

[image: Oracle Corporation]

Oracle® Fusion Middleware

Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

11g Release 1 (10.3.3)

E13734-02

April 2010

This document is a resource for software developers who program advanced features of WebLogic Web services using JAX-WS.

Oracle Fusion Middleware Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server, 11g Release 1 (10.3.3)

E13734-02

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Documentation Accessibility
	Related Documents
	Conventions

1 Introduction

2 Invoking a Web Service Using Asynchronous Request-Response

	Overview of the Asynchronous Request-Response Feature
	Using Asynchronous Request-Response: Main Steps
	Applying Asynchronous Binding Declaration to WSDL
	Updating the build.xml File When Using Asynchronous Request-Response
	Creating the Asynchronous Client

3 Using Web Services Atomic Transactions

	Overview of Web Services Atomic Transactions
	Configuring the Domain Resources Required for Web Servcie Advanced Features
	Enabling Web Services Atomic Transactions on Web Services
	Using the @Transactional Annotation in Your JWS File
	Example: Using @Transactional Annotation on a Web Service Class
	Example: Using @Transactional Annotation on a Web Service Method
	Example: Using the @Transactional and the EJB @TransactionAttribute Annotations Together

	Enabling Web Services Atomic Transactions Starting From WSDL

	Enabling Web Services Atomic Transactions on Web Service Clients
	Using @Transactional Annotation with the @WebServiceRef Annotation
	Passing the TransactionalFeature to the Client

	Configuring Web Services Atomic Transactions Using the Administration Console
	Securing Messages Exchanged Between the Coordinator and Participant
	Enabling and Configuring Web Services Atomic Transactions

	Using Web Services Atomic Transactions in a Clustered Environment
	More Examples of Using Web Services Atomic Transactions

4 Managing Web Services in a Cluster

	Overview of Web Services Cluster Routing
	Cluster Routing Scenarios
	Scenario 1: Routing a Web Service Response to a Single Server
	Scenario 2: Routing Web Service Requests to a Single Server Using Routing Information
	Scenario 3: Routing Web Service Requests to a Single Server Using an ID

	How Web Service Cluster Routing Works
	Adding Routing Information to Outgoing Requests
	Detecting Routing Information in Incoming Requests
	Routing Requests Within the Cluster
	Maintaining the Routing Map on the Front-end SOAP Router
	X-weblogic-wsee-storetoserver-list HTTP Response Header
	X-weblogic-wsee-storetoserver-hash HTTP Response Header

	Configuring Web Services in a Cluster
	Setting Up the WebLogic Cluster
	Configuring the Domain Resources Required for Web Service Advanced Features in a Clustered Environment
	Extending the Front-end SOAP Router to Support Web Services
	Enabling Routing of Web Services Atomic Transaction Messages
	Configuring the Identity of the Front-end SOAP Router

	Monitoring Cluster Routing Performance

5 Publishing a Web Service Endpoint

6 Using Callbacks

	Overview of Callbacks
	Example Callback Implementation
	Programming Callbacks: Main Steps
	Programming Guidelines for Target Web Service
	Programming Guidelines for the Callback Client Web Service
	Programming Guidelines for the Callback Web Service
	Updating the build.xml File for the Target Web Service

7 Optimizing Binary Data Transmission Using MTOM/XOP

	Sending Binary Data Using MTOM/XOP
	Annotating the Data Types
	Annotating the Data Types: Start From Java
	Annotating the Data Types: Start From WSDL

	Enabling MTOM on the Web Service
	Enabling MTOM on the Web Service Using Annotation
	Enabling MTOM on the Web Services Using WS-Policy File

	Enabling MTOM on the Client
	Setting the Attachment Threshold

	Streaming SOAP Attachments
	Client Side Example
	Server Side Example
	Configuring Streaming SOAP Attachments
	Configuring Streaming SOAP Attachments on the Server
	Configuring Streaming SOAP Attachments on the Client

8 Creating Dynamic Proxy Clients

	Additional Considerations When Specifying WSDL Location

9 Using XML Catalogs

	Overview of XML Catalogs
	Defining and Referencing XML Catalogs
	Defining an External XML Catalog
	Creating an External XML Catalog File
	Referencing the External XML Catalog File

	Embedding an XML Catalog
	Creating an Embedded XML Catalog
	Referencing an Embedded XML Catalog

	Disabling XML Catalogs in the Client Runtime
	Getting a Local Copy of XML Resources

10 Creating and Using SOAP Message Handlers

	Overview of SOAP Message Handlers
	Adding Server-side SOAP Message Handlers: Main Steps
	Adding Client-side SOAP Message Handlers: Main Steps
	Designing the SOAP Message Handlers and Handler Chains
	Server-side Handler Execution
	Client-side Handler Execution

	Creating the SOAP Message Handler
	Example of a SOAP Handler
	Example of a Logical Handler
	Implementing the Handler.handleMessage() Method
	Implementing the Handler.handleFault() Method
	Implementing the Handler.close() Method
	Using the Message Context Property Values and Methods
	Directly Manipulating the SOAP Request and Response Message Using SAAJ
	The SOAPPart Object
	The AttachmentPart Object
	Manipulating Image Attachments in a SOAP Message Handler

	Configuring Handler Chains in the JWS File
	Creating the Handler Chain Configuration File
	Compiling and Rebuilding the Web Service
	Configuring the Client-side SOAP Message Handlers

11 Programming RESTful Web Services

	Overview of RESTful Web Services
	Programming RESTful Web Services: Main Steps
	Programming Guidelines for the RESTful Web Service
	Accessing the RESTful Web Service from a Client
	Securing RESTful Web Services

12 Programming Stateful JAX-WS Web Services Using HTTP Session

	Overview of Stateful Web Services
	Accessing HTTP Session on the Server
	Enabling HTTP Session on the Client
	Developing Stateful Services in a Cluster Using Session State Replication
	A Note About the JAX-WS RI @Stateful Extension

13 Publishing and Finding Web Services Using UDDI

	Overview of UDDI
	UDDI and Web Services
	UDDI and Business Registry
	UDDI Data Structure

	WebLogic Server UDDI Features
	UDDI 2.0 Server
	Configuring the UDDI 2.0 Server
	Configuring an External LDAP Server
	51acumen.ldif File Contents

	Description of Properties in the uddi.properties File

	UDDI Directory Explorer
	UDDI Client API
	Pluggable tModel
	XML Elements and Permissible Values
	XML Schema for Pluggable tModels
	Sample XML for a Pluggable tModel

Preface

This preface describes the document accessibility features and conventions used in this guide—Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Other Product One Release 7.0 documentation set or in the Oracle Other Product Two Release 6.1 documentation set:

	
Oracle Other Product One Release Notes

	
Oracle Other Product One Configuration Guide

	
Oracle Other Product Two Getting Started Guide

	
Oracle Other Product Two Reference Guide

	
Oracle Other Product Two Tuning and Performance Guide

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

1 Introduction

This document is a resource for software developers who program advanced features for WebLogic Web services using JAX-WS. The advanced features described are summarized in the following table.

Table 1-1 Programming Advanced Features Using JAX-WS

	Advanced Features	Description
	
Chapter 3, "Using Web Services Atomic Transactions"

	
Describes how to use Web services atomic transactions to more tbd.....

	
Chapter 4, "Managing Web Services in a Cluster"

	
Provides best practices for using Web services in a cluster.

	
Chapter 5, "Publishing a Web Service Endpoint"

	
Publish a Web service endpoint at runtime, without deploying the Web service.

	
Chapter 6, "Using Callbacks"

	
Notify a client of a Web service that an event has happened by programming a callback.

	
Chapter 7, "Optimizing Binary Data Transmission Using MTOM/XOP"

	
Send binary data using MTOM/XOP and/or streaming SOAP attachments to optimize transmission of binary data.

	
Chapter 8, "Creating Dynamic Proxy Clients"

	
Invoke a Web service based on a service endpoint interface (SEI) dynamically at run-time without using clientgen.

	
Chapter 9, "Using XML Catalogs"

	
Use XML catalogs to resolve network resources to versions that are stored locally.

	
Chapter 10, "Creating and Using SOAP Message Handlers"

	
Create and configure SOAP message handlers for a Web service.

	
Chapter 11, "Programming RESTful Web Services"

	
Create a Web service that follows the RESTful design paradigm.

	
Chapter 12, "Programming Stateful JAX-WS Web Services Using HTTP Session"

	
Create a Web service that maintains state between service calls.

	
Chapter 13, "Publishing and Finding Web Services Using UDDI"

	
Use the UDDI features of WebLogic Web service.

	
Note:

The JAX-WS implementation in Oracle WebLogic Server is extended from the JAX-WS Reference Implementation (RI) developed by the Glassfish Community (see https://jax-ws.dev.java.net/). All features defined in the JAX-WS specification (JSR-224) are fully supported by Oracle WebLogic Server.
The JAX-WS RI also contains a variety of extensions, provided by Glassfish contributors. Unless specifically documented, JAX-WS RI extensions are not supported for use in Oracle WebLogic Server.

For an overview of WebLogic Web services, standards, samples, and related documentation, see Introducing Web Services.

JAX-WS supports Web Services Security (WS-Security) 1.1 (except for WS-Secure Conversation). For information about WebLogic Web service security, see Securing WebLogic Web Services for Oracle WebLogic Server.

2 Invoking a Web Service Using Asynchronous Request-Response

The following sections describe how to invoke a Web service using asynchronous request-response:

	
Overview of the Asynchronous Request-Response Feature

	
Using Asynchronous Request-Response: Main Steps

	
Creating the Asynchronous Client

	
Updating the build.xml File When Using Asynchronous Request-Response

Overview of the Asynchronous Request-Response Feature

When you invoke a Web service synchronously, the invoking client application waits for the response to return before it can continue with its work. In cases where the response returns immediately, this method of invoking the Web service is common. However, because request processing can be delayed, it is often useful for the client application to continue its work and handle the response later on, or in other words, use the asynchronous request-response feature of WebLogic Web services.

When implementing asynchronous request-response in your client, rather than invoking the operation directly, you invoke an asynchronous flavor of the same operation. (This asynchronous flavor of the operation is automatically generated by the clientgen Ant task.) For example, rather than invoking an operation called addNumbers directly, you would invoke addNumbersAsync instead. The asynchronous flavor of the operation always returns void, even if the original operation returns a value. You then include methods in your client that handle the asynchronous response or failures when it returns later on. You put any business logic that processes the return value of the Web service operation invoke or a potential failure in these methods.

Using Asynchronous Request-Response: Main Steps

The following procedure describes how to create a client that asynchronously invokes an operation in a Web service. For clarity, it is assumed in the procedure that:

	
The client Web service is called AsyncClient.

	
The AsyncClientService service is going to invoke the testEcho() operation of the already deployed AddNumbersService service whose WSDL is found at the following URL:

http://localhost:7001/async/AddNumbers?WSDL

It is further assumed that you have set up an Ant-based development environment and that you have a working build.xml file to which you can add targets for running the jwsc Ant task and deploying the generated service. For more information, see the following sections in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

	
Use Cases and Examples

	
Developing WebLogic Web Services

	
Programming the JWS File

	
Invoking Web Services

Table 2-1 Steps to Use Asynchronous Request-Response

	#
	Step	Description
	
1

	
Create an external binding declaration file to enable the creation of the asynchronous methods.

	
See Applying Asynchronous Binding Declaration to WSDL.

	
2

	
Update your build.xml file to compile the asynchronous client.

	
You pass the external binding declaration file to the clientgen task to automatically generate the asynchronous flavor of the Web service operations. See Updating the build.xml File When Using Asynchronous Request-Response.

	
3

	
Create the asynchronous client.

	
Within the client, you define an asynchronous callback handler to receive the callback notification and invoke the asynchronous flavor of the Web service method passing a handle to the asynchronous callback handler. Use your favorite IDE or text editor. See Creating the Asynchronous Client.

	
3

	
Run the Ant target to build the AsyncClient.

	
For example:

prompt> ant build-client

Applying Asynchronous Binding Declaration to WSDL

To generate asynchronous polling and callback methods in the service endpoint interface when the WSDL is compiled, enable the jaxws:enableAsyncMapping binding declaration in the WSDL file.

You can create an external binding declarations file that contains all binding declarations for a specific WSDL or XML Schema document. Then, pass the binding declarations file to the <binding> child element of the wsdlc, jwsc, or clientgen Ant task.

The following provides an example of a binding declarations file that enables the jaxws:enableAsyncMapping binding declaration:

<bindings
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="AddNumbers.wsdl"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions">
 <package name="examples.webservices.async"/>
 <enableAsyncMapping>true</enableAsyncMapping>
 </bindings>
</bindings>

For more information, see "Creating an External Binding Declarations File Using JAX-WS Binding Declarations" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Updating the build.xml File When Using Asynchronous Request-Response

To update a build.xml file to generate client artifacts and compile the client that invokes a Web service operation asynchronously, add taskdefs and a build-client target that includes a reference to the external binding declarations file containing the asynchronous binding declaration. See the description following the example for details.

<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<target name="build_client">

<clientgen
 type="JAXWS"
 wsdl="AddNumbers.wsdl"
 destDir="${clientclasses.dir}"
 packageName="examples.webservices.async.client">
 <binding file="jaxws-binding.xml" />
 </clientgen>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/hello_world/client/**/*.java"/>

</target>

Use the taskdef Ant task to define the full classname of the clientgen Ant tasks. Apply the asynchronous binding declaration by specifying an external binding declarations file, as described in Applying Asynchronous Binding Declaration to WSDL. In this case, the clientgen Ant task generates both synchronous and asynchronous flavors of the Web service operations in the JAX-WS stubs.

Creating the Asynchronous Client

The following example shows a simple client file, AsyncClient, that has a single method, AddNumbersTestDrive, that asynchronously invokes the AddNumbersAsync method of the AddNumbersService service. The Java code in bold is described following the code sample.

package examples.webservices.async.client;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;

import javax.xml.ws.BindingProvider;

import java.util.concurrent.Future;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

public class AsyncClient {

 private AddNumbersPortType port = null;
 protected void setUp() throws Exception {
 AddNumbersService service = new AddNumbersService();
 port = service.getAddNumbersPort();
 String serverURI = System.getProperty("wls-server");
 ((BindingProvider) port).getRequestContext().put(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://" + serverURI + "/JAXWS_ASYNC/AddNumbersService");
 }

/**
*
* Asynchronous callback handler
*/
 class AddNumbersCallbackHandler implements AsyncHandler<AddNumbersResponse> {
 private AddNumbersResponse output;
 public void handleResponse(Response<AddNumbersResponse> response) {
 try {
 output = response.get();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 AddNumbersResponse getResponse() {
 return output;
 }
 }

 public void AddNumbersTestDrive() throws Exception {
 int number1 = 10;
 int number2 = 20;
 AddNumbersCallbackHandler callbackHandler =
 new AddNumbersCallbackHandler();
 Future<?> resp = port.addNumbersAsync(number1, number2,
 callbackHandler);
 // For the purposes of a test, block until the async call completes
 resp.get(5L, TimeUnit.MINUTES);
int result = callbackHandler.getResponse().getReturn();
 }
}

When creating the asynchronous client file, you need to perform the following tasks:

	
Create an asynchronous handler that implements the javax.xml.ws.AsyncHandler<T> interface (see http://java.sun.com/javase/6/docs/api/javax/xml/ws/AsyncHandler.html). The asynchronous handler defines one method, handleResponse, that enables clients to receive callback notifications at the completion of service endpoint operations that are invoked asynchronously. The type should be set to AddNumberResponse.

class AddNumbersCallbackHandler implements AsyncHandler<AddNumbersResponse> {
 private AddNumbersResponse output;

 public void handleResponse(Response<AddNumbersResponse> response) {
 try {
 output = response.get();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 }

 AddNumbersResponse getResponse() {
 return output;
 }
}

	
Instantiate the asynchronous callback handler.

AddNumbersCallbackHandler callbackHandler =
 new AddNumbersCallbackHandler();

	
Instantiate the AddNumbersService Web service and call the asynchronous version of the Web service method, addNumbersAsync, passing a handle to the asynchronous callback handler.

AddNumbersService service = new AddNumbersService();
port = service.getAddNumbersPort();
...

Future<?> resp = port.addNumbersAsync(number1, number2,
 callbackHandler);

java.util.concurrent.Future (see http://java.sun.com/javase/6/docs/api/java/util/concurrent/Future.html) represents the result of an asynchronous computation and provides methods for checking the status of the asynchronous task, getting the result, or canceling the task execution.

	
Get the result of the asynchronous computation. In this example, a timeout value is specified to wait for the computation to complete.

resp.get(5L, TimeUnit.MINUTES);

	
Use the callback handler to access the response message.

int result = callbackHandler.getResponse().getReturn();

3 Using Web Services Atomic Transactions

This section describes how to use Web services atomic transactions to enable interoperability with other external transaction processing systems.

	
Overview of Web Services Atomic Transactions

	
Configuring the Domain Resources Required for Web Servcie Advanced Features

	
Enabling Web Services Atomic Transactions on Web Services

	
Enabling Web Services Atomic Transactions on Web Service Clients

	
Configuring Web Services Atomic Transactions Using the Administration Console

	
Using Web Services Atomic Transactions in a Clustered Environment

	
More Examples of Using Web Services Atomic Transactions

Overview of Web Services Atomic Transactions

WebLogic Web services enable interoperability with other external transaction processing systems, such as Websphere, JBoss, Microsoft .NET, and so on, through the support of the following specifications:

	
Web Services Atomic Transaction (WS-AtomicTransaction) Versions 1.0, 1.1, and 1.2: http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html

	
Web Services Coordination (WS-Coordination) Versions 1.0, 1.1, and 1.2: http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

These specifications define an extensible framework for coordinating distributed activities among a set of participants. The coordinator, shown in the following figure, is the central component, managing the transactional state (coordination context) and enabling Web services and clients to register as participants.

Figure 3-1 Web Services Atomic Transactions Framework

[image: Description of Figure 3-1 follows]

The following table describes the components of Web services atomic transactions, shown in the previous figure.

Table 3-1 Components of Web Services Atomic Transactions

	Component	Description
	
Coordinator

	
Manages the transactional state (coordination context) and enables Web services and clients to register as participants.

	
Activation Service

	
Enables the application to activate a transaction and create a coordination context for an activity. Once created, the coordination context is passed with the transaction flow.

	
Registration Service

	
Enables an application to register as a participant.

	
Application Protocol X, Y

	
Supported coordination protocols, such as WS-AtomicTransaction.

The following figure shows two instances of WebLogic Server interacting within the context of a Web services atomic transaction. For simplicity, two WebLogic Web service applications are shown.

Figure 3-2 Web Services Atomic Transactions in WebLogic Server Environment

[image: Description of Figure 3-2 follows]

Please note the following:

	
Using the local JTA transaction manager, a transaction can be imported to or exported from the local JTA environment as a subordinate transaction, all within the context of a Web service request.

	
Creation and management of the coordination context is handled by the local JTA transaction manager.

	
All transaction integrity management and recovery processing is done by the local JTA transaction manager.

For more information about JTA, see Programming JTA for Oracle WebLogic Server.

The following describes a sample end-to-end Web services atomic transaction interaction, illustrated in Figure 3-2:

	
Application A begins a transaction on the current thread of control using the JTA transaction manager on Server A.

	
Application A calls a Web service method in Application B on Server B.

	
Server A updates its transaction information and creates a SOAP header that contains the coordination context, and identifies the transaction and local coordinator.

	
Server B receives the request for Application B, detects that the header contains a transaction coordination context and determines whether it has already registered as a participant in this transaction. If it has, that transaction is resumed and if not, a new transaction is started.

Application B executes within the context of the imported transaction. All transactional resources with which the application interacts are enlisted with this imported transaction.

	
Server B enlists itself as a participant in the WS-AtomicTransaction transaction by registering with the registration service indicated in the transaction coordination context.

	
Server A resumes the transaction.

	
Application A resumes processing and commits the transaction.

Configuring the Domain Resources Required for Web Servcie Advanced Features

When creating or extending a domain, if you expect that you will be using other Web service advanced features in addition to Web service atomic transactions (either now or in the future), you can apply the WebLogic Advanced Web Services for JAX-WS Extension template (wls_webservices_jaxws.jar) to configure automatically the resources required to support the advanced Web service features. Although use of this extension template is not required, it makes the configuration of the required resources much easier. Alternatively, you can manually configure the resources required for these advanced features using the Oracle WebLogic Administration Console or WLST. For more information, see "Configuring Your Domain for Advanced Web Service Features" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

	
Note:

If you do not expect to use other Web service advanced features with Web service atomic transactions, application of this extension template is not required, minimizing start-up times and memory footprint.

Enabling Web Services Atomic Transactions on Web Services

To enable Web services atomic transactions on a Web service:

	
When starting from Java (bottom-up), add the @weblogic.wsee.wstx.wsat.Transactional annotation to the Web service endpoint implementation class or method. For more information, see Using the @Transactional Annotation in Your JWS File.

	
When starting from WSDL (top-down), use wsdlc to generate a Web service from an existing WSDL file. In this case, The WS-AtomicTransaction policy assertions that are advertised in the WSDL are carried forward and are included in the WSDL file for the new Web service generated by wsdlc. See Enabling Web Services Atomic Transactions Starting From WSDL.

	
At deployment time, enable and configure Web services atomic transactions at the Web service endpoint or method level using the WebLogic Server Administration Console. For more information, see Configuring Web Services Atomic Transactions Using the Administration Console.

The following tables summarizes the configuration options that you can set when enabling Web services atomic transactions.

Table 3-2 Web Services Atomic Transactions Configuration Options

	Attribute	Description
	
Version

	
Version of the Web services atomic transaction coordination context that is used for Web services and clients. For clients, it specifies the version used for outbound messages only. The value specified must be consistent across the entire transaction.

Valid values include WSAT10, WSAT11, WSAT12, and DEFAULT. The DEFAULT value for Web services is all three versions (driven by the inbound request); the DEFAULT value for Web service clients is WSAT10.

	
Flow type

	
Whether the Web services atomic transaction coordination context is passed with the transaction flow. For valid values, see Table 3-3.

The following table summarizes the valid values for flow type and their meaning on the Web service and client. The table also summarizes the valid value combinations when configuring web services atomic transactions for an EJB-style web service that uses the @TransactionAttribute annotation.

Table 3-3 Flow Types Values

	Value	Web Service Client	Web Service	Valid EJB @TransactionAttribute Values
	
NEVER

	
JTA transaction: Do not export transaction coordination context.

No JTA transaction: Do not export transaction coordination context.

	
Transaction flow exists: Do not import transaction coordination context. If the CoordinationContext header contains mustunderstand="true", a SOAP fault is thrown.

No transaction flow: Do not import transaction coordination context.

	
NEVER, NOT_SUPPORTED, REQUIRED, REQUIRES_NEW, SUPPORTS

	
SUPPORTS (Default)

	
JTA transaction: Export transaction coordination context.

No JTA transaction: Do not export transaction coordination context.

	
Transaction flow exists: Import transaction context.

No transaction flow: Do not import transaction coordination context.

	
REQUIRED, SUPPORTS

	
MANDATORY

	
JTA transaction: Export transaction coordination context.

No JTA transaction: An exception is thrown.

	
Transaction flow exists: Import transaction context.

No transaction flow: Service-side exception is thrown.

	
MANDATORY, REQUIRED, SUPPORTS

Using the @Transactional Annotation in Your JWS File

To enable Web services atomic transactions, specify the @weblogic.wsee.wstx.wsat.Transactional annotation on the Web service endpoint implementation class or method.

	
Note:

This annotation is not to be mistaken with weblogic.jws.Transactional, which ensures that the annotated class or operation runs inside of a transaction, but not an atomic transaction.

Please note the following:

	
If you specify the @Transactional annotation at the Web service class level, the settings apply to all two-way methods defined by the service endpoint interface. You can override the flow type value at the method level; however, the version must be consistent across the entire transaction.

	
You cannot explicitly specify the @Transactional annotation on a Web method that is also annotated with @Oneway.

	
Web services atomic transactions cannot be used with the client-side asynchronous programming model.

The format for specifying the @Transactional annotation is as follows:

@Transactional(
 version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER]
)

For more information about the version and flow type configuration options, see Table 3-2.

The following sections provide examples of using the @Transactional annotation at the Web service implementation class and method levels, and with the EJB @TransactionAttribute annotation.

	
Example: Using @Transactional Annotation on a Web Service Class

	
Example: Using @Transactional Annotation on a Web Service Method

	
Example: Using the @Transactional and the EJB @TransactionAttribute Annotations Together

Example: Using @Transactional Annotation on a Web Service Class

The following example shows how to add @Transactional annotation on a Web service class. Relevant code is shown in bold. As shown in the example, there is an active JTA transaction.

	
Note:

The following excerpt is borrowed from the Web services atomic transaction example that is delivered with the WebLogic Server Samples Server. For more information, see More Examples of Using Web Services Atomic Transactions.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
@Transactional(value=Transactional.TransactionFlowType.MANDATORY,
 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
public class WsatBankTransferService {

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-demoXA-2");
 String sql = "insert into wsat_acct_remote (acctno, amount) values (" + acctNo +
 ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at remote.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at remote.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }
 public String deleteAccount(String acctNo) throws java.lang.Exception{
 ...
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 ...
 }
 public String listAccount() throws java.lang.Exception{
 ...
 }
}

Example: Using @Transactional Annotation on a Web Service Method

The following example shows how to add @Transactional annotation on a Web service implementation method. Relevant code is shown in bold.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
public class WsatBankTransferService {

@Transactional(value=Transactional.TransactionFlowType.MANDATORY,
 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-demoXA-2");
 String sql = "insert into wsat_acct_remote (acctno, amount) values (" + acctNo +
 ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at remote.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at remote.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }
 public String deleteAccount(String acctNo) throws java.lang.Exception{
 ...
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 ...
 }
 public String listAccount() throws java.lang.Exception{
 ...
 }
}

Example: Using the @Transactional and the EJB @TransactionAttribute Annotations Together

The following example illustrates how to use the @Transactional and EJB @TransactionAttribute annotations together. In this case, the flow type values must be compatible, as outlined in Table 3-3. Relevant code is shown in bold.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
@Transactional(value=Transactional.TransactionFlowType.MANDATORY,
 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
@TransactionAttribute(TransactionAttributeType.REQUIRED
public class WsatBankTransferService {
. . .
}

Enabling Web Services Atomic Transactions Starting From WSDL

When enabled, Web services atomic transactions are advertised in the WSDL file using a policy assertion.

Table 3-4 summarizes the WS-AtomicTransaction 1.2 policy assertions that correspond to a set of common Web services atomic transaction flow type and EJB Transaction attribute combinations.

Table 3-4 Web Services Atomic Transaction Policy Assertion Values (WS-AtomicTransaction 1.2)

	Atomic Transaction Flow Type	EJB @TransactionAttribute	WS-AtomicTransaction 1.2 Policy Assertion
	
MANDATORY

	
MANDATORY, REQUIRED, SUPPORTS

	
<wsat:ATAssertion/>

	
SUPPORTS

	
REQUIRED, SUPPORTS

	
<wsat:ATAssertion wsp:Optional="true"/>

	
NEVER

	
REQUIRED, REQUIRES_NEW, NEVER, SUPPORTS, NOT_SUPPORTED

	
No policy advertisement

You can use wsdlc Ant task to generate, from an existing WSDL file, a set of artifacts that together provide a partial Java implementation of the Web service described by the WSDL file. The WS-AtomicTransaction policy assertions that are advertised in the WSDL are carried forward and are included in the WSDL file for the new Web service generated by wsdlc.

The wsdlc Ant tasks creates a JWS file that contains a partial (stubbed-out) implementation of the generated JWS interface. You need to modify this file to include your business code. After you have coded the JWS file with your business logic, run the jwsc Ant task to generate a complete Java implementation of the Web service. Use the compiledWsdl attribute of jwsc to specify the JAR file generated by the wsdlc Ant task which contains the JWS interface file and data binding artifacts. By specifying this attribute, the jwsc Ant task does not generate a new WSDL file but instead uses the one in the JAR file. Consequently, when you deploy the Web service and view its WSDL, the deployed WSDL will look just like the one from which you initially started (with the WS-AtomicTransaction policy asssertions).

For complete details about using wsdlc to generate a Web service from a WSDL file, see "Developing WebLogic Web Services Starting From a WSDL File: Main Steps" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Enabling Web Services Atomic Transactions on Web Service Clients

On a Web service client, enable Web services atomic transactions using one of the following methods:

	
Add the @weblogic.wsee.wstx.wsat.Transactional annotation on the Web service reference injection point for a client. For more information, see Using @Transactional Annotation with the @WebServiceRef Annotation.

	
Pass the weblogic.wsee.wstx.wsat.TransactionalFeature as a parameter when creating the Web service proxy or dispatch. For more information, see Passing the TransactionalFeature to the Client.

	
At deployment time, enable and configure Web services atomic transactions at the Web service client endpoint or method level using the WebLogic Server Administration Console. For more information, see Configuring Web Services Atomic Transactions Using the Administration Console.

	
At run-time, if the non-atomic transactional Web service client calls an atomic transaction-enabled Web service, then based on the flow type settings, as defined in Table 3-3:

	
If the flow type is set to SUPPORTS or NEVER on the service-side, then the call is included as part of the transaction.

	
If the flow type is set to MANDATORY, then an exception is thrown.

For information about the configuration options that you can set when enabling Web services atomic transactions, see Table 3-2.

Using @Transactional Annotation with the @WebServiceRef Annotation

To enable Web services atomic transactions, specify the @weblogic.wsee.wstx.wsat.Transactional annotation on the Web service client at the Web service reference (@WebServiceRef) injection point.

The format for specifying the @Transactional annotation is as follows:

@Transactional(
 version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFlowType.[MANDATORY|SUPPORTS|NEVER]
)

For more information about the version and flow type configuration options, see Table 3-2.

The following example illustrates how to annotate the Web service reference injection point. Relevant code is shown in bold. As shown in the example, the active JTA transaction becomes a part of the atomic transaction.

	
Note:

The following excerpt is borrowed from the Web services atomic transaction example that is delivered with the WebLogic Server Samples Server. For more information, see More Examples of Using Web Services Atomic Transactions.

package examples.webservices.jaxws.wsat.simple.client;
. . .
import javax.servlet.*;
import javax.servlet.http.*;
. . .
import java.net.URL;
import javax.xml.namespace.QName;

import javax.transaction.UserTransaction;
import javax.transaction.SystemException;

import javax.xml.ws.WebServiceRef;
import weblogic.wsee.wstx.wsat.Transactional;
*/

/**
 * This example demonstrates using a WS-Atomic Transaction to create or delete an account,
 * or transfer money via Web service as a single atomic transaction.
 */

public class WsatBankTransferServlet extends HttpServlet {
. . .
 String url = "http://localhost:7001";
 URL wsdlURL = new URL(url + "/WsatBankTransferService/WsatBankTransferService");
. . .
 DataSource ds = null;
 UserTransaction utx = null;

 try {
 ctx = new InitialContext();
 utx = (UserTransaction) ctx.lookup("javax.transaction.UserTransaction");
 utx.setTransactionTimeout(900);
 } catch (java.lang.Exception e) {
 e.printStackTrace();
 }

 WsatBankTransferService port = getWebService(wsdlURL);

 try {
 utx.begin();
 if (remoteAccountNo.length() > 0) {
 if (action.equals("create")) {
 result = port.createAccount(remoteAccountNo, amount);
 } else if (action.equals("delete")) {
 result = port.deleteAccount(remoteAccountNo);
 } else if (action.equals("transfer")) {
 result = port.transferMoney(remoteAccountNo, amount, direction);
 }
 }
 utx.commit();
 result = "The transaction is committed " + result;
 } catch (java.lang.Exception e) {
 try {
 e.printStackTrace();
 utx.rollback();
 result = "The transaction is rolled back. " + e.getMessage();
 } catch(java.lang.Exception ex) {
 e.printStackTrace();
 result = "Exception is caught. Check stack trace.";
 }
 }
 request.setAttribute("result", result);
 . . .
 @Transactional(value = Transactional.TransactionFlowType.MANDATORY,
 version = Transactional.Version.WSAT10)
 @WebServiceRef()
 WsatBankTransferService_Service service;
 private WsatBankTransferService getWebService() {
 return service.getWSHttpBindingIService();
 }

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null; UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-dataSource-demoXAPool");
 String sql = "insert into wsat_acct_local (acctno, amount) values (
 " + acctNo + ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at local.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating.. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at local.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }

 public String deleteAccount(String acctNo) throws java.lang.Exception{
 . . .
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 . . .
 }
 public String listAccount() throws java.lang.Exception{
 . . .
 }
}

Passing the TransactionalFeature to the Client

To enable Web services atomic transactions on the client of the Web service, you can pass the weblogic.wsee.wstx.wsat.TransactionalFeature as a parameter when creating the Web service proxy or dispatch, as illustrated in the following example. Relevant code is shown in bold.

	
Note:

The following excerpt is borrowed from the Web services atomic transaction example that is delivered with the WebLogic Server Samples Server. For more information, see More Examples of Using Web Services Atomic Transactions.

package examples.webservices.jaxws.wsat.simple.client;
. . .
import javax.servlet.*;
import javax.servlet.http.*;
. . .
import java.net.URL;
import javax.xml.namespace.QName;

import javax.transaction.UserTransaction;
import javax.transaction.SystemException;

import weblogic.wsee.wstx.wsat.TransactionalFeature;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;
*/

/**
 * This example demonstrates using a WS-Atomic Transaction to create or delete an account,
 * or transfer money via Web service as a single atomic transaction.
 */

public class WsatBankTransferServlet extends HttpServlet {
. . .
 String url = "http://localhost:7001";
 URL wsdlURL = new URL(url + "/WsatBankTransferService/WsatBankTransferService");
. . .
 DataSource ds = null;
 UserTransaction utx = null;

 try {
 ctx = new InitialContext();
 utx = (UserTransaction) ctx.lookup("javax.transaction.UserTransaction");
 utx.setTransactionTimeout(900);
 } catch (java.lang.Exception e) {
 e.printStackTrace();
 }

 WsatBankTransferService port = getWebService(wsdlURL);

 try {
 utx.begin();
 if (remoteAccountNo.length() > 0) {
 if (action.equals("create")) {
 result = port.createAccount(remoteAccountNo, amount);
 } else if (action.equals("delete")) {
 result = port.deleteAccount(remoteAccountNo);
 } else if (action.equals("transfer")) {
 result = port.transferMoney(remoteAccountNo, amount, direction);
 }
 }
 utx.commit();
 result = "The transaction is committed " + result;
 } catch (java.lang.Exception e) {
 try {
 e.printStackTrace();
 utx.rollback();
 result = "The transaction is rolled back. " + e.getMessage();
 } catch(java.lang.Exception ex) {
 e.printStackTrace();
 result = "Exception is caught. Check stack trace.";
 }
 }
 request.setAttribute("result", result);
 . . .
 // Passing the TransactionalFeature to the Client
 private WsatBankTransferService getWebService(URL wsdlURL) {
 TransactionalFeature feature = new TransactionalFeature();
 feature.setFlowType(TransactionFlowType.MANDATORY);
 feature.setVersion(Version.WSAT10);
 WsatBankTransferService_Service service = new WsatBankTransferService_Service(wsdlURL,
 new QName("http://tempuri.org/", "WsatBankTransferService"));
 return service.getWSHttpBindingIService(new javax.xml.ws.soap.AddressingFeature(),
 feature);
 }

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null; UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-dataSource-demoXAPool");
 String sql = "insert into wsat_acct_local (acctno, amount) values (
 " + acctNo + ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at local.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating.. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at local.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }

 public String deleteAccount(String acctNo) throws java.lang.Exception{
 . . .
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 . . .
 }
 public String listAccount() throws java.lang.Exception{
 . . .
 }
}

Configuring Web Services Atomic Transactions Using the Administration Console

The following sections describe how to configure Web services atomic transactions using the Administration Console.

	
Securing Messages Exchanged Between the Coordinator and Participant

	
Enabling and Configuring Web Services Atomic Transactions

Securing Messages Exchanged Between the Coordinator and Participant

Using transport-level security, you can secure messages exchanged between the Web services atomic transaction coordinator and participant by configuring the properties defined in the following table using the WebLogic Server Administration Console. These properties are configured at the domain level. For detailed steps, see "Configure Web services atomic transactions" in the Oracle WebLogic Server Administration Console Help.

Table 3-5 Securing Web Services Atomic Transactions

	Property	Description
	
Web Services Transactions Transport Security Mode

	
Specifies whether two-way SSL is used for the message exchange between the coordinator and participant. This property can be set to one of the following values:

	
SSL Not Required—All Web service transaction protocol messages are exchanged over the HTTP channel.

	
SSL Required—All Web service transaction protocol messages are exchanged over the HTTPS channel. This flag must be enabled when invoking Microsoft .NET Web services that have atomic transactions enabled.

	
Client Certificate Required—All Web service transaction protocol messages are exchanged over HTTPS and a client certificate is required.

For more information, see "Configure two-way SSL" in the Oracle WebLogic Server Administration Console Help.

	
Web Service Transactions Issued Token Enabled

	
Flag the specifies whether to use an issued token to enable authentication between the coordinator and participant.

The IssuedToken is issued by the coordinator and consists of a security context token (SCT) and a session key used for signing. The participant sends the signature, signed using the shared session key, in its registration message. The coordinator authenticates the participant by verifying the signature using the session key.

Enabling and Configuring Web Services Atomic Transactions

To enable Web services atomic transactions and configure the version and flow type, you can customize the configuration at the endpoint or method level for the Web service or client. For detailed steps, see "Configure Web services atomic transactions" in the Oracle WebLogic Server Administration Console Help.

Using Web Services Atomic Transactions in a Clustered Environment

For considerations when using atomic transaction-enabled Web services in a clustered environment, see Chapter 4, "Managing Web Services in a Cluster".

More Examples of Using Web Services Atomic Transactions

Refer to the following sections for additional examples of using Web services atomic transactions:

	
For an example of how to sign and encrypt message headers exchanged during the Web services atomic transaction, see "Securing Web Services Atomic Transactions" in Securing WebLogic Web Services for Oracle WebLogic Server.

	
Note:

You can secure applications that enable Web service atomic transactions using only WebLogic Web service security policies. You cannot secure them using Orace Web Services Manager (WSM) policies.

	
A detailed example of Web services atomic transactions is provided as part of the WebLogic Server sample application. For more information about running the sample application and accessing the example, see "Sample Application and Code Examples" in Information Roadmap for Oracle WebLogic Server .

4 Managing Web Services in a Cluster

The following sections describe how to manage Web services in a cluster.

	
Overview of Web Services Cluster Routing

	
Cluster Routing Scenarios

	
How Web Service Cluster Routing Works

	
Configuring Web Services in a Cluster

	
Monitoring Cluster Routing Performance

Overview of Web Services Cluster Routing

Clustering of stateless Web services—services that do not require knowledge of state information from prior invocations—is straightforward and works with existing WebLogic HTTP routing features on a third-party HTTP load balancer.

Clustering of stateful Web services provides more challenges. Each instance of a Web service is associated with state information that must be managed and persisted. The cluster routing decision is based on whether the message is bound to a specific server in the cluster. For example, if a particular server stores state information that is needed to process the message, and that state information is available only locally on that server.

In addition to ensuring that the Web service requests are routed to the appropriate server, the following general clustering requirements must be satisfied:

	
The internal topology of a cluster must be transparent to clients. Clients interact with the cluster only through the front-end host, and do not need to be aware of any particular server in the cluster. This enables the cluster to scale over time to meet the demands placed upon it.

	
Cluster migration must be transparent to clients. Resources within the cluster (including persistent stores and other resources required by a Web service or Web service client) can be migrated from one server to another as the cluster evolves, responds to failures, and so on.

To meet the above requirements, the following methods are available for routing Web services in a cluster:

	
In-place SOAP router—Assumes request messages arrive on the correct server and, if not, forwards the messages to the correct server ("at most one bad hop"). The routing decision is made by the Web service that receives the message. This routing strategy is the simplest to implement and requires no additional configuration. Though, it is not as robust as the next option.

	
Front-end SOAP router—Message routing is managed by the front-end host that accepts messages on behalf of the cluster and forwards them onto a selected member server of the cluster. For Web services, the front-end SOAP router inspects information in the SOAP message to determine the correct server to which it should route messages.

The front-end SOAP router can be one of the following:

	
Servlet

	
Dedicated process

	
Dedicated hardware-based

This routing strategy is more complicated to configure, but is the most efficient since messages are routed directly to the appropriate server (avoiding any "bad hops").

This chapter describes how to configure your environment to optimize the routing of Web services within a cluster. Use of the HTTP cluster servlet for the front-end SOAP router is described. The in-place SOAP router is also enabled and is used in the event the HTTP cluster servlet is not available or has not yet been initialized.

Cluster Routing Scenarios

The following sections illustrate several scenarios for routing Web service request and response messages within a clustered environment:

	
Scenario 1: Routing a Web Service Response to a Single Server

	
Scenario 2: Routing Web Service Requests to a Single Server Using Routing Information

	
Scenario 3: Routing Web Service Requests to a Single Server Using an ID

Scenario 1: Routing a Web Service Response to a Single Server

In this scenario, an incoming request is load balanced to a server. Any responses to that request must be routed to that same server, which maintains state information on behalf of the original request.

Figure 4-1 Routing a Web Service Response to a Single Server

[image: Surrounding text describes Figure 4-1 .]

As shown in the previous figure:

	
The front-end SOAP router routes an incoming HTTP request and sends it to Server2 using standard load balancing techniques.

	
Server2 calls Myservice at the Web service endpoint address. The ReplyTo header in the SOAP message contains a pointer back to the front-end SOAP router.

	
MyService returns the response to the front-end SOAP router.

	
The front-end SOAP router must determine where to route the response. Because Server2 maintains state information that is relevant to the response, the front-end SOAP router routes the response to Server2.

Scenario 2: Routing Web Service Requests to a Single Server Using Routing Information

In this scenario, an incoming request is load balanced to a server. Any subsequent requests contain routing information are returned by the response message.

Figure 4-2 Routing Web Service Requests to a Single Server

[image: Surrounding text describes Figure 4-2 .]

As shown in the previous figure:

	
The front-end SOAP router routes an incoming HTTP request (Request1) and sends it to Server 2 using standard load balancing techniques. The request has no routing information.

	
Server2 calls the Myservice at the Web service endpoint address. The ReplyTo header in the SOAP message contains a pointer back to the front-end SOAP router.

	
MyService returns the response to the caller. The response contains routing information that targets Server2 for any subsequent requests. The caller is responsible for passing the routing information contained in the response in any subsequent requests (for example, Request2).

	
The front-end SOAP router uses the routing information passed with Request2 to route the request to Server2.

Scenario 3: Routing Web Service Requests to a Single Server Using an ID

In this scenario, an incoming SOAP request contains an identifier, but no routing information. All subsequent requests with the same identifier must go to the same server.

Figure 4-3 Routing Web Service Requests to a Single Server Using an ID

[image: Surrounding text describes Figure 4-3 .]

As shown in the previous figure:

	
A request comes from a Web service client that includes an ID that will be shared by future requests that are relevant to Request1. The form of this ID is protocol-specific.

	
The front-end SOAP router detects an ID in Request1 and checks the affinity store to determine if the ID is associated with a particular server in the cluster. In this case, there is no association defined.

	
The front-end SOAP router load balances the request and sends it to Server 2 for handling.

	
The MyService Web service instance on Server2 handles the request (generating a response, if required). Unlike in Scenario 2: Routing Web Service Requests to a Single Server Using Routing Information, routing information cannot be propagated in this case.

	
Request2 arrives at the front-end SOAP router using the same ID as that used in Request1.

	
The front-end SOAP router detects the ID and checks the affinity store to determine if the ID is associated with a particular server. This time, it determines that the ID is mapped to Server2.

	
Based on the affinity information, the front-end SOAP router routes Request2 to Server2.

How Web Service Cluster Routing Works

The following sections describe how Web service cluster routing works:

	
Adding Routing Information to Outgoing Requests

	
Detecting Routing Information in Incoming Requests

	
Routing Requests Within the Cluster

	
Maintaining the Routing Map on the Front-end SOAP Router

Adding Routing Information to Outgoing Requests

The Web services runtime adds routing information to the SOAP header of any outgoing message to ensure proper routing of messages in the following situations:

	
The request is sent from a Web service client that uses a store that is not accessible from every member server in the cluster.

	
The request requires in-memory state information used to process the response.

When processing an outgoing message, the Web services runtime:

	
Creates a message ID for the outgoing request, if one has not already been assigned, and stores it in the RelatesTo/MessageID SOAP header using the following format:

uuid:WLSformat_version:store_name:uniqueID

Where:

	
format_version specifies the WebLogic Server format version, for example WLS1.

	
store_name specifies the name of the persistent store, which specifies the store in use by the current Web service or Web service client sending the message. For example, Server1Store. This value may be a system-generated name, if the default persistent store is used, or an empty string if no persistent store is configured.

	
unique_ID specifies the unique message ID. For example: 68d6fc6f85a3c1cb:-2d3b89ab8:12068ad2e60:-7feb

	
Allows other Web service components to inject routing information into the message before it is sent.

Detecting Routing Information in Incoming Requests

The SOAP router (in-place or front-end) inspects incoming requests for routing information. In particular, the SOAP router looks for a RelatesTo/MessageID SOAP header to find the name of the persistent store and routes the message back to the server that hosts that persistent store.

In the event that there is an error in determining the correct server using front-end SOAP routing, then the message is sent to any server within the cluster and the in-place SOAP router is used. If in-place SOAP routing fails, then the sender of the message receives a fault on the protocol-specific back channel.

	
Note:

SOAP message headers that contain routing information must be presented in clear text; they cannot be encrypted.

Routing Requests Within the Cluster

To assist in making a routing determination, the SOAP router (in-place or front-end) uses a dynamic map of store-to-server name associations. This dynamic map originates on the Managed Servers within a cluster and is accessed in memory by the in-place SOAP router and via HTTP response headers by the front-end SOAP router. The HTTP response headers are included automatically by WebLogic Server in every HTTP response sent by a Web service in the cluster.

	
Note:

For more information about the HTTP response headers, see Maintaining the Routing Map on the Front-end SOAP Router.

Initially, the dynamic map is empty. It is only initialized after receiving its first response back from a Managed Server in the cluster. Until it receives back its first response with the HTTP response headers, the front-end SOAP router simply load balances the requests, and the in-place SOAP router routes the request to the appropriate server.

In the absence of SOAP-based routing information, then the front-end SOAP router uses standard WebLogic Server HTTP session state replication to manage session state for stateful Web services. For more information, see "HTTP Session State Replication" in Using Clusters for Oracle WebLogic Server.

Maintaining the Routing Map on the Front-end SOAP Router

As noted in Routing Requests Within the Cluster, to assist in making a routing determination, the SOAP router (in-place or front-end) uses a dynamic map of store-to-server name associations.

To generate this dynamic map, two new HTTP response headers are provided, as described in the following sections. These headers are included automatically by WebLogic Server in every HTTP response sent by a Web service in the cluster.

	
Note:

When implementing a third-party front-end, to include the HTTP response headers described below, clients should send an HTTP request header with the following variable set to any value: X-weblogic-wsee-request-storetoserver-list

X-weblogic-wsee-storetoserver-list HTTP Response Header

A complete list of store-to-server mappings is maintained in the X-weblogic-wsee-storetoserver-list HTTP response header. The front-end SOAP router uses this header to populate a mapping that can be referenced at runtime to route messages.

The X-weblogic-wsee-storetoserver-list HTTP response header has the following format:

storename1:host_server_spec | storename2:host_server_spec | storename3:host_server_spec

In the above:

	
storename specifies the name of the persistent store.

	
host_server_spec is specifies using the following format: servername:host:port:sslport. If not known, the sslport is set to -1.

X-weblogic-wsee-storetoserver-hash HTTP Response Header

A hash mapping of the store-to-server list is provided in X-weblogic-wsee-storetoserver-hash HTTP response header. This header enables you to determine whether the new mapping list needs to be refreshed.

The X-weblogic-wsee-storetoserver-hash HTTP response header contains a String value representing the hash value of the list contained in the X-weblogic-wsee-storetoserver-list HTTP response header. By keeping track of the last entry in the list, it can be determined whether the list needs to be refreshed.

Configuring Web Services in a Cluster

The following table summarizes the steps to configure Web services in a cluster.

Table 4-1 Steps to Manage Web Services in a Cluster

	#
	Step	Description
	
1

	
Set up the WebLogic cluster.

	
See Setting Up the WebLogic Cluster..

	
2

	
Configure the clustered domain resources required for advanced Web service features.

	
You can configure automatically the clustered domain resources required using the cluster extension template script. Alternatively, you can manually configure the resources using the Oracle WebLogic Administration Console or WLST. See Configuring the Domain Resources Required for Web Service Advanced Features in a Clustered Environment..

	
3

	
Extend the front-end SOAP router to support Web services.

	
Note: This step is required only if you are using the front-end SOAP router.

The Web services routing servlet extends the functionality of the WebLogic HTTP cluster servlet to support routing of Web services in a cluster. See Extending the Front-end SOAP Router to Support Web Services..

	
4

	
Enable routing of Web services atomic transaction messages.

	
See Enabling Routing of Web Services Atomic Transaction Messages.

	
5

	
Configure the identity of the front-end SOAP router.

	
Each WebLogic Server instance in the cluster must be configured with the address and port of the front-end SOAP router. See Configuring the Identity of the Front-end SOAP Router..

Setting Up the WebLogic Cluster

Set up the WebLogic cluster, as described in "Setting up WebLogic Clusters" in Using Clusters for Oracle WebLogic Server. Please note:

	
To configure the clustered domain, see Configuring the Domain Resources Required for Web Service Advanced Features in a Clustered Environment.

	
To proxy and load balance HTTP requests, configure an HTTP cluster servlet, as described in "Set Up the HttpClusterServlet" in Using Clusters for Oracle WebLogic Server.

Configuring the Domain Resources Required for Web Service Advanced Features in a Clustered Environment

When creating or extending a domain using Configuration Wizard, you can apply the WebLogic Advanced Web Services for JAX-WS Extension template (wls_webservices_jaxws.jar) to configure automatically the resources required to support the advanced Web service features in a clustered environment. Although use of this extension template is not required, it makes the configuration of the required resources much easier. Alternatively, you can manually configure the resources required for these advanced features using the Oracle WebLogic Administration Console or WLST. For more information, see "Configuring Your Domain for Advanced Web Service Features" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Extending the Front-end SOAP Router to Support Web Services

	
Note:

If you are not using the front-end SOAP router, then this step is not required.

You extend the front-end SOAP router to support Web services by specifying the RoutingHandlerClassName parameter shown in the following example (in bold), as part of the WebLogic HTTP cluster servlet definition.

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>HttpClusterServlet</servlet-name>
 <servlet-class>weblogic.servlet.proxy.HttpClusterServlet</servlet-class>
 <init-param>
 <param-name>WebLogicCluster</param-name>
 <param-value>Server1:7001|Server2:7001</param-value>
 </init-param>
 <init-param>
 <param-name>RoutingHandlerClassName</param-name>
 <param-value>
 weblogic.wsee.jaxws.cluster.proxy.SOAPRoutingHandler
 </param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
. . .
</web-app>

Enabling Routing of Web Services Atomic Transaction Messages

High availability and routing of Web services atomic transaction messages is automatically enabled in Web service clustered environments. However, if the WebLogic HTTP cluster servlet is being used as the front-end server, you need to set the following system property to false on the server hosting the WebLogic HTTP cluster servlet:

weblogic.wsee.wstx.wsat.deployed=false

Configuring the Identity of the Front-end SOAP Router

Each WebLogic Server instance in the cluster must be configured with the address and port of the front-end SOAP router. Network channels enable you to provide a consistent way to access the front-end address of a cluster. For more information about network channels, see "Understanding Network Channels" in Configuring Server Environments for Oracle WebLogic Server.

For each server instance:

	
Create a network channel for the protocol you use to invoke the Web service. You must name the network channel weblogic-wsee-proxy-channel-XXX, where XXX refers to the protocol. For example, to create a network channel for HTTPS, call it weblogic-wsee-proxy-channel-https.

See "Configure custom network channels" in Oracle WebLogic Server Administration Console Help for general information about creating a network channel.

	
Configure the network channel, updating the External Listen Address and External Listen Port fields with the address and port of the proxy server, respectively.

Monitoring Cluster Routing Performance

You can monitor the following cluster routing statistics to evaluate the application performance:

	
Total number of requests and responses.

	
Total number of requests and responses that were routed specifically to the server.

	
Routing failure information, including totals and last occurrence.

You can use the WebLogic Server Administration Console or WLST to monitor cluster routing performance. For information about using WebLogic Server Administration Console to monitor cluster routing performance, see "Monitor Web services" and "Monitor Web service clients,", in Oracle WebLogic Server Administration Console Help.

5 Publishing a Web Service Endpoint

The javax.xml.ws.Endpoint API (see http://java.sun.com/javase/6/docs/api/javax/xml/ws/Endpoint.html) enables you to create a Web service endpoint at runtime without deploying the Web service to a WebLogic Server instance.

The following table summarizes the steps to publish a Web service endpoint.

Table 5-1 Steps to Publish a Web Service Endpoint

	#
	Step	Description
	
1

	
Create a Web service endpoint.

	
Use the javax.xml.ws.Endpoint create() method to create the endpoint, specify the implementor (that is, the Web service implementation) to which the endpoint is associated, and optionally specify the binding type. If not specified, the binding type defaults to SOAP1.1/HTTP. The endpoint is associated with only one implementation object and one javax.xml.ws.Binding, as defined at runtime; these values cannot be changed.

For example, the following example creates a Web service endpoint for the CallbackWS() implementation.

Endpoint callbackImpl = Endpoint.create(new CallbackWS());

	
2

	
Publish the Web service endpoint to accept incoming requests.

	
Use the javax.xml.ws.Endpoint publish() method to specify the server context, or the address and optionally the implementor of the Web service endpoint.

Note: If you wish to update the metadata documents (WSDL or XML schema) associated with the endpoint, you must do so before publishing the endpoint.

For example, the following example publishes the Web service endpoint created in Step 1 using the server context.

Object sc
context.getMessageContext().get(MessageContext.SERVLET_CONTEXT);
callbackImpl.publish(sc);

	
3

	
Stop the Web service endpoint to shut it down and prevent additional requests after processing is complete.

	
Use the javax.xml.ws.Endpoint stop() method to shut down the endpoint and stop accepting incoming requests. Once stopped, an endpoint cannot be republished.

For example:

callbackImpl.stop()

For an example of publishing a Web service endpoint within the context of a callback example, see Programming Guidelines for the Callback Client Web Service.

In addition to the steps described in the previous table, you can defined the following using the javax.xml.ws.Endpoint API methods:

	
Endpoint metadata documents (WSDL or XML schema) associated with the endpoint. You must define metadata before publishing the Web service endpoint.

	
Endpoint properties.

	
java.util.concurrent.Executor that will be used to dispatch incoming requests to the application (see http://java.sun.com/javase/6/docs/api/java/util/concurrent/Executor.html).

For more information, see the javax.xml.ws.Endpoint Javadoc at http://java.sun.com/javase/6/docs/api/javax/xml/ws/Endpoint.html.

6 Using Callbacks

The following sections describe how to use callbacks to notify clients of events:

	
Overview of Callbacks

	
Example Callback Implementation

	
Programming Callbacks: Main Steps

	
Programming Guidelines for Target Web Service

	
Programming Guidelines for the Callback Client Web Service

	
Programming Guidelines for the Callback Web Service

Overview of Callbacks

A callback is a contract between a client and service that allows the service to invoke operations on a client-provided endpoint during the invocation of a service method for the purpose of querying the client for additional data, allowing the client to inject behavior, or notifying the client of progress. The service advertises the requirements for the callback using a WSDL that defines the callback port type and the client informs the service of the callback endpoint address using WS-Addressing.

Example Callback Implementation

The example callback implementation described in this section consists of the following three Java files:

	
JWS file that implements the callback Web service: The callback Web service defines the callback methods. The implementation simply passes information back to the target Web service that, in turn, passes the information back to the client Web service.

In the example in this section, the callback Web service is called CallbackService. The Web service defines a single callback method called callback().

	
JWS file that implements the target Web service: The target Web service includes one or more standard operations that invoke a method defined in the callback Web service and sends the message back to the client Web service that originally invoked the operation of the target Web service.

In the example, this Web service is called TargetService and it defines a single standard method called targetOperation().

	
JWS file that implements the client Web service: The client Web service invokes an operation of the target Web service. Often, this Web service will include one or more methods that specify what the client should do when it receives a callback message back from the target Web service via a callback method.

In the example, this Web service is called CallerService. The method that invokes TargetService in the standard way is called call().

The following shows the flow of messages for the example callback implementation.

Figure 6-1 Example Callback Implementation

[image: Surrounding text describes Figure 6-1 .]

	
The call() method of the CallerService Web service, running in one WebLogic Server instance, explicitly invokes the targetOperation() method of the TargetService and passes a Web service endpoint to the CallbackService. Typically, the TargetService service is running in a separate WebLogic Server instance.

	
The implementation of the TargetService.targetOperation() method explicitly invokes the callback() method of the CallbackService, which implements the callback service, using the Web service endpoint that is passed in from CallerService when the method is called.

	
The CallbackService.callback() method sends information back to the TargetService Web service.

	
The TargetService.targetOperation() method, in turn, sends the information back to the CallerService service, completing the callback sequence.

Programming Callbacks: Main Steps

The procedure in this section describes how to program and compile the three JWS files that are required to implement callbacks: the target Web service, the client Web service, and the callback Web service. The procedure shows how to create the JWS files from scratch; if you want to update existing JWS files, you can also use this procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that you have a working build.xml file to which you can add targets for running the jwsc Ant task and deploying the Web services. For more information, see Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Table 6-1 Steps to Program Callbacks

	#
	Step	Description
	
1

	
Create a new JWS file, or update an existing one, that implements the target Web service.

	
Use your favorite IDE or text editor. See Programming Guidelines for Target Web Service.

Note: The JWS file that implements the target Web service invokes one or more callback methods of the callback Web service. However, the step that describes how to program the callback Web service comes later in this procedure. For this reason, programmers typically program the three JWS files at the same time, rather than linearly as implied by this procedure. The steps are listed in this order for clarity only.

	
2

	
Update your build.xml file to include a call to the jwsc Ant task to compile the target JWS file into a Web service.

	
See Updating the build.xml File for the Target Web Service.

	
3

	
Run the Ant target to build the target Web service.

	
For example:

prompt> ant build-target

	
4

	
Deploy the target Web service as usual.

	
See "Deploying and Undeploying WebLogic Web Services" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

	
5

	
Create a new JWS file, or update an existing one, that implements the client Web service.

	
It is assumed that the client Web service is deployed to a different WebLogic Server instance from the one that hosts the target Web service. See Programming Guidelines for the Callback Client Web Service.

	
6

	
Create the JWS file that implements the callback Web service.

	
See Programming Guidelines for the Callback Web Service.

	
7

	
Update the build.xml file that builds the client Web service.

	
The jwsc Ant task that builds the client Web service also compiles CallbackWS.java and includes the class file in the WAR file using the Fileset Ant task element. For example:

<clientgen
 type="JAXWS"
 wsdl="${awsdl}"
 packageName="jaxws.callback.client.add"/>
<clientgen
 type="JAXWS"
 wsdl="${twsdl}"
 packageName="jaxws.callback.client.target"/>
<FileSet dir="." >
 <include name="CallbackWS.java" />
</FileSet>

	
8

	
Run the Ant target to build the client and callback Web services.

	
For example:

prompt> ant build-caller

	
9

	
Deploy the client Web service as usual.

	
See "Deploying and Undeploying WebLogic Web Services" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Programming Guidelines for Target Web Service

The following example shows a simple JWS file that implements the target Web service; see the explanation after the example for coding guidelines that correspond to the Java code in bold.

package examples.webservices.callback;

import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.callbackservice.*;

@WebService(
 portName="TargetPort",
 serviceName="TargetService",
 targetNamespace="http://example.oracle.com",
 endpointInterface=
 "examples.webservices.callback.target.TargetPortType",
 wsdlLocation="/wsdls/Target.wsdl")
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class TargetImpl {
 public String targetOperation(String s, W3CEndpointReference callback)
 {
 CallbackService aservice = new CallbackService();
 CallbackPortType aport =
 aservice.getPort(callback, CallbackPortType.class);
 String result = aport.callback(s);
 return result + " processed by target";
 }
}

Follow these guidelines when programming the JWS file that implements the target Web service. Code snippets of the guidelines are shown in bold in the preceding example.

	
Import the packages required to pass the callback service endpoint and access the CallbackService stub implementation.

import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.callbackservice.*;

	
Create an instance of the CallbackService implementation using the stub implementation and get a port by passing the CallbackService service endpoint, which is passed by the calling application (CallerService).

CallbackService aservice = new CallbackService();
CallbackPortType aport =
 aservice.getPort(callback, CallbackPortType.class);

	
Invoke the callback operation of CallbackService using the port you instantiated:

String result = aport.callback(s);

	
Return the result to the CallerService service.

return result + " processed by target";

Programming Guidelines for the Callback Client Web Service

The following example shows a simple JWS file for a client Web service that invokes the target Web service described in Programming Guidelines for Target Web Service; see the explanation after the example for coding guidelines that correspond to the Java code in bold.

package examples.webservices.callback;

import javax.annotation.Resource;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.Endpoint;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.WebServiceException;
import javax.xml.ws.WebServiceRef;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.wsaddressing.W3CEndpointReference;

import examples.webservices.callback.target.*;

@WebService(
 portName="CallerPort",
 serviceName="CallerService",
 targetNamespace="http://example.oracle.com")
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class CallerImpl
{
 @Resource
 private WebServiceContext context;

 @WebServiceRef()
 private TargetService target;

 @WebMethod()
 public String call(String s) {
 Object sc =
 context.getMessageContext().get(MessageContext.SERVLET_CONTEXT);
 Endpoint callbackImpl = Endpoint.create(new CallbackWS());
 callbackImpl.publish(sc);
 TargetPortType tPort = target.getTargetPort();
 String result = tPort.targetOperation(s,
 callbackImpl.getEndpointReference(W3CEndpointReference.class));
 callbackImpl.stop();
 return result;
 }
}

Follow these guidelines when programming the JWS file that invokes the target Web service; code snippets of the guidelines are shown in bold in the preceding example:

	
Import the packages required to access the servlet context, publish the Web service endpoint, and access the TargetService stub implementation.

import javax.xml.ws.Endpoint;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.target.*;

	
Get the servlet context using the WebServiceContext and MessageContext. You will use the servlet context when publishing the Web service endpoint, later.

@Resource
private WebServiceContext context;
.
.
.
Object sc
 context.getMessageContext().get(MessageContext.SERVLET_CONTEXT);

For more information about accessing runtime information using WebServiceContext and MessageContext, see "Accessing Runtime Information About a Web service" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

	
Create a Web service endpoint to the CallbackService implementation and publish that endpoint to accept incoming requests.

Endpoint callbackImpl = Endpoint.create(new CallbackWS());
callbackImpl.publish(sc);

For more information about Web service publishing, see Chapter 5, "Publishing a Web Service Endpoint."

	
Access an instance of the TargetService stub implementation and invoke the targetOperation operation of TargetService using the port you instantiated. You pass the CallbackService service endpoint as a javax.xml.ws.wsaddressing.W3CEndpointReference data type:

@WebServiceRef()
private TargetService target;
.
.
.
TargetPortType tPort = target.getTargetPort();
String result = tPort.targetOperation(s,
 callbackImpl.getEndpointReference(W3CEndpointReference.class));

	
Stop publishing the endpoint:

callbackImpl.stop();

Programming Guidelines for the Callback Web Service

The following example shows a simple JWS file for a callback Web service. The callback operation is shown in bold.

package examples.webservices.callback;

import javax.jws.WebService;
import javax.xml.ws.BindingType;

@WebService(
 portName="CallbackPort",
 serviceName="CallbackService",
 targetNamespace="http://example.oracle.com",
 endpointInterface=
 "examples.webservices.callback.callbackservice.CallbackPortType",
 wsdlLocation="/wsdls/Callback.wsdl")

@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class CallbackWS implements
 examples.webservices.callback.callbackservice.CallbackPortType {

 public CallbackWS() {
 }

 public java.lang.String callback(java.lang.String arg0) {
 return arg0.toUpperCase();
 }
}

Updating the build.xml File for the Target Web Service

You update a build.xml file to generate a target Web service that invokes the callback Web service by adding taskdefs and a build-target target that looks something like the following example. See the description after the example for details.

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-target">
 <jwsc srcdir="src" destdir="${ear-dir}" listfiles="true">
 <jws file="TargetImpl.java"
 compiledWsdl="${cowDir}/target/Target_wsdl.jar" type="JAXWS">
 <WLHttpTransport contextPath="target" serviceUri="TargetService"/>
 </jws>
 <clientgen
 type="JAXWS"
 wsdl="Callback.wsdl"
 packageName="examples.webservices.callback.callbackservice"/>
 </jwsc>
 <zip destfile="${ear-dir}/jws.war" update="true">
 <zipfileset dir="src/examples/webservices/callback" prefix="wsdls">
 <include name="Callback*.wsdl"/>
 </zipfileset>
 </zip>
 </target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks. Update the jwsc Ant task that compiles the client Web service to include:

	
<clientgen> child element of the <jws> element to generate and compile the Service interface stubs for the deployed CallbackService Web service. The jwsc Ant task automatically packages them in the generated WAR file so that the client Web service can immediately access the stubs. You do this because the TartgetImpl JWS file imports and uses one of the generated classes.

	
<zip> element to include the WSDL for the CallbackService service in the WAR file so that other Web services can access the WSDL from the following URL: http://${wls.hostname}:${wls.port}/callback/wsdls/Callback.wsdl.

For more information about jwsc, see "Running the jwsc WebLogic Web Services Ant Task" in Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

7 Optimizing Binary Data Transmission Using MTOM/XOP

The following sections describe how to use MTOM/XOP to send binary data:

	
Sending Binary Data Using MTOM/XOP

	
Streaming SOAP Attachments

Sending Binary Data Using MTOM/XOP

SOAP Message Transmission Optimization Mechanism/XML-binary Optimized Packaging (MTOM/XOP) defines a method for optimizing the transmission of XML data of type xs:base64Binary or xs:hexBinary in SOAP messages. When the transport protocol is HTTP, MIME attachments are used to carry that data while at the same time allowing both the sender and the receiver direct access to the XML data in the SOAP message without having to be aware that any MIME artifacts were used to marshal the base64Binary or hexBinary data. The binary data optimization process involves the following steps: 1) encode the binary data, 2) remove the binary data from the SOAP envelope, 3) compress the binary data, 4) attach the binary data to the MIME package, and 5) add references to the MIME package in the SOAP envelope.

MTOM/XOP support is standard in JAX-WS via the use of JWS annotations. The MTOM specification does not require that, when MTOM is enabled, the Web service runtime use XOP binary optimization when transmitting base64binary or hexBinary data. Rather, the specification allows the runtime to choose to do so. This is because in certain cases the runtime may decide that it is more efficient to send the binary data directly in the SOAP Message; an example of such a case is when transporting small amounts of data in which the overhead of conversion and transport consumes more resources than just inlining the data as is.

The following Java types are mapped to the base64Binary XML data type, by default: javax.activation.DataHandler, java.awt.Image, and javax.xml.transform.Source. The elements of type base64Binary or hexBinary are mapped to byte[], by default.

The following table summarizes the steps required to use MTOM/XOP to send base64Binary or hexBinary attachments.

Table 7-1 Steps to Use MTOM/XOP to Send Binary Data

	#
	Step	Description
	
1

	
Annotate the data types that you are going to use as an MTOM attachment. (Optional)

	
Depending on your programming model, you can annotate your Java class or WSDL to define the content types that are used for sending binary data. This step is optional. By default, XML binary types are mapped to Java byte[]. For more information, see Annotating the Data Types.

	
2

	
Enable MTOM on the Web service.

	
See Enabling MTOM on the Web Service.

	
3

	
Enable MTOM on the client of the Web service.

	
See Enabling MTOM on the Client.

	
4

	
Set the attachment threshold.

	
Set the attachment threshold to specify when the xs:binary64 data is sent inline or as an attachment. See Setting the Attachment Threshold.

Annotating the Data Types

Depending on your programming model, you can annotate your Java class or WSDL to define the MIME content types that are used for sending binary data. This step is optional.

The following table defines the mapping of MIME content types to Java types. In some cases, a default MIME type-to-Java type mapping exists. If no default exists, the MIME content types are mapped to DataHandler.

Table 7-2 Mapping of MIME Content Types to Java Types

	MIME Content Type	Java Type
	

image/gif

	

java.awt.Image

	

image/jpeg

	

java.awt.Image

	

text/plain

	

java.lang.String

	

text/xml or application/xml

	

javax.xml.transform.Source

	

/

	

javax.activation.DataHandler

The following sections describe how to annotate the data types based on whether you are starting from Java or WSDL.

	
Annotating the Data Types: Start From Java

	
Annotating the Data Types: Start From WSDL

Annotating the Data Types: Start From Java

When starting from Java, to define the content types that are used for sending binary data, annotate the field that holds the binary data using the @XmlMimeType annotation.

The field that contains the binary data must be of type DataHandler.

The following example shows how to annotate a field in the Java class that holds the binary data.

@WebMethod
@Oneway
public void dataUpload(
 @XmlMimeType("application/octet-stream") DataHandler data)
{
}

Annotating the Data Types: Start From WSDL

When starting from WSDL, to define the content types that are used for sending binary data, annotate the WSDL element of type xs:base64Binary or xs:hexBinary using one of the following attributes:

	
xmime:contentType - Defines the content type of the element.

	
xmime:expectedContentType - Defines the range of media types that are acceptable for the binary data.

The following example maps the image element of type base64binary to image/gif MIME type (which maps to the java.awt.Image Java type).

<element name="image" type="base64Binary"
xmime:expectedContentTypes="image/gif"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"/>

Enabling MTOM on the Web Service

You can enable MTOM on the Web service using an annotation or WS-Policy file, as described in the following sections:

	
Enabling MTOM on the Web Service Using Annotation

	
Enabling MTOM on the Web Services Using WS-Policy File

Enabling MTOM on the Web Service Using Annotation

To enable MTOM in the Web service, specify the @java.xml.ws.soap.MTOM annotation on the service endpoint implementation class, as illustrated in the following example. Relevant code is shown in bold.

package examples.webservices.mtom;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.soap.MTOM;

@MTOM
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
public class MTOMImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);

 }
}

Enabling MTOM on the Web Services Using WS-Policy File

In addition to the @MTOM annotation, described in the previous section, support for MTOM/XOP in WebLogic JAX-WS Web services is implemented using the pre-packaged WS-Policy file Mtom.xml. WS-Policy files follow the WS-Policy specification, described at http://www.w3.org/TR/ws-policy; this specification provides a general purpose model and XML syntax to describe and communicate the policies of a Web service, in this case the use of MTOM/XOP to send binary data. The installation of the pre-packaged Mtom.xml WS-Policy file in the types section of the Web service WSDL is as follows (provided for your information only; you cannot change this file):

<wsp:Policy wsu:Id="myService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsoma:OptimizedMimeSerialization
 xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will automatically contain the following snippet that references the MTOM WS-Policy file; the snippet indicates that the Web service uses MTOM/XOP:

<wsdl:binding name="BasicHttpBinding_IMtomTest"
 type="i0:IMtomTest">
 <wsp:PolicyReference URI="#myService_policy" />
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

You can associate the Mtom.xml WS-Policy file with a Web service at development-time by specifying the @Policy metadata annotation in your JWS file. Be sure you also specify the attachToWsdl=true attribute to ensure that the dynamic WSDL includes the required reference to the Mtom.xml file; see the example below.

You can associate the Mtom.xml WS-Policy file with a Web service at deployment time by modifying the WSDL to add the Policy to the types section just before deployment.

In addition, you can attach the file at runtime using by the Administration Console; for details, see "Associate a WS-Policy file with a Web service" in the Oracle WebLogic Server Administration Console Help. This section describes how to use the JWS annotation.

The following simple JWS file example shows how to use the @weblogic.jws.Policy annotation in your JWS file to specify that the pre-packaged Mtom.xml file should be applied to your Web service (relevant code shown in bold):

package examples.webservices.mtom;
import javax.jws.WebMethod;
import javax.jws.WebService;
 import weblogic.jws.Policy;
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
@Policy(uri="policy:Mtom.xml", attachToWsdl=true)
public class MtomImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);
 }

Enabling MTOM on the Client

To enable MTOM on the client of the Web service, pass the javax.xml.ws.soap.MTOMFeature as a parameter when creating the Web service proxy or dispatch, as illustrated in the following example. Relevant code is shown in bold.

package examples.webservices.mtom.client;

import javax.xml.ws.soap.MTOMFeature;

public class Main {
 public static void main(String[] args) {
 String FOO = "FOO";
 MtomService service = new MtomService()
 MtomPortType port = service.getMtomPortTypePort(new MTOMFeature());
 String result = null;
 result = port.echoBinaryAsString(FOO.getBytes());
 System.out.println("Got result: " + result);
 }
}

Setting the Attachment Threshold

You can set the attachment threshold to specify when the xs:binary64 data is sent inline or as an attachment. By default, the attachment threshold is 0 bytes. All xs:binary64 data is sent as an attachment.

To set the attachment threshold:

	
On the Web service, pass the threshold attribute to the @java.xml.ws.soap.MTOM annotation. For example:

@MTOM(threshold=3072)

	
On the client of the Web service, pass the threshold value to javax.xml.ws.soap.MTOMFeature. For example:

MtomPortType port = service.getMtomPortTypePort(new MTOMFeature(3072));

In each of the examples above, if a message is greater than or equal to 3 KB, it will be sent as an attachment. Otherwise, the content will be sent inline, as part of the SOAP message body.

Streaming SOAP Attachments

	
Note:

The com.sun.xml.ws.developer.StreamingDataHandler API (see https://jax-ws-architecture-document.dev.java.net/nonav/doc/com/sun/xml/ws/developer/StreamingAttachment.html) is supported as an extension to the JAX-WS RI, provided by Sun Microsystems. Because this API is not provided as part of the WebLogic software, it is subject to change.

Using MTOM and the javax.activation.DataHandler and com.sun.xml.ws.developer.StreamingDataHandler APIs you can specify that a Web service use a streaming API when reading inbound SOAP messages that include attachments, rather than the default behavior in which the service reads the entire message into memory. This feature increases the performance of Web services whose SOAP messages are particularly large.

	
Note:

Streaming MTOM cannot be used in conjunction with message encryption.

The following sections describe how to employ streaming SOAP attachments on the client and server sides.

Client Side Example

The following provides an example that employs streaming SOAP attachments on the client side.

package examples.webservices.mtomstreaming.client;

import java.util.Map;
import java.io.InputStream;
import javax.xml.ws.soap.MTOMFeature;
import javax.activation.DataHandler;
import javax.xml.ws.BindingProvider;
import com.sun.xml.ws.developer.JAXWSProperties;
import com.sun.xml.ws.developer.StreamingDataHandler;

public class Main {
 public static void main(String[] args) {
 MtomStreamingService service = new MtomStreamingService();
 MTOMFeature feature = new MTOMFeature();
 MtomStreamingPortType port = service.getMtomStreamingPortTypePort(
 feature);
 Map<String, Object> ctxt=((BindingProvider)port).getRequestContext();
 ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE, 8192);
 DataHandler dh = new DataHandler(new
 FileDataSource("/tmp/example.jar"));
 port.fileUpload("/tmp/tmp.jar",dh);

 DataHandler dhn = port.fileDownload("/tmp/tmp.jar");
 StreamingDataHandler sdh = {StreamingDataHandler)dh;
 try{
 File file = new File("/tmp/tmp.jar");
 sdh.moveTo(file);
 sdh.close();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

The preceding example demonstrates the following:

	
To enable MTOM on the client of the Web service, pass the javax.xml.ws.soap.MTOMFeature as a parameter when creating the Web service proxy or dispatch.

	
Configure HTTP streaming support by enabling HTTP chunking on the MTOM streaming client.

Map<String, Object> ctxt = ((BindingProvider)port).getRequestContext();
 ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE, 8192);

	
Call the port.fileUpload method.

	
Cast the DataHandler to StreamingDataHandler and use the StreamingDataHandler.readOnce() method to read the attachment.

Server Side Example

The following provides an example that employs streaming SOAP attachments on the server side.

package examples.webservices.mtomstreaming;

import java.io.File;
import java.jws.Oneway;
import javax.jws.WebMethod;
import java.io.InputStream;
import javax.jws.WebService;
import javax.xml.bind.annotation.XmlMimeType;
import javax.xml.ws.WebServiceException;
import javax.xml.ws.soap.MTOM;
import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import com.sun.xml.ws.developer.StreamingAttachment;
import com.sun.xml.ws.developer.StreamingDataHandler;

@StreamingAttachment(parseEagerly=true, memoryThreshold=40000L)
@MTOM
@WebService(name="MtomStreaming",
 serviceName="MtomStreamingService",
 targetNamespace="http://example.org",
 wsdlLocation="StreamingImplService.wsdl")
@Oneway
@WebMethod
public class StreamingImpl {

 // Use @XmlMimeType to map to DataHandler on the client side
 public void fileUpload(String fileName,
 @XmlMimeType("application/octet-stream")
 DataHandler data) {
 try {
 StreamingDataHandler dh = (StreamingDataHandler) data;
 File file = new File(fileName);
 dh.moveTo(file);
 dh.close();
 } catch (Exception e) {
 throw new WebServiceException(e);
 }

 @XmlMimeType("application/octet-stream")
 @WebMethod
 public DataHandler fileDownload(String filename)
 {
 return new DataHandler(new FileDataSource(filename));
 }
}

The preceding example demonstrates the following:

	
The @StreamingAttachement annotation is used to configure the streaming SOAP attachment. For more information, see "Configuring Streaming SOAP Attachments".

	
The @XmlMimeType annotation is used to map the DataHandler, as follows:

	
If starting from WSDL, it is used to map the xmime:expectedContentTypes="application/octet-stream" to DataHandler in the generated SEI.

	
If starting from Java, it is used to generate an appropriate schema type in the generated WSDL.

	
Cast the DataHandler to StreamingDataHandler and use the StreamingDataHandler.moveTo(File) method to store the contents of the attachment to a file.

Configuring Streaming SOAP Attachments

You can configure streaming SOAP attachments on the client and server sides to specify the following:

	
Directory in which large attachments are stored.

	
Whether to parse eagerly the streaming attachments.

	
Maximum attachment size (bytes) that can be stored in memory. Attachments that exceed the specified number of bytes are written to a file.

Configuring Streaming SOAP Attachments on the Server

	
Note:

The com.sun.xml.ws.developer.StreamingAttachment API (see https://jax-ws-architecture-document.dev.java.net/nonav/doc/com/sun/xml/ws/developer/StreamingAttachment.html) is supported as an extension to the JDK 6.0, provided by Sun Microsystems. Because this API is not provided as part of the JDK 6.0 kit, it is subject to change.

To configure streaming SOAP attachments on the server, add the @StreamingAttachment annotation on the endpoint implementation. The following example specifies that streaming attachments are to be parsed eagerly and sets the memory threshold to 4MB. Attachments under 4MB are stored in memory.

...
import com.sun.xml.ws.developer.StreamingAttachment;
import javax.jws.WebService;

@StreamingAttachment(parseEagerly=true, memoryThreshold=4000000L)
@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")
public class StreamingImpl {
}

Configuring Streaming SOAP Attachments on the Client

	
Note:

The com.sun.xml.ws.developer.StreamingAttachmentFeature API (see https://jax-ws-architecture-document.dev.java.net/nonav/doc/com/sun/xml/ws/developer/StreamingAttachment.html) is supported as an extension to the JDK 6.0, provided by Sun Microsystems. Because this API is not provided as part of the JDK 6.0 kit, it is subject to change.

To configure streaming SOAP attachments on the client, create a StreamingAttachmentFeature object and pass this as an argument when creating the PortType stub implementation. The following example sets the directory in which large attachments are stored to /tmp, specifies that streaming attachments are to be parsed eagerly and sets the memory threshold to 4MB. Attachments under 4MB are stored in memory.

...
import com.sun.xml.ws.developer.StreamingAttachmentFeature;
...
MTOMFeature mtom = new MTOMFeature();
StreamingAttachmentFeature stf = new StreamingAttachmentFeature("/tmp", true, 4000000L);
MtomStreamingService service = new MtomStreamingService();
MtomStreamingPortType port = service.getMtomStreamingPortTypePort(
 mtom, stf);
...

8 Creating Dynamic Proxy Clients

A dynamic proxy client enables a Web service client to invoke a Web service based on a service endpoint interface (SEI) dynamically at run-time without using clientgen. The steps to create a dynamic proxy client are outlined in the following table. For more information, see the javax.xml.ws.Service Javadoc at http://java.sun.com/javase/6/docs/api/javax/xml/ws/Service.html.

Table 8-1 Steps to Create a Dynamic Proxy Client

	#
	Step	Description
	
1

	
Create the javax.xml.ws.Service instance.

	
Create the Service instance using the Service.create method.

You must pass the service name and optionally the location of the WSDL document. The method details are as follows:

public static Service create (QName serviceName) throws javax.xml.ws.WebServiceException {}
public static Service create (URL wsdlDocumentLocation, QName serviceName) throws javax.xml.ws.WebServiceException {}

For example:

URL wsdlLocation = new URL("http://example.org/my.wsdl");
QName serviceName = new QName("http://example.org/sample", "MyService");
Service s = Service.create(wsdlLocation, serviceName);

See Additional Considerations When Specifying WSDL Location for additional usage information.

	
2

	
Create the proxy stub.

	
Use the Service.getPort method to create the proxy stub. You can use this stub to invoke operations on the target service endpoint.

You must pass the service endpoint interface (SEI) and optionally the name of the port in the WSDL service description. The method details are as follows:

public <T> T getPort(QName portName, Class<T> serviceEndpointInterface) throws javax.xml.ws.WebServiceException {}
public <T> T getPort(Class<T> serviceEndpointInterface) throws javax.xml.ws.WebServiceException {}

For example:

MyPort port = s.getPort(MyPort.class);

Additional Considerations When Specifying WSDL Location

If you use HTTPS to get the Web service from the WSDL, and the hostname definition in the WebLogic Server SSL certificate does not equal the hostname of the peer HTTPS server or is not one of the following, the action fails with a hostname verification error:

	
localhost

	
127.0.0.1

	
hostname of localhost

	
IP address of localhost

The hostname verification error is as follows:

EchoService service = new EchoService(https-wsdl, webservice-qName);
:
:
javax.xml.ws.WebServiceException: javax.net.ssl.SSLKeyException:
Security:090504 Certificate chain received from host.company.com - 10.167.194.63
failed hostname verification check. Certificate contained {....} but
check expected host.company.com

The recommended workaround is to use HTTP instead of HTTPS to get the Web service from a WSDL when creating the service, and your own hostname verifier code to verify the hostname after the service is created:

EchoService service = Service.create(http_wsdl, qname);
//get Port
EchoPort port = service.getPort(...);
//set self-defined hostname verifier
((BindingProvider) port).getRequestContext().put(
 com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER,
 new MyHostNameVerifier());
/*
*/

Optionally, you can ignore hostname verification by setting the binding provider property:

((BindingProvider) port).getRequestContext().put(
 BindingProviderProperties.HOSTNAME_VERIFICATION_PROPERTY,
 "true");

However, if you must use HTTPS to get the Web service from the WSDL, there are several possible workarounds:

	
Turn off hostname verification if you are using the WebLogic Server HTTPS connection. To do this, set the global system property to ignore hostname verification:

weblogic.security.SSL.ignoreHostnameVerification=true

The system property does not work for service creation if the connection is a JDK connection or other non-WebLogic Server connection.

	
Set your own hostname verifier for the connection before you get the Web service from the WSDL, then use HTTPS to get the Web service from the WSDL:

//set self-defined hostname verifier
URL url = new URL(https_wsdl);
HttpsURLConnection connection = (HttpsURLConnection)url.openConnection();
connection.setHostnameVerifier(new MyHostNameVerifier());

//then initiate the service
EchoService service = Service.create(https_wsdl, qname);

//get port and set self-defined hostname verifier to binding provider
...

For the workarounds in which you set your own hostname verifier, an example hostname verifier might be as follows:

public class MyHostnameVerifier implements HostnameVerifier {
 public boolean verify(String hostname, SSLSession session) {
 if (hostname.equals(“the host you want”))
 return true;
 else
 return false;
 }
}

9 Using XML Catalogs

The following sections describe how to use XML catalogs:

	
Overview of the Asynchronous Request-Response Feature

	
Defining and Referencing XML Catalogs

	
Disabling XML Catalogs in the Client Runtime

	
Getting a Local Copy of XML Resources

Overview of XML Catalogs

An XML catalog enables your application to reference imported XML resources, such as WSDLs and XSDs, from a source that is different from that which is part of the description of the Web service. Redirecting the XML resources in this way may be required to improve performance or to ensure your application runs properly in your local environment.

For example, a WSDL may be accessible during client generation, but may no longer be accessible when the client is run. You may need to reference a resource that is local to or bundled with your application rather than a resource that is available over the network. Using an XML catalog file, you can specify the location of the WSDL that will be used by the Web service at runtime.

The following table summarizes how XML catalogs are supported in the WebLogic Server Ant tasks.

Table 9-1 Support for XML Catalogs in WebLogic Server Ant Tasks

	Ant Task	Description
	

clientgen

	
Define and reference XML catalogs in one of the following ways:

	
Use the catalog attribute to specify the name of the external XML catalog file. For more information, see Defining an External XML Catalog.

	
Use the <xmlcatalog> child element to reference an embedded XML catalog file. For more information, see Embedding an XML Catalog.

When you execute the clientgen Ant task to build the client (or the jwsc Ant task if the clientgen task is embedded), the jax-ws-catalog.xml file is generated and copied to the client runtime environment. The jax-ws-catalog.xml file contains the XML catalog(s) that are defined in the external XML catalog file(s) and/or embedded in the build.xml file. This file is copied, along with the referenced XML targets, to the META-INF or WEB-INF folder for Enterprise or Web applications, respectively.

Note: The contents of the XML resources are not impacted during this process.

You can disable the jax-ws-catalog.xml file from being copied to the client runtime environment, as described in Disabling XML Catalogs in the Client Runtime.

	

wsdlc

	
Define and reference XML catalogs in one of the following ways:

	
Use the catalog attribute to specify the name of the external XML catalog file. For more information, see Defining an External XML Catalog.

	
Use the <xmlcatalog> child element to reference an embedded XML catalog file. For more information, see Embedding an XML Catalog.

When you execute the wsdlc Ant task, the XML resources are copied to the compiled WSDL JAR file or exploded directory.

	

wsdlget

	
Define and reference XML catalogs in one of the following ways:

	
Use the catalog attribute to specify the name of the external XML catalog file. For more information, see Defining an External XML Catalog.

	
Use the <xmlcatalog> child element to reference an embedded XML catalog file. For more information, see Embedding an XML Catalog.

When you execute the wsdlget Ant task, the WSDL and imported resources are downloaded to the specified directory.

Note: The contents of the XML resources are updated to reference the resources defined in the XML catalog(s).

The following sections describe how to:

	
Define and reference an XML catalog to specify the XML resources that you want to redirect. See Defining and Referencing XML Catalogs,

	
Disable XML catalogs in the client runtime. See Disabling XML Catalogs in the Client Runtime.

	
Get a local copy of the WSDL and its imported XML resources using wsdlget. These files can be packaged with your application and referenced from within an XML catalog. See Getting a Local Copy of XML Resources.

For more information about XML catalogs, see the Oasis XML Catalogs specification at http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html.

Defining and Referencing XML Catalogs

You define an XML catalog and then reference it from the clientgen or wsdlc Ant task in your build.xml file in one of the following ways:

	
Define an external XML catalog - Define an external XML catalog file and reference that file from the clientgen or wsdlc Ant tasks in your build.xml file using the catalogs attribute. For more information, see Defining an External XML Catalog.

	
Embed an XML catalog - Embed the XML catalog directly in the build.xml file using the <xmlcatalog> element and reference it from the clientgen or wsdlc Ant tasks in your build.xml file using the <xmlcatalog> child element. For more information, see Embedding an XML Catalog.

In the event of a conflict, entries defined in an embedded XML catalog take precedence over those defined in an external XML catalog.

	
Note:

You can use the wsdlget Ant task to get a local copy of the XML resources, as described in Disabling XML Catalogs in the Client Runtime.

Defining an External XML Catalog

To define an external XML catalog:

	
Create an external XML catalog file that defines the XML resources that you want to be redirected. See Creating an External XML Catalog File.

	
Reference the XML catalog file from the clientgen or wsdlc Ant task in your build.xml file using the catalogs attribute. See Referencing the External XML Catalog File.

Each step is described in more detail in the following sections.

Creating an External XML Catalog File

The <catalog> element is the root element of the XML catalog file and serves as the container for the XML catalog entities. To specify XML catalog entities, you can use the system or public elements, for example.

The following provides a sample XML catalog file:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="HelloService.wsdl" />
 <public publicId="ISO 8879:1986//ENTITIES Added Latin 1//EN"
 uri="wsdl/myApp/myApp.wsdl"/>
</catalog>

In the above example:

	
The <catalog> root element defines the XML catalog namespace and sets the prefer attribute to system to specify that system matches are preferred.

	
The <system> element associates a URI reference with a system identifier.

	
The <public> element associates a URI reference with a public identifier.

For a complete description of the XML catalog file syntax, see the Oasis XML Catalogs specification at http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html.

Referencing the External XML Catalog File

To reference the XML catalog file from the clientgen or wsdlc Ant task in your build.xml file, use the catalogs attribute.

The following example shows how to reference an XML catalog file using clientgen. Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"/>
</clientgen>
</target>

Embedding an XML Catalog

To embed an XML catalog:

	
Create an embedded XML catalog in the build.xml file. See Creating an Embedded XML Catalog.

	
Reference the embedded XML catalog from the clientgen or wsdlc Ant task using the xmlcatalog child element. See Referencing an Embedded XML Catalog.

Each step is described in more detail in the following sections.

	
Note:

In the event of a conflict, entries defined in an embedded XML catalog take precedence over those defined in an external XML catalog.

Creating an Embedded XML Catalog

The <xmlcatalog> element enables you to embed an XML catalog directly in the build.xml file. The following shows a sample of an embedded XML catalog in the build.xml file.

<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

For a complete description of the embedded XML catalog syntax, see the Oasis XML Catalogs specification at http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html.

Referencing an Embedded XML Catalog

The <xmlcatalog> child element of the clientgen or wsdlc Ant tasks enables you to reference an embedded XML catalog. To specify the <xmlcatalog> element, use the following syntax:

<xmlcatalog refid="id"/>

The id referenced by the <xmlcatalog> child element must match the ID of the embedded XML catalog.

The following example shows how to reference an embedded XML catalog using clientgen. Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"/>
 <xmlcatalog refid="wsimportcatalog"/>
</clientgen>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

Disabling XML Catalogs in the Client Runtime

By default, when you define and reference XML catalogs in your build.xml file, as described in Defining and Referencing XML Catalogs, when you execute the clientgen Ant task to build the client, the jax-ws-catalog.xml file is generated and copied to the client runtime environment. The jax-ws-catalog.xml file contains the XML catalog(s) that are defined in the external XML catalog file(s) and/or embedded in the build.xml file. This file is copied, along with the referenced XML targets, to the META-INF or WEB-INF folder for Enterprise or Web applications, respectively.

You can disable the generation of the XML catalog artifacts in the client runtime environment by setting the genRuntimeCatalog attribute of the clientgen to false. For example:

<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"
 genRuntimeCatalog="false"/>

In this case, the jax-ws-catalog.xml file will not be copied to the runtime environment.

If you generated your client with the genRuntimeCatalog attribute set to false, to subsequently enable the XML catalogs in the client runtime, you will need to create the jax-ws-catalog.xml file manually and copy it to the META-INF or WEB-INF folder for Enterprise or Web applications, respectively. Ensure that the jax-ws-catalog.xml file contains all of the entries defined in the external XML catalog file(s) and/or embedded in the build.xml file.

Getting a Local Copy of XML Resources

The wsdlget Ant task enables you to get a local copy of XML resources, such as WSDL and XSD files. Then, you can refer to the local version of the XML resources using an XML catalog, as described in Defining and Referencing XML Catalogs.

The following excerpt from an Ant build.xml file shows how to use the wsdlget Ant task to download a WSDL and its XML resources. The XML resources will be saved to the wsdl folder in the directory from which the Ant task is run.

<target name="wsdlget"
 <wsdlget
 wsdl="http://host/service?wsdl"
 destDir="./wsdl/"
 />
</target>

10 Creating and Using SOAP Message Handlers

The following sections provide information about creating and using SOAP message handlers:

	
Overview of SOAP Message Handlers

	
Adding Server-side SOAP Message Handlers: Main Steps

	
Adding Client-side SOAP Message Handlers: Main Steps

	
Designing the SOAP Message Handlers and Handler Chains

	
Creating the SOAP Message Handler

	
Configuring Handler Chains in the JWS File

	
Creating the Handler Chain Configuration File

	
Compiling and Rebuilding the Web Service

	
Configuring the Client-side SOAP Message Handlers

Overview of SOAP Message Handlers

Web services and their clients may need to access the SOAP message for additional processing of the message request or response. You can create SOAP message handlers to enable Web services and clients to perform this additional processing on the SOAP message. A SOAP message handler provides a mechanism for intercepting the SOAP message in both the request and response of the Web service.

A simple example of using handlers is to access information in the header part of the SOAP message. You can use the SOAP header to store Web service specific information and then use handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your Web service. After your Web service has been deployed for a while, you might discover that many consumers invoke it with the same parameters. You could improve the performance of your Web service by caching the results of popular invokes of the Web service (assuming the results are static) and immediately returning these results when appropriate, without ever invoking the back-end components that implement the Web service. You implement this performance improvement by using handlers to check the request SOAP message to see if it contains the popular parameters.

JAX-WS supports two types of SOAP message handlers: SOAP handlers and logical handlers. SOAP handlers can access the entire SOAP message, including the message headers and body. Logical handlers can access the payload of the message only, and cannot change any protocol-specific information (like headers) in a message.

	
Note:

If SOAP handlers are used in conjunction with policies (security, WS-ReliableMessaging, MTOM, and so on), for inbound messages, the policy interceptors are executed before the user-defined message handlers. For outbound messages, this order is reversed.

Adding Server-side SOAP Message Handlers: Main Steps

The following procedure describes the high-level steps to add SOAP message handlers to your Web service.

It is assumed that you have created a basic JWS file that implements a Web service and that you want to update the Web service by adding SOAP message handlers and handler chains. It is also assumed that you have set up an Ant-based development environment and that you have a working build.xml file that includes a target for running the jwsc Ant task. For more information, see in Getting Started With JAX-WS Web Services for Oracle WebLogic Server:

	
Use Cases and Examples

	
Developing WebLogic Web Services

	
Programming the JWS File

	
Invoking Web Services

Table 10-1 Steps to Add SOAP Message Handlers to a Web Service

	#
	Step	Description
	
1

	
Design the handlers and handler chains.

	
Design SOAP message handlers and group them together in a handler chain. See Designing the SOAP Message Handlers and Handler Chains.

	
2

	
For each handler in the handler chain, create a Java class that implements the SOAP message handler interface.

	
See Creating the SOAP Message Handler.

	
3

	
Update your JWS file, adding annotations to configure the SOAP message handlers.

	
See Configuring Handler Chains in the JWS File.

	
4

	
Create the handler chain configuration file.

	
See Creating the Handler Chain Configuration File.

	
5

	
Compile all handler classes in the handler chain and rebuild your Web service.

	
See Compiling and Rebuilding the Web Service.

Adding Client-side SOAP Message Handlers: Main Steps

You can configure client-side SOAP message handlers for both stand-alone clients and clients that run inside of WebLogic Server. You create the actual Java client-side handler in the same way you create a server-side handler (by creating a Java class that implements the SOAP message handler interface). In many cases you can use the exact same handler class on both the Web service running on WebLogic Server and the client applications that invoke the Web service. For example, you can write a generic logging handler class that logs all sent and received SOAP messages, both for the server and for the client.

The following procedure describes the high-level steps to add client-side SOAP message handlers to the client application that invokes a Web service operation.

It is assumed that you have created the client application that invokes a deployed Web service, and that you want to update the client application by adding client-side SOAP message handlers and handler chains. It is also assumed that you have set up an Ant-based development environment and that you have a working build.xml file that includes a target for running the clientgen Ant task. For more information, see "Invoking a Web service from a Stand-alone Client: Main Steps" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Table 10-2 Steps to Use Client-side SOAP Message Handlers

	#
	Step	Description
	
1

	
Design the handlers and handler chains.

	
This step is similar to designing the server-side SOAP message handlers, except the perspective is from the client application, rather than a Web service. See Designing the SOAP Message Handlers and Handler Chains.

	
2

	
For each handler in the handler chain, create a Java class that implements the SOAP message handler interface.

	
This step is similar to designing the server-side SOAP message handlers, except the perspective is from the client application, rather than a Web service. See Creating the SOAP Message Handler for details about programming a handler class.

	
3

	
Update your client to programmatically configure the SOAP message handlers.

	
See Configuring the Client-side SOAP Message Handlers.

	
4

	
Update the build.xml file that builds your application, specifying to the clientgen Ant task the customization file.

	
See Compiling and Rebuilding the Web Service.

	
5

	
Rebuild your client application by running the relevant task.

	

prompt> ant build-client

When you next run the client application, the SOAP messaging handlers listed in the configuration file automatically execute before the SOAP request message is sent and after the response is received.

	
Note:

You do not have to update your actual client application to invoke the client-side SOAP message handlers; as long as you specify to the clientgen Ant task the handler configuration file, the generated interface automatically takes care of executing the handlers in the correct sequence.

Designing the SOAP Message Handlers and Handler Chains

When designing your SOAP message handlers, you must decide:

	
The number of handlers needed to perform the work.

	
The sequence of execution.

You group SOAP message handlers together in a handler chain. Each handler in a handler chain may define methods for both inbound and outbound messages.

Typically, each SOAP message handler defines a separate set of steps to process the request and response SOAP message because the same type of processing typically must happen for the inbound and outbound message. You can, however, design a handler that processes only the SOAP request and does no equivalent processing of the response. You can also choose not to invoke the next handler in the handler chain and send an immediate response to the client application at any point.

Server-side Handler Execution

When invoking a Web service, WebLogic Server executes handlers as follows:

	
The inbound methods for handlers in the handler chain are all executed in the order specified by the JWS annotation. Any of these inbound methods might change the SOAP message request.

	
When the last handler in the handler chain executes, WebLogic Server invokes the back-end component that implements the Web service, passing it the final SOAP message request.

	
When the back-end component has finished executing, the outbound methods of the handlers in the handler chain are executed in the reverse order specified by the JWS annotation. Any of these outbound methods might change the SOAP message response.

	
When the first handler in the handler chain executes, WebLogic Server returns the final SOAP message response to the client application that invoked the Web service.

For example, assume that you are going to use the @HandlerChain JWS annotation in your JWS file to specify an external configuration file, and the configuration file defines a handler chain called SimpleChain that contains three handlers, as shown in the following sample:

<?xml version="1.0" encoding="UTF-8" ?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-class>
 Handler1
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>
 Handler2
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>
 Handler3
 </handler-class>
 </handler>
 </handler-chain>
</handler-chains>

The following graphic shows the order in which WebLogic Server executes the inbound and outbound methods of each handler.

Figure 10-1 Order of Execution of Handler Methods

[image: Surrounding text describes Figure 10-1 .]

Client-side Handler Execution

In the case of a client-side handler, the handler executes twice:

	
Directly before the client application sends the SOAP request to the Web service

	
Directly after the client application receives the SOAP response from the Web service

Creating the SOAP Message Handler

There are two types of SOAP message handlers that you can create, as defined in the following table.

Table 10-3 Types of SOAP Message Handlers

	Handler Type	Description
	
SOAP handler

	
Enables you to access the full SOAP message including headers. SOAP handlers are defined using the javax.xml.ws.handler.soap.SOAPHandler interface. They are invoked using the import javax.xml.ws.handler.soap.SOAPMessageContext which extends javax.xml.ws.handler.MessageContext The SOAPMessageContext.getMessage() method returns a javax.xml.soap.SOAPMessage.

	
Logical handlers

	
Provides access to the payload of the message. Logical handlers cannot change any protocol-specific information (like headers) in a message. Logical handlers are defined using the javax.xml.ws.handler.LogicalHandler interface (see http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/LogicalHandler.html). They are invoked using the javax.xml.ws.handler.LogicalMessageContext which extends javax.xml.ws.handler.MessageContext The LogicalMessageContext.getMessage() method returns a javax.xml.ws.LogicalMessage.

The payload can be accessed either as a JAXB object or as a javax.xml.transform.Source object (see http://java.sun.com/javase/6/docs/api/javax/xml/ws/LogicalMessage.html).

Each type of message handler extends the javax.xml.ws.Handler interface (see http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Handler.html), which defines the methods defined in the following table.

Table 10-4 Handler Interface Methods

	Method	Description
	

handleMessage()

	
Manages normal processing of inbound and outbound messages. A property in the MessageContext object is used to determine if the message is inbound or outbound. See Implementing the Handler.handleMessage() Method.

	

handleFault()

	
Manages fault processing of inbound and outbound messages. See Implementing the Handler.handleFault() Method.

	

close()

	
Concludes the message exchange and cleans up resources that were accessed during processing. See Implementing the Handler.close() Method.

In addition, you can use the @javax.annotation.PostConstruct and @javax.annotation.PreDestroy annotations to identify methods that must be executed after the handler is created and before the handler is destroyed, respectively.

Sometimes you might need to directly view or update the SOAP message from within your handler, in particular when handling attachments, such as image. In this case, use the javax.xml.soap.SOAPMessage abstract class, which is part of the SOAP With Attachments API for Java 1.1 (SAAJ) specification at http://java.sun.com/webservices/saaj/docs.html For details, see Directly Manipulating the SOAP Request and Response Message Using SAAJ.

Example of a SOAP Handler

The following example illustrates a simple SOAP handler that returns whether the message is inbound or outbound along with the message content.

package examples.webservices.handler;

import java.util.Set;
import java.util.Collections;
import javax.xml.namespace.QName;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import javax.xml.soap.SOAPMessage;

public class Handler1 implements SOAPHandler<SOAPMessageContext>
{
 public Set<QName> getHeaders()
 {
 return Collections.emptySet();
 }

 public boolean handleMessage(SOAPMessageContext messageContext)
 {
 Boolean outboundProperty = (Boolean)
 messageContext.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outboundProperty.booleanValue()) {
 System.out.println("\nOutbound message:");
 } else {
 System.out.println("\nInbound message:");
 }

 System.out.println("** Response: "+messageContext.getMessage().toString());
 return true;
 }

 public boolean handleFault(SOAPMessageContext messageContext)
 {
 return true;
 }

 public void close(MessageContext messageContext)
 {
 }
}

Example of a Logical Handler

The following example illustrates a simple logical handler that returns whether the message is inbound or outbound along with the message content.

package examples.webservices.handler;

import java.util.Set;
import java.util.Collections;
import javax.xml.namespace.QName;
import javax.xml.ws.handler.LogicalHandler;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.LogicalMessageContext;
import javax.xml.ws.LogicalMessage;
import javax.xml.transform.Source;

public class Handler2 implements LogicalHandler<LogicalMessageContext>
{
 public Set<QName> getHeaders()
 {
 return Collections.emptySet();
 }

 public boolean handleMessage(LogicalMessageContext messageContext)
 {
 Boolean outboundProperty = (Boolean)
 messageContext.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if (outboundProperty.booleanValue()) {
 System.out.println("\nOutbound message:");
 } else {
 System.out.println("\nInbound message:");
 }

 System.out.println("** Response: "+messageContext.getMessage().toString());
 return true;
 }

 public boolean handleFault(LogicalMessageContext messageContext)
 {
 return true;
 }

 public void close(MessageContext messageContext)
 {
 }
}

Implementing the Handler.handleMessage() Method

The Handler.handleMessage() method is called to intercept a SOAP message request before and after it is processed by the back-end component. Its signature is:

public boolean handleMessage(C context)
 throws java.lang.RuntimeException, java.xml.ws.ProtocolException {}

Implement this method to perform such tasks as encrypting/decrypting data in the SOAP message before or after it is processed by the back-end component, and so on.

C extends javax.xml.ws.handler.MessageContext (see http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/MessageContext.html). The MessageContext properties allow the handlers in a handler chain to determine if a message is inbound or outbound and to share processing state. Use the SOAPMessageContext or LogicalMessageContext sub-interface of MessageContext to get or set the contents of the SOAP or logical message, respectively. For more information, see Using the Message Context Property Values and Methods.

After you code all the processing of the SOAP message, code one of the following scenarios:

	
Invoke the next handler on the handler request chain by returning true.

The next handler on the request chain is specified as the next <handler> subelement of the <handler-chain> element in the configuration file specified by the @HandlerChain annotation.

	
Block processing of the handler request chain by returning false.

Blocking the handler request chain processing implies that the back-end component does not get executed for this invoke of the Web service. You might want to do this if you have cached the results of certain invokes of the Web service, and the current invoke is on the list.

Although the handler request chain does not continue processing, WebLogic Server does invoke the handler response chain, starting at the current handler.

	
Throw the java.lang.RuntimeException or java.xml.ws.ProtocolException for any handler-specific runtime errors.

WebLogic Server catches the exception, terminates further processing of the handler request chain, logs the exception to the WebLogic Server log file, and invokes the handleFault() method of this handler.

Implementing the Handler.handleFault() Method

The Handler.handleFault() method processes the SOAP faults based on the SOAP message processing model. Its signature is:

public boolean handleFault(C context)
 throws java.lang.RuntimeException, java.xml.ws.ProtocolException{}

Implement this method to handle processing of any SOAP faults generated by the handleMessage() method, as well as faults generated by the back-end component.

C extends javax.xml.ws.handler.MessageContext (see http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/MessageContext.html). The MessageContext properties allow the handlers in a handler chain to determine if a message is inbound or outbound and to share processing state.Use the LogicalMessageContext or SOAPMessageContext sub-interface of MessageContext to get or set the contents of the logical or SOAP message, respectively. For more information, see Using the Message Context Property Values and Methods.

After you code all the processing of the SOAP fault, do one of the following:

	
Invoke the handleFault() method on the next handler in the handler chain by returning true.

	
Block processing of the handler fault chain by returning false.

Implementing the Handler.close() Method

The Handler.close() method concludes the message exchange and cleans up resources that were accessed during processing. Its signature is:

public boolean close(MessageContext context) {}

Using the Message Context Property Values and Methods

The following context objects are passed to the SOAP message handlers.

Table 10-5 Message Context Property Values

	Message Context Property Values	Description
	

javax.xml.ws.handler.LogicalMessageContext

	
Context object for logical handlers.

	

javax.xml.ws.handler.soap.SOAPMessageContext

	
Context object for SOAP handlers.

Each context object extends javax.xml.ws.handler.MessageContext, which enables you to access a set of runtime properties of a SOAP message handler from the client application or Web service, or directly from the javax.xml.ws.WebServiceContext from a Web service (see https://jax-ws.dev.java.net/nonav/jax-ws-20-pfd/api/javax/xml/ws/WebServiceContext.html).

For example, the MessageContext.MESSAGE_OUTBOUND_PROPERTY holds a Boolean value that is used to determine the direction of a message. During a request, you can check the value of this property to determine if the message is an inbound or outbound request. The property would be true when accessed by a client-side handler or false when accessed by a server-side handler.

For more information about the MessageContext property values that are available, see "Using the MessageContext Property Values" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

The LogicalMessageContext class defines the following method for processing the Logical message. For more information, see the java.xml.ws.handler.LogicalMessageContext Javadoc at http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/LogicalMessageContext.html.

Table 10-6 LogicalMessageContext Class Method

	Method	Description
	

getMessage()

	
Gets a javax.xml.ws.LogicalMessage object that contains the SOAP message.

The SOAPMessageContext class defines the following methods for processing the SOAP message. For more information, see the java.xml.ws.handler.soap.SOAPMessageContext Javadoc at http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/soap/SOAPMessageContext.html.

	
Note:

The SOAP message itself is stored in a javax.xml.soap.SOAPMessage object at http://java.sun.com/javase/6/docs/api/javax/xml/soap/SOAPMessage.html. For detailed information on this object, see Directly Manipulating the SOAP Request and Response Message Using SAAJ.

Table 10-7 SOAPMessageContext Class Methods

	Method	Description
	

getHeaders()

	
Gets headers that have a particular qualified name from the message in the message context.

	

getMessage()

	
Gets a javax.xml.soap.SOAPMessage object that contains the SOAP message.

	

getRoles()

	
Gets the SOAP actor roles associated with an execution of the handler chain.

	

setMessage()

	
Sets the SOAP message.

Directly Manipulating the SOAP Request and Response Message Using SAAJ

The javax.xml.soap.SOAPMessage abstract class is part of the SOAP With Attachments API for Java 1.1 (SAAJ) specification at http://java.sun.com/webservices/saaj/docs.html. You use the class to manipulate request and response SOAP messages when creating SOAP message handlers. This section describes the basic structure of a SOAPMessage object and some of the methods you can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual SOAP XML document) and zero or more attachments.

Refer to the SAAJ Javadocs for the full description of the SOAPMessage class.

The SOAPPart Object

The SOAPPart object contains the XML SOAP document inside of a SOAPEnvelope object. You use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a MessageContext object, provided by the Handler class, and get at its parts:

SOAPMessage soapMessage = messageContext.getMessage();
SOAPPart soapPart = soapMessage.getSOAPPart();
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
SOAPBody soapBody = soapEnvelope.getBody();
SOAPHeader soapHeader = soapEnvelope.getHeader();

The AttachmentPart Object

The javax.xml.soap.AttachmentPart object (see http://java.sun.com/javase/6/docs/api/javax/xml/soap/AttachmentPart.html) contains the optional attachments to the SOAP message. Unlike the rest of a SOAP message, an attachment is not required to be in XML format and can therefore be anything from simple text to an image file.

	
Note:

If you are going to access a java.awt.Image attachment from your SOAP message handler, see Manipulating Image Attachments in a SOAP Message Handler for important information.

Use the following methods of the SOAPMessage class to manipulate the attachments. For more information, see the javax.xml.soap.SOAPMessage Javadoc at http://java.sun.com/javase/6/docs/api/javax/xml/soap/SOAPMessage.html.

Table 10-8 SOAPMessage Class Methods to Manipulate Attachments

	Method	Description
	

addAttachmentPart()

	
Adds an AttachmentPart object, after it has been created, to the SOAPMessage.

	

countAttachments()

	
Returns the number of attachments in this SOAP message.

	

createAttachmentPart()

	
Create an AttachmentPart object from another type of Object.

	

getAttachments()

	
Gets all the attachments (as AttachmentPart objects) into an Iterator object.

Manipulating Image Attachments in a SOAP Message Handler

It is assumed in this section that you are creating a SOAP message handler that accesses a java.awt.Image attachment and that the Image has been sent from a client application that uses the client JAX-WS ports generated by the clientgen Ant task.

In the client code generated by the clientgen Ant task, a java.awt.Image attachment is sent to the invoked WebLogic Web service with a MIME type of text/xml rather than image/gif, and the image is serialized into a stream of integers that represents the image. In particular, the client code serializes the image using the following format:

	
int width

	
int height

	
int[] pixels

This means that, in your SOAP message handler that manipulates the received Image attachment, you must deserialize this stream of data to then re-create the original image.

Configuring Handler Chains in the JWS File

The @javax.jws.HandlerChain annotation (also called @HandlerChain in this chapter for simplicity) enables you to configure a handler chain for a Web service. Use the file attribute to specify an external file that contains the configuration of the handler chain you want to associate with the Web service. The configuration includes the list of handlers in the chain, the order in which they execute, the initialization parameters, and so on.

The following JWS file shows an example of using the @HandlerChain annotation; the relevant Java code is shown in bold:

package examples.webservices.handler;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.HandlerChain;
import javax.annotation.Resource;
import javax.xml.ws.WebServiceContext;
@WebService(name = "Handler", targetNamespace = "http://example.org")
@HandlerChain(file="handler-chain.xml")
public class HandlerWS
{
 @Resource
 WebServiceContext ctx;
 @WebMethod()
 public String getProperty(String propertyName)
 {
 return (String) ctx.getMessageContext().get(propertyName);
 }
}

Before you use the @HandlerChain annotation, you must import it into your JWS file, as shown above.

Use the file attribute of the @HandlerChain annotation to specify the name of the external file that contains configuration information for the handler chain. The value of this attribute is a URL, which may be relative or absolute. Relative URLs are relative to the location of the JWS file at the time you run the jwsc Ant task to compile the file.

	
Note:

It is an error to specify more than one @HandlerChain annotation in a single JWS file.

For details about creating the external configuration file, see Creating the Handler Chain Configuration File.

For additional detailed information about the standard JWS annotations discussed in this section, see the Web services Metadata for the Java Platform specification at http://www.jcp.org/en/jsr/detail?id=181.

Creating the Handler Chain Configuration File

As described in the previous section, you use the @HandlerChain annotation in your JWS file to associate a handler chain with a Web service. You must create the handler chain file that consists of an external configuration file that specifies the list of handlers in the handler chain, the order in which they execute, the initialization parameters, and so on.

Because this file is external to the JWS file, you can configure multiple Web services to use this single configuration file to standardize the handler configuration file for all Web services in your enterprise. Additionally, you can change the configuration of the handler chains without needing to recompile all your Web services.

The configuration file uses XML to list one or more handler chains, as shown in the following simple example:

<?xml version="1.0" encoding="UTF-8"?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler1</handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler2</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

In the example, the handler chain contains two handlers implemented with the class names specified with the <handler-class> element. The two handlers execute in forward order before the relevant Web service operation executes, and in reverse order after the operation executes.

Use the <init-param> and <soap-role>child elements of the <handler> element to specify the handler initialization parameters and SOAP roles implemented by the handler, respectively.

You can include logical and SOAP handlers in the same handler chain. At runtime, the handler chain is re-ordered so that all logical handlers are executed before SOAP handlers for an outbound message, and vice versa for an inbound message.

For the XML Schema that defines the external configuration file, additional information about creating it, and additional examples, see the Web services Metadata for the Java Platform specification at http://www.jcp.org/en/jsr/detail?id=181.

Compiling and Rebuilding the Web Service

It is assumed in this section that you have a working build.xml Ant file that compiles and builds your Web service, and you want to update the build file to include handler chain. See "Developing WebLogic Web Services" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server for information on creating this build.xml file.

Follow these guidelines to update your development environment to include message handler compilation and building:

	
After you have updated the JWS file with the @HandlerChain annotation, you must rerun the jwsc Ant task to recompile the JWS file and generate a new Web service. This is true anytime you make a change to an annotation in the JWS file.

If you used the @HandlerChain annotation in your JWS file, reran the jwsc Ant task to regenerate the Web service, and subsequently changed only the external configuration file, you do not need to rerun jwsc for the second change to take affect.

	
The jwsc Ant task compiles SOAP message handler Java files into handler classes (and then packages them into the generated application) if all the following conditions are true:

	
The handler classes are referenced in the @HandlerChain annotation of the JWS file.

	
The Java files are located in the directory specified by the sourcepath attribute.

	
The classes are not currently in your CLASSPATH.

If you want to compile the handler classes yourself, rather than let jwsc compile them automatically, ensure that the compiled classes are in your CLASSPATH before you run the jwsc Ant task.

	
You deploy and invoke a Web service that has a handler chain associated with it in the same way you deploy and invoke one that has no handler chain. The only difference is that when you invoke any operation of the Web service, the WebLogic Web services runtime executes the handlers in the handler chain both before and after the operation invoke.

Configuring the Client-side SOAP Message Handlers

You configure client-side SOAP message handlers in one of the following ways:

	
Set a handler chain directly on the javax.xml.ws.BindingProvider, such as a port proxy or javax.xml.ws.Dispatch object. For example:

package examples.webservices.handler.client;

import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.ws.handler.Handler;
import javax.xml.ws.Binding;
import javax.xml.ws.BindingProvider;
import java.util.List;

import examples.webservices.handler.Handler1;
import examples.webservices.handler.Handler2;

public class Main {
 public static void main(String[] args) {
 HandlerWS test;
 try {
 test = new HandlerWS(new URL(args[0] + "?WSDL"), new
 QName("http://example.org", "HandlerWS"));
 } catch (MalformedURLException murl) { throw new RuntimeException(murl); }
 HandlerWSPortType port = test.getHandlerWSPortTypePort();

 Binding binding = ((BindingProvider)port).getBinding();
 List<Handler> handlerList = binding.getHandlerChain();
 handlerList.add(new Handler1());
 handlerList.add(new Handler2());
 binding.setHandlerChain(handlerList);
 String result = null;
 result = port.sayHello("foo bar");
 System.out.println("Got result: " + result);
 }
}

	
Implement a javax.xml.ws.handler.HandlerResolver on a Service instance. For example:

 public static class MyHandlerResolver implements HandlerResolver {
 public List<Handler> getHandlerChain(PortInfo portInfo) {
 List<Handler> handlers = new ArrayList<Handler>();
 // add handlers to list based on PortInfo information
 return handlers;
 }
 }

Add a handler resolver to the Service instance using the setHandlerResolver() method. In this case, the port proxy or Dispatch object created from the Service instance uses the HandlerResolver to determine the handler chain. For example:

test.setHandlerResolver(new MyHandlerResolver());

	
Create a customization file that includes a <binding> element that contains a handler chain description. The schema for the <handler-chains> element is the same for both handler chain files (on the server) and customization files. For example:

<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="http://localhost:7001/handler/HandlerWS?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"
 xmlns:jws="http://java.sun.com/xml/ns/javaee">
 <handler-chains>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler1
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler2
 </handler-class>
 </handler>
 </handler-chain>
 </handler-chains>
</bindings>

Use the <binding> child element of the clientgen command to pass the customization file.

11 Programming RESTful Web Services

The following sections describe how to program RESTful Web services:

	
Overview of RESTful Web Services

	
Programming RESTful Web Services: Main Steps

	
Programming Guidelines for the RESTful Web Service

	
Accessing the RESTful Web Service from a Client

	
Securing RESTful Web Services

Overview of RESTful Web Services

Representational State Transfer (REST) describes any simple interface that transmits data over a standardized interface (such as HTTP) without an additional messaging layer, such as SOAP. REST provides a set of design rules for creating stateless services that are viewed as resources, or sources of specific information, and can be identified by their unique URIs. A client accesses the resource using the URI, a standardized fixed set of methods, and a representation of the resource is returned. The client is said to transfer state with each new resource representation.

When using the HTTP protocol to access RESTful resources, the resource identifier is the URL of the resource and the standard operation to be performed on that resource is one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

	
Note:

In this JAX-WS implementation, the set of supported HTTP methods is limited to GET and POST. DELETE, PUT, and HEAD are not supported. Any HTTP requests containing these methods will be rejected with a 405 Method Not Allowed error.
If the functionality of PUT and DELETE are required, the desired action can be accomplished by tunneling the actual method to be executed on the POST method. This is a workaround referred to as overloaded POST. (A Web search on "REST overloaded POST" will return a number of ways to accomplish this.

You build RESTful endpoints using the invoke() method of the javax.xml.ws.Provider<T> interface (see http://java.sun.com/javaee/5/docs/api/javax/xml/ws/Provider.html). The Provider interface provides a dynamic alternative to building an service endpoint interface (SEI).

Programming RESTful Web Services: Main Steps

The procedure in this section describes how to program and compile the JWS file required to implement the RESTful Web service. The procedure shows how to create the JWS file from scratch; if you want to update an existing JWS file, you can also use this procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that you have a working build.xml file to which you can add targets for running the jwsc Ant task and deploying the Web services. For more information, see Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Table 11-1 Steps to Program RESTful Web Services

	#
	Step	Description
	
1

	
Create a new JWS file, or update an existing one, that implements the RESTful Web service.

	
Use your favorite IDE or text editor. See Programming Guidelines for the RESTful Web Service.

	
2

	
Update your build.xml file to include a call to the jwsc Ant task to compile the RESTful JWS file into a Web service.

	
For example:

 <jwsc srcdir="." destdir="output/restEar">
 <jws file="NearbyCity.java" type="JAXWS"/>
 </jwsc>

For more information, see "Running the jwsc WebLogic Web Services Ant Task" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

	
3

	
Run the Ant target to build the RESTful Web service.

	
For example:

prompt> ant build-rest

	
4

	
Deploy the RESTful Web service as usual.

	
See "Deploying and Undeploying WebLogic Web Services" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

	
5

	
Access the RESTful Web service from your Web service client.

	
See Accessing the RESTful Web Service from a Client.

Programming Guidelines for the RESTful Web Service

The following example shows a simple JWS file that implements a RESTful Web service; see the explanation after the example for coding guidelines that correspond to the Java code in bold.

package examples.webservices.jaxws.rest;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.BindingType;
import javax.xml.ws.Provider;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.ws.http.HTTPException;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.annotation.Resource;
import java.io.ByteArrayInputStream;
import java.util.StringTokenizer;

@WebServiceProvider(
 targetNamespace="http://example.org",
 serviceName = "NearbyCityService")
@BindingType(value = HTTPBinding.HTTP_BINDING)

public class NearbyCity implements Provider<Source> {
 @Resource(type=Object.class)
 protected WebServiceContext wsContext;

 public Source invoke(Source source) {
 try {
 MessageContext messageContext = wsContext.getMessageContext();

 // Obtain the HTTP mehtod of the input request.
 javax.servlet.http.HttpServletRequest servletRequest =
 (javax.servlet.http.HttpServletRequest)messageContext.get(
 MessageContext.SERVLET_REQUEST);
 String httpMethod = servletRequest.getMethod();
 if (httpMethod.equalsIgnoreCase("GET"));
 {

 String query =
 (String)messageContext.get(MessageContext.QUERY_STRING);
 if (query != null && query.contains("lat=") &&
 query.contains("long=")) {
 return createSource(query);
 } else {
 System.err.println("Query String = "+query);
 throw new HTTPException(404);
 }
 } catch(Exception e) {
 e.printStackTrace();
 throw new HTTPException(500);
 }
 }
 } else {
 // This operation only supports "GET"
 throw new HTTPException405);
 }
 private Source createSource(String str) throws Exception {
 StringTokenizer st = new StringTokenizer(str, "=&/");
 String latLong = st.nextToken();
 double latitude = Double.parseDouble(st.nextToken());
 latLong = st.nextToken();
 double longitude = Double.parseDouble(st.nextToken());
 City nearby = City.findNearBy(latitude, longitude);
 String body = nearby.toXML();
 return new StreamSource(new ByteArrayInputStream(body.getBytes()));
 }

 static class City {
 String city;
 String state;
 double latitude;
 double longitude;
 City(String city, double lati, double longi, String st) {
 this.city = city;
 this.state = st;
 this.latitude = lati;
 this.longitude = longi;
 }

 double distance(double lati, double longi) {
 return Math.sqrt((lati-this.latitude)*(lati-this.latitude) +
 (longi-this.longitude)*(longi-this.longitude)) ;
 }

 static final City[] cities = {
 new City("San Francisco",37.7749295,-122.4194155,"CA"),
 new City("Columbus",39.9611755,-82.9987942,"OH"),
 new City("Indianapolis",39.7683765,-86.1580423,"IN"),
 new City("Jacksonville",30.3321838,-81.655651,"FL"),
 new City("San Jose",37.3393857,-121.8949555,"CA"),
 new City("Detroit",42.331427,-83.0457538,"MI"),
 new City("Dallas",32.7830556,-96.8066667,"TX"),
 new City("San Diego",32.7153292,-117.1572551,"CA"),
 new City("San Antonio",29.4241219,-98.4936282,"TX"),
 new City("Phoenix",33.4483771,-112.0740373,"AZ"),
 new City("Philadelphia",39.952335,-75.163789,"PA"),
 new City("Houston",29.7632836,-95.3632715,"TX"),
 new City("Chicago",41.850033,-87.6500523,"IL"),
 new City("Los Angeles",34.0522342,-118.2436849,"CA"),
 new City("New York",40.7142691,-74.0059729,"NY")};
 static City findNearBy(double lati, double longi) {
 int n = 0;
 for (int i = 1; i < cities.length; i++) {
 if (cities[i].distance(lati, longi) <
 cities[n].distance(lati, longi)) {
 n = i;
 }
 }
 return cities[n];
 }

 public String toXML() {
 return "<ns:NearbyCity xmlns:ns=\"http://example.org\"><City>"
 +this.city+"</City><State>"+ this.state+"</State><Lat>"
 +this.latitude +
 "</Lat><Lng>"+this.longitude+"</Lng></ns:NearbyCity>";
 }
 }
}

Follow these guidelines when programming the JWS file that implements the RESTful Web service. Code snippets of the guidelines are shown in bold in the preceding example.

	
Import the packages required to implement the RESTful Web service.

import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.BindingType;
import javax.xml.ws.Provider;

	
Annotate the Provider implementation class and set the binding type to HTTP.

@WebServiceProvider(
 targetNamespace="http://example.org",
 serviceName = "NearbyCityService")
@BindingType(value = HTTPBinding.HTTP_BINDING)

	
Implement the invoke() method of the Provider interface.

public class NearbyCity implements Provider<Source> {
 @Resource(type=Object.class)
 protected WebServiceContext wsContext;

 public Source invoke(Source source) {
 ...
 }

	
Get the request string using the QUERY_STRING field in the javax.xml.ws.handler.MessageContext for processing (see message URL http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/MessageContext.html). The query string is then passed to the createSource() method that returns the city, state, longitude, and latitude that is closest to the specified values.

String query =
 (String)messageContext.get(MessageContext.QUERY_STRING);
.
.
.
return createSource(query);

Accessing the RESTful Web Service from a Client

To access a RESTful Web service from a Web service client, use the resource URI. For example:

URL url = new URL (http://localhost:7001/NearbyCity/NearbyCityService?lat=35&long=-120);
HttpURLConnection conn = (HttpURLConnection)url.openConnection();
connection.setRequestMethod("POST");
// Get result
InputStream is = connection.getInputStream();

In this example, you set the latitude (lat) and longitude (long) values, as required, to access the required resource.

Securing RESTful Web Services

You can secure RESTful Web services using the same methods that you use to secure Web applications. For more information, see "Options for Securing Web Application and EJB Resources" in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

12 Programming Stateful JAX-WS Web Services Using HTTP Session

This chapter describes how you can develop JAX-WS Web services that interact with an Oracle database.

	
Overview of Stateful Web Services

	
Accessing HTTP Session on the Server

	
Enabling HTTP Session on the Client

	
Developing Stateful Services in a Cluster Using Session State Replication

	
A Note About the JAX-WS RI @Stateful Extension

Overview of Stateful Web Services

Normally, a JAX-WS Web service is stateless: that is, none of the local variables and object values that you set in the Web service object are saved from one invocation to the next. Even sequential requests from a single client are treated each as independent, stateless method invocations.

There are Web service use cases where a client may want to save data on the service during one invocation and then use that data during a subsequent invocation. For example, a shopping cart object may be added to by repeated calls to the addToCart web method and then fetched by the getCart web method. In a stateless Web service, the shopping cart object would always be empty, no matter how many addToCart methods were called. But by using HTTP Sessions to maintain state across Web service invocations, the cart may be built up incrementally, and then returned to the client.

Enabling stateful support in a JAX-WS Web service requires a minimal amount of coding on both the client and server.

Accessing HTTP Session on the Server

On the server, every Web service invocation is tied to an HttpSession object. This object may be accessed from the Web service Context that, in turn, may be bound to the Web service object using resource injection. Once you have access to your HttpSession object, you can "hang" off of it any stateful objects you want. The next time your client calls the Web service, it will find that same HttpSession object and be able to lookup the objects previously stored there. Your Web service is stateful!

The steps required on the server:

	
Add the @Resource (defined by Common Annotations for the Java Platform, JSR 250) to the top of your Web service.

	
Add a variable of type WebServiceContext that will have the context injected into it.

	
Using the Web service context, get the HttpSession object.

	
Save objects in the HttpSession using the setAttribute method and retrieve saved object using getAttribute. Objects are identified by a string value you assign.

The following snippet shows its usage:

Example 12-1 Accessing HTTP Session on the Server

@WebService
public class ShoppingCart {
 @Resource // Step 1
 private WebServiceContext wsContext; // Step 2
 public int addToCart(Item item) {
 // Find the HttpSession
 MessageContext mc = wsContext.getMessageContext(); // Step 3
 HttpSession session = ((javax.servlet.http.HttpServletRequest)mc.get(MessageContext.SERVLET_REQUEST)).getSession();
 if (session == null)
 throw new WebServiceException("No HTTP Session found");
 // Get the cart object from the HttpSession (or create a new one)
 List<Item> cart = (List<Item>)session.getAttribute("myCart"); // Step 4
 if (cart == null)
 cart = new ArrayList<Item>();
 // Add the item to the cart (note that Item is a class defined
 // in the WSDL)
 cart.add(item);
 // Save the updated cart in the HTTPSession (since we use the same
 // "myCart" name, the old cart object will be replaced)
 session.setAttribute("myCart", cart);
 // return the number of items in the stateful cart
 return cart.size();
 }
}

Enabling HTTP Session on the Client

The client-side code is quite simple. All you need to do is set the SESSION_MAINTAIN_PROPERTY on the request context. This tells the client to pass back the HTTP Cookies that it receives from the Web service. The cookie contains a session ID that allows the server to match the Web service invocation with the correct HttpSession, providing access to any saved stateful objects.

Example 12-2 Enabling HTTP Session on the Client

ShoppingCart proxy = new CartService().getCartPort();
((BindingProvider)proxy).getRequestContext().put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);
// Create a new Item object with a part number of '123456' and an item
// count of 4.
Item item = new Item('123456', 4);
// After first call, we'll print '1' (the return value is the number of objects
// in the Cart object)
System.out.println(proxy.addToCart(item));
// After the second call, we'll print '2', since we've added another
// Item to the stateful, saved Cart object.
System.out.println(proxy.addToCart(item));

Developing Stateful Services in a Cluster Using Session State Replication

In a high-availability environment, a JAX-WS Web service may be replicated across multiple server instances in a cluster. A stateful JAX-WS Web service is supported in this environment through the use of the WebLogic Server HTTP Session State Replication feature. For more information, see "HTTP Session State Replication" in Using Clusters for Oracle WebLogic Server.

There are a variety of techniques and configuration requirements for setting up a clustered environment using session state replication (for example, supported servers and load balancers, and so on). From the JAX-WS programming perspective, the only new consideration is that the objects you store in the HttpSession using the HttpSession.setAttribute method (as in Example 12-1) must be Serializable. If they are Serializable, then these stateful objects become available to the Web service on all replicated Web service instances in the cluster, providing both load balancing and failover capabilities for JAX-WS stateful Web services.

A Note About the JAX-WS RI @Stateful Extension

The JAX-WS 2.1 Reference Implementation (RI) contains a vendor extension that supports a different model for stateful JAX-WS Web services using the @Stateful annotation. It's implementation "pins" the state to a particular instance and is not designed to be scalable or fault-tolerant. This feature is not supported for WebLogic Server JAX-WS Web services.

13 Publishing and Finding Web Services Using UDDI

The following sections provide information about publishing and finding Web services through the UDDI registry:

	
Overview of UDDI

	
WebLogic Server UDDI Features

	
UDDI 2.0 Server

	
UDDI Directory Explorer

	
UDDI Client API

	
Pluggable tModel

	
Note:

The UDDI v2.0 registry and UDDIExplorer applications are deprecated in this release. Customers are encouraged to consider upgrading to Oracle Enterprise Repository or Oracle Service Registry, which provide SOA visibility and governance. For more information, see http://www.oracle.com/technologies/soa/docs/enterprise-repository-svc-registry-datasheet.pdf.

Overview of UDDI

UDDI stands for Universal Description, Discovery, and Integration. The UDDI Project is an industry initiative aims to enable businesses to quickly, easily, and dynamically find and carry out transactions with one another.

A populated UDDI registry contains cataloged information about businesses; the services that they offer; and communication standards and interfaces they use to conduct transactions.

Built on the Simple Object Access Protocol (SOAP) data communication standard, UDDI creates a global, platform-independent, open architecture space that will benefit businesses.

The UDDI registry can be broadly divided into two categories:

	
UDDI and Web Services

	
UDDI and Business Registry

For details about the UDDI data structure, see UDDI Data Structure.

UDDI and Web Services

The owners of Web services publish them to the UDDI registry. Once published, the UDDI registry maintains pointers to the Web service description and to the service.

The UDDI allows clients to search this registry, find the intended service, and retrieve its details. These details include the service invocation point as well as other information to help identify the service and its functionality.

Web service capabilities are exposed through a programming interface, and usually explained through Web services Description Language (WSDL). In a typical publish-and-inquire scenario, the provider publishes its business; registers a service under it; and defines a binding template with technical information on its Web service. The binding template also holds reference to one or several tModels, which represent abstract interfaces implemented by the Web service. The tModels might have been uniquely published by the provider, with information on the interfaces and URL references to the WSDL document.

A typical client inquiry may have one of two objectives:

	
To find an implementation of a known interface. In other words, the client has a tModel ID and seeks binding templates referencing that tModel.

	
To find the updated value of the invocation point (that is., access point) of a known binding template ID.

UDDI and Business Registry

As a Business Registry solution, UDDI enables companies to advertise the business products and services they provide, as well as how they conduct business transactions on the Web. This use of UDDI complements business-to-business (B2B) electronic commerce.

The minimum required information to publish a business is a single business name. Once completed, a full description of a business entity may contain a wealth of information, all of which helps to advertise the business entity and its products and services in a precise and accessible manner.

A Business Registry can contain:

	
Business Identification - Multiple names and descriptions of the business, comprehensive contact information, and standard business identifiers such as a tax identifier.

	
Categories - Standard categorization information (for example a D-U-N-S business category number).

	
Service Description - Multiple names and descriptions of a service. As a container for service information, companies can advertise numerous services, while clearly displaying the ownership of services. The bindingTemplate information describes how to access the service.

	
Standards Compliance - In some cases it is important to specify compliance with standards. These standards might display detailed technical requirements on how to use the service.

	
Custom Categories - It is possible to publish proprietary specifications (tModels) that identify or categorize businesses or services.

UDDI Data Structure

The data structure within UDDI consists of four constructions: a businessEntity structure, a businessService structure, a bindingTemplate structure and a tModel structure.

The following table outlines the difference between these constructions when used for Web service or Business Registry applications.

Table 13-1 UDDI Data Structure

	Data Structure	Web Service	Business Registry
	
businessEntity

	
Represents a Web service provider:

	
Company name

	
Contact detail

	
Other business information

	
Represents a company, a division or a department within a company:

	
Company name(s)

	
Contact details

	
Identifiers and Categories

	
businessService

	
A logical group of one or several Web services.

API(s) with a single name stored as a child element, contained by the business entity named above.

	
A group of services may reside in a single businessEntity.

	
Multiple names and descriptions

	
Categories

	
Indicators of compliancy with standards

	
bindingTemplate

	
A single Web service.

Technical information needed by client applications to bind and interact with the target Web service.

Contains access point (that is, the URI to invoke a Web service).

	
Further instances of standards conformity.

Access points for the service in form of URLs, phone numbers, email addresses, fax numbers or other similar address types.

	
tModel

	
Represents a technical specification; typically a specifications pointer, or metadata about a specification document, including a name and a URL pointing to the actual specifications. In the context of Web services, the actual specifications document is presented in the form of a WSDL file.

	
Represents a standard or technical specification, either well established or registered by a user for specific use.

WebLogic Server UDDI Features

WebLogic Server provides the following UDDI features:

	
UDDI 2.0 Server

	
UDDI Directory Explorer

	
UDDI Client API

	
Pluggable tModel

UDDI 2.0 Server

The UDDI 2.0 Server is part of WebLogic Server and is started automatically when WebLogic Server is started. The UDDI Server implements the UDDI 2.0 server specification at http://uddi.xml.org.

Configuring the UDDI 2.0 Server

To configure the UDDI 2.0 Server:

	
Stop WebLogic Server.

	
Update the uddi.properties file, located in the WL_HOME/server/lib directory, where WL_HOME refers to the main WebLogic Server installation directory.

	
Note:

If your WebLogic Server domain was created by a user different from the user that installed WebLogic Server, the WebLogic Server administrator must change the permissions on the uddi.properties file to give access to all users.

	
Restart WebLogic Server.

Never edit the uddi.properties file while WebLogic Server is running. Should you modify this file in a way that prevents the successful startup of the UDDI Server, refer to the WL_HOME/server/lib/uddi.properties.booted file for the last known good configuration.

To restore your configuration to its default, remove the uddi.properties file from the WL_HOME/server/lib directory. Oracle strongly recommends that you move this file to a backup location, because a new uddi.properties file will be created and with its successful startup, the uddi.properties.booted file will also be overwritten. After removing the properties file, start the server. Minimal default properties will be loaded and written to a newly created uddi.properties file.

The following section describes the UDDI Server properties that you can include in the uddi.properites file. The list of properties has been divided according to component, usage, and functionality. At any given time, you do not need all these properties to be present.

Configuring an External LDAP Server

The UDDI 2.0 Server is automatically configured with an embedded LDAP server. You can, however, also configure an external LDAP Server by following the procedure in this section.

	
Note:

Currently, WebLogic Server supports only the SunOne Directory Server for use with the UDDI 2.0 Server.

To configure the SunOne Directory Server to be used with UDDI, follow these steps:

	
Create a file called 51acumen.ldif in the LDAP_DIR/Sun/MPS/slapd-LDAP_INSTANCE_NAME/config/schema directory, where LDAP_DIR refers to the root installation directory of your SunOne Directory Server and LDAP_INSTANCE_NAME refers to the instance name.

	
Update the 51acumen.ldif file with the content described in 51acumen.ldif File Contents.

	
Restart the SunOne Directory Server.

	
Update the uddi.properties file of the WebLogic UDDI 2.0 Server, adding the following properties:

datasource.ldap.manager.password
datasource.ldap.manager.uid
datasource.ldap.server.root
datasource.ldap.server.url

The value of the properties depends on the configuration of your SunOne Directory Server. The following example shows a possible configuration that uses default values:

datasource.ldap.manager.password=password
datasource.ldap.manager.uid=cn=Directory Manager
datasource.ldap.server.root=dc=beasys,dc=com
datasource.ldap.server.url=ldap://host:port

See Table 13-1 for information about these properties.

	
Restart WebLogic Server.

51acumen.ldif File Contents

Use the following content to create the 51acumen.ldif file:

dn: cn=schema
#
attribute types:
#
attributeTypes: (11827.0001.1.0 NAME 'uddi-Business-Key' DESC 'Business Key' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.1 NAME 'uddi-Authorized-Name' DESC 'Authorized Name for publisher of data' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.2 NAME 'uddi-Operator' DESC 'Name of UDDI Registry Operator' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.3 NAME 'uddi-Name' DESC 'Business Entity Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.4 NAME 'uddi-Description' DESC 'Description of Business Entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.7 NAME 'uddi-Use-Type' DESC 'Name of convention that the referenced document follows' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.8 NAME 'uddi-URL' DESC 'URL' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.9 NAME 'uddi-Person-Name' DESC 'Name of Contact Person' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.10 NAME 'uddi-Phone' DESC 'Telephone Number' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{50} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.11 NAME 'uddi-Email' DESC 'Email address' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.12 NAME 'uddi-Sort-Code' DESC 'Code to sort addresses' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{10} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.13 NAME 'uddi-tModel-Key' DESC 'Key to reference a tModel entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.14 NAME 'uddi-Address-Line' DESC 'Actual address lines in free form text' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{80} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.15 NAME 'uddi-Service-Key' DESC 'Service Key' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.16 NAME 'uddi-Service-Name' DESC 'Service Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.17 NAME 'uddi-Binding-Key' DESC 'Binding Key' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.18 NAME 'uddi-Access-Point' DESC 'A text field to convey the entry point address for calling a web service' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.19 NAME 'uddi-Hosting-Redirector' DESC 'Provides a Binding Key attribute to redirect reference to a different binding template' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.20 NAME 'uddi-Instance-Parms' DESC 'Parameters to use a specific facet of a bindingTemplate description' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.21 NAME 'uddi-Overview-URL' DESC 'URL reference to a long form of an overview document' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.22 NAME 'uddi-From-Key' DESC 'Unique key reference to first businessEntity assertion is made for' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.23 NAME 'uddi-To-Key' DESC 'Unique key reference to second businessEntity assertion is made for' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.24 NAME 'uddi-Key-Name' DESC 'An attribute of the KeyedReference structure' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.25 NAME 'uddi-Key-Value' DESC 'An attribute of the KeyedReference structure' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.26 NAME 'uddi-Auth-Info' DESC 'Authorization information' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4096} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.27 NAME 'uddi-Key-Type' DESC 'The key for all UDDI entries' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.28 NAME 'uddi-Upload-Register' DESC 'The upload register' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.29 NAME 'uddi-URL-Type' DESC 'The type for the URL' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.30 NAME 'uddi-Ref-Keyed-Reference' DESC 'reference to a keyedReference entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.31 NAME 'uddi-Ref-Category-Bag' DESC 'reference to a categoryBag entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.32 NAME 'uddi-Ref-Identifier-Bag' DESC 'reference to a identifierBag entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.33 NAME 'uddi-Ref-TModel' DESC 'reference to a TModel entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
id names for each entry
attributeTypes: (11827.0001.1.34 NAME 'uddi-Contact-ID' DESC 'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.35 NAME 'uddi-Discovery-URL-ID' DESC 'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.36 NAME 'uddi-Address-ID' DESC 'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.37 NAME 'uddi-Overview-Doc-ID' DESC 'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.38 NAME 'uddi-Instance-Details-ID' DESC 'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.39 NAME 'uddi-tModel-Instance-Info-ID' DESC 'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.40 NAME 'uddi-Publisher-Assertions-ID' DESC 'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.41 NAME 'uddi-Keyed-Reference-ID' DESC 'Unique ID which will serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.42 NAME 'uddi-Ref-Attribute' DESC 'a reference to another entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.43 NAME 'uddi-Entity-Name' DESC 'Business entity Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.44 NAME 'uddi-tModel-Name' DESC 'tModel Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.45 NAME 'uddi-tMII-TModel-Key' DESC 'tModel key referneced in tModelInstanceInfo' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.46 NAME 'uddi-Keyed-Reference-TModel-Key' DESC 'tModel key referneced in KeyedReference' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.47 NAME 'uddi-Address-tModel-Key' DESC 'tModel key referneced in Address' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.48 NAME 'uddi-isHidden' DESC 'a flag to indicate whether an entry is hidden' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.49 NAME 'uddi-Time-Stamp' DESC 'modification time satmp' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.50 NAME 'uddi-next-id' DESC 'generic counter' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.51 NAME 'uddi-tModel-origin' DESC 'tModel origin' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.52 NAME 'uddi-tModel-type' DESC 'tModel type' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.53 NAME 'uddi-tModel-checked' DESC 'tModel field to check or not' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.54 NAME 'uddi-user-quota-entity' DESC 'quota for business entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.55 NAME 'uddi-user-quota-service' DESC 'quota for business services per entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.56 NAME 'uddi-user-quota-binding' DESC 'quota for binding templates per service' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.57 NAME 'uddi-user-quota-tmodel' DESC 'quota for tmodels' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.58 NAME 'uddi-user-quota-assertion' DESC 'quota for publisher assertions' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.59 NAME 'uddi-user-quota-messagesize' DESC 'quota for maximum message size' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.60 NAME 'uddi-user-language' DESC 'user language' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.61 NAME 'uddi-Name-Soundex' DESC 'name in soundex format' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.62 NAME 'uddi-var' DESC 'generic variable' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'acumen defined')
#
objectclasses:
#
objectClasses: (11827.0001.2.0 NAME 'uddi-Business-Entity' DESC 'Business Entity object' SUP top STRUCTURAL MUST (uddi-Business-Key $ uddi-Entity-Name $ uddi-isHidden $ uddi-Authorized-Name) MAY (uddi-Name-Soundex $ uddi-Operator $ uddi-Description $ uddi-Ref-Identifier-Bag $ uddi-Ref-Category-Bag) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.1 NAME 'uddi-Business-Service' DESC 'Business Service object' SUP top STRUCTURAL MUST (uddi-Service-Key $ uddi-Service-Name $ uddi-isHidden) MAY (uddi-Name-Soundex $ uddi-Description $ uddi-Ref-Category-Bag) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.2 NAME 'uddi-Binding-Template' DESC 'Binding Template object' SUP TOP STRUCTURAL MUST (uddi-Binding-Key $ uddi-isHidden) MAY (uddi-Description $ uddi-Access-Point $ uddi-Hosting-Redirector) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.3 NAME 'uddi-tModel' DESC 'tModel object' SUP top STRUCTURAL MUST (uddi-tModel-Key $ uddi-tModel-Name $ uddi-isHidden $ uddi-Authorized-Name) MAY (uddi-Name-Soundex $ uddi-Operator $ uddi-Description $ uddi-Ref-Identifier-Bag $ uddi-Ref-Category-Bag $ uddi-tModel-origin $ uddi-tModel-checked $ uddi-tModel-type) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.4 NAME 'uddi-Publisher-Assertion' DESC 'Publisher Assertion object' SUP TOP STRUCTURAL MUST (uddi-Publisher-Assertions-ID $ uddi-From-Key $ uddi-To-Key $ uddi-Ref-Keyed-Reference) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.5 NAME 'uddi-Discovery-URL' DESC 'Discovery URL' SUP TOP STRUCTURAL MUST (uddi-Discovery-URL-ID $ uddi-Use-Type $ uddi-URL) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.6 NAME 'uddi-Contact' DESC 'Contact Information' SUP TOP STRUCTURAL MUST (uddi-Contact-ID $ uddi-Person-Name) MAY (uddi-Use-Type $ uddi-Description $ uddi-Phone $ uddi-Email $ uddi-tModel-Key) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.7 NAME 'uddi-Address' DESC 'Address information for a contact entry' SUP TOP STRUCTURAL MUST (uddi-Address-ID) MAY (uddi-Use-Type $ uddi-Sort-Code $ uddi-Address-tModel-Key $ uddi-Address-Line) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.8 NAME 'uddi-Keyed-Reference' DESC 'KeyedReference' SUP TOP STRUCTURAL MUST (uddi-Keyed-Reference-ID $ uddi-Key-Value) MAY (uddi-Key-Name $ uddi-Keyed-Reference-TModel-Key) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.9 NAME 'uddi-tModel-Instance-Info' DESC 'tModelInstanceInfo' SUP TOP STRUCTURAL MUST (uddi-tModel-Instance-Info-ID $ uddi-tMII-TModel-Key) MAY (uddi-Description) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.10 NAME 'uddi-Instance-Details' DESC 'instanceDetails' SUP TOP STRUCTURAL MUST (uddi-Instance-Details-ID) MAY (uddi-Description $ uddi-Instance-Parms) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.11 NAME 'uddi-Overview-Doc' DESC 'overviewDoc' SUP TOP STRUCTURAL MUST (uddi-Overview-Doc-ID) MAY (uddi-Description $ uddi-Overview-URL) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.12 NAME 'uddi-Ref-Object' DESC 'an object class conatins a reference to another entry' SUP TOP STRUCTURAL MUST (uddi-Ref-Attribute) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.13 NAME 'uddi-Ref-Auxiliary-Object' DESC 'an auxiliary type object used in another structural class to hold a reference to a third entry' SUP TOP AUXILIARY MUST (uddi-Ref-Attribute) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.14 NAME 'uddi-ou-container' DESC 'an organizational unit with uddi attributes' SUP organizationalunit STRUCTURAL MAY (uddi-next-id $ uddi-var) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.15 NAME 'uddi-User' DESC 'a User with uddi attributes' SUP inetOrgPerson STRUCTURAL MUST (uid $ uddi-user-language $ uddi-user-quota-entity $ uddi-user-quota-service $ uddi-user-quota-tmodel $ uddi-user-quota-binding $ uddi-user-quota-assertion $ uddi-user-quota-messagesize) X-ORIGIN 'acumen defined')

Description of Properties in the uddi.properties File

The following tables describe properties of the uddi.properties file, categorized by the type of UDDI feature they describe:

	
Table 13-1, "UDDI Data Structure"

	
Table 13-2, "Basic UDDI Configuration"

	
Table 13-3, "UDDI User Defaults"

	
Table 13-4, "General Server Configuration"

	
Table 13-5, "Logger Configuration"

	
Table 13-6, "Connection Pools"

	
Table 13-7, "LDAP Datastore Configuration"

	
Table 13-8, "Replicated LDAP Datastore Configuration"

	
Table 13-9, "File Datastore Configuration"

	
Table 13-10, "General Security Configuration"

	
Table 13-11, "LDAP Security Configuration"

	
Table 13-12, "File Security Configuration"

Table 13-2 Basic UDDI Configuration

	UDDI Property Key	Description
	

auddi.discoveryurl

	
DiscoveryURL prefix that is set for each saved business entity. Typically this is the full URL to the uddilistener servlet, so that the full DiscoveryURL results in the display of the stored BusinessEntity data.

	

auddi.inquiry.secure

	
Permissible values are true and false. When set to true, inquiry calls to UDDI Server are limited to secure https connections only. Any UDDI inquiry calls through a regular http URL are rejected.

	

auddi.publish.secure

	
Permissible values are true and false. When set to true, publish calls to UDDI Server are limited to secure https connections only. Any UDDI publish calls through a regular http URL are rejected.

	

auddi.search.maxrows

	
Maximum number of returned rows for search operations. When the search results in a higher number of rows then the limit set by this property, the result is truncated.

	

auddi.search.timeout

	
Timeout value for search operations. The value is indicated in milliseconds.

	

auddi.siteoperator

	
Name of the UDDI registry site operator. The specified value will be used as the operator attribute, saved in all future BusinessEntity registrations. This attribute will later be returned in responses, and indicates which UDDI registry has generated the response.

	

security.cred.life

	
Credential life, specified in seconds, for authentication. Upon authentication of a user, an AuthToken is assigned which will be valid for the duration specified by this property.

	

pluggableTModel.file.list

	
UDDI Server is pre-populated with a set of Standard TModels. You can further customize the UDDI server by providing your own taxonomies, in the form of TModels. Taxonomies must be defined in XML files, following the provided XML schema. The value of this property a comma-separated list of URIs to such XML files. Values that refer to these TModels are checked and validated against the specified taxonomy.

Table 13-3 UDDI User Defaults

	UDDI Property Key	Description
	

auddi.default.lang

	
User's initial language, assigned to user profile by default at the time of creation. User profile settings can be changed at sign-up or later.

	

auddi.default.quota.assertion

	
User's initial assertion quota, assigned to user profile by default at the time of creation. The assertion quota is the maximum number of publisher assertions that the user is allowed to publish. To impose no limits, set a value of -1. A user's profile settings can be changed at sign-up or later.

	

auddi.default.quota.binding

	
User's initial binding quota, assigned to user profile by default at the time of creation. The binding quota is the maximum number of binding templates that the user is allowed to publish, per each business service. To impose no limits, set a value of -1. A user's profile settings can be changed at sign-up or later.

	

auddi.default.quota.entity

	
User's initial business entity quota, assigned to user profile by default at the time of creation. The entity quota is the maximum number of business entities that the user is allowed to publish. To impose no limits, set a value of -1. A user's profile settings can be changed at sign-up or later.

	

auddi.default.quota.messageSize

	
User's initial message size limit, assigned to his user profile by default at the time of creation. The message size limit is the maximum size of a SOAP call that the user may send to UDDI Server. To impose no limits, set a value of -1. A user's profile settings can be changed at sign-up or later.

	

auddi.default.quota.service

	
User's initial service quota, assigned to user profile by default at the time of creation. The service quota is the maximum number of business services that the user is allowed to publish, per each business entity. To impose no limits, set a value of -1. A user's profile settings can be changed at sign-up or later.

	

auddi.default.quota.tmodel

	
User's initial TModel quota, assigned to user profile by default at the time of creation. The TModel quota is the maximum number of TModels that the user is allowed to publish. To impose no limits, set a value of -1. A user's profile settings can be changed at sign-up or later.

Table 13-4 General Server Configuration

	UDDI Property Keys	Description
	

auddi.datasource.type

	
Location of physical storage of UDDI data. This value defaults to WLS, which indicates that the internal LDAP directory of WebLogic Server is to be used for data storage. Other permissible values include LDAP, ReplicaLDAP, and File.

	

auddi.security.type

	
UDDI Server's security module (authentication). This value defaults to WLS, which indicates that the default security realm of WebLogic Server is to be used for UDDI authentication. As such, a WebLogic Server user would be an UDDI Server user and any WebLogic Server administrator would also be an UDDI Server administrator, in addition to members of the UDDI Server administrator group, as defined in UDDI Server settings. Other permissible values include LDAP and File.

Table 13-5 Logger Configuration

	UDDI Property Key	Description
	

logger.file.maxsize

	
Maximum size of logger output files (if output is sent to file), in Kilobytes. Once an output file reaches maximum size, it is closed and a new log file is created.

	

logger.indent.enabled

	
Permissible values are true and false. When set to true, log messages beginning with "+" and "-", typically TRACE level logs, cause an increase or decrease of indentation in the output.

	

logger.indent.size

	
Size of each indentation (how many spaces for each indent), specified as an integer.

	

logger.log.dir

	
Absolute or relative path to a directory where log files are stored.

	

logger.log.file.stem

	
String that is prefixed to all log file names.

	

logger.log.type

	
Determines whether log messages are sent to the screen, to a file or to both destinations. Permissible values, respectively, are: LOG_TYPE_SCREEN, LOG_TYPE_FILE, and LOG_TYPE_SCREEN_FILE.

	

logger.output.style

	
Determines whether logged output will simply contain the message, or thread and timestamp information will be included. Permissible values are OUTPUT_LONG and OUTPUT_SHORT.

	

logger.quiet

	
Determines whether the logger itself displays information messages. Permissible values are true and false.

	

logger.verbosity

	
Logger's verbosity level. Permissible values (case sensitive) are TRACE, DEBUG, INFO, WARNING and ERROR, where each severity level includes the following ones accumulatively.

Table 13-6 Connection Pools

	UDDI Property Key	Description
	

datasource.ldap.pool.increment

	
Number of new connections to create and add to the pool when all connections in the pool are busy

	

datasource.ldap.pool.initialsize

	
Number of connections to be stored at the time of creation and initialization of the pool.

	

datasource.ldap.pool.maxsize

	
Maximum number of connections that the pool may hold.

	

datasource.ldap.pool.systemmaxsize

	
Maximum number of connections created, even after the pool has reached its capacity. Once the pool reaches its maximum size, and all connections are busy, connections are temporarily created and returned to the client, but not stored in the pool. However, once the system max size is reached, all requests for new connections are blocked until a previously busy connection becomes available.

Table 13-7 LDAP Datastore Configuration

	UDDI Property Key	Description
	

datasource.ldap.manager.uid

	
Back-end LDAP server administrator or privileged user ID, (for example, cn=Directory Manager) who can save data in LDAP.

	

datasource.ldap.manager.password

	
Password for the datasource.ldap.manager.uid, establishes connections with the LDAP directory used for data storage.

	

datasource.ldap.server.url

	
"ldap://" URL to the LDAP directory used for data storage.

	

datasource.ldap.server.root

	
Root entry of the LDAP directory used for data storage (e.g., dc=acumenat, dc=com).

	
Note:

In a replicated LDAP environment, there are "m" LDAP masters and "n" LDAP replicas, respectively numbered from 0 to (m-1) and from 0 to (n-1). The fifth part of the property keys below, quoted as "i", refers to this number and differs for each LDAP server instance defined.

Table 13-8 Replicated LDAP Datastore Configuration

	UDDI Property Key	Description
	

datasource.ldap.server.master.i.manager.uid

	
Administrator or privileged user ID for this "master" LDAP server node, (for example, cn=Directory Manager) who can save data in LDAP.

	

datasource.ldap.server.master.i.manager.password

	
Password for the datasource.ldap.server.master.i.manager.uid, establishes connections with the relevant "master" LDAP directory to write data.

	

datasource.ldap.server.master.i.url

	
"ldap://" URL to the corresponding LDAP directory node.

	

datasource.ldap.server.master.i.root

	
Root entry of the corresponding LDAP directory node (for example, dc=acumenat, dc=com).

	

datasource.ldap.server.replica.i.manager.uid

	
User ID for this "replica" LDAP server node (for example, cn=Directory Manager); this person can read the UDDI data from LDAP.

	

datasource.ldap.server.replica.i.manager.password

	
Password for datasource.ldap.server.replica.i.manager.uid, establishes connections with the relevant "replica" LDAP directory to read data.

	

datasource.ldap.server.replica.i.url

	
"ldap://" URL to the corresponding LDAP directory node.

	

datasource.ldap.server.replica.i.root

	
Root entry of the corresponding LDAP directory node (for example, dc=acumenat, dc=com).

Table 13-9 File Datastore Configuration

	UDDI Property Key	Description
	

datasource.file.directory

	
Directory where UDDI data is stored in the file system.

Table 13-10 General Security Configuration

	UDDI Property Key	Description
	

security.custom.group.operators

	
Security group name, where the members of this group are treated as UDDI administrators.

Table 13-11 LDAP Security Configuration

	UDDI Property Key	Description
	

security.custom.ldap.manager.uid

	
Security LDAP server administrator or privileged user ID (for example, cn=Directory Manager); this person can save data in LDAP.

	

security.custom.ldap.manager.password

	
The value of this property is the password for the above user ID, and is used to establish connections with the LDAP directory used for security.

	

security.custom.ldap.url

	
The value of this property is an "ldap://" URL to the LDAP directory used for security.

	

security.custom.ldap.root

	
Root entry of the LDAP directory used for security (for example, dc=acumenat, dc=com).

	

security.custom.ldap.userroot

	
User's root entry on the security LDAP server. For example, ou=People.

	

security.custom.ldap.group.root

	
Operator entry on the security LDAP server. For example, "cn=UDDI Administrators, ou=Groups". This entry contains IDs of all UDDI administrators.

Table 13-12 File Security Configuration

	UDDI Property Key	Description
	

security.custom.file.userdir

	
Directory where UDDI security information (users and groups) is stored in the file system.

UDDI Directory Explorer

The UDDI Directory Explorer allows authorized users to publish Web services in private WebLogic Server UDDI registries and to modify information for previously published Web services. The Directory Explorer provides access to details about the Web services and associated WSDL files (if available.)

The UDDI Directory Explorer also enables you to search both public and private UDDI registries for Web services and information about the companies and departments that provide these Web services.

To invoke the UDDI Directory Explorer in your browser, enter:

http://host:port/uddiexplorer

where

	
host is the computer on which WebLogic Server is running.

	
port is the port number where WebLogic Server listens for connection requests. The default port number is 7001.

You can perform the following tasks with the UDDI Directory Explorer:

	
Note:

To access the UDDI Directory Explorer pages, use your Oracle WebLogic Server username and password.

	
Search public registries

	
Search private registries

	
Publish to a private registry

	
Modify private registry details

	
Setup UDDI directory explorer

For more information about using the UDDI Directory Explorer, click the Explorer Help link on the main page.

UDDI Client API

WebLogic Server includes an implementation of the client-side UDDI API that you can use in your Java client applications to programmatically search for and publish Web services.

The two main classes of the UDDI client API are Inquiry and Publish. Use the Inquiry class to search for Web services in a known UDDI registry and the Publish class to add your Web service to a known registry.

WebLogic Server provides an implementation of the following client UDDI API packages:

	
weblogic.uddi.client.service

	
weblogic.uddi.client.structures.datatypes

	
weblogic.uddi.client.structures.exception

	
weblogic.uddi.client.structures.request

	
weblogic.uddi.client.structures.response

For detailed information on using these packages, see the UDDI API Javadocs.

Pluggable tModel

A taxonomy is basically a tModel used as reference by a categoryBag or identifierBag. A major distinction is that in contrast to a simple tModel, references to a taxonomy are typically checked and validated. WebLogic Server's UDDI Server takes advantage of this concept and extends this capability by introducing custom taxonomies, called "pluggable tModels". Pluggable tModels allow users (UDDI administrators) to add their own checked taxonomies to the UDDI registry, or overwrite standard taxonomies.

To add a pluggable tModel:

	
Create an XML file conforming to the specified format described in XML Schema for Pluggable tModels, for each tModelKey/categorization.

	
Add the comma-delimited, fully qualified file names to the pluggableTModel.file.list property in the uddi.properties file used to configure UDDI Server. For example:

pluggableTModel.file.list=c:/temp/cat1.xml,c:/temp/cat2.xml

See Configuring the UDDI 2.0 Server for details about the uddi.properties file.

	
Restart WebLogic Server.

The following sections include a table detailing the XML elements and their permissible values, the XML schema against which pluggable tModels are validated, and a sample XML.

XML Elements and Permissible Values

The following table describes the elements of the XML file that describes your pluggable tModels.

Table 13-13 Description of the XML Elements to Configure Pluggable tModels

	Element/Attribute	Required	Role	Values	Comments
	
Taxonomy

	
Required

	
Root Element

	
-

	
-

	
checked

	
Required

	
Whether this categorization is checked or not.

	
true / false

	
If false, keyValue will not be validated.

	
type

	
Required

	
The type of the tModel.

	
categorization / identifier / valid values as defined in uddi-org-types

	
See uddi-org-types tModel for valid values.

	
applicability

	
Optional

	
Constraints on where the tModel may be used.

	
-

	
No constraint is assumed if this element is not provided

	
scope

	
Required if the applicability element is included.

	
Constraints on where the tModel may be used.

	
businessEntity / businessService / bindingTemplate / tModel

	
tModel may be used in tModelInstanceInfo if scope "bindingTemplate" is specified.

	
tModel

	
Required

	
The actual tModel, according to the UDDI data structure.

	
Valid tModelKey must be provided.

	
-

	
categories

	
Required if checked is set to true.

	
-

	
-

	
-

	
category

	
Required if element categories is included

	
Holds actual keyName and keyValue pairs.

	
keyName / keyValue pairs

	
category may be nested for grouping or tree structure.

	
keyName

	
Required

	
-

	
-

	
-

	
keyValue

	
Required

	
-

	
-

	
-

XML Schema for Pluggable tModels

The XML Schema against which pluggable tModels are validated is as follows:

<simpleType name="type">
 <restriction base="string"/>
</simpleType>

<simpleType name="checked">
 <restriction base="NMTOKEN">
 <enumeration value="true"/>
 <enumeration value="false"/>
 </restriction>
</simpleType>

<element name="scope" type="string"/>

<element name = "applicability" type = "uddi:applicability"/>

<complexType name = "applicability">
 <sequence>
 <element ref = "uddi:scope" minOccurs = "1" maxOccurs = "4"/>
 </sequence>
</complexType>

<element name="category" type="uddi:category"/>

<complexType name = "category">
 <sequence>
 <element ref = "uddi:category" minOccurs = "0" maxOccurs = "unbounded"/>

 </sequence>
 <attribute name = "keyName" use = "required" type="string"/>
 <attribute name = "keyValue" use = "required" type="string"/>
</complexType>

<element name="categories" type="uddi:categories"/>

<complexType name = "categories">
 <sequence>
 <element ref = "uddi:category" minOccurs = "1" maxOccurs = "unbounded"/>
 </sequence>
</complexType>

<element name="Taxonomy" type="uddi:Taxonomy"/>

<complexType name="Taxonomy">
 <sequence>
 <element ref = "uddi:applicability" minOccurs = "0" maxOccurs = "1"/>
 <element ref = "uddi:tModel" minOccurs = "1" maxOccurs = "1"/>
 <element ref = "uddi:categories" minOccurs = "0" maxOccurs = "1"/>
 </sequence>
 <attribute name = "type" use = "required" type="uddi:type"/>
 <attribute name = "checked" use = "required" type="uddi:checked"/>
</complexType>

Sample XML for a Pluggable tModel

The following shows a sample XML for a pluggable tModel:

<?xml version="1.0" encoding="UTF-8" ?>

 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <Taxonomy checked="true" type="categorization" xmlns="urn:uddi-org:api_v2" >
 <applicability>
 <scope>businessEntity</scope>
 <scope>businessService</scope>
 <scope>bindingTemplate</scope>
 </applicability>
 <tModel tModelKey="uuid:C0B9FE13-179F-41DF-8A5B-5004DB444tt2" >
 <name> sample pluggable tModel </name>
 <description>used for test purpose only </description>
 <overviewDoc>
 <overviewURL>http://www.abc.com </overviewURL>
 </overviewDoc>
 </tModel>
 <categories>
 <category keyName="name1 " keyValue="1">
 <category keyName="name11" keyValue="12">
 <category keyName="name111" keyValue="111">
 <category keyName="name1111" keyValue="1111"/>
 <category keyName="name1112" keyValue="1112"/>
 </category>
 <category keyName="name112" keyValue="112">
 <category keyName="name1121" keyValue="1121"/>
 <category keyName="name1122" keyValue="1122"/>
 </category>
 </category>
 </category>
 <category keyName="name2 " keyValue="2">
 <category keyName="name21" keyValue="22">
 <category keyName="name211" keyValue="211">
 <category keyName="name2111" keyValue="2111"/>
 <category keyName="name2112" keyValue="2112"/>
 </category>
 <category keyName="name212" keyValue="212">
 <category keyName="name2121" keyValue="2121"/>
 <category keyName="name2122" keyValue="2122"/>
 </category>
 </category>
 </category>
 </categories>
 </Taxonomy>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Fusion Middleware Programming
Advanced Features of JAX-WS Web
Services for Oracle WebLogic Server,
11g Release 1 (10.3.3)

OEBPS/img/cluster.gif
Front-end SOAP Router
[(WebLogicServer Instance)

Load Balanced

fesporse Request__ Routed Response
v
Servert Server2
My My
- Client Client
/ Touting™,
{informaion Web service_
| erve) | Request,” Routing ™,
nformation|

| Gerver2)

Service Endpoint

OEBPS/img/wsatarch.gif
Server A (WebLogic Server) Server B (WebLogic Server)

Application A Application B

Handler

JTA Transaction
Manager

x
T

e e—

OEBPS/img/coordinator.gif
v
Activation | [Registration|
Service Service
Protocol Protocol
Application—+ Service X ServiceY [
Protocol X

leb Service

(CreateCoordinationContext)

(Register)

Coordinator

OEBPS/dcommon/oracle.gif

OEBPS/img/handler_execution_order.gif
handeOne, hendeiTwo handlerTheee
T tandebessags) | bandieMessage) |~ handieMessage0 |
intourd inbound intourd
handlerTwo

outbaund

- ‘handeOne, .
handeMessage) |

Back-end
Component

handleMessageQ || handlehessags

hmd.,,m,@ -

outbaund

outbaund

OEBPS/img/callback.gif
WebLogic Server A

WebLogic Server B

call (string sl

Callerservice —— -7

P Targetservice

targetoperation (string s,

CallbackService 1
callback (String s

g

a W3cEndpointreference

callback)

OEBPS/img/cluster_request.gif
Web Service Client A

Request! Request2

Front-end SOAP Router

(WebLogic Server Instance] b I

{information |

et s
Load Balanced ‘ ‘"’Sovmaﬂzon i
Reauest) . hovtdhequesiz Responser ', S |
Y
Servert Server2 Response2
My My

Service service

OEBPS/img/cluster_request_id.gif
Web Service Client \

Request!

Request2

Toameion|
[t |

noaffinity |
d _aff

Front-end SOAP Router
(WebLogic Server Instance]

ity

Routing P
Serviat 10105erver
Load Balanced Mapping)
Request], _ Afiniy Routed
 Reauestz
Server! Server2
My My

Service service

