
BEA WebLogic Workshop Release Notes

BEA WebLogic Workshop
Date: February 2003
This document includes the following topics:

� Platform Support and System Requirements
� Migrating Web Services to the Released Version
� Known Limitations
� Resolved Issues

For updated release note information, go to the BEA documentation Web site at
the following URL:

http://edocs.bea.com

Platform Support and System Requirements
For information on platform support, including hardware and software
requirements, see the Supported Platforms page at the following location:

http://edocs.bea.com/platform/docs70/support/index.html

Upgrading from WebLogic Server 7.0 Release
This note applies if you are upgrading to the Service Pack 2 release of WebLogic
Platform 7.0 from the release of WebLogic Server 7.0 (in which WebLogic
Workshop was not included). You must use the upgrade installer, rather than
Smart Update, in order to receive all of the components required by the
upgrade release. Note that you can install Service Pack 2 without first installing
Service Pack 1.

Migrating Domains Created Using the
Configuration Wizard
The Configuration Wizard (introduced in WebLogic Platform 7.0) allows you to
create new domains quickly and easily. If you created domains using the
Configuration Wizard in WebLogic Platform 7.0, you need to migrate those
domains for use with WebLogic Platform 7.0 Service Pack 2.

For most domains, migration is a three-step process:

1. Upgrade the product JAR files in the domain directory. A migration script is
provided for this purpose.

http://edocs.bea.com/
http://edocs.bea.com/platform/docs70/support/index.html

Note: You can also revert a domain to its pre-migration state.

2. Update the domain to support Service Pack 2 changes. Depending on the domain
template used to generate the domain, you may need to add or modify
existing scripts or files.

3. If you installed WebLogic Platform 7.0 Service Pack 2 into a new directory,
separate from the WebLogic Platform 7.0 installation, update the domain
startup scripts and configuration files to reference the new BEA_HOME directory
location.

Note: If you upgraded your existing WebLogic Platform 7.0 installation,
you can skip this step.

These steps are explained in detail in the following sections. You will need to
repeat this process for each domain that you want to migrate.

Note: This section decribes how to migrate domains specific to WebLogic
Workshop. For information about migrating other WebLogic Platform domains,
see "Migrating Domains Created Using the Configuration Wizard" in the WebLogic
Platform 7.0 Service Pack 2 Release Notes at the following URL:

http://e-docs.bea.com/platform/docs70/relnotes/relnotes.html#migration

Step 1: Upgrade Product JAR Files
To upgrade product JAR files for a domain that you generated using the
Configuration Wizard to Service Pack 2, navigate to the
BEA_HOME\weblogic700\server\bin directory and execute one of the following
commands:

Windows: migrate.cmd domain mode
UNIX: migrate.sh domain mode

Note: You will be prompted to press any key to start processing.

The following table defines the command-line arguments.
Argument Description

domain Full pathname of the domain directory.

mode Migration mode. The mode can be set to one of the following values:

 upgrade — Upgrade the product JAR files in the domain
directory, as required. The original product JAR files are saved as
*.jar.orig. If the timestamp of an existing product JAR file is more
recent than the timestamp on the corresponding SP1 installation
product JAR file, the file is skipped. This is the default mode.

 revert — Reverts a domain that was migrated earlier using
the backup files (*.jar.orig) generated. If no *.jar.orig files exist,
the command is ignore.

For example, the following command upgrades a domain called mydomain
located in the default user projects directory (BEA_HOME\user_projects):

http://e-docs.bea.com/platform/docs70/relnotes/relnotes.html
http://e-docs.bea.com/platform/docs70/relnotes/relnotes.html

Windows: migrate.cmd c:\bea\user_projects\mydomain upgrade
UNIX: migrate.sh c:/bea/user_projects/mydomain upgrade

The following command reverts the changes made to mydomain during the
migration:

Windows: migrate.cmd c:\bea\user_projects\mydomain revert
UNIX: migrate.sh c:/bea/user_projects/mydomain revert

Step 2: Update Domain to Support Service Pack 2
Changes
To update a domain that is based on the WebLogic Workshop template to
support WebLogic Platform 7.0 Service Pack 2, perform the following steps.

Note: Before adding or modifying any files, it is recommended that you backup
the original files.

1. Modify the startWebLogic.cmd (Windows) or startWebLogic.sh (UNIX)
command to reflect the appropriate PointBase version (183 versus 172) in
the JAR filenames defined in the CLASSPATH. The files for both commands
are located in the following directory, by default:

BEA_HOME\user_projects\domain

The following sample excerpt from the startWebLogic.cmd script
(Windows) shows the required updates in bold:

Before:
set PB_CLASSPATH=

%POINTBASEDIR%\eval\pointbase\lib\pbserver42ECF172.ja
r;

%POINTBASEDIR%\eval\pointbase\lib\pbclient42ECF172.ja
r

After:
set PB_CLASSPATH=.\;
%POINTBASEDIR%\eval\pointbase\lib\pbserver42ECF183.j
ar;
%POINTBASEDIR%\eval\pointbase\lib\pbclient42ECF183.j
ar

2. Copy the following files from the
BEA_HOME\weblogic700\samples\workshop directory to the
BEA_HOME\user_projects\domain directory of your WebLogic Workshop
domain. Be careful not to overwrite any files that may have been created
using one of these filenames.

setWorkshopEnv.cmd
setWorkshopEnv.sh
startPointBaseConsole.cmd
startPointBaseConsole.sh
URLs.dat

Step 3: Update Startup Scripts and Configuration Files
to Reference New BEA_HOME Directory Location
(Non-Upgrades Only)
Note: This step is only required if you installed WebLogic Platform 7.0 Service
Pack 2 into a new directory that is separate from the WebLogic Platform 7.0
installation. If you upgraded your existing WebLogic Platform 7.0 installation,
you can skip this step.

The domain startup scripts (such as, startWebLogic) and configuration files
(such as config.xml) define the full pathnames to files within the BEA_HOME
directory. You need to search for and update these full pathnames to reference
the new BEA_HOME directory location. In addition, you must update any custom
scripts, such as build scripts, that define full pathnames to the files within the
BEA_HOME directory to reflect the new BEA_HOME location.

Note: Many startup scripts set environment variables in your current shell,
including variables that reference your BEA_HOME directory. After updating the
BEA_HOME references in script files, you should open a new shell to ensure that
the latest environment settings are used.

Setting the Maximum Size of Conversation IDs
Conversational web services use a database to store conversation IDs - the
unique strings that identify conversations. The database table used to store
conversational state is created if it doesn't exist upon the first use of a service.
The maximum size for conversation IDs is built into the database schema. The
default maximum size allowed for conversation IDs is 768 characters.
Ordinarily, 768 works well as a maximum. However, if the design of a particular
service requires a different maximum length, you can change it in two ways as
described in this note.

First, you must set the weblogic.jws.ConversationMaxKeyLength property. This
property can be set in either of the two following ways. Both of these require
that you restart the server after making the change:

Edit the startWebLogic command file
1. Locate one of the following files, depending on which operating system you

are using: startWebLogic.cmd (on Windows) or startWebLogic.sh (on UNIX
or Linux).

This file is located in the domain directory of your project. For example,
for the samples project installed with WebLogic Workshop, this is the
samples\workshop directory.

2. Locate the following text in the file:

• On Windows, find the line with the following text: @set

JAVA_OPTIONS=%JAVA_OPTIONS% %JAVA_PROPERTIES%

• On Linux or UNIX, find the first line with the following text:
JAVA_PROPERTIES=

3. Append the following to the line, replacing <numberOfCharacters> with the
new maximum length:

-
Dweblogic.jws.ConversationMaxKeyLength=<numberOfCharact
ers>

Edit the jws-config.properties file
1. Locate the jws-config.properties file.

This file is located in the domain directory of your project. For example,
for the samples project installed with WebLogic Workshop, this is the
samples\workshop directory.

2. Change the value of the weblogic.jws.ConversationMaxKeyLength property.
The syntax is as follows:

weblogic.jws.ConversationMaxKeyLength=<numberOfCharacters>

After restarting the server, you must use your service (for example, by calling
one of its methods) so that the conversational state table will be recreated with
the new maximum conversation ID length. In the event that the conversational
state tables already exist, you will need to drop them prior to referencing the
service so that they will be recreated. After dropping the tables, and restarting
the server, the first reference to your service will cause the tables to be
recreated with the new value for the maximum conversation ID length.

Note that a different table is used for each service.

Known Limitations

Working with Databases

Out of Memory Error for Large Result Sets
You may receive an "Out of memory" error when retrieving a large ResultSet
using a Database control. This is because the query result is converted to HTML,
which more than doubles its size.

Workaround: Try to use queries that return smaller ResultSets or return an
Iterator.

"Invalid Transaction State" When Using Pointbase

If you are running Weblogic Workshop with the PointBase database (the default
configuration for Workshop), and you encounter an error stating that the
database is in an "invalid transaction state", your PointBase database files have
become corrupted and you must replace them.

Workaround: Replace cajun.dbn and cajun$1.wal, two PointBase files included
with Weblogic Workshop samples. These are located in the WebLogic Workshop
samples domain directory. Usually this directory is at
/bea/weblogic700/samples/workshop. If you have made back up copies of these
two files, you can replace the two files in use with your clean back ups.

You can also download clean copies of the files from the bug fixes section of the
resource library at dev2dev Online. On the bug fixes page, look for change request
(CR) number CR080632, then click the name of the bug to reach a page from
which you can download the files. Note that any information you had stored in
your PointBase database will be lost if you replace the files with the clean files
downloaded from the web.

Editing Code

CPU Peaks and Computer Hangs When Using the Find Feature
If you are using the Find command to search a file that is 50 KB or larger, you
may find that your computer hangs. This can occur if the file contains a very
long line of text. For example, if you create a CTRL file from a WSDL file that
lacks line breaks (as some do), the WSDL text embedded in the CTRL file will
result in a very long line. Using the Find feature on such a file may hang your
computer.

Workaround: Ensure that lines of code are properly broken before using the
Find feature on a file.

Testing and Debugging

Problems When Using Netscape 6.2

� If you test a JWS file and your browser is Netscape 6.2, the browser may
hang in the splash screen when the browser is launched (as when you select
"Start" or "Start and Debug" from WebLogic Workshop). This is a bug in
Netscape 6.2 that is tracked in Bugzilla bug numbers 54701 and 54716.

� If you test a JWS file in a Netscape 6.2 browser window and try to use the
Callback WSDL link on the Overview page, you will get a blank page instead
of a generated WSDL.

Workaround: Use a different browser.

WebLogic Server Does Not Respond While Debugging Multiple
Service Instances

http://dev2dev.bea.com/resourcelibrary/bugfixes.jsp?highlight=bugfixes
http://dev2dev.bea.com/resourcelibrary/index.jsp
http://dev2dev.bea.com/index.jsp

When debugging a web service using the breakpoints and the Step Into
command, WebLogic Server can reach a state in which it no longer responds to
commands. This can happen if you run multiple instances of your web service
with breakpoints set. For example, you might inadvertently double-click the
Test View button corresponding to a method of your service, then use the Step
Into command twice (through the Debug menu or toolbar button).

Workaround: If you reach a state in which your project will no longer build,
stop and restart WebLogic Server.

Execution Sometimes Moves to Unexpected Locations When
Stepping Through Code
In the following situations, you might find that the debugger takes execution to
unexpected lines in your code:

� When using the Step Out command, execution moves to the first line of the
calling procedure, rather than the line following the call.

� When stepping through a try/catch/finally block, execution moves to the try

statement after the catch and finally statements finish executing.
� When stepping through inner class constructors, execution moves to the

declaration of the web service class. Doing this repeatedly may cause the
debugger to stop responding.

Delay When Attempting to Examine Values While Debugging
You might experience delay when you try to examine variable values while
debugging code with large objects. In these cases, WebLogic Workshop will
display ... or no value until the value appears.

Cannot Step into Service Control Instance
When debugging, you can't step into a Service control instance. This version of
WebLogic Workshop does not allow you to "step into" on a call to a Service
control method.

Workaround: If the called web service's source code (JWS file) is available,
you can set a breakpoint there.

Test View Does Nothing When Testing with a Large XML
Document
When you have a parameter map for a method, the instance of the XML
document you enter in the text area for a parameter can exceed the maximum
allowable HTTP GET string. When this occurs the browser will appear to accept
the button press but will do nothing.

Workaround: Submit a smaller test document or use the Test XML page
instead of the Test Form page.

Stopping WebLogic Server While Debugging Can Peak CPU
Use
If you are debugging with breakpoints set, then stop WebLogic Server before
ending your debugging session, you may find that your CPU usage peaks.

Workaround: End your debugging session by clicking the Stop button or
closing the Test View browser window. To avoid this condition, be sure to end
your debugging session before stopping WebLogic Server.

Out of Memory Error While Developing on HP-UX
When running WebLogic Workshop for extended periods of time on HP-UX, you
may receive an out-of-memory error from WebLogic Server.

Workaround: Increase the maximum Java heap memory allowed. To do this,
open startWebLogic.sh and find the section beginning "HP-UX)". In that section
edit the JAVA_OPTIONS variable to increase the maximum Java heap memory
to 256 megabytes (the default on installation is 128 megabytes). The following
illustrates the line in the script you must edit to increase memory. The edited
value is in bold text.

JAVA_OPTIONS="-Xms64m -Xmx256m $JAVA_OPTIONS"

WebLogic Workshop on RedHat Linux

Required Environment Setting on Linux 7.1 and Earlier
In order to use WebLogic Workshop on on versions of RedHat Linux prior to 7.2,
you must include the following among your environment settings:

export LD_ASSUME_KERNEL=2.2.5

Asynchrony and Callbacks

Client Callbacks Can Fail Silently
When a callback is invoked on a client that has not provided a callback URL, a
RuntimeException is generated but no error is reported automatically in Test
View or in workshop.log. You are not required to handle RuntimeExceptions, so
the error is completely silent by default. If you want to catch occurrences of this
situation, you must implement a handler for the JwsContext.onException callback
in your JWS file. For more information on the callback, see How Do I: Handle
Errors In a Web Service? in the WebLogic Workshop documentation.

Client Proxy Code

Proxy Support JAR Must Be Manually Added to the Classpath
In Order to Call Proxy Classes from WebLogic Workshop

http://edocs.bea.com/workshop/docs70/help/index.html
http://edocs.bea.com/workshop/docs70/help/index.html

If you are writing code in WebLogic Workshop that uses the Java proxy class to
call a web service, WebLogic Workshop does not automatically put the proxy
support JAR on the classpath.

Workaround: Add the proxy support JAR to your classpath manually in order
to use the Java proxy from a class you are developing in WebLogic Workshop.

XML Maps Must Be Namespace-Qualified In Order to Produce
Valid Client Proxy JAR Files
If your web service has XML maps that do not have namespace declarations,
the client proxy JAR file generated for that service will be empty. This is due to
constraints of the underlying proxy generation code.

Workaround: Add a namespace declaration to the root element of the XML
maps, as with the red text in the following example:

/**
* @jws:operation
* @jws:parameter-xml xml-map::
* <person xmlns="http://www.openuri.org/">
* <lastname><xm:value obj="String lastName"/></lastname>
* <firstname>{firstName}</firstname>
* </person>
* ::
*
* @return the string "Received person: '{name}'"
*/
public String acceptPerson(String lastName, String firstName)

Deployment

WebLogic Workshop Uses a Single JMS Server for Certain
Messaging Needs
WebLogic Workshop applications can easily be deployed on WebLogic Server
cluster environments using the instructions provided in the WebLogic Workshop
documentation in Clustering Workshop Web Services.

In WebLogic Workshop, however, applications that use a JMS message queue
rely on the services of a single JMS server and connection factory. This includes
applications that use JMS as a transport protocol, the message-buffer property, or
Timer controls. Future versions of WebLogic Workshop will use the distributed
JMS destination capability in WebLogic Server to reduce the dependency on a
single JMS server in a clustered environment.

"Unexpected Exception" When Deploying Secure Web Service
When developing a secure web service, you may see the following error
message:

An unexpected exception occurred while attempting to deploy the
Enterprise JavaBean for this Web Service.

http://edocs.bea.com/workshop/docs70/help/index.html

This can happen if there are syntax errors in the web.xml or weblogic.xml files
edited to include security information. To confirm that this is the cause of the
error message, look in the workshop.log file, which contains exception
information logged by a web service. There, you may find specific information
about configuration errors.

The workshop.log file is located in the root of the domain in which your web
service is deployed. For example, for samples installed with WebLogic
Workshop, this is the samples\workshop folder.

Callback Interface Must Be Public on Production Server
Callback interfaces must be declared as "public" in production mode. If you
don't declare callback interfaces as public, dynamic proxy generation fails with
"IllegalAccessException" in production mode.

UDDI Explorer

UDDI Overview Page Not Rendered in Mozilla on Linux
On Linux, when using the UDDI Explorer to browse for web services, the Mozilla
web browser may not render the content of the service's overview page. Note
that the page's source code is there, but does not render in Mozilla.

Documentation

Netscape 4.76 May Not Launch from WebLogic Workshop
If your browser is Netscape 4.76, launching Help from WebLogic Workshop may
not work. This is a bug in Netscape 4.76 related to launching the browser from
another application.

Workaround: Upgrade to at least Netscape 4.78.

Documentation Unusable in Mozilla Version 1.0 on Linux
In the Mozilla 1.0 browser, script used to present navigation panes does not
work correctly.

Workaround: Use a different browser.

Resolved Issues
CR085822 JMS-enqueued messages now participate in transactions.

No CR
A Database control no longer throws an exception if it is passed
a null complex object.

CR081858 Command length restrictions limiting the number of EJB jars in

the WEB-INF/lib during a the build of a webservice have been
removed.

No CR
Viewing a functions map in auto-generated code no longer
updates the file if no changes are made.

CR087532
Bounded repeating elements from a WSDL are now correctly
generated and handled as arrays in the Java code.

CR089329 The time 12:00:00 is now correctly treated as noon.

CR084651 Date types are now treated differently than DateTime types.

No CR Logging is now supported for SOAP requests.

CR091000
The correct JNDI entries are now displayed in the jndi-name
browser for the EJB control in the case where there is an EJB
with a descriptor containing the entry <local-jndi-name>.

CR084943
CR086593

Numerical type mapping has been updated:

xsd:decimal java.math.BigDecimal

xsd:integer java.math.BigInteger

xsd:nonPositiveInteger java.math.BigInteger

xsd:long long

xsd:nonNegativeInteger java.math.BigInteger

xsd:negativeInteger java.math.BigDecimal

xsd:int int

xsd:unsignedLong java.math.BigInteger

xsd:positiveInteger java.math.BigInteger

xsd:short short

xsd:unsignedInt long

xsd:byte byte

xsd:unsignedShort int

xsd:unsignedByte short

CR086065
The <SOAP-ENV:Fault> tag now allows <detail> sub-elements,
per the SOAP spec.

CR086582
Inherited members are now correctly referenced in generated
XML maps.

CR086911
The DTD reference is now correct in new domains created by
the domain wizard.

http://bugs.beasys.com/CRView?CR=CR084943

CR086913
The jws.ProductionMode property no longer generates an error
message.

No CR

Corrected control generation to include restricted simple types.
This adds additional support for enumerations and control file
generation. Workshop now correctly identifies decimal data
types in schema to generate appropriate Java types.

CR089165
WebLogic Workshop now correctly prints an XML stream passed
to a web service.

CR087191 Fixed types namespace to qualified all arrays within soap RPC.

CR087789
WebLogic Workshop now processes large ECMA script files in
such a way as to avoid errors with methods over 64k.

No CR
If a WSDL contains multiple service definitions, WebLogic
Workshop will now generate a Service control for the first one.

CR089740
WebLogic Workshop now supports the importing of a WSDL file
from within another WSDL file.

No CR
WebLogic Workshop now correctly handles changing case only
on a case insensitive file system when renaming and rebuilding
a .jws file.

CR091464

Added jwErrorDetail element to detail element in the soap fault.
The new element is namespace-qualified, with
"http://www.bea.com/2002/04/jwErrorDetail/" as the
namespace.

CR091612
WebLogic Workshop now displays the correct failure when a
WSDL file contains <xsd:anyAttribute>.

No CR WebLogic Workshop no longer drops top-level namespaces.

CR092775
WebLogic Workshop no longer displays incorrect error when
generating http-xml methods returning void.

CR094366
Removed incorrect space in soap-fault text to conform to SOAP
spec.

CR089875
Eliminated the need to restart the server when redeploying a
WLW .ear file.

