ORACLE

Oracle® Fusion Middleware

Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server
11g Release 1 (10.3.3)

E16435-01

April 2010

This document explains the use of version 1.1 plug-ins
provided for proxying requests to third party administration
servers. This document is intended mainly for system
administrators who manage the WebLogic Server application
platform and its various subsystems.

Oracle Fusion Middleware Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server, 11g Release 1 (10.3.3)
E16435-01

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ... e e e ettt aen v
Documentation AccesSibility ..o Y,
CONMVEIIEIONS ..eeiiieeeieieeeeeteee ettt e e ettt e e e e ettt e e e es et teeeessaateeeesesassaeeeessansaseessssnsaseesssassanseesssssssessesnnnsseesensnn %

1 Introduction and Roadmap

Document Scope and AUdIence ... 1-1
Guide to this Document..............ccoiiiiiiiiiii e 1-1
Related Documentation ... 1-1
New and Changed Features in This Release.............ccccocooviiiiinnninniincc, 1-1

2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

What Are PIUg-INS? ..o 2-1
Connection Pooling and Keep-ALIVe.........ccccciiiiiiiiiicicccceceeeeeeereeeeeee e 2-1
ProxXying ReqUESES........ccoiiiiiiiiiii s 2-2

Version 1.1 Plug-Ins Available for Downloadcccccooviiinnncccc, 2-2
Version 1.0 Plug-Ins Are Deprecatedcoiiiiiiiiiiiiiiiccccececeeneeeceseseseeenenes 2-2

Upgrading From the Version 1.0 PIug-INscccccoviviniiiiiiinic s 2-3

New Features of the Version 1.1 PIug-Ins............cccccccoiiiiiiiiiiinne 2-3
Apache Plug-In Now Supports Oracle HTTP Server ..., 2-3
Standard Encryption Strength Allows Simplified Naming ..o, 2-3
Version 1.1 Plug-Ins Use Oracle Security Framework.........cccccovoveiiioiiiiniicccecee 2-4
Version 1.1 Plug-Ins SUPPOIt IPVO........ccooiiiiiiiiiiiiss s 2-4
Version 1.1 Plug-Ins Support Two-Way SSLcccoo e, 2-4

Plug-In Supported Platforms..............ccccccoiiiiiiiiiiiii s 2-4

Downloading the Version 1.1 PIug-INScccccoviiiiiiiniiiiiiiiiicc s 2-4

3 Installing and Configuring the Apache HTTP Server Plug-In

Install the Apache HTTP Server Plug-In ..o 3-1
Installation PrerequiSites. ... 3-1
Installing the Apache HTTP Server Plug-In as a Dynamic Shared Objectccooeveveenencnn. 3-2

Configure the Apache HTTP Server Plug-In..........c.cccooooiiiiiiiiiiii e 3-3
Editing the httpd.conf File ... 3-3

Placing WebLogic Properties Inside Location or VirtualHost Blocks...........cccccccceuiiniinns 3-5
Including a weblogic.conf File in the httpd.conf File..........ccccccocooniinin, 3-5
Creating weblogic.conf Files ... 3-6

Sample weblogic.conf Configuration Files...........ccccoiiiiiiiiie 3-7
Template for the Apache HTTP Server httpd.conf File.........ccocooviiiiiiii 3-8

4 Configuring the Plug-In for Oracle HTTP Server
Configuring the Plug-In for Oracle HTTP Servercccccooviiiiiiniiiiiiies 4-1

5 Installing and Configuring the Microsoft IIS Plug-in

Installing and Configuring the Microsoft Internet Information Server Plug-In....................... 5-1
Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0 5-5
Using Wildcard Application Mappings to Proxy by Path..............cccocooiiii 5-10

Installing Wildcard Application Mappings (IIS 6.0)ccooviriiiiiiiiiiiiceee, 5-10

Adding a Wildcard Script Map for IIS 7.0c.cccoouiiiiirriicrccreeecereeeeeeeeeeeeeee s 5-10
Proxying Requests from Multiple Virtual Web Sites to WebLogic Servercccccccoce.e. 5-11

Sample iiSProXy.ini File.......coooiiiiiii 5-11
Creating ACLs Through IIS ... 5-12
Proxying Servlets from IIS to WebLogic Server...........cccooiiiiiiiiiiniiiicceea 5-12
Testing the Installation.............cccccooiiiiiiiiii s 5-13

6 Performing Common Tasks

Use SSL With PIug-INscccccocoviniiiiiiiiiiiiiii s 6-1
Configure Libraries for SSL ... 6-2
Configure Apache Libraries for SSL ... 6-2
Configuring a Plug-In for One-Way SSL..........ccoooiiiiii e, 6-2
Configure Two-Way SSL Between the Plug-In and WebLogic Server...........cccccoevcicicccnnes 6-3
Issues with SSL-Apache Configuration ..., 6-4
Use IPV6 With PIUG-INSccccoviiiiiiiiiiiiiii s 6-4
Set Up Perimeter Authentication ..o 6-5
Understanding Connection Errors and Clustering Failover..............ccccocoiiinnnnnn, 6-5
Possible Causes of Connection Failures.............cccccoiiiiiiiiiiiiiiii, 6-6
Tuning Apache Plug-In to Reduce Connection_Refused Errors..........cccccovvvveninccnncnncnecnce. 6-6
Failover with a Single, Non-Clustered WebLogic Server ... 6-7
The Dynamic Server LiSt.........cccocviiiiiiiiiiiiiiiirc e 6-7
Failover, Cookies, and HT TP SESSIONSccoviiuiiiiieieiceieeie ettt eeeeetee et eree et eeaeeenaeesaeeenaeennee s 6-7

7 Parameters for Web Server Plug-ins

Entering Parameters in Web Server Plug-In Configuration Files................cccccooninni 7-1
General Parameters for Web Server Plug-Insccccccoooviiiiiiiniiis 7-1

Location of POST Data FIlEs ...ttt es 7-14
SSL Parameters for Web Server Plug-Ins.............cccooviiiniiiininiiiicccc 7-14

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

vi

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

1

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Using Web Server
1.1 Plug-Ins with Oracle WebLogic Server.

1.1 Document Scope and Audience

This document explains use of plug-ins provided for proxying requests to third party
administration servers. This document is intended mainly for system administrators
who manage the Oracle WebLogic Server application platform and its various
subsystems.

1.2 Guide to this Document

This chapter introduces the organization of this guide. The guide is organized as
follows:

Chapter 2, "Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server" describes
the plug-ins provided by Oracle for use with WebLogic Server.

Chapter 3, "Installing and Configuring the Apache HTTP Server Plug-In" describes
how to install and configure the Apache HTTP Server plug-in.

Chapter 4, "Configuring the Plug-In for Oracle HTTP Server" describes how to
install and configure the Oracle HTTP Server plug-in.

Chapter 5, "Installing and Configuring the Microsoft IIS Plug-In" describes how to
install and configure the Microsoft Internet Information Server plug-in.

Chapter 6, "Performing Common Tasks" describe common tasks that you perform
for the plug-ins provided by Oracle for use with WebLogic Server.

Chapter 7, "Parameters for Web Server Plug-Ins" describes the parameters that
you use to configure the Apache and Microsoft IIS Web server plug-ins.

1.3 Related Documentation

This document contains information on using Web server plug-ins.

For general information about the available Oracle WebLogic Server documentation,
see Information Roadmap for Oracle WebLogic Server .

1.4 New and Changed Features in This Release

The version 1.1 plug-ins described in this document are new in this release.

Introduction and Roadmap 1-1

New and Changed Features in This Release

For a comprehensive listing of the other new Oracle WebLogic Server features
introduced in this release, see What’s New in Oracle WebLogic Server.

1-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

2

Using Web Server 1.1 Plug-lns with Oracle
WebLogic Server

The following sections describe the plug-ins provided by Oracle for use with
WebLogic Server:

= Section 2.1, "What Are Plug-Ins?"

» Section 2.2, "Version 1.1 Plug-Ins Available for Download"
= Section 2.4, "New Features of the Version 1.1 Plug-Ins"

= Section 2.5, "Plug-In Supported Platforms"

= Section 2.6, "Downloading the Version 1.1 Plug-Ins"

2.1 What Are Plug-Ins?

Plug-ins are small software programs that developers use to extend a WebLogic Server
implementation.

The plug-ins allow requests to be proxied from an Apache HTTP Server, Oracle HTTP
Server, or Microsoft Internet Information Server (IIS) to WebLogic Server. In this way,
plug-ins enable the HTTP server to communicate with applications deployed on the
WebLogic Server.

The plug-in enhances an HTTP server installation by allowing WebLogic Server to
handle those requests that require dynamic functionality. That is, you typically use a
plug-in where the HTTP server serves static pages such as HTML pages, while
dynamic pages such as HTTP Servlets or Java Server Pages (JSPs) are served by
WebLogic Server.

WebLogic Server may be operating in a different process, possibly on a different host.
To the end user—the browser—the HTTP requests delegated to WebLogic Server still
appear to be coming from the HTTP server.

In addition, the HTTP-tunneling facility of the WebLogic client-server protocol also
operates through the plug-in, providing access to all WebLogic Server services.

2.1.1 Connection Pooling and Keep-Alive

The plug-ins improve performance using a pool of connections from the plug-in to
WebLogic Server. The plug-in implements HTTP 1.1 keep-alive connections between
the plug-in and WebLogic Server by reusing the same connection for subsequent
requests from the same client. If the connection is inactive for more than 20 seconds,
(or a user-defined amount of time) the connection is closed. The connection with the
client can be reused to connect to the same client at a later time if it has not timed out.

Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server 2-1

Version 1.1 Plug-Ins Available for Download

You can disable this feature if desired. For more information, see KeepAliveEnabled
in Table 7-1.

2.1.2 Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests based on either the URL of the request or a portion of
the URL. This is called proxying by path.

You can also proxy a request based on the MIME type of the requested file, which is
called proxying by file extension.

You can also enable both methods. If you do enable both methods and a request
matches both criteria, the request is proxied by path.

You can also specify additional parameters for each of these types of requests that
define additional behavior of the plug-in.

2.2 Version 1.1 Plug-Ins Available for Download

The version 1.1 plug-ins are not bundled with WebLogic Server but are instead
available for download.

See Section 2.6, "Downloading the Version 1.1 Plug-Ins" for instructions on
downloading the plug-ins.

The following version 1.1 plug-ins are available for download for use with this release
of Oracle WebLogic Server:

= Apache HTTP Server 2.2.x
= Microsoft Internet Information Server (IIS 6.0 and IIS 7.0).

Oracle HTTP Server uses the Apache HTTP Server plug-in, which is bundled with
Oracle HTTP Server.

2.2.1 Version 1.0 Plug-Ins Are Deprecated

The version 1.0 plug-ins are deprecated in this release of Oracle WebLogic Server. The
version 1.1 plug-ins are the recommended replacement.

The version 1.1 plug-ins are a superset of the version 1.0 plug-ins described in Using
Web Server Plug-Ins with Oracle WebLogic Server and support all of the existing features,
with the exception of the Sun Java System Web Server.

Note: If you need to use a plug-in with Sun Java System Web Server,
continue to use the version 1.0 plug-in.

The version 1.1 plug-in supports Apache HTTP Server 2.2.x only. If
you need to use Apachel.3.x or Apache 2.0.x, continue to use the
version 1.0 plug-in.

As in previous releases, the version 1.0 plug-ins continue to be bundled with Oracle
WebLogic Server. However, the version 1.0 plug-ins are not guaranteed to be bundled
with future versions of Oracle Weblogic Server. Oracle recommends that you instead
download and use the version 1.1 plug-ins as described in Section 2.6, "Downloading
the Version 1.1 Plug-Ins".

2-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

New Features of the Version 1.1 Plug-Ins

2.3 Upgrading From the Version 1.0 Plug-Ins

The version 1.1 plug-ins are a superset of the version 1.0 plug-ins described in Using
Web Server Plug-Ins with Oracle WebLogic Server and support the existing features.
However, keep the following considerations in mind when you upgrade:

» The list of supported platforms has changed, as described in Section 2.5, "Plug-In
Supported Platforms".

s The version 1.1 plug-ins support most of the existing version 1.0 plug-in features,
with the exception of the Sun Java System Web Server. If you need to use a plug-in
with Sun Java System Web Server, continue to use the version 1.0 plug-in. If you
need to use Apache 1.3.x or Apache 2.0.x, continue to use the version 1.0 plug-in.

= If you have been using 128-bit encryption, you need to change your configuration
file to reflect the new naming convention, as described in Section 2.4.2, "Standard
Encryption Strength Allows Simplified Naming". For example, you need to change
mod_wl128_22.so to mod_wl.so.

2.4 New Features of the Version 1.1 Plug-Ins

This section describes the new features of the version 1.1 plug-ins. The following
topics are described:

» Section 2.4.1, "Apache Plug-In Now Supports Oracle HTTP Server"

= Section 2.4.2, "Standard Encryption Strength Allows Simplified Naming"
» Section 2.4.3, "Version 1.1 Plug-Ins Use Oracle Security Framework"

= Section 2.4.4, "Version 1.1 Plug-Ins Support IPv6"

= Section 2.4.5, "Version 1.1 Plug-Ins Support Two-Way SSL"

2.4.1 Apache Plug-In Now Supports Oracle HTTP Server

In previous releases of Oracle WebLogic Server, Oracle HTTP Server required the use
of the mod_wl_ohs.so plug-in included with Oracle HTTP Server. This plug-in is
documented in Oracle Fusion Middleware Administrator’s Guide for Oracle HTTP Server.

As of this release or Oracle WebLogic Server, Oracle HTTP Server is now supported by
the same version 1.1 plug-in as is used for the Apache Server.

See Chapter 4, "Configuring the Plug-In for Oracle HTTP Server" for information
about how to use this plug-in with Oracle HTTP Server.

2.4.2 Standard Encryption Strength Allows Simplified Naming

Because the version 1.0 plug-ins supported both 40- and 128-bit encryption standards,
the plug-in file names needed to identify which standard was supported. For example,
mod_wl_22 . so indicated 40-bit encryption and mod_w1l128_22. so indicated
128-bit encryption.

However, the version 1.1 plug-ins support only 128-bit encryption, and the plug-in
names are now simplified. For example, mod_w1 . so is the only file name required.

Note: If you upgrade from the 1.0 plug-ins and had been using
128-bit encryption, you need to change your configuration file to
reflect the new naming convention. For example, you need to change
mod_wll28_22.soto mod_wl.so.

Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server 2-3

Plug-In Supported Platforms

2.4.3 Version 1.1 Plug-Ins Use Oracle Security Framework

The version 1.1 plug-ins use the Oracle certified security framework, and can therefore
use Oracle wallets to store SSL configuration information.

For this reason, the version 1.1 plug-ins introduce a new SSL configuration parameter
WLSSLWallet to use Oracle wallets.

You can configure the certificates in the Oracle wallet with a command line tool that is
provided with the plug-in binary files. See Section 6.1, "Use SSL With Plug-Ins" for
information about configuring SSL.

2.4.4 Version 1.1 Plug-Ins Support IPv6

The version 1.1 plug-ins support IPv6. The WebLogicHost and WebLogicCluster
configuration parameters (see Table 7-1) now support IPv6 addresses.

See Section 6.2, "Use IPv6 With Plug-Ins" for additional information.

2.4.5 Version 1.1 Plug-Ins Support Two-Way SSL

The version 1.1 plug-ins provide two-way SSL support for verifying client identity.
Two-way SSL is automatically enforced when WebLogic Server requests the client
certificate during the handshake process.

See Section 6.1, "Use SSL With Plug-Ins" for configuration information.

2.5 Plug-In Supported Platforms

The version 1.1 plug-ins are supported on the platforms described in
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

2.6 Downloading the Version 1.1 Plug-Ins

The WebLogic Server version 1.1 plug-ins are available for download via the
http://metalink.oracle.com/ Web site.

The WebLogic Server 1.1 plug-ins are available in the form of a zip file containing the
necessary binary and helper files. You must download and unzip the appropriate file,
and then install the plug-in as described in each subsequent plug-in chapter.

For example, the following directories are included in the mod_wl_so plug-in
distribution. For the Windows version, DLL files are provided.

s lib/mod _wl.so or lib\mod_wl.dll (Apache plug-in)
m lib/*.soor1lib*.dl1l (native libraries
s bin/orapki or bin\orapki.cmd (orapki tool)

= jlib/*.jar (Java helper libraries for orapki)

2-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

3

Installing and Configuring the Apache HTTP

Server Plug-In

The following sections describe how to install and configure the Apache HTTP Server
Plug-In:

Section 3.1, "Install the Apache HTTP Server Plug-In"
Section 3.2, "Configure the Apache HTTP Server Plug-In"

Note: In this release of Oracle WebLogic Server, a single plug-in
supports both Apache HTTP Server and Oracle HTTP Server.

3.1 Install the Apache HTTP Server Plug-In

After you have downloaded the Apache HTTP Server Plug-In, as described in
Section 2.6, "Downloading the Version 1.1 Plug-Ins", you can install it as an Apache
module in your Apache HTTP Server installation and link it as a Dynamic Shared
Object (DSO).

A DSO is compiled as a library that is dynamically loaded by the server at runtime,
and can be installed without recompiling Apache.

3.1.1 Installation Prerequisites

Before you install the Apache HTTP Server plug-in, you must satisfy the following
prerequisites:

Download the Apache HTTP Server Plug-In, as described in Section 2.6,
"Downloading the Version 1.1 Plug-Ins".

You have extracted the plug-ins zip distribution to the location of your choice on
the target system. For example, /home/myhome/weblogic-plugins-1.1/.

Install JDK 6 if you want to use SSL. The JDK 6 installation is required to use the
orapki utility. The orapki utility manages public key infrastructure (PKI) elements,
such as wallets and certificate revocation lists, for use with SSL.

You have a supported Apache HTTP Server installation.

The version 1.1 plug-ins are supported on the Apache platforms described in
http://www.oracle.com/technology/software/products/ias/files/
fusion _certification.html.

A supported version of WebLogic Server is configured and running on a target
system. However, it does not need to be running on the system on which you

Installing and Configuring the Apache HTTP Server Plug-In 3-1

Install the Apache HTTP Server Plug-In

extracted the plug-in zip distribution. See
http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html for the supported WebLogic Server versions.

3.1.2 Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object

The Apache plug-in is distributed as a shared object (.so) for Unix platforms and a
DLL for Windows.

To install the Apache HTTP Server Plug-In as a dynamic shared object:

1.

Make sure that the weblogic-plugins-1.1/1ib folder is included in LD_
LIBRARY_PATH on Unix systems (and PATH on Windows systems). If you do not
do this, you see linkage errors when starting Apache.

In the location where you unzipped the downloaded plug-in file, locate 1ib/mod_
wl.so,or lib\mod_wl.dl1l for windows. For example,
/home/myhome/weblogic-plugins-1.1/1ib/mod_wl. so.

Verify that the mod_so . ¢ module is enabled.

The Apache HTTP Server Plug-In will be installed in your Apache HTTP Server
installation as a Dynamic Shared Object (DSO).

DSO support in Apache is based on module mod_so . ¢, which must be enabled
before mod_wl . so is loaded.

If you installed Apache HTTP Server using the script supplied by Apache, mod_
so.c is already enabled. Verify that mod_so.c is enabled by executing the
following command:

APACHE_HOME\bin\apachectl -1

(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

This command lists all enabled modules. If mod_so. ¢ is not listed, you must
rebuild your Apache HTTP Server, making sure that the following options are
configured:

--enable-module=so
--enable-rule=SHARED_CORE

See Apache 2.2 Shared Object (DSO) Support at
http://httpd.apache.org/docs/2.2/dso.html.

Make a copy of the ${APACHE_HOME}/bin/httpd. conf file for backup.
Open the httpd. conf file.

The file is located at APACHE_HOME/conf /httpd.conf (where APACHE_HOME is
the root directory of your Apache HTTP server installation). See a sample
httpd. conf file at Section 3.2, "Configure the Apache HTTP Server Plug-In".

Install the Apache HTTP Server Plug-In module for Apache 2.2.x by adding the
following line to your APACHE_HOME/conf /httpd. conf file. For Windows,
specify the .DLL file.

LoadModule weblogic_module /home /myhome/weblogic-plugins-1.1/1ib/mod_wl.so

Verify the syntax of the APACHE_HOME/conf/httpd. conf file with the
following command:

3-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Configure the Apache HTTP Server Plug-In

APACHE_HOME\bin\apachectl -t

(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

The output of this command reports any errors in your httpd. conf file or
returns:

Syntax OK

3.2 Configure the Apache HTTP Server Plug-In

After installing the plug-in in the Apache HTTP Server, configure the WebLogic Server
Apache Plug-In and configure the server to use the plug-in.

This section explains how to edit the httpd. conf file to proxy requests by path or by
MIME type, to enable HTTP tunneling, and to use other WebLogic Server plug-in
parameters.

3.2.1 Editing the httpd.conf File

Edit the httpd. conf file in your Apache HTTP server installation to configure the
Apache HTTP Server Plug-In.

1.
2.

Make a copy of the ${APACHE_HOME}/bin/httpd. conf file for backup.
Open the httpd. conf file.

The file is located at APACHE_HOME/conf /httpd.conf (wWhere APACHE_HOME is
the root directory of your Apache HTTP server installation). See a sample
httpd. conf file at Section 3.2, "Configure the Apache HTTP Server Plug-In".

Ensure that the WebLogic Server modules are included for Apache 2.2.x. Add the
following line to the ht tpd. conf file if you have not already done so. For
Windows, specify the .DLL file.

LoadModule weblogic_module /home /myhome /weblogic-plugins-1.1/1ib/mod_wl.so

To proxy requests by MIME type, add an IfModule block that defines one of the
following:

= For a non-clustered WebLogic Server: the WebLogicHost and
WebLogicPort parameters.

» For a cluster of WebLogic Servers: the WebLogicCluster parameter.
For example:

<IfModule mod_weblogic.c>
WebLogicHost my-weblogic-server-com
WebLogicPort 7001
Debug ALL
DebugConfigInfo ON
WLLogFile /tmp/wl-proxy.log
</IfModule>

To proxy requests by MIME type, add a MatchExpression line to the IfModule
block. Note that if both MIME type and proxying by path are enabled, proxying by
path takes precedence over proxying by MIME type.

For example, the following I fModule block for a non-clustered WebLogic Server
specifies that all files with MIME type .jsp are proxied:

Installing and Configuring the Apache HTTP Server Plug-In 3-3

Configure the Apache HTTP Server Plug-In

<IfModule mod_weblogic.c>
WebLogicHost my-weblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp
Debug ALL
DebugConfigInfo ON
WLLogFile /tmp/wl-proxy.log
</IfModule>

You can also use multiple MatchExpressions, for example:

<IfModule mod_weblogic.c>
WebLogicHost my-weblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp
MatchExpression *.xyz
Debug ALL
DebugConfigInfo ON
WLLogFile /tmp/wl-proxy.log
</IfModule>

If you are proxying requests by MIME type to a cluster of WebLogic Servers, use
the WebLogicCluster parameter instead of the WebLogicHost and
WebLogicPort parameters. For example:

<IfModule mod_weblogic.c>
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

6. To proxy requests by path, use the Location block and the SetHandler
statement. SetHandler specifies the handler for the Apache HTTP Server Plug-In
module. For example the following Location block proxies all requests
containing /weblogic in the URL:

<Location /weblogic>

SetHandler weblogic-handler
PathTrim /weblogic
</Location>

The PathTrim parameter specifies a string trimmed from the beginning of the
URL before the request is passed to the WebLogic Server instance (see Section 7.2,
"General Parameters for Web Server Plug-Ins").

7. Optionally, enable HTTP tunneling for t3 or IIOP.

a. To enable HTTP tunneling if you are using the t3 protocol and
weblogic. jar, add the following Location block to the httpd. conf file:

<Location /bea_wls_internal /HTTPClnt>
SetHandler weblogic-handler
</Location>

b. To enable HTTP tunneling if you are using the IIOP, the only protocol used by
the WebLogic Server thin client, wlclient. jar, add the following
Location block to the httpd. conf file:

<Location /bea_wls_internal/iiop>
SetHandler weblogic-handler
</Location>

3-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Configure the Apache HTTP Server Plug-In

8. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in Section 7.2,
"General Parameters for Web Server Plug-Ins". To modify the behavior of your
Apache HTTP Server Plug-In, define these parameters either:

s InaLocation block, for parameters that apply to proxying by path, or
s Inan IfModule block, for parameters that apply to proxying by MIME type.

9. Verify the syntax of the APACHE_HOME/conf /httpd. conf file with the
following command:

APACHE_HOME\bin\apachectl -t
(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

The output of this command reports any errors in your httpd. conf file or
returns:

Syntax OK

10. Start the Apache HTTP Server.
S{APACHE_HOME} /bin/apachectl start

(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

11. Send a request to http://apache-host:apache-port/mywebapp/my.jsp
from the browser. Validate the response.

3.2.1.1 Placing WebLogic Properties Inside Location or VirtualHost Blocks

If you choose to not use the IfModule, you can instead directly place the WebLogic
properties inside Location or VirtualHost blocks. Consider the following
examples of the Location and VirtualHost blocks:

<Location /weblogic>

SetHandler weblogic-handler
WebLogicHost myweblogic.server.com
WebLogicPort 7001

</Location>

<Location /weblogic>

SetHandler weblogic-handler

WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
</Location>

<VirtualHost apachehost:80>
SetHandler weblogic-handler
WebLogicServer weblogic.server.com
WebLogicPort 7001

</VirtualHost>

3.2.2 Including a weblogic.conf File in the httpd.conf File

If you want to keep several separate configuration files, you can define parameters in a
separate configuration file called weblogic. conf file, by using the Apache Include
directive in an ITfModule block in the httpd. conf file:

<IfModule mod_weblogic.c>
Config file for WebLogic Server that defines the parameters

Installing and Configuring the Apache HTTP Server Plug-In 3-5

Configure the Apache HTTP Server Plug-In

Include conf/weblogic.conf
</IfModule>

The syntax of weblogic. conf files is the same as that for the httpd. conf file.

This section describes how to create weblogic. conf files, and includes sample
weblogic.conf files.

3.2.2.1 Creating weblogic.conf Files
Be aware of the following when constructing a weblogic. conf file.

= Enter each parameter on a new line. Do not put ‘=" between a parameter and its
value. For example:

PARAM 1 valuel
PARAM 2 value2
PARAM 3 value3

s If a request matches both a MIME type specified in a MatchExpressioninan
IfModule block and a path specified in a Location block, the behavior specified
by the Location block takes precedence.

s If you use an Apache HTTP Server <VirtualHost> block, you must include all
configuration parameters (MatchExpression, for example) for the virtual host
within the <VirtualHost> block (see Apache Virtual Host documentation at
http://httpd.apache.org/docs/vhosts/).

= If you want to have only one log file for all the virtual hosts configured in your
environment, you can achieve it using global properties. Instead of specifying the
same Debug, WLLogFile and WLTempDir properties in each virtual host you can
specify them just once in the <IfModule> tag.

s Sample httpd. conf file:

<IfModule mod_weblogic.c>
WebLogicCluster johndoe02:8005,johndoe:8006

Debug ON

WLLogFile c:/tmp/global_proxy.log
WLTempDir "c:/myTemp"
DebugConfigInfo On

KeepAliveEnabled ON
KeepAliveSecs 15
</IfModule>

<Location /jurl>
SetHandler weblogic-handler
WebLogicCluster agarwalp01:7001
</Location>

<Location /web>
SetHandler weblogic-handler
PathTrim/web
Debug OFF
WLLogFile c:/tmp/web_log.log
</Location>

<Location /foo>
SetHandler weblogic-handler
PathTrim/foo
Debug ERR
WLLogFile c:/tmp/foo_proxy.log

3-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Configure the Apache HTTP Server Plug-In

</Location>

s All the requests which match /jurl/* will have Debug Level set to ALL and log
messages will be logged to c: /tmp/global_proxy. log file. All the requests
which match /web/* will have Debug Level set to OFF and no log messages will
be logged. All the requests which match /foo/* will have Debug Level set to ERR
and log messages will be logged to ¢ : /tmp/foo_proxy . log file.

s Oracle recommends that you use the MatchExpression statement instead of the
<Files> block.

3.2.2.2 Sample weblogic.conf Configuration Files

The following examples of weblogic . conf files may be used as templates that you
can modify to suit your environment and server. Lines beginning with # are
comments.

Example 3—-1 Example Using WebLogic Clusters

These parameters are common for all URLs which are

directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks. (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
ErrorPage http://myerrorpage.mydomain.com
MatchExpression *.jsp

</IfModule>

FHEH

In Example 3-2, the MatchExpression parameter syntax for expressing the filename
pattern, the WebLogic Server host to which HTTP requests should be forwarded, and
various other parameters is as follows:

MatchExpression [filename pattern] [WebLogicHost=host] \ [paramName=value]

The first Mat chExpression parameter below specifies the filename pattern *.jsp, and
then names the single WebLogicHost. The paramName=value combinations
following the pipe symbol specify the port at which WebLogic Server is listening for
connection requests, and also activate the Debug option. The second
MatchExpression specifies the filename pattern *.http and identifies the
WebLogicCluster hosts and their ports. The paramName=value combination
following the pipe symbol specifies the error page for the cluster.

Example 3-2 Example Using Multiple WebLogic Clusters

These parameters are common for all URLs which are

directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,

WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
MatchExpression *.jsp WebLogicHost:myHost|WebLogicPort:700l|Debug:ON
MatchExpression *.html WebLogicCluster:myHostl:7282,myHost2:7283|ErrorPage:
http://www.Xyz.com/error.html
</IfModule>

Installing and Configuring the Apache HTTP Server Plug-In 3-7

Configure the Apache HTTP Server Plug-In

Example 3-3 shows an example without WebLogic clusters.

Example 3-3 Example Without WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)
<IfModule mod_weblogic.c>

WebLogicHost myweblogic.server.com

WebLogicPort 7001

MatchExpression *.jsp
</IfModule>

Example 34 shows an example of configuring multiple name-based virtual hosts.

Example 3-4 Example Configuring Multiple Name-Based Virtual Hosts

VirtualHostl = localhost:80

<VirtualHost 127.0.0.1:80>

DocumentRoot "C:/test/VirtualHostl"
ServerName localhost:80

<IfModule mod_weblogic.c>

#... WLS parameter ...

WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
</IfModule>

</VirtualHost>

VirtualHost2 = 127.0.0.2:80

<VirtualHost 127.0.0.2:80>

DocumentRoot "C:/test/VirtualHostl"
ServerName 127.0.0.2:80

<IfModule mod_weblogic.c>

#... WLS parameter ...

WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2

#... WLS parameter ...

</IfModule>

</VirtualHost>

You must define a unique value for ServerName or some Plug-In parameters will not
work as expected.

3.2.2.3 Template for the Apache HTTP Server httpd.conf File

This section contains a sample httpd. conf file for Apache 2.2. You can use this
sample as a template and modify it to suit your environment and server. Lines
beginning with # are comments.

Note that Apache HTTP Server is not case sensitive.

Example 3-5 Sample httpd.conf file for Apache 2.2
FhEF R R
APACHE-HOME/conf/httpd.conf file

FhEF R R
LoadModule weblogic_module lhome /myhome/weblogic-plugins-1.1/1ib/mod_wl.so

3-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Configure the Apache HTTP Server Plug-In

<Location /weblogic>

SetHandler weblogic-handler

PathTrim /weblogic

ErrorPage http://myerrorpagel .mydomain.com
</Location>

<Location /servletimages>

SetHandler weblogic-handler

PathTrim /something

ErrorPage http://myerrorpagel .mydomain.com
</Location>

<IfModule mod_weblogic.c>
MatchExpression *.jsp
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
ErrorPage http://myerrorpage.mydomain.com

</IfModule>

Installing and Configuring the Apache HTTP Server Plug-In 3-9

Configure the Apache HTTP Server Plug-In

3-10 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

4

Configuring the Plug-In for Oracle HTTP

Server

In this release of Oracle WebLogic Server, a single plug-in supports both Apache HTTP
Server and Oracle HTTP Server.

The following section describes how to configure the plug-in for Oracle HTTP Server:

Section 4.1, "Configuring the Plug-In for Oracle HTTP Server"

4.1 Configuring the Plug-In for Oracle HTTP Server

Note: You do not have to download and set up the plug-in. Oracle
HTTP Server comes pre-bundled with the mod_wl_ohs.so/dll
binary.

To configure the mod_wl_ohs module using Fusion Middleware Control, do the
following:

1.
2.

Select Administration from the Oracle HTTP Server menu.

Select mod_wl_ohs Configuration from the Administration menu. The mod_wl_
ohs configuration page appears.

If you are using a WebLogic cluster, enter the WebLogic Servers that can be used
for load balancing in the WebLogic Cluster field. The server or cluster list is a list
of host:port entries. If a mixed set of clusters and single servers is specified, the
dynamic list returned for this parameter will return only the clustered servers.

The module does a simple round-robin between all available servers. The server
list specified in this property is a starting point for the dynamic server list that the
server and module maintain. WebLogic Server and the module work together to
update the server list automatically with new, failed, and recovered cluster
members.

You can disable the use of the dynamic cluster list by disabling the Dynamic
Server List ON field. The module directs HTTP requests containing a cookie,
URL-encoded session, or a session stored in the POST data to the server in the
cluster that originally created the cookie.

Use the WebLogic Host field to enter the WebLogic Server host (or virtual host
name as defined in WebLogic Server) to which HTTP requests should be
forwarded. If you are using a WebLogic cluster, use the WebLogic Cluster field
instead of WebLogic Host.

Configuring the Plug-In for Oracle HTTP Server 4-1

Configuring the Plug-In for Oracle HTTP Server

5. Use the WebLogic Port field to enter the port on which the WebLogic Server host is
listening for connection requests from the module (or from other servers). (If you
are using SSL between the module and WebLogic Server, set this parameter to the
SSL listen port.

6. If you want to use the dynamic cluster list for load balancing requests proxied
from the module, then select the Dynamic Server List ON check box. When set to
OFF, the module ignores the dynamic cluster list and only uses the static list
specified with the WebLogic Cluster parameter. Normally this parameter should
be set to ON.

7. You can use the Error Page field to create your own error page that is displayed
when your Web server is unable to forward requests to WebLogic Server.

8. Use the Debug field to specify the type of logging performed for debugging
operations. The debugging information is written to the /tmp/wlproxy.log file on
UNIX systems and c:\TEMP\wlproxy.log on Windows systems. Override this
location and filename by setting the Log File parameter to a different directory and
file. Ensure that the tmp or TEMP directory has write permission assigned to the
user who is logged in to the server.

The Debug parameter can be set any of the following logging options.
Additionally, the HFC, HTW, HFW, and HTC options can be set in combination by
entering them separated by commas; for example: HFC,HTW.

= ON - The module logs informational and error messages.
= OFF - No debugging information is logged.

s HFC - The module logs headers from the client, informational, and error
messages.

s HTW - The module logs headers sent to WebLogic Server, and informational
and error messages.

s HFW - The module logs headers sent from WebLogic Server, and
informational and error messages.

s HTC - The module logs headers sent to the client, informational messages,
and error messages.

= ERR - Prints only the Error messages in the module.

s ALL - The module logs headers sent to and from the client, headers sent to
and from WebLogic Server, information messages, and error messages.

9. Use the Log File field to specify the path and file name for the log file that is
generated when the Debug parameter is set to ON. You must create this directory
before setting this parameter.

10. Use the WebLogic Temp Directory field to specify the directory where a
wlproxy.log will be created. If the location fails, the module resorts to creating the
log file under c:/temp in Windows and /tmp in all UNIX platforms.

This also specifies the location of the _wl_proxy directory for post data files. When
both WebLogic Temp Directory and Log File are set, Log File will override as to
the location of wlproxy.log. WebLogic Temp Directory will still determine the
location of the _wl_proxy directory.

11. Use the Exclude Path or Mime Type field to exclude certain requests from
proxying. This parameter can be defined locally at the Location tag level as well as
globally. When the property is defined locally, it does not override the global
property but defines a union of the two parameters.

4-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Configuring the Plug-In for Oracle HTTP Server

12. The Match Expression region is used to specify any Expression overrides.

Example when proxying by MIME type:

*.jsp WebLogicHost=myHost |paramName=value

It is possible to define a new parameter for Match Expression using the following
syntax:

* . jsp PathPrepend=/test PathTrim=/foo

13. The Location region is used to specify any Location overrides.

a.
b.

C.

g.

Click Add Row to create a new row.
Enter the base URI for which following directives become effective.

Complete the WebLogic Cluster, WebLogic Host, and WebLogic Port fields
using the definitions supplied earlier in this section.

For the Path Trim field, as per the RFC specification, generic syntax for URL is:

[PROTOCOL] : // [HOSTNAME] : {PORT}/{PATH} /{FILENAME}; { PATH_PARAMS}/{QUERY_
STRING}. ..

Path Trim specifies the string trimmed by the module from the
{PATH}/{FILENAME]} portion of the original URL, before the request is
forwarded to WebLogic Server. For example, if the URL:

http://myWeb.server.com/weblogic/foo

is passed to the module for parsing and if Path Trim has been set to strip off
/weblogic before handing the URL to WebLogic Server, the URL forwarded to
WebLogic Server is:

http://myWeb.server.com:7002/foo

Note that if you are newly converting an existing third-party server to proxy
requests to WebLogic Server using the module, you will need to change
application paths to /foo to include weblogic/foo. You can use Path Trim and
Path Prepend in combination to change this path.

For the Path Prepend field, as per the RFC specification, generic syntax for
URL is:

[PROTOCOL] : // [HOSTNAME] : {PORT}/{PATH} /{FILENAME}; { PATH_PARAMS}/{QUERY_
STRING}. ..

Path Prepend specifies the path that the module prepends to the {PATH]}
portion of the original URL, after Path Trim is trimmed and before the request
is forwarded to WebLogic Server.

Note that if you need to append File Name, use the DefaultFileName module
parameter instead of Path Prepend.

Complete the Log File and Debug fields using the definitions supplied earlier
in this section.

Click Add Row again to save the new row.

14. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

15. Restart Oracle HTTP Server.

Configuring the Plug-In for Oracle HTTP Server 4-3

Configuring the Plug-In for Oracle HTTP Server

The mod_wl_ohs module configuration is saved and shown on the mod_wl_ohs
Configuration page.

Note: If you are manually editing the mod_wl_ohs configuration
settings instead of using Fusion Middleware Control, then all
directives should be defined within the defined within the
<IfModule weblogic_module> block of the mod_wl_ohs.conf
file. mod_w1l_ohs will continue to work if directives are defined
outside of this block, but this could put the mod_wl_ohs
Configuration page in Fusion Middleware Control in an inconsistent
state.

4-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

O

Installing and Configuring the Microsoft IIS

Plug-In

The following sections describe how to install and configure the Microsoft Internet
Information Server Plug-In:

Section 5.1, "Installing and Configuring the Microsoft Internet Information Server
Plug-In"

Section 5.2, "Installing and Configuring the Microsoft Internet Information Server
Plug-In for IIs 7.0"

Section 5.3, "Using Wildcard Application Mappings to Proxy by Path"

Section 5.4, "Proxying Requests from Multiple Virtual Web Sites to WebLogic
Server"

Section 5.5, "Creating ACLs Through IIS"
Section 5.6, "Proxying Servlets from IIS to WebLogic Server"
Section 5.7, "Testing the Installation”

5.1 Installing and Configuring the Microsoft Internet Information Server

Plug-In

To install the Microsoft Internet Information Server Plug-In:

1.

Download the Microsoft Internet Information Server Plug-In, as described in
Section 2.6, "Downloading the Version 1.1 Plug-Ins".

Copy the iisproxy.dll file into a convenient directory that is accessible to IIS). This
directory must also contain the iisproxy.ini file that you will create in step 6.

Set the user permissions for the iisproxy.d11 file to include the name of the
user who will be running IIS. One way to do this is by right clicking on the
iisproxy.dll file and selecting Permissions, then adding the username of the
person who will be running IIS.

If you want to configure proxying by file extension (MIME type) complete this
step. (You can configure proxying by path in addition to or instead of configuring
by MIME type. See step 5.)

a. Start the Internet Information Service Manager by selecting it from the Start
menu.

b. In the left panel of the Service Manager, select your Web site (the default is
“Default Web Site”).

Installing and Configuring the Microsoft IS Plug-In 5-1

Installing and Configuring the Microsoft Internet Information Server Plug-In

Figure 5-1 Selecting Web Site in Service Manager

L]

Information Services (I1S) Manager

€g Fle Action Yew Window Hep | =181
e~ B0 FRE R 2|> =
K54 Internet Information Services [Name | Path | status
E-l QAa7S (local computer) =

=] _J Application Pools) weblogic

=) Web Stes = errar Hmi

| @ Default Web Site| |

| B Josh

-] Web Service Extension: k
1] I KX | jia|

c. Click the “Play” arrow in the toolbar to start.

d. Open the properties for the selected Web site by right-clicking the Web site

selection in the left panel and selecting Properties.

Figure 5-2 Selecting Properties for Selected Web Site

‘Q: Internet Information Services (IIS) Manager L |I:I|5]
g File Action Mew |Window Help | 25 ||5'|5|
e | aEXEFRBE| 22> =
h Inkternet Information Services ame | Path | Status
=5 lg,! QA7E (local computer) dis
___) Application Pools =) weblogic
El—-J Web Sites |=] error.html
B Sosh Explore
Bl Web Servic 2PEn
Permissions
Browse
Start
Stop
Pause
Pew 3
All Tasks 3
< = I 1]
Opens property sheet fi Yiew 2 |
Few Window from Here
Delete
Renames
Refresh
Export List...
Help e

e. In the Properties panel, select the Home Directory tab, and click the
Configuration button in the Applications Settings section.

5-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In

Figure 5-3 Home Directory Tab of the Properties Panel

21|

Cuskom Errors I
Home Direckory

Default Web Site Properties

HTTF Headers I
ISAFI Filkers

Documents I Directory Security I
website |

The content For this resource should come from:

Performance I

(* 5 directory located on this computer
! " A share located on another computer
| " A redirection ko 3 URL

Local path: I C:ipluginsiiishome

EBrowse. . |

= Scripk source access = Log wisits
¥ Read v Index this resource
IV write

¥ Directory browsing

Application settings

Application name:] Default Application

Remowve |

Starting poink: <Default Web Site=

Execute permissions: IScr'pts and Executables vI
Application poal:]Defaultnpppoc\-l % I Unload |
(6] 4 | Cancel I apply | Help |

f. On the Mappings tab, click the Add button to add file types and configure
them to be proxied to WebLogic Server.

Figure 5—4 Click the Add Button to Add File Types

Application Configuration

Mappings | options | Debuaaina |

¥ Cache ISAPI extensions

— application extensions

Extens. .. I Executable Path I Werbs -
.as3 CWINDOWSsystem32iinetsrviasp.dl GET,HEA..
.asp CWINDOWS | system32linetsrviasp.dl GET,HEA.._ |
.odx CHWINDOWShsystem32iinetsrviasp.dl GET,HEA..
.cer CHWINDOWSsystem32iinetsrviasp.dl GET,HEA..
.idc CWINDOW S system32iinetsrihttp. .. GET,POiI’lll
<] i B

Edit. ..

BRemove |

wWildcard application maps {order of implementation):

Inserkt... I
Edit. .. I
Remove I

Mowve Up I MMave Cown |

Ok I Cancel | Help |

g. Inthe Add dialog box, browse to find the iisproxy.dll file.
h. Set the Extension to the type of file that you want to proxy to WebLogic Server.

i. If you are configuring for IIS 6.0 or later, be sure to deselect the “Check that
file exists” check box. The behavior of this check has changed from earlier
versions of IIS: it used to check that the iisproxy.dll file exists; now it checks
that files requested from the proxy exist in the root directory of the Web server.
If the check does not find the files there, the iisproxy.dll file will not be allowed
to proxy requests to the WebLogic Server.

Installing and Configuring the Microsoft 1IS Plug-In 5-3

Installing and Configuring the Microsoft Internet Information Server Plug-In

j- Inthe Directory Security tab, set the Method exclusions as needed to create a
secure installation.

k. When you finish, click the OK button to save the configuration. Repeat this
process for each file type you want to proxy to WebLogic.

I. When you finish configuring file types, click the OK button to close the
Properties panel.

Note: In the URL, any path information you add after the server and
port is passed directly to WebLogic Server. For example, if you request
a file from IIS with the URL:

http:/ /myiis.com/jspfiles/myfile.jsp

it is proxied to WebLogic Server with a URL such as
http:/ /mywebLogic:7001/jspfiles /myfile jsp

Note: To avoid out-of-process errors, do not deselect the "Cache
ISAPI Applications" check box.

5. If you want to configure proxying by path, see Section 5.3, "Using Wildcard
Application Mappings to Proxy by Path".

6. In WebLogic Server, create the iisproxy.ini file.

The iisproxy.ini file contains name=value pairs that define configuration
parameters for the plug-in. The parameters are listed in Section 7-1, " General
Parameters for Web Server Plug-Ins".

Use the example iisproxy.ini file in Section 5.4.1, "Sample iisproxy.ini File" as
a template for your iisproxy.ini file.

Note: Changes in the parameters will not go into effect until you
restart the “IIS Admin Service” (under services, in the control panel).

Oracle recommends that you locate the iisproxy.ini file in the same directory
that contains the iisproxy.dll file. You can also use other locations. If you
place the file elsewhere, note that WebLogic Server searches for 1isproxy.ini in
the following directories, in the following order:

a. In the same directory where iisproxy.dl1l is located.

b. Inthe home directory of the most recent version of WebLogic Server that is
referenced in the Windows Registry. (If WebLogic Server does not find the
iisproxy.ini file in the home directory, it continues looking in the
Windows Registry for older versions of WebLogic Server and looks for the
iisproxy.ini file in the home directories of those installations.)

c. In the directory c:\weblogic, if it exists.

7. Define the WebLogic Server host and port number to which the Microsoft Internet
Information Server Plug-In proxies requests. Depending on your configuration,
there are two ways to define the host and port:

5-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

10.

11.

= If you are proxying requests to a single WebLogic Server, define the
WebLogicHost and WebLogicPort parameters in the iisproxy. ini file. For
example:

WebLogicHost=1localhost
WebLogicPort=7001

= If you are proxying requests to a cluster of WebLogic Servers, define the
WebLogicCluster parameter in the iisproxy. ini file. For example:

WebLogicCluster=myweblogic.com:7001, yourweblogic.com:7001

Where myweblogic.com and yourweblogic.com are instances of Weblogic
Server running in a cluster.

Optionally, enable HTTP tunneling by following the instructions for proxying by
path (see Section 5.3, "Using Wildcard Application Mappings to Proxy by Path")
substituting the WebLogic Server host name and the WebLogic Server port
number, or the name of a WebLogic Cluster that you wish to handle HTTP
tunneling requests.

Set any additional parameters in the iisproxy. ini file. A complete list of
parameters is available in the appendix Section 7.2, "General Parameters for Web
Server Plug-Ins".

If you are proxying servlets from IIS to WebLogic Server and you are not proxying
by path, read the section Section 5.6, "Proxying Servlets from IIS to WebLogic
Server".

The installed version of IIS with its initial settings does not allow the
iisproxy.dll. Use the IIS Manager console to enable the Plug-In:

a. Open the IIS Manager console.
b. Select Web Service Extensions.

c. Set “All Unknown ISAPI Extensions” to Allowed.

5.2 Installing and Configuring the Microsoft Internet Information Server
Plug-In for lis 7.0

This section describes differences in how you set up the Microsoft Internet Information
Server Plug-In for IIs 7.0.

To set up the Microsoft Internet Information Server Plug-In for IIs 7.0, follow these
steps:

1.

Create a web application in IIS Manager by right clicking on Web Sites -> Add
Web Site.

Fill in the Web Site Name with the name you want to give to your web application;
for example, MyApp. Select the physical path of your web application Port (any
valid port number not currently in use).

Click OK to create the web application.

If you can see the name of your application under Web Sites it means that your
application has been created and started running. Click on the MyApp node under
Web Sites to see all of the settings related to the MyApp application, which you
can change, as shown in Figure 5-5.

Installing and Configuring the Microsoft IIS Plug-In 5-5

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

Figure 5-5 Application Home Page

BB it ko vban Semices G5 Mimager i [E=srE- |
@ G4 (@ oama v webSnes v Motpp » @ o -
File View Help
MyApp H
EX & MyAppHome Manage ieb Ste
4 N3 LOVISTAL (lodistalisraara = 2 Restat
2 »ﬂr.wl»nl:muaPo»lsau || roupby s x o b
4 &) Web Stes Feature Name Description .
@ Defaul Web 52 ASP.NET .
@ Tent &1 NET Compilstion Configuee peoperties for compiling masaged code
@ Mydpp @ NET Globalzation Configuee globalization properties for managed code
2. MET Profile Caafiguee cptions that track uier-selected preferences im ASPN
1.5 MNET Rioles Caefiguee wier groups for uie with Membership Users and Forer
T NET Teust Levals Configuee tuat-bevel palicy files, and the delected trust level for.
B, NET Uiens Manage s who belong te Roles and who uze Forma suthenti
7 pgikeation Settings Configues ramie and valus paies for anaged code 10 uie ¥
Connectson Srings Contfiguee stings that Wieb sites and applications can uie to cor
& Providens Contfiguee pranaders for provider-based application sendces
" s Session Sate Canffiguee session stabe seftings and Forms suthentication cooki P =
ST E-mail Configure e-mail address and Stlivery options to send e-mail i i
B ® o
o, Authentication Configuee authertication settings fos Web sites and appheation: 3
Emcat Coefiguee properties foe G programs
@ Default Docurment Corfigues dafault files 1o return when clients do net specify s i
10 Diractony Beowting Canfigues inforrmation ta dugly in ¥ directary liting
[ElErvor Pages Configuee pages o rebum whin armars sccur
I Handler Mapping: Specify rescurces that handle reaponses for specifac request ypt
& AP Fitters Specity that
3 MIMEE Types Configure etensions and arsocisted conbent fypes that are senn
Hodules Configuee nathve and managed code modules that process requ
£ 53 Settings Tpecify requirements for S5L and client certificates.
Featares Voew |(2 Cantent View

2. Click on "Handler Mappings" to set the mappings to the handler for a particular
MIME type.

Figure 5-6 Setting the Handler Mappings

TG Totemet Infarmytion Sendcer (55 Manager [F=mrs =
G or [@ 0 woama » websees » Mg » @ e
Fie Veew Help
Connections . Actions
~ e Handler Mappings :
CE
4 %3 LOVISTAL Dedataharspram) ||y i gt to ity h , uch a3 DAL that b e spesific
o Application Pool: request types
o (] Web S2es
@ Defau Web 52 Group byt State hy
@ Tent Hare . Path ate Path Type H:
@ Mysep Erabled @
OPTIONSVerbHandler . Erabled Unspecified Br
SEINC-sherm *=.shten Erabled File e
SNG-shami = shnl Erabled Fae %
SNG-stm st Erabled Fae %
TRACEVerbHandler - Erabled Unipecded P
ZaucFile - Erabled Fde or Directory St
‘l o v
= | Features Vorw |7 Conbent Vorw

Iocalhast’ applcati 3 of rastweb.config, < “Myhpp” a3

3. Click on the StaticFile and change the Request path from *to *.*. Click OK.

5-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

5.

Figure 5-7 Editing the Request Path for Module

YN ket iomabon Sirvees B89 Mirager

R EE
@.;, W ¢ LOVISTAL » WebStes b Mydpp » B ae-
Fle Voew Help
Connections i Actions
e Handler Mappings
- Xt ragaram]
S LOISTAL Qewistal\ussiamt | |y v, teaues te specify the resourees, such a3 DAL and enanaged code, that handle sesponses for speciic
2 Bpplication Pools A
2 QUL
& W ‘Web Stes
@ Defou Web Sae o b RS Ny 0 e
@ Tet Name L
+ @ Myngp R Enabled | Peguestpath: £
" .
-:ﬁ‘;—ln: ' opmons{ S L
SHNC-she| Example: * b, wive.axd e
SSNC-sh] Madule: - |8
SANC-stn] Fae isingModule = L
SaticFile 2
TRACEVer] d |
wifareard] d H
—_ Stabichile 4 Iz
| Request Restrictians...
[o [Camcel

Features Vorw |13 Content Virw

g o1 roct web.config,

4. Click on MyApp and then click on "Add Script Map..." on the right-hand side
menu options. Enter * for the Request path.

Browse to the iisproxy.dll file and add it as the executable. Name it proxy.

Figure 5-8 Editing the Request Path for Script

W Intermet Information Services (5 Manager

@.\;, @+ LOVITTAL » WebSter b Mydpp +
Fie View Help
Camnection Actions
K e Handler Mappings 5

" S LONSTAL Qewsta b ||

) Al rout hia feture to speciy the sesources, such o3 DLLs and eansged code, that handle respondes for specific
3 Agphewtion Pl Atypel.

reque
& & ‘Web Stes
" Group by
@ Defau Wb Sae P b TSR B3]
@ Test Hame B
+ @ Mydgp Enabled | Pequest path: %
Dat:
— oenonsy * |3
SANC-she| Example: * b, wiv ied b
SSINC-sh Executsble: ol |
SINC-stl G phaginispranydll py
SeaticFile o
TRACEV: d X
wiforward 418
ooy | PO P
[Request Restrictions..
[o [comen

Features Vorw |15 Content View

‘localhost’ app H g of root web.confi

Click on the "Request Restrictions..." button and uncheck the box "Invoke handler
only if the request is mapped to".

Installing and Configuring the Microsoft IS Plug-In 5-7

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

Figure 5-9 Editing the Request Restrictions

W3 Irtermet Information Seraces (5 Mamager S
@._. @+ LOVISTAL » WebSter » Mylipp » D
Fde View Help

Cemnections . Actions

- e Handler Mappings =

S LOVISTAL Devistalheragaran)

B dopt P Use e te speeify the sesources, such a3 DLLs and eansged code, that handls responses for specific
2 Aephieation Peols s
i Web Sty
y Gr "
@ Default'Web Site oup by [52 |
@ Test Hame R
-8 M’:’:’ o Enabled | | Migping [Verbs 2
" L
e oPTIONS L
Lot SENC-sh] Irveokce handler anly if request is mapped to: 5
SANC-1h] e | @
SEINC-str e
SaticFile @
TRACEVer| 4 Br
wifarweard] 4 I
prey '] L
| —1 Cancel

Features Vorw |3 Content View

lncalhost’ app roctweb.config,

6. Click OK to add this Handler mapping. Click Yes on the Add Script Map dialog
box.

Figure 5-10 Adding the Script Map

W Intemet Infarmation Seraces (T3 Minager R
G e (@ omma v wabSte + Mudgp v & e
File Veew Help
Connections . Ations
- e Handler Mappings e
CE] Af x
4 -5 LOMSTAL godstaltanaramd | | ., vl oot o specif e resources, such as DLLs and saivged cod, Uit handbe respandes for specific
3 Agplication Pools requesttypes.
o3 Web Stes
@ Defaul Web 52 Group by: Tate
@ Tent Hame i Path ate Path Type H: =
@ Mytep Erabled @ re
OPTIONSVerkHandler . Erabled Unspecified P
SERIC- 1 hdd Seript Mg e
SENC-shemd
SENG-3 =
Add SerptMap =
TRACEV
SaticFile)
Wiold yiu ke ta arabls this ISAPT extemsion? ¥ yas, we will wdd your
"l ot ry w1 the [SAP] and CGI Restrictions hat. ¥
the extenaoni drendy et we will allow it
Yo [me][cenen]
Request Restrsctions...
1 Festures Vorw |15 Content Vorw
rostweb.config Myspp™>

If you want to configure proxying by path, see Section 5.3, "Using Wildcard
Application Mappings to Proxy by Path".

Click on the Root node of the IIS Manager tree and click on the ISAPI and CGI

Restrictions. Make sure to check the "Allow unspecified ISAPI modules" checkbox.

5-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In for lls 7.0

Figure 5-11 Editing ISAPI and CGI Restrictions

w3 Intermat Information Services [0 Marager =
Qe [% woamay @ e
File View Help

 Connections

il“’l_ 1541 and CGI Restrictions

4 %5 LOSTAL (odstal\srajaram)

2 Aggplicaion Pocls Use this festure to specify the ISAP] and CGl extensions that can run on the Web server,

4 Web Stes Group by Mo Grouping
8 Dot Wb Sae Description Restriction Path
Tes
@ '\;’;‘p [No Duscription) Allswed [y Cara——
[No Description] Allowed AT phagind\itprony L8
Edit ISAPY and £l Restictions Settings B2

¥ Allow unspecified CG modubes

#| Allow unspecified 1S4 modules

[Featares Vorw |12 Content View

roct web.canfig

9. Create a file called iisproxy.ini with the following contents and place it in the
directory with the plug-in:

WebLogicHost= @hostname@
WebLogicPort= @port@
ConnectRetrySecs=5
ConnectTimeoutSecs=25
Debug=ALL
DebugConfigInfo=0N
KeepAliveEnabled=true

WLLogFile=@Log file name@
SecureProxy=0FF

10. Open the Internet Explorer browser and enter http://<hostname>:<port>.
You should be able to see the Medrec Sample Application from your Weblogic
Server.

If you want to run the plug-in in SSL mode, change the value of WeblogicPort
to the SSL port of your application, and change the SecureProxy value to ON.

Figure 5-12 Medrec Sample Application

More Samples | Documentation | devadev [Start using MudRect | | Stact the Administration Conssse |
Avitek™ Medical Records Sample Application

Avitak Medical Records (or MedRec) is 3 Weblogic AVITEX,
Server sample application suite that demonstrates all - ft X

Zepacts of th Tava Platfarm, Enterpris Editan Oava ledical Records Patient Info
E£). MedRoc is designed as an educational tool for all g e
levels of Java EE developers, It shawcases the use of
each Java EE © and ach
design patterns for component interaction and chent
developement. MedRes also dustrates bast practices for
developing and deploying applications with WebLogic
Server.

The MedRec suite consists of four separate Java EE
applications that correspond to each user type:

¥ Patient - The Patient application allows Patients
to log in, edit their profile mformation, or request
that their profils be added to the system.
Patients can also view prior medical records of
wisits with their physician

* Controller - The Controller application provides L e I e |

[Date " TReason for Visit Physicion

sccer |Or, Phil B Lance |

Installing and Configuring the Microsoft IS Plug-In 5-9

Using Wildcard Application Mappings to Proxy by Path

5.3 Using Wildcard Application Mappings to Proxy by Path

As described in "Installing Wildcard Application Mappings (IIS 6.0)"
(http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/
Library/IIS/5c5aeb5e0-f4f9-44b0-a743-f4c3a5ff68ec.mspx?mfr=true),
and "Add a Wildcard Script Map" for IIS 7.0
(http://technet.microsoft.com/en-us/library/cc754606 (WS.10) .aspx
), you can configure a Web site or virtual directory to run an Internet Server API
(ISAPT) application at the beginning of every request to that Web site or virtual
directory, regardless of the extension of the requested file. You can use this feature to
insert a mapping to iisproxy.dll and thereby proxy requests by path to WebLogic
Server.

5.3.1 Installing Wildcard Application Mappings (lIS 6.0)

The following steps summarize the instructions available at "Installing Wildcard
Application Mappings (IIS 6.0)"
(http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/
Library/IIS/5c5ae5e0-f4f9-44b0-a743-f4c3a5ff68ec.mspx?mfr=true)
for adding a wildcard application mapping to a Web server or Web site in IIS 6.0:

1. In IIS Manager, expand the local computer, expand the Web Sites folder, right-click
the Web site or virtual directory that you want, and then click Properties.

2. Click the appropriate tab: Home Directory, Virtual Directory, or Directory.

3. In the Application settings area, click Configuration, and then click the Mappings
tab.

4. To install a wildcard application map, do the following;:
a. On the Mappings tab, click Insert.

b. Type the path to the iisproxy.dll DLL in the Executable text box or click
Browse to navigate to.

c. Click OK.

5.3.2 Adding a Wildcard Script Map for IIS 7.0

The following steps summarize the instructions available at "Add a Wildcard Script
Map" for IIS 7.0
(http://technet.microsoft.com/en-us/library/cc754606 (WS.10) .aspx
) to add a wildcard script map to do proxy-by-path with ISAPI in IIS 7.0:

1. Open IIS Manager and navigate to the level you want to manage. For information
about opening IIS Manager, see "Open IIS Manager" at
http://technet.microsoft.com/en-us/library/cc770472(WS.10) .as
px. For information about navigating to locations in the Ul, see "Navigation in IIS
Manager" at
http://technet.microsoft.com/en-us/library/cc732920(WS.10) .as
pX.

2. In Features View, on the server, site, or application Home page, double-click
Handler Mappings.

3. On the Handler Mappings page, in the Actions pane, click Add Wildcard Script
Map.

5-10 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Proxying Requests from Multiple Virtual Web Sites to WebLogic Server

4. In the Executable box, type the full path or browse to the iisproxy.dll that
processes the request. For example, type
systemroot\system32\inetsrv\iisproxy.dll.

5. Inthe Name box, type a friendly name for the handler mapping.
6. Click OK.

7. Optionally, on the Handler Mappings page, select a handler to lock or unlock it.
When you lock a handler mapping, it cannot be overridden at lower levels in the
configuration. Select a handler mapping in the list, and then in the Actions pane,
click Lock or Unlock.

8. After you add a wildcard script map, you must add the executable to the ISAPI
and CGI Restrictions list to enable it to run. For more information about ISAPI and
CGl restrictions, see "Configuring ISAPI and CGI Restrictions in IIS 7" at
http://technet.microsoft.com/en-us/library/cc730912(WS.10) .as
pX.

5.4 Proxying Requests from Multiple Virtual Web Sites to WebLogic

Server

To proxy requests from multiple Web sites (defined as virtual directories in IIS) to
WebLogic Server:

1. Create a new directory for the virtual directories. This directory will contain .d11
and . ini files used to define the proxy.

2. Extract the contents of the plug-in .zip file to a directory.

3. For each virtual directory you configured, copy the contents of the plug-in \1ib
folder to the directory you created in step 1.

4. Create an iisproxy.ini file for the virtual Web sites, as described in
Section 2.1.2, "Proxying Requests". Copy this iispoxy . ini file to the directory
you created in step 1.

5. Copy iisproxy.dll to the directory you created in step 1.

6. In IS, set the value for the Application Protection option to high (isolated). If the
Application Protection option is set to Medium(pooled), the iisproxy.dll that
registered as the first website will always be invoked. In this event, all the
requests will be proxied to the same WebLogic Server instances defined in the
iisproxy.ini of the first website.

5.4.1 Sample iisproxy.ini File

Here is a sample iisproxy . ini file for use with a single, non-clustered WebLogic
Server. Comment lines are denoted with the “#” character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.
WebLogicHost=1localhost

WebLogicPort=7001

ConnectTimeoutSecs=20

ConnectRetrySecs=2

Here is a sample iisproxy.ini file with clustered WebLogic Servers. Comment lines
are denoted with the “#” character.

This file contains initialization name/value pairs

Installing and Configuring the Microsoft IIS Plug-In 5-11

Creating ACLs Through IIS

for the IIS/WebLogic plug-in.
WebLogicCluster=myweblogic.com:7001, yourweblogic.com:7001
ConnectTimeoutSecs=20

ConnectRetrySecs=2

Note: If you are using SSL between the plug-in and WebLogic Server,
the port number should be defined as the SSL listen port.

5.5 Creating ACLs Through IIS

ACLs will not work through the Microsoft Internet Information Server Plug-In if the
Authorization header is not passed by IIS. Use the following information to ensure
that the Authorization header is passed by IIS.

When using Basic Authentication, the user is logged on with local log-on rights. To
enable the use of Basic Authentication, grant each user account the Log On Locally
user right on the IIS server. Two problems may result from Basic Authentication's use
of local logon:

» If the user does not have local logon rights, Basic Authentication does not work
even if the FrontPage, IIS, and Windows NT configurations appear to be correct.

= A user who has local log-on rights and who can obtain physical access to the host
computer running IIS will be permitted to start an interactive session at the
console.

To enable Basic Authentication, in the Directory Security tab of the console, ensure that
the Allow Anonymous option is “on” and all other options are “off”.

5.6 Proxying Servlets from IIS to WebLogic Server

You can proxy servlets by path if the iisforward.dll is registered as a filter. You
would then invoke your servlet with a URL similar to the following:

http://IISserver/weblogic/myServlet
To proxy servlets if iisforward.dll is not registered as a filter, you must configure
servlet proxying by file type.To proxy servlets by file type:

1. Register an arbitrary file type (extension) with IIS to proxy the request to the
WebLogic Server, as described in step 2 under Section 5.1, "Installing and
Configuring the Microsoft Internet Information Server Plug-In".

2, Register your servlet in the appropriate Web Application. For more information on
registering servlets, see Creating and Configuring Servlets.

3. Invoke your servlet with a URL formed according to this pattern:
http://www.myserver.com/virtualName/anyfile.ext
where virtualName is the URL pattern defined in the <servlet-mapping>
element of the Web Application deployment descriptor (web.xml) for this servlet

and ext is a file type (extension) registered with IIS for proxying to WebLogic
Server. The anyfile part of the URL is ignored in this context.

5-12 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Testing the Installation

Note: If the image links called from the servlet are part of the Web
Application, you must also proxy the requests for the images to
WebLogic Server by registering the appropriate file types (probably
.gif and .jpg) with IIS. You can, however, choose to serve these images
directly from IIS if desired.

If the servlet being proxied has links that call other servlets, then these
links must also be proxied to WebLogic Server, conforming to the
pattern described in step 3.

5.7 Testing the Installation

After you install and configure the Microsoft Internet Information Server Plug-In,
follow these steps for deployment and testing:

1. Make sure WebLogic Server and IIS are running.
2. Save a JSP file into the document root of the default Web Application.

3. Open a browser and set the URL to the IIS plus filename.jsp, as shown in this
example:

http://myii.server.com/filename.jsp

If filename.jsp is displayed in your browser, the plug-in is functioning.

Installing and Configuring the Microsoft IIS Plug-In 5-13

Testing the Installation

5-14 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

6

Performing Common Tasks

The following sections describe common tasks that you perform for the plug-ins
provided by Oracle for use with WebLogic Server:

= Section 6.1, "Use SSL With Plug-Ins"
= Section 6.2, "Use IPv6 With Plug-Ins"
» Section 6.3, "Set Up Perimeter Authentication"

= Section 6.4, "Understanding Connection Errors and Clustering Failover"

6.1 Use SSL With Plug-Ins

You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
the plug-in and WebLogic Server. The SSL protocol provides confidentiality and
integrity to the data passed between the plug-in and WebLogic Server.

The plug-in does not use the transport protocol (HTTP or HTTPS) specified in the
HTTP request (usually by the browser) to determine whether or not to use SSL to
protect the connection between the plug-in and WebLogic Server. That is, the plug-in
is in no way dependent on whether the HTTP request (again, usually from the
browser) uses HTTPS (SSL).

Instead, the plug-in uses SSL parameters that you configure for the plug-in, as
described in Section 7.3, "SSL Parameters for Web Server Plug-Ins", to determine when
to use SSL. There are two key SSL parameters:

s WLSSLWallet -- The version 1.1 plug-ins use Oracle wallets to store SSL
configuration information. The plug-ins introduce a new SSL configuration
parameter WLSSLWallet to use Oracle wallets. The orapki utility is provided in
the plug-in distribution for this purpose.

The orapki utility manages public key infrastructure (PKI) elements, such as
wallets and certificate revocation lists, on the command line so the tasks it
performs can be incorporated into scripts. This enables you to automate many of
the routine tasks of maintaining a PKL

See "Using the orapki Utility for Certificate Validation and CRL Management" for
information about this tool.

m SecureProxy -- The SecureProxy parameter determines whether SSL is
enabled or not.

In the case of two-way SSL, the plug-in (the SSL client) automatically uses two-way
SSL when the WebLogic Server is configured for two-way SSL and requests a client
certificate.

Performing Common Tasks 6-1

Use SSL With Plug-Ins

If a client certificate is not requested, the plug-ins default to one-way SSL.

Note: If you have an Oracle Fusion Middleware 11g Release 11
(11.1.1) product installed on the same system as the Apache (including
Oracle HTTP) plug-in, the ORACLE_HOME variable must point to a
valid installation or the plug-in fails to initialize SSL.

For example, if ORACLE_HOME is invalid because the product was not
cleanly removed, the plug-in fails to initialize SSL.

6.1.1 Configure Libraries for SSL

The plug-ins use Oracle libraries (NZ) to provide SSL support. Because the libraries
are large, they are dynamically linked only when SSL is needed. You need to make
sure that the library files, located in 1ib/*.so*, are available in the proper
locations so that they can be dynamically loaded by the plug-in.

6.1.1.1 Configure Apache Libraries for SSL

To configure the libraries for the Apache plug-in (used for both the Apache HTTP
Server and the Oracle HTTP Server) you have a few options:

1. For Windows, the 1ib*.d11 directory must be in the PATH variable, or add the
*.dll files to the Apache/bin directory.

2. For Unix, copy the binaries to the Apache 1ib folder, or configure LD_LIBRARY_
PATH to point the the folder containing the binaries.

6.1.2 Configuring a Plug-In for One-Way SSL
After you have installed and configured a plug-in as described in the respective
plug-in-specific chapter, you can configure that plug-in to use one-way SSL.

Perform the following steps to configure one-way SSL.

In these steps, you run the keytool commands on the system on which WebLogic
Server is installed. You run the orapki commands on the system on which the
version 1.1 plug-ins are installed.

Note: This section uses the WebLogic Server demo CA for the
purpose of example.

If you are using the plug-in in a production environment, make sure
that trusted CAs are properly configured for the plug-in as well as for
WebLogic Server.

1. Configure WebLogic Server for SSL. For more information, see "Configuring SSL"
in Securing Oracle WebLogic Server.

2. Configure the WebLogic Server SSL listen port. For more information, see
"Configuring SSL" in Securing Oracle WebLogic Server.

3. Create an Oracle Wallet with the orapki utility.

See "Using the orapki Utility for Certificate Validation and CRL Management" in
Oracle Fusion Middleware Administrator’s Guide for information about this tool.

orapki wallet create -wallet mywallet -auto_login_only

6-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Use SSL With Plug-Ins

4. Import the WL_HOME\server\1ib\CertGenCA.der CA into the Oracle Wallet.
orapki wallet add -wallet mywallet -trusted_cert -cert CertGenCA.der -auto_
login_only

5. For the Apache Plug-in, in the HTTP Server, edit the httpd. conf file as follows:

<IfModule mod_weblogic.c>

WebLogicHost my-weblogic.server.com
WebLogicPort weblogic-server-secure-port
SecureProxy ON
WLSSLWallet /home/myhome/mywallet

</IfModule>

Where:

s my-weblogic-server.comis your WebLogic Server system.

s weblogic-server-secure-port is the port used for SSL, typically 7002.
s The SecureProxy parameter determines whether SSL is enabled or not.

s WLSSLWallet takes the path of an Oracle Wallet as an argument.

6. For the IIS plug-in, edit the Microsoft Internet Information Server iisproxy.ini
file as follows:

WebLogicHost=my-weblogic.server.com
WebLogicPort=weblogic-server-secure-port
SecureProxy=0N
WLSSLWallet=c:\home\myhome\mywallet

Where:

» my-weblogic-server.comis your WebLogic Server system.

s weblogic-server-secure-port is the port used for SSL, typically 7002.
s The SecureProxy parameter determines whether SSL is enabled or not.

s WLSSLWallet takes the path of an Oracle Wallet as an argument.

7. For the Apache Plug-in, set any additional parameters in the ht tpd. conf file that
define information about the SSL connection. For a complete list of the SSL
parameters that you can configure for the plug-in, see Section 7.3, "SSL Parameters
for Web Server Plug-Ins".

8. For the IIS plug-in, set any additional parameters in the iisproxy. ini file that
define information about the SSL connection. For a complete list of the SSL
parameters that you can configure for the plug-in, see Section 7.3, "SSL Parameters
for Web Server Plug-Ins".

9. Send arequest to http://apache-host:apache-port/mywebapp/my. JsSp
from the browser. Validate the response.

6.1.3 Configure Two-Way SSL Between the Plug-In and WebLogic Server

After you have installed and configured a plug-in as described in the respective
plug-in-specific chapter, you can configure that plug-in to use two-way SSL.

You configure two-way SSL by importing a user certificate into the Wallet. When
WebLogic Server is configured for two-way SSL, the plug-in forwards the user
certificate to WebLogic Server. As long as WebLogic Server can validate the user
certificate, two-way SSL can be established.

Performing Common Tasks 6-3

Use IPv6 With Plug-Ins

In addition to the steps described in Section 6.1.2, "Configuring a Plug-In for One-Way
SSL" to configure SSL, perform the following additional steps to configure two-way
SSL between the plug-in and WebLogic Server.

Again, in these steps, you run the keytool commands on the system on which
WebLogic Server is installed. You run the orapki commands on the system on which
the version 1.1 plug-ins are installed.

1. From the Oracle wallet, generate a certificate request.

2. Use this certificate request to create a certificate via a CA or some other
mechanism.

3. Import the user certificate as a trusted certificate in the WebLogic truststore.
WebLogic Server needs to trust the certificate.

keytool -file user.crt -importcert -trustcacerts -keystore DemoTrust.jks
-storepass <passphrase>

4. Set the WebLogic Server SSL configuration options that require the presentation of
client certificates (for two-way SSL). See "Configure two-way SSL" in the Oracle
WebLogic Server Administration Console Help.

6.1.4 Issues with SSL-Apache Configuration

These known issues arise when you configure the Apache plug-in to use SSL:

s The PathTrim parameter (see Section 7.3, "SSL Parameters for Web Server
Plug-Ins") must be configured inside the <Location> tag.

The following configuration is incorrect:

<Location /weblogic>
SetHandler weblogic-handler
</Location>

<IfModule mod_weblogic.c>
WebLogicHost localhost
WebLogicPort 7001
PathTrim /weblogic
</IfModule>

The following configuration is the correct setup:

<Location /weblogic>
SetHandler weblogic-handler
PathTrim /weblogic
</Location>

s The current implementation of the WebLogic Server Apache Plug-In does not
support the use of multiple certificate files with Apache SSL.

6.2 Use IPv6 With Plug-Ins

The version 1.1 plug-ins support IPv6. Specifically, the WebLogicHost and
WebLogicCluster configuration parameters (see Table 7-1) now support IPv6
addresses. For example:

<IfModule mod_weblogic.c>
WebLogicHost [a:b:c:d:e:f]
WebLogicPort 7002

6-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Understanding Connection Errors and Clustering Failover

</IfModule>
or

<IfModule mod_weblogic.c>
WebLogicCluster [a:b:c:d:e:f]:<port>, [g:h:i:j:k:1]:<port>

</IfModule>

You can also use the IPv6 address mapped host name.

6.3 Set Up Perimeter Authentication

Use perimeter authentication to secure WebLogic Server applications that are accessed
via the plug-in.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems
that access your WebLogic Server application, including users who access your
WebLogic Server application through the plug-in. Create an Identity Assertion
Provider that will safely secure your plug-in as follows:

1. Create a custom Identity Assertion Provider on your WebLogic Server application.
See "How to Develop a Custom Identity Assertion Provider" in Developing Security
Providers for Oracle WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the Cert token type
and make Cert the active token type. See "How to Create New Token Types" in
Developing Security Providers for Oracle WebLogic Server.

3. SetclientCertProxy to True in the web.xml deployment descriptor file for the
Web application (or, if using a cluster, optionally set the Client Cert Proxy
Enabled attribute to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab).

The clientCertProxy attribute can be used with a third party proxy server,
such as a load balancer or an SSL accelerator, to enable 2-way SSL authentication.
For more information about the clientCertProxy attribute, see context-param
in Developing Web Applications, Servlets, and |SPs for Oracle WebLogic Server.

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure
that WebLogic Server accepts connections only from the machine on which the
plug-in is running. See "Using Network Connection Filters" in Programming
Security for Oracle WebLogic Server.

5. Web server plug-ins require a trusted Certificate Authority file in order to use SSL
between the plug-in and WebLogic Server. See Section 6.1, "Use SSL With Plug-Ins"
for the steps you need to perform to configure SSL.

See Identity Assertion Providers in Developing Security Providers for Oracle WebLogic
Server.

6.4 Understanding Connection Errors and Clustering Failover

When the plug-in attempts to connect to WebLogic Server, the plug-in uses several
configuration parameters to determine how long to wait for connections to the
WebLogic Server host and, after a connection is established, how long the plug-in
waits for a response. If the plug-in cannot connect or does not receive a response, the
plug-in attempts to connect and send the request to other WebLogic Server instances
in the cluster. If the connection fails or there is no response from any WebLogic Server
in the cluster, an error message is sent.

Performing Common Tasks 6-5

Understanding Connection Errors and Clustering Failover

Figure 6-1 demonstrates how the plug-in handles failover.

6.4.1 Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate
the following problems:

= Physical problems with the host machine
s Network problems
» Other server failures

Failure of all WebLogic Server instances to respond could indicate the following
problems:

= WebLogic Server is not running or is unavailable
= Ahung server
= A database problem

= An application-specific failure

6.4.2 Tuning Apache Plug-In to Reduce Connection_Refused Errors

Under load, an Apache plug-in may receive CONNECTION_REFUSED errors from a
back-end WebLogic Server instance. Follow these tuning tips to reduce
CONNECTION_REFUSED errors:

= Increase the AcceptBackLog setting in the configuration of your WebLogic
Server domain.

s Decrease the time wait interval. This setting varies according to the operating
system you are using. For example:

- On Windows NT, set the TcpTimedWaitDelay on the proxy and WebLogic
Server servers to a lower value. Set the TIME_WAIT interval in Windows NT
by editing the registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay
If this key does not exist you can create it as a DWORD value. The numeric

value is the number of seconds to wait and may be set to any value between
30 and 240. If not set, Windows NT defaults to 240 seconds for TIME_WAIT.

- On Windows 2000, lower the value of the TcpTimedWaitDelay by editing
the registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
— On Solaris, reduce the setting tcp_time_wait_interval to one second (for
both the WebLogic Server machine and the Apache machine, if possible):

$ndd /dev/tcp
param name to set - tcp_time_wait_interval
value=1000

= Increase the open file descriptor limit on your machine. This limit varies by
operating system. Using the limit (.csh) or ulimit (.sh) directives, you can make a
script to increase the limit. For example:

#!/bin/sh
ulimit -S -n 100

6-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Understanding Connection Errors and Clustering Failover

exec httpd

= On Solaris, increase the values of the following tunables on the WebLogic Server
machine:

tcp_conn_req max_g
tcp_conn_req max_g0

6.4.3 Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server instance the plug-in only attempts to
connect to the server defined with the WebLogicHost parameter. If the attempt fails,
an HTTP 503 error message is returned. The plug-in continues trying to connect to that
same WebLogic Server instance for the maximum number of retries as specified by the
ratio of ConnectTimeoutSecs and ConnectRetrySecs.

6.4.4 The Dynamic Server List

The WebLogicCluster parameter is required to proxy to a list of back-end servers
that are clustered, or to perform load balancing among non-clustered managed server
instances.

In the case of proxying to clustered managed servers, when you use the
WebLogicCluster parameter in your httpd. conf or weblogic. conf file to
specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load
balancing among the members of the cluster. After the first request is routed to one of
these servers, a dynamic server list is returned containing an updated list of servers in
the cluster. The updated list adds any new servers in the cluster and deletes any that
are no longer part of the cluster or that have failed to respond to requests. This list is
updated automatically with the HTTP response when a change in the cluster occurs.

6.4.5 Failover, Cookies, and HTTP Sessions

When a request contains session information stored in a cookie or in the POST data, or
encoded in a URL, the session ID contains a reference to the specific server instance in
which the session was originally established (called the primary server). A request
containing a cookie attempts to connect to the primary server. If that attempt fails, the
plug-in attempts to make a connection to the next available server in the list in a
round-robin fashion. That server retrieves the session from the original secondary
server and makes itself the new primary server for that same session. See Figure 6-1.

Note: If the POST data is larger than 64K, the plug-in will not parse
the POST data to obtain the session ID. Therefore, if you store the
session ID in the POST data, the plug-in cannot route the request to
the correct primary or secondary server, resulting in possible loss of
session data.

Performing Common Tasks 6-7

Understanding Connection Errors and Clustering Failover

Figure 6—-1 Connection Failover

Client Sends HTTP request
to Web server and the
request is proxied by the
plug-in

Plug-In receives request
from the Web server

Yes

Weblogic
session 10 in
request?

s this the firs
failover?

Parse headers and return
response to the client
h

Mark this sever as
"bad" in the
dynamic server
list

A

No
otal time of this request
exceeded
onnection TimeOutSecs?,
Connect to primary
server defined in cookie
Yes
Yes No Send HTTP error Idempotent
successful within code 5xx to client N ON?
WLSocketTimeOut T ©
4
A 4
Try next server in
.) Sleep for
dynamic server list or fe— ;
WebLogicCluster ConnectionRetrySeconds
Connection No Yes
successful within Max retries
WL SocketTimeOut exceeded?
secs?
No
L ¥ Yes
Send headers and POST | Wait for response for N Server
data to WebLogic server WLIOTimeOutSecs g responded?

In this figure, the Maximum number of retries allowed in the red loop is equal to

ConnectTimeoutSecs/ConnectRetrySecs.

6-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

7

Parameters for Web Server Plug-Ins

The following sections describe the parameters that you use to configure the Apache
and Microsoft IIS Web server plug-ins:

» Section 7.1, "Entering Parameters in Web Server Plug-In Configuration Files"
» Section 7.2, "General Parameters for Web Server Plug-Ins"

» Section 7.3, "SSL Parameters for Web Server Plug-Ins"

7.1 Entering Parameters in Web Server Plug-In Configuration Files

You enter the parameters for each Web server plug-in in special configuration files.
Each Web server has a different name for this configuration file and different rules for
formatting the file. For details, see the following sections on each plug-in:

» Chapter 3, "Installing and Configuring the Apache HTTP Server Plug-In"
» Chapter 5, "Installing and Configuring the Microsoft IIS Plug-In"

7.2 General Parameters for Web Server Plug-Ins

The general parameters for Web server plug-ins are shown in Table 7-1. Parameters
are case sensitive.

Table 7-1 General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to
WebLogicHost none WebLogic Server host (or virtual ~ ISAPI, Apache
(Required when host name as defined in WebLogic

proxying to a single Server) to which HTTP requests

WebLogic Server.) should be forwarded. If you are

using a WebLogic cluster, use the
WebLogicCluster parameter
instead of WebLogicHost.

Parameters for Web Server Plug-Ins 7-1

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
WebLogicPort none Port at which the WebLogic Server ISAPI, Apache
(Required when host is listening for connection

proxying to a single requests from the plug-in (or from

WebLogic Server.) other servers). (If you are using

SSL between the plug-in and
WebLogic Server, set this
parameter to the SSL listen port
(see Configuring SSL) and set the
SecureProxy parameter to ON).

If you are using a WebLogic
Cluster, use the
WebLogicCluster parameter
instead of WebLogicPort.

7-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to

WebLogicCluster none The WebLogicCluster ISAPI, Apache
parameter is required to proxy a

list of back-end servers that are

clustered, or to perform load

balancing among non-clustered

managed server instances.

(Required when
proxying to a cluster of
WebLogic Servers, or to
multiple non-clustered
servers.)
List of WebLogic Servers that can
be used for load balancing. The
server or cluster list is a list of
host:port entries. If a mixed set of
clusters and single servers is
specified, the dynamic list
returned for this parameter will
return only the clustered servers.

The method of specifying the
parameter, and the required
format vary by plug-in. See the
examples in:

s Chapter 5, "Installing and
Configuring the Microsoft IIS
Plug-In"

s Chapter 3, "Installing and
Configuring the Apache
HTTP Server Plug-In"

If you are using SSL between the
plug-in and WebLogic Server, set
the port number to the SSL listen
port (see Configuring SSL) and
set the SecureProxy parameter
to ON.

The plug-in does a simple
round-robin between all available
servers. The server list specified in
this property is a starting point for
the dynamic server list that the
server and plug-in maintain.
WebLogic Server and the plug-in
work together to update the
server list automatically with new,
failed, and recovered cluster
members.

You can disable the use of the
dynamic cluster list by setting the
DynamicServerList parameter
to OFF.

The plug-in directs HTTP requests
containing a cookie, URL-encoded
session, or a session stored in the
POST data to the server in the
cluster that originally created the
cookie.

Parameters for Web Server Plug-Ins 7-3

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to

PathTrim null As per the RFC specification, ISAPI, Apache
generic syntax for URL is:

[PROTOCOL] : // [HOSTNAME] : { PORT
}/{PATH} /{FILENAME} ; { PATH_
PARAMS}/{QUERY_STRING}...

PathTrim specifies the string
trimmed by the plug-in from the
{PATH} / {FILENAME} portion of
the original URL, before the
request is forwarded to WebLogic
Server. For example, if the URL

http://myWeb.server.com/weblo
gic/foo

is passed to the plug-in for
parsing and if PathTrimhas been
set to strip off /weblogic before
handing the URL to WebLogic
Server, the URL forwarded to
WebLogic Server is:

http:/ /myWeb.server.com:7001/f
00

Note that if you are newly
converting an existing third-party
server to proxy requests to
WebLogic Server using the
plug-in, you will need to change
application paths to /foo to
include weblogic/foo. You can
use PathTrimand PathPrepend
in combination to change this
path.

PathPrepend null As per the RFC specification, ISAPI, Apache
generic syntax for URL is:

[PROTOCOL] : // [HOSTNAME] : { PORT
}/{PATH}/{FILENAME} ; { PATH_
PARAMS}/ {QUERY_STRING} ...

PathPrepend specifies the path
that the plug-in prepends to the
{PATH} portion of the original
URL, after PathTrim is trimmed
and before the request is
forwarded to WebLogic Server.

Note that if you need to append
File Name, use
DefaultFileName plug-in
parameter instead of
PathPrepend.

7-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to

ConnectTimeoutSecs 10 Maximum time in seconds that ISAPI and Apache
the plug-in should attempt to
connect to the WebLogic Server
host. Make the value greater than
ConnectRetrySecs. If
ConnectTimeoutSecs expires
without a successful connection,
even after the appropriate retries
(see ConnectRetrySecs), an
HTTP 503/Service
Unavailable response is sent to
the client.

You can customize the error
response by using the ErrorPage
parameter.

ConnectRetrySecs 2 Interval in seconds that the ISAPI and Apache
plug-in should sleep between
attempts to connect to the
WebLogic Server host (or all of the
servers in a cluster). Make this
number less than the
ConnectTimeoutSecs. The
number of times the plug-in tries
to connect before returning an
HTTP 503/Service
Unavailable response to the
client is calculated by dividing
ConnectTimeoutSecs by
ConnectRetrySecs.

To specify no retries, set
ConnectRetrySecs equal to
ConnectTimeoutSecs.
However, the plug-in attempts to
connect at least twice.

You can customize the error
response by using the ErrorPage
parameter.

Parameters for Web Server Plug-Ins 7-5

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name

Default

Description Applicable to

Debug

OFF

Sets the type of logging performed ISAPI and Apache
for debugging operations. The

debugging information is written

to the /tmp/wlproxy.log file

on UNIX systems and

c:\TEMP\wlproxy.log on

Windows NT /2000 systems.

Override this location and
filename by setting the WLLogFile
parameter to a different directory
and file. (See the WLTempDir
parameter for an additional way
to change this location.)

Ensure that the tmp or TEMP
directory has write permission
assigned to the user who is logged
in to the server. Set any of the
following logging options
(HFC,HTW,HFW, and HTC
options may be set in combination
by entering them separated by
commas, for example
“HFC,HTW”):

ON - The plug-in logs

informational and error messages.

OFF - No debugging information
is logged.

HFC - The plug-in logs headers
from the client, informational, and
error messages.

HTW - The plug-in logs headers
sent to WebLogic Server, and
informational and error messages.

HFW - The plug-in logs headers
sent from WebLogic Server, and
informational and error messages.

HTC - The plug-in logs headers
sent to the client, informational
messages, and error messages.

ERR - Prints only the Error
messages in the plug-in.

ALL - The plug-in logs headers
sent to and from the client,
headers sent to and from
WebLogic Server, information
messages, and error messages.

WLLogFile

See the Debug
parameter

Specifies path and file name for ISAPI and Apache
the log file that is generated when

the Debug parameter is set to ON.

You must create this directory

before setting this parameter.

7-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default

Description

Applicable to

WLDNSRefreshInterv 0 (Lookup once,
al during startup)

Only applies to Apache.

If defined in the proxy
configuration, specifies number of
seconds interval at which
WebLogic Server refreshes DNS
name to IP mapping for a server.
This can be used in the event that
a WebLogic Server instance is
migrated to a different IP address,
but the DNS name for that server's
IP remains the same. In this case,
at the specified refresh interval the
DNS<->IP mapping will be
updated.

Apache plug-in

WLTempDir See the Debug

parameter

Specifies the directory where a
wlproxy.log will be created. If
the location fails, the Plug-In
resorts to creating the log file
under C: / temp in Windows and
/tmp in all Unix platforms.

Also specifies the location of the _
wl_proxy directory for POST
data files.

When both WLTempDir and
WLLogFile are set, WLLogFile
will override as to the location of
wlproxy.log. WLTempDir will
still determine the location of _
wl_proxy directory.

ISAPI and Apache
plug-in

DebugConfigInfo OFF

Enables the special query
parameter “__
WebLogicBridgeConfig”. Use it to
get details about configuration
parameters from the plug-in.

For example, if you enable “__
WebLogicBridgeConfig” by
setting DebugConfigInfo and then
send a request that includes the
query string ?__
WebLogicBridgeConfig, then the
plug-in gathers the configuration
information and run-time
statistics and returns the
information to the browser. The
plug-in does not connect to
WebLogic Server in this case.

This parameter is strictly for
debugging and the format of the
output message can change with
releases. For security purposes,
keep this parameter turned OFF in
production systems.

ISAPI and Apache
plug-in

Parameters for Web Server Plug-Ins

7-7

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
StatPath false If set to true, the plug-in checks Apache plug-in
(Not available for the the existence and permissions of

Microsoft Internet
Information Server
Plug-In)

the translated path
(“Proxy-Path-Translated”) of the
request before forwarding the
request to WebLogic Server.

If the file does not exist, an HTTP
404 File Not Found response is
returned to the client. If the file
exists but is not world-readable,
an HTTP 403 /Forbidden response
is returned to the client. In either
case, the default mechanism for
the Web server to handle these
responses fulfills the body of the
response. This option is useful if
both the WebLogic Server Web
Application and the Web Server
have the same document root.

You can customize the error
response by using the ErrorPage
parameter.

ErrorPage none

You can create your own error
page that is displayed when your
Web server is unable to forward
requests to WebLogic Server.

ISAPI, Apache

WLSocketTimeoutSecs 2 (must be
greater than 0)

Set the timeout for the socket
while connecting, in seconds.

WLIOTimeoutSecs (new 300
name for
HungServerRecoverSecs)

Defines the amount of time the
plug-in waits for a response to a
request from WebLogic Server.
The plug-in waits for
WLIOTimeoutSecs for the server
to respond and then declares that
server dead, and fails over to the
next server. The value should be
set to a very large value. If the
value is less than the time the
servlets take to process, then you
may see unexpected results.

Minimum value: 10

Maximum value: Unlimited

ISAPI and Apache
plug-in

Idempotent ON

When set to ON and if the servers
do not respond within
WLIOTimeoutSecs (new name for
HungServerRecoverSecs), the
plug-ins fail over.

The plug-ins also fail over if
Idempotent is set to ON and the
servers respond with an error
such as READ_ERROR_FROM__
SERVER.

If set to “OFF” the plug-ins do not
fail over. If you are using the
Apache HTTP Server you can set
this parameter differently for
different URLs or MIME types.

ISAPI, Apache

7-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
WLCookieName JSESSIONID If you change the name of the ISAPI and Apache
WebLogic Server session cookie in

CookieName parameter

is deprecated the WebLogic Server Web

application, you need to change
the WLCookieName parameter in
the plug-in to the same value. The
name of the WebLogic session
cookie is set in the
WebLogic-specific deployment
descriptor, in the
<session-descriptor>
element.

DefaultFileName none If the URIis “/” then the plug-in ~ ISAPI and Apache
performs the following steps:

Trims the path specified with the
PathTrim parameter.

Appends the value of
DefaultFileName.

Prepends the value specified with
PathPrepend.

This procedure prevents redirects
from WebLogic Server.

Set the DefaultFileName to the
default welcome page of the Web
Application in WebLogic Server to
which requests are being proxied.
For example, If the
DefaultFileName is set to
welcome.html, an HTTP request
like “http:/ /somehost/weblogic”
becomes

“http:/ /somehost/weblogic/welc
ome.html”. For this parameter to
function, the same file must be
specified as a welcome file in all
the Web Applications to which
requests are directed. For more
information, see Configuring
Welcome Pages.

Note for Apache users: If you are
using Stronghold or Raven
versions, define this parameter
inside of a Location block, and
not in an IfModule block.

MaxPostSize -1 Maximum allowable size of POST ISAPI, Apache
data, in bytes. If the
content-length exceeds
MaxPostSize, the plug-in
returns an error message. If set to
-1, the size of POST data is not
checked. This is useful for
preventing denial-of-service
attacks that attempt to overload
the server with POST data.

Parameters for Web Server Plug-Ins 7-9

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default Description Applicable to
MatchExpression none When proxying by MIME type, set Apache plug-in
(Apache HTTP Server the filename pattern inside of an

only) IfModule block using the

MatchExpression parameter.

Example when proxying by MIME

type:

<IfModule weblogic_module>
MatchExpression *.jsp

WebLogicHost=myHost | paramName

=value

</IfModule>

Example when proxying by path:

<IfModule weblogic_module>
MatchExpression /weblogic

WebLogicHost=myHost \ paramName

=value

</IfModule>

It is possible to define a new
parameter for MatchExpression
using the following syntax:

MatchExpression *.jsp
PathPrepend=/test
PathTrim=/foo

7-10 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name Default

Description Applicable to

FileCaching ON

When set to ON, and the size of the ISAPI, Apache
POST data in a request is greater
than 2048 bytes, the POST data is
first read into a temporary file on
disk and then forwarded to the
WebLogic Server in chunks of
8192 bytes. This preserves the
POST data during failover,
allowing all necessary data to be
repeated to the secondary if the
primary goes down.

Note that when FileCachingis
ON, any client that tracks the
progress of the POST will see that
the transfer has completed even
though the data is still being
transferred between the
WebServer and WebLogic. So, if
you want the progress bar
displayed by a browser during the
upload to reflect when the data is
actually available on the
WebLogic Server, you might not
want to have FileCaching ON.

When set to OFF and the size of
the POST data in a request is
greater than 2048 bytes, the
reading of the POST data is
postponed until a WebLogic
Server cluster member is
identified to serve the request.
Then the plug-in reads and
immediately sends the POST data
to the WebLogic Server in chunks
of 8192 bytes.

Note that turning FileCaching
OFF limits failover. If the
WebLogic Server primary server
goes down while processing the
request, the POST data already
sent to the primary cannot be
repeated to the secondary.

Finally, regardless of how
FileCaching is set, if the size of
the POST data is 2048 bytes or less
the plug-in will read the data into
memory and use it if needed
during failover to repeat to the

WLExcludePathOrMime none
Type

secondary.

This parameter allows you make ISAPI and Apache
exclude certain requests from plug-in

proxying.

This parameter can be defined
locally at the Location tag level as
well as globally. When the
property is defined locally, it does
not override the global property
but defines a union of the two
parameters.

Parameters for Web Server Plug-Ins 7-11

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name

Default

Description Applicable to

KeepAliveSecs

20

The length of time after which an ISAPI, Apache
inactive connection between the

plug-in and WebLogic Server is

closed. You must set

KeepAliveEnabled to true (ON

when using the Apache plug-in)

for this parameter to be effective.

The value of this parameter must
be less than or equal to the value
of the Duration field set in the
Administration Console on the
Server/HTTP tab, or the value set
on the server Mbean with the
KeepAliveSecs attribute.

KeepAliveEnabled

true (Microsoft
IIS plug-in)
ON (Apache
plug-in)

Enables pooling of connections ISAPI, Apache
between the plug-in and
WebLogic Server.

Valid values for the Microsoft IIS
plug-ins are true and false.

Valid values for the Apache
plug-in are ON and OFF.

QueryFromRequest

(Apache HTTP Server
only)

OFF

When set to ON, specifies that the ~ Apache plug-in
Apache plug-in use

(request_rec *)r->the request

to pass the query string to
WebLogic Server. (For more
information, see your Apache
documentation.) This behavior is
desirable in the following
situations:

= When a Netscape version 4.x
browser makes requests that
contain spaces in the query
string

= If you are using Raven
Apache 1.5.2 on HP

When set to OFF, the Apache
plug-in uses (request_rec
*) r->args to pass the query
string to WebLogic Server.

MaxSkipTime

10

If a WebLogic Server listed in ISAPI, Apache
either the WebLogicCluster

parameter or a dynamic cluster

list returned from WebLogic

Server fails, the failed server is

marked as “bad” and the plug-in

attempts to connect to the next

server in the list.

MaxSkips sets the amount of
time after which the plug-in will
retry the server marked as “bad.”
The plug-in attempts to connect to
anew server in the list each time a
unique request is received (that is,
a request without a cookie).

7-12 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name

Default

Description Applicable to

DynamicServerList

ON

When set to OFF, the plug-in ISAPI and Apache
ignores the dynamic cluster list

used for load balancing requests

proxied from the plug-in and only

uses the static list specified with

the WebLogicCluster parameter.

Normally this parameter should

remain set to ON.

There are some implications for
setting this parameter to OFF:

= If one or more servers in the
static list fails, the plug-in
could waste time trying to
connect to a dead server,
resulting in decreased
performance.

= Ifyouadd anew server to the
cluster, the plug-in cannot
proxy requests to the new
server unless you redefine
this parameter. WebLogic
Server automatically adds
new servers to the dynamic
server list when they become
part of the cluster.

WLProxySSL

OFF

Set this parameter to ON to ISAPI and Apache
maintain SSL communication

between the plug-in and

WebLogic Server when the

following conditions exist:

= An HTTP client request
specifies the HTTPS protocol

= Therequestis passed through
one or Mmore proxy servers
(including the WebLogic
Server proxy plug-ins)

s The connection between the
plug-in and WebLogic Server
uses the HTTP protocol

When WLProxySSL is set to ON,
the location header returned to the
client from WebLogic Server
specifies the HTTPS protocol.

WLLocalIP

none

Defines the IP address to bind to ~ ISAPI and Apache
when the plug-in connects to a

WebLogic Server instance running

on a multihomed machine.

If WLLocalIP isnotset, a random
IP address on the multi-homed
machine is used.

Parameters for Web Server Plug-Ins 7-13

SSL Parameters for Web Server Plug-Ins

Table 7-1 (Cont.) General Parameters for Web Server Plug-ins

Parameter Name

Default Description Applicable to

WLSendHdrSeparately ~ ON When this parameter is set to ON, ISAPI plug-in

header and body of the response
are sent in separate packets.

Note: If you need to send the
header and body of the response
in two calls, for example, in cases
where you have other ISAPI filters
or programmatic clients that
expect headers before the body, set
this parameter to ON.

7.2.1 Location of POST Data Files

When the FileCaching parameter is set to ON, and the size of the POST datain a
request is greater than 2048 bytes, the POST data is first read into a temporary file on
disk and then forwarded to the WebLogic Server in chunks of 8192 bytes. This
preserves the POST data during failover.

The temporary POST file is located under /tmp/_wl_proxy for UNIX. For Windows
it is located as follows (if WLTempDir is not specified):

1. Environment variable TMP
2. Environment variable TEMP
3. C:\Temp

/tmp/_wl_proxyis a fixed directory and is owned by the HTTP Server user. When
there are multiple HTTP Servers installed by different users, some HTTP Servers
might not be able to write to this directory. This condition results in an error.

To correct this condition, use the WLTempDir parameter to specify a different location
for the _wl_proxy directory for POST data files.

7.3 SSL Parameters for Web Server Plug-Ins

Note: SCG Certificates are not supported for use with WebLogic
Server Proxy Plug-Ins. Non-SCG certificates work appropriately and
allow SSL communication between WebLogic Server and the plug-in.

KeyStore-related initialization parameters are not supported for use
with WebLogic Server Proxy Plug-Ins

The SSL parameters for Web Server plug-ins are shown in Table 7-2. Parameters are
case sensitive.

7-14 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

SSL Parameters for Web Server Plug-Ins

Table 7-2 SSL Parameters for Web Server Plug-Ins

Parameter

Default

Description Applicable to

SecureProxy

OFF

Set this parameter to ON to enable the use ISAPI and
of the SSL protocol for all communication =~ Apache
between the plug-in and WebLogic Server.

Remember to configure a port on the

corresponding WebLogic Server for the SSL

protocol before defining this parameter.

This parameter may be set at two levels: in
the configuration for the main server
and—if you have defined any virtual
hosts—in the configuration for the virtual
host. The configuration for the virtual host
inherits the SSL configuration from the
configuration of the main server if the
setting is not overridden in the
configuration for the virtual host.

WLSSLWallet

none

WLSSLWallet performs one-way or
two-way SSL based on how WebLogic
Server SSL is configured.

Requires the path of an Oracle Wallet
(containing an SSO wallet file) as
argument.

For example, WLSSLWallet "ORACLE_
INSTANCE} /config/COMPONENT__
TYPE/COMPONENT_NAME/default"

Parameters for Web Server Plug-Ins 7-15

SSL Parameters for Web Server Plug-Ins

7-16 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions
	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server
	2.1 What Are Plug-Ins?
	2.1.1 Connection Pooling and Keep-Alive
	2.1.2 Proxying Requests

	2.2 Version 1.1 Plug-Ins Available for Download
	2.2.1 Version 1.0 Plug-Ins Are Deprecated

	2.3 Upgrading From the Version 1.0 Plug-Ins
	2.4 New Features of the Version 1.1 Plug-Ins
	2.4.1 Apache Plug-In Now Supports Oracle HTTP Server
	2.4.2 Standard Encryption Strength Allows Simplified Naming
	2.4.3 Version 1.1 Plug-Ins Use Oracle Security Framework
	2.4.4 Version 1.1 Plug-Ins Support IPv6
	2.4.5 Version 1.1 Plug-Ins Support Two-Way SSL

	2.5 Plug-In Supported Platforms
	2.6 Downloading the Version 1.1 Plug-Ins

	3 Installing and Configuring the Apache HTTP Server Plug-In
	3.1 Install the Apache HTTP Server Plug-In
	3.1.1 Installation Prerequisites
	3.1.2 Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object

	3.2 Configure the Apache HTTP Server Plug-In
	3.2.1 Editing the httpd.conf File
	3.2.1.1 Placing WebLogic Properties Inside Location or VirtualHost Blocks

	3.2.2 Including a weblogic.conf File in the httpd.conf File
	3.2.2.1 Creating weblogic.conf Files
	3.2.2.2 Sample weblogic.conf Configuration Files
	3.2.2.3 Template for the Apache HTTP Server httpd.conf File

	4 Configuring the Plug-In for Oracle HTTP Server
	4.1 Configuring the Plug-In for Oracle HTTP Server

	5 Installing and Configuring the Microsoft IIS Plug-In
	5.1 Installing and Configuring the Microsoft Internet Information Server Plug-In
	5.2 Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0
	5.3 Using Wildcard Application Mappings to Proxy by Path
	5.3.1 Installing Wildcard Application Mappings (IIS 6.0)
	5.3.2 Adding a Wildcard Script Map for IIS 7.0

	5.4 Proxying Requests from Multiple Virtual Web Sites to WebLogic Server
	5.4.1 Sample iisproxy.ini File

	5.5 Creating ACLs Through IIS
	5.6 Proxying Servlets from IIS to WebLogic Server
	5.7 Testing the Installation

	6 Performing Common Tasks
	6.1 Use SSL With Plug-Ins
	6.1.1 Configure Libraries for SSL
	6.1.1.1 Configure Apache Libraries for SSL

	6.1.2 Configuring a Plug-In for One-Way SSL
	6.1.3 Configure Two-Way SSL Between the Plug-In and WebLogic Server
	6.1.4 Issues with SSL-Apache Configuration

	6.2 Use IPv6 With Plug-Ins
	6.3 Set Up Perimeter Authentication
	6.4 Understanding Connection Errors and Clustering Failover
	6.4.1 Possible Causes of Connection Failures
	6.4.2 Tuning Apache Plug-In to Reduce Connection_Refused Errors
	6.4.3 Failover with a Single, Non-Clustered WebLogic Server
	6.4.4 The Dynamic Server List
	6.4.5 Failover, Cookies, and HTTP Sessions

	7 Parameters for Web Server Plug-Ins
	7.1 Entering Parameters in Web Server Plug-In Configuration Files
	7.2 General Parameters for Web Server Plug-Ins
	7.2.1 Location of POST Data Files

	7.3 SSL Parameters for Web Server Plug-Ins

