:PO
¥
Durstion.days betwesn(PO header.orderDate, POjdestinstionjtem. avalabityDate) > 30
dnsert test>
THEN

modfy POjdsstinationjiter (<add property» status : "canceled)

<insert action>

OEBPS/img/servlet18.gif
& Application Properties - C:\JDeveloperimywork\GradeApp\GradeApp. jws

(@ =)| Deployment

Applcatian Content O Use Custom Settings Customize Settings,

(© e Applcation setings
Rosource Bundes

e Deployment Profes:

W5 Polcy Store Gradedpp_applicationt (EAR Fi) (Defat) it

‘Auto Generate and Synchronize weblogi-jdbc.xnl Descrptors During Deployment

Securiy Deployment Options
Decide whether to overarie the following securiy obijects they were previously
deployed,
Applcation Polcies
Credentials

Decide whether to migrate the folowing securty objects.
Users and Groups

OEBPS/img/rules_r4.gif
© Rulesett ¥ [Iheron e X BE@EeAv

=¥ Rule1
<enter description>

¥
CustomerOrder.annualspending

et st Em
THEN Q vaus options
et e 5'a Customerorder

a annualspending
- crediscore

a name length()
e order

a value length()
CurentDate. dete melnbils
RL
BigDecimal
Calendar

Olist¥ien @ Tree view

[Constant [Customigable

OEBPS/img/rtdt_editlovbs.gif
Bucketset Editor "

Name: intes

Description

Form: Lov
I Data Type: int []

Include Disallowed Buckets in Tests [

Bucket Valuss: @ %
ek pies

| o] [oemes |
B [F
(E— F— ——
[E— [—
(Com— CE— ——
[EE—EA— —

| el sl

OEBPS/img/orderapp20.gif
Ruleset_1 Yot [beckonTabe |

+-R

DecisionTable_1 <erfer descrpion

o
c2
3

aL

Conditions R R Re RS

Customerordercrdiscore | &

Customerorderrder Low g Eeern

Customerorder snnulspending 22000 E b | e | fabe
Actions

RO o |

status:)

Status M,

Status RED...|Status.AP. . Status.MA,

Bt Columns To Widkh

+ R

High

Status M,

H R eEE@

R7 Re Ro
salid
Low Medum Hgh
5 true fake

Status.AP... Status.AFP... Status. A

OEBPS/img/rules_r14.gif
| DoraceRulest ries [DOracleRulestrules | S credinatingTypes.xsd | 2 OracleRulest_Decisionservice_Decisoriunct (U]
v 9Ee DO % @

© Ruesett v Clowon vew X mmmeAv

=¥ Rule1
<enter description>

¥

Clstamarordar armialEpendng > 2000

o usldate Test

Q
%
)
©
9

nsert test>

THEN

@ Insert After
[

modfy CustomerOrder (<ad property> value : "High')
Surround with,

nsert action>

Copy
R Delete Test

Design

OEBPS/img/orderapp16.gif
& Action Editor.

Form: [Assert New

Value: [Assert New Orderpproval status:?)

Eacts:
£ Costomernder

Propertis:
Property. Parameterized Constant

ftatus

Always Selected

OEBPS/img/rules_priority_numeric.gif
Rleset 1 ¥ [Ekoron o X BmEeav

5 A Rulet
<enter description>
[] Advenced tode [] Tree Mode

o

Rule active [Logial Brioty:

Effective Date: Always Valid

¥
CustomerOrder.annualspending > 2000
dnsert test>

THEN

insert action>

OEBPS/img/adfbcb.gif
& Create Business Components from Tables - Step 2 of 6

Updatable View Objects

R O T
ot cm.conol e

Entity Obiects

Updatable View Objel
To create an updatable view object, select an object from the It o avaiable entity objects and cick "> IF there s an
ReadOnly View Obiects zosociation between selected entity objects, @ view ik will aLtomatical be created.
Applcation Mode.
Avalable: Selected

Departmentstien (Departments)

Diagram

Summary.

Object Neme: Employeesiiew

OEBPS/img/report_class.gif
Greate Java Class.

Enter the detalls of your new clss.

Neme:
Package:

Extends:

Report

cam example

javalang Object

Optional Attributes

Implements:

Access Modfiers

© publc
O package protected

Constructars from Superclass
Implement Abstract Methods
Main Method

other Hodifers
(@) <Mone>
O sbatract
Otna

OEBPS/img/rules_aggfin.gif
Ruleset 1 v []bheoron sew X mmmeav

5 A Rulet
<enter description>
7] cvanced tiod= (] Tree Mode

Rule active []Logial Briorty: [medum

Effective Date: Always Valid
¥
Orderis 2 Order
dnsert test>
and
total_cast is the sum of kem_x.price where {
tem_xis a OrderfLineltem
dnsert test>
insert pattem>
} <inserttest>

insert pattem>
THEN

<insert action>

OEBPS/img/rtdt_info.gif
ORACLE’ SOA Composer

AdvancedRules.rules

[

(%) Globals () Globals

@ Bockmarkable Link Logout ©

Logged in as workspacel

Type Compasie
Composite Detais RulesHeloworld_rev1.0
Docutent Path deployed-cormposites{RulesHelloworld_rev1 Ojrulss/AdvancedRules.rulss

&7 bucketsets

<

Rulesets [[name

[ossarption

[value [puckotset [ryee

(%) [temp Ttest.

© ruset_t

100 e

@ Ruleset 3 109 [Gbal2 [abc

[B char

@ Thsis arealylon) [nberGrRore” |

© Ruleset s
© Ruleset 6
© Ruleset 7
© Ruleset 8
© Ruleset 9
£ Ruleset_10
© Ruleset_11
£ Ruleset_12

[Gobalzv20

G nss

int

OEBPS/img/tree2a.gif
Ruleset 1 View

DecisionTable_t +- R
¥ & DechionTable i <eterdesrpton>

XAV R OTER
© Condtions R [we [ks | R | Rs [ms | k7 | e | Rs | Ao | R | Rz
C1 Orver.age @ =)
C2 Orvereye tet mCE - ===
&3 e s g e | fobe | e | fase fase | e | fobe
> Actions

AL modfy Driver(

elgble:) tue | foke | fabe | fase | te | fabe tus | tue foke | fabe | tus | fake

Bt Columns To Widkh

OEBPS/img/intro_fyer.gif
= ¥ Frequent Fiyer Rule
Calclete mils status

¥
Frequent_Flyer.total_miles > 100000

THEN

modfy Frequent_Flyer (status : "GOLD")

OEBPS/img/fact_lovedit.gif
& Edit Bucketset - LicenseType

Nome: [LcenseType

Fam: [0V

Dot Type: (379
[Include Disallowed Bucksts in Tests

+Rav

Bucket yalues:
Alowed i Actions | Deseriptian

Ve Alias
® athervise otherwise
® car
-

OEBPS/img/rtdt_4.gif
'WLS Container

SOA Composer

SOA-Infra
MDS repository
¥ Shared artifacts
y| Composite artiacts

DVM = DVM taskflow + DVM SDK.
Rules = Rules taskflow + Rules SDK.

OEBPS/img/rules_r11.gif
s n o v [Quyrmine kX B@@0av

5 A Rule 1
St descrption>
[Tree Mode

Rule active []Logial Briorty: [medum

Effective Date: Always Valid

¥

[orcachcose where] ¢

(for each case where)

there i a case where.
there i no case where
sagregate

insert patem>
THEN

insert action>

OEBPS/img/rdvariable1.gif
Edit Global - Global_1

e

Description

Type:

Bucketset;

value:

Constant

OEBPS/img/orderapp3.gif
® Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nfluence the behavior of your business

(Goneral | Advanced |

@ Greate pictionary. O Import Ditonary

Specify the name and package for the dictionary that wil be created.

Hame: | OracleRules1|

package: [orderapproval

Profect: | C:1Developerlmywork\OrderapprovalApp|OrderApprovallOrderApproval.jpr

Inputs/Outputs:
Direction

OEBPS/img/rtdt_viewrs.gif
ORACLE" SOA Composer @ Bookmarkable Lk Logout ©

Logged in as workspacel

AdvancedRules.rules

(x) Gobals
Ruleset_3 View [FTHEN Rules

{7 Bucketsets =

Rulesets Effective Date Aays

£ Ruleset_1 (et

| Ruleset 3 T

£ Ruleset 5 Order.value more than 1000000

£ Ruleset 6

£ Ruleset_7

£ Ruleset 8

£ Ruleset_9

£ Ruleset_10

a v

(Order.gty same orless than 10000

OEBPS/img/rtdt_ruleadv.gif
Ruleset_3 View [IF/THEN Rules
Effective Date | Alnays v

v {QWU &%

scription

Effective [aways @
Date =

pririy. [medum ¥

I3
0 [oderaey Q [more than
O [ordervae Q [more than

THEN

insert action>

¥ RxXe

we Active [Jadvanced Mode [JTres Mode

(g s

10000
1000000

Qand
Q

+

OEBPS/img/rules_foreach.gif
ety v [Jobaon g [Qreie k- % BE@eav

52 Rulet
Serter descrption>
Ao tiode [TreeMode

Rule active [Logial Briorty: [medum

Effective Date: Always Valid

¥
For sach case where)] {
<variable> I @ sfact ypen
dnsert test>
insert pattem>
b ainsert test>
insert pattern>
THEN

insert action>

OEBPS/img/fact_adfbc.gif
Approvalapp.jus | officompostce sl

ofcomposte. il

|efgcomposie. o (O0IE)

| @racs
i Functions
(6) Gobals
7 bucketsats
Dk
Bl ecsion Functions
Rulesets o %
© Reser_t

ADF-6C Facts:

Q+/x

Alias

View Defintion

Top Level

OEBPS/dcommon/oracle.gif

OEBPS/img/fact_xml.gif
(@startrage | ison s

sffcomposte.nl | QPurchaseltems.ues

D Rkt 2

& 2] 2@
| @racts
e Functions ML Facts: RE/XS
) Gobals Taies Thome Dest R4 Name TGeneratedFron
. [Customerorder com.customer s customeror der. CustomerOrder Jixs:element]@name="customerOrder’] ~ CustomerOrder.xsd
B 8] Orderbpproval com.customer.ns,customerorder Orderdpproval | fsiclement{@name=orderApproval] CustomerOrder.»sd
Dlinks 8] ObectFactory2 com.customer.ns,customerorder ObjectFactory Customerorder.ssd
B Dection Functions 8] orderfuneitem org.example.orderiinetten Jbiclement{@name=tnelten] ordera.xsd
8] order org example.Order Jis:slment{@name="order] ordera.xsd
Rolesets S X | || [§] objserectory oo exanpe Objectratary e xsd
€ Ruleset_t

ML Facts

Desian

OEBPS/img/rules_surround_dia.gif
& Surround With

OEBPS/img/rules_effective1.gif
= Ruleset_t ¥ [lteron yow X wmme A

e Ruleset_t

Description

Effective Date: | Always Valid

<enter description>

© ¥ Rule_?
<enter description>

OEBPS/img/rtdt_rulenew.gif
Ruleset 3 view |IF/THENRules v [§ 3¢ o

Effective Date | Alnays v

v [Riet x
- e ke O
0 [oderaey Q [more than ! 10000 Qand
O [ordervae Q[more than ! 1000000 Q

THEN

OEBPS/img/dict_set.gif
& Dictionary Settings

Neme:
alias:
Package:
Version;
Description

Schema Path Roat

Purchaseltems

Purchaseltems

projectt

11100

iles/C:Developermywork{50R3 Project fxsd

OEBPS/img/rules_priority_named.gif
Ruleset 1 ¥ []Ekeron o X BmEeav

5 A Rulet
<enter description>
[] Advenced tode [Tree Mod

e Active [Logical riorty: F
fihest
bigher
® ligh

Effective Date: Always Valid

CustomerOrder.annualspending > 2000
dnsert test>

THEN

insert action>

OEBPS/img/orderapp7.gif
iy Autolomnprocess.bpel | Elorderappravalapp jus

Components External References

Functonstat.
FunctionStat.

OEBPS/img/orderapp22a.gif
Ruleset_t Uew: [FZ DecisionTable_t R A
A °. DecistonTable_1 <erter cescrprions
[Advanced Mode [Tree Mode: ue Active []Logicsl [] Alow Gaps
rirtys [redm [+] - ConfictPocy: [suko override v] - Effectve Date: | Ay Vaid
+- X H-H-RREEE-@
= Conditions R R (3 0 "s
€1 Customerorder.credtsiore iy a soid =
C2 Customerorder.crder edim Hih Lowedium Lowedium Hoh =
€5 Customerorder, annustspendng 52000 ok e e =
x Confict Resolution
93 overnde Rs rs "s "s
- actions
AL ssart new Onceragprovak
statusiota) StaSREIECTED | Status, APPROVED | Status APPROVED. | Status APPROVED | Stakus. MANLAL
2 Cokans To Width

OEBPS/img/grade_app6.gif
radingRules.rules
v HE 0o

@razs
i Functons
(x) Globals
£ Bucketsets

Dtk

Rulesets

© Ruleset_t

A ecison Functons.

E

¥ & DecisionTable 1 <entercescrpton>

XAV EHRREER

S Conditions

R R3

Re

RS

CL Testscore testscore

+ X

[c

[

A

- Actions

AL gsser e TeskGradel,
Grade)

9] o To vt

Desian

OEBPS/img/dm3.gif
applicationzs.jws |ofcomposte,sml | QPurchaseltems.rues | =

v HEH B0 ¥ @
Cls © Ruleset 1 ¥ [Eheron tews| QTN Rues | b - 0 3 B R 60 4 v

£ 504 Content F Functons

D clases (x) Globals
D testsutes To create a Rule or Decision Table, please click the plus sign above.

=P 7 Budtetsets
Bl D Links
@B Ries 6l Decsion Functions
Rulesets G X
© Ruleset_t

ol composte.smi
G Purchaseltms.compi
o] Purchasetems.dacs

R ———— t3
1 Applcaton Resources

» Data Controls

» Recently Opened Fes

Desian

OEBPS/img/rules_agg2.gif
Ruleset 1 ¥ [IEkeron Yew: Q) IF/THEN Rules

Y- R BREBeaAv

5 A Rule 1
St descrption>
[Tree Mode

Rule active [Logial
Effectve Date: Aays Vald
*
a_order s 2 Orcer
and
total_cost i the sum of tem x,price where {
item xis @ Ordergiineltem
and
oL is 3 Orderfineltem and

o.color == red"

}and total_cost 1= o_order.total
THEN

modfy o_order tota : total_cost)

priority:

medum[+]

OEBPS/img/rtdt_ruletree.gif
Ruleset 3 view |IF/THENRules v [§ 3¢ o

Effective Date | Alnays v

v (Rt &%

Description

Effective [aways @
Date =

Friority [medum % [IRule Active [Jadvanced Mode [Z]Tree Mode

soor: [ode @ |
3 (g s
0 [odercey Q [more then ! 10080

O [Crder e Q [more than I 1000000
THEN

insert action>

Qand
Q

+

OEBPS/img/orderapp12.gif
Edit Bucketset - CreditScore

e

osta Type: [t
[Include Disallowed Bucksts in Tests

Range Bucket yalues:

ax

Included Endpoint Alowed i Actions Renge
>=7%0
[400..750)
<

Endpoint
= 7
= a0
® -Infinity

Description

OEBPS/img/adfbc12.gif
D Chapter10Rules.rules | <) ChapteriRules s

v 9eEa

& Facts

i Functions
(x) Globals
& Bucketsets
D inks.

B Decson Functions

Editor Properties.

+x

Rulesets

€ utsid Manager Rulset

% Department Manager Finder Ruleset|

Department Manager Finder Ruleset ¥ [|ikeron ew: [~

© % Find
<enter description>

[Advanced tiode

Tree Mode

Effective Date: | Always Valid

ROOT: Employee

¥
Employee/Departmentstisw.Managerld
dnsert test>

THEN

retract Employes.

assert new MessageActon (<add property > message ; Employee. Frstiame +

ansert action>

Rule active. [Logial

Employes. Employeeld

priority:

-+ EmployeeLastName +* i the manager

Desian

OEBPS/img/fact_java.gif
| @startrage | isonms Sordertestxsd__|ofcomposte.anl | QPurchasettems.rules

| @raats
£ Functions Java Facts: /XS
(x) Globals Alias Class Description

Driver§LicenseType carrental Driver§LicenseType 2l

Driver§vehicleType carrental Driver§vehicleType

Testttan camental Testain

Object Javalang Object

string Javaang String

Bigirteger Java.math Bignteer

eigDecinal Java.math Bigbecimal

Caendar Java.utlCalendar

0 GregerianCalendar Javax. vl datatype XML GregarianCalendar

Javabate crack.nies . extensions.Javabate

{2 Budetsets
D tiks
8l Decsion Functions
Rulesets o 3
© Rueser_t
© Rueser 2

MLDate oracle.rus . extensions.XMLDate.

T IIeTE00C

OracleDate. oradle.rus sch. extensions OracleDate. 4

JavaFacts [[RUFaRE) ADFECFaEET]

Design

OEBPS/img/rules_test_function_op.gif
$ Function Test Result

@ 1t

Qutput

Hello world

OEBPS/img/rules_r1.gif
@razs
i Functons
(x) Globals
£ Bucketsets
D inks.

B Decson Functions

Rulesets

© Ruleset_t

+ X

Ruleset 1 ¥ [Ibheron vew X mmmeAv

=¥ Rule1
<enter description’>

¥
dnsert test>

THEN

<insert action>

(ElBusinessRul Vaidaton - Log

Dictonary - OracleRulest rules

isplay New Warrings First

Message

4\ RUL-05704: The pattern must have a fact type. Enter a valid fact type. OracleRules1/Ruleset_1 /Rule_1/Patt... FactType

Dictionary Object Property.

SDK Warnings: 1

Last Valdation Tine: 12:56:21 P PDT

Business Rule Validation

[0S

OEBPS/img/intro_driver.gif
= ¥ Driver Age Rule
Determine F driver i old enaugh to rent.

¥
Rental_application.driver age < 21

THEN

modfy Rental_application (status

OEBPS/img/rules_operator_in2.gif
mse s O o Qs <[4 X BGE0A

=¥ Rule 1
Senter description>

*
CustomerOrder linsitem.sku in 12345 , 43255 , [E00ani] <insert>
<nsertest> e

THEN Q valie options
<sert acton> s Customerorder

tngitem
@ annualspending
& Lineltem.sku

@ CurrentDate. date.timelnilis
aR

a BigDecimsl

a Calendar

Olist¥ien @ Tree view

[Constant] Customigable

OEBPS/img/rddtadd1.gif
¥ & Deqsiontable 3 <ente de

OEBPS/img/fact_javasamp.gif
Create Java Fact

Select Java Fact Classes

Select the Java classes you would ke to be used as Java Facts inthe rules engie.
Vo can add a JAR il ar directary ta the classpath and then check the class files andfor packages yau wank to create facts from.

Classpath: F XD Gosses

CJ il :0eveloperimymwork{Order ApprovalAppiOrcerpproval.ulsdesignerjaxh_lasses]
(2 Fles]C:Workj11Gjrulesjhow-to-rules-java-Facts/lbfcar-obis. jar

R coses
@ con

+[JCJ oriver
I3 orivericenseType
1 20 OrversvehiceType
12 Testmain
O java
O @ javax
O o

[[] Add roject Lirary to Classpath

OEBPS/img/rddec1.gif
@razs

S Functions

(6) Gobals

7 bucketsats

D ks

6l Decsion Functions
Rulesets + X

© Ruleset_t

Ruleset_t Yiew: [Decsonable_t

¥ °. DecisionTable_1 <erter description>

iver _ages RV +-RiaviE-i-RREEE-@
R1 Rz R3

€2 Driver.has_training true fabe s

CL_Driver.at

X Conflct Resolution

- Actions
AL modfy Driver(
elgble:) true false true

< Bt Columns To Widkh

Design

OEBPS/img/rules_r5.gif
© st v [Ipteron e + X BRBoAv

=¥ Rule1
<enter description>

¥
CustomerOrder.annualspending > 2000
dnsert test>

THEN

insert action>

|
assert new

retract
cal

OEBPS/img/rules_atm2.gif
(stertPage | POrackeRulest e [(DOracleRulest.rules | Sorder.xsd | ef3composte sl

v Hea

| &Pouxsd G]

0%

@

G racs
S Functions
() Giobas
7 bucketsats
D ks

Rulesets

© Ruleset_t

B Decson Functions

+ X

Ruleset 1 ¥ +- %

Eheron tew: [IFTEN Ruks]

BRHhRBRAv

5 ¥ free shipping
<enter description>

ROOT:PO
¥

POk aFO
and
POdestination s 3 POjdestination and
and

free_ship_total isthe sum of POJdsstination/tem.price longHalue() where {

Pojdsstinationfitem s 3 POJdestinationjitem and

POjdestinationfitem status == "Free-shipping-clgible”

}and free_ship_total >= 40
THEN

modfy POjdsstination (status : "free shipping")

Desian

OEBPS/img/servlet14.gif
& Create Deployment Profile

Clck OF to create your new deployment profl and immediately open I o see s configuration.

archive Type:
AR il

e
metscatal]

Description

Creates a profie for deploying a metadata MAR ie.

OEBPS/img/gr2.gif
T
T
ockl
= [5] viewController
=3 web Content
£ wes v
]
8 races-confgom
6] unidad-confgol
& webarl

{23 Page Fiows

Applcation Resources
Data Cantroks
. Recently Opened Fles

[@opication navigator |) Eersseronns

Shaw: Al Projects +

Overview The Java Fles category contains java dlasses and rterfaces

File Summary: Totsl: ¢ () a
JavaFies Getting started ~
Java Class

Java Interface

Cue Cards | Tutorals | Detaied Help

Page Flons Getting started ~

Overview Page Flows define an application's web pages
Enterprise JavaBeans 3.0 S0A Components ADF Binding Files Web Services | Offine Databases

Overview

ML Files

[C]
w®
Yot T

Getting 5

Overview The 4L Files category contains xi e

XML Fle

Cus Cards | Tutorals | Detaied Help

ieh Pages.

verview

Getting 5t

The Web Pages category con

OEBPS/img/rules_r15.gif
| DOracleRuest rues

S CrediRatingTypes.xsd__| & OracleRulest DecionService Decisionfunct (U0

@ Ruleset 1 ¥ [fiteron

Prmeee]+ % BB@nav

Ll]

=¥ Rule1
<enter description>

¥
(cinserttest>) and
CustomerOrder.annualspending > 2000

@
<2

8

3
(3

dnsert test>
THEN
modfy CustomerOrder (<add property

insert action>

> value : "Hgh')

OEBPS/img/rtdt_ruleaddcond.gif
Ruleset 3 view |IF/THENRules v [§ 3¢ o

Effective Date | Alnays v

v 3 [Riet Ex
I3 ('Y
0 [oderaey Q [more then ! 10000
O [order.vaive Q [more than ¥/ [1000000 Q “—
THEN

insert action>

OEBPS/img/grade_mds2.gif
& Deployment Configuration

Configure and custorize settings Far this deployment

DS
- Metadata Repository

Repository Name: [mdsrsoa

Repository Type;

Partition Name:

Path{INDI Info: jdbefmds{MDS_LocalTxDataSource.

- Shared Metadata Repositories

Namespace Repository Type Partiion Path{INDI Info

OEBPS/img/dp4.gif
3 Facts

e Functions
(0) alobas
{7 Budketsets
Dk
60 Decsion Functions
Rulesets o 3
€ enal s -
€ enal Rues: dec

Java Facts:

Qi+

Alias
Derial

Driver

LicenseType
VehickType
ActonType.

Keychain
KeyedactionType
DecisionPaint
DecisionPaintBuider
DecisionPaintinstance.
Object

string

Bialnteger

BigDecimal

Calendar

ML GregorianCalendar

(00RO aEEUUdQ

Class
oracle.middeware.rues.dema. carrental.Denial
oracle.middeware.rues.dema. carrental Driver
oracle.middieware.rues.dema.carrental DriverfLicense.
oracle.middeware.ules.dema. carrental Driver§iehice
oracle.ruls.sche decisionpoint. ActonType
oradle.rus sch2.decsionpaint KeyChain
oradle.ruls.sch.decisionpoint KeyedActionType.
oracle.ruls.sch.decisionpoint Decisionoint
oracle.ruls.sch2 decisionpoint. DecisionPointgulder
oradle.ruls.sch.decisionpoint. DecisionPointInstance.
Javalang.Object

Javalang String

JavamathBiginteger

JavamathBigDecinal

Javautl Calendar

Javaxl datatype XML GregorianCalendar

Description

T R

Design

OEBPS/img/rddtadd2.gif
Ruleset 1 View

+-R

DecisionTable_2

ciri

Q valie optons
=@ Driver
o e
- has_traiing
= cighle
e et
a Curentpate

- Actions

dinsert action>

nTable 2 <enter description>

[+ [E) ol st o values ~] 2 R oav HiDRRE®

OEBPS/img/rddt8.gif
& Edit RL Fact - Driver

e Driver

Description

Super Class: (OB

Propertis:

+ X

o Type Budetset vl value
@ hestaning ook
eye test sning

@ cisbe bookan

List Cantenk Type

Bt Coluns To Widkh

OEBPS/img/orderapp13.gif
Edit XMLFact - com,customer, ns.customerorder. CustomerOrder.

e comcustormer s customerorder CustomerOrder

alas: Customerorder

Super Class:[Object

Description

XL Name; Iixsielement{@nam

Generated From: [order xsd

[support et Assetion

Attributes

Properties

@ rnusispending annualspendng double

@ wediscore credtscore ot

@ rome loame strng

(e o g e e S —"
vae Saing C_]

Orderamaunt

[creditscare.

Bt Coluns To Widkh

OEBPS/img/rdgap1.gif
& Gap Analysis

There s 1 missing ule i the decision table,

Vou can add the missing rle o the decison table by selectng the checkbax in
the table header column.

Conditions. a
Driver.age >=20
Driver.hair black, brown

OEBPS/img/rules_test_function_fail.gif
@ Function Test Result

Qoo

Qutput

> F-1 com.grade.nis.testscore. Testscore(name : "Bil Reynolds" testCurve 0.0, testiame : ‘Math Test’,
testscore £ 91.0)
Actvation: Ruleset_{ DecisionTable_7Ruled : F-1
Focus Ruleset_1, Ruleset stack: {'Ruleset_1"
Fire 1 Ruleset_t DecisionTable_7Ruled F-1
-2 comgrade.ns.testscore TestGrade(arade : A)
ocus Rulsset_, Ruleset stack: {'main'}
ocus main, Ruleset stack: {}

OEBPS/img/rtdt_bucketsets.gif
ORACLE' SOA Composer

AdvancedRules.rules

(x) abat

7 Bucketsets

Rulesets

© Ruleset 1
€ Ruleset 3

€ Thiss arealy lon
© Ruleset s

© Ruleset 6

© Ruleset 7

© Ruleset 8

© Ruleset 9

£ Ruleset_10

LA

& Bockmarkable ik Logout O

Logged in as workspacel

e

atatype

[Description

Gender
ntRangess
Age Group
ntes

String
int
int
int

OEBPS/img/faq1.gif
(BstartPage | 0raceRulest.res [g S,OrderBookingRules xsd | (Za0racleRulest.rues | #BPELProcesst bpel (D) [

Assign.

/XS

From o
() variable () variable
inputiariable/payloadj/client:proce... com_example_globalcomparty_ns_c

® () Expression () variable

fake() cam_example_lobalcompany_ns._

<

BPEL_Header - [processsequence/scopessquence/assign(3]

racin [T

OEBPS/img/servlet21.gif
& Application Properties - C:\JDeveloper\mywork\GradeApp\GradeApp. jws

=)| Deployment

Applcatian Content O Use Custom Settings Customize Settings,

(© e Applcation setings
Rosource Bundes

e Deployment Profes:

e Gradefpp,_applcationt (EAR Fie) (Defaul) et
[l metadatat (4R Fie)

‘Auto Generate and Synchronize weblogi-jdbc.xnl Descrptors During Deployment

Securiy Deployment Options
Decide whether to overarie the following securiy obijects they were previously
deployed,
Applcation Polcies
Credentials

Decide whether to migrate the folowing securty objects.
Users and Groups

OEBPS/img/fact_javacreate.gif
Greate Java Fact.

Select Java Fact Classes

Select the Java classes you would ke to be used as Java Facts inthe rules engie.
Vou can add a JAR file or directory to the classpath and then check the class files andjor packages you want
to create Facts from,

Classpath: XD osses

. file:/C:1f1Developerjmywork(OrderApprovalapp/Order| [, Classes
O @ com
O @ v

O @ javax
O e

[[] Add roject Lirary to Classpath

OEBPS/img/orderapp8.gif
 h AutoLoanProcess.bpel

rderapprovalipp.jus | ef§composite.xml

@ racts
i Functons
(6) Gobals
£ Bucketsets
D ks
0 Decision Functions
Rulesets 4k 3%
§p Rulset 1

ML Facts:

Ri+/XS

s
@ Customeronder

6] com_customer s_customeor,
& orderapproval
el

Status

Name
camcustomer. s custameror,
cam.customer. s custameror,
cam.customer. s custameror,
cam.customer. s custameror,

DE XML Name Generd
Iixs:element{@nane="c. .. orde.
orde.
Jixs:clement[@name=".. orde.
IixsisimpleTypel@name... orde.

XML Facts

OEBPS/img/rtdt_decision.gif
Ruleset_t vew [rshest 1 [R &
tectve Date | Avays

=== 3

- x| - - Show Conflcts Switch Rows to Columns

Rules
Conditions T I 2T I =
CustomerOrder.order X, /' low x| [med lowsmed =
[Custonerorder arediseore 4) e =l Jll v E|
CustomerOrder.annualSpending >2 | true ERNET ERNET E|
CustomerOrder.name X, /7 “agC" = [asc x| [“Appled” =
2, Noconfict
93 overrde
Actions
Assert New Orderfpproval 55

statusstatus Status MANUAL Q [Stas mAAL Q [Stas mAAL Q)
oy CustomerOrder 59 [a} O [u]
| cediscoreit | CustomerOrder.crediScore CustamerOrder.credtscore CustamerOrder.credtscore
orderidouble Cotomerordercnder Q [CustomerOnder.order A, [20 Q)

] m | [}

OEBPS/img/rules_setdate.gif
| DstartPage | (PPurchaseltems.rules (P OraceRulest.rules

[G3]

v HE D0 # @
& Facts

f Ruleset_1 ¥ [FiterOn Yiew: () IF/THEN Rules J+- X BRRBRaAav

£ Functions St

5 A Rulet

(e <enter descrption>

7 Bucketsats [JAdvancedtiode []Treeode [7]Rue Actve []Logcal priorty: [medum |~

(o tfecive Date: [nape]

B8 ecison Functons
Rulesets 4 R

£ Ruleset_t & Set Effective Date

Ruleset 2
w - [[15:42:09 2] [(GMT-08:00) Pacfic Standard Time
[[15:42:10[2] [(GMT-08:00) Pacfic Standard Time
ate O Time © Both

Design

OEBPS/img/rs_addsource.gif
 Add Source Schema

Schema Location:
X Classes Directory:

Target Package:

C:fDeveloperjmywork{Applcation23{Project.ruesdesignerfjaxb_lasses|

reserve Directory Structure For Inported Schemas

OEBPS/img/dm2.gif
@ Create Business Rules

Business Rule
A business ruls defines or constrains one aspect of your business that s intended to assert business
structure ar nfluence the behaviar of your business

(@ greate Dictionary O Import Ditonary

Specifythe name and package for the dictionary that wil be created.

Nome: [Purchaseltems

package: [com.example

Profect; [1Developerlmywork\Application26|Project1iProject . jor

InputsfOutputs:
Direction

OEBPS/img/rddt11.gif
Bv 9 Ek YO

[Doriver.ules

b

-] ,

€2 Driver.age

X Conflict Resolution

©) Confict

Actions
AL modfy Driver(

boolear)

< e Colanns To Wikh
Design
[ElBusiness Rul vaidaton - Log

Dictonary - Driver.rules

Message

Dictonary Object

isplay New Warrings First

SDK Warnings: 1

Property.

Business Ruls Validation | Extensions | Feedback

Last Valdation Tine: 11:26:17 AMPDT

[DOS]

OEBPS/img/rules_in.gif
Ruess 1 o vow [Quyrmnie <[#-X BEEeAv

=¥ Rule 1
Senter description>
¥
Clstomarordar Trekem

Customerorder Inetem.sku

T @ value oprions
=@ CustomerOrder
©a inerem
a coor
o
a descrpton
= annustencing
a treitem

a CunentDate

Olist¥ien @ Tree view

[constort [Customigable

OEBPS/img/rtdt_link.gif
ORACLE SOA Composer

@ Bockmarks}

Paste this Ik into emal or cha.
O paste it adress bar n your browser and bookak i

ady

e Link Logout ©

Bookmark URL detalls

it Juns exarple.conf 8001 fsos/composer docPath={deployed-composites{Rulestelloworld revi Ofrulss/AdvancedRules.ruiss

(%) Globals () lobals

27 Bucketsets @

Rulesets [ame peserption

[puckotset [ryee

 Ruleset_t IK: temp st
() dobal_2 abe

e o, | Bt

i1 2 realy o

© rulset s

© rulset s

© rulset 7

© rulset 5

© rulset s

© ruset_o

© rulset_11

© ruset_1z

© ruset_13

© rulset_14

© ruset_ts

ntRanges ot
char
ntes int

OEBPS/img/orderapp17.gif
Ruleset_1

wew: [Deckiontable_t

MK A%

¥ & DecisionTable 1 <enier deseription=
ALRI

Conditions
€L CustomerOrder creditscare
€2 CustomerOrder.order

€3 CustomerOrder annualspending >2000

- Actions
AL asser o rcommayall
staus<1o1.)

B BB EEEEEE NN e e N

XRiav BB QITEQ
R10[R11 [R12 [R13 | R14 | RIS | R16 [R17 [R18
avg

low | Medum | tigh

RU Rz R3 R4 RS R6 R7 Rs R
risky sold

Low | Medum | Hgh low | Medum | High

true false | true |False true | fakie true false trus Fake true false | true |false | true | false | true false

OEBPS/img/stmop2.gif
(@startpage | QorackRulest rules

@razs
i Functons
(x) Globals
£ Bucketsets
D inks.

B Decson Functions

Ruesets 4 X

| & Ruleset_t

PR

[P oracierulest.rules | officomposie x| 2Po.xsd

Ruleset 1 ¥ []bheoron vew X mmmeav

=¥ Rule?
<enter description>

ROOT:PO
¥

[Duration,days between(PO.feat [destination|tem. avaibilyDate) > 30 |

nsert test>
THEN

ansert action>

OEBPS/img/servlet3.gif
& Create HTTP Servlet - Step 1,of 3: Serviet Information

Create HTTP Servlet - Step 1 of 3: Servlet Information

Enterservet detals

Clss:

Package:

Generate Content Type:

] Generate Header Comments

Inplement Hethods

[JeoGet) [copost)
[Jdoputy [dovelete)

Gradesserviet

com.examplegrades

Browse,

HTL

OEBPS/img/rdval1.gif
[Elpusiness Rule validation - Log (n]

Dictonary - OracleRules1 rules Display New Warrings First

essage Dictionary Object Property
4\ RUL-05704: The pattern must have a fact type. Enter a valid fact type. ~ OracleRules1/Ruleset_2/Rule_1 /Pattern[1] FactType

SOk Warnings: 1 Last valdtion Time: 117503 P ST
Vessages | Business Rul Valdation [Extensions | Fesdback [ODG])

OEBPS/img/rules_operator_between.gif
*
CustomerOrder.annualspendng between <opernd and soperends,

nsert test>
THEN
nsert action>

OEBPS/img/rules_in2.gif
© rulsser 1 ¥ (otwron wows [Quymnnds <] - R BEBRA v

=¥ Rule 1
Senter description>

¥
Clstomarordar Trekem JERE
nsert test>

THEN

insert action>

P

between

OEBPS/img/servlet10.gif
& Project Properties - C:\Developer\myworkiGradeApp\Grades\Grades. jpr

Deployment

Project Source Paths O Use Custom Settings

AOF Hodel (© LseProectSettings
A0F iew
o Oeployment rofes:

Business Components
Compier
Dependencies

EJB Mode.
Extension

Javadac

Java EE Applcation
35 Tag Lbraries

35 isual Edtor
Libraries and Classpath
Resource Bunde
RunjoebugiProfie
08

Technology Scope:

OEBPS/img/tree1a.gif
c2
3

A

Ruleset_1 Yot [becsonTabl |

ME A%

DecisionTable_1 <erer descripton

Conditions R1

Rz
Driver.age
Driver.eye_test pass
Driver.has_training tue | false
Actions
modfy Driver(
elgble:) tue | false

R AavIHHAQT@DR
Re | RS | R6 | R7 | Re | Ro | R10 | R11 | R12

7
[R

pass fal

dlasses_requred
tue | fake | tue

fake | tue | fase

fake | tue | fake tue | tue | fase | fake | tue | fake

OEBPS/img/servlet19.gif
Create Deployment Profile

Clck OK to create your new deployment profil and immediately open I o see s configuration

archive Type:
EAR il

Neme:

Description

Creates a profile for deploying the Java EE enterprise archive (EAR) fl to an appication server.
The EAR file consists of the appications assembled WAR, E18 JAR, and client JAR fies:

OEBPS/img/adfbc16.gif
i Functions
(6) Gobals
7 bucketsats
D ks
6l Decsion Functions
Rulesets + %
€ Outside Hanager R

 Deparment anage

$ Raises Ruleset

Raises Rueset ¥ [oeron Yo X BBTeAv

5% Longer than 12 years
<enter description>

¥
Employes s a Employes.
dnsert test>
and
CurentDate s a CurrentDate and
Durstion.years between(Employee. HreDate, CurrentDate date)
dnsert test>
insert patem>
THEN

assert new Rafsefction (<add praperty > raisePercent : 03 , viewRowlmpl Employes.ViewRawlmpl)

insert action>

OEBPS/img/gr7.gif
Edit Bucketset - Grade Scale.

e

ot

Data Type:

(] Include Disallowed Bucksts in Tests

Range Bucket yalues:

ax

Included Endpoin Alowed n Action: Range

Endpoint
ctherwise

® -Infinity

Alias
ctherwise

Description

OEBPS/img/bucketset_lov1.gif
Edit Bucketset - colors

e

Lov

Form:

Dot Type: (379
[Include Disallowed Bucksts in Tests

Bucket yalues:

+Rav

Ve Alias Alowed i Actions.

ctherwise ctherwise
blue

orange

Description

OEBPS/img/rddt3.gif
& Edit Bucketset

Nome: chiver_range

osta Type: [t
[Include all Bucksts in Decision Tables

ax

Endpoint Included Endpoint_ Alowable Value Description

nfinty

