
1

Oracle® Fusion Middleware
What's New in Oracle WebLogic Server

11g Release 1 (10.3.3)  

E13852-04

April 2010

Welcome to Oracle WebLogic Server. The following sections describe new and 
changed functionality in this WebLogic Server release.

■ Section 1, "Administration Console"

■ Section 2, "Core Server"

■ Section 3, "Deployment"

■ Section 4, "Diagnostics"

■ Section 5, "Configuration Wizard"

■ Section 6, "Enterprise Java Beans (EJBs)"

■ Section 7, "Installation and Upgrade"

■ Section 8, "JDBC"

■ Section 9, "JTA"

■ Section 10, "JMX"

■ Section 11, "Logging"

■ Section 12, "Messaging"

■ Section 13, "Plug-Ins"

■ Section 14, "Security"

■ Section 15, "WebLogic Service Component Architecture (WebLogic SCA)"

■ Section 16, "Web Applications, Servlets, and JSPs"

■ Section 17, "Web Services"

■ Section 18, "WLST"

■ Section 19, "Deprecated Functionality (WebLogic Server 11g Release 1)"

■ Section 20, "Deprecated Functionality (WebLogic Server 10.3)"

■ Section 21, "Standards Support"

■ Section 22, "Supported Configurations"

■ Section 23, "Documentation Accessibility"

Note: Oracle Fusion Middleware 11g contains Oracle WebLogic 
Server 11g. The version number of Oracle WebLogic Server is 10.3.3.



2

1 Administration Console
This release of WebLogic Sever includes a diagnostics monitoring dashboard. See 
Section 4.5, "Monitoring Dashboard and Request Performance Pages."

2 Core Server
In this release of WebLogic Server, the WebLogic Server Runtime MBean Server is 
configured by default to contain platform MXBeans for the corresponding server. The 
Domain Runtime MBean Server will contain the platform MXBeans for all of the 
servers in the domain. 

Using the platform MBean server for the Runtime MBean Server is controlled by the 
PlatformMBeanServerUsed attribute in the JMX MBean. In previous releases, the 
default value for the PlatformMBeanServerUsed attribute was false so the platform 
MBean server was not used unless explicitly enabled. In this release of WebLogic 
Server, the default value for the PlatformMBeanServerUsed attribute is true for 
domains that are at version 10.3.3.0 or higher. For more information, see "Using the 
Platform MBean Server" in Developing Custom Management Utilities With JMX for Oracle 
WebLogic Server.

2.1 WebLogic Thin T3 Client
The WebLogic Thin T3 java client provides a light-weight alternative to the WebLogic 
Install, Full, and Thin IIOP clients. This client provides the same performance that you 
would see with the full client, but leverages a much smaller JAR file. The Thin T3 
client supports most of the use cases in which the full client can be used. 

The Thin T3 client can be used in stand-alone applications, and is also designed for 
applications running on foreign (non-WebLogic) servers. One common use case is 
integration with WebLogic JMS destinations.

For more information, see "Developing a WebLogic Thin T3 Client" in Programming 
Stand-alone Clients for Oracle WebLogic Server.

2.2 WebLogic Persistent Store
WebLogic File Store behavior and tuning have changed for default file stores and 
custom file stores. File stores may be used by JTA, JMS, and WS applications, among 
others, but the changes should be transparent to most users. The following 
enhancements were made in this release: 

■ A new synchronous write policy has been added: Direct-Write-With-Cache. 
This new policy provides the same data integrity as Direct-Write, but it 
reduces boot time and increases runtime performance in some common use cases. 
It also has some different behavior for backing files. In addition to the file store's 
primary files, the new Direct-Write-With-Cache write policy creates cache 
files in a configurable location. The location is logged in Info message 280103. 

Note: The optional new file store synchronous write policy 
Direct-Write-With-Cache creates new cache files in the OS user's 
temp directory. This new behavior may have implications related to 
disk space, locking, security, migration, and performance. See "Tuning 
the WebLogic Persistent Store" in Performance and Tuning for Oracle 
WebLogic Server.



3

■ New configuration and tuning attributes were added that apply to all 
synchronous write policies, most notably an option to disable file locking (useful 
for some NFS environments) and options to tune native memory usage. 

See "Guidelines for Configuring a Synchronous Write Policy" in Configuring Server 
Environments for Oracle WebLogic Server.

3 Deployment
In this release of WebLogic Server, you can now use a JMX API to start and stop 
application deployments on specified target servers. This JMX API uses open MBean 
data types so that no WebLogic Server classes are required on the client side.

Supporting the JMX API for starting and stopping applications are three new runtime 
MBeans:

■ DeploymentManagerMBean—a run-time MBean singleton that provides access 
to the AppDeploymentRuntime MBeans for each application deployed to the 
domain.

■ AppDeploymentRuntimeMBean—contains the application start and stop 
operations.

■ DeploymentProgressObjectMBean—a run-time MBean that is returned from 
the start and stop operations; this MBean allows the client to monitor the status of 
the deployment operation. 

In this model, you must initiate the deployment operations on the Administration 
Server. Consequently, these new MBeans are located in the Domain Runtime 
MBeanServer. For more information, refer to the Oracle WebLogic Server MBean 
Reference.

4 Diagnostics
In this release of WebLogic Server, the WebLogic Server Diagnostic Framework 
(WLDF) introduces the following new features:

■ Section 4.1, "Oracle JRockit Flight Recorder Integration"

■ Section 4.2, "WLDF Diagnostic Volume"

■ Section 4.3, "Diagnostic Actions"

■ Section 4.4, "WLST Commands for Downloading WLDF Diagnostic Image Capture 
Files"

■ Section 4.5, "Monitoring Dashboard and Request Performance Pages"

4.1 Oracle JRockit Flight Recorder Integration
WebLogic Server provides specific integration points with Oracle JRockit Flight 
Recorder. WebLogic Server events are propagated to the Flight Recorder for inclusion 
in a common data set for runtime or post-incident analysis. The flight recording data is 
also included in WLDF diagnostic image captures, enabling you to capture flight 
recording snapshots based on WLDF watch rules. This full set of functionality enables 
you to capture and analyze runtime system information for both the JVM and the 
Fusion Middleware components running on it, in a single view.



4

For information about WLDF integration features with JRockit Flight Recorder, see 
"Using WLDF with Oracle JRockit Flight Recorder" in Configuring and Using the 
Diagnostics Framework for Oracle WebLogic Server.

4.2 WLDF Diagnostic Volume
This release of WebLogic Server includes a WLDF diagnostic volume setting, which 
controls the amount of data that is automatically produced by WebLogic Server at run 
time and captured in the JRockit Flight Recorder file. For general use, Oracle 
recommends a setting of Low. However, you can increase the volume of diagnostic 
data that is generated, as appropriate.

By default, the WLDF diagnostic volume setting is set to Off, but this may change in a 
future WebLogic Server release. For more information, see "Configuring Diagnostic 
Image Capture for JRockit Flight Recorder" in Configuring and Using the Diagnostics 
Framework for Oracle WebLogic Server.

4.3 Diagnostic Actions
Note the following diagnostic action changes and additions introduced in this release 
of WebLogic Server:

4.3.1 Change to DisplayArgumentsAction Behavior
The behavior of the DisplayArgumentsAction, which is used with custom diagnostic 
monitors, has been modified in this release of WebLogic Server to prevent sensitive 
data in your application from being inadvertently transmitted when an 
instrumentation event captures input arguments to, or return values from, a joinpoint.

If you need to override this behavior change, WLDF adds a new operator, the percent 
sign (%), which can be specified in pointcut expressions to designate the value of a 
non-static class instantiation, parameter, or return specification as not containing nor 
exposing sensitive information.

For more information, see "Defining Pointcuts for Custom Monitors" in Configuring and 
Using the Diagnostics Framework for Oracle WebLogic Server.

4.3.2 New Actions for Obtaining Memory Usage Statistics
WLDF provides the two new diagnostic actions that can be used in custom monitors to 
obtain memory usage statistics about method invocations. Both actions use the JRockit 
API as follows:

■ TraceMemoryAllocationAction—Traces the amount of memory allocated by 
a thread during a method call. Functions similar to TraceElapsedTimeAction.

■ MethodMemoryAllocationStatisticsAction—Gathers statistics about 
memory allocated by a thread during a method call. Functions similar to 
MethodInvocationStatisticsAction.

For more information, see "Diagnostic Action Library" in Configuring and Using the 
Diagnostics Framework for Oracle WebLogic Server.

4.4 WLST Commands for Downloading WLDF Diagnostic Image Capture 
Files
In this release of WebLogic Server, WLST includes the following new commands you 
can use for downloading the WLDF diagnostic image capture file:



5

■ getAvailableCapturedImages—Returns a list of diagnostic images that have 
been created in the image destination directory configured on the server.

■ saveDiagnosticImageCaptureFile—Downloads a specified diagnostic 
image capture file.

■ saveDiagnosticImageCaptureEntryFile—Downloads a specific entry 
within a diagnostic image capture.

Note that JRockit Flight Recorder (JFR) files included in the diagnostic image capture 
may only be viewed using the JFR graphical user interface to Oracle JRockit Mission 
Control. For more information, see "Using WLDF with Oracle JRockit Flight Recorder" 
in Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

For details about and examples of each command, see WebLogic Scripting Tool Command 
Reference.

4.5 Monitoring Dashboard and Request Performance Pages
The WLDF Console Extension has been removed from the WebLogic Server 
Administration Console and has been replaced by the following:

■ Monitoring Dashboard—Provides views and tools for graphically presenting 
diagnostic data about servers and applications running on them. The underlying 
functionality for generating, retrieving, and persisting diagnostic data is provided 
by the WebLogic Diagnostic Framework. The Monitoring Dashboard provides 
additional tools for presenting that data in a wide range of built-in and custom 
views.

For more information, see "Using the Monitoring Dashboard" in Configuring and 
Using the Diagnostics Framework for Oracle WebLogic Server.

■ Diagnostics Request Performance page—Displays information about the real-time 
and historical views of method performance that has been captured by WLDF 
instrumentation capabilities.

For more information, see "Creating Request Performance Data" in Configuring and 
Using the Diagnostics Framework for Oracle WebLogic Server.

5 Configuration Wizard
This section describes changes and new features for the Oracle Fusion Middleware 
Configuration Wizard.

5.1 Configuring JMS Distributed Destination Types in Configuration Wizard
The ability to change the distributed destination type for JMS system resources from 
the default, Weighted Distributed Destinations (WDD), to Uniform Distributed 
Destinations (UDD) has been added to the Oracle Fusion Middleware Configuration 
Wizard. To do so, select the JMS Distributed Destination option on the Select Optional 
Configuration screen, which subsequently displays the Select JMS Distributed 
Destination Type screen in the wizard.

For more information, see "Select JMS Distributed Destination Type" in Creating 
Domains Using the Configuration Wizard.



6

6 Enterprise Java Beans (EJBs)
This section describes changes and new features for the WebLogic Server Enterprise 
Java Beans (EJBs).

6.1 MDB Configuration using Activation Properties
This release extends the available Activation configuration properties to support most 
configurations available in the weblogic-ejb-jar.xml file. See "Deployment 
Elements for MDBs" in Programming Message-Driven Beans for Oracle WebLogic Server.

7 Installation and Upgrade
This section describes changes and new features for the WebLogic Server installation 
and upgrade. 

7.1 Development-Only Installer
Oracle provides a complete WebLogic Server installation in a ZIP file for development 
use only. This installation is supported on Windows, Linux, and Mac OS X systems. 
The extracted installation contains all the necessary artifacts you need to develop 
applications on WebLogic Server, but uses less disk space than a WebLogic Server 
installation performed in Typical mode. 

For more information, see "Development-Only Installer" in the Oracle WebLogic Server 
Installation Guide.

7.2 SIP Server Examples
The WebLogic Server installation includes additional server examples for SIP server. 
The SIP server examples are installed if you select the Server Examples option during 
installation.

7.3 Coherence Installation
You can install Oracle Coherence directly from the WebLogic Server installation 
program by selecting Coherence Product Files. Oracle Coherence is installed by default 
if you select a Typical installation. If you select a Custom installation, you also have the 
option to install Oracle Coherence code examples.

7.4 Server Examples
The WebLogic Server Medrec and Medrec-Spring server examples have been modified 
to use the evaluation Derby database that is included with WebLogic Server (see the 
next section). They have also been modified to use Oracle TopLink as the Java 
Persistence Architecture (JPA) persistence provider, where such a provider is used.

7.5 Evaluation Database
The WebLogic Server installation program includes an Evaluation Database option on 
the Choose Products and Components screen. If selected, an evaluation Derby 
database is installed with WebLogic Server in the WL_HOME\common\derby directory. 
If you select a Typical installation, this component is installed by default. If you choose 



7

to install the Server Examples component, the Evaluation Database option cannot be 
deselected, as some of the server examples use the evaluation database.

8 JDBC
This section describes some of the new connection properties provided by Oracle’s 
Type 4 JDBC Drivers in this release of WebLogic Server.

8.1 Bulk Load
Bulk Load improves and expands upon current methods for inserting mass amounts 
of data into a database as quickly as possible. Previously available for Oracle in the 4.0 
SP2 release, support for DataDirect Bulk Load has been expanded to DB2, SQL Server 
and Sybase.

8.2 Freeze/Unfreeze the Statement Pool
You can now “freeze” the state of the statement pool. Once frozen, important 
statements in the statement pool remain in the pool and are not replaced until the 
connection is closed or the application “unfreezes” the state of the statement pool. By 
freezing the statement pool, you can ensure that your most important statements are 
not removed from the pool by less important statements, thereby optimizing the 
performance of your application.

9 JTA
This release provides a new attribute, completion-timeout-seconds, that tunes 
the maximum amount of time that can be spent in the completion (rollback or second 
phase of a two-phase commit) of a transaction. See "Tuning Transaction Processing" in 
Programming JTA for Oracle WebLogic Server.

10 JMX
For domains that are at version 10.3.3.0 or higher, WebLogic Server registers its 
runtime MBeans in the JVM’s platform MBean server. If you want to change the 
default and use a separate MBean Server, set the PlatformMBeanServerUsed 
attribute in the JMX MBean to be false using either the Administration Console or 
WLST. For more information, see "Using the Platform MBean Server" in Developing 
Custom Management Utilities With JMX for Oracle WebLogic Server.

11 Logging
WebLogic Server introduces the Server Logging Bridge, which provides a lightweight 
mechanism for applications that currently use Java Logging or Log4J Logging to have 
their log messages redirected to WebLogic logging services. Applications can use the 
Server Logging Bridge with their existing configuration; no code changes or 
programmatic use of the WebLogic Logging APIs is required.

Two versions of the Server Logging Bridge are available:

■ For applications that use Java Logging, the Server Logging Bridge exists as the 
weblogic.logging.ServerLoggingHandler object, which is an instance of 
the java.util.logging.Handler class. You configure the Server Logging 



8

Bridge handler in a logging.properties file that is passed in the 
weblogic.Server startup command.

■ For applications that use Log4J Logging, the Server Logging Bridge exists as the 
weblogic.logging.log4j.ServerLoggingAppender object, which is an 
implementation of the org.apache.log4j.Appender interface. You configure 
the Server Logging Bridge appender in a log4j.properties file that is placed 
in the application classpath.

WebLogic Server also adds the 
LogMBean.ServerLoggingBridgeUseParentLoggersEnabled attribute. When 
you enable this attribute, application log messages are propagated to the application’s 
root logger and use of the Server Logging Bridge is suppressed. This attribute is 
disabled by default.

For more information, see "Server Logging Bridge" in Using Logging Services for 
Application Logging for Oracle WebLogic Server.

12 Messaging
This release provides the following new features:

12.1 Changes to weblogic.jms.extension API
The following internal methods of weblogic.jms.extensions.WLMessage have 
been included in Oracle’s public documentation, but have been removed:

■ public void setSAFSequenceName(String safSequenceName);

■ public String getSAFSequenceName();

■ public void setSAFSeqNumber(long seqNumber);

■ public long getSAFSeqNumber();

Your applications should not use these internal methods. Internal methods may 
change or be removed in a future release without notice.

12.2 JMSDestinationAvailabilityHelper API
JMSDestinationAvailabilityHelper API provides a means for getting notifications 
when destinations become available or unavailable. These APIs are for advanced use 
cases only. Use this helper only when standard approaches for solving WebLogic 
distributed consumer problems have been exhausted. See "Using the JMS Destination 
Availability Helper APIs with Distributed Queues" in Programming JMS for Oracle 
WebLogic Server.

12.3 Persistent Store Updates
WebLogic File Store behavior and tuning have changed for default file stores and 
custom file stores. See Section 2.2, "WebLogic Persistent Store."

13 Plug-Ins
This section describes the new features of the version 1.1 plug-ins. The following 
topics are described:

■ Section 13.1, "Apache Plug-In Now Supports Oracle HTTP Server"



9

■ Section 13.2, "Standard Encryption Strength Allows Simplified Naming"

■ Section 13.3, "Plug-Ins Now Use Oracle SSL Toolkit"

■ Section 13.4, "Version 1.1 Plug-Ins Use Oracle Security Framework"

■ Section 13.5, "Version 1.1 Plug-Ins Support IPv6"

■ Section 13.6, "Version 1.1 Plug-Ins Support Two-Way SSL"

See Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server for information about the 
version 1.1 plug-ins.

13.1 Apache Plug-In Now Supports Oracle HTTP Server
In previous releases of Oracle WebLogic Server, Oracle HTTP Server required the use 
of the mod_wl_ohs.so plug-in included with Oracle HTTP Server. This plug-in is 
documented in Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server.

As of this release of Oracle WebLogic Server, Oracle HTTP Server is now supported by 
the same version 1.1 plug-in as is used for the Apache Server: mod_wl.so. 

13.2 Standard Encryption Strength Allows Simplified Naming
Because the version 1.0 plug-ins supported both 40- and 128-bit encryption standards, 
the plug-in file names needed to identify which standard was supported. For example, 
mod_wl_22.so indicated 40-bit encryption and mod_wl128_22.so indicated 128-bit 
encryption. 

However, the version 1.1 plug-ins support only 128-bit encryption, and the plug-in 
names are now simplified. For example, mod_wl.so is the only file name required. 

13.3 Plug-Ins Now Use Oracle SSL Toolkit
The plug-ins now use the Oracle SSL toolkit for enhanced SSL support.

13.4 Version 1.1 Plug-Ins Use Oracle Security Framework
The version 1.1 plug-ins use the Oracle certified security framework, and can therefore 
use Oracle wallets to store SSL configuration information. 

13.5 Version 1.1 Plug-Ins Support IPv6
The version 1.1 plug-ins support IPv6. The WebLogicHost and WebLogicCluster 
configuration parameters now support IPv6 addresses.

13.6 Version 1.1 Plug-Ins Support Two-Way SSL
The version 1.1 plug-ins provide two-way SSL support for verifying client identity. 
Two-way SSL is automatically enforced when WebLogic Server requests the client 
certificate during the handshake process.

14 Security
This section describes the following changes and new features in the WebLogic 
Security Service in this release of WebLogic Server:



10

■ Section 14.1, "JDBC Connection Security Service API"

■ Section 14.2, "SSL Support"

■ Section 14.3, "Performance Enhancements for Security Policy Deployment"

14.1 JDBC Connection Security Service API
[The WebLogic Security Service adds a new API that can be used in custom security 
providers for obtaining a JDBC connection. The JDBCConnectionService SSPI, 
which is used in the provider initialization, accesses the JDBC data sources that are 
configured for your WebLogic domain. This capability enables your custom security 
providers to take advantage of full database access and database connection 
management capabilities provided through JDBC data sources, including multi data 
sources.

For more information, see "Best Practice: Use the JDBC Connection Security Service 
API to Obtain Database Connections" in Developing Security Providers for Oracle 
WebLogic Server.]

14.2 SSL Support
This release of WebLogic Server replaces the Certicom SSL implementation in 
Weblogic Server with an SSL implementation based on Java Secure Socket Extension 
(JSSE). JSSE is the Java standard framework for SSL and TLS and includes both 
blocking-IO and non-blocking-IO APIs, and a reference implementation including 
several commonly-trusted CAs.

Additional SSL support changes include the following:

■ Support for the Certicom SSL implementation is deprecated as of this release and 
will eventually be removed. For this purpose, this release of WebLogic Server 
continues to support the Certicom SSLPlus Java version 4.0 SSL implementation, 
as well as RSA Cert-J version 2.1.1 and Crypto-J version 3.5.

■ The SSLMBean has been modified in this release to support additional SSL 
configuration capabilities, including the ability to enable or disable the JSSE 
adapter. See "SSL" in Command Reference for Oracle WebLogic Server.

For more information, see "Secure Sockets Layer (SSL)" in Understanding Security for 
Oracle WebLogic Server.

14.3 Performance Enhancements for Security Policy Deployment
This release of WebLogic Server includes a deployment performance enhancement for 
Deployable Authorization providers and Role Mapping providers that are thread safe. 

By default, Weblogic Server now supports thread-safe parallel modification to security 
policy and roles during application and module deployment. For this reason, 
deployable Authorization and Role Mapping providers configured in the security 
realm should support parallel calls. The WebLogic deployable XACML Authorization 
and Role Mapping providers meet this requirement.

However, if your custom deployable Authorization or Role Mapping providers do not 
support parallel calls, you need to disable the parallel security policy and role 
modification and instead enforce a synchronization mechanism that results in each 
application and module being placed in a queue and deployed sequentially. You can 
turn on this synchronization enforcement mechanism from the Administration 



11

Console, and via the DeployableProviderSynchronizationEnabled and 
DeployableProviderSynchronizationTimeout attributes of the RealmMBean. 

See "Enabling Synchronization in Security Policy and Role Modification at 
Deployment" in Securing Oracle WebLogic Server for additional information.

15 WebLogic Service Component Architecture (WebLogic SCA)
In this release of WebLogic Server, WebLogic SCA supports the following new 
features:

■ Enhanced data binding support in Web Service bindings:

- SOAP attachments in TopLink/EclipseLink JAXB bindings. Both SOAP 
Message Transmission Optimization Mechanism (MTOM) and SOAP 
Messages with Attachments (SwA) are supported.

- Java Collection Objects in TopLink/EclipseLink JAXB bindings.

■ Dispatch policies for EJB service bindings

For more information about WebLogic SCA, see Developing WebLogic SCA Applications 
for Oracle WebLogic Server.

16 Web Applications, Servlets, and JSPs
This section describes changes and new Web application, servlet, and JSP features in 
this release of WebLogic Server.

16.1 ActiveCache
Now applications deployed on WebLogic Server can easily use Coherence data caches, 
and seamlessly incorporate Coherence*Web for session management and TopLink 
Grid as an object-to-relational persistence framework. Collectively, these features are 
called ActiveCache. 

ActiveCache provides replicated and distributed data management and caching 
services that you can use to reliably make an application's objects and data available to 
all servers in a Coherence cluster. In addition, ActiveCache:

■ Provides storage and replication of important application data such as session 
state.

■ Manages the life cycle of stored objects.

■ Provides serialization options which reduce heap requirements and the 
computational cost of deserializing session state each time it is accessed.

■ Breaks large objects into smaller segments to enable more efficient access to data.

■ Provides near caching, keeping a small amount of data immediately available.

For more information, see Using ActiveCache.

16.2 Class Caching
WebLogic Server now allows you to enable class caching. The advantages of using 
class caching are:

■ Reduces server startup time.



12

■ The package level index reduces search time for all classes and resources.

Class caching is supported in development mode when starting the server using a 
startWebLogic script. Class caching is disabled by default and is not supported in 
production mode. The decrease in startup time varies among different JRE vendors. 
For more information, see "Configuring Class Caching" in Developing Applications for 
Oracle WebLogic Server.

17 Web Services
This section describes new and changed WebLogic Web services features in this release 
of WebLogic Server.

17.1 Support for Web Services Atomic Transactions
WebLogic Web services enable interoperability with other external transaction 
processing systems, such as WebSphere, JBoss, Microsoft .NET, and so on, through the 
support of the following specifications:

■ Web Services Atomic Transaction (WS-AtomicTransaction) Versions 1.0, 1.1, and 
1.2: 
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wst
x-wsat-1.2-spec-cs-01.html

■ Web Services Coordination (WS-Coordination) Versions 1.0, 1.1, and 1.2: 
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/w
stx-wscoor-1.2-spec-cs-01.html

These specifications define an extensible framework for coordinating distributed 
activities among a set of participants. For more information, see "Using Web Services 
Atomic Transactions" in Programming Advanced Features of JAX-WS Web Services for 
Oracle WebLogic Server.

17.2 Enhanced Support for Web Services in a Clustered Environment
WebLogic Server provides enhanced routing performance of Web service requests and 
responses in a clustered environment. For more information, see "Managing Web 
Services in a Cluster" in Programming Advanced Features of JAX-WS Web Services for 
Oracle WebLogic Server.

17.3 Enhanced Monitoring of Web Services and Clients
The monitoring pages available from the WebLogic Server Administration Console to 
monitor runtime information for Web service and clients have been enhanced. For 
example, you can monitor information specific to features such as Web services atomic 
transactions or cluster routing for JAX-WS Web services, and Web services reliable 
messaging for JAX-RPC Web services. For more information, see "Monitoring Web 
Services and Clients" in Getting Started With JAX-WS Web Services for Oracle WebLogic 
Server.



13

17.4 Attach Oracle WSM Policies to WebLogic Web Services Using Fusion 
Middleware Control
You can now attach Oracle Web Services Manager (WSM) policies to WebLogic Web 
services using Oracle Fusion Middleware Enterprise Manager Fusion Middleware 
Control. For more information, see:

■ "Using Oracle Web Services Manager Security Policies" in Securing WebLogic Web 
Services for Oracle WebLogic Server.

■ "Attaching Policies to Web Services" in Security and Administrator's Guide for Web 
Services.

17.5 Build Database Web Services Using the EclipseLink DBWS 
Component
The EclipseLink DBWS component provides Java developers with a declarative Web 
service solution for accessing relational databases. The DBWS Builder generates the 
necessary configuration files based on the provided database artifacts so that 
EclipseLink's relational and persistence services can be combined to handle the 
requests. For more information, see 
http://www.eclipse.org/eclipselink/dbws.php.

17.6 Method-Level Policy Attachment Behavior Has Changed
Prior to WebLogic Server 10.3.3, if a policy was attached, via the Administration 
Console, to a method of one Web service, the policy was also attached to all methods 
of the same name for all Web services in that module.

In WebLogic Server 10.3.3, the policy is attached only to the method of the appropriate 
Web service.

17.7 policy: Prefix Has Been Removed From OWSM Policy Names
Prior to WebLogic Server 10.3.3, OWSM policy names included a policy: prefix in 
the available policies list displayed in the Administration Console. In WebLogic Server 
10.3.3, the policy: prefix has been removed from OWSM policy names that are 
displayed in the Administration Console.

As a result, OWSM policies that were attached in WebLogic Server 10.3.1 or 10.3.2 are 
listed in the available policies list, even though they are attached. See "Web Services 
and XML Issues and Workarounds" in the Oracle WebLogic Server release notes for 
more information about this issue. 

17.8 Web Services WSDL Tab Has Been Removed 
Prior to WebLogic Server 10.3.3, you could view the WSDL for the current Web service 
by selecting the Configuration > WSDL tab. The WSDL tab has been removed as of 
WebLogic Server 10.3.3. To view the WSDL for the current Web service, select the 
Testing tab, expand the name of the Web service to view its test points, and click 
?WSDL.

For more information, see "View the WSDL of a Web Service" in the Oracle WebLogic 
Server Administration Console Help



14

18 WLST
The section describes new and changed WLST features in this release of WebLogic 
Server.

18.1 SIP Server Domain Scripts
The following WLST offline sample scripts have been added to the WL_
HOME\common\templates\scripts\wlst directory:

■ basicWLSSDomain.py

■ geo1domain.py

■ geo2domain.py

■ replicatedDomain.py

These scripts create simple WebLogic SIP server domains using various SIP server 
domain templates, which are included with your WebLogic Server installation in the 
WL_HOME\common\templates\domains directory.

For more information, see "WLST Sample Offline Scripts" in Oracle WebLogic Scripting 
Tool.

19 Deprecated Functionality (WebLogic Server 11g Release 1)
Information about deprecated functionality for WebLogic Server 11g Release 1 can be 
found on My Oracle Support at https://support.oracle.com/. Enter the 
following document ID in the Search Knowledge Base field:

888028.1

20 Deprecated Functionality (WebLogic Server 10.3)
This section lists all functionality that was deprecated in WebLogic Server 10.3.

■ Section 20.1, "WebLogic Server Java Utilities"

■ Section 20.2, "Oracle Type 4 JDBC Driver"

■ Section 20.3, "Deployment"

■ Section 20.4, "OpenJPA"

■ Section 20.5, "Apache Beehive Support"

20.1 WebLogic Server Java Utilities
The command line tool EarInit, documented in the Command Reference for Oracle 
WebLogic Server, has been deprecated in this release of WebLogic Server. As a result, 
you should no longer:

■ Use the DDInit utility to generate deployment descriptors for Enterprise 
applications. 

■ Use the ddcreate ant task, which calls EarInit.



15

20.2 Oracle Type 4 JDBC Driver
The Oracle Type 4 JDBC driver has been deprecated in WebLogic Server.10.3. It has 
been removed in WebLogic Server 10.3.1. Instead of this driver, you should use the 
Oracle Thin Driver that is provided with WebLogic Server. For details about the Oracle 
Thin Driver, see "Using JDBC Drivers with WebLogic Server" in Configuring and 
Managing JDBC for Oracle WebLogic Server.

20.3 Deployment
Internal fields and methods in the following classes have been deprecated in this 
release of WebLogic Server, and are no longer documented.

■ weblogic.deploy.api.model.WebLogicDeployableObject

■ weblogic.deploy.api.model.WebLogicJ2eeApplicationObject

■ weblogic.deploy.api.shared.WebLogicModuleType

■ weblogic.deploy.api.tools.SessionHelper

See the following sections for a complete list.

20.3.1 weblogic.deploy.api.model.WebLogicDeployableObject
This section lists the deprecated fields, methods, and classes for 
weblogic.deploy.api.model.WebLogicDeployableObject.

Fields
String uri

Boolean haveAppRoot

DDRootFields ddRoot

ClassLoaderControl clf

File Plan

File plandir

DeploymentPlanBean planBean

LibrarySpec[] libraries

boolean deleteOnClose

ClassFinder resourceFinder

InputStream getDDStream()

void setDDBeanRoot()

InputStream getSteamFromParent()

Methods
LibrarySpec[] getLibraries()

WebLogicJ2EEApplicationObject getParent()

void closeGCL()

void closeResourceFinder()

void closeVJF()



16

Class
DDRootFields

20.3.2 weblogic.deploy.api.model.WebLogicJ2eeApplicationObject
This section lists the deprecated fields and methods for 
weblogic.deploy.api.model.WebLogicJ2eeApplicationObject.

Fields
ApplicationBean app

Methods
String[] getModuleUris()

void initEmbeddedModules()

void addModule()

File getModulePath

20.3.3 weblogic.deploy.api.shared.WebLogicModuleType
This section lists deprecated fields for 
weblogic.deploy.api.shared.WebLogicModuleType.

Fields
WebLogicModuleType CONFIG

WebLogicModuleType SUBMODULE

String MODULETYPE_EAR

String MODULETYPE_WAR

String MODULETYPE_EJB

String MODULETYPE_RAR

String MODULETYPE_CAR

String MODULETYPE_UNKNOWN

String MODULETYPE_JMS

String MODULETYPE_JDBC

String MODULETYPE_JDBC

String MODULETYPE_INTERCEPT

String MODULETYPE_CONFIG

20.3.4 weblogic.deploy.api.tools.SessionHelper
This section lists deprecated methods for weblogic.deploy.api.tools.SessionHelper.

Methods
void setDebug()

SessionHelper()

LibrarySpec registerLibrary()



17

LibrarySpec[] getLibraries()

void enableLibraryMerge()

void bumpVersion()

20.4 OpenJPA
OpenJPA now has a set of APIs for which compatibility is guaranteed. These are the 
public interfaces and annotations in the org.apache.openjpa.persistence and 
org.apache.openjpa.persistence.jdbc packages. To ensure this compatibility, 
the return type for some method signatures on these interfaces were changed in 
non-backward compatible ways (see Section 20.4.1, "OpenJPA Changed Method 
Signatures"). Other methods and fields were deprecated in OpenJPA 1.0, making it 
likely that they will be removed in a future release of OpenJPA (see Section 20.4.2, 
"OpenJPA Deprecated Methods and Fields"). Therefore, their use cannot be relied on.

20.4.1 OpenJPA Changed Method Signatures
This section lists the OpenJPA changed method signatures.

Note: Only the OpenJPA interfaces and classes marked @published 
have compatibility guarantees. The OpenJPA project strives to 
maintain compatibility for the SPI interfaces, but does not provide any 
guarantees on them. Additionally, classes and interfaces navigable 
from the SPI interfaces may change in the future.

Table 1 org.apache.openjpa.persistence.OpenJPAEntityManager Changed Method 
Signatures

Pre-1.0 method signature Method signature for 1.0 and greater

public int getConnectionRetainMode(); public ConnectionRetainMode 
getConnectionRetainMode();

public int getRestoreState(); public RestoreStateType getRestoreState();

public int getDetachState(); public DetachStateType getDetachState();

public int getAutoClear(); public AutoClearType getAutoClear();

public int getAutoDetach(); public EnumSet<AutoDetachType> 
getAutoDetach();

Table 2 org.apache.openjpa.persistence.OpenJPAQuery Changed Method Signatures

Pre-1.0 method signature Method signature for 1.0 and greater

public int getOperation(); public QueryOperationType getOperation();

Table 3 org.apache.openjpa.persistence.jdbc.JDBCFetchPlan Changed Method 
Signatures

Pre-1.0 method signature Method signature for 1.0 and greater

public int getEagerFetchMode(); public FetchMode getEagerFetchMode();

public int getSubclassFetchMode(); public FetchMode getSubclassFetchMode();



18

20.4.2 OpenJPA Deprecated Methods and Fields
This section lists the OpenJPA deprecated methods and fields.

public int getResultSetType(); public ResultSetType getResultSetType();

public int getFetchDirection(); public FetchDirection getFetchDirection();

public int getJoinSyntax(); public JoinSyntax getJoinSyntax();

Table 4 org.apache.openjpa.persistence.jdbc.EagerFetchMode

Pre-1.0 method signature Method signature for 1.0 and greater

EagerFetchType value() default 
EagerFetchType.NONE;

FetchMode value() default FetchMode.NONE;

Table 5 org.apache.openjpa.persistence.jdbc.SubclassFetchMode

Pre-1.0 method signature Method signature for 1.0 and greater

EagerFetchType value() default 
EagerFetchType.NONE;

FetchMode value() default FetchMode.NONE;

Table 6 org.apache.openjpa.persistence

Deprecated Use Instead

OpenJPAPersistence.EntityManager JPAFacadeHelper

OpenJPAPersistence.EntityManagerFactory JPAFacadeHelper

OpenJPAPersistence.toEntityManagerFactory 
(BrokerFactory)

JPAFacadeHelper

OpenJPAPersistence.toBrokerFactory(EntityM
anagerFactory)

JPAFacadeHelper

OpenJPAPersistence.toEntityManager(Broker) JPAFacadeHelper

OpenJPAPersistence.toBroker(EntityManager) JPAFacadeHelper

OpenJPAPersistence.getMetaData(Object) JPAFacadeHelper

OpenJPAPersistence.getMetaData(EntityMana
ger, Class)

JPAFacadeHelper

OpenJPAPersistence.getMetaData(EntityMana
gerFactory, Class)

JPAFacadeHelper

OpenJPAPersistence.fromOpenJPAObjectId(O
bject)

JPAFacadeHelper

OpenJPAPersistence.toOpenJPAObjectId(Class
MetaData, Object)

JPAFacadeHelper

OpenJPAPersistence.toOpenJPAObjectId(Class
MetaData, Object[])

JPAFacadeHelper

OpenJPAPersistence.toOpenJPAObjectId(Class
MetaData, Collection)

JPAFacadeHelper

Table 3 (Cont.) org.apache.openjpa.persistence.jdbc.JDBCFetchPlan Changed Method 
Signatures

Pre-1.0 method signature Method signature for 1.0 and greater



19

OpenJPAPersistence.fromOpenJPAObjectIdCla
ss(Class)

JPAFacadeHelper

FetchPlan.getQueryResultCache() FetchPlan.getQueryResultCacheEnabled()

FetchPlan.setQueryResultCache(boolean 
cache)

FetchPlan.setQueryResultCache()

FetchPlan.getDelegate() FetchPlan.getDelegate()

Note: Cast to ExtentImpl. This method pierces 
the published-API boundary, as does the SPI 
cast.

OpenJPAEntityManagerFactory.CONN_
RETAIN_DEMAND

ConnectionRetainMode enum

OpenJPAEntityManagerFactory.CONN_
RETAIN_TRANS

ConnectionRetainMode enum

OpenJPAEntityManagerFactory.CONN_
RETAIN_ALWAYS

ConnectionRetainMode enum

OpenJPAEntityManagerFactory.getConfigurati
on()

OpenJPAEntityManagerFactorySPI.getConfig
uration()

OpenJPAEntityManagerFactory.addLifecycleL
istener(Object, Class[])

OpenJPAEntityManagerFactorySPI.addLifecyc
leListener(Object, Class[])

OpenJPAEntityManagerFactory.removeLifecyc
leListener(Object)

OpenJPAEntityManagerFactorySPI.removeLif
ecycleListener(Object)

OpenJPAEntityManagerFactory.addTransactio
nListener(Object)

OpenJPAEntityManagerFactorySPI.addTransa
ctionListener(Object)

OpenJPAEntityManagerFactory.removeTransa
ctionListener(Object)

OpenJPAEntityManagerFactorySPI.removeTra
nsactionListener(Object)

QueryResultCache.getDelegate() QueryResultCache.getDelegate()

Note: Cast to ExtentImpl. This method pierces 
the published-API boundary, as does the SPI 
cast.

Extent.getDelegate() Extent.getDelegate()

Note: Cast to ExtentImpl. This method pierces 
the published-API boundary, as does the SPI 
cast.

OpenJPAQuery.OP_SELECT QueryOperationType enum

OpenJPAQuery.OP_DELETE QueryOperationType enum

OpenJPAQuery.OP_UPDATE QueryOperationType enum

OpenJPAQuery.FLUSH_TRUE FlushModeType enum

OpenJPAQuery.FLUSH_FALSE FlushModeType enum

OpenJPAQuery.FLUSH_WITH_
CONNECTIONS

FlushModeType enum

OpenJPAQuery.addFilterListener(FilterListene
r)

OpenJPAQuerySPI.AddFilterListener(FilterLis
tener)

OpenJPAQuery.removeFilterListener(FilterList
ener)

OpenJPAQuerySPI.removeFilterListener(Filter
Listener)

Table 6 (Cont.) org.apache.openjpa.persistence

Deprecated Use Instead



20

OpenJPAQuery.addAggregateListener(Aggreg
ateListener)

OpenJPAQuerySPI.addAggregateListener(Ag
gregateListener)

OpenJPAQuery.removeAggregateListener(Ag
gregateListener)

OpenJPAQuerySPI.removeAggregateListener(
AggregateListener)

StoreCache.getDelegate() StoreCache.getDelegate()

Note: Cast to ExtentImpl. This method pierces 
the published-API boundary, as does the SPI 
cast.

Generator.getDelegate() Generator.getDelegate()

Note: Cast to ExtentImpl. This method pierces 
the published-API boundary, as does the SPI 
cast.

OpenJPAEntityManager.CONN_RETAIN_
DEMAND

ConnectionRetainMode enum

OpenJPAEntityManager.CONN_RETAIN_
TRANS

ConnectionRetainMode enum

OpenJPAEntityManager.CONN_RETAIN_
ALWAYS

ConnectionRetainMode enum

OpenJPAEntityManager.DETACH_FETCH_
GROUPS

DetachStateType enum

OpenJPAEntityManager.DETACH_FGS DetachStateType enum

OpenJPAEntityManager.DETACH_LOADED DetachStateType enum

OpenJPAEntityManager.DETACH_ALL DetachStateType enum

OpenJPAEntityManager.RESTORE_ALL RestoreStateType enum

OpenJPAEntityManager.RESTORE_NONE RestoreStateType enum

OpenJPAEntityManager.RESTORE_
IMMUTABLE

RestoreStateType enum

OpenJPAEntityManager.DETACH_CLOSE AutoDetachType enum

OpenJPAEntityManager.DETACH_COMMIT AutoDetachType enum

OpenJPAEntityManager.DETACH_
NONTXREAD

AutoDetachType enum

OpenJPAEntityManager.DETACH_
ROLLBACK

AutoDetachType enum

OpenJPAEntityManager.CLEAR_
DATASTORE

AutoCleartType enum

OpenJPAEntityManager.CLEAR_ALL AutoCleartType enum

OpenJPAEntityManager.CALLBACK_FAIL_
FAST

CallBackMode enum

OpenJPAEntityManager.CALLBACK_
IGNORE

CallBackMode enum

OpenJPAEntityManager.CALLBACK_LOG CallBackMode enum

OpenJPAEntityManager.CALLBACK_
RETHROW

CallBackMode enum

Table 6 (Cont.) org.apache.openjpa.persistence

Deprecated Use Instead



21

OpenJPAEntityManager.CALLBACK_
ROLLBACK

CallBackMode enum

OpenJPAEntityManager.getConfiguration() OpenJPAEntityManagerSPI.getConfiguration()

OpenJPAEntityManager.setRestoreState(int) OpenJPAEntityManager.setRestoreState(Resto
reStateType)

OpenJPAEntityManager.setDetachState(int) OpenJPAEntityManager.setDetachState(Detac
hStateType)

OpenJPAEntityManager.setAutoClear(int) OpenJPAEntityManager.setAutoClear(AutoCl
earType)

OpenJPAEntityManager.setAutoDetach(int) OpenJPAEntityManager.setAutoDetach(Auto
DetachType)

OpenJPAEntityManager.setAutoDetach(int, 
boolean)

OpenJPAEntityManager.setAutoDetach(Auto
DetachType, boolean)

OpenJPAEntityManager.isLargeTransaction() OpenJPAEntityManager.isTrackChangesByTyp
e()

OpenJPAEntityManager.setLargeTransaction(b
oolean)

OpenJPAEntityManager.setTrackChangesByTy
pe(boolean)

OpenJPAEntityManager.addTransactionListen
er(Object)

OpenJPAEntityManagerSPI.addTransactionLis
tener(Object)

OpenJPAEntityManager.removeTransactionLis
tener(Object)

OpenJPAEntityManagerSPI.removeTransactio
nListener(Object)

OpenJPAEntityManager.getTransactionListene
rCallbackMode()

OpenJPAEntityManagerSPI.getTransactionList
enerCallbackMode()

OpenJPAEntityManager.setTransactionListene
rCallbackMode(int)

OpenJPAEntityManagerSPI.setTransactionList
enerCallbackMode(int)

OpenJPAEntityManager.addLifecycleListener(
Object, Class[])

OpenJPAEntityManagerSPI.addLifecycleListe
ner(Object, Class[])

OpenJPAEntityManager.removeLifecycleListe
ner(Object)

OpenJPAEntityManagerSPI.removeLifecycleLi
stener(Object)

OpenJPAEntityManager.getLifecycleListenerC
allbackMode()

OpenJPAEntityManagerSPI.getLifecycleListen
erCallbackMode()

OpenJPAEntityManager.setLifecycleListenerC
allbackMode(int)

OpenJPAEntityManagerSPI.setLifecycleListen
erCallbackMode(int)

OpenJPAEntityManager.begin() EntityTransaction.begin()

OpenJPAEntityManager.commit() EntityTransaction.commit()

OpenJPAEntityManager.rollback() EntityTransaction.rollback()

OpenJPAEntityManager.isActive() EntityTransaction.isActive()

OpenJPAEntityManager.commitAndResume() OpenJPAEntityTransaction.commitAndResum
e

OpenJPAEntityManager.rollbackAndResume() OpenJPAEntityTransaction.rollbackAndResum
e

OpenJPAEntityManager.setRollbackOnly() EntityTransaction.setRollbackOnly()

OpenJPAEntityManager.setRollbackOnly(Thro
wable)

OpenJPAEntityTransaction.setRollbackOnly()

Table 6 (Cont.) org.apache.openjpa.persistence

Deprecated Use Instead



22

20.4.3 OpenJPAEntityManager
In WebLogic Server 10g Release 3 (10.3), the 
org.apache.openjpa.persistence.OpenJPAEntityManager interface extends 
EntityTransaction. This relationship is deprecated; in future releases, 
OpenJPAEntityManager will not extend EntityTransaction.

The following provides an example of how this might impact your code:

Pre-10.3

OpenJPAEntityManager em = ...
EntityTransaction t = em;

10.3

OpenJPAEntityManager em = ...;
EntityTransaction t = em.getTransaction();

20.5 Apache Beehive Support
Apache Beehive has been deprecated as of WebLogic Server 10.3. Oracle intends to 
remove Apache Beehive APIs in a future WebLogic Server Version release. In 
preparation, we recommend that you migrate your Beehive applications and 

OpenJPAEntityManager.getRollbackCause() OpenJPAEntityTransaction.getRollbackCause()

OpenJPAEntityManager.getRollbackOnly() EntityTransaction.getRollbackOnly()

JDBCFetchPlan.EAGER_MODE FetchMode enum

JDBCFetchPlan.EAGER_JOIN FetchMode enum

JDBCFetchPlan.EAGER_PARALLEL FetchMode enum

JDBCFetchPlan.SIZE_UNKNOWN LRSSizeAlgorithm enum

JDBCFetchPlan.SIZE_LAST LRSSizeAlgorithm enum

JDBCFetchPlan.SIZE_QUERY LRSSizeAlgorithm enum

JDBCFetchPlan.SYNTAX_SQL92 JoinSyntax enum

JDBCFetchPlan.SYNTAX_TRADITIONAL JoinSyntax enum

JDBCFetchPlan.SYNTAX_DATABASE JoinSyntax enum

JDBCFetchPlan.setEagerFetchMode(int) JDBCFetchPlan.setEagerFetchMode(FetchMod
e)

JDBCFetchPlan.setSubclassFetchMode(int) JDBCFetchPlan.setSubclassFetchMode(FetchM
ode)

JDBCFetchPlan.setResultSetType(int) JDBCFetchPlan.setResultSetType(ResultSetTyp
e)

JDBCFetchPlan.setFetchDirection(int) JDBCFetchPlan.setFetchDirection(FetchDirecti
on)

JDBCFetchPlan.getLRSSize() JDBCFetchPlan.getLRSSizeAlgorithm()

JDBCFetchPlan.setLRSSize(int) JDBCFetchPlan.setLRSSizeAlgorithm(LRSSize
Algorithm)

JDBCFetchPlan.setJoinSyntax(int) JDBCFetchPlan.setJoinSyntax(setJoinSyntax)

Table 6 (Cont.) org.apache.openjpa.persistence

Deprecated Use Instead



23

infrastructure to other frameworks such as Oracle's ADF or Java Server Faces at your 
earliest convenience. Note, Beehive will still be available and supported for use within 
WebLogic Integration and WebLogic Portal.

21 Standards Support
This release of WebLogic Server supports the following standards and versions.

21.1 Java Standards
Table 7 lists currently supported Java standards.

Table 7 Java Standards Support

Standard Version

JAAS 1.0 Full

Java API for XML-Based Web Services (JAX-WS) 2.1, 2.0

Java Authorization Contract for Containers (JACC) 1.1

Java EE 5.0

Java EE Application Deployment 1.2

Java EE CA 1.5, 1.0

Java EE EJB 3.0, 2.1, 2.0, and 1.1

Java EE Enterprise Web Services 1.2, 1.1

Java EE JDBC 4.0, 3.0

Java EE JMS 1.1, 1.0.2b

Java EE JNDI 1.2

Java EE JSF 2.0, 1.2, 1.1

Java EE JSP 2.1, 2.0, 1.2, and 1.1

Java EE Servlet 2.5, 2.4, 2.3, and 2.2

Java RMI 1.0

JavaMail 1.4

JAX-B 2.1, 2.0

JAX-P 1.2, 1.1

JAX-R 1.0

JAX-RPC 1.1, 1.0 (deprecated)

JCE 1.4

JDKs 6.0 (aka 1.6), 5.0 (aka 1.5, clients only)

JMX 1.2, 1.0

JPA 1.0

JSR 77: Java EE Management 1.1

JSTL 1.2

OTS/JTA 1.2 and 1.1



24

21.2 Web Services Standards
Table 8 lists currently supported Web Services standards.

RMI/IIOP 1.0

SOAP Attachments for Java (SAAJ) 1.3, 1.2

Streaming API for XML (StAX) 1.0

Web Services Metadata for the Java Platform 2.0, 1.1

Table 8 Web Services Standards Support

Standard Version

Web Services Java EE 1.2, 1.1

Web Services Metadata for the Java Platform (JWS) 2.0, 1.0

Java API for XML-Based Web Services (JAX-WS) 2.1, 2.0

Simple Object Access Protocol (SOAP) 1.1, 1.2

Web Services Description Language (WSDL) 1.1

Java API for XML-based RPC (JAX-RPC) 1.1, 1.0 (deprecated)

SOAP with Attachments for Java (SAAJ) 1.3, 1.2

Web Services Security (WS-Security) 1.1, 1.0

Web Services Policy Framework (WS-Policy) 1.5, 1.2

Web Services Security Policy (WS-SecurityPolicy) 1.2

Web Services Policy Attachment 
(WS-PolicyAttachment)

1.5, 1.2

Web Services Addressing (WS-Addressing) 1.0, 2004/2008 member submission

Web Services Reliable Messaging 
(WS-ReliableMessaging)

1.1, 1.0

Web Services Trust Language (WS-Trust) 1.3

Web Services Secure Conversation Language 
(WS-SecureConversation)

1.3

Universal Description, Discovery, and Integration 
(UDDI)

2.0 (deprecated in WebLogic Server 
10.3.1)

Java API for XML Registries (JAX-R) 1.0

Java Architecture for XML Binding (JAX-B) 2.1, 2.0

Security Assertion Markup Language (SAML) 2.0, 1.1

SAML Token Profile 1.1, 1.0

Web Services Atomic Transaction 
(WS-AtomicTransactions)

1.2, 1.1, 1.0

Web Services Coordination (WS-Coordination) 1.2, 1.1, 1.0

Table 7 (Cont.) Java Standards Support

Standard Version



25

21.3 Other Standards
Table 9 lists other standards that are supported in this release of WebLogic Server.

For more information about IPv6 support for all Fusion Middleware products, refer to 
the IPv6 Certification worksheet in the Oracle Fusion Middleware 11g Release 1 (11.1.1.x) 
Certification Matrix at 
http://www.oracle.com/technology/software/products/ias/files/ora
cle%20fusion%20middleware%2011gR1%20(11.1.1.x)%20certification%2
0matrix.xls.

22 Supported Configurations
For the most current information on supported configurations, refer to the Oracle 
Fusion Middleware Supported Configurations Central Hub at 
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html.

23 Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation 
accessible to all users, including users that are disabled. To that end, our 
documentation includes features that make information available to users of assistive 
technology. This documentation is available in HTML format, and contains markup to 
facilitate access by the disabled community. Accessibility standards will continue to 
evolve over time, and Oracle is actively engaged with other market-leading 
technology vendors to address technical obstacles so that our documentation can be 
accessible to all of our customers. For more information, visit the Oracle Accessibility 
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The 
conventions for writing code require that closing braces should appear on an 

Table 9 Other Standards

Standard Version

SSL v3

X.509 v3

LDAP v3

TLS v1

HTTP 1.1

SNMP SNMPv1, SNMPv2, SNMPv3

xTensible Access Control Markup Language (XACML) 2.0

Partial implementation of Core and Hierarchical Role Based 
Access Control (RABC) Profile of XACML

2.0

Internet Protocol (IP) Versions:

■ v6

■ v4



26

otherwise empty line; however, some screen readers may not always read a line of text 
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or 
organizations that Oracle does not own or control. Oracle neither evaluates nor makes 
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit http://www.oracle.com/support/contact.html or visit 
http://www.oracle.com/accessibility/support.html if you are hearing 
impaired.

Oracle Fusion Middleware What's New in Oracle WebLogic Server, 11g Release 1 (10.3.3)   
E13852-04

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected 
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, 
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, 
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them 
to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following 
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government 
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions 
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the 
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, 
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any 
inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, 
then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. 
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation 
and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. 
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party 
content, products, or services.


	1 Administration Console
	2 Core Server
	2.1 WebLogic Thin T3 Client
	2.2 WebLogic Persistent Store

	3 Deployment
	4 Diagnostics
	4.1 Oracle JRockit Flight Recorder Integration
	4.2 WLDF Diagnostic Volume
	4.3 Diagnostic Actions
	4.3.1 Change to DisplayArgumentsAction Behavior
	4.3.2 New Actions for Obtaining Memory Usage Statistics

	4.4 WLST Commands for Downloading WLDF Diagnostic Image Capture Files
	4.5 Monitoring Dashboard and Request Performance Pages

	5 Configuration Wizard
	5.1 Configuring JMS Distributed Destination Types in Configuration Wizard

	6 Enterprise Java Beans (EJBs)
	6.1 MDB Configuration using Activation Properties

	7 Installation and Upgrade
	7.1 Development-Only Installer
	7.2 SIP Server Examples
	7.3 Coherence Installation
	7.4 Server Examples
	7.5 Evaluation Database

	8 JDBC
	8.1 Bulk Load
	8.2 Freeze/Unfreeze the Statement Pool

	9 JTA
	10 JMX
	11 Logging
	12 Messaging
	12.1 Changes to weblogic.jms.extension API
	12.2 JMSDestinationAvailabilityHelper API
	12.3 Persistent Store Updates

	13 Plug-Ins
	13.1 Apache Plug-In Now Supports Oracle HTTP Server
	13.2 Standard Encryption Strength Allows Simplified Naming
	13.3 Plug-Ins Now Use Oracle SSL Toolkit
	13.4 Version 1.1 Plug-Ins Use Oracle Security Framework
	13.5 Version 1.1 Plug-Ins Support IPv6
	13.6 Version 1.1 Plug-Ins Support Two-Way SSL

	14 Security
	14.1 JDBC Connection Security Service API
	14.2 SSL Support
	14.3 Performance Enhancements for Security Policy Deployment

	15 WebLogic Service Component Architecture (WebLogic SCA)
	16 Web Applications, Servlets, and JSPs
	16.1 ActiveCache
	16.2 Class Caching

	17 Web Services
	17.1 Support for Web Services Atomic Transactions
	17.2 Enhanced Support for Web Services in a Clustered Environment
	17.3 Enhanced Monitoring of Web Services and Clients
	17.4 Attach Oracle WSM Policies to WebLogic Web Services Using Fusion Middleware Control
	17.5 Build Database Web Services Using the EclipseLink DBWS Component
	17.6 Method-Level Policy Attachment Behavior Has Changed
	17.7 policy: Prefix Has Been Removed From OWSM Policy Names
	17.8 Web Services WSDL Tab Has Been Removed

	18 WLST
	18.1 SIP Server Domain Scripts

	19 Deprecated Functionality (WebLogic Server 11g Release 1)
	20 Deprecated Functionality (WebLogic Server 10.3)
	20.1 WebLogic Server Java Utilities
	20.2 Oracle Type 4 JDBC Driver
	20.3 Deployment
	20.3.1 weblogic.deploy.api.model.WebLogicDeployableObject
	20.3.2 weblogic.deploy.api.model.WebLogicJ2eeApplicationObject
	20.3.3 weblogic.deploy.api.shared.WebLogicModuleType
	20.3.4 weblogic.deploy.api.tools.SessionHelper

	20.4 OpenJPA
	20.4.1 OpenJPA Changed Method Signatures
	20.4.2 OpenJPA Deprecated Methods and Fields
	20.4.3 OpenJPAEntityManager

	20.5 Apache Beehive Support

	21 Standards Support
	21.1 Java Standards
	21.2 Web Services Standards
	21.3 Other Standards

	22 Supported Configurations
	23 Documentation Accessibility

