

[1] Oracle® JRockit
Flight Recorder Run Time Guide

Release R28

E15070-10

July 2016

This document contains background on the Oracle JRockit
Flight Recorder Run-time implementation and instructions
for using this tool. This document does not address the
JRockit Flight Recorder Graphical User Interface.

Oracle JRockit Flight Recorder Run Time Guide, Release R28

E15070-10

Copyright © 2001, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Edwin Spear, Savija Vijayaraghavan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

1 Introduction

1.1 Overview.. 1-1
1.2 Flight Recorder Uses... 1-2
1.2.1 Profiling... 1-2
1.2.2 "Black Box" Problem Analysis.. 1-2
1.2.3 Support and Debugging ... 1-2
1.3 Understanding Events.. 1-2
1.4 Performance Overhead .. 1-3
1.5 Memory and Disk Buffers.. 1-3
1.6 Garbage Collections and the Flight Recorder ... 1-3

2 Quick Start Procedures

2.1 Using JRockit Mission Control Client .. 2-1
2.2 Step 1: Start the Flight Recorder ... 2-1
2.3 Step 2: Set Recording Parameters ... 2-2
2.4 Step 3: Start the Recording... 2-2
2.5 Stopping a Recording ... 2-2
2.6 Additional Information on the Flight Recorder GUI... 2-3

3 Starting the Flight Recorder

3.1 Note on Running Multiple Recordings ... 3-1
3.2 Running the Default Recording .. 3-1
3.2.1 Starting the Recording .. 3-1
3.2.2 Configuring Disk Storage ... 3-2
3.2.3 Default Start-Up Example .. 3-2
3.3 Starting an Explicit Recording .. 3-3
3.3.1 Controlling the Flight Recorder for Explicit Recordings ... 3-3
3.3.2 Starting a Recording .. 3-4
3.3.3 Checking Recording Status .. 3-4
3.3.4 Stopping a Recording.. 3-4
3.4 Configuring Explicit Recordings .. 3-4
3.4.1 Setting Maximum Size and Age .. 3-5
3.4.2 Setting the Delay .. 3-5
3.4.3 Setting Compression ... 3-5
3.5 Creating Recordings Automatically... 3-5

iv

3.5.1 Creating a Recording On Exit .. 3-6
3.5.2 Creating a Recording On an Unhandled Exception ... 3-6
3.5.3 Creating a Recording by Using Triggers.. 3-6
3.5.4 Manually Dumping Recording Data .. 3-6

4 Controlling Recording Data by Using Templates

4.1 What You Can Control... 4-1
4.2 Mission Control Templates ... 4-2
4.2.1 Profiling Normal .. 4-2
4.2.2 Profiling with Locks .. 4-2
4.2.3 Profiling with Exceptions ... 4-2
4.2.4 Real Time .. 4-2
4.2.5 Modifying a Template... 4-3
4.2.6 Server-side Templates ... 4-3

5 Troubleshooting and Security

5.1 Troubleshooting .. 5-1
5.2 Security ... 5-1

A Creating Your Own Server-side Templates

A.1 Event Types and Relational Keys .. A-1
A.2 Server-side Templates ... A-1
A.3 File Format .. A-2
A.4 Concatenation Tool.. A-3

B Command Reference

B.1 Start-up Commands .. B-1
B.2 Diagnostic Command Reference ... B-1
B.2.1 start_flightrecording... B-2
B.2.2 check_flightrecording... B-2
B.2.3 stop_flightrecording ... B-2
B.2.4 dump_flightrecording.. B-3

C Events

v

Preface

This document contains background on the Oracle JRockit Flight Recorder Run Time
implementation and instructions for using this tool.

About the Document
This document contains the following chapters:

■ Chapter 1, "Introduction", which contains a description of JRockit Flight Recorder
and its capabilities.

■ Chapter 2, "Quick Start Procedures", which contains simple procedures for using
JRockit Mission Control to create your first flight recording.

■ Chapter 3, "Starting the Flight Recorder", which contains procedures for starting
and controlling JRockit Flight Recorder.

■ Chapter 4, "Controlling Recording Data by Using Templates", which discusses
what you can control with JRockit Flight Recorder and how to use templates to do
so.

■ Chapter 5, "Troubleshooting and Security", which contains information about how
to troubleshoot problems JRockit Flight Recorder and who can control flight
recorder information.

■ Appendix A, "Creating Your Own Server-side Templates", which shows you how
to create a server-side flight recording template.

■ Appendix B, "Command Reference", which contains a list and brief description of
the command-line options and diagnostic commands you can use with JRockit
Flight Recorder.

■ Appendix C, "Events", which contains a list of all events you can capture with
JRockit Flight Recorder.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

This chapter serves as an introduction to the Oracle JRockit Flight Recorder. It contains
these sections:

■ Section 1.1, "Overview"

■ Section 1.2, "Flight Recorder Uses"

■ Section 1.3, "Understanding Events"

■ Section 1.4, "Performance Overhead"

■ Section 1.5, "Memory and Disk Buffers"

■ Section 1.6, "Garbage Collections and the Flight Recorder"

1.1 Overview
Have you ever wondered what really happens in a running Java program? Have you
ever wanted to "go back in time" and analyze what happened right before a problem
occurred in your system? Do you want an extremely detailed level of profiling without
impacting performance? JRockit Flight Recorder has been engineered to meet all of
these goals.

JRockit Flight Recorder does all this by being tightly integrated into the core of the
JVM itself and by being very conscious of its performance overhead. JRockit Flight
Recorder provides a wealth of information on the inner workings of the JVM as well as
on the Java program running in the JVM. You can use this information for profiling
and for root cause analysis of problems. Furthermore, JRockit Flight Recorder can be
enabled at all times, without causing performance overhead—even in heavily loaded,
live production environments.

While capturing details about the JVM, the JRockit Flight Recorder has also been
tightly integrated into Oracle's Fusion Middleware family of products and provides a
full stack view of the system. Everything from Java servlets and database execution at
a high level to fine-grained information on thread synchronization and garbage
collections is available at your fingertips.

JRockit Flight Recorder is comprised of a recording engine, which sits inside the JVM,
and the JRockit Mission Control client. The engine produces a recording file which can
later be analyzed through the client. This document primarily deals with configuration
of the first part, the JVM, and only briefly mentions the JRockit Mission Control GUI
(see Chapter 2, "Quick Start Procedures").

Flight Recorder Uses

1-2 Oracle JRockit Flight Recorder Run Time Guide

1.2 Flight Recorder Uses
The JRockit Flight Recorder has three primary uses:

■ Profiling

■ "Black Box" Problem Analysis

■ Support and Debugging

1.2.1 Profiling
Because JRockit Flight Recorder continuously saves large amounts of data about the
running system, it can operate as a profiler. Profiling information includes thread
samples, which show where the program spends its time, as well as lock profiles and
garbage collection details

1.2.2 "Black Box" Problem Analysis
Like its aeronautic namesake, JRockit Flight Recorder can also operate as a "black box,"
continuously saving information to a circular buffer. This information then can be
accessed when an anomaly is detected. This information can be essential to quickly
finding performance issues in a deployed system.

1.2.3 Support and Debugging
JRockit Flight Recorder provides information that can provide Oracle support
personnel with important clues for diagnosing issues with the software.

1.3 Understanding Events
The basic principle underlying JRockit Flight Recorder is that every piece of data it
captures is an event. An event is something that happens in the running application at
a specific point in time. Events have a name, a time stamp, and an optional payload.
The payload depends on the type of the event; for example:

■ The payload for an old collection event, generated by the garbage collector, would
be the heap size before and after the collection.

■ The payload of an event to signal that a thread has been blocked by a lock would
be the thread ID of the lock holder.

In addition to name and time stamp, most events also have information on the thread
in which it occurred, the stack trace at the time the event was captured, and the
duration of the event. All time stamps in JRockit Flight Recorder have nanosecond
precision.

Requestable events are events that the recording engine can poll with a certain
frequency. CPU Load Sample is an example for requestable event. You can configure the
recording engine to poll for this event once every second.

By using the information available in an event, the JRockit Flight Recorder UI can
reconstruct in detail what happened during program execution.

For a complete list of events, see Appendix C, "Events".

Garbage Collections and the Flight Recorder

Introduction 1-3

1.4 Performance Overhead
 JRockit Flight Recorder is designed to keep its overhead as low as possible. When
default settings are used, both internal testing and customer environments indicate
that performance impact is less than one percent (< 1%). This percentage varies on the
application and is sometimes significantly low.

JRockit Flight Recorder monitors the running system at an extremely high level of
detail. This produces an enormous amount of data that JRockit Flight Recorder can
handle. JRockit Flight Recorder filters data as early as possible to maintain low
overhead. This is done in two different ways:

■ By limiting the type of events that are actually captured. You can control this
information when you start the recording (for more information, see Chapter 3,
"Starting the Flight Recorder").

■ By recording only those events with durations exceeding a certain threshold. In
most cases, very short events are not of any interest and can be discarded. This
effectively limits the amount of data JRockit Flight Recorder must handle. If you
want to capture more data, you can change the threshold .

1.5 Memory and Disk Buffers
JRockit Flight Recorder does not write events to disk immediately, as they occur.
Instead, it stores data in a hierarchy of in-memory buffers and then moves the data to
the disk when the buffers are full. Initially, JRockit Flight Recorder run time puts the
event data in thread-local buffers, eliminating the need to synchronize between
threads for every event, which greatly improves throughput. Once a thread-local
buffer has been filled, the data is transferred to a global buffer. When this happens,
synchronization is necessary between threads but, because different thread-local
buffers fill up at different rates, lock contention is rare. Eventually, the global buffer
also runs out of space and the contents in the buffer are written to the disk. Writing to
the disk is expensive and you must ensure that it happens as seldom as possible.
Writing to disk files produces files in a proprietary, binary format that is extremely
compact but also efficient for the applications to read and write.

You can configure JRockit Flight Recorder so that it does not write any data to disk. In
this mode, the global buffer acts as a circular buffer and the oldest data is dropped
when the buffer is full. This very low-overhead operating mode still collects all the
vital data necessary for root-cause problem analysis. Because the most recent data is
always available in the global buffer, it can be written to disk on demand whenever
operations or surveillance systems detect a problem.

1.6 Garbage Collections and the Flight Recorder
The Flight Recorder will generate special garbage collections whenever it makes a
recording, which will appear as JFR Heap Block Statistics or JFR Class
Statistics on the Garbage Collection Data section of the verbose output (that is, run
with -Xverbose:gc=debug); for example:

[DEBUG][memory] [OC#1] GC reason: Artificial, description: JFR Heap Block
Statistics.

Garbage Collections and the Flight Recorder

1-4 Oracle JRockit Flight Recorder Run Time Guide

2

Quick Start Procedures 2-1

2Quick Start Procedures

[2] This chapter provides instructions for quickly starting up JRockit Flight Recorder and
creating your first recording.

This chapter contains the following sections:

■ Section 2.1, "Using JRockit Mission Control Client"

■ Section 2.2, "Step 1: Start the Flight Recorder"

■ Section 2.3, "Step 2: Set Recording Parameters"

■ Section 2.4, "Step 3: Start the Recording"

■ Section 2.5, "Stopping a Recording"

■ Section 2.6, "Additional Information on the Flight Recorder GUI"

2.1 Using JRockit Mission Control Client
The simplest way to control JRockit Flight Recorder is by using the Oracle JRockit
Mission Control Client. JRockit Mission Control Client is a tools suite that you can use
to monitor, manage, profile, and eliminate memory leaks in your Java application,
without introducing the performance overhead normally associated with these types
of tools. For more information on JRockit Mission Control, see the Introduction to
JRockit Mission Control, available on the Oracle Technology Network.

2.2 Step 1: Start the Flight Recorder
Start JRockit Mission Control Client from the command line by entering:

JROCKIT_HOME/bin/jrmc (or JROCKIT_HOME\bin\jrmc.exe

When JRockit Mission Control Client launches, a list of all the JVMs running on the
system appears in the JVM Browser.

1. Choose the JVM for which you want to create a recording and right-click to open
a context menu.

2. From the context menu, select Start Flight Recording…

Note: You can also launch Mission Control from the Start menu by
selecting Programs then Oracle JRockit JDK <version and JDK
information> then Oracle JRockit Mission Control <version>.

Step 2: Set Recording Parameters

2-2 Oracle JRockit Flight Recorder Run Time Guide

The Start Flight Recording dialog box appears.

2.3 Step 2: Set Recording Parameters
Use the Start Flight Recording dialog box to specify key recording parameters.
Complete this dialog box by doing the following:

■ Choose the recording template (for more information on templates, see Section 4.2,
"Mission Control Templates").

■ Set recording time (the duration of the recording) by selecting Time fixed
recording and entering a duration in Recording Time.

See Figure 2–1.

Figure 2–1 Flight Recording Parameter Fields

2.4 Step 3: Start the Recording
Click OK to start the recording. You can follow the progress of the recording in the
Flight Recorded Control view at the bottom of the screen (Figure 2–2). The Remaining
column indicates the amount of time left before the recording terminates.

Figure 2–2 Flight Recorded Control view

Once the recording has finished it will open automatically in JRockit Mission Control
Client and you can analyze the results.

2.5 Stopping a Recording
Usually, a recording will continue for the length of time specified in the Start Flight
Recording dialog box. If you want to terminate before the specified time elapses, do
the following:

1. On the Flight Recorder Control view, right-click the recording you want to stop to
open a context menu.

Additional Information on the Flight Recorder GUI

Quick Start Procedures 2-3

2. Select Stop.

The recording will stop and open automatically in JRockit Mission Control,
showing all recording data up to the termination point.

2.6 Additional Information on the Flight Recorder GUI
For additional information on using the Flight Recorder GUI, refer to the online help
that is installed with the product.

Additional Information on the Flight Recorder GUI

2-4 Oracle JRockit Flight Recorder Run Time Guide

3

Starting the Flight Recorder 3-1

3Starting the Flight Recorder

[3] This chapter describes how to start the JRockit Flight Recorder for both default and
explicit recordings from a command line.

This chapter contains these sections:

■ Section 3.1, "Note on Running Multiple Recordings"

■ Section 3.2, "Running the Default Recording"

■ Section 3.3, "Starting an Explicit Recording"

■ Section 3.4, "Configuring Explicit Recordings"

■ Section 3.5, "Creating Recordings Automatically"

3.1 Note on Running Multiple Recordings
JRockit Flight Recorder allows many recordings to run concurrently. You can configure
each recording by using different settings; in particular, you can configure different
recordings to capture different sets of events. However, in order to make the internal
logic of the Flight Recorder as streamlined as possible, the resulting recording always
contains the union of all events for all recordings active at that time. This means that if
more than one recording is running, you might end up with more information in the
recording than you wanted. This can be a little bit confusing but has no other negative
implications.

3.2 Running the Default Recording
The default recording is the recording that starts automatically, without you setting any
parameters. This section shows you how to start the default recording and how to
configure disk storage for that recording. It includes the following information:

■ Starting the Recording

■ Configuring Disk Storage

■ Default Start-Up Example

3.2.1 Starting the Recording
As mentioned in Section 3.2, "Running the Default Recording", Oracle JRockit can have
a default recording running in the background at all times. In the current release of
Oracle JRockit, this is turned off by default but you can easily enable it by using the
start-up command -XX:FlightRecorderOptions. In fact, because the performance
impact is so low and the value of the data so high, Oracle recommends that you enable

Running the Default Recording

3-2 Oracle JRockit Flight Recorder Run Time Guide

a default recording even in production environments. To enable an in-memory black
box recording of the JVM, use the following command-line option:

-XX:FlightRecorderOptions=defaultrecording=true

3.2.2 Configuring Disk Storage
By adding certain parameters to the -XX:FlightRecorderOptions start-up command,
you can configure the location of the disk repository as well as the amount of data
stored in the repository.

3.2.2.1 Setting the Repository Location
By default, JRockit Flight Recorder stores the temporary recording files in the path
specified by the java.io.tmpdir system property, but you can change this by adding
this parameter:

repository=<path>

<path> is the preferred repository location; for example, /var/log/jfr.

3.2.2.2 Setting the Amount of Data Stored
You can configure the amount of data stored by the default recording in the repository
as an absolute amount of bytes by using the maxsize option. For example, you can set
this option to use 100 MB of disk space for storing the recording data.

You can also mention that you always want to store certain minutes or hours worth of
data by using the maxage option. In this case, JRockit Flight Recorder only discards
data when it is older than the specified age. This is a very powerful way of ensuring
that data always exists for at least some time leading up to a problem.

If you do not specify any values for maxsize and maxage, the default values are taken.
For more information about these options, see the description of
-XX:FlightRecorderOptions in Oracle JRockit Command Line Reference.

■ To set the maximum size, use the maxsize option as follows:

maxsize=<size>

size can be specified with k (kilobytes), m (megabytes) and g (gigabytes) suffixes;
for example, 5m.

■ To set the maximum age, use the maxage option as follows:

maxage=<age>

age can be specified by s (seconds), m (minutes), h (hours), or d (days); for example,
10s. The default value is 15 minutes.

3.2.3 Default Start-Up Example
To enable a default recording that stores temporary data in the /var/log/jfr directory
and that covers at least the last five minutes of an application run, use the following
command-line option:

-XX:FlightRecorderOptions=defaultrecording=true,disk=true,repository=/var/log/jfr,
maxage=5m

 By default, the recording will be saved in the current working directory.

Starting an Explicit Recording

Starting the Flight Recorder 3-3

3.3 Starting an Explicit Recording
In addition to the default recording, you can create an explicit recording; that is, one you
start explicitly and let run for some predetermined length of time or until you
manually stop it. This section describes how to do this. It includes the following
information:

■ Controlling the Flight Recorder for Explicit Recordings

■ Starting a Recording

■ Checking Recording Status

■ Stopping a Recording

3.3.1 Controlling the Flight Recorder for Explicit Recordings
Regardless of the method you use to start a recording, the same set of parameters are
available. You can use any of the following tools to control explicit recordings:

■ JRockit Mission Control Client

■ Command-Line Option

■ Diagnostic Commands

3.3.1.1 JRockit Mission Control Client
The simplest way to control JRockit Flight Recorder is by using the JRockit Mission
Control client. For more information, see Section 2.1, "Using JRockit Mission Control
Client".

3.3.1.2 Command-Line Option
You can start and configure a recording from the command-line by using the
-XX:StartFlightRecording start-up option:

-XX:StartFlightRecording=duration=<duration>,filename=<filename>

This command will start a recording immediately when the JVM starts. The recording
then runs for the specified duration and will be saved to the given filename; for
example, to starts a 60-second recording and to save the result in myrecording.jfr in
the current directory, use this command:

-XX:StartFlightRecording=duration=60s,filename=myrecording.jfr

You can use several other options to further configure an explicit recording. For more
information, see Section B.1, "Start-up Commands" or the Oracle JRockit Command Line
Reference, available on the Oracle Technology Network.

3.3.1.3 Diagnostic Commands
You can also control recordings by using JRockit-specific diagnostic commands. For a
more detailed description of Diagnostic Commands, see Section B.2, "Diagnostic
Command Reference". The simplest way to execute a diagnostic command is to use the
JROCKIT_HOME/bin/jrcmd (or JROCKIT_HOME\bin\jrcmd.exe) executable in the JRockit
installation. Issue a diagnostic command with jrcmd in the following format:

jrcmd <pid> <command>

Where <pid> is the PID for the JVM to which to send the command and <command> is
the diagnostic command itself.

Configuring Explicit Recordings

3-4 Oracle JRockit Flight Recorder Run Time Guide

You can see a list of available commands by typing:

jrcmd <pid> help

In this list, you will most likely find the relevant commands start_flightrecording,
check_flightrecording, and stop_flightrecording.

To get detailed help for a commend, type:

jrcmd <pid> help <command>

For more information on using jrcmd, see "Using jrcmd" in the Oracle JRockit JDK Tools.

3.3.2 Starting a Recording
Diagnostic commands allow you to start a flight recording in a running JRockit
instance. For example, to initiate a 60 second recording and save it to myrecording.jfr
in the current directory, you would enter this jrcmd command:

jrcmd <pid> start_flightrecording duration=60s filename=myrecording.jfr

3.3.3 Checking Recording Status
To see which recordings are currently running and the status of each, use the check_
flightrecording command. For example, if you type:

jrcmd <pid> check_flightrecording

and execute it before a recording ends, information similar to the following is
displayed:

recording : id=1 name="myrecording.jfr" duration=60s dest="myrecording.jfr"
compress=false (running)

This indicates that the recording is still running.

3.3.4 Stopping a Recording
If a recording was started with the duration option, it will automatically stop after that
time. You can also start a recording without specifying a duration, in which case it will
run until explicitly stopped. Do this by using the stop_flightrecording diagnostic
command:

jrcmd <pid> stop_flightrecording recording=1

The recording parameter indicates which recording to stop and its value is the id, as
seen in the output of check_flightrecording.

3.4 Configuring Explicit Recordings
You can configure an explicit recording in a number of other ways. These techniques
work the same regardless of how you started the recording; that is, either by using the
command-line approach or by using diagnostic commands. This section contains the
following information:

Note: If you execute jrcmd without any parameters, Oracle JRockit
will return a list the running Java processes and their PIDs.

Creating Recordings Automatically

Starting the Flight Recorder 3-5

■ Setting Maximum Size and Age

■ Setting the Delay

■ Setting Compression

3.4.1 Setting Maximum Size and Age
Like a default recording, you can configure an explicit recording to have a maximum
size or age. For a more in-depth discussion of these concepts, see Section 3.2.2,
"Configuring Disk Storage". You can configure size and age at startup by using the
following parameters:

■ To set the maximum size:

maxsize=<size>

size can be specified with the k (kilobytes), m (megabytes) and g (gigabytes)
suffixes; for example, 10m.

■ To set the maximum age:

maxage=<age>

age can be specified by s (seconds), m (minutes), h (hours), or d (days); for example,
10s.

If both a size limit and an age are specified, the data is deleted when it is older than the
age or when the size limit is exceeded.

3.4.2 Setting the Delay
When scheduling a recording. you might want to add a delay before the recording is
actually started; for example, when running from the command line, you might want
the application to boot or reach a steady state before starting the recording. To achieve
this, use the delay parameter:

delay=<delay>

Specify the delay period with s (seconds), m (minutes), h (hours), or d (days); for
example, 10s.

3.4.3 Setting Compression
Although the recording file format is very compact, you can compress it further by
zipping the recording. To cause this to happen automatically, use the following
parameter:

compress=true

Note that quite a bit of CPU power is required to do the compression which means
that compressing recordings can negatively impact performance.

3.5 Creating Recordings Automatically
When running with a default recording you can configure JRockit Flight Recorder to
automatically save the current in-memory recording data to a file whenever certain
conditions occur. If a disk repository is used, the current information in the disk
repository will also be included. This section includes the following information:

■ Creating a Recording On Exit

Creating Recordings Automatically

3-6 Oracle JRockit Flight Recorder Run Time Guide

■ Creating a Recording On an Unhandled Exception

■ Creating a Recording by Using Triggers

■ Manually Dumping Recording Data

3.5.1 Creating a Recording On Exit
To save the recording data every time the JVM exits, use this command:

-XX:FlightRecorderOptions=dumponexit=true,dumponexitpath=<path>

Set <path> to the location where the recording should be saved. If you specify a
directory, a file with a unique name is created in that directory. If you specify a file
name, that name is used. If you do not specify a path, the recording will be saved in
the current directory.

3.5.2 Creating a Recording On an Unhandled Exception
To create a recording when an unhandled exception occurs (that is, an exception that is
not caught by any exception handlers in a thread, resulting in the thread terminating)
use the -XX:+FlightRecordingDumpOnUnhandledException start-up command.

Specify the location for the recording dump by using the
-XX:FlightRecordingDumpPath=<path> start-up command:

The same rules for <path> apply as in Section 3.5.1, "Creating a Recording On Exit".

3.5.3 Creating a Recording by Using Triggers
You can use the Console in JRockit Mission Control to set triggers. A trigger is a rule
that executes an action whenever a condition specified by the rule is true. For example,
you can create a rule that triggers a flight recording to commence whenever the heap
size exceeds 100 MB. Triggers in JRockit Mission Control can use any property
exposed through a JMX MBean as the input to the rule. They can launch many other
actions than just Flight Recorder dumps.

Define triggers on the Triggers tab of the JRockit Mission Control Console’s MBean
page. For more information on how to create triggers, see the online help in JRockit
Mission Control.

3.5.4 Manually Dumping Recording Data
In addition to the automatically dumping recording data from a running default
recording, you can also do it manually by using the following diagnostic command:

jrcmd <jrockit pid> dump_flightrecording id=<id> copy_to_file=<path>

This dumps the currently available data for the recording identified by the given <id>
to the file given in <path>. You can automatically compress the dumped recording by
adding:

compress_copy=true

For more information about the diagnostic command, see Section B.2, "Diagnostic
Command Reference".

Additionally, you can use JRockit Mission Control Client to dump recording data. Do
the following:

1. Right-click a JVM in the JVM Browser on the Mission Control Console.

Creating Recordings Automatically

Starting the Flight Recorder 3-7

2. Select Dump Default Recording…

Creating Recordings Automatically

3-8 Oracle JRockit Flight Recorder Run Time Guide

4

Controlling Recording Data by Using Templates 4-1

4Controlling Recording Data by Using
Templates

[4] This chapter describes how to use templates for controlling the information that the
flight recordings capture.

This chapter contains the following sections:

■ Section 4.1, "What You Can Control"

■ Section 4.2, "Mission Control Templates"

4.1 What You Can Control
Almost everything about JRockit Flight Recorder can be controlled through different
kinds of settings. To control the amount of data that is recorded, you can configure the
following information for each type of event:

■ Enabled; you can enable or disable each event type for a particular recording.
Disabling events that occur often (such as synchronization events) helps reduce
the size of the recording.

■ Threshold; you can filter events that have duration by setting a threshold. Events
with shorter duration than the threshold are not saved.

■ Stack trace; you can enable or disable stack trace information for each event for the
point from which the event is generated. Creating stack traces can be costly but
can be extremely helpful to understanding why the event happened.

■ Request periods; you can configure the frequency with which a requestable events is
requested by the JRockit Flight Recorder run time.

JRockit Flight Recorder uses templates so that you do not need to modify all these
configuration options every time you start a recording. Sets of best-known options for
different tasks have been stored in both Mission Control templates and server-side
templates. You can use these templates as is or you can modify them to suit your
needs.

WARNING: Even though the data format for a flight recording
(.jfr) file is extremely compact, enabling too many event types in
the recording, especially resource heavy ones—such as those that
frequently collect stack traces—might produce large amounts of
data.

Mission Control Templates

4-2 Oracle JRockit Flight Recorder Run Time Guide

4.2 Mission Control Templates
When you start a recording in JRockit Mission Control Client, you will be prompted
for a recording template (see Figure 2–1). The template controls which events will be
enabled during the recording. The following templates are available by default:

■ Profiling Normal

■ Profiling with Locks

■ Profiling with Exceptions

■ Real Time

4.2.1 Profiling Normal
This template includes most of the profiling events of interest. Some very low level
events and very resource hungry events have been left out to ensure that the overhead
remains low.

Overhead: Since this template’s recording overhead is very low, you can use it in a
production environment. See the JRockit Flight Recorder online help for more
information.

4.2.2 Profiling with Locks
This template is very similar to the normal profiling template, except that it also
includes very low level locking events. This profile is useful when you are hunting
down lock-related issues; however, it will incur more overhead than the normal
template. You must start the JVM with -XX:+UseLockProfiling for this template to
work

Overhead: Since the JVM must be started with a flag that incurs overhead even when
not profiling, you should not use this template in a production environment.

4.2.3 Profiling with Exceptions
This template is very similar to the normal profiling template but it also includes
exception events with stack traces. This profile can be quite expensive if the
application throws a lot of exceptions. Of course, if that is happening, the application
is very likely running slower than it should. This profile is useful when you are
hunting down exception related issues but it, too, incurs more overhead than the
normal template.

Overhead: You can use this template in a production environment but be aware it
incurs more overhead than the default. This overhead is proportional to the number of
exceptions being thrown

4.2.4 Real Time
This template focuses on memory system related information, such as garbage
collection information. It uses the same event types as the built-in default recording.

Overhead: You can use this template in a production environment. It is enabled by
default and no overhead is introduced. See the JRockit Flight Recorder online help for
more information

Mission Control Templates

Controlling Recording Data by Using Templates 4-3

4.2.5 Modifying a Template
You can modify a template to change exactly which events are recorded and how.
Click on "Advanced…" to do this. Templates can be saved to disk and shared with
others.

4.2.6 Server-side Templates
When starting a recording from the command line or by using a diagnostic command,
a number of different templates are available ready-to-use. Table 4–1 describes this
templates.

Specify templates with the settings parameter when staring a recording; for example:

jrcmd <pid> start_flightrecording duration=5min settings=io

or

-XX:FlightRecorderOptions=defaultrecording=true,settings=default,settings=freemem

The preceding example shows how you can combine templates by specifying several
settings parameters.

You can also design custom templates by creating your own template file. The
templates are stored in .jfs files in the directory JROCKIT_HOME/jre/lib/jfr. The
easiest way to create your own template is to make a copy of one of the existing files
and modify it. For a detailed description of the file format, see Section A.3, "File
Format".

Table 4–1 Server-side Templates

Template Name Description

code Additional settings for enabling more verbose compiler logging.

default Default settings tuned for a very low performance overhead and
recommended for always-on production use.

freemem Additional settings for debugging out-of-memory and
fragmentation problems.

full Enables collection of all available events for all subsystems.
Warning: This has a very high performance overhead.

io Additional settings for enabling more verbose Java I/O logging.

leak Additional settings for debugging memory leaks.

locks Additional settings for enabling more verbose synchronization
logging.

memory Additional settings for enabling more verbose GC/memory
management logging.

off Disables all events for all subsystems.

profile Recommended settings for creating a profiling recording. They
provide a good balance between the amount of information
available and the performance overhead introduced.

sample Additional settings for enabling hotspot sampling of code.

semirefs Additional settings for debugging problems with
java.lang.ref.Reference objects and its subclasses.

Mission Control Templates

4-4 Oracle JRockit Flight Recorder Run Time Guide

5

Troubleshooting and Security 5-1

5Troubleshooting and Security

[5] This chapter describes JRockit Flight Recorder troubleshooting and security measures.

It includes these sections:

■ Section 5.1, "Troubleshooting"

■ Section 5.2, "Security"

5.1 Troubleshooting
You can enable a significant amount of diagnostic information from JRockit Flight
Recorder by starting the Oracle JRockit JVM with the command-line option
-Xverbose:jfr. To include more information, use -Xverbose:jfr=debug and
-Xverbose:jfr=trace. For more information on -Xverbose, see the Oracle JRockit
Command Line Reference on the Oracle Technology Network.

5.2 Security
The recording file can potentially contain security information (such as user names
and passwords, if they are specified on the command line). You should treat them with
care.

You can only start a recording by using one of the following means: the command line,
diagnostic commands, or JRockit Mission Control. These methods provide security as
described in Table 5–1:

Table 5–1 Security Permissions

Method Security

Command line Anyone with access to the command line of the JRockit process
must be trusted.

Diagnostic Command Only the owner of the JRockit process can use jrcmd to control
the process.

JRockit Mission Control
Client

JRockit Mission Control Client uses JMX to access JRockit. .

Security

5-2 Oracle JRockit Flight Recorder Run Time Guide

A

Creating Your Own Server-side Templates A-1

ACreating Your Own Server-side Templates

[6] This chapter describes how you can modify or write your own server-side templates.

It contains these sections:

■ Section A.1, "Event Types and Relational Keys"

■ Section A.2, "Server-side Templates"

■ Section A.3, "File Format"

■ Section A.4, "Concatenation Tool"

A.1 Event Types and Relational Keys
Event types are referenced by relational keys, describing what type of subsystem in the
JVM or application they belong to. The relational key for event types for all JVM
internal systems start with http://www.oracle.com/jrockit/jvm. The JVM has
different subsystems, such as vm which refers to the runtime, os that refers to the
operating system it runs on, java which refers to the executing Java program, and so
on; for example, the key for the event that is triggered upon the JVM entering a lock at
the native level is called:

http://www.oracle.com/jrockit/jvm/vm/sync/mutex_enter

The only other master relational key except for the
http://www.oracle.com/jrockit/jvm key you might encounter is
http://www.oracle.com/jrockit/jfr-info, which is the "meta producer" for Flight
Recorder; that is, event types internal to JRockit Flight Recorder.

A.2 Server-side Templates
Many event types are enabled in the default flight recording, however through
server-side templates you can customize this.

A server-side template is a file with the suffix .jfs. It contains data in JSON format,
which is used to modify or extend the settings of a flight recording. Normally, you do
not need to create your own server-side template but, should you have to do this, you
can modify one of the sample templates in the JROCKIT_HOME/jre/lib/jfr folder.

You can pass server-side templates that customize a recording to the Oracle JRockit
JVM by using the -XX:FlightRecorderOptions with the settings subflag or by using
the start_flightrecording diagnostic command. settings can either be the name of
a predefined template (located in JROCKIT_HOME/jre/lib/jfr) or the path to a
completely custom template.

File Format

A-2 Oracle JRockit Flight Recorder Run Time Guide

A.3 File Format
Each server-side template consists of a single section, containing mappings of
relational keys representing event types to their customized properties. For each event
type, you can set the properties enable, stacktrace, threshold, and period:

■ Set enable to either true or false, depending on whether or not the recording
should contain this event.

■ Set stacktrace to either true or false, depending on if a stack trace should be
collected from the point that triggered the event.

■ Set a threshold for the minimum duration of the event (where applicable) that
you want logged.

■ Set period to how often you want the event triggered (for requestable events); for
example how often exception statistics should be gathered for events in the
/java/statistics/exceptions event under the key
http://www.oracle.com/jrockit/jvm. If period is set to 0 this specifies a constant
event; that is, one that is only generated once per recording (such as logging the
system properties). Depending on event types, the number of applicable modifiers
might vary.

The typical format for a server-side template (.jfs) file is shown in Example A–1:

Example A–1 Typical Format for a Server-side Template

{
 <relational-key> : {
 <sub-key 1> : {
 <attribute> : <value>
 <attribute> : <value>
 ...
 <attribute> : <value>
 },
 ...
 <sub-key 2> : {
 <attribute> : <value>
 <attribute> : <value>
 ...
 <attribute> : <value>
 },
 },
 ...
}

For readability, the relational key is usually split into several levels; for example, a
server-side template enabling more verbose Java I/O information in the recording
might look like Example A–2:

Example A–2 Server-side Template Enabling More Verbose Java I/O Information in the
Recording

{
 "http://www.oracle.com/jrockit/jvm/" : {

 // Socket/SocketChannel read/write
 "java/socket_*" : {
 "enable" : true,
 "stacktrace" : true
 },

Concatenation Tool

Creating Your Own Server-side Templates A-3

 // FileInputStream/RandomAccessFile/FileChannel read/write
 "java/file_*" : {
 "enable" : true,
 "stacktrace" : true
 }
 }
}

You can use wildcard for attributes and relational keys. In Example A–1, all event
types with descriptors starting with
http://www.oracle.com/jrockit/jvm/java/socket_ and
http://www.oracle.com/jrockit/jvm/java/file_ are enabled (with stack trace
recording).

Wildcards can be arbitrarily powerful. For example, in Example A–3, brute force
enables collections of all event types, with a minimum period of 1,000 ms to avoid
extreme data bloat:

Example A–3 Brute Force Enabling the Collecting of All Event Types

// Settings file for JRockit Flight Recorder enabling collection of all events
{
 "*" : {
 "enable" : true,
 "stacktrace" : true,
 "threshold" : 0,
 "period" : 1000ms
 }
}

You should copy and play around with the pre-installed custom templates available in
the JROCKIT_HOME/jre/lib/jfr to get a better understanding of how this works.

A.4 Concatenation Tool
The JRockit Flight Recorder repository is made up of multiple files which you might
find tedious to open, one after the other, in JRockit Mission Control. You can, however,
use a Flight Recorder tool that concatenates all of the recording files in a repository
into a single file that you can then open in JRockit Mission Control.

Use the concatenation tool by entering this command:

java oracle.jrockit.jfr.tools.ConCatRepository [directory] [-o output_filename]
[-f]

■ If no arguments are given, the tool creates a file based on the timestamps from the
chunk files in the current directory.

■ If directory is specified, that directory is used as repository.

■ If -o output_filename is specified, the resulting file is named output_filename.

■ If -f is specified, any existing file with the same name is overwritten.

Concatenation Tool

A-4 Oracle JRockit Flight Recorder Run Time Guide

B

Command Reference B-1

BCommand Reference

This appendix serves as a basic reference to the commands you can use with the
JRockit Flight Recorder. It contains these sections:

■ Section B.1, "Start-up Commands"

■ Section B.2, "Diagnostic Command Reference"

B.1 Start-up Commands
Start-up Commands are the -X and -XX command-line options that you enter when
you start a Java program. The specific JRockit Flight Recorder command-line options
are:

■ -XX:+|-FlightRecorder

■ -XX:FlightRecorderOptions

■ -XX:+|-FlightRecordingDumpOnUnhandledException

■ -XX:FlightRecordingDumpPath

■ -XX:StartFlightRecording

These commands are described in the Oracle JRockit Command Line Reference, available
on the Oracle Technology Network.

B.2 Diagnostic Command Reference
This is a description of the Diagnostic Commands available to control JRockit Flight
Recorder and the parameters available for each command. This information is also
available by typing jrcmd <pid> help <command>. The diagnostic commands
associated with the JRockit Flight Recorder are:

■ start_flightrecording

■ check_flightrecording

■ stop_flightrecording

■ dump_flightrecording

Note: You should use -XX options only if you have a thorough
understanding of your system. If you use these commands
improperly, you might affect the stability or performance of your
system. -XX options are subject to change at any time.

Diagnostic Command Reference

B-2 Oracle JRockit Flight Recorder Run Time Guide

These commands are described in the Oracle JRockit Command Line Reference, available
on the Oracle Technology Network.

For more information on using jrcmd, see "Using jrmcd" in the Oracle JRockit JDK Tools.

B.2.1 start_flightrecording
 The start_flightrecording diagnostic command starts a flight recording. Table B–1
lists the parameters you can use with this command.

B.2.2 check_flightrecording
 The check_flightrecording diagnostic command checks running flight recordings.
Table B–2 lists the parameters you can use with this command.

B.2.3 stop_flightrecording
The stop_flightrecording diagnostic command stops running flight recordings.
Table B–3 lists the parameters you can use with this command.

Table B–1 start_flightrecording

Parameter Description Type of value Default

name Name of recording String

settings Server-side template String

defaultrecording Starts default recording Boolean False

delay Delay start of recording Time 0s

duration Duration of recording Time 0s (means
"forever")

filename Resulting recording filename String

compress GZip compress the resulting
recording file

Boolean False

maxage Maximum age of buffer data Time 0s (means "no
age limit")

maxsize Maximum size of buffers in bytes Long 0 (means "no
max size")

Table B–2 check_flightrecording

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

verbose Print verbose data about the
recording(s)

Boolean False

Table B–3 stop_flightrecording

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

discard Discards the recording data Boolean

copy_to_file Copy recording data to file String

Diagnostic Command Reference

Command Reference B-3

B.2.4 dump_flightrecording
The dump_flightrecording diagnostic command dumps flight recordings. Table B–4
lists the parameters you can use with this command.

compress_copy GZip compress "copy_to_file"
destination

Boolean False

Table B–4 dump_flightrecording

Parameter Description Type of value Default

name Recording name String

recording Recording id Long 1

copy_to_file Copy recording data to file String

compress_copy GZip compress "copy_to_file"
destination

Boolean False

Table B–3 (Cont.) stop_flightrecording

Parameter Description Type of value Default

Diagnostic Command Reference

B-4 Oracle JRockit Flight Recorder Run Time Guide

C

Events C-1

CEvents

The Flight Recorder records "events" that occur during run time. An event is a distinct
data point with associated data; that is, it is any occurrence during run time that can be
recorded, such as the CPU load at a certain time or a thread waiting for a lock. These
events are then reported on the Flight Recorder GUI to provide insight into system
health and behavior.

This appendix describes the structure of events and how these events are used. This
list describes the events reported by the JVM and class libraries only. Additional
events are available from applications running on the JVM (such as WebLogic Server).

Table C–1 lists the events you can capture in a flight recording.

Note: This appendix contains a number of Oracle JRockit- and
JVM-specific terms that might be unfamiliar to you. If you encounter
any unfamiliar terminology, we recommend you refer to the other
documentation in the Oracle JRockit library.

Table C–1 JRockit Flight Recorder Events

Name Description Path

Exception Thrown java/exception_throw

File Read Reading from Java
FileInputStream/RandomAcc
essFile/FileChannel

java/file_read

File Write Writing to Java
FileInputStream/RandomAcc
essFile/FileChannel

java/file_write

Java Monitor Enter Entering Java monitor java/monitor_enter

Java Monitor Wait Waiting for Java monitor java/monitor_wait

Object Allocated in
New TLA

Object was allocated, which
required a new thread local
area (TLA) to be retrieved

java/object_alloc_in_new_tla

Object Allocated
outside TLA

Object was allocated outside a
TLA, directly on the heap

java/object_alloc_outside_tla

Socket Read Reading from Java
Socket/SocketChannel

java/socket_read

Socket Write Writing to Java
Socket/SocketChannel

java/socket_write

C-2 Oracle JRockit Flight Recorder Run Time Guide

Allocated by Thread Total number of bytes and
TLAs that have been allocated
by the thread

java/statistics/alloc_thread

Allocated by All
Threads

Summary of the total number
of bytes and TLAs that have
been allocated, for all threads

java/statistics/alloc_total

Exception Count Accumulated number of
thrown exceptions

java/statistics/exceptions

Java Lock Profiling
Snapshot

Detailed profiling information
on Java locking for class

java/statistics/lock_profile

Java Thread Statistics java/statistics/threads

Java Thread End java/thread_end

Java Thread Park Waiting in
LockSupport.park()

java/thread_park

Java Thread Sleep java/thread_sleep

Java Thread Start java/thread_start

Thread Context Switch
Rate

os/context_switch_rate

CPU Load Sample

Environment Variables os/environment

Physical Memory
Statistics

os/physical_memory

Active System
Processes

os/processes

List of Active
Recordings

recordings/active

Event Settings
Changed

recordings/settingsChanged

Class GC Free Data vm/class/free

Class Load vm/class/load

Class GC Unlink Removal of unreachable
classes

vm/class/unlink

Class Unload vm/class/unload

Code GC Call Prune Removal of calls to obsolete
code

vm/codegc/prune_calls

Code GC Code Prune Cleanup of global lookup
tables

vm/codegc/prune_code

Code GC Free Data vm/codegc/release_code

Compiler Statistics vm/compiler/compiler_statistics

Compilation Abort Aborted compilation due to
exception or error

vm/compiler/fail

JIT Code Compilation vm/compiler/jit_compile

Method Inline vm/compiler/method_inline

Table C–1 (Cont.) JRockit Flight Recorder Events

Name Description Path

Events C-3

Optimized Code
Compilation

vm/compiler/opt_compile

Code Performance
Warning

Performance warning for
compiled method

vm/compiler/performance_log

JIT Compiler Phase
Level 1

Statistics for specific JIT
compilation phase

vm/compiler/phases/jit_phase_
level_1

JIT Compiler Phase
Level 2

Statistics for specific JIT
compilation phase

vm/compiler/phases/jit_phase_
level_2

JIT Compiler Phase
Level 3

Statistics for specific JIT
compilation phase

vm/compiler/phases/jit_phase_
level_3

JIT Compiler Phase
Trace Level 1

Detailed statistics for specific
JIT compilation phase

vm/compiler/phases/jit_phase_
trace_level_1

JIT Compiler Phase
Trace Level 2

Detailed statistics for specific
JIT compilation phase

vm/compiler/phases/jit_phase_
trace_level_2

JIT Compiler Phase
Trace Level 3

Detailed statistics for specific
JIT compilation phase

vm/compiler/phases/jit_phase_
trace_level_3

Optimizer Phase Level
1

Statistics for specific code
optimization phase

vm/compiler/phases/opt_phase_
level_1

Optimizer Phase Level
2

Statistics for specific code
optimization phase

vm/compiler/phases/opt_phase_
level_2

Optimizer Phase Level
3

Statistics for specific code
optimization phase

vm/compiler/phases/opt_phase_
level_3

Optimizer Phase Trace
Level 1

Detailed statistics for specific
code optimization phase

vm/compiler/phases/opt_phase_
trace_level_1

Optimizer Phase Trace
Level 2

Detailed statistics for specific
code optimization phase

vm/compiler/phases/opt_phase_
trace_level_2

Optimizer Phase Trace
Level 3

Detailed statistics for specific
code optimization phase

vm/compiler/phases/opt_phase_
trace_level_3

CPU Information Detailed description of the
CPU(s) in the system

vm/cpu_info

Free Memory Cache
Bucket Element

Individual free memory cache
bucket element

vm/freemem/cache_bucket_elem

Free Memory Cache
Bucket Summary

Summary of an individual
bucket in the free memory
cache

vm/freemem/cache_bucket_total

Free Memory Cache
Summary

Summary of free memory in
the free memory cache,
excluding the free memory
list and the free memory TLA
cache

vm/freemem/cache_total

Free Memory List
Element

Individual free memory list
element

vm/freemem/list_elem

Free Memory List
Summary

Summary of free memory in
the free memory list,
excluding the free memory
cache and the free memory
TLA cache

vm/freemem/list_total

Pending Allocation
Request Created

Pending allocation request is
created by the thread

vm/gc/alloc_pending/request_
created

Table C–1 (Cont.) JRockit Flight Recorder Events

Name Description Path

C-4 Oracle JRockit Flight Recorder Run Time Guide

Pending Allocation
Request Got OOM

Pending allocation request
was denied and turned into
an OutOfMemoryException
by the garbage collector

vm/gc/alloc_pending/request_got_
oom

Pending Allocation
Request Satisfied

Pending allocation request is
satisfied by the garbage
collector

vm/gc/alloc_pending/request_
satisfied

Pending Allocations at
GC End

Summary of the pending
allocation requests at the end
of the garbage collection

vm/gc/alloc_pending/summary_gc_
end

Pending Allocations at
GC Start

Summary of the pending
allocation requests at the start
of the garbage collection

vm/gc/alloc_pending/summary_gc_
start

Compaction Compaction of the live data
on the heap, done as part of
an old collection

vm/gc/compaction/compaction

Compaction Heap
Shrink Preparation

Compaction prepared for
shrinking the heap

vm/gc/compaction/heap_shrink_
preparation

Compaction Move
Phase

Move phase of a dual-phased
compaction

vm/gc/compaction/phases/move

Compaction Update
Phase

Update phase of a
dual-phased compaction

vm/gc/compaction/phases/update

GC Configuration Configuration of parameters
for the garbage collector

vm/gc/configuration

Emergency Parallel
Sweep Requested

Garbage collector changed
sweep from concurrent to
parallel due to special
circumstances

vm/gc/emergency_parallel_sweep_
requested

Garbage Collection Garbage collection performed
by the JVM (old collection or
young collection)

vm/gc/garbage_collection

Heap Size Changed Change of the heap size
(expansion or contraction)

vm/gc/heap_size_changed

Heap Blocks Snapshot Statistics for contiguous
blocks of heap memory (used,
free, dark matter)

vm/gc/heap_statistics/blocks

Heap Usage Snapshot Statistics for classes that take
up more than 0.5% of the
heap

vm/gc/heap_statistics/class

GC History Summary of previously
finished garbage collections

vm/gc/history

GC Mode Changed Garbage collector changed
mode

vm/gc/mode_changed

Old Collection Old collection performed by
the JVM (collecting the whole
heap)

vm/gc/oc/old_collection

OC Mark Phase Mark phase of an old
collection

vm/gc/oc/phases/mark

OC Sweep Phase Sweep phase of an old
collection

vm/gc/oc/phases/sweep

Table C–1 (Cont.) JRockit Flight Recorder Events

Name Description Path

Events C-5

GC Concurrent Phase Top-level phase of the
garbage collection, during
which the threads are running

vm/gc/phases/concurrent

GC Stopped Phase Top-level phase of the
garbage collection, during
which the threads are stopped

vm/gc/phases/stopped

GC Transition Phase
from Stopped

Top-level phase of the
garbage collection, during
which the threads are
transitioning from stopped to
running

vm/gc/phases/transition_from_
stopped

GC Transition Phase to
Stopped

Top-level phase of the
garbage collection, during
which the threads are
transitioning from running to
stopped

vm/gc/phases/transition_to_
stopped

GC Concurrent
Sub-Level 1 Phase

Sub-level phase of the
garbage collection, during
which the threads are running

vm/gc/phases_sublevels/level_
1/concurrent

GC Stopped Sub-Level
1 Phase

Sub-level phase of the
garbage collection, during
which the threads are stopped

vm/gc/phases_sublevels/level_
1/stopped

GC Concurrent
Sub-Level 2 Phase

Sub-level phase of the
garbage collection, during
which the threads are running

vm/gc/phases_sublevels/level_
2/concurrent

GC Stopped Sub-Level
2 Phase

Sub-level phase of the
garbage collection, during
which the threads are stopped

vm/gc/phases_sublevels/level_
2/stopped

GC Concurrent
Sub-Level 3 Phase

Sub-level phase of the
garbage collection, during
which the threads are running

vm/gc/phases_sublevels/level_
3/concurrent

GC Stopped Sub-Level
3 Phase

Sub-level phase of the
garbage collection, during
which the threads are stopped

vm/gc/phases_sublevels/level_
3/stopped

GC Concurrent
Sub-Level 4 Phase

Sub-level phase of the
garbage collection, during
which the threads are running

vm/gc/phases_sublevels/level_
4/concurrent

GC Stopped Sub-Level
4 Phase

Sub-level phase of the
garbage collection, during
which the threads are stopped

vm/gc/phases_sublevels/level_
4/stopped

GC Requested Garbage collection request
generated by the requesting
thread, including the reason
for the garbage collection

vm/gc/request

Semiref Processing
Phase Snapshot

Number of semirefs (reference
objects and handles) that were
processed during different
garbage collection phases

vm/gc/semiref/counts_phase

Semiref State Snapshot Number of semirefs (reference
objects and handles) in
different states

vm/gc/semiref/counts_state

Table C–1 (Cont.) JRockit Flight Recorder Events

Name Description Path

C-6 Oracle JRockit Flight Recorder Run Time Guide

Semiref Soft Alive
Snapshot

Number of soft references
that were soft alive (i.e. not
eligible for garbage collection
due to too recent access)

vm/gc/semiref/counts_state_
softalive

Semiref Class Snapshot Detailed information on all
pairs of semiref and referent
classes

vm/gc/semiref/details_class

Total Semiref Count Total number of semirefs
(reference objects and
handles)

vm/gc/semiref/total

GC Strategy Changed Garbage collector changed
strategy

vm/gc/strategy_changed

Young Collector
Nursery Snapshot

Updated status of the nursery
after a young collection

vm/gc/yc/nursery

YC Promotion Failed Promotion of an object failed
during a young collection,
since the old space of the heap
is full

vm/gc/yc/promotion_failed

Young Collection Young collection performed
by the JVM (collecting the
nursery only)

vm/gc/yc/young_collection

JVM Information Description of JVM, Java
application and Operating
System

vm/info

Method Profiling
Sample

Snapshot of the state of a
thread

vm/prof/execution_sample

Method Hotspot
Sample

A more lightweight sample of
the state of a thread state. This
redundant and not generated
if 'execution_sample' is
enabled.

vm/prof/hotspotsample

Memory Usage Snapshot of JVM virtual
memory footprint

vm/prof/memory_usage

JVM Event Wait vm/sync/event_wait

JVM Lock Profiling
Sample

Detailed profiling information
on a JVM lock object

vm/sync/lock_profile

JVM Monitor Wait vm/sync/monitor_wait

JVM Mutex Enter vm/sync/mutex_enter

System Properties System properties set at
command line

vm/system_properties

JVM Thread Sleep vm/thread/sleep

JVM Thread Suspend Suspension of JVM Thread vm/thread/suspend

JVM Thread
Suspended

vm/thread/suspended

Table C–1 (Cont.) JRockit Flight Recorder Events

Name Description Path

	Contents
	Preface
	About the Document
	Documentation Accessibility
	Conventions

	1 Introduction
	1.1 Overview
	1.2 Flight Recorder Uses
	1.2.1 Profiling
	1.2.2 "Black Box" Problem Analysis
	1.2.3 Support and Debugging

	1.3 Understanding Events
	1.4 Performance Overhead
	1.5 Memory and Disk Buffers
	1.6 Garbage Collections and the Flight Recorder

	2 Quick Start Procedures
	2.1 Using JRockit Mission Control Client
	2.2 Step 1: Start the Flight Recorder
	2.3 Step 2: Set Recording Parameters
	2.4 Step 3: Start the Recording
	2.5 Stopping a Recording
	2.6 Additional Information on the Flight Recorder GUI

	3 Starting the Flight Recorder
	3.1 Note on Running Multiple Recordings
	3.2 Running the Default Recording
	3.2.1 Starting the Recording
	3.2.2 Configuring Disk Storage
	3.2.2.1 Setting the Repository Location
	3.2.2.2 Setting the Amount of Data Stored

	3.2.3 Default Start-Up Example

	3.3 Starting an Explicit Recording
	3.3.1 Controlling the Flight Recorder for Explicit Recordings
	3.3.1.1 JRockit Mission Control Client
	3.3.1.2 Command-Line Option
	3.3.1.3 Diagnostic Commands

	3.3.2 Starting a Recording
	3.3.3 Checking Recording Status
	3.3.4 Stopping a Recording

	3.4 Configuring Explicit Recordings
	3.4.1 Setting Maximum Size and Age
	3.4.2 Setting the Delay
	3.4.3 Setting Compression

	3.5 Creating Recordings Automatically
	3.5.1 Creating a Recording On Exit
	3.5.2 Creating a Recording On an Unhandled Exception
	3.5.3 Creating a Recording by Using Triggers
	3.5.4 Manually Dumping Recording Data

	4 Controlling Recording Data by Using Templates
	4.1 What You Can Control
	4.2 Mission Control Templates
	4.2.1 Profiling Normal
	4.2.2 Profiling with Locks
	4.2.3 Profiling with Exceptions
	4.2.4 Real Time
	4.2.5 Modifying a Template
	4.2.6 Server-side Templates

	5 Troubleshooting and Security
	5.1 Troubleshooting
	5.2 Security
	A.1 Event Types and Relational Keys
	A.2 Server-side Templates
	A.3 File Format
	A.4 Concatenation Tool
	B.1 Start-up Commands
	B.2 Diagnostic Command Reference
	B.2.1 start_flightrecording
	B.2.2 check_flightrecording
	B.2.3 stop_flightrecording
	B.2.4 dump_flightrecording

