
Oracle® JRockit
JDK Release Notes

Release R28
E15066-46
October 2018

Oracle JRockit JDK Release Notes, Release R28

E15066-46

Copyright © 2001, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Trupthi NT

Contributors: Savija Vijayaraghavan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

About this Document xi

Documentation Accessibility xi

Conventions xi

1 Changes in Supported Configurations in Oracle JRockit JDK R28

1.1 Java Version Updates 1-1

1.2 Hardware Must Support Streaming SIMD Extensions (SSE) 2 1-2

1.3 J2SE 1.4.2 and JVMPI Not Supported 1-3

1.4 Itanium Platforms Not Supported 1-3

2 New Features and Changes in Oracle JRockit JDK R28

2.1 Changes in R28.3.20 2-2

2.1.1 Upgraded to JDK 6u211 2-2

2.1.2 Disabled All DES TLS Cipher Suites 2-2

2.1.3 Removal of Several Symantec Root CAs 2-2

2.1.4 Removal of Baltimore Cybertrust Code Signing CA 2-3

2.1.5 Removal of SECOM Root Certificate 2-3

2.1.6 Improved Validation of Class-Path Attribute in JAR File Manifest 2-4

2.1.7 Improved Cipher Inputs 2-4

2.2 Changes in R28.3.19 2-4

2.2.1 Upgraded to JDK 6u201 2-4

2.3 Changes in R28.3.18 2-4

2.3.1 Upgraded to JDK 6u191 2-5

2.3.2 TLS Session Hash and Extended Master Secret Extension Support 2-5

2.3.3 Enhanced KeyStore Mechanisms 2-5

2.3.4 3DES Cipher Suites Disabled 2-5

2.3.5 Server-side HTTP-tunneled RMI Connections Disabled 2-6

2.3.6 CipherOutputStream Usage 2-6

2.3.7 System Property Controls the java.util.logging.FileHandler's
MAX_LOCKS Limit 2-6

iii

2.4 Changes in R28.3.17 2-6

2.4.1 Upgraded to JDK 6u181 2-7

2.4.2 Support DHE Sizes Up To 8192-bits and DSA Sizes Up To 3072-bits 2-7

2.4.3 Support SHA224withDSA and SHA256withDSA in the SunJSSE
provider 2-7

2.4.4 Add Additional IDL Stub Type Checks To
org.omg.CORBA.ORBstring_to_object Method 2-7

2.4.5 RSA Public Key Validation 2-8

2.4.6 Restrict Diffie-Hellman Keys Less Than 1024 Bits 2-8

2.4.7 Provider Default Key Size is Updated 2-8

2.4.8 Stricter Key Generation 2-8

2.4.9 Unlimited Cryptography Enabled by Default 2-9

2.4.10 Disable Exportable Cipher Suites 2-9

2.4.11 Disable JARs Signed with DSA Keys Less Than 1024 Bits 2-9

2.4.12 Added wsimport Tool Command Line Option ???disableXmlSecurity 2-10

2.4.13 JMX Connections Need Deserialization Filters 2-10

2.5 Changes in R28.3.16 2-11

2.5.1 Upgraded to JDK 6u171 2-11

2.5.2 Support DHE Sizes Up To 8192-bits and DSA Sizes Up To 3072-bits 2-11

2.5.3 Refactor Existing Providers to Refer to the Same Constants for Default
Values for Key Length 2-11

2.5.4 Collections Use Serialization Filter to Limit Array Sizes 2-12

2.5.5 Default Timeouts Have Changed for FTP URL Handler 2-12

2.5.6 New Defaults for DSA Keys in Jarsigner and Keytool 2-12

2.6 Changes in R28.3.15 2-14

2.6.1 Upgraded to JDK 6u161 2-14

2.6.2 Improved Algorithm Constraints Checking 2-14

2.6.3 JMX Diagnostic Improvements 2-15

2.6.4 Message Digest Algorithm for jarsigner -tsadigestalg Option Now
Defaults to SHA-256 2-15

2.7 Changes in R28.3.14 2-16

2.7.1 Upgraded to JDK 6u151 2-16

2.7.2 IANA Data 2016j 2-16

2.7.3 MD5 signature verification added to the Security Property
jdk.jar.disabled Algorithms 2-16

2.7.4 New system property to control caching for HTTP SPNEGO connection 2-17

2.7.5 New System Property to Control Caching for HTTP NTLM Connection 2-18

2.8 Changes in R28.3.13 2-18

2.8.1 Upgraded to JDK 6u141 2-19

2.8.2 IANA Data 2016i 2-19

2.8.3 Improved protection for JNDI remote class loading 2-19

2.8.4 jarsigner -verbose -verify should print the algorithms used to sign the jar 2-19

iv

2.8.5 Added security property to configure XML Signature secure validation
mode 2-20

2.8.6 Serialization Filter Configuration 2-20

2.8.7 RMI Better constraint checking 2-21

2.8.8 Add mechanism to allow non default root CAs to not be subject to
algorithm restrictions 2-21

2.8.9 New --allow-script-in-comments option for javadoc 2-21

2.8.10 Increase the minimum key length to 1024 for XML Signatures 2-21

2.8.11 Make 3DES a legacy algorithm in the JSSE provider 2-22

2.8.12 Improve the default strength of elliptic curve cryptography in JDK 2-22

2.8.13 Restrict certificates with DSA keys less than 1024 bits 2-22

2.8.14 Add TLS v1.1 and v1.2 to the client list of default-enabled protocols 2-23

2.8.15 More checks added to DER encoding parsing code 2-23

2.8.16 Additional access restrictions for URLClassLoader.newInstance 2-23

2.9 Changes in R28.3.12 2-23

2.9.1 Upgraded to JDK 6u131 2-23

2.10 Changes in R28.3.11 2-23

2.10.1 Upgraded to JDK 6u121 2-24

2.10.2 Support for TLS v1.2 2-24

2.11 Changes in R28.3.10 2-24

2.11.1 Upgraded to JDK 6u115 2-24

2.12 Changes in R28.3.9 2-24

2.12.1 Upgraded to JDK 6u111 2-24

2.12.2 Support for TLS v1.1 2-24

2.12.3 New Diagnostic Command to Generate Core File 2-25

2.13 Changes in R28.3.8 2-25

2.13.1 Upgraded to JDK 6u105 2-25

2.13.2 New Command-Line Options for Generating Core Dump Files on
Exception 2-25

2.14 Changes in R28.3.2 2-25

2.14.1 New Default Value for the -XX:+CheckStacks Command-Line Option 2-26

2.14.2 New Command-Line Option to Disable Garbage Collection of Constant
Pool 2-26

2.14.3 New Verbose Option for Shutdown Report 2-26

2.15 Changes in R28.2.3 2-26

2.15.1 New Default Value for the -XX:MaxLargePageSize Command-Line
Option 2-27

2.16 Changes in R28.2.2 2-27

2.16.1 Fixed Issues in Finalization 2-27

2.17 Changes in R28.2.0 2-27

2.17.1 Improved JRockit Flight Recorder Heap Statistics Events 2-27

2.17.2 Command-Line Options to Filter Exception Logging and Events 2-27

v

2.18 Changes in R28.1.5 2-28

2.18.1 JRockit Mission Control Samples are No Longer Installed by Default 2-28

2.19 Changes in R28.1.0 2-28

2.19.1 Improved Garbage Collection 2-28

2.19.2 Command-Line Option to Specify the Receive Buffer Size 2-28

2.19.3 Enabling JVM Crash When an Out-of-Memory Error Occurs 2-28

2.19.4 Collecting and Packaging Flight Recording Data from Disk Buffers 2-29

2.20 Changes in R28.0.1 2-29

2.20.1 Default MaxCodeMemory on Linux IA32 with Large Pages Increased
to 64 MB 2-29

2.21 New Features and Changes in R28.0.0 2-29

2.21.1 Change in Thread Suspension Mechanism 2-30

2.21.2 Ability to Generate HPROF-Formatted Heap Dumps 2-30

2.21.3 Improved Logging for Code Generation and Optimization 2-30

2.21.4 Better Control Over Code Optimization Through Directives 2-30

2.21.5 Garbage Collection Strategy Does Not Change at Run Time 2-30

2.21.6 Large Objects Are Allocated in the Nursery 2-31

2.21.7 Single Command-Line Option to Specify Compaction Behavior 2-31

2.21.8 Changes in the JMX Agent 2-31

2.21.9 Compressed References for Larger Heaps 2-31

2.21.10 Changes in Heap Sizing 2-32

2.21.11 Change in Class and Code Garbage Collection 2-32

2.21.12 New Command-Line Options in R28.0 2-32

2.21.13 Command-Line Options Deprecated in R28.0 2-32

2.21.14 Command-Line Options Changed to the HotSpot Format in R28.0 2-32

3 Issues Resolved in Oracle JRockit JDK R28

3.1 Issues Resolved in R28.3.20 3-2

3.2 Issues Resolved in R28.3.19 3-2

3.2.1 JVM Hang During Startup on Processors with Large Number of Logical
Processors 3-2

3.2.2 Immediate Crash During Startup with Linux on Recent x86 / x86_64
Processors 3-2

3.3 Issues Resolved in R28.3.18 3-2

3.3.1 MissingResourceException Thrown While Trying to Load
ResourceBundle via Reflection 3-3

3.4 Issues Resolved in R28.3.17 3-3

3.5 Issues Resolved in R28.3.16 3-3

3.6 Issues Resolved in R28.3.15 3-3

3.7 Issues Resolved in R28.3.14 3-3

3.7.1 Correction of IllegalArgumentException from TLS handshake 3-3

vi

3.8 Issues Resolved in R28.3.13 3-4

3.9 Issues Resolved in R28.3.12 3-4

3.9.1 Hashtable Deserialization Reconstitutes Table with Wrong Capacity 3-4

3.10 Issues Resolved in R28.3.11 3-4

3.10.1 Corrupted Heap Data Resulting in Stability Issues 3-4

3.10.2 Incorrect Value for Dark Matter Reported by Heap Diagnostics 3-4

3.10.3 Incorrect Heap Statistics When Instances of a Class Consume Over 2
GB of Heap Space 3-5

3.10.4 Hardware Support for Square Root on SPARC T2 3-5

3.10.5 Default Number of Garbage Collection Worker Threads on Certain
Solaris Systems 3-5

3.10.6 JVM Crashes when Using Application Data Integrity Features 3-5

3.10.7 Unexpected Behavior when Copying Arrays 3-6

3.11 Issues Resolved in R28.3.10 3-6

3.11.1 Crash while Running Finalizer for the ConstPoolWrapper Object 3-6

3.11.2 Crash due to Incorrectly Compiled (JIT) checkcast Operation 3-6

3.11.3 Unexpected Behavior when Inlining a Method 3-6

3.12 Issues Resolved in R28.3.9 3-7

3.12.1 Issues with the ObjectStreamClass.lookup Method 3-7

3.12.2 Process Hangs after NewStringUTF Invocation 3-7

3.13 Issues Resolved in R28.3.8 3-7

3.13.1 Incorrect CPU Consumption Values on Linux 3-7

3.13.2 Unexpected NoSuchMethodError in JRockit JVM 3-7

3.14 Issues Resolved in R28.3.6 3-7

3.14.1 JRockit JVM Crashes while Debugging a Java Program Compiled with
javac 3-8

3.14.2 JVM Crashes while Using an Agent 3-8

3.15 Issues Resolved in R28.3.5 3-8

3.15.1 Issue with Profiling Methods 3-8

3.15.2 JVM Crashes with Illegal Memory Access Error Due to an Optimization
Issue 3-8

3.16 Issues Resolved in R28.3.4 3-8

3.16.1 Reduced Memory Footprint of Command-line Tools 3-9

3.16.2 JRockit Crashes while Calling jrockit.vm.ArrayCopy.copy Methods 3-9

3.17 Issues Resolved in R28.3.2 3-9

3.17.1 Issue with Flight Recording During Startup 3-9

3.17.2 Check Stacks Option on SPARC Platform 3-9

3.17.3 Unexpected NullPointerException Thrown from Methods After Code
Optimization 3-9

3.18 Issues Resolved in R28.3.1 3-10

3.18.1 FileNotFoundException Thrown while Opening Zip Archives 3-10

3.19 Issues Resolved in R28.2.9 3-10

vii

3.19.1 Heap Dumps Not Generated on Out Of Memory Error 3-10

3.19.2 Issue with the Out of Memory Error Message 3-10

3.20 Issues Resolved in R28.2.8 3-10

3.20.1 NullPointerExceptions from Package.getPackages Calls 3-10

3.20.2 NullPointerExceptions from Class.isAssignable 3-11

3.20.3 JRockit Crashes while Code Optimization in cgGetColorForVarInBlock 3-11

3.21 Issues Resolved in R28.2.6 3-11

3.21.1 JRockit Fight Recorder Repository Growing Indefinitely 3-11

3.21.2 Unexpected Errors from Applications with Dynamically-created
Classes 3-11

3.21.3 JMXMAPI Profiling API Can Now Profile All Versions of a Class 3-11

3.22 Issues Resolved in R28.2.5 3-11

3.22.1 JRockit Crashes when Interned Strings are Allocated 3-12

3.22.2 JRockit Crashes while Running with an optfile 3-12

3.22.3 FileNotFoundException Thrown while Reading Files from
FileInputStream 3-12

3.22.4 Issue while Closing a NIO Socket 3-12

3.22.5 NIO Operations Fail on Windows with a Security Exception 3-12

3.22.6 Wrong Exception Thrown when Flight Recorder is Disabled 3-12

3.22.7 JRockit Crashes while Invoking a com.sun.management Method 3-13

3.23 Issues Resolved in R28.2.4 3-13

3.23.1 Issue with the jrcmd Command File Parsing 3-13

3.23.2 Failure to Start on Solaris While Using a Large Page Size 3-13

3.23.3 Issue with print_memusage Diagnostic Command 3-13

3.24 Issues Resolved in R28.2.3 3-13

3.24.1 Redirecting Ouput of the jrcmd Command to a Specified File 3-14

3.24.2 Issue with the Limited File Size for the jrcmd Script File 3-14

3.24.3 Issue while Reserving VMSpace 3-14

3.24.4 Improved Stack Overflow Handling 3-14

3.24.5 Issue while Optimizing a Method 3-14

3.24.6 Issue with JRockit after Removing JRockit Flight Recorder 3-14

3.25 Issues Resolved in R28.2.2 3-14

3.25.1 Exceptions are Thrown while Establishing SSL Connections that use
Cipher Suite 3-15

3.25.2 Issue with Code Optimization 3-15

3.25.3 Missing Finalizers 3-15

3.26 Issues Resolved in R28.1.5 3-15

3.26.1 Unable to Reserve Memory in the Low Address Space of the Java
Heap 3-15

3.26.2 Thread Starvation while Using the Default Number of Garbage
Collection Threads in Multi-Core Machines 3-15

3.26.3 Error while Setting SUID or SGID on JRockit JVM 3-16

viii

3.27 Issues Resolved in R28.1.4 3-16

3.27.1 Warnings Print When Launching Java Involving Symbolic Links on
Windows 3-16

3.27.2 Corrupt HPROF File 3-16

3.28 Issues Resolved in R28.1.3 3-16

3.28.1 Deadlock Occurring in the ClassLoader (Sun Bug 7001933) 3-17

3.28.2 "Peer Not Authenticated" Exception Unexpectedly Thrown (Sun Bug
6924489) 3-17

3.28.3 Problem Setting SO_RCVBUF/SO_SNDBUF (Sun Bug 6984182) 3-17

3.28.4 Passing Read-Only Bytebuffer to Channel Write Method Throwing
Exception 3-17

3.28.5 Specific JNI API Routines Did Not Correctly Set isCopy Parameter 3-17

3.28.6 Incorrectly Optimized Methods Forcing Long Values to Become Very
Large 3-17

3.29 Issues Resolved in R28.1.1 3-18

3.29.1 Crashes During Concurrent Sweep JNI Object Allocation 3-18

3.29.2 Silent Exit When Command-Line Options are Misspelled 3-18

3.29.3 Erroneous Optimization of an arraycopy 3-18

3.29.4 JDK Read Fixed Number of Bytes When Calling
SecureRandom.generateSeed 3-18

3.29.5 instanceof Check Failing 3-19

3.30 Issues Resolved in R28.1.0 3-19

3.30.1 Oracle JRockit Hangs when used with Application Management
Solutions 3-19

3.30.2 Memory Leakage in the JMX Implementation 3-19

3.30.3 Oracle JRockit Exits when Aborting an Optimization 3-19

3.30.4 Oracle JRockit Heap Dumps Do Not Open in Eclipse Memory Analyzer
3-19

3.30.5 Exceptions Thrown Without InvocationTargetException Wrapping 3-20

3.31 Issues Resolved in R28.0.2 3-20

3.31.1 Oracle JRockit Starts Slowly on Some Solaris Machines 3-20

3.31.2 IO Exceptions in Epoll Socket Muxer Would Throw
NoClassDefFoundErrors 3-20

3.31.3 Oracle JRockit Crashing While Pruning References to Obsoleted Code
3-20

3.31.4 Oracle JRockit Could Not Open JAR or ZIP Files Larger Than 2GB 3-21

3.31.5 Xalan and Xerces Versions Updated 3-21

3.32 Issues Resolved in R28.0.1 3-21

3.32.1 JVM Crashes on Encountering Non-UTF8 Characters in Compiler
Directives 3-21

3.32.2 Null-Check Incorrectly Optimized or Proved as Always Failing 3-21

3.32.3 Linux Systems Crash at Startup when libjsig.so is Set to be Preloaded 3-22

3.32.4 NIO Selector Functionality Failure 3-22

3.32.5 Deprecated Flag -XXExternalCompactRatio Gives Incorrect Warning 3-22

ix

3.32.6 ZipEntry Initialization Error 3-22

3.32.7 Crash in ZLIB Code While Running Finalizer 3-22

3.32.8 Undeterministic Behavior on x86_64 Machines 3-23

3.32.9 JVM Spins Forever When Compiling JavaFX Classes 3-23

3.32.10 Descriptions Not Intuitive for Compaction JFR Events 3-23

3.32.11 WLS NIOSocketMuxer Occasionally Loses Sockets On Windows 3-23

3.33 Issues Resolved in R28.0.0 3-23

3.33.1 ACopyRemoval Breaks Explicit Typechecks 3-24

3.33.2 Deadlocks On the Windows Platform When Threads Block on I/O
Operations 3-24

3.33.3 Issues with Nondefault Flag with -XXcallProfiling in Oracle JRockit
R27.x 3-24

3.33.4 Performance Issues with Windows Computers Running Many
Processes 3-25

3.33.5 Optimizing Compiler Producing Erroneous Results 3-25

3.33.6 Broken Java Launcher Removed from Product 3-25

3.33.7 JVMTI_EVENT_COMPILED_METHOD_UNLOAD Event Not Being
Posted 3-25

4 Known Issues in Oracle JRockit JDK R28

4.1 Issue with Object Initialization in JRockit 4-1

4.2 Issues while Using 64-Bit Compressed References on SPARC 4-1

4.3 Limited Amount of Active Monitors 4-2

4.4 Error While Using print_utf8pool Command on Windows 4-2

4.5 HPROF Heap Dump Might be Corrupt When Multiple OOMs Thrown 4-2

4.6 java.math.BigDecimal Objects Cannot be Serialized Over IIOP Between
Releases 4-2

4.7 Timing Stability Issue When "Fast Time" Is Enabled on Intel Systems 4-2

4.8 JMAPI Method Changed to Throw an UnapplicableMethodException 4-3

4.9 Error Message for CPU Load Counters for JRockit JVM Running on Windows 4-3

4.10 Oracle JRockit Hangs On OEL/OVM Combination 4-3

4.11 Triggering Young Collections if the Nursery is Too Small 4-4

4.12 SSE2 Registers Might Not be Restored Correctly After Return from Signal
Handler 4-4

4.13 System Crashing when Stack Expansion Uses Randomized Address Spaces
4-4

4.14 Large Pages on Solaris Might Cause Long Pauses 4-4

4.15 Calculation-Intensive Applications Returning Corrupt Register Values 4-5

4.16 R28 Not Supported On Windows 2008 With More Than 64 Processors 4-5

4.17 Out of Memory Error Occurs When Classblock Memory Runs Low 4-5

4.18 IllegalArgumentException from TLS handshake 4-5

x

Preface

This document contains important release information about Oracle JRockit JDK
R28.0.

About this Document
This document includes the following chapters:

• Changes in Supported Configurations in Oracle JRockit JDK R28, which lists the
changes in the supported configurations for JRockit JDK R28.0 when compared
with R27.6.6.

• New Features and Changes in Oracle JRockit JDK R28, which the new features
and changes in JRockit JDK R28.0.

• Issues Resolved in Oracle JRockit JDK R28, which lists issues resolved in JRockit
JDK R28.0.

• Known Issues in Oracle JRockit JDK R28, which lists issues known to exist in
JRockit JDK R28.0.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Changes in Supported Configurations in
Oracle JRockit JDK R28

This chapter lists the changes in the supported configurations for JRockit JDK R28.x
when compared with R27.6.6.
The following are the changes in supported configurations:

• Java Version Updates

• Hardware Must Support Streaming SIMD Extensions (SSE) 2

• J2SE 1.4.2 and JVMPI Not Supported

• Itanium Platforms Not Supported

JRockit JVM R28.x is not supported on Windows 2000, as was the case with R27.

For up to date supported configuration information, see Oracle Fusion Middleware
Supported System Configurations at: http://www.oracle.com/technetwork/
middleware/ias/downloads/fusion-certification-100350.html.

1.1 Java Version Updates
The following table lists the Java versions supported by the various Oracle JRockit
JDK R28 releases. For information about new features in each release, see the JDK 6
Release Notes.

Table 1-1 Java Versions Supported by the Oracle JRockit JDK R28.x

JRockit JDK R28.x Release Supported J2SE 5.0 Update Supported Java SE 6
Update

R28.3.20 - Update 211

R28.3.19 - Update 201

R28.3.18 - Update 191

R28.3.17 - Update 181

R28.3.16 - Update 171

R28.3.15 - Update 161

R28.3.14 - Update 151

R28.3.13 - Update 141

R28.3.12 - Update 131

R28.3.11 - Update 121

R28.3.10 - Update 115

R28.3.9 - Update 111

R28.3.8 - Update 105

1-1

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html

Table 1-1 (Cont.) Java Versions Supported by the Oracle JRockit JDK R28.x

JRockit JDK R28.x Release Supported J2SE 5.0 Update Supported Java SE 6
Update

R28.3.7 - Update 101

R28.3.6 - Update 95

R28.3.5 Update 81 Update 91

R28.3.4 Update 75 Update 85

R28.3.3 Update 71 Update 81

R28.3.2 Update 65 Update 75

R28.3.1 Update 61 Update 71

R28.2.9 Update 55 Update 65

R28.2.8 Update 51 Update 51

R28.2.7 Update 45 Update 45

R28.2.6 Update 41 Update 43

R28.2.5 Update 38 Update 37

R28.2.4 Update 36 Update 33

R28.2.3 Update 34 Update 31

R28.2.2 Update 32 Update 29

R28.2.1 Update 32 Update 29

R28.2 Update 32 Update 29

R28.1.5 Update 32 Update 29

R28.1.4 Update 30 Update 26

R28.1.3 Update 28 Update 24

R28.1.1 Update 26 Update 22

R28.1.0 Update 24 Update 20

R28.0.2 Update 24 Update 20

R28.0.1 Update 24 Update 20

R28.0.0 Update 22 Update 17

1.2 Hardware Must Support Streaming SIMD Extensions
(SSE) 2

Oracle JRockit JDK R28.x does not support x87, the floating point extension to the x86
platform.

Hardware on which you intend to run the Oracle JRockit JVM must support SSE2
(Streaming SIMD Extensions): that is, Intel Pentium 4 or Pentium M; AMD Opteron or
Athlon 64; or newer hardware.

Chapter 1
Hardware Must Support Streaming SIMD Extensions (SSE) 2

1-2

1.3 J2SE 1.4.2 and JVMPI Not Supported
Oracle JRockit JDK R28.x does not support J2SE 1.4.2.

As a consequence of this change, JRockit JDK R28.x does not support JVMPI. Most
tools partners use JVMTI, which continues to be supported.

1.4 Itanium Platforms Not Supported
Oracle JRockit JDK R28.x does not support the Itanium architecture.

Previous JRockit JDK releases are available and supported for Itanium platforms until
all the dependent Oracle products reach end-of-life (EOL).

Chapter 1
J2SE 1.4.2 and JVMPI Not Supported

1-3

2
New Features and Changes in Oracle
JRockit JDK R28

This chapter describes the new features and changes in Oracle JRockit R28.x
releases.
For information about bug fixes and changes in Java SE 6 Updates, see the release
notes for JDK at:

http://www.oracle.com/technetwork/java/javase/overview-156328.html

Note:

JRockit R28.3.20 is the last Critical Patch Update for JRockit and as noted in
Oracle Fusion Middleware Lifetime Support Policy will reach End of
Extended Support Life in December 2018. All customers are strongly
encouraged to migrate to a later release before that date.

It contains the following topics:

• Changes in R28.3.20

• Changes in R28.3.19

• Changes in R28.3.18

• Changes in R28.3.17

• Changes in R28.3.16

• Changes in R28.3.15

• Changes in R28.3.14

• Changes in R28.3.13

• Changes in R28.3.12

• Changes in R28.3.11

• Changes in R28.3.10

• Changes in R28.3.9

• Changes in R28.3.8

• Changes in R28.3.2

• Changes in R28.2.3

• Changes in R28.2.2

• Changes in R28.2.0

• Changes in R28.1.5

• Changes in R28.1.0

2-1

http://www.oracle.com/technetwork/java/javase/overview-156328.html
https://www.oracle.com/us/assets/lifetime-support-middleware-069163.pdf

• Changes in R28.0.1

• New Features and Changes in R28.0.0

2.1 Changes in R28.3.20
This section describes the changes in Oracle JRockit JDK R28.3.20:

Note:

JRockit R28.3.20 is the last Critical Patch Update for JRockit and as noted in
Oracle Fusion Middleware Lifetime Support Policy will reach End of
Extended Support Life in December 2018. All customers are strongly
encouraged to migrate to a later release before that date.

• Upgraded to JDK 6u211

• Disabled All DES TLS Cipher Suites

• Removal of Several Symantec Root CAs

• Removal of Baltimore Cybertrust Code Signing CA

• Removal of SECOM Root Certificate

• Improved Validation of Class-Path Attribute in JAR File Manifest

• Improved Cipher Inputs

2.1.1 Upgraded to JDK 6u211
JRockit R28.3.20 is upgraded to JDK 6u211. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.1.2 Disabled All DES TLS Cipher Suites
security-libs/javax.net.ssl

DES-based TLS cipher suites are considered obsolete and should no longer be used.
DES-based cipher suites have been deactivated by default in the SunJSSE
implementation by adding the "DES" identifier to the jdk.tls.disabledAlgorithms
security property. These cipher suites can be reactivated by removing "DES" from the
jdk.tls.disabledAlgorithms security property in the java.security file or by dynamically
calling the Security.setProperty() method. In both cases re-enabling DES must be
followed by adding DES-based cipher suites to the enabled cipher suite list using the
SSLSocket.setEnabledCipherSuites() or SSLEngine.setEnabledCipherSuites() methods.

Note that prior to this change, DES40_CBC (but not all DES) suites were disabled via
the jdk.tls.disabledAlgorithms security property.

See JDK-8208350

2.1.3 Removal of Several Symantec Root CAs
security-libs/java.security

Chapter 2
Changes in R28.3.20

2-2

https://www.oracle.com/us/assets/lifetime-support-middleware-069163.pdf
http://www.oracle.com/us/technologies/java/overview-156328.html
https://bugs.java.com/view_bug.do?bug_id=JDK-8208350

The following Symantec root certificates are no longer in use and have been removed:

• equifaxsecureca

DN: OU=Equifax Secure Certificate Authority, O=Equifax, C=US

• equifaxsecureglobalebusinessca1

DN: CN=Equifax Secure Global eBusiness CA-1, O=Equifax Secure Inc., C=US

• equifaxsecureebusinessca1

DN: CN=Equifax Secure eBusiness CA-1, O=Equifax Secure Inc., C=US

• verisignclass1g3ca

DN: CN=VeriSign Class 1 Public Primary Certification Authority - G3, OU="(c)
1999 VeriSign, Inc. - For authorized use only", OU=VeriSign Trust Network,
O="VeriSign, Inc.", C=US

• verisignclass2g3ca

DN: CN=VeriSign Class 2 Public Primary Certification Authority - G3, OU="(c)
1999 VeriSign, Inc. - For authorized use only", OU=VeriSign Trust Network,
O="VeriSign, Inc.", C=US

• verisignclass1g2ca

DN: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use
only", OU=Class 1 Public Primary Certification Authority - G2, O="VeriSign, Inc.",
C=US

• verisignclass1ca

DN: OU=Class 1 Public Primary Certification Authority, O="VeriSign, Inc.", C=US

See JDK-8191031

2.1.4 Removal of Baltimore Cybertrust Code Signing CA
security-libs/java.security

The following Baltimore CyberTrust Code Signing root certificate is no longer in use
and has been removed:

• baltimorecodesigningca

DN: CN=Baltimore CyberTrust Code Signing Root, OU=CyberTrust, O=Baltimore,
C=IE

See JDK-8189949

2.1.5 Removal of SECOM Root Certificate
security-libs/java.security

The following SECOM root certificate is no longer in use and has been removed:

• secomevrootca1

DN: OU=Security Communication EV RootCA1, O="SECOM Trust Systems
CO.,LTD.", C=JP

See JDK-8191844

Chapter 2
Changes in R28.3.20

2-3

https://bugs.java.com/view_bug.do?bug_id=JDK-8191031
https://bugs.java.com/view_bug.do?bug_id=JDK-8189949
https://bugs.java.com/view_bug.do?bug_id=JDK-8191844

2.1.6 Improved Validation of Class-Path Attribute in JAR File Manifest
core-libs

The JAR file specification states that URLs in the Class-Path manifest attribute must be
relative, though this has not been enforced. To better conform to the JAR specification,
absolute URLs (those that include a scheme) are now ignored. For JAR files not
loaded from the file system, Class-Path entries navigating to a parent directory (using
"../") are also ignored.

Applications depending on a JAR file loaded from an absolute URL element specified
in Class-Path attribute may encounter a ClassNotFoundException. The historical
behavior can be restored by setting a new system property,
jdk.net.URLClassPath.disableClassPathURLCheck to true. Debugging info for Class-Path
entries that are ignored can be printed to stderr by setting -
Djdk.net.URLClassPath.disableClassPathURLCheck=debug.

2.1.7 Improved Cipher Inputs
security-libs/javax.crypto

The specification of javax.crypto.CipherInputStream has been clarified to indicate that
this class may catch BadPaddingException and other exceptions thrown by failed
integrity checks during decryption. These exceptions are not re-thrown, so the client
may not be informed that integrity checks failed. Because of this behavior, this class
may not be suitable for use with decryption in an authenticated mode of operation (e.g.
GCM). Applications that require authenticated encryption can use the Cipher API
directly as an alternative to using this class.

2.2 Changes in R28.3.19
This section describes the changes in Oracle JRockit JDK R28.3.19:

• Upgraded to JDK 6u201

2.2.1 Upgraded to JDK 6u201
JRockit R28.3.19 is upgraded to JDK 6u201. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.3 Changes in R28.3.18
This section describes the changes in Oracle JRockit JDK R28.3.18:

• Upgraded to JDK 6u191

• TLS Session Hash and Extended Master Secret Extension Support

• Enhanced KeyStore Mechanisms

• 3DES Cipher Suites Disabled

• Server-side HTTP-tunneled RMI Connections Disabled

Chapter 2
Changes in R28.3.19

2-4

http://www.oracle.com/us/technologies/java/overview-156328.html

• CipherOutputStream Usage

• System Property Controls the java.util.logging.FileHandler's MAX_LOCKS Limit

2.3.1 Upgraded to JDK 6u191
JRockit R28.3.18 is upgraded to JDK 6u191. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.3.2 TLS Session Hash and Extended Master Secret Extension
Support

security-libs/javax.net.ssl

Support has been added for the TLS session hash and extended master secret
extension (RFC 7627) in JDK JSSE provider. Note that in general, a server certificate
change is restricted if endpoint identification is not enabled and the previous
handshake is a session-resumption abbreviated initial handshake, unless the identities
represented by both certificates can be regarded as the same. However, if the
extension is enabled or negotiated, the server certificate changing restriction is not
necessary and will be discarded accordingly. In case of compatibility issues, an
application may disable negotiation of this extension by setting the System Property
jdk.tls.useExtendedMasterSecret to false in the JDK. By setting the System Property
jdk.tls.allowLegacyResumption to false, an application can reject abbreviated
handshaking when the session hash and extended master secret extension are not
negotiated. By setting the System Property jdk.tls.allowLegacyMasterSecret to false,
an application can reject connections that do not support the session hash and
extended master secret extension.

See JDK-8148421

2.3.3 Enhanced KeyStore Mechanisms
security-libs/javax.crypto

A new security property named jceks.key.serialFilter has been introduced. If this
filter is configured, the JCEKS KeyStore uses it during the deserialization of the
encrypted Key object stored inside a SecretKeyEntry. If it is not configured or if the
filter result is UNDECIDED (for example, none of the patterns match), then the filter
configured by jdk.serialFilter is consulted.

If the system property jceks.key.serialFilter is also supplied, it supersedes the
security property value defined here.

The filter pattern uses the same format as jdk.serialFilter. The default pattern allows
java.lang.Enum, java.security.KeyRep, java.security.KeyRep$Type, and
javax.crypto.spec.SecretKeySpec but rejects all the others.

Customers storing a SecretKey that does not serialize to the above types must modify
the filter to make the key extractable.

2.3.4 3DES Cipher Suites Disabled
security-libs/javax.net.ssl

Chapter 2
Changes in R28.3.18

2-5

http://www.oracle.com/us/technologies/java/overview-156328.html
https://bugs.java.com/view_bug.do?bug_id=JDK-8148421

To improve the strength of SSL/TLS connections, 3DES cipher suites have been
disabled in SSL/TLS connections in the JDK via the jdk.tls.disabledAlgorithms
Security Property.

2.3.5 Server-side HTTP-tunneled RMI Connections Disabled
core-libs/java.rmi

Server side HTTP-tunneled RMI connections have been disabled by default in this
release. This behavior can be reverted by setting the runtime property
sun.rmi.server.disableIncomingHttp property to false. Note, this should not be
confused with the sun.rmi.server.disableHttp property, which disables HTTP-
tunneling on the client side and is false by default.

2.3.6 CipherOutputStream Usage
security-libs/javax.crypto

The specification of javax.crypto.CipherOutputStream has been clarified to indicate that
this class catches BadPaddingException and other exceptions thrown by failed
integrity checks during decryption. These exceptions are not re-thrown, so the client is
not informed that integrity checks have failed. Because of this behavior, this class may
not be suitable for use with decryption in an authenticated mode of operation (for
example, GCM) if the application requires explicit notification when authentication fails.
These applications can use the Cipher API directly as an alternative to using this
class.

2.3.7 System Property Controls the java.util.logging.FileHandler's
MAX_LOCKS Limit

core-libs/java.util.logging

A new JDK implementation specific system property
jdk.internal.FileHandlerLogging.maxLocks has been introduced to control the
java.util.logging.FileHandler MAX_LOCKS limit. The default value of the current
MAX_LOCKS (100) is retained if this new system property is not set or an invalid value is
provided to the property. Valid values for this property are integers ranging from 1 to
Integer MAX_VALUE-1.

See JDK-8153955

2.4 Changes in R28.3.17
This section describes the changes in Oracle JRockit JDK R28.3.17:

• Upgraded to JDK 6u181

• Support DHE Sizes Up To 8192-bits and DSA Sizes Up To 3072-bits

• Support SHA224withDSA and SHA256withDSA in the SunJSSE provider

• Add Additional IDL Stub Type Checks To org.omg.CORBA.ORBstring_to_object
Method

Chapter 2
Changes in R28.3.17

2-6

http://bugs.java.com/view_bug.do?bug_id=JDK-8153955

• RSA Public Key Validation

• Restrict Diffie-Hellman Keys Less Than 1024 Bits

• Provider Default Key Size is Updated

• Stricter Key Generation

• Unlimited Cryptography Enabled by Default

• Disable Exportable Cipher Suites

• Disable JARs Signed with DSA Keys Less Than 1024 Bits

• Added wsimport Tool Command Line Option ???disableXmlSecurity

• JMX Connections Need Deserialization Filters

2.4.1 Upgraded to JDK 6u181
JRockit R28.3.17 is upgraded to JDK 6u181. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.4.2 Support DHE Sizes Up To 8192-bits and DSA Sizes Up To
3072-bits

security-libs/javax.crypto

Enhance the JDK security providers to support 3072-bit DiffieHellman and DSA
parameters generation, pre-computed DiffieHellman parameters up to 8192 bits and
pre-computed DSA parameters up to 3072 bits.

See JDK-8072452

2.4.3 Support SHA224withDSA and SHA256withDSA in the SunJSSE
provider

security-libs/javax.net.ssl

The SHA224withDSA and SHA256withDSA algorithms are now supported in the TLS
1.2 "signature_algorithms" extension in the SunJSSE provider. Note that this extension
does not apply to TLS 1.1 and previous versions.

See JDK–8049321

2.4.4 Add Additional IDL Stub Type Checks To
org.omg.CORBA.ORBstring_to_object Method

other-libs/corba

Applications that either explicitly or implicitly call org.omg.CORBA.ORB.string_to_object,
and wish to ensure the integrity of the IDL stub type involved in the
ORB::string_to_object call flow, should specify additional IDL stub type checking. This
is an "opt in" feature and is not enabled by default.

Chapter 2
Changes in R28.3.17

2-7

http://www.oracle.com/us/technologies/java/overview-156328.html
https://bugs.java.com/view_bug.do?bug_id=JDK-8072452
https://bugs.java.com/view_bug.do?bug_id=JDK-8049321

To take advantage of the additional type checking, the list of valid IDL interface class
names of IDL stub classes is configured by one of the following:

• Specifying the security property com.sun.CORBA.ORBIorTypeCheckRegistryFilter
located in the file conf/security/java.security in Java SE 9 or in jre/lib/
security/java.security in Java SE 8 and earlier.

• Specifying the system property com.sun.CORBA.ORBIorTypeCheckRegistryFilter with
the list of classes. If the system property is set, its value overrides the
corresponding property defined in the java.security configuration.

If the com.sun.CORBA.ORBIorTypeCheckRegistryFilter property is not set, the type
checking is only performed against a set of class names of the IDL interface types
corresponding to the built-in IDL stub classes.

2.4.5 RSA Public Key Validation
security-libs/javax.crypto

In R28.3.17, the RSA implementation in the SunRsaSign provider will reject any RSA
public key that has an exponent that is not in the valid range as defined by PKCS#1
version 2.2. This change will affect JSSE connections as well as applications built on
JCE.

2.4.6 Restrict Diffie-Hellman Keys Less Than 1024 Bits
security-libs/javax.net.ssl

Diffie-Hellman keys less than 1024 bits are considered too weak to use in practice and
should be restricted by default in SSL/TLS/DTLS connections. Accordingly, Diffie-
Hellman keys less than 1024 bits have been disabled by default by adding DH keySize
< 1024 to the jdk.tls.disabledAlgorithms security property in the java.security file.
Although it is not recommended, administrators can update the security property
(jdk.tls.disabledAlgorithms) and permit smaller key sizes (for example, by setting DH
keySize < 768).

2.4.7 Provider Default Key Size is Updated
security-libs/javax.crypto

This change updates the JDK providers to use 2048 bits as the default key size for
DSA instead of 1024 bits when applications have not explicitly initialized the
java.security.KeyPairGenerator and java.security.AlgorithmParameterGenerator
objects with a key size.

If compatibility issues arise, existing applications can set the system property
jdk.security.defaultKeySize introduced in JDK-8181048 with the algorithm and its
desired default key size.

2.4.8 Stricter Key Generation
security-libs/javax.crypto

Chapter 2
Changes in R28.3.17

2-8

The generateSecret(String) method has been mostly disabled in the
javax.crypto.KeyAgreement services of the SUN and SunPKCS11 providers. Invoking
this method for these providers will result in a NoSuchAlgorithmException for most
algorithm string arguments. The previous behavior of this method can be re-enabled
by setting the value of the jdk.crypto.KeyAgreement.legacyKDF system property to true
(case insensitive). Re-enabling this method by setting this system property is not
recommended.

2.4.9 Unlimited Cryptography Enabled by Default
security-libs/javax.crypto

The JDK uses the Java Cryptography Extension (JCE) Jurisdiction Policy files to
configure cryptographic algorithm restrictions. Previously, the Policy files in the JDK
placed limits on various algorithms. This release ships with both the limited and
unlimited jurisdiction policy files, with unlimited being the default. The behavior can be
controlled via the new crypto.policy Security property found in the <java-home>/lib/
java.security file. Refer to that file for more information on this property.

See JDK-8170157

2.4.10 Disable Exportable Cipher Suites
security-libs/javax.net.ssl

To improve the strength of SSL/TLS connections, exportable cipher suites have been
disabled in SSL/TLS connections in the JDK by the jdk.tls.disabledAlgorithms
Security Property.

See JDK-8163237

2.4.11 Disable JARs Signed with DSA Keys Less Than 1024 Bits
security-libs/java.security

DSA keys less than 1024 bits have been added to the jdk.jar.disabledAlgorithms
Security property in the java.security file. This property contains a list of disabled
algorithms and key sizes for signed JAR files. If a signed JAR file uses a disabled
algorithm or key size less than the minimum length, signature verification operations
will ignore the signature and treat the JAR as if it were unsigned. This can potentially
occur in the following types of applications that use signed JAR files:

1. Applets or Web Start Applications.

2. Standalone or Server Applications run with a SecurityManager enabled and that
are configured with a policy file that grants permissions based on the code
signer(s) of the JAR file.

Running jarsigner -verify -verbose on a JAR file signed with a weak algorithm or key
will print more information about the disabled algorithm or key.

For example, to check a JAR file named test.jar, use this command : jarsigner -
verify -verbose test.jar

If the file in this example was signed with a weak key such as 512 bit DSA, this output
would be seen:

Chapter 2
Changes in R28.3.17

2-9

https://bugs.java.com/view_bug.do?bug_id=JDK-8170157
https://bugs.java.com/view_bug.do?bug_id=JDK-8170157

- Signed by "CN=weak_signer"
 Digest algorithm: SHA1
 Signature algorithm: SHA1withDSA, 512-bit key (weak)

To address the issue, the JAR file will need to be re-signed with a stronger key size.
Alternatively, the restrictions can be reverted by removing the applicable weak
algorithms or key sizes from the jdk.jar.disabledAlgorithms security property; however,
this option is not recommended. Before re-signing affected JARs, the existing
signature(s) should be removed from the JAR file. This can be done with the zip utility,
as follows:

 zip -d test.jar 'META-INF/*.SF' 'META-INF/*.RSA' 'META-INF/*.DSA'

Periodically check the Oracle JRE and JDK Cryptographic Roadmap at http://
java.com/cryptoroadmap for planned restrictions to signed JARs and other security
components.

2.4.12 Added wsimport Tool Command Line Option ???
disableXmlSecurity

xml/jax-ws

The wsimport tool has been changed to disallow DTDs in Web Service descriptions,
specifically:

• DOCTYPE declaration is disallowed in documents

• External general entities are not included by default

• External parameter entities are not included by default

• External DTDs are completely ignored

To restore the previous behavior:

• Set the System property com.sun.xml.internal.ws.disableXmlSecurity to true

• Use the wsimport tool command line option ???disableXmlSecurity

2.4.13 JMX Connections Need Deserialization Filters
core-svc/javax.management

New public attributes, RMIConnectorServer.CREDENTIALS_FILTER_PATTERN and
RMIConnectorServer.SERIAL_FILTER_PATTERN have been added to
RMIConnectorServer.java. With these new attributes, users can specify the
deserialization filter pattern strings to be used while making a RMIServer.newClient()
remote call and while sending deserializing parameters over RMI to server
respectively.

The user can also provide a filter pattern string to the default agent via
management.properties. As a result, a new attribute is added to management.properties.

Existing attribute RMIConnectorServer.CREDENTIAL_TYPES is superseded by
RMIConnectorServer.CREDENTIALS_FILTER_PATTERN and has been removed.

Chapter 2
Changes in R28.3.17

2-10

http://java.com/cryptoroadmap
http://java.com/cryptoroadmap

2.5 Changes in R28.3.16
This section describes the changes in Oracle JRockit JDK R28.3.16:

• Upgraded to JDK 6u171

• Support DHE Sizes Up To 8192-bits and DSA Sizes Up To 3072-bits

• Refactor Existing Providers to Refer to the Same Constants for Default Values for
Key Length

• Collections Use Serialization Filter to Limit Array Sizes

• Default Timeouts Have Changed for FTP URL Handler

• New Defaults for DSA Keys in Jarsigner and Keytool

2.5.1 Upgraded to JDK 6u171
JRockit R28.3.16 is upgraded to JDK 6u171. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.5.2 Support DHE Sizes Up To 8192-bits and DSA Sizes Up To
3072-bits

security-libs/javax.crypto

Enhance the JDK security providers to support 3072-bit DiffieHellman and DSA
parameters generation, pre-computed DiffieHellman parameters up to 8192 bits and
pre-computed DSA parameters up to 3072 bits.

See JDK-8072452

2.5.3 Refactor Existing Providers to Refer to the Same Constants for
Default Values for Key Length

security-libs/java.security

Two important changes have been made for this issue:

• A new system property has been introduced that allows users to configure the
default key size used by the JDK provider implementations of KeyPairGenerator
and AlgorithmParameterGenerator. This property is named
"jdk.security.defaultKeySize" and the value of this property is a list of comma-
separated entries. Each entry consists of a case-insensitive algorithm name and
the corresponding default key size (in decimal) separated by ":". In addition, white
space is ignored.

By default, this property does not have a value, and JDK providers use their own
default values. Entries containing an unrecognized algorithm name will be ignored.
If the specified default key size is not a parseable decimal integer, that entry will
be ignored as well.

Chapter 2
Changes in R28.3.16

2-11

http://www.oracle.com/us/technologies/java/overview-156328.html
https://bugs.java.com/view_bug.do?bug_id=JDK-8072452

• The DSA KeyPairGenerator implementation of the SUN provider no longer
implements java.security.interfaces.DSAKeyPairGenerator. Applications which
cast the SUN provider's DSA KeyPairGenerator object to a
java.security.interfaces. The DSAKeyPairGenerator can set the system property
"jdk.security.legacyDSAKeyPairGenerator". If the value of this property is "true", the
SUN provider will return a DSA KeyPairGenerator object which implements the
java.security.interfaces. The DSAKeyPairGenerator interface. This legacy
implementation will use the same default value as specified by the javadoc in the
interface.

By default, this property will not have a value, and the SUN provider will return a
DSAKeyPairGenerator object which does not implement the aforementioned
interface and thus can determine its own provider-specific default value as stated
in the java.security.KeyPairGenerator class or by the
"jdk.security.defaultKeySize" system property if set.

2.5.4 Collections Use Serialization Filter to Limit Array Sizes
core-libs/java.util:collections

Deserialization of certain collection instances will cause arrays to be allocated. The
ObjectInputFilter.checkInput() method is now called prior to allocation of these
arrays.

• Deserializing instances of ArrayDeque, ArrayList, IdentityHashMap, PriorityQueue,
java.util.concurrent.CopyOnWriteArrayList, and the immutable collections (as
returned by List.of, Set.of, and Map.of) will call checkInput() with a FilterInfo
instance whose serialClass() method returns Object[].class.

• Deserializing instances of HashMap, HashSet, Hashtable, and Properties will call
checkInput() with a FilterInfo instance whose serialClass() method returns
Map.Entry[].class.

In both cases, the FilterInfo.arrayLength() method returns the actual length of the
array to be allocated. The exact circumstances under which the serialization filter is
called, and with what information, is subject to change in future releases.

2.5.5 Default Timeouts Have Changed for FTP URL Handler
core-libs/java.net

Timeouts used by the FTP URL protocol handler have been changed from infinite to 5
minutes. This will result in an IOException from connect and read operations if the FTP
server is unresponsive. For example, new URL ("ftp://
example.com").openStream().read(), will fail with java.net.SocketTimeoutException in
case a connection or reading could not be completed within 5 minutes.

To revert this behaviour to that of previous releases, the following system properties
may be used, sun.net.client.defaultReadTimeout=0,
sun.net.client.defaultConnectTimeout=0

2.5.6 New Defaults for DSA Keys in Jarsigner and Keytool

security-libs/java.security

Chapter 2
Changes in R28.3.16

2-12

For DSA keys, the default signature algorithm for keytool and jarsigner has changed
from SHA1withDSA to SHA256withDSA and the default key size for keytool has changed
from 1024 bits to 2048 bits.

Users who want to revert to the previous behavior can use the -sigalg option of
keytool and jarsigner and specify SHA1withDSA and the -keysize option of keytool and
specify 1024.

There are a few potential compatibility risks associated with this change:

• If you have a script that uses the default key size of keytool to generate a DSA
keypair but then subsequently specifies a specific signature algorithm.

For example:

keytool -genkeypair -keyalg DSA -keystore keystore -alias mykey ...
keytool -certreq -sigalg SHA1withDSA -keystore keystore -alias mykey ...

will fail with one of the following exceptions, because the new 2048-bit keysize
default is too strong for SHA1withDSA:

keytool error: java.security.InvalidKeyException: The security strength of SHA-1
digest algorithm is not sufficient for this key size
keytool error: java.security.InvalidKeyException: DSA key must be at most 1024
bits

The workaround is to remove the -sigalg option and use the stronger
SHA256withDSA default or, at your own risk, use the -keysize option of keytool to
specify a smaller key size (1024).

• If you use jarsigner to sign JARs with the new defaults, previous versions (than
this release) of JDK 6 and 7 do not support the stronger defaults and will not be
able to verify the JAR. jarsigner -verify on an earlier release of JDK 6 or 7 will
output the following error:

jar is unsigned. (signatures missing or not parsable)

If you add -J-Djava.security.debug=jar to the jarsigner command line, the cause
will be output:

jar: processEntry caught: java.security.NoSuchAlgorithmException: SHA256withDSA
Signature not available

If compatibility with earlier releases is important, you can, at your own risk, use the
-sigalg option of jarsigner and specify the weaker SHA1withDSA algorithm.

• If you use a PKCS11 keystore, the SunPKCS11 provider does not support the
SHA256withDSA algorithm. jarsigner and some keytool commands may fail with the
following exception if PKCS11 is specified with the -storetype option. For
example:

keytool error: java.security.InvalidKeyException: No installed provider supports
this key: sun.security.pkcs11.P11Key$P11PrivateKey

A similar error may occur if you are using NSS with the SunPKCS11 provider. The
workaround is to use the -sigalg option of keytool and specify SHA1withDSA.

See JDK-8057810

Chapter 2
Changes in R28.3.16

2-13

http://bugs.java.com/view_bug.do?bug_id=JDK-8057810

2.6 Changes in R28.3.15
This section describes the changes in Oracle JRockit JDK R28.3.15:

• Upgraded to JDK 6u161

• Improved Algorithm Constraints Checking

• JMX Diagnostic Improvements

• Message Digest Algorithm for jarsigner -tsadigestalg Option Now Defaults to
SHA-256

2.6.1 Upgraded to JDK 6u161
JRockit R28.3.15 is upgraded to JDK 6u161. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.6.2 Improved Algorithm Constraints Checking

security-libs/java.security

With the need to restrict weak algorithms usage in situations where they are most
vulnerable, additional features have been added when configuring the
jdk.certpath.disabledAlgorithms and jdk.jar.disabledAlgorithms security properties in
the java.security file.

jdk.certpath.disabledAlgorithms

The certpath property has seen the most change. Previously it was limited to two
constraint types – either a full disabling of an algorithm by name or a full disabling of
an algorithm by the key size when checking certificates, certificate chains, and
certificate signatures. This creates configurations that are absolute and lack flexibility
in their usage. Three new constraints were added to give more flexibility in allowing
and rejecting certificates.

• jdkCA examines the certificate chain termination with regard to the cacerts file. In
the case of SHA1 jdkCA. SHA1's usage is checked through the certificate chain, but
the chain must terminate at a marked trust anchor in the cacerts keystore to be
rejected. This is useful for organizations that have their own private CA that trust
using SHA1 with their trust anchor, but want to block certificate chains anchored
by a public CA from using SHA1.

• denyAfter checks if the given date is before the current date or the PKIXParameter
date. In the case of SHA1 denyAfter 2018-01-01, before 2018 a certificate with
SHA1 can be used, but after that date, the certificate is rejected. This can be used
for a policy across an organization that is phasing out an algorithm with a drop-
dead date. For signed JAR files, the date is compared against the TSA timestamp.
The date is specified in GMT.

• usage examines the specified algorithm for a specified usage. This can be used
when disabling an algorithm for all usages is not practical. There are three usages
that can be specified:

– TLSServer restricts the algorithm in TLS server certificate chains when server
authentication is performed as a client.

Chapter 2
Changes in R28.3.15

2-14

http://www.oracle.com/us/technologies/java/overview-156328.html

– TLSClient restricts the algorithm in TLS client certificate chains when client
authentication is performed as a server.

– SignedJAR restricts the algorithms in certificates in signed JAR files. The usage
type follows the keyword and more than one usage type can be specified with
a whitespace delimiter. For example, SHA1 usage TLSServer TLSClient would
disallow SHA1 certificates for TLSServer and TLSClient operations, but
SignedJars would be allowed.

All of these constraints can be combined to constrain an algorithm when delimited by
&. For example, to disable SHA1 certificate chains that terminate at marked trust
anchors only for TLSServer operations, the constraint would be SHA1 jdkCA & usage
TLSServer.

jdk.jar.disabledAlgorithms

One additional constraint was added to this .jar property to restrict JAR manifest
algorithms.

denyAfter checks algorithm constraints on manifest digest algorithms inside a signed
JAR file. The date given in the constraint is compared against the TSA timestamp on
the signed JAR file. If there is no timestamp or the timestamp is on or after the
specified date, the signed JAR file is treated as unsigned. If the timestamp is before
the specified date, the .jar operates as a signed JAR file. The syntax for restricting
SHA1 in JAR files signed after January 1st 2018 is: SHA1 denyAfter 2018-01-01. The
syntax is the same as that for the certpath property, however certificate checking will
not be performed by this property.

See JDK-8176536

2.6.3 JMX Diagnostic Improvements

core-svc/java.lang.management

The com.sun.management.HotSpotDiagnostic::dumpHeap API is modified to throw
IllegalArgumentException if the supplied file name does not end with .hprof suffix.
Existing applications which do not provide a file name ending with the .hprof extension
will fail with IllegalArgumentException. In that case, applications can either choose to
handle the exception or restore old behavior by setting system property
jdk.management.heapdump.allowAnyFileSuffix to true.

2.6.4 Message Digest Algorithm for jarsigner -tsadigestalg Option Now
Defaults to SHA-256

security-libs/java.security

If not specified, the message digest algorithm for the -tsadigestalg option of jarsigner
defaults to SHA-256 (previously it was SHA-1). The -tsadigestalg option specifies the
message digest algorithm that is used to generate the message imprint to be sent to
the TSA server.

See JDK-8177674

Chapter 2
Changes in R28.3.15

2-15

http://bugs.java.com/view_bug.do?bug_id=JDK-8176536
http://bugs.java.com/view_bug.do?bug_id=JDK-8177674

2.7 Changes in R28.3.14
This section describes the changes in Oracle JRockit JDK R28.3.14:

• Upgraded to JDK 6u151

• IANA Data 2016j

• MD5 signature verification added to the Security Property jdk.jar.disabled
Algorithms

• New system property to control caching for HTTP SPNEGO connection

• New System Property to Control Caching for HTTP NTLM Connection

2.7.1 Upgraded to JDK 6u151
JRockit R28.3.14 is upgraded to JDK 6u151. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.7.2 IANA Data 2016j
JDK R28.3.14 contains IANA time zone data version 2016j. For more information, refer
to Timezone Data Versions in the JRE Software.

See JDK-8170316

2.7.3 MD5 signature verification added to the Security Property
jdk.jar.disabled Algorithms

security-libs/java.security

This JDK release introduces a new restriction on how MD5 signed JAR files are
verified. If the signed JAR file uses MD5, signature verification operations ignore the
signature and treat the JAR as if it were unsigned. This can potentially occur in the
following types of applications that use signed JAR files:

• Applets or Web Start Applications

• Standalone or Server Applications that are run with a Security Manager enabled
and are configured with a policy file that grants permissions based on the code
signer of the JAR.

The list of disabled algorithms is controlled using the security property,
jdk.jar.disabled Algorithms, in the java.security file. This property contains a list of
disabled algorithms and key sizes for cryptographically signed JAR files.

To check if a weak algorithm or key was used to sign a JAR file, one can use the
jarsigner binary that ships with this JDK. Running jarsigner -verify on a JAR file
signed with a weak algorithm or key prints more information about the disabled
algorithm or key.

For example, to check a JAR file named test.jar, use the following
command :jarsigner -verify test.jar

Chapter 2
Changes in R28.3.14

2-16

http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/technetwork/java/javase/tzdata-versions-138805.html
http://bugs.java.com/view_bug.do?bug_id=JDK-8170316

If the file in this example was signed with a weak signature algorithm like
MD5withRSA, this output would be displayed:

"The jar is treated as unsigned, because it is signed with a weak algorithm that is now
disabled. Re-run jarsigner with the -verbose option for more details."

More details can be seen with the verbose option: jarsigner -verify -verbose
test.jar

The following output would be displayed:

- Signed by "CN=weak_signer"
 Digest algorithm: MD5 (weak)
 Signature algorithm: MD5withRSA (weak), 512-bit key (weak)
 Timestamped by "CN=strong_tsa" on Mon Sep 26 08:59:39 CST 2016
 Timestamp digest algorithm: SHA-256
 Timestamp signature algorithm: SHA256withRSA, 2048-bit key

To address the issue, the JAR file must be re-signed with a stronger algorithm or key
size. Alternatively, the restrictions can be reverted by removing the applicable weak
algorithms or key sizes from the jdk.jar.disabled Algorithms security property.
However, this option is not recommended. Before re-signing affected JARs, the
existing signature must be removed from the JAR file. This can be done with the zip
utility, as follows:

zip -d test.jar 'META-INF/.SF' 'META-INF/.RSA' 'META-INF/*.DSA'

Oracle recommends that you periodically check the Oracle JRE and JDK
Cryptographic Roadmap at http://java.com/cryptoroadmap for planned restrictions to
signed JARs and other security components.

JDK-8171121

2.7.4 New system property to control caching for HTTP SPNEGO
connection

core-libs/java.net

A new JDK implementation-specific system property to control caching for HTTP
SPNEGO (Negotiate/Kerberos) connections is introduced. Caching for HTTP
SPNEGO connections is enabled by default. There is no behavior change if the
property is not explicitly specified.

When connecting to an HTTP server which uses SPNEGO to negotiate authentication,
and when connection and authentication with the server is successful, the
authentication information will then be cached and reused for further connections to
the same server. In addition, connecting to an HTTP server using SPNEGO usually
involves keeping the underlying connection alive and reusing it for further requests to
the same server. In some applications, it is recommended to disable all caching for the
HTTP SPNEGO (Negotiate/Kerberos) protocol to force requesting new authentication
with each new requests to the server.

With this fix, a new system property that allows control of the caching policy for HTTP
SPNEGO connections is now provided. If jdk.spnego.cache is defined and evaluates to
false, then all caching is disabled for HTTP SPNEGO connections. Setting this system
property to false may however result in undesirable side effects:

Chapter 2
Changes in R28.3.14

2-17

http://java.com/cryptoroadmap

• Performance of HTTP SPNEGO connections may be severely impacted as the
connection must be re-authenticated with each new request, requiring several
communication exchanges with the server.

• Credentials will need to be obtained again for each new requests, which,
depending on whether transparent authentication is available or not, and
depending on the global Authenticator implementation, may result in a popup
asking the user for credentials for every new request.

JDK-8170814

2.7.5 New System Property to Control Caching for HTTP NTLM
Connection

core-libs/java.net

A new JDK implementation-specific system property to control caching for HTTP
NTLM connection is introduced. Caching for HTTP NTLM connection remains enabled
by default. So, if the property is not explicitly specified, there is no behavior change.

On some platforms, the HTTP NTLM implementation in the JDK can support
transparent authentication, where the system user credentials are used at the system
level. When transparent authentication is not available or unsuccessful, the JDK only
supports getting credentials from a global authenticator. If connection to the server is
successful, the authentication information is cached and reused for further connections
to the same server. In addition, connecting to an HTTP NTLM server usually involves
keeping the underlying connection alive and reusing it for further requests to the same
server. In some applications, it is essential to disable all caching for the HTTP NTLM
protocol to force requesting new authentication with each new request to the server.

With this fix, a new system property that allows control of the caching policy for HTTP
NTLM connections is provided. If jdk.ntlm.cache is defined and evaluates to false,
then all caching is disabled for HTTP NTLM connections. Setting this system property
to false, however, results in undesirable side effects:

• Performance of HTTP NTLM connections is severely impacted as the connection
is re-authenticated with each new request, requiring several communication
exchanges with the server.

• Credentials must be obtained again for each new request, which, depending on
whether transparent authentication is available or not, and depending on the
global Authenticator implementation, results in a popup asking for credentials for
every new request.

JDK-8163520

2.8 Changes in R28.3.13
This section describes the changes in Oracle JRockit JDK R28.3.13:

• Upgraded to JDK 6u141

• IANA Data 2016i

• Improved protection for JNDI remote class loading

• jarsigner -verbose -verify should print the algorithms used to sign the jar

• Added security property to configure XML Signature secure validation mode

Chapter 2
Changes in R28.3.13

2-18

• Serialization Filter Configuration

• RMI Better constraint checking

• Add mechanism to allow non default root CAs to not be subject to algorithm
restrictions

• New --allow-script-in-comments option for javadoc

• Increase the minimum key length to 1024 for XML Signatures

• Make 3DES a legacy algorithm in the JSSE provider

• Improve the default strength of elliptic curve cryptography in JDK

• Restrict certificates with DSA keys less than 1024 bits

• Add TLS v1.1 and v1.2 to the client list of default-enabled protocols

• More checks added to DER encoding parsing code

• Additional access restrictions for URLClassLoader.newInstance

2.8.1 Upgraded to JDK 6u141
JRockit R28.3.13 is upgraded to JDK 6u141. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.8.2 IANA Data 2016i

JDK R28.3.13 contains IANA time zone data version 2016i. For more information, refer
to Timezone Data Versions in the JRE Software

2.8.3 Improved protection for JNDI remote class loading

core-libs/javax.naming

Remote class loading via JNDI object factories stored in naming and directory
services, is disabled by default. To enable remote class loading by the RMI Registry or
COS Naming service provider, set the following system property to the string true", as
appropriate:

com.sun.jndi.rmi.object.trustURLCodebase
com.sun.jndi.cosnaming.object.trustURLCodebase

2.8.4 jarsigner -verbose -verify should print the algorithms used to sign
the jar

security-libs/java.security

The jarsigner tool has been enhanced to show details of the algorithms and keys used
to generate a signed JAR file and will also provide an indication if any of them are
considered weak.

Chapter 2
Changes in R28.3.13

2-19

http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/technetwork/java/javase/tzdata-versions-138805.html

Specifically, when jarsigner -verify -verbose filename.jar is called, a separate
section is printed out showing information of the signature and timestamp (if it exists)
inside the signed JAR file, even if it is treated as unsigned for various reasons. If any
algorithm or key used is considered weak, as specified in the Security property
jdk.jar.disabled algorithms, it will be labeled with "(weak)".

For example:

- Signed by "CN=weak_signer"
 Digest algorithm: MD2 (weak)
 Signature algorithm: MD2withRSA (weak), 512-bit key (weak)
 Timestamped by "CN=strong_tsa" on Mon Sep 26 08:59:39 CST 2016
 Timestamp digest algorithm: SHA-256
 Timestamp signature algorithm: SHA256withRSA, 2048-bit key
``

See JDK-8163304

2.8.5 Added security property to configure XML Signature secure
validation mode

security-libs/javax.xml.crypto

A new security property named jdk.xml.dsig.secureValidationPolicy has been added
that allows you to configure the individual restrictions that are enforced when the
secure validation mode of XML Signature is enabled. The default value for this
property in the java.security configuration file is:

jdk.xml.dsig.secureValidationPolicy=\
 disallowAlg http://www.w3.org/TR/1999/REC-xslt-19991116,\
 disallowAlg http://www.w3.org/2001/04/xmldsig-more#rsa-md5,\
 disallowAlg http://www.w3.org/2001/04/xmldsig-more#hmac-md5,\
 disallowAlg http://www.w3.org/2001/04/xmldsig-more#md5,\
 maxTransforms 5,\
 maxReferences 30,\
 disallowReferenceUriSchemes file http https,\
 noDuplicateIds,\
 noRetrievalMethodLoops

Refer to the definition of the property in the java.security file for more information.

2.8.6 Serialization Filter Configuration

core-libs/java.io:serialization

Serialization Filtering introduces a new mechanism which allows incoming streams of
object-serialization data to be filtered in order to improve both security and robustness.
Every ObjectInputStream applies a filter, if configured, to the stream contents during
deserialization. Filters are set using either a system property or a configured security
property. The value of the jdk.serialFilter patterns are described in JEP 290
Serialization Filtering and in <JRE>/lib/security/java.security. Filter actions are
logged to the java.io.serialization logger, if enabled.

Chapter 2
Changes in R28.3.13

2-20

https://bugs.openjdk.java.net/browse/JDK-8163304
http://openjdk.java.net/jeps/290
http://openjdk.java.net/jeps/290

2.8.7 RMI Better constraint checking

core-libs/java.rmi

RMI Registry and Distributed Garbage Collection use the mechanisms of JEP 290
Serialization Filtering to improve service robustness. RMI Registry and DGC
implement built-in white-list filters for the typical classes expected to be used with each
service. Additional filter patterns can be configured using either a system property or a
security property. The sun.rmi.registry.registryFilter and
sun.rmi.transport.dgcFilter property pattern syntax is described in JEP 290 and in
<JRE>/lib/security/java.security.

2.8.8 Add mechanism to allow non default root CAs to not be subject
to algorithm restrictions

security-libs

In the java.security file, an additional constraint named jdkCA is added to the
jdk.certpath.disabledAlgorithms property. This constraint prohibits the specified
algorithm only if the algorithm is used in a certificate chain that terminates at a marked
trust anchor in the lib/security/cacerts keystore. If the jdkCA constraint is not set,
then all chains using the specified algorithm are restricted. jdkCA may only be used
once in a DisabledAlgorithm expression.

Example: To apply this constraint to SHA-1 certificates, include the following:

SHA1 jdkCA

2.8.9 New --allow-script-in-comments option for javadoc

tools/javadoc(tool)

The javadoc tool will now reject any occurrences of JavaScript code in the javadoc
documentation comments and command-line options, unless the command-line
option, --allow-script-in-comments is specified.

With the --allow-script-in-comments option, the javadoc tool will preserve JavaScript
code in documentation comments and command-line options. An error will be given by
the javadoc tool if JavaScript code is found and the command-line option is not set.

2.8.10 Increase the minimum key length to 1024 for XML Signatures

security-libs/javax.xml.crypto

The secure validation mode of the XML Signature implementation has been enhanced
to restrict RSA and DSA keys less than 1024 bits by default as they are no longer
secure enough for digital signatures. Additionally, a new security property named
jdk.xml.dsig.SecureValidationPolicy has been added to the java.security file and can
be used to control the different restrictions enforced when the secure validation mode
is enabled.

Chapter 2
Changes in R28.3.13

2-21

http://openjdk.java.net/jeps/290
http://openjdk.java.net/jeps/290

The secure validation mode is enabled either by setting the xml signature property
org.jcp.xml.dsig.secureValidation to true with the
javax.xml.crypto.XMLCryptoContext.setProperty method, or by running the code with a
SecurityManager.

If an XML Signature is generated or validated with a weak RSA or DSA key, an
XMLSignatureException will be thrown with the message RSA keys less than 1024
bits are forbidden when secure validation is enabled" or "DSA keys less than 1024 bits
are forbidden when secure validation is enabled"

2.8.11 Make 3DES a legacy algorithm in the JSSE provider
security-libs/javax.net.ssl

For SSL/TLS/DTLS protocols, the security strength of 3DES cipher suites is not
sufficient for persistent connections. By adding 3DES_EDE_CBC to the
jdk.tls.legacyAlgorithms security property by default in JDK, 3DES cipher suites will
not be negotiated unless there are no other candidates during the establishing of
SSL/TLS/DTLS connections.

At their own risk, applications can update this restriction in the security property
(jdk.tls.legacyAlgorithms) if 3DES cipher suites are really preferred.

2.8.12 Improve the default strength of elliptic curve cryptography in
JDK

security-libs/javax.net.ssl

To improve the default strength of elliptic curve cryptography, elliptic curve keys less
than 224 bits have been deactivated in certification path processing (via the
jdk.certpath.disabledAlgorithms, Security Property) and SSL/TLS/DTLS connections
(via the jdk.tls.disabledAlgorithms Security Property) in JDK. Applications can update
this restriction in the Security Properties and permit smaller key sizes if really needed
(for example, EC keySize < 192).

Elliptic curves less than 256 bits are removed from the SSL/TLS/DTLS implementation
in JDK. The new System Property, jdk.tls.namedGroups, defines a list of enabled
named curves for EC cipher suites in order of preference. If an application needs to
customize the default enabled EC curves or the curves preference, update the System
Property accordingly. For example:

jdk.tls.namedGroups="secp256r1, secp384r1, secp521r1

Note that the default enabled or customized EC curves follow the algorithm
constraints. For example, the customized EC curves cannot re-activate the disabled
EC keys defined by the Java Security Properties

2.8.13 Restrict certificates with DSA keys less than 1024 bits

security-libs/java.security

DSA keys less than 1024 bits are not strong enough and should be restricted in
certification path building and validation. Accordingly, DSA keys less than 1024 bits

Chapter 2
Changes in R28.3.13

2-22

have been deactivated by default by adding “DSA keySize < 1024" to the
jdk.certpath.disabledAlgorithms security property. Applications can update this
restriction in the security property (jdk.certpath.disabledAlgorithms) and permit
smaller key sizes if really needed (for example, "DSA keySize < 768")

2.8.14 Add TLS v1.1 and v1.2 to the client list of default-enabled
protocols

security-libs/javax.net.ssl

TLSv1.2 and TLSv1.1 are now enabled by default on the TLS client end-points. This is
similar behavior to what already happens in JDK 8 releases.

See details from crypto roadmap for more details.

2.8.15 More checks added to DER encoding parsing code

security-libs

More checks are added to the DER encoding parsing code to catch various encoding
errors. In addition, signatures which contain constructed indefinite length encoding will
now lead to IOException during parsing. Note that signatures generated using JDK
default providers are not affected by this change.

2.8.16 Additional access restrictions for URLClassLoader.newInstance

core-libs/java.net

Class loaders created by the java.net.URLClassLoader.newInstance methods can be
used to load classes from a list of given URLs. If the calling code does not have
access to one or more of the URLs, and the URL artifacts that can be accessed do not
contain the required class, then a ClassNotFoundException, or similar, will be thrown.
Previously, a SecurityException would have been thrown when access to a URL was
denied. If required to revert to the old behavior, this change can be disabled by setting
the jdk.net.URLClassPath.disableRestrictedPermissions system property.

2.9 Changes in R28.3.12
This section describes the changes in Oracle JRockit JDK R28.3.12:

• Upgraded to JDK 6u131

2.9.1 Upgraded to JDK 6u131
JRockit R28.3.12 is upgraded to JDK 6u131. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.10 Changes in R28.3.11
This section describes the changes in Oracle JRockit JDK R28.3.11:

Chapter 2
Changes in R28.3.12

2-23

https://www.java.com/en/configure_crypto.html#enableTLSv1_2
http://www.oracle.com/us/technologies/java/overview-156328.html

• Upgraded to JDK 6u121

• Support for TLS v1.2

2.10.1 Upgraded to JDK 6u121
JRockit R28.3.11 is upgraded to JDK 6u121. For more information about bug fixes and
other changes in this JDK version, see the JDK 6 Release Notes.

2.10.2 Support for TLS v1.2
TLS v1.2 is now a TLS protocol option available with the release of JDK 6u121 and
JRockit R28.3.11. By default, TLS v1.0 will remain as the default enabled protocol on
both client and server sides. For more information about enabling TLS v1.2, see the
release notes for JDK 6u121 at:

http://www.oracle.com/technetwork/java/javase/overview-156328.html

2.11 Changes in R28.3.10
This section describes the changes in Oracle JRockit JDK R28.3.10:

• Upgraded to JDK 6u115

2.11.1 Upgraded to JDK 6u115
JRockit R28.3.10 is upgraded to JDK 6u115. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.12 Changes in R28.3.9
This section describes the changes in Oracle JRockit JDK R28.3.9:

• Upgraded to JDK 6u111

• Support for TLS v1.1

• New Diagnostic Command to Generate Core File

2.12.1 Upgraded to JDK 6u111
JRockit R28.3.9 is upgraded to JDK 6u111. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.12.2 Support for TLS v1.1
TLS v1.1 is now a TLS protocol option available with the release of JDK 6u111 and
JRockit R28.3.9. By default, TLS v1.0 will remain as the default enabled protocol on
both client and server sides. For more information about enabling TLS v1.1, see the
release notes for JDK 6u111 at:

http://www.oracle.com/technetwork/java/javase/overview-156328.html.

Chapter 2
Changes in R28.3.10

2-24

http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/technetwork/java/javase/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/technetwork/java/javase/overview-156328.html

2.12.3 New Diagnostic Command to Generate Core File
A new diagnostic command, fork_and_abort, has been added to generate core files
from a JRockit process in environments where external tools such as gdb and gcore
cannot be used.

For more information about the fork_and_abort command, see "Diagnostics
Commands" in JRockit Command-Line Reference.

2.13 Changes in R28.3.8
This section describes the changes in Oracle JRockit JDK R28.3.8:

• Upgraded to JDK 6u105

• New Command-Line Options for Generating Core Dump Files on Exception

2.13.1 Upgraded to JDK 6u105
JRockit R28.3.8 is upgraded to JDK 6u105. For information about bug fixes and other
changes in this JDK version, see the JDK 6 Release Notes.

2.13.2 New Command-Line Options for Generating Core Dump Files
on Exception

In this release, two new command-line options have been added for JVM diagnostics,
-XX:AbortVMOnException and -XX:AbortVMOnExceptionMessage. These options are used to
dump the JRockit text dump and a core file when an exception specified by -
XX:AbortVMOnException and having an exception message specified by -
XX:AbortVMOnExceptionMessage occurs.

Example:

java -XX:+UnlockDiagnosticVMOptions -XX:AbortVMOnException=InvalidClassException
-XX:AbortVMOnExceptionMessage="class invalid for deserialization" -
Xverbose:exceptions DeserializeTest

The above command dumps JRockit text dump and a core file when the specified
InvalidClassException exception having the message "class invalid for deserialization"
occurs. The -Xverbose output will be as follows:

[INFO][excepti][00004] java/io/InvalidClassException: A; class invalid for
deserialization
[ERROR] JRockit Fatal Error: Non-continuable exception (60)
[ERROR] Saw java/io/InvalidClassException, aborting
[JRockit] JVM State dumped to /export/test/jrockit.2091.dump.
Aborted (core dumped)

2.14 Changes in R28.3.2
This section describes the changes in Oracle JRockit JDK R28.3.2:

• New Default Value for the -XX:+CheckStacks Command-Line Option

Chapter 2
Changes in R28.3.8

2-25

http://www.oracle.com/us/technologies/java/overview-156328.html

• New Command-Line Option to Disable Garbage Collection of Constant Pool

• New Verbose Option for Shutdown Report

2.14.1 New Default Value for the -XX:+CheckStacks Command-Line
Option

In JRockit versions prior to R28.3.2, the -XX:+|-CheckStacks option was disabled by
default, meaning that JRockit did not explicitly check for stack overflows on a JNI
method entry.

The -XX:+|-CheckStacks option in JRockit R28.3.2 and later versions will be enabled
by default. In very rare cases, the additional overhead of stack overflow detection may
result in low performance. This overhead can be avoided by explicitly disabling the
stack checking by using the -XX:-CheckStacks option.

It is also possible, in very rare cases, that the system starts throwing
StackOverflowErrors after enabling -XX:+|-CheckStacks. This happens only if the
thread was within one page of memory from overflowing the stack. In this case, the
recommended resolution is to increase the stack size by a small amount using the -Xss
option, not by disabling -XX:+|-CheckStacks. For more information about the -Xss
option, see JRockit Command-Line Reference.

2.14.2 New Command-Line Option to Disable Garbage Collection of
Constant Pool

Applications that use a lot of reflection or serialization would suffer from the
performance overhead of garbage collection activity that is required to help prune the
runtime shared constant pool. This overhead can be eliminated with the new
command line option -XX:-UseCPoolGC. Use of this option may result in native memory
leaks.

For more information about this option, see -XX:-UseCPoolGC in JRockit Command-Line
Reference.

2.14.3 New Verbose Option for Shutdown Report
A new parameter shutdown has been added to the -Xverbose option. When you set this
parameter, JRockit provides information about any event that has triggered a normal
shutdown of the JVM.

For more information, see the description of -Xverbose in JRockit Command-Line
Reference.

2.15 Changes in R28.2.3
This section describes the changes in Oracle JRockit JDK R28.2.3.

Chapter 2
Changes in R28.2.3

2-26

2.15.1 New Default Value for the -XX:MaxLargePageSize Command-
Line Option

In earlier versions of JRockit R28, the default value of the -XX:MaxLargePageSize option
was zero, which means there was no limit for the maximum size for the large pages
and the value was specified by the operating system.

The default value for this option in JRockit R28.2.3 and later versions will be 256 MB.

2.16 Changes in R28.2.2
This section describes the changes in Oracle JRockit JDK R28.2.2.

2.16.1 Fixed Issues in Finalization
Earlier versions of JRockit R28 suffered from an issue where some finalizers may
never be executed. This issue was resolved in JRockit R28.2.2. Because JRockit uses
finalizers internally to manage class constant pool data, a side effect of fixing this issue
is that applications that continuously load and access the constant pool data of classes
using sun.reflect.ConstantPool, may experience an increase in the number of
finalizable objects stored on the Java heap after upgrading to R28.2.2 or later. In very
rare cases, this additional pressure on the memory subsystem may result in
performance issues (such as higher heap consumption or more GC activity) or even
OutOfMemoryErrors. It is almost always possible to resolve such performance issues
by modifying the application to eliminate redundant class loading.

2.17 Changes in R28.2.0
This section describes the changes in Oracle JRockit JDK R28.2. These changes are:

• Improved JRockit Flight Recorder Heap Statistics Events

• Command-Line Options to Filter Exception Logging and Events

2.17.1 Improved JRockit Flight Recorder Heap Statistics Events
In earlier versions of JRockit R28, long garbage collections resulted in application
pauses during profiling recording.

To avoid the long application pauses, the JRockit Flight Recorder Heap Statistics
events have been improved.

2.17.2 Command-Line Options to Filter Exception Logging and Events
The new command-line option -XX:ExceptionTraceFilter and the new diagnostic
command exception_trace_filter filter JVM exception logging and JRockit Flight
Recorder exception events based on the exception type specified.

For more information about these commands, see Oracle JRockit Command-Line
Reference.

Chapter 2
Changes in R28.2.2

2-27

2.18 Changes in R28.1.5
This section lists the changes in Oracle JRockit JDK R28.1.5.

2.18.1 JRockit Mission Control Samples are No Longer Installed by
Default

The installer for Oracle JRockit JDK R28.1.5 with Oracle JRockit Mission Control 4.0.1
will not install JRockit Mission Control samples by default. You must select the optional
component Demos and Samples to install JRockit Mission Control samples.

For more information about installing the product, see JRockit Installation and Upgrade
Guide.

2.19 Changes in R28.1.0
This section lists the changes in JRockit JDK R28.1.0. These changes are:

• Improved Garbage Collection

• Command-Line Option to Specify the Receive Buffer Size

• Enabling JVM Crash When an Out-of-Memory Error Occurs

• Collecting and Packaging Flight Recording Data from Disk Buffers

2.19.1 Improved Garbage Collection
In the genpar garbage collection mode, when the nursery runs out of memory in the old
generation, objects that are identified for promotion to the old space are promoted
within the nursery and this resulted in fragmentation of the nursery. This situation is
known as promotion failure.

In R28.1, the JRockit JVM prevents promotion failure by triggering an early old
collection for those young collections that are running out of memory.

2.19.2 Command-Line Option to Specify the Receive Buffer Size
When reading from network sockets, the size of the receive buffer can be limited by
using the new command-line option, -XX:MaxRecvBufferSize.

For more information about this option, see -XX:MaxRecvBufferSize in the JRockit
Command-Line Reference.

2.19.3 Enabling JVM Crash When an Out-of-Memory Error Occurs
Oracle JRockit R28.1 introduces the command-line option -XX:
[+|-]CrashOnOutOfMemoryError. If this option is enabled, when an out-of-memory error
occurs, the JRockit JVM crashes and produces crash files. The state of the JVM
before a crash is saved to a core dump file for off-line analysis.

For more information about this option, see -XX:+|-CrashOnOutOfMemoryError in the
JRockit Command-Line Reference.

Chapter 2
Changes in R28.1.5

2-28

2.19.4 Collecting and Packaging Flight Recording Data from Disk
Buffers

This release of Oracle JRockit introduces the command-line tool
oracle.jrockit.jfr.tools.ConCatRepository, that allows you to extract JRockit Flight
Recorder data that has been written to disk, but not handled and packaged as a flight
recording, and then create a flight recording from it. This feature is useful when you
have flight recording buffers on disk and the JVM terminates in such a way that .jfr
files are not assembled to a complete flight recording file.

For more information, see the JRockit Flight Recorder Run Time Guide.

2.20 Changes in R28.0.1
This section lists the changes in JRockit JDK R28.0.1.

2.20.1 Default MaxCodeMemory on Linux IA32 with Large Pages
Increased to 64 MB

The default maximum code memory on Linux IA32 with large pages was 32 MB in
R28.0.0.

In R28.0.1, the default value has been changed to 64 MB.

For more information, see -XX:MaxCodeMemory in the JRockit Command-Line Reference.

2.21 New Features and Changes in R28.0.0
The following are the new features and changes in JRockit JDK R28.0.0. These
changes are:

• Change in Thread Suspension Mechanism

• Ability to Generate HPROF-Formatted Heap Dumps

• Improved Logging for Code Generation and Optimization

• Better Control Over Code Optimization Through Directives

• Garbage Collection Strategy Does Not Change at Run Time

• Large Objects Are Allocated in the Nursery

• Single Command-Line Option to Specify Compaction Behavior

• Changes in the JMX Agent

• Compressed References for Larger Heaps

• Changes in Heap Sizing

• Change in Class and Code Garbage Collection

• New Command-Line Options in R28.0

• Command-Line Options Deprecated in R28.0

• Command-Line Options Changed to the HotSpot Format in R28.0

Chapter 2
Changes in R28.0.1

2-29

2.21.1 Change in Thread Suspension Mechanism
The mechanism to stop threads in the JVM has been changed. In previous releases of
the JRockit JVM, threads were suspended (for performing garbage collection, for
example) by sending signals. In JRockit JVM R28.0, the threads check periodically
whether they should self-suspend.

This change does not result in visible behavioral changes, but it makes the JRockit
JVM easier to maintain and less error-prone.

2.21.2 Ability to Generate HPROF-Formatted Heap Dumps
Heap dumps can now be generated in the HPROF binary format, which can be parsed
using heap analysis tools. You can use the -XX:+HeapDumpOnOutOfMemoryError or -XX:
+HeapDumpOnCtrlBreak command-line options to generate Java heap dumps in HPROF
binary format on OutOfMemory errors. You can also generate heap dumps in HPROF
format by using the hprof diagnostic command and through JRockit Mission Control.

For more information, see "Generating Java Heap Dumps in the HPROF Binary
Format" in the JRockit Diagnostics and Troubleshooting Guide.

2.21.3 Improved Logging for Code Generation and Optimization
The granularity of logging for code generation and optimization has been increased, to
enable faster diagnostics and troubleshooting. The information in the outputs of the -
Xverbose:opt and -Xverbose:codegen options is now more detailed. For more
information, see the JRockit Command-Line Reference.

2.21.4 Better Control Over Code Optimization Through Directives
In previous releases of the JRockit JVM, you could control code optimization by
specifying directives in an optfile and then using the -Djrockit.optfile property to
indicate the name and location of the optfile.

In JRockit JVM R28.0, the format for specifying compiler-control directives in the
optfile has been extended and improved to enable control over code optimization at a
more detailed level. A new diagnostic command-line option, -XX:OptFile, is available
for specifying the name and path of the optfile.

For more information, see "Specifying Optimization Directives" in the JRockit
Diagnostics and Troubleshooting Guide.

2.21.5 Garbage Collection Strategy Does Not Change at Run Time
In JRockit JVM R28.0, when you specify the throughput or pausetime garbage
collection mode by using the -Xgc command-line option, the strategy associated with
the specified mode— by default, genpar and gencon respectively—is used throughout
the run time. The garbage collector does not change between generational and
nongenerational garbage collectors during the run time.

This change has been made to reduce the extent of underterministic garbage
collection behavior due to strategy changes during run time.

Chapter 2
New Features and Changes in R28.0.0

2-30

Note that the -XgcPrio option continues to work in R28.0. Oracle recommends that you
use the -Xgc option instead of using the -XgcPrio option.

For more information about -Xgc, see the JRockit Command-Line Reference.

2.21.6 Large Objects Are Allocated in the Nursery
Oracle JRockit JVM R28.0 allocates large objects in the nursery if the size of the
object is within the limit specified by the -XXtlaSize:wasteLimit command-line option.

This change improves the utilization of the nursery and reduces the frequency of old-
space garbage collections.

For more information about -XXtlaSize:wasteLimit, see the JRockit Command-Line
Reference.

2.21.7 Single Command-Line Option to Specify Compaction Behavior
Oracle JRockit R28.0 supports a new command-line option that enables you to specify
compaction-related behavior: -XXcompaction. This option accepts all the parameters for
compaction: compaction percentage, maximum number of references, and so on.

All the other compaction-related options are deprecated in R28.0.

For more information about -XXcompaction, see the JRockit Command-Line Reference.

2.21.8 Changes in the JMX Agent
In JRockit JVM R28.0, after the local management service starts, it remains active until
the JVM is terminated.

In previous releases, the performance counter memory used to leak, and new
addresses of the JMX connector were written during a memory leakage. Therefore,
the JMX client was reading the wrong address of the JMX connector. This issue has
been fixed in R28.0.

To allow RMI communication between the JRockit JVM server and a client through a
firewall, two ports (RMI Registry and RMI Server) are required to configure the firewall.
In previous releases, the RMI Server port number was generated randomly on the
JRockit JVM server; so it was not possible to configure the firewall in advance. In
JRockit JVM R28.0, the JMX agent enables you to select the same port number for the
RMI Registry and the RMI Server. Therefore, you can use the default JMX agent for
RMI communication through a firewall.

You can set the JMX agent properties by using the system properties or by using the -
Xmanagement command-line option. For more information about the JMX agent system
properties, see Appendix B "JMX Agent-Related –D Options" in the JRockit
Command-Line Reference.

2.21.9 Compressed References for Larger Heaps
Oracle JRockit JVM R28.0 supports up to 64 GB compressed references for various
heap sizes. You can define the compressed reference size during the JVM startup by
using the -XXcompressedRefs command-line option.

Chapter 2
New Features and Changes in R28.0.0

2-31

For more information about -XXcompressedRefs, see the JRockit Command-Line
Reference.

2.21.10 Changes in Heap Sizing
In JRockit JVM R28.0, the heap grows faster than before. The JVM also ensures that
the heap size grows up to the maximum Java heap size (-Xmx) before an OutofMemory
error is thrown. In addition, the default value of the -Xmx option is changed from 1 GB
to 3 GB on 64-bit platforms.

The JRockit JVM shrinks the heap if it is unused or if other applications require more
physical memory.

In the previous releases, the JVM used to crash when the heap size reduced from a
very large size to a small size. This issue has been fixed in R28.0.

2.21.11 Change in Class and Code Garbage Collection
The pause time during the old collection of code and class garbage collections has
been removed in Oracle JRockit JVM R28.0. With this change, the code and class
garbage collections are mostly concurrent in R28.0.

2.21.12 New Command-Line Options in R28.0
The Oracle JRockit JVM R28.0 supports several new command-line options.

For more information, see Appendix A, "Changes in Command-Line Options" in the
JRockit Command-Line Reference.

2.21.13 Command-Line Options Deprecated in R28.0
Some command-line options have been deprecated in Oracle JRockit JVM R28.0.

For more information, see Appendix A, "Changes in Command-Line Options" in the
JRockit Command-Line Reference.

2.21.14 Command-Line Options Changed to the HotSpot Format in
R28.0

In Oracle JRockit JVM R28.0, the format of several command-line options has been
changed to the HotSpot format: -XX:+|-option (for example, -XX:+UseClassGC).

For a list of the command-line options that have been changed to the HotSpot format,
see Appendix A, "Changes in Command-Line Options" in the JRockit Command-Line
Reference.

Chapter 2
New Features and Changes in R28.0.0

2-32

3
Issues Resolved in Oracle JRockit JDK
R28

This chapter lists the issues resolved in Oracle JRockit JDK R28.

Note:

For information about bug fixes in the JDK, see the JDK 6 Release Notes.

It contains the following sections:

• Issues Resolved in R28.3.20

• Issues Resolved in R28.3.19

• Issues Resolved in R28.3.18

• Issues Resolved in R28.3.17

• Issues Resolved in R28.3.16

• Issues Resolved in R28.3.15

• Issues Resolved in R28.3.14

• Issues Resolved in R28.3.13

• Issues Resolved in R28.3.12

• Issues Resolved in R28.3.11

• Issues Resolved in R28.3.10

• Issues Resolved in R28.3.9

• Issues Resolved in R28.3.8

• Issues Resolved in R28.3.6

• Issues Resolved in R28.3.5

• Issues Resolved in R28.3.4

• Issues Resolved in R28.3.2

• Issues Resolved in R28.3.1

• Issues Resolved in R28.2.9

• Issues Resolved in R28.2.8

• Issues Resolved in R28.2.6

• Issues Resolved in R28.2.5

• Issues Resolved in R28.2.4

• Issues Resolved in R28.2.3

3-1

http://www.oracle.com/us/technologies/java/overview-156328.html

• Issues Resolved in R28.2.2

• Issues Resolved in R28.1.5

• Issues Resolved in R28.1.4

• Issues Resolved in R28.1.3

• Issues Resolved in R28.1.1

• Issues Resolved in R28.1.0

• Issues Resolved in R28.0.2

• Issues Resolved in R28.0.1

• Issues Resolved in R28.0.0

3.1 Issues Resolved in R28.3.20
For information about bug fixes in the JDK, see the JDK 6 Release Notes.

3.2 Issues Resolved in R28.3.19
The following issues have been fixed in Oracle JRockit JDK R28.3.19. For more
information about bug fixes and other changes in the JDK, see the JDK 6 Release
Notes.

• JVM Hang During Startup on Processors with Large Number of Logical
Processors

• Immediate Crash During Startup with Linux on Recent x86 / x86_64 Processors

3.2.1 JVM Hang During Startup on Processors with Large Number of
Logical Processors

If an x86 or x86_64 Processor reports (via CPUID) more than 128 logical processors
per package, earlier versions of JRockit would hang during startup.

3.2.2 Immediate Crash During Startup with Linux on Recent x86 /
x86_64 Processors

When using Linux on some newer x86 or x86_64 processors, the additional stack
space required to save the state of newly added registers may cause earlier versions
of JRockit to run out of stack space and crash during signal handling. In environments
where this issue happens, JRockit will crash immediately during startup and will not
output a text crash file (jrockit.<pid>.dump). Currently the only processors known to
trigger this issue all support various versions of the AVX-512 instruction set extension.

3.3 Issues Resolved in R28.3.18
The following issues have been fixed in Oracle JRockit JDK R28.3.18. For more
information about bug fixes and other changes in the JDK, see the JDK 6 Release
Notes.

Chapter 3
Issues Resolved in R28.3.20

3-2

http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html

• MissingResourceException Thrown While Trying to Load ResourceBundle via
Reflection

3.3.1 MissingResourceException Thrown While Trying to Load
ResourceBundle via Reflection

A regression was introduced in JRockit R28.3.17 that may prevent JRockit from
correctly loading a java.util.ResourceBundle via the reflection API. One common
symptom of this issue is a java.util.MissingResourceException being thrown while
running the WebLogic Scripting Tool (WLST).

3.4 Issues Resolved in R28.3.17
For information about bug fixes in the JDK, see the JDK 6 Release Notes.

3.5 Issues Resolved in R28.3.16
For information about bug fixes in the JDK, see the JDK 6 Release Notes.

3.6 Issues Resolved in R28.3.15
For information about bug fixes in the JDK, see the JDK 6 Release Notes.

3.7 Issues Resolved in R28.3.14
The following issues have been fixed in Oracle JRockit JDK R28.3.14. For more
information about bug fixes and other changes in the JDK, see the JDK 6 Release
Notes.

• Correction of IllegalArgumentException from TLS handshake

3.7.1 Correction of IllegalArgumentException from TLS handshake
security-libs/javax.net.ssl

A recent issue from the JDK-8148516 fix can cause issue for some TLS servers. The
problem originates from an IllegalArgumentException thrown by the TLS handshaker
code.

java.lang.IllegalArgumentException: System property
jdk.tls.namedGroups(null) contains no supported elliptic curves

The issue can arise when the server doesn't have elliptic curve cryptography support
to handle an elliptic curve name extension field (if present). Users are advised to
upgrade to this release. By default, JDK 7 Updates and later JDK families ship with the
SunEC security provider which provides elliptic curve cryptography support. Those
releases should not be impacted unless security providers are modified.

See JDK-8173783

Chapter 3
Issues Resolved in R28.3.17

3-3

http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://bugs.java.com/view_bug.do?bug_id=JDK-8148516
http://bugs.java.com/view_bug.do?bug_id=JDK-8173783

3.8 Issues Resolved in R28.3.13
For information about bug fixes in the JDK, see the JDK 6 Release Notes.

3.9 Issues Resolved in R28.3.12
The following issues have been fixed in Oracle JRockit JDK R28.3.12. For more
information about bug fixes and other changes in the JDK, see the JDK 6 Release
Notes.

• Hashtable Deserialization Reconstitutes Table with Wrong Capacity

3.9.1 Hashtable Deserialization Reconstitutes Table with Wrong
Capacity

The class library is normally kept in sync between HotSpot-based and JRockit-based
JDKs, but the fix for JDK bug 8068427 was not included in the previous JRockit
release, R28.3.11 (JDK 6u121). This fix is included in this release.

3.10 Issues Resolved in R28.3.11
The following issues have been fixed in Oracle JRockit JDK R28.3.11:

• Corrupted Heap Data Resulting in Stability Issues

• Incorrect Value for Dark Matter Reported by Heap Diagnostics

• Incorrect Heap Statistics When Instances of a Class Consume Over 2 GB of Heap
Space

• Hardware Support for Square Root on SPARC T2

• Default Number of Garbage Collection Worker Threads on Certain Solaris
Systems

• JVM Crashes when Using Application Data Integrity Features

• Unexpected Behavior when Copying Arrays

3.10.1 Corrupted Heap Data Resulting in Stability Issues
A regression was introduced in JRockit R28.3.10 that may cause corruption of data
stored on the Java heap resulting in crashes and other unexpected behavior.

This issue has been fixed.

3.10.2 Incorrect Value for Dark Matter Reported by Heap Diagnostics
Under certain circumstances, the amount of dark matter (fragmentation) reported by
heap diagnostics (heap_diagnostics and HeapDiagnosticsOnOutOfMemoryError) would be
incorrect. Often this would manifest as an impossibly large value (larger than the total
heap size) being reported.

This issue has been resolved.

Chapter 3
Issues Resolved in R28.3.13

3-4

http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://www.oracle.com/us/technologies/java/overview-156328.html
http://bugs.java.com/view_bug.do?bug_id=8068427

3.10.3 Incorrect Heap Statistics When Instances of a Class Consume
Over 2 GB of Heap Space

Heap diagnostics (as output by the HeapDiagnosticsOnOutOfMemoryError command line
flag or the heap_diagnostics diagnostic command) could contain errors when instances
of a single class collectively consume 2 GB or more of heap space. Specifically, such
classes may be displayed with an incorrect delta value (the calculated difference with
the previous heap diagnostic output) and may appear in an incorrect position (out of
sort order) within the list of classes. Trend analysis sort order in the Memory Leak
Detector may also be impacted.

This issue has been resolved.

3.10.4 Hardware Support for Square Root on SPARC T2
On SPARC T2-based systems, JRockit did not utilise direct floating point hardware
support for square root calculations (that is, Math.sqrt()). Instead, such calculations
were done in software using simpler instructions.

This issue has been resolved, and now JRockit will utilise the fsqrtd instruction for
such calculations. As a result, applications which call Math.sqrt() frequently may
experience a performance improvement.

3.10.5 Default Number of Garbage Collection Worker Threads on
Certain Solaris Systems

On SPARC-based systems, sometimes the number of CPU cores could not be
correctly identified.

This issue has now been resolved. On SPARC T1, T2, and T3 systems only, the
number of CPU cores detected is used to calculate the default number of GC worker
threads. (There is no other impact from this change, regardless of CPU).

In the rare event that this change negatively impacts the performance of a given
application, the number GC worker threads can be specified with the -XXgcThreads
command-line option. The number of each type of GC worker thread used by previous
versions of JRockit in a given environment can be confirmed by examining -Xverbose
GC debug output. For example:

$ <OLD_JROCKIT_HOME>/bin/java -Xverbose:gc=debug -version
.
< . . . >
[DEBUG][memory] Initial and maximum number of gc threads: 8, of which 8
parallel threads, 4 concurrent threads, and 8 yc threads.
< . . . >
.
$ <NEW_JROCKIT_HOME>/bin/java -XXgcThreads:yc=8,con=4,par=8 MyJavaApplication

3.10.6 JVM Crashes when Using Application Data Integrity Features
On SPARC systems equipped with a CPU that supports Realtime Silicon Secured
Memory, a stale memory reference would be detected during JVM startup. This would

Chapter 3
Issues Resolved in R28.3.11

3-5

result in a crash when using libadimalloc, the Application Data Integrity aware
memory allocation library, preventing its use with JRockit.

This issue has been resolved.

3.10.7 Unexpected Behavior when Copying Arrays
The JRockit compiler, when optimizing code that calls the
java.lang.System.arraycopy() method, may generate incorrect code resulting in
erroneous computation results. This issue often manifests as an unexpected
ArrayIndexOutOfBoundsException.

This issue has been resolved.

3.11 Issues Resolved in R28.3.10
The following issues have been fixed in Oracle JRockit JDK R28.3.10:

• Crash while Running Finalizer for the ConstPoolWrapper Object

• Crash due to Incorrectly Compiled (JIT) checkcast Operation

• Unexpected Behavior when Inlining a Method

3.11.1 Crash while Running Finalizer for the ConstPoolWrapper
Object

When a Java heap exhaustion (a type of OutOfMemoryError condition) happens,
JRockit would sometimes crash while executing the constpoolwrapper_finalize
function. This issue has been resolved.

However, for any type of OutOfMemoryError condition, Oracle recommends that you
identify and resolve the root cause of the memory exhaustion regardless of this
change.

3.11.2 Crash due to Incorrectly Compiled (JIT) checkcast Operation
A race on VM startup between class loading and JIT compilation may result in
incorrectly generated code. The behavior of such code is undefined, but has been
known to manifest as a JVM crash, often accompanied by a SIGTRAP signal or a 'No
exception handler found [56]' error message.

This issue has been resolved.

3.11.3 Unexpected Behavior when Inlining a Method
The JRockit compiler, when inlining a method which has no normal return paths (that
is, it only throws exceptions), may generate incorrect code resulting in erroneous
computation results. The JVM may hang, crash, or exhibit other undefined behavior.

This issue has been resolved.

Chapter 3
Issues Resolved in R28.3.10

3-6

3.12 Issues Resolved in R28.3.9
The following issues have been fixed in Oracle JRockit JDK R28.3.9:

• Issues with the ObjectStreamClass.lookup Method

• Process Hangs after NewStringUTF Invocation

3.12.1 Issues with the ObjectStreamClass.lookup Method
In certain circumstances, ObjectStreamClass.lookup() could return a non-null result
even when a non-serializable class is passed. This could result in various serialization
issues and other incorrect behavior.

This issue has been resolved.

3.12.2 Process Hangs after NewStringUTF Invocation
Under certain circumstances, the JRockit process may hang soon after a NULL pointer
is passed (in place of a char array) as the second argument to the JNI NewStringUTF
function. As native code within the Java runtime itself may trigger this issue, even
systems that do not use third party JNI libraries may be susceptible.

This issue has been resolved.

3.13 Issues Resolved in R28.3.8
The following issues have been fixed in Oracle JRockit JDK R28.3.8:

• Incorrect CPU Consumption Values on Linux

• Unexpected NoSuchMethodError in JRockit JVM

3.13.1 Incorrect CPU Consumption Values on Linux
On Linux kernels 2.6 and later, JRockit would include time spent waiting for IO
completion as "CPU usage". During periods of heavy IO activity, this could result in
misleadingly high values reported as CPU consumption in various tools like Flight
Recorder, performance counters, and the cpuload diagnostic command.

This issue has been resolved.

3.13.2 Unexpected NoSuchMethodError in JRockit JVM
In extreme cases, the reference count on a JVM internal string could overflow, which
could result in internal string comparisons failing. This internal failure could result in a
NoSuchMethodError and possibly other errors. This issue has been resolved.

3.14 Issues Resolved in R28.3.6
The following issues have been fixed in Oracle JRockit JDK R28.3.6:

• JRockit JVM Crashes while Debugging a Java Program Compiled with javac

Chapter 3
Issues Resolved in R28.3.9

3-7

• JVM Crashes while Using an Agent

3.14.1 JRockit JVM Crashes while Debugging a Java Program
Compiled with javac

Bug 12943958

Running Java applications compiled with javac in debug mode (using the "-g" option)
might result in a JVM crash. This happens when you have specified -Xdebug or -XX:
+JavaDebug option at JVM startup. The incorrect debugging information in some class
files generated by Oracle javac caused this issue.

This issue has been fixed in Oracle JRockit JDK R28.3.6. After upgrading, recompile
the classes using the fixed version of javac.

3.14.2 JVM Crashes while Using an Agent
Previous versions of JRockit may crash or experience other stability issues after
redefining a class at runtime by using the JVM Tool Interface (JVM TI) or by using the
java.lang.instrument interface (-javaagent startup parameter).

This issue has been resolved.

3.15 Issues Resolved in R28.3.5
The following issues have been fixed in Oracle JRockit JDK R28.3.5:

• Issue with Profiling Methods

• JVM Crashes with Illegal Memory Access Error Due to an Optimization Issue

3.15.1 Issue with Profiling Methods
Previous versions of JRockit R28 were unable to correctly instrument Java methods
that used generics. This resulted in the inability to profile such methods with the
JMXMAPI profiling API or JRockit Mission Control Console's profiler.

This issue has been resolved.

3.15.2 JVM Crashes with Illegal Memory Access Error Due to an
Optimization Issue

Fixed an issue where JRockit would crash due to bad code optimization when using
StringBuffer/StringBuilder in a loop. This issue only happened when running with
compressed references.

3.16 Issues Resolved in R28.3.4
The following issues have been fixed in Oracle JRockit JDK R28.3.4:

• Reduced Memory Footprint of Command-line Tools

• JRockit Crashes while Calling jrockit.vm.ArrayCopy.copy Methods

Chapter 3
Issues Resolved in R28.3.5

3-8

3.16.1 Reduced Memory Footprint of Command-line Tools
The default options that are passed to the JRockit JVM during invocation of various
command-line tools such as jps, jrcmd, and jstat have been changed to reduce the
amount of native memory required.

3.16.2 JRockit Crashes while Calling jrockit.vm.ArrayCopy.copy
Methods

When copying huge arrays, the array size (or offsets) measured in elements could be
converted to an array size in bytes for some copies and this could overflow the size of
a 32-bit integer, leading to a copy that does not terminate correctly and rarely causing
a JVM crash.

This issue has been resolved.

3.17 Issues Resolved in R28.3.2
The following issues have been fixed in Oracle JRockit JDK R28.3.2:

• Issue with Flight Recording During Startup

• Check Stacks Option on SPARC Platform

• Unexpected NullPointerException Thrown from Methods After Code Optimization

3.17.1 Issue with Flight Recording During Startup
In previous versions of JRockit R28, if the default recording and/or buffering to disk is
enabled by using the -XX:FlightRecorderOptions command-line option and when you
start a new recording using the -XX:StartFlightRecording option, JRockit would
sometimes hang indefinitely during startup. For more information about the command-
line options and parameters, see JRockit Command-Line Reference.

This issue has been resolved.

3.17.2 Check Stacks Option on SPARC Platform
In previous versions of JRockit, the value of -XX:+|-CheckStacks option was ignored
on SPARC platform.

This issue has been resolved. In JRockit R28.3.2, the -XX:+|-CheckStacks option is
implemented correctly.

3.17.3 Unexpected NullPointerException Thrown from Methods After
Code Optimization

In certain cases, when a method invoked implicit or explicit boxing operations, a
NullPointerException was thrown from the method. An issue existed in the code
optimization that caused this exception.

This issue has been resolved.

Chapter 3
Issues Resolved in R28.3.2

3-9

3.18 Issues Resolved in R28.3.1
The following issue has been fixed in Oracle JRockit JDK R28.3.1.

3.18.1 FileNotFoundException Thrown while Opening Zip Archives
JRockit did not recognize multibyte characters and hence a FileNotFoundException
was thrown while opening a zip archive that has a UTF8 encoded filename.

This issue has been resolved.

3.19 Issues Resolved in R28.2.9
The following issues have been fixed in Oracle JRockit JDK R28.2.9:

• Heap Dumps Not Generated on Out Of Memory Error

• Issue with the Out of Memory Error Message

3.19.1 Heap Dumps Not Generated on Out Of Memory Error
The JVM could deadlock when creating an hprof dump on OutOfMemoryError if you
are using the JVM flag -XX:+HeapDumpOnOutOfMemoryError.

This issue has been resolved.

3.19.2 Issue with the Out of Memory Error Message
In previous versions of JRockit R28, a native OutOfMemoryError message may
indicate an incorrect value for the failed allocation size.

This issue has been resolved.

3.20 Issues Resolved in R28.2.8
The following issues have been fixed in Oracle JRockit JDK R28.2.8:

• NullPointerExceptions from Package.getPackages Calls

• NullPointerExceptions from Class.isAssignable

• JRockit Crashes while Code Optimization in cgGetColorForVarInBlock

3.20.1 NullPointerExceptions from Package.getPackages Calls
In JRockit releases R28.2.6 and R28.2.7, a known issue exists wherein, under rare
circumstances, a call to Package.getPackages may result in a NullPointerException in
Package.defineSystemPackage. This issue has been resolved.

Chapter 3
Issues Resolved in R28.3.1

3-10

3.20.2 NullPointerExceptions from Class.isAssignable
A race on VM startup between class loading and serialization of classes could result in
sporadic NullPointerExceptions from Class.isAssignable in java.lang package. This
issue has been resolved.

3.20.3 JRockit Crashes while Code Optimization in
cgGetColorForVarInBlock

In certain cases, JRockit could crash during code optimization in the
cgGetColorForVarInBlock method. This issue has been resolved.

3.21 Issues Resolved in R28.2.6
The following issues have been fixed in Oracle JRockit JDK R28.2.6:

• JRockit Fight Recorder Repository Growing Indefinitely

• Unexpected Errors from Applications with Dynamically-created Classes

• JMXMAPI Profiling API Can Now Profile All Versions of a Class

3.21.1 JRockit Fight Recorder Repository Growing Indefinitely
When using certain settings in a custom .jfs file, the Oracle JRockit Flight Recorder
repository could, under some circumstances, continue growing indefinitely, even when
limited by maxsize settings. This has been fixed.

3.21.2 Unexpected Errors from Applications with Dynamically-created
Classes

Applications that dynamically created classes (for example, by using JAXB) could run
out of native memory, crash, or exhibit other unexpected behaviors due to an internal
reference counting issue that could eventually corrupt memory or allow unused
classname strings to accumulate after their referring classes were unloaded. This has
been fixed.

3.21.3 JMXMAPI Profiling API Can Now Profile All Versions of a Class
Previous versions of the JMXMAPI profiling API could only profile a single instance of
a class with the same name. If multiple class loaders loaded the same class, only one
version of the class would be instrumented. Now all versions of a class (with the same
fully qualified class name) will be instrumented. This change also impacts JRockit
Mission Control Console's profiling functionality (there is no impact to JFR profiling).

3.22 Issues Resolved in R28.2.5
The following issues have been fixed in Oracle JRockit JDK R28.2.5:

• JRockit Crashes when Interned Strings are Allocated

Chapter 3
Issues Resolved in R28.2.6

3-11

• JRockit Crashes while Running with an optfile

• FileNotFoundException Thrown while Reading Files from FileInputStream

• Issue while Closing a NIO Socket

• NIO Operations Fail on Windows with a Security Exception

• Wrong Exception Thrown when Flight Recorder is Disabled

• JRockit Crashes while Invoking a com.sun.management Method

3.22.1 JRockit Crashes when Interned Strings are Allocated
Bug 14271750

Under rare circumstances, JRockit would crash manipulating shared resources from
multiple threads, mostly involving interning Java Strings concurrently from multiple
threads. This issue has been fixed.

3.22.2 JRockit Crashes while Running with an optfile
Bug 14268514

In rare conditions, the JRockit JVM would crash if compiler directives are used in an
optfile. This issue has been fixed.

3.22.3 FileNotFoundException Thrown while Reading Files from
FileInputStream

Bug 14093205

In previous JRockit versions, from R28.0.0 to R28.2.4, if the standard input stream
was a pipe and if it was closed by the application, subsequent attempts to read other
FileInputStreams could incorrectly result in a FileNotFoundException error. This issue
has been fixed.

3.22.4 Issue while Closing a NIO Socket
Bug 14047648

Under certain circumstances, JRockit would hang while closing a NIO Socket. This
issue has been fixed.

3.22.5 NIO Operations Fail on Windows with a Security Exception
Bug 13925641

When a SecurityManager is used on Windows, certain NIO operations used to fail with
an AccessControlException. This issue has been fixed.

3.22.6 Wrong Exception Thrown when Flight Recorder is Disabled
Bug 13350796

Chapter 3
Issues Resolved in R28.2.5

3-12

In previous versions of JRockit, when an application tried to use the Flight Recorder
API while running on a JRockit instance where Flight Recorder is disabled, a
java.lang.Error would be thrown. This behavior has been changed so that
java.lang.IllegalStateException is thrown instead. New explanatory text has also
been added to the exception.

3.22.7 JRockit Crashes while Invoking a com.sun.management
Method

Bug 14266485

JRockit crashes with illegal memory access in long []
com.sun.management.getThreadCpuTime(long[] ids) method due to incomplete
implementation of com.sun.management extensions.

The array version of ThreadMXBean.getThreadCpuTime() has been implemented in Oracle
JRockit R28.2.5. The issue has been resolved.

3.23 Issues Resolved in R28.2.4
The following issues have been fixed in Oracle JRockit JDK R28.2.4:

• Issue with the jrcmd Command File Parsing

• Failure to Start on Solaris While Using a Large Page Size

• Issue with print_memusage Diagnostic Command

3.23.1 Issue with the jrcmd Command File Parsing
A regression was introduced in JRockit R28.2.3 where the "stop" statement was
ignored by the jrcmd command. This issue has been fixed.

3.23.2 Failure to Start on Solaris While Using a Large Page Size
In previous versions, JRockit could select the wrong compressed reference size and
fail to start on Solaris while using a page size over 1 GB. This issue has been fixed.

3.23.3 Issue with print_memusage Diagnostic Command
An invalid value for the level argument of the print_memusage command could cause
the target JVM to exit with an assertion error.

This issue has been fixed in R28.2.4. An error message is displayed and there is no
impact to the target JVM.

3.24 Issues Resolved in R28.2.3
The following issues have been fixed in Oracle JRockit JDK R28.2.3:

• Redirecting Ouput of the jrcmd Command to a Specified File

• Issue with the Limited File Size for the jrcmd Script File

• Issue while Reserving VMSpace

Chapter 3
Issues Resolved in R28.2.4

3-13

• Improved Stack Overflow Handling

• Issue while Optimizing a Method

• Issue with JRockit after Removing JRockit Flight Recorder

3.24.1 Redirecting Ouput of the jrcmd Command to a Specified File
In earlier versions of JRockit, the jrcmd command was not redirecting the output to the
file specified by the set_filename diagnostic command. In JRockit R28.2.3, if an output
file is specified by the set_filename command, output from diagnostic commands
invoked by jrcmd will be redirected to the file in the same manner as the output is
redirected by the diagnostic commands that you run by the control break handler
(SIGQUIT).

By default, the output from diagnostic commands invoked by jrcmd is sent to the STDOUT
output stream of the jrcmd process. To reset the default behaviour of the set_filename
command, run the command without specifying a value for the filename argument. For
more information, see "Diagnostic Commands" in the JRockit Command-Line
Reference.

3.24.2 Issue with the Limited File Size for the jrcmd Script File
In earlier releases of JRockit, the jrcmd command limited the size of a file passed using
the -f option to a maximum of 256 bytes. From JRockit 28.2.3 onwards, the file size is
unlimited, but each line in the file is limited to 256 bytes.

3.24.3 Issue while Reserving VMSpace
There was a regression introduced in JRockit R28.2.0 that could cause JRockit to
crash during the vmsiReserve method on specific platforms. This issue has been fixed.

3.24.4 Improved Stack Overflow Handling
JRockit used to crash during a stack overflow under some conditions, not having
enough space to run its own signal handler, causing the process to abort rather than
throwing a StackOverflowError. This issue has been fixed.

3.24.5 Issue while Optimizing a Method
Under rare circumstances, JRockit would crash when optimizing a method, often a
method in the java/util/regex package. This issue has been fixed.

3.24.6 Issue with JRockit after Removing JRockit Flight Recorder
If the Flight Recorder repository was deleted from the hard drive while JRockit was
running, the process would hang indefinitely. This issue has been fixed.

3.25 Issues Resolved in R28.2.2
The following issues have been fixed in Oracle JRockit JDK R28.2.2:

Chapter 3
Issues Resolved in R28.2.2

3-14

• Exceptions are Thrown while Establishing SSL Connections that use Cipher Suite

• Issue with Code Optimization

• Missing Finalizers

3.25.1 Exceptions are Thrown while Establishing SSL Connections
that use Cipher Suite

A regression in Java SE 6 Update 29 caused SSL connection failure while using the
TLS_DH_anon_WITH_AES_128_CBC_SHA cipher suite. This issue has been fixed.

3.25.2 Issue with Code Optimization
A bug in string append optimization could lead to a crash in JRockit JVM, often during
garbage collection. This issue has been fixed.

3.25.3 Missing Finalizers
In JRockit versions R28.0.0 through R28.2.1, some finalizers may never be called.
Because JRockit uses finalizers internally to manage class constant pool data, this
could cause data corruption resulting in JVM crashes and other unspecified behavior.
This issue has been fixed.

3.26 Issues Resolved in R28.1.5
The following issues have been fixed in Oracle JRockit JDK R28.1.5:

• Unable to Reserve Memory in the Low Address Space of the Java Heap

• Thread Starvation while Using the Default Number of Garbage Collection Threads
in Multi-Core Machines

• Error while Setting SUID or SGID on JRockit JVM

3.26.1 Unable to Reserve Memory in the Low Address Space of the
Java Heap

Bug 12599685

On a 64-bit platform, JRockit could run out of space in the low 4-GB address space of
the Java heap and cause OutofMemory error during class allocation.

To avoid this error, you can reserve memory in the low 4-GB heap during the JVM
startup by using the -XX:InitialClassBlockMemory option as follows:

-XX:+UnlockDiagnosticVMOptions -XX:InitialClassBlockMemory=100M

3.26.2 Thread Starvation while Using the Default Number of Garbage
Collection Threads in Multi-Core Machines

Bug 12620601

Chapter 3
Issues Resolved in R28.1.5

3-15

The default value of garbage collection threads specified by the -XXgcThreads option
was based on the number of cores and hardware threads on the machine.

The heuristics for garbage collection has been improved to select dynamic number of
garbage collection threads. The number of garbage collection threads dynamically
selected is now more conservative on large multi-core machines in order to reduce
overhead.

3.26.3 Error while Setting SUID or SGID on JRockit JVM
Bug 12339700

The effective user was not same as the real user if you had set SUID or SGID on the
Java library. The JRockit JVM failed to start.

This issue has been fixed.

3.27 Issues Resolved in R28.1.4
The following issues have been fixed in Oracle JRockit JDK R28.1.4:

• Warnings Print When Launching Java Involving Symbolic Links on Windows

• Corrupt HPROF File

3.27.1 Warnings Print When Launching Java Involving Symbolic Links
on Windows

Bug 12355103

When launching Java involving symbolic links on Windows, Oracle JRockit would
sometimes print a warning, such as:

[WARN][osal] Could not add counter \Virtual Bytes for query
[WARN][osal] Failed to init virtual size counter.

This has been fixed.

3.27.2 Corrupt HPROF File
Bug 11730737

When Oracle JRockit was configured to dump an HPROF on an OutOfMemoryError
and was receiving multiple simultaneous OutOfMemoryErrors in multiple threads, the
resulting HPROF file might have been corrupt. This has been fixed.

3.28 Issues Resolved in R28.1.3
The following issues have been fixed in Oracle JRockit JDK R28.1.3:

• Deadlock Occurring in the ClassLoader (Sun Bug 7001933)

• "Peer Not Authenticated" Exception Unexpectedly Thrown (Sun Bug 6924489)

• Problem Setting SO_RCVBUF/SO_SNDBUF (Sun Bug 6984182)

Chapter 3
Issues Resolved in R28.1.4

3-16

• Passing Read-Only Bytebuffer to Channel Write Method Throwing Exception

• Specific JNI API Routines Did Not Correctly Set isCopy Parameter

• Incorrectly Optimized Methods Forcing Long Values to Become Very Large

3.28.1 Deadlock Occurring in the ClassLoader (Sun Bug 7001933)
Bug 11769358

Occasionally, if a custom file protocol handler was in place, a deadlock would occur in
the ClassLoader. This has been fixed; this fix resolves Sun Bug 7001933.

3.28.2 "Peer Not Authenticated" Exception Unexpectedly Thrown (Sun
Bug 6924489)

Bug 11769385

The exception javax.net.ssl.SSLPeerUnverifiedException: peer not authenticated was
unexpectedly being thrown. This has been fixed; this fix resolves Sun Bug 6924489.

3.28.3 Problem Setting SO_RCVBUF/SO_SNDBUF (Sun Bug
6984182)

Bug 11769415

Setting SO_RCVBUF/SO_SNDBUF to a value larger than tcp_max_buf failed on Solaris 11 if
the kernel parameters changed. This has been fixed; this fix resolves Sun Bug
6984182.

3.28.4 Passing Read-Only Bytebuffer to Channel Write Method
Throwing Exception

Bug 11709391

Passing a read-only bytebuffer to a channel write method could throw a
java.nio.ReadOnlyByteBufferException. This has been fixed.

3.28.5 Specific JNI API Routines Did Not Correctly Set isCopy
Parameter

Bug 10415204

JNI API Get<PrimitiveType>ArrayElements routines did not correctly set isCopy
parameter to JNI_TRUE when returning copies. This has been fixed.

3.28.6 Incorrectly Optimized Methods Forcing Long Values to Become
Very Large

Bug 10360591

Chapter 3
Issues Resolved in R28.1.3

3-17

In rare circumstances, on instances of 32-bit JRockit, a method could be incorrectly
optimized forcing long values that should be 0 to become very large. This has been
fixed.

3.29 Issues Resolved in R28.1.1
The following issues have been fixed in Oracle JRockit JDK R28.1.1:

• Crashes During Concurrent Sweep JNI Object Allocation

• Silent Exit When Command-Line Options are Misspelled

• Erroneous Optimization of an arraycopy

• JDK Read Fixed Number of Bytes When Calling SecureRandom.generateSeed

• instanceof Check Failing

3.29.1 Crashes During Concurrent Sweep JNI Object Allocation
Bug 10164002

Previously, while it was conducting a concurrent sweep without a nursery, Oracle
JRockit might crash if it tried to allocate an object from JNI that was the exact size of
the minimum thread local area size. This has been fixed.

3.29.2 Silent Exit When Command-Line Options are Misspelled
Bug 10295969

R28.0.0 and later silently exit if a command-line option was misspelled; for example, "-
X:MaximumNurseryPercentage=80" (note the single X where XX is required). This has been
fixed in R28.1.1.

3.29.3 Erroneous Optimization of an arraycopy
Bug 10296987

In rare cases, Oracle JRockit could erroneously optimize an arraycopy to reuse the
source array as the target array. This could lead to the wrong values being read from
the source array after the arraycopy. This has been fixed.

3.29.4 JDK Read Fixed Number of Bytes When Calling
SecureRandom.generateSeed

Bug 10301830

When calling SecureRandom.generateSeed, the JDK would always read 8192 bytes from
the entropy pool. The JDK has been changed to only read the number of bytes
requested. For more information, see:

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6998583

Chapter 3
Issues Resolved in R28.1.1

3-18

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6998583

3.29.5 instanceof Check Failing
Bug 10366647

Occasionally, the optimizer would erroneously change the behavior of an instanceof
opcode, causing the instanceof check to fail. This has been fixed.

3.30 Issues Resolved in R28.1.0
The following issues have been fixed in Oracle JRockit JDK R28.1.0:

• Oracle JRockit Hangs when used with Application Management Solutions

• Memory Leakage in the JMX Implementation

• Oracle JRockit Exits when Aborting an Optimization

• Oracle JRockit Heap Dumps Do Not Open in Eclipse Memory Analyzer

• Exceptions Thrown Without InvocationTargetException Wrapping

3.30.1 Oracle JRockit Hangs when used with Application Management
Solutions

Oracle JRockit would hang during startup when Oracle WebLogic Server was started
with an application management solution such as CA Wily Introscope.

This issue has been fixed in JRockit R28.1.0.

3.30.2 Memory Leakage in the JMX Implementation
A memory leakage used to occur in the JMX implementation of JDK 6. This issue has
been fixed by Sun in JDK 6 Update 22.

The fix is included in JRockit R28.1.0.

3.30.3 Oracle JRockit Exits when Aborting an Optimization
If the -XX:+|-ExitOnOutOfMemoryError option was enabled, JRockit would exit when
aborting an optimization due to the compiler memory limit.

This issue has been fixed in JRockit R28.1.0.

3.30.4 Oracle JRockit Heap Dumps Do Not Open in Eclipse Memory
Analyzer

When the heap size was 2 GB or higher, JRockit would write segmented heap dumps
that Eclipse Memory Analyzer (MAT) could not parse.

This issue has been fixed in JRockit R28.1.0.

Chapter 3
Issues Resolved in R28.1.0

3-19

3.30.5 Exceptions Thrown Without InvocationTargetException
Wrapping

When you invoke methods using the class reflection feature, JRockit would sometimes
throw an exception type that is different from the signature of the Method.invoke()
method.

This issue has been fixed in JRockit R28.1.0. Invoking methods using reflection now
throws the correct InvocationTargetException type.

3.31 Issues Resolved in R28.0.2
The following issues have been fixed in Oracle JRockit JDK R28.0.2:

• Oracle JRockit Starts Slowly on Some Solaris Machines

• IO Exceptions in Epoll Socket Muxer Would Throw NoClassDefFoundErrors

• Oracle JRockit Crashing While Pruning References to Obsoleted Code

• Oracle JRockit Could Not Open JAR or ZIP Files Larger Than 2GB

• Xalan and Xerces Versions Updated

3.31.1 Oracle JRockit Starts Slowly on Some Solaris Machines
Bug 9714564

On some Solaris machines, Oracle JRockit would start slowly, printing warnings; for
example:

[WARN][osal] Failed to initialize kstat for CPU 0, ignoring

This issue has been fixed in release R28.0.2.

3.31.2 IO Exceptions in Epoll Socket Muxer Would Throw
NoClassDefFoundErrors

Bug 9728938

IO exceptions originating from the epoll socket muxer would occasionally throw
NoClassDefFoundErrors when trying to find the java/lang/IOException class. This
issue has been fixed in release R28.0.2.

3.31.3 Oracle JRockit Crashing While Pruning References to
Obsoleted Code

Bug 9763391

Occasionally, while pruning references to obsoleted code, Oracle JRockit would crash
in Code_and_classgc_background_task. This issue has been fixed in release R28.0.2.

Chapter 3
Issues Resolved in R28.0.2

3-20

3.31.4 Oracle JRockit Could Not Open JAR or ZIP Files Larger Than
2GB

Bug 9795028

In previous Oracle JRockit releases, the JVM could not open JAR or ZIP files larger
than 2GB. This issue has been fixed in release R28.0.2.

3.31.5 Xalan and Xerces Versions Updated
Bug 9829074

The Xalan and Xerces versions were updated to fix a functional regression found in
JDK 1.6.0_18. This fix is included in the Oracle JRockit R28.0.2 JVM.

3.32 Issues Resolved in R28.0.1
The following issues have been fixed in Oracle JRockit JDK R28.0.1.

• JVM Crashes on Encountering Non-UTF8 Characters in Compiler Directives

• Null-Check Incorrectly Optimized or Proved as Always Failing

• Linux Systems Crash at Startup when libjsig.so is Set to be Preloaded

• NIO Selector Functionality Failure

• Deprecated Flag -XXExternalCompactRatio Gives Incorrect Warning

• ZipEntry Initialization Error

• Crash in ZLIB Code While Running Finalizer

• Undeterministic Behavior on x86_64 Machines

• JVM Spins Forever When Compiling JavaFX Classes

• Descriptions Not Intuitive for Compaction JFR Events

• WLS NIOSocketMuxer Occasionally Loses Sockets On Windows

3.32.1 JVM Crashes on Encountering Non-UTF8 Characters in
Compiler Directives

Bug 9475801

The JVM crashes when it encounters non-UTF8 characters in a compiler control
directives file.

This issue has been fixed in R28.0.1.

3.32.2 Null-Check Incorrectly Optimized or Proved as Always Failing
Bug 9343546

In certain cases involving try-catch clauses, the JVM incorrectly optimizes or proves a
null-check as always failing.

Chapter 3
Issues Resolved in R28.0.1

3-21

This issue has been fixed in R28.0.1.

3.32.3 Linux Systems Crash at Startup when libjsig.so is Set to be
Preloaded

Bug 9466275

On Linux systems, the JVM crashes at startup if the user sets libjsig.so (the signal
chaining library) to be preloaded through the LD_PRELOAD=libjsig.so environment
variable. This prevents some third-party JNI libraries from being used with Oracle
JRockit R28. To download a patch for this issue, see patch ID 9586671 for JDK 6 and
patch ID 9672120 for JDK 5.

This issue has been fixed in R28.0.1.

3.32.4 NIO Selector Functionality Failure
Bug 9485661

In certain cases, the NIO selector functionality fails unless net.dll is loaded before
nio.dll. This happens only when using JAVA_HOME\bin\java as opposed to JAVA_HOME
\jre\bin\java. To download a patch for this issue, see patch ID 9586671 for JDK 6
and patch ID 9672120 for JDK 5.

This issue has been fixed in R28.0.1.

3.32.5 Deprecated Flag -XXExternalCompactRatio Gives Incorrect
Warning

Bug 9631915

When the deprecated command-line option -XXexternalCompactRatio is used, the
following incorrect warning is displayed.

[WARN] -XXexternalCompactRatio is a deprecated option. Please use -
XXcompaction:internalPercentage instead.

This issue has been fixed in R28.0.1.

3.32.6 ZipEntry Initialization Error
Bug 9671985

When the java.util.zip.ZipEntry created for an uncompressed entry (method
STORED) is initialized, the uncompressed and compressed fields are not initialized
with the same value. This sometimes causes a java.util.zip.ZipException.

This issue has been fixed in R28.0.1.

3.32.7 Crash in ZLIB Code While Running Finalizer
Bug 9672130

Chapter 3
Issues Resolved in R28.0.1

3-22

Sometimes, calling java.lang.util.zip.Deflater.deflateBytes() after calling
java.lang.util.zip.Deflater.end() causes the JVM to crash.

This issue has been fixed in R28.0.1 to throw a NullPointerException.

3.32.8 Undeterministic Behavior on x86_64 Machines
Bug 9459003

Sometimes, a method invocation with more than eleven arguments introduces
undeterministic behavior in Java applications on x86_64 machines.

This issue has been fixed in R28.0.1.

3.32.9 JVM Spins Forever When Compiling JavaFX Classes
Bug 9651960

The JRockit JVM spins forever when compiling JavaFX classes that contain endless
loops.

This issue has been fixed in R28.0.1.

3.32.10 Descriptions Not Intuitive for Compaction JFR Events
Bug 9616739

Some descriptions for the GcCompaction JFR event are not intuitive.

This issue has been fixed in R28.0.1.

3.32.11 WLS NIOSocketMuxer Occasionally Loses Sockets On
Windows

Bug 9582716

At times, sockets disappear when the NIOSocketMuxer is used with WebLogic Server
running on Windows.

This issue has been fixed in R28.0.1.

3.33 Issues Resolved in R28.0.0
The following issues have been fixed in Oracle JRockit JDK R28.0.0.

• ACopyRemoval Breaks Explicit Typechecks

• Deadlocks On the Windows Platform When Threads Block on I/O Operations

• Issues with Nondefault Flag with -XXcallProfiling in Oracle JRockit R27.x

• Performance Issues with Windows Computers Running Many Processes

• Optimizing Compiler Producing Erroneous Results

• Broken Java Launcher Removed from Product

• JVMTI_EVENT_COMPILED_METHOD_UNLOAD Event Not Being Posted

Chapter 3
Issues Resolved in R28.0.0

3-23

3.33.1 ACopyRemoval Breaks Explicit Typechecks
Bug 8816217

Inner type checks on arrays used to show the wrong type in optimized code. This
issue has been resolved.

3.33.2 Deadlocks On the Windows Platform When Threads Block on
I/O Operations

This release adds a workaround for deadlocks on the Windows platform when
thread(s) block on I/O operations on any standard stream (stdin, stdout stderr/
System.in, System.out, System.err) while a shared library (DLL) is loading. The
deadlock occurs if a process is launched such that the stream on which a call is
blocked is a redirected pipe, typically the result of either a spawned process through
Process.exec or similar; or launched through a shell with data piped to or from itself.
The bug happens because any I/O operation on such a pipe holds a kernel lock during
the whole call, a lock which is also required by the WinAPI function GetFileType(). This
function in turn is called from the Microsoft CRT startup code whenever either a new
CRT DLL, or a DLL with statically linked CRT functions, is loaded.

The bug only occurs on Windows releases prior to Windows Vista.

Workaround

Detect whenever the JVM process is started with its stdin redirected to a pipe. Then
intercept all FileInputStream.read() calls to it and prevent them from blocking,
essentially doing polling I/O. The workaround prevents a thread reading from System.in
from blocking any System.loadLibrary calls. This workaround might add some latency
to reading from System.in, but should be invisible for most applications.

This workaround can be controlled by using these diagnostic options (unlock using -
XX:+UnlockDiagnosticVMOptions):

• -XX:+|-UseStdinPipeReadWorkaround, which enables the workaround (default is on).

• -XX:StdinPipeReadWorkaroundPollPeriod=<millis>, which polls the period for reads
from stdin (default 1)

Notes:

• This fix does not handle NIO reads from System.in. Using these might still cause
deadlocks of the JVM.

• This fix is only activated if redirection of standard in is detected.

3.33.3 Issues with Nondefault Flag with -XXcallProfiling in Oracle
JRockit R27.x

This release resolves the following issues, which arose when using the nondefault
flag, -XXcallProfiling in Oracle JRockit R27.x.

• Deadlock between compiler and code garbage collection.

• Memory leak of call profiling data from invalidated methods.

Chapter 3
Issues Resolved in R28.0.0

3-24

3.33.4 Performance Issues with Windows Computers Running Many
Processes

This release fixes the issue of slow performance on Windows machines running with
many (more than 40) processes with the same name whenever access was needed to
the process PDH header or slow startup when running with the JRockit Flight
Recorder.

3.33.5 Optimizing Compiler Producing Erroneous Results
The Oracle JRockit optimizing compiler was, in rare cases, producing erroneous
results from computations that included a narrowing of primitive types. This issue has
been fixed.

3.33.6 Broken Java Launcher Removed from Product
The broken Java launcher java-rmi.exe in JRockit 6 on Windows is no longer shipped
with the product. See also Sun Bug 6512052 at:http://bugs.sun.com/bugdatabase/
view_bug.do?bug_id=6512052

3.33.7 JVMTI_EVENT_COMPILED_METHOD_UNLOAD Event Not
Being Posted

Oracle JRockit R27.6.0 was not posting the JVMTI_EVENT_COMPILED_METHOD_UNLOAD event
when unloading obsolete method code. This issue has been fixed.

Chapter 3
Issues Resolved in R28.0.0

3-25

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6512052
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6512052

4
Known Issues in Oracle JRockit JDK R28

This chapter describes issues known to exist in the Oracle JRockit JDK R28.

• Issue with Object Initialization in JRockit

• Issues while Using 64-Bit Compressed References on SPARC

• Limited Amount of Active Monitors

• Error While Using print_utf8pool Command on Windows

• HPROF Heap Dump Might be Corrupt When Multiple OOMs Thrown

• java.math.BigDecimal Objects Cannot be Serialized Over IIOP Between Releases

• Timing Stability Issue When "Fast Time" Is Enabled on Intel Systems

• JMAPI Method Changed to Throw an UnapplicableMethodException

• Error Message for CPU Load Counters for JRockit JVM Running on Windows

• Oracle JRockit Hangs On OEL/OVM Combination

• Triggering Young Collections if the Nursery is Too Small

• SSE2 Registers Might Not be Restored Correctly After Return from Signal Handler

• System Crashing when Stack Expansion Uses Randomized Address Spaces

• Large Pages on Solaris Might Cause Long Pauses

• Calculation-Intensive Applications Returning Corrupt Register Values

• R28 Not Supported On Windows 2008 With More Than 64 Processors

• Out of Memory Error Occurs When Classblock Memory Runs Low

• IllegalArgumentException from TLS handshake

4.1 Issue with Object Initialization in JRockit
The JRockit JVM 1.6.0 registers finalizeable objects when an object is allocated.

The Java Language Specification (JLS) necessitates objects to be registered only after
the <init> method of the java.lang.Object class has been run and completed
successfully.

4.2 Issues while Using 64-Bit Compressed References on
SPARC

The JRockit JVM might crash if you use 64-bit compressed references on SPARC
platform.

4-1

Workaround

Specify a lower size for the compressed references by using the option -
XXcompressedRefs:size=4GB. If the problem persists, disable the compressed references
by specifying the option -XXcompressedRefs:enable=false.

Alternatively, you can change the value of -Xmx option to a value less than 3 GB.

For more information about the -XXcompressedRefs and -Xmx options, see Oracle JRockit
Command-Line Reference.

4.3 Limited Amount of Active Monitors
If a Java program uses too many (4,194,304) active monitors (that is, by doing wait/
notify or contended synchronization on too many objects) the JVM's internal monitor
index can overflow. This is more likely to happen when using large heaps and few
garbage collections occur. If this happens, the JVM will crash with an error saying "The
number of active Object monitors has overflowed."

4.4 Error While Using print_utf8pool Command on Windows
The jrcmd command print_utf8pool, that prints all UTF8 strings, fails to handle
unicode characters correctly on Windows platform.

4.5 HPROF Heap Dump Might be Corrupt When Multiple
OOMs Thrown

If Oracle JRockit encounters several Java Out of Memory exceptions while writing an
HPROF heap dump, the contents of the heap dump might be corrupt.

4.6 java.math.BigDecimal Objects Cannot be Serialized
Over IIOP Between Releases

Serialization of java.math.BigDecimal objects over IIOP between the JRockit JVM and
other JVMs throws an IOException. This incompatibility has been fixed; the JRockit
JVM R28 is now compatible with other JVMs but not with older R27 releases. As a
consequence, java.math.BigDecimal objects cannot be serialized over IIOP between
the R27 and R28 releases of the JRockit JVM.

4.7 Timing Stability Issue When "Fast Time" Is Enabled on
Intel Systems

Timing stability issues might occur on modern x86 systems (for instance Nehalem-EX)
with more than two CPU sockets.

Disabling fast time (by using the -XX:-UseFastTime command-line option) could solve
the issue.

Chapter 4
Limited Amount of Active Monitors

4-2

4.8 JMAPI Method Changed to Throw an
UnapplicableMethodException

In R28.0 the JMAPI method
com.bea.jvm.ProfilingSystem.newConstructorProfileEntry() was changed to throw an
UnapplicableMethodException. This exception is never thrown in practice but the
addition causes compilation errors for old code. Removing the exception declaration
will also cause problems compilation, thus the exception will remain in future versions.

4.9 Error Message for CPU Load Counters for JRockit JVM
Running on Windows

At times, the following message might be displayed when running the JRockit JVM on
Windows.

[WARN][osal] could not enumerate processors (1) error=-1073738824
[WARN][osal] Failed to init system load counters

This issue occurs when the Windows processor performance counter (PerfOS) is
disabled.

The message also indicates that CPU load events are not recorded in JRockit Flight
Recorder and not shown in the JRockit Mission Control console.

Workaround: Enable the PerfOS counter in Windows by using the Microsoft Extensible
Counter List tool (exctrlst.exe). You can download the tool from http://
download.microsoft.com/download/win2000platform/exctrlst/1.00.0.1/nt5/en-us/

exctrlst_setup.exe.

4.10 Oracle JRockit Hangs On OEL/OVM Combination
When Oracle JRockit is running on OEL on OVM, a fix is required in OEL. Listed
below are the minimum requirements for running JRockit on OEL on OVM:

• OVM 2.1.2

• OEL 4.7 ia32

Patch required. The version of the para-virtualized kernel for OEL must be
2.6.9-78.0.13.0.1.1.ELxenU or later.

• OEL 4.7 x64

GA bits works fine

• OEL 5.3 ia32 and x64

GA bits works fine

Oracle JRockit supports both hardware and para-virtualized versions and both OEL 4
and OEL 5.

Chapter 4
JMAPI Method Changed to Throw an UnapplicableMethodException

4-3

http://download.microsoft.com/download/win2000platform/exctrlst/1.00.0.1/nt5/en-us/exctrlst_setup.exe
http://download.microsoft.com/download/win2000platform/exctrlst/1.00.0.1/nt5/en-us/exctrlst_setup.exe
http://download.microsoft.com/download/win2000platform/exctrlst/1.00.0.1/nt5/en-us/exctrlst_setup.exe

4.11 Triggering Young Collections if the Nursery is Too
Small

If the nursery is too small, Oracle JRockit might begin triggering young collections,
“back to back", without promoting anything. This appears in the -Xverbose:memdbg
output as repeated young collections where the number of promoted objects is zero. It
can also be seen as very short times between the young collections (close to 0 ms).

Workaround:

Increase the nursery size. If nursery size has been set automatically by -
Xgcprio:throughput, it can be overridden by manually setting -Xns to a higher value.

4.12 SSE2 Registers Might Not be Restored Correctly After
Return from Signal Handler

Due to a Linux kernel bug, certain SSE2 registers might not be restored correctly after
returning from a signal handler. This issue manifests itself as such undefined behavior
as erroneous floating values in Java code and crashes.

Workaround:

This problem is fixed in mainline kernel version 2.6.xx. You can obtain patches for
OEL 4 and OEL 5 as RPM'S from the Unbreakable Linux Network. Follow normal
kernel upgrade procedure to obtain the fix.

For older kernels, use the command-line option -XX:+UseMembarForTransitions.

4.13 System Crashing when Stack Expansion Uses
Randomized Address Spaces

On some newer Linux systems (for example, SLES 11) you might experience crashes
related to stack expansion when using randomized address spaces.

Workaround:

In Linux, you might be able to eliminate these crashes by using the kernel
configuration command sysctl -w kernel.randomize_va_space=0.

In Oracle JRockit, you can eliminate these crashes by using the JVM command-line
option -XX:+TrustPThreadStackInfo. The flag defaults to false.

4.14 Large Pages on Solaris Might Cause Long Pauses
Using large pages on Solaris might occasionally cause long pauses. These pauses
happen when a page is accessed for the first time.

Workaround:

Disable large pages by using the command-line option -XX:-UseLargePagesForHeap.

Chapter 4
Triggering Young Collections if the Nursery is Too Small

4-4

4.15 Calculation-Intensive Applications Returning Corrupt
Register Values

Floating point calculation-intensive programs run on top of the Oracle JRockit JVM
might result in bogus results. This happens because a bug in the Linux kernel does not
preserve some CPU registers when switching between tasks. Oracle makes a patch
available for OEL 4 and 5. For OEL 4 you need OEL 4.8 with updated kernel
(2.6.9-89.0.18.0.1.EL or later). For OEL 5 you need an updated kernel
(2.6.18-164.9.1.0.1.el5 or later). The fix is included in OEL 5.5. Novell also makes a fix
available (BugZilla number 573478). The fix is available for SLES 9 SP4; SLES 10
SP2 and SP3; and SLES 11. The issue has also been reported to RedHat (BugZilla
number 547893). Contact RedHat support for access to this fix.

4.16 R28 Not Supported On Windows 2008 With More Than
64 Processors

Oracle JRockit does not support more than 64 logical processors on Windows Server
2008 and Windows Server 2008 R2.

4.17 Out of Memory Error Occurs When Classblock Memory
Runs Low

On Solaris/SPARC, due to the way classblock memory is reserved, Oracle JRockit
might occasionally run out of memory when a large number of classes are loaded (in
the order of 100000).

Workaround:

Use the following command-line options:

-XX:+UnlockDiagnosticVMOptions -XX:MaxClassBlockMemory=xxM

The default value of -XX:MaxClassBlockMemory is 50 MB, and a reasonable value is
around 75 MB.

4.18 IllegalArgumentException from TLS handshake
security-libs/javax.net.ssl

A recent issue from the JDK-8148516 fix can cause issue to some TLS servers. The
problem originates from an IllegalArgumentException thrown by the TLS handshaker
code.

java.lang.IllegalArgumentException: System property
jdk.tls.namedGroups(null) contains no supported elliptic curves

The issue can arise when the server does not have elliptic curve cryptography support
to handle an elliptic curve name extension field (if present). Users are advised to
upgrade to this release. By default, JDK 7 Updates and later JDK families ship with the

Chapter 4
Calculation-Intensive Applications Returning Corrupt Register Values

4-5

http://bugs.java.com/view_bug.do?bug_id=JDK-8148516

SunEC security provider which provides elliptic curve cryptography support. Those
releases should not be impacted unless security providers are modified.

See JDK-8173783

See JDK-8148516

Chapter 4
IllegalArgumentException from TLS handshake

4-6

http://bugs.java.com/view_bug.do?bug_id=JDK-8173783
http://bugs.java.com/view_bug.do?bug_id=JDK-8148516

	Contents
	Preface
	About this Document
	Documentation Accessibility
	Conventions

	1 Changes in Supported Configurations in Oracle JRockit JDK R28
	1.1 Java Version Updates
	1.2 Hardware Must Support Streaming SIMD Extensions (SSE) 2
	1.3 J2SE 1.4.2 and JVMPI Not Supported
	1.4 Itanium Platforms Not Supported

	2 New Features and Changes in Oracle JRockit JDK R28
	2.1 Changes in R28.3.20
	2.1.1 Upgraded to JDK 6u211
	2.1.2 Disabled All DES TLS Cipher Suites
	2.1.3 Removal of Several Symantec Root CAs
	2.1.4 Removal of Baltimore Cybertrust Code Signing CA
	2.1.5 Removal of SECOM Root Certificate
	2.1.6 Improved Validation of Class-Path Attribute in JAR File Manifest
	2.1.7 Improved Cipher Inputs

	2.2 Changes in R28.3.19
	2.2.1 Upgraded to JDK 6u201

	2.3 Changes in R28.3.18
	2.3.1 Upgraded to JDK 6u191
	2.3.2 TLS Session Hash and Extended Master Secret Extension Support
	2.3.3 Enhanced KeyStore Mechanisms
	2.3.4 3DES Cipher Suites Disabled
	2.3.5 Server-side HTTP-tunneled RMI Connections Disabled
	2.3.6 CipherOutputStream Usage
	2.3.7 System Property Controls the java.util.logging.FileHandler's MAX_LOCKS Limit

	2.4 Changes in R28.3.17
	2.4.1 Upgraded to JDK 6u181
	2.4.2 Support DHE Sizes Up To 8192-bits and DSA Sizes Up To 3072-bits
	2.4.3 Support SHA224withDSA and SHA256withDSA in the SunJSSE provider
	2.4.4 Add Additional IDL Stub Type Checks To org.omg.CORBA.ORBstring_to_object Method
	2.4.5 RSA Public Key Validation
	2.4.6 Restrict Diffie-Hellman Keys Less Than 1024 Bits
	2.4.7 Provider Default Key Size is Updated
	2.4.8 Stricter Key Generation
	2.4.9 Unlimited Cryptography Enabled by Default
	2.4.10 Disable Exportable Cipher Suites
	2.4.11 Disable JARs Signed with DSA Keys Less Than 1024 Bits
	2.4.12 Added wsimport Tool Command Line Option ???disableXmlSecurity
	2.4.13 JMX Connections Need Deserialization Filters

	2.5 Changes in R28.3.16
	2.5.1 Upgraded to JDK 6u171
	2.5.2 Support DHE Sizes Up To 8192-bits and DSA Sizes Up To 3072-bits
	2.5.3 Refactor Existing Providers to Refer to the Same Constants for Default Values for Key Length
	2.5.4 Collections Use Serialization Filter to Limit Array Sizes
	2.5.5 Default Timeouts Have Changed for FTP URL Handler
	2.5.6 New Defaults for DSA Keys in Jarsigner and Keytool

	2.6 Changes in R28.3.15
	2.6.1 Upgraded to JDK 6u161
	2.6.2 Improved Algorithm Constraints Checking
	2.6.3 JMX Diagnostic Improvements
	2.6.4 Message Digest Algorithm for jarsigner -tsadigestalg Option Now Defaults to SHA-256

	2.7 Changes in R28.3.14
	2.7.1 Upgraded to JDK 6u151
	2.7.2 IANA Data 2016j
	2.7.3 MD5 signature verification added to the Security Property jdk.jar.disabled Algorithms
	2.7.4 New system property to control caching for HTTP SPNEGO connection
	2.7.5 New System Property to Control Caching for HTTP NTLM Connection

	2.8 Changes in R28.3.13
	2.8.1 Upgraded to JDK 6u141
	2.8.2 IANA Data 2016i
	2.8.3 Improved protection for JNDI remote class loading
	2.8.4 jarsigner -verbose -verify should print the algorithms used to sign the jar
	2.8.5 Added security property to configure XML Signature secure validation mode
	2.8.6 Serialization Filter Configuration
	2.8.7 RMI Better constraint checking
	2.8.8 Add mechanism to allow non default root CAs to not be subject to algorithm restrictions
	2.8.9 New --allow-script-in-comments option for javadoc
	2.8.10 Increase the minimum key length to 1024 for XML Signatures
	2.8.11 Make 3DES a legacy algorithm in the JSSE provider
	2.8.12 Improve the default strength of elliptic curve cryptography in JDK
	2.8.13 Restrict certificates with DSA keys less than 1024 bits
	2.8.14 Add TLS v1.1 and v1.2 to the client list of default-enabled protocols
	2.8.15 More checks added to DER encoding parsing code
	2.8.16 Additional access restrictions for URLClassLoader.newInstance

	2.9 Changes in R28.3.12
	2.9.1 Upgraded to JDK 6u131

	2.10 Changes in R28.3.11
	2.10.1 Upgraded to JDK 6u121
	2.10.2 Support for TLS v1.2

	2.11 Changes in R28.3.10
	2.11.1 Upgraded to JDK 6u115

	2.12 Changes in R28.3.9
	2.12.1 Upgraded to JDK 6u111
	2.12.2 Support for TLS v1.1
	2.12.3 New Diagnostic Command to Generate Core File

	2.13 Changes in R28.3.8
	2.13.1 Upgraded to JDK 6u105
	2.13.2 New Command-Line Options for Generating Core Dump Files on Exception

	2.14 Changes in R28.3.2
	2.14.1 New Default Value for the -XX:+CheckStacks Command-Line Option
	2.14.2 New Command-Line Option to Disable Garbage Collection of Constant Pool
	2.14.3 New Verbose Option for Shutdown Report

	2.15 Changes in R28.2.3
	2.15.1 New Default Value for the -XX:MaxLargePageSize Command-Line Option

	2.16 Changes in R28.2.2
	2.16.1 Fixed Issues in Finalization

	2.17 Changes in R28.2.0
	2.17.1 Improved JRockit Flight Recorder Heap Statistics Events
	2.17.2 Command-Line Options to Filter Exception Logging and Events

	2.18 Changes in R28.1.5
	2.18.1 JRockit Mission Control Samples are No Longer Installed by Default

	2.19 Changes in R28.1.0
	2.19.1 Improved Garbage Collection
	2.19.2 Command-Line Option to Specify the Receive Buffer Size
	2.19.3 Enabling JVM Crash When an Out-of-Memory Error Occurs
	2.19.4 Collecting and Packaging Flight Recording Data from Disk Buffers

	2.20 Changes in R28.0.1
	2.20.1 Default MaxCodeMemory on Linux IA32 with Large Pages Increased to 64 MB

	2.21 New Features and Changes in R28.0.0
	2.21.1 Change in Thread Suspension Mechanism
	2.21.2 Ability to Generate HPROF-Formatted Heap Dumps
	2.21.3 Improved Logging for Code Generation and Optimization
	2.21.4 Better Control Over Code Optimization Through Directives
	2.21.5 Garbage Collection Strategy Does Not Change at Run Time
	2.21.6 Large Objects Are Allocated in the Nursery
	2.21.7 Single Command-Line Option to Specify Compaction Behavior
	2.21.8 Changes in the JMX Agent
	2.21.9 Compressed References for Larger Heaps
	2.21.10 Changes in Heap Sizing
	2.21.11 Change in Class and Code Garbage Collection
	2.21.12 New Command-Line Options in R28.0
	2.21.13 Command-Line Options Deprecated in R28.0
	2.21.14 Command-Line Options Changed to the HotSpot Format in R28.0

	3 Issues Resolved in Oracle JRockit JDK R28
	3.1 Issues Resolved in R28.3.20
	3.2 Issues Resolved in R28.3.19
	3.2.1 JVM Hang During Startup on Processors with Large Number of Logical Processors
	3.2.2 Immediate Crash During Startup with Linux on Recent x86 / x86_64 Processors

	3.3 Issues Resolved in R28.3.18
	3.3.1 MissingResourceException Thrown While Trying to Load ResourceBundle via Reflection

	3.4 Issues Resolved in R28.3.17
	3.5 Issues Resolved in R28.3.16
	3.6 Issues Resolved in R28.3.15
	3.7 Issues Resolved in R28.3.14
	3.7.1 Correction of IllegalArgumentException from TLS handshake

	3.8 Issues Resolved in R28.3.13
	3.9 Issues Resolved in R28.3.12
	3.9.1 Hashtable Deserialization Reconstitutes Table with Wrong Capacity

	3.10 Issues Resolved in R28.3.11
	3.10.1 Corrupted Heap Data Resulting in Stability Issues
	3.10.2 Incorrect Value for Dark Matter Reported by Heap Diagnostics
	3.10.3 Incorrect Heap Statistics When Instances of a Class Consume Over 2 GB of Heap Space
	3.10.4 Hardware Support for Square Root on SPARC T2
	3.10.5 Default Number of Garbage Collection Worker Threads on Certain Solaris Systems
	3.10.6 JVM Crashes when Using Application Data Integrity Features
	3.10.7 Unexpected Behavior when Copying Arrays

	3.11 Issues Resolved in R28.3.10
	3.11.1 Crash while Running Finalizer for the ConstPoolWrapper Object
	3.11.2 Crash due to Incorrectly Compiled (JIT) checkcast Operation
	3.11.3 Unexpected Behavior when Inlining a Method

	3.12 Issues Resolved in R28.3.9
	3.12.1 Issues with the ObjectStreamClass.lookup Method
	3.12.2 Process Hangs after NewStringUTF Invocation

	3.13 Issues Resolved in R28.3.8
	3.13.1 Incorrect CPU Consumption Values on Linux
	3.13.2 Unexpected NoSuchMethodError in JRockit JVM

	3.14 Issues Resolved in R28.3.6
	3.14.1 JRockit JVM Crashes while Debugging a Java Program Compiled with javac
	3.14.2 JVM Crashes while Using an Agent

	3.15 Issues Resolved in R28.3.5
	3.15.1 Issue with Profiling Methods
	3.15.2 JVM Crashes with Illegal Memory Access Error Due to an Optimization Issue

	3.16 Issues Resolved in R28.3.4
	3.16.1 Reduced Memory Footprint of Command-line Tools
	3.16.2 JRockit Crashes while Calling jrockit.vm.ArrayCopy.copy Methods

	3.17 Issues Resolved in R28.3.2
	3.17.1 Issue with Flight Recording During Startup
	3.17.2 Check Stacks Option on SPARC Platform
	3.17.3 Unexpected NullPointerException Thrown from Methods After Code Optimization

	3.18 Issues Resolved in R28.3.1
	3.18.1 FileNotFoundException Thrown while Opening Zip Archives

	3.19 Issues Resolved in R28.2.9
	3.19.1 Heap Dumps Not Generated on Out Of Memory Error
	3.19.2 Issue with the Out of Memory Error Message

	3.20 Issues Resolved in R28.2.8
	3.20.1 NullPointerExceptions from Package.getPackages Calls
	3.20.2 NullPointerExceptions from Class.isAssignable
	3.20.3 JRockit Crashes while Code Optimization in cgGetColorForVarInBlock

	3.21 Issues Resolved in R28.2.6
	3.21.1 JRockit Fight Recorder Repository Growing Indefinitely
	3.21.2 Unexpected Errors from Applications with Dynamically-created Classes
	3.21.3 JMXMAPI Profiling API Can Now Profile All Versions of a Class

	3.22 Issues Resolved in R28.2.5
	3.22.1 JRockit Crashes when Interned Strings are Allocated
	3.22.2 JRockit Crashes while Running with an optfile
	3.22.3 FileNotFoundException Thrown while Reading Files from FileInputStream
	3.22.4 Issue while Closing a NIO Socket
	3.22.5 NIO Operations Fail on Windows with a Security Exception
	3.22.6 Wrong Exception Thrown when Flight Recorder is Disabled
	3.22.7 JRockit Crashes while Invoking a com.sun.management Method

	3.23 Issues Resolved in R28.2.4
	3.23.1 Issue with the jrcmd Command File Parsing
	3.23.2 Failure to Start on Solaris While Using a Large Page Size
	3.23.3 Issue with print_memusage Diagnostic Command

	3.24 Issues Resolved in R28.2.3
	3.24.1 Redirecting Ouput of the jrcmd Command to a Specified File
	3.24.2 Issue with the Limited File Size for the jrcmd Script File
	3.24.3 Issue while Reserving VMSpace
	3.24.4 Improved Stack Overflow Handling
	3.24.5 Issue while Optimizing a Method
	3.24.6 Issue with JRockit after Removing JRockit Flight Recorder

	3.25 Issues Resolved in R28.2.2
	3.25.1 Exceptions are Thrown while Establishing SSL Connections that use Cipher Suite
	3.25.2 Issue with Code Optimization
	3.25.3 Missing Finalizers

	3.26 Issues Resolved in R28.1.5
	3.26.1 Unable to Reserve Memory in the Low Address Space of the Java Heap
	3.26.2 Thread Starvation while Using the Default Number of Garbage Collection Threads in Multi-Core Machines
	3.26.3 Error while Setting SUID or SGID on JRockit JVM

	3.27 Issues Resolved in R28.1.4
	3.27.1 Warnings Print When Launching Java Involving Symbolic Links on Windows
	3.27.2 Corrupt HPROF File

	3.28 Issues Resolved in R28.1.3
	3.28.1 Deadlock Occurring in the ClassLoader (Sun Bug 7001933)
	3.28.2 "Peer Not Authenticated" Exception Unexpectedly Thrown (Sun Bug 6924489)
	3.28.3 Problem Setting SO_RCVBUF/SO_SNDBUF (Sun Bug 6984182)
	3.28.4 Passing Read-Only Bytebuffer to Channel Write Method Throwing Exception
	3.28.5 Specific JNI API Routines Did Not Correctly Set isCopy Parameter
	3.28.6 Incorrectly Optimized Methods Forcing Long Values to Become Very Large

	3.29 Issues Resolved in R28.1.1
	3.29.1 Crashes During Concurrent Sweep JNI Object Allocation
	3.29.2 Silent Exit When Command-Line Options are Misspelled
	3.29.3 Erroneous Optimization of an arraycopy
	3.29.4 JDK Read Fixed Number of Bytes When Calling SecureRandom.generateSeed
	3.29.5 instanceof Check Failing

	3.30 Issues Resolved in R28.1.0
	3.30.1 Oracle JRockit Hangs when used with Application Management Solutions
	3.30.2 Memory Leakage in the JMX Implementation
	3.30.3 Oracle JRockit Exits when Aborting an Optimization
	3.30.4 Oracle JRockit Heap Dumps Do Not Open in Eclipse Memory Analyzer
	3.30.5 Exceptions Thrown Without InvocationTargetException Wrapping

	3.31 Issues Resolved in R28.0.2
	3.31.1 Oracle JRockit Starts Slowly on Some Solaris Machines
	3.31.2 IO Exceptions in Epoll Socket Muxer Would Throw NoClassDefFoundErrors
	3.31.3 Oracle JRockit Crashing While Pruning References to Obsoleted Code
	3.31.4 Oracle JRockit Could Not Open JAR or ZIP Files Larger Than 2GB
	3.31.5 Xalan and Xerces Versions Updated

	3.32 Issues Resolved in R28.0.1
	3.32.1 JVM Crashes on Encountering Non-UTF8 Characters in Compiler Directives
	3.32.2 Null-Check Incorrectly Optimized or Proved as Always Failing
	3.32.3 Linux Systems Crash at Startup when libjsig.so is Set to be Preloaded
	3.32.4 NIO Selector Functionality Failure
	3.32.5 Deprecated Flag -XXExternalCompactRatio Gives Incorrect Warning
	3.32.6 ZipEntry Initialization Error
	3.32.7 Crash in ZLIB Code While Running Finalizer
	3.32.8 Undeterministic Behavior on x86_64 Machines
	3.32.9 JVM Spins Forever When Compiling JavaFX Classes
	3.32.10 Descriptions Not Intuitive for Compaction JFR Events
	3.32.11 WLS NIOSocketMuxer Occasionally Loses Sockets On Windows

	3.33 Issues Resolved in R28.0.0
	3.33.1 ACopyRemoval Breaks Explicit Typechecks
	3.33.2 Deadlocks On the Windows Platform When Threads Block on I/O Operations
	3.33.3 Issues with Nondefault Flag with -XXcallProfiling in Oracle JRockit R27.x
	3.33.4 Performance Issues with Windows Computers Running Many Processes
	3.33.5 Optimizing Compiler Producing Erroneous Results
	3.33.6 Broken Java Launcher Removed from Product
	3.33.7 JVMTI_EVENT_COMPILED_METHOD_UNLOAD Event Not Being Posted

	4 Known Issues in Oracle JRockit JDK R28
	4.1 Issue with Object Initialization in JRockit
	4.2 Issues while Using 64-Bit Compressed References on SPARC
	4.3 Limited Amount of Active Monitors
	4.4 Error While Using print_utf8pool Command on Windows
	4.5 HPROF Heap Dump Might be Corrupt When Multiple OOMs Thrown
	4.6 java.math.BigDecimal Objects Cannot be Serialized Over IIOP Between Releases
	4.7 Timing Stability Issue When "Fast Time" Is Enabled on Intel Systems
	4.8 JMAPI Method Changed to Throw an UnapplicableMethodException
	4.9 Error Message for CPU Load Counters for JRockit JVM Running on Windows
	4.10 Oracle JRockit Hangs On OEL/OVM Combination
	4.11 Triggering Young Collections if the Nursery is Too Small
	4.12 SSE2 Registers Might Not be Restored Correctly After Return from Signal Handler
	4.13 System Crashing when Stack Expansion Uses Randomized Address Spaces
	4.14 Large Pages on Solaris Might Cause Long Pauses
	4.15 Calculation-Intensive Applications Returning Corrupt Register Values
	4.16 R28 Not Supported On Windows 2008 With More Than 64 Processors
	4.17 Out of Memory Error Occurs When Classblock Memory Runs Low
	4.18 IllegalArgumentException from TLS handshake

