ORACLE

Oracle® Fusion Middleware

Getting Started With JAX-RPC Web Services for Oracle
WebLogic Server

119 Release 1 (10.3.3)
E13760-02

April 2010

This document describes how to develop WebLogic Web
services using Java API for XML-based RPC (JAX-RPC).

Oracle Fusion Middleware Getting Started With JAX-RPC Web Services for Oracle WebLogic Server, 11g
Release 1 (10.3.3)

E13760-02
Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

Preface ... vii
Documentation Accessibility ..o Vi
CONVENEIONS ...ttt s s Vi

1 Introduction

2 Use Cases and Examples
2.1 Creating a Simple HelloWorld Web Service..........cccoovuniiriininiiiiicceececc s 2-1
2.1.1 Sample HelloWorldImpl.java JWS Filecccccociiiiiiiiiiiiececccceeeeceeiennes 2-3
2.1.2 Sample Ant Build File for HelloWorldImpljavaccccoeeoiiiiiiiiiiiiece, 2-4
2.2 Creating a Web Service With User-Defined Data Types........cccccoevvvviiininicneiinccieeicnen, 2-5
2.21 Sample BasicStruct JavaBeancccccccciiiiiiiiiiie e 2-8
222 Sample ComplexImpljava JWS File........cccoooiiiiiiiii 2-8
223 Sample Ant Build File for ComplexImpl.java JWS File.........cccccccevviviinnnnnnnne. 2-10
2.3 Creating a Web Service from a WSDL File........cccccccoiiiiiiiiiiicccccccceeeeeeees 2-11
2.3.1 Sample WSDL Fileccoiiiiiiiiiiiiciic s 2-15
2.3.2 Sample TemperaturePortType Java Implementation File............ccccccccceiiiiinnnnnne. 2-16
2.3.3 Sample Ant Build File for TemperatureService ... 2-16
2.4 Invoking a Web Service from a Stand-alone Java Client.........c.cccooeiiieiiiiiiiiiiiccs 2-18
241 Sample Java Client Application.........ccccociiiiiiiiiiiiciceeees 2-20
2.4.2 Sample Ant Build File For Building Stand-alone Client Application 2-21
25 Invoking a Web Service from a WebLogic Web Servicecccccoviiiiiiiii 2-22
2.5.1 Sample ClientServicelmpl.java JWS Filecccccccovniiininiinininiccnne 2-24
2.5.2 Sample Ant Build File For Building ClientService.........ccccocouoeeiiiiiniicieiiice 2-25

3 Developing WebLogic Web Services
3.1 Overview of the WebLogic Web Service Programming Model............ccccccooooiinnni 3-1
3.2 Configuring Your Domain For Web Services Features...........ccccooooiiiiiiiiicin 3-2
3.3 Developing WebLogic Web Services Starting From Java: Main Steps............cccocoeveveennenn. 3-3
3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps................. 3-4
3.5 Creating the Basic Ant build.xml Filecocoooiiiiiiii 3-6
3.6 Running the jwsc WebLogic Web Services Ant Taskccccccoeuviviviiiiiinniiiiiniiiinns 3-7
3.6.1 Examples of USING JWSC c...c.cuiuiuiiiiiiiiiiiiiiiiciciiii e 3-8
3.6.2 Advanced Uses Of JWSCcueueiiiuciiiici et 3-9
3.7 Running the wsdlc WebLogic Web Services Ant Taskcccceuevviceiiniccniiicceenen 3-9

3.8
3.9
3.9.1
3.9.2
3.10
3.11
3.11.1
3.11.2
3.11.3
3.11.4
3.12
3.13

Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc.......... 3-11
Deploying and Undeploying WebLogic Web Services..........ccccoeiiviinieiiiicciciiiicieaes 3-12
Using the wldeploy Ant Task to Deploy Web Servicescccccocveeeccccinicnenenes 3-13
Using the Administration Console to Deploy Web Services...........cccooeueiirinniinnne. 3-14
Browsing to the WSDL of the Web Serviceooooi 3-14
Configuring the Server Address Specified in the Dynamic WSDL.............cccccceveennne. 3-15
Web Service is not a callback service and can be invoked using HTTP/S............... 3-16
Web Service is not a callback service and can be invoked using JMS Transport.... 3-16
Web Service is a callback SEIVICEcccvirmiriiiiriiieiiic e 3-17
Web Service is invoked USIiNg a ProXy SEIVeTccoceueiimueieiicieieiineie e 3-17
Testing the Web Service ... 3-17
Integrating Web Services Into the WebLogic Split Development Directory Environment
.. 3-18

4 Programming the JWS File

41
4.2
4.3
4.3.1
4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.4
441

4411
4412

442
4.5
4.5.1
452
4.6
4.7
4.8
4.9
4.91
49.2
4.9.3
4.9.4
4.9.5

Overview of JWS Files and JWS ANNOtations........ccoceeeeererierierierieieieeeeereeresre e ssessessesseseas 4-1
Java Requirements for a JWS File ..o 4-2
Programming the JWS File: Typical Steps.........ccccoooruiieiiinieiiicecccce e 4-2
Example of @ JWS FIleccooiiiiiiiiiccccccece e 4-3
Specifying that the JWS File Implements a Web Service (@WebService
ANNOTATION) ittt sttt et eb bbb bbb e et et et e bt et ebeebe s b e 4-4
Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBInding ANNOtation)ccooviiiiiiiiiiiii e 4-5
Specifying the Context Path and Service URI of the Web Service (@WLHttpTransport
2N a1 1o 7= 15 (o)) PSSR 4-5
Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and
@OneWay ANNotations)ccooeeviiiiiiiiiiic e 4-6
Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam ANNOLATION)....ccoueerueririererieririerinierteerteie sttt ettt s se e saese e ee 4-7
Customizing the Mapping Between the Operation Return Value and a WSDL Element
(@WebReSUIt ANNOLAION) .uvivieviiiieiieieiieise ettt re et resseerebe e sessessesseseeseesseseens 4-7
Accessing Runtime Information About a Web Serviceccocoueniiiniiiciiiniicciccc 4-8
Using JwsContext to Access Runtime Information ..., 4-8
Guidelines for Accessing the Web Service Context............ccevuvervverernrnccnercnenc. 4-8
Methods Of the JWSCONEEXTcevveirieirieeirieirieireete ettt ssens 4-10
Using the Stub Interface to Access Runtime Information..........cccccccoeeciiiininnnnnn 4-12
Should You Implement a Stateless Session EJB?.........cccccccciiiiiiiiiinnniccrceeeees 4-13
Programming Guidelines When Implementing an EJB in Your JWS File................ 4-13
Example of a JWS File That Implements an EJB............cccccccoiiiiiiiiiiiiiii 4-14
Programming the User-Defined Java Data Type ... 4-15
Throwing EXCEPHONS.occueiiiiiicieiicctcte s 4-17
Invoking Another Web Service from the JWS File........ccooooiiiiiiic 4-18
Programming Additional Miscellaneous Features Using JWS Annotations and APIs. 4-19
Sending Binary Data Using MTOM/XOPcccoooeiiiimiiiiiincinceec e 4-19
Streaming SOAP Attachments...........cccccoceiiiiiiiiiii s 4-21
USING SOAP 1.2 4-21
Specifying that Operations Run Inside of a Transactioncccccevvvvvniinvincnnn 4-22
Getting the HttpServletRequest/Response Objectccccccueuiiiiiiiiiiiiiiicicicnnnee 4-22

4.10

JWS Programming Best Practicescooeoreieiiiiiiiiiiicicc 4-24

5 Understanding Data Binding

5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2

Overview of Data BINding ..o 5-1
Supported Built-In Data TYPescccueuoiiiriiiie e 5-2
XML-to-Java Mapping for Built-in Data Types........cccocevevvvrrvrnrrrcrrreeeceecene 5-2
Java-to-XML Mapping for Built-In Data Types.........cccccoouviviiiiniiiiiccnas 5-3
Supported User-Defined Data Types.........ccoceuiiirieiiiiiiicieiccien e 5-5
Supported XML User-Defined Data TYPes........ccccovueurvrererrirrnrrrrrcsrreseeeesseenne 5-5
Supported Java User-Defined Data Types.........ccccovvvvvininiiinininininiie, 5-6

6 Invoking Web Services

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.3.1
6.3.2
6.4
6.5
6.5.1
6.5.2
6.6
6.7
6.8

Overview of Web Services INVOCAtION..........ccccvveviviiiiiiiiiiiii 6-1
Invoking Web Services Using JAX-RPC.........ccccocevvniiniiiniiinns 6-2
Examples of Clients That Invoke Web Services ... 6-2

Invoking a Web Service from a Stand-alone Client: Main Stepscccccoooeeiiiiiricienninne. 6-2
Using the clientgen Ant Task To Generate Client Artifactscocooeeeicciiinnnnn. 6-3
Getting Information About a Web Service.........cccccoceiiiiiiiiicicceccccecceeennes 6-5
Writing the Java Client Application Code to Invoke a Web Service.........ccccccuvueunnnne 6-6
Compiling and Running the Client Application...........cccoooriiiiiiiii 6-7
Sample Ant Build File for a Stand-Alone Java Client.........cccccocoeeivccecciceccceennns 6-8

Invoking a Web Service from Another Web Serviceccooooeiiirii 6-9
Sample build.xml File for a Web Service Client..........c.cccoooeiiiiii 6-10
Sample JWS File That Invokes a Web Servicecccococueuicueiciiccnecicceececene 6-11

Using a Stand-Alone Client JAR File When Invoking Web Servicescccccooneinnae. 6-13

Using a Proxy Server When Invoking a Web Service...........ccoooiuiiniiiiiiiiicicce 6-14
Using the HttpTransportInfo API to Specify the Proxy Servercccccceeuvvvnnnne 6-14
Using System Properties to Specify the Proxy Server..........ccccccooeeieivieinicinicinnnnn. 6-15

Client Considerations When Redeploying a Web Service..........ccccoooviiiiiiiiiiniinns 6-17

WebLogic Web Services Stub Properties...........cocovvvreinininininciiiiccccccccceceenes 6-17

Setting the Character Encoding For the Response SOAP Message............ccccoeueveinuruennnnes 6-19

7 Administering Web Services

71
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.5
7.6
7.7
7.8

Overview of WebLogic Web Services Administration Tasks...........cccoeeveiviiiiiiiininiennnne. 7-1
Administration TOOLSccccciriiiiiiiiiiiiirr s 7-2
Using the Administration CONSOle...........couviirinirnniiee e 7-2
Invoking the Administration CONSOle.........c.ccoeiiiiiiiiiiiciecc e, 7-3
How Web Services Are Displayed In the Administration Consolecccccceuencee. 7-4
Creating a Web Services Security Configuration............cccceeeecueicccecececceeenenes 7-4
Monitoring Web Services and CLHENtsccccoiiiieiiiiiieiicccc 7-5
Using the Oracle Enterprise Manager Fusion Middleware Controlcccccocevvininennee. 7-7
Using the WebLogic Scripting TOOL ... 7-8
Using WebLogic Ant Tasks ..o 7-9
Using the Java Management Extensions (JMX)cccccooviiiiiiniiicnniceccce 7-9
Using the Java EE Deployment API ... 7-10

7.9 Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads
7-10

8 Upgrading WebLogic Web Services From Previous Releases to 10.3.x

vi

8.1 Upgrading a 9.2 or 10.0 WebLogic Web Service t0 10.3.X.....cccceviirieiiiiiiecicice 8-1
8.2 Upgrading a 9.0 or 9.1 WebLogic Web Service t0 10.3.X.....ccccoeiuiiiiiiiiiiiiiiiiiiiiiieiiinns 8-1
8.3 Upgrading an 8.1 WebLogic Web Service t0 10.3.Xcovoviiiiiiiiiiicccecceeceenenenenes 8-2
8.3.1 Upgrading an 8.1 Java Class-Implemented WebLogic Web Service to 10.3.x: Main
SEEPS vt 8-3
8.3.1.1 Example of an 8.1 Java File and the Corresponding 10.3.x JWS File 8-5
8.3.1.2 Example of an 8.1 and Updated 10.3.x Ant Build File for Java Class-Implemented
WED SeIVICES ..o 8-6
8.3.2 Upgrading an 8.1 E]B-Implemented WebLogic Web Service to 10.3.x: Main Steps.. 8-7
8.3.2.1 Example of 8.1 E]B Files and the Corresponding 10.3.x JWS File 8-10
8.3.2.1.1 8.1 SessionBean Class.........ccvuiiiiiiiiiiiiiic 8-10
8.3.2.1.2 8.1 Remote Interface.........cccovriiiiiiiiiniiiiiicc 8-11
8.3.2.1.3 8.1 EJB HOme INtErfacecceeuevuiriiriiieieieie ettt e 8-11
8.3.2.14 Equivalent 10.3.X JWS File......ccccccoiiiiiiiiiiiiccccceecceceeeeeees 8-12
8.3.2.2 Example of an 8.1 and Updated 10.3.x Ant Build File for an 8.1 E]JB-Implemented
WED SEIVICE ..ot 8-12
8.3.3 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes 8-14

Preface

This preface describes the document accessibility features and conventions used in this
guide—Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

vii

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction

This document describes how to program WebLogic Web services using Java API for
XML-based RPC (JAX-RPC), described at https://jax-rpc.dev.java.net.
JAX-RPC is a Sun Microsystems specification that defines the Java APIs for making
XML-based remote procedure calls (RPC). In particular, these APIs are used to invoke
and get a response from a Web service using SOAP 1.1, and XML-based protocol for
exchange of information in a decentralized and distributed environment.

Note: JAX-WSis designed to take the place of JAX-RPC in Web
services and Web applications. To compare the features that are
supported for JAX-WS and JAX-RPC, see "How Do I Choose Between
JAX-WS and JAX-RPC?" in Oracle Fusion Middleware Introducing
WebLogic Web Services for Oracle WebLogic Server.

The following table summarizes the contents of this guide.

Table 1-1 Content Summary

This section . .. Describes how to . . .

Chapter 2, "Use Cases and Examples" Review and run common use cases and
examples.

Chapter 3, "Developing WebLogic Web Develop Web services using the WebLogic

Services" development environment.

Chapter 4, "Programming the JWS File" Program the JWS file that implements your Web
service.

Chapter 5, "Understanding Data Binding" Use the Java Architecture for XML Binding
(JAXB) data binding.

Chapter 6, "Invoking Web Services" Invoke your Web service from a stand-alone
client or another Web service.

Chapter 8, "Upgrading WebLogic Web Upgrade a Web service from a previous release.
Services From Previous Releases to 10.3.x"

Chapter 7, "Administering Web Services" Administer WebLogic Web services using the
Administration Console.

Introduction 1-1

Note: The JAX-WS implementation in Oracle WebLogic Server is
extended from the JAX-WS Reference Implementation (RI) developed
by the Glassfish Community (see
https://jax-ws.dev.java.net/). All features defined in the
JAX-WS specification (JSR-224) are fully supported by Oracle
WebLogic Server.

The JAX-WS RI also contains a variety of extensions, provided by
Glassfish contributors. Unless specifically documented, JAX-WS RI
extensions are not supported for use in Oracle WebLogic Server.

For an overview of WebLogic Web services, standards, samples, and related
documentation, see Oracle Fusion Middleware Introducing WebLogic Web Services for
Oracle WebLogic Server

For information about WebLogic Web service security, see Oracle Fusion Middleware
Securing WebLogic Web Services for Oracle WebLogic Server.

1-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

2

Use Cases and Examples

The following sections describe common Web service use cases and examples:
» Section 2.1, "Creating a Simple HelloWorld Web Service"

» Section 2.2, "Creating a Web Service With User-Defined Data Types"

» Section 2.3, "Creating a Web Service from a WSDL File"

= Section 2.4, "Invoking a Web Service from a Stand-alone Java Client"

= Section 2.5, "Invoking a Web Service from a WebLogic Web Service"

Each use case provides step-by-step procedures for creating simple WebLogic Web
services and invoking an operation from a deployed Web service. The examples
include basic Java code and Ant build.xml files that you can use in your own
development environment to recreate the example, or by following the instructions to
create and run the examples in an environment that is separate from your
development environment.

The use cases do not go into detail about the processes and tools used in the examples;
later chapters are referenced for more detail.

2.1 Creating a Simple HelloWorld Web Service

This section describes how to create a very simple Web service that contains a single
operation. The Java Web Service (JWS) file that implements the Web service uses just the
one required WS annotation: @WebService. A JWS file is a standard Java file that uses
JWS metadata annotations to specify the shape of the Web service. Metadata
annotations were introduced with JDK 5.0, and the set of annotations used to annotate
Web service files are called JWS annotations. WebLogic Web services use standard JWS
annotations. For a complete list of JWS annotations that are supported, see "Web
Service Annotation Support" in Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server.

The following example shows how to create a Web service called
HelloWorldService that includes a single operation, sayHelloWorld. For
simplicity, the operation returns the inputted String value.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is Mw_
HOME/user_projects/domains/domainName, where Miw_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

Use Cases and Examples 2-1

Creating a Simple HelloWorld Web Service

2. Create a project directory, as follows:

prompt> mkdir /myExamples/hello_world

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

prompt> cd /myExamples/hello_world
prompt> mkdir src/examples/webservices/hello_world

4. Create the JWS file that implements the Web service.

Open your favorite Java IDE or text editor and create a Java file called
HelloWorldImpl. java using the Java code specified in Section 2.1.1, "Sample
HelloWorldImpl.java JWS File."

The sample JWS file shows a Java class called HelloWor1dImpl that contains a
single public method, sayHelloWorld (String). The @WebService annotation
specifies that the Java class implements a Web service called
HelloWorldService. By default, all public methods are exposed as operations.

5. Save the HelloWorldImpl. java file in the
src/examples/webservices/hello_world direCtory.

6. Create a standard Ant build.xml file in the project directory
(myExamples/hello_world/src)and add a taskdef Ant task to specify the
full Java classname of the jwsc task:

<project name="webservices-hello_world" default="all">
<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

See Section 2.1.2, "Sample Ant Build File for HelloWorldImpl.java" for a full
sample build.xml file that contains additional targets from those described in
this procedure, such as clean, undeploy, client, and run. The full build.xml
file also uses properties, such as $ {ear-dir}, rather than always using the
hard-coded name for the EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped
inside of the build-service target:

<target name="build-service">
<jwsc
srcdir="src"
destdir="output/helloWorldEar">
<jws file="examples/webservices/hello_world/HelloWorldImpl.java"
type="JAXRPC" />
</jwsc>
</target>

The jwsc WebLogic Web service Ant task generates the supporting artifacts (such
as the deployment descriptors, serialization classes for any user-defined data
types, the WSDL file, and so on), compiles the user-created and generated Java
code, and archives all the artifacts into an Enterprise Application EAR file that you
later deploy to WebLogic Server.

8. Execute the jwsc Ant task by specifying the build-service target at the
command line:

prompt> ant build-service

2-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Creating a Simple HelloWorld Web Service

See the output/helloWorldEar directory to view the files and artifacts
generated by the jwsc Ant task.

9. Start the WebLogic Server instance to which the Web service will be deployed.

10. Deploy the Web service, packaged in an enterprise application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In
either case, you deploy the helloWorldEar Enterprise application, located in the
output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management .WLDeploy" />
<target name="deploy">
<wldeploy action="deploy"

name="helloWorldEar" source="output/helloWorldEar"
user="${wls.username}" password="${wls.password}"
verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />

</target>

Substitute the values for wls .username, wls.password, wls.hostname,
wls.port, and wls.server.name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:

prompt> ant deploy

11. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/HelloWorldImpl/HelloWorldImpl ?WSDL

You construct the URL using the values of the contextPath and serviceUri
attributes of the WLHt tpTransport JWS annotation; however, because the JWS
file in this use case does not include the WLHt tpTransport annotation, use the
default values for the contextPath and serviceUri attributes: the name of the
Java class in the JWS file. These attributes will be set explicitly in the next example,
Section 2.2, "Creating a Web Service With User-Defined Data Types." Use the
hostname and port relevant to your WebLogic Server instance.

You can use the clean, build-service, undeploy, and deploy targets in the
build.xml file to iteratively update, rebuild, undeploy, and redeploy the Web service
as part of your development process.

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Stand-alone Java Client" for an example of creating a
Java client application that invokes a Web service.

2.1.1 Sample HelloWorldimpl.java JWS File

package examples.webservices.hello_world;

// Import the @WebService annotation

import javax.jws.WebService;

@WebService (name="HelloWorldPortType", serviceName="HelloWorldService")

/**
* This JWS file forms the basis of simple Java-class implemented WebLogic
* Web Service with a single operation: sayHelloWorld
*/

Use Cases and Examples 2-3

Creating a Simple HelloWorld Web Service

public class HelloWorldImpl {
// By default, all public methods are exposed as Web Services operation
public String sayHelloWorld(String message) {
try {
System.out.println("sayHelloWorld:" + message)
} catch (Exception ex) { ex.printStackTrace(); }

I

return "Here is the message: '" + message + "'";

2.1.2 Sample Ant Build File for HelloWorldimpl.java
The following build.xml file uses properties to simplify the file.

<project name="webservices-hello_world" default="all">
<!-- set global properties for this build -->
<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />
<property name="wls.server.name" value="myserver" />
<property name="ear.deployed.name" value="helloWorldEar" />
<property name="example-output" value="output" />
<property name="ear-dir" value="${example-output}/helloWorldEar" />
<property name="clientclass-dir" value="${example-output}/clientclasses" />
<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>
<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management .WLDeploy" />
<target name="all" depends="clean,build-service,deploy,client" />
<target name="clean" depends="undeploy">
<delete dir="${example-output}"/>
</target>
<target name="build-service">
<jwsc
srcdir="src"
destdir="S${ear-dir}">
<jws file="examples/webservices/hello_world/HelloWorldImpl.java"
type="JAXRPC" />
</jwsc>
</target>
<target name="deploy">
<wldeploy action="deploy" name="${ear.deployed.name}"
source="${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />
</target>
<target name="undeploy">
<wldeploy action="undeploy" name="${ear.deployed.name}"
failonerror="false"
user="S${wls.username}" password="${wls.password}" verbose="true"

2-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Creating a Web Service With User-Defined Data Types

adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />
</target>
<target name="client">
<clientgen

wsdl="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldImpl?WSDL"
destDir="${clientclass-dir}"
packageName="examples.webservices.hello_world.client"
type="JAXRPC" />
<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_ java"/>
<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/hello_world/client/**/*.java"/>
</target>
<target name="run">
<java classname="examples.webservices.hello_world.client.Main"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${wls.hostname}:${wls.port}/HelloWorldImpl/HelloWorldImpl" />
</java> </target>
</project>

2.2 Creating a Web Service With User-Defined Data Types

The preceding use case uses only a simple data type, String, as the parameter and
return value of the Web service operation. This next example shows how to create a
Web service that uses a user-defined data type, in particular a JavaBean called
BasicStruct, as both a parameter and a return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in a
Web service, other than to create the Java source of the data type and use it correctly in
the JWS file. The jwsc Ant task, when it encounters a user-defined data type in the
JWE file, automatically generates all the data binding artifacts needed to convert data
between its XML representation (used in the SOAP messages) and its Java
representation (used in WebLogic Server). The data binding artifacts include the XML
Schema equivalent of the Java user-defined type, the JAX-RPC type mapping file, and
SO on.

The following procedure is very similar to the procedure in Section 2.1, "Creating a
Simple HelloWorld Web Service." For this reason, although the procedure does show
all the needed steps, it provides details only for those steps that differ from the simple
HelloWorld example.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv. cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is 2w_
HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/complex

Use Cases and Examples 2-5

Creating a Web Service With User-Defined Data Types

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

prompt> cd /myExamples/complex
prompt> mkdir src/examples/webservices/complex

4. Create the source for the BasicStruct JavaBean.

Open your favorite Java IDE or text editor and create a Java file called
BasicStruct.java, in the project directory, using the Java code specified in
Section 2.2.1, "Sample BasicStruct JavaBean."

5. Save the BasicStruct.java file in the
src/examples/webservices/complex subdirectory of the project directory.

6. Create the JWS file that implements the Web service using the Java code specified
in Section 2.2.2, "Sample ComplexImpl.java JWS File."

The sample JWS file uses several JWS annotations: @WebMethod to specify
explicitly that a method should be exposed as a Web service operation and to
change its operation name from the default method name echoStruct to
echoComplexType; @WebParam and @WebResult to configure the parameters
and return values; @SOAPBinding to specify the type of Web service; and
@WLHttpTransport to specify the URI used to invoke the Web service. The
ComplexImpl.java JWS file also imports the
examples.webservice.complex.BasicStruct class and then uses the
BasicStruct user-defined data type as both a parameter and return value of the
echoStruct () method.

For more in-depth information about creating a JWS file, see Chapter 4,
"Programming the JWS File."

7. Save the ComplexImpl.java file in the
src/examples/webservices/complex subdirectory of the project directory.

8. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the fully Java classname of the jwsc task:

<project name="webservices-complex" default="all">
<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

See Section 2.2.3, "Sample Ant Build File for ComplexImpl.java JWS File" for a full
sample build.xml file.

9. Add the following call to the jwsc Ant task to the build.xml file, wrapped
inside of the build-service target:

<target name="build-service">
<jwsc
srcdir="src"
destdir="output/ComplexServiceEar" >
<jws file="examples/webservices/complex/ComplexImpl.java"
type="JAXRPC">
<WLHttpTransport
contextPath="complex" serviceUri="ComplexService"
portName="ComplexServicePort" />
</Jjws>
</jwsc>
</target>

2-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Creating a Web Service With User-Defined Data Types

10.

11.
12.

13.

14.

In the preceding example:

— The type attribute of the <jws> element specifies the type of Web service
(JAX-WS or JAX-RPC).

— The <WLHttpTransport> child element of the <jws> element of the jwsc
Ant task specifies the context path and service URI sections of the URL used to
invoke the Web service over the HI'TP/S transport, as well as the name of the
port in the generated WSDL. This value overrides the value specified in the
JWS file using the @WLHt tpTransport attribute. For more information about
defining the context path, see "Defining the Context Path of a WebLogic Web
Service" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server.

Execute the jwsc Ant task:

prompt> ant build-service

See the output/ComplexServiceEar directory to view the files and artifacts
generated by the jwsc Ant task.

Start the WebLogic Server instance to which the Web service will be deployed.

Deploy the Web service, packaged in the ComplexServiceEar Enterprise
Application, to WebLogic Server, using either the Administration Console or the
wldeploy Ant task. For example:

prompt> ant deploy

Deploy the Web service, packaged in an Enterprise Application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In
either case, you deploy the ComplexServiceEar Enterprise application, located
in the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management .WLDeploy" />
<target name="deploy">
<wldeploy action="deploy"

name="ComplexServiceEar" source="output/ComplexServiceEar"
user="${wls.username}" password="${wls.password}"
verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />

</target>

Substitute the values for wls.username, wls.password, wls.hostname,
wls.port,and wls. server.name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:

prompt> ant deploy

Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/complex/ComplexService?WSDL

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Stand-alone Java Client" for an example of creating a
Java client application that invokes a Web service.

Use Cases and Examples 2-7

Creating a Web Service With User-Defined Data Types

2.2.1 Sample BasicStruct JavaBean

package examples.webservices.complex;
/*'k
* Defines a simple JavaBean called BasicStruct that has integer, String,
* and String[] properties
*/
public class BasicStruct {
// Properties
private int intValue;
private String stringValue;
private String[] stringArray;
// Getter and setter methods
public int getIntValue() {
return intValue;
}
public void setIntValue(int intValue) {
this.intValue = intValue;
}
public String getStringValue() {
return stringValue;
}
public void setStringValue(String stringValue) {
this.stringValue = stringValue;
}
public String[] getStringArray() {
return stringArray;
}
public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;
}
public String toString() {
return "IntValue="+intValue+", StringValue="+stringValue;

2.2.2 Sample Compleximpl.java JWS File

package examples.webservices.complex;

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface

import weblogic.jws.WLHttpTransport;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType", its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"

@WebService (serviceName="ComplexService", name="ComplexPortType",

targetNamespace="http://example.org")

// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service

@SOAPBinding (style=SOAPBinding.Style.DOCUMENT,

use=SO0APBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

2-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Creating a Web Service With User-Defined Data Types

// WebLogic-specific JWS annotation that specifies the context path and service
// URI used to build the URI of the Web Service is "complex/ComplexService"
@QWLHttpTransport (contextPath="complex", serviceUri="ComplexService",
portName="ComplexServicePort")
/**
* This JWS file forms the basis of a WebLogic Web Service. The Web Services
* has two public operations:
*
* - echolnt (int)
* - echoComplexType (BasicStruct)

* The Web Service is defined as a "document-literal" service, which means
* that the SOAP messages have a single part referencing an XML Schema element
* that defines the entire body.
*/
public class ComplexImpl {
// Standard JWS annotation that specifies that the method should be exposed
// as a public operation. Because the annotation does not include the
// member-value "operationName", the public name of the operation is the
// same as the method name: echoInt.
//
// The WebResult annotation specifies that the name of the result of the
// operation in the generated WSDL is "IntegerOutput", rather than the
// default name "return". The WebParam annotation specifies that the input
// parameter name in the WSDL file is "IntegerInput" rather than the Java
// name of the parameter, "input".
@WebMethod ()
@WebResult (name="IntegerOutput",
targetNamespace="http://example.org/complex")
public int echolInt(
@WebParam (name="IntegerInput",
targetNamespace="http://example.org/complex")
int input)

System.out.println("echoInt '" + input + "' to you too!");
return input;
}
// Standard JWS annotation to expose method "echoStruct" as a public operation
// called "echoComplexType"
// The WebResult annotation specifies that the name of the result of the
// operation in the generated WSDL is "EchoStructReturnMessage",
// rather than the default name "return".
@WebMethod (operationName="echoComplexType")
@WebResult (name="EchoStructReturnMessage",
targetNamespace="http://example.org/complex")
public BasicStruct echoStruct (BasicStruct struct)
{
System.out.println("echoComplexType called");
return struct;

2.2.3 Sample Ant Build File for Compleximpl.java JWS File
The following build. xml file uses properties to simplify the file.

<project name="webservices-complex" default="all">
<!-- gset global properties for this build -->
<property name="wls.username" value="weblogic" />

Use Cases and Examples 2-9

Creating a Web Service With User-Defined Data Types

<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />
<property name="wls.server.name" value="myserver" />
<property name="ear.deployed.name" value="complexServiceEAR" />
<property name="example-output" value="output" />
<property name="ear-dir" value="${example-output}/complexServiceEar" />
<property name="clientclass-dir" value="${example-output}/clientclass" />
<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>
<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management .WLDeploy" />
<target name="all" depends="clean,build-service,deploy,client"/>
<target name="clean" depends="undeploy">
<delete dir="${example-output}"/>
</target>
<target name="build-service">
<jwsc
srcdir="src"
destdir="${ear-dir}"
keepGenerated="true"
>
<jws file="examples/webservices/complex/ComplexImpl.java"
type="JAXRPC">
<WLHttpTransport
contextPath="complex" serviceUri="ComplexService"
portName="ComplexServicePort"/>
</jws>
</jwsc>
</target>
<target name="deploy">
<wldeploy action="deploy"
name="S${ear.deployed.name}"
source="S${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}"/>
</target>
<target name="undeploy">
<wldeploy action="undeploy" failonerror="false"
name="S{ear.deployed.name}"
user="S${wls.username}" password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}"/>
</target>
<target name="client">
<clientgen
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="${clientclass-dir}"
packageName="examples.webservices.complex.client"
type="JAXRPC" />
<javac
srcdir="S${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*.java"/>

2-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Creating a Web Service from a WSDL File

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/complex/client/**/*.java"/>
</target>
<target name="run" >
<java fork="true"
classname="examples.webservices.complex.client.Main"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService"
/>
</java>
</target>
</project>

2.3 Creating a Web Service from a WSDL File

Another common use case of creating a Web service is to start from an existing WSDL
file, often referred to as the golden WSDL. A WSDL file is a public contract that
specifies what the Web service looks like, such as the list of supported operations, the
signature and shape of each operation, the protocols and transports that can be used
when invoking the operations, and the XML Schema data types that are used when
transporting the data. Based on this WSDL file, you generate the artifacts that
implement the Web service so that it can be deployed to WebLogic Server. You use the
wsdlc Ant task to generate the following artifacts.

= JWSservice endpoint interface (SEI) that implements the Web service described by
the WSDL file.

= JWSimplementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

» Data binding artifacts used by WebLogic Server to convert between the XML and
Java representations of the Web service parameters and return values.

= Optional Javadocs for the generated JWS SEL

Note: The only file generated by the wsdlc Ant task that you update
is the JWS implementation file. You never need to update the JAR file
that contains the JWS SEI and data binding artifacts.

Typically, you run the wsdlc Ant task one time to generate a JAR file that contains the
generated JWS SEI file and data binding artifacts, then code the generated JWS file that
implements the interface, adding the business logic of your Web service. In particular,
you add Java code to the methods that implement the Web service operations so that
the operations behave as needed and add additional JWS annotations.

After you have coded the JWS implementation file, you run the jwsc Ant task to
generate the deployable Web service, using the same steps as described in the
preceding sections. The only difference is that you use the compiledwsdl attribute to
specify the JAR file (containing the JWS SEI file and data binding artifacts) generated
by the wsdlc Ant task.

The following simple example shows how to create a Web service from the WSDL file
shown in Section 2.3.1, "Sample WSDL File." The Web service has one operation,
getTemp, that returns a temperature when passed a zip code.

Use Cases and Examples 2-11

Creating a Web Service from a WSDL File

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is Mw_
HOME/user_projects/domains/domainName, where Mi_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a working directory:

prompt> mkdir /myExamples/wsdlc

3. Put your WSDL file into an accessible directory on your computer.

For the purposes of this example, it is assumed that your WSDL file is called
TemperatureService.wsdl and is located in the
/myExamples/wsdlc/wsdl_files directory. See Section 2.3.1, "Sample WSDL
File" for a full listing of the file.

4. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the full Java classname of the wsdlc task:

<project name="webservices-wsdlc" default="all">
<taskdef name="wsdlc"
classname="weblogic.wsee.tools.anttasks.WsdlcTask" />
</project>

See Section 2.3.3, "Sample Ant Build File for TemperatureService" for a full sample
build.xml file that contains additional targets from those described in this
procedure, such as clean, undeploy, client, and run. The full build.xml file
also uses properties, such as $ {ear-dir}, rather than always using the
hard-coded name for the EAR directory.

5. Add the following call to the wsd1lc Ant task to the build.xml file, wrapped
inside of the generate-from-wsdl target:

<target name="generate-from-wsdl">
<wsdlc
srcWsdl="wsdl_files/TemperatureService.wsdl"
destJwsDir="output/compiledwsdl"
destImplDir="output/impl"
packageName="examples.webservices.wsdlc" />
</target>

The wsdlc task in the examples generates the JAR file that contains the JWS SEI
and data binding artifacts into the output/compiledwsdl directory under the
current directory. It also generates a partial implementation file
(TemperaturePortTypeImpl.java) of the JWS SEI into the
output/impl/examples/webservices/wsdlc directory (which is a
combination of the output directory specified by destImplDir and the directory
hierarchy specified by the package name). All generated JWS files will be
packaged in the examples.webservices.wsdlc package.

6. Execute the wsdlc Ant task by specifying the generate-from-wsdl target at
the command line:

prompt> ant generate-from-wsdl

See the output directory if you want to examine the artifacts and files generated
by the wsdlc Ant task.

2-12 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Creating a Web Service from a WSDL File

Update the generated
output/impl/examples/webservices/wsdlc/TemperaturePortTypelmp
1.java JWS implementation file using your favorite Java IDE or text editor to add
Java code to the methods so that they behave as you want.

See Section 2.3.2, "Sample TemperaturePortType Java Implementation File" for an
example; the added Java code is in bold. The generated JWS implementation file
automatically includes values for the @WebService and @WLHt tpTransport
JWS annotations that correspond to the values in the original WSDL file.

Note: There are restrictions on the JWS annotations that you can add
to the JWS implementation file in the "starting from WSDL" use case.
See "wsdlc" in the Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server for details.

For simplicity, the sample getTemp () method in
TemperaturePortTypelImpl.java returns a hard-coded number. In real life,
the implementation of this method would actually look up the current
temperature at the given zip code.

Copy the updated TemperaturePortTypelImpl. java file into a permanent
directory, such as a src directory under the project directory; remember to create
child directories that correspond to the package name:

prompt> cd /examples/wsdlc
prompt> mkdir src/examples/webservices/wsdlc
prompt> cp output/impl/examples/webservices/wsdlc/TemperaturePortTypelmpl.java
\
src/examples/webservices/wsdlc/TemperaturePortTypeImpl.java

Add abuild-service target to the build.xml file that executes the jwsc Ant
task against the updated JWS implementation class. Use the compiledwsdl
attribute of jwsc to specify the name of the JAR file generated by the wsdlc Ant
task:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws file="examples/webservices/wsdlc/TemperaturePortTypelmpl.java"
compiledwWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"
type="JAXRPC">
<WLHttpTransport
contextPath="temp" serviceUri="TemperatureService"
portName="TemperaturePort">
</WLHttpTransport>
</jws>
</jwsc>
</target>

In the preceding example:

— The type attribute of the <jws> element specifies the type of Web services
(JAX-WS or JAX-RPC).

— The <WLHttpTransport> child element of the <jws> element of the jwsc
Ant task specifies the context path and service URI sections of the URL used to

Use Cases and Examples 2-13

Creating a Web Service from a WSDL File

invoke the Web service over the HI'TP/S transport, as well as the name of the
port in the generated WSDL. This value overrides the value specified in the
JWS file using the @WLHt tpTransport attribute.

10. Execute the build-service target to generate a deployable Web service:

prompt> ant build-service

You can re-run this target if you want to update and then re-build the JWS file.
11. Start the WebLogic Server instance to which the Web service will be deployed.

12. Deploy the Web service, packaged in an Enterprise Application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In
either case, you deploy the wsdlcEar Enterprise application, located in the
output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management .WLDeploy" />
<target name="deploy">
<wldeploy action="deploy" name="wsdlcEar"

source="output/wsdlcEar" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />

</target>

Substitute the values for wls .username, wls.password, wls.hostname,
wls.port, and wls.server.name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:

prompt> ant deploy

13. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/temp/TemperatureService?WSDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL. Use the hostname and port relevant to your WebLogic
Server instance. Note that the deployed and original WSDL files are the same,
except for the host and port of the endpoint address.

You can use the clean, build-service, undeploy, and deploy targets in the
build.xml file to iteratively update, rebuild, undeploy, and redeploy the Web service
as part of your development process.

To run the Web service, you need to create a client that invokes it. See Section 2.4,
"Invoking a Web Service from a Stand-alone Java Client" for an example of creating a
Java client application that invokes a Web service.

2.3.1 Sample WSDL File

<?xml version="1.0"?>

<definitions
name="TemperatureService"
targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"
xmlns:tns="http://www.xmethods.net/sd/TemperatureService.wsdl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

2-14 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Creating a Web Service from a WSDL File

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/" >
<message name="getTempRequest">
<part name="zip" type="xsd:string"/>
</message>
<message name="getTempResponse">
<part name="return" type="xsd:float"/>
</message>
<portType name="TemperaturePortType">
<operation name="getTemp">
<input message="tns:getTempRequest"/>
<output message="tns:getTempResponse" />
</operation>
</portType>
<binding name="TemperatureBinding" type="tns:TemperaturePortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="getTemp">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"
namespace="urn:xmethods-Temperature" />
</input>
<output>
<soap:body use="literal"
namespace="urn:xmethods-Temperature" />
</output>
</operation>
</binding>
<service name="TemperatureService">
<documentation>
Returns current temperature in a given U.S. zipcode
</documentation>
<port name="TemperaturePort" binding="tns:TemperatureBinding">
<soap:address

location="http://localhost:7001/temp/TemperatureService" />
</port>
</service>
</definitions>

2.3.2 Sample TemperaturePortType Java Implementation File

package examples.webservices.wsdlc;
import javax.jws.WebService;
import weblogic.jws.*;
/**
* TemperaturePortTypeImpl class implements web service endpoint
* interface TemperaturePortType */
@WebService (
serviceName="TemperatureService",
targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"

endpointInterface="examples.webservices.wsdlc.TemperaturePortType)
@WLHttpTransport (

contextPath="temp",
serviceUri="TemperatureService",
portName="TemperaturePort")
public class TemperaturePortTypeImpl implements
examples.webservices.wsdlc.TemperaturePortType {

Use Cases and Examples 2-15

Creating a Web Service from a WSDL File

public TemperaturePortTypeImpl () { }
public float getTemp(java.lang.String zip) {
return 1.234f;

2.3.3 Sample Ant Build File for TemperatureService
The following build.xml file uses properties to simplify the file.

<project default="all">
<!-- set global properties for this build -->
<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />
<property name="wls.server.name" value="myserver" />
<property name="ear.deployed.name" value="wsdlcEar" />
<property name="example-output" value="output" />
<property name="compiledWsdl-dir" value="${example-output}/compiledWsdl"
<property name="impl-dir" value="${example-output}/impl" />
<property name="ear-dir" value="${example-output}/wsdlcEar" />
<property name="clientclass-dir" value="${example-output}/clientclasses"
<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>
<taskdef name="wsdlc"
classname="weblogic.wsee.tools.anttasks.WsdlcTask" />
<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management .WLDeploy" />
<target name="all"
depends="clean, generate-from-wsdl,build-service,deploy,client" />
<target name="clean" depends="undeploy">
<delete dir="${example-output}"/>
</target>
<target name="generate-from-wsdl">
<wsdlc
srcWsdl="wsdl_files/TemperatureService.wsdl"
destJwsDir="${compiledwWsdl-dir}"
destImplDir="${impl-dir}"
packageName="examples.webservices.wsdlc" />
</target>
<target name="build-service">
<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws file="examples/webservices/wsdlc/TemperaturePortTypelImpl.java"
compiledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar"
type="JAXRPC">
<WLHttpTransport
contextPath="temp" serviceUri="TemperatureService"
portName="TemperaturePort" />
</jws>
</jwsc>

2-16 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

/>

/>

Invoking a Web Service from a Stand-alone Java Client

</target>
<target name="deploy">
<wldeploy action="deploy" name="S${ear.deployed.name}"
source="S${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />
</target>
<target name="undeploy">
<wldeploy action="undeploy" name="${ear.deployed.name}"
failonerror="false"
user="S${wls.username}" password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />
</target>
<target name="client">
<clientgen
wsdl="http://${wls.hostname}:${wls.port}/temp/TemperatureService?WSDL"
destDir="${clientclass-dir}"
packageName="examples.webservices.wsdlc.client"
type="JAXRPC">
<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*.java"/>
<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/wsdlc/client/**/*.java"/>
</target>
<target name="run">
<java classname="examples.webservices.wsdlc.client.TemperatureClient"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${wls.hostname}:${wls.port}/temp/TemperatureService" />
</java>
</target>
</project>

2.4 Invoking a Web Service from a Stand-alone Java Client

When you invoke an operation of a deployed Web service from a client application,
the Web service could be deployed to WebLogic Server or to any other application
server, such as .NET. All you need to know is the URL to its public contract file, or
WSDL.

In addition to writing the Java client application, you must also run the clientgen
WebLogic Web service Ant task to generate the artifacts that your client application
needs to invoke the Web service operation. These artifacts include:

» The Java class for the JAX-RPC Stub and Service interface implementations for
the particular Web service you want to invoke.

» The Java class for any user-defined XML Schema data types included in the WSDL
file.

s The JAX-RPC mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

= A client-side copy of the WSDL file.

Use Cases and Examples 2-17

Invoking a Web Service from a Stand-alone Java Client

2-18

The following example shows how to create a Java client application that invokes the
echoComplexType operation of the ComplexService WebLogic Web service
described in Section 2.2, "Creating a Web Service With User-Defined Data Types." The
echoComplexType operation takes as both a parameter and return type the
BasicStruct user-defined data type.

Note: Itis assumed in this procedure that you have created and
deployed the ComplexService Web service.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv. cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is 2w_
HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/simple_client

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the Java client application (shown later on in
this procedure):

prompt> cd /myExamples/simple_client
prompt> mkdir src/examples/webservices/simple_client

4. Create a standard Ant build.xml file in the project directory and add a taskdef
Ant task to specify the full Java classname of the clientgen task:

<project name="webservices-simple_client" default="all">
<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
</project>

See Section 2.4.2, "Sample Ant Build File For Building Stand-alone Client
Application” for a full sample build.xml file. The full build.xml file uses
properties, such as $ {clientclass-dir}, rather than always using the
hard-coded name output directory for client classes.

5. Add the following calls to the clientgen and javac Ant tasks to the
build.xml file, wrapped inside of the build-client target:

<target name="build-client">
<clientgen
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="output/clientclass"
packageName="examples.webservices.simple_client"
type="JAXRPC" />
<javac
srcdir="output/clientclass" destdir="output/clientclass"
includes="**/*. java"/>
<javac
srcdir="src" destdir="output/clientclass"
includes="examples/webservices/simple_client/*.java"/>
</target>

Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Invoking a Web Service from a Stand-alone Java Client

The clientgen Ant task uses the WSDL of the deployed ComplexService Web
service to generate the necessary artifacts and puts them into the
output/clientclass directory, using the specified package name. Replace the
variables with the actual hostname and port of your WebLogic Server instance that
is hosting the Web service.

The clientgen Ant task also automatically generates the
examples.webservices.complex.BasicStruct JavaBean class, which is the
Java representation of the user-defined data type specified in the WSDL.

The build-client target also specifies the standard javac Ant task, in addition
to clientgen, to compile all the Java code, including the stand-alone Java
program described in the next step, into class files.

The clientgen Ant task also provides the destFile attribute if you want the
Ant task to automatically compile the generated Java code and package all
artifacts into a JAR file. For details and an example, see "clientgen" in the Oracle
Fusion Middleware WebLogic Web Services Reference for Oracle WebLogic Server.

Create the Java client application file that invokes the echoComplexType
operation.

Open your favorite Java IDE or text editor and create a Java file called Main. java
using the code specified in Section 2.4.1, "Sample Java Client Application."

The Main client application takes a single argument: the WSDL URL of the Web
service. The application then follows standard JAX-RPC guidelines to invoke an
operation of the Web service using the Web service-specific implementation of the
Service interface generated by clientgen. The application also imports and
uses the BasicStruct user-defined type, generated by the clientgen Ant task,
that is used as a parameter and return value for the echoStruct operation. For
details, see Chapter 6, "Invoking Web Services."

Save the Main. java file in the src/examples/webservices/simple_
client subdirectory of the main project directory.

Execute the clientgen and javac Ant tasks by specifying the build-client
target at the command line:

prompt> ant build-client

See the output/clientclass directory to view the files and artifacts generated
by the clientgen Ant task.

Add the following targets to the build.xml file, used to execute the Main
application:

<path id="client.class.path">
<pathelement path="output/clientclass"/>
<pathelement path="${java.class.path}"/>
</path>
<target name="run" >
<java fork="true"
classname="examples.webservices.simple_client.Main"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
</java>
</target>

Use Cases and Examples 2-19

Invoking a Web Service from a Stand-alone Java Client

The run target invokes the Main application, passing it the WSDL URL of the
deployed Web service as its single argument. The classpath element adds the
clientclass directory to the CLASSPATH, using the reference created with the
<path> task.

10. Execute the run target to invoke the echoComplexType operation:

prompt> ant run

If the invoke was successful, you should see the following final output:

run:
[java] echoComplexType called. Result: 999, Hello Struct

You can use the build-client and run targets in the build.xml file to iteratively
update, rebuild, and run the Java client application as part of your development
process.

2.4.1 Sample Java Client Application

The following provides a simple Java client application that invokes the
echoComplexType operation.

package examples.webservices.simple_client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

// import the BasicStruct class, used as a param and return value of the
// echoComplexType operation. The class is generated automatically by
// the clientgen Ant task.

import examples.webservices.complex.BasicStruct;

/**

* This is a simple stand-alone client application that invokes the
* echoComplexType operation of the ComplexService Web service.
*/
public class Main {
public static void main(String[] args)
throws ServiceException, RemoteException {
ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
ComplexPortType port = service.getComplexServicePort();
BasicStruct in = new BasicStruct();
in.setIntValue(999);
in.setStringValue ("Hello Struct");
BasicStruct result = port.echoComplexType (in) ;
System.out.println("echoComplexType called. Result: " + result.getIntValue()
+ ", " + result.getStringValue());

}

2.4.2 Sample Ant Build File For Building Stand-alone Client Application

The following build.xml file defines tasks to build the stand-alone client application.
The example uses properties to simplify the file.

<project name="webservices-simple_client" default="all">
<!-- set global properties for this build -->
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />
<property name="example-output" value="output" />
<property name="clientclass-dir" value="${example-output}/clientclass" />
<path id="client.class.path">

2-20 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Invoking a Web Service from a WebLogic Web Service

<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>
<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<target name="clean" >
<delete dir="${clientclass-dir}"/>
</target>
<target name="all" depends="clean,build-client,run" />
<target name="build-client">
<clientgen
type="JAXRPC"
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="${clientclass-dir}"
packageName="examples.webservices.simple_client"/>
<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*.java"/>
<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/simple_client/*.java"/>
</target>
<target name="run" >
<java fork="true"
classname="examples.webservices.simple_client.Main"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg line="http://${wls.hostname}:${wls.port}/complex/ComplexService" />
</java>
</target>
</project>

2.5 Invoking a Web Service from a WebLogic Web Service

You can also invoke a Web service (WebLogic, INET, and so on) from within a
deployed WebLogic Web service, rather than from a stand-alone client.

The procedure is similar to that described in Section 2.4, "Invoking a Web Service from
a Stand-alone Java Client" except that instead of running the clientgen Ant task to
generate the client stubs, you use the <clientgen> child element of <jws>, inside of
the jwsc Ant task. The jwsc Ant task automatically packages the generated client
stubs in the invoking Web service WAR file so that the Web service has immediate
access to them. You then follow standard JAX-RPC programming guidelines in the
JWE file that implements the Web service that invokes the other Web service.

The following example shows how to write a JWS file that invokes the
echoComplexType operation of the ComplexService Web service described in
Section 2.2, "Creating a Web Service With User-Defined Data Types."

Note: It is assumed that you have successfully deployed the
ComplexService Web service.

1. Set your WebLogic Server environment.

Open a command window and execute the setDomainEnv.cmd (Windows) or
setDomainEnv.sh (UNIX) script, located in the bin subdirectory of your
domain directory. The default location of WebLogic Server domains is Mw_

Use Cases and Examples 2-21

Invoking a Web Service from a WebLogic Web Service

HOME/user_projects/domains/domainName, where MW_HOME is the
top-level installation directory of the Oracle products and domainName is the
name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/service_to_service

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS and client application files (shown
later on in this procedure):

prompt> cd /myExamples/service_to_service
prompt> mkdir src/examples/webservices/service_to_service

4. Create the JWS file that implements the Web service that invokes the
ComplexService Web service.

Open your favorite Java IDE or text editor and create a Java file called
ClientServiceImpl.java using the Java code specified in Section 2.5.1,
"Sample ClientServiceImpljava JWS File."

The sample JWS file shows a Java class called ClientServiceImpl that contains
a single public method, callComplexService (). The Java class imports the
JAX-RPC stubs, generated later on by the jwsc Ant task, as well as the
BasicStruct Java Bean (also generated by clientgen), which is the data type
of the parameter and return value of the echoComplexType operation of the
ComplexService Web service.

The ClientServiceImpl Java class defines one method,
callComplexService (), which takes two parameters: a BasicStruct which
is passed on to the echoComplexType operation of the ComplexService Web
service, and the URL of the ComplexService Web service. The method then uses
the standard JAX-RPC APIs to get the Service and PortType of the
ComplexService, using the stubs generated by jwsc, and then invokes the
echoComplexType operation.

5. Save the ClientServiceImpl.java file in the
src/examples/webservices/service_to_service directory.

6. Create a standard Ant build.xml file in the project directory and add the
following task:

<project name="webservices-service_to_service" default="all">
<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
</project>

The taskdef task defines the full classname of the jwsc Ant task.

See Section 2.5.2, "Sample Ant Build File For Building ClientService" for a full
sample build.xml file that contains additional targets from those described in
this procedure, such as clean, deploy, undeploy, client, and run. The full
build.xml file also uses properties, such as $ {ear-dir}, rather than always
using the hard-coded name for the EAR directory.

7. Add the following call to the jwsc Ant task to the build.xml file, wrapped
inside of the build-service target:

<target name="build-service">
<jwsc
srcdir="src"

2-22 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Invoking a Web Service from a WebLogic Web Service

destdir="output/ClientServiceEar" >
<jws
file="examples/webservices/service_to_service/ClientServiceImpl.java"
type="JAXRPC">
<WLHttpTransport
contextPath="ClientService" serviceUri="ClientService"
portName="ClientServicePort"/>
<clientgen
type="JAXRPC"
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
packageName="examples.webservices.complex" />
</jws>
</jwsc>
</target>

In the preceding example, the <clientgen> child element of the <jws> element
of the jwsc Ant task specifies that, in addition to compiling the JWS file, jwsc
should also generate and compile the client artifacts needed to invoke the Web
service described by the WSDL file.

In this example, the package name is set to examples.webservices.complex,
which is different from the client application package name,
examples.webservices.simple_client. As a result, you need to import the
appropriate class files in the client application:

import examples.webservices.complex.BasicStruct;
import examples.webservices.complex.ComplexPortType;
import examples.webservices.complex.ComplexService;

If the package name is set to the same package name as the client application, the
import calls would be optional.

8. Execute the jwsc Ant task by specifying the build-service target at the
command line:

prompt> ant build-service

9. Start the WebLogic Server instance to which you will deploy the Web service.

10. Deploy the Web service, packaged in an enterprise application, to WebLogic
Server, using either the Administration Console or the wldeploy Ant task. In
either case, you deploy the ClientServiceEar Enterprise application, located in
the output directory.

To use the wldeploy Ant task, add the following target to the build.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management .WLDeploy" />
<target name="deploy">
<wldeploy action="deploy" name="ClientServiceEar"

source="ClientServiceEar" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />

</target>

Substitute the values for wls .username, wls.password, wls.hostname,
wls.port,and wls.server.name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:

Use Cases and Examples 2-23

Invoking a Web Service from a WebLogic Web Service

prompt> ant deploy

11. Test that the Web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/ClientService/ClientService?WSDL

See Section 2.4, "Invoking a Web Service from a Stand-alone Java Client" for an
example of creating a Java client application that invokes a Web service.

2.5.1 Sample ClientServicelmpl.java JWS File

The following provides a simple Web service client application that invokes the
echoComplexType operation.

package examples.webservices.service_to_service;
import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;
import javax.jws.WebService;
import javax.jws.WebMethod;
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service
import examples.webservices.complex.BasicStruct;
// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen
import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;
@WebService (name="ClientPortType", serviceName="ClientService",
targetNamespace="http://examples.org")
@QWLHttpTransport (contextPath="ClientService", serviceUri="ClientService",
portName="ClientServicePort")
public class ClientServiceImpl {
@WebMethod ()
public String callComplexService(BasicStruct input, String serviceUrl)
throws ServiceException, RemoteException
{

// Create service and port stubs to invoke ComplexService
ComplexService service = new ComplexService_Impl (serviceUrl + "?WSDL");
ComplexPortType port = service.getComplexServicePort();

// Invoke the echoComplexType operation of ComplexService
BasicStruct result = port.echoComplexType (input) ;
System.out.println("Invoked ComplexPortType.echoComplexType.");

return "Invoke went okay! Here's the result: '" + result.getIntValue() + ",

" + result.getStringValue() + "'";
}
}

2.5.2 Sample Ant Build File For Building ClientService

The following build. xml file defines tasks to build the client application. The
example uses properties to simplify the file.

The following build.xml file uses properties to simplify the file.

<project name="webservices-service_to_service" default="all">
<!-- set global properties for this build -->
<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />

2-24 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Invoking a Web Service from a WebLogic Web Service

<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />
<property name="wls.server.name" value="myserver" />
<property name="ear.deployed.name" value="ClientServiceEar" />
<property name="example-output" value="output" />
<property name="ear-dir" value="${example-output}/ClientServiceEar" />
<property name="clientclass-dir" value="${example-output}/clientclasses" />
<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>
<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management .WLDeploy" />
<target name="all" depends="clean,build-service,deploy,client" />
<target name="clean" depends="undeploy">
<delete dir="${example-output}"/>
</target>
<target name="build-service">
<jwsc
srcdir="src"
destdir="${ear-dir}" >
<jws
file="examples/webservices/service_to_service/ClientServiceImpl.java"
type="JAXRPC">
<WLHttpTransport
contextPath="ClientService" serviceUri="ClientService"
portName="ClientServicePort"/>
<clientgen
type="JAXRPC"
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
packageName="examples.webservices.complex" />
</jws>
</jwsc>
</target>
<target name="deploy">
<wldeploy action="deploy" name="${ear.deployed.name}"
source="${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />
</target>
<target name="undeploy">
<wldeploy action="undeploy" name="${ear.deployed.name}"
failonerror="false"
user="S${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />
</target>
<target name="client">
<clientgen
wsdl="http://${wls.hostname}:${wls.port}/ClientService/ClientService?WSDL"
destDir="${clientclass-dir}"
packageName="examples.webservices.service_to_service.client"
type="JAXRPC" />
<javac

Use Cases and Examples 2-25

Invoking a Web Service from a WebLogic Web Service

srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_.java"/>
<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/service_to_service/client/**/*. java"/>
</target>
<target name="run">
<java classname="examples.webservices.service_to_service.client.Main"
fork="true"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg

line="http://S${wls.hostname}:${wls.port}/ClientService/ClientService"/>
</java>
</target>
</project>

2-26 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

3

Developing WebLogic Web Services

The following sections describe the iterative development process for WebLogic Web
Services:

= Section 3.1, "Overview of the WebLogic Web Service Programming Model"
= Section 3.2, "Configuring Your Domain For Web Services Features"
= Section 3.3, "Developing WebLogic Web Services Starting From Java: Main Steps"

= Section 3.4, "Developing WebLogic Web Services Starting From a WSDL File: Main
Steps"

» Section 3.5, "Creating the Basic Ant build.xml File"
= Section 3.6, "Running the jwsc WebLogic Web Services Ant Task"
= Section 3.7, "Running the wsdlc WebLogic Web Services Ant Task"

= Section 3.8, "Updating the Stubbed-out JWS Implementation Class File Generated
By wsdlc"

= Section 3.9, "Deploying and Undeploying WebLogic Web Services"

» Section 3.10, "Browsing to the WSDL of the Web Service"

» Section 3.11, "Configuring the Server Address Specified in the Dynamic WSDL"
» Section 3.12, "Testing the Web Service"

= Section 3.13, "Integrating Web Services Into the WebLogic Split Development
Directory Environment"

3.1 Overview of the WebLogic Web Service Programming Model

The WebLogic Web Services programming model centers around JWS files—Java files
that use JWS annotations to specify the shape and behavior of the Web Service—and
Ant tasks that execute on the JWS file. JWS annotations are based on the metadata
feature, introduced in Version 5.0 of the JDK (specified by JSR-175 at
http://www.jcp.org/en/jsr/detail?id=175) and include standard
annotations defined by Web Services Metadata for the Java Platform specification
(JSR-181), described at http:/ /www.jcp.org/en/jsr/detail?id=181, as well as
additional ones. For a complete list of JWS annotations that are supported, see "Web
Service Annotation Support" in Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server. For additional detailed information about this
programming model, see "Anatomy of a WebLogic Web Service" in Oracle Fusion
Middleware Introducing WebLogic Web Services for Oracle WebLogic Server.

Developing WebLogic Web Services 3-1

Configuring Your Domain For Web Services Features

The following sections describe the high-level steps for iteratively developing a Web
Service, either starting from Java or starting from an existing WSDL file:

= Section 3.3, "Developing WebLogic Web Services Starting From Java: Main Steps"

= Section 3.4, "Developing WebLogic Web Services Starting From a WSDL File: Main
Steps"

Iterative development refers to setting up your development environment in such a
way so that you can repeatedly code, compile, package, deploy, and test a Web Service
until it works as you want. The WebLogic Web Service programming model uses Ant
tasks to perform most of the steps of the iterative development process. Typically, you
create a single build.xml file that contains targets for all the steps, then repeatedly
run the targets, after you have updated your JWS file with new Java code, to test that
the updates work as you expect.

In addition to the command-line tools described in this section, you can use an IDE,
such as Oracle JDeveloper, to develop Web services. For more information, see "Using
Oracle IDEs to Build Web Services" in Oracle Fusion Middleware Introducing WebLogic
Web Services for Oracle WebLogic Server.

3.2 Configuring Your Domain For Web Services Features

After you have created a WebLogic Server domain, you can use the Configuration
Wizard to update the domain, using a Web Services-specific extension template, so
that the resources required by certain WebLogic Web Services features are
automatically configured. Although use of this extension template is not required, it
makes the configuration of JMS and JDBC resources much easier.

The Web Services extension template automatically configures the resources required
for the following features:

= Web Services Reliable Messaging
= Buffering
s JMS Transport

The following procedures describe how to create and extend a domain so that it is
automatically configured for the advanced Web services features. For detailed
instructions about using the Configuration Wizard to create and update WebLogic
Server domains, see Oracle WebLogic Server Creating WebLogic Domains Using the
Configuration Wizard.

To create a domain that is automatically configured for the advanced Web service
features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Create a new WebLogic domain.
3. Click Next.
4

Select Generate a domain configured automatically to support the following
products and select WebLogic Advanced Web Services for JAX-RPC Extension.

Click Next.
Enter the name and location of the domain and click Next.

Configure the administrator user name and password and click Next.

©® N o o

Configure the server start mode and JDK and click Next.

3-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Developing WebLogic Web Services Starting From Java: Main Steps

10.

11.

If you want to further configure the JMS services, file stores, or any other feature,
select the items on the Select Optional Configuration screen. This is not typical.

Otherwise, leave all items deselected and click Next.

When you reach the Configuration Summary screen, verify the domain details and
click Create.

Click Done to exit.

To estend an existing domain so that it is automatically configured for these Web
Services features:

1.

o g k& 0 b

N

9.

10.

Start the Configuration Wizard.

In the Welcome window, select Extend an Existing WebLogic Domain.
Click Next.

Select the domain to which you want to apply the extension template.
Click Next.

Select Extend my domain automatically to support the following added products
and select WebLogic Advanced Web Services for JAX-RPC Extension.

Click Next.

If you want to further configure the JMS services or file stores, select the items on
the Select Optional Configuration screen. This is not typical.

Otherwise, leave all items deselected and click Next.
Verify that you are extending the correct domain, then click Extend.

Click Done to exit.

3.3 Developing WebLogic Web Services Starting From Java: Main Steps

This section describes the general procedure for developing WebLogic Web Services
starting from Java—in effect, coding the JWS file from scratch and later generating the
WSDL file that describes the service. See Chapter 2, "Use Cases and Examples" for
specific examples of this process.

The following procedure is just a recommendation; if you have set up your own
development environment, you can use this procedure as a guide for updating your
existing environment to develop WebLogic Web Services.

Note: This procedure does not use the WebLogic Web Services split
development directory environment. If you are using this
development environment, and would like to integrate Web Services
development into it, see Section 3.13, "Integrating Web Services Into
the WebLogic Split Development Directory Environment” for details.

Developing WebLogic Web Services 3-3

Developing WebLogic Web Services Starting From a WSDL File: Main Steps

Table 3—-1 Steps to Develop Web Services Starting From Java

Step Description

1 Set up the environment. Open a command window and execute the
setDomainEnv.cmd (Windows) or setDomainEnv. sh
(UNIX) command, located in the bin subdirectory of
your domain directory. The default location of WebLogic
Server domains is MW_HOME/user_
projects/domains/domainName, where MiW_HOME is
the top-level installation directory of the Oracle products
and domainName is the name of your domain.

2 Create a project directory. The project directory will contain the JWS file, Java source
for any user-defined data types, and the Ant build.xml
file. You can name the project directory anything you
want.

3 Create the JWS file that See Section 4.3, "Programming the JWS File: Typical

implements the Web Service. Steps."

4 Create user-defined data If your Web Service uses user-defined data types, create

types. (Optional) the JavaBeans that describes them. See Section 4.6,
"Programming the User-Defined Java Data Type."

5 Create a basic Ant build file, See Section 3.5, "Creating the Basic Ant build.xml File."

build.xml.

6 Run the jwsc Ant task The jwsc Ant task generates source code, data binding

against the JWS file. artifacts, deployment descriptors, and so on, into an
output directory. The jwsc Ant task generates an
Enterprise application directory structure at this output
directory; later you deploy this exploded directory to
WebLogic Server as part of the iterative development
process. See Section 3.6, "Running the jwsc WebLogic Web
Services Ant Task."
7 Deploy the Web Service to See Section 3.9, "Deploying and Undeploying WebLogic
WebLogic Server. Web Services."
8 Browse to the WSDL of the Browse to the WSDL of the Web Service to ensure that it
Web Service. was deployed correctly. See Section 3.10, "Browsing to the
WSDL of the Web Service."
9 Test the Web Service. See Section 3.12, "Testing the Web Service."
10 Edit the Web Service. To make changes to the Web Service, update the JWS file,
(Optional) undeploy the Web Service as described in Section 3.9,

"Deploying and Undeploying WebLogic Web Services,"
then repeat the steps starting from running the jwsc Ant
task (Step 6).

See Chapter 6, "Invoking Web Services" for information on writing client applications
that invoke a Web Service.

3.4 Developing WebLogic Web Services Starting From a WSDL File: Main

Steps

This section describes the general procedure for developing WebLogic Web Services
based on an existing WSDL file. See Chapter 3, "Developing WebLogic Web Services"
for a specific example of this process.

3-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Developing WebLogic Web Services Starting From a WSDL File: Main Steps

The procedure is just a recommendation; if you have set up your own development
environment, you can use this procedure as a guide for updating your existing
environment to develop WebLogic Web Services.

It is assumed in this procedure that you already have an existing WSDL file.

Note: This procedure does not use the WebLogic Web Services split
development directory environment. If you are using this
development environment, and would like to integrate Web Services
development into it, see Section 3.13, "Integrating Web Services Into
the WebLogic Split Development Directory Environment” for details.

Table 3-2 Steps to Develop Web Services Starting From Java

Step Description
1 Set up the environment. Open a command window and execute the
setDomainEnv.cmd (Windows) or setDomainEnv. sh
(UNIX) command, located in the bin subdirectory of
your domain directory. The default location of WebLogic
Server domains is MW_HOME/user_
projects/domains/domainName, where MiW_HOME is
the top-level installation directory of the Oracle products
and domainName is the name of your domain.
2 Create a project directory. The project directory will contain the generated artifacts
and the Ant build.xml file.
3 Create a basic Ant build file, ~ See Section 3.5, "Creating the Basic Ant build.xml File."
build.xml.
4 Put your WSDL file in a For example, you can put the WSDL file in a wsdl_
directory that thebuild.xml files child directory of the project directory.
Ant build file is able to read.
5 Run the wsdlc Ant task The wsdlc Ant task generates the JWS service endpoint
against the WSDL file. interface (SEI), the stubbed-out JWS class file, JavaBeans
that represent the XML Schema data types, and so on,
into output directories. See Section 3.7, "Running the
wsdlc WebLogic Web Services Ant Task."
6 Update the stubbed-out JWS The wsdlc Ant task generates a stubbed-out JWS file.
file generated by the wsdlc Youneed to add your business code to the Web Service so
Ant task. it behaves as you want. See Section 3.8, "Updating the
Stubbed-out JWS Implementation Class File Generated
By wsdlc."
7 Run the jwsc Ant task Specify the artifacts generated by the wsdlc Ant task as
against the JWS file. well as your updated JWS implementation file, to
generate an Enterprise Application that implements the
Web Service. See Section 3.6, "Running the jwsc WebLogic
Web Services Ant Task."
8 Deploy the Web Service to See Section 3.9, "Deploying and Undeploying WebLogic

WebLogic Server. Web Services."

Developing WebLogic Web Services 3-5

Creating the Basic Ant build.xml File

Table 3-2 (Cont.) Steps to Develop Web Services Starting From Java

Step Description
9 Browse to the WSDL of the Browse to the WSDL of the Web Service to ensure that it
Web Service. was deployed correctly. See Section 3.10, "Browsing to the

WSDL of the Web Service."

The URL used to invoke the WSDL of the deployed Web
Service is essentially the same as the value of the
location attribute of the <address> element in the
original WSDL (except for the host and port values which
now correspond to the host and port of the WebLogic
Server instance to which you deployed the service.) This
is because the wsdlc Ant task generated values for the
contextPath and serviceURTI of the
@WLHttpTransport annotation in the JWS
implementation file so that together they create the same
URI as the endpoint address specified in the original
WSDL.

10 Test the Web Service.

See Section 3.12, "Testing the Web Service."

11 Edit the Web Service.
(Optional)

To make changes to the Web Service, update the JWS file,
undeploy the Web Service as described in Section 3.9,
"Deploying and Undeploying WebLogic Web Services,"
then repeat the steps starting from running the jwsc Ant
task (Step 6).

See Chapter 6, "Invoking Web Services" for information on writing client applications

that invoke a Web Service.

3.5 Creating the Basic Ant build.xml File

Ant uses build files written in XML (default name build.xml) that contain a
<project> root element and one or more targets that specify different stages in the
Web Services development process. Each target contains one or more tasks, or pieces
of code that can be executed. This section describes how to create a basic Ant build file;
later sections describe how to add targets to the build file that specify how to execute
various stages of the Web Services development process, such as running the jwsc
Ant task to process a JWS file and deploying the Web Service to WebLogic Server.

The following skeleton build.xml file specifies a default all target that calls all
other targets that will be added in later sections:

<project default="all">
<target name="all"

depends="clean,build-service,deploy" />

<target name="clean">
<delete dir="output" />
</target>

<target name="build-service">

<!--add jwsc and related tasks here -->

</target>
<target name="deploy">

<!--add wldeploy task here -->

</dftarget>
</project>

3-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Running the jwsc WebLogic Web Services Ant Task

3.6 Running the jwsc WebLogic Web Services Ant Task

The jwsc Ant task takes as input a JWS file that contains JWS annotations and
generates all the artifacts you need to create a WebLogic Web Service. The JWS file can
be either one you coded yourself from scratch or one generated by the wsdlc Ant task.
The jwsc-generated artifacts include:

s JSR-109 Web Service class file.
= All required deployment descriptors, including;:

- Standard and WebLogic-specific Web Services deployment descriptors:
webservices.xml and weblogic-webservices.xml.

- JAX-RPC mapping files.
- Java class-implemented Web Services: web . xml and weblogic . xml.

- EJB-implemented Web Services: ejb-jar.xml and
weblogic-ejb-jar.xml.

- Ear deployment descriptor files: application.xml and
weblogic-application.xml.

s The XML Schema representation of any Java user-defined types used as
parameters or return values to the Web Service operations.

s The WSDL file that publicly describes the Web Service.

If you are running the jwsc Ant task against a JWS file generated by the wsdlc Ant
task, the jwsc task does not generate these artifacts, because the wsdlc Ant task
already generated them for you and packaged them into a JAR file. In this case, you
use an attribute of the jwsc Ant task to specify this wsdlc-generated JAR file.

After generating all the required artifacts, the jwsc Ant task compiles the Java files
(including your JWS file), packages the compiled classes and generated artifacts into a
deployable JAR archive file, and finally creates an exploded Enterprise Application
directory that contains the JAR file.

To run the jwsc Ant task, add the following taskdef and build-service target to
the build.xml file:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
<jwsc
srcdir="src_directory"
destdir="ear_directory"
>
<jws file="Jws_file"
compiledWsdl="WSDLC_Generated_JAR"
type="WebService_type" />
</jwsc>
</target>

where:

s ear_directory refers to an Enterprise Application directory that will contain
all the generated artifacts.

s src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

= JWS_file refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

Developing WebLogic Web Services 3-7

Running the jwsc WebLogic Web Services Ant Task

s WSDLC_Generated_]AR refers to the JAR file generated by the wsdlc Ant task that
contains the JWS SEI and data binding artifacts that correspond to an existing
WSDL file.

Note: You specify this attribute only in the "starting from WSDL" use
case; this procedure is described in Section 3.4, "Developing WebLogic
Web Services Starting From a WSDL File: Main Steps."

s WebService_type specifies the type of Web Service. This value can be set to
JAXWS or JAXRPC.

The required taskdef element specifies the full class name of the jwsc Ant task.

Only the srcdir and destdir attributes of the jwsc Ant task are required. This
means that, by default, it is assumed that Java files referenced by the JWS file (such as
JavaBeans input parameters or user-defined exceptions) are in the same package as the
JWS file. If this is not the case, use the sourcepath attribute to specify the top-level
directory of these other Java files. See "jwsc" in Oracle Fusion Middleware WebLogic Web
Services Reference for Oracle WebLogic Server for more information.

3.6.1 Examples of Using jwsc

The following build.xml excerpt shows a basic example of running the jwsc Ant
task on a JWS file:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
<jwsc
srcdir="src"
destdir="output/helloWorldEar">
<jws
file="examples/webservices/hello_world/HelloWorldImpl.java"
type="JAXRPC" />
</jwsc>
</target>

In the example:

» The Enterprise application will be generated, in exploded form, in
output/helloWorldEar, relative to the current directory.

s The JWS file is called HelloWorldImpl . java, and is located in the
src/examples/webservices/hello_world directory, relative to the current
directory. This implies that the JWS file is in the package
examples.webservices.helloWorld.

= A JAX-RPC Web Service is generated.

The following example is similar to the preceding one, except that it uses the
compiledwsdl attribute to specify the JAR file that contains wsdlc-generated
artifacts (for the "starting with WSDL" use case):

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
<jwsc
srcdir="src"
destdir="output/wsdlcEar">
<jws

3-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Running the wsdic WebLogic Web Services Ant Task

file="examples/webservices/wsdlc/TemperaturePortTypeImpl.java"
compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar"
type="JAXRPC" />
</jwsc>
</target>

In the preceding example, the TemperaturePortTypeImpl. java fileis the
stubbed-out JWS file that you updated to include your business logic. Because the
compiledwsdl attribute is specified and points to a JAR file, the jwsc Ant task does
not regenerate the artifacts that are included in the JAR.

To actually run this task, type at the command line the following:

prompt> ant build-service

3.6.2 Advanced Uses of jwsc

This section described two very simple examples of using the jwsc Ant task. The task,
however, includes additional attributes and child elements that make the tool very
powerful and useful. For example, you can use the tool to:

= Process multiple JWS files at once. You can choose to package each resulting Web
Service into its own Web application WAR file, or group all of the Web Services
into a single WAR file.

= Specify the transports (HTTP/HTTPS/JMS) that client applications can use when
invoking the Web Service, possibly overriding any existing @WLXXXTransport
annotations.

= Automatically generate the JAX-RPC client stubs of any other Web Service that is
invoked within the JWS file.

= Update an existing Enterprise Application or Web application, rather than
generate a completely new one.

See "jwsc" in the Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server for complete documentation and examples about the jwsc Ant task.

3.7 Running the wsdlc WebLogic Web Services Ant Task

The wsdlc Ant task takes as input a WSDL file and generates artifacts that together
partially implement a WebLogic Web Service. These artifacts include:

s JWSservice endpoint interface (SEI) that implements the Web Service described by
the WSDL file.

= JWSimplementation file that contains a partial (stubbed-out) implementation of
the generated JWS SEI. This file must be customized by the developer.

» Data binding artifacts used by WebLogic Server to convert between the XML and
Java representations of the Web Service parameters and return values.

= Optional Javadocs for the generated JWS SEL

The wsdlc Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the jwsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

To run the wsdlc Ant task, add the following taskdef and generate-from-wsdl
targets to the build.xml file:

<taskdef name="wsdlc"

Developing WebLogic Web Services 3-9

Running the wsdic WebLogic Web Services Ant Task

classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

<target name="generate-from-wsdl">

<wsdlc
srcWsdl="WSDL_file"
destJwsDir="JWS_interface_directory"
destImplDir="JWS_implementation_directory"
packageName="Package name"
type="WebService_type" />

</target>

where:

WSDL_ f1i]le refers to the name of the WSDL file from which you want to generate
a partial implementation, including its absolute or relative pathname.

JWS_interface_directory refers to the directory into which the JAR file that
contains the JWS SEI and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFile_wsdl. jar, where WSDLFile
refers to the root name of the WSDL file. For example, if the name of the WSDL file
you specify to the file attribute is MyService.wsdl, then the generated JAR file is
MyService_wsdl. jar.

JwS_implementation_directory refers to the top directory into which the
stubbed-out JWS implementation file is generated. The file is generated into a
subdirectory hierarchy corresponding to its package name.

The name of the generated JWS file is PortTypeImpl. java, where PortType
refers to the name attribute of the <portType> element in the WSDL file for
which you are generating a Web Service. For example, if the port type name is
MyServicePortType, then the JWS implementation file is called
MyServicePortTypelImpl. java.

Package_name refers to the package into which the generated JWS SEI and
implementation files should be generated. If you do not specify this attribute, the
wsdlc Ant task generates a package name based on the targetNamespace of
the WSDL.

WebService_type specifies the type of Web Service. This value can be set to
JAXWS or JAXRPC.

The required taskdef element specifies the full class name of the wsdlc Ant task.

Only the srcWsdl and destJwsDir attributes of the wsdlc Ant task are required.
Typically, however, you generate the stubbed-out JWS file to make your programming
easier. Oracle recommends you explicitly specify the package name in case the
targetNamespace of the WSDL file is not suitable to be converted into a readable
package name.

The following build.xml excerpt shows an example of running the wsdlc Ant task
against a WSDL file:

<taskdef name="wsdlc"

classname="weblogic.wsee.tools.anttasks.WsdlcTask" />

<target name="generate-from-wsdl">

<wsdlc
srcWsdl="wsdl_files/TemperatureService.wsdl"
destJwsDir="output/compiledwWsdl"
destImplDir="impl_output"
packageName="examples.webservices.wsdlc"
type="JAXRPC" />

</target>

3-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc

In the example:

» The existing WSDL file is called TemperatureService.wsdl and is located in
the wsdl_files subdirectory of the directory that contains the build.xml file.

s The JAR file that will contain the JWS SEI and data binding artifacts is generated
to the output/compiledwsdl directory; the name of the JAR file is
TemperatureService_wsdl. jar.

s The package name of the generated JWS files is
examples.webservices.wsdld.

» The stubbed-out JWS file is generated into the impl_
output/examples/webservices/wsdlc directory relative to the current
directory.

= Assuming that the port type name in the WSDL file is TemperaturePortType,
then the name of the JWS implementation file is
TemperaturePortTypeImpl. java.

s A JAX-RPC Web Service is generated.
To actually run this task, type the following at the command line:

prompt> ant generate-from-wsdl

See "wsdlc" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server for more information.

3.8 Updating the Stubbed-out JWS Implementation Class File Generated

By wsdic

The wsdlc Ant task generates the stubbed-out JWS implementation file into the
directory specified by its dest ImplDir attribute; the name of the file is
PortTypeImpl.java, where PortType is the name of the portType in the original
WSDL. The class file includes everything you need to compile it into a Web Service,
except for your own business logic.

The JWS class implements the JWS Web Service endpoint interface that corresponds to
the WSDL file; the JWS SEl is also generated by wsdlc and is located in the JAR file
that contains other artifacts, such as the Java representations of XML Schema data
types in the WSDL and so on. The public methods of the JWS class correspond to the
operations in the WSDL file.

The wsdlc Ant task automatically includes the @WebService and
@WLHttpTransport annotations in the JWS implementation class; the values of the
attributes corresponds to the equivalent values in the WSDL. For example, the
serviceName attribute of @WebService is the same as the name attribute of the
<service> element in the WSDL file; the contextPath and serviceUri attributes
of @WLHt tpTransport together make up the endpoint address specified by the
location attribute of the <address> element in the WSDL.

When you update the JWS file, you add Java code to the methods so that the
corresponding Web Service operations operate as required. Typically, the generated
JWES file contains comments where you should add code, such as:

//replace with your impl here

In addition, you can add additional JWS annotations to the file, with the following
restrictions:

Developing WebLogic Web Services 3-11

Deploying and Undeploying WebLogic Web Services

= You can include the following annotations from the standard (JSR-181)
javax.jws package in the JWS implementation file: @WebService,
@HandlerChain, @SOAPMessageHandler, and @SOAPMessageHandlers. If
you specify any other JWS annotation from the javax. jws package, the jwsc
Ant task returns error when you try to compile the JWS file into a Web Service.

= You can specify only the serviceName, endpointInterface, and
targetNamespace attributes of the @WebService annotation. Use the
serviceName attribute to specify a different <service> WSDL element from the
one that the wsd1lc Ant task used, in the rare case that the WSDL file contains
more than one <service> element. Use the endpointInterface attribute to
specify the JWS SEI generated by the wsdlc Ant task. Use the targetNamespace
attribute to specify the namespace of a WSDL service, which can be different from
the on in JWS SEL

= You can specify WebLogic-specific JWS annotations, as required.

After you have updated the JWS file, Oracle recommends that you move it to an
official source location, rather than leaving it in the wsd1c output directory.

The following example shows the wsdlc-generated JWS implementation file from the
WSDL shown in Section 2.3.1, "Sample WSDL File"; the text in bold indicates where
you would add Java code to implement the single operation (getTemp) of the Web
Service:

package examples.webservices.wsdlc;
import javax.jws.WebService;
import weblogic.jws.*;
/**
* TemperaturePortTypeImpl class implements web service endpoint interface
* TemperaturePortType */
@WebService (
serviceName="TemperatureService",
endpointInterface="examples.webservices.wsdlc.TemperaturePortType")
@WLHttpTransport (
contextPath="temp",
serviceUri="TemperatureService",
portName="TemperaturePort")
public class TemperaturePortTypelImpl implements TemperaturePortType {
public TemperaturePortTypeImpl () {
}
public float getTemp(java.lang.String zipcode)
{
//replace with your impl here
return 0;

3.9 Deploying and Undeploying WebLogic Web Services

Because Web Services are packaged as Enterprise Applications, deploying a Web
Service simply means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the
Administration Console to using the weblogic.Deployer Java utility. There are also
various issues you must consider when deploying an application to a production
environment as opposed to a development environment. For a complete discussion
about deployment, see Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server.

3-12 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Deploying and Undeploying WebLogic Web Services

This guide, because of its development nature, discusses just two ways of deploying
Web Services:

= Section 3.9.1, "Using the wldeploy Ant Task to Deploy Web Services"
= Section 3.9.2, "Using the Administration Console to Deploy Web Services"

3.9.1 Using the wideploy Ant Task to Deploy Web Services

The easiest way to deploy a Web Service as part of the iterative development process is
to add a target that executes the wldeploy WebLogic Ant task to the same
build.xml file that contains the jwsc Ant task. You can add tasks to both deploy and
undeploy the Web Service so that as you add more Java code and regenerate the
service, you can redeploy and test it iteratively.

To use the wldeploy Ant task, add the following target to your build.xml file:

<target name="deploy">
<wldeploy action="deploy"
name="DeploymentName"
source="Source" user="AdminUser"
password="AdminPassword"
adminurl="AdminServerURL"
targets="ServerName" />
</target>

where:

= DeploymentName refers to the deployment name of the Enterprise Application,
or the name that appears in the Administration Console under the list of
deployments.

= Sourcerefers to the name of the Enterprise Application EAR file or exploded
directory that is being deployed. By default, the jwsc Ant task generates an
exploded Enterprise Application directory.

» AdminUser refers to administrative username.
» AdminPassword refers to the administrative password.

» AdminServerURL refers to the URL of the Administration Server, typically
t3://localhost:7001.

» ServerName refers to the name of the WebLogic Server instance to which you are
deploying the Web Service.

For example, the following wldeploy task specifies that the Enterprise Application
exploded directory, located in the output/ComplexServiceEar directory relative to
the current directory, be deployed to the myServer WebLogic Server instance. Its
deployed name is ComplexServiceEar.

<target name="deploy">
<wldeploy action="deploy"

name="ComplexServiceEar"
source="output/ComplexServiceEar" user="weblogic"
password="weblogic" verbose="true"
adminurl="t3://localhost:7001"
targets="myserver"/>

</target>

To actually deploy the Web Service, execute the deploy target at the command-line:

prompt> ant deploy

Developing WebLogic Web Services 3-13

Browsing to the WSDL of the Web Service

You can also add a target to easily undeploy the Web Service so that you can make
changes to its source code, then redeploy it:

<target name="undeploy">
<wldeploy action="undeploy"

name="ComplexServiceEar"
user="weblogic"
password="weblogic" verbose="true"
adminurl="t3://localhost:7001"
targets="myserver"/>

</target>

When undeploying a Web Service, you do not specify the source attribute, but rather
undeploy it by its name.

3.9.2 Using the Administration Console to Deploy Web Services

To use the Administration Console to deploy the Web Service, first invoke it in your
browser using the following URL:

http://host:port/console

where:
= host refers to the computer on which WebLogic Server is running.

= portrefers to the port number on which WebLogic Server is listening (default
value is 7001).

Then use the deployment assistants to help you deploy the Enterprise application. For
more information on the Administration Console, see the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

3.10 Browsing to the WSDL of the Web Service

You can display the WSDL of the Web Service in your browser to ensure that it has
deployed correctly.

The following URL shows how to display the Web Service WSDL in your browser:

http://host:port/contextPath/serviceUri?WSDL

where:

= host refers to the computer on which WebLogic Server is running (for example,
localhost).

»s port refers to the port number on which WebLogic Server is listening (default
value is 7001).

m contextPathrefers to the context root of the Web Service. There are many places
to set the context root (the contextPath attribute of the @WLHt tpTransport
annotation, the <WLHt tpTransport>, <module>, or <jws> element of jwsc)
and certain methods take precedence over others. See "Defining the Context Path
of a WebLogic Web Service" in Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server for a complete explanation.

s serviceUri refers to the value of the serviceUri attribute of the
@WLHttpTransport JWS annotation of the JWS file that implements your Web
Service or <WLHt tpTransport> child element of the jwsc Ant task; the second
takes precedence over the first. If you do not specify any serviceUri attribute in

3-14 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Configuring the Server Address Specified in the Dynamic WSDL

either the JWS file or the jwsc Ant task, then the serviceUri of the Web Service
is the default value: the name of the JWS file without its * . java extension.

For example, assume you specified the following @WLHt tpTransport annotation in
the JWS file that implements your Web Service

@WLHttpTransport (contextPath="complex",
serviceUri="ComplexService",

portName="ComplexServicePort")
/**

* This JWS file forms the basis of a WebLogic Web Service.
*

*/
public class ComplexServiceImpl {

Further assume that you do not override the contextPath or serviceURI values by
setting equivalent attributes for the <WLHt tpTransport> element of the jwsc Ant
task. Then the URL to view the WSDL of the Web Service, assuming the service is
running on a host called ariel at the default port number (7001), is:

http://ariel:7001/complex/ComplexService?WSDL

3.11 Configuring the Server Address Specified in the Dynamic WSDL

The WSDL of a deployed Web Service (also called dynamic WSDL) includes an
<address> element that assigns an address (URI) to a particular Web Service port.
For example, assume that the following WSDL snippet partially describes a deployed
WebLogic Web Service called ComplexService:

<definitions name="ComplexServiceDefinitions"
targetNamespace="http://example.org">

<service name="ComplexService">
<port binding="s0:ComplexServiceSoapBinding" name="ComplexServicePort">
<gsl:address location="http://myhost:7101/complex/ComplexService" />
</port>
</service>
</definitions>

The preceding example shows that the ComplexService Web Service includes a port
called ComplexServicePort, and this port has an address of
http://myhost:7101/complex/ComplexService.

WebLogic Server determines the complex/ComplexService section of this address
by examining the contextPath and serviceURI attributes of the
@WLXXXTransport annotations or jwsc elements, as described in Section 3.10,
"Browsing to the WSDL of the Web Service." However, the method WebLogic Server
uses to determine the protocol and host section of the address
(http://myhost:7101, in the example) is more complicated, as described below.
For clarity, this section uses the term server address to refer to the protocol and host
section of the address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed
Web Service depends on whether the Web Service can be invoked using HTTP/S or
JMS, whether you have configured a proxy server, whether the Web Service is
deployed to a cluster, or whether the Web Service is actually a callback service.

Developing WebLogic Web Services 3-15

Configuring the Server Address Specified in the Dynamic WSDL

The following sections reflect these different configuration options, and provide links
to procedural information about changing the configuration to suit your needs.

Section 3.11.1, "Web Service is not a callback service and can be invoked using
HTTP/S"

Section 3.11.2, "Web Service is not a callback service and can be invoked using JMS
Transport"

Section 3.11.3, "Web Service is a callback service"

Section 3.11.4, "Web Service is invoked using a proxy server"

It is assumed in the sections that you use the WebLogic Server Administration Console
to configure cluster and standalone servers.

3.11.1 Web Service is not a callback service and can be invoked using HTTP/S

1.

If the Web Service is deployed to a cluster, and the cluster Frontend Host,
Frontend HTTP Port,and Frontend HTTPS Port are set, then WebLogic
Server uses these values in the server address of the dynamic WSDL.

See "Configure HTTP Settings for a Cluster" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

If the preceding cluster values are not set, but the Frontend Host, Frontend
HTTP Port, and Frontend HTTPS Port values are set for the individual server
to which the Web Service is deployed, then WebLogic Server uses these values in
the server address.

See "Configure HTTP Protocol" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

If these values are not set for the cluster or individual server, then WebLogic
Server uses the server address of the WSDL request in the dynamic WSDL.

3.11.2 Web Service is not a callback service and can be invoked using JMS Transport

1.

If the Web Service is deployed to a cluster and the Cluster Address is set, then
WebLogic Server uses this value in the server address of the dynamic WSDL.

See "Configure Clusters" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

If the cluster address is not set, or the Web Service is deployed to a standalone
server, and the Listen Address of the server to which the Web Service is
deployed is set, then WebLogic Server uses this value in the server address.

See "Configure Listen Addresses" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

3.11.3 Web Service is a callback service

1.

If the callback service is deployed to a cluster, and the cluster Frontend Host,
Frontend HTTP Port,and Frontend HTTPS Port are set, then WebLogic
Server uses these values in the server address of the dynamic WSDL.

See "Configure HTTP Settings for a Cluster" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

If the callback service is deployed to either a cluster or a standalone server, and the
preceding cluster values are not set, but the Frontend Host, Frontend HTTP

3-16 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Integrating Web Services Into the WebLogic Split Development Directory Environment

Port, and Frontend HTTPS Port values are set for the individual server to
which the callback service is deployed, then WebLogic Server uses these values in
the server address.

See "Configure HTTP Protocol" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

3. If the callback service is deployed to a cluster, but none of the preceding values are
set, but the Cluster Address is set, then WebLogic Server uses this value in the
server address.

See "Configure Clusters" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

4. If none of the preceding values are set, but the Listen Address of the server to
which the callback service is deployed is set, then WebLogic Server uses this value
in the server address.

See "Configure Listen Addresses" in the Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

3.11.4 Web Service is invoked using a proxy server

Although not required, Oracle recommends that you explicitly set the Frontend
Host, FrontEnd HTTP Port,and Frontend HTTPS Port of either the cluster or
individual server to which the Web Service is deployed to point to the proxy server.

See "Configure HTTP Settings for a Cluster” or "Configure HTTP Protocol” in the
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

3.12 Testing the Web Service

After you have deployed a WebLogic Web Service, you can use the Web Services Test
Client, included in the WebLogic Administration Console, to test your service without
writing code. You can quickly and easily test any Web Service, including those with
complex types and those using advanced features of WebLogic Server such as
conversations. The test client automatically maintains a full log of requests allowing
you to return to the previous call to view the results.

To test a deployed Web Service using the Administration Console, follow these steps:
1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where:
- host refers to the computer on which WebLogic Server is running.

- port refers to the port number on which WebLogic Server is listening (default
value is 7001).

2. Follow the procedure described in "Test a Web Service" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

3.13 Integrating Web Services Into the WebLogic Split Development
Directory Environment

This section describes how to integrate Web Services development into the WebLogic
split development directory environment. It is assumed that you understand this

Developing WebLogic Web Services 3-17

Integrating Web Services Into the WebLogic Split Development Directory Environment

WebLogic feature and have set up this type of environment for developing standard
Java Platform, Enterprise Edition (Java EE) Version 5 applications and modules, such
as E]Bs and Web applications, and you want to update the single build.xml file to
include Web Services development.

For detailed information about the WebLogic split development directory
environment, see "Creating a Split Development Directory for an Application” in
Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server and the
splitdir/helloWorldEar example installed with WebLogic Server, located in the
WL_HOME/samples/server/examples/src/examples directory, where WI,_ HOME
is the top-level directory of your WebLogic Server installation.

1. In the main project directory, create a directory that will contain the JWS file that
implements your Web Service.

For example, if your main project directory is called /src/helloWorldEar, then
create a directory called /src/helloWorldEar/helloWebService:

prompt> mkdir /src/helloWorldEar/helloWebService

2. Create a directory hierarchy under the helloWebService directory that
corresponds to the package name of your JWS file.

For example, if your JWS file is in the package examples.splitdir.hello
package, then create a directory hierarchy examples/splitdir/hello:

prompt> cd /src/helloWorldEar/helloWebService
prompt> mkdir examples/splitdir/hello

3. Putyour JWSfile in the just-created Web Service subdirectory of your main project
directory
(/src/helloWorldEar/helloWebService/examples/splitdir/helloin
this example.)

4. Inthebuild.xml file that builds the Enterprise application, create a new target to
build the Web Service, adding a call to the jwsc WebLogic Web Service Ant task,
as described in Section 3.6, "Running the jwsc WebLogic Web Services Ant Task."

The jwsc srcdir attribute should point to the top-level directory that contains
the JWS file (helloWebService in this example). The jwsc destdir attribute
should point to the same destination directory you specify for wlcompile, as
shown in the following example:

<target name="build.helloWebService">
<jwsc
srcdir="helloWebService"
destdir="destination_dir"
keepGenerated="yes" >
<jws file="examples/splitdir/hello/HelloWorldImpl.java"
type="JAXRPC" />
</jwsc>
</target>

In the example, destination_dir refers to the destination directory that the
other split development directory environment Ant tasks, such as wlappc and
wlcompile, also use.

5. Update the main build target of the build.xml file to call the Web Service-related
targets:

<!-- Builds the entire helloWorldEar application -->
<target name="build"

3-18 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Integrating Web Services Into the WebLogic Split Development Directory Environment

description="Compiles helloWorldEar application and runs appc"
depends="build-helloWebService, compile,appc" />

Note: When you actually build your Enterprise Application, be sure
you run the jwsc Ant task before you run the wlappc Ant task. This is
because wlappc requires some of the artifacts generated by jwsc for
it to execute successfully. In the example, this means that you should
specify the build-helloWebService target before the appc target.

6. If you use the wlcompile and wlappc Ant tasks to compile and validate the
entire Enterprise Application, be sure to exclude the Web Service source directory
for both Ant tasks. This is because the jwsc Ant task already took care of
compiling and packaging the Web Service. For example:

<target name="compile">
<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
excludes="appStartup, helloWebService">

</wlcomplile>

</target>
<target name="appc">
<wlappc source="S${dest.dir}" deprecation="yes" debug="false"
excludes="helloWebService" />
</target>

7. Update the application.xml file in the META-INF project source directory,
adding a <web> module and specifying the name of the WAR file generated by the
jwsc Ant task.

For example, add the following to the application.xml file for the helloWorld
Web Service:

<application>

<module>
<web>
<web-uri>examples/splitdir/hello/HelloWorldImpl.war</web-uri>
<context-root>/hello</context-root>
</web>
</module>

</application>

Note: The jwsc Ant task always generates a Web Application WAR
file from the JWS file that implements your Web Service, unless your
JWE file explicitly implements javax.ejb.SessionBean. In that
case you must add an <ejb> module element to the
application.xml file instead.

Your split development directory environment is now updated to include Web Service
development. When you rebuild and deploy the entire Enterprise Application, the
Web Service will also be deployed as part of the EAR. You invoke the Web Service in

Developing WebLogic Web Services 3-19

Integrating Web Services Into the WebLogic Split Development Directory Environment

the standard way described in Section 3.10, "Browsing to the WSDL of the Web
Service."

3-20 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

4

Programming the JWS File

The following sections provide information about programming the JWS file that
implements your Web service:

s Section 4.1, "Overview of JWS Files and JWS Annotations"

= Section 4.2, "Java Requirements for a JWS File"

= Section 4.3, "Programming the JWS File: Typical Steps"

= Section 4.4, "Accessing Runtime Information About a Web Service"
= Section 4.5, "Should You Implement a Stateless Session EJB?"

= Section 4.6, "Programming the User-Defined Java Data Type"

= Section 4.7, "Throwing Exceptions"

= Section 4.8, "Invoking Another Web Service from the JWS File"

= Section 4.9, "Programming Additional Miscellaneous Features Using JWS
Annotations and APIs"

= Section 4.10, "JWS Programming Best Practices"

4.1 Overview of JWS Files and JWS Annotations

There are two ways to program a WebLogic Web service from scratch:

1. Annotate a standard EJB or Java class with Web service Java annotations, as
defined by JSR-181, the JAX-WS specification, and by the WebLogic Web services
programming model.

2. Combine a standard EJB or Java class with the various XML descriptor files and
artifacts specified by JSR-109 (such as, deployment descriptors, WSDL files, data
mapping descriptors, data binding artifacts for user-defined data types, and so
on).

Oracle strongly recommends using option 1 above. Instead of authoring XML
metadata descriptors yourself, the WebLogic Ant tasks and runtime will generate the
required descriptors and artifacts based on the annotations you include in your JWS.
Not only is this process much easier, but it keeps the information about your Web
service in a central location, the JWS file, rather than scattering it across many Java and
XML files.

The Java Web Service (JWS) annotated file is the core of your Web service. It contains
the Java code that determines how your Web service behaves. A JWS file is an
ordinary Java class file that uses Java metadata annotations to specify the shape and
characteristics of the Web service. The JWS annotations you can use in a JWS file

Programming the JWS File 4-1

Java Requirements for a JWS File

include the standard ones defined by the Web Services Metadata for the Java Platform
specification (JSR-181), described at
http://www.jcp.org/en/jsr/detail?id=181, plus a set of additional
annotations based on the type of Web service you are building—JAX-WS or JAX-RPC.
For a complete list of JWS annotations that are supported for JAX-WS and JAX-RPC
Web services, see "Web Service Annotation Support” in Oracle Fusion Middleware
WebLogic Web Services Reference for Oracle WebLogic Server.

When programming the JWS file, you include annotations to program basic Web
service features. The annotations are used at different levels, or targets, in your JWS
file. Some are used at the class-level to indicate that the annotation applies to the entire
JWS file. Others are used at the method-level and yet others at the parameter level.

4.2 Java Requirements for a JWS File

When you program your JWS file, you must follow a set of requirements, as specified
by the Web Services Metadata for the Java Platform specification (JSR-181) at
http://www.jcp.org/en/jsr/detail?id=181. In particular, the Java class that
implements the Web service:

= Must be an outer public class, must not be declared £inal, and must not be
abstract.

= Must have a default public constructor.
= Must not definea finalize () method.

s Must include, at a minimum, a @WebService JWS annotation at the class level to
indicate that the JWS file implements a Web service.

= May reference a service endpoint interface by using the
@WebService.endpointInterface annotation. In this case, it is assumed that
the service endpoint interface exists and you cannot specify any other JWS
annotations in the JWS file other than @WebService.endpointInterface,
@WebService.serviceName and @WebService.targetNamespace.

» If JWS file does not implement a service endpoint interface, all public methods
other than those inherited from java.lang.Object will be exposed as Web
service operations. This behavior can be overridden by using the @WwebMethod
annotation to specify explicitly the public methods that are to be exposed. If a
@WebMethod annotation is present, only the methods to which it is applied are
exposed.

4.3 Programming the JWS File: Typical Steps

The following procedure describes the typical steps for programming a JWS file that
implements a Web service.

Note: It is assumed that you have created a JWS file and now want
to add JWS annotations to it.

For more information about each of the JWS annotations, see "JWS Annotation
Reference" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server. See Oracle Fusion Middleware Programming Advanced Features of
JAX-RPC Web Services for Oracle WebLogic Server for information on using other JWS
annotations to program more advanced features, such as Web service reliable
messaging, conversations, SOAP message handlers, and so on.

4-2 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Programming the JWS File: Typical Steps

Table 4-1 Steps to Program the JWS File

Step

Description

1 Import the standard JWS
annotations that will be used
in your JWS file.

The standard JWS annotations are in either the
javax.jws or javax. jws.soap package. For example:

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

2 Import the WebLogic-specific
annotations used in your JWS
file.

The WebLogic-specific annotations are in the
weblogic. jws package. For example:

import weblogic.jws.WLHttpTransport;

3 Add the standard required
@WebService JWS
annotation at the class level to
specify that the Java class
exposes a Web service.

See Section 4.3.2, "Specifying that the JWS File
Implements a Web Service (@WebService Annotation)."

4 Add the standard
@SOAPBinding JWS
annotation at the class level to
specify the mapping between
the Web service and the
SOAP message protocol.
(Optional)

In particular, use this annotation to specify whether the
Web service is document-literal, RPC-encoded, and so
on. See Section 4.3.3, "Specifying the Mapping of the Web
Service to the SOAP Message Protocol (@SOAPBinding
Annotation)."

Although this JWS annotation is not required, Oracle
recommends you explicitly specify it in your JWS file to
clarify the type of SOAP bindings a client application
uses to invoke the Web service.

5 Add the WebLogic-specific
@WLHttpTransport JWS
annotation at the class level to
specify the context path and
service URI used in the URL
that invokes the Web service.
(Optional)

See Section 4.3.4, "Specifying the Context Path and
Service URI of the Web Service (@WLHttpTransport
Annotation)."

Although this JWS annotation is not required, Oracle
recommends you explicitly specify it in your JWS file so
that it is clear what URL a client application uses to
invoke the Web service.

6 Add the standard
@WebMethod annotation for
each method in the JWS file
that you want to expose as a
public operation. (Optional)

Optionally specify that the operation takes only input
parameters but does not return any value by using the
standard @Oneway annotation. See Section 4.3.5,
"Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)."

7 Add @WebParam annotation
to customize the name of the
input parameters of the
exposed operations.
(Optional)

See Section 4.3.6, "Customizing the Mapping Between
Operation Parameters and WSDL Elements (@WebParam
Annotation)."

8 Add @WebResult
annotations to customize the
name and behavior of the
return value of the exposed
operations. (Optional)

See Section 4.3.7, "Customizing the Mapping Between the
Operation Return Value and a WSDL Element
(@WebResult Annotation).”

9 Add your business code.

Add your business code to the methods to make the
WebService behave as required.

4.3.1 Example of a JWS File

The following sample JWS file shows how to implement a simple Web service.

package examples.webservices.simple;
// Import the standard JWS annotation interfaces

Programming the JWS File 4-3

Programming the JWS File: Typical Steps

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interfaces

import weblogic.jws.WLHttpTransport;

// Standard JWS annotation that specifies that the porType name of the Web
// Service is "SimplePortType", the service name is "SimpleService", and the
// targetNamespace used in the generated WSDL is "http://example.org"

@WebService (name="SimplePortType", serviceName="SimpleService",

targetNamespace="http://example.org")

// Standard JWS annotation that specifies the mapping of the service onto the
// SOAP message protocol. 1In particular, it specifies that the SOAP messages
// are document-literal-wrapped.

@SOAPBinding (style=SOAPBinding.Style.DOCUMENT,

use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and
// service URI used to build the URI of the Web Service is
// "simple/SimpleService"

@WLHttpTransport (contextPath="simple", serviceUri="SimpleService",

portName="SimpleServicePort")

/**

* This JWS file forms the basis of simple Java-class implemented WebLogic
* Web Service with a single operation: sayHello

*

*/

public class SimpleImpl {

// Standard JWS annotation that specifies that the method should be exposed
// as a public operation. Because the annotation does not include the
// member-value "operationName", the public name of the operation is the
// same as the method name: sayHello.
@WebMethod ()
public String sayHello(String message) {
System.out.println("sayHello:" + message);
return "Here is the message: '" + message + "'";

4.3.2 Specifying that the JWS File Implements a Web Service (@WebService
Annotation)

Use the standard @wWebService annotation to specify, at the class level, that the JWS
file implements a Web service, as shown in the following code excerpt:

@WebService (name="SimplePortType", serviceName="SimpleService",
targetNamespace="http://example.org")

In the example, the name of the Web service is SimplePortType, which will later
map to the wsdl :portType element in the WSDL file generated by the jwsc Ant
task. The service name is SimpleService, which will map to the wsdl:service
element in the generated WSDL file. The target namespace used in the generated
WSDL is http://example.org.

You can also specify the following additional attributes of the @webService
annotation:

» endpointInterface—Fully qualified name of an existing service endpoint
interface file. This annotation allows the separation of interface definition from the
implementation. If you specify this attribute, the jwsc Ant task does not generate

4-4 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Programming the JWS File: Typical Steps

the interface for you, but assumes you have created it and it is in your
CLASSPATH.

s portname—Name that is used in the wsdl : port.

None of the attributes of the @WebService annotation is required. See the Web
Services Metadata for the Java Platform (JSR 181) at
http://www.jcp.org/en/jsr/detail?id=181 for the default values of each
attribute.

4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@SOAPBinding Annotation)

It is assumed that you want your Web service to be available over the SOAP message
protocol; for this reason, your JWS file should include the standard @ SOAPBinding
annotation, at the class level, to specify the SOAP bindings of the Web service (such as,
RPC-encoded or document-literal-wrapped), as shown in the following code excerpt:

@SOAPBinding (style=SOAPBinding.Style.DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

In the example, the Web service uses document-wrapped-style encodings and literal
message formats, which are also the default formats if you do not specify the
@SOAPRinding annotation.

You can also use the WebLogic-specific @weblogic. jws.soap.SOAPBinding
annotation to specify the SOAP binding at the method level; the attributes are the
same as the standard @javax. jws.soap.SOAPBinding annotation.

You use the parameterStyle attribute (in conjunction with the
style=SOAPBinding.Style.DOCUMENT attribute) to specify whether the Web
service operation parameters represent the entire SOAP message body, or whether the
parameters are elements wrapped inside a top-level element with the same name as
the operation.

Table 4-2 Attributes of the @SOAPBinding Annotation

Attribute Possible Values Default Value

style SOAPBinding.Style.RPC SOAPBinding.Style.DOCUMENT
SOAPBinding.Style.DOCUMENT

use SOAPBinding.Use.LITERAL SOAPBinding.Use.LITERAL
SOAPBinding.Use.ENCODED

parameterStyle SOAPBinding.ParameterStyle.BARE SOAPBinding.ParameterStyle.WRAPPED

SOAPBinding.ParameterStyle.WRAPPED

4.3.4 Specifying the Context Path and Service URI of the Web Service
(@WLHttpTransport Annotation)

Use the WebLogic-specific @WLHt tpTransport annotation to specify the context
path and service URI sections of the URL used to invoke the Web service over the
HTTP transport, as well as the name of the port in the generated WSDL, as shown in
the following code excerpt:

@WLHttpTransport (contextPath="simple", serviceUri="SimpleService",
portName="SimpleServicePort")

Programming the JWS File 4-5

Programming the JWS File: Typical Steps

In the example, the name of the port in the WSDL (in particular, the name attribute of
the <port> element) file generated by the jwsc Ant task is SimpleServicePort.
The URL used to invoke the Web service over HTTP includes a context path of
simple and a service URI of SimpleService, as shown in the following example:

http://host:port/simple/SimpleService

For reference documentation on this and other WebLogic-specific annotations, see
"JWS Annotation Reference" in the WebLogic Web Services Reference.

4.3.5 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod
and @OneWay Annotations)

Use the standard @wWebMethod annotation to specify that a method of the JWS file
should be exposed as a public operation of the Web service, as shown in the following
code excerpt:

public class SimpleImpl {
@WebMethod (operationName="sayHelloOperation")
public String sayHello(String message) {
System.out.println("sayHello:" + message);
return "Here is the message: '" + message + "'";

}

In the example, the sayHello () method of the SimpleImpl JWS file is exposed as a
public operation of the Web service. The operationName attribute specifies,
however, that the public name of the operation in the WSDL file is
sayHelloOperation. If you do not specify the operationName attribute, the
public name of the operation is the name of the method itself.

You can also use the action attribute to specify the action of the operation. When
using SOAP as a binding, the value of the action attribute determines the value of
the SOAPAction header in the SOAP messages.

You can specify that an operation not return a value to the calling application by using
the standard @Oneway annotation, as shown in the following example:

public class OneWayImpl {
@WebMethod ()
@Oneway ()
public void ping() {
System.out.println("ping operation");

}

If you specify that an operation is one-way, the implementing method is required to
return void, cannot use a Holder class as a parameter, and cannot throw any checked
exceptions.

None of the attributes of the @WebMethod annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at
http://www.jcp.org/en/jsr/detail?id=181 for the default values of each
attribute, as well as additional information about the @WebMethod and @Oneway
annotations.

If none of the public methods in your JWS file are annotated with the @WebMethod
annotation, then by default all public methods are exposed as Web service operations.

4-6 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Programming the JWS File: Typical Steps

4.3.6 Customizing the Mapping Between Operation Parameters and WSDL Elements
(@WebParam Annotation)

Use the standard @WebParam annotation to customize the mapping between
operation input parameters of the Web service and elements of the generated WSDL
file, as well as specify the behavior of the parameter, as shown in the following code
excerpt:

public class SimpleImpl {
@WebMethod ()
@WebResult (name="IntegerOutput",
targetNamespace="http://example.org/docLiteralBare")

public int echoInt (

@WebParam(name="IntegerInput",
targetNamespace="http://example.org/docLiteralBare")

int input)

System.out.println("echoInt '" + input + "' to you too!");
return input;

In the example, the name of the parameter of the echoInt operation in the generated
WSDL is IntegerInput; if the @WebParam annotation were not present in the JWS
file, the name of the parameter in the generated WSDL file would be the same as the
name of the method's parameter: input. The targetNamespace attribute specifies
that the XML namespace for the parameter is
http://example.org/docLiteralBare; this attribute is relevant only when
using document-style SOAP bindings where the parameter maps to an XML element.

You can also specify the following additional attributes of the @WebParam annotation:

s mode—The direction in which the parameter is flowing (WebParam.Mode. IN,
WebParam.Mode.OUT, or WebParam.Mode . INOUT). The OUT and INOUT
modes may be specified only for parameter types that conform to the JAX-RPC
definition of Holder types. OUT and INOUT modes are only supported for
RPC-style operations or for parameters that map to headers.

= header—Boolean attribute that, when set to true, specifies that the value of the
parameter should be retrieved from the SOAP header, rather than the default
body.

None of the attributes of the @WebParam annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at
http://www.Jjcp.org/en/jsr/detail?id=181 for the default value of each
attribute.

4.3.7 Customizing the Mapping Between the Operation Return Value and a WSDL
Element (@WebResult Annotation)

Use the standard @WebResult annotation to customize the mapping between the
Web service operation return value and the corresponding element of the generated
WSDL file, as shown in the following code excerpt:

public class Simple {
@WebMethod ()
@WebResult (name="IntegerOutput",
targetNamespace="http://example.org/docLiteralBare")
public int echolInt(
@WebParam (name="IntegerInput",

Programming the JWS File 4-7

Accessing Runtime Information About a Web Service

targetNamespace="http://example.org/docLiteralBare")
int input)

System.out.println("echoInt '" + input + "' to you too!");
return input;

In the example, the name of the return value of the echoInt operation in the
generated WSDL is IntegerOutput; if the @WebResult annotation were not present
in the JWS file, the name of the return value in the generated WSDL file would be the
hard-coded name return. The targetNamespace attribute specifies that the XML
namespace for the return value is http: //example.org/docLiteralBare; this
attribute is relevant only when using document-style SOAP bindings where the return
value maps to an XML element.

None of the attributes of the @WebResult annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at
http://www.jcp.org/en/jsr/detail?id=181 for the default value of each
attribute.

4.4 Accessing Runtime Information About a Web Service

The following sections describe how to access runtime information about a Web
service:

= Section 4.4.1, "Using JwsContext to Access Runtime Information"—Use the Web
service context to access and change runtime information about the service in your
JWES file.

= Section 4.4.2, "Using the Stub Interface to Access Runtime Information"—Get and
set properties on the Stub interface in the client file.

4.4.1 Using JwsContext to Access Runtime Information

When a client application invokes a WebLogic Web service that was implemented
with a JWS file, WebLogic Server automatically creates a context that the Web service
can use to access, and sometimes change, runtime information about the service. Much
of this information is related to conversations, such as whether the current
conversation is finished, the current values of the conversational properties, changing
conversational properties at runtime, and so on. (See "Creating Conversational Web
Services" in Oracle Fusion Middleware Programming Advanced Features of JAX-RPC Web
Services for Oracle WebLogic Server for information about conversations and how to
implement them.) Some of the information accessible via the context is more generic,
such as the protocol that was used to invoke the Web service (HTTP/S or JMS), the
SOAP headers that were in the SOAP message request, and so on.

You can use annotations and WebLogic Web service APIs in your JWS file to access
runtime context information, as described in the following sections.

4.4.1.1 Guidelines for Accessing the Web Service Context

The following example shows a simple JWS file that uses the context to determine the
protocol that was used to invoke the Web service. The code in bold is discussed in the
programming guidelines described following the example.

package examples.webservices.jws_context;

import javax.jws.WebMethod;
import javax.jws.WebService;

4-8 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Accessing Runtime Information About a Web Service

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Context;
import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.Protocol;
@WebService (name="JwsContextPortType", serviceName="JwsContextService",
targetNamespace="http://example.org")
@WLHttpTransport (contextPath="contexts", serviceUri="JwsContext",
portName="JwsContextPort")
/**
* Simple web service to show how to use the @Context annotation.
*/
public class JwsContextImpl {
@Context
private JwsContext ctx;
@WebMethod ()
public String getProtocol() {
Protocol protocol = ctx.getProtocol();
System.out.println("protocol: " + protocol);
return "This is the protocol: " + protocol;
}
}

Use the following guidelines in your JWS file to access the runtime context of the Web
service, as shown in the code in bold in the preceding example:

s Import the @weblogic. jws.Context JWS annotation:

import weblogic.jws.Context;

s Import the weblogic.wsee.jws.JwsContext API, as well as any other related
APIs that you might use (the example also uses the
weblogic.wsee.jws.Protocol API):

import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.Protocol;

See the weblogic.wsee. * packages in the Oracle Fusion Middleware Oracle
WebLogic Server API Reference for more documentation about the context-related
APIs.

= Annotate a private variable, of data type weblogic.wsee. jws.JwsContext,
with the field-level @Context JWS annotation:

@Context

private JwsContext ctx;
WebLogic Server automatically assigns the annotated variable (in this case, ctx)
with a runtime implementation of JwsContext the first time the Web service is
invoked, which is how you can later use the variable without explicitly initializing
it in your code.

Use the methods of the JwsContext class to access runtime information about the
Web service. The following example shows how to get the protocol that was used
to invoke the Web service.

Protocol protocol = ctx.getProtocol();

See Section 4.4.1.2, "Methods of the JwsContext" for the full list of available
methods.

Programming the JWS File 4-9

Accessing Runtime Information About a Web Service

4.4.1.2 Methods of the JwsContext

The following table summarizes the methods of the JwsContext that you can use in
your JWS file to access runtime information about the Web service. See
weblogic.wsee. * packages in the Oracle Fusion Middleware Oracle WebLogic Server
API Reference for detailed reference information about JwsContext, and other
context-related APIs, as Protocol and ServiceHandle.

Table 4-3 Methods of JwsContext

Method Returns Description

isFinished() boolean Returns a boolean value specifying whether the
current conversation is finished, or if it is still
continuing.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

finishConversation wvoid Finishes the current conversation.

0 This method is equivalent to a client application

invoking a method that has been annotated with the
@Conversation
(Conversation.Phase.FINISH) JWS annotation.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxAge (java.uti void Sets a new maximum age for the conversation to an

1.Date) absolute Date. If the date parameter is in the past,
WebLogic Server immediately finishes the
conversation.

This method is equivalent to the maxAge attribute of
the @Conversational annotation, which specifies
the default maximum age of a conversation. Use this
method to override this default value at runtime.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxAge (String) void Sets a new maximum age for the conversation by
specifying a String duration, suchas 1 day.

Valid values for the String parameter are a number
and one of the following terms:

n seconds
. minutes
n hours

n days

s years

For example, to specify a maximum age of ten
minutes, use the following syntax:

ctx.setMaxAge ("10 minutes")

This method is equivalent to the maxAge attribute of
the @Conversational annotation, which specifies
the default maximum age of a conversation. Use this
method to override this default value at runtime.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

4-10 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Accessing Runtime Information About a Web Service

Table 4-3 (Cont.) Methods of JwsContext

Method Returns

Description

getMaxAge () long

Returns the maximum allowed age, in seconds, of a
conversation.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getCurrentAge () long

Returns the current age, in seconds, of the
conversation.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

resetIdleTime() void

Resets the timer which measures the number of
seconds since the last activity for the current
conversation.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxIdleTime(lon void
9)

Sets the number of seconds that the conversation can
remain idle before WebLogic Server finishes it due to
client inactivity.

This method is equivalent to the maxIdleTime
attribute of the @Conversational annotation,
which specifies the default idle time of a conversation.
Use this method to override this default value at
runtime.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

setMaxIdleTime (Str void
ing)

Sets the number of seconds, specified as a String,
that the conversation can remain idle before
WebLogic Server finishes it due to client inactivity.

Valid values for the String parameter are a number
and one of the following terms:

n seconds
s minutes
n hours

n days

m years

For example, to specify a maximum idle time of ten
minutes, use the following syntax:

ctx.setMaxIdleTime ("10 minutes")

This method is equivalent to the maxIdleTime
attribute of the @Conversational annotation,
which specifies the default idle time of a conversation.
Use this method to override this default value at
runtime.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

Programming the JWS File 4-11

Accessing Runtime Information About a Web Service

Table 4-3 (Cont.) Methods of JwsContext

Method

Returns

Description

getMaxIdleTime ()

long

Returns the number of seconds that the conversation
is allowed to remain idle before WebLogic Server
finishes it due to client inactivity.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getCurrentIdleTime

()

long

Gets the number of seconds since the last client
request, or since the conversation's maximum idle
time was reset.

Use this method only in conversational Web services,
or those that have been annotated with the
@Conversation or @Conversational annotation.

getCallerPrincipal

java.security

Returns the security principal associated with the

() .Principal operation that was just invoked, assuming that basic
authentication was performed.
isCallerInRole(Str boolean Returns true if the authenticated principal is within

ing)

the specified security role.

getService()

weblogic.wsee
.jws.ServiceH
andle

Returns an instance of ServiceHandle, a WebLogic
Web service API, which you can query to gather
additional information about the Web service, such as
the conversation ID (if the Web service is
conversational), the URL of the Web service, and so
on.

getLogger (String)

weblogic.wsee
.jws.util.Log
ger

Gets an instance of the Logger class, which you can
use to send messages from the Web service to a log
file.

getInputHeaders () org.w3c.dom.E Returns an array of the SOAP headers associated with

lement (] the SOAP request message of the current operation
invoke.

setUnderstoodInput void Indicates whether input headers should be

Headers (boolean) understood.

getUnderstoodInput boolean Returns the value that was most recently set by a call

Headers () to setUnderstoodInputHeader.

setOutputHeaders (E void Specifies an array of SOAP headers that should be

lement[])

associated with the outgoing SOAP response message
sent back to the client application that initially
invoked the current operation.

getProtocol ()

weblogic.wsee
.jws.Protocol

Returns the protocol (such as HTTP/S or JMS) used to
invoke the current operation.

4.4.2 Using the Stub Interface to Access Runtime Information

Thejavax.xml.rpc.Stub interface enables you to dynamically configure the Stub
instance in your Web service client file. For more information, see
http://java.sun.com/javaee/5/docs/api/javax/xml/rpc/Stub.html.
For example, you can set the target service endpoint dynamically for the port Stub

instance, as follows:

ComplexService service =
ComplexPortType port =

new ComplexService_Impl (args[0] + "?WSDL");
service.getComplexServicePort () ;

((Stub)port) ._setProperty (Stub.ENDPOINT ADDRESS_PROPERTY,
"http://localhost:8010/MyContext/MyService") ;

4-12 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Should You Implement a Stateless Session EJB?

For more information about developing Web service clients, see Chapter 6, "Invoking
Web Services."

The following table summarizes the methods of the Stub interface that you can use in
your JWS file to access runtime information about the Web service.

Table 4-4 Methods of Stub Interface

Method Returns Description

_getProperty () java.lang.Object Gets the value of the specified configuration
property.

_getPropertyNames () java.util.Iterator Returns an Iterator view of the names of the
properties that can be configured on the Stub
instance.

_setProperty () void Sets the name and value of a configuration

property for the Stub instance.

The following table defined the javax.xml . rpc.Stub property values that you can
access from the Stub instance.

Table 4-5 Properties of Stub Interface

Property Type Description

ENDPOINT_ADDRESS_ java.lang.String Target service endpoint address.
PROPERTY

PASSWORD_PROPERTY java.lang.String Password used for authentication.

SESSION_MAINTAIN_ java.lang.String Flag specifying whether to participate in a session
PROPERTY with a service endpoint.

USERNAME_PROPERTY java.lang.String User name used for authentication.

4.5 Should You Implement a Stateless Session EJB?

The jwsc Ant task always chooses a plain Java object as the underlying
implementation of a Web service when processing your JWS file.

Sometimes, however, you might want the underlying implementation of your Web
service to be a stateless session E]B so as to take advantage of all that E]JBs have to
offer, such as instance pooling, transactions, security, container-managed persistence,
container-managed relationships, and data caching. If you decide you want an EJB
implementation for your Web service, then follow the programming guidelines in the
following section.

Note: JAX-RPC supports E]JB 2.x only; it does not support EJB 3.0.

4.5.1 Programming Guidelines When Implementing an EJB in Your JWS File

The general guideline is to always use EJBGen annotations in your JWS file to
automatically generate, rather than manually create, the E]JB Remote and Home
interface classes and deployment descriptor files needed when implementing an E]B.
EJBGen annotations work in the same way as JWS annotations: they follow the JDK 5.0
metadata syntax and greatly simplify your programming tasks.

For more information on EJBGen, see "EJBGen Reference" in Oracle Fusion Middleware
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

Programming the JWS File 4-13

Should You Implement a Stateless Session EJB?

Follow these guidelines when explicitly implementing a stateless session EJB in your
JWES file. See Section 4.5.2, "Example of a JWS File That Implements an EJB" for an
example; the relevant sections are shown in bold:

= Import the standard Java Platform, Enterprise Edition (Java EE) Version 5 E]B
classes:

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

= Import the EJBGen annotations, all of which are in the weblogic.ejbgen
package. At a minimum you need to import the @Session annotation; if you
want to use additional EJBGen annotations in your JWS file to specify the shape
and behavior of the E]B, see the "E]JBGen Reference" in Oracle Fusion Middleware
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server for the name
of the annotation you should import.

import weblogic.ejbgen.Session;

s Ataminimum, use the @Session annotation at the class level to specify the name
of the EJB:

@Session (ejbName="TransactionEJB")

@Session is the only required EJBGen annotation when used in a JWS file. You
can, if you want, use other EJBGen annotations to specify additional features of the
EJB.

= Ensure that the JWS class implements SessionBean:

public class TransactionImpl implements SessionBean {...

= You must also include the standard EJB methods ejbCreate (),
ejbActivate () and so on, although you typically do not need to add code to
these methods unless you want to change the default behavior of the EJB:

public void ejbCreate() {}

public void ejbActivate() {}

public void ejbRemove() {}

public void ejbPassivate() {}

public void setSessionContext (SessionContext sc) {}

If you follow all these guidelines in your JWS file, the jwsc Ant task later compiles the
Web service into an EJB and packages it into an EJB JAR file inside of the Enterprise
Application.

4.5.2 Example of a JWS File That Implements an EJB

The following example shows a simple JWS file that implement a stateless session E]B.
The relevant code is shown in bold.

package examples.webservices.transactional;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.jws.WebMethod;
import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.Transactional;
import weblogic.ejbgen.Session;
@Session(ejbName="TransactionEJB")
@WebService (name="TransactionPortType", serviceName="TransactionService",

4-14 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Programming the User-Defined Java Data Type

targetNamespace="http://example.org")
@WLHttpTransport (contextPath="transactions", serviceUri="TransactionService",
portName="TransactionPort")
/**
* This JWS file forms the basis of simple EJB-implemented WebLogic
* Web Service with a single operation: sayHello. The operation executes

* as part of a transaction.
*

*/
public class TransactionImpl implements SessionBean {
@WebMethod ()
@Transactional (value=true)
public String sayHello(String message) {
System.out.println("sayHello:" + message);
return "Here is the message: '" + message + "'";
}
// Standard EJB methods. Typically there's no need to override the methods.
public void ejbCreate() {}
public void ejbActivate() {}
public void ejbRemove() {}
public void ejbPassivate() {}
public void setSessionContext (SessionContext sc) {}

4.6 Programming the User-Defined Java Data Type

The methods of the JWS file that are exposed as Web service operations do not
necessarily take built-in data types (such as Strings and integers) as parameters and
return values, but rather, might use a Java data type that you create yourself. An
example of a user-defined data type is TradeResult, which has two fields: a String
stock symbol and an integer number of shares traded.

If your JWS file uses user-defined data types as parameters or return values of one or
more of its methods, you must create the Java code of the data type yourself, and then
import the class into your JWS file and use it appropriately. The jwsc Ant task will
later take care of creating all the necessary data binding artifacts, such as the
corresponding XML Schema representation of the Java user-defined data type, the
JAX-RPC type mapping file, and so on.

Follow these basic requirements when writing the Java class for your user-defined
data type:

s Define a default constructor, which is a constructor that takes no parameters.

s Define both getXXX () and setXXX () methods for each member variable that
you want to publicly expose.

= Make the data type of each exposed member variable one of the built-in data
types, or another user-defined data type that consists of built-in data types.

These requirements are specified by JAX-RPC; for more detailed information and the
complete list of requirements, see the JAX-RPC specification at
https://jax-rpc.dev.java.net.

The jwsc Ant task can generate data binding artifacts for most common XML and
Java data types. For the list of supported user-defined data types, see Section 5.3,
"Supported User-Defined Data Types." See Section 5.2, "Supported Built-In Data
Types" for the full list of supported built-in data types.

Programming the JWS File 4-15

Programming the User-Defined Java Data Type

The following example shows a simple Java user-defined data type called
BasicStruct:

package examples.webservices.complex;
/*'k
* Defines a simple JavaBean called BasicStruct that has integer, String,
* and String[] properties
*/
public class BasicStruct {
// Properties
private int intValue;
private String stringValue;
private String[] stringArray;
// Getter and setter methods
public int getIntValue() {
return intValue;
}
public void setIntValue(int intValue) {
this.intValue = intValue;
}
public String getStringValue() {
return stringValue;
}
public void setStringValue(String stringValue) {
this.stringValue = stringValue;
}
public String[] getStringArray() {
return stringArray;
}
public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;

The following snippets from a JWS file show how to import the BasicStruct class
and use it as both a parameter and return value for one of its methods; for the full JWS
file, see Section 2.2.2, "Sample ComplexImpl.java JWS File":

package examples.webservices.complex;
// Import the standard JWS annotation interfaces
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
// Import the WebLogic-specific JWS annotation interface
import weblogic.jws.WLHttpTransport;
// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;
@WebService (serviceName="ComplexService", name="ComplexPortType",
targetNamespace="http://example.org")

public class ComplexImpl {
@WebMethod (operationName="echoComplexType")
public BasicStruct echoStruct(BasicStruct struct)
{
return struct;

4-16 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Throwing Exceptions

4.7 Throwing Exceptions

When you write the error-handling Java code in methods of the JWS file, you can
either throw your own user-defined exceptions or throw a
javax.xml.rpc.soap.SOAPFaultException exception. If you throw a
SOAPFaultException, WebLogic Server maps it to a SOAP fault and sends it to the
client application that invokes the operation.

If your JWS file throws any type of Java exception other than SOAPFaultException,
WebLogic Server tries to map it to a SOAP fault as best it can. However, if you want to
control what the client application receives and send it the best possible exception
information, you should explicitly throw a SOAPFaul tException exception or one
that extends the exception. See the JAX-RPC specification at
https://jax-rpc.dev.java.net for detailed information about creating and
throwing your own user-defined exceptions.

The following excerpt describes the SOAPFaultException class:

public class SOAPFaultException extends java.lang.RuntimeException {

public SOAPFaultException (QName faultcode,
String faultstring,
String faultactor,
javax.xml.soap.Detail detail) {...}

public Qname getFaultCode() {...}

public String getFaultString() {...}

public String getFaultActor() {...}

public javax.xml.soap.Detail getDetail() {...}

}

Use the SOAP with Attachments API for Java 1.1 (SAA])
javax.xml.soap.SOAPFactory.createDetail () method to create the Detail
object, which is a container for DetailEntry objects that provide detailed
application-specific information about the error.

You can use your own implementation of the SOAPFactory, or use Oracle 's, which
can be accessed in the JWS file by calling the static method
weblogic.wsee.util.WLSOAPFactory.createSOAPFactory () which returnsa
javax.xml.soap.SOAPFactory object. Then at runtime, use the
-Djavax.xml.soap.SOAPFactory flag to specify Oracle's SOAPFactory
implementation as shown:

-Djavax.xml.soap.SOAPFactory=weblogic.xml.saaj.SOAPFactoryImpl

The following JWS file shows an example of creating and throwing a
SOAPFaultException from within a method that implements an operation of your
Web service; the sections in bold highlight the exception code:

package examples.webservices.soap_exceptions;
import javax.xml.namespace.QName;

import javax.xml.soap.Detail;

import javax.xml.soap.SOAPException;

import javax.xml.soap.SOAPFactory;

import javax.xml.rpc.soap.SOAPFaultException;

// Import the @WebService annotation

import javax.jws.WebService;

// Import WLHttpTransport

import weblogic.jws.WLHttpTransport;

@WebService (serviceName="SoapExceptionsService",
name="SoapExceptionsPortType",
targetNamespace="http://example.org")

@WLHttpTransport (contextPath="exceptions",

Programming the JWS File 4-17

Invoking Another Web Service from the JWS File

serviceUri="SoapExceptionsService",
portName="SoapExceptionsServicePort")
/**
* This JWS file forms the basis of simple Java-class implemented WebLogic
* Web Service with a single operation: sayHelloWorld
*
*/
public class SoapExceptionsImpl {
public SoapExceptionsImpl () {
}
public void tirarSOAPException() {
Detail detail = null;
try {
SOAPFactory soapFactory = SOAPFactory.newInstance();
detail = soapFactory.createDetail();
} catch (SOAPException e) {
// do something
}
QName faultCode = null;
String faultString = "the fault string";
String faultActor = "the fault actor";
throw new SOAPFaultException(faultCode, faultString, faultActor, detail);
}
}

The preceding example uses the default implementation of SOAPFactory.

Note: If you create and throw your own exception (rather than use
SOAPFaultException) and two or more of the properties of your
exception class are of the same data type, then you must also create
setter methods for these properties, even though the JAX-RPC
specification does not require it. This is because when a WebLogic
Web service receives the exception in a SOAP message and converts
the XML into the Java exception class, there is no way of knowing
which XML element maps to which class property without the
corresponding setter methods.

4.8 Invoking Another Web Service from the JWS File

From within your JWS file you can invoke another Web service, either one deployed
on WebLogic Server or one deployed on some other application server, such as .NET.
The steps to do this are similar to those described in Section 2.4, "Invoking a Web
Service from a Stand-alone Java Client," except that rather than running the
clientgen Ant task to generate the client stubs, you include a <clientgen> child
element of the jwsc Ant task that builds the invoking Web service to generate the
client stubs instead. You then use the standard JAX-RPC APIs in your JWS file the
same as you do in a stand-alone client application.

See Section 6.3, "Invoking a Web Service from Another Web Service" for detailed
instructions.

4-18 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

4.9 Programming Additional Miscellaneous Features Using JWS
Annotations and APIs

The following sections describe additional miscellaneous features you can program by
specifying particular JWS annotations in your JWS file or using WebLogic Web
services APIs:

= Section 4.9.1, "Sending Binary Data Using MTOM /XOP"

= Section 4.9.2, "Streaming SOAP Attachments"

= Section 4.9.3, "Using SOAP 1.2"

= Section 4.9.4, "Specifying that Operations Run Inside of a Transaction"

= Section 4.9.5, "Getting the HttpServletRequest/Response Object"

4.9.1 Sending Binary Data Using MTOM/XOP

SOAP Message Transmission Optimization Mechanism/XML-binary Optimized
Packaging (MTOM/XOP) describes a method for optimizing the transmission of XML
data of type xs : base64Binary in SOAP messages. When the transport protocol is
HTTP, MIME attachments are used to carry that data while at the same time allowing
both the sender and the receiver direct access to the XML data in the SOAP message
without having to be aware that any MIME artifacts were used to marshal the

xs :base64Binary data. The binary data optimization process involves encoding the
binary data, removing it from the SOAP envelope, compressing it and attaching it to
the MIME package, and adding references to that package in the SOAP envelope.

The MTOM specification does not require that, when MTOM is enabled, the Web
service runtime use XOP binary optimization when transmitting base64binary data.
Rather, the specification allows the runtime to choose to do so. This is because in
certain cases the runtime may decide that it is more efficient to send base64binary
data directly in the SOAP Message; an example of such a case is when transporting
small amounts of data in which the overhead of conversion and transport consumes
more resources than just inlining the data as is. The WebLogic Web services
implementation for MTOM for JAX-RPC service, however, always uses MTOM/XOP
when MTOM is enabled.

Support for MTOM/XOP in WebLogic JAX-RPC Web services is implemented using
the pre-packaged WS-Policy file Mtom. xm1. WS-Policy files follow the WS-Policy
specification, described at http: / /www.w3 .org/TR/ws-policy; this specification
provides a general purpose model and XML syntax to describe and communicate the
policies of a Web service, in this case the use of MTOM/XOP to send binary data. The
installation of the pre-packaged Mtom.xm1 WS-Policy file in the types section of the
Web service WSDL is as follows (provided for your information only; you cannot
change this file):

<wsp:Policy wsu:Id="myService_policy">
<wsp:ExactlyOne>
<wsp:All>
<wsoma:OptimizedMimeSerialization

xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserializati
on" />
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

Programming the JWS File 4-19

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file;
the snippet indicates that the Web service uses MTOM/XOP:

<wsdl:binding name="BasicHttpBinding IMtomTest"
type="1i0:IMtomTest">
<wsp:PolicyReference URI="#myService_policy" />
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

You can associate the Mtom.xm1l WS-Policy file with a Web service at
development-time by specifying the @Policy metadata annotation in your JWS file.
Be sure you also specify the at tachToWsdl=true attribute to ensure that the
dynamic WSDL includes the required reference to the Mtom. xm1 file; see the example
below.

You can associate the Mtom.xm1 WS-Policy file with a Web service at deployment
time by modifying the WSDL to add the Policy to the types section just before
deployment.

In addition, you can attach the file at runtime using by the Administration Console; for
details, see "Associate a WS-Policy file with a Web Service" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help. This section describes
how to use the JWS annotation.

Note: In this release of WebLogic Server, the only supported Java
data type when using MTOM/XOP is byte []; other binary data
types, such as image, are not supported.

In addition, this release of WebLogic Server does not support using
MTOM with deprecated 9.x security policies.

To send binary data using MTOM /XOP, follow these steps:

1. Use the WebLogic-specific @weblogic. jws.Policy annotation in your JWS file
to specify that the pre-packaged Mtom.xml file should be applied to your Web
service, as shown in the following simple JWS file (relevant code shown in bold):

package examples.webservices.mtom;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.Policy;

@WebService (name="MtomPortType",
serviceName="MtomService",
targetNamespace="http://example.org")

@WLHttpTransport (contextPath="mtom",

serviceUri="MtomService",
portName="MtomServicePort")

@Policy(uri="policy:Mtom.xml", attachToWsdl=true)

public class MtomImpl {

@WebMethod
public String echoBinaryAsString(bytel[] bytes) {
return new String (bytes);

}
2. Use the Java byte[] data type in your Web service operations as either a return

value or input parameter whenever you want the resulting SOAP message to use
MTOM/XOP to send or receive the binary data. See the implementation of the

4-20 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

echoBinaryAsString operation above for an example; this operation simply
takes as input an array of byte and returns it as a String.

3. The WebLogic Web services runtime has built in MTOM/XOP support which is
enabled if the WSDL for which the clientgen Ant task generates client-side
artifacts specifies MTOM/XOP support. In your client application itself, simply
invoke the operations as usual, using byte[] as the relevant data type.

See the SOAP Message Transmission Optimization Mechanism specification at
http://www.w3.0rg/TR/2005/REC-soapl2-mtom-20050125 for additional
information about the MTOM/XOP feature itself as well as the version of the
specification supported by WebLogic JAX-RPC Web services.

4.9.2 Streaming SOAP Attachments

Using the @weblogic. jws.StreamAttachments JWS annotation, you can specify
that a Web service use a streaming API when reading inbound SOAP messages that
include attachments, rather than the default behavior in which the service reads the
entire message into memory. This feature increases the performance of Web services
whose SOAP messages are particular large.

See "weblogic.jws.StreamAttachments" in the Oracle Fusion Middleware WebLogic Web
Services Reference for Oracle WebLogic Server for an example of specifying that
attachments should be streamed.

4.9.3 Using SOAP 1.2

WebLogic Web services use, by default, Version 1.1 of Simple Object Access Protocol
(SOAP) as the message format when transmitting data and invocation calls between
the Web service and its client. WebLogic Web services support both SOAP 1.1 and the
newer SOAP 1.2, and you are free to use either version.

To specify that the Web service use Version 1.2 of SOAP, use the class-level
@weblogic. jws.Binding annotation in your JWS file and set its single attribute to
the value Binding. Type.SOAP12, as shown in the following example (relevant
code shown in bold):

package examples.webservices.soapl2;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

import weblogic.jws.Binding;

@WebService (name="SOAP12PortType",
serviceName="SOAPl12Service",
targetNamespace="http://example.org")

@WLHttpTransport (contextPath="soapl2",

serviceUri="SOAPl2Service",
portName="SOAPl2ServicePort")

@Binding (Binding.Type.SOAP12)

/**

* This JWS file forms the basis of simple Java-class implemented WebLogic
* Web Service with a single operation: sayHello. The class uses SOAP 1.2
* as its binding.
*
*/
public class SOAP12Impl {
@WebMethod ()
public String sayHello(String message) {
System.out.println("sayHello:" + message);
return "Here is the message: '" + message + "'";

Programming the JWS File 4-21

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

}

Other than set this annotation, you do not have to do anything else for the Web service
to use SOAP 1.2, including changing client applications that invoke the Web service;
the WebLogic Web services runtime takes care of all the rest.

See "weblogic.jws.Binding" in the Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server for additional information about this annotation.

4.9.4 Specifying that Operations Run Inside of a Transaction

When a client application invokes a WebLogic Web service operation, the operation
invocation takes place outside the context of a transaction, by default. If you want the
operation to run inside a transaction, specify the @weblogic.jws.Transactional
annotation in your JWS file, and set the boolean value attribute to true, as shown in
the following example (relevant code shown in bold):

package examples.webservices.transactional;

import javax.jws.WebMethod;

import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.jws.Transactional;

@WebService (name="TransactionPojoPortType",
serviceName="TransactionPojoService",
targetNamespace="http://example.org")

@WLHttpTransport (contextPath="transactionsPojo",

serviceUri="TransactionPojoService",
portName="TransactionPojoPort"

* This JWS file forms the basis of simple WebLogic
Web Service with a single operation: sayHello. The operation executes
* as part of a transaction.

*/
public class TransactionPojoImpl {
@WebMethod ()
@Transactional (value=true)
public String sayHello(String message) {
System.out.println("sayHello:" + message);
return "Here is the message: '" + message + "'";
}
}

If you want all operations of a Web service to run inside of a transaction, specify the
@Transactional annotation at the class-level. If you want only a subset of the
operations to be transactional, specify the annotation at the method-level. If there is a
conflict, the method-level value overrides the class-level.

See "weblogic.jws.Transactional" in the Oracle Fusion Middleware WebLogic Web Services
Reference for Oracle WebLogic Server for information about additional attributes.

4.9.5 Getting the HttpServietRequest/Response Object

If your Web service uses HTTP as its transport protocol, you can use the
"weblogic.wsee.connection.transport.servlet.HttpTransportUtils"
API in the Oracle Fusion Middleware Oracle WebLogic Server API Referenceto get the
javax.servlet.http.HttpServletRequest and
javax.servlet.http.HttpServletResponse objects from the JAX-RPC

4-22 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

ServletEndpointContext object, as shown in the following example (relevant
code shown in bold and explained after the example):

package examples.webservices.http_transport_utils;
import javax.xml.rpc.server.ServiceLifecycle;
import javax.xml.rpc.server.ServletEndpointContext;
import javax.xml.rpc.ServiceException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.jws.WebMethod;
import javax.jws.WebService;
import weblogic.jws.WLHttpTransport;
import weblogic.wsee.connection.transport.servlet.HttpTransportUtils;
@WebService (name="HttpTransportUtilsPortType",
serviceName="HttpTransportUtilsService",
targetNamespace="http://example.org")
@WLHttpTransport (contextPath="servlet", serviceUri="HttpTransportUtils",
portName="HttpTransportUtilsPort")
public class HttpTransportUtilsImpl implements ServiceLifecycle {
private ServletEndpointContext wsctx = null;
public void init (Object context) throws ServiceException {
System.out.println("ServletEndpointContext inited...");
wsctx = (ServletEndpointContext)context;
}
public void destroy() {
System.out.println("ServletEndpointContext destroyed...");
wsctx = null;
}
@WebMethod ()
public String getServletRequestAndResponse() {
HttpServletRequest request =
HttpTransportUtils.getHttpServletRequest (wsctx.getMessageContext());
HttpServletResponse response =
HttpTransportUtils.getHttpServletResponse (wsctx.getMessageContext());
System.out.println ("HttpTransportUtils API used successfully.");
return "HttpTransportUtils API used successfully";

The important parts of the preceding example are as follows:
s Import the required JAX-RPC and Servlet classes:

import javax.xml.rpc.server.ServiceLifecycle;

import javax.xml.rpc.server.ServletEndpointContext;
import javax.xml.rpc.ServiceException;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

= Import the WebLogic Ht tpTransportUtils class:

import weblogic.wsee.connection.transport.servlet.HttpTransportUtils;

= Because you will be querying the JAX-RPC message context, your JWS file must
explicitly implement ServiceLifecycle:

public class HttpTransportUtilsImpl implements ServiceLifecycle

» Create a variable of data type ServletEndpointContext:

private ServletEndpointContext wsctx = null;

Programming the JWS File 4-23

JWS Programming Best Practices

= Because the JWS file implements ServiceLifecycle, you must also implement
the init and destroy lifecycle methods:

public void init(Object context) throws ServiceException {
System.out.println("ServletEndpointContext inited...");
wsctx = (ServletEndpointContext)context;
}
public void destroy() {
System.out.println("ServletEndpointContext destroyed...");
wsctx = null;

}

= Finally, in the method that implements the Web service operation, use the
ServletEndpointContext object to get the HttpServletRequest and
HttpServletResponse objects:

HttpServletRequest request =
HttpTransportUtils.getHttpServletRequest (wsctx.getMessageContext());
HttpServletResponse response =
HttpTransportUtils.getHttpServletResponse (wsctx.getMessageContext ()) ;

4.10 JWS Programming Best Practices
The following list provides some best practices when programming the JWS file:

s When you create a document-literal-bare Web service, use the @wWwebParam JWS
annotation to ensure that all input parameters for all operations of a given Web
service have a unique name. Because of the nature of document-literal-bare Web
services, if you do not explicitly use the @WebParam annotation to specify the
name of the input parameters, WebLogic Server creates one for you and run the
risk of duplicating the names of the parameters across a Web service.

= In general, document-literal-wrapped Web services are the most interoperable
type of Web service.

»s Use the @WebResult JWS annotation to explicitly set the name of the returned
value of an operation, rather than always relying on the hard-coded name
return, which is the default name of the returned value if you do not use the
@WebResult annotation in your JWS file.

s Use SOAPFaultExceptions in your JWS file if you want to control the exception
information that is passed back to a client application when an error is
encountered while invoking a the Web service.

= Even though it is not required, Oracle recommends you always specify the
portName attribute of the WebLogic-specific @WLHt tpTransport annotation in
your JWS file. If you do not specify this attribute, the jwsc Ant task will generate
a port name for you when generating the WSDL file, but this name might not be
very user-friendly. A consequence of this is that the getXXX () method you use in
your client applications to invoke the Web service will not be very well-named. To
ensure that your client applications use the most user-friendly methods possible
when invoking the Web service, specify a relevant name of the Web service port
by using the portName attribute.

4-24 Getting Started With JAX-RPC Web Services for Oracle WebLogic Server

O

Understanding Data Binding

The following sections provide information about data binding and the data types
(both built-in and user-defined) that are supported:

» Section 5.1, "Overview of Data Binding"
= Section 5.2, "Supported Built-In Data Types"
» Section 5.3, "Supported User-Defined Data Types"

5.1 Overview of Data Binding

With the emergence of XML as the standard for exchanging data across disparate
systems, Web service applications need a way to access documents that are in XML
format directly from the Java application. Specifically, the XML content needs to be
converted to a format that is readable by the Java application. Data binding describes
the conversion of data between its XML and Java representations.

As in previous releases, WebLogic Web services support a full set of built-in XML
Schema, Java, and SOAP types, as specified by the JAX-RPC specification, described at
https://jax-rpc.dev.java.net, that you can use in your Web service
operations without performing any additional programming steps. Built-in data types
are those such as integer, string, and time.

Additionally, you can use a variety of user-defined XML and Java data types,
including Apache XmlBeans (in package org.apache.xmlbeans), as input
parameters and return values of your Web service. User-defined data types are those
that you create from XML Schema or Java building blocks, such as
<xsd:complexType> or JavaBeans. The WebLogic Web services Ant tasks, such as
jwsc and clientgen, automatically generate the data binding artifacts needed to
convert the user-defined data types between their XML and Java representations. The
XML representation is used in the SOAP request and response messages, and the Java
representation is used in the JWS that implements the Web service.

Understanding Data Binding 5-1

Supported Built-In Data Types

Note: As of WebLogic Server 9.1, using XMLBeans 1.x data types (in
other words, extensions of com.bea.xml .XmlObject) as
parameters or return types of a WebLogic Web service is deprecated.
New applications should use XMLBeans 2.x data types.

If a Web service uses XMLBeans that are compiled with the -noupa
option, then

-Dweblogic.wsee.bind. setCompileNoUpaRule=true flag is
required to be set in the WebLogic server startup script to ensure the
Web service deploys successfully .Otherwise, deployment will fail
with the following error: cos-nonambig: Content model
violates the unique particle attribution rule.

5.2 Supported Built-In Data Types

The following sections describe the built-in data types supported by WebLogic Web
services and the mapping between their XML and Java representations. As long as the
data types of the parameters and return values of the back-end components that
implement your Web service are in the set of built-in data types, WebLogic Server
automatically converts the data between XML and Java.

If, however, you use user-defined data types, then you must create the data bindin