‘.."‘

o 7
2 bea
L/

BEAWebLogic
Servere

Programming Web
Services for WebLogic
Server

Version 9.2
Revised: December 13, 2007

Contents

Introduction and Roadmap

Document Scope and AUdIENCEottt 1-1
Guide to ThiS DOCUMENE e 1-2
Related DOCUMENTALIONo 1-3
Samples for the Web Services Developer i, 1-4
Downloading Examples Described inthisGuide. 1-4
Avitek Medical Records Application (MedRec) and Tutorials 1-5
Web Services Examples in the WebLogic Server Distribution. 1-5
Additional Web Services Examples Available for Download 1-5
Release-Specific WebLogic Web Services Information 1-5
Differences Between 8.1 and 9.X WebLogic Web Services 1-6
Summary of WebLogic Web Services Features ..., 1-6

2. Understanding WebLogic Web Services

What Are Web Services? o 2-1
Why Use Web ServiCes? 2-2
Anatomy of a WebLogic Web Service i 2-3
Roadmap of Common Web Service Development Tasksot 2-4
Standards Supported by WebLogic Web Services 2-6
BEA Implementation of Web Service Specifications. 2-8
Web Services Metadata for the Java Platform (JSR-181). 2-8
Enterprise Web Services 1.1. 2-9

Programming Web Services for WebLogic Server iii

SOAP 1.1 and 1.2, ...ttt e 2-9

SAAT L 2. 2-10
WS DL L. L. . 2-10
JAX-RPC L L 2-12
Web Services Security (WS-Security) 1.0 2-13
UD DI 2.0 . 2-14
JAX-R L0, o 2-14
WS-Addressing 1.0.o oo 2-15
WS-Policy 1.0, . .. 2-15
WS-PolicyAttachment 1.0 o 2-15
WS-ReliableMessaging 1.0 2-15
WS-TruSt 1.0 . .o 2-16
WS-SecureConversation 1.0.t e 2-16
Additional Specifications Supported by WebLogic Web Services. 2-16

3. Common Web Services Use Cases and Examples

4.

iv

Creating a Simple HelloWorld Web Service. o i 3-2
Creating a Web Service With User-Defined Data Typescoiiiiin.... 3-7
Creating a Web Service fromaWSDL File it 3-14
Invoking a Web Service from a Stand-alone JAX-RPC Java Client. 3-23
Invoking a Web Service from a WebLogic Web Service 3-29

|terative Development of WebLogic Web Services

Overview of the WebLogic Web Service Programming Model 4-2

Configuring Your Domain For Web Services Features 4-2

Iterative Development of WebLogic Web Services Starting From Java: Main Steps . .. 4-3

Iterative Development of WebLogic Web Services Starting From a WSDL File: Main Steps
4-5

Creating the Basic AntbuildxmlFile........ o 4-7

Programming Web Services for WebLogic Server

Running the jwsc WebLogic Web Services Ant Task., 4-7

Examples of USING JWSCo o e 4-9
Advanced Uses Of JWSC.ot 4-10
Running the wsdlc WebLogic Web Services Ant Task., 4-11
Updating the Stubbed-Out JWS Implementation Class File Generated By wsdlc 4-13
Deploying and Undeploying WebLogic Web Services. 4-15
Using the wldeploy Ant Task to Deploy Web Services 4-15
Using the Administration Console to Deploy Web Services 4-17
Browsing to the WSDL of the Web Service 4-17
Configuring the Server Address Specified in the Dynamic WSDL. 4-18
Testingthe Web Service e 4-20

Integrating Web Services Into the WebLogic Split Development Directory Environment . .
4-21

5. Programming the JWS File

Overview of JWS Files and JWS Annotations 5-1
Programming the JWS File: Java Requirementsiiiiininnn.n. 5-2
Programming the JWS File: Typical Steps e 5-3
Exampleof aJWS File. 5-4
Specifying That the JWS File Implements a Web Service..................... 5-6
Specifying the Mapping of the Web Service to the SOAP Message Protocol 5-6
Specifying the Context Path and Service URI of the Web Service 5-7
Specifying That a JWS Method Be Exposed as a Public Operation 5-8
Customizing the Mapping Between Operation Parameters and WSDL Parts 5-9

Customizing the Mapping Between the Operation Return Value and a WSDL Part 5-10

Accessing Runtime Information about a Web Service Using the JwsContext 5-11
Guidelines for Accessing the Web Service Context. 5-11
Methods of the JwsContext.o 5-13

Programming Web Services for WebLogic Server v

Programming Guidelines When Implementing an EJB in Your JWS File. 5-17
Example of a JWS File That Implementsan EJB 5-18
Programming the User-Defined Java Data Type.t 5-19
Throwing EXCEPLIONS. oottt e 5-21
Invoking Another Web Service fromthe JWSFile............. 5-24
Programming Additional Miscellaneous Features Using JWS Annotations and APIs. . 5-24
Streaming SOAP Attachments. i i 5-24
USINg SOAP L2 . . 5-25
Specifying that Operations Run Inside of a Transaction 5-26
Getting the HttpServletRequest/Response Object 5-27
JWS Programming Best Practices.t 5-29

6. Advanced JWS Programming: Implementing Asynchronous
Features

Using Web Service Reliable Messaging oo i 6-1
Use of WS-Palicy Files for Web Service Reliable Messaging Configuration. 6-2
Using Web Service Reliable Messaging: Main Stepsco.u. 6-4
Configuring the Destination WebLogic Server Instance 6-6
Configuring the Source WebLogic Server Instance 6-8
Creating the Web Service Reliable Messaging WS-Policy File. 6-8
Programming Guidelines for the Reliable JWS File 6-10
Programming Guidelines for the JWS File That Invokes a Reliable Web Service . 6-15
WsrmUtils Utility Class e 6-17
Updating the build.xml File for a Client of a Reliable Web Service 6-18
Client Considerations When Redeploying a Reliable Web Service............. 6-19

Invoking a Web Service Using Asynchronous Request-Response. 6-19
Using Asynchronous Request-Response: Main Stepst 6-20

vi Programming Web Services for WebLogic Server

Writing the Asynchronous JWS File i 6-21

Updating the build.xml File When Using Asynchronous Request-Response 6-26
Disabling The Internal Asynchronous Service., 6-27
Using Callbacks to Notify Clientsof Events.o, 6-27
Callback Implementation Overview and Terminology. 6-28
Programming Callbacks: Main Steps. 6-29
Programming Guidelines for Target Web Service 6-31
Programming Guidelines for the Callback Client Web Service................ 6-32
Programming Guidelines for the Callback Interface 6-35
Updating the build.xml File for the Client Web Service 6-36
Creating Conversational Web Services 6-37
Creating a Conversational Web Service: Main Steps. 6-39
Programming Guidelines for the Conversational IWS File 6-40

Programming Guidelines for the JWS File That Invokes a Conversational Web Service

6-44
ConversationUtils Utility Class oo 6-47
Updating the build.xml File for a Client of a Conversational Web Service. 6-47
Updating a Stand-Alone Java Client to Invoke a Conversational Web Service. . . . 6-48
Client Considerations When Redeploying a Conversational Web Service 6-50
Creating Buffered Web Servicest e 6-50
Creating a Buffered Web Service: Main Steps..o, 6-50
Configuring the Host WebLogic Server Instance for the Buffered Web Service . . . 6-52
Programming Guidelines for the Buffered IWS File 6-53
Programming the JWS File That Invokes the Buffered Web Service. 6-55
Updating the build.xml File for a Client of the Buffered Web Service 6-56
Using the Asynchronous Features Together 6-57

Example of a JWS File That Implements a Reliable Conversational Web Service . 6-58

Programming Web Services for WebLogic Server vii

Example of Client Web Service That Asynchronously Invokes a Reliable
Conversational Web Service i 6-59

Using Reliable Messaging or Asynchronous Request Response With a Proxy Server. . 6-61

/. Advanced JWS Programming: JMS Transport and SOAP
Message Handlers

Using JMS Transport as the Connection Protocol. 7-1
Using JMS Transport Starting From Java: Main Steps 7-2
Using JMS Transport Starting From WSDL: Main Steps 7-4
Using the @WLJmsTransport JWS Annotation. 7-6
Using the <WLJmsTransport> Child Element of the jwsc Ant Task............. 7-7
Updating the WSDL to Use JMS Transport.iiiiiiii s 7-8
Invoking a WebLogic Web Service Using JMS Transport. 7-9

Creating and Using SOAP Message Handlers. o .. 7-12
Adding SOAP Message Handlers to a Web Service: Main Steps 7-15
Designing the SOAP Message Handlers and Handler Chains. 7-15
Creating the GenericHandler Class 7-18
Configuring Handlersinthe JWS File. i, 7-26
Creating the Handler Chain Configuration File 7-31
Compiling and Rebuilding the Web Service 7-32

8. Data Types and Data Binding

Overview of Data Typesand DataBinding. iin... 8-1
Supported Built-In Data TYPesSo 8-2
XML-to-Java Mapping for Built-InData Types, 8-2
Java-to-XML Mapping for Built-InData Types, 8-4
Supported User-Defined Data Types. oottt 8-6
Supported XML User-Defined Data TypesS 8-6

viii Programming Web Services for WebLogic Server

Supported Java User-Defined Data TYPeso 8-8

9. Invoking Web Services

Overview of Web Services Invocation 9-1
Types of Client Applications e 9-2
JAX-RPC 9-2
The clientgen Ant Task. oot e 9-3
Examples of Clients That Invoke Web Services. 9-4

Invoking a Web Service from a Stand-alone Client: Main Steps 9-4
Using the clientgen Ant Task To Generate Client Artifacts. 9-5
Getting Information Abouta Web Service il 9-6
Writing the Java Client Application Code to Invoke a Web Service 9-8
Compiling and Running the Client Application. 9-9
Sample Ant Build File for a Stand-Alone JavaClient 9-11

Invoking a Web Service from Another Web Service 9-12
Sample build.xml File for a Web Service Client 9-14
Sample JWS File That Invokes a Web Service., 9-16

Using a Proxy Server When Invoking a Web Service............. 9-18
Using the HttpTransportinfo API to Specify the Proxy Server 9-18
Using System Properties to Specify the Proxy Server 9-20

Client Considerations When Redeploying a Web Service. 9-21

Creating and Using Client-Side SOAP Message Handlers 9-22
Using Client-Side SOAP Message Handlers: Main Steps 9-23
Example of a Client-Side Handler Class o i, 9-24
Creating the Client-Side SOAP Handler ConfigurationFile 9-25
XML Schema for the Client-Side Handler Configuration File. 9-26
Specifying the Client-Side SOAP Handler Configuration File to clientgen 9-27

Using a Client-Side Security WS-Policy File i, 9-27

Programming Web Services for WebLogic Server ix

Associating a WS-Policy File with a Client Application: Main Steps. 9-28

Updating clientgen to Generate Methods That Load WS-Policy Files 9-29
Updating a Client Application To Load WS-Policy Files 9-29
WebLogic Web Services Stub Properties i 9-32

10. Configuring Security

Overview of Web Services Security 10-1
What Type of Security Should You Configure? o .. 10-2
Configuring Message-Level Security (Digital Signatures and Encryption) 10-3
Main Use Cases of Message-Level Security ..., 10-4
Using WS-Policy Files for Message-Level Security Configuration 10-4
WebLogic Server WS-Policy Files. i 10-5
Abstract and Concrete WS-Policy Files. o i, 10-13
Configuring Simple Message-Level Security: Main Steps 10-14
Ensuring That WebL ogic Server Can Validate the Client’s Certificate 10-17
Updating the JWS File with @Policy and @Policies Annotations 10-17
Using Key Pairs Other Than the Out-Of-The-Box SSL Pair................. 10-20
Setting the SOAP Message Expiration. 10-22
Creating and Using a Custom WS-Policy File. 10-23
Configuring and Using Security Contexts and Derived Keys (WS-SecureConversation)
10-27
Associating WS-Policy Files at Runtime Using the Administration Console 10-32
Using Security Assertion Markup Language (SAML) Tokens For Identity 10-32
Using Only X.509 Certificate Tokens for Identity 10-36
Using a Password Digest In the SOAP Message Rather Than Plaintext........ 10-38
Associating a Web Service with a Security Configuration Other Than the Default10-40
Using System Properties to Debug Message-Level Security. 10-40
Updating a Client Application to Invoke a Message-Secured Web Service......... 10-41

X Programming Web Services for WebLogic Server

Invoking a Message-Secured Web Service From a Client Running in a WebLogic

Server INStaNCE.o 10-44
Configuring Transport-Level Security. i i 10-45
Configuring Two-Way SSL for a Client Application. 10-47
Additional Web Services SSL Exampleso i 10-48
Configuring Access Control Security: Main Steps, 10-48
Updating the JWS File With the Security-Related Annotations. 10-50
Updating the JWS File With the @RunAs Annotation 10-52
Setting the Username and Password When Creating the JAX-RPC Service Object
10-53

11. Administering Web Services

Overview of WebLogic Web Services Administration Tasks. 11-1

Administration TOOIS 11-2

Using the Administration Console. 11-3
Invoking the Administration Console. i 11-4
How Web Services Are Displayed In the Administration Console 11-5
Creating a Web Services Security Configuration........................... 11-7

Using the WebLogic Scripting Tool o e 11-8

Using WebLogic ANt Tasks.o 11-8

Using the Java Management Extensions (IMX) oo, 11-8

Using the J2EE Deployment APL. o 11-9

Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads
11-10

12. Publishing and Finding Web Services Using UDDI

Overview of UDDI. 12-1
UDDI and Web Services.o 12-2
UDDI and Business Registryt e 12-2

Programming Web Services for WebLogic Server Xi

UDDI Data StrUCLUIE . . .ttt e e e 12-3

WebLogic Server UDDI Featuresttt 12-4
UDDI 2.0 SBIVET « .ot 12-5
Configuring the UDDI 2.0 SEIVErttt e 12-5
Configuring an External LDAP Server, 12-6
Description of Properties in the uddi.propertiesFile 12-12
UDDI Directory EXplorero 12-20
UDDI Clent AP . ..o e 12-20
Pluggable tModel. 12-21
XML Elements and Permissible Values. o it 12-21
XML Schema for Pluggable tModels. i 12-23
Sample XML for a Pluggable tModel, 12-24

13. Upgrading WebLogic Web Services From Previous Releases to
9.2

Upgrading a 9.0 or 9.1 WebLogic Web Serviceto 9.2.......................... 13-1
Upgrading an 8.1 WebLogic Web Serviceto 9.2t 13-2
Upgrading an 8.1 Java Class-Implemented WebLogic Web Service to 9.2: Main Steps.
13-3
Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 9.2: Main Steps. . 13-9

Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes. 13-19
A. Ant Task Reference
Overview of WebLogic Web Services Ant Tasks., A-1
List of Web Services ANt Tasksot A-2
Using the Web Services Ant TasKS.ottt e A-2
Setting the Classpath for the WebLogic Ant Tasks A-4

Xii Programming Web Services for WebLogic Server

Differences in Operating System Case Sensitivity When Manipulating WSDL and

XML Schema Files A-5
ClENtgeN . L o A-5
JU S ettt e e A-17
WSAIC o A-53

B. JWS Annotation Reference
Overview of JWS Annotation TagS . . .« v v ettt et e e e B-1
Standard JSR-181 JWS Annotations Reference i B-4
Javax Jws. WebService. o B-4
javaxjws.WebMethod. o B-6
JAVAX JWS. ONBWAY . .« v v v ettt B-6
Javax Jws. WebParam. B-7
javax jws.WebResult. B-8
javaxjws.HandlerChain i B-9
javax.jws.s0ap.SOAPBINAING. . ..o oot B-11
javax.jws.soap.SOAPMessageHandler. i B-13
javax.jws.soap.nitParam B-14
javax.jws.soap.SOAPMessageHandlers. i B-14
WebLogic-Specific JWS Annotations Reference B-16
weblogic.jws.AsyncFailure. B-17
WeblogiC. Jws. ASYNCRESPONSE. . . . oot B-20
weblogic.jws.Binding B-23
weblogic.jws.BufferQueue B-25
weblogic.jws.Callback B-26
weblogic.jws.CallbackMethod B-28
weblogic.jws.CallbackService i B-29
WeblogiC. Jws.ConteXt B-31

Programming Web Services for WebLogic Server Xiii

Xiv

weblogic.jws.Conversation. B-33

weblogic.jws.Conversational B-35
weblogic.jws.MessageBuffer B-38
weblogic jws.PoliCies. o B-40
weblogicjws.PoliCyo B-41
weblogic.jws.ReliabilityBuffer. B-43
weblogic.jws.ReliabilityErrorHandler i B-45
weblogic.jws.ServiceClient B-47
weblogic.jws.StreamAttachments B-51
weblogic.jws. Transactional B-52
WEDIOGIC JWS. TYPES oottt B-54
weblogic.jws.WildcardBinding B-56
weblogic.jws.WildcardBindings. B-57
weblogic.jws.WLHttpTransport. B-57
weblogic jws.WLHttpsTransport B-59
weblogic jws.WLIMSTIansportot B-61
Weblogicjws.WSDL. B-62
weblogic.jws.security.CallbackRolesAllowed B-64
weblogic.jws.security.RolesAllowed o B-65
weblogic.jws.security.RolesReferenced. oo B-66
weblogic.jws.SeCUrity.RUNAS e B-67
weblogic.jws.security.SecurityRole B-68
weblogic.jws.security.SecurityRoleRef B-70
weblogic.jws.security.UserDataConstraint. B-71
weblogic.jws.security.WssConfiguration. o B-73
weblogic.jws.s0ap.SOAPBINAING B-74
weblogic.jws.security.SecurityRoles (deprecated). B-77
weblogic.jws.security.Securityldentity (deprecated) B-79

Programming Web Services for WebLogic Server

C. Web Service Reliable Messaging Policy Assertion Reference

Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions .

C-1

Graphical Representation. C-2

Example of a WS-Policy File With Web Service Reliable Messaging Assertions. C-3

Element DesCription.o C-3
beapOliCy EXPITeS . .o e C-3
beapolicy:QOS . . . C-4
wsrm:Acknowledgementinterval C-5
wsrm:BaseRetransmissionInterval C-6
wsrm:ExponentialBackoff C-6
wsrm:lnactivityTimeout C-7
WSIMIRMASSEITION. . . . C-7

D. Security Policy Assertion Reference

Overview of a WS-Policy File That Contains Security Assertions. D-1
Graphical Representation.t D-2
Example of a Policy File With Security Elements. D-5
Element DesCriptioNn. o D-6
CanonicalizationAlgorithm. D-6
ClaiMS . . D-6
Confidentiality i e D-7
ConfirmationMethod D-7
DigestAlgorithm D-9
EncryptionAlgorithm D-10
Nty . o D-10
Iy, . ot D-11
KeyINfo. .. D-11

Programming Web Services for WebLogic Server XV

Label. D-12
Length. .o D-12
MESSAgBAGE . . o et D-12
MessageParts D-15
SECUNEYTOKEN. . oo D-16
SecurityTokenReference. D-17
Signature Algorithm D-17
SUPPOrEdTOKENSot D-18
Targel . D-18
TokenLifeTimeo D-19
TranStorm . o L D-19
USEPASSWOI. . . . ottt e D-20
Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
SIgNBA . . e D-21
XPath 1.0 . oo D-22
Pre-Defined wsp:Body() Function i D-23
WebLogic-Specific Header Functions i D-23

E. WebLogic Web Service Deployment Descriptor Element

Xvi

Reference

Overview of weblogic-webservicesxml i E-1
Graphical Representation. E-2
XML SCheMa. . .o E-4
Example of a weblogic-webservices.xml Deployment Descriptor File E-4
Element DesCription o E-4

deployment-listener-list E-4

deployment-listener E-4

Programming Web Services for WebLogic Server

BXPOSE . . o et E-4

10gin-config. . . .o E-5
MDEAN-NAME E-5
POrt-COMPONENt.o E-5
POrt-COMPONENT-NAME.ottt E-6
Service-endpoint-address E-6
transpPort-guUaranteeot E-6
WEDIOGIC-WEDSEIVICES. . . o ot E-7
webservice-contextpath E-7
WeEDSErvice-desCriptiono E-7
webservice-desCription-Name E-8
WEDSEIVICE-SECUNILY . ..ottt E-8
WEDSEIVICE-SEIVICEUNT . . . o o vttt E-8
WAL, L E-9
wsdl-publish-file. E-9

Programming Web Services for WebLogic Server Xvii

Xviii Programming Web Services for WebLogic Server

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming Web Services
for WebLogic Server.

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-3

“Samples for the Web Services Developer” on page 1-4
“Release-Specific WebLogic Web Services Information” on page 1-5
“Differences Between 8.1 and 9.X WebLogic Web Services” on page 1-6

“Summary of WebLogic Web Services Features” on page 1-6

Document Scope and Audience

This document is a resource for software developers who develop WebLogic Web Services. It
also contains information that is useful for business analysts and system architects who are
evaluating WebLogic Server or considering the use of WebLogic Web Services for a particular
application.

The topics in this document are relevant during the design and development phases of a software
project. The document also includes topics that are useful in solving application problems that are
discovered during test and pre-production phases of a project.

Programming Web Services for WebLogic Server 1-1

Introduction and Roadmap

This document does not address production phase administration, monitoring, or performance
tuning Web Service topics. For links to WebL ogic Server® documentation and resources for
these topics, see “Related Documentation” on page 1-3.

It is assumed that the reader is familiar with J2EE and Web Services concepts, the Java
programming language, and Web technologies. This document emphasizes the value-added
features provided by WebLogic Web Services and key information about how to use WebLogic
Server features and facilities to get a WebLogic Web Service application up and running.

Guide to This Document

This document is organized as follows:

1-2

This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide and the features of WebLogic Web Services.

Chapter 2, “Understanding WebLogic Web Services,” provides an overview of how
WebLogic Web Services are implemented, why they are useful, and the standard
specifications that they implement or to which they conform.

Chapter 3, “Common Web Services Use Cases and Examples,” provides a set of common
use case and examples of programming WebLogic Web Services, along with step by step
instructions on reproducing the example in your own environment.

Chapter 4, “Iterative Development of WebLogic Web Services,” provides procedures for
setting up your development environment and iterative programming of a WebLogic Web
Service.

Chapter 5, “Programming the JWS File,” provides details about using JWS annotations in a
Java file to implement a basic Web Service. The section discusses both standard (JSR-181)
JWS annotations as well as WebL ogic-specific ones.

Chapter 6, “Advanced JWS Programming: Implementing Asynchronous Features,”
discusses how to implement the following advanced features for your Web Service: Web
Service reliable messaging, conversational Web Services, buffering, asynchronous
request-response, and SOAP message handlers for intercepting the request and response
SOAP message.

Chapter 8, “Data Types and Data Binding,” discusses the built-in and user-defined XML
Schema and Java data types that are supported by WebLogic Web Services.

Programming Web Services for WebLogic Server

Related Documentation

e Chapter 9, “Invoking Web Services,”describes how to write a client application
(stand-alone or inside a WebLogic Web Service) that invokes a Web Service using the
JAX-RPC stubs generated by the WebLogic Web Service Ant task clientgen.

e Chapter 10, “Configuring Security,” provides information about configuring different types
of security for a WebLogic Web Service: message-level (digital signatures and encryption),
transport-level (SSL), and access control.

e Chapter 11, “Administering Web Services,” provides information about the types of
administrative tasks you typically perform with WebLogic Web Services and the different
ways you can go about administering them: Administration Console, WebLogic Scripting
Tool, and so on.

e Chapter 12, “Publishing and Finding Web Services Using UDDI,” describes how to use
UDDI to publish and find Web Services.

e Chapter 13, “Upgrading WebLogic Web Services From Previous Releases to 9.2,”
describes how to upgrade an 8.1, 9.0, and 9.1Web Service to run on the new 9.2 Web
Services runtime environment.

e Appendix A, “Ant Task Reference,” provides reference documentation about the WebLogic
Web Services Ant tasks.

e Appendix B, “JWS Annotation Reference,”provides reference information about the JWS
annotations (both standard JSR-181 and WebLogic-specific) that you can use in the JWS
file that implements your Web Service.

e Appendix C, “Web Service Reliable Messaging Policy Assertion Reference,” provides
reference information about the policy assertions you can add to a WS-Policy file to
configure the Web Service reliable messaging feature of a WebLogic Web Service.

e Appendix D, “Security Policy Assertion Reference,” provides reference information about
the policy assertions you can add to a WS-Policy file to configure the message-level
(digital signatures and encryption) security of a WebLogic Web Service.

e Appendix E, “WebLogic Web Service Deployment Descriptor Element Reference,”
provides reference information about the elements in the WebLogic-specific Web Services
deployment descriptor weblogic-webservices.xml.

Related Documentation

This document contains Web Service-specific design and development information.

Programming Web Services for WebLogic Server 1-3

Introduction and Roadmap

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

e Developing WebLogic Server Applications is a guide to developing WebLogic Server
components (such as Web applications and EJBs) and applications.

e Developing Web Applications, Servlets, and JSPs for WebLogic Server is a guide to
developing Web applications, including servlets and JSPs, that are deployed and run on
WebLogic Server.

e Programming WebLogic Enterprise Java Beans is a guide to developing EJBs that are
deployed and run on WebL ogic Server.

e Programming WebLogic XML is a guide to designing and developing applications that
include XML processing.

e Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications. Use this guide for both development and
production deployment of your applications.

e Configuring Applications for Production Deployment describes how to configure your
applications for deployment to a production WebLogic Server environment.

e WebLogic Server Performance and Tuning contains information on monitoring and
improving the performance of WebLogic Server applications.

e Overview of WebLogic Server System Administration is an overview of administering
WebLogic Server and its deployed applications.

Samples for the Web Services Developer

In addition to this document, BEA Systems provides a variety of code samples for Web Services
developers. The examples and tutorials illustrate WebLogic Web Services in action, and provide
practical instructions on how to perform key Web Service development tasks.

BEA recommends that you run some or all of the Web Service examples before programming
your own application that use Web Services.

Downloading Examples Described in this Guide

Many of the samples described in this guide are available for download from the dev2dev
CodeShare site. Each example is self-contained and requires only that you install WebLogic
Server, create a domain, and start a server instance. All needed files, such as the JWS file that

1-4 Programming Web Services for WebLogic Server

Release-Specific WebLogic Web Services Information

implements the sample Web Service, the Java client to invoke the Web Service, and the Ant
build.xml file to build, deploy, and run the example are included in the ZIP file.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the wL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebL ogic Server.

As companion documentation to the MedRec application, BEA provides development tutorials
that provide step-by-step procedures for key development tasks, including Web Service-specific
tasks. See Application Examples and Tutorials for the latest information.

Web Services Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in

WL_HOME\samples\server\examples\src\examples\webservices, where WL_HOME is the
top-level directory of your WebLogic Server installation. You can start the examples server, and
obtain information about the samples and how to run them from the WebLogic Server Start menu.

Additional Web Services Examples Available for Download

Additional AP1 examples for download can be found at http://dev2dev.bea.com. These examples
include BEA-certified ones, as well as examples submitted by fellow developers.

Release-Specific WebLogic Web Services Information

For release-specific information, see these sections in WebLogic Server Release Notes:
e WebL ogic Server Features and Changes lists new, changed, and deprecated features.

e WebLogic Server Known and Resolved Issues lists known problems by general release, as
well as service pack, for all WebLogic Server APIs, including Web Services.

Programming Web Services for WebLogic Server 1-5

Introduction and Roadmap

Differences Between 8.1 and 9.X WebLogic Web Services

Web Services is one of the most important themes of J2EE 1.4, and thus of WebL ogic Server 9.X.
J2EE 1.4 introduces a standard Java component model for authoring Web Services with the
inclusion of new specifications such as Implementing Enterprise Web Services (JSR-921) and
Java API for XML Registries (JAX-R), as well as the updated JAX-RPC and SAAJ specifications.
Because the implementation of Web Services is now a J2EE standard, there have been many
changes between 8.1 and 9.X WebLogic Web Services.

In particular, the programming model used to create WebLogic Web Services has changed to take
advantage of the powerful new metadata annotations feature introduced in Version 5.0 of the
JDK. In 9.X you use JWS metadata annotations to annotate a Java file with information that
specifies the shape and behavior of the Web Service. These JWS annotations include both the
standard ones defined by the Web Services Metadata for the Java Platform specification
(JSR-181), as well as additional WebLogic-specific ones. This JWS-based programming model
is similar to that of WebLogic Workshop 8.1, although in 8.1 the metadata was specified via
Javadoc tags. The WebLogic Web Services programming model in 8.1, by contrast, used the
many attributes of the Web Service Ant tasks, such as servicegen, to specify the shape and
behavior of the Web Service. Occasionally programmers had to update the deployment descriptor
file (webservices.xml) manually to specify characteristics of the Web Service. The new
programming model makes implementing Web Services much easier and quicker.

See Chapter 5, “Programming the JWS File,” for more information.

Additionally, the runtime environment upon which WebLogic Web Services 9.X run has been
completely rewritten to support the Implementing Enterprise Web Services, Version 1.1
(JSR-921), specification. This means that Web Services created in 9.X are internally
implemented differently from those created in 8.1 and both run in completely different runtime
environments. The 8.1 runtime environment has been deprecated, although it will continue to be
supported for a limited number of future WebLogic Server releases. This means that even though
8.1 WebLogic Web Services run correctly on WebLogic Server 9.X, this may not always be true
and BEA recommends that you upgrade the 8.1 Web Services to run in the 9.X runtime
environment.

See “Anatomy of a WebLogic Web Service” on page 2-3 for more information.

Summary of WebLogic Web Services Features

The following list summarizes the main features of WebLogic Web Services and provides links
for additional detailed information:

1-6 Programming Web Services for WebLogic Server

Summary of WebLogic Web Services Features

Programming model based on the new JDK 5.0 metadata annotations feature. The Web
Services programming model uses JWS annotations, defined by the Web Services
Metadata for the Java Platform specification (JSR-181).

See Chapter 5, “Programming the JWS File.”

Implementation of the Web Services for J2EE, Version 1.1 specification, which defines the
standard J2EE runtime architecture for implementing Web Services in Java.

See “Anatomy of a WebLogic Web Service” on page 2-3.

Asynchronous, loosely-coupled Web Services that take advantage of the following
features, either separately or all together: Web Service reliable messaging, conversations,
buffering, asynchronous request-response, and JMS transport.

See:
— “Using Web Service Reliable Messaging” on page 6-1
— “Invoking a Web Service Using Asynchronous Request-Response” on page 6-19
— “Using Callbacks to Notify Clients of Events” on page 6-27
— “Creating Conversational Web Services” on page 6-37
— “Creating Buffered Web Services” on page 6-50

— “Using JMS Transport as the Connection Protocol” on page 7-1

Digital signatures and encryption of request and response SOAP messages, as specified by
the WS-Security, as well as shared security contexts as described by the
WS-SecureConversation specification.

See “Configuring Message-Level Security (Digital Signatures and Encryption)” on
page 10-3.

Use of WS-Policy files for the Web Service reliable messaging and digital
signatures/encryption features.

See “Use of WS-Policy Files for Web Service Reliable Messaging Configuration” on
page 6-2 and “Using WS-Policy Files for Message-Level Security Configuration” on
page 10-4.

Data binding between built-in and user-defined XML and Java data types.
See Chapter 8, “Data Types and Data Binding.”
SOAP message handlers that intercept the request and response SOAP message from an

invoke of a Web Service.

Programming Web Services for WebLogic Server 1-1

Introduction and Roadmap

See “Creating and Using SOAP Message Handlers” on page 7-12.

e Ant tasks that handle JWS files, generate a Web Service from a WSDL file, and create the
JAX-RPC client classes needed to invoke a Web Service.

See Appendix A, “Ant Task Reference.”

e Implementation of and conformance with standard Web Services specifications.

See “Standards Supported by WebLogic Web Services” on page 2-6.

1-8 Programming Web Services for WebLogic Server

CHAPTERa

Understanding WebLogic Web Services

The following sections provide an overview of WebLogic Web Services as implemented by
WebLogic Server:

e “What Are Web Services?” on page 2-1

e “Why Use Web Services?” on page 2-2

e “Anatomy of a WebLogic Web Service” on page 2-3

e “Roadmap of Common Web Service Development Tasks” on page 2-4

e “Standards Supported by WebLogic Web Services” on page 2-6

What Are Web Services?

A Web Service is a set of functions packaged into a single entity that is available to other systems
on a network and can be shared by and used as a component of distributed Web-based
applications. The network can be a corporate intranet or the Internet. Other systems, such as
customer relationship management systems, order-processing systems, and other existing
back-end applications, can call these functions to request data or perform an operation. Because
Web Services rely on basic, standard technologies which most systems provide, they are an
excellent means for connecting distributed systems together.

Traditionally, software application architecture tended to fall into two categories: monolithic

systems such as those that ran on mainframes or client-server applications running on desktops.
Although these architectures worked well for the purpose the applications were built to address,
they were closed and their functionality could not be easily incorporated into new applications.

Programming Web Services for WebLogic Server 2-1

Understanding WebLogic Web Services

Thus the software industry has evolved toward loosely coupled service-oriented applications that
interact dynamically over the Web. The applications break down the larger software system into
smaller modular components, or shared services. These services can reside on different
computers and can be implemented by vastly different technologies, but they are packaged and
accessible using standard Web protocols, such as XML and HTTP, thus making them easily
accessible by any user on the Web.

This concept of services is not new—RMI, COM, and CORBA are all service-oriented
technologies. However, applications based on these technologies require them using that
particular technology, often from a particular vendor. This requirement typically hinders
widespread integration of the application’s functionality into other services on the network. To
solve this problem, Web Services are defined to share the following properties that make them
easily accessible from heterogeneous environments:

e Web Services are accessed using widely supported Web protocols such as HTTP.
e \Web Services describe themselves using an XML-based description language.

e Web Services communicate with clients (both end-user applications or other Web Services)
through simple XML messages that can be produced or parsed by virtually any
programming environment or even by a person, if necessary.

Why Use Web Services?

2-2

Major benefits of Web Services include:

o Interoperability among distributed applications that span diverse hardware and software
platforms

e Easy, widespread access to applications through firewalls using Web protocols

e A cross-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications
Because you access Web Services using standard Web protocols such as XML and HTTP, the
diverse and heterogeneous applications on the Web (which typically already understand XML
and HTTP) can automatically access Web Services, and thus communicate with each other.

These different systems can be Microsoft SOAP ToolKit clients, J2EE applications, legacy
applications, and so on. They are written in Java, C++, Perl, and other programming languages.
Application interoperability is the goal of Web Services and depends upon the service provider's
adherence to published industry standards.

Programming Web Services for WebLogic Server

Anatomy of a WebLogic Web Service

Anatomy of a WebLogic Weh Service

WebLogic Web Services are implemented according to the Enterprise Web Services 1.1
specification (JSR-921), which defines the standard J2EE runtime architecture for implementing
Web Services in Java. The specification also describes a standard J2EE Web Service packaging
format, deployment model, and runtime services, all of which are implemented by WebLogic
Web Services.

Note: JSR-921isthe 1.1 maintenance release of JSR-109, which was the J2EE 1.3 specification
for Web Services. JSR-921 is currently in final release of the JCP (Java Community
Process).

The Enterprise Web Services 1.1 specification describes that a J2EE Web Service is implemented
by one of the following components:

e A Java class running in the Web container.

e A stateless session EJB running in the EJB container.

The code in the Java class or EJB is what implements the business logic of your Web Service.
BEA recommends that, instead of coding the raw Java class or EJB directly, you use the JWS
annotations programming model instead, which makes programming a WebLogic Web Service
much easier.

This programing model takes advantage of the new JDK 5.0 metadata annotations feature in
which you create an annotated Java file and then use Ant tasks to compile the file into a Java class
and generate all the associated artifacts. The Java Web Service (JWS) annotated file is the core
of your Web Service. It contains the Java code that determines how your Web Service behaves.
A JWS file is an ordinary Java class file that uses annotations to specify the shape and
characteristics of the Web Service. The JWS annotations you can use in a JWS file include the
standard ones defined by the Web Services Metadata for the Java Platform specification
(JSR-181) as well as a set of WebLogic-specific ones.

For more information on the JWS programming model, see Chapter 5, “Programming the JWS
File,”

After you create the JWS file, you use the jwsc WebLogic Web Service Ant task to compile the
JWS file, as described by the Enterprise Web Services 1.1 specification. The jwsc Ant task
always compiles the JWS file into a plain Java class; the only time it implements a stateless
session EJB is if you explicitly implemented javax.ejb.SessionBean in your JWS file. The
Jwsc Ant task also generates all the supporting artifacts for the Web Service, packages everything

Programming Web Services for WebLogic Server 2-3

Understanding WebLogic Web Services

into an archive file, and creates an Enterprise Application that you can then deploy to WebLogic
Server.

By default, the jwsc Ant task packages the Web service in a standard Web application WAR file
with all the standard WAR artifacts, such as the web.xml and weblogic.xml deployment
descriptor files. The WAR file, however, contains additional artifacts to indicate that it is also a
Web Service; these additional artifacts include the webservices.xml and
weblogic-webservices.xml deployment descriptor files, the JAX-RPC data type mapping
file, the WSDL file that describes the public contract of the Web Service, and so on. If you
execute jwsc against more than one JWS file, you can chose whether jwsc packages the Web
Services in a single WAR file, or whether jwsc packages each Web Service in a separate WAR
file. In either case, jwsc generates a single Enterprise Application.

If you explicitly implement javax.ejb.SessionBean in your JWS file, then the jwsc Ant task
packages the Web Service in a standard EJB JAR file with all the usual artifacts, such as the
ejb-jar.xml and weblogic-ejb.jar.xml deployment descriptor files. The EJB JAR file also
contains additional Web Service-specific artifacts, as described in the preceding paragraph, to
indicate that it is a Web Service. Similarly, you can choose whether multiple JWS files are
packaged in a single or multiple EJB JAR files.

In addition to programming the JWS file, you can also configure one or more SOAP message
handlers if you need to do additional processing of the request and response SOAP messages used
in the invoke of a Web Service operation.

Once you have coded the basic WebLogic Web Service, you can program and configure
additional advanced features. These include being able to invoke the Web Service reliably (as
specified by the WS-ReliableMessaging specification, dated February 4, 2005) and also specify
that the SOAP messages be digitally signed and encrypted (as specified by the WS-Security
specification). You configure these more advanced features of WebLogic Web Services using
WS-Policy files, which is an XML file that adheres to the WS-Policy specification and contains
security- or Web Service reliable messaging-specific XML elements that describe the security
and reliable-messaging configuration, respectively.

Roadmap of Common Web Service Development Tasks

2-4

The following table provides a roadmap of common tasks for creating, deploying, and invoking
WebLogic Web Services.

Programming Web Services for WebLogic Server

Table 2-1 Web Services Tasks

Roadmap of Common Web Service Development Tasks

Major Task

Subtasks and Additional Information

Get started.

“Understanding WebLogic Web Services” on page 2-1

“Anatomy of a WebLogic Web Service” on page 2-3

“Standards Supported by WebLogic Web Services” on page 2-6

“Creating a Simple HelloWorld Web Service” on page 3-2

“Common Web Services Use Cases and Examples” on page 3-1

Iteratively develop a basic WebLogic
Web Service.

“Iterative Development of WebLogic Web Services Starting From
Java: Main Steps” on page 4-3

“Iterative Development of WebLogic Web Services Starting From a
WSDL File: Main Steps” on page 4-5

“Integrating Web Services Into the WebLogic Split Development
Directory Environment” on page 4-21

“Programming the JWS File” on page 5-1

“Supported Built-In Data Types” on page 8-2

“Supported User-Defined Data Types” on page 8-6

“Programming the User-Defined Java Data Type” on page 5-19

“Throwing Exceptions” on page 5-21

“Accessing Runtime Information about a Web Service Using the
JwsContext” on page 5-11

“Should You Implement a Stateless Session EJB?” on page 5-16

“Creating the Basic Ant build.xml File” on page 4-7

“Running the jwsc WebLogic Web Services Ant Task” on page 4-7

Deploy the Web Service for testing
purposes.

“Deploying and Undeploying WebLogic Web Services” on page 4-15

“Browsing to the WSDL of the Web Service” on page 4-17

Programming Web Services for WebLogic Server 2-5

Understanding WebLogic Web Services

Tahle 2-1 Weh Services Tasks

Major Task

Subtasks and Additional Information

Invoke the Web Service.

“Invoking a Web Service from a Stand-alone Client: Main Steps” on
page 9-4

“Invoking a Web Service from Another Web Service” on page 9-12

“Invoking a Web Service Using Asynchronous Request-Response™ on
page 6-19

“Creating and Using Client-Side SOAP Message Handlers” on
page 9-22

“Using a Client-Side Security WS-Policy File” on page 9-27

Add advanced features to the Web
Service.

“Using Web Service Reliable Messaging” on page 6-1

“Using Callbacks to Notify Clients of Events” on page 6-27

“Creating Conversational Web Services” on page 6-37

“Creating Buffered Web Services” on page 6-50

“Using JMS Transport as the Connection Protocol” on page 7-1

“Creating and Using SOAP Message Handlers” on page 7-12

Secure the Web Service.

“Configuring Message-Level Security (Digital Signatures and
Encryption)” on page 10-3

“Configuring Transport-Level Security” on page 10-45

“Configuring Access Control Security: Main Steps” on page 10-48

Upgrade an 8.1, 9.0, or 9.1WebLogic

Web Service to run in the 9.2 runtime.

“Upgrading a 9.0 or 9.1 WebLogic Web Service to 9.2” on page 13-1

“Upgrading an 8.1 Java Class-Implemented WebLogic Web Service
to0 9.2: Main Steps” on page 13-3

“Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 9.2:
Main Steps” on page 13-9

Standards Supported hy WebLogic Web Services

A Web Service requires the following standard specification implementations or conformance:

2-6 Programming Web Services for WebLogic Server

Standards Supported by WebLogic Web Services

e A standard programming model used to develop the Web Service.

The WebLogic Web Services programming model uses standard JDK 1.5 metadata
annotations, as specified by the Web Services Metadata for the Java Platform specification
(JSR-181) See “Web Services Metadata for the Java Platform (JSR-181)” on page 2-8.

e A standard implementation hosted by a server on the Web.

WebLogic Web Services are hosted by WebLogic Server and are implemented using
standard J2EE components, as defined by the Implementing Enterprise Web Services 1.1
specification (JSR-921, which is the 1.1 maintenance release of JSR-109). See “Enterprise
Web Services 1.1” on page 2-9.

e A standard for transmitting data and Web Service invocation calls between the Web
Service and the user of the Web Service.

WebLogic Web Services use Simple Object Access Protocol (SOAP) as the message
format and HTTP as the connection protocol; both versions 1.1 and 1.2 are supported. See
“SOAP 1.1 and 1.2” on page 2-9.

WebLogic Web Services implement the SOAP with Attachments API for Java 1.2
specification to access any attachments to the SOAP message. See “SAAJ 1.2” on
page 2-10.

e A standard for describing the Web Service to clients so they can invoke it.

WebLogic Web Services use Web Services Description Language (WSDL) 1.1, an
XML-based specification, to describe themselves. See “WSDL 1.1” on page 2-10.

WebLogic Web Services uses WS-Policy to describe additional functionality and
requirements not addressed in WSDL 1.1. WebLogic Web Services conform to the
WS-Policy and WS-PolicyAttachment specifications when using policies to describe their
reliable messaging and security (digital signatures and encryption) functionality. See
“WS-Policy 1.0” on page 2-15 and “WS-PolicyAttachment 1.0” on page 2-15.

e A standard for client applications to invoke a Web Service.

WebLogic Web Services implement the Java API for XML-based RPC (JAX-RPC) 1.1 as
part of a client JAR that client applications can use to invoke WebLogic and
non-WebLogic Web Services. See “JAX-RPC 1.1” on page 2-12.

e A standard for digitally signing and encrypting the SOAP request and response messages
between a client application and the Web Service it is invoking.

WebLogic Web Services implement the following OASIS Standard 1.0 Web Services
Security specifications, dated April 6 2004:

Programming Web Services for WebLogic Server 2-1

Understanding WebLogic Web Services

2-8

— Web Services Security: SOAP Message Security
— Web Services Security: Username Token Profile
— Web Services Security: X.509 Token Profile

For more information, see “Web Services Security (WS-Security) 1.0” on page 2-13.

e A standard way for two Web Services to communicate asynchronously.

WebLogic Web Services conform to the WS-Addressing 1.0 and WS-ReliableMessaging
1.0 specifications when asynchronous features such as callbacks, addressing, conversations,
and Web Service reliable messaging.

e A standard for client applications to find a registered Web Service and to register a Web
Service.

WebLogic Web Services implement two different registration specifications: UDDI 2.0 and
JAX-R 1.0.

BEA Implementation of Web Service Specifications

Many specifications that define Web Service standards are written so as to allow for broad use of
the specification throughout the industry. Thus the BEA implementation of a particular
specification might not cover all possible usage scenarios covered by the specification.

BEA considers interoperability of Web Services platforms to be more important than providing
support for all possible edge cases of the Web Services specifications. BEA complies with the
Basic Profile 1.1 specification from the Web Services Interoperability Organization and
considers it to be the baseline for Web Services interoperability. This guide does not necessarily
document all of the Basic Profile 1.1 requirements. This guide does, however, document features
that are beyond the requirements of the Basic Profile 1.1.

Web Services Metadata for the Java Platform (JSR-181)

Although it is possible to program a WebLogic Web Service manually by coding the standard
JSR-921 EJB or Java class from scratch and generating its associated artifacts by hand
(deployment descriptor files, WSDL, data binding artifacts for user-defined data types, and so
on), the entire process can be difficult and tedious. For this reason, BEA recommends that you
take advantage of the new JDK 5.0 metadata annotations feature and use a programming model
in which you create an annotated Java file and then use Ant tasks to convert the file into the Java
source code of a standard JSR-921 Java class or EJB and automatically generate all the associated
artifacts.

Programming Web Services for WebLogic Server

Standards Supported by WebLogic Web Services

The Java Web Service (JWS) annotated file (called a JWS file for simplicity) is the core of your
Web Service. It contains the Java code that determines how your Web Service behaves. A JWS
file is an ordinary Java class file that uses JDK 5.0 metadata annotations to specify the shape and
characteristics of the Web Service. The JWS annotations you can use in a JWS file include the
standard ones defined by the Web Services Metadata for the Java Platform specification
(JSR-181) as well as a set of WebLogic-specific ones.

Enterprise Web Services 1.1

The Implementing Enterprise Web Services 1.1 specification (JSR-921) defines the programming
model and runtime architecture for implementing Web Services in Java that run on a J2EE
application server, such as WebLogic Server. In particular, it specifies that programmers
implement J2EE Web Services using one of two components:

e A Java class running in the Web container, or

e A stateless session EJB running in the EJB container

The specification also describes a standard J2EE Web Service packaging format, deployment
model, and runtime services, all of which are implemented by WebLogic Web Services.

Note: JSR-921 isthe 1.1 maintenance release of JSR-109, which was the J2EE 1.3 specification
for Web Services.

SOAP 1.1 and 1.2

SOAP (Simple Object Access Protocol) is a lightweight XML-based protocol used to exchange
information in a decentralized, distributed environment. WebL ogic Server includes its own
implementation of versions 1.1 and 1.2 of the SOAP specification. The protocol consists of:

e An envelope that describes the SOAP message. The envelope contains the body of the
message, identifies who should process it, and describes how to process it.

e A set of encoding rules for expressing instances of application-specific data types.

e A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions (MIME)-encoded
package that can be transmitted over HTTP or other Web protocols. MIME is a specification for
formatting non-ASCII messages so that they can be sent over the Internet.

The following example shows a SOAP 1.1 request for stock trading information embedded inside
an HTTP request:

Programming Web Services for WebLogic Server 2-9

Understanding WebLogic Web Services

POST /StockQuote HTTP/1.1

Host: www.sample.com:7001

Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "Some-URI™

<SOAP-ENV:Envelope

xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/*>
<SOAP-ENV:Body>
<m:GetLastStockQuote xmlns:m=""Some-URI"'>
<symbol>BEAS</symbol>
</m:GetLastStockQuote>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

2-10

By default, WebLogic Web Services use version 1.1 of SOAP; if you want your Web Service to
use version 1.2, specify the weblogic.jws.Binding JWS annotation in the JWS file that
implements your service.

For more information, see SOAP at http://www.w3.0rg/TR/SOAP.

SAAJ 1.2

The SOAP with Attachments API for Java (SAAJ) specification describes how developers can
produce and consume messages conforming to the SOAP 1.1 specification and SOAP with
Attachments notes.

The single package in the API, javax.xml.soap, provides the primary abstraction for SOAP
messages with MIME attachments. Attachments may be entire XML documents, XML
fragments, images, text documents, or any other content with a valid MIME type. In addition, the
package provides a simple client-side view of a request-response style of interaction with a Web
Service.

For more information, see and SOAP With Attachments API for Java (SAAJ) 1.1 at
http://java.sun.com/xml/saaj/index.html.

WSDL 1.1

Web Services Description Language (WSDL) is an XML-based specification that describes a
Web Service. A WSDL document describes Web Service operations, input and output
parameters, and how a client application connects to the Web Service.

Developers of WebLogic Web Services do not need to create the WSDL files; you generate these
files automatically as part of the WebLogic Web Services development process.

Programming Web Services for WebLogic Server

Standards Supported by WebLogic Web Services

The following example, for informational purposes only, shows a WSDL file that describes the
stock trading Web Service StockQuoteService that contains the method GetLastStockQuote:

<?xml version="1.0"?>
<definitions name="StockQuote"
targetNamespace="http://sample.com/stockquote._wsdl"
xmIns:tns="http://sample.com/stockquote.wsdl"
xmlns:xsd="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:xsd1l="http://sample.com/stockquote.xsd"
xmIns:soap=""http://schemas.xmlsoap.org/wsdl/soap/""
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="‘GetStockPricelnput'>
<part name="'symbol" element='"'xsd:string"/>
</message>
<message name="'GetStockPriceOutput'>
<part name="result" type='xsd:float'/>
</message>
<portType name="StockQuotePortType"'>
<operation name="'GetLastStockQuote'>
<input message=""tns:GetStockPricelnput"/>
<output message='"tns:GetStockPriceOutput"/>
</operation>
</portType>
<binding name="StockQuoteSoapBinding"” type=""tns:StockQuotePortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http'/>
<operation name="GetLastStockQuote'>
<soap:operation soapAction="http://sample.com/GetLastStockQuote'/>
<input>
<soap:body use="encoded" namespace="http://sample.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded" namespace="http://sample.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>>
</binding>
<service name="'StockQuoteService'>
<documentation>My first service</documentation>
<port name="'StockQuotePort"™ binding=""tns:StockQuoteSoapBinding'>
<soap:address location="http://sample.com/stockquote"/>
</port>
</service>
</definitions>

Programming Web Services for WebLogic Server 2-11

Understanding WebLogic Web Services

2-12

The WSDL specification includes optional extension elements that specify different types of
bindings that can be used when invoking the Web Service. The WebLogic Web Services runtime:

o Fully supports SOAP bindings, which means that if a WSDL file includes a SOAP binding,
the WebLogic Web Services will use SOAP as the format and protocol of the messages
used to invoke the Web Service.

e Ignores HTTP GET and POST bindings, which means that if a WSDL file includes this
extension, the WebLogic Web Services runtime skips over the element when parsing the
WSDL.

e Partially supports MIME bindings, which means that if a WSDL file includes this
extension, the WebLogic Web Services runtime parses the element, but does not actually
create MIME bindings when constructing a message due to a Web Service invoke.

For more information, see Web Services Description Language (WSDL) 1.1 at
http://www.w3.org/TR/wsdl.

JAX-RPC 1.1

The Java API for XML-based RPC (JAX-RPC) 1.1 is a Sun Microsystems specification that
defines the Java APIs for making XML-based remote procedure calls (RPC). In particular, these
APIs are used to invoke and get a response from a Web Service using SOAP 1.1, and XML-based
protocol for exchange of information in a decentralized and distributed environment.

WebLogic Server implements all required features of the JAX-RPC Version 1.1 specification.
Additionally, WebLogic Server implements optional data type support, as specified in:

e “Supported Built-In Data Types” on page 8-2

e “Supported User-Defined Data Types” on page 8-6

WebLogic Server does not implement optional features of the JAX-RPC specification, other than
what is described in these sections.

The following table briefly describes the core JAX-RPC interfaces and classes.

Programming Web Services for WebLogic Server

Standards Supported by WebLogic Web Services

Table 2-2 JAX-RPC Interfaces and Classes

javax.xmlrpc Interface Description

or Class

Service Main client interface. Used for both static and dynamic
invocations.

ServiceFactory Factory class for creating Service instances.

Stub Represents the client proxy for invoking the operations of a Web
Service. Typically used for static invocation of a Web Service.

Call Used to invoke a Web Service dynamically.

JAXRPCEXxception Exception thrown if an error occurs while invoking a Web

Service.

For detailed information on JAX-RPC, see http://java.sun.com/xml/jaxrpc/index.html.

Web Services Security (WS-Security) 1.0

The following description of Web Services Security is taken directly from the OASIS standard
1.0 specification, titled Web Services Security: SOAP Message Security, dated March 2004:

This specification proposes a standard set of SOAP extensions that can be used when building
secure Web services to implement integrity and confidentiality. We refer to this set of extensions
as the Web Services Security Language or WS-Security.

WS-Security is flexible and is designed to be used as the basis for the construction of a wide
variety of security models including PKI, Kerberos, and SSL. Specifically WS-Security provides
support for multiple security tokens, multiple trust domains, multiple signature formats, and
multiple encryption technologies.

This specification provides three main mechanisms: security token propagation, message
integrity, and message confidentiality. These mechanisms by themselves do not provide a
complete security solution. Instead, WS-Security is a building block that can be used in
conjunction with other Web service extensions and higher-level application-specific protocols to
accommodate a wide variety of security models and encryption technologies.

Programming Web Services for WebLogic Server 2-13

Understanding WebLogic Web Services

2-14

These mechanisms can be used independently (for example, to pass a security token) or in a
tightly integrated manner (for example, signing and encrypting a message and providing a
security token hierarchy associated with the keys used for signing and encryption).

WebLogic Web Services also implement the following token profiles:
e Web Services Security: Username Token Profile
e Web Services Security: X.509 Certificate Token Profile

e Web Services Security: SAML Token Profile

For more information, see the OASIS Web Service Security Web page at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

ubDI 2.0

The Universal Description, Discovery and Integration (UDDI) specification defines a standard
for describing a Web Service; registering a Web Service in a well-known registry; and
discovering other registered Web Services.

For more information, see http://www.uddi.org.

JAX-R 1.0

The Java API for XML Registries (JAXR) provides a uniform and standard Java API for
accessing different kinds of XML Registries. An XML registry is an enabling infrastructure for
building, deploying, and discovering Web services.

Currently there are a variety of specifications for XML registries including, most notably, the
ebXML Registry and Repository standard, which is being developed by OASIS and
U.N./CEFACT, and the UDDI specification, which is being developed by a vendor consortium.

JAXR enables Java software programmers to use a single, easy-to-use abstraction API to access
a variety of XML registries. Simplicity and ease of use are facilitated within JAXR by a unified
JAXR information model, which describes content and metadata within XML registries.

For more information, see Java APl for XML Registries at
http://java.sun.com/xml/jaxr/index.jsp.

Programming Web Services for WebLogic Server

Standards Supported by WebLogic Web Services

WS-Addressing 1.0

The WS-Addressing specification provides transport-neutral mechanisms to address Web
services and messages. In particular, the specification defines a number of XML elements used
to identify Web service endpoints and to secure end-to-end endpoint identification in messages.

All the asynchronous features of WebLogic Web Services (callbacks, conversations, and Web
Service reliable messaging) use addressing in their implementation, but Web Service
programmers can also use the APIs that conform to this specification stand-alone if additional
addressing functionality is needed.

See Web Services Addressing (WS-Addressing).

WS-Policy 1.0

The Web Services Policy Framework (WS-Policy) specification provides a general purpose
model and corresponding syntax to describe and communicate the policies of a Web Service.
WS-Policy defines a base set of constructs that can be used and extended by other Web Services
specifications to describe a broad range of service requirements, preferences, and capabilities.

See Web Services Policy Framework (WS-Policy).

WS-PolicyAttachment 1.0

The Web Services Policy Framework (WS-Policy) specification defines an abstract model and an
XML-based expression grammar for policies. This specification, Web Services Policy
Attachment (WS-PolicyAttachment), defines two general-purpose mechanisms for associating
such policies with the subjects to which they apply. This specification also defines how these
general-purpose mechanisms can be used to associate WS-Policy with WSDL and UDDI
descriptions.

See Web Services Policy Attachment (WS-PolicyAttachment).

WS-ReliableMessaging 1.0

The WS-ReliableMessaging specification (February 4, 2005) describes how two Web Services
running on different WebLogic Server instances can communicate reliably in the presence of
failures in software components, systems, or networks. In particular, the specification provides
for an interoperable protocol in which a message sent from a source endpoint to a destination
endpoint is guaranteed either to be delivered or to raise an error.

See Web Services Reliable Messaging Protocol (WS-ReliableMessaging).

Programming Web Services for WebLogic Server 2-15

Understanding WebLogic Web Services

2-16

WS-Trust 1.0

The WS-Trust specification (February 2005) defines extensions that build on Web Services
Security (WS-Security) 1.0 to provide a framework for requesting and issuing security tokens,
and to broker trust relationships.

See Web Services Trust Language (WS-Trust).

WS-SecureConversation 1.0

The WS-SecureConversation specification defines extensions that build on Web Services
Security (WS-Security) 1.0 and WS-Trust 1.0 to provide secure communication across one or
more messages. Specifically, this specification defines mechanisms for establishing and sharing
security contexts, and deriving keys from established security contexts (or any shared secret).

See Web Services Secure Conversation Language (WS-SecureConversation).

Additional Specifications Supported by WebLogic Weh
Services

e XML Schema Part 1: Structures at http://www.w3.0rg/TR/xmlschema-1/

e XML Schema Part 2: Data Types at http://www.w3.org/TR/xmlschema-2/

Programming Web Services for WebLogic Server

CHAPTERa

Common Web Services Use Cases and
Examples

The following sections describe the most common Web Service use cases:

“Creating a Simple HelloWorld Web Service” on page 3-2

“Creating a Web Service With User-Defined Data Types” on page 3-7

“Creating a Web Service from a WSDL File” on page 3-14

“Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23
“Invoking a Web Service from a WebLogic Web Service” on page 3-29

These use cases provide step-by-step procedures for creating simple WebLogic Web Services and
invoking an operation from a deployed Web Service. Each use case includes basic Java code and
Ant build.xml files that you can use either in your own development environment to recreate
the example, or by following the instructions to create and run the example outside of an already
setup development environment.

The use cases do not go into detail about the tools and technologies used in the examples. For
detailed information about specific features, see the relevant topics in this guide, in particular:

Chapter 4, “Iterative Development of WebLogic Web Services”

Chapter 5, “Programming the JWS File”

Chapter 6, “Advanced JWS Programming: Implementing Asynchronous Features”
Chapter 9, “Invoking Web Services”

Appendix A, “Ant Task Reference”

Programming Web Services for WebLogic Server 3-1

Common Web Services Use Cases and Examples

Creating a Simple HelloWorld Weh Service

3-2

This section describes how to create a very simple Web Service that contains a single operation.
The JWS file that implements the Web Service uses just the one required JWS annotation:
@webService. A JWS fileis a standard Java file that uses JWS metadata annotations to specify
the shape of the Web Service. Metadata annotations are a new JDK 5.0 feature, and the set of
annotations used to annotate Web Service files are called JWS annotations. WebLogic Web
Services use standard JWS annotations, as defined by JSR-181, as well as WebLogic-specific
ones for added value.

The following example shows how to create a Web Service called Hel loworldService that
includes a single operation, sayHel lowor1d. For simplicity, the operation does nothing other
than return the inputted String value.

1. Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/hello_world

3. Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the JWS file (shown later in this procedure):

prompt> cd /myExamples/hello_world
prompt> mkdir src/examples/webservices/hello_world

4. Create the JWS file that implements the Web Service by opening your favorite Java IDE or
text editor and creating a Java file called Hel loWorldImpl . java using the Java code
specified in “Sample HelloWorldIimpl.java JWS File” on page 3-4.

The sample JWS file shows a Java class called Hel lowor IdImpl that contains a single
public method, sayHel loWorld(String). The @WebService annotation specifies that
the Java class implements a Web Service called Hel loworldService. By default, all
public methods are exposed as operations.

5. Save the HelloWorldImpl . java file in the src/examples/webservices/hello_world
directory.

6. Create a standard Ant bui ld.xml file in the project directory and add a taskdef Ant task to
specify the fully Java classname of the jwsc task:

Programming Web Services for WebLogic Server

10.

Creating a Simple HelloWorld Web Service

<project name="webservices-hello_world" default="all">

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

See “Sample Ant Build File for HelloWorldIimpl.java” on page 3-5 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

Add the following call to the jwsc Ant task to the bui Id.xml file, wrapped inside of the
build-service target:
<target name="build-service">
<jwsc
srcdir="src"
destdir="output/helloWorldEar'>
<jws File="examples/webservices/hello_world/HelloWorldImpl.java" />
</jwsc>

</target>

The jwsc WebLogic Web Service Ant task generates the supporting artifacts (such as the
deployment descriptors, serialization classes for any user-defined data types, the WSDL
file, and so on), compiles the user-created and generated Java code, and archives all the
artifacts into an Enterprise Application EAR file that you later deploy to WebLogic Server.

Execute the jwsc Ant task by specifying the bui ld-service target at the command line:
prompt> ant build-service

See the output/hel loworldEar directory to view the files and artifacts generated by the
Jwsc Ant task.

Start the WebLogic Server instance to which the Web Service will be deployed.

Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wideploy Ant task. In either case, you deploy the
helloWorIdEar Enterprise application, located in the output directory.

To use the wideploy Ant task, add the following target to the buiid.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management._WLDeploy"/>

Programming Web Services for WebLogic Server 3-3

Common Web Services Use Cases and Examples

<target name="deploy">

<wldeploy action="deploy"
name="helloWorldEar" source="output/helloWorldEar"
user="${wls._username}" password="${wls._password}"
verbose=""true"
adminurl="t3://%{wls.hostname}:${wls.port}"
targets="${wls_server_name}" />

</target>

Substitute the values for wls.username, wls.password, wls.hostname,
wls_port, and wls.server._name that correspond to your WebLogic Server
instance.

Deploy the WAR file by executing the deploy target:
prompt> ant deploy
11. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:
http://host:port/HelloWorldimpl/Hel loWorldImpl?WSDL

You construct this URL by specifying the values of the contextPath and serviceUri
attributes of the WLHttpTransport JWS annotation; however, because the JWS file in this
use case does not include the WLHttpTransport annotation, specify the default values for
the two attributes: the name of the Java class in the JWS file. Use the hostname and port
relevant to your WebLogic Server instance.

See “Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23 for an
example of creating a JAX-RPC Java client application that invokes a Web Service.

You can use the clean, build-service, undeploy, and deploy targets in the bui ld.xml file
to iteratively update, rebuild, undeploy, and redeploy the Web Service as part of your
development process.

Sample HelloWorldimpl.java JWS File

package examples.webservices.hello_world;

// Import the @WebService annotation

import javax.jws.WebService;

@WebService(name=""HelloWor ldPortType", serviceName="HelloWorldService™)
Jr*

* This JWS file forms the basis of simple Java-class implemented WebLogic

* Web Service with a single operation: sayHelloWorld
*

3-4 Programming Web Services for WebLogic Server

Creating a Simple HelloWorld Web Service

* @author Copyright (c) 2005 by BEA Systems. All rights reserved.
*/

public class HelloWorldImpl {
// By default, all public methods are exposed as Web Services operation
public String sayHelloWorld(String message) {

System.out.printin(‘sayHelloWorld:" + message);
return "Here is the message: "' + message + """;

¥
}

Sample Ant Build File for HelloWorldIimpl.java

The following bui 1d.xml file uses properties to simplify the file.

<project name="‘webservices-hello_world" default="all">
<I-- set global properties for this build -->
<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />
<property name="wls.server._name" value="myserver" />
<property name="ear.deployed.name" value="helloWorldEar" />
<property name="‘example-output" value="output" />
<property name="ear-dir" value="${example-output}/helloWorldEar" />
<property name="clientclass-dir" value="${example-output}/clientclasses™

/>

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>

<taskdef name="jwsc"
classname=""'weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

Programming Web Services for WebLogic Server 3-5

Common Web Services Use Cases and Examples

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>
<target name="all" depends="clean,build-service,deploy,client” />

<target name=''clean'" depends="undeploy''>
<delete dir="${example-output}"/>
</target>

<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}">

<jws file="examples/webservices/hello_world/HelloWorldImpl._java" />
</jwsc>
</target>

<target name="deploy">
<wldeploy action="deploy" name="${ear.deployed.name}"
source=""${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose=""true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name="${ear.deployed.name}"
failonerror="false"
user="${wls.username}" password="${wls.password}" verbose='"true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

<target name="'client">
<clientgen
wsdI="http://${wls_hostname}:${wls.port}/HelloWorldImpl/Hel loWorldImpl?WSD
L

destDir="${clientclass-dir}"
packageName=""examples.webservices.hello_world.client"/>

3-6 Programming Web Services for WebLogic Server

Creating a Web Service With User-Defined Data Types

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes=""**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/hello_world/client/**/*_java"/>

</target>

<target name="run"''>
<java classname="examples.webservices.hello_world.client_Main"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${wls.hostname}:${wls._port}/HelloWorldImpl/HelloWoridImpl™
/>
</java> </target>

</project>

Creating a Web Service With User-Defined Data Types

The preceding use case uses only a simple data type, String, as the parameter and return value
of the Web Service operation. This next example shows how to create a Web Service that uses a
user-defined data type, in particular a JavaBean called BasicStruct, as both a parameter and a
return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in a Web
Service, other than to create the Java source of the data type and use it correctly in the JWS file.
The jwsc Ant task, when it encounters a user-defined data type in the JWS file, automatically
generates all the data binding artifacts needed to convert data between its XML representation
(used in the SOAP messages) and its Java representation (used in WebLogic Server.) The data
binding artifacts include the XML Schema equivalent of the Java user-defined type, the
JAX-RPC type mapping file, and so on.

The following procedure is very similar to the procedure in “Creating a Simple HelloWorld Web
Service” on page 3-2. For this reason, although the procedure does show all the needed steps, it
provides details only for those steps that differ from the simple HelloWorld example.

1. Open a command window and set your WebLogic Server environment.

Programming Web Services for WebLogic Server 3-7

Common Web Services Use Cases and Examples

3-8

. Create a project directory:

prompt> mkdir /myExamples/complex

. Create a src directory under the project directory, as well as sub-directories that correspond

to the package name of the JWS file (shown later in this procedure):

prompt> cd /myExamples/complex

prompt> mkdir src/examples/webservices/complex

. Create the source for the BasicStruct JavaBean by opening your favorite Java IDE or text

editor and creating a Java file called BasicStruct. java, in the project directory, using the
Java code specified in “Sample BasicStruct JavaBean” on page 3-9.

. Save the BasicStruct. java file in the src/examples/webservices/complex

sub-directory of the project directory.

. Create the JWS file that implements the Web Service using the Java code specified in “Sample

ComplexIimpl.java JWS File” on page 3-10.

The sample JWS file uses more JWS annotations than in the preceding example:
@webMethod to specify explicitly that a method should be exposed as a Web Service
operation and to change its operation name from the default method name echoStruct to
echoComplexType; @WebParam and @webResul t to configure the parameters and return
values; @SOAPBinding to specify the type of Web Service; and @WLHttpTransport to
specify the URI used to invoke the Web Service. The ComplexImpl . java JWS file also
imports the examples .webservice.complex.BasicStruct class and then uses the
BasicStruct user-defined data type as both a parameter and return value of the
echoStruct() method.

For more in-depth information about creating a JWS file, see Chapter 5, “Programming the
JWS File.”

. Save the ComplexImpl . java file in the src/examples/webservices/complex

sub-directory of the project directory.

. Create a standard Ant bui Id.xml file in the project directory and add a taskdef Ant task to

specify the fully Java classname of the jwsc task:
<project name="webservices-complex" default="all">

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

Programming Web Services for WebLogic Server

Creating a Web Service With User-Defined Data Types

See “Sample Ant Build File for ComplexIimpl.java JWS File” on page 3-12 for a full
sample build.xml file.

9. Add the following call to the jwsc Ant task to the bui Id.xml file, wrapped inside of the
build-service target:

<target name="build-service'>
<jwsc
srcdir="src"
destdir="output/ComplexServiceEar" >

<jws File=""examples/webservices/complex/ComplexImpl.java" />
</jwsc>

</target>
10. Execute the jwsc Ant task:
prompt> ant build-service

See the output/ComplexServiceEar directory to view the files and artifacts generated by
the jwsc Ant task.

11. Start the WebLogic Server instance to which the Web Service will be deployed.

12. Deploy the Web Service, packaged in the ComplexServiceEar Enterprise Application, to
WebLogic Server, using either the Administration Console or the wldeploy Ant task.

13. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:
http://host:port/complex/ComplexService?WSDL

See “Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23 for an
example of creating a JAX-RPC Java client application that invokes a Web Service.

Sample BasicStruct JavaBean

package examples._webservices.complex;
/**
* Defines a simple JavaBean called BasicStruct that has integer, String,

* and String[] properties
*/

public class BasicStruct {

// Properties

Programming Web Services for WebLogic Server 3-9

Common Web Services Use Cases and Examples

}

private int intValue;
private String stringValue;
private String[] stringArray;

// Getter and setter methods

public int getintValue() {
return intValue;

}

public void setIntValue(int intValue) {
this.intvalue = intValue;

}

public String getStringValue() {
return stringValue;

}

public void setStringValue(String stringValue) {
this._stringvValue = stringValue;

}

public String[] getStringArray(Q) {
return stringArray;

}

public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;

}

public String toString() {
return "IntvValue="+intValue+", StringValue="+stringValue;

}

Sample ComplexImpl.java JWS File

package examples.webservices.complex;

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface

import weblogic. jws_WLHttpTransport;

3-10 Programming Web Services for WebLogic Server

Creating a Web Service With User-Defined Data Types

// Import the BasicStruct JavaBean
import examples.webservices.complex.BasicStruct;

// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType', its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"

@WebService(serviceName="ComplexService", name="ComplexPortType",
targetNamespace="http://example.org"™)

// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service

@SOAPBinding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and service
// URI used to build the URI of the Web Service is "complex/ComplexService"

@WLHttpTransport(contextPath="complex', serviceUri="ComplexService",
portName=""ComplexServicePort')

/**
This JWS file forms the basis of a WebLogic Web Service. The Web Services
has two public operations:

- echolnt(int)
- echoComplexType(BasicStruct)

The Web Service is defined as a "‘document-literal’ service, which means
that the SOAP messages have a single part referencing an XML Schema element
that defines the entire body.

ok % b ok % % ok % X %

@author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public class ComplexImpl {

// Standard JWS annotation that specifies that the method should be exposed
// as a public operation. Because the annotation does not include the

// member-value "operationName'™, the public name of the operation is the
// same as the method name: echolnt.

// The WebResult annotation specifies that the name of the result of the

// operation in the generated WSDL is "IntegerOutput', rather than the

// default name “return®. The WebParam annotation specifies that the input
// parameter name in the WSDL file is "Integerlnput" rather than the Java
// name of the parameter, "input™.

Programming Web Services for WebLogic Server 3-11

Common Web Services Use Cases and Examples

@webMethod ()
@webResult(name="IntegerOutput",
targetNamespace=""http://example.org/complex')
public int echolnt(
@webParam(name=""Integerinput",
targetNamespace=""http://example.org/complex')
int input)

{

System.out.printIn(*echolnt "' + input + "" to you too!™);
return input;

}

// Standard JWS annotation to expose method "echoStruct™ as a public operation
// called "echoComplexType"

// The WebResult annotation specifies that the name of the result of the

// operation in the generated WSDL is "EchoStructReturnMessage",

// rather than the default name "return®.

@webMethod(operationName="echoComplexType')
@WebResult(name="EchoStructReturnMessage",

targetNamespace=""http://example.org/complex’)
public BasicStruct echoStruct(BasicStruct struct)

{
System.out._printIn(*echoComplexType called");

return struct;

}
}

Sample Ant Build File for ComplexImpl.java JWS File
The following bui Id.xml file uses properties to simplify the file.
<project name="webservices-complex™ default="all">

<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port"” value="7001" />

<property name="wls.server.name" value="myserver" />

<property name="ear.deployed.name" value="complexServiceEAR" />
<property name="example-output" value="output" />

<property name="ear-dir" value="${example-output}/complexServiceEar" />
<property name="clientclass-dir" value="${example-output}/clientclass” />

3-12 Programming Web Services for WebLogic Server

Creating a Web Service With User-Defined Data Types

<path id="client.class.path">
<pathelement path="${clientclass-dir}'"/>
<pathelement path="${java.class.path}'"/>
</path>

<taskdef name="jwsc"
classname=""weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management.WLDeploy"/>

<target name="all" depends="clean,build-service,deploy,client'/>

<target name=''clean'" depends="undeploy'>
<delete dir="${example-output}"/>
</target>

<target name="build-service'>

<jwsc

srcdir="src"

destdir="${ear-dir}"

keepGenerated=""true"

>

<jws file="examples/webservices/complex/ComplexImpl.java"
</jwsc>

</target>

<target name="deploy'>
<wldeploy action="deploy"

name=""${ear .deployed.name}"
source="${ear-dir}" user="${wls._username}"
password="${wls_.password}" verbose="true"
adminurl="t3://%{wls_hostname}:${wls.port}"
targets="${wls.server._name}"/>

</target>

<target name="undeploy"'>
<wldeploy action="undeploy" failonerror="false"
name=""${ear .deployed.name}"

/>

Programming Web Services for WebLogic Server 3-13

Common Web Services Use Cases and Examples

user="${wls_username}" password=""${wls._password}" verbose="true"
adminurl="t3://%{wls_hostname}:${wls.port}"
targets="${wls.server._name}"/>

</target>

<target name="'client'>

<clientgen
wsdI="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.complex.client"/>

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes=""**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes=""examples/webservices/complex/client/**/*_java'/>
</target>

<target name="run" >
<java fork="true"
classname=""examples.webservices.complex.client_Main"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg line="http://${wls._hostname}:${wls._port}/complex/ComplexService"
/>
</java>
</target>

</project>

Creating a Web Service from a WSDL File

Another typical use case of creating a Web Service is to start from an existing WSDL file, often
referred to as the golden WSDL. A WSDL file is a public contract that specifies what the Web
Service looks like, such as the list of supported operations, the signature and shape of each
operation, the protocols and transports that can be used when invoking the operations, and the
XML Schema data types that are used when transporting the data over the wire. Based on this

3-14 Programming Web Services for WebLogic Server

Creating a Web Service from a WSDL File

WSDL file, you generate the artifacts that implement the Web Service so that it can be deployed
to WebL ogic Server. These artifacts include:

e The JWS interface file that represents the Java implementation of your Web Service.

e Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the Web Service parameters and return values.

e A JWS file that contains a partial implementation of the generated JWS interface.

e Optional Javadocs for the generated JWS interface.

You use the wsdlc Ant task to generate these artifacts. Typically you run this Ant task one time
to generate a JAR file that contains the generated JWS interface file and data binding artifacts,
then code the generated JWS file that implements the interface, adding the business logic of your
Web Service. In particular, you add Java code to the methods that implement the Web Service
operations so that the operations behave as needed and add additional JWS annotations.

WARNING: The only file generated by the wsdlc Ant task that you update is the JWS
implementation file; you never need to update the JAR file that contains the JWS
interface and data binding artifacts.

After you have coded the JWS implementation file, you run the jwsc Ant task to generate the
deployable Web Service, using the same steps as described in the preceding sections. The only
difference is that you use the compi ledwsdl attribute to specify the JAR file (containing the JWS
interface file and data binding artifacts) generated by the wsdlc Ant task.

The following simple example shows how to create a Web Service from the WSDL file shown
in “Sample WSDL File” on page 3-19. The Web Service has one operation, getTemp, that returns
a temperature when passed a zip code.

1. Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a working directory:

prompt> mkdir /myExamples/wsdlc

3. Put your WSDL file into an accessible directory on your computer. For the purposes of this
example, it is assumed that your WSDL file is called TemperatureService.wsdl and is

Programming Web Services for WebLogic Server 3-15

Common Web Services Use Cases and Examples

3-16

located in the /myExamples/wsdlc/wsdl_files directory. See “Sample WSDL File” on
page 3-19 for a full listing of the file.

. Create a standard Ant bui 1d_xml file in the project directory and add a taskdef Ant task to

specify the fully Java classname of the wsdlc task:
<project name="webservices-wsdlc" default="all">

<taskdef name="wsdlc"
classname="'weblogic.wsee.tools.anttasks.WsdlcTask"/>

</project>

See “Sample Ant Build File for TemperatureService” on page 3-20 for a full sample
bui ld.xml file that contains additional targets from those described in this procedure,
such as clean, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

. Add the following call to the wsdlc Ant task to the bui Id.xml file, wrapped inside of the

generate-from-wsdl target:
<target name=''generate-from-wsdl">

<wsdlc
srcWsdl="wsdl_files/TemperatureService.wsdl"
destJwsDir="output/compiledWsdl"
destimpIDir="output/impl"
packageName=""examples.webservices.wsdlc" />

</target>

The wsdlc task in the examples generates the JAR file that contains the JWS interface and
data binding artifacts into the output/compiledwWsdl directory under the current
directory. It also generates a partial implementation file

(TemperaturePortTypelmpl . java) of the JWS interface into the
output/impl/examples/webservices/wsdlc directory (which is a combination of the
output directory specified by destImpIDir and the directory hierarchy specified by the
package name). All generated JWS files will be packaged in the
examples.webservices.wsdlc package.

Execute the wsdlc Ant task by specifying the generate-from-wsdl target at the command
line:

prompt> ant generate-from-wsdl

See the output directory if you want to examine the artifacts and files generated by the
wsdlc Ant task.

Programming Web Services for WebLogic Server

Creating a Web Service from a WSDL File

7. Update the generated
output/impl/examples/webservices/wsdlc/TemperaturePortTypelmpl.java
JWS implementation file using your favorite Java IDE or text editor to add Java code to the
methods so that they behave as you want. See “Sample TemperaturePortType Java
Implementation File” on page 3-20 for an example; the added Java code is in bold. The
generated JWS implementation file automatically includes values for the @webService and
@WLHttpTransport JWS annotations that correspond to the values in the original WSDL
file.

WARNING: There are restrictions on the JWS annotations that you can add to the JWS
implementation file in the “starting from WSDL” use case. See “wsdlc” on
page A-53 for details.

For simplicity, the sample getTemp() method in TemperaturePortTypelmpl.java
returns a hard-coded number. In real life, the implementation of this method would actually
look up the current temperature at the given zip code.

8. Copy the updated TemperaturePortTypelmpl . java file into a permanent directory, such
as a src directory under the project directory; remember to create child directories that
correspond to the package name:

prompt> cd /examples/wsdlc
prompt> mkdir src/examples/webservices/wsdlc
prompt> cp output/impl/examples/webservices/wsdlc/TemperaturePortTypelmpl.java
\
src/examples/webservices/wsdlc/TemperaturePortTypelmpl . java

9. Add abuild-service target to the bui Id.xml file that executes the jwsc Ant task against
the updated JWS implementation class. Use the compi ledwsdl attribute of jwsc to specify
the name of the JAR file generated by the wsdlc Ant task:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service'">

<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws
file="examples/webservices/wsdlc/TemperaturePortTypelmpl _java"
compiledWsdI="output/compiledWsdl/TemperatureService_wsdl.jar"
/>
</jwsc>

</target>

Programming Web Services for WebLogic Server 3-17

Common Web Services Use Cases and Examples

3-18

10.

11.
12.

13.

Execute the bui ld-service target to generate a deployable Web Service:
prompt> ant build-service

You can iteratively keep rerunning this target if you want to update the JWS file bit by bit.
Start the WebLogic Server instance to which the Web Service will be deployed.

Deploy the Web Service, packaged in an Enterprise Application, to WebL ogic Server, using
either the Administration Console or the wideploy Ant task. In either case, you deploy the
wsdlIcEar Enterprise application, located in the output directory.

To use the wideploy Ant task, add the following target to the bui ld.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management._WLDeploy"/>

<target name="deploy">

<wldeploy action="deploy" name="wsdlcEar""
source=""output/wsdlcEar” user="${wls.username}"
password="${wls.password}" verbose=""true"
adminurl="t3://%{wls_hostname}:${wls.port}"
targets="${wls.server_name}" />

</target>

Substitute the values for wls.username, wls.password, wls.hostname, wls_port, and
wls_server .name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

prompt> ant deploy
Test that the Web Service is deployed correctly by invoking its WSDL in your browser:
http://host:port/temp/TemperatureService?WSDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL.. Use the hostname and port relevant to your WebLogic Server
instance. Note that the deployed and original WSDL files are the same, except for the host
and port of the endpoint address.

See “Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23 for an
example of creating a JAX-RPC Java client application that invokes a Web Service.

You can use the clean, build-service, undeploy, and deploy targets in the bui Id.xml file
to iteratively update, rebuild, undeploy, and redeploy the Web Service as part of your
development process.

Programming Web Services for WebLogic Server

Creating a Web Service from a WSDL File

Sample WSDL File

<?xml version="1.0"?>

<definitions
name=""TemperatureService"
targetNamespace=""http://www.bea.com/wls90"
xmIns:tns="http://www._bea.com/wls90"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:soap=""http://schemas.xmlsoap.org/wsdl/soap/""
xmlns="http://schemas.xmlsoap.org/wsdl/" >

<message name="‘getTempRequest''>
<part name="zip" type="'xsd:string"/>
</message>

<message name=''getTempResponse''>
<part name="return" type=''xsd:float"/>
</message>

<portType name=""TemperaturePortType'>
<operation name='‘getTemp'>
<input message="'tns:getTempRequest"/>
<output message=""tns:getTempResponse'/>
</operation>
</portType>

<binding name="TemperatureBinding" type="tns:TemperaturePortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name='‘getTemp"'>
<soap:operation soapAction="""/>
<input>
<soap:body use="literal"
namespace="http://www.bea.com/wls90" />
</input>
<output>
<soap:body use="literal"
namespace="http://www.bea.com/wls90" />
</output>
</operation>
</binding>

<service name="TemperatureService'>
<documentation>
Returns current temperature in a given U.S. zipcode
</documentation>
<port name=""TemperaturePort" binding="tns:TemperatureBinding">
<soap:address

Programming Web Services for WebLogic Server 3-19

Common Web Services Use Cases and Examples

location="http://localhost:7001/temp/TemperatureService'/>
</port>
</service>

</definitions>

Sample TemperaturePortType Java Implementation File

package examples.webservices.wsdlc;

import javax.jws.WebService;
import weblogic.jws.*;

/**
* TemperaturePortTypelmpl class implements web service endpoint interface
TemperaturePortType */

@WebService(
serviceName="TemperatureService",
endpointinterface="examples.webservices.wsdlc.TemperaturePortType')

@WLHttpTransport(
contextPath=""temp",
serviceUri="TemperatureService",
portName=""TemperaturePort')
public class TemperaturePortTypelmpl implements TemperaturePortType {

public TemperaturePortTypelmpl() {

b
public float getTemp(Java.lang.String zip)
{
return 1.234f;
}
}

Sample Ant Build File for TemperatureService
The following bui Id.xml file uses properties to simplify the file.
<project default="all">

<I-- set global properties for this build -->

3-20 Programming Web Services for WebLogic Server

Creating a Web Service from a WSDL File

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server._name" value="myserver" />

<property name="ear.deployed.name"™ value="wsdlcEar" />

<property name="example-output" value="output" />

<property name="compiledWsdl-dir" value="${example-output}/compiledwWsdl"
/>

<property name="impl-dir" value="${example-output}/impl"” />

<property name="ear-dir" value="${example-output}/wsdlcEar" />

<property name="clientclass-dir" value="${example-output}/clientclasses™
/>

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}'"/>
</path>

<taskdef name="wsdlc"
classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

<taskdef name="jwsc"
classname=""weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all"
depends="'clean,generate-from-wsdl ,build-service,deploy,client” />

<target name=''clean'" depends="undeploy'>
<delete dir="${example-output}"/>
</target>

<target name=''generate-from-wsdl'>

<wsdlc
srcWsdl="wsdl_files/TemperatureService.wsdl"
destJwsDir="${compiledWsdl-dir}"

Programming Web Services for WebLogic Server 3-21

Common Web Services Use Cases and Examples

destimpIDir="${impl-dir}"
packageName=""examples.webservices.wsdlc" />

</target>
<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}">

<jws file="examples/webservices/wsdlc/TemperaturePortTypelmpl.java"
compi ledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar" />

</jwsc>
</target>

<target name="deploy'>
<wldeploy action="deploy" name=""${ear.deployed.name}"
source="${ear-dir}" user="${wls._username}"
password=""${wls.password}" verbose="true"
adminurl="t3://%{wls_hostname}:${wls.port}"
targets="${wls.server._name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name=""${ear.deployed.name}"
failonerror="false"
user="${wls._username}"” password="${wls._password}" verbose='"true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server._name}" />
</target>

<target name="client'>
<clientgen
wsdI=""http://${wls_hostname}:${wls.port}/temp/TemperatureService?WSDL"

destDir="${clientclass-dir}"
packageName=""examples.webservices.wsdlc.client"/>

3-22 Programming Web Services for WebLogic Server

Invoking a Web Service from a Stand-alone JAX-RPC Java Client

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes=""**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/wsdlc/client/**/*_java'/>

</target>

<target name="run"''>
<java classname="examples.webservices.wsdlc.client.TemperatureClient"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${wls._hostname}:${wls.port}/temp/TemperatureService"
/>
</java>

</target>

</project>

Invoking a Web Service from a Stand-alone JAX-RPC Java
Client

When you invoke an operation of a deployed Web Service from a client application, the Web
Service could be deployed to WebLogic Server or to any other application server, such as .NET.
All you need to know is the URL to its public contract file, or WSDL.

In addition to writing the Java client application, you must also run the clientgen WebLogic
Web Service Ant task to generate the artifacts that your client application needs to invoke the
Web Service operation. These artifacts include:

e Java source code for the JAX-RPC Stub and Service interface implementations for the
particular Web Service you want to invoke.

e Java classes for any user-defined XML Schema data types included in the WSDL file.

e JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java data types and their corresponding XML Schema types in the
WSDL file.

Programming Web Services for WebLogic Server 3-23

Common Web Services Use Cases and Examples

e Client-side copy of the WSDL file.

The following example shows how to create a Java client application that invokes the
echoComp lexType operation of the ComplexService WebLogic Web Service described in
“Creating a Web Service With User-Defined Data Types” on page 3-7. The echoComplexType
operation takes as both a parameter and return type the BasicStruct user-defined data type. It
is assumed in this procedure that you have already created and deployed the ComplexService
Web Service.

1.

3-24

Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.
Create a project directory:

prompt> mkdir /myExamples/simple_client
Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the Java client application (shown later on in this procedure):

prompt> cd /myExamples/simple_client
prompt> mkdir src/examples/webservices/simple_client

Create a standard Ant bui Id.xml file in the project directory and add a taskdef Ant task to
specify the fully Java classname of the clientgen task:
<project name="‘webservices-simple_client" default="all"'>

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

</project>

See “Sample Ant Build File For Building Stand-alone Client Application” on page 3-27 for
a full sample bui1d.xml file The full build.xml file uses properties, such as
${clientclass-dir}, rather than always using the hard-coded name output directory for
client classes.

Add the following calls to the clientgen and javac Ant tasks to the bui Id.xml file,
wrapped inside of the build-client target:

<target name="build-client’>

<clientgen
wsdI="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"

Programming Web Services for WebLogic Server

Invoking a Web Service from a Stand-alone JAX-RPC Java Client

destDir="output/clientclass"
packageName=""examples.webservices.simple_client"/>

<javac
srcdir="output/clientclass" destdir="output/clientclass"
includes=""**/*_java'/>

<javac
srcdir="src" destdir="output/clientclass"
includes="examples/webservices/simple_client/*_java'/>

</target>

The clientgen Ant task uses the WSDL of the deployed ComplexService Web Service
to generate the needed artifacts and puts them into the output/clientclass directory,
using the specified package name. Replace the variables with the actual hostname and
port of your WebLogic Server instance that is hosting the Web Service.

The clientgen Ant task also automatically generates the
examples.webservices.complex.BasicStruct JavaBean class, which is the Java
representation of the user-defined data type specified in the WSDL.

The bui Id-client target also specifies the standard javac Ant task, in addition to
clientgen, to compile all the Java code, including the stand-alone Java program described
in the next step, into class files.

The clientgen Ant task also provides the destFi le attribute if you want the Ant task to
automatically compile the generated Java code and package all artifacts into a JAR file.
For details and an example, see “clientgen” on page A-5.

. Create the Java client application file that invokes the echoComplexType operation by
opening your favorite Java IDE or text editor, creating a Java file called Main . java using the
code specified in “Sample Java Client Application” on page 3-26.

The Maiin client application takes a single argument: the WSDL URL of the Web Service.
The application then follows standard JAX-RPC guidelines to invoke an operation of the
Web Service using the Web Service-specific implementation of the Service interface
generated by clientgen. The application also imports and uses the BasicStruct
user-defined type, generated by the clientgen Ant task, that is used as a parameter and
return value for the echoStruct operation. For details, see Chapter 9, “Invoking Web
Services.”

. Save the Main. java file in the src/examples/webservices/simple_client
sub-directory of the main project directory.

Programming Web Services for WebLogic Server 3-25

Common Web Services Use Cases and Examples

8. Execute the clientgen and javac Ant tasks by specifying the bui ld-client target at the
command line:

prompt> ant build-client

See the output/clientclass directory to view the files and artifacts generated by the
clientgen Ant task.
9. Add the following targets to the bui Id.xml file, used to execute the Main application:

<path id="client.class.path">
<pathelement path="output/clientclass"/>
<pathelement path="${java.class.path}'"/>
</path>

<target name="run" >

<java fork="true"
classname=""examples.webservices.simple_client_Main"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${wls_hostname}:${wls.port}/complex/ComplexService"
/>
</java>

</target>

The run target invokes the Main application, passing it the WSDL URL of the deployed
Web Service as its single argument. The classpath element adds the clientclass
directory to the CLASSPATH, using the reference created with the <path> task.

10. Execute the run target to invoke the echoComplexType operation:
prompt> ant run

If the invoke was successful, you should see the following final output:

run:
[Java] echoComplexType called. Result: 999, Hello Struct

You can use the build-client and run targets in the bui 1d.xml file to iteratively update,
rebuild, and run the Java client application as part of your development process.

Sample Java Client Application

package examples.webservices.simple_client;
import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

3-26 Programming Web Services for WebLogic Server

Invoking a Web Service from a Stand-alone JAX-RPC Java Client

// import the BasicStruct class, used as a param and return value of the
// echoComplexType operation. The class is generated automatically by
// the clientgen Ant task.

import examples.webservices.complex.BasicStruct;

/**

*

*

*

*

This iIs a simple stand-alone client application that invokes the
the echoComplexType operation of the ComplexService Web service.

@author Copyright (c) 2005 by BEA Systems. All Rights Reserved.

*/

public class Main {

+ u’

}

}

public static void main(String[] args)

throws ServiceException, RemoteException{

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
ComplexPortType port = service.getComplexServicePort();

BasicStruct in = new BasicStruct();

in.setintvalue(999);
in.setStringValue("'Hello Struct™);

BasicStruct result = port.echoComplexType(in);

System.out.printIn("'echoComplexType called. Result: " + result._getintvalue()
" + result.getStringvalue());

Sample Ant Build File For Building Stand-alone Client
Application
The following bui Id.xml file uses properties to simplify the file.
<project name="‘webservices-simple_client"” default="all">
<I-- set global properties for this build -->

<property name="wls.hostname" value="localhost" />
<property name="wls.port"” value="7001" />

<property name="example-output" value="output” />
<property name="'clientclass-dir" value="${example-output}/clientclass" />

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>

Programming Web Services for WebLogic Server 3-21

Common Web Services Use Cases and Examples

<pathelement path="${java.class.path}"/>
</path>

<taskdef name="‘clientgen"
classname=""weblogic.wsee.tools.anttasks.ClientGenTask" />

<target name='"'clean" >
<delete dir="${clientclass-dir}"/>
</target>

<target name="all" depends="clean,build-client,run" />
<target name="build-client">

<clientgen
wsdl=""http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.simple_client"/>

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes=""examples/webservices/simple_client/*_java'/>
</target>

<target name="run" >
<java fork="true"
classname=""examples.webservices.simple_client_Main"
failonerror=""true" >
<classpath refid="client.class.path'/>
<arg line=""http://${wls_hostname}:${wls.port}/complex/ComplexService"
/>
</java>
</target>

</project>

3-28 Programming Web Services for WebLogic Server

Invoking a Web Service from a WebLogic Web Service

Invoking a Web Service from a WebLogic Web Service

You can also invoke a Web Service (WebLogic, .NET, and so on) from within a deployed
WebLogic Web Service, rather than from a stand-alone client.

The procedure is similar to that described in “Invoking a Web Service from a Stand-alone
JAX-RPC Java Client” on page 3-23 except that instead of running the clientgen Ant task to
generate the client stubs, you use the <clientgen> child element of <jws>, inside of the jwsc
Ant task, instead. The jwsc Ant task automatically packages the generated client stubs in the
invoking Web Service WAR file so that the Web Service has immediate access to them. You then
follow standard JAX-RPC programming guidelines in the JWS file that implements the Web
Service that invokes the other Web Service.

The following example shows how to write a JWS file that invokes the echoComplexType
operation of the ComplexService Web Service described in “Creating a Web Service With
User-Defined Data Types” on page 3-7; it is assumed that you have successfully deployed the
ComplexService Web Service.

1. Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/service_to_service

3. Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the JWS and client application files (shown later on in this procedure):

prompt> cd /myExamples/service_to_service
prompt> mkdir src/examples/webservices/service_to_service

4. Create the JWS file that implements the Web Service that invokes the ComplexService Web
Service. Open your favorite Java IDE or text editor and create a Java file called
ClientServicelmpl . java using the Java code specified in “Sample
ClientServicelmpl.java JWS File” on page 3-31.

The sample JWS file shows a Java class called ClientServicelmpl that contains a single
public method, cal IComplexService(). The Java class imports the JAX-RPC stubs,
generated later on by the jwsc Ant task, as well as the BasicStruct JavaBean (also
generated by clientgen), which is data type of the parameter and return value of the
echoComplexType operation of the ComplexService Web Service.

Programming Web Services for WebLogic Server 3-29

Common Web Services Use Cases and Examples

3-30

The ClientServicelmpl Java class defines one method, cal IComplexService(), which
takes two parameters: a BasicStruct which is passed on to the echoComplexType
operation of the ComplexService Web Service, and the URL of the ComplexService
Web Service. The method then uses the standard JAX-RPC APIs to get the Service and
PortType of the ComplexService, using the stubs generated by jwsc, and then invokes
the echoComplexType operation.

Save the ClientServicelmpl . java file in the
src/examples/webservices/service_to_service directory.

Create a standard Ant bui Id.xml file in the project directory and add the following task:
<project name="'webservices-service_to_service" default="all">

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>
The taskdef task defines the full classname of the jwsc Ant task.

See “Sample Ant Build File For Building ClientService” on page 3-32 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, deploy, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

. Add the following call to the jwsc Ant task to the bui Id.xml file, wrapped inside of the

build-service target:
<target name="build-service">

<jwsc
srcdir="src"
destdir="output/ClientServiceEar" >
<jws

Ffile="examples/webservices/service_to_service/ClientServicelmpl.java'>
<clientgen

wsdI=""http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
packageName=""examples.webservices.service_to_service" />
</jws>
</jwsc>
</target>

In the preceding example, the <clientgen> child element of the <jws> element of the
Jwsc Ant task specifies that, in addition to compiling the JWS file, jwsc should also

Programming Web Services for WebLogic Server

10.

11.

Invoking a Web Service from a WebLogic Web Service

generate and compile the client artifacts needed to invoke the Web Service described by

the WSDL file.

Execute the jwsc Ant task by specifying the bui ld-service target at the command line:
prompt> ant build-service

Start the WebLogic Server instance to which you will deploy the Web Service.

Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wideploy Ant task. In either case, you deploy the
ClientServiceEar Enterprise application, located in the output directory.

To use the wideploy Ant task, add the following target to the build.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs._.management._WLDeploy"/>

<target name="deploy">

<wldeploy action="deploy" name="ClientServiceEar"
source=""ClientServiceEar" user="${wls.username}"
password="${wls_.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server._name}" />

</target>

Substitute the values for wls.username, wls.password, wls.hostname, wls_port, and
wls._server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

prompt> ant deploy
Test that the Web Service is deployed correctly by invoking its WSDL in your browser:
http://host:port/ClientService/ClientService?WSDL

See “Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23 for an
example of creating a JAX-RPC Java client application that invokes a Web Service.

Sample ClientServicelmpl.java JWS File

package examples.webservices.service_to_service;

import java.rmi.RemoteException;
import javax.xml._rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

Programming Web Services for WebLogic Server 3-31

Common Web Services Use Cases and Examples

import weblogic. jws_WLHttpTransport;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

import examples.webservices.complex.BasicStruct;

// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

@webService(name=""ClientPortType'", serviceName="ClientService",
targetNamespace=""http://examples.org')

@WLHttpTransport(contextPath="ClientService', serviceUri="ClientService",
portName="ClientServicePort')

public class ClientServicelmpl {

@webMethod ()

public String callComplexService(BasicStruct input, String servicelUrl)
throws ServiceException, RemoteException

{

// Create service and port stubs to invoke ComplexService
ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL");
ComplexPortType port = service.getComplexServicePort();

// Invoke the echoComplexType operation of ComplexService
BasicStruct result = port.echoComplexType(input);
System.out.printin(*"Invoked ComplexPortType.echoComplexType.");

return "Invoke went okay! Here"s the result: "" + result.getintvalue() + ",
LS result_getstringvalue() + n-n;

}
}

Sample Ant Build File For Building ClientService
The following bui 1d.xml file uses properties to simplify the file.
<project name="‘webservices-service_to_service" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />

3-32 Programming Web Services for WebLogic Server

Invoking a Web Service from a WebLogic Web Service

<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />
<property name="wls.server.name' value="myserver" />

<property name="ear.deployed.name" value="ClientServiceEar" />

<property name="example-output" value="output” />

<property name="ear-dir" value="${example-output}/ClientServiceEar" />
<property name="clientclass-dir" value="${example-output}/clientclasses" />

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends="clean,build-service,deploy,client” />

<target name=''clean'" depends="undeploy''>
<delete dir="${example-output}"/>
</target>

<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}" >

<jws
Ffile="examples/webservices/service_to_service/ClientServicelmpl._java'">
<clientgen

wsdI="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"

packageName=""examples.webservices.service_to_service" />
</jws>

</jwsc>
</target>

<target name="deploy">
<wldeploy action="deploy" name=""${ear.deployed.name}"
source="${ear-dir}" user="${wls.username}"
password="${wls_.password}" verbose="true"

Programming Web Services for WebLogic Server 3-33

Common Web Services Use Cases and Examples

adminurl="t3://${wls_hostname}:${wls._port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy"'>
<wldeploy action="undeploy" name="${ear.deployed.name}"

failonerror="false"
user="${wls._username}"
password="${wls_.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server._name}" />

</target>

<target name="client'>

<clientgen
wsdI=""http://${wls_hostname}:${wls.port}/ClientService/ClientService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.service_to_service.client"/>

<javac
srcdir="${clientclass-dir}" destdir="%{clientclass-dir}"
includes=""**/*_java'/>
<javac
srcdir="src" destdir="${clientclass-dir}"
includes=""examples/webservices/service_to_service/client/**/*_java"/>
</target>

<target name="run''>
<java classname=""examples.webservices.service_to_service.client_Main"
fork=""true"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg

line="http://${wls_hostname}:${wls.port}/ClientService/ClientService'/>
</java>
</target>

</project>

3-34 Programming Web Services for WebLogic Server

CHAPTERa

lterative Development of WebLogic Web
Services

The following sections describe the iterative development process for WebLogic Web Services:

“Overview of the WebLogic Web Service Programming Model” on page 4-2
“Configuring Your Domain For Web Services Features” on page 4-2

“Iterative Development of WebLogic Web Services Starting From Java: Main Steps” on
page 4-3

“Iterative Development of WebLogic Web Services Starting From a WSDL File: Main
Steps” on page 4-5

“Creating the Basic Ant build.xml File” on page 4-7
“Running the jwsc WebLogic Web Services Ant Task” on page 4-7
“Running the wsdlc WebLogic Web Services Ant Task” on page 4-11

“Updating the Stubbed-Out JWS Implementation Class File Generated By wsdlc” on
page 4-13

“Deploying and Undeploying WebLogic Web Services” on page 4-15

“Browsing to the WSDL of the Web Service” on page 4-17

“Configuring the Server Address Specified in the Dynamic WSDL” on page 4-18
“Testing the Web Service” on page 4-20

Programming Web Services for WebLogic Server 4-1

Iterative Development of WebLogic Web Services

e “Integrating Web Services Into the WebLogic Split Development Directory Environment”
on page 4-21

Overview of the WebLogic Web Service Programming
Model

The WebLogic Web Services programming model centers around JWS files (Java files that use
JWS annotations to specify the shape and behavior of the Web Service) and Ant tasks that execute
on the JWS file. JWS annotations are based on the new metadata feature of Version 5.0 of the
JDK (specified by JSR-175), and include both the standard annotations defined by the Web
Services Metadata for the Java Platform specification (JSR-181), as well as additional

WebL ogic-specific ones. For additional detailed information about this programming model,
see “Anatomy of a WebLogic Web Service” on page 2-3.

The following sections describe the high-level steps for iteratively developing a Web Service,
either starting from Java or starting from an existing WSDL file:

o “lterative Development of WebLogic Web Services Starting From Java: Main Steps” on
page 4-3

o “Iterative Development of WebLogic Web Services Starting From a WSDL File: Main
Steps” on page 4-5

Iterative development refers to setting up your development environment in such a way so that
you can repeatedly code, compile, package, deploy, and test a Web Service until it works as you
want. The WebLogic Web Service programming model uses Ant tasks to perform most of the
steps of the iterative development process. Typically, you create a single bui Id.xml file that
contains targets for all the steps, then repeatedly run the targets, after you have updated your JWS
file with new Java code, to test that the updates work as you expect.

Configuring Your Domain For Web Services Features

42

After you have created a WebLogic Server domain, you can use the Configuration Wizard to
update the domain, using a Web Services-specific extension template, so that the resources
required by certain WebLogic Web Services features are automatically configured. Although use
of this extension template is not required, it makes the configuration of JMS and JDBC resources
much easier.

The Web Services extension template automatically configures the resources required for the
following features:

Programming Web Services for WebLogic Server

Iterative Development of WebLogic Web Services Starting From Java: Main Steps

e \Web Services Reliable Messaging
e Buffering

e JMS Transport
To update your domain so that it is automatically configured for these Web Services features:

1. Start the Configuration Wizard.

In the Welcome window, select Extend an Existing WebLogic Domain.
Click Next.

Select the domain to which you want to apply the extension template.
Click Next.

Select Extend My Domain Using an Existing Extension Template.

N o g ~ WD

Enter the following value in the Template Location text box:
WL_HOME/common/templates/applications/wls_webservice.jar

where WL_HOME refers to the main WebLogic Server directory, such as
/bea_home/weblogic92.

8. Click Next.

9. If you want to further configure the JMS and JDBC resources, select Yes. This is not typical.
Otherwise, click Next.

10. Verify that you are extending the correct domain, then click Extend.

11. Click Done to exit.

For detailed instructions about using the Configuration Wizard to create and update WebLogic
Server domains, see Creating WebLogic Domains Using the Configuration Wizard.

Iterative Development of WebLogic Web Services
Starting From Java: Main Steps

This section describes the general procedure for iteratively developing WebLogic Web Services
starting from Java, if effect, coding the JWS file from scratch and later generating the WSDL file
that describes the service. See Chapter 3, “Common Web Services Use Cases and Examples,” for
specific examples of this process. The following procedure is just a recommendation; if you have

Programming Web Services for WebLogic Server 4-3

Iterative Development of WebLogic Web Services

44

already set up your own development environment, you can use this procedure as a guide for
updating your existing environment to develop WebLogic Web Services.

This procedure does not use the WebL ogic Web Services split development directory
environment. If you are using this development environment, and would like to integrate Web
Services development into it, see “Integrating Web Services Into the WebLogic Split
Development Directory Environment” on page 4-21 for details.

To iteratively develop a WebLogic Web Service starting from Java, follow these steps:

1.

Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) command, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

Create a project directory that will contain the JWS file, Java source for any user-defined data
types, and the Ant bui Id.xml file. You can name this directory anything you want.

In the project directory, create the JWS file that implements your Web Service.

See Chapter 5, “Programming the JWS File.”

If your Web Service uses user-defined data types, create the JavaBean that describes it.
See “Programming the User-Defined Java Data Type” on page 5-19.

In the project directory, create a basic Ant build file called bui Id.xml.

See “Creating the Basic Ant build.xml File” on page 4-7.

Run the jwsc Ant task against the JWS file to generate source code, data binding artifacts,
deployment descriptors, and so on, into an output directory. The jwsc Ant task generates an
Enterprise Application directory structure at this output directory; later you deploy this
exploded directory to WebLogic Server as part of the iterative development process.

See “Running the jwsc WebLogic Web Services Ant Task” on page 4-7.
Deploy the Web Service to WebLogic Server.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15.
Invoke the WSDL of the Web Service to ensure that it was deployed correctly.
See “Browsing to the WSDL of the Web Service” on page 4-17.

Test the Web Service using the WebLogic Web Services test client.

Programming Web Services for WebLogic Server

Iterative Development of WebLogic Web Services Starting From a WSDL File: Main Steps

See “Testing the Web Service” on page 4-20.

10. To make changes to the Web Service, update the JWS file, undeploy the Web Service as
described in “Deploying and Undeploying WebL ogic Web Services” on page 4-15, then
repeat the steps starting from running the jwsc Ant task.

See Chapter 9, “Invoking Web Services,” for information on writing client applications that
invoke a Web Service.

Iterative Development of WebLogic Web Services
Starting From a WSDL File: Main Steps

This section describes the general procedure for iteratively developing WebLogic Web Services
based on an existing WSDL file. See Chapter 3, “Common Web Services Use Cases and
Examples,” for a specific example of this process. The procedure is just arecommendation; if you
have already set up your own development environment, you can use this procedure as a guide
for updating your existing environment to develop WebLogic Web Services.

This procedure does not use the WebLogic Web Services split development directory
environment. If you are using this development environment, and would like to integrate Web
Services development into it, see “Integrating Web Services Into the WebLogic Split
Development Directory Environment” on page 4-21 for details.

It is assumed in this procedure that you already have an existing WSDL file.

To iteratively develop a WebLogic Web Service starting from WSDL, follow these steps.

1. Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) command, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory that will contain the generated artifacts and the Ant bui Id . xml file.
You can name this directory anything you want.

3. Inthe project directory, create a basic Ant build file called build.xml.

See “Creating the Basic Ant build.xml File” on page 4-7.

4. Put your WSDL file in a directory that the bui 1d.xml Ant build file is able to read. For
example, you can put the WSDL file in awsdl_fi les child directory of the project directory.

Programming Web Services for WebLogic Server 4-5

Iterative Development of WebLogic Web Services

46

. Run the wsdlc Ant task against the WSDL file to generate the JWS interface, the stubbed-out

JWS class file, JavaBeans that represent the XML Schema data types, and so on, into output
directories.

See “Running the wsdlc WebLogic Web Services Ant Task” on page 4-11.

. Update the stubbed-out JWS file generated by the wsdlc Ant task, adding the business code

to make the Web Service work as you want.

See “Updating the Stubbed-Out JWS Implementation Class File Generated By wsdlc” on
page 4-13.

. Run the jwsc Ant task, specifying the artifacts generated by the wsdlc Ant task as well as

your updated JWS implementation file, to generate an Enterprise Application that implements
the Web Service.

See “Running the jwsc WebLogic Web Services Ant Task” on page 4-7.

. Deploy the Web Service to WebLogic Server.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

Invoke the deployed WSDL of the Web Service to test that the service was deployed
correctly.

The URL used to invoke the WSDL of the deployed Web Service is essentially the same as
the value of the location attribute of the <address> element in the original WSDL
(except for the host and port values which now correspond to the host and port of the
WebLogic Server instance to which you deployed the service.) This is because the wsdlc
Ant task generated values for the contextPath and serviceURI of the
@WLHttpTransport annotation in the JWS implementation file so that together they create
the same URI as the endpoint address specified in the original WSDL.

See either the original WSDL or “Browsing to the WSDL of the Web Service” on
page 4-17 for information about invoking the deployed WSDL.

10. Test the Web Service using the WebLogic Web Services test client.

See “Testing the Web Service” on page 4-20.

11. To make changes to the Web Service, update the generated JWS file, undeploy the Web

Service as described in “Deploying and Undeploying WebLogic Web Services” on page 4-15,
then repeat the steps starting from running the jwsc Ant task.

See Chapter 9, “Invoking Web Services,” for information on writing client applications that
invoke a Web Service.

Programming Web Services for WebLogic Server

Creating the Basic Ant build.xml File

Creating the Basic Ant build.xml File

Ant uses build files written in XML (default name bui Id.xml) that contain a <project> root
element and one or more targets that specify different stages in the Web Services development
process. Each target contains one or more tasks, or pieces of code that can be executed. This
section describes how to create a basic Ant build file; later sections describe how to add targets
to the build file that specify how to execute various stages of the Web Services development
process, such as running the jwsc Ant task to process a JWS file and deploying the Web Service
to WebLogic Server.

The following skeleton bui 1d-xml file specifies a default al I target that calls all other targets
that will be added in later sections:

<project default="all">

<target name="all"
depends="clean,build-service,deploy" />

<target name='"'clean'>
<delete dir="output" />
</target>

<target name="build-service">
<I--add jwsc and related tasks here -->
</target>

<target name="deploy">
<l--add wldeploy task here -->
</target>

</project>

Running the jwsc WebLogic Web Services Ant Task

The jwsc Ant task takes as input a JWS file that contains both standard (JSR-181) and
WebLogic-specific JWS annotations and generates all the artifacts you need to create a
WebLogic Web Service. The JWS file can be either one you coded yourself from scratch or one
generated by the wsdlc Ant task. The jwsc-generated artifacts include:

e Java source files that implement a standard JSR-921 Web Service.

e All required deployment descriptors. In addition to the standard webservices.xml and
JAX-RPC mapping files, the jwsc Ant task also generates the WebL ogic-specific Web

Programming Web Services for WebLogic Server 4-7

Iterative Development of WebLogic Web Services

Services deployment descriptor (weblogic-wesbservices.xml), the web.xml and
weblogic.xml files for Java class-implemented Web Services and the ejb-jar.xml and
weblogic-ejb-jar.xml files for EJB-implemented Web Services.

e The XML Schema representation of any Java user-defined types used as parameters or
return values to the Web Service operations.

e The WSDL file that publicly describes the Web Service.

If you are running the jwsc Ant task against a JWS file generated by the wsd 1 c Ant task, the jwsc
task does not generate these artifacts, because the wsdlc Ant task already generated them for you
and packaged them into a JAR file In this case, you use an attribute of the jwsc Ant task to specify
this wsdlc-generated JAR file.

After generating all the required artifacts, the jwsc Ant task compiles the Java files (including
your JWS file), packages the compiled classes and generated artifacts into a deployable JAR
archive file, and finally creates an exploded Enterprise Application directory that contains the
JAR file.

To run the jwsc Ant task, add the following taskdef and bui ld-service target to the
build.xml file:

<taskdef name="jwsc"
classname=""'weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service">

<jwsc
srcdir="src_directory"
destdir="ear_directory"
>
<jws File="JWS_Tfile"
compiledWsdl="WSDLC_Generated_JAR" />
</jwsc>

</target>

where

e ear_directory refers to an Enterprise Application directory that will contain all the
generated artifacts.

e src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

4-8 Programming Web Services for WebLogic Server

Running the jwsc WebLogic Web Services Ant Task

e JWS_File refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

® WSDLC_Generated_JAR refers to the JAR file generated by the wsdlc Ant task that
contains the JWS interface file and data binding artifacts that correspond to an existing
WSDL file.

Note: You specify this attribute only in the “starting from WSDL” use case; this procedure
is described in “Iterative Development of WebLogic Web Services Starting From a
WSDL File: Main Steps” on page 4-5.

The required taskdef element specifies the full class name of the jwsc Ant task.

Only the srcdir and destdir attributes of the jwsc Ant task are required. This means that, by
default, it is assumed that Java files referenced by the JWS file (such as JavaBeans input
parameters or user-defined exceptions) are in the same package as the JWS file. If this is not the
case, use the sourcepath attribute to specify the top-level directory of these other Java files. See
“jwsc” on page A-17 for more information.

Examples of Using jwsc

The following bui 1d . xml excerpt shows an example of running the jwsc Ant task on a JWS file:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service">
<jwsc
srcdir="src"
destdir="output/helloWorldEar'>
<jws
file="examples/webservices/hello_world/HelloWorldImpl.java"™ />
</jwsc>

</target>

In the example, the Enterprise Application will be generated, in exploded form, in
output/hel loWorldEar, relative to the current directory. The JWS file is called
HelloWorldImpl.java, and is located in the src/examples/webservices/hello_world
directory, relative to the current directory. This implies that the JWS file is in the package
examples.webservices.helloWorld.

Programming Web Services for WebLogic Server 4-9

Iterative Development of WebLogic Web Services

The following example is similar to the preceding one, except that it uses the compi ledwsdl
attribute to specify the JAR file that contains wsdlc-generated artifacts (for the “starting with
WSDL" use case):

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service'">

<jwsc
srcdir="src"
destdir="output/wsdlcEar'>

<jws
file="examples/webservices/wsdlc/TemperaturePortTypelmpl.java"
compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar" />
</jwsc>
</target>

In the preceding example, the TemperaturePortTypelmpl . java file is the stubbed-out JWS

file that you previously updated to include the business logic to make your service work as you
want. Because the compi ledWsdl attribute is specified and points to a JAR file, the jwsc Ant

task does not regenerate the artifacts that are included in the JAR.

To actually run this task, type at the command line the following:

prompt> ant build-service

Advanced Uses of jwsc

This section described two very simple examples of using the jwsc Ant task. The task, however,
includes additional attributes and child elements that make the tool very powerful and useful. For
example, you can use the tool to:

e Process multiple JWS files at once. You can choose to package each resulting Web Service
into its own Web application WAR file, or group all of the Web Services into a single
WAR file.

e Specify the transports (HTTP/HTTPS/JMS) that client applications can use when invoking
the Web Service, possibly overriding any existing @WLXXXTransport annotations.

4-10 Programming Web Services for WebLogic Server

Running the wsdlc WebLogic Web Services Ant Task

e Automatically generate the JAX-RPC client stubs of any other Web Service that is invoked
within the JWS file.

e Update an existing Enterprise Application or Web application, rather than generate a
completely new one.

See “jwsc” on page A-17 for complete documentation and examples about the jwsc Ant task.

Running the wsdlc WebLogic Weh Services Ant Task

The wsdlc Ant task takes as input a WSDL file and generates artifacts that together partially
implement a WebLogic Web Service. These artifacts include:

e The JWS interface file that represents the Java implementation of your Web Service.

e Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the Web Service parameters and return values.

o A JWS file that contains a stubbed-out implementation of the generated JWS interface.

e Optional Javadocs for the generated JWS interface.

The wsdlc Ant task packages the JWS interface file and data binding artifacts together into a JAR
file that you later specify to the jwsc Ant task. You never need to update this JAR file; the only
file you update is the JWS implementation class.

To run the wsdlc Ant task, add the following taskdef and generate-from-wsdl targets to the
build.xml file:

<taskdef name="‘wsdlc"
classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

<target name='generate-from-wsdl">

<wsdlc
srcWsdl="WSDL_Ffile"
destJwsDir="JWS_interface_directory"
destimpIDir="JWS_implementation_directory"
packageName=""Package_name" />
</target>

where

e WSDL_file refers to the name of the WSDL file from which you want to generate a partial
implementation, including its absolute or relative pathname.

Programming Web Services for WebLogic Server 4-1

Iterative Development of WebLogic Web Services

e JWS_interface_directory refers to the directory into which the JAR file that contains
the JWS interface and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFi le_wsdl . jar, where WSDLFi le refers to the
root name of the WSDL file. For example, if the name of the WSDL file you specify to the
file attribute is MyService.wsdl, then the generated JAR file is MyService_wsdl . jar.

e JWS_implementation_directory refers to the top directory into which the stubbed-out
JWS implementation file is generated. The file is generated into a sub-directory hierarchy
corresponding to its package name.

The name of the generated JWS file is PortTypelmpl . java, where PortType refers to
the name attribute of the <portType> element in the WSDL file for which you are
generating a Web Service. For example, if the port type name is MyServicePortType,
then the JWS implementation file is called MyServicePortTypelmpl _java.

e Package_name refers to the package into which the generated JWS interface and
implementation files should be generated. If you do not specify this attribute, the wsdlc
Ant task generates a package name based on the targetNamespace of the WSDL.

The required taskdef element specifies the full class name of the wsdlc Ant task.

Only the srcwsdl and destJwsDir attributes of the wsdlc Ant task are required. Typically,
however, you also generate the stubbed-out JWS file to make your programming easier. BEA also
recommends you explicitly specify the package name in case the targetNamespace of the
WSDL file is not suitable to be converted into a readable package name.

The following bui Id.xml excerpt shows an example of running the wsdlc Ant task against a
WSDL file:

<taskdef name="wsdlc"
classname=""weblogic.wsee.tools.anttasks.WsdlcTask"/>

<target name=''generate-from-wsdl">

<wsdlc
srcWsdl="wsdl_Tfiles/TemperatureService.wsdl"
destJdwsDir="output/compiledWsdl"
destimpIDir="impl_output"
packageName=""examples.webservices.wsdlc" />

</target>

In the example, the existing WSDL file is called TemperatureService.wsdl and is located in
the wsd_fi les subdirectory of the directory that contains the bui 1d . xml file. The JAR file that
will contain the JWS interface and data binding artifacts is generated to the

4-12 Programming Web Services for WebLogic Server

Updating the Stubbed-Out JWS Implementation Class File Generated By wsdlc

output/compiledwWsdl directory; the name of the JAR file is

TemperatureService_wsdl _jar. The package name of the generated JWS files is
examples._webservices._wsdld. The stubbed-out JWS file is generated into the
impl_output/examples/webservices/wsdlc directory relative to the current directory.
Assuming that the port type name in the WSDL file is TemperaturePortType, then the name of
the JWS implementation file is TemperaturePortTypelmpl . java.

To actually run this task, type the following at the command line:

prompt> ant generate-from-wsdl

See “wsdlc” on page A-53 for additional attributes of the wsdlc Ant task.

Updating the Stubbed-0ut JWS Implementation Class File
Generated By wsdic

The wsdlc Ant task generates the stubbed-out JWS implementation file into the directory
specified by its dest Imp1Dir attribute; the name of the file is PortTypelmpl . java, where
PortType is the name of the portType in the original WSDL. The class file includes everything
you need to compile it into a Web Service, except for your own business logic in the methods that
implement the operations.

The JWS class implements the JWS Web Service endpoint interface that corresponds to the
WSDL file; the JWS interface is also generated by wsdlc and is located in the JAR file that
contains other artifacts, such as the Java representations of XML Schema data types in the WSDL
and so on. The public methods of the JWS class correspond to the operations in the WSDL file.

The wsdlc Ant task automatically includes the @webService and @WLHttpTransport
annotations in the JWS implementation class; the values of the attributes correspond to equivalent
values in the WSDL. For example, the serviceName attribute of @webService is the same as
the name attribute of the <service> element in the WSDL file; the contextPath and
serviceUri attributes of @WLHttpTransport together make up the endpoint address specified
by the location attribute of the <address> element in the WSDL.

When you update the JWS file, you add Java code to the methods so that the corresponding Web
Service operations works as you want. Typically, the generated JWS file contains comments
where you should add code, such as:

//replace with your impl here

You can also add additional JWS annotations to the file, with the following restrictions:

Programming Web Services for WebLogic Server 4-13

Iterative Development of WebLogic Web Services

e The only standard JWS annotations (in the javax. jws.* package) you can include in the
JWS implementation file are @WebService, @HandlerChain, @SOAPMessageHandler,
and @SOAPMessageHandlers. If you specify any other standard JWS annotations, the
Jwsc Ant task returns error when you try to compile the JWS file into a Web Service.

e You can specify only the serviceName and endpointInterface attributes of the
@WebService annotation. Use the serviceName attribute to specify a different <service>
WSDL element from the one that the wsdlc Ant task used, in the rare case that the WSDL
file contains more than one <service> element. Use the endpointinterface attribute to
specify the JWS interface generated by the wsdlc Ant task.

e You can specify any WebL ogic-specific JWS annotation that you want.

After you have updated the JWS file, BEA recommends that you move it to an official source
location, rather than leaving it in the wsdlc output location.

The following example shows the wsdlc-generated JWS implementation file from the WSDL
shown in “Sample WSDL File” on page 3-19; the text in bold indicates where you would add
Java code to implement the single operation (getTemp) of the Web Service:

package examples.webservices.wsdlc;

import javax.jws.WebService;
import weblogic.jws.*;

/**
* TemperaturePortTypelmpl class implements web service endpoint interface
* TemperaturePortType */

@WebService(
serviceName="TemperatureService",
endpointinterface="examples.webservices.wsdlc.TemperaturePortType')

@WLHttpTransport(
contextPath=""temp",
serviceUri="TemperatureService",
portName="TemperaturePort')

public class TemperaturePortTypelmpl implements TemperaturePortType {
public TemperaturePortTypelmpl() {
}
public float getTemp(Java.lang.String zipcode)
{

//replace with your impl here

4-14 Programming Web Services for WebLogic Server

Deploying and Undeploying WebLogic Web Services

return 0;

}

Deploying and Undeploying WebLogic Web Services

Because Web Services are packaged as Enterprise Applications, deploying a Web Service simply
means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the Administration
Console to using the weblogic.-Deployer Java utility. There are also various issues you must
consider when deploying an application to a production environment as opposed to a
development environment. For a complete discussion about deployment, see Deploying
WebLogic Server Applications.

This guide, because of its development nature, discusses just two ways of deploying Web
Services:

e Using the wildeploy Ant Task to Deploy Web Services

e Using the Administration Console to Deploy Web Services

Using the wideploy Ant Task to Deploy Web Services

The easiest way to quickly deploy a Web Service as part of the iterative development process is
to add a target that executes the wldeploy WebLogic Ant task to your bui Id.xml file that

contains the jwsc Ant task. You can add tasks to both deploy and undeploy the Web Service so
that as you add more Java code and regenerate the service, you can redeploy and test it iteratively.

To use the wideploy Ant task, add the following target to your bui Id.xml file:
<target name="deploy">

<wldeploy action="deploy"
name=""DeploymentName"
source="Source" user="AdminUser"
password=""AdminPassword"
adminurl="AdminServerURL"
targets="'ServerName'/>

</target>

where

Programming Web Services for WebLogic Server 4-15

Iterative Development of WebLogic Web Services

e DeploymentName refers to the deployment name of the Enterprise Application, or the
name that appears in the Administration Console under the list of deployments.

e Source refers to the name of the Enterprise Application EAR file or exploded directory that
is being deployed. By default, the jwsc Ant task generates an exploded Enterprise
Application directory.

e AdminUser refers to administrative username.
e AdminPassword refers to the administrative password.

e AdminServerURL refers to the URL of the Administration Server, typically
t3://1ocalhost:7001

e ServerName refers to the name of the WebLogic Server instance to which you are
deploying the Web Service.
For example, the following wldeploy task specifies that the Enterprise Application exploded
directory, located in the output/ComplexServiceEar directory relative to the current directory,
be deployed to the myServer WebLogic Server instance. Its deployed name is
ComplexServiceEar.

<target name="deploy">

<wldeploy action="deploy"
name=""ComplexServiceEar"
source=""output/ComplexServiceEar" user="weblogic"
password="weblogic" verbose="true"
adminurl="t3://1ocalhost:7001"
targets="myserver"/>

</target>
To actually deploy the Web Service, execute the deploy target at the command-line:
prompt> ant deploy

You can also add a target to easily undeploy the Web Service so that you can make changes to its
source code, then redeploy it:

<target name="undeploy">

<wldeploy action="undeploy"
name=""ComplexServiceEar"
user="weblogic"
password="weblogic" verbose="true"

4-16 Programming Web Services for WebLogic Server

Browsing to the WSDL of the Web Service

adminurl="t3://l1ocalhost:7001"
targets="myserver'/>

</target>

When undeploying a Web Service, you do not specify the source attribute, but rather undeploy
it by its name.

Using the Administration Console to Deploy Web Services

To use the Administration Console to deploy the Web Service, first invoke it in your browser
using the following URL:

http://[host]: [port]/console

where:
e host refers to the computer on which WebLogic Server is running.

e port refers to the port number on which WebLogic Server is listening (default value is
7001).

Then use the deployment assistants to help you deploy the Enterprise application. For more
information on the Administration Console, see the Online Help.

Browsing to the WSDL of the Web Service

You can display the WSDL of the Web Service in your browser to ensure that it has deployed
correctly.

The following URL shows how to display the Web Service WSDL in your browser:
http://[host]: [port]/[contextPath]/[serviceUri]?WSDL

where:
e host refers to the computer on which WebLogic Server is running.

e port refers to the port number on which WebLogic Server is listening (default value is
7001).

o contextPath refers to the context root of the Web Service. There are many places to set the
context root (the contextPath attribute of the @WLHttpTransport annotation, the
<WLHttpTransport>, <module>, or<jws> element of jwsc) and certain methods take
precedence over others. See “How to Determine the Final Context Root of a WebLogic
Web Service” on page A-19 for a complete explanation.

Programming Web Services for WebLogic Server 4-11

Iterative Development of WebLogic Web Services

o serviceUri refers to the value of the serviceUri attribute of the @WLHttpTransport JWS
annotation of the JWS file that implements your Web Service or <WLHttpTransport>
child element of the jwsc Ant task; the second takes precedence over the first.

For example, assume you used the following @WLHttpTransport annotation in the JWS file that
implements your Web Service

@WLHttpTransport(contextPath="complex",
serviceUri="ComplexService",
portName=""ComplexServicePort')

/**
* This JWS file forms the basis of a WebLogic Web Service.

*/

public class ComplexServicelmpl {

Further assume that you do not override the contextPath or serviceURI values by setting
equivalent attributes for the <WLHttpTransport> element of the jwsc Ant task. Then the URL
to view the WSDL of the Web Service, assuming the service is running on a host called ariel at
the default port number (7001), is:

http://ariel :7001/complex/ComplexService?WSDL

Configuring the Server Address Specified in the Dynamic
WSDL

The WSDL of a deployed Web Service (also called dynamic WSDL) includes an <address>
element that assigns an address (URI) to a particular Web Service port. For example, assume that
the following WSDL snippet partially describes a deployed WebLogic Web Service called
ComplexService:

<definitions name="ComplexServiceDefinitions"
targetNamespace=""http://example.org">

<service name="ComplexService">
<port binding="s0:ComplexServiceSoapBinding" name="ComplexServicePort">
<sl:address location="http://myhost:7101/complex/ComplexService"/>

4-18 Programming Web Services for WebLogic Server

Configuring the Server Address Specified in the Dynamic WSDL

</port>
</service>

</definitions>

The preceding example shows that the ComplexService Web Service includes a port called
ComplexServicePort, and this port has an address of
http://myhost:7101/complex/ComplexService.

WebLogic Server determines the complex/ComplexService section of this address by
examining the contextPath and serviceURI attributes of the WLXXXTransport annotations
or jwsc elements, as described in “Browsing to the WSDL of the Web Service” on page 4-17.
However, the method WebLogic Server uses to determine the protocol and host section of the
address (http://myhost:7101, in the example) is more complicated, as described below. For
clarity, this section uses the term server address to refer to the protocol and host section of the
address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed Web
Service depends on whether the Web Service can be invoked using HTTP/S or JIMS, whether the
Web Service is deployed to a cluster, or whether the Web Service is actually a callback service.
The following sections reflect these different configuration options, and provide links to
procedural information about changing the configuration to suit your needs. It is assumed in the
sections that you use the WebL ogic Server Administration Console to configure cluster and
standalone servers.

Web Service is not a callback service and can be invoked using HTTP/S

1. Ifthe Web Service is deployed to a cluster, and the cluster Frontend Host, Frontend HTTP
Port, and Frontend HTTPS Port are set, then WebLogic Server uses these values in the
server address of the dynamic WSDL.

See Configure HTTP Settings for a Cluster.

2. If the preceding cluster values are not set, but the Frontend Host, Frontend HTTP Port,
and Frontend HTTPS Port values are set for the individual server to which the Web Service
is deployed, then WebLogic Server uses these values in the server address.

See Configure HTTP Protocol.

3. If these values are not set for either the cluster or an individual server, then WebLogic Server
uses the server address of the WSDL request in the dynamic WSDL as well.

Web Service is not a callback service and can be invoked using JMS Transport

Programming Web Services for WebLogic Server 4-19

Iterative Development of WebLogic Web Services

1.

If the Web Service is deployed to a cluster and the Cluster Address is set, then WebLogic
Server uses this value in the server address of the dynamic WSDL.

See Configure Clusters.

If the cluster address is not set, or the Web Service is deployed to a standalone server, and the
Listen Address of the server to which the Web Service is deployed is set, then WebLogic
Server uses this value in the server address.

See Configure Listen Addresses.

Web Service is a callback service

1.

If the callback service is deployed to a cluster, and the cluster Frontend Host, Frontend
HTTP Port, and Frontend HTTPS Port are set, then WebLogic Server uses these values in
the server address of the dynamic WSDL.

See Configure HTTP Settings for a Cluster.

If the callback service is deployed to either a cluster or a standalone server, and the preceding
cluster values are not set, but the Frontend Host, Frontend HTTP Port, and Frontend
HTTPS Port values are set for the individual server to which the callback service is deployed,
then WebLogic Server uses these values in the server address.

See Configure HTTP Protocol.

If the callback service is deployed to a cluster, but none of the preceding values are set, but
the Cluster Address is set, then WebLogic Server uses this value in the server address.

See Configure Clusters.

If none of the preceding values are set, but the Listen Address of the server to which the
callback service is deployed is set, then WebLogic Server uses this value in the server address.

See Configure Listen Addresses.

Testing the Web Service

After you have deployed a WebLogic Web Service, you can use the Web Services Test Client,
included in the WebLogic Administration Console, to test your service without writing code. You
can quickly and easily test any Web Service, including those with complex types and those using
advanced features of WebLogic Server such as conversations. The test client automatically
maintains a full log of requests allowing you to return to previous call to view the results.

4-20

To test a deployed Web Service using the Administration Console, follow these steps:

Programming Web Services for WebLogic Server

Integrating Web Services Into the WebLogic Split Development Directory Environment

1. Invoke the Administration Console in your browser using the following URL.:
http://[host]:[port]/console
where:
— host refers to the computer on which WebLogic Server is running.

— port refers to the port number on which WebLogic Server is listening (default value is
7001).

2. Follow the procedure described in Test a Web Service.

Integrating Web Services Into the WebLogic Split
Development Directory Environment

This section describes how to integrate Web Services development into the WebLogic split
development directory environment. It is assumed that you understand this WebL ogic feature and
have already set up this type of environment for developing standard J2EE applications and
modules, such as EJBs and Web applications, and you want to update the single build.xml file
to include Web Services development.

For detailed information about the WebLogic split development directory environment, see
Creating a Split Development Directory for an Application and the splitdir/hel lowWorldEar
example installed with WebLogic Server, located in the
BEA_HOME/weblogic90/samples/server/examples/src/examples directory, where
BEA_HOME refers to the main installation directory for BEA products, such as c:/bea.

1. Inthe main project directory, create a directory that will contain the JWS file that implements
your Web Service.

For example, if your main project directory is called /src/helloWorldEar, then create a
directory called /src/helloWorldEar/hel loWebService:

prompt> mkdir /src/helloWorldEar/helloWebService

2. Create a directory hierarchy under the hel lowebService directory that corresponds to the
package name of your JWS file.

For example, if your JWS file is in the package examples.splitdir.hello package,
then create a directory hierarchy examples/splitdir/hello:

prompt> cd /src/helloWorldEar/helloWebService
prompt> mkdir examples/splitdir/hello

Programming Web Services for WebLogic Server 41

Iterative Development of WebLogic Web Services

4-22

3. Putyour JWS file in the just-created Web Service subdirectory of your main project directory

(/src/helloworldEar/hel loWebService/examples/splitdir/hello in this
example.)

In the bui 1d.xml file that builds the Enterprise application, create a new target to build the

Web Service, adding a call to the jwsc WebLogic Web Service Ant task, as described in

“Running the jwsc WebLogic Web Services Ant Task” on page 4-7.

The jwsc srcdir attribute should point to the top-level directory that contains the JWS
file (hel lowebService in this example). The jwsc destdir attribute should point to the
same destination directory you specify for wlcompi le, as shown in the following example:

<target name="build.helloWebService">

<jwsc
srcdir="helloWebService"
destdir="destination_dir"
keepGenerated="yes" >

<jws File="examples/splitdir/hello/HelloWorldimpl._java" />
</jwsc>
</target>
In the example, destination_dir refers to the destination directory that the other split
development directory environment Ant tasks, such as wlappc and wlcompi le, also use.

Update the main build target of the bui 1d.xml file to call the Web Service-related targets:
<!-- Builds the entire helloWorldEar application -->

<target name="build"
description="Compiles helloWorldEar application and runs appc"
depends=""build-helloWebService,compile,appc"” />

WARNING: When you actually build your Enterprise Application, be sure you run the
Jwsc Ant task before you run the wlappc Ant task. This is because wlappc
requires some of the artifacts generated by jwsc for it to execute successfully.
In the example, this means that you should specify the
build-helloWebService target before the appc target.

If you use the wlcompi le and wlappc Ant tasks to compile and validate the entire Enterprise
Application, be sure to exclude the Web Service source directory for both Ant tasks. This is
because the jwsc Ant task already took care of compiling and packaging the Web Service.
For example:

<target name="compile”>

Programming Web Services for WebLogic Server

Integrating Web Services Into the WebLogic Split Development Directory Environment

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
excludes="appStartup,helloWebService">

</wlcomplile>
</target>
<target name="appc''>

<wlappc source="${dest.dir}" deprecation="yes" debug="false"
excludes="hel loWebService'/>

</target>

7. Update the application.xml file in the META- INF project source directory, adding a <web>
module and specifying the name of the WAR file generated by the jwsc Ant task.

For example, add the following to the application.xml file for the helloWorld Web
Service:

<application>

<module>
<web>
<web-uri>examples/splitdir/hello/HelloWorldImpl .war</web-uri>
<context-root>/hello</context-root>
</web>
</module>

</application>

Caution: The jwsc Ant task always generates a Web Application WAR file from the JWS file
that implements your Web Service, unless your JWS file explicitly implements
javax.ejb.SessionBean. Inthatcase you mustaddan <ejb>module element to
the application.xml file instead

Your split development directory environment is now updated to include Web Service
development. When you rebuild and deploy the entire Enterprise Application, the Web Service
will also be deployed as part of the EAR. You invoke the Web Service in the standard way
described in “Browsing to the WSDL of the Web Service” on page 4-17.

Programming Web Services for WebLogic Server 4-23

Iterative Development of WebLogic Web Services

4-24 Programming Web Services for WebLogic Server

Programming the JWS File

The following sections provide information about programming the JWS file that implements
your Web Service:

e “Overview of JWS Files and JWS Annotations” on page 5-1

e “Programming the JWS File: Java Requirements” on page 5-2

e “Programming the JWS File: Typical Steps” on page 5-3

e “Accessing Runtime Information about a Web Service Using the JwsContext” on page 5-11
e “Should You Implement a Stateless Session EJB?” on page 5-16

e “Programming the User-Defined Java Data Type” on page 5-19

e “Throwing Exceptions” on page 5-21

e “Invoking Another Web Service from the JWS File” on page 5-24

o “Programming Additional Miscellaneous Features Using JWS Annotations and APIs” on
page 5-24

e “JWS Programming Best Practices” on page 5-29

Overview of JWS Files and JWS Annotations

One way to program a WebLogic Web Service is to code the standard JSR-921 EJB or Java class
from scratch and generate its associated artifacts manually (deployment descriptor files, WSDL
file, data binding artifacts for user-defined data types, and so on). This process can be difficult

Programming Web Services for WebLogic Server 5-1

Programming the JWS File

and tedious. BEA recommends that you take advantage of the new JDK 5.0 metadata annotations
feature and use a programming model in which you create an annotated Java file and then use Ant
tasks to compile the file into the Java source code and generate all the associated artifacts.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains the Java
code that determines how your Web Service behaves. A JWS file is an ordinary Java class file
that uses JDK 5.0 metadata annotations to specify the shape and characteristics of the Web
Service. The JWS annotations you can use in a JWS file include the standard ones defined by the
Web Services Metadata for the Java Platform specification (JSR-181) as well as a set of
WebLogic-specific ones.

This topic is part of the iterative development procedure for creating a Web Service, described in
“Iterative Development of WebLogic Web Services Starting From Java: Main Steps” on page 4-3
and “Iterative Development of WebLogic Web Services Starting From a WSDL File: Main
Steps” on page 4-5. It is assumed that you have created a JWS file and now want to add JWS
annotations to it.

Programming the JWS File: Java Requirements

5-2

When you program your JWS file, you must follow a set of requirements, as specified by the
JSR-181 specification (Web Services Metadata for the Java Platform). In particular, the Java
class that implements the Web Service:

e Must be an outer public class, must not be final, and must not be abstract.
e Must have a default public constructor.
e Must not define a finalize() method.

e Must include, at a minimum, a @WebService JWS annotation at the class level to indicate
that the JWS file implements a Web Service.

e May reference a service endpoint interface by using the
@WebService.endpointinterface annotation. In this case, it is assumed that the service
endpoint interface exists and you cannot specify any other JWS annotations in the JWS file
other than @WebService.endpointinterface and @WebService.serviceName.

o If JWS file does not implement a service endpoint interface, all public methods other than
those inherited from java. lang.Object will be exposed as Web Service operations. This
behavior can be overridden by using the @webMethod annotation to specify explicitly those
public methods that are to be exposed. If a @vebMethod annotation is present, only the
methods to which it is applied are exposed.

Programming Web Services for WebLogic Server

Programming the JWS File: Typical Steps

Programming the JWS File: Typical Steps

The following sections how to use standard (JSR-181) and WebL ogic-specific annotations in
your JWS file to program basic Web Service features. The annotations are used at different levels,
or targets, in your JWS file. Some are used at the class-level to indicate that the annotation applies
to the entire JWS file. Others are used at the method-level and yet others at the parameter level.
The sections discuss the following basic JWS annotations:

e @WebService (standard)

e @SOAPBinding (standard)

e @WLHttpTransport (WebLogic-specific)
e @WebMethod (standard)

e @0Oneway (standard)

e @WebParam (standard)

e @WebResult (standard)

See Chapter 6, “Advanced JWS Programming: Implementing Asynchronous Features,” for
information on using other JWS annotations to program more advanced features, such as Web
Service reliable messaging, conversations, SOAP message handlers, and so on.

For reference documentation about both the standard and WebLogic-specific JWS annotations,
see Appendix B, “JWS Annotation Reference.”

The following procedure describes the typical basic steps when programming the JWS file that
implements a Web Service. See “Example of a JWS File” on page 5-4 for a code example.

1. Import the standard JWS annotations that will be used in your JWS file. The standard JWS
annotations are in either the javax. jws or javax.jws.soap package. For example:

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

2. Import the WebL ogic-specific annotations used in your JWS file. The WebLogic-specific
annotations are in the weblogic. jws package. For example:

import weblogic. jws_WLHttpTransport;

3. Add the standard required @webService JWS annotation at the class level to specify that the
Java class exposes a Web Service.

Programming Web Services for WebLogic Server 5-3

Programming the JWS File

9.

See “Specifying That the JWS File Implements a Web Service” on page 5-6.

Optionally add the standard @SOAPBinding JWS annotation at the class level to specify the
mapping between the Web Service and the SOAP message protocol. In particular, use this
annotation to specify whether the Web Service is document-literal, RPC-encoded, and so on.

Although this JWS annotation is not required, BEA recommends you explicitly specify it
in your JWS file to clarify the type of SOAP bindings a client application uses to invoke
the Web Service.

See “Specifying the Mapping of the Web Service to the SOAP Message Protocol” on
page 5-6.

Optionally add the WebLogic-specific @WLHttpTransport JWS annotation at the class level
to specify the context path and service URI used in the URL that invokes the Web Service.

Although this JWS annotation is not required, BEA recommends you explicitly specify it
in your JWS file so that it is clear what URL a client application uses to invoke the Web
Service.

See “Specifying the Context Path and Service URI of the Web Service” on page 5-7.

For each method in the JWS file that you want to expose as a public operation, optionally add
a standard @webMethod annotation. Optionally specify that the operation takes only input
parameters but does not return any value by using the standard @0neway annotation.

See “Specifying That a JWS Method Be Exposed as a Public Operation” on page 5-8.

Optionally customize the name of the input parameters of the exposed operations by adding
standard @webParam annotations.

See “Customizing the Mapping Between Operation Parameters and WSDL Parts” on
page 5-9.

Optionally customize the name and behavior of the return value of the exposed operations by
adding standard @webResul t annotations.

See “Customizing the Mapping Between the Operation Return Value and a WSDL Part” on
page 5-10.

Add business Java code to the methods to make the WebService behave the way you want.

Example of a JWS File

The following sample JWS file shows how to implement a simple Web Service.

package examples.webservices.simple;

5-4

Programming Web Services for WebLogic Server

Programming the JWS File: Typical Steps

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interfaces
import weblogic. jws_.WLHttpTransport;

// Standard JWS annotation that specifies that the porType name of the Web
// Service is "SimplePortType"™, the service name is "SimpleService", and the
// targetNamespace used in the generated WSDL is "http://example.org"

@webService(name="SimplePortType'", serviceName="SimpleService",
targetNamespace=""http://example.org")

// Standard JWS annotation that specifies the mapping of the service onto the
// SOAP message protocol. In particular, it specifies that the SOAP messages
// are document-literal-wrapped.

@SOAPBinding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and
// service URI used to build the URI of the Web Service is
// "simple/SimpleService"

@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
portName="SimpleServicePort')

/**
* This JWS file forms the basis of simple Java-class implemented WeblLogic
* Web Service with a single operation: sayHello
*

*/
public class Simplelmpl {

// Standard JWS annotation that specifies that the method should be exposed
// as a public operation. Because the annotation does not include the

// member-value "operationName', the public name of the operation is the
// same as the method name: sayHello.

@webMethod()
public String sayHello(String message) {
System.out.printIn(“'sayHello:" + message);
return "Here is the message: "' + message + ""'';
}
}

Programming Web Services for WebLogic Server 5-5

Programming the JWS File

5-6

Specifying That the JWS File Implements a Web Service

Use the standard @webService annotation to specify, at the class level, that the JWS file
implements a Web Service, as shown in the following code excerpt:

@WebService(name="SimplePortType", serviceName="SimpleService",
targetNamespace=""http://example.org")

In the example, the name of the Web Service is SimplePortType, which will later map to the
wsdl :portType element in the WSDL file generated by the jwsc Ant task. The service name is
SimpleService, which will map to the wsdl :service element in the generated WSDL file. The
target namespace used in the generated WSDL is http://example.org.

You can also specify the following additional attribute of the @webService annotation:

e endpointinterface—Fully qualified name of an existing service endpoint interface file.
If you specify this attribute, the jwsc Ant task does not generate the interface for you, but
assumes you have already created it and it is in your CLASSPATH.

None of the attributes of the @wWebService annotation is required. See the Web Services Metadata
for the Java Platform for the default values of each attribute.

Specifying the Mapping of the Web Service to the SOAP
Message Protocol

It is assumed that you want your Web Service to be available over the SOAP message protocol;
for this reason, your JWS file should include the standard @SOAPBi nding annotation, at the class
level, to specify the SOAP bindings of the Web Service (such as RPC-encoded or
document-literal-wrapped), as shown in the following code excerpt:

@SOAPBinding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

In the example, the Web Service uses document-wrapped-style encodings and literal message
formats, which are also the default formats if you do not specify the @S0APBinding annotation.

You can also use the WebLogic-specific @weblogic . jws.soap-SOAPBinding annotation to
specify the SOAP binding at the method level; the attributes are the same as the standard
@javax. jws.soap.SOAPBinding annotation.

You use the parameterStyle attribute (in conjunction with the
style=SOAPBinding.Style.DOCUMENT attribute) to specify whether the Web Service

Programming Web Services for WebLogic Server

Programming the JWS File: Typical Steps

operation parameters represent the entire SOAP message body, or whether the parameters are
elements wrapped inside a top-level element with the same name as the operation.

The following table lists the possible and default values for the three attributes of the
@SOAPBinding (either the standard or WebL ogic-specific) annotation.

Table 5-1 Attributes of the @S0APBinding Annotation

Attribute Possible Values Default VValue

style

SOAPBinding.Style_RPC SOAPBinding.Style_DOCUMENT
SOAPBinding.Style.DOCUMENT

use

SOAPBinding.Use.LITERAL SOAPBinding.Use.LITERAL
SOAPBinding.Use.ENCODED

parameterStyle SOAPBinding.ParameterStyle_BARE SOAPBinding.ParameterStyle_ WRAP

SOAPBinding.ParameterStyle WRAP PED
PED

Specifying the Context Path and Service URI of the Web
Service

Use the WebLogic-specific @WLHttpTransport annotation to specify the context path and
service URI sections of the URL used to invoke the Web Service over the HTTP transport, as well
as the name of the port in the generated WSDL, as shown in the following code excerpt:

@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
portName=""SimpleServicePort")

In the example, the name of the port in the WSDL (in particular, the name attribute of the <port>
element) file generated by the jwsc Ant task is SimpleServicePort. The URL used to invoke
the Web Service over HTTP includes a context path of simple and a service URI of
SimpleService, as shown in the following example:

http://host:port/simple/SimpleService

For reference documentation on this and other WebL ogic-specific annotations, see Appendix B,
“JWS Annotation Reference.”

Programming Web Services for WebLogic Server 5-1

Programming the JWS File

5-8

Specifying That a JWS Method Be Exposed as a Public
Operation

Use the standard @webMethod annotation to specify that a method of the JWS file should be
exposed as a public operation of the Web Service, as shown in the following code excerpt:

public class Simplelmpl {

@webMethod(operationName="sayHel loOperation')

public String sayHello(String message) {
System.out.printIn(‘'sayHello:" + message);
return "Here is the message: "' + message +

}

In the example, the sayHel1o() method of the Simplelmpl JWS file is exposed as a public
operation of the Web Service. The operationName attribute specifies, however, that the public
name of the operation in the WSDL file is sayHelloOperation. If you do not specify the
operationName attribute, the public name of the operation is the name of the method itself.

You can also use the action attribute to specify the action of the operation. When using SOAP
as a binding, the value of the action attribute determines the value of the SOAPAction header
in the SOAP messages.

You can specify that an operation not return a value to the calling application by using the
standard @oneway annotation, as shown in the following example:

public class OneWaylmpl {

@webMethod ()

@0neway ()

public void ping() {
System.out.printIn(*'ping operation™);

}

If you specify that an operation is one-way, the implementing method is required to return void,
cannot use a Holder class as a parameter, and cannot throw any checked exceptions.

None of the attributes of the @webMethod annotation is required. See the Web Services Metadata
for the Java Platform for the default values of each attribute, as well as additional information
about the @webMethod and @oneway annotations.

Programming Web Services for WebLogic Server

Programming the JWS File: Typical Steps

If none of the public methods in your JWS file are annotated with the @webMethod annotation,
then by default all public methods are exposed as Web Service operations.

Customizing the Mapping Between Operation Parameters
and WSDL Parts

Use the standard @webParam annotation to customize the mapping between operation input
parameters of the Web Service and elements of the generated WSDL file, as well as specify the
behavior of the parameter, as shown in the following code excerpt:

public class Simplelmpl {

@webMethod ()
@WebResult(name=""IntegerOutput",
targetNamespace=""http://example.org/docLiteralBare’)
public int echolnt(
@webParam(name=""Integerinput",
targetNamespace=""http://example.org/docLiteralBare’)

int input)

{
System.out.printIin(*'echolnt *" + input + """ to you too!");
return input;

¥

In the example, the name of the parameter of the echolnt operation in the generated WSDL is
IntegerInput; if the @WwebParam annotation were not present in the JWS file, the name of the
parameter in the generated WSDL file would be the same as the name of the method’s parameter:
input. The targetNamespace attribute specifies that the XML namespace for the parameter is
http://example.org/docLiteralBare; this attribute is relevant only when using
document-style SOAP bindings where the parameter maps to an XML element.

You can also specify the following additional attributes of the @webParam annotation:

e mode—The direction in which the parameter is flowing (WebParam.Mode. IN,
WebParam.Mode . OUT, or WebParam.Mode . INOUT). The OUT and INOUT modes may be
specified only for parameter types that conform to the JAX-RPC definition of Holder
types. OUT and INOUT modes are only supported for RPC-style operations or for
parameters that map to headers.

Programming Web Services for WebLogic Server 5-9

Programming the JWS File

5-10

e header—Boolean attribute that, when set to true, specifies that the value of the parameter
should be retrieved from the SOAP header, rather than the default body.
None of the attributes of the @webParam annotation is required. See the Web Services Metadata
for the Java Platform for the default value of each attribute.

Customizing the Mapping Between the Operation Return
Value and a WSDL Part

Use the standard @webResult annotation to customize the mapping between the Web Service
operation return value and the corresponding element of the generated WSDL file, as shown in
the following code excerpt:

public class Simple {

@webMethod ()
@WebResult(name=""IntegerOutput",
targetNamespace=""http://example.org/docLiteralBare’)
public int echolnt(
@webParam(name=""Integerinput",
targetNamespace="http://example.org/docLiteralBare')

int input)

{
System.out.printin(*'echolnt *" + input + "" to you too!");
return input;

}

In the example, the name of the return value of the echoInt operation in the generated WSDL is
IntegerOutput; if the @WebResu It annotation were not present in the JWS file, the name of the
return value in the generated WSDL file would be the hard-coded name return. The
targetNamespace attribute specifies that the XML namespace for the return value is
http://example.org/docLiteralBare; this attribute is relevant only when using
document-style SOAP bindings where the return value maps to an XML element.

None of the attributes of the @webResul t annotation is required. See the Web Services Metadata
for the Java Platform for the default value of each attribute.

Programming Web Services for WebLogic Server

Accessing Runtime Information about a Web Service Using the JwsContext

Accessing Runtime Information about a Web Service
Using the JwsContext

When a client application invokes a WebLogic Web Service that was implemented with a JWS
file, WebLogic Server automatically creates a context that the Web Service can use to access, and
sometimes change, runtime information about the service. Much of this information is related to
conversations, such as whether the current conversation is finished, the current values of the
conversational properties, changing conversational properties at runtime, and so on. (See
“Creating Conversational Web Services” on page 6-37 for information about conversations and
how to implement them.) Some of the information accessible via the context is more generic,
such as the protocol that was used to invoke the Web Service (HTTP/S or JMS), the SOAP
headers that were in the SOAP message request, and so on.

You can use annotations and WebLogic Web Service APIs in your JWS file to access runtime
context information, as described in the following sections.

Guidelines for Accessing the Web Service Context

The following example shows a simple JWS file that uses the context to determine the protocol
that was used to invoke the Web Service; the code in bold is discussed in the programming
guidelines described after the example.

package examples.webservices.jws_context;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws.WLHttpTransport;
import weblogic. jws.Context;

import weblogic.wsee.jws.JwsContext;
import weblogic.wsee. jws._Protocol;

@WebService(name="JwsContextPortType", serviceName="JwsContextService",
targetNamespace=""http://example.org"™)

@WLHttpTransport(contextPath=""contexts", serviceUri="JwsContext",
portName=""JwsContextPort')

/**
* Simple web service to show how to use the @Context annotation.
*/

public class JwsContextImpl {

Programming Web Services for WebLogic Server 5-11

Programming the JWS File

@Context
private JwsContext ctx;

@webMethod ()
public String getProtocol() {

}
}

5-12

Protocol protocol = ctx.getProtocol();

System.out.printin(*protocol: " + protocol);
return "This is the protocol: " + protocol;

Use the following guidelines in your JWS file to access the runtime context of the Web Service,
as shown in the code in bold in the preceding example:

e Import the @weblogic. jws.Context JWS annotation:

import weblogic. jws.Context;

Import the weblogic.wsee. jws.JwsContext API, as well as any other related APIs that
you might use (the example also uses the weblogic.wsee. jws.Protocol API):

import weblogic.wsee. jws.JwsContext;
import weblogic.wsee.jws.Protocol;

See the weblogic.wsee. * Javadocs for reference documentation about the context-related
APIs.

Annotate a private variable, of data type weblogic.wsee. jws.JwsContext, with the
field-level @Context JWS annotation:

@Context
private JwsContext ctx;

WebLogic Server automatically assigns the annotated variable (in this case, ctx) with a
runtime implementation of JwsContext the first time the Web Service is invoked, which is
how you can later use the variable without explicitly initializing it in your code.

Use the methods of the JwsContext class to get, and sometimes change, runtime
information about the Web Service. The following example shows how to get the protocol
that was used to invoke the Web Service:

Protocol protocol = ctx.getProtocol();

See “Methods of the JwsContext” on page 5-13 for the full list of available methods.

Programming Web Services for WebLogic Server

Accessing Runtime Information about a Web Service Using the JwsContext

Methods of the JwsContext

The following table briefly describes the methods of the JwsContext that you can use in your
JWS file to access runtime information about the Web Service. See weblogic.wsee. * Javadocs
for detailed reference information about JwsContext, and other context-related APls, as
Protocol and ServiceHandle.

Table 5-2 Methods of the JwsContext

Method Returns Description

isFinished() boolean Returns a boolean value specifying whether the current

conversation is finished, or if it is still continuing.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

finishConversation() void Finishes the current conversation.

This method is equivalent to a client application invoking a
method that has been annotated with the @Conversation
(Conversation.Phase.FINISH) JWS annotation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

setMaxAge(java.uti.LD void Sets a new maximum age for the conversation to an absolute

ate)

Date. If the date parameter is in the past, WebLogic Server
immediately finishes the conversation.

This method is equivalent to the maxAge attribute of the
@Conversational annotation, which specifies the default
maximum age of a conversation. Use this method to override this
default value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

Programming Web Services for WebLogic Server 5-13

Programming the JWS File

Tahle 5-2 Methods of the JwsContext

Method Returns Description

setMaxAge(String) void Sets a new maximum age for the conversation by specifying a
String duration, suchas 1 day.

Valid values for the String parameter are a number and one of
the following terms:

= seconds

= minutes

< hours

= days

- years

For example, to specify a maximum age of ten minutes, use the
following syntax:

ctx.setMaxAge("'10 minutes')

This method is equivalent to the maxAge attribute of the
@Conversational annotation, which specifies the default

maximum age of a conversation. Use this method to override this
default value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getMaxAge() long Returns the maximum allowed age, in seconds, of a conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getCurrentAge() long Returns the current age, in seconds, of the conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

resetldleTime() void Resets the timer which measures the number of seconds since the
last activity for the current conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

5-14 Programming Web Services for WebLogic Server

Accessing Runtime Information about a Web Service Using the JwsContext

Tahle 5-2 Methods of the JwsContext

Method Returns Description

setMaxlIdleTime(long) void Sets the number of seconds that the conversation can remain idle
before WebLogic Server finishes it due to client inactivity.

This method is equivalent to the max1dleTime attribute of the
@Conversational annotation, which specifies the default idle
time of a conversation. Use this method to override this default
value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

setMaxIdleTime(Strin void Sets the number of seconds, specified as a String, that the
9) conversation can remain idle before WebLogic Server finishes it
due to client inactivity.

Valid values for the String parameter are a number and one of
the following terms:

= seconds

= minutes

= hours

- days

= years

For example, to specify a maximum idle time of ten minutes, use
the following syntax:

ctx.setMaxldleTime(*'10 minutes')

This method is equivalent to the max1dleTime attribute of the

@Conversational annotation, which specifies the default idle

time of a conversation. Use this method to override this default
value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getMaxldleTime() long Returns the number of seconds that the conversation is allowed to
remain idle before WebLogic Server finishes it due to client
inactivity.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

Programming Web Services for WebLogic Server 5-15

Programming the JWS File

Tahle 5-2 Methods of the JwsContext

Method Returns

Description

getCurrentldleTime() long

Gets the number of seconds since the last client request, or since
the conversation's maximum idle time was reset.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getCallerPrincipal() java.security.Pr
incipal

Returns the security principal associated with the operation that
was just invoked, assuming that basic authentication was
performed.

isCallerInRole(String) boolean

Returns true if the authenticated principal is within the specified
security role.

getService() weblogic.wsee.
jws.ServiceHan
dle

Returns an instance of ServiceHandle, a WebLogic Web
Service API, which you can query to gather additional information
about the Web Service, such as the conversation ID (if the Web
Service is conversational), the URL of the Web Service, and so on.

getLogger(String) weblogic.wsee.
jws.util.Logger

Gets an instance of the Logger class, which you can use to send
messages from the Web Service to a log file.

getinputHeaders() org.w3c.dom.E
lement][]

Returns an array of the SOAP headers associated with the SOAP
request message of the current operation invoke.

setUnderstoodInputHe void
aders(boolean)

Indicates whether input headers should be understood.

getUnderstoodInputHe boolean
aders()

Returns the value that was most recently set by a call to
setUnderstoodInputHeader.

setOutputHeaders(Ele void

Specifies an array of SOAP headers that should be associated with

ment[]) the outgoing SOAP response message sent back to the client
application that initially invoked the current operation.
getProtocol() weblogic.wsee. Returns the protocol (such as HTTP/S or IMS) used to invoke the

jws.Protocol

current operation.

Should You Implement a Stateless Session EJB?

The jwsc Ant task always chooses a plain Java object as the underlying implementation of a Web
Service when processing your JWS file.

5-16 Programming Web Services for WebLogic Server

Should You Implement a Stateless Session EJB?

Sometimes, however, you might want the underlying implementation of your Web Service to be
a stateless session EJB so as to take advantage of all that EJBs have to offer, such as instance
pooling, transactions, security, container-managed persistence, container-managed relationships,
and data caching. If you decide you want an EJB implementation for your Web Service, then
follow the programming guidelines in the following section.

Programming Guidelines When Implementing an EJB in Your
JWS File

The general guideline is to always use EJBGen annotations in your JWS file to automatically
generate, rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB. EJBGen annotations work in the
same way as JWS annotations: they follow the JDK 5.0 metadata syntax and greatly simplify your
programming tasks.

For more information on EJBGen, see the EJBGen Reference section in Programming WebL ogic
Enterprise JavaBeans.

Follow these guidelines when explicitly implementing a stateless session EJB in your JWS file.
See “Example of a JWS File That Implements an EJB” on page 5-18 for an example; the relevant
sections are shown in bold:

e Import the standard J2EE EJB classes:

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

e Import the EJBGen annotations, all of which are in the weblogic.ejbgen package. At a
minimum you need to import the @Session annotation; if you want to use additional
EJBGen annotations in your JWS file to specify the shape and behavior of the EJB, see the
EJBGen reference guide for the name of the annotation you should import.

import weblogic.ejbgen.Session;

e At a minimum, use the @Session annotation at the class level to specify the name of the
EJB:

@Session(ejbName="TransactionEJB'")

@Session is the only required EJBGen annotation when used in a JWS file. You can, if
you want, use other EJBGen annotations to specify additional features of the EJB.

e Ensure that the JWS class implements SessionBean:

public class Transactionlmpl implements SessionBean {...

Programming Web Services for WebLogic Server 5-11

Programming the JWS File

e You must also include the standard EJB methods ejbCreate(), ejbActivate() and so
on, although you typically do not need to add code to these methods unless you want to
change the default behavior of the EJB:

public void ejbCreate() {}

public void ejbActivate() {}

public void ejbRemove() {}

public void ejbPassivate() {}

public void setSessionContext(SessionContext sc) {}
If you follow all these guidelines in your JWS file, the jwsc Ant task later compiles the Web
Service into an EJB and packages it into an EJB JAR file inside of the Enterprise Application.

Example of a JWS File That Implements an EJB

The following example shows a simple JWS file that implement a stateless session EJB. The
relevant code is shown in bold.

package examples.webservices.transactional;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic. jws.Transactional;

import weblogic.ejbgen.Session;
@Session(ejbName="TransactionEJB'")

@WebService(name="TransactionPortType', serviceName="TransactionService",
targetNamespace=""http://example.org™)

@WLHttpTransport(contextPath="transactions', serviceUri="TransactionService",
portName="TransactionPort')

/**
* This JWS file forms the basis of simple EJB-implemented WebLogic
* Web Service with a single operation: sayHello. The operation executes

* as part of a transaction.
*

*/
public class Transactionlmpl implements SessionBean {

@webMethod()
@Transactional (value=true)

5-18 Programming Web Services for WebLogic Server

}

Programming the User-Defined Java Data Type

public String sayHello(String message) {

System.out.printin(‘sayHello:" + message);
return "Here is the message: "' + message + "

// Standard EJB methods. Typically there"s no need to override the methods.

public void ejbCreate() {}

public void ejbActivate() {}

public void ejbRemove() {}

public void ejbPassivate() {}

public void setSessionContext(SessionContext sc) {}

Programming the User-Defined Java Data Type

The methods of the JWS file that are exposed as Web Service operations do not necessarily take
built-in data types (such as Strings and integers) as parameters and return values, but rather, might
use a Java data type that you create yourself. An example of a user-defined data type is
TradeResult, which has two fields: a String stock symbol and an integer number of shares
traded.

If your JWS file uses user-defined data types as parameters or return values of one or more of its
methods, you must create the Java code of the data type yourself, and then import the class into
your JWS file and use it appropriately. The jwsc Ant task will later take care of creating all the
necessary data binding artifacts, such as the corresponding XML Schema representation of the
Java user-defined data type, the JAX-RPC type mapping file, and so on.

Follow these basic requirements when writing the Java class for your user-defined data type:
e Define a default constructor, which is a constructor that takes no parameters.

e Define both getXxxX() and setxxx() methods for each member variable that you want to
publicly expose.

e Make the data type of each exposed member variable one of the built-in data types, or
another user-defined data type that consists of built-in data types.

These requirements are specified by JAX-RPC 1.1; for more detailed information and the
complete list of requirements, see the JAX-RPC specification at
http://java.sun.com/xml/jaxrpc/index.jsp.

The jwsc Ant task can generate data binding artifacts for most common XML and Java data
types. For the list of supported user-defined data types, see “Supported User-Defined Data

Programming Web Services for WebLogic Server 5-19

Programming the JWS File

5-20

Types” on page 8-6. See “Supported Built-In Data Types” on page 8-2 for the full list of
supported built-in data types.

The following example shows a simple Java user-defined data type called BasicStruct:
package examples.webservices.complex;

/**

* Defines a simple JavaBean called BasicStruct that has integer, String,
* and String[] properties

*/

public class BasicStruct {

// Properties

private int intValue;
private String stringValue;
private String[] stringArray;

// Getter and setter methods

public int getintvValue() {
return intValue;

}

public void setIntValue(int intvValue) {
this.intvValue = intValue;

}

public String getStringvValue() {
return stringValue;

}

public void setStringValue(String stringValue) {
this.stringvValue = stringValue;

}

public String[] getStringArray() {
return stringArray;

}

public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;

}

Programming Web Services for WebLogic Server

Throwing Exceptions

}

The following snippets from a JWS file show how to import the BasicStruct class and use it as
both a parameter and return value for one of its methods; for the full JWS file, see “Sample
ComplexImpl.java JWS File” on page 3-10:

package examples.webservices.complex;
// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface
import weblogic. jws.WLHttpTransport;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

@WebService(serviceName=""ComplexService", name="ComplexPortType",
targetNamespace=""http://example.org")

public class ComplexImpl {

@webMethod(operationName="echoComplexType')
public BasicStruct echoStruct(BasicStruct struct)

{

}
}

Throwing Exceptions

When you write the error-handling Java code in methods of the JWS file, you can either throw
your own user-defined exceptions or throw a javax.xml . rpc.soap.SOAPFaul tException
exception. If you throw a SOAPFaul tException, WebLogic Server maps it to a SOAP fault and
sends it to the client application that invokes the operation.

return struct;

If your JWS file throws any type of Java exception other than SOAPFaul tException, WebLogic
Server tries to map it to a SOAP fault as best it can. However, if you want to control what the

Programming Web Services for WebLogic Server 5-21

Programming the JWS File

client application receives and send it the best possible exception information, you should
explicitly throw a SOAPFaul tException exception or one that extends the exception. See the
JAX-RPC 1.1 specification at http://java.sun.com/xml/jaxrpc/index.jsp for detailed information
about creating and throwing your own user-defined exceptions.

The following excerpt describes the SOAPFaul tException class:

public class SOAPFaultException extends java.lang.RuntimeException {
public SOAPFaultException (QName faultcode,
String faultstring,
String faultactor,
jJavax.xml.soap.Detail detail) {...}
public Qname getFaultCode() {---}
public String getFaultString() {---}
public String getFaultActor() {...}
public javax.xml.soap.Detail getDetail() {--..}

Use the SOAP with Attachments API for Java 1.1 (SAAJ)

javax.xml .soap.SOAPFactory.createDetai I () method to create the Detai I object, which
is a container for Detai IEntry objects that provide detailed application-specific information
about the error.

You can use your own implementation of the SOAPFactory, or use BEA's, which can be accessed
in the JWS file by calling the static method

weblogic.wsee.util .WLSOAPFactory.createSOAPFactory() which returns a
jJavax.xml .soap.SOAPFactory object. Then at runtime, use the

-Djavax.xml .soap.SOAPFactory flag to specify BEA’s SOAPFactory implementation as
shown:

-Djavax.xml _.soap.SOAPFactory=weblogic.xml _saaj . SOAPFactorylmpl

The following JWS file shows an example of creating and throwing a SOAPFaul tException
from within a method that implements an operation of your Web Service; the sections in bold
highlight the exception code:

package examples.webservices.soap_exceptions;

import javax.xml_namespace.QName;

import javax.xml_soap.Detail;

import javax.xml_soap.SOAPException;

import javax.xml._soap.SOAPFactory;

import javax.xml._rpc.soap.SOAPFaultException;

// Import the @WebService annotation

import javax.jws.WebService;

5-22 Programming Web Services for WebLogic Server

Throwing Exceptions

// Import WLHttpTransport
import weblogic. jws_WLHttpTransport;

@WebService(serviceName="SoapExceptionsService",
name=""SoapExceptionsPortType",
targetNamespace=""http://example.org")

@WLHttpTransport(contextPath="exceptions",
serviceUri="SoapExceptionsService",
portName=""SoapExceptionsServicePort')

/**

* This JWS file forms the basis of simple Java-class implemented WebLogic

* Web Service with a single operation: sayHelloWorld
*

* @author Copyright (c) 2005 by BEA Systems. All rights reserved.
*/

public class SoapExceptionsimpl {
public SoapExceptionsimpl() {
¥
public void tirarSOAPException() {
Detail detail = null;

try {

SOAPFactory soapFactory = SOAPFactory.newlnstance();
detail = soapFactory.createDetail();

} catch (SOAPException e) {
// do something
¥

QName faultCode = null;

String faultString = "the fault string”;

String faultActor = "the fault actor™;

throw new SOAPFaultException(faultCode, faultString, faultActor, detail);

The preceding example uses the default implementation of SOAPFactory.

WARNING: If you create and throw your own exception (rather than use
SOAPFaul tException) and two or more of the properties of your exception class
are of the same data type, then you must also create setter methods for these
properties, even though the JAX-RPC specification does not require it. This is
because when a WebLogic Web Service receives the exception in a SOAP

Programming Web Services for WebLogic Server 5-23

Programming the JWS File

message and converts the XML into the Java exception class, there is no way of
knowing which XML element maps to which class property without the
corresponding setter methods.

Invoking Another Web Service from the JWS File

From within your JWS file you can invoke another Web Service, either one deployed on
WebLogic Server or one deployed on some other application server, such as .NET. The steps to
do this are similar to those described in “Invoking a Web Service from a Stand-alone JAX-RPC
Java Client” on page 3-23, except that rather than running the clientgen Ant task to generate
the client stubs, you include a <clientgen> child element of the jwsc Ant task that builds the
invoking Web Service to generate the client stubs instead. You then use the standard JAX-RPC
APIs in your JWS file the same as you do in a stand-alone client application.

See “Invoking a Web Service from Another Web Service” on page 9-12 for detailed instructions.

Programming Additional Miscellaneous Features Using
JWS Annotations and APIs

5-24

The following sections describe additional miscellaneous features you can program by specifying
particular JWS annotations in your JWS file or using WebLogic Web Services APIs:

e “Streaming SOAP Attachments” on page 5-24
e “Using SOAP 1.2” on page 5-25
e “Specifying that Operations Run Inside of a Transaction” on page 5-26

e “Getting the HttpServletRequest/Response Object” on page 5-27

Streaming SOAP Attachments

Using the @weblogic. jws.StreamAttachments JWS annotation, you can specify that a Web
Service use a streaming APl when reading inbound SOAP messages that include attachments,

rather than the default behavior in which the service reads the entire message into memory. This
feature increases the performance of Web Services whose SOAP messages are particular large.

See “weblogic.jws.StreamAttachments” on page B-51 for an example of specifying that
attachments should be streamed.

Programming Web Services for WebLogic Server

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

Using SOAP 1.2

WebLogic Web Services use, by default, Version 1.1 of Simple Object Access Protocol (SOAP)
as the message format when transmitting data and invocation calls between the Web Service and
its client. To specify that the Web Service use Version 1.2 of SOAP, use the class-level
@weblogic.jws.Binding annotation in your JWS file and set its single attribute to the value
Binding.Type.SO0AP12, as shown in the following example (relevant code shown in bold):

package examples.webservices.soapl2;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic.jws.Binding;

@webService(name=""SOAP12PortType",
serviceName=""SOAP12Service",
targetNamespace=""http://example.org")

@WLHttpTransport(contextPath=""soapl2",
serviceUri="SOAP12Service",
portName=""SOAP12ServicePort')

@Binding(Binding.Type.SOAP12)

/**

* This JWS file forms the basis of simple Java-class implemented WeblLogic
* Web Service with a single operation: sayHello. The class uses SOAP 1.2
* as its binding.

*

*/

public class SOAP12Impl {

@webMethod ()
public String sayHello(String message) {
System.out.printin(‘sayHello:" + message);

return "Here is the message: + message + "*';

3
}

Programming Web Services for WebLogic Server 5-25

Programming the JWS File

5-26

Other than set this annotation, you do not have to do anything else for the Web Service to use
SOAP 1.2, including changing client applications that invoke the Web Service; the WebLogic
Web Services runtime takes care of all the rest.

Specifying that Operations Run Inside of a Transaction

When a client application invokes a WebLogic Web Service operation, the operation invocation
takes place outside the context of a transaction, by default. If you want the operation to run inside
atransaction, specify the @weblogic. jws. Transactional annotation in your JWS file, and set
the boolean value attribute to true, as shown in the following example (relevant code shown in
bold):

package examples.webservices.transactional;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic. jws.Transactional;

@WebService(name="TransactionPojoPortType",
serviceName="TransactionPojoService",
targetNamespace=""http://example.org™)

@WLHttpTransport(contextPath="transactionsPojo",
serviceUri="TransactionPojoService",
portName=""TransactionPojoPort')

/**
* This JWS file forms the basis of simple WebLogic
* Web Service with a single operation: sayHello. The operation executes
* as part of a transaction.
*
*/
public class TransactionPojolmpl {

@webMethod ()

@Transactional (value=true)

public String sayHello(String message) {
System.out.printin(“sayHello:" + message);
return "Here is the message: """ + message + """;

Programming Web Services for WebLogic Server

3
}

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

If you want all operations of a Web Service to run inside of a transaction, specify the
@Transactional annotation at the class-level. If you want only a subset of the operations to be
transactional, specify the annotation at the method-level. If there is a conflict, the method-level
value overrides the class-level.

See “weblogic.jws.Transactional” on page B-52 for information about additional attributes.

Getting the HttpServletRequest/Response Object

If your Web Service uses HTTP as its transport protocol, you can use the
weblogic.wsee.connection.transport.servlet.HttpTransportUtils API to get the
javax.servlet._http.HttpServletRequest and
javax.servlet.http._HttpServletResponse objects from the JAX-RPC
ServletEndpointContext object, as shown in the following example (relevant code shown in
bold and explained after the example):

package examples.webservices.http_transport_utils;

import javax.
import javax.
import javax.

import javax.
-servilet._http_HttpServletResponse;

import javax

import javax
import javax

xml_rpc.server._ServicelLifecycle;
xml.rpc.server.ServletEndpointContext;
xml .rpc.ServiceException;

servlet.http.HttpServletRequest;

-jws.WebMethod;
-jws._WebService;

import weblogic.jws_WLHttpTransport;

import weblogic.wsee.connection.transport.servlet_HttpTransportUtils;

@webService(name=""HttpTransportUtilsPortType",

serviceName=""HttpTransportUtilsService",
targetNamespace="http://example.org"™)

@WLHttpTransport(contextPath="servlet"”, serviceUri="HttpTransportUtils",

public class

portName="HttpTransportUtilsPort')

HttpTransportUtilsimpl implements ServiceLifecycle {

private ServletEndpointContext wsctx = null;

public void init(Object context) throws ServiceException {
System.out.printin('"ServletEndpointContext inited...");

Programming Web Services for WebLogic Server 5-21

Programming the JWS File

}

wsctx = (ServletEndpointContext)context;

public void destroy() {
System.out.printIn('ServletEndpointContext destroyed...");

}

wsctx = null;

@webMethod ()
public String getServletRequestAndResponse() {

5-28

HttpServletRequest request =

HttpTransportUtils.getHttpServletRequest(wsctx.getMessageContext());

HttpServletResponse response =

HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());

System.out._printin("HttpTransportUtils APl used successfully.'™);

return "HttpTransportUtils APl used successfully";

The important parts of the preceding example are as follows:

Import the required JAX-RPC and Servlet classes:

import javax.xml_rpc.server.ServicelLifecycle;
import javax.xml._.rpc.server.ServletEndpointContext;
import javax.xml.rpc.ServiceException;

import javax.servlet.http_HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

Import the WebLogic HttpTransportUtils class:
import weblogic.wsee.connection.transport.servlet_HttpTransportUtils;

Because you will be querying the JAX-RPC message context, your JWS file must
explicitly implement ServiceLifecycle:

public class HttpTransportUtilsimpl implements ServicelLifecycle
Create a variable of data type ServletEndpointContext:
private ServletEndpointContext wsctx = null;

Because the JWS file implements ServiceLifecycle, you must also implement the init
and destroy lifecycle methods:

public void init(Object context) throws ServiceException {
System.out.printin("ServletEndpointContext inited...");

Programming Web Services for WebLogic Server

JWS Programming Best Practices

wsctx = (ServletEndpointContext)context;

}

public void destroy() {
System.out._printIn(*ServletEndpointContext destroyed...");
wsctx = null;

}

e Finally, in the method that implements the Web Service operation, use the
ServletEndpointContext object to get the HttpServiletRequest and
HttpServletResponse objects:

HttpServletRequest request =
HttpTransportUtils.getHttpServietRequest(wsctx.getMessageContext());

HttpServletResponse response =
HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());

JWS Programming Best Practices

The following list provides some best practices when programming the JWS file:

e When you create a document-literal-bare Web Service, use the @webParam JWS annotation
to ensure that all input parameters for all operations of a given Web Service have a unique
name.

Because of the nature of document-literal-bare Web Services, if you do not explicitly use
the @webParam annotation to specify the name of the input parameters, WebLogic Server
creates one for you and run the risk of duplicating the names of the parameters across a
Web Service.

e In general, document-literal-wrapped Web Services are the most interoperable type of Web
Service.

e Use the @webResult JWS annotation to explicitly set the name of the returned value of an
operation, rather than always relying on the hard-coded name return, which is the default
name of the returned value if you do not use the @webResult annotation in your JWS file.

e Use soapraultExceptions in your JWS file if you want to control the exception
information that is passed back to a client application when an error is encountered while
invoking a the Web Service.

e Even though it is not required, BEA recommends you always specify the portName
attribute of the WebL ogic-specific @WLHttpTransport annotation in your JWS file. If
you do not specify this attribute, the jwsc Ant task will generate a port name for you when
generating the WSDL file, but this name might not be very user-friendly. A consequence
of this is that the getxXx() method you use in your client applications to invoke the Web

Programming Web Services for WebLogic Server 5-29

Programming the JWS File

Service will not be very well-named. To ensure that your client applications use the most
user-friendly methods possible when invoking the Web Service, specify a relevant name of
the Web Service port by using the portName attribute.

5-30 Programming Web Services for WebLogic Server

CHAPTERa

Advanced JWS Programming:
Implementing Asynchronous Features

The following sections describe how to use JWS files to implement asynchronous features. The
first four sections describe how to implement these features separately. Typically, however,
programmers use these features together; see “Using the Asynchronous Features Together” on
page 6-57 for more information.

“Using Web Service Reliable Messaging” on page 6-1

“Invoking a Web Service Using Asynchronous Request-Response” on page 6-19
“Using Callbacks to Notify Clients of Events” on page 6-27

“Creating Conversational Web Services” on page 6-37

“Creating Buffered Web Services” on page 6-50

“Using the Asynchronous Features Together” on page 6-57

“Using Reliable Messaging or Asynchronous Request Response With a Proxy Server” on
page 6-61

Using Web Service Reliable Messaging

Web Service reliable messaging is a framework whereby an application running in one
application server can reliably invoke a Web Service running on another application server,
assuming that both servers implement the WS-ReliableMessaging specification. Reliable is
defined as the ability to guarantee message delivery between the two Web Services.

Programming Web Services for WebLogic Server 6-1

Advanced JWS Programming: Implementing Asynchronous Features

6-2

Note: Web Services reliable messaging works between any two application servers that
implement the WS-ReliableMessaging specification. In this document, however, it is
assumed that the two application servers are WebLogic Server instances.

WebLogic Web Services conform to the WS-ReliableMessaging specification (February 2005),
which describes how two Web Services running on different application servers can
communicate reliably in the presence of failures in software components, systems, or networks.
In particular, the specification describes an interoperable protocol in which a message sent from
a source endpoint (or client Web Service) to a destination endpoint (or Web Service whose
operations can be invoked reliably) is guaranteed either to be delivered, according to one or more
delivery assurances, or to raise an error.

A reliable WebLogic Web Service provides the following delivery assurances:

o AtMostOnce—Messages are delivered at most once, without duplication. It is possible that
some messages may not be delivered at all.

o Atl eastOnce—Every message is delivered at least once. It is possible that some messages
are delivered more than once.

e ExactlyOnce—Every message is delivered exactly once, without duplication.

e InOrder—Messages are delivered in the order that they were sent. This delivery assurance
can be combined with one of the preceding three assurances.

See the WS-ReliableMessaging specification for detailed documentation about the architecture
of Web Service reliable messaging. “Using Web Service Reliable Messaging: Main Steps” on
page 6-4 describes how to create the reliable and client Web Services and how to configure the
two WebLogic Server instances to which the Web Services are deployed.

Note: Web Services reliable messaging is not supported with the JMS transport feature.

Use of WS-Policy Files for Web Service Reliable Messaging
Configuration

WebLogic Web Services use WS-Policy files to enable a destination endpoint to describe and
advertise its Web Service reliable messaging capabilities and requirements. The WS-Policy
specification provides a general purpose model and syntax to describe and communicate the
policies of a Web service.

These WS-Policy files are XML files that describe features such as the version of the supported
WS-ReliableMessaging specification, the source endpoint’s retransmission interval, the
destination endpoint’s acknowledgment interval, and so on.

Programming Web Services for WebLogic Server

Using Web Service Reliable Messaging

You specify the names of the WS-Policy files that are attached to your Web Service using the
@Policy JWS annotation in your JWS file. Use the @Policies annotation to group together
multiple @Policy annotations. For reliable messaging, you specify these annotations only at the
class level.

WebLogic Server includes two simple WS-Policy files that you can specify in your JWS file if
you do not want to create your own WS-Policy files:

e DefaultReliabi lity.xml—Specifies typical values for the reliable messaging policy
assertions, such as inactivity timeout of 10 minutes, acknowledgement interval of 200
milliseconds, and base retransmisstion interval of 3 seconds. See “DefaultReliability.xml
WS-Policy File” on page 6-3 for the actual WS-Policy file.

e LongRunningReliabi lity.xml—Similar to the preceding default reliable messaging
WS-Policy file, except that it specifies a much longer activity timeout interval (24 hours.)
See “LongRunningReliability.xml WS-Policy File” on page 6-4 for the actual WS-Policy
file.

You cannot change these pre-packaged files, so if their values do not suit your needs, you must
create your own WS-Policy file.

See “Creating the Web Service Reliable Messaging WS-Policy File” on page 6-8 for details about
creating your own WS-Policy file if you do not want to one included with WebL ogic Server. See
Appendix C, “Web Service Reliable Messaging Policy Assertion Reference,” for reference
information about the reliable messaging policy assertions.

DefaultReliability.xml WS-Policy File

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:beapolicy="http://www._bea.com/wsrm/policy"
>

<wsrm:RMAssertion >

<wsrm: InactivityTimeout
Milliseconds="600000" />

<wsrm:BaseRetransmissionlnterval
Milliseconds="3000" />

<wsrm:ExponentialBackoff />

Programming Web Services for WebLogic Server 6-3

Advanced JWS Programming: Implementing Asynchronous Features

<wsrm:Acknowledgementinterval
Milliseconds='"200" />
<beapolicy:Expires Expires="P1D" optional="true"/>
</wsrm:RMAssertion>

</wsp:Policy>

LongRunningReliability.xml WS-Policy File

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:beapolicy="http://www._bea.com/wsrm/policy"
>

<wsrm:RMAssertion >

<wsrm: InactivityTimeout
Milliseconds="86400000" />
<wsrm:BaseRetransmissionlnterval
Milliseconds="3000" />
<wsrm:ExponentialBackoff />
<wsrm:Acknowledgementinterval
Milliseconds="200" />
<beapolicy:Expires Expires="P1M" optional="true'"/>
</wsrm:RMAssertion>

</wsp:Policy>

Using Web Service Reliable Messaging: Main Steps

Configuring reliable messaging for a WebLogic Web Service requires standard JMS tasks such
as creating JMS servers and Store and Forward (SAF) agents, as well as Web Service-specific
tasks, such as adding additional JWS annotations to your JWS file. Optionally, you create
WS-Policy files that describe the reliable messaging capabilities of the reliable Web Service if

you do not use the pre-packaged ones.

If you are using the WebLogic client APIs to invoke a reliable Web Service, the client application
must run on WebLogic Server. Thus, configuration tasks must be performed on both the source
WebLogic Server instance on which the Web Service that includes client code to invoke the

6-4 Programming Web Services for WebLogic Server

Using Web Service Reliable Messaging

reliable Web Service reliably is deployed, as well as the destination WebLogic Server instance
on which the reliable Web Service itself is deployed.

The following procedure describes how to create a reliable Web Service, as well as a client Web
Service that in turn invokes an operation of the reliable Web Service reliably. The procedure
shows how to create the JWS files that implement the two Web Services from scratch; if you want
to update existing JWS files, use this procedure as a guide. The procedure also shows how to
configure the source and destination WebLogic Server instances.

It is assumed that you have created a WebLogic Server instance where you have set up an
Ant-based development environment and that you have a working bui Id.xml file to which you
can add targets for running the jwsc Ant task and deploying the generated reliable Web Service.
It is further assumed that you have a similar setup for another WebLogic Server instance that
hosts the client Web Service that invokes the Web Service reliably. For more information, see:

e Chapter 3, “Common Web Services Use Cases and Examples”
e Chapter 4, “Iterative Development of WebLogic Web Services”
e Chapter 5, “Programming the JWS File”
e Chapter 9, “Invoking Web Services”
1. Configure the destination WebLogic Server instance for Web Service reliable messaging.

This is the WebLogic Server instance to which the reliable Web Service is deployed.

See “Configuring the Destination WebLogic Server Instance” on page 6-6.

2. Configure the source WebLogic Server instance for Web Service reliable messaging.

This is the WebLogic Server instance to which the client Web Service that invokes the
reliable Web Service is deployed.

See “Configuring the Source WebLogic Server Instance” on page 6-8.

3. Using your favorite XML or plain text editor, optionally create a WS-Policy file that describes
the reliable messaging capabilities of the Web Service running on the destination WebLogic
Server. This step is not required if you plan to use one of the two WS-Policy files that are
included in WebLogic Server; see “Use of WS-Policy Files for Web Service Reliable
Messaging Configuration” on page 6-2 for more information.

See “Creating the Web Service Reliable Messaging WS-Policy File” on page 6-8 for details
about creating your own WS-Policy file.

Programming Web Services for WebLogic Server 6-5

Advanced JWS Programming: Implementing Asynchronous Features

4. Create a new JWS file, or update an existing one, which implements the reliable Web Service
that will run on the destination WebLogic Server.

See “Programming Guidelines for the Reliable JWS File” on page 6-10.

5. Update your build.xml File to include a call to the jwsc Ant task which will compile the
reliable JWS file into a Web Service.

See “Running the jwsc WebLogic Web Services Ant Task” on page 4-7 for general
information about using the jwsc task.

6. Compile your destination JWS file by calling the appropriate target and deploy to the
destination WebLogic Server. For example:

prompt> ant build-mainService deploy-mainService

7. Create a new JWS file, or update an existing one, that implements the client Web Service that
invokes the reliable Web Service. This service will be deployed to the source WebL ogic
Server.

See “Programming Guidelines for the JWS File That Invokes a Reliable Web Service” on
page 6-15.

8. Update the bui Id.xml file that builds the client Web Service.
See “Updating the build.xml File for a Client of a Reliable Web Service” on page 6-18.

9. Compile your client JWS file by calling the appropriate target and deploy to the source
WebLogic Server. For example:

prompt> ant build-clientService deploy-clientService

Configuring the Destination WebLogic Server Instance

Configuring the WebLogic Server instance on which the reliable Web Service is deployed
involves configuring JMS and store and forward (SAF) resources.

You can either configure these resources yourself, or you can use the Configuration Wizard to
extend the WebLogic Server domain using a Web Services-specific extension template. Using
the Configuration Wizard greatly simplifies the required configuration steps; for details, see
“Configuring Your Domain For Web Services Features” on page 4-2.

If, however, you prefer to configure the resources yourself, use the following high-level
procedure which lists the tasks and then points to the Administration Console Online Help for
details on performing the tasks.

6-6 Programming Web Services for WebLogic Server

Using Web Service Reliable Messaging

1. Invoke the Administration Console for the domain that contains the destination WebLogic
Server in your browser.

See “Invoking the Administration Console” on page 11-4 for instructions on the URL that
invokes the Administration Console.

2. Optionally create a persistent store (either file or JDBC) that will be used by the destination
WebLogic Server to store internal Web Service reliable messaging information. You can use
an existing one, or the default store that always exists, if you do not want to create a new one.

See Create file stores.

3. Create a JMS Server. If a JMS server already exists, you can use it if you do not want to create
a new one.

See Create JMS servers.

4. Create a JMS module, and then define a JMS queue in the module. If a JMS module already
exists, you can use it if you do not want to create a new one. Target the JMS queue to the IMS
server you created in the preceding step. Be sure you specify that this JMS queue is local,
typically by setting the local INDI name.

Take note of the JNDI name you define for the JMS queue because you will later use it
when you program the JWS file that implements your reliable Web Service.

See Create JMS modules and Create queues.

5. Create a store and forward (SAF) agent. You can use an existing one if you do not want to
create a new one.

When you create the SAF agent:
— Set the Agent Type field to Both to enable both sending and receiving agents.

— Be sure to target the SAF agent to your WebLogic Server instance by clicking Next on
the first assistant page rather than Finish.

See Create Store and Forward agents.
Cluster Considerations
If you are using the Web Service reliable messaging feature in a cluster, you must:

o Still create a local IMS queue, rather than a distributed queue, when creating the JMS
queue in step 4 in “Configuring the Destination WebLogic Server Instance”.

e Explicitly target this JIMS queue to each server in the cluster.

Programming Web Services for WebLogic Server 6-7

Advanced JWS Programming: Implementing Asynchronous Features

6-8

Configuring the Source WebLogic Server Instance

Configuring the WebL ogic Server instance on which the client Web Service is deployed involves
configuring JMS and store and forward (SAF) resources.

You can either configure these resources yourself, or you can use the Configuration Wizard to
extend the WebLogic Server domain using a Web Services-specific extension template. Using
the Configuration Wizard greatly simplifies the required configuration steps; for details, see
“Configuring Your Domain For Web Services Features” on page 4-2.

If, however, you prefer to configure the resources yourself, use the following high-level
procedure which lists the tasks and then points to the Administration Console Online Help for
details on performing the tasks.

1. Invoke the Administration Console for the domain that contains the source WebL ogic Server
in your browser.

See “Invoking the Administration Console” on page 11-4 for instructions on the URL that
invokes the Administration Console.

2. Create a persistent store (file or JDBC) that will be used by the source WebLogic Server to
store internal Web Service reliable messaging information. You can use an existing one if you
do not want to create a new one.

See Create file stores.
3. Create a JMS Server. You can use an existing one if you do not want to create a new one.

See Create JMS servers.

4. Create a store and forward (SAF) agent. You can use an existing one if you do not want to
create a new one.

Be sure when you create the SAF agent that you set the Agent Type field to Both to
enable both sending and receiving agents.

See Create Store and Forward agents.

Creating the Web Service Reliable Messaging WS-Policy
File
A WS-Policy file is an XML file that contains policy assertions that comply with the WS-Policy

specification. In this case, the WS-Policy file contains Web Service reliable messaging policy
assertions.

Programming Web Services for WebLogic Server

Using Web Service Reliable Messaging

You can use one of the two default reliable messaging WS-Policy files included in WebLogic
Server; these files are adequate for most use cases. However, because these files cannot be
changed, if they do not suit your needs, you must create your own. See “Use of WS-Policy Files
for Web Service Reliable Messaging Configuration” on page 6-2 for a description of the included
WS-Policy files. The remainder of this section describes how to create your own WS-Policy file.

The root element of the WS-Policy file is <Policy> and it should include the following
namespace declarations for using Web Service reliable messaging policy assertions:

<wsp:Policy
xmIns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlIns:beapolicy="http://www._bea.com/wsrm/policy'>

You wrap all Web Service reliable messaging policy assertions inside of a
<wsrm:RMAssertion> element. The assertions that use the wsrm: namespace are standard ones
defined by the WS-ReliableMessaging specification. The assertions that use the beapolicy:
namespace are WebL ogic-specific. See Appendix C, “Web Service Reliable Messaging Policy
Assertion Reference,” for details.

All Web Service reliable messaging assertions are optional, so only set those whose default
values are not adequate. The order in which the assertions appear is important. You can specify
the following assertions; the order they appear in the following list is the order in which they
should appear in your WS-Policy file:

e <wsrm: InactivityTimeout>—Number of milliseconds, specified with the
Mi I liseconds attribute, which defines an inactivity interval. After this amount of time, if
the destination endpoint has not received a message from the source endpoint, the
destination endpoint may consider the sequence to have terminated due to inactivity. The
same is true for the source endpoint. By default, sequences never timeout.

e <wsrm:BaseRetransmissionlnterval>—Interval, in milliseconds, that the source
endpoint waits after transmitting a message and before it retransmits the message if it
receives no acknowledgment for that message. Default value is set by the SAF agent on the
source endpoint’s WebLogic Server instance.

e <wsrm:ExponentialBackoff>—Specifies that the retransmission interval will be
adjusted using the exponential backoff algorithm. This element has no attributes.

o <wsrm:AcknowledgmentiInterval>—Maximum interval, in milliseconds, in which the
destination endpoint must transmit a stand-alone acknowledgement. The default value is
set by the SAF agent on the destination endpoint’s WebLogic Server instance.

Programming Web Services for WebLogic Server 6-9

Advanced JWS Programming: Implementing Asynchronous Features

e <beapolicy:Expires>—Amount of time after which the reliable Web Service expires
and does not accept any new sequence messages. The default value is to never expire.
This element has a single attribute, Expires, whose data type is an XML Schema duration
type. For example, if you want to set the expiration time to one day, use the following:
<beapolicy:Expires Expires="P1D" />

e <beapolicy:Q0S>—Delivery assurance level, as described in “Using Web Service
Reliable Messaging” on page 6-1. The element has one attribute, Q0S, which you set to
one of the following values: AtMostOnce, AtLeastOnce, or ExactlyOnce. You can also
include the InOrder string to specify that the messages be in order. The default value is
ExactlyOnce InOrder. This element is typically not set.

The following example shows a simple Web Service reliable messaging WS-Policy file:
<?xml version="1.0"?>

<wsp:Policy
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:beapolicy="http://www.bea.com/wsrm/policy"
>

<wsrm:RMAssertion>

<wsrm: InactivityTimeout
Milliseconds="600000" />
<wsrm:BaseRetransmissionlnterval
Milliseconds="500" />
<wsrm:ExponentialBackoff />
<wsrm:Acknowledgementinterval
Milliseconds="2000" />

</wsrm:RMAssertion>

</wsp:Policy>

Programming Guidelines for the Reliable JWS File
This section describes how to create the JWS file that implements the reliable Web Service.

The following JWS annotations are used in the JWS file that implements a reliable Web Service:

e @weblogic.jws.Policy—Required. See “Using the @Policy Annotation” on page 6-12.

6-10 Programming Web Services for WebLogic Server

Using Web Service Reliable Messaging

e @javax.jws.Oneway—Required only if you are using Web Service reliable messaging on
its own, without also using the asynchronous request-response feature. See “Using the
@Oneway Annotation” on page 6-13 and “Using the Asynchronous Features Together” on
page 6-57.

e @weblogic.jws.BufferQueue—Optional. See “Using the @BufferQueue Annotation”
on page 6-14.

e @weblogic.jws.ReliabilityBuffer—Optional. See “Using the @ReliabilityBuffer
Annotation” on page 6-14

The following example shows a simple JWS file that implements a reliable Web Service; see the
explanation after the example for coding guidelines that correspond to the Java code in bold.

package examples.webservices.reliable;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

import weblogic. jws.WLHttpTransport;

import weblogic.jws.ReliabilityBuffer;
import weblogic.jws.BufferQueue;
import weblogic.jws.Policy;

/**
* Simple reliable Web Service.
>/

@WebService(name="ReliableHelloWorldPortType",
serviceName="ReliableHel loWorldService')

@WLHttpTransport(contextPath=""ReliableHelloWorld",
serviceUri="ReliableHelloWorld",
portName=""ReliableHel loWorldServicePort')

@Policy(uri="ReliableHelloWorldPolicy.xml",
direction=Policy.Direction.both,
attachToWsdl=true)

@BufferQueue(name="webservices.reliable.queue™)
public class ReliableHelloWorldImpl {

@webMethod ()
@oneway ()
@ReliabilityBuffer(retryCount=10, retryDelay="10 seconds')

Programming Web Services for WebLogic Server 6-11

Advanced JWS Programming: Implementing Asynchronous Features

public void helloWorld(String input) {

6-12

System.out.printin(*" Hello World "™ + input);

In the example, the ReliableHel loWor IdPolicy.xml file is attached to the Web Service at the
class level, which means that the policy file is applied to all public operations of the Web Service.
The policy file is applied only to the request Web Service message (as required by the reliable
messaging feature) and it is attached to the WSDL file.

The JMS queue that WebLogic Server uses internally to enable the Web Service reliable
messaging has a JNDI name of webservices.reliable.queue, as specified by the
@BufferQueue annotation.

The helloworld() method has been marked with both the @webMethod and @oneway JWS
annotations, which means it is a public operation called hel loworld. Because of the @Policy
annotation, the operation can be invoked reliably. The Web Services runtime attempts to deliver
reliable messages to the service a maximum of 10 times, at 10-second intervals, as described by
the @Reliabi I ityBuffer annotation. The message may require re-delivery if, for example, the
transaction is rolled back or otherwise does not commit.

Using the @Policy Annotation

Use the @Policy annotation in your JWS file to specify that the Web Service has a WS-Policy
file attached to it that contains reliable messaging assertions.

See “Use of WS-Policy Files for Web Service Reliable Messaging Configuration” on page 6-2
for descriptions of the two WS-Policy files (Defaul tReliability.xml and
LongRunningReliability.xml) included in WebLogic Server that you can use instead of
writing your own.

You must follow these requirements when using the @Pol icy annotation for Web Service
reliable messaging:

e Specify the @Policy annotation only at the class-level.

e Because Web Service reliable messaging is applied to both the request and response SOAP
message, set the direction attribute of the @Policy annotation only to its default value:
Policy.Direction.both.

Use the uri attribute to specify the build-time location of the policy file, as follows:

o If you have created your own WS-Policy file, specify its location relative to the JWS file.
For example:

Programming Web Services for WebLogic Server

Using Web Service Reliable Messaging

@Policy(uri="ReliableHelloWorldPolicy.xml",
direction=Policy.Direction.both,
attachToWsdl=true)

The example shows that the ReliableHel loworIdPolicy.xml file is located in the same
directory as the JWS file.

e To specify that the Web Service is going to use a WS-Policy file that is part of WebLogic
Server, use the policy: prefix along with the name and path of the policy file. This
syntax tells the jwsc Ant task at build-time not to look for an actual file on the file system,
but rather, that the Web Service will retrieve the WS-Policy file from WebLogic Server at
the time the service is deployed. Use this syntax when specifying one of the pre-packaged
WS-Policy files or when specifying a WS-Policy file that is packaged in a shared J2EE
library.

Note: Shared J2EE libraries are useful when you want to share a WS-Policy file with
multiple Web Services that are packaged in different Enterprise applications. As long
as the WS-Policy file is located in the META-INF/policies or WEB-INF/policies
directory of the shared J2EE library, you can specify the policy file in the same way
as if it were packaged in the same archive at the Web Service. See Creating Shared
J2EE Libraries and Optional Packages at {DOCROOQOT}/programming/libraries.html
for information on creating libraries and setting up your environment so the Web
Service can find the policy files.

o To specify that the policy file is published somewhere on the Web, use the http: prefix
along with the URL, as shown in the following example:
@Policy(uri="http://someSite.com/policies/mypolicy.xml"

direction=Policy.Direction.both,

attachToWsdl=true)
You can also set the attachToWsd attribute of the @Pol icy annotation to specify whether the
policy file should be attached to the WSDL file that describes the public contract of the Web
Service. Typically you want to publicly publish the policy so that client applications know the
reliable messaging capabilities of the Web Service. For this reason, the default value of this
attribute is true.

Using the @0neway Annotation

If you plan on invoking the reliable Web Service operation synchronously (or in other words, not
using the asynchronous request-response feature), then the implementing method is required to
be annotated with the @0Oneway annotation to specify that the method is one-way. This means that
the method cannot return a value, but rather, must explicitly return void.

Programming Web Services for WebLogic Server 6-13

Advanced JWS Programming: Implementing Asynchronous Features

6-14

Conversely, if the method is not annotated with the @oneway annotation, then you must invoke it
using the asynchronous request-response feature. If you are unsure how the operation is going to
be invoked, consider creating two flavors of the operation: synchronous and asynchronous.

See “Invoking a Web Service Using Asynchronous Request-Response” on page 6-19 and “Using
the Asynchronous Features Together” on page 6-57.

Using the @BufferQueue Annotation

Use the @BufFerQueue annotation to specify the INDI name of the JMS queue which WebLogic
Server uses to store reliable messages internally. The JNDI name is the one you configured when
creating a JMS queue in step 4 in “Configuring the Destination WebLogic Server Instance”.

The @BufferqQueue annotation is optional; if you do not specify it in your JWS file then
WebLogic Server uses a queue with a JINDI name of weblogic.wsee_Defaul tQueue. You
must, however, still explicitly create a JMS queue with this INDI name using the Administration
Console.

Using the @ReliabilityBuffer Annotation

Use this annotation to specify the number of times WebLogic Server should attempt to deliver
the message from the JMS queue to the Web Service implementation (default 3) and the amount
of time that the server should wait in between retries (default 5 seconds).

Use the retryCount attribute to specify the number of retries and the retryDelay attribute to
specify the wait time. The format of the retryDelay attribute is a number and then one of the
following strings:

e seconds
e minutes
e hours
e days
® years
For example, to specify a retry count of 20 and a retry delay of two days, use the following syntax:

@ReliabilityBuffer(retryCount=20, retryDelay="2 days')

Programming Web Services for WebLogic Server

Using Web Service Reliable Messaging

Programming Guidelines for the JWS File That Invokes a
Reliable Web Service

If you are using the WebLogic client APIs, you must invoke a reliable Web Service from within
a Web Service; you cannot invoke a reliable Web Service from a stand-alone client application.

The following example shows a simple JWS file for a Web Service that invokes a reliable
operation from the service described in “Programming Guidelines for the Reliable JWS File” on
page 6-10; see the explanation after the example for coding guidelines that correspond to the Java
code in bold.

package examples.webservices.reliable;
import java.rmi.RemoteException;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic.jws.ServiceClient;
import weblogic. jws_.ReliabilityErrorHandler;

import examples.webservices.reliable_ReliableHelloWorldPortType;

import weblogic.wsee.reliability.ReliabilityErrorContext;
import weblogic.wsee.reliability.ReliableDeliveryException;

@webService(name="ReliableClientPortType",
serviceName=""ReliableClientService')

@WLHttpTransport(contextPath="ReliableClient",
serviceUri="ReliableClient",
portName="ReliableClientServicePort')

public class ReliableClientimpl

{

@ServiceClient(
serviceName="ReliableHelloWorldService",
portName="ReliableHel loWorldServicePort')

private ReliableHelloWorldPortType port;

@WebMethod
public void callHelloWorld(String input, String serviceUrl)
throws RemoteException {

port_helloWorld(input);

Programming Web Services for WebLogic Server 6-15

Advanced JWS Programming: Implementing Asynchronous Features

System.out._printIn(*" Invoked the ReliableHelloWorld._helloWorld operation
reliably.");

}

@ReliabilityErrorHandler(target="port')
public void onReliableMessageDeliveryError(ReliabilityErrorContext ctx) {

ReliableDeliveryException fault = ctx.getFault();
String message = null;
if (fault '= null) {
message = ctx.getFault().getMessage();
}

String operation = ctx.getOperationName();
System.out.printin("'Reliable operation " + operation + ' may have not invoked.
The error message is ' + message);

}

Follow these guidelines when programming the JWS file that invokes a reliable Web Service;
code snippets of the guidelines are shown in bold in the preceding example:

e Import the @ServiceClient and @Rel iabitliyErrorHandler JWS annotations:

import weblogic.jws.ServiceClient;
import weblogic. jws.ReliabilityErrorHandler;

e Import the JAX-RPC stub, created later by the <clientgen> child element of the jwsc
Ant task, of the port type of the reliable Web Service you want to invoke. The stub
package is specified by the packageName attribute of <clientgen>, and the name of the
stub is determined by the WSDL of the invoked Web Service.

import examples.webservices.reliable.ReliableHelloWorldPortType;

e Import the WebLogic APIs that you will use in the method that handles the error that
results when the client Web Service does not receive an acknowledgement of message
receipt from the reliable Web Service:

import weblogic.wsee.reliability.ReliabilityErrorContext;
import weblogic.wsee.reliability.ReliableDeliveryException;

e In the body of the JWS file, use the @ServiceClient JWS annotation to specify the name
and port of the reliable Web Service you want to invoke. You specify this annotation at the
field-level on a private variable, whose data type is the JAX-RPC port type of the Web
Service you are invoking.

@ServiceClient(
serviceName="ReliableHelloWorldService",
portName="ReliableHelloWorldServicePort")

6-16 Programming Web Services for WebLogic Server

Using Web Service Reliable Messaging

private ReliableHelloWorldPortType port;

e Using the stub you annotated with the @ServiceClient annotation, invoke the reliable
operation:

port_helloWorld(input);
Because the operation has been marked one-way, it does not return a value.

e Create a method that handles the error when the client Web Service does not receive an
acknowledgement from the reliable Web Service that the latter has received a message and
annotate this method with the @weblogic. jws.ReliabilityErrorHandler annotation:

@ReliabilityErrorHandler(target="port')
public void onReliableMessageDeliveryError(ReliabilityErrorContext
ctx) {
ReliableDeliveryException fault = ctx.getFault();
String message = null;
if (fault '= null) {
message = ctx.getFault().getMessage();
}

String operation = ctx.getOperationName();
System.out.printIn("'Reliable operation " + operation + " may have not
invoked. The error message is ' + message);

3
This method takes Reliabi lityErrorContext as its single parameter and returns void.

See “weblogic.jws.ReliabilityErrorHandler” on page B-45 for details about programming
this error-handling method.

When programming the client Web Service, be sure you do not:

e Specify any reliable messaging annotations (other than @ReliabilityErrorHandler) or
use any reliable messaging assertions in the associated WS-Policy files.

o Specify the wsdlLocation attribute of the @ServiceClient annotation. This is because
the runtime retrieval of the specified WSDL might not succeed, thus it is better to let
WebLogic Server use a local WSDL file instead.

WsrmUtils Utility Class

WebLogic Server provides a utility class for use with the Web Service Reliable Messaging
feature. Use this class to perform common tasks such as set configuration options, get the
sequence id, and terminate a reliable sequence. Some of these tasks are performed in the reliable
Web Service, some are performed in the Web Service that invokes the reliable Web Service.

See weblogic.wsee.reliability.WsrmUtils for details.

Programming Web Services for WebLogic Server 6-17

Advanced JWS Programming: Implementing Asynchronous Features

6-18

Updating the build.xml File for a Client of a Reliahle Web
Service

To update a bui Id.xml file to generate the JWS file that invokes the operation of a reliable Web
Service, add taskdefs and a bui ld-reliable-client targets that look something like the
following; see the description after the example for details:

<taskdef name="jwsc"
classname=""weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-reliable-client">

<jwsc
enableAsyncService="true"
srcdir="src"
destdir="${client-ear-dir}" >

<jws File="examples/webservices/reliable/ReliableClientimpl.java’">

<clientgen

wsdl="http://${wls._destination._host}:${wls.destination.port}/ReliableHello
World/ReliableHel loWor1d?WSDL"
packageName=""examples.webservices.reliable'/>

</jws>
</jwsc>
</target>
Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client Web Service to include a <clientgen> child
element of the <jws> element so as to generate and compile the JAX-RPC stubs for the deployed
ReliableHel loworld Web Service. The jwsc Ant task automatically packages them in the
generated WAR file so that the client Web Service can immediately access the stubs. You do this
because the ReliableClientImpl JWS file imports and uses one of the generated classes.

Programming Web Services for WebLogic Server

Invoking a Web Service Using Asynchronous Request-Response

Client Considerations When Redeploying a Reliable Weh
Service

WebLogic Server supports production redeployment, which means that you can deploy a new
version of an updated reliable WebLogic Web Service alongside an older version of the same
Web Service.

WebLogic Server automatically manages client connections so that only new client requests are
directed to the new version. Clients already connected to the Web Service during the
redeployment continue to use the older version of the service until they complete their work, at
which point WebLogic Server automatically retires the older Web Service. If the client is
connected to a reliable Web Service, its work is considered complete when the existing reliable
messaging sequence is explicitly ended by the client or because of a time-out.

For additional information about production redployment and Web Service clients, see “Client
Considerations When Redeploying a Web Service” on page 9-21.

Invoking a Web Service Using Asynchronous
Request-Response

When you invoke a Web Service synchronously, the invoking client application waits for the
response to return before it can continue with its work. In cases where the response returns
immediately, this method of invoking the Web Service might be adequate. However, because
request processing can be delayed, it is often useful for the client application to continue its work
and handle the response later on, or in other words, use the asynchronous request-response feature
of WebLogic Web Services.

You invoke a Web Service asynchronously only from a client running in a WebLogic Web
Service, never from a stand alone client application. The invoked Web Service does not change
in any way, thus you can invoke any deployed Web Service (both WebL ogic and non-WebL ogic)
asynchronously as long as the application server that hosts the Web Service supports the
WS-Addressing specification.

When implementing asynchronous request-response in your client, rather than invoking the
operation directly, you invoke an asynchronous flavor of the same operation. (This asynchronous
flavor of the operation is automatically generated by the jwsc Ant task.) For example, rather than
invoking an operation called getQuote directly, you would invoke getQuoteAsync instead.
The asynchronous flavor of the operation always returns void, even if the original operation
returns a value. You then include methods in your client that handle the asynchronous response

Programming Web Services for WebLogic Server 6-19

Advanced JWS Programming: Implementing Asynchronous Features

6-20

or failures when it returns later on. You put any business logic that processes the return value of
the Web Service operation invoke or a potential failure in these methods. You use both naming
conventions and JWS annotations to specify these methods to the JWS compiler. For example, if
the asynchronous operation is called getQuoteAsync, then these methods might be called
onGetQuoteAsyncResponse and onGetQuoteAsyncFai lure.

Note: For information about using asynchronous request-response with other asynchronous
features, such as Web Service reliable messaging or buffering, see “Using the
Asynchronous Features Together” on page 6-57. This section describes how to use the
asynchronous request-response feature on its own.

Note: The asynchronous request-response feature works only with HTTP; you cannot use it
with the HTTPS or JMS transport.

Using Asynchronous Request-Response: Main Steps

The following procedure describes how to create a client Web Service that asynchronously
invokes an operation in a different Web Service. The procedure shows how to create the JWS file
that implements the client Web Service from scratch; if you want to update an existing JWS file,
use this procedure as a guide.

For clarity, it is assumed in the procedure that:
e The client Web Service is called StockQuoteClientService.

e The StockQuoteClientService service is going to invoke the getQuote(String)
operation of the already-deployed StockQuoteService service whose WSDL is found at
the following URL.:

http://1ocalhost:7001/async/StockQuote?WSDL

It is further assumed that you have set up an Ant-based development environment and that you
have a working bui Id.xml file to which you can add targets for running the jwsc Ant task and
deploying the generated service. See Chapter 3, “Common Web Services Use Cases and
Examples,” Chapter 4, “Iterative Development of WebLogic Web Services,” and Chapter 5,
“Programming the JWS File.”

1. Using your favorite IDE or text editor, create a new JWS file, or update an existing one, that
implements the StockQuoteClientService Web Service.

See “Writing the Asynchronous JWS File” on page 6-21.

2. Update your bui Id.xml file to compile the JWS file that implements the
StockQuoteClientService. You will add a <clientgen> child element to the jwsc Ant

Programming Web Services for WebLogic Server

Invoking a Web Service Using Asynchronous Request-Response

task so as to automatically generate the asynchronous flavor of the Web Service operations
you are invoking.

See “Updating the build.xml File When Using Asynchronous Request-Response” on
page 6-26.

3. Run the Ant target to build the StockQuoteClientService:
prompt> ant build-clientService
4. Deploy the StockQuoteClientService Web Service as usual.
See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

When you invoke the StockQuoteClientService Web Service, which in turn invokes the
StockQuoteService Web Service, the second invoke will be asynchronous rather than
synchronous.

Writing the Asynchronous JWS File

The following example shows a simple JWS file that implements a Web Service called
StockQuoteClient that has a single method, asyncOperation, that in turn asynchronously
invokes the getQuote method of the StockQuote service. The Java code in bold is described
“Coding Guidelines for Invoking a Web Service Asynchronously” on page 6-23. See “Example
of a Synchronous Invoke” on page 6-25 to see how the asynchronous invoke differs from a
synchronous invoke of the same operation.

package examples.webservices.async_req_res;
import weblogic. jws_WLHttpTransport;

import weblogic. jws.ServiceClient;
import weblogic. jws.AsyncResponse;
import weblogic. jws.AsyncFailure;

import weblogic.wsee.async.AsyncPreCallContext;
import weblogic.wsee.async.AsyncCal lContextFactory;
import weblogic.wsee.async.AsyncPostCal IContext;

import javax.jws.WebService;
import javax.jws.WebMethod;

import examples.webservices.async_req_res.StockQuotePortType;

import java.rmi.RemoteException;

Programming Web Services for WebLogic Server 6-21

Advanced JWS Programming: Implementing Asynchronous Features

@WebService(name="StockQuoteClientPortType",
serviceName="StockQuoteClientService",
targetNamespace=""http://examples.org/'")

@WLHttpTransport(contextPath="asyncClient",
serviceUri="StockQuoteClient",
portName=""StockQuoteClientServicePort')

/**
* Client Web Service that invokes the StockQuote Service asynchronously.
*/

public class StockQuoteClientimpl {

@ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
serviceName=""StockQuoteService", portName="StockQuote')

private StockQuotePortType port;

@WebMethod
public void asyncOperation (String symbol) throws RemoteException {

AsyncPreCal IContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
apc.setProperty(*'symbol™, symbol);

try {

port.getQuoteAsync(apc, symbol);

System.out.printIn(’"in getQuote method of StockQuoteClient WS™);
} catch (RemoteException re) {

System.out.printIn(''RemoteException thrown');
throw new RuntimeException(re);

}

@AsyncResponse(target="port", operation="'getQuote')
public void onGetQuoteAsyncResponse(AsyncPostCalIContext apc, int quote) {

System.out._printIn("'-----—————————————— ");
System.out.printin(*'Got quote " + quote);
System.out._printIn("--———----————-————— ™);

}

@AsyncFai lure(target="port", operation="‘getQuote')
public void onGetQuoteAsyncFalIure(AsyncPostCalIContext apc, Throwable e) {

System.out.printIn("--———----————————— ;s
e.printStackTrace();
System.out.printin(""-—---————————————— ");

}

6-22 Programming Web Services for WebLogic Server

Invoking a Web Service Using Asynchronous Request-Response

Coding Guidelines for Invoking a Web Service Asynchronously

The following guidelines for invoking an operation asynchronously correspond to the Java code
shown in bold in the example described in “Writing the Asynchronous JWS File” on page 6-21.
These guidelines are in addition to the standard ones for creating JWS files. See “Example of a
Synchronous Invoke” on page 6-25 to see how the asynchronous invoke differs from a
synchronous invoke of the same operation.

To invoke an operation asynchronously in your JWS file:

e Import the following WebLogic-specific JWS annotations related to the asynchronous
request-response feature:

import weblogic.jws.ServiceClient;
import weblogic. jws.AsyncResponse;
import weblogic.jws.AsyncFailure;

e Import the JAX-RPC stub, created later by the jwsc Ant task, of the port type of the Web
Service you want to invoke. The stub package is specified by the packageName attribute of
the <clientgen> child element of jwsc, and the name of the stub is determined by the
WSDL of the invoked Web Service.

import examples.webservices.async_req_res.StockQuotePortType;

e Import the asynchronous pre- and post-call context WebLogic APIs:

import weblogic.wsee.async.AsyncCal lIContextFactory;
import weblogic.wsee.async.AsyncPreCallContext;
import weblogic.wsee.async.AsyncPostCal IContext;

The AsyncPreCal IContext and AsyncPostCal IContext APIs describe asynchronous
contexts that you can use for a variety of reasons in your Web Service: to set a property in
the pre-context so that the method that handles the asynchronous response can distinguish
between different asynchronous calls; to set and get contextual variables, such as the name
of the user invoking the operation, their password, and so on; to get the name of the
JAX-RPC stub that invoked a method asynchronously; and to set a time-out interval on the
context.

See Javadocs for additional reference information about these APIs.

e In the body of the JWS file, use the required @ServiceClient JWS annotation to specify
the WSDL, name, and port of the Web Service you will be invoking asynchronously. You
specify this annotation at the field-level on a variable, whose data type is the JAX-RPC
port type of the Web Service you are invoking.

@ServiceClient(
wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",

Programming Web Services for WebLogic Server 6-23

Advanced JWS Programming: Implementing Asynchronous Features

6-24

serviceName=""StockQuoteService",
portName=""StockQuote')

private StockQuotePortType port;

When you annotate a variable (in this case, port) with the @ServiceClient annotation,
the Web Services runtime automatically initializes and instantiates the variable, preparing
it so that it can be used to invoke another Web Service asynchronously.

In the method of the JWS file which is going to invoke the getQuote operation
asynchronously, get a pre-call asynchronous context using the context factory:

AsyncPreCal lContext apc =
AsyncCal lContextFactory.getAsyncPreCallContext();

Use the setProperty method of the pre-call context to create a property whose name and
value is the same as the parameter to the getQuote method:

apc.setProperty(*'symbol*, symbol);

Using the stub you annotated with the @ServiceClient annotation, invoke the operation
(in this case, getQuote). Instead of invoking it directly, however, invoke the asynchronous
flavor of the operation, which has Async added on to the end of its name. The
asynchronous flavor always returns void. Pass the asynchronous context as the first
parameter:

port._getQuoteAsync(apc, symbol);

For each operation you will be invoking asynchronously, create a method called
onOperationnameAsyncResponse, where Operationname refers to the name of the
operation, with initial letter always capitalized. The method must return void, and have
two parameters: the post-call asynchronous context and the return value of the operation
you are invoking. Annotate the method with the @AsyncResponse JWS annotation; use the
target attribute to specify the variable whose datatype is the JAX-RPC stub and the
operation attribute to specify the name of the operation you are invoking

asynchronously. Inside the body of the method, put the business logic that processes the
value returned by the operation.

@AsyncResponse(target="port", operation="getQuote')
public void onGetQuoteAsyncResponse(AsyncPostCallContext apc,
int quote) {

System.out._printIn(*"-----—————————————— ");
System.out.printin(*'Got quote " + quote);
System.out._printIn("--———----——-—————— ;s

}

For each operation you will be invoking asynchronously, create a method called
onOperationnameAsyncFai lure, where Operationname refers to the name of the

Programming Web Services for WebLogic Server

Invoking a Web Service Using Asynchronous Request-Response

operation, with initial letter capitalized. The method must return void, and have two
parameters: the post-call asynchronous context and a Throwable object, the superclass of
all exceptions to handle any type of exception thrown by the invoked operation. Annotate
the method with the @AsyncFai lure JWS annotation; use the target attribute to specify
the variable whose datatype is the JAX-RPC stub and the operation attribute to specify
the name of the operation you are invoking asynchronously. Inside the method, you can
determine the exact nature of the exception and write appropriate Java code.

@AsyncFai lure(target="port", operation="‘getQuote')
public void onGetQuoteAsyncFailure(AsyncPostCallContext apc,
Throwable e) {

System.out._printIn(""-----—————————————— ");
e.printStackTrace();
System.out.printIhn("--————-—----—----———— ;s

}

Note: You are not required to use the @AsyncResponse and @AsyncFai lure annotations,
although it is a good practice because it clears up any ambiguity and makes your JWS file
clean and understandable. However, in the rare use case where you want one of the
onXXX methods to handle the asynchronous response or failure from two (or more) stubs
that are invoking operations from two different Web Services that have the same name,
then you should explicitly NOT use these annotations. Be sure that the name of the onXxX
methods follow the correct naming conventions exactly, as described above.

Example of a Synchronous Invoke

The following example shows a JWS file that invokes the getQuote operation of the
StockQuote Web Service synchronously. The example is shown only so you can compare it
with the corresponding asynchronous invoke shown in “Writing the Asynchronous JWS File” on
page 6-21.

package examples._webservices.async_req_res;

import weblogic. jws_WLHttpTransport;
import weblogic. jws.ServiceClient;

import javax.jws.WebService;
import javax.jws.WebMethod;

import java.rmi.RemoteException;

@WebService(name="SyncClientPortType",
serviceName="SyncClientService",
targetNamespace=""http://examples.org/'")

Programming Web Services for WebLogic Server 6-25

Advanced JWS Programming: Implementing Asynchronous Features

@WLHttpTransport(contextPath="syncClient",
serviceUri="SyncClient",
portName="SyncClientPort')

/**
* Normal service-to-service client that invokes StockQuote service
* synchronously.
*/

public class SyncClientimpl {

@ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
serviceName=""StockQuoteService', portName="StockQuote')
private StockQuotePortType port;

@WebMethod
public void nonAsyncOperation(String symbol) throws RemoteException {

int quote = port.getQuote(symbol);

System.out.printIhn("'--—————---—-—---————— ;s
System.out.printIn(*'Got quote " + quote);
System.out.printin(*"-—--—————————————— ");
}
}

Updating the build.xml File When Using Asynchronous
Request-Response

To update a bui Id.xml file to generate the JWS file that invokes a Web Service operation
asynchronously, add taskdefs and a bui ld-clientService target that looks something like
the following; see the description after the example for details:

<taskdef name="jwsc"
classname=""weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService">

<jwsc
enableAsyncService="true"
srcdir="src"
destdir="${clientService-ear-dir}" >
<jws
file="examples/webservices/async_req_res/StockQuoteClientilmpl.java" >

6-26 Programming Web Services for WebLogic Server

Using Callbacks to Notify Clients of Events

<clientgen
wsdl="http://${wls._hostname}:${wls.port}/async/StockQuote?WSDL"
packageName=""examples.webservices.async_req_res"/>

</jws>
</jwsc>
</target>
Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client Web Service to include a <clientgen> child
element of the <jws> element so as to generate and compile the JAX-RPC stubs for the deployed
StockQuote Web Service. The jwsc Ant task automatically packages them in the generated
WAR file so that the client Web Service can immediately access the stubs. By default, the jwsc
Ant task in this case generates both synchronous and asynchronous flavors of the Web Service
operations in the JAX-RPC stubs. You do this because the StockQuoteClientImpl JWS file
imports and uses one of the generated classes.

Disabling The Internal Asynchronous Service

By default, every WebL ogic Server instance deploys an internal asynchronous Web Service that
handes the asynchronous request-response feature. To specify that you do not want to deploy this
internal service, start the WebLogic Server instance using the
-Dweblogic.wsee.skip.async.response=true Java system property.

One reason for disabling the asynchronous service is if you use a WebLogic Server instance as a
Web proxy to a WebLogic cluster. In this case, asynchronous messages will never get to the
cluster, as required, because the asynchronous service on the proxy server consumes them
instead. For this reason, you must disable the asynchronous service on the proxy server using the
system property.

For details on specifying Java system properties to configure WebLogic Server, see Specifying
Java Options for a WebLogic Server Instance.

Using Callbacks to Notify Clients of Events

Callbacks notify a client of your Web Service that some event has occurred. For example, you
can notify a client when the results of that client's request are ready, or when the client’s request
cannot be fulfilled.

Programming Web Services for WebLogic Server 6-27

Advanced JWS Programming: Implementing Asynchronous Features

6-28

When you expose method as a standard public operation in your JWS file (by using the
@webMethod annotation), the client sends a SOAP message to the Web Service to invoke the
operation. When you add a callback to a Web Service, however, you define a message that the
Web Service sends back to the client Web Service, notifying the client of an event that has
occurred. So exposing a method as a public operation and defining a callback are completely
symmetrical processes, with opposite recipients.

WebLogic Server automatically routes the SOAP message from client invoke to the target Web
Service. In order to receive callbacks, however, the client must be operating in an environment
that provides the same services. This typically means the client is a Web Service running on a
Web server. If the client does not meet these requirements, it is likely not capable of receiving
callbacks from your Web Service.

The protocol and message format used for callbacks is always the same as the protocol and
message format used by the conversation start method that initiated the current conversation. If
you attempt to override the protocol or message format of a callback, an error is thrown.

Callback Implementation Overview and Terminology

To implement callbacks, you must create or update the following three Java files:

e Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically generates an
implementation of the interface. The implementation simply passes a message from the
target Web Service back to the client Web Service. The generated Web Service is deployed
to the same WebLogic Server that hosts the client Web Service.

In the example in this section, the callback interface is called Cal IbackInterface. The
interface defines a single callback method called cal IbackOperation().

e JWS file that implements the target Web Service: The target Web Service includes one
or more standard operations that invoke a method defined in the callback interface; this
method in turn sends a message back to the client Web Service that originally invoked the
operation of the target Web Service.

In the example, this Web Service is called TargetService and it defines a single standard
method called targetOperation().

o JWS file that implements the client Web Service: The client Web Service invokes an
operation of the target Web Service. This Web Service includes one or more methods that
specify what the client should do when it receives a callback message back from the target
Web Service via a callback method.

Programming Web Services for WebLogic Server

Using Callbacks to Notify Clients of Events

In the example, this Web Service is called Cal IbackClient and the method that is
automatically invoked when it receives a callback is called cal IbackHandler(). The
method that invokes TargetService in the standard way is called clientOperation().

The following graphic shows the flow of messages:

CallbackClient

\
TargetService
clientOperation() : @
I

targetOperation()

callbackHandler()

I

I

I

[I
CallbacklInterface @| @ I
callbackOperation() | : :
I I

WebLogic Server | WebLogic Server
Instance 1 / \ Instance 2)

— — — — — — — — —

1. The clientOperation() method of the Cal IbackClient Web Service, running in one
WebLogic Server instance, explicitly invokes the targetOperation() operation of the
TargetService. The TargetService service might be running in a separate WebLogic
Server instance.

2. The implementation of the TargetService.targetOperation() method explicitly
invokes the cal lbackOperation() operation of the Cal IbackInterface, which
implements the callback service. The callback service is deployed to the WebLogic Server
which hosts the client Web Service.

3. The jwsc-generated implementation of the Cal IbackInterface.cal IbackOperation()
method simply sends a message back to the Cal IbackClient Web Service. The client Web
Service includes a method cal IbackHandler () that handles this message.

Programming Callbacks: Main Steps

The procedure in this section describes how to program and compile the three JWS files that are
required to implement callbacks: the target Web Service, the client Web Service, and the callback
interface. The procedure shows how to create the JWS files from scratch; if you want to update
existing JWS files, you can also use this procedure as a guide.

Programming Web Services for WebLogic Server 6-29

Advanced JWS Programming: Implementing Asynchronous Features

6-30

It is assumed that you have set up an Ant-based development environment and that you have a
working bui Id.xml file to which you can add targets for running the jwsc Ant task and
deploying the Web Services. For more information, see Chapter 3, “Common Web Services Use
Cases and Examples,” Chapter 4, “Iterative Development of WebLogic Web Services,” and
Chapter 5, “Programming the JWS File.”

1.

Using your favorite IDE, create a new JWS file, or update an existing one, that implements
the target Web Service.

See “Programming Guidelines for Target Web Service” on page 6-31.

Note: The JWS file that implements the target Web Service invokes one or more callback
methods of the callback interface. However, the step that describes how to program
the callback interface comes later in this procedure. For this reason, programmers
typically program the three JWS files at the same time, rather than linearly as implied
by this procedure. The steps are listed in this order for clarity only.

Update your bui Id.xml file to include a call to the jwsc Ant task to compile the target JWS
file into a Web Service.

See “Running the jwsc WebLogic Web Services Ant Task” on page 4-7.
Run the Ant target to build the target Web Service. For example:

prompt> ant build-mainService

Deploy the target Web Service as usual.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

Using your favorite IDE or text editor, create a new JWS file, or update an existing one, that
implements the client Web Service. It is assumed that the client Web Service is deployed to
a different WebL ogic Server instance from the one that hosts the target Web Service.

See “Programming Guidelines for the Callback Client Web Service” on page 6-32.
Create the callback JWS interface that implements the callback Web Service.

See “Programming Guidelines for the Callback Interface” on page 6-35.

Update the bui Id.xml file that builds the client Web Service. The jwsc Ant task that builds
the client Web Service also implicitly generates the callback Web Service from the callback
interface file.

See “Updating the build.xml File for the Client Web Service” on page 6-36.

Run the Ant target to build the client and callback Web Services.

Programming Web Services for WebLogic Server

Using Callbacks to Notify Clients of Events

prompt> ant build-clientService

9. Deploy the client Web Service as usual. Because the callback service is packaged in the same
EAR file as the client Web Service, it will also be deployed at the same time.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

Programming Guidelines for Target Web Service

The following example shows a simple JWS file that implements the target Web Service; see the
explanation after the example for coding guidelines that correspond to the Java code in bold.

package examples.webservices.callback;

import weblogic. jws.WLHttpTransport;
import weblogic. jws.Callback;

import javax.jws.WebService;
import javax.jws.WebMethod;

@webService(name=""Cal lbackPortType",
serviceName=""TargetService",
targetNamespace="http://examples.org/'")

@WLHttpTransport(contextPath="cal lback",
serviceUri="TargetService",
portName="TargetServicePort')

/**
* callback service
*/
public class TargetServicelmpl {

@Cal lback
CallbacklInterface callback;

@WebMethod
public void targetOperation (String message) {

cal lback.callbackOperation (message);

Follow these guidelines when programming the JWS file that implements the target Web Service.
Code snippets of the guidelines are shown in bold in the preceding example.

e Import the required JWS annotations:

Programming Web Services for WebLogic Server 6-31

Advanced JWS Programming: Implementing Asynchronous Features

import weblogic. jws.Callback;

Use the @weblogic. jws.Cal Iback JWS annotation to specify that a variable is a
callback, which means that you can use the annotated variable to send callback events back
to a client Web Service that invokes an operation of the TargetService Web Service.

The data type of the variable is the callback interface, which in this case is called
CallbacklInterface.

@Cal lback
Callbacklnterface callback;

In a method that implements an operation of the TargetService, use the annotated
variable to invoke one of the callback methods of the callback interface, which in this case
is called cal lbackOperation():

callback.callbackOperation (message);

See Appendix B, “JWS Annotation Reference,” for additional information about the JWS
annotations discussed in this section.

Programming Guidelines for the Callback Client Weh
Service

The following example shows a simple JWS file for a client Web Service that invokes the target
Web Service described in “Programming Guidelines for Target Web Service” on page 6-31; see
the explanation after the example for coding guidelines that correspond to the Java code in bold.

package examples.webservices.callback;

import
import
import
import
import

import
import

import

import

weblogic. jws._WLHttpTransport;
weblogic.jws.ServiceClient;

weblogic. jws.CallbackMethod;

weblogic. jws.security.CallbackRolesAllowed;
weblogic. jws.security.SecurityRole;

Javax. jws._WebService;
Javax. jws.WebMethod;

examples.webservices.callback.Cal lbackPortType;

Jjava.rmi.RemoteException;

@WebService(name="Cal lbackClientPortType",

6-32

serviceName="Cal lbackClientService",
targetNamespace="http://examples.org/'")

Programming Web Services for WebLogic Server

Using Callbacks to Notify Clients of Events

@WLHttpTransport(contextPath=""cal lbackClient",
serviceUri="CallbackClient",
portName=""Cal IbackClientPort')

public class CallbackClientimpl {

@ServiceClient(
wsdlLocation=""http://localhost:7001/callback/TargetService?WSDL",
serviceName=""TargetService",
portName=""TargetServicePort')

@CallbackRolesAllowed(@SecurityRole(role="mgr", mapToPrincipals="joe™))

private CallbackPortType port;

@WebMethod
public void clientOperation (String message) {

try {

port._targetOperation(message);

}

catch (RemoteException e) {
e.printStackTrace();

}

@Cal IbackMethod(target="port", operation="callbackOperation')

@CallbackRolesAllowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell'))

public void callbackHandler(String msg) {

System.out.printin (msg);

Follow these guidelines when programming the JWS file that invokes the target Web Service;
code snippets of the guidelines are shown in bold in the preceding example:
e Import the required JWS annotations:

import weblogic. jws.ServiceClient;
import weblogic.jws.CallbackMethod;

e Optionally import the security-related annotations if you want to specify the roles that are
allowed to invoke the callback methods:

import weblogic.jws.security.CallbackRolesAllowed;
import weblogic. jws.security.SecurityRole;

e Import the JAX-RPC stub of the port type of the target Web Service you want to invoke.
The actual stub itself will be created later by the jwsc Ant task. The stub package is

Programming Web Services for WebLogic Server 6-33

Advanced JWS Programming: Implementing Asynchronous Features

6-34

specified by the packageName attribute of the <clientgen> child element of <jws>, and
the name of the stub is determined by the WSDL of the invoked Web Service.

import examples.webservices.callback.CallbackPortType;

In the body of the JWS file, use the @ServiceClient JWS annotation to specify the
WSDL, name, and port of the target Web Service you want to invoke. You specify this
annotation at the field-level on a private variable, whose data type is the JAX-RPC port
type of the Web Service you are invoking.

@ServiceClient(
wsdlLocation="http://localhost:7001/callback/TargetService?WSDL",
serviceName=""TargetService",
portName=""TargetServicePort')

@Cal IbackRolesAl lowed(@SecurityRole(role="mgr",

mapToPrincipals="joe))

private CallbackPortType port;

The preceding code also shows how to use the optional @Cal IbackRolesAl lowed
annotation to specify the list of @SecurityRoles that are allowed to invoke the callback
methods.

Using the variable you annotated with the @ServiceClient annotation, invoke an
operation of the target Web Service. This operation in turn will invoke a callback method
of the callback interface:

port.targetOperation(message);

Create a method that will handle the callback message received from the callback service.
You can name this method anything you want. However, its signature should exactly
match the signature of the corresponding method in the callback interface.

Annotate the method with the @Cal 1backMethod annotation to specify that this method
handles callback messages. Use the target attribute to specify the name of the JAX-RPC
port for which you want to receive callbacks (in other words, the variable you previously
annotated with @ServiceClient). Use the operation attribute to specify the name of the
callback method in the callback interface from which this method will handle callback
messages.

@CallbackMethod(target=""port', operation="callbackOperation')
@Cal IbackRolesAl lowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell™))
public void callbackHandler(String msg) {
System.out.printin (msg);
}

Programming Web Services for WebLogic Server

Using Callbacks to Notify Clients of Events

The preceding code also shows how to use the optional @Cal IbackRolesAl lowed
annotation to further restrict the security roles that are allowed to invoke this particular
callback method.

See Appendix B, “JWS Annotation Reference,” for additional information about the JWS
annotations discussed in this section.

Programming Guidelines for the Callback Interface

The callback interface is also a JWS file that implements a Web Service, except for one big
difference: instead of using the standard @javax- jws_WebService annotation to specify that it
is a standard Web Service, you use the WebLogic-specific @weblogic. jws.Cal IbackService
to specify that it is a callback service. The attributes of @Cal IbackService are a restricted subset
of the attributes of @WebService.

Follow these restrictions on the allowed data types and JWS annotations when programming the
JWS file that implements a callback service:

e You cannot use any WebL ogic-specific JWS annotations other than
@weblogic.jws.CallbackService.

e You can use all standard JWS annotations except for the following:
— javax.jws.HandlerChain
— jJjavax. jws.soap.SOAPMessageHandler

— jJavax.jws.soap.SOAPMessageHandlers

e You can use all supported data types as parameters or return values except Holder classes
(user-defined data types that implement the javax.xml . rpc.holders.Holder interface).

The following example shows a simple callback interface file that implements a callback Web
Service. The target Web Service, described in “Programming Guidelines for Target Web
Service” on page 6-31, explicitly invokes a method in this interface. The jwsc-generated
implementation of the callback interface then automatically sends a message back to the client
Web Service that originally invoked the target Web Service; the client service is described in
“Programming Guidelines for the Callback Client Web Service” on page 6-32. See the
explanation after the example for coding guidelines that correspond to the Java code in bold.

package examples._webservices.callback;

import weblogic. jws.CallbackService;

import javax.jws.Oneway;
import javax.jws.WebMethod;

Programming Web Services for WebLogic Server 6-35

Advanced JWS Programming: Implementing Asynchronous Features

@Cal lbackService
public interface Callbacklnterface {

@WebMethod
@0neway
public void callbackOperation (String msg);

Follow these guidelines when programming the JWS interface file that implements the callback
Web Service. Code snippets of the guidelines are shown in bold in the preceding example.
e Import the required JWS annotation:
import weblogic.jws.CallbackService;

e Annotate the interface declaration with the @Cal 1backService annotation to specify that
the JWS file implements a callback service:

@CallbackService
public interface Callbacklnterface {

e Create a method that the target Web Service explicitly invokes; this is the method that
automatically sends a message back to the client service that originally invoked the target
Web Service. Because this is a Java interface file, you do not provide an implementation of
this method. Rather, the WebLogic Web Services runtime generates an implementation of
the method via the jwsc Ant task.

public void callbackOperation (String msg);

Note: Although the example shows the callback method returning void and annotated with
the @Oneway annotation, this is not a requirement.

See Appendix B, “JWS Annotation Reference,” for additional information about the JWS
annotations discussed in this section.

Updating the build.xml File for the Client Web Service

When you run the jwsc Ant task against the JWS file that implements the client Web Service, the
task implicitly also generates the callback Web Service, as described in this section.

You update a bui ld.xml file to generate a client Web Service that invokes the target Web
Service by adding taskdefs and a bui ld-clientService target that looks something like the
following example. See the description after the example for details.

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

6-36 Programming Web Services for WebLogic Server

Creating Conversational Web Services

<target name="build-clientService'">
<jwsc
srcdir="src"
destdir="${clientService-ear-dir}" >
<jws File=""examples/webservices/callback/CallbackClientImpl_java" >

<clientgen

wsdl="http://${wls_hostname}:${wls.port}/cal lback/TargetService?WSDL"
packageName=""examples.webservices.callback"
serviceName=""TargetService" />

</jws>
</jwsc>
</target>
Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client Web Service to include a <clientgen> child
element of the <jws> element so as to generate and compile the JAX-RPC stubs for the deployed
TargetService Web Service. The jwsc Ant task automatically packages them in the generated
WAR file so that the client Web Service can immediately access the stubs. You do this because
the CallbackClientImpl JWS file imports and uses one of the generated classes.

Because the WSDL of the target Web Service includes an additional <service> element that
describes the callback Web Service (which the target Web Service invokes), the <clientgen>
child element of the jwsc Ant task also generates and compiles the callback Web Service and
packages it in the same EAR file as the client Web Service.

Creating Conversational Web Services

A Web Service and the client application that invokes it may communicate multiple times to
complete a single task. Also, multiple client applications might communicate with the same Web
Service at the same time. Conversations provide a straightforward way to keep track of data
between calls and to ensure that the Web Service always responds to the correct client.

Conversations meet two challenges inherent in persisting data across multiple communications:

e Conversations uniquely identify a two-way communication between one client application
and one Web Service so that messages are always returned to the correct client. For

Programming Web Services for WebLogic Server 6-37

Advanced JWS Programming: Implementing Asynchronous Features

6-38

example, in a shopping cart application, a conversational Web Service keeps track of
which shopping cart belongs to which customer. A conversational Web Service
implements this by creating a unique conversation ID each time a new conversation is
started with a client application.

e Conversations maintain state between calls to the Web Service; that is, they keep track of
the data associated with a particular client application between its calls to the service.
Conversations ensure that the data associated with a particular client is saved until it is no
longer needed or the operation is complete. For example, in a shopping cart application, a
conversational Web Service remembers which items are in the shopping cart while the
customer continues shopping. Maintaining state is also needed to handle failure of the
computer hosting the Web Service in the middle of a conversation; all state-related data is
persisted to disk so that when the computer comes up it can continue the conversation with
the client application.

WebLogic Server manages this unique ID and state by creating a conversation context each time
a client application initiates a new conversation. The Web Service then uses the context to
correlate calls to and from the service and to persist its state-related data.

Conversations between a client application and a Web Service have three distinct phases:

e Start—A client application initiates a conversation by invoking the start operation of the
conversational Web Service. The Web Service in turn creates a new conversation context
and an accompanying unique ID, and starts an internal timer to measure the idle time and
the age of the conversation.

e Continue—After the client application has started the conversation, it invokes one or more
continue operations to continue the conversation. The conversational Web Service uses the
ID associated with the invoke to determine which client application it is conversing with,
what state to persist, and which idle timer to reset. A typical continue operation would be
one that requests more information from the client application, requests status, and so on.

e Finish—A client application explicitly invokes the finish operation when it has finished its
conversation; the Web Service then marks any data or resources associated with the
conversation as deleted.

Conversations typically occur between two WebLogic Web Services: one is marked
conversational and defines the start, continue, and finish operations and the other Web Service
uses the @ServiceClient annotation to specify that it is a client of the conversational Web
Service. You can also invoke a conversational Web Service from a stand-alone Java client,
although there are restrictions.

As with other WebLogic Web Service features, you use JWS annotations to specify that a Web
Service is conversational.

Programming Web Services for WebLogic Server

Creating Conversational Web Services

WARNING: The client Web Service that invokes a conversational Web Service is not required
to also be conversational. However, if the client is not conversational, there is a
danger of multiple instances of this client accessing the same conversational Web
Service stub and possibly corrupting the saved conversational state. If you believe
this might true in your case, then specify that the client Web Service also be
conversational. In this case you cannot use a stand-alone Java client, because
there is no way to mark it as conversational using the WebLogic APIs.

Caution: A conversational Web Service on its own does not guarantee message delivery or that
the messages are delivered in order, exactly once. If you require this kind of message
delivery guarantee, you must also specify that the Web Service be reliable. See
“Using Web Service Reliable Messaging” on page 6-1 and “Using the Asynchronous
Features Together” on page 6-57.

Creating a Conversational Weh Service: Main Steps

The following procedure describes how to create a conversational Web Service, as well as a client
Web Service and stand-alone Java client application, both of which initiate and conduct a
conversation. The procedure shows how to create the JWS files that implement the two Web
Services from scratch. If you want to update existing JWS files, you can also use this procedure
as a guide.

It is assumed that you have set up an Ant-based development environment and that you have a
working bui Id_xml file to which you can add targets for running the jwsc Ant task and
deploying the generated conversational Web Service. It is further assumed that you have a similar
setup for the WebLogic Server instance that hosts the client Web Service that initiates the
conversation. For more information, see Chapter 3, “Common Web Services Use Cases and
Examples,” Chapter 4, “Iterative Development of WebLogic Web Services,” and Chapter 5,
“Programming the JWS File.”.

1. Using your favorite IDE or text editor, create a new JWS file, or update an existing one, that
implements the conversational Web Service.

See “Programming Guidelines for the Conversational JWS File” on page 6-40.

2. Update your bui Id.xml file to include a call to the jwsc Ant task to compile the
conversational JWS file into a Web Service.

See “Running the jwsc WebLogic Web Services Ant Task” on page 4-7.

3. Run the Ant target to build the conversational Web Service. For example:

prompt> ant build-mainService

Programming Web Services for WebLogic Server 6-39

Advanced JWS Programming: Implementing Asynchronous Features

4,

5.

Deploy the Web Service as usual.
See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

If the client application is a stand-alone Java client, see “Updating a Stand-Alone Java Client
to Invoke a Conversational Web Service” on page 6-48. If the client application is itself a Web
Service, follow these steps:

a. Using your favorite IDE or text editor, create a new JWS file, or update an existing one,
that implements the client Web Service that initiates and conducts the conversation with
the conversational Web Service. It is assumed that the client Web Service is deployed to
a different WebL ogic Server instance from the one that hosts the conversational Web
Service.

See “Programming Guidelines for the JWS File That Invokes a Conversational Web
Service” on page 6-44.

b. Update the build.xml file that builds the client Web Service.

See “Updating the build.xml File for a Client of a Conversational Web Service” on
page 6-47.

c. Run the Ant target to build the client Web Service:
prompt> ant build-clientService
d. Deploy the Web Service as usual.
See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

Programming Guidelines for the Conversational JWS File

The following example shows a simple JWS file that implements a conversational Web Service;
see the explanation after the example for coding guidelines that correspond to the Java code in
bold.

package examples.webservices.conversation;

import

import
import
import
import

import
import

6-40

Jjava.io.Serializable;

weblogic. jws._WLHttpTransport;
weblogic. jws.Conversation;
weblogic. jws.Conversational ;
weblogic. jws.Context;

weblogic.wsee. jws.JwsContext;
weblogic.wsee. jws.ServiceHandle;

Programming Web Services for WebLogic Server

Creating Conversational Web Services

import javax.jws.WebService;
import javax.jws.WebMethod;

@Conversational (maxldleTime="10 minutes",
maxAge=""1 day",
runAsStartUser=false,
singlePrincipal=false)

@webService(name=""ConversationalPortType",
serviceName="ConversationalService",
targetNamespace="http://examples.org/'")

@WLHttpTransport(contextPath="conv",
serviceUri="ConversationalService",
portName=""ConversationalServicePort")

/**
* Conversational Web Service.
*/

public class ConversationalServicelmpl implements Serializable {

@Context
private JwsContext ctx;
public String status = "undefined";

@WebMethod
@Conversation (Conversation.Phase.START)
public String start() {

ServiceHandle handle = ctx.getService();
String convlD = handle.getConversationiD();

status = "'start'';
return ''Starting conversation, with ID " + convID + " and status equal to "
+ status;

}

@WebMethod
@Conversation (Conversation.Phase.CONTINUE)
public String middle(String message) {

status = "middle";
return "Middle of conversation; the message is: " + message + " and status
is " + status;

}

@WebMethod
@Conversation (Conversation.Phase.FINISH)
public String finish(String message) {

Programming Web Services for WebLogic Server 6-41

Advanced JWS Programming: Implementing Asynchronous Features

status = "finish";
return "End of conversation; the message is: " + message + ' and status is
" + status;
3
3
Follow these guidelines when programming the JWS file that implements a conversational Web
Service. Code snippets of the guidelines are shown in bold in the preceding example.
e Conversational Web Services must implement java.io.Serializable, so you must first
import the class into your JWS file:
import java.io.Serializable;
Import the conversational JWS annotations:
import weblogic. jws.Conversation;
import weblogic. jws.Conversational;
If you want to access runtime information about the conversational Web Service, import
the @Context annotation and context APIs:
import weblogic. jws.Context;
import weblogic.wsee. jws.JwsContext;
import weblogic.wsee.jws.ServiceHandle;
See “Accessing Runtime Information about a Web Service Using the JwsContext” on
page 5-11 for more information about the runtime Web Service context.
Use the class-level @Conversational annotation to specify that the Web Service is
conversational. Although this annotation is optional (assuming you are specifying the
@Conversation method-level annotation), it is a best practice to always use it in your
JWS file to clearly specify that your Web Service is conversational.
Specify any of the following optional attributes: maxldleTime is the maximum amount of
time that the Web Service can be idle before WebLogic Server finishes the conversation;
maxAge is the maximum age of the conversation; runAsStartUser indicates whether the
continue and finish phases of an existing conversation are run as the user who started the
conversation; and singlePrincipal indicates whether users other than the one who
started a conversation are allowed to execute the continue and finish phases of the
conversation.
@Conversational (maxidleTime="10 minutes",
maxAge=""1 day",
runAsStartUser=false,
singlePrincipal=false)
6-42 Programming Web Services for WebLogic Server

Creating Conversational Web Services

If a JWS file includes the @Conversational annotation, all operations of the Web Service
are conversational. The default phase of an operation, if it does not have an explicit
@Conversation annotation, is continue. However, because a conversational Web Service
is required to include at least one start and one finish operation, you must use the
method-level @Conversation annotation to specify which methods implement these
operations.

See “weblogic.jws.Conversational” on page B-35 for additional information and default
values for the attributes.

Your JWS file must implement java.io.Serializable:

public class ConversationalServicelmpl implements Serializable {

To access runtime information about the Web Service, annotate a private class variable, of
data type weblogic.wsee . jws.JwsContext, with the field-level @Context JWS
annotation:

@Context
private JwsContext ctx;

Use the @Conversation annotation to specify the methods that implement the start,
continue, and finish phases of your conversation. A conversation is required to have at
least one start and one finish operation; the continue operation is optional. Use the
following parameters to the annotation to specify the phase:
Conversation.Phase.START, Conversation.Phase.CONTINUE, or
Conversation.Phase.FINISH. The following example shows how to specify the start
operation:

@WebMethod
@Conversation (Conversation.Phase.START)
public String start() {...

If you mark just one method of the JWS file with the @Conversation annotation, then the
entire Web Service becomes conversational and each operation is considered part of the
conversation; this is true even if you have not used the optional class-level
@Conversational annotation in your JWS file. Any methods not explicitly annotated with
@Conversation are, by default, continue operations. This means that, for example, if a
client application invokes one of these continue methods without having previously
invoked a start operation, the Web Service returns a runtime error.

Finally, if you plan to invoke the conversational Web Service from a stand-alone Java
client, the start operation is required to be request-response, or in other words, it cannot be
annotated with the @0neway JWS annotation. The operation can return void. If you are
going to invoke the Web Service only from client applications that run in WebLogic
Server, then this requirement does not apply.

Programming Web Services for WebLogic Server 6-43

Advanced JWS Programming: Implementing Asynchronous Features

See “weblogic.jws.Conversation” on page B-33 for additional information.

e Use the JwsContext instance to get runtime information about the Web Service.

For example, the following code in the start operation gets the 1D that WebLogic Server
assigns to the new conversation:

ServiceHandle handle = ctx.getService();
String convlD = handle.getConversationlD();

See “Accessing Runtime Information about a Web Service Using the JwsContext” on
page 5-11 for detailed information on using the context-related APIs.

Programming Guidelines for the JWS File That Invokes a
Conversational Web Service

The following example shows a simple JWS file for a Web Service that invokes the
conversational Web Service described in “Programming Guidelines for the Conversational JWS
File” on page 6-40; see the explanation after the example for coding guidelines that correspond
to the Java code in bold.

package examples.webservices.conversation;

import weblogic. jws.WLHttpTransport;
import weblogic.jws.ServiceClient;

import weblogic.wsee.conversation.ConversationUtils;

import javax.jws.WebService;
import javax.jws.WebMethod;

import javax.xml._rpc.Stub;
import examples.webservices.conversation.ConversationalPortType;
import java.rmi.RemoteException;

@WebService(name="ConversationalClientPortType",
serviceName="ConversationalClientService",
targetNamespace=""http://examples.org/'")

@WLHttpTransport(contextPath="convClient",
serviceUri="ConversationalClient",
portName=""ConversationalClientPort')

/**

* client that has a conversation with the ConversationalService.
*/

6-44 Programming Web Services for WebLogic Server

Creating Conversational Web Services

public class ConversationalClientimpl {

@ServiceClient(
wsdlLocation="http://localhost:7001/conv/ConversationalService?WSDL",
serviceName=""ConversationalService",
portName=""ConversationalServicePort")

private ConversationalPortType port;

@WebMethod
public void runConversation(String message) {

try {

// Invoke start operation

String result = port.start();
System.out._printin(‘'start method executed.');
System.out.printIn(''The message is: " + result);

// Invoke continue operation

result = port.middle(message);
System.out.printin("middle method executed.');
System.out.printIn(''The message is: " + result);

// Invoke finish operation

result = port_finish(message);
System.out.printIn(""finish method executed.');
System.out.printIn("'The message is: " + result);
ConversationUtils.renewStub((Stub)port);

catch (RemoteException e) {
e._printStackTrace();
}

Follow these guidelines when programming the JWS file that invokes a conversational Web
Service; code snippets of the guidelines are shown in bold in the preceding example:

e Import the @ServiceClient JWS annotation:

import weblogic. jws.ServiceClient;

e Optionally import the WebL ogic utility class for further configuring a conversation:

import weblogic.wsee.conversation.ConversationUtils;

Programming Web Services for WebLogic Server 6-45

Advanced JWS Programming: Implementing Asynchronous Features

6-46

e Import the JAX-RPC stub of the port type of the conversational Web Service you want to

invoke. The actual stub itself will be created later by the jwsc Ant task. The stub package
is specified by the packageName attribute of the <clientgen> child element of <jws>,
and the name of the stub is determined by the WSDL of the invoked Web Service.

import examples.webservices.conversation.ConversationalPortType;

In the body of the JWS file, use the @ServiceClient JWS annotation to specify the
WSDL, name, and port of the conversational Web Service you want to invoke. You
specify this annotation at the field-level on a private variable, whose data type is the
JAX-RPC port type of the Web Service you are invoking.

@ServiceClient(

wsdlLocation=""http://localhost:7001/conv/ConversationalService?WSDL",
serviceName=""ConversationalService",
portName=""ConversationalServicePort')

private ConversationalPortType port;

Using the stub you annotated with the @ServiceClient annotation, invoke the start
operation of the conversational Web Service to start the conversation. You can invoke the
start method from any location in the JWS file (constructor, method, and so on):

String result = port._.start();

Optionally invoke the continue methods to continue the conversation. Be sure you use the
same stub instance so that you continue the same conversation you started:

result = port.middle(message);

Once the conversation is completed, invoke the finish operation so that the conversational
Web Service can free up the resources it used for the current conversation:

result = port.finish(message);

If you want to reuse the Web Service conversation stub to start a new conversation, you
must explicitly renew the stub using the renewStub() method of the
weblogic.wsee.conversation.ConversationUti Is utility class:

ConversationUtils.renewStub((Stub)port);

WARNING: The client Web Service that invokes a conversational Web Service is not required

to also be conversational. However, if the client is not conversational, there is a
danger of multiple instances of this client accessing the same conversational Web
Service stub and possibly corrupting the saved conversational state. If you believe
this might true in your case, then specify that the client Web Service also be
conversational.

Programming Web Services for WebLogic Server

Creating Conversational Web Services

ConversationUtils Utility Class

WebLogic Server provides a utility class for use with the conversation feature. Use this class to
perform common tasks such as getting and setting the conversation 1D and setting configuration
options. Some of these tasks are performed in the conversational Web Service, some are
performed in the client that invokes the conversational Web Service. See “Programming
Guidelines for the JWS File That Invokes a Conversational Web Service” on page 6-44 for an
example of using this class.

See weblogic.wsee.conversation.ConversationUti Is for details.

Updating the build.xml File for a Client of a Conversational
Web Service

You update a bui Id.xml file to generate the JWS file that invokes a conversational Web Service
by adding taskdefs and a bui ld-clientService target that looks something like the
following example. See the description after the example for details.

<taskdef name="jwsc"
classname=""weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService'>

<jwsc
enableAsyncService="true"
srcdir="src"
destdir="${clientService-ear-dir}" >

<jws
file="examples/webservices/conversation/ConversationalClientimpl._java" >
<clientgen

wsdl="http://${wls_hostname}:${wls.port}/conv/ConversationalService?WSDL"
packageName=""examples.webservices.conversation"/>

</jws>
</jwsc>
</target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Programming Web Services for WebLogic Server 6-47

Advanced JWS Programming: Implementing Asynchronous Features

Update the jwsc Ant task that compiles the client Web Service to include a <clientgen> child
element of the <jws> element so as to generate and compile the JAX-RPC stubs for the deployed
ConversationalService Web Service. The jwsc Ant task automatically packages them in the
generated WAR file so that the client Web Service can immediately access the stubs. You do this
because the ConversationalClientimpl JWS file imports and uses one of the generated
classes.

Updating a Stand-Alone Java Client to Invoke a
Conversational Web Service

The following example shows a simple stand-alone Java client that invokes the conversational
Web Service described in “Programming Guidelines for the Conversational JWS File” on

page 6-40. See the explanation after the example for coding guidelines that correspond to the Java
code in bold.

package examples.webservices.conv_standalone.client;
import java.rmi.RemoteException;

import javax.xml_rpc.ServiceException;
import javax.xml.rpc.Stub;

import weblogic.wsee. jaxrpc.WLStub;

/**

* stand-alone client that invokes and converses with ConversationlService.
*/

public class Main {

public static void main(String[] args)
throws ServiceException, RemoteException{

ConversationalService service = new ConversationalService_Impl(args[0] +
"?2WSDL™) ;
ConversationalPortType port = service.getConversationalServicePort();

// Set property on stub to specify that client is invoking a Web Service
// that uses advanced features; this property is automatically set if
// the client runs in a WeblLogic Server instance.

Stub stub = (Stub)port;
stub._setProperty(WLStub.COMPLEX, 'true');

// Invoke start operation to begin the conversation
String result = port.start();

6-48 Programming Web Services for WebLogic Server

Creating Conversational Web Services

System.out._printin(‘'start method executed.');
System.out.printIn("'The message is: " + result);

// Invoke continue operation

result = port_.middle("middle");
System.out.printin("'middle method executed.');
System.out.printIn(''The message is: " + result);

// Invoke finish operation

result = port._finish('finish™);
System.out.printIn(""finish method executed.');
System.out.printIn(''The message is: " + result);

Follow these guidelines when programming the stand-alone Java client that invokes a
conversational Web Service. Code snippets of the guidelines are shown in bold in the preceding
example.

e Import the weblogic.wsee. jaxrpc.WLStub class:

import weblogic.wsee. jaxrpc.WLStub;

e Set the WLStub.Complex property on the JAX-RPC stub of the ConversationalService
using the _setProperty method:

Stub stub = (Stub)port;
stub._setProperty(WLStub.COMPLEX, "true');

This property specifies to the Web Services runtime that the client is going to invoke an
advanced Web Service, in this case a conversational one. This property is automatically set
when invoking a conversational Web Service from another WebLogic Web Service.

e Invoke the start operation of the conversational Web Service to start the conversation:
String result = port.start();
e Optionally invoke the continue methods to continue the conversation;
result = port.middle(message);

e Once the conversation is completed, invoke the finish operation so that the conversational
Web Service can free up the resources it used for the current conversation:

result = port.finish(message);

Programming Web Services for WebLogic Server 6-49

Advanced JWS Programming: Implementing Asynchronous Features

Client Considerations When Redeploying a Conversational
Web Service

WebLogic Server supports production redeployment, which means that you can deploy a new
version of an updated conversational WebLogic Web Service alongside an older version of the
same Web Service.

WebLogic Server automatically manages client connections so that only new client requests are
directed to the new version. Clients already connected to the Web Service during the
redeployment continue to use the older version of the service until they complete their work, at
which point WebLogic Server automatically retires the older Web Service. If the client is
connected to a conversational Web Service, its work is considered complete when the existing
conversation is explicitly ended by the client or because of a timeout.

For additional information about production redployment and Web Service clients, see “Client
Considerations When Redeploying a Web Service” on page 9-21.

Creating Buffered Web Services

6-50

When a buffered operation is invoked by a client, the method operation goes on a JMS queue and
WebLogic Server deals with it asynchronously. As with Web Service reliable messaging, if
WebLogic Server goes down while the method invocation is still in the queue, it will be dealt with
as soon as WebL ogic Server is restarted. When a client invokes the buffered Web Service, the
client does not wait for a response from the invoke, and the execution of the client can continue.

Creating a Buffered Web Service: Main Steps

The following procedure describes how to create a buffered Web Service and a client Web
Service that invokes an operation of the buffered Web Service. The procedure shows how to
create the JWS files that implement the two Web Services from scratch. If you want to update
existing JWS files, use this procedure as a guide. The procedure also shows how to configure the
WebLogic Server instance that hosts the buffered Web Service.

Note: Unless you are also using the asynchronous request-response feature, you do not need to
invoke a buffered Web Service from another Web Service, you can also invoke it from a
stand-alone Java application.

It is assumed that you have set up an Ant-based development environment and that you have a
working bui Id.xml file to which you can add targets for running the jwsc Ant task and
deploying the generated buffered Web Service. It is further assumed that you have a similar setup

Programming Web Services for WebLogic Server

Creating Buffered Web Services

for the WebL ogic Server instance that hosts the client Web Service that invokes the buffered Web
Service. For more information, see:

e Chapter 3, “Common Web Services Use Cases and Examples”
e Chapter 4, “Iterative Development of WebLogic Web Services”
e Chapter 5, “Programming the JWS File”

e Chapter 9, “Invoking Web Services”

1. Configure the WebLogic Server instance that hosts the buffered Web Service.
See “Configuring the Host WebLogic Server Instance for the Buffered Web Service” on
page 6-52.

2. Create a new JWS file, or update an existing one, that will implement the buffered Web
Service.

See “Programming Guidelines for the Buffered JWS File” on page 6-53.

3. Update the bui 1d.xml file to include a call to the jwsc Ant task to compile the JWS file into
a buffered Web Service; for example:
<jwsc
srcdir="src"
destdir="${service-ear-dir}" >
<jws
file="examples/webservices/async_buffered/AsyncBufferedimpl.java"
/>
</jwsc>

See “Running the jwsc WebLogic Web Services Ant Task” on page 4-7 for general
information about using the jwsc task.

4. Recompile your destination JWS file by calling the appropriate target and deploying the Web
Service to WebLogic Server. For example:

prompt> ant build-mainService deploy-mainService

5. Create a new JWS file, or update an existing one, that implements the client Web Service that
invokes the buffered Web Service.

See “Programming the JWS File That Invokes the Buffered Web Service” on page 6-55.

6. Update the bui ld.xml file that builds the client Web Service.
See “Updating the build.xml File for a Client of the Buffered Web Service” on page 6-56.

Programming Web Services for WebLogic Server 6-51

Advanced JWS Programming: Implementing Asynchronous Features

6-52

7. Recompile your client JWS file by calling the appropriate target, then redeploy the Web
Service to the client WebLogic Server. For example:

prompt> ant build-clientService deploy-clientService

Configuring the Host WebLogic Server Instance for the
Buffered Web Service

Configuring the WebLogic Server instance on which the buffered Web Service is deployed
involves configuring JMS resources, such as JMS servers and modules, that are used internally
by the Web Services runtime.

You can either configure these resources yourself, or you can use the Configuration Wizard to
extend the WebLogic Server domain using a Web Services-specific extension template. Using
the Configuration Wizard greatly simplifies the required configuration steps; for details, see
“Configuring Your Domain For Web Services Features” on page 4-2.

If, however, you prefer to configure the resources yourself, use the following high-level
procedure which lists the tasks and then points to the Administration Console Online Help for
details on performing the tasks.

1. Invoke the Administration Console for the domain that contains the WebLogic Server
instance that hosts the buffered Web Service in your browser.

See “Invoking the Administration Console” on page 11-4 for instructions on the URL that
invokes the Administration Console.

2. Create a JMS Server. You can use an existing one if you do not want to create a new one.

See Create JMS servers.

3. Create a JMS module that contains a JMS queue. Target the JMS queue to the JMS server you
created in the preceding step. Be sure you specify that this JMS queue is local, typically by
setting the local JNDI name.

If you want the buffered Web Service to use the default Web Services queue, set the JNDI
name of the JMS queue to weblogic.wsee.DefaultQueue. Otherwise, if you use a
different JINDI name, be sure to use the @BufferQueue annotation in the JWS file to
specify this INDI name to the reliable Web Service. See “Programming Guidelines for the
Buffered JWS File” on page 6-53.

If you are using the buffered Web Service feature in a cluster, you must still create a local
queue rather than a distributed queue. In addition, you must explicitly target this queue to
each server in the cluster.

Programming Web Services for WebLogic Server

Creating Buffered Web Services

See Create JMS modules and Create queues.

Programming Guidelines for the Buffered JWS File

The following example shows a simple JWS file that implements a buffered Web Service; see the
explanation after the example for coding guidelines that correspond to the Java code in bold.

package examples.webservices.buffered;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

import weblogic. jws_WLHttpTransport;
import weblogic. jws.MessageBuffer;
import weblogic.jws.BufferQueue;

@webService(name="BufferedPortType",
serviceName="BufferedService",
targetNamespace="http://example.org")

@WLHttpTransport(contextPath="buffered”,
serviceUri="BufferedService",
portName="BufferedPort')

// Annotation to specify a specific JMS queue rather than the default
@BufferQueue(name="my . jms.queue')

/**
* Simple buffered Web Service.
*/

public class Bufferedimpl {

@webMethod()
@MessageBuffer(retryCount=10, retryDelay="10 seconds')
@0neway ()
public void sayHelloNoReturn(String message) {
System.out.printIn(‘'sayHelloNoReturn: " + message);
}
}

Programming Web Services for WebLogic Server 6-53

Advanced JWS Programming: Implementing Asynchronous Features

6-54

Follow these guidelines when programming the JWS file that implements a buffered Web
Service. Code snippets of the guidelines are shown in bold in the preceding example.

e Import the JWS annotations used for buffered Web Services:

import javax.jws.Oneway;

import weblogic. jws_MessageBuffer;
import weblogic. jws.BufferQueue;

See the following bullets for guidelines on which JWS annotations are required.

Optionally use the class-level @BufferQueue JWS annotation to specify the JNDI name of
the JMS queue used internally by WebLogic Server when it processes a buffered invoke;
for example:

@BufferQueue(name="my . jms.queue')

If you do not specify this JWS annotation, then WebLogic Server uses the default Web
Services JMS queue (weblogic.wsee.DefaultQueue).

You must create both the default JIMS queue and any queues specified with this annotation
before you can successfully invoke a buffered operation. See “Configuring the Host
WebLogic Server Instance for the Buffered Web Service” on page 6-52 for details.

Use the @MessageBuffer JWS annotation to specify the operations of the Web Service
that are buffered. The annotation has two optional attributes:

— retryCount: The number of times WebLogic Server should attempt to deliver the
message from the JMS queue to the Web Service implementation (default 3).

— retryDelay: The amount of time that the server should wait in between retries (default
5 minutes).

For example:

@MessageBuffer(retryCount=10, retryDelay="10 seconds')
You can use this annotation at the class-level to specify that all operations are buffered, or
at the method-level to choose which operations are buffered.

If you plan on invoking the buffered Web Service operation synchronously (or in other
words, not using the asynchronous request-response feature), then the implementing
method is required to be annotated with the @0neway annotation to specify that the method
is one-way. This means that the method cannot return a value, but rather, must explicitly
return void. For example:

@oneway ()
public void sayHelloNoReturn(String message) {

Programming Web Services for WebLogic Server

Creating Buffered Web Services

Conversely, if the method is not annotated with the @oneway annotation, then you must
invoke it using the asynchronous request-response feature. If you are unsure how the
operation is going to be invoked, consider creating two flavors of the operation:
synchronous and asynchronous.

See “Invoking a Web Service Using Asynchronous Request-Response” on page 6-19 and
“Using the Asynchronous Features Together” on page 6-57.

Programming the JWS File That Invokes the Buffered Web
Service

You can invoke a buffered Web Service from both a stand-alone Java application (if not using
asynchronous request-response) and from another Web Service. Unlike other WebLogic Web
Services asynchronous features, however, you do not use the @ServiceClient JWS annotation
in the client Web Service, but rather, you invoke the service as you would any other. For details,
see “Invoking a Web Service from Another Web Service” on page 9-12.

The following sample JWS file shows how to invoke the sayHe I loNoReturn operation of the
BufferedService Web Service:
package examples.webservices.buffered;

import java.rmi.RemoteException;
import javax.xml_rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic. jws.WLHttpTransport;

import examples.webservices.buffered.BufferedPortType;
import examples.webservices.buffered.BufferedService_Impl;
import examples.webservices.buffered.BufferedService;

@WebService(name="BufferedClientPortType",
serviceName="BufferedClientService",
targetNamespace=""http://examples.org')

@WLHttpTransport(contextPath="bufferedClient",
serviceUri="BufferedClientService",
portName="BufferedClientPort')

public class BufferedClientimpl {

@webMethod ()
public String callBufferedService(String input, String serviceUrl)
throws RemoteException {

Programming Web Services for WebLogic Server 6-55

Advanced JWS Programming: Implementing Asynchronous Features

try {

BufferedService service = new BufferedService_Impl(serviceUrl + "?WSDL™);
BufferedPortType port = service.getBufferedPort();

// Invoke the sayHelloNoReturn() operation of BufferedService
port.sayHel loNoReturn(input);

return "Invoke went okay!";

} catch (ServiceException se) {

System.out.printIn(*'ServiceExcpetion thrown');
throw new RuntimeException(se);

Updating the build.xml File for a Client of the Buffered Web
Service

To update a bui Id.xml file to generate the JWS file that invokes a buffered Web Service
operation, add taskdefs and a bui ld-clientService targets that look something like the
following example. See the description after the example for details.

<taskdef name="jwsc"
classname=""'weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-clientService">

<jwsc
enableAsyncService="true"
srcdir="src"
destdir="${clientService-ear-dir}" >

<jws file="examples/webservices/buffered/BufferedClientimpl.java'>
<clientgen

wsdl="http://${wls_hostname}:${wls.port}/buffered/BufferedService?WSDL"
packageName=""examples.webservices._buffered'/>

</jws>

</jwsc>

6-56 Programming Web Services for WebLogic Server

Using the Asynchronous Features Together

</target>
Use the taskdef Ant task to define the full classname of the jwsc Ant tasks.

Update the jwsc Ant task that compiles the client Web Service to include a <clientgen> child
element of the <jws> element so as to generate and compile the JAX-RPC stubs for the deployed
BufferedService Web Service. The jwsc Ant task automatically packages them in the
generated WAR file so that the client Web Service can immediately access the stubs. You do this
because the BufferedClientImpl JWS file imports and uses one of the generated classes.

Using the Asynchronous Features Together

The preceding sections describe how to use the WebLogic Web Service asynchronous features
(Web Service reliable messaging, conversations, asynchronous request-response, and buffering)
on their own. Typically, however, Web Services use the features together; see “Example of a JWS
File That Implements a Reliable Conversational Web Service” on page 6-58 and “Example of
Client Web Service That Asynchronously Invokes a Reliable Conversational Web Service” on
page 6-59 for examples.

When used together, some restrictions described in the individual feature sections do not apply,
and sometimes additional restrictions apply.

e Asynchronous request-response with Web Service reliable messaging or buffering—
The asynchronous response from the reliable Web Service is also reliable. This means that
you must also configure a JMS server, module, and queue on the source WebLogic Server
instance, in a similar way you configured the destination WebLogic Server instance, to
handle the response.

When you create the JMS queue on the source WebLogic Server instance, you are required
to specify a JNDI name of weblogic.wsee.DefaultQueue; you can name the queue
anything you want. You must also ensure that you specify that this JMS queue is local,
typically by setting the local JINDI name.

e Asynchronous request-response with Web Service reliable messaging or buffering—
The reliable or buffered operation cannot be one-way; in other words, you cannot annotate
the implementing method with the @Oneway annotation.

e Asynchronous request-response with Web Service reliable messaging—If you set a
property in one of the asynchronous contexts (AsyncPreCal IContext or
AsyncPostCal IContext), then the property must implement java.io.Serializable.

e Asynchronous request-response with buffering—You must use the @ServiceClient
JWS annotation in the client Web Service that invokes the buffered Web Service operation.

Programming Web Services for WebLogic Server 6-57

Advanced JWS Programming: Implementing Asynchronous Features

e Conversations with Web Service reliable messaging—If you set the property
WLStub . CONVERSAT IONAL_METHOD_BLOCK_TIMEOUT on the stub of the client Web
Service, the property is ignored because the client does not block.

e Conversations with Web Service reliable messaging—At least one method of the
reliable conversational Web Service must not be marked with the @oneway annotation.

e Conversations with asynchronous request-response—Asynchronous responses between
a client conversational Web Service and any other Web Service also participate in the
conversation. For example, assume WebServiceA is conversational, and it invokes
WebServiceB using asynchronous request-response. Because WebServiceA is
conversational the asynchronous responses from WebServiceB also participates in the
same conversation.

Example of a JWS File That Implements a Reliable
Conversational Weh Service

The following sample JWS file implements a Web Service that is both reliable and
conversational:

package examples.webservices.async_mega;
import java.io.Serializable;

import weblogic. jws_WLHttpTransport;
import weblogic.jws.Conversation;
import weblogic.jws.Policy;

import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService(name="AsyncMegaPortType",
serviceName="AsyncMegaService",
targetNamespace=""http://examples.org/'")

@Policy(uri="AsyncReliableConversationPolicy.xml",
attachToWsdl=true)

@WLHttpTransport(contextPath=""asyncMega",
serviceUri="AsyncMegaService",
portName=""AsyncMegaServicePort')

/**
* Web Service that is both reliable and conversational.
*/

public class AsyncMegaServicelmpl implements Serializable {

6-58 Programming Web Services for WebLogic Server

@WebMethod
@Conversation (Conversation.Phase.START)
public String start() {

return "'Starting conversation';

}

@WebMethod
@Conversation (Conversation.Phase.CONTINUE)
public String middle(String message) {

return "Middle of conversation; the message is: " + message;

}

@WebMethod
@Conversation (Conversation.Phase._FINISH)
public String finish(String message) {

return "End of conversation; the message is:

}

Using the Asynchronous Features Together

+ message;

Example of Client Web Service That Asynchronously
Invokes a Reliable Conversational Web Service

The following JWS file shows how to implement a client Web Service that reliably invokes the
various conversational methods of the Web Service described in “Example of a JWS File That

Implements a Reliable Conversational Web Service” on page 6-58; the client JWS file uses the
asynchronous request-response feature as well.

package examples.webservices.async_mega;

import
import
import
import

import
import

import
import
import
import
import
import

import

weblogic. jws.WLHttpTransport;
weblogic.jws.ServiceClient;
weblogic. jws.AsyncResponse;
weblogic. jws.AsyncFailure;

Jjavax. jws.WebService;
Javax. jws._WebMethod;

weblogic.
weblogic.
weblogic.

examples.
examples.
examples.

Java.rmi.

wsee.async.AsyncPreCal IContext;
wsee.async.AsyncCal IContextFactory;
wsee.async.AsyncPostCal IContext;

webservices.async_mega.AsyncMegaPortType;
webservices.async_mega.AsyncMegaService;
webservices.async_mega.AsyncMegaService_Impl;

RemoteException;

Programming Web Services for WebLogic Server 6-59

Advanced JWS Programming: Implementing Asynchronous Features

@WebService(name="AsyncMegaClientPortType",
serviceName=""AsyncMegaClientService",
targetNamespace=""http://examples.org/'")

@WLHttpTransport(contextPath=""asyncMegaClient",
serviceUri="AsyncMegaClient",
portName="AsyncMegaClientServicePort")

/**
* Client Web Service that has a conversation with the AsyncMegaService

* reliably and asynchronously.
*/

public class AsyncMegaClientimpl {

@ServiceClient(
wsdlLocation="http://localhost:7001/asyncMega/AsyncMegaService?WSDL",
serviceName="AsyncMegaService",
portName=""AsyncMegaServicePort')

private AsyncMegaPortType port;

@WebMethod
public void runAsyncReliableConversation(String message) {

AsyncPreCal IContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
apc.setProperty(*'message’, message);

try {
port.startAsync(apc);

System.out._printIn(''start method executed.");

port_.middleAsync(apc, message);
System.out.printin("'middle method executed.');

port._finishAsync(apc, message);
System.out.printIn("finish method executed.™);

¥
catch (RemoteException e) {
e.printStackTrace();

}
}

@AsyncResponse(target="port", operation="'start")
public void onStartAsyncResponse(AsyncPostCaIIContext apc, String message) {

System.out._printIn(*'-----—————————————— ");
System.out.printIn(*'Got message " + message);
System.out._printIn("--———----—————————- ;s

}

6-60 Programming Web Services for WebLogic Server

Using Reliable Messaging or Asynchronous Request Response With a Proxy Server

@AsyncResponse(target=""port", operation="middle")

public void oanddIeAsyncResponse(AsyncPostCaIIContext apc, String message) {
System.out.printIhn(""--————-----—--—-—-———— ;s
System.out._printIn(*'Got message " + message);
System.out.printin(*"-—---————-————————— ");

}

@AsyncResponse(target=""port", operation="finish")
public void onFln|shAsyncResponse(AsynCPostCaIIContext apc, String message) {

System.out.printin(*"----—————————————— ");
System.out._printIn(*'Got message " + message);
System.out._printin(*-----—————————————— ");

}

@AsyncFai lure(target=""port", operation="'start')
public void onStartAsyncFalIure(AsyncPostCalIContext apc, Throwable e) {

System.out._printIn(*"-----—————————————— ");
e.printStackTrace();
System.out.printIhn("--—————-—---—---————— ;s

}

@AsyncFai lure(target="port", operation="middle')
public void oanddIeAsyncFalIure(AsyncPostCalIContext apc, Throwable e) {

System.out.printIhn("'--————----—---————— ");
e.printStackTrace();
System.out.printin(*'-—---————————————— ");

}

@AsyncFai lure(target="port", operation="finish")
public void onFlnlshAsyncFalIure(AsyncPostCalIContext apc, Throwable e) {

System.out.printin(""----—————-————————— ");
e.printStackTrace();
System.out._printIn("-----—————————————— ");
}
}

Using Reliable Messaging or Asynchronous Request
Response With a Proxy Server

Client applications that invoke reliable Web Services or use the asynchronous request-response
feature might not invoke the operation directly, but rather, use a proxy server. Reasons for using
a proxy include the presence of a firewall or the deployment of the invoked Web Service to a
cluster.

Programming Web Services for WebLogic Server 6-61

Advanced JWS Programming: Implementing Asynchronous Features

6-62

In this case, the WebLogic Server instance that hosts the invoked Web Service must be
configured with the address and port of the proxy server. If your Web Service is deployed to a
cluster, you must configure every server in the cluster.

For each server instance:

1. Create a network channel for the protocol you use to invoke the Web Service. You must name
the network channel weblogic-wsee-proxy-channel -XXX, where XXX refers to the
protocol. For example, to create a network channel for HTTPS, call it
weblogic-wsee-proxy-channel-https.

See Configure Custom Network Channels for general information about creating a network
channel.

2. Configure the network channel, updating the External Listen Address and External Listen
Port fields with the address and port of the proxy server, respectively.

Programming Web Services for WebLogic Server

CHAPTERa

Advanced JWS Programming: JMS
Transport and SOAP Message Handlers

The following sections provide information about the following advanced JWS programming
topics:

e “Using JMS Transport as the Connection Protocol” on page 7-1

e “Creating and Using SOAP Message Handlers” on page 7-12

Using JMS Transport as the Connection Protocol

Typically, client applications use HTTP/S as the connection protocol when invoking a WebL ogic
Web Service. You can, however, configure a WebLogic Web Service so that client applications
use JMS as the transport instead. You configure transports using either JWS annotations or child
elements of the jwsc Ant task, as described in later sections.

When a WebLogic Web Service is configured to use JMS as the connection transport, the
endpoint address specified for the corresponding port in the generated WSDL of the Web Service
uses jms:// in its URL rather than http://. An example of a JMS endpoint address is as
follows:

Jjms://myHost:7001/transports/JIMSTransport?URI=IMSTransportQueue
The URI=IMSTransportQueue section of the URL specifies the JIMS queue that has been
configured for the JMS transport feature. Although you cannot invoke the Web Service using

HTTP, you can view its WSDL using HTTP, which is how the clientgen is still able to generate
JAX-RPC stubs for the Web Service.

Programming Web Services for WebLogic Server 1-1

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-2

For each transport that you specify, WebLogic Server generates an additional port in the WSDL.
For this reason, if you want to give client applications a choice of transports they can use when
they invoke the Web Service (JMS, HTTP, or HTTPS), you should explicitly add the transports
using the appropriate JWS annotations or child elements of jwsc.

Caution: Using JMS transport is an added-value WebLogic feature; non-WebLogic client
applications, such as a.NET client, may not be able to invoke the Web Service using
the JMS port.

Using JMS Transport Starting From Java: Main Steps

To use JMS transport when starting from Java, you must peform at least one of the following
tasks:

e Add the @WLJImsTransport annotation to your JWS file.

e Add a <wLJImsTransport> child element to the jwsc Ant task. This setting overrides the
transports defined in the JWS file.

Note: Because you might not know at the time that you are coding the JWS file which transport
best suits your needs, it is often better to specify the transport at build-time using the
<WLJImsTransport> child element.

The following procedure describes the complete set of steps required so that your Web Service
can be invoked using the JMS transport when starting from Java.

Note: It is assumed that you have already created a basic JWS file that implements a Web
Service and that you want to configure the Web Service to be invoked using JMS. It is
also assumed that you have set up an Ant-based development environment and that you
have a working bui Id.xml file that includes targets for running the jwsc Ant task and
deploying the service. For more information, see Chapter 4, “Iterative Development of
WebLogic Web Services,” and Chapter 5, “Programming the JWS File.”

1. Configure the WebLogic Server domain for the required JMS components.

You can either configure these resources yourself, or you can use the Configuration
Wizard to extend the WebLogic Server domain using a Web Services-specific extension
template. Using the Configuration Wizard greatly simplifies the required configuration
steps; for details, see “Configuring Your Domain For Web Services Features” on page 4-2.

If, however, you prefer to configure the resources yourself, follow these steps:

a. Invoke the Administration Console in your browser, as described in “Invoking the
Administration Console” on page 11-4.

Programming Web Services for WebLogic Server

Using JMS Transport as the Connection Protocol

b. Using the Administration Console, create and configure the following JMS components,
if they do not already exist:

* JMS Server. See Create JMS servers.

» JMS Module, targeted to the preceding JMS server. See Create JMS system
modules.

» JMS Queue, contained within the preceding JMS module. You can either specify the
JNDI name of the JIMS queue that WebLogic Web Services listen to by default
(weblogic.wsee.Defaul tQueue) or specify a different name. If you specify a
different JINDI name, you later pass this name to the Web Service itself. When you
configure the queue, be sure you specify that this IMS queue is local, typically by
setting the local INDI name. See Create queues in a system module.

Except for the INDI name of the JMS queue, you can name the other components
anything you want.

2. Add the @WLImsTransport annotation to your JWS file.

This step is optional. If you do not add the @WLJImsTransport annotation to your JWS file,
then you must add a <WLJImsTransport> child element to the jwsc Ant task, as described
in Step 3. See “Using the @WLJmsTransport JWS Annotation” on page 7-6.

3. Add a <wLJImsTransport> child element to the jwsc Ant task.

Use the <WLJImsTransport> child element to override the transports defined in the JWS
file. This step is required if you did not add the @WLJImsTransport annotation to your JWS
file in Step 2. Otherwise, this step is optional.

See “Using the <WLJmsTransport> Child Element of the jwsc Ant Task” on page 7-7 for
details.

4. Rebuild your Web Service by re-running the target in the bui Id.xml1 Ant file that calls the
Jwsc task.

For example, if the target that calls the jwsc Ant task is called bui ld-service, then you
would run:

prompt> ant build-service
5. Redeploy your Web Service to WebLogic Server.
See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

See “Invoking a WebLogic Web Service Using JMS Transport” on page 7-9 for information
about updating your client application to invoke the Web Service using JMS transport.

Programming Web Services for WebLogic Server 1-3

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

Using JMS Transport Starting From WSDL: Main Steps

To use JMS transport when starting from WSDL, you must peform at least one of the following
tasks:

e Update the WSDL to use JMS transport before running the wsdlc Ant task.

e Update the stubbed-out JWS implementation file generated by the wsdlc Ant task to add
the @WLJImsTransport annotation.

e Add a <WLJImsTransport> child element to the jwsc Ant task used to build the JWS
implementation file. This setting overrides the transports defined in the JWS file.

Note: Because you might not know at the time that you are coding the JWS file which transport
best suits your needs, it is often better to specify the transport at build-time using the
<WLJImsTransport> child element.

The following procedure describes the complete set of steps required so that your Web Service
can be invoked using the JMS transport when starting from WSDL.

Note: It is assumed in this procedure that you have an existing WSDL file.

1. Configure the WebLogic Server domain for the required JMS components.

You can either configure these resources yourself, or you can use the Configuration
Wizard to extend the WebLogic Server domain using a Web Services-specific extension
template. Using the Configuration Wizard greatly simplifies the required configuration
steps; for details, see “Configuring Your Domain For Web Services Features” on page 4-2.

If, however, you prefer to configure the resources yourself, follow these steps:

a. Invoke the Administration Console in your browser, as described in “Invoking the
Administration Console” on page 11-4.

b. Using the Administration Console, create and configure the following JMS components,
if they do not already exist:

* JMS Server. See Create JMS servers.

» JMS Module, targeted to the preceding JMS server. See Create JMS system
modules.

» JMS Queue, contained within the preceding JMS module. You can either specify the
JNDI name of the JMS queue that WebLogic Web Services listen to by default
(weblogic.wsee.DefaultQueue) or specify a different name. If you specify a
different JNDI name, you later pass this name to the Web Service itself. When you

14 Programming Web Services for WebLogic Server

Using JMS Transport as the Connection Protocol

configure the queue, be sure you specify that this IMS queue is local, typically by
setting the local INDI name. See Create queues in a system module.

Except for the INDI name of the JMS queue, you can name the other components
anything you want.

2. Update the WSDL to use JMS transport.

This step is optional. If you do not update the WSDL to use JMS transport, then you must
do at least one of the following:

— Edit the stubbed out JWS file to add the @WLJImsTransport annotation to your JWS
file, as described in Step 4.

— Add a <WLJImsTransport> child element to the jwsc Ant task, as described in Step 5.
See “Updating the WSDL to Use JMS Transport” on page 7-8.

3. Run the wsdlc Ant task against the WSDL file.

For example, if the target that calls the wsdlc Ant task is called generate-from-wsdl,
then you would run:

prompt> ant generate-from-wsdl

See “Running the wsdlc WebLogic Web Services Ant Task” on page 4-11.
4. Update the stubbed-out JWS file.

The wsdlc Ant task generates a stubbed-out JWS file. You need to add your business code
to the Web Service so it behaves as you want. See “Updating the Stubbed-Out JWS
Implementation Class File Generated By wsdlc” on page 4-13.

If you updated the WSDL to use the JMS transport in Step 2, the JWS file includes the
@WLImsTransport annotation that defines the JIMS transport. If the @WLImsTransport
annotation is not included in the JWS file, you must do at least one of the following:

— Edit the JWS file to add the @WLJImsTransport annotation to your JWS file, as
described in “Using the @WLJmsTransport JWS Annotation” on page 7-6.

— Add a <WLJImsTransport> child element to the jwsc Ant task, as described in Step 5.
5. Add a <wLImsTransport> child element to the jwsc Ant task.

Use the <WLJImsTransport> child element to override the transports defined in the JWS
file. This step is required if the JWS file does not include the @WLJImsTransport
annotation, as noted in Step 4. Otherwise, this step is optional. See “Using the
<WLJmsTransport> Child Element of the jwsc Ant Task” on page 7-7.

Programming Web Services for WebLogic Server 1-5

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-6

6. Run the jwsc Ant task against the JWS file to build the Web Service.

Specify the artifacts generated by the wsdlc Ant task as well as your updated JWS
implementation file, to generate an Enterprise Application that implements the Web
Service. See “Running the jwsc WebLogic Web Services Ant Task” on page 4-7.

7. Deploy your Web Service to WebL ogic Server.
See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

See “Invoking a WebLogic Web Service Using JMS Transport” on page 7-9 for information
about updating your client application to invoke the Web Service using JMS transport.

Using the @WLImsTransport JWS Annotation

If you know at the time that you program the JWS file that you want client applications to use
JMS transport (instead of HTTP/S) to invoke the Web Service, you can use the
@wLImsTransport to specify the details of the invoke. Later, at build-time, you can override the
one in the JWS file and add additional JMS transport specifications, by specifying the
<WLJImsTransport> child element of the jwsc Ant task, as described in “Using the
<WLJmsTransport> Child Element of the jwsc Ant Task” on page 7-7.

Follow these guidelines when using the @WLJImsTranport annotation:
e You can include only one @WLJImsTransport annotation in a JWS file.

e Use the queue attribute to specify the INDI name of the IMS queue you configured earlier
in the section. If you want to use the default Web Services queue
(weblogic.wsee.Defaul tQueue) then you do not have to specify the queue attribute.

The following example shows a simple JWS file that uses the @WLJImsTransport annotation,
with the relevant code in bold:

package examples.webservices. jmstransport;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

import weblogic. jws.WLImsTransport;

@WebService(name="JMSTransportPortType",
serviceName="JMSTransportService",
targetNamespace=""http://example.org™)

Programming Web Services for WebLogic Server

Using JMS Transport as the Connection Protocol

@SOAPBiInding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and
// service URI used to build the URI of the Web Service is
// "transports/JMSTransport"

@WLImsTransport(contextPath=""transports", serviceUri="JMSTransport",
queue=""JMSTransportQueue", portName="JMSTransportServicePort'")

/**
* This JWS file forms the basis of simple Java-class implemented WebLogic
* Web Service with a single operation: sayHello
*
* @author Copyright (c) 2005 by BEA Systems. All rights reserved.
*/

public class JMSTransportimpl {

@webMethod ()

public String sayHello(String message) {
System.out._printIn('sayHello:" + message);
return "Here is the message: "' + message + "

}

}

Using the <WLImsTransport> Child Element of the jwsc Ant
Task

You can also specify the JMS transport at build-time by using the <wLJImsTransport> child
element of the <jws> element of the jwsc Ant task. Reasons for specifying the transport at
build-time include:

e You need to override the attribute values specified in the JWS file.

e The JWS file specifies a different transport, and at build-time you decide that JMS should
be the transport.

e The JWS file does not include a @WLXXXTransport annotation; thus by default the HTTP
transport is used, but at build-time you decide you want to clients to use the JMS transport
to invoke the Web Service.

Programming Web Services for WebLogic Server 1-1

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

If you specify a transport to the jwsc Ant task, it takes precedence over any transport annotation
in the JWS file.

The following example shows how to specify a transport to the jwsc Ant task:
<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws File=""examples/webservices/jmstransport/JIMSTransportimpl._java'>

<WLJImsTransport
contextPath=""transports"
serviceUri="JMSTransport"
portName=""JMSTransportServicePort"
queue=""JMSTransportQueue' />

</jws>
</jwsc>
</target>

The preceding example shows how to specify the same values for the URL and JMS queue as
were specified in the JWS file shown in “Using the @WLJmsTransport JWS Annotation” on
page 7-6.

For more information about using the jwsc Ant task, see “jwsc” on page A-17.

Updating the WSDL to Use JMS Transport

To update the WSDL to use JMS transport, you need to add <wsdl :binding> and
<wsdl :service> definitions that define JMS transport information. You can add the definitions
in one of the following ways:

e Edit the existing HTTP <wsdl :binding> and <wsdl : service> definitions.

e To specify multiple transport options in the WSDL, copy the existing HTTP
<wsdl :binding> and <wsdl :service> definitions and edit them to use JMS transport.

1-8 Programming Web Services for WebLogic Server

Using JMS Transport as the Connection Protocol

In either case, you must modify the <wsdl :binding> and <wsdl : service> definitions to use
JMS transport as follows:

e Set the transport attribute of the <soapwsdl :binding> child element of the
<wsdl :binding> element to http://www.openuri .org/2002/04/soap/jms. For
example:
<binding name="JmsTransportServiceSoapBindingjms"
type=""tns:JImsTransportPortType'>

<soap:binding style=""document"
transport="http://www.openuri.org/2002/04/soap/jms’ />

e Specify a JIMS-style endpoint URL for the location attribute of the

<soapwsd I :address> child element of the <wsdl :service>. For example:
<s0:service name="JmsTransportService'>

<sO:port binding="sl:JmsTransportServiceSoapBindingjms"
name="JmsTransportServicePort">

<s2:address

location="jms://localhost:7001/transports/JmsTransport?URI=JMSTransport
Queue'" />

</s0:port>

</s0O:service>

Invoking a WebLogic Web Service Using JMS Transport

You write a client application to invoke a Web Service using JMS transport in the same way as
you write one using the HTTP transport; the only difference is that you must ensure that the JMS
queue (specified by the @wLImsTransport annotation or <WLJImsTransport> child element of
the jwsc Ant task) and other JMS objects have already been created. See “Using JMS Transport
Starting From Java: Main Steps” on page 7-2 or “Using JMS Transport Starting From WSDL.:
Main Steps” on page 7-4 for more information.

Although you cannot invoke a JMS-transport-configured Web Service using HTTP, you can view
its WSDL using HTTP, which is how the clientgen Ant task is still able to create the JAX-RPC
stubs for the Web Service. For example, the URL for the WSDL of the Web Service shown in
this section would be:

http://host:port/transports/JIMSTransport?WSDL

However, because the endpoint address in the WSDL of the deployed Web Service uses jms://
instead of http://, and the address includes the qualifier 2UR1=JMS_QUEUE, the clientgen Ant
task automatically creates the stubs needed to use the JMS transport when invoking the Web
Service, and your client application need not do anything different than normal. An example of a
JMS endpoint address is as follows:

Programming Web Services for WebLogic Server 1-9

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

Jjms://host:port/transports/JIMSTransport?URI=JMSTransportQueue

WARNING: If you have specified that the Web Service you invoke using JMS transport also
runs within the context of a transaction (in other words, the JWS file includes the
@weblogic. jws.Transactional annotation), you must use asynchronous
request-response when invoking the service. If you do not, a deadlock will occur
and the invocation will fail.

For general information about invoking a Web Service, see Chapter 9, “Invoking Web Services.”

Overriding the Default Service Address URL

When you write a client application that uses the clientgen-generated JAX-RPC stubs to
invoke a Web Service, the default service address URL of the Web Service is the one specified
in the <address> element of the WSDL file argument of the Service constructor.

Sometimes, however, you might need to override this address, in particular when invoking a
WebLogic Web Service that is deployed to a cluster and you want to specify the cluster address
or a list of addresses of the managed servers in the cluster. You might also want to use the €3
protocol to invoke the Web Service. To override this service endpoint URL when using JMS
transport, use the weblogic.wsee. jaxrpc.WLStub.JMS_TRANSPORT_JNDI_URL stub
property as shown in the following example:

package examples.webservices.jmstransport.client;
import weblogic.wsee. jaxrpc.WLStub;
import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import javax.xml._.rpc.Stub;
/**
* This is a simple standalone client application that invokes the

* the <code>sayHello</code> operation of the JMSTransport Web service.
*

* @author Copyright (c) 2004 by BEA Systems. All Rights Reserved.
*/

public class Main {

public static void main(String[] args)
throws ServiceException, RemoteException{

1-10 Programming Web Services for WebLogic Server

Using JMS Transport as the Connection Protocol

JMSTransportService service = new JMSTransportService_Impl(args[0] +
"?2WSDL");
JMSTransportPortType port = service.getJMSTransportServicePort();

Stub stub = (Stub) port;

stub._setProperty(WLStub.JMS_TRANSPORT_JNDI_URL,
"t3://shackell01.amer.bea.com:7001");

try {
String result = null;

result = port._.sayHello("'Hi there! ');
System.out.printin("Got JMS result: " + result);

} catch (RemoteException e) {
throw e;
}
}
}

See WLStub reference documentation for additional stub properties.

Using JMS BytesMessage Rather Than the Default TextMessage

When you use JMS transport, the Web Services runtime uses, by default, the

jJavax. jms.TextMessage object to send the message. This is usually adequate for most client
applications, but sometimes you might need to send binary data rather than ordinary text; in this
case you must request that the Web Services runtime use javax. jms.BytesMessage instead.
To do this, use the WLStub . IMS_TRANSPORT_MESSAGE_TYPE stub property in your client
application and set it to the value WLStub.JMS_BYTESMESSAGE, as shown in the following
example:

stub._setProperty(WLStub.JMS_TRANSPORT_MESSAGE_TYPE,
WLStub.JIMS_BYTESMESSAGE) ;

The Web Services runtime sends back the response using the same message data type as the
request.

See “Overriding the Default Service Address URL” on page 7-10 for a full example of a client
application in which you can set this property. See WLStub reference documentation for
additional stub properties.

Programming Web Services for WebLogic Server 1-11

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

Disabling HTTP Access to the WSDL File

As described in “Invoking a WebLogic Web Service Using JMS Transport” on page 7-9, the
WSDL of the deployed Web Service is, by default, still accessible using HTTP. If you want to
disable access to the WSDL file, in particular if your Web Service can be accessed outside of a
firewall, then you can do one of the following:

e Use the weblogic- jws-WSDL annotation in your JWS file to programmatically disable
access. For details, see “weblogic.jws.WSDL” on page B-62.

e Use the Administration Console to disable access to the WSDL file after the Web Service
has been deployed. In this case, the configuration information will be stored in the
deployment plan rather than through the annotation.

To use the Administration Console to perform this task, go to the Configuration -> General
page of the deployed Web Service and uncheck the View Dynamic WSDL Enabled
checkbox. After saving the configuration to the deployment plan, you must redeploy
(update) the Web Service, or Enterprise Application which contains it, for the change to
take effect.

Creating and Using SOAP Message Handlers

1-12

Some Web Services need access to the SOAP message, for which you can create SOAP message
handlers.

A SOAP message handler provides a mechanism for intercepting the SOAP message in both the
request and response of the Web Service. You can create handlers in both the Web Service itself
and the client applications that invoke the Web Service.

A simple example of using handlers is to access information in the header part of the SOAP
message. You can use the SOAP header to store Web Service specific information and then use
handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your Web Service.
After your Web Service has been deployed for a while, you might discover that many consumers
invoke it with the same parameters. You could improve the performance of your Web Service by
caching the results of popular invokes of the Web Service (assuming the results are static) and
immediately returning these results when appropriate, without ever invoking the back-end
components that implement the Web Service. You implement this performance improvement by
using handlers to check the request SOAP message to see if it contains the popular parameters.

The following table lists the standard JWS annotations that you can use in your JWS file to
specify that a Web Service has a handler chain configured; later sections discuss how to use the

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

annotations in more detail. For additional information, see the Web Services MetaData for the
Java Platform (JSR-181) specification at http://www.jcp.org/en/jsr/detail ?id=181.

Table 7-1 JWS Annotations Used To Configure SOAP Message Handler Chains

JWS Annotation

Description

Javax. jws.HandlerChain

Associates the Web Service with an externally defined
handler chain. Use this annotation (rather than
@SOAPMessageHandlers) when multiple Web Services
need to share the same handler configuration, or if the
handler chain consists of handlers for multiple transports.

Javax.jws.soap.SOAPMessageHandlers

Specifies a list of SOAP handlers that run before and after
the invocation of each Web Service operation. Use this
annotation (rather than @HanderChain) if embedding
handler configuration information in the JWS file itself is
preferred, rather than having an external configuration file.

The @SOAPMessageHandler annotation is an array of
@SOAPMessageHandlers. The handlers are executed in
the order they are listed in this array.

Javax. jws.soap.SOAPMessageHandler

Specifies a single SOAP message handler in the
@SOAPMessageHandlers array.

The following table describes the main classes and interfaces of the javax.xml.rpc.handler
API, some of which you use when creating the handler itself. These APIs are discussed in detail

Programming Web Services for WebLogic Server 1-13

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-14

in a later section. For additional information about these APIs, see the JAX-RPC 1.1 specification

at http://java.sun.com/xml/jaxrpc/index.jsp.

Table 7-2 JAX-RPC Handler Interfaces and Classes

javax.xml.rpc.handler Classes and
Interfaces

Description

Handler

Main interface that is implemented when creating a
handler. Contains methods to handle the SOAP request,
response, and faults.

GenericHandler

Abstract class that implements the Hand ler interface.
User should extend this class when creating a handler,
rather than implement Hand 1 er directly.

The GenericHandler class is a convenience abstract
class that makes writing handlers easy. This class provides
default implementations of the lifecycle methods init and
destroy and also different handle methods. A handler
developer should only override methods that it needs to
specialize as part of the derived handler implementation
class.

HandlerChain

Interface that represents a list of handlers. An
implementation class for the HandlerChain interface
abstracts the policy and mechanism for the invocation of
the registered handlers.

HandlerRegistry

Interface that provides support for the programmatic
configuration of handlers in a HandlerRegistry.

HandlerlInfo

Class that contains information about the handler in a
handler chain. A Handler Info instance is passed in the
Handler . init method to initialize a Handler
instance.

MessageContext

Abstracts the message context processed by the handler.
The MessageContext properties allow the handlers in
a handler chain to share processing state.

soap - SOAPMessageContext

Sub-interface of the MessageContext interface used to get
at or update the SOAP message.

Javax.xml _soap.SOAPMessage

Object that contains the actual request or response SOAP
message, including its header, body, and attachment.

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

Adding SOAP Message Handlers to a Web Service: Main
Steps

The following procedure describes the high-level steps to add SOAP message handlers to your
Web Service.

It is assumed that you have already created a basic JWS file that implements a Web Service and
that you want to update the Web Service by adding SOAP message handlers and handler chains.
It is also assumed that you have set up an Ant-based development environment and that you have
a working bui Id.xml file that includes a target for running the jwsc Ant task. For more
information, see Chapter 4, “Iterative Development of WebLogic Web Services,” and Chapter 5,
“Programming the JWS File.”

1. Design the handlers and handler chains.
See “Designing the SOAP Message Handlers and Handler Chains” on page 7-15.

2. For each handler in the handler chain, create a Java class that extends the
javax.xml.rpc.handler.GenericHandler abstract class.

See “Creating the GenericHandler Class” on page 7-18.

3. Update your JWS file, adding annotations to configure the SOAP message handlers.
See “Configuring Handlers in the JWS File” on page 7-26.

4. If you are using the @HandlerChain standard annotation in your JWS file, create the handler
chain configuration file.

See “Creating the Handler Chain Configuration File” on page 7-31.

5. Compile all handler classes in the handler chain and rebuild your Web Service.
See “Compiling and Rebuilding the Web Service” on page 7-32.

For information about creating client-side SOAP message handlers and handler chains, see
“Creating and Using Client-Side SOAP Message Handlers” on page 9-22.

Designing the SOAP Message Handlers and Handler Chains

When designing your SOAP message handlers and handler chains, you must decide:
e The number of handlers needed to perform all the work

e The sequence of execution

Programming Web Services for WebLogic Server 1-15

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

Each handler in a handler chain has one method for handling the request SOAP message and
another method for handling the response SOAP message. An ordered group of handlers is
referred to as a handler chain. You specify that a Web Service has a handler chain attached to it
with one of two JWS annotations: @HandlerChain or @S0APMessageHandler. When to use
which is discussed in a later section.

When invoking a Web Service, WebLogic Server executes handlers as follows:

1.

The handleRequest() methods of the handlers in the handler chain are all executed in the
order specified by the JWS annotation. Any of these handleRequest() methods might
change the SOAP message request.

When the handleRequest() method of the last handler in the handler chain executes,
WebLogic Server invokes the back-end component that implements the Web Service, passing
it the final SOAP message request.

When the back-end component has finished executing, the handleResponse() methods of
the handlers in the handler chain are executed in the reverse order specified in by the JWS
annotation. Any of these handleResponse () methods might change the SOAP message
response.

When the handleResponse () method of the first handler in the handler chain executes,
WebLogic Server returns the final SOAP message response to the client application that
invoked the Web Service.

For example, assume that you are going to use the @HandlerChain JWS annotation in your JWS
file to specify an external configuration file, and the configuration file defines a handler chain
called SimpleChain that contains three handlers, as shown in the following sample:

<jwshc:handler-config xmIns:jwshc="http://www_bea.com/xml/ns/jws"
xmlns:soapl="http://HandleriInfo.org/Serverl”
xmlns:soap2="http://HandleriInfo.org/Server2"
xmlns="http://java.sun.com/xml/ns/j2ee" >

<jwshc:handler-chain>

<jwshc:handler-chain-name>SimpleChain</jwshc:handler-chain-name>

<jwshc:handler>

<handler-name>handlerOne</handler-name>

<handler-class>examples.webservices.soap_handlers.global_handler.ServerHandler
1</handler-class>
</jwshc:handler>

1-16

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

<jwshc:handler>
<handler-name>handlerTwo</handler-name>

<handler-class>examples.webservices.soap_handlers.global_handler.ServerHandler
2</handler-class>
</jwshc:handler>

<jwshc:handler>
<handler-name>handlerThree</handler-name>

<handler-class>examples.webservices.soap_handlers.global_handler.ServerHandler
3</handler-class>
</jwshc:handler>

</jwshc:handler-chain>

</jwshc:handler-config>

The following graphic shows the order in which WebLogic Server executes the
handleRequest() and handleResponse() methods of each handler.

Figure 7-1 Order of Execution of Handler Methods0

handleRequest() handleRequest() handleRequest() \
Back-end
Component

(s

handleResponse() handleResponse() handleResponse()

Each SOAP message handler has a separate method to process the request and response SOAP
message because the same type of processing typically must happen for the inbound and
outbound message. For example, you might design an Encryption handler whose
handleRequest() method decrypts secure data in the SOAP request and handleResponse ()
method encrypts the SOAP response.

You can, however, design a handler that process only the SOAP request and does no equivalent
processing of the response.

You can also choose not to invoke the next handler in the handler chain and send an immediate
response to the client application at any point.

Programming Web Services for WebLogic Server 1-11

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

Creating the GenericHandler Class

Your SOAP message handler class should extend the
javax.rpc.xml _handler.GenericHandler abstract class, which itself implements the
javax.rpc.xml _handler_Handler interface.

The GenericHandler class is a convenience abstract class that makes writing handlers easy.
This class provides default implementations of the lifecycle methods init() and destroy()
and the various handlexxX() methods of the Handler interface. When you write your handler
class, only override those methods that you need to customize as part of your Handler
implementation class.

In particular, the Handler interface contains the following methods that you can implement in
your handler class that extends GenericHandler:

e init()

See “Implementing the Handler.init() Method” on page 7-20.
e destroy()

See “Implementing the Handler.destroy() Method” on page 7-21.
e getHeaders()

See “Implementing the Handler.getHeaders() Method” on page 7-21.
e handleRequest()

See “Implementing the Handler.handleRequest() Method” on page 7-21.
e handleResponse()

See “Implementing the Handler.handleResponse() Method” on page 7-23.
e handleFault()

See “Implementing the Handler.handleFault() Method” on page 7-24.

Sometimes you might need to directly view or update the SOAP message from within your
handler, in particular when handling attachments, such as image. In this case, use the
javax.xml .soap.SOAPMessage abstract class, which is part of the SOAP With Attachments
API for Java 1.1 (SAAJ) specification For details, see “Directly Manipulating the SOAP Request
and Response Message Using SAAJ” on page 7-25.

The following example demonstrates a simple SOAP message handler that prints out the SOAP
request and response messages to the WebLogic Server log file:

package examples.webservices.soap_handlers.global_handler;

7-18 Programming Web Services for WebLogic Server

import javax.
import javax.
import javax.
import javax.
import javax.
import javax.

Creating and Using SOAP Message Handlers

xml _namespace.QName;
xml.rpc.handler_Handlerinfo;

xml .rpc.handler_GenericHandler;

xml _rpc.handler _MessageContext;

xml . rpc.handler.soap.SOAPMessageContext;
xml . rpc.JAXRPCException;

import weblogic. logging.NonCataloglLogger;

/**

<p>

o % ok % X F

*/

public class

This class implements a handler in the handler chain, used to access the SOAP
request and response message.

This class extends the <code>javax.xml._rpc.handler.GenericHandler</code>
abstract classs and simply prints the SOAP request and response messages to
the server log file before the messages are processed by the backend

Java class that implements the Web Service itself.

ServerHandlerl extends GenericHandler {

private NonCataloglLogger log;

private HandlerInfo handlerinfo;

/**

* Initializes the instance of the handler. Creates a nonCataloglLogger to
* log messages to.

*/

public void init(Handlerinfo hi) {

log = new NonCataloglLogger (‘'WebService-LogHandler™);
handleriInfo = hi;

}
/**

* Specifies that the SOAP request message be logged to a log file before the

* message
*/

is sent to the Java class that implements the Web Service.

public boolean handleRequest(MessageContext context) {

SOAPMessageContext messageContext = (SOAPMessageContext) context;

System.out.printIn(’"** Request: "+messageContext.getMessage().-toString());
log. info(messageContext.getMessage() -toString());
return true;

Programming Web Services for WebLogic Server 1-19

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

/**

* Specifies that the SOAP response message be logged to a log file before the
* message is sent back to the client application that invoked the Web

* service.

*/

public boolean handleResponse(MessageContext context) {
SOAPMessageContext messageContext = (SOAPMessageContext) context;

System.out.printIn(*** Response: '"+messageContext.getMessage().toString());
log. info(messageContext.getMessage() -toString());
return true;

}

/**

* Specifies that a message be logged to the log File if a SOAP fault is
* thrown by the Handler instance.

*/

public boolean handleFault(MessageContext context) {
SOAPMessageContext messageContext = (SOAPMessageContext) context;

System.out.printIn(’"** Fault: "+messageContext.getMessage().toString());
log. info(messageContext.getMessage() - toString());
return true;

s
public QName[] getHeaders() {

return handleriInfo.getHeaders();

Implementing the Handler.init() Method

The Handler . init() method is called to create an instance of a Handler object and to enable
the instance to initialize itself. Its signature is:

public void init(HandlerInfo config) throws JAXRPCException {}

The HandlerInfo object contains information about the SOAP message handler, in particular
the initialization parameters. Use the Handler Info.getHandlerConfig() method to get the
parameters; the method returns a java.util .Map object that contains name-value pairs.

1-20 Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

Implement the init() method if you need to process the initialization parameters or if you have
other initialization tasks to perform.

Sample uses of initialization parameters are to turn debugging on or off, specify the name of a log
file to which to write messages or errors, and so on.

Implementing the Handler.destroy() Method

The Handler.destroy() method is called to destroy an instance of a Handler object. Its
signature is:

public void destroy() throws JAXRPCException {}

Implement the destroy() method to release any resources acquired throughout the handler’s
lifecycle.

Implementing the Handler.getHeaders() Method

The Handler .getHeaders() method gets the header blocks that can be processed by this
Handler instance. Its signature is:

public QName[] getHeaders(Q {}

Implementing the Handler.handleRequest() Method

The Handler .handleRequest() method is called to intercept a SOAP message request before
it is processed by the back-end component. Its signature is:

public boolean handleRequest(MessageContext mc)
throws JAXRPCException,SOAPFaultException {3}

Implement this method to perform such tasks as decrypting data in the SOAP message before it
is processed by the back-end component, and so on.

The MessageContext object abstracts the message context processed by the SOAP message
handler. The MessageContext properties allow the handlers in a handler chain to share
processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message request. The SOAP message request itself is stored in a
javax.xml .soap.SOAPMessage object. For detailed information on this object, see “Directly
Manipulating the SOAP Request and Response Message Using SAAJ” on page 7-25.

The SOAPMessageContext class defines two methods for processing the SOAP request:

Programming Web Services for WebLogic Server 1-21

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-22

e SOAPMessageContext.getMessage()returns a javax.xml .soap . SOAPMessage object

that contains the SOAP message request.

e SOAPMessageContext.setMessage(javax.xml .soap.SOAPMessage)updates the SOAP

message request after you have made changes to it.

After you code all the processing of the SOAP request, code one of the following scenarios:

o Invoke the next handler on the handler request chain by returning true.

The next handler on the request chain is specified as either the next <handler> subelement
of the <handler-chain> element in the configuration file specified by the
@HandlerChain annotation, or the next @S0APMessageHandler in the array specified by
the @SOAPMessageHandlers annotation. If there are no more handlers in the chain, the
method either invokes the back-end component, passing it the final SOAP message request,
or invokes the handleResponse() method of the last handler, depending on how you
have configured your Web Service.

Block processing of the handler request chain by returning false.

Blocking the handler request chain processing implies that the back-end component does
not get executed for this invoke of the Web Service. You might want to do this if you have
cached the results of certain invokes of the Web Service, and the current invoke is on the
list.

Although the handler request chain does not continue processing, WebLogic Server does
invoke the handler response chain, starting at the current handler. For example, assume
that a handler chain consists of two handlers: handlerA and handlerB, where the
handleRequest() method of handlerA is invoked before that of handlerB. If processing is
blocked in handlerA (and thus the handleRequest() method of handlerB is not invoked),
the handler response chain starts at handlerA and the handleRequest() method of
handlerB is not invoked either.

Throw the javax.xml.rpc.soap.SOAPFaultException to indicate a SOAP fault.

If the handleRequest() method throws a SOAPFaul tException, WebLogic Server
catches the exception, terminates further processing of the handler request chain, and
invokes the handleFault() method of this handler.

Throw a JAXRPCException for any handler-specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic Server catches
the exception, terminates further processing of the handler request chain, logs the exception
to the WebL ogic Server log file, and invokes the handleFault() method of this handler.

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

Implementing the Handler.handleResponse() Method

The Handler .handleResponse() method is called to intercept a SOAP message response after
it has been processed by the back-end component, but before it is sent back to the client
application that invoked the Web Service. Its signature is:

public boolean handleResponse(MessageContext mc) throws JAXRPCException {}

Implement this method to perform such tasks as encrypting data in the SOAP message before it
is sent back to the client application, to further process returned values, and so on.

The MessageContext object abstracts the message context processed by the SOAP message
handler. The MessageContext properties allow the handlers in a handler chain to share
processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message response. The SOAP message response itself is stored in a
javax.xml _soap-SOAPMessage object. See “Directly Manipulating the SOAP Request and
Response Message Using SAAJ” on page 7-25.

The SOAPMessageContext class defines two methods for processing the SOAP response:

e SOAPMessageContext.getMessage(): returns a javax.xml . soap . SOAPMessage object
that contains the SOAP message response.

e SOAPMessageContext.setMessage(javax.xml .soap.SOAPMessage): updates the
SOAP message response after you have made changes to it.

After you code all the processing of the SOAP response, code one of the following scenarios:

o Invoke the next handler on the handler response chain by returning true.

The next response on the handler chain is specified as either the preceding <handler>
subelement of the <handler-chain> element in the configuration file specified by the
@HandlerChain annotation, or the preceding @SOAPMessageHandler in the array
specified by the @SOAPMessageHandlers annotation. (Remember that responses on the
handler chain execute in the reverse order that they are specified in the JWS file. See
“Designing the SOAP Message Handlers and Handler Chains” on page 7-15 for more
information.)

If there are no more handlers in the chain, the method sends the final SOAP message
response to the client application that invoked the Web Service.

e Block processing of the handler response chain by returning false.

Programming Web Services for WebLogic Server 1-23

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-24

Blocking the handler response chain processing implies that the remaining handlers on the
response chain do not get executed for this invoke of the Web Service and the current
SOAP message is sent back to the client application.

e Throw a JAXRPCException for any handler specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic Server catches
the exception, terminates further processing of the handler request chain, logs the exception
to the WebL ogic Server logfile, and invokes the handleFault() method of this handler.

Implementing the Handler.handleFault() Method

The Handler .handleFault() method processes the SOAP faults based on the SOAP message
processing model. Its signature is:

public boolean handleFault(MessageContext mc) throws JAXRPCException {3}

Implement this method to handle processing of any SOAP faults generated by the
handleResponse() and handleRequest() methods, as well as faults generated by the
back-end component.

The MessageContext object abstracts the message context processed by the SOAP message
handler. The MessageContext properties allow the handlers in a handler chain to share
processing state.

Use the SOAPMessageContext sub-interface of MessageContext to get at or update the
contents of the SOAP message. The SOAP message itself is stored in a

javax.xml .soap.SOAPMessage object. See “Directly Manipulating the SOAP Request and
Response Message Using SAAJ” on page 7-25.

The SOAPMessageContext class defines the following two methods for processing the SOAP
message:

e SOAPMessageContext.getMessage(): returns a javax.xml .soap . SOAPMessage object
that contains the SOAP message.

e SOAPMessageContext.setMessage(javax.xml .soap.SOAPMessage): updates the
SOAP message after you have made changes to it.

After you code all the processing of the SOAP fault, do one of the following:

e Invoke the handleFault() method on the next handler in the handler chain by returning
true.

e Block processing of the handler fault chain by returning false.

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

Directly Manipulating the SOAP Request and Response Message Using SAAJ

The javax.xml . soap.SOAPMessage abstract class is part of the SOAP With Attachments API
for Java 1.1 (SAAJ) specification. You use the class to manipulate request and response SOAP
messages when creating SOAP message handlers. This section describes the basic structure of a
SOAPMessage object and some of the methods you can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual SOAP XML
document) and zero or more attachments.

Refer to the SAAJ Javadocs for the full description of the SOAPMessage class. For more
information on SAAJ, go to http://java.sun.com/xml/saaj/index.html.

The SOAPPart Object

The SOAPPart object contains the XML SOAP document inside of a SOAPEnve lope object. You
use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageContext object, provided by the Handler class, and get at its parts:

SOAPMessage soapMessage = messageContext.getMessage();
SOAPPart soapPart = soapMessage.getSOAPPart();
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
SOAPBody soapBody = soapEnvelope.getBody();

SOAPHeader soapHeader = soapEnvelope.getHeader();

The AttachmentPart Object

The javax.xml.soap.AttachmentPart object contains the optional attachments to the SOAP
message. Unlike the rest of a SOAP message, an attachment is not required to be in XML format
and can therefore be anything from simple text to an image file.

Caution: If you are going to access a java.awt . Image attachment from your SOAP message
handler, see “Manipulating Image Attachments in a SOAP Message Handler” on
page 7-26 for important information.

Use the following methods of the SOAPMessage class to manipulate the attachments:
e countAttachments(): returns the number of attachments in this SOAP message.

e getAttachments(): retrieves all the attachments (as AttachmentPart objects) into an
I'terator object.

Programming Web Services for WebLogic Server 1-25

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-26

e createAttachmentPart(): create an AttachmentPart object from another type of
Object.

e addAttachmentPart(): adds an AttachmentPart object, after it has been created, to the
SOAPMessage.

Manipulating Image Attachments in a SOAP Message Handler

It is assumed in this section that you are creating a SOAP message handler that accesses a
java.awt. Image attachment and that the Image has been sent from a client application that uses
the client JAX-RPC stubs generated by the clientgen Ant task.

In the client code generated by the clientgen Ant task, a java.awt. Image attachment is sent
to the invoked WebLogic Web Service with a MIME type of text/xml rather than image/gif,
and the image is serialized into a stream of integers that represents the image. In particular, the
client code serializes the image using the following format:

e int width
e int height
e int[] pixels

This means that, in your SOAP message handler that manipulates the received Image attachment,
you must deserialize this stream of data to then re-create the original image.

Configuring Handlers in the JWS File

There are two standard annotations you can use in your JWS file to configure a handler chain for
aWeb Service: @javax. jws.HandlerChainand @javax. jws.soap . SOAPMessageHandlers.

@javax.jws.HandlerChain

When you use the @javax. jws .HandlerChain annotation (also called @HandlerChain in this
chapter for simplicity) you use the file attribute to specify an external file that contains the
configuration of the handler chain you want to associate with the Web Service. The configuration
includes the list of handlers in the chain, the order in which they execute, the initialization
parameters, and so on.

Use the @HandlerChain annotation, rather than the @SOAPMessageHandlers annotation, in
your JWS file if one or more of the following conditions apply:

e You want multiple Web Services to share the same configuration.

e Your handler chain includes handlers for multiple transports.

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

e You want to be able to change the handler chain configuration for a Web Service without
recompiling the JWS file that implements it.

The following JWS file shows an example of using the @HandlerChain annotation; the relevant
Java code is shown in bold:

package examples.webservices.soap_handlers._global_handler;
import java.io.Serializable;

import javax.jws.HandlerChain;
import javax.jws.WebService;
import javax.jws.WebMethod;

import javax.jws.soap.SOAPBinding;

import weblogic. jws.WLHttpTransport;

@WebService(serviceName="HandlerChainService",
name=""HandlerChainPortType')

// Standard JWS annotation that specifies that the handler chain called
// "SimpleChain', configured in the HandlerConfig.xml file, should fire
// each time an operation of the Web Service is invoked.

@HandlerChain(Ffile="HandlerConfig.xml', name="SimpleChain'™)

@SOAPBiInding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

@WLHttpTransport(contextPath=""HandlerChain", serviceUri="HandlerChain",
portName=""HandlerChainServicePort')

* This JWS file forms the basis of simple Java-class implemented WeblLogic
* Web Service with a single operation: sayHello. The Web Service also

* has a handler chailn associated with it, as specified by the

* @HandlerChain annotation.

* <p>

* @author Copyright (c) 2005 by BEA Systems, Inc. All Rights Reserved.

*/

public class HandlerChainlmpl {

public String sayHello(String input) {
weblogic.utils._Debug.say("in backend component. input:" +input);

Programming Web Services for WebLogic Server 1-21

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-28

return + input + to you too!";

}

Before you use the @HandlerChain annotation, you must import it into your JWS file, as shown
in the preceding example.

Use the Fi le attribute of the @HandlerChain annotation to specify the name of the external file
that contains configuration information for the handler chain. The value of this attribute isa URL,
which may be relative or absolute. Relative URLSs are relative to the location of the JWS file at
the time you run the jwsc Ant task to compile the file.

Use the name attribute to specify the name of the handler chain in the configuration file that you
want to associate with the Web Service. The value of this attribute corresponds to the name
attribute of the <handler-chain> element in the configuration file.

WARNING: Itisan error to specify more than one @Hand lerChain annotation in asingle JWS
file. It is also an error to combine the @HandlerChain annotation with the
@SOAPMessageHandlers annotation.

For details about creating the external configuration file, see “Creating the Handler Chain
Configuration File” on page 7-31.

For additional detailed information about the standard JWS annotations discussed in this section,
see the Web Services Metadata for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

@javax.jws.soap.SOAPMessageHandlers

When you use the @javax. jws. soap.SOAPMessageHandlers (also called
@SOAPMessageHandlers in this section for simplicity) annotation, you specify, within the JWS
file itself, an array of SOAP message handlers (specified with the @S0APMessageHandler
annotation) that execute before and after the operations of a Web Service. The
@SOAPMessageHandler annotation includes attributes to specify the class name of the handler,
the initialization parameters, list of SOAP headers processed by the handler, and so on. Because
you specify the list of handlers within the JWS file itself, the configuration of the handler chain
is embedded within the Web Service.

Use the @SOAPMessageHandlers annotation if one or more of the following conditions apply:

e You prefer to embed the configuration of the handler chain inside the Web Service itself,
rather than specify the configuration in an external file.

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

e Your handler chain includes only SOAP handlers and none for any other transport.

e You prefer to recompile the JWS file each time you change the handler chain
configuration.

The following JWS file shows a simple example of using the @SOAPMessageHandlers
annotation; the relevant Java code is shown in bold:

package examples.webservices.soap_handlers._simple;
import java.io.Serializable;

import javax.jws.soap.SOAPMessageHandlers;
import javax.jws.soap.SOAPMessageHandler;
import javax.jws.soap.SOAPBinding;

import javax.jws.WebService;

import javax.jws.WebMethod;

import weblogic. jws_WLHttpTransport;

@WebService(name="SimpleChainPortType",
serviceName="SimpleChainService')

// Standard JWS annotation that specifies a list of SOAP message handlers
// that exeucte before and after an invocation of all operations in the
// Web Serice.

@SOAPMessageHandlers ({
@SOAPMessageHandler (

className=""examples.webservices.soap_handlers.simple.ServerHandlerl™),
@SOAPMessageHandler (

className=""examples.webservices.soap_handlers.simple.ServerHandler2™)

)

@SOAPBinding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

@WLHttpTransport(contextPath="SimpleChain', serviceUri="SimpleChain",
portName="'SimpleChainServicePort')

/**
* This JWS file forms the basis of simple Java-class implemented WebLogic

Programming Web Services for WebLogic Server 1-29

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-30

* Web Service with a single operation: sayHello. The Web Service also
* has a handler chailn associated with it, as specified by the

* @SOAPMessageHandler/s annotations.

* <p>

* @author Copyright (c) 2005 by BEA Systems, Inc. All Rights Reserved.
*/

public class SimpleChainimpl {
// by default all public methods are exposed as operations

public String sayHello(String input) {
weblogic.utils._Debug.say("in backend component. input:" +input);
return """ + input + to you too!";

}

Before you use the @SOAPMessageHandlers and @SOAPMessageHand ler annotations, you
must import them into your JWS file, as shown in the preceding example. Note that these
annotations are in the javax. jws.soap package.

The order in which you list the handlers (using the @S0APMessageHandler annotation) in the
@SOAPMessageHandlers array specifies the order in which the handlers execute: in forward
order before the operation, and in reverse order after the operation. The preceding example
configures two handlers in the handler chain, whose class names are
examples.webservices.soap_handlers.simple.ServerHandlerl and
examples.webservices.soap_handlers.simple.ServerHandler2

Use the initParams attribute of @SOAPMessageHandler to specify an array of initialization
parameters expected by a particular handler. Use the @ InitParam standard JWS annotation to
specify the name/value pairs, as shown in the following example:

@SOAPMessageHandler (
className = "examples.webservices.soap_handlers._.simple.ServerHandlerl",
initParams = { @InitParam(name="l1ogCategory', value="MyService'")}

)

The @SOAPMessageHandler annotation also includes the roles attribute for listing the SOAP
roles implemented by the handler, and the headers attribute for listing the SOAP headers
processed by the handler.

WARNING: Itis an error to combine the @S0APMessageHandlers annotation with the
@HandlerChain annotation.

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

For additional detailed information about the standard JWS annotations discussed in this section,
see the Web Services Metadata for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

Creating the Handler Chain Configuration File

If you decide to use the @Hand lerChain annotation in your JWS file to associate a handler chain
with a Web Service, you must create an external configuration file that specifies the list of
handlers in the handler chain, the order in which they execute, the initialization parameters, and
S0 on.

Because this file is external to the JWS file, you can configure multiple Web Services to use this
single configuration file to standardize the handler configuration file for all Web Services in your
enterprise. Additionally, you can change the configuration of the handler chains without needing
to recompile all your Web Services. Finally, if you include handlers in your handler chain that
use a non-SOAP transport, then you are required to use the @HandlerChain annotation rather
than the @SOAPMessageHandler annotation.

The configuration file uses XML to list one or more handler chains, as shown in the following
simple example:

<jwshc:handler-config xmlns:jwshc="http://www.bea.com/xml/ns/jws"

xmlns:soapl="http://HandleriInfo.org/Serverl"
xmIns:soap2="http://HandlerInfo.org/Server2"
xmIns="http://java.sun.com/xml/ns/j2ee" >
<jwshc:handler-chain>
<jwshc:handler-chain-name>SimpleChain</jwshc:handler-chain-name>
<jwshc:handler>

<handler-name>handlerl</handler-name>

<handler-class>examples.webservices.soap_handlers.global_handler.ServerHandler
1</handler-class>

</jwshc:handler>
<jwshc:handler>
<handler-name>handler2</handler-name>

<handler-class>examples.webservices.soap_handlers.global_handler.ServerHandler
2</handler-class>

</jwshc:handler>
</jwshc:handler-chain>

</jwshc:handler-config>

In the example, the handler chain called SimpleChaiin contains two handlers: handlerl and
handler2, implemented with the class names specified with the <handler-class> element.

Programming Web Services for WebLogic Server 1-31

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-32

The two handlers execute in forward order before the relevant Web Service operation executes,
and in reverse order after the operation executes.

Use the <init-param>, <soap-role>, and <soap-header> child elements of the <handler>
element to specify the handler initialization parameters, SOAP roles implemented by the handler,
and SOAP headers processed by the handler, respectively.

For the XML Schema that defines the external configuration file, additional information about
creating it, and additional examples, see the Web Services Metadata for the Java Platform
specification at http://www.jcp.org/en/jsr/detail?id=181.

Compiling and Rebuilding the Web Service

It is assumed in this section that you have a working bui I1d.xm1 Ant file that compiles and builds
your Web Service, and you want to update the build file to include handler chain. See Chapter 4,
“Iterative Development of WebLogic Web Services,” for information on creating this

bui ld.xml file.

Follow these guidelines to update your development environment to include message handler
compilation and building:

o After you have updated the JWS file with either the @HandlerChain or
@SOAPMessageHandlers annotation, you must rerun the jwsc Ant task to recompile the
JWS file and generate a new Web Service. This is true anytime you make a change to an
annotation in the JWS file.

If you used the @HandlerChain annotation in your JWS file, reran the jwsc Ant task to
regenerate the Web Service, and subsequently changed only the external configuration file,
you do not need to rerun jwsc for the second change to take affect.

e The jwsc Ant task compiles SOAP message handler Java files into handler classes (and
then packages them into the generated application) if all the following conditions are true:

— The handler classes are referenced in the @HandlerChain or
@SOAPMessageHandler(s) annotations of the JWS file.

— The Java files are located in the directory specified by the sourcepath attribute.
— The classes are not currently in your CLASSPATH.

If you want to compile the handler classes yourself, rather than let jwsc compile them
automatically, ensure that the compiled classes are in your CLASSPATH before you run
the jwsc Ant task.

Programming Web Services for WebLogic Server

Creating and Using SOAP Message Handlers

e You deploy and invoke a Web Service that has a handler chain associated with it in the
same way you deploy and invoke one that has no handler chain. The only difference is that
when you invoke any operation of the Web Service, the WebLogic Web Services runtime
executes the handlers in the handler chain both before and after the operation invoke.

Programming Web Services for WebLogic Server 1-33

Advanced JWS Programming: JMS Transport and SOAP Message Handlers

1-34 Programming Web Services for WebLogic Server

CHAPTERa

Data Types and Data Binding

The following sections provide information about supported data types (both built-in and
user-defined) and data binding:

e “Overview of Data Types and Data Binding” on page 8-1
e “Supported Built-In Data Types” on page 8-2
e “Supported User-Defined Data Types” on page 8-6

Overview of Data Types and Data Binding

As in previous releases, WebLogic Web Services support a full set of built-in XML Schema,
Java, and SOAP types, as specified by the JAX-RPC 1.1 specification, that you can use in your
Web Service operations without performing any additional programming steps. Built-in data
types are those such as integer, string, and time.

Additionally, you can use a variety of user-defined XML and Java data types, including Apache
XmlBeans (in package org.apache .xmlbeans), as input parameters and return values of your
Web Service. User-defined data types are those that you create from XML Schema or Java
building blocks, such as <xsd:complexType> or JavaBeans. The WebLogic Web Services Ant
tasks, such as jwsc and clientgen, automatically generate the data binding artifacts needed to
convert the user-defined data types between their XML and Java representations. The XML
representation is used in the SOAP request and response messages, and the Java representation is
used in the JWS that implements the Web Service. The conversion of data between its XML and
Java representations is called data binding.

Programming Web Services for WebLogic Server 8-1

Data Types and Data Binding

WARNING: As of WebLogic Server 9.1, using XMLBeans 1.X data types (in other words,
extensions of com.bea.xml .XmlObject) as parameters or return types of a
WebLogic Web Service is deprecated. New applications should use XMLBeans
2.X data types.

Supported Built-In Data Types

The following sections describe the built-in data types supported by WebLogic Web Services and
the mapping between their XML and Java representations. As long as the data types of the
parameters and return values of the back-end components that implement your Web Service are
in the set of built-in data types, WebLogic Server automatically converts the data between XML
and Java.

If, however, you use user-defined data types, then you must create the data binding artifacts that
convert the data between XML and Java.WebLogic Server includes the jwsc and wsdl12c Ant
tasks that can automatically generate the data binding artifacts for most user-defined data types.
See “Supported User-Defined Data Types” on page 8-6 for a list of supported XML and Java data
types.

XML-to-Java Mapping for Built-In Data Types

The following table lists the supported XML Schema data types (target namespace
http://www.w3.0rg/2001/XMLSchema) and their corresponding Java data types.

For a list of the supported user-defined XML data types, see “Java-to-XML Mapping for Built-In
Data Types” on page 8-4.

Table 8-1 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)
boolean boolean
byte byte
short short
int int
long long
8-2 Programming Web Services for WebLogic Server

Supported Built-In Data Types

Tahle 8-1 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

float float

double double

integer java.math.BigInteger

decimal java.math.BigDecimal

string java.lang.String

dateTime java.util.Calendar

base64Binary byte[]

hexBinary byte[]

duration java.lang.String

time java.util.Calendar

date java.util.Calendar

gYearMonth java.lang.String

gYear java.lang.String

gMonthDay java.lang.String

gDay java.lang.String

gMonth java.lang.String

anyURI java.net.URI

NOTATION java.lang.String

token java.lang.String

normalizedString

java.lang.String

language

java.lang.String

Name

java.lang.String

Programming Web Services for WebLogic Server

Data Types and Data Binding

Tahle 8-1 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

NMTOKEN java.lang.String

NCName java.lang.String

NMTOKENS java.lang.String[]

ID java.lang.String

IDREF java.lang.String

ENTITY java.lang.String

IDREFS java.lang.String[]

ENTITIES java.lang.String[]

nonPositivelnteger

java.math.BigInteger

nonNegativelnteger

java.math.BigInteger

negativelnteger

java.math.BiglInteger

unsignedLong

java.math.BigInteger

positivelnteger

java.math.BiglInteger

unsignedint long

unsignedShort int

unsignedByte short

Qname javax.xml.namespace.QName

Java-to-XML Mapping for Built-In Data Types

For a list of the supported user-defined Java data types, see “Supported Java User-Defined Data
Types” on page 8-8.

8-4 Programming Web Services for WebLogic Server

Supported Built-In Data Types

Table 8-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates a Equivalent XML Schema Data Type

primitive data type)

int int
short short
long long
float float
double double
byte byte
boolean boolean
char string (with facet of length=1)
java.lang.Integer int
java.lang.Short short
java.lang.Long long
java.lang.Float float
java.lang.Double double
java.lang.Byte byte
java.lang.Boolean boolean

java.lang.Character

string (with facet of length=1)

java.lang.String string
java.math.BigInteger integer
java.math.BigDecimal decimal
java.util.Calendar dateTime
java.util.Date dateTime

Programming Web Services for WebLogic Server

Data Types and Data Binding

Tahle 8-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates a

Equivalent XML Schema Data Type

primitive data type)

byte[] base64Binary
javax.xml.namespace.QName Qname
java.net.URI anyURI

Supported User-Defined Data Types

The tables in the following sections list the user-defined XML and Java data types for which the
jJwsc and wsdlc Ant tasks can automatically generate data binding artifacts, such as the
corresponding Java or XML representation, the JAX-RPC type mapping file, and so on.

8-6

If your XML or Java data type is not listed in these tables, and it is not one of the built-in data
types listed in “Supported Built-In Data Types” on page 8-2, then you must create the

user-defined data type artifacts manually.

Supported XML User-Defined Data Types

The following table lists the XML Schema data types supported by the jwsc and wsd I c Ant tasks
and their equivalent Java data type or mapping mechanism.

For details and examples of the data types, see the JAX-RPC specification.

Tahle 8-3 Supported User-Defined XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or Mapping
Mechanism

<xsd:complexType> with elements of both JavaBean

simple and complex types.

<xsd:complexType> with simple content. JavaBean

<xsd:attribute>in
<xsd:complexType>

Property of a JavaBean

Derivation of new simple types by restriction of
an existing simple type.

Equivalent Java data type of simple type.

Programming Web Services for WebLogic Server

Supported User-Defined Data Types

Tahle 8-3 Supported User-Defined XML Schema Data Types

XML Schema Data Type

Equivalent Java Data Type or Mapping
Mechanism

Facets used with restriction element.

Facets not enforced during serialization
and deserialization.

<xsd:list>

Aurray of the list data type.

Array derived from soapenc:Array by
restriction using the wsdl zarrayType
attribute.

Array of the Java equivalent of the
arrayType data type.

Array derived from soapenc:Array by
restriction.

Array of Java equivalent.

Derivation of a complex type from a simple
type.

JavaBean with a property called _value
whose type is mapped from the simple
type according to the rules in this section.

<xsd:anyType>

java.lang.Object

<xsd:any>

Javax.xml .soap.SOAPElement or
org.apache.xmlbeans.XmlObjec
t

<xsd:any[]1>

Javax.xml _.soap.SOAPElement[]
or
org.apache.xmlbeans.XmlObjec

t[]

<xsd:union>

Common parent type of union members.

<xsi:nil>and <xsd:nillable> attribute

Java nul I value.

If the XML data type is built-in and
usually maps to a Java primitive data type
(such as int or short), then the XML
data type is actually mapped to the
equivalent object wrapper type (such as
java.lang. Integer or

java. lang.Short).

Derivation of complex types

Mapped using Java inheritance.

Abstract types

Abstract Java data type.

Programming Web Services for WebLogic Server 8-7

Data Types and Data Binding

8-8

Supported Java User-Defined Data Types

The following table lists the Java user-defined data types supported by the jwsc and wsdlc Ant
tasks and their equivalent XML Schema data type.

Table 8-4 Supported User-Defined Java Data Types

Java Data Type Equivalent XML Schema Data Type

JavaBean whose properties are any supported <xsd:complexType> whose content

data type. model is a <xsd:sequence> of
elements corresponding to JavaBean
properties.

Array and multidimensional array of any An element in a <xsd:complexType>

supported data type (when used as a JavaBean with the maxOccurs attribute set to

property) unbounded.

java.lang.Object <xsd:anyType>

Note: The data type of the runtime object
must be a known type.

Apache XMLBeans (in package See Apache XMLBeans.
org.apache.xmlbeans)

Note: The Web Service that uses an Apache
XMLBeans data type as a return type
or parameter must be defined as
document-literal-wrapped or
document-literal-bare.

java.util.Collection Literal Array
java.util.List Literal Array
java.util. ArrayList Literal Array
java.util.LinkedList Literal Array
java.util.Vector Literal Array
java.util.Stack Literal Array
java.util.Set Literal Array
java.util. TreeSet Literal Array

Programming Web Services for WebLogic Server

Supported User-Defined Data Types

Table 8-4 Supported User-Defined Java Data Types

Java Data Type Equivalent XML Schema Data Type
java.utils.SortedSet Literal Array
java.utils.HashSet Literal Array

Note: The following user-defined Java data type, used as a parameter or return value of a
WebLogic Web Service in Version 8.1, is no longer supported:

e JAX-RPC-style enumeration class

Additionally, generics are not supported when used as a parameter or return value. For
example, the following Java method cannot be exposed as a public operation:

public ArrayList<String> echoGeneric(ArrayList<String> in) {
return in;

}

Programming Web Services for WebLogic Server 8-9

Data Types and Data Binding

8-10 Programming Web Services for WebLogic Server

Invoking Web Services

The following sections describe how to invoke WebLogic Web Services:
e “Overview of Web Services Invocation” on page 9-1
e “Invoking a Web Service from a Stand-alone Client: Main Steps” on page 9-4
e “Invoking a Web Service from Another Web Service” on page 9-12
e “Using a Proxy Server When Invoking a Web Service” on page 9-18
e “Client Considerations When Redeploying a Web Service” on page 9-21
e “Creating and Using Client-Side SOAP Message Handlers” on page 9-22
e “Using a Client-Side Security WS-Policy File” on page 9-27
e “WebLogic Web Services Stub Properties” on page 9-32

Note: The following sections do not include information about invoking message-secured Web
Services; for that topic, see the message security section, in particular “Updating a Client
Application to Invoke a Message-Secured Web Service” on page 10-41.

Overview of Web Services Invocation

Invoking a Web Service refers to the actions that a client application performs to use the Web
Service. Client applications that invoke Web Services can be written using any technology: Java,
Microsoft .NET, and so on.

Programming Web Services for WebLogic Server 9-1

Invoking Web Services

9-2

Note: Inthis context, a client application can be two types of clients: One is a stand-alone client
that uses the WebLogic client classes to invoke a Web Service hosted on WebLogic
Server or on other application servers. In this document, a stand-alone client is a client
that has a runtime environment independent of WebLogic Server. The other type of client
application that invokes a Web Service runs inside a J2EE component deployed to
WebLogic Server, such as an EJB or another Web Service.

The sections that follow describe how to use BEA’s implementation of the JAX-RPC
specification (Version 1.1) to invoke a Web Service from a Java client application. You can use
this implementation to invoke Web Services running on any application server, both WebLogic
and non-WebL ogic. In addition, you can create a stand-alone client application or one that runs
as part of a WebLogic Server.

WARNING: You cannot use a dynamic client to invoke a Web Service operation that
implements user-defined data types as parameters or return values. A dynamic
client uses the JAX-RPC Call interface. Standard (static) clients use the Service
and Stub JAX-RPC interfaces, which correctly invoke Web Services that
implement user-defined data types.

Types of Client Applications

This section describes two different types of client applications:

e Stand-alone—A stand-alone client application, in its simplest form, is a Java program that
has the Main public class that you invoke with the java command. It runs completely
separately from WebLogic Server.

e A J2EE component deployed to WebLogic Server—In this type of client application, the
Web Service invoke is part of the code that implements an EJB, servlet, or another Web
Service. This type of client application, therefore, runs inside a WebLogic Server
container.

JAX-RPC

The Java API for XML based RPC (JAX-RPC) is a Sun Microsystems specification that defines
the APIs used to invoke a Web Service. WebLogic Server implements the JAX-RPC 1.1
specification.

The following table briefly describes the core JAX-RPC interfaces and classes.

Programming Web Services for WebLogic Server

Overview of Web Services Invocation

Table 9-1 JAX-RPC Interfaces and Classes

javax.xmlrpc Interface Description

or Class

Service Main client interface.

ServiceFactory Factory class for creating Service instances.

Stub Base class of the client proxy used to invoke the operations of a

Web Service.

Call Used to dynamically invoke a Web Service.

Note: For Dynamic Invocation Interface (DIl) Web Service
clients to use WebLogic Server 9.x Web Service stack,
you must specify the system propery
-Djavax.xml.rpc.ServiceFactory =
weblogic.wsee. jaxrpc.ServiceFactorylm
pl.

JAXRPCEXxception Exception thrown if an error occurs while invoking a Web

Service.

For detailed information on JAX-RPC, see http://java.sun.com/xml/jaxrpc/index.html.

The clientgen Ant Task

The clientgen WebLogic Web Services Ant task generates, from an existing WSDL file, the
client artifacts that client applications use to invoke both WebLogic and non-WebLogic Web
Services. These artifacts include:

e The Java source code for the JAX-RPC Stub and Service interface implementations for
the particular Web Service you want to invoke.

e The Java source code for any user-defined XML Schema data types included in the WSDL
file.

e The JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java user-defined data types and their corresponding XML Schema
types in the WSDL file.

Programming Web Services for WebLogic Server 9-3

Invoking Web Services

e A client-side copy of the WSDL file.

For additional information about the clientgen Ant task, such as all the available attributes, see
Appendix A, “Ant Task Reference.”

WARNING: The fully qualified name of the clientgen Ant task supported in this release of
WebLogic Serverisweblogic.wsee.tools.anttasks.ClientGenTask. This
is different from the clientgen Ant task supported in version 8.1 of WebLogic
Server, which is weblogic.webservice.clientgen.

Although the 8.1 clientgen Ant task is still provided in this release of WebLogic
Server, itis deprecated. If you want to generate the client artifacts to invoke a 9.X
WebLogic Web Service, be sure you use the 9.X version of clientgen and not
the 8.1 version. For example, if you have upgraded an 8.1 Web Service to 9.2,
but your Ant scripts explicitly call the 8.1 clientgen Ant task by specifying its
fully qualified name, then you must update your Ant scripts to call the 9.X
clientgen instead.

Examples of Clients That Invoke Web Services

WebLogic Server includes examples of creating and invoking WebLogic Web Services in the
WL_HOME/samples/server/examples/src/examples/webservices directory, where
WL_HOME refers to the main WebLogic Server directory.

For detailed instructions on how to build and run the examples, open the
WL_HOME/samples/server/docs/index.html Web page in your browser and expand the
WebL ogic Server Examples->Examples->AP1->Web Services node.

Invoking a Web Service from a Stand-alone Client: Main
Steps

9-4

In the following procedure it is assumed that you use Ant in your development environment to
build your client application, compile Java files, and so on, and that you have an existing
bui Id.xml file that you want to update with Web Services client tasks.

For general information about using Ant in your development environment, see “Creating the
Basic Ant build.xml File” on page 4-7. For a full example of a bui Id.xml file used in this
section, see “Sample Ant Build File for a Stand-Alone Java Client” on page 9-11.

To create a Java stand-alone client application that invokes a Web Service:

1. Open a command shell and set your environment.

Programming Web Services for WebLogic Server

Invoking a Web Service from a Stand-alone Client: Main Steps

On Windows NT, execute the setDomainEnv.cmd command, located in your domain
directory. The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setDomainEnv.sh command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

Update your bui Id.xml file to execute the clientgen Ant task to generate the needed
client-side artifacts to invoke a Web Service.

See “Using the clientgen Ant Task To Generate Client Artifacts” on page 9-5.

. Get information about the Web Service, such as the signature of its operations and the name
of the ports.

See “Getting Information About a Web Service” on page 9-6.

. Write the client application Java code that includes code for invoking the Web Service
operation.

See “Writing the Java Client Application Code to Invoke a Web Service” on page 9-8.

. Compile and run your Java client application.

See “Compiling and Running the Client Application” on page 9-9.

Using the clientgen Ant Task To Generate Client Artifacts

Update your bui Id.xml file, adding a call to the clientgen Ant task, as shown in the following
example:

<taskdef name="'clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<target name="build-client'>

<clientgen
wsdl=""http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="clientclasses"
packageName=""examples.webservices.simple_client"/>

</target>

Programming Web Services for WebLogic Server 9-5

Invoking Web Services

9-6

Before you can execute the clientgen WebLogic Web Service Ant task, you must specify its
full Java classname using the standard taskdef Ant task.

You must include the wsdl and destDir attributes of the clientgen Ant task to specify the
WSDL file from which you want to create client-side artifacts and the directory into which these
artifacts should be generated. The packageName attribute is optional; if you do not specify it, the
clientgen task uses a package name based on the targetNamespace of the WSDL.

Note: The clientgen Ant task also provides the destFile attribute if you want the Ant task
to automatically compile the generated Java code and package all artifacts into a JAR file.
For details and an example, see “clientgen” on page A-5.

If the WSDL file specifies that user-defined data types are used as input parameters or return
values of Web Service operations, clientgen automatically generates a JavaBean class that is
the Java representation of the XML Schema data type defined in the WSDL. The JavaBean
classes are generated into the destDir directory.

Note: The package of the Java user-defined data type is based on the XML Schema of the data
type in the WSDL, which is different from the package name of the JAX-RPC stubs.

See “Sample Ant Build File for a Stand-Alone Java Client” on page 9-11 for a full sample

build.xml file that contains additional targets from those described in this procedure, such as
clean.

To execute the clientgen Ant task, along with the other supporting Ant tasks, specify the
build-client target at the command line:

prompt> ant build-client

See the clientclasses directory to view the files and artifacts generated by the clientgen Ant
task.

Getting Information About a Weh Service

You need to know the name of the Web Service and the signature of its operations before you
write your Java client application code to invoke an operation. There are a variety of ways to find
this information.

The best way to get this information is to use the clientgen Ant task to generate the Web
Service-specific JAX-RPC stubs and look at the generated * . java files. These files are generated
into the directory specified by the destDi r attribute, with subdirectories corresponding to either
the value of the packageName attribute, or, if this attribute is not specified, to a package based on
the targetNamespace of the WSDL.

Programming Web Services for WebLogic Server

Invoking a Web Service from a Stand-alone Client: Main Steps

e The ServiceName. java source file contains the getPortName () methods for getting the
Web Service port, where ServiceName refers to the name of the Web Service and
PortName refers to the name of the port. If the Web Service was implemented with a JWS
file, the name of the Web Service is the value of the serviceName attribute of the
@webService JWS annotation and the name of the port is the value of the portName
attribute of the @WLHttpTransport annotation.

e The PortType . java file contains the method signatures that correspond to the public
operations of the Web Service, where PortType refers to the port type of the Web Service.
If the Web Service was implemented with a JWS file, the port type is the value of the name
attribute of the @webService JWS annotation.

You can also examine the actual WSDL of the Web Service; see “Browsing to the WSDL of the
Web Service” on page 4-17 for details about the WSDL of a deployed WebLogic Web Service.
The name of the Web Service is contained in the <service> element, as shown in the following
excerpt of the TraderService WSDL.:

<service name="'TraderService'>
<port name="TraderServicePort"
binding=""tns:TraderServiceSoapBinding">

</port>
</service>

The operations defined for this Web Service are listed under the corresponding <binding>
element. For example, the following WSDL excerpt shows that the TraderService Web
Service has two operations, buy and sel 1 (for clarity, only relevant parts of the WSDL are
shown):

<binding name="TraderServiceSoapBinding" ...>
<operation name="'sell'>
</operation>
<operation name="buy">

</operation>
</binding>

Programming Web Services for WebLogic Server 9-7

Invoking Web Services

Writing the Java Client Application Code to Invoke a Weh
Service

In the following code example, a stand-alone application invokes a Web Service operation.

The client application takes a single argument: the WSDL of the Web Service. The application
then uses standard JAX-RPC API code and the Web Service-specific implementation of the
Service interface, generated by clientgen, to invoke an operation of the Web Service.

The example also shows how to invoke an operation that has a user-defined data type
(examples.webservices.complex.BasicStruct) as an input parameter and return value.
The clientgen Ant task automatically generates the Java code for this user-defined data type.

package examples.webservices.simple_client;
import java.rmi.RemoteException;
import javax.xml_rpc.ServiceException;

// import the BasicStruct class, used as a param and return value of the
// echoComplexType operation. The class is generated automatically by
// the clientgen Ant task.

import examples.webservices.complex.BasicStruct;

/**
* This iIs a simple stand-alone client application that invokes the
* the echoComplexType operation of the ComplexService Web service.

*

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public class Main {

public static void main(String[] args)
throws ServiceException, RemoteException{

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
ComplexPortType port = service.getComplexServicePort();

BasicStruct in = new BasicStruct();

in.setintvalue(999);
in.setStringValue("'Hello Struct™);

BasicStruct result = port.echoComplexType(in);

System.out.printIn('echoComplexType called. Result: " + result.getintvalue()
+ ", " + result.getStringValue());

9-8 Programming Web Services for WebLogic Server

Invoking a Web Service from a Stand-alone Client: Main Steps

In the preceding example:

e The following code shows how to create a ComplexPortType stub:

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
ComplexPortType port = service.getComplexServicePort();

The ComplexService_Impl stub factory implements the JAX-RPC Service interface.

The constructor of ComplexService_Impl creates a stub based on the provided WSDL

URI (args[0] + "?WSDL"). The getComplexServicePort() method is used to return
an instance of the ComplexPortType stub implementation.

e The following code shows how to invoke the echoComplexType operation of the
ComplexService Web Service:

BasicStruct result = port.echoComplexType(in);
The echoComplexType operation returns the user-defined data type called BasicStruct.

The method of your application that invokes the Web Service operation must throw or catch
jJava.rmi .RemoteException and javax.xml .rpc.ServiceException, both of which are
thrown from the generated JAX-RPC stubs.

Compiling and Running the Client Application

Add javac tasks to the bui Id-client target in the bui 1d.xml file to compile all the Java files
(both of your client application and those generated by clientgen) into class files, as shown by
the bold text in the following example

<target name="build-client'>

<clientgen
wsdl="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="clientclasses"
packageName=""examples.webservices.simple_client"/>

<javac
srcdir="clientclasses"

destdir=""clientclasses"
includes="**/*_java'/>

<javac
srcdir="src"

Programming Web Services for WebLogic Server 9-9

Invoking Web Services

9-10

destdir=""clientclasses"
includes="examples/webservices/simple_client/*.java'/>

</target>

In the example, the first javac task compiles the Java files in the clientclasses directory that
were generated by clientgen, and the second javac task compiles the Java files in the
examples/webservices/simple_client subdirectory of the current directory; where it is
assumed your Java client application source is located.

In the preceding example, the clientgen-generated Java source files and the resulting compiled
classes end up in the same directory (clientclasses). Although this might be adequate for
proto-typing, it is often a best practice to keep source code (even generated code) in a different
directory from the compiled classes. To do this, set the destdir for both javac tasks to a
directory different from the srcdir directory. You must also copy the following
clientgen-generated files from clientgen’s destination directory to javac’s destination
directory, keeping the same sub-directory hierarchy in the destination:

packageName/ServiceName_internaldd.xml
packageName/ServiceName_java_wsdl_mapping.xml
packageName/ServiceName_saved_wsdl .wsdl

where packageName refers to the subdirectory hierarchy that corresponds to the package of the
generated JAX-RPC stubs and ServiceName refers to the name of the Web Service.

To run the client application, add a run target to the bui 1d.xml that includes a call to the java
task, as shown below:

<path id="client.class.path">
<pathelement path="clientclasses'/>
<pathelement path="${java.class.path}"/>
</path>

<target name="run" >
<java
fork=""true"
classname=""examples.webServices.simple_client_Main"
failonerror=""true" >
<classpath refid=""client.class.path'/>
<arg

Programming Web Services for WebLogic Server

Invoking a Web Service from a Stand-alone Client: Main Steps

line="http://${wls_hostname}:${wls.port}/complex/ComplexService" />
</java>

</target>

The path task adds the clientclasses directory to the CLASSPATH. The run target invokes
the Main application, passing it the URL of the deployed Web Service as its single argument.

See “Sample Ant Build File for a Stand-Alone Java Client” on page 9-11 for a full sample
build.xml file that contains additional targets from those described in this procedure, such as
clean.

Rerun the bui Id-client target to regenerate the artifacts and recompile into classes, then
execute the run target to invoke the echoStruct operation:

prompt> ant build-client run

You can use the build-client and run targets in the bui ld.xml file to iteratively update,
rebuild, and run the Java client application as part of your development process.

Sample Ant Build File for a Stand-Alone Java Client

The following example shows a complete bui Id.xml file for generating and compiling a
stand-alone Java client. See “Using the clientgen Ant Task To Generate Client Artifacts” on
page 9-5 and “Compiling and Running the Client Application” on page 9-9 for explanations of
the sections in bold.

<project name="webservices-simple_client" default="all">
<I-- set global properties for this build -->

<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="example-output" value="output" />
<property name="clientclass-dir" value="${example-output}/clientclass” />

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}'"/>
</path>

<taskdef name="'clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

Programming Web Services for WebLogic Server 9-11

Invoking Web Services

<target name='"clean" >
<delete dir="${clientclass-dir}'"/>
</target>

<target name="all" depends="clean,build-client,run" />
<target name="build-client'>

<clientgen
wsdl=""http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.simple_client"/>

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes=""**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/simple_client/*.java'/>

</target>

<target name="run" >
<java fork=""true"
classname=""examples.webservices.simple_client_Main"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg line="http://${wls._hostname}:${wls.port}/complex/ComplexService"
/>
</java>
</target>

</project>

Invoking a Web Service from Another Web Service

Invoking a Web Service from within a WebLogic Web Service is similar to invoking one from a
stand-alone Java application, as described in “Invoking a Web Service from a Stand-alone Client:
Main Steps” on page 9-4. However, instead of using the clientgen Ant task to generate the
JAX-RPC stubs of the Web Service to be invoked, you use the <clientgen> child element of
the <jws> element, inside the jwsc Ant task that compiles the invoking Web Service. In the JWS
file that invokes the other Web Service, however, you still use the same standard JAX-RPC APIs

9-12 Programming Web Services for WebLogic Server

Invoking a Web Service from Another Web Service

to get Service and PortType instances to invoke the Web Service operations. This section
describes the differences between invoking a Web Service from a client in a J2EE component and
invoking from a stand-alone client.

It is assumed that you have read and understood “Invoking a Web Service from a Stand-alone
Client: Main Steps” on page 9-4. It is also assumed that you use Ant in your development
environment to build your client application, compile Java files, and so on, and that you have an
existing bui 1d.xml that builds a Web Service that you want to update to invoke another Web
Service.

The following list describes the changes you must make to the bui Id.xml file that builds your
client Web Service, which will invoke another Web Service. See “Sample build.xml File for a
Web Service Client” on page 9-14 for the full sample bui ld.xml file:

e Add a <clientgen> child element to the <jws> element that specifies the JWS file that
implements the Web Service that invokes another Web Service. Set the required wsdl
attribute to the WSDL of the Web Service to be invoked. Set the required packageName
attribute to the package into which you want the JAX-RPC client stubs to be generated.

The following bullets describe the changes you must make to the JWS file that implements the
client Web Service; see “Sample JWS File That Invokes a Web Service” on page 9-16 for the full
JWS file example.

e Import the files generated by the <clientgen> child element of the jwsc Ant task. These
include the JAX-RPC stubs of the invoked Web Service, as well as the Java representation
of any user-defined data types used as parameters or return values in the operations of the
invoked Web Service.

Note: The user-defined data types are generated into a package based on the XML Schema
of the data type in the WSDL, not in the package specified by clientgen. The
JAX-RPC stubs, however, use the package name specified by the packageName
attribute of the <clientgen> element.

e Update the method that contains the invoke of the Web Service to either throw or catch
both java.rmi.RemoteException and javax.xml .rpc.ServiceException.

e Get the Service and PortType JAX-RPC stubs and invoke the operation on the port as
usual; see “Writing the Java Client Application Code to Invoke a Web Service” on
page 9-8 for details.

Programming Web Services for WebLogic Server 9-13

Invoking Web Services

Sample build.xml File for a Web Service Client

The following sample bui Id.xml file shows how to create a Web Service that itself invokes
another Web Service; the relevant sections that differ from the bui Id.xml for building a simple
Web Service that does not invoke another Web Service are shown in bold.

The bui Id-service target in this case is very similar to a target that builds a simple Web
Service; the only difference is that the jwsc Ant task that builds the invoking Web Service also
includes a <clientgen> child element of the <jws> element so that jwsc also generates the
required JAX-RPC client stubs.

<project name="‘webservices-service_to_service" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server._name" value="myserver" />

<property name="ear.deployed.name"™ value="ClientServiceEar" />

<property name="example-output" value="output" />

<property name="ear-dir" value="${example-output}/ClientServiceEar" />
<property name="clientclass-dir" value="${example-output}/clientclasses" />

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}'"/>
</path>

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="'clientgen"
classname=""weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends="clean,build-service,deploy,client” />
<target name=''clean" depends="undeploy'>

<delete dir="${example-output}"/>
</target>

<target name="build-service">

9-14 Programming Web Services for WebLogic Server

Invoking a Web Service from Another Web Service

<jwsc
srcdir="src"
destdir="${ear-dir}" >

<jws
Ffile="examples/webservices/service_to_service/ClientServicelmpl.java">
<clientgen

wsdI=""http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
packageName=""examples.webservices.service_to_service" />
</jws>

</jwsc>
</target>

<target name="deploy">
<wldeploy action="deploy" name="${ear.deployed.name}"
source="${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls._port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name="${ear.deployed.name}"

failonerror="false"
user="${wls._username}"
password="${wls_.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server._name}" />

</target>

<target name="client">

<clientgen
wsdI="http://${wls_hostname}:${wls.port}/ClientService/ClientService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.service_to_service.client"/>

<javac
srcdir="${clientclass-dir}" destdir="%{clientclass-dir}"
includes="**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes=""examples/webservices/service_to_service/client/**/*_java"/>

</target>

Programming Web Services for WebLogic Server 9-15

Invoking Web Services

<target name="run">
<java classname="examples.webservices.service_to_service.client.Main"
fork=""true"
failonerror="true" >
<classpath refid="client.class.path'/>
<arg

line="http://${wls_hostname}:${wls.port}/ClientService/ClientService'/>
</java>
</target>

</project>

Sample JWS File That Invokes a Web Service

The following sample JWS file, called ClientServicelmpl . java, implements a Web Service
called ClientService that has an operation that in turn invokes the echoComplexType
operation of a Web Service called ComplexService. This operation has a user-defined data type
(BasicStruct) as both a parameter and a return value. The relevant code is shown in bold and
described after the example.

package examples.webservices.service_to_service;

import java.rmi.RemoteException;
import javax.xml_rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic. jws_WLHttpTransport;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

import examples.webservices.complex.BasicStruct;

// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

@WebService(name="ClientPortType'", serviceName="ClientService",
targetNamespace="http://examples.org')

9-16 Programming Web Services for WebLogic Server

Invoking a Web Service from Another Web Service

@WLHttpTransport(contextPath="ClientService', serviceUri="ClientService",
portName=""ClientServicePort")

public class ClientServicelmpl {

@webMethod ()
public String callComplexService(BasicStruct input, String serviceUrl)
throws ServiceException, RemoteException

{

// Create service and port stubs to invoke ComplexService
ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL'™);
ComplexPortType port = service.getComplexServicePort();

// Invoke the echoComplexType operation of ComplexService
BasicStruct result = port.echoComplexType(input);
System.out.printIn(*'Invoked ComplexPortType.echoComplexType.");

return "Invoke went okay! Here"s the result: " + result.getintvalue() + ",
o result.getStringValue() + n-n;

3
}

Follow these guidelines when programming the JWS file that invokes another Web Service; code
snippets of the guidelines are shown in bold in the preceding example:

e Import any user-defined data types that are used by the invoked Web Service. In this
example, the ComplexService uses the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

e Import the JAX-RPC stubs of the ComplexService Web Service; the stubs are generated
by the <cliengen> child element of <jws>:

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

e Ensure that your client Web Service throws or catches ServiceException and
RemoteException

throws ServiceException, RemoteException
e Create the JAX-RPC Service and Port instances for the ComplexService:

ComplexService service = new
ComplexService_Impl(serviceUrl + "?WSDL™);
ComplexPortType port = service.getComplexServicePort();

Programming Web Services for WebLogic Server 9-17

Invoking Web Services

e Invoke the echoComplexType operation of ComplexService using the port you just
instantiated:

BasicStruct result = port.echoComplexType(input);

Using a Proxy Server When Invoking a Weh Service

9-18

You can use a proxy server to proxy requests from a client application to an application server
(either WebLogic or non-WebLogic) that hosts the invoked Web Service. You typically use a
proxy server when the application server is behind a firewall. There are two ways to specify the
proxy server in your client application: programmatically using the WebLogic
HttpTransportinfo API or using system properties.

For a complete example of using a proxy server when invoking a Web Service, see the example
on the dev2dev Code Example site.

Using the HttpTransportinfo APl to Specify the Proxy Server

You can programmatically specify within the Java client application itself the details of the proxy
server that will proxy the Web Service invoke by using the standard java.net.* classes and the
WebLogic-specific HttpTransportinfo API. You use the java.net classes to create a Proxy
object that represents the proxy server, and then use the WebLogic API and properties to set the
proxy server on the JAX-RPC stub, as shown in the following sample client that invokes the echo
operation of the HttpProxySampleService Web Service. The code in bold is described after
the example:

package dev2dev.proxy.client;
import javax.xml._rpc.Stub;

import java.net.Proxy;
import java.net.InetSocketAddress;

import weblogic.wsee.connection.transport_http._HttpTransportinfo;

/**
* Sample client to invoke a service through a proxy server via
* programmatic API
*/
public class HttpProxySampleClient {
public static void main(String[] args) throws Throwable{
assert args.length == 5;

Programming Web Services for WebLogic Server

Using a Proxy Server When Invoking a Web Service

String endpoint = args[0];
String proxyHost = args[1];
String proxyPort = args[2];
String user = args[3];
String pass = args[4];

//create service and port

HttpProxySampleService service = new HttpProxySampleService_Impl();

HttpProxySamplePortType port =
service.getHttpProxySamplePortTypeSoapPort();

//set endpoint address
((Stub)port) ._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, endpoint);

//set proxy server info

Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parselnt(proxyPort)));

HttpTransportinfo info = new HttpTransportinfo();

info.setProxy(p);

((Stub)port)._setProperty(*'weblogic.wsee.connection.transportinfo', info);

//set proxy-authentication info

((Stub)port)._setProperty(*'weblogic.webservice.client.proxyusername',user)

((Stub)port)._setProperty(*'weblogic.webservice.client.proxypassword",pass)

//invoke
String s = port.echo("Hello World!");
System.out.printin(*echo: " + s);
}
}

The sections of the preceding example to note are as follows:

e Import the required java.net.* classes:

import java.net.Proxy;
import java.net. InetSocketAddress;

Programming Web Services for WebLogic Server 9-19

Invoking Web Services

9-20

e Import the WebLogic HttpTransportinfo API:

import weblogic.wsee.connection.transport_http.HttpTransportinfo;

e Create a Proxy object that represents the proxy server:

Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parselnt(proxyPort)));

The proxyHost and proxyPort arguments refer to the host computer and port of the
Proxy server.

e Create an HttpTransportinfo object and use the setProxy() method to set the proxy
server information:

HttpTransportinfo info = new HttpTransportinfo();
info.setProxy(p);

e Use the weblogic.wsee.connection.transportinfo WebLogic stub property to set
the HttpTransportinfo object on the JAX-RPC stub:

((Stub)port)._setProperty(*"weblogic.wsee.connection.transportinfo”,info

e Use weblogic.webservice.client.proxyusername and
weblogic.webservice.client.proxypassword WebLogic-specific stub properties to
specify the username and password of a user who is authenticated to access the proxy
server:

((Stub)port)._setProperty(*'weblogic.webservice.client.proxyusername,us
er);

((Stub)port)._setProperty(*'weblogic.webservice.client.proxypassword”,pa
ss);

Alternatively, you can use the setProxyUsername() and setProxyPassword() methods
of the HttpTransportinfo API to set the proxy username and password, as shown in the
following example:

info.setProxyUsername("'juliet" _getBytes());
info.setProxyPassword(‘'secret” _getBytes());

Using System Properties to Specify the Proxy Server

When you use system properties to specify the proxy server, you write your client application in
the standard way, and then specify the following system properties when you execute the client
application:

e proxySet=true

Programming Web Services for WebLogic Server

Client Considerations When Redeploying a Web Service

® proxyHost=proxyHost
e proxyPort=proxyPort
e weblogic.webservice.client.proxyusername=proxyUsername
e weblogic.webservice.client.proxypassword=proxyPassword

where proxyHost is the name of the host computer on which the proxy server is running,
proxyPort is the port to which the proxy server is listening, proxyUsername is the authenticated
proxy server user and proxyPassword is the user’s password.

The following excerpt from an Ant build script shows an example of setting these system
properties when invoking a client application called clients. InvokeMyService:

<target name="run-client">
<java fork="true"
classname="clients. InvokeMyService"
failonerror="true'">
<classpath refid="client.class.path"/>
<arg line="${http-endpoint}"/>
<jvmarg line=
""-DproxySet=true
-DproxyHost=${proxy-host}
-DproxyPort=${proxy-port}
-Dweblogic.webservice.client.proxyusername=${proxy-username}
-Dweblogic.webservice.client.proxypassword=${proxy-passwd}"
/>
</java>
</target>

Client Considerations When Redeploying a Web Service

WebLogic Server supports production redeployment, which means that you can deploy a new
version of an updated WebLogic Web Service alongside an older version of the same Web
Service.

WebLogic Server automatically manages client connections so that only new client requests are
directed to the new version. Clients already connected to the Web Service during the
redeployment continue to use the older version of the service until they complete their work, at
which point WebLogic Server automatically retires the older Web Service. If the client is
connected to a conversational or reliable Web Service, its work is considered complete when the

Programming Web Services for WebLogic Server 9-21

Invoking Web Services

existing conversation or reliable messaging sequence is explicitly ended by the client or because
of a timeout.

You can continue using the old client application with the new version of the Web Service, as
long as the following Web Service artifacts have not changed in the new version:

o the WSDL that describes the Web Service

e the WS-Policy files attached to the Web Service

If any of these artifacts have changed, you must regenerate the JAX-RPC stubs used by the client
application by re-running the clientgen Ant task.

For example, if you change the signature of an operation in the new version of the Web Service,
then the WSDL file that describes the new version of the Web Service will also change. In this
case, you must regenerate the JAX-RPC stubs. If, however, you simply change the
implementation of an operation, but do not change its public contract, then you can continue
using the existing client application.

Creating and Using Client-Side SOAP Message Handlers

9-22

The section “Creating and Using SOAP Message Handlers” on page 7-12 describes how to create
server-side SOAP message handlers that execute as part of the Web Service running on
WebLogic Server. You can also create client-side handlers that execute as part of the client
application that invokes a Web Service operation. In the case of a client-side handler, the handler
executes twice:

e Directly before the client application sends the SOAP request to the Web Service

e Directly after the client application receives the SOAP response from the Web Service

You can configure client-side SOAP message handlers for both stand-alone clients and clients
that run inside of WebLogic Server.

You create the actual Java client-side handler in the same way you create a server-side handler:
write a Java class that extends the javax.xml . rpc.handler.GenericHandler abstract class.
In many cases you can use the exact same handler class on both the Web Service running on
WebLogic Server and the client applications that invoke the Web Service. For example, you can
write a generic logging handler class that logs all sent and received SOAP messages, both for the
server and for the client.

Programming Web Services for WebLogic Server

Creating and Using Client-Side SOAP Message Handlers

Similar to the server-side SOAP handler programming, you use an XML file to specify to the
clientgen Ant task that you want to invoke client-side SOAP message handlers. However, the
XML Schema of this XML file is slightly different, as described in the following procedure.

Using Client-Side SOAP Message Handlers: Main Steps

The following procedure describes the high-level steps to add client-side SOAP message
handlers to the client application that invokes a Web Service operation.

It is assumed that you have already created the client application that invokes a deployed Web
Service, and that you want to update the client application by adding client-side SOAP message
handlers and handler chains. It is also assumed that you have set up an Ant-based development
environment and that you have a working bui Id.xml file that includes a target for running the
clientgen Ant task. For more information, see “Invoking a Web Service from a Stand-alone
Client: Main Steps” on page 9-4.

1. Design the client-side SOAP handlers and the handler chain which specifies the order in
which they execute. This step is almost exactly the same as that of designing the server-side
SOAP message handlers, except the perspective is from the client application, rather than a
Web Service.

See “Designing the SOAP Message Handlers and Handler Chains” on page 7-15.

2. For each handler in the handler chain, create a Java class that extends the
javax.xml .rpc.handler.GenericHandler abstract class. This step is very similar to the
corresponding server-side step, except that the handler executes in a chain in the client rather
than the server.

See “Creating the GenericHandler Class” on page 7-18 for details about programming a
handler class. See “Example of a Client-Side Handler Class” on page 9-24 for an example.

3. Create the client-side SOAP handler configuration file. This XML file describes the handlers
in the handler chain, the order in which they execute, and any initialization parameters that
should be sent.

See “Creating the Client-Side SOAP Handler Configuration File” on page 9-25.

4. Update the bui Id.xml file that builds your client application, specifying to the clientgen
Ant task the name of the SOAP handler configuration file. Also ensure that the build.xml
file compiles the handler files into Java classes and makes them available to your client
application.

See “Specifying the Client-Side SOAP Handler Configuration File to clientgen” on
page 9-27.

Programming Web Services for WebLogic Server 9-23

Invoking Web Services

5. Rebuild your client application by running the relevant task:

prompt> ant build-client

When you next run the client application, the SOAP messaging handlers listed in the
configuration file automatically execute before the SOAP request message is sent and after the
response is received.

Note: You do not have to update your actual client application to invoke the client-side SOAP
message handlers; as long as you specify to the clientgen Ant task the handler
configuration file, the generated JAX-RPC stubs automatically take care of executing the
handlers in the correct sequence.

Example of a Client-Side Handler Class

The following example shows a simple SOAP message handler class that you can configure for
a client application that invokes a Web Service.

package examples.webservices.client_handler.client;

import javax

public class

-xml _namespace .QName;
import javax.
import javax.
import javax.

xml .rpc.handler_HandlerInfo;
xml.rpc.handler._GenericHandler;
xml .rpc.handler_MessageContext;

ClientHandlerl extends GenericHandler {

private QName[] headers;

public void init(HandlerInfo hi) {
System.out.printIn(*in " + this.getClass() + " init()");
}

public boolean handleRequest(MessageContext context) {
System.out.printIn("in " + this.getClass() + " handleRequest()™);
return true;

}

public boolean handleResponse(MessageContext context) {
System.out.printIn("in " + this.getClass() + " handleResponse()");
return true;

}

public boolean handleFault(MessageContext context) {
System.out.printIn("in " + this.getClass() + " handleFault()");
return true;

}

9-24 Programming Web Services for WebLogic Server

Creating and Using Client-Side SOAP Message Handlers

public QName[] getHeaders() {
return headers;

}
}

Creating the Client-Side SOAP Handler Configuration File

The client-side SOAP handler configuration file specifies the list of handlers in the handler chain,
the order in which they execute, the initialization parameters, and so on. See “XML Schema for
the Client-Side Handler Configuration File” on page 9-26 for a full description of this file.

The configuration file uses XML to describe a single handler chain that contains one or more
handlers, as shown in the following simple example:

<weblogic-wsee-clientHandlerChain
xmlns="http://www_bea.com/ns/weblogic/90"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns: j2ee="http://java.sun.com/xml/ns/j2ee">

<handler>
<j2ee:handler-name>clienthandleril</j2ee:handler-name>

<j2ee:handler-class>examples.webservices.client_handler.client.ClientHandlerl<
/j2ee:handler-class>
<j2ee:init-param>
<j2ee:param-name>ClientParaml</j2ee:param-name>
<j2ee:param-value>valuel</j2ee:param-value>
</j2ee:init-param>
</handler>

<handler>
<j2ee:handler-name>clienthandler2</j2ee:handler-name>

<j2ee:handler-class>examples.webservices.client_handler.client.ClientHandler2<
/j2ee:handler-class>
</handler>

</weblogic-wsee-clientHandlerChain>

In the example, the handler chain contains two handlers: clienthandlerl and
clienthandler2, implemented with the class names specified with the
<j2ee:handler-class>element. The two handlers execute in forward order directly before the
client application sends the SOAP request to the Web Service, and then in reverse order directly
after the client application receives the SOAP response from the Web Service.

The example also shows how to use the <j2ee: init-param> element to specify one or more
initialization parameters to a handler.

Programming Web Services for WebLogic Server 9-25

Invoking Web Services

Use the <soap-role>, <soap-header>, and <port-name> child elements of the <handler>

element to specify the SOAP roles implemented by the handler, the SOAP headers processed by
the handler, and the port-name element in the WSDL with which the handler is associated with,
respectively.

XML Schema for the Client-Side Handler Configuration File

The following XML Schema file defines the structure of the client-side SOAP handler
configuration file:

<?xml version="1.0" encoding="UTF-8"?>

<schema
targetNamespace=""http://www.bea.com/ns/weblogic/90"
xmiIns:wls="http://www.bea.com/ns/weblogic/90"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/2001/XMLSchema"*
elementFormDefault="qualified"
attributeFormDefault=""unqualified"
>
<include schemalLocation="weblogic-j2ee._xsd"/>

<element name="weblogic-wsee-clientHandlerChain"
type="wls:weblogic-wsee-clientHandlerChainType">
<xsd:key name="wsee-clienthandler-name-key'>
<xsd:annotation>
<xsd:documentation>

Defines the name of the handler. The name must be unique within the
chain.

</xsd:documentation>
</xsd:annotation>
<xsd:selector xpath="j2ee:handler"/>
<xsd:field xpath="j2ee:handler-name"/>
</xsd:key>
</element>

<complexType name="weblogic-wsee-clientHandlerChainType">
<sequence>
<xsd:element name="handler"
type=""j2ee:service-ref_handlerType"
minOccurs="0" maxOccurs="unbounded'>
</xsd:element>
</sequence>
</complexType>
</schema>

9-26 Programming Web Services for WebLogic Server

Using a Client-Side Security WS-Policy File

A single configuration file specifies a single client-side handler chain. The root of the
configuration file is <weblogic-wsee-clientHandlerChain>, and the file contains zero or
more <handler> child elements, each of which describes a handler in the chain.

The structure of the <handler> element is described by the J2EE service-ref_handlerType
complex type, specified in the J2EE 1.4 Web Service client XML Schema.

Specifying the Client-Side SOAP Handler Configuration File
to clientgen

Use the handlerChainFi le attribute of the clientgen Ant task to specify the client-side SOAP
handler configuration file, as shown in the following excerpt from a bui ld.xml file:

<clientgen
wsdl="http://ariel:7001/handlers/ClientHandlerService?WSDL"
destDir="${clientclass-dir}"
handlerChainFile="ClientHandlerChain.xml"
packageName=""examples.webservices.client_handler.client'/>

The JAX-RPC stubs generated by clientgen automatically ensure that the handlers described
by the configuration file execute in the correct order before and after the client application
invokes the Web Service operation

Using a Client-Side Security WS-Policy File

The section “Using WS-Policy Files for Message-Level Security Configuration” on page 10-4
describes how a WebLogic Web Service can be associated with one or more WS-Policy files that
describe the message-level security of the Web Service. These WS-Policy files are XML files that
describe how a SOAP message should be digitally signed or encrypted and what sort of user
authentication is required from a client that invokes the Web Service. Typically, the WS-Policy
file associated with a Web Service is attached to its WSDL, which the Web Services client
runtime reads to determine whether and how to digitally sign and encrypt the SOAP message
request from an operation invoke from the client application.

Sometimes, however, a Web Service might not attach the WS-Policy file to its deployed WSDL
or the Web Service might be configured to not expose its WSDL at all. In these cases, the Web
Services client runtime cannot determine from the service itself the security that must be enabled
for the SOAP message request. Rather, it must load a client-side copy of the WS-Policy file. This
section describes how to update a client application to load a local copy of a WS-Policy file.

Programming Web Services for WebLogic Server 9-27

Invoking Web Services

9-28

The client-side WS-Policy file is typically exactly the same as the one associated with a deployed
Web Service. If the two files are different, and there is a conflict in the security assertions
contained in the files, then the invoke of the Web Service operation returns an error.

You can specify that the client-side WS-Policy file be associated with the SOAP message request,
response, or both. Additionally, you can specify that the WS-Policy file be associated with the
entire Web Service, or just one of its operations.

Associating a WS-Policy File with a Client Application: Main
Steps

The following procedure describes the high-level steps to associate a WS-Policy file with the
client application that invokes a Web Service operation.

It is assumed that you have created the client application that invokes a deployed Web Service,
and that you want to update it by associating a client-side WS-Policy file. It is also assumed that
you have set up an Ant-based development environment and that you have a working bui Id . xml
file that includes a target for running the clientgen Ant task. See “Invoking a Web Service from
a Stand-alone Client: Main Steps” on page 9-4.

1. Create the client-side WS-Policy files and save them in a location accessible by the client
application. Typically, the WS-Policy files are the same as those configured for the Web
Service you are invoking, but because the server-side files are not exposed to the client
runtime, the client application must load its own local copies.

See “Creating and Using a Custom WS-Policy File” on page 10-23 for information about
creating WS-Policy files.

WARNING: You can specify only concrete client-side WS-Policy files to a client
application; you cannot use abstract WS-Policy files or the three pre-packaged
security WS-Policy files.

2. Update the bui Id.xml file that builds your client application by specifying to the clientgen
Ant task that it should generate additional getxxXPort() methods in the JAX-RPC stub,
where XXX refers to the name of the Web Service. These methods are later used by the client
application to load the client-side WS-Policy files.

See “Updating clientgen to Generate Methods That Load WS-Policy Files” on page 9-29.

3. Update your Java client application to load the client-side WS-Policy files using the
additional getxxxPort() methods that the clientgen Ant task generates.

See “Updating a Client Application To Load WS-Policy Files” on page 9-29.

Programming Web Services for WebLogic Server

Using a Client-Side Security WS-Policy File

4. Rebuild your client application by running the relevant task. For example:
prompt> ant build-client

When you next run the client application, it will load local copies of the WS-Policy files that the
Web Service client runtime uses to enable security for the SOAP request message.

Updating clientgen to Generate Methods That Load
WS-Policy Files

Set the generatePolicyMethods attribute of the clientgen Ant task to true to specify that
the Ant task should generate additional getXxX() methods in the implementation of the
JAX-RPC service interface for loading client-side copies of WS-Policy files when you get a
port, as shown in the following example:

<clientgen
wsdl="http://ariel :7001/policy/ClientPolicyService?WSDL"
destDir="${clientclass-dir}"
generatePolicyMethods="true"
packageName=""examples.webservices.client_policy.client'/>

See “Updating a Client Application To Load WS-Policy Files” on page 9-29 for a description of
the additional methods that are generated and how to use them in a client application.

Updating a Client Application To Load WS-Policy Files

When you set generatePol icyMethods=""true" for clientgen, the Ant task generates
additional methods in the implementation of the JAX-RPC Service interface that you can use to
load WS-Policy files, where XxX refers to the name of the Web Service. You can use either an
Aurray or Set of WS-Policy files to associate multiple files to a Web Service. If you want to
associate just a single WS-Policy file, create a single-member Array or Set.

o getXXXPort(String operationName, java.util.Set<java.io.lnputStream>
inbound, java.util_Set<java.io.lnputStream> outbound)

Loads two different sets of client-side WS-Policy files from InputStreams and associates
the first set to the SOAP request and the second set to the SOAP response. Applies to a
specific operation, as specified by the first parameter.

o getXXXPort(String operationName, java.io.lIlnputStream[] inbound,
Jjava.io. InputStream[] outbound)

Programming Web Services for WebLogic Server 9-29

Invoking Web Services

Loads two different arrays of client-side WS-Policy files from InputStreams and associates
the first array to the SOAP request and the second array to the SOAP response. Applies to
a specific operation, as specified by the first parameter.

e getXXXPort(Java.util_Set<java.io.InputStream> inbound,
Jjava.util_Set<java.io. InputStream> outbound)

Loads two different sets of client-side WS-Policy files from InputStreams and associates
the first set to the SOAP request and the second set to the SOAP response. Applies to all
operations of the Web Service.

o getXXXPort(jJava.io. InputStream[] inbound, java.io.lnputStream[]
outbound)

Loads two different arrays of client-side WS-Policy files from InputStreams and associates
the first array to the SOAP request and the second array to the SOAP response. Applies to
all operations of the Web Service.

Use these methods, rather than the normal getxxXPort() method with no parameters, for getting
a Web Service port and specifying at the same time that invokes of all, or the specified, operation
using that port have an associated WS-Policy file or files.

Note: The following methods from a previous release of WebLogic Server have been
deprecated; if you want to associate a single client-side WS-Policy file, specify a
single-member Array or Set and use the corresponding method described above.

— getXXXPort(Java.io. InputStream policylnputStream);

Loads a single client-side WS-Policy file from an InputStream and applies it to both the
SOAP request (inbound) and response (outbound) messages.

— getXXXPort(Java.io. InputStream policylnputStream, boolean inbound,
boolean outbound);

Loads a single client-side WS-Policy file from an InputStream and applies it to either
the SOAP request or response messages, depending on the Boolean value of the second
and third parameters.

The following simple client application shows an example of using these policy methods; the
code in bold is described after the example.

package examples.webservices.client_policy.client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import javax.xml._.rpc.Stub;

9-30

Programming Web Services for WebLogic Server

Using a Client-Side Security WS-Policy File

import java.io.FilelnputStream;
import java.io.lOException;

/**
* This i1s a simple standalone client application that invokes the
* the <code>sayHello</code> operation of the ClientPolicyService Web service.
*
* @author Copyright (c) 2004 by BEA Systems. All Rights Reserved.
*/

public class Main {

public static void main(String[] args)
throws ServiceException, RemoteException, 10Exception {

FilelnputStream [] inbound_policy_array = new FilelnputStream[2];
inbound_policy_array[0O] new FilelnputStream(args[1]);
inbound_policy_array[1] new FilelnputStream(args[2]);

FilelnputStream [] outbound_policy_array = new FilelnputStream[2];
outbound_policy_array[0] = new FilelnputStream(args[1]);
outbound_policy_array[1] = new FilelnputStream(args[2]);

ClientPolicyService service = new ClientPolicyService_Impl(args[0] +
"?WSDL™) ;

// standard way to get the Web Service port
ClientPolicyPortType normal_port = service.getClientPolicyPort();

// specify an array of WS-Policy file for the request and response

// of a particular operation

ClientPolicyPortType array_of policy_port =
service.getClientPolicyPort(“sayHello"™, inbound_policy_array,
outbound_policy_array);

try {
String result = null;

result = normal_port._.sayHello("'Hi there!™);
result = array_of _policy_port.sayHello("'Hi there!™);
System.out.printin("Got result: "™ + result);

} catch (RemoteException e) {
throw e;

}

¥
}

The second and third argument to the client application are the two WS-Policy files from which
the application makes an array of FilelnputStreams (inbound_policy_array and
outbound_policy_array). The normal_port uses the standard parameterless method for
getting a port; the array_of_policy_port, however, uses one of the policy methods to specify

Programming Web Services for WebLogic Server 9-31

Invoking Web Services

that an invoke of the sayHel 1o operation using the port has multiple WS-Policy files (specified
with an Array of Fi leInputStream) associated with both the inbound and outbound SOAP
request and response:

ClientPolicyPortType array_of policy_port =
service.getClientPolicyPort("sayHello", inbound_policy_array,
outbound_policy_array);

WebLogic Web Services Stub Properties

WebLogic Server provides a set of stub properties that you can set in the JAX-RPC Stub used to
invoke a WebL ogic Web Service. Use the Stub._setProperty() method to set the properties,
as shown in the following example:

((Stub)port)._setProperty(WLStub.MARSHAL_ FORCE_INCLUDE_XSI_TYPE,"true');

Most of the stub properties are defined in the WLStub class. See
weblogic.wsee. jaxrpc.WLStub for details.

The following table describes additional stub properties not defined in the WLStub class.

Tahle 9-2 Additional Stub Properties

Stub Property Description

weblogic.wsee.transport.connection.timeout Specifies, in milliseconds, how long a client application

that is attempting to invoke a Web Service waits to make
a connection. After the specified time elapses, if a
connection hasn’t been made, the attempt times out.

weblogic.wsee.transport.read.timeout Specifies, in milliseconds, how long a client application

waits for a response from a Web Service it is invoking.
After the specified time elapses, if a response hasn’t
arrived, the client times out.

9-32

Programming Web Services for WebLogic Server

WebLogic Web Services Stub Properties

Tahle 9-2 Additional Stub Properties

Stub Property Description

weblogic.wsee.security.bst.serverVerifyCert Specifies the certificate that the client application uses to
validate the signed response from WebLogic Server. By
default, WebLogic Server includes the certification used
to validate in the response SOAP message itself; if this is
not possible, then use this stub property to specify a
different one.

This stub property applies only to client applications that
run inside of a WebLogic Server container, and not to
stand-alone client applications.

The value of the property is an object of data type
Java.security.cert._X509Certificate.

Programming Web Services for WebLogic Server 9-33

Invoking Web Services

Table 9-2 Additional Stub Properties

Stub Property

Description

weblogic.wsee.security.bst.serverEncryptCert

Specifies the certificate that the client application uses to
encrypt the request SOAP message sent to WebLogic
Server. By default, the client application uses the public
certificate published in the Web Service’s WSDL; if this
is not possible, then use this stub property to specify a
different one.

This stub property applies only to client applications that
run inside of a WebLogic Server container, and not to
stand-alone client applications.

The value of the property is an object of data type
Java.security.cert._X509Certificate.

weblogic.wsee.marshal.forcelncludeXsiType

Specifies that the SOAP messages for a Web Service
operation invoke should include the XML Schema data
type of each parameter. By default, the SOAP messages
do not include the data type of each parameter.

If you set this property to True, the elements in the SOAP
messages that describe operation parameters will include
an xsi - type attribute to specify the data type of the
parameter, as shown in the following example:

<soapenv:Envelope>
<maxResults
xsi:type=""xs:int'">10</maxResults>

By default (or if you set this property to False), the
parameter element would look like the following
example:

<soapenv:Envelope>

<maxResults>10</maxResults>

Valid values for this property are True and False;
default value is False.

9-34 Programming Web Services for WebLogic Server

Configuring Security

The following sections describe how to configure security for your Web Service:
e “Overview of Web Services Security” on page 10-1
e “What Type of Security Should You Configure?” on page 10-2
e “Configuring Message-Level Security (Digital Signatures and Encryption)” on page 10-3
e “Updating a Client Application to Invoke a Message-Secured Web Service” on page 10-41
e “Configuring Transport-Level Security” on page 10-45

e “Configuring Access Control Security: Main Steps” on page 10-48

Overview of Weh Services Security

To secure your WebLogic Web Service, you configure one or more of three different types of
security:

e Message-level security, in which data in a SOAP message is digitally signed or encrypted.

See “Configuring Message-Level Security (Digital Signatures and Encryption)” on
page 10-3.

e Transport-level security, in which SSL is used to secure the connection between a client
application and the Web Service.

See “Configuring Transport-Level Security” on page 10-45.

Programming Web Services for WebLogic Server 10-1

Configuring Security

e Access control security, which specifies which roles are allowed to access Web Services.

See “Configuring Access Control Security: Main Steps” on page 10-48.

What Type of Security Should You Configure?

10-2

Access control security answers the question “who can do what?” First you specify the security
roles that are allowed to access a Web Service; a security role is a privilege granted to users or
groups based on specific conditions. Then, when a client application attempts to invoke a Web
Service operation, the client authenticates itself to WebLogic Server, and if the client has the
authorization, it is allowed to continue with the invocation. Access control security secures only
WebLogic Server resources. That is, if you configure only access control security, the connection
between the client application and WebLogic Server is not secure and the SOAP message is in
plain text.

With transport-level security, you secure the connection between the client application and
WebLogic Server with Secure Sockets Layer (SSL). SSL provides secure connections by
allowing two applications connecting over a network to authenticate the other's identity and by
encrypting the data exchanged between the applications. Authentication allows a server, and
optionally a client, to verify the identity of the application on the other end of a network
connection. Encryption makes data transmitted over the network intelligible only to the intended
recipient.

Transport-level security, however, secures only the connection itself. This means that if there is
an intermediary between the client and WebL ogic Server, such as a router or message queue, the
intermediary gets the SOAP message in plain text. When the intermediary sends the message to
a second receiver, the second receiver does not know who the original sender was. Additionally,
the encryption used by SSL is “all or nothing”: either the entire SOAP message is encrypted or it
is not encrypted at all. There is no way to specify that only selected parts of the SOAP message
be encrypted.

Message-level security includes all the security benefits of SSL, but with additional flexibility
and features. Message-level security is end-to-end, which means that a SOAP message is secure
even when the transmission involves one or more intermediaries. The SOAP message itself is
digitally signed and encrypted, rather than just the connection. And finally, you can specify that
only parts of the message be signed or encrypted.

Programming Web Services for WebLogic Server

Configuring Message-Level Security (Digital Signatures and Encryption)

Configuring Message-Level Security (Digital Signatures
and Encryption)

Message-level security specifies whether the SOAP messages between a client application and
the Web Service it is invoking should be digitally signed or encrypted or both. It also can specify
a shared security context between the Web Service and client in the event that they exchange
multiple SOAP messages.

WebLogic Web Services implement the following OASIS Standard 1.0 Web Services Security
(WS-Security) specifications, dated April 6, 2004:

e Web Services Security: SOAP Message Security
e \Web Services Security: Username Token Profile
e Web Services Security: X.509 Certificate Token Profile

e Web Services Security: SAML Token Profile

These specifications provide security token propagation, message integrity, and message
confidentiality. These mechanisms can be used independently (such as passing a username token
for user authentication) or together (such as digitally signing and encrypting a SOAP message and
specifying that a user must use X.509 certificates for authentication).

WebLogic Web Services also implement the Web Services Trust Language (WS-Trust) and Web
Services Secure Conversation Language (WS-SecureConversation) specifications which
together provide secure communication between Web Services and their clients (either other Web
Services or standalone Java client applications.) In particular, the WS-SecureConversation
specification defines mechanisms for establishing and sharing security contexts, and deriving
keys from security contexts, to enable a secure conversation. Together, the security context and
derived keys potentially increase the overall performance and security of the subsequent
exchanges.This functionality is missing from the WS-Security specifications, which focus
primarily on the message authentication model and consequently are subject to various security
attacks.

You configure message-level security for a Web Service by attaching one or more WS-Policy
files that contain security policy statements, as specified by the WS-Policy (dated September
2004) specification. See “Using WS-Policy Files for Message-Level Security Configuration” on
page 10-4 for detailed information about how the Web Services runtime environment uses these
files.

Programming Web Services for WebLogic Server 10-3

Configuring Security

10-4

See “Configuring Simple Message-Level Security: Main Steps” on page 10-14 for the basic steps
you must perform to configure simple message-level security. This section discusses
configuration of the Web Services runtime environment, as well as configuration of
message-level security for a particular Web Service and how to code a client application to
invoke the service.

You can also configure message-level security for a Web Service at runtime, after a Web Service
has been deployed. See “Associating WS-Policy Files at Runtime Using the Administration
Console” on page 10-32 for details.

Note: You cannot digitally sign or encrypt a SOAP attachment.

Main Use Cases of Message-Level Security

The BEA implementation of the Web Services Security: SOAP Message Security specification
supports the following use cases:

e Use X.509 certificates to sign and encrypt a SOAP message, starting from the client
application that invokes the message-secured Web Service, to the WebLogic Server
instance that is hosting the Web Service and back to the client application.

Specify the SOAP message targets that are signed or encrypted: the body, specific SOAP
headers, or specific elements.

Include a username, SAML, or X.509 token in the SOAP message for authentication.

Specify that a Web Service and its client (either another Web Service or a standalone
application) establish and share a security context when exchanging multiple messages.

Derive keys for each key usage in a secure context, once the context has been established
and is being shared between a Web Service and its client. This means that a particular
SOAP message uses two derived keys, one for signing and another for encrypting, and
each SOAP message uses a different pair of derived keys from other SOAP messages.
Because each SOAP message uses its own pair of derived keys, the conversation between
the client and Web Service is extremely secure.

Using WS-Policy Files for Message-Level Security
Configuration

You specify the details of message-level security for a WebLogic Web Service with one or more
WS-Policy files. The WS-Policy specification provides a general purpose model and XML
syntax to describe and communicate the policies of a Web Service.

Programming Web Services for WebLogic Server

Configuring Message-Level Security (Digital Signatures and Encryption)

Note: WebLogic Server includes pre-packaged WS-Policy files that BEA recommends for
most use cases. See “WebLogic Server WS-Policy Files” on page 10-5. However, if you
use SAML tokens for authentication, or you want to specify that particular parts of a
SOAP message rather than the entire body be encrypted or digitally signed, you must
create your own WS-Policy files. See “Creating and Using a Custom WS-Policy File” on
page 10-23.

The WS-Palicy files used for message-level security are XML files that describe whether and

how the SOAP messages resulting from an invoke of an operation should be digitally signed or

encrypted. They can also specify that a client application authenticate itself using a username,
SAML, or X.509 token.

Note: The policy assertions used in the WS-Policy file to configure message-level security for
aWebLogic Web Service are based on the assertions described in the December 18, 2002
version of the Web Services Security Policy Language (WS-SecurityPolicy)
specification. This means that although the exact syntax and usage of the assertions in
WebLogic Server are different, they are similar in meaning to those described in the
specification. The assertions are not based on the latest update of the specification (13
July 2005.)

You use the @Policy and @Policies JWS annotations in your JWS file to associate WS-Policy
files with your Web Service. You can associate any number of WS-Policy files with a Web
Service, although it is up to you to ensure that the assertions do not contradict each other. You
can specify a WS-Policy file at both the class- and method-level of your JWS file.

WebLogic Server WS-Policy Files

WebLogic Server includes a set of WS-Policy files that you can specify in your JWS file if you
do not want to create your own WS-Policy files; BEA recommends that unless you have specific
security needs, you use these pre-packaged files as often as possible. These WS-Policy files are
all abstract; see “Abstract and Concrete WS-Policy Files” on page 10-13 for details.

The pre-packaged WS-Policy files are:

e Auth.xml—Specifies that the client must authenticate itself. Can be used on its own, or
together with Sign.xml and Encrypt.xml.

e Sign.xml—Specifies that the SOAP messages are digitally signed. Can be used on its own,
or together with Auth.xml and Encrypt.xml.

e Encrypt.xml—Specifies that the SOAP messages are encrypted. Can be used on its own, or
together with Auth.xml and Sign._xml.

Programming Web Services for WebLogic Server 10-5

Configuring Security

e Wssc-dk.xml—Specifies that the client and service share a security context when multiple
messages are exchanged and that derived keys are used for encryption and digital
signatures, as described by the WS-SecureConversation specification.

Note: This pre-packaged WS-Policy file is meant to be used on its own and not together
with Auth._xml, Sign.xml, Encrypt.xml, or Wssc-sct.xml. Also, BEA
recommends that you use this WS-Policy file, rather than Wssc-sct.xml, if you want
the client and service to share a security context, due to its higher level of security.

e Wssc-sct.xml—Specifies that the client and service share a security context when multiple
messages are exchanged, as described by the WS-SecureConversation specification.

Note: This pre-packaged WS-Policy file is meant to be used on its own and not together
with Auth_xml, Sign.xml, Encrypt.xml, or Wssc-dk.xml. Also, BEA provides
this WS-Policy file to support the various use cases of the WS-SecureConversation
specification; however, BEA recommends that you use the Wssc-dk.xml WS-Policy
file, rather than Wssc-sct.xml, if you want the client and service to share a security
context, due to its higher level of security.

Auth.xml

The WebLogic Server Auth.xml file, shown below, specifies that the client application invoking
the Web Service must authenticate itself with one of the tokens (username or X.509) that support
authentication.

Because the pre-packaged WS-Palicy files are abstract, there is no specific username or X.509
token assertions in the Auth.xml file at development-time. Depending on how you have
configured security for WebLogic Server, either a username token, an X.509 token, or both will
appear in the actual runtime-version of the Auth.xml WS-Policy file associated with your Web
Service. Additionally, if the runtime-version of the WS-Policy file includes an X.509 token and
it is applied to a client invoke, then the entire body of the SOAP message is signed.

If you want to specify that only X.509, and never username tokens, be used for identity, or want
to specify that, when using X.509 for identity, only certain parts of the SOAP message be signed,
then you must create a custom WS-Policy file. For details, see “Using Only X.509 Certificate
Tokens for Identity” on page 10-36.

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"

>

10-6

Programming Web Services for WebLogic Server

Configuring Message-Level Security (Digital Signatures and Encryption)

<wssp: ldentity/>

</wsp:Policy>

Sign.xml

The WebLogic Server Sign.xml file specifies that the body and WebL ogic-specific system
headers of the SOAP message be digitally signed. It also specifies that the SOAP message include
a Timestamp, which is digitally signed, and that the token used for signing is also digitally signed.
The token used for signing is included in the SOAP message.

The following headers are signed when using the Sign.xml WS-Policy file:

SequenceAcknowledgement
AckRequested
Sequence
Action
FaultTo

From
MessagelD
RelatesTo
ReplyTo

To

SetCookie

Timestamp

The WebLogic Server Sign.xml file is shown below:

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wssp="http://www_bea.com/wls90/security/policy"

xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd"
xmins:wls="http://www.bea.com/wls90/security/policy/wsee#part"

>

<wssp: Integrity>

<wssp:SignatureAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>

Programming Web Services for WebLogic Server 10-7

Configuring Security

<wssp:CanonicalizationAlgorithm
URI="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal™ />
<wssp:MessageParts
Dialect=""http://www._bea.com/wls90/security/policy/wsee#part'>
wls:SystemHeaders()
</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal™ />
<wssp:MessageParts
Dialect=""http://www._bea.com/wls90/security/policy/wsee#part'>
wls:SecurityHeader(wsu:Timestamp)
</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal™ />
<wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp:Body()
</wssp:MessageParts>
</wssp:Target>

</wssp: Integrity>
<wssp :MessageAge/>

</wsp:Policy>

Encrypt.xml

The WebLogic Server Encrypt.xml file specifies that the entire body of the SOAP message be
encrypted. By default, the encryption token is not included in the SOAP message.

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmIns:wssp="http://www.bea.com/wls90/security/policy"
>

<wssp:Confidentiality>
<wssp:KeyWrappingAlgorithm URI="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>
<wssp:Target>
<wssp:EncryptionAlgorithm
URI=""http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc"/>

10-8 Programming Web Services for WebLogic Server

Configuring Message-Level Security (Digital Signatures and Encryption)

<wssp:MessageParts
Dialect=""http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp:Body ()
</wssp:MessageParts>
</wssp:Target>
<wssp:Keylnfo/>
</wssp:Confidentiality>

</wsp:Policy>

Wssc-dk.xml

Specifies that the client and Web Service share a security context, as described by the
WS-SecureConversation specification, and that a derived key token is used. This ensures the
highest form of security.

This WS-Policy file provides the following configuration:

e A derived key token is used to sign all system SOAP headers, the timestamp security
SOAP header, and the SOAP body.

e A derived key token is used to encrypt the body of the SOAP message. This token is
different from the one used for signing.

e Each SOAP message uses its own pair of derived keys.

e For both digital signatures and encryption, they key length is 16 (as opposed to the default
32)

e The lifetime of the security context is 12 hours.

If you need to change the default security context and derived key behavior, you will have to
create a custom WS-Policy file, described in later sections.

WARNING: If you specify this pre-packaged WS-Policy file, you should not also specify any
other pre-packaged WS-Policy file.

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"

xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssecurity-
utility-1.0.xsd"

xmins:wls="http://www._bea.com/wls90/security/policy/wsee#part"
>

Programming Web Services for WebLogic Server 10-9

Configuring Security

<wssp:Integrity SupportTrustlO="true">
<wssp:SignatureAlgorithm
URI="http://www.w3.0rg/2000/09/xmldsig#hmac-shal"/>
<wssp:CanonicalizationAlgorithm
URI="http://www.w3.0rg/2001/10/xml-exc-cl4n#'/>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<wssp:MessageParts
Dialect=""http://www_bea.com/wls90/security/policy/wsee#part'>
wls:SystemHeaders()
</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<wssp:MessageParts
Dialect=""http://www._bea.com/wls90/security/policy/wsee#part'>
wls:SecurityHeader(wsu:Timestamp)
</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp:Body ()
</wssp:MessageParts>
</wssp:Target>

<wssp:SupportedTokens>
<wssp:SecurityToken IncludelnMessage=""true"
TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
<wssp:Claims>
<wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
<wssp:Length>16</wssp:Length>
</wssp:Claims>
</wssp:SecurityToken>
</wssp:SupportedTokens>

</wssp: Integrity>
<wssp:Confidentiality SupportTrustlO=""true'>

<wssp:Target>
<wssp:EncryptionAlgorithm
URI="http://www.w3.0rg/2001/04/xmlenc#aes128-cbc"/>
<wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp :Body ()</wssp :MessageParts>
</wssp:Target>

10-10 Programming Web Services for WebLogic Server

Configuring Message-Level Security (Digital Signatures and Encryption)

<wssp:KeyInfo>
<wssp:SecurityToken IncludelnMessage=""true"
TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"
DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
<wssp:Claims>
<wssp:Label>WS-SecureConversationWS-SecureConversation</wssp:Label>
<wssp:Length>16</wssp:Length>
</wssp:Claims>
</wssp:SecurityToken>
</wssp:KeyInfo>

</wssp:Confidentiality>
<wssp:MessageAge/>

</wsp:Policy>

Wssc-sct.xml

Specifies that the client and Web Service share a security context, as described by the
WS-SecureConversation specification. In this case, security context tokens are used to encrypt
and sign the SOAP messages, which differs from Wssc-dk.xml in which derived key tokens are
used. The Wssc-sct.xml WS-Policy file is provided to support all the use cases of the
specification; for utmost security, however, BEA recommends you always use Wssc-dk.xml
when specifying shared security contexts due to its higher level of security.

This WS-Policy file provides the following configuration:

e A security context token is used to sign all system SOAP headers, the timestamp security
SOAP header, and the SOAP body.

e A security context token is used to encrypt the body of the SOAP message.

e The lifetime of the security context is 12 hours.
If you need to change the default security context and derived key behavior, you will have to
create a custom WS-Policy file, described in later sections.

WARNING: If you specify this pre-packaged WS-Policy file, you should not also specify any
other pre-packaged WS-Palicy file.

<?xml version="1.0"?>
<wsp:Policy

xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"

Programming Web Services for WebLogic Server 10-11

Configuring Security

xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd"
xmins:wls="http://www._bea.com/wls90/security/policy/wsee#part"
>

<wssp:Integrity SupportTrustlO0=""true'">
<wssp:SignatureAlgorithm
URI="http://www.w3.0rg/2000/09/xmldsig#hmac-shal"/>
<wssp:CanonicalizationAlgorithm
URI="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal’/>
<wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part'>
wls:SystemHeaders()
</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal’/>
<wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part'>
wls:SecurityHeader(wsu:Timestamp)
</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal’/>
<wssp:MessageParts Dialect=""http://schemas.xmlsoap.org/2002/12/wsse#part"'>
wsp:Body()
</wssp:MessageParts>
</wssp:Target>

<wssp:SupportedTokens>
<wssp:SecurityToken IncludelnMessage=""true"
TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
</wssp:SecurityToken>
</wssp:SupportedTokens>

</wssp: Integrity>
<wssp:Confidentiality SupportTrustlO="true'>
<wssp:Target>
<wssp:EncryptionAlgorithm

URI="http://www.w3.0rg/2001/04/xmlenc#aesl128-cbc'/>
<wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part'>

10-12 Programming Web Services for WebLogic Server

Configuring Message-Level Security (Digital Signatures and Encryption)

wsp:Body()</wssp:MessageParts>
</wssp:Target>

<wssp:KeylInfo>
<wssp:SecurityToken IncludelnMessage=""true"
TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
</wssp:SecurityToken>
</wssp:Keylnfo>
</wssp:Confidentiality>

<wssp:MessageAge />

</wsp:Policy>

Abstract and Concrete WS-Policy Files

The WebLogic Web Services runtime environment recognizes two slightly different types of
WS-Palicy files: abstract and concrete. The pre-packaged WS-Policy files described in
“WebLogic Server WS-Policy Files” on page 10-5 are all abstract.

Abstract WS-Policy files do not explicitly specify the security tokens that are used for
authentication, encryption, and digital signatures, but rather, the Web Services runtime
environment determines the security tokens when the Web Service is deployed. Specifically, this
means the <ldentity>and <Integrity>elements (or assertions) of the WS-Policy files do not
containa <SupportedTokens><SecurityToken> child element, and the <Confidentiality>
element WS-Policy file does not contain a <Key Info><SecurityToken> child element.

If your Web Service is associated with only the pre-packaged WS-Policy files, then client
authentication requires username tokens. Web Services support only one type of token for
encryption and digital signatures (X.509), which means that in the case of the <Integrity> and
<Confidentiality> elements, concrete and abstract WS-Policy files end up being essentially
the same.

If your Web Service is associated with an abstract WS-Policy file and it is published as an
attachment to the WSDL (which is the default behavior), the static WSDL file packaged in the
Web Service archive file (JAR or WAR) will be slightly different than the dynamic WSDL of the
deployed Web Service. This is because the static WSDL, being abstract, does not include specific
<SecurityToken> elements, but the dynamic WSDL does include these elements because the
Web Services runtime has automatically filled them in when it deployed the service. For this
reason, in the code that creates the JAX-RPC stub in your client application, ensure that you
specify the dynamic WSDL or you will get a runtime error when you try to invoke an operation:

HelloService service = new HelloService(Dynamic_WSDL);

Programming Web Services for WebLogic Server 10-13

Configuring Security

You can specify either the static or dynamic WSDL to the clientgen Ant task in this case. See
“Browsing to the WSDL of the Web Service” on page 4-17 for information on viewing the
dynamic WSDL of a deployed Web Service.

Concrete WS-Policy files explicitly specify the details of the security tokens at the time the Web
Service is programmed. Programmers create concrete WS-Policy files when they know, at the
time they are programming the service, the details of the type of authentication (such as using
x509 or SAML tokens); whether multiple private key and certificate pairs from the keystore are
going to be used for encryption and digital signatures; and so on.

Configuring Simple Message-Level Security: Main Steps

10-14

The following procedure describes how to configure simple message-level security for the Web
Services security runtime, a particular WebLogic Web Service, and a client application that
invokes an operation of the Web Service. In this document, simple message-level security is
defined as follows:

e The message-secured Web Service uses the pre-packaged WS-Policy files to specify its
security requirements, rather than a user-created WS-Policy file. See “Using WS-Policy
Files for Message-Level Security Configuration” on page 10-4 for a description of these
files.

e The Web Service makes its associated WS-Policy files publicly available by attaching
them to its deployed WSDL, which is also publicly visible.

e The Web Services runtime uses the out-of-the-box private key and X.509 certificate pairs,
store in the default keystores, for its encryption and digital signatures, rather than its own
key pairs. These out-of-the-box pairs are also used by the core WebLogic Server security
subsystem for SSL and are provided for demonstration and testing purposes. For this
reason BEA highly recommends you use your own keystore and key pair in production. To
use key pairs other than out-of-the-box pairs, see “Using Key Pairs Other Than the
Out-Of-The-Box SSL Pair” on page 10-20.

WARNING: If you plan to deploy the Web Service to a cluster in which different
WebLogic Server instances are running on different computers, you must use
a keystore and key pair other than the out-of-the-box ones, even for testing
purposes. The reason is that the key pairs in the default WebLogic Server
keystore, Demoldentity . jks, are not guaranteed to be the same across
WebLogic Servers running on different machines. If you were to use the
default keystore, the WSDL of the deployed Web Service would specify the
public key from one of these keystores, but the invoke of the service might
actually be handled by a server running on a different computer, and in this

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

case the server’s private key would not match the published public key and the
invoke would fail. This problem only occurs if you use the default keystore
and key pairs in a cluster, and is easily resolved by using your own keystore
and key pairs.

e The client invoking the Web Service uses a username token to authenticate itself, rather
than an X.509 token.

e The client invoking the Web Service is a stand-alone Java application, rather than a
module running in WebLogic Server.

Later sections describe some of the preceding scenarios in more detail, as well as additional Web
Services security uses cases that build on the simple message-level security use case.

Itis assumed in the following procedure that you have already created a JWS file that implements
a WebLogic Web Service and you want to update it so that the SOAP messages are digitally
signed and encrypted. It is also assumed that you use Ant build scripts to iteratively develop your
Web Service and that you have a working bui Id.xml file that you can update with new
information. Finally, it is assumed that you have a client application that invokes the non-secured
Web Service. If these assumptions are not true, see:

e Chapter 5, “Programming the JWS File”
e Chapter 4, “Iterative Development of WebLogic Web Services”

e Chapter 9, “Invoking Web Services”
To configure simple message-level security for a WebLogic Web Service:

1. Update your JWS file, adding WebLogic-specific @Pol icy and @Policies JWS annotations
to specify the pre-packaged WS-Policy files that are attached to either the entire Web Service
or to particular operations.

See “Updating the JWS File with @Policy and @Policies Annotations” on page 10-17,
which describes how to specify any WS-Policy file. For this basic procedure, follow only
the instructions for specifying the pre-packaged WS-Policy files: Auth.xml, Sign.xml,
Encrypt.xml, Wssc-dk.xml, and Wssc-sct.xml.

2. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See “Iterative Development of WebLogic Web Services Starting From Java: Main Steps”
on page 4-3.

Programming Web Services for WebLogic Server 10-15

Configuring Security

10-16

3. Create a keystore used by the client application. BEA recommends that you create one client
keystore per application user.

You can use the Cert Gen utility or Sun Microsystem's keytoo1 utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys and Digital Signatures at
{DOCROOQOT}/secmanage/identity _trust.ntml#get_keys certs_trustedcas.

4. Create a private key and digital certificate pair, and load it into the client keystore. The same
pair will be used to both digitally sign the client’s SOAP request and encrypt the SOAP
responses from WebLogic Server.

Make sure that the certificate’s key usage allows both encryption and digital signatures.
Also see “Ensuring That WebLogic Server Can Validate the Client’s Certificate” on

page 10-17 for information about how WebLogic Server ensures that the client’s certificate
is valid.

WARNING: BEA requires a key length of 1024 bits or larger.
You can use Sun Microsystem's keytool utility to perform this step.
See Obtaining Private Keys and Digital Signatures.
5. Using the Administration Console, create users for authentication in your security realm.

See Users, Groups, and Security Roles.

6. Update your client application by adding the Java code to invoke the message-secured Web
Service.

See “Updating a Client Application to Invoke a Message-Secured Web Service” on
page 10-41.

7. Recompile your client application.

See “Compiling and Running the Client Application” on page 9-9 for general information.

See the following sections for information about additional Web Service security uses cases that
build on the basic message-level security use case:

e “Using Key Pairs Other Than the Out-Of-The-Box SSL Pair” on page 10-20
e “Setting the SOAP Message Expiration” on page 10-22
e “Creating and Using a Custom WS-Policy File” on page 10-23

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

e “Configuring and Using Security Contexts and Derived Keys (WS-SecureConversation)”
on page 10-27

e “Associating WS-Policy Files at Runtime Using the Administration Console” on
page 10-32

e “Using Security Assertion Markup Language (SAML) Tokens For Identity” on page 10-32
e “Using Only X.509 Certificate Tokens for Identity” on page 10-36
e “Using a Password Digest In the SOAP Message Rather Than Plaintext” on page 10-38

e “Invoking a Message-Secured Web Service From a Client Running in a WebLogic Server
Instance” on page 10-44

e “Associating a Web Service with a Security Configuration Other Than the Default” on
page 10-40

See “Using System Properties to Debug Message-Level Security” on page 10-40 for information
on debugging problems with your message-secured Web Service.

Ensuring That WebLogic Server Can Validate the Client’s
Certificate

You must ensure that WebLogic Server is able to validate the X.509 certificate that the client uses
to digitally sign its SOAP request, and that WebL ogic Server in turn uses to encrypt its SOAP
responses to the client. Do one of the following:

e Ensure that the client application obtains a digital certificate that WebLogic Server
automatically trusts, because it has been issued by a trusted certificate authority.

e Create a certificate registry which lists all the individual certificates trusted by WebLogic
Server, and then ensure that the client uses one of these registered certificates.

For more information, see SSL Certificate Validation.

Updating the JWS File with @Policy and @Policies
Annotations

Use the @Policy and @Policies annotations in your JWS file to specify that the Web Service
has one or more WS-Policy files attached to it. You can use these annotations at either the class
or method level.

Programming Web Services for WebLogic Server 10-17

Configuring Security

10-18

The @Policies annotation simply groups two or more @Pol icy annotations together. Use the
@Policies annotation if you want to attach two or more WS-Policy files to the class or method.
If you want to attach just one WS-Policy file, you can use @Policy on its own.

The @Pol icy annotation specifies a single WS-Policy file, where it is located, whether the policy
applies to the request or response SOAP message (or both), and whether to attach the WS-Policy
file to the public WSDL of the service.

WARNING: Asiis true for all JWS annotations, the @Pol icy annotation cannot be overridden
at runtime, which means that the WS-Policy file you specify at buildtime using
the annotation will always be associated with the Web Service. This means, for
example, that although you can view the associated WS-Policy file at runtime
using the Administration Console, you cannot delete (unassociate) it. You can,
however, associate additional WS-Policy files, as described in “Associating
WS-Policy Files at Runtime Using the Administration Console” on page 10-32.

Use the uri attribute to specify the location of the WS-Policy file, as described below:

e To specify one of the five pre-packaged WS-Policy files that are installed with WebLogic
Server, use the policy: prefix and the name of one of the WS-Palicy files (either
Auth.xml, Encrypt.xml, Sign.xml, Wssc-dk.xml, or Wssc-sct.xml), as shown in the
following example:

@Policy(uri="policy:Encrypt.xml')

If you use the pre-packaged WS-Policy files, you do not have to create one yourself or
package it in an accessible location. For this reason, BEA recommends that you use the
pre-packaged WS-Policy files whenever you can.

See “Using WS-Policy Files for Message-Level Security Configuration” on page 10-4 for
information on the various types of message-level security provided by the pre-packaged
WS-Policy files.

o To specify a user-created WS-Policy file, specify the path (relative to the location of the
JWS file) along with its name, as shown in the following example:
@Policy(uri="_._./policies/MyPolicy.xml')

In the example, the MyPolicy.xml file is located in the policies sibling directory of the
one that contains the JWS file.

e You can also specify that a WS-Policy file that is located in a shared J2EE library; this
method is useful if you want to share the file amongst multiple Web Services packaged in
different J2EE archives.

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

In this case, it is assumed that the WS-Policy file is in the META-INF/policies or
WEB-INF/policies directory of the shared J2EE library. Be sure, when you package the
library, that you put the WS-Policy file in this directory.

To specify a WS-Policy file in a shared J2EE library, use the policy prefix and then the
name of the WS-policy file, as shown in the following example:

@Policy(uri="policy:MySharedPolicy.xml’*)

See Creating Shared J2EE Libraries and Optional Packages for information on creating
shared libraries and setting up your environment so the Web Service can find the shared
WS-Policy files.

You can also set the following attributes of the @Policy annotation:

e direction—Specifies whether the policy file should be applied to the request (inbound)
SOAP message, the response (outbound) SOAP message, or both. The default value if you
do not specify this attribute is both. The direction attribute accepts the following
values:

— Policy.Direction.both
— Policy.Direction. inbound

— Policy.Direction.outbound

e attachToWsdl—Specifies whether the policy file should be attached to the WSDL file
that describes the public contract of the Web Service. The default value of this attribute is
false. Abstract WS-Policy files cannot be attached at build time, but rather, they are
attached at deploy time when the missing information is filled in by WebLogic Server.

The following example shows how to use the @Policy and @Pol icies JWS annotations, with
the relevant sections shown in bold:

package examples.webservices.security_ jws;

import weblogic. jws.WLHttpTransport;
import weblogic.jws.Policies;

import weblogic.jws.Policy;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.soap.SOAPBinding;

/**
*
*/
@webService(name=""SecureHel loWorldPortType",

serviceName="SecureHel loWorldService",
targetNamespace=""http://www.bea.com")

Programming Web Services for WebLogic Server 10-19

Configuring Security

@SOAPBiInding(style=SOAPBinding.Style_DOCUMENT,

use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

@WLHttpTransport(contextPath="SecureHelloWorldService",

serviceUri="SecureHelloWorldService",
portName=""SecureHel loWorldServicePort')

@Policies({

@Policy(uri="policy:Auth_.xml", direction=Policy.Direction.inbound),
@Policy(uri="policy:Sign.xml"),
@Policy(uri="policy:Encrypt.xml')})

public class SecureHelloWorldImpl {

@webMethod ()
public String sayHello(String s) {

}
}

10-20

return "Hello " + s;

In the example, three WS-Policy files are attached to the Web Service at the class level, which
means that all three WS-Policy files are applied to all public operations of the Web Service. The
specified WS-Policy files are those pre-packaged with WebLogic Server, which means that the
developers do not need to create their own files or package them in the corresponding archive.

The Auth.xml file is applied to only the request (inbound) SOAP message, as specified by the
direction attribute. This means that only the client application needs to provide a username
token; when WebLogic Server responds to the invoke, it does not provide a username token. The
sign.xml WS-Policy file specifies that the body and WebL ogic system headers of both the
request and response SOAP message be digitally signed. The Encrypt.xml policy file specifies
that the body of both the request and response SOAP messages be encrypted.

Using Key Pairs Other Than the Out-0f-The-Box SSL Pair

In the simple message-level configuration procedure, documented in “Configuring Simple
Message-Level Security: Main Steps” on page 10-14, it is assumed that the Web Services runtime
uses the private key and X.509 certificate pair that is provided out-of-the-box with WebLogic
Server; this same key pair is also used by the core security subsystem for SSL and is provided
mostly for demonstration and testing purposes. In production environments, the Web Services
runtime typically uses its own two private key and digital certificate pairs, one for signing and
one for encrypting SOAP messages.

The following procedure describes the additional steps you must take to enable this use case.

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

. Obtain two private key and digital certificate pairs to be used by the Web Services runtime.
One of the pairs is used for digitally signing the SOAP message and the other for encrypting it.

Although not required, BEA recommends that you obtain two pairs that will be used only
by WebLogic Web Services. You must also ensure that both of the certificate’s key usage
matches what you are configuring them to do. For example, if you are specifying that a
certificate be used for encryption, be sure that the certificate’s key usage is specified as for
encryption or is undefined. Otherwise, the Web Services security runtime will reject the
certificate.

WARNING: BEA requires that the key length be 1024 bits or larger.

You can use the Cert Gen utility or Sun Microsystem's keytoo1 utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys and Digital Signatures.

. Create, if one does not currently exist, a custom identity keystore for WebLogic Server and
load the private key and digital certificate pairs you obtained in the preceding step into the
identity keystore.

If you have already configured WebL ogic Server for SSL, then you have already created a
identity keystore which you can also use in this step.

You can use WebLogic’s ImportPrivateKey utility and Sun Microsystem’s keytool
utility to perform this step. For development purposes, the keytool utility is the easiest
way to get started.

See Creating a Keystore and Loading Private Keys and Trusted Certificate Authorities Into
the Keystore.

. Using the Administration Console, configure WebLogic Server to locate the keystore you
created in the preceding step. If you are using a keystore that has already been configured for
WebLogic Server, you do not need to perform this step.

See Configuring Keystores for Production.

. Using the Administration Console, create the default Web Service security configuration,
which must be named default_wss. The default Web Service security configuration is used
by all Web Services in the domain unless they have been explicitly programmed to use a
different configuration.

See Create a Web Service security configuration.

. Update the default Web Services security configuration you created in the preceding step to
use one of the private key and digital certificate pairs for digitally signing SOAP messages.

Programming Web Services for WebLogic Server 10-21

Configuring Security

See Specify the Key Pair Used to Sign SOAP Messages. In the procedure, when you create
the properties used to identify the keystore and key pair, enter the exact value for the Name
of each property (such as IntegrityKeyStore, IntegrityKeyStorePassword, and so
on), but enter the value that identifies your own previously-created keystore and key pair in
the Value fields.

6. Similarly, update the default Web Services security configuration you created in a preceding
step to use the second private key and digital certificate pair for encrypting SOAP messages.

See Create keystore used by SOAP message encryption. In the procedure, when you create
the properties used to identify the keystore and key pair, enter the exact value for the Name
of each property (such as ConfidentialityKeyStore.
ConfidentialityKeyStorePassword, and so on), but enter the value that identifies your
own previously-created keystore and key pair in the Value fields.

Setting the SOAP Message Expiration

The <MessageAge> element in the WS-Policy file specifies whether SOAP messages resulting
from an invoke of the Web Service associated with the WS-Policy file have an expiration.
WebLogic Server rejects SOAP requests that have expired, based on their expiration time and the
creation timestamp, which is included in the message. You can further configure expiration of
messages by using the Administration Console to create and update the Web Services security
configuration that is associated with the service.

The following bullets describe how the WebLogic Web Services runtime determines the
expiration of a SOAP message for a particular Web Service:

e |f the WS-Policy file associated with the Web Service does not include a <MessageAge>
assertion, then the SOAP messages never expire.

o If the WS-Policy file includes a <MessageAge> assertion, but with no attributes, and the
Web Service is not associated with a Web Service security configuration, then the
expiration time is 60 seconds. If the Web Service is associated with a Web Service security
configuration, then the expiration is the value of the Validity Period timestamp field of the
associated Web Service security configuration (typically default_wss).

The pre-packaged Sign.xml WS-Policy file falls into this category.

o |f the WS-Policy file includes a <MesageAge> assertion with the Age attribute, then the
expiration time is the value of the Age attribute. This value always overrides the value of
the Validity Period field of any associated Web Service security configuration.

It is assumed in the following procedure that you have followed the steps in “Configuring Simple
Message-Level Security: Main Steps” on page 10-14 and now want to set the message expiration.

10-22 Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

To set the SOAP message expiration:

1. Ensure that the WS-Policy file associated with the Web Service includes a <MessageAge>
assertion. The pre-packaged Sign.xml file includes one without any attributes.

If you add a <MessageAge> assertion to a custom WS-Policy file, and specify the Age
attribute, then you are done; the expiration is the value of this attribute and cannot be
overridden with the Administration Console. If you do not specify an attribute because you
want the default of 60 seconds, then you are also done. If, however, you want to change
this default value, go to the next step.

2. Using the Administration Console, create (if you have not already done so) the default Web
Service security configuration, which must be named default_wss. The default Web
Service security configuration is used by all Web Services in the domain unless they have
been explicitly programmed to use a different configuration.

See Create a Web Service security configuration.

3. Update the default Web Services security configuration you created in the preceding step to
specify a different expiration:

a. In the left pane of the Administration Console, select domain > Web Service Security.
b. Select default_wss in the Web Service Security Configuration table.

a. Select Web Service Security > Timestamp.

b. Update the Validity Period field with the new expiration time, in seconds.

c. Optionally update the other fields. Click the Help link in the top right corner for detailed
information about these fields.

d. Click Save.

Creating and Using a Custom WS-Policy File

Although WebLogic Server includes five pre-packaged WS-Policy files that typically satisfy the
security needs of most programmers, you can also create and use your own WS-Policy file if you
need additional configuration. For example, you must create your own WS-Policy file if you want
to:

e Use SAML tokens for authentication

Programming Web Services for WebLogic Server 10-23

Configuring Security

e Specify that particular parts of the body of a SOAP message be encrypted or digitally
signed, rather than the entire body, which is what the Encrypt.xml and Sign.xml
pre-packaged WS-Policy files do.

e Configure security context and derived keys (part of the WS-SecureConversation
specification) differently from the way they are configured in the pre-packaged files
Wssc-dk.xml and Wssc-sct.xml.

See “Using WS-Policy Files for Message-Level Security Configuration” on page 10-4 for
general information about WS-Policy files and how they are used for message-level security
configuration.

When you create a custom WS-Policy file, you can separate out the three main security categories
(authentication, encryption, and signing) into three separate WS-Policy files, as do the
pre-packaged files, or create a single WS-Policy file that contains all three categories. You can
also create a custom WS-Policy file that changes just one category (such as authentication) and
use the pre-packaged files for the other categories (Sign.xml and Encrypt.xml). In other words,
you can mix and match the number and content of the WS-Policy files that you associate with a
Web Service. In this case, however, you must always ensure yourself that the multiple files do
not contradict each other.

The root element of your WS-Policy file must be <Policy> and include the following namespace
declarations:

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www_bea.com/wls90/security/policy"

xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssecurity-
utility-1.0.xsd"
xmIns:wls="http://www.bea.com/wls90/security/policy/wsee#part"

>

10-24

Defining Child Elements in a Custom WS-Policy File

Define the following child elements of the <Policy> root element in your WS-Policy file (see
Appendix D, “Security Policy Assertion Reference,” for complete reference information about
the elements):

e <ldentity>—Specifies the tokens that are supported for authentication. The
<SupportedTokens> element groups one or more <SecurityTokens> elements for each
type of supported tokens for identity: username, X.509, or SAML. Use the <Claims>
element to specify the type of confirmation for SAML tokens (sender-vouches or
holder-of-key) and to specify use of password digests when using username tokens.

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

e <Confidentiality>—Specifies what parts of the SOAP message must be encrypted.
Optional child elements include: <KeyWrappingAlgorithm> to specify the algorithm used
to wrap symmetric keys, <Target> to specify the blocks of the SOAP message that are
encrypted, and <key Info> to specify the tokens used for encryption (only X.509 tokens
are supported.)

e <Integrity>—Specifies what parts of the SOAP message must be digitally signed.
Optional child elements include: <SignatureAlgorithm> to specify the algorithm used to
sign the message, <Canonical izationAlgorithm> to specify the algorithm used for
canonicalization, <Target> to specify the blocks of the SOAP message that are digitally
signed, and <SupportedTokens> to specify the types of tokens that can be used for
signing (only X.509 tokens are supported.)

e <MessageAge>—Specifies the maximum age, in seconds, of a SOAP message.

See “Example of a Custom WS-Policy File” on page 10-25 for an example of a custom
WS-Policy file used to specify SAML tokens for identity. Because the <Integrity> and
<ConFfidentiality> elements do not include <Key Info> and <SupportedTokens> child
elements, respectively, these sections of the file are abstract. The <ldentity> element does
include the SAML token, so the identity section is concrete.

You can also use the abstract pre-packaged WS-Policy files as templates to create your own
custom files. See:

e “Auth.xml” on page 10-6

e “Sign.xml” on page 10-7

“Encrypt.xml” on page 10-8

“Wssc-dk.xml” on page 10-9

“Wssc-sct.xml” on page 10-11

Example of a Custom WS-Policy File
<<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"

xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssecurity-
utility-1.0.xsd"
xmIns:wls="http://www._bea.com/wls90/security/policy/wsee#part"
>

Programming Web Services for WebLogic Server 10-25

Configuring Security

<wssp: ldentity>
<wssp:SupportedTokens>
<wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-pro
Tile-1.0#SAMLAssertionlID">
<wssp:Claims>
<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
</wssp:Claims>
</wssp:SecurityToken>
</wssp:SupportedTokens>
</wssp: ldentity>

<wssp: Integrity>

<wssp:SignatureAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<wssp:CanonicalizationAlgorithm
URI=""http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>

<wssp:Target>
<wssp:DigestAlgorithm
URI="http://www.w3.0rg/2000/09/xmldsig#shal" />
<wssp:MessageParts
Dialect=""http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp:Body ()
</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:DigestAlgorithm URI="http://www.w3.0rg/2000/09/xmldsig#shal™ />
<wssp:MessageParts
Dialect=""http://www.bea.com/wls90/security/policy/wsee#part'>
wls:SecurityHeader (Assertion)
</wssp:MessageParts>
</wssp:Target>

</wssp: Integrity>
<wssp:Confidentiality>

<wssp:KeyWrappingAlgorithm URI="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>

<wssp:Target>
<wssp:EncryptionAlgorithm
URI="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbhc"/>
<wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
wls:SecurityHeader (Assertion)
</wssp:MessageParts>
</wssp:Target>

10-26 Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

<wssp:Target>
<wssp:EncryptionAlgorithm
URI="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbhc'"/>
<wssp:MessageParts
Dialect=""http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp:Body()</wssp:MessageParts>
</wssp:Target>

<wssp:KeylInfo />
</wssp:Confidentiality>

<wssp :MessageAge/>

</wsp:Policy>

Configuring and Using Security Contexts and Derived Keys
(WS-SecureConversation)

BEA provides two pre-packaged WS-Policy files (Wssc-dk.xml and Wssc-sct.xml) to
configure security contexts and derived keys, as described by the WS-SecureConversation
specification. It is highly recommended that you always use the pre-packaged files if you want to
configure security contexts, because these two files provide most of the required functionality and
typical default values. See “Wssc-dk.xml” on page 10-9 and “Wssc-sct.xml” on page 10-11 for
the specific configuration provided by these files.

If, however, the values defined in these WS-Policy files are not adequate for your requirements,
then you must create your own custom WS-Policy file. The following sections describe how to
customize the configuration of secure contexts and derived keys and how a client application
negotiates the security contexts with a Web Service.

WARNING: Ifyou are deploying a Web Service that uses shared security contexts to a cluster,
then you are required to also configure cross-cluster session state replication. For
details, see Failover and Replication in a Cluster.

Using Custom WS-Policy Files To Configure Security Contexts and Derived
Keys

If the pre-packaged WS-Policy files to configure security contexts are not adequate for your
requirements, then you must create your own custom WS-Policy file and associate it with your
Web Service using the @Pol icy annotation in your JWS file, or at runtime using the
Administration Console. See “Creating and Using a Custom WS-Policy File” on page 10-23 for
general information about creating custom WS-Policy files; the remainder of this section

Programming Web Services for WebLogic Server 10-27

Configuring Security

describes security context-specific information. BEA recommends you use the pre-packaged
Wssc-dk.xml WS-Policy file as a guide and then customize it for your needs.

Follow these guidelines to create a custom security context WS-Policy file:

o Use the SupportTrust20=""true" attribute of the <wssp: Integrity> and
<wssp:Confidential ity> assertions to specify that you want to configure shared
security contexts when signing and encrypting:

<wssp: Integrity SupportTrustlO="true">
and

<wssp:Confidentiality SupportTrustlO=""true'>

e If you want to configure use of derived key token, set the TokenType attribute of the
<wssp:SecurityToken> assertion (for both digitally signing and encryption) to
http://schemas.xmlsoap.org/ws/2005/02/sc/dk and specify the
DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct
attribute, as shown in the following example:

<wssp:Confidentiality SupportTrustlO=""true'>

<wssp:Target>

</wssp:Target>

<wssp:KeyInfo>
<wssp:SecurityToken IncludelnMessage=""true"
TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"

DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct">
</wssp:SecurityToken>
</wssp:KeyInfo>

</wssp:Confidentiality>
e |f you want to configure use of simple security context token, without using derived keys,
set the TokenType attribute of the <wssp:SecurityToken> assertion (for both digitally

signing and encryption) to http://schemas.xmlsoap.org/ws/2005/02/sc/sct, as
shown in the following example:

<wssp:Confidentiality SupportTrustlO="true'>

<wssp:Target>

</wssp:Target>

<wssp:KeylInfo>
<wssp:SecurityToken

10-28 Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

IncludelnMessage=""true"
TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct'>
</wssp:SecurityToken>
</wssp:KeyInfo>

</wssp:Confidentiality>

e The URI specified for the <wssp:SignatureAlgorithm> assertion of
<wssp: Integrity> must be http://www.w3.0rg/2000/09/xmldsig#hmac-shal

<wssp:Integrity SupportTrustlO="true">

<wssp:SignatureAlgorithm
URI="http://www.w3.0rg/2000/09/xmldsig#hmac-shal"/>

e You cannot specify the <wssp:KeyWrappingAlgorithm> assertion of
<wssp:Confidentiality>

e Use child elements of the <wssp:Claims> assertion, which itself is a child element of
<wssp:SecurityToken> to further configure the security context token or derived key
token. In particular, use the <wssp:TokenLifeTime> assertion to change the lifetime, in
seconds, of the security context from the default 12 hours, <wssp:Length> assertion to
change the length of the key from the default 32, and <wssp:Label> assertion to set the
label, as shown in the following example:

<wssp:Confidentiality SupportTrustlO=""true'>

<wssp:Target>

</wssp:Target>

<wssp:KeylInfo>
<wssp:SecurityToken IncludelnMessage=""true"
TokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"

DerivedFromTokenType="http://schemas.xmlsoap.org/ws/2005/02/sc/sct'>

<wssp:Claims>
<wssp:TokenLifeTime>600</wssp:TokenLifeTime>
<wssp:Label>WS-SecureConversation</wssp:Label>
<wssp:Length>16</wssp:Length>

</wssp:Claims>

</wssp:SecurityToken>
</wssp:KeylInfo>

</wssp:Confidentiality>

Programming Web Services for WebLogic Server 10-29

Confi

guring Security

Updating a Client Application to Negotiate Security Contexts

A client application that negotiates security contexts when invoking a Web Service is similar to
a standard client application that invokes a message-secured Web Service, as described in
“Updating a Client Application to Invoke a Message-Secured Web Service” on page 10-41. The
only real difference is that you can use the
weblogic.wsee.security.wssc.utils.WSSCClientUtil API to explicitly cancel the
secure context token.

Note: WebLogic Server provides the wSSCCLientUtil API for your convenience only; the
Web Services runtime automatically cancels the secure context token when the
configured timeout is reached. Use the API only if you want to have more control over
when the token is cancelled.

The following client application shows a simple example of invoking a Web Service that is
associated with the pre-packaged Wssc-dk.xml WS-Policy file that enables secure
conversations; the sections in bold which are relevant to security contexts are discussed after the
example:

package examples._webservices.wssc.client;

import weblogic.security.SSL.TrustManager;

import weblogic.xml._crypto.wss.provider.CredentialProvider;
import weblogic.xml._crypto.wss.WSSecurityContext;

import weblogic.wsee.security.bst_ClientBSTCredentialProvider;
import weblogic.wsee.security.bst.StubPropertyBSTCredProv;
import weblogic.wsee.security.wssc.utils.WSSCClientUtil;
import weblogic.wsee.security.util_CertUtils;

import javax.xml.rpc.Stub;
import java.util_List;
import java.util_ArraylList;

import java.security.cert.X509Certificate;

/**

*/

Copyright (c) 2004 by BEA Systems. All Rights Reserved.

public class WSSecureConvClient {
public static void main(String[] args) throws Throwable {

10-30

String clientkKeyStore = args[0];
String clientKeyStorePass = args[1];
String clientkKeyAlias = args[2];
String clientkKeyPass = args[3]:

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

String serverCert = args[4];
String wsdl = args[5];

WSSecureConvService service = new WSSecureConvService_Impl(wsdl);
WSSecureConvPortType port = service.getWSSecureConvServicePort();

//create credential provider and set it to the Stub
List credProviders = new ArrayList();

//use x509 to secure wssc handshake
credProviders.add(new ClientBSTCredentialProvider(clientKeyStore,
clientKeyStorePass, clientKeyAlias, clientKeyPass));

Stub stub = (Stub)port;

stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders);

stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT,
CertUtils._getCertificate(serverCert));

stub._setProperty(WSSecurityContext. TRUST_MANAGER,
new TrustManager(Q{
public boolean certificateCallback(X509Certificate[] chain, int
validateErr){
//need to validate if the server cert can be trusted
return true;
}
}
)N

System.out.printin (port.sayHelloWithWSSC(*'Hello World, once'™));
System.out.println (port.sayHel loWithWSSC(*'"Hello World, twice'));
System.out.println (port.sayHelloWithWSSC(*'"Hello World, thrice™));

//cancel SecureContextToken after done with invocation
WSSCClientUtil.terminateWssc(stub);
System.out.printIn(""'WSSC terminated!");

The points to notice in the preceding example are:

e Import the WebLogic API used to explicitly terminate the secure context token:

import weblogic.wsee.security.wssc.utils.WSSCClientUtil;

e Set a property on the JAX-RPC stub which specifies that the client application must

encrypt its request to WebL ogic Server to cancel the secure context token with WebLogic

Server’s public key:

Programming Web Services for WebLogic Server

10-31

Configuring Security

10-32

stub._setProperty(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT,
CertUtils.getCertificate(serverCert));

e Use the terminateWssc() method of the WSSClientUtil class to terminate the secure
context token:

WSSCClientUtil.terminateWssc(stub);

Associating WS-Policy Files at Runtime Using the
Administration Console

The simple message-level configuration procedure, documented in “Configuring Simple
Message-Level Security: Main Steps” on page 10-14, describes how to use the @Policy and
@Policies JWS annotations in the JWS file that implements your Web Service to specify one
or more WS-Policy files that are associated with your service. This of course implies that you
must already know, at the time you program your Web Service, which WS-Policy files you want
to associate with your Web Service and its operations. This might not always be possible, which
is why you can also associate WS-Policy files at runtime, after the Web Service has been
deployed, using the Administration Console.

You can use no @Policy or @Policies JWS annotations at all in your JWS file and associate
WS-Policy files only at runtime using the Administration Console, or you can specify some
WS-Policy files using the annotations and then associate additional ones at runtime. However,
once you associate a WS-Policy file using the JWS annotations, you cannot change this
association at runtime using the Administration Console.

At runtime, the Administration Console allows you to associate as many WS-Policy files as you
want with a Web Service and its operations, even if the policy assertions in the files contradict
each other or contradict the assertions in WS-Policy files associated with the JWS annotations. It
is up to you to ensure that multiple associated WS-Policy files work together. If any
contradictions do exist, WebLogic Server returns a runtime error when a client application
invokes the Web Service operation.

See Associate a WS-Policy file with a Web Service for detailed instructions on using the
Administration Console to associate a WS-Policy file at runtime.

Using Security Assertion Markup Language (SAML) Tokens
For ldentity

In the simple Web Services configuration procedure, described in “Configuring Simple
Message-Level Security: Main Steps” on page 10-14, it is assumed that users use username

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

tokens to authenticate themselves. Because WebLogic Server implements the Web Services
Security: SAML Token Profile of the Web Services Security specification, users can also use
SAML tokens in the SOAP messages to authenticate themselves when invoking a Web Service
operation, as described in this section.

Use of SAML tokens works server-to-server. This means that the client application is running
inside of a WebLogic Server instance and then invokes a Web Service running in another
WebLogic Server instance using SAML for identity. Because the client application is itself a Web
Service, the Web Services security runtime takes care of all the SAML processing.

When you configure a Web Service to require SAML tokens for identity, you can specify one of
the following confirmation methods:

e sender-vouches
e holder-of-key

See SAML Token Profile Support in WebLogic Web Services, as well as the Web Services
Security: SAML Token Profile specification itself, for details about these confirmation methods.

Note: It is assumed in this section that you understand the basics of SAML and how it relates
to core security in WebLogic Server. For general information, see Security Assertion
Markup Language (SAML).

It is also assumed in the following procedure that you have followed the steps in
“Configuring Simple Message-Level Security: Main Steps” on page 10-14 and now want
to enable the additional use case of using SAML tokens, rather than usename tokens, for
identity.

To use SAML tokens for identity, follow these steps:

1. Using the Administration Console, configure a SAML identity assertion and credential
mapping provider. This step configures the core WebLogic Server security subsystem. For
details, see:

— Configuring a SAML Identity Assertion Provider
— Configuring a SAML Credential Mapping Provider

2. Create a custom WS-Policy file that specifies that SAML should be used for identity. The
exact syntax depends on the type of confirmation method you want to configure
(sender-vouches or holder-of-key).

To specify the sender-vouches confirmation method:

— Create a <SecurityToken> child element of the <ldentity><SupportedTokens>
elements and set the TokenType attribute to a value that indicates SAML token usage.

Programming Web Services for WebLogic Server 10-33

Configuring Security

10-34

— Add a <Claims><Confirmationmethod> child element of <SecurityToken> and

specify sender-vouches.
For example:
<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"

xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-w
ssecurity-utility-1.0.xsd"
xmIns:wls="http://www._bea.com/wls90/security/policy/wsee#part"
>

<wssp: ldentity>
<wssp:SupportedTokens>
<wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/o0asis-2004-01-saml
-token-profile-1.0#SAMLAssertionlD">
<wssp:Claims>

<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
</wssp:Claims>
</wssp:SecurityToken>
</wssp:SupportedTokens>
</wssp: ldentity>

</wsp:Policy>

To specify the holder-of-key confirmation method:

— Create a <SecurityToken> child element of the <Integrity><SupportedTokens>

elements and set the TokenType attribute to a value that indicates SAML token usage.

The reason you put the SAML token in the <Integrity> assertion for the
holder-of-key confirmation method is that the Web Service runtime must prove the
integrity of the message, which is not required by sender-vouches.

— Add a <Claims><Confirmationmethod> child element of <SecurityToken> and

specify holder-of-key.
For example:

<?xml version="1.0"?>
<wsp:Policy

xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-w
ssecurity-utility-1.0.xsd"
xmIns:wls="http://www.bea.com/wls90/security/policy/wsee#part’>

<wssp: Integrity>
<wssp:SignatureAlgorithm
URI="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<wssp:CanonicalizationAlgorithm
URI="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>

<wssp:Target>
<wssp:DigestAlgorithm
URI=""http://www.w3.0rg/2000/09/xmldsig#shal" />
<wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part'>

wsp:Body ()
</wssp:MessageParts>
</wssp:Target>

<wssp: SupportedTokens>
<wssp:SecurityToken
IncludelnMessage=""true""

TokenType="http://docs.oasis-open.org/wss/2004/01/0asis-2004-01-saml
-token-profile-1.0#SAMLAssertionlD">
<wssp:Claims>

<wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
</wssp:Claims>
</wssp:SecurityToken>
</wssp:SupportedTokens>
</wssp: Integrity>

</wsp:Policy>

— By default, the WebLogic Web Services runtime always validates the X.509 certificate
specified in the <key Info> assertion of any associated WS-Policy file. To disable this
validation when using SAML holder-of-key assertions, you must configure the Web
Service security configuration associated with the Web service by setting a property on
the SAML token handler. See Disable X.509 certificate validation when using SAML
holder_of_key assertions for information on how to do this using the Administration
Console.

See “Creating and Using a Custom WS-Policy File” on page 10-23 for additional
information about creating your own WS-Policy file. See Appendix D, “Security Policy
Assertion Reference,” for reference information about the assertions.

Programming Web Services for WebLogic Server 10-35

Configuring Security

10-36

3. Update the appropriate @Policy annotations in the JWS file that implements the Web
Service to point to the custom WS-Policy file you created in the preceding step. For example,
if you want invokes of all the operations of a Web Service to SAML for identity, specify the
@Pol icy annotation at the class-level.

You can mix and match the WS-Policy files that you associate with a Web Service, as long
as they do not contradict each other. For example, you can create a simple MyAuth . xml
file that contains only the <ldentity> security assertion to specify use of SAML for
identity and then associate it with the Web Service together with the pre-packaged
Encrypt.xml and Sign.xml files. It is, however, up to you to ensure that multiple
associated WS-Policy files do not contradict each other; if they do, you will either receive
a runtime error or the Web Service might not behave as you expect.

4. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See “Iterative Development of WebLogic Web Services Starting From Java: Main Steps”
on page 4-3.

5. Create a client application that runs in a WebLogic Server instance to invoke the main Web
Service using SAML as identity. See “Invoking a Message-Secured Web Service From a
Client Running in a WebLogic Server Instance” on page 10-44 for details.

Using Only X.509 Certificate Tokens for ldentity

In the simple Web Services configuration procedure, described in “Configuring Simple
Message-Level Security: Main Steps” on page 10-14, it is assumed that users use either username
tokens, X.509 tokens, or both, to authenticate themselves. This is because it is assumed that users
associate the Auth . xml pre-packaged WS-Policy file to their Web Service; because Auth.xml is
abstract, the exact tokens that appear in the deployed WS-Policy file depend on how you have
configured WebLogic Server, and thus it is undefined at the time you program the Web Service
which tokens will actually be used for identity.

If, however, you want to specify that users authenticate themselves using only X.509 certificates
when invoking a Web Service, and thus explicitly exclude username tokens from the WS-Policy
file, then you cannot use Auth . xml and must instead create a custom WS-Policy file, as described
in the following procedure. You must also use this procedure if you want to specify the parts of
the SOAP message that are signed; by default, Auth_xml, when using X.509 for identity, also
signs the entire SOAP body. Use the <Integrity> assertion to specify parts that should be
signed.

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

Note: Itisassumed in the following procedure that you have followed the steps in “Configuring
Simple Message-Level Security: Main Steps” on page 10-14 and now want to enable the
additional use case of using only X.509 certificates for identity.

1. Using the Administration Console, create (if you have not already done so) the default Web
Service security configuration, which must be named default_wss. The default Web
Service security configuration is used by all Web Services in the domain unless they have
been explicitly programmed to use a different configuration.

See Create a Web Service security configuration.

2. Update the default Web Services security configuration you created in the preceding step to
specify that X.509 certificates should be used for identity. See Use X.509 certificates to
establish identity.

3. Create a custom WS-Policy file that specifies that X.509 certificates should be used for
identity.

In particular, you must set the TokenType attribute of the <SecurityToken> child

element of the <ldentity><SupportedTokens> elements to
http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-token-prof
ile-1.0#X509v3, as shown in the following simple example:

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"
>

<wssp: ldentity>

<wssp: SupportedTokens>
<wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509
-token-profile-1.0#X509v3" />
</wssp:SupportedTokens>

</wssp: ldentity>
</wsp:Policy>

See “Creating and Using a Custom WS-Policy File” on page 10-23 for additional
information about creating your own WS-Policy file. This section also includes
information about adding <Integrity>.

4. Update the appropriate @Policy annotations in your JWS file to point to the custom
WS-Policy file you created in the preceding step. For example, if you want invokes of all

Programming Web Services for WebLogic Server 10-37

Configuring Security

10-38

the operations of a Web Service to use X.509 for identity, specify the @Policy annotation at
the class-level.

You can mix and match the WS-Policy files that you associate with a Web Service, as long
as they do not contradict each other. For example, you can create a simple MyAuth . xml
file that contains only the <ldentity> security assertion to specify use of X.509
certificates for identity and then associate it with the Web Service together with the
pre-packaged Encrypt.xml and Sign.xml files. It is, however, up to you to ensure that
multiple associated WS-Policy files do not contradict each other. If they do, you will
receive a runtime error.

Recompile and redeploy your Web Service as part of the normal iterative development
process.

See “Iterative Development of WebLogic Web Services Starting From Java: Main Steps”
on page 4-3.

You can use the same client application, described in “Updating a Client Application to
Invoke a Message-Secured Web Service” on page 10-41, when using X.509 for identity. The
only optional update is to remove the creation of the username token, which is not needed for
this use case. The code to remove is:

//client side UsernameToken credential provider
cp = new ClientUNTCredentialProvider(username, password);
credProviders.add(cp);

Using a Password Digest In the SOAP Message Rather Than
Plaintext

By default, the WebLogic Web Services security runtime uses cleartext passwords, rather than

the password digest, in the SOAP messages resulting from an invoke of a message-secured Web
Service. The following procedure shows how to change this default behavior so that the SOAP

messages use the password digest.

Itis assumed in the following procedure that you have followed the steps in “Configuring Simple
Message-Level Security: Main Steps” on page 10-14 and now want to specify that all SOAP
messages use password digest rather than cleartext.

1.

Using the Administration Console, create (if you have not already done so) the default Web
Service security configuration, which must be named default_wss. The default Web
Service security configuration is used by all Web Services in the domain unless they have
been explicitly programmed to use a different configuration.

Programming Web Services for WebLogic Server

Configuring Simple Message-Level Security: Main Steps

WARNING: If you have created Web Services security configuration in addition to the
default one (default_wss), each configuration should specify the same
password digest use. Inconsistent password digest use in different Web
Service security configurations will result in a runtime error.

See Create a Web Service security configuration.

Update the default Web Services security configuration you created in the preceding step to
specify that password digests should be used in SOAP messages. See Use a password digest
in SOAP messages.

Update the default WebLogic Authentication provider of the core WebLogic Server security
to store cleartext passwords rather than the digest. See Configure Authentication and Identity
Assertion providers.

If you are not using the pre-packaged Auth.xml file and have instead created a custom
WS-Policy file and have explicitly specified a username token with the
<ldentity><SupportedTokens><SecurityToken> elements, then you must add a
<Claims><UsePassword> child element as shown below:

<wssp: ldentity>
<wssp:SupportedTokens>

<wssp:SecurityToken TokenType="#UsernameToken">
<wssp:Claims>
<wssp :UsePassword

Type="http://www.docs.oasis-open.org/wss/2004/01/0asis-200401-wss-usern
ame-token-profile-1_0#PasswordDigest” />

</wssp:Claims>
</wssp:SecurityToken>

</wssp:SupportedTokens>
</wssp: ldentity>

If you are using the pre-packaged Auth.xml file to configure authentication, you do not
need to perform this step.

See “Creating and Using a Custom WS-Policy File” on page 10-23 for additional
information about creating your own WS-Policy file.

. If you created a custom WS-Policy file, update the appropriate @Pol icy annotations in your
JWS file to point to it. See “Updating the JWS File with @Policy and @Policies Annotations”
on page 10-17.

Programming Web Services for WebLogic Server 10-39

Configuring Security

10-40

6. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See “Iterative Development of WebLogic Web Services Starting From Java: Main Steps”
on page 4-3.

Associating a Web Service with a Security Configuration
Other Than the Default

Many use cases previously discussed require you to use the Administration Console to create the
default Web Service security configuration called default_wss. After you create this
configuration, it is applied to all Web Services that either do not use the
@weblogic.jws.security.WssConfiguration JWS annotation or specify the annotation
with no attribute.

There are some cases, however, in which you might want to associate a Web Service with a
security configuration other than the default; such use cases include specifying different
timestamp values for different services.

To associate a Web Service with a security configuration other than the default:
1. Create a Web Service security configuration with a name that is not defaul t_wss.

2. Update your JWS file, adding the @WwssConfiguration annotation to specify the name of this
security configuration. See “weblogic.jws.security.WssConfiguration” on page B-73 for
additional information and an example.

3. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See “Iterative Development of WebLogic Web Services Starting From Java: Main Steps”
on page 4-3.

WARNING: All Web Services security configurations are required to specify the same
password digest use. Inconsistent password digest use in different Web Service
security configurations will result in a runtime error.

Using System Properties to Debug Message-Level Security

The following table lists the system properties you can set to debug problems with your
message-secured Web Service.

Programming Web Services for WebLogic Server

Updating a Client Application to Invoke a Message-Secured Web Service

Table 10-1 System Properties for Debugging Message-Level Security

System Property Data Type Description

weblogic.xml.crypto.dsig.verbose Boolean Prints information about digital signature
processing.

weblogic.xml.crypto.encrypt.verbose Boolean Prints information about encryption processing.

weblogic.xml.crypto.keyinfo.verbose Boolean Prints information about key resolution processing.

weblogic.xml.crypto.wss.verbose Boolean Prints information about Web Service security

token and token reference processing.

Updating a Client Application to Invoke a
Message-Secured Web Service

When you update your Java code to invoke a message-secured Web Service, you must load a
private key and digital certificate pair from the client’s keystore and pass this information, along
with a username and password for user authentication if so required by the WS-Policy, to the
secure WebL ogic Web Service being invoked.

If the WS-Policy file of the Web Service specifies that the SOAP request must be encrypted, then
the Web Services client runtime automatically gets the server’s certificate from the WS-Policy
file that is attached to the WSDL of the service, and uses it for the encryption. If, however, the
WS-Policy file is not attached to the WSDL, or the entire WSDL itself is not available, then the
client application must use a client-side copy of the WS-Policy file; for details, see “Using a
Client-Side Security WS-Policy File” on page 9-27.

The following example shows a Java client application that invokes the message-secured
WebLogic Web Service described by the JWS file in “Updating the JWS File With the
Security-Related Annotations” on page 10-50. The client application takes five arguments:

o Client username for client authentication
e Client password for client authentication
e Client private key file

e Client digital certificate

Programming Web Services for WebLogic Server 10-41

Configuring Security

e WSDL of the deployed Web Service

The security-specific code in the sample client application is shown in bold (and described after
the example):

package examples.webservices.security_jws.client;

import weblogic.security.SSL.TrustManager;

import weblogic.xml._.crypto.wss.provider.CredentialProvider;
import weblogic.xml._crypto.wss.WSSecurityContext;

import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

import javax.xml.rpc.Stub;
import java.util._.List;
import java.util_ArraylList;

import java.security.cert.X509Certificate;

/**

*

*/

Copyright (c) 2005 by BEA Systems. All Rights Reserved.

public class SecureHelloWorldClient {
public static void main(String[] args) throws Throwable {

//username or password for the UsernameToken
String username = args[0];
String password = args[1];

//client private key file
String keyFile = args[2];

//client certificate
String clientCertFile = args[3];

String wsdl = args[4];

SecureHel loWorldService service = new SecureHelloWorldService_Impl(wsdl +

"?WSDL™);

SecureHelloWorldPortType port = service.getSecureHelloWorldServicePort();

//create credential provider and set it to the Stub
List credProviders = new ArrayList();

//client side BinarySecurityToken credential provider -- x509
CredentialProvider cp = new ClientBSTCredentialProvider(clientCertFile,

keyFile);

10-42

credProviders.add(cp);

Programming Web Services for WebLogic Server

Updating a Client Application to Invoke a Message-Secured Web Service

//client side UsernameToken credential provider

cp

= new ClientUNTCredentialProvider(username, password);

credProviders.add(cp);

Stub stub = (Stub)port;
stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders);

stub._setProperty(WSSecurityContext.TRUST_MANAGER,
new TrustManager(){

public boolean certificateCallback(X509Certificate[] chain, int

validateErr){

return true;

¥
}):

String response = port.sayHello("'World™);

System.out.printIn(‘'response =

}
}

+ response);

The main points to note about the preceding code are:

Import the WebLogic security TrustManager API:

import weblogic.security.SSL.TrustManager;

Import the following WebLogic Web Services security APIs to create the needed
client-side credential providers, as specified by the WS-Policy files that are associated with
the Web Service:

import weblogic.xml._.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;

import weblogic.wsee.security.bst_ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

Use the ClientBSTCredentialProvider WebLogic API to create a binary security token
credential provider from the client’s certificate and private key:

CredentialProvider cp =
new ClientBSTCredentialProvider(clientCertFile, keyFile);

Use the ClientUNTCredentialProvider WebLogic API to create a username token from
the client’s username and password, which are also known by WebLogic Server:

cp = new ClientUNTCredentialProvider(username, password);

Use the WSSecurityContext.CREDENTIAL_PROVIDER_LIST property to pass a List
object that contains the binary security and username tokens to the JAX-RPC Stub:

Programming Web Services for WebLogic Server 10-43

Configuring Security

10-44

stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,
credProviders)

e Use the weblogic.security.SSL.TrustManager WebLogic security API to verify that
the certificate used to encrypt the SOAP request is valid. The Web Services client runtime
gets this certificate from the deployed WSDL of the Web Service, which in production
situations is not automatically trusted, so the client application must ensure that it is okay
before it uses it to encrypt the SOAP request:
stub._setProperty(WSSecurityContext.TRUST_MANAGER,

new TrustManager(){
public boolean certificateCallback(X509Certificate[] chain, int

validateErr){
return true;

¥
}):

Invoking a Message-Secured Web Service From a Client
Running in a WebLogic Server Instance

In the simple Web Services configuration procedure, described in “Configuring Simple
Message-Level Security: Main Steps” on page 10-14, it is assumed that a stand-alone client
application invokes the message-secured Web Service. Sometimes, however, the client is itself
running in a WebL ogic Server instance, as part of an EJB, servlet, or another Web Service. In this
case, you can use the core WebLogic Server security framework to configure the credential
providers and trust manager so that your EJB, servlet, or JWS code contains only the simple
invoke of the secured operation and no other security-related APl usage. The following
procedure describes the high level steps you must perform to make use of the core WebLogic
Server security framework in this use case.

1. Inyour EJB, servlet, or JWS code, invoke the Web Service operation as if it were not
configured for message-level security. Specifically, do not create a CredentialProvider
object that contains username or X.509 tokens, and do not use the TrustManager core
security API to validate the certificate from the WebLogic Server hosting the secure Web
Service. The reason you should not use these APIs in your client code is that the Web Services
runtime will perform this work for you.

2. Using the Administration Console, configure the required credential mapping providers of the
core security of the WebLogic Server instance that hosts your client application. The list of
required credential mapper providers depends on the WS-Policy file that is attached to the
Web Service you are invoking. Typically, you must configure the credential mapper providers
for both username/password and X.509 certificates. See Configuring a WebLogic Credential
Mapping Provider.

Programming Web Services for WebLogic Server

Configuring Transport-Level Security

Note: WebLogic Server includes a credential mapping provider for username/passwords
and X.509. However, only username/password is configured by default.

3. Using the Administration Console, create the actual credential mappings in the credential
mapping providers you configured in the preceding step. You must map the user principal,
associated with the client running in the server, to the credentials that are valid for the Web
Service you are invoking. See Configuring a WebL ogic Credential Mapping Provider.

4. Using the Administration Console, configure the core WebLogic Server security framework
to trust the X.509 certificate of the invoked Web Service. See Configuring the Credential
Lookup and Validation Framework.

You are not required to configure the core WebLogic Server security framework, as described in
this procedure, if your client application does not want to use the out-of-the-box credential
provider and trust manager. Rather, you can override all of this configuration by using the same
APIs in your EJB, servlet, and JWS code as in the stand-alone Java code described in “Updating
a Client Application to Invoke a Message-Secured Web Service” on page 10-41. However, using
the core security framework standardizes the WebLogic Server configuration and simplifies the
Java code of the client application that invokes the Web Service.

Configuring Transport-Level Security

Transport-level security refers to securing the connection between a client application and a Web
Service with Secure Sockets Layer (SSL).

See Secure Sockets Layer (SSL) for general information about SSL and the implementations
included in WebL ogic Server.

To configure transport-level Web Services security:

1. Configure SSL for the core WebLogic Server security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a
certificate to the client application, or two-way SSL where both the client applications and
WebLogic server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security subsystem,
see Configuring SSL.

2. Inthe JWS file that implements your Web Service, add the
@weblogic.jws.security.UserDataConstaint annotation to require that the Web
Service be invoked using the HTTPS transport.

For details, see “weblogic.jws.security.UserDataConstraint” on page B-71.

Programming Web Services for WebLogic Server 10-45

Configuring Security

3. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See “Iterative Development of WebLogic Web Services Starting From Java: Main Steps”
on page 4-3.

4. Update the bui Id_xml file that invokes the clientgen Ant task to use a static WSDL to
generate the JAX-RPC stubs of the Web Service, rather than the dynamic deployed WSDL of
the service.

The reason clientgen cannot generate the stubs from the dynamic WSDL in this case is
that when you specify the @UserDataConstraint annotation, all client applications are
required to specify a truststore, including clientgen. However, there is currently no way
for clientgen to specify a truststore, thus the Ant task must generate its client
components from a static WSDL that describes the Web Service in the same way as the
dynamic WSDL.

5. When you run the client application that invokes the Web Service, specify certain properties
to indicate the SSL implementation that your application should use. In particular:

— To specify the Certicom SSL implementation, use the following properties

-Djava.protocol .handler.pkgs=weblogic.net
-Dweblogic.security.SSL.trustedCAKeyStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list
of trusted certificates (one of which should be the server’s certificate).To disable host
name verification, also specify the following property:

-Dweblogic.security.SSL.ignoreHostnameVerification=true
— To specify Sun’s SSL implementation, use the following properties:
-Djavax.net.ssl _trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list
of trusted certificates (one of which should be the server’s certificate). To disable host
name verification, also specify the following property:

-Dweblogic.wsee.client.ssl._stricthostchecking=false

See “Configuring Two-Way SSL for a Client Application” on page 10-47 for details about
two-way SSL.

10-46 Programming Web Services for WebLogic Server

Configuring Transport-Level Security

Configuring Two-Way SSL for a Client Application

If you configured two-way SSL for WebLogic Server, the client application must present a

certificate to WebLogic Server, in addition to WebLogic Server presenting a certificate to the

client application as required by one-way SSL. You must also follow these requirements:

e Create a client-side keystore that contains the client’s private key and X.509 certificate
pair.

The SSL package of J2SE requires that the password of the client’s private key must be
same as the password of the client’s keystore. For this reason, the client keystore can
include only one private key and X.509 certificate pair.

e Configure the core WebLogic Server’s security subsystem, mapping the client’s X.509
certificate in the client keystore to a user. See Configuring a User Name Mapper.

e Create a truststore which contains the certificates that the client trusts; the client

the

application uses this truststore to validate the certificate it receives from WebLogic Server.

Because of the J2SE password requirement described in the preceding bullet item, this
truststore must be different from the keystore that contains the key pair that the client
presents to the server.

You can use the Cert Gen utility or Sun Microsystem's keytoo1 utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started.

See Obtaining Private Keys and Digital Signatures at
{DOCROOT}/secmanage/identity _trust.html#get_keys_certs_trustedcas.

e When you run the client application that invokes the Web Service, specify the following

properties:
— -Djavax.net.ssl.trustStore=trustStore

— -Djavax.net._ssl.trustStorePassword=trustStorePassword

where trustStore specifies the name of the client-side truststore that contains the list of

trusted certificates (one of which should be the server’s certificate) and
trustStorePassword specifies the truststore’s password.

The preceding properties are in addition to the standard properties you must set to specify

the client-side keystore:

— -Djavax.net.ssl_keyStore=keyStore

— -Djavax.net.ssl.keyStorePassword=keyStorePassword

Programming Web Services for WebLogic Server

10-47

Configuring Security

Additional Web Services SSL Examples

The dev2dev CodeShare is a community of developers that share ideas, code and best practices
related to BEA technologies. The site includes code examples for a variety of BEA technologies,
including using SSL with Web Services.

To view and download the SSL Web Services code examples on the dev2dev site, go to the main
Projects page and click on Web Services in the By Technology column.

Configuring Access Control Security: Main Steps

10-48

Access control security refers to configuring the Web Service to control the users who are
allowed to access it, and then coding your client application to authenticate itself, using HTTP/S
or username tokens, to the Web Service when the client invokes one of its operations.

You specify access control security for your Web Service by using one or more of the following
annotations in your JWS file:

e weblogic.jws.security.RolesAllowed
e weblogic.jws.security.SecurityRole
e weblogic.jws.security.RolesReferenced
e weblogic. jws.security.SecurityRoleRef

e weblogic.jws.security.RunAs

Note: The @weblogic.security.jws.SecurityRoles and
@weblogic.security.jws.Securityldentity JWS annotations are deprecated as of
WebLogic Server 9.1.

The following procedure describes the high-level steps to use these annotations to enable access
control security; later sections in the chapter describe the steps in more detail.

Note: It is assumed in the following procedure that you have already created a JWS file that
implements a WebLogic Web Service and you want to update it with access control
security. It is also assumed that you use Ant build scripts to iteratively develop your Web
Service and that you have a working bui Id.xml file that you can update with new
information. Finally, it is assumed that you have a client application that invokes the
non-secured Web Service. If these assumptions are not true, see:

e Chapter 5, “Programming the JWS File”
e Chapter 4, “Iterative Development of WebLogic Web Services”

e Chapter 9, “Invoking Web Services”

Programming Web Services for WebLogic Server

Configuring Access Control Security: Main Steps

. Update your JWS file, adding the @weblogic.jws.security.RolesAllowed,
@weblogic. jws.security.SecurityRole,

@weblogic. jws.security.RolesReferenced, or

@weblogic. jws.security.SecurityRoleRef annotations as needed at the appropriate
level (class or operation).

See “Updating the JWS File With the Security-Related Annotations” on page 10-50.

. Optionally specify that WebLogic Server internally run the Web Service using a specific role,
rather than the role assigned to the user who actually invokes the Web Service, by adding the
@weblogic. jws.security.RunAs JWS annotation.

See “Updating the JWS File With the @RunAs Annotation” on page 10-52.

. Optionally specify that your Web Service can be, or is required to be, invoked using HTTPS
by adding the @weblogic. jws.security.UserDataConstraint JWS annotation.

See “Configuring Transport-Level Security” on page 10-45 for details. This section also
discusses how to update your client application to use SSL.

. Recompile and redeploy your Web Service as part of the normal iterative development
process.

See “Iterative Development of WebLogic Web Services Starting From Java: Main Steps”
on page 4-3.

. Using the Administration Console, create valid WebLogic Server users, if they do not already
exist. If the mapping of users to roles is external, also use the Administration Console to create
the roles specified by the @SecurityRole annotation and map the users to the roles.

Note: The mapping of users to roles is defined externally if you do not specify the
mapToPrincipals attribute of the @SecurityRole annotation in your JWS file to
list all users who can invoke the Web Service.

See Users, Groups, and Security Roles at {DOCROOT }/secwlres/secroles.html.

. Update your client application to use the HttpTransportinfo WebLogic API to specify the
appropriate user and password when creating the JAX-RPC Service object.

See “Setting the Username and Password When Creating the JAX-RPC Service Object” on
page 10-53.

. Update the clientgen Ant task in your bui Id.xml file to specify the username and
password of a valid WebLogic user (in the case where your Web Service uses the
@RolesAl lowed annotation) and the trust store that contains the list of trusted certificates,
including WebLogic Server’s (in the case you specify @UserDataConstraint).

Programming Web Services for WebLogic Server 10-49

Configuring Security

10-50

You do this by adding the standard Ant <sysproperty> nested element to the clientgen
Ant task, and set the key attribute to the required Java property, as shown in the following
example:
<clientgen
wsdl="http://example.com/myapp/myservice.wsdl"
destDir="/output/clientclasses"
packageName=""myapp.myservice.client"
serviceName=""StockQuoteService"
<sysproperty key="javax.net.ssl.trustStore"
value="/keystores/DemoTrust. jks"/>
<sysproperty key="weblogic.wsee.client.ssl_stricthostchecking"
value="false"/>
<sysproperty key="javax.xml_rpc.security.auth._.username"
value="juliet"/>
<sysproperty key="javax.xml_rpc.security.auth._password"
value="'secret"/>
</clientgen>

8. Regenerate client-side components and recompile client Java code as usual.

Updating the JWS File With the Security-Related
Annotations

Use the WebLogic-specific @weblogic. jws.security.RolesAl lowed annotation in your
JWS file to specify an array of @weblogic. jws.security.SecurityRoles annotations that
list the roles that are allowed to invoke the Web Service. You can specify these two annotations
at either the class- or method-level. When set at the class-level, the roles apply to all public
operations. You can add additional roles to a particular operation by specifying the annotation at
the method level.

The @SecurityRole annotation has the following two attributes:
e role—Name of the role that is allowed to invoke the Web Service.

e mapToPrincipals—List of users that map to the role. If you specify one or more users
with this attribute, you do not have to externally create the mapping between users and
roles, typically using the Administration Console. However, the mapping specified with
this attribute applies only within the context of the Web Service.

The @RolesAl lowed annotation does not have any attributes.

You can also use the @weblogic. jws.security.RolesReferenced annotation to specify an
array of @weblogic. jws.security.SecurityRoleRef annotations that list references to
existing roles. For example, if the role manager is already allowed to invoke the Web Service,

Programming Web Services for WebLogic Server

Configuring Access Control Security: Main Steps

you can specify that the mgr role be linked to the manager role and any user mapped to mgr is
also able to invoke the Web Service. You can specify these two annotations only at the
class-level.

The @SecurityRoleRef annotation has the following two attributes:
e role—Name of the role reference.

e link—Name of the already-specified role that is allowed to invoke the Web Service. The
value of this attribute corresponds to the value of the role attribute of a @SecurityRole
annotation specified in the same JWS file.

The @RolesReferenced annotation does not have any attributes.

The following example shows how to use the annotations described in this section in a JWS file,
with the relevant sections shown in bold:

package examples.webservices.security_roles;

import javax.jws.WebMethod;
import javax.jws.WebService;

// WebLogic JWS annotations
import weblogic. jws_.WLHttpTransport;

import weblogic.jws.security.RolesAllowed;
import weblogic. jws.security.RolesReferenced;
import weblogic.jws.security.SecurityRole;
import weblogic. jws.security.SecurityRoleRef;

@WebService(name="SecurityRolesPortType",
serviceName="SecurityRolesService",
targetNamespace=""http://example.org")

@WLHttpTransport(contextPath=""security",
serviceUri="SecurityRolesService",
portName="SecurityRolesPort')

@RolesAllowed ({
@SecurityRole (role="manager",
mapToPrincipals={ "juliet”,"amanda" }),
@SecurityRole (role="vp™")

)

Programming Web Services for WebLogic Server 10-51

Configuring Security

10-52

@RolesReferenced (
@SecurityRoleRef (role="mgr", link="manager')
)
/**
* This JWS file forms the basis of simple Java-class implemented WebLogic

* Web Service with a single operation: sayHello
*

*/
public class SecurityRoleslImpl {

@webMethod()

public String sayHello(String message) {
System.out.printin(‘'sayHello:" + message);
return "Here is the message: """ + message + """;

}

The example shows how to specify that only the manager, vp, and mgr roles are allowed to
invoke the Web Service. The mgr role is actually a reference to the manager role. The users
juliet and amanda are mapped to the manager role within the context of the Web Service.
Because no users are mapped to the vp role, it is assumed that the mapping occurs externally,
typically using the Administration Console to update the WebL ogic Server security realm.

See Appendix B, “JWS Annotation Reference,” for reference information on these annotations.

Updating the JWS File With the @RunAs Annotation

Use the WebLogic-specific @weblogic.jws.security.RunAs annotation in your JWS file to
specify that the Web Service is always run as a particular role. This means that regardless of the
user, and the role to which the user is mapped, initially invokes the Web Service, the service is
internally executed as the specified role.

You can set the @RunAs annotation only at the class-level. The annotation has the following
attributes:

e role—Role which the Web Service should run as.

e mapToPrincipal—Principal user that maps to the role.

Programming Web Services for WebLogic Server

Configuring Access Control Security: Main Steps

The following example shows how to use the @RunAs annotation in a JWS file, with the relevant
sections shown in bold:

package examples.webservices.security_roles;

import javax.jws.WebMethod;
import javax.jws.WebService;

// WebLogic JWS annotations
import weblogic. jws_WLHttpTransport;
import weblogic.jws.security.RunAs;

@WebService(name="SecurityRunAsPortType",
serviceName=""SecurityRunAsService",
targetNamespace=""http://example.org™)

@WLHttpTransport(contextPath="security_runas",
serviceUri="SecurityRunAsService",
portName="'SecurityRunAsPort')

@RunAs (role="manager", mapToPrincipal="juliet")

/**
* This JWS file forms the basis of simple WebLogic
* Web Service with a single operation: sayHello

*/

public class SecurityRunAsimpl {
@webMethod ()
public String sayHello(String message) {

System.out.printin(“'sayHello:" + message);
return "Here is the message: "' + message + """;

}
}

Setting the Username and Password When Creating the
JAX-RPC Service Object

When you use the @RolesAl lowed JWS annotation to secure a Web Service, only the specified
roles are allowed to invoke the Web Service operations. This means that you must specify the

Programming Web Services for WebLogic Server 10-53

Configuring Security

username and password of a user that maps to the role when creating the JAX-RPC Service
object in your client application that invokes the protected Web Service.

WebLogic Server provides the HttpTransportinfo class for setting the username and
password and passing it to the Service constructor. The following example is based on the
standard way to invoke a Web Service from a standalone Java client (as described in Chapter 9,
“Invoking Web Services”) but also shows how to use the HttpTransportinfo class to set the
username and password. The sections in bold are discussed after the example.

package examples.webservices.sec_wsdl.client;
import weblogic.wsee.connection.transport_http.HttpTransportinfo;
import java.rmi.RemoteException;

import javax.xml_rpc.ServiceException;
import javax.xml._rpc.Stub;

/**
*

This i1s a simple standalone client application that invokes the

* the <code>sayHello</code> operation of the SecWsdlService Web service.

*

* @author Copyright (c) 2004 by BEA Systems. All Rights Reserved.
*/

public class Main {

public static void main(String[] args)
throws ServiceException, RemoteException{

HttpTransportinfo info = new HttpTransportinfo();
info.setUsername("juliet" _getBytes()):
info.setPassword("'secret".getBytes()):

SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL",
info);
SecWsdIPortType port = service.getSecWsdIPort();

try {
String result = null;

result = port.sayHello("Hi there!™);

System.out.printin("Got result: " + result);
} catch (RemoteException e) {

throw e;

10-54 Programming Web Services for WebLogic Server

Configuring Access Control Security: Main Steps

}

The main points to note in the preceding example are as follows:

e Import the HttpTransportlinfo class into your client application:

import weblogic.wsee.connection.transport_http.HttpTransportinfo;

o Use the setXxX() methods of the HttpTransportinfo class to set the username and
password:

HttpTransportinfo info = new HttpTransportinfo();
info_.setUsername(""juliet".getBytes());
info.setPassword(*'secret" .getBytes());

In the example, it is assumed that the user juliet with password secret is a valid

WebLogic Server user and has been mapped to the role specified in the @RolesAl lowed

JWS annotation of the Web Service.
If you are accessing a Web Service using a proxy, the Java code would be similar to:

HttpTransportinfo info = new HttpTransportinfo();

Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,

Integer.parselnt(proxyPort)));
info.setProxy(p);
info._setProxyUsername(user.getBytes());
info.setProxyPassword(pass.getBytes());

e Pass the info object that contains the username and password to the Service constructor

as the second argument, in addition to the standard WSDL first argument:

SecWsdlService service = new SecWsdlService_Impl(args[0] + "?WSDL",

info);

See Chapter 9, “Invoking Web Services,” for general information about invoking a non-secured

Web Service.

Programming Web Services for WebLogic Server

10-55

Configuring Security

10-56 Programming Web Services for WebLogic Server

Administering Web Services

The following sections describe how to administer WebLogic Web Services:
e “Overview of WebLogic Web Services Administration Tasks” on page 11-1
e “Administration Tools” on page 11-2
e “Using the Administration Console” on page 11-3
e “Using the WebLogic Scripting Tool” on page 11-8
e “Using WebLogic Ant Tasks” on page 11-8
e “Using the Java Management Extensions (JMX)” on page 11-8
e “Using the J2EE Deployment API” on page 11-9

e “Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute
Threads” on page 11-10

Overview of WebLogic Web Services Administration
Tasks

When you use the jwsc Ant task to compile and package a WebLogic Web Service, the task
packages it as part of an Enterprise Application. The Web Service itself is packaged inside the
Enterprise application as a Web application WAR file, by default. However, if your JWS file
explicitly implemented javax.ejb.SessionBean, then the Web Service is packaged as an EJB

Programming Web Services for WebLogic Server 111

Administering Web Services

JAR file. Therefore, basic administration of Web Services is very similar to basic administration
of standard J2EE applications and modules. These standard tasks include:

e Installing the Enterprise application that contains the Web Service.

e Starting and stopping the deployed Enterprise application.

e Configuring the Enterprise application and the archive file which implements the actual
Web Service. You can configure general characteristics of the Enterprise application, such
as the deployment order, or module-specific characteristics, such as session time-out for
Web applications or transaction type for EJBs.

e Creating and updating the Enterprise application’s deployment plan.
e Monitoring the Enterprise application.

e Testing the Enterprise application.

The following administrative tasks are specific to Web Services:
e Configuring the JMS resources used by Web Service reliable messaging and JMS transport

e Configuring the WS-Policy files associated with a Web Service endpoint or its operations.

WARNING: If you used the @Pol icy annotation in your Web Service to specify an
associated WS-Policy file at the time you programmed the JWS file, you
cannot change this association at run-time using the Administration Console
or other administrative tools. You can only associate a new WS-Policy file, or
disassociate one you added at run-time.

e Viewing the SOAP handlers associated with the Web Service.
e Viewing the WSDL of the Web Service.

e Creating a Web Service security configuration.

Administration Tools

There are a variety of ways to administer J2EE modules and applications that run on WebLogic
Server, including Web Services; use the tool that best fits your needs:

e Using the Administration Console
e Using the WebLogic Scripting Tool
e Using WebLogic Ant Tasks

11-2 Programming Web Services for WebLogic Server

Using the Administration Console

e Using the Java Management Extensions (JMX)

e Using the J2EE Deployment API

Using the Administration Console

The BEA WebLogic Server Administration Console is a Web browser-based, graphical user
interface you use to manage a WebLogic Server domain, one or more WebLogic Server
instances, clusters, and applications, including Web Services, that are deployed to the server or
cluster.

One instance of WebL ogic Server in each domain is configured as an Administration Server. The
Administration Server provides a central point for managing a WebLogic Server domain. All
other WebLogic Server instances in a domain are called Managed Servers. In a domain with only
a single WebLogic Server instance, that server functions both as Administration Server and
Managed Server. The Administration Server hosts the Administration Console, which is a Web
Application accessible from any supported Web browser with network access to the
Administration Server.

You can use the System Administration Console to:

e Install an Enterprise application.

Start and stop a deployed Enterprise application.

e Configure an Enterprise application.

Configure Web applications.

Configure EJBs.

e Create a deployment plan.

e Update a deployment plan.

e Test the modules in an Enterprise application.

e Configure JMS resources for Web Service reliable messaging.
e Associate the WS-Policy file with a Web Service.

e View the SOAP message handlers of a Web Service.

o View the WSDL of a Web Service.

Programming Web Services for WebLogic Server 1-3

Administering Web Services

11-4

e Create a Web Service security configuration

Invoking the Administration Console
To invoke the Administration Console in your browser, enter the following URL.:
http://host:port/console
where
e host refers to the computer on which the Administration Server is running.

e port refers to the port number where the Administration Server is listening for connection
requests. The default port number for the Administration server is 7001.

Click the Help button, located at the top right corner of the Administration Console, to invoke
the Online Help for detailed instructions on using the Administration Console.

The following figure shows the main Administration Console window.

Programming Web Services for WebLogic Server

Using the Administration Console

Figure 11-1 WebLogic Server Administration Console Main Window

) BEA WeblLogic Server Administration Console - Mozilla Firefox

Ele Edit Wiew Go Bookmarks Tools Help

WEBLOGIC SERVER
AD

10N CONSOLE

Change Center Welcome, weblogic Connected to: mydomain i Home: Log Out Preferences Help AskBEA
View changes and restarts Heane
Click the Lock & Edit button o Domain
rodify, add or delete iterms in
this domain.

Information and Resources

Lock & Edit Helpful Tools General Infoi

» Configure applications > Commaon Administration Task Descriptions
» Recent Task Status » Bet your console preferences
‘Dumain Structure | » Read the docurmentation
rmycomain
E-Environment

‘--Daplayments
Services
~Security Realms

teroperability Domain Services
#-Diagnostics

Domain Configurations

I B Domain B Messaging BWTC Servers
'How doI... » IMS Servers & Jolt Connection Pools

» Store-and-Forward Agents
B Use the Change Center

® Yiew pending changes

» IMS Modules

& Release the configuration lock N » Bridges el

& Change Console preferences LIl 2 8 IDRC HLog Files

B Maonitor servers B Virtual Hosts ShSeEaees B Diagnostic Modules
B Migratahle Targets S S © Diaghiostic Images

System Status | & Machines SOy Calee St & Archives

| Health of Running Servers | 8 WWork Managers W S B SNMP Agent

| Failer /0 8 Startup And Shutdown Classes

| | ; E © Path Services 2ErDxies _l;l
4 3

How Web Services Are Displayed In the Administration
Console

Web Services are typically deployed to WebLogic Server as part of an Enterprise Application.
The Enterprise Application can be either archived as an EAR, or be in exploded directory format.
The Web Service itself is almost always packaged as a Web Application; the only exception is if
your JWS file explicitly implements javax.ejb.SessionBean, in which case it is packaged as
an EJB. The Web Service can be in archived format (WAR or EJB JAR file, respectively) or as
an exploded directory.

It is not required that a Web Service be installed as part of an Enterprise application; it can be
installed as just the Web Application or EJB. However, BEA recommends that users install the

Programming Web Services for WebLogic Server 11-5

Administering Web Services

Web Service as part of an Enterprise application. The WebLogic Ant task used to create a Web
Service, jwsc, always packages the generated Web Service into an Enterprise application.

To view and update the Web Service-specific configuration information about a Web Service
using the Administration Console, click on the Deployments node in the left pane and, in the
Deployments table that appears in the right pane, find the Enterprise application in which the Web
Service is packaged. Expand the application by clicking the + node; the Web Services in the
application are listed under the Web Services category. Click on the name of the Web Service to
view or update its configuration.

The following figure shows how the HandlerChainService Web Service, packaged inside the
GlobalHandler Enterprise application, is displayed in the Deployments table of the
Administration Console.

Figure 11-2 Web Service Displayed in Deployments Table of Administration Console

"_) BEA WebLogic Server Administration Console - Mozilla Firefox

File:

%%

dt Wew Go Bookmarks Tools Help

WEBLOGIC SERVER

e
Zbea souimistration consoLe

Change Center Welcome, weblogic Connected to: mydomain fir Horme | Log Out Preferences | Help AskBE

iew changes and restarts

Home = Summary of Deployments

Click the Lock & Edit button to Summary of Deployments
modify, add or delete tems in
this domain,

Lock & Edit

Confrol | Manitoring

This page displays a list of J2EE Applications and standalone application modules that have been installed to this
dormain. Installed applications and modules can be started, stopped, updated {redeployed), or deleted from the

domain by first selecting the application name and using the controls on this page.

Domain Structure

To install & new application or rodule for deployment t targets in this domain, click $he nstall button,

rmydomain

El-Enviranment

- Deployments Deployments
[#-Services

-Security Realms | Showing 1-1of 1 Previous | Next

- Triteroperahiliy

B-Diagnostics I | name ¢ State Type Deployment
Order
How do I... & ’
[T | 2 §GlobalHandler Active Enhiri’f;tlis;n 100

B Install an Enterprise application PP
& Configure an Enterprise application Modules
B Update (redeploy) an Enterprise Es

application
© Start and stop a deployed [weh Services

Enterprise application web
& Monitor the modules of an #EHandlerChainService Corvice

Enterprise application

8
Deploy B8 modules | Showing 1 - 1of 1 Previous | Mext

8 Install a Web application
| |

11-6 Programming Web Services for WebLogic Server

Using the Administration Console

Creating a Web Services Security Configuration

When a deployed WebLogic Web Service has been configured to use message-level security
(encryption and digital signatures, as described by the WS-Security specification), the Web
Services runtime determines whether a Web Service security configuration is also associated with
the service. This security configuration specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption,
and so on. A single security configuration can be associated with many Web Services.

Because Web Services security configurations are domain-wide, you create them from the
domainName > WebService Security tab of the Administration Console, rather than the
Deployments tab. The following figure shows the location of this tab.

Figure 11-3 Web Service Security Configuration in Administration Console

'_) BEA WebLogic Server Administration Console - Mozilla Firefox
Edit W¥ew Go Bookmarks Tools Help

Change Center Welcome, weblogic

AskBEA

Connected 10! mydomain Log Out Preferences

G Homme

Help

. Home = Summary of Deployments > mydomain
YWigw changes and restarts ¥ R &

Click the Lock & Edit buton to settings for mydomain
rodify, add or delete tems in
this domain.

Lock & Edit

Configuration Monitoring Control - Security | \WebService Security | Notes

Thig page lists the \Web Service security configurations that have been created for this domain, Click on the security
configuration name to update it, such as create new credential providers, new token handlers, ar configure the
timestamp properties,

Domain Structure

mydomain
El-Environment
-Deployments

Web Service Security Configurations

Click the Lock & £dit button in the Change Center to activate all the buttons on this page.

Showing 1 - 1of 1 Previous | Next

[F-Diagnostics N 5 .
™ | Web Service Security Configuration Name

How do I... & T |default_wss

s Eéi;‘;?a;\;ib Service security Showing 1- 1 af 1 Previous | Next
& Create keystore used by SO&AP
meszage digital signatures
@ Create keystore used by S04P
ImEssage endryption
& Use a password digest in SOAP
IMESSA0ES
& Use X509 certificates to establish
identity

Programming Web Services for WebLogic Server 1-1

Administering Web Services

Using the WebLogic Scripting Tool

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you can use to
interact with and configure WebLogic Server domains and instances, as well as deploy J2EE
modules and applications (including Web Services) to a particular WebLogic Server instance.
Using WLST, system administrators and operators can initiate, manage, and persist WebLogic
Server configuration changes.

Typically, the types of WLST commands you use to administer Web Services fall under the
Deployment category.

For more information on using WLST, see WebLogic Scripting Tool at
{DOCROOT}config_scripting/index.html.

Using WebLogic Ant Tasks

WebLogic Server includes a variety of Ant tasks that you can use to centralize many of the
configuration and administrative tasks into a single Ant build script. These Ant tasks can:

e Create, start, and configure a new WebL ogic Server domain, using the wilserver and
wlconfig Ant tasks.

e Deploy a compiled application to the newly-created domain, using the wldeploy Ant task.

See Using Ant Tasks to Configure a WebLogic Server Domain and wideploy Ant Task Reference
for specific information about the non-Web Services related WebLogic Ant tasks.

Using the Java Management Extensions (JMX)

11-8

A managed bean (MBean) is a Java bean that provides a Java Management Extensions (JMX)
interface. IMX is the J2EE solution for monitoring and managing resources on a network. Like
SNMP and other management standards, JMX is a public specification and many vendors of
commonly used monitoring products support it.

BEA WebLogic Server provides a set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources through JMX. WebLogic Web Services also have their own
set of MBeans that you can use to perform some Web Service administrative tasks.

There are two types of MBeans: runtime (for read-only monitoring information) and
configuration (for configuring the Web Service after it has been deployed).

The configuration Web Services MBeans are:

Programming Web Services for WebLogic Server

Using the J2EE Deployment API

® WebserviceSecurityConfigurationMBean
® WebserviceCredentialProviderMBean

® WebserviceSecurityMBean

® WebserviceSecurityTokenMBean

® WebserviceTimestampMBean

® WebserviceTokenHandlerMBean

The runtime Web Services MBeans are:

® WseeRuntimeMBean

® WseeHandlerRuntimeMBean

® iseePortRuntimeMBean

® WseeOperationRuntimeMBean
® WseePolicyRuntimeMBean

For more information on JMX, see:
e Understanding WebLogic Server MBeans
e Accessing WebLogic Server MBeans with JIMX
e Managing a Domain’s Configuration with JMX

e \WebLogic Server MBean Reference.

Using the J2EE Deployment API

In J2EE 1.4, the J2EE Application Deployment specification (JSR-88) defines a standard API
that you can use to configure an application for deployment to a target application server
environment.

The specification describes the J2EE 1.4 Deployment architecture, which in turn defines the
contracts that enable tools or application programmers to configure and deploy applications on
any J2EE platform product. The contracts define a uniform model between tools and J2EE
platform products for application deployment configuration and deployment. The Deployment
architecture makes it easier to deploy applications: Deployers do not have to learn all the features
of many different J2EE deployment tools in order to deploy an application on many different
J2EE platform products.

Programming Web Services for WebLogic Server 11-9

Administering Web Services

See Deploying Applications to WebLogic Server for more information.

Using Work Managers to Prioritize Web Services Work
and Reduce Stuck Execute Threads

11-10

After a connection has been established between a client application and a Web Service, the
interactions between the two are ideally smooth and quick, whereby the client makes requests and
the service responds in a prompt and timely manner. Sometimes, however, a client application
might take a long time to make a new request, during which the Web Service waits to respond,
possibly for the life of the WebLogic Server instance; this is often referred to as a stuck execute
thread. If, at any given moment, WebLogic Server has a lot of stuck execute threads, the overall
performance of the server might degrade.

If a particular Web Service gets into this state fairly often, you can specify how the service
prioritizes the execution of its work by configuring a Work Manager and applying it to the
service. For example, you can configure a response time request class (a specific type of Work
Manager component) that specifies a response time goal for the Web Service.

For more information about Work Managers and how to configure them for your Web Service,
see Using Work Managers to Optimize Scheduled Work.

Programming Web Services for WebLogic Server

CHAPTERa

Publishing and Finding Web Services
Using UDDI

The following sections provide information about publishing and finding Web Services through
the UDDI registry:

“Overview of UDDI” on page 12-1

“WebLogic Server UDDI Features” on page 12-4
“UDDI 2.0 Server” on page 12-5

“UDDI Directory Explorer” on page 12-20
“UDDI Client API” on page 12-20

“Pluggable tModel” on page 12-21

Overview of UDDI

UDDI stands for Universal Description, Discovery, and Integration. The UDDI Project is an
industry initiative aims to enable businesses to quickly, easily, and dynamically find and carry
out transactions with one another.

A populated UDDI registry contains cataloged information about businesses; the services that
they offer; and communication standards and interfaces they use to conduct transactions.

Built on the Simple Object Access Protocol (SOAP) data communication standard, UDDI creates
a global, platform-independent, open architecture space that will benefit businesses.

The UDDI registry can be broadly divided into two categories:

Programming Web Services for WebLogic Server 1241

Publishing and Finding Web Services Using UDDI

12-2

e UDDI and Web Services

e UDDI and Business Registry
For details about the UDDI data structure, see “UDDI Data Structure” on page 12-3.

UDDI and Web Services

The owners of Web Services publish them to the UDDI registry. Once published, the UDDI
registry maintains pointers to the Web Service description and to the service.

The UDDI allows clients to search this registry, find the intended service, and retrieve its details.
These details include the service invocation point as well as other information to help identify the
service and its functionality.

Web Service capabilities are exposed through a programming interface, and usually explained
through Web Services Description Language (WSDL). In a typical publish-and-inquire scenario,
the provider publishes its business; registers a service under it; and defines a binding template
with technical information on its Web Service. The binding template also holds reference to one
or several tModels, which represent abstract interfaces implemented by the Web Service. The
tModels might have been uniquely published by the provider, with information on the interfaces
and URL references to the WSDL document.

A typical client inquiry may have one of two objectives:

e To find an implementation of a known interface. In other words, the client has a tModel ID
and seeks binding templates referencing that tModel.

o To find the updated value of the invocation point (that is., access point) of a known
binding template ID.

UDDI and Business Registry

As a Business Registry solution, UDDI enables companies to advertise the business products and
services they provide, as well as how they conduct business transactions on the Web. This use of
UDDI complements business-to-business (B2B) electronic commerce.

The minimum required information to publish a business is a single business name. Once
completed, a full description of a business entity may contain a wealth of information, all of
which helps to advertise the business entity and its products and services in a precise and
accessible manner.

A Business Registry can contain:

Programming Web Services for WebLogic Server

Overview of UDDI

e Business Identification—Multiple names and descriptions of the business, comprehensive
contact information, and standard business identifiers such as a tax identifier.

e Categories—Standard categorization information (for example a D-U-N-S business
category number).

e Service Description—Multiple names and descriptions of a service. As a container for
service information, companies can advertise numerous services, while clearly displaying
the ownership of services. The bindingTemplate information describes how to access the
service.

e Standards Compliance—In some cases it is important to specify compliance with
standards. These standards might display detailed technical requirements on how to use the
service.

e Custom Categories—It is possible to publish proprietary specifications (tModels) that
identify or categorize businesses or services.

UDDI Data Structure

The data structure within UDDI consists of four constructions: a businessEnti ty structure, a
businessService structure, a bindingTemplate structure and a tModel structure.

The following table outlines the difference between these constructions when used for Web
Service or Business Registry applications.

Programming Web Services for WebLogic Server 12-3

Publishing and Finding Web Services Using UDDI

Table 12-1 UDDI Data Structure

Data Structure

Web Service

Business Registry

businessEntity

Represents a Web Service provider:
¢ Company name

* Contact detail

e Other business information

Represents a company, a division or a
department within a company:

e Company name(s)
» Contact details
« Identifiers and Categories

businessService

A logical group of one or several Web
Services.

API(s) with a single name stored as a child
element, contained by the business entity
named above.

A group of services may reside in a single
businessEntity.

* Multiple names and descriptions
e Categories

« Indicators of compliancy with
standards

bindingTemplate

A single Web Service.

Technical information needed by client
applications to bind and interact with the
target Web Service.

Contains access point (that is, the URI to
invoke a Web Service).

Further instances of standards conformity.

Access points for the service in form of
URLSs, phone numbers, email addresses, fax
numbers or other similar address types.

tModel

Represents a technical specification;
typically a specifications pointer, or
metadata about a specification document,
including a name and a URL pointing to the
actual specifications. In the context of Web
Services, the actual specifications
document is presented in the form of a
WSDL file.

Represents a standard or technical
specification, either well established or
registered by a user for specific use.

WebLogic Server UDDI Features

WebLogic Server provides the following UDDI features:

e UDDI 2.0 Server

e UDDI Directory Explorer

12-4

Programming Web Services for WebLogic Server

ubDI 2.0 Server

e UDDI Client API

e Pluggable tModel

UDDI 2.0 Server

The UDDI 2.0 Server is part of WebLogic Server and is started automatically when WebLogic
Server is started. The UDDI Server implements the UDDI 2.0 server specification at
http://www.uddi.org/specification.html.

Configuring the UDDI 2.0 Server

To configure the UDDI 2.0 Server:
1. Stop WebLogic Server.

2. Update the uddi .properties file, located in the WL_HOME/server/1ib directory, where
WL_HOME refers to the main WebLogic Server installation directory.

WARNING: If your WebLogic Server domain was created by a user different from the user
that installed WebLogic Server, the WebLogic Server administrator must
change the permissions on the uddi . properties file to give access to all
users.

3. Restart WebLogic Server.

Never edit the uddi . properties file while WebLogic Server is running. Should you modify
this file in a way that prevents the successful startup of the UDDI Server, refer to the
WL_HOME/server/lib/uddi .properties.booted file for the last known good configuration.

To restore your configuration to its default, remove the uddi .properties file from the
WL_HOME/server/lib directory. BEA strongly recommends that you move this file to a backup
location, because a new uddi .properties file will be created and with its successful startup,
the uddi . properties.booted file will also be overwritten. After removing the properties file,
start the server. Minimal default properties will be loaded and written to a newly created

uddi . properties file.

The following section describes the UDDI Server properties that you can include in the
uddi . properites file. The list of properties has been divided according to component, usage,
and functionality. At any given time, you do not need all these properties to be present.

Programming Web Services for WebLogic Server 12-5

Publishing and Finding Web Services Using UDDI

Configuring an External LDAP Server

The UDDI 2.0 Server is automatically configured with an embedded LDAP server. You can,
however, also configure an external LDAP Server by following the procedure in this section.

Note: Currently, WebLogic Server supports only the SunOne Directory Server for use with the
UDDI 2.0 Server.

To configure the SunOne Directory Server to be used with UDDI, follow these steps:

1. Create a file called 51acumen. 1dif in the
LDAP_DIR/Sun/MPS/slapd-LDAP_INSTANCE_NAME/config/schema directory, where
LDAP_DIR refers to the root installation directory of your SunOne Directory Server and
LDAP_ INSTANCE_NAME refers to the instance name.

2. Update the 51acumen. Idi F file with the content described in “51acumen.ldif File Contents
on page 12-6.

3. Restart the SunOne Directory Server.
4. Update the uddi .properties file of the WebLogic UDDI 2.0 Server, adding the following
properties:

datasource. ldap.manager . password
datasource. ldap.manager .uid
datasource. ldap.server.root
datasource.ldap.server.url

The value of the properties depends on the configuration of your SunOne Directory Server.
The following example shows a possible configuration that uses default values:

datasource. ldap.manager . password=password
datasource. ldap.manager.uid=cn=Directory Manager
datasource. ldap.server.root=dc=beasys,dc=com
datasource.ldap.server.url=ldap://host:port

See Table 12-11 for information about these properties.

5. Restart WebLogic Server.

51acumen.ldif File Contents

Use the following content to create the 51acumen. Idif file:
dn: cn=schema
#

attribute types:
#

12-6 Programming Web Services for WebLogic Server

ubDI 2.0 Server

attributeTypes: (11827.0001.1.0 NAME “uddi-Business-Key~ DESC
"Business Key"™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.1 NAME “uddi-Authorized-Name* DESC
"Authorized Name for publisher of data® SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen defined")
attributeTypes: (11827.0001.1.2 NAME “uddi-Operator* DESC
"Name of UDDI Registry Operator”™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
X-ORIGIN "acumen defined”)

attributeTypes: (11827.0001.1.3 NAME “uddi-Name* DESC
"Business Entity Name™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.4 NAME “uddi-Description” DESC
"Description of Business Entity" SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
X-ORIGIN "acumen defined”)

attributeTypes: (11827.0001.1.7 NAME “uddi-Use-Type* DESC
“Name of convention that the referenced document follows®™ SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen defined")

attributeTypes: (11827.0001.1.8 NAME “uddi-URL* DESC
"URL" SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.9 NAME “uddi-Person-Name* DESC

"Name of Contact Person® SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.10 NAME “uddi-Phone* DESC
"Telephone Number® SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{50} X-ORIGIN “acumen
defined”)

attributeTypes: (11827.0001.1.11 NAME “uddi-Email* DESC
"Email address®™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen
defined”)

attributeTypes: (11827.0001.1.12 NAME “uddi-Sort-Code* DESC

"Code to sort addresses”™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{10} X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.13 NAME “uddi-tModel-Key" DESC
"Key to reference a tModel entry® SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
SINGLE-VALUE X-ORIGIN "acumen defined®)

attributeTypes: (11827.0001.1.14 NAME “uddi-Address-Line* DESC
"Actual address lines in free form text®™ SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{80} X-ORIGIN "acumen defined”)

attributeTypes: (11827.0001.1.15 NAME “uddi-Service-Key" DESC
"Service Key" SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.16 NAME “uddi-Service-Name*® DESC
"Service Name® SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN “acumen
defined”)

attributeTypes: (11827.0001.1.17 NAME “uddi-Binding-Key" DESC

"Binding Key"™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.18 NAME "uddi-Access-Point" DESC "A
text field to convey the entry point address for calling a web service®™ SYNTAX

Programming Web Services for WebLogic Server 12-1

Publishing and Finding Web Services Using UDDI

1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen defined")

attributeTypes: (11827.0001.1.19 NAME “uddi-Hosting-Redirector” DESC
"Provides a Binding Key attribute to redirect reference to a different binding
template™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.20 NAME “uddi-Instance-Parms” DESC
"Parameters to use a specific facet of a bindingTemplate description® SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen defined")

attributeTypes: (11827.0001.1.21 NAME “uddi-Overview-URL*" DESC
"URL reference to a long form of an overview document®™ SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen defined")

attributeTypes: (11827.0001.1.22 NAME “uddi-From-Key* DESC
"Unique key reference to first businesskEntity assertion Is made for® SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.23 NAME “uddi-To-Key" DESC
"Unique key reference to second businessEntity assertion Is made for® SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.24 NAME “uddi-Key-Name* DESC
"An attribute of the KeyedReference structure® SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen defined")

attributeTypes: (11827.0001.1.25 NAME “uddi-Key-Value* DESC
"An attribute of the KeyedReference structure® SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen defined")

attributeTypes: (11827.0001.1.26 NAME “uddi-Auth-Info* DESC
"Authorization information® SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4096} X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.27 NAME “uddi-Key-Type* DESC
"The key for all UDDI entries” SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.28 NAME “uddi-Upload-Register” DESC
"The upload register” SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen
defined”)

attributeTypes: (11827.0001.1.29 NAME “uddi-URL-Type* DESC
"The type for the URL" SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN "acumen
defined”)

attributeTypes: (11827.0001.1.30 NAME “uddi-Ref-Keyed-Reference” DESC
"reference to a keyedReference entry® SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255}
X-ORIGIN "acumen defined”)

attributeTypes: (11827.0001.1.31 NAME “uddi-Ref-Category-Bag” DESC
"reference to a categoryBag entry® SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255}
X-ORIGIN "acumen defined”)

attributeTypes: (11827.0001.1.32 NAME “uddi-Ref-Ildentifier-Bag” DESC
"reference to a identifierBag entry® SYNTAX 1.3.6.1.4.1.1466.115.121.1_12{255%}
X-ORIGIN "acumen defined”)

attributeTypes: (11827.0001.1.33 NAME “uddi-Ref-TModel* DESC
"reference to a TModel entry® SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255%}
SINGLE-VALUE X-ORIGIN "acumen defined®)

i1d names for each entry

attributeTypes: (11827.0001.1.34 NAME “uddi-Contact-1D" DESC

12-8 Programming Web Services for WebLogic Server

ubDI 2.0 Server

"Unique ID which will serve as the Distinguished Name of each entry” SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.35 NAME “uddi-Discovery-URL-I1D" DESC
"Unique ID which will serve as the Distinguished Name of each entry” SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.36 NAME “uddi-Address-1D" DESC
"Unique ID which will serve as the Distinguished Name of each entry” SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.37 NAME “uddi-Overview-Doc-1D" DESC
"Unique ID which will serve as the Distinguished Name of each entry” SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.38 NAME “uddi-Instance-Details-I1D" DESC
"Unique ID which will serve as the Distinguished Name of each entry” SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.39 NAME “uddi-tModel-Instance-Info-I1D" DESC
"Unique ID which will serve as the Distinguished Name of each entry” SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.40 NAME “uddi-Publisher-Assertions-ID" DESC
"Unique ID which will serve as the Distinguished Name of each entry” SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.41 NAME “uddi-Keyed-Reference-ID" DESC
"Unique ID which will serve as the Distinguished Name of each entry” SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{16} SINGLE-VALUE X-ORIGIN "acumen defined”)
attributeTypes: (11827.0001.1.42 NAME “uddi-Ref-Attribute” DESC "a
reference to another entry® SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.43 NAME “uddi-Entity-Name* DESC
"Business entity Name"™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.44 NAME “uddi-tModel-Name* DESC
"tModel Name® SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN "acumen
defined”)

attributeTypes: (11827.0001.1.45 NAME “uddi-tMI1-TModel-Key" DESC

"tModel key referneced in tModellnstancelnfo®™ SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN "acumen defined")
attributeTypes: (11827.0001.1.46 NAME "uddi-Keyed-Reference-TModel-Key" DESC
"tModel key referneced in KeyedReference® SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN "acumen defined")
attributeTypes: (11827.0001.1.47 NAME “uddi-Address-tModel-Key" DESC
“tModel key referneced in Address®™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
SINGLE-VALUE X-ORIGIN "acumen defined®)

attributeTypes: (11827.0001.1.48 NAME “uddi-isHidden" DESC "a
flag to indicate whether an entry is hidden® SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN "acumen defined")
attributeTypes: (11827.0001.1.49 NAME “uddi-Time-Stamp” DESC
"modification time satmp®™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
SINGLE-VALUE X-ORIGIN "acumen defined®)

attributeTypes: (11827.0001.1.50 NAME “uddi-next-id" DESC
"generic counter” SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN

Programming Web Services for WebLogic Server 12-9

Publishing and Finding Web Services Using UDDI

"acumen defined”)

attributeTypes: (11827.0001.1.51 NAME “uddi-tModel-origin® DESC
"tModel origin® SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.52 NAME “uddi-tModel-type* DESC
"tModel type" SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN "acumen
defined”)

attributeTypes: (11827.0001.1.53 NAME “uddi-tModel-checked* DESC

"tModel field to check or not® SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
X-ORIGIN "acumen defined”)

attributeTypes: (11827.0001.1.54 NAME “uddi-user-quota-entity” DESC
"quota for business entity” SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
X-ORIGIN "acumen defined”)

attributeTypes: (11827.0001.1.55 NAME “uddi-user-quota-service” DESC
"quota for business services per entity”™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN "acumen defined®)

attributeTypes: (11827.0001.1.56 NAME “uddi-user-quota-binding* DESC
"quota for binding templates per service®™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN "acumen defined®)

attributeTypes: (11827.0001.1.57 NAME “uddi-user-quota-tmodel* DESC
"quota for tmodels”™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.58 NAME “uddi-user-quota-assertion” DESC
"quota for publisher assertions® SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN "acumen defined®)

attributeTypes: (11827.0001.1.59 NAME “uddi-user-quota-messagesize” DESC
"quota for maximum message size" SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE X-ORIGIN "acumen defined®)

attributeTypes: (11827.0001.1.60 NAME “uddi-user-language” DESC
"user language®” SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.61 NAME “uddi-Name-Soundex” DESC
"name in soundex format®™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN
"acumen defined”)

attributeTypes: (11827.0001.1.62 NAME "uddi-var* DESC
"generic variable®™ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN "acumen
defined”)

#

objectclasses:

#

objectClasses: (11827.0001.2.0 NAME "uddi-Business-Entity" DESC
"Business Entity object®™ SUP top STRUCTURAL MUST (uddi-Business-Key $
uddi-Entity-Name $ uddi-isHidden $ uddi-Authorized-Name) MAY (
uddi-Name-Soundex $ uddi-Operator $ uddi-Description $ uddi-Ref-ldentifier-Bag
$ uddi-Ref-Category-Bag) X-ORIGIN "acumen defined”)

objectClasses: (11827.0001.2.1 NAME “uddi-Business-Service® DESC
"Business Service object®” SUP top STRUCTURAL MUST (uddi-Service-Key $
uddi-Service-Name $ uddi-isHidden) MAY (uddi-Name-Soundex $ uddi-Description
$ uddi-Ref-Category-Bag) X-ORIGIN “"acumen defined”)

12-10 Programming Web Services for WebLogic Server

ubDI 2.0 Server

objectClasses: (11827.0001.2.2 NAME “uddi-Binding-Template* DESC
"Binding Template object®™ SUP TOP STRUCTURAL MUST (uddi-Binding-Key $
uddi-isHidden) MAY (uddi-Description $ uddi-Access-Point $
uddi-Hosting-Redirector) X-ORIGIN "acumen defined”)

objectClasses: (11827.0001.2.3 NAME "uddi-tModel*® DESC
"tModel object® SUP top STRUCTURAL MUST (uddi-tModel-Key $ uddi-tModel-Name $
uddi-isHidden $ uddi-Authorized-Name) MAY (uddi-Name-Soundex $ uddi-Operator
$ uddi-Description $ uddi-Ref-ldentifier-Bag $ uddi-Ref-Category-Bag $
uddi-tModel-origin $ uddi-tModel-checked $ uddi-tModel-type) X-ORIGIN "acumen
defined”)

objectClasses: (11827.0001.2.4 NAME "uddi-Publisher-Assertion” DESC
"Publisher Assertion object™ SUP TOP STRUCTURAL MUST (
uddi-Publisher-Assertions-ID $ uddi-From-Key $ uddi-To-Key $
uddi-Ref-Keyed-Reference) X-ORIGIN "acumen defined”™)

objectClasses: (11827.0001.2.5 NAME "uddi-Discovery-URL" DESC
"Discovery URL" SUP TOP STRUCTURAL MUST (uddi-Discovery-URL-ID $ uddi-Use-Type
$ uddi-URL) X-ORIGIN “acumen defined”)

objectClasses: (11827.0001.2.6 NAME “uddi-Contact” DESC
"Contact Information® SUP TOP STRUCTURAL MUST (uddi-Contact-ID $
uddi-Person-Name) MAY (uddi-Use-Type $ uddi-Description $ uddi-Phone $
uddi-Email $ uddi-tModel-Key) X-ORIGIN "acumen defined”)

objectClasses: (11827.0001.2.7 NAME “uddi-Address* DESC
"Address information for a contact entry® SUP TOP STRUCTURAL MUST (
uddi-Address-ID) MAY (uddi-Use-Type $ uddi-Sort-Code $ uddi-Address-tModel-Key
$ uddi-Address-Line) X-ORIGIN "acumen defined”)

objectClasses: (11827.0001.2.8 NAME "uddi-Keyed-Reference® DESC
"KeyedReference®™ SUP TOP STRUCTURAL MUST (uddi-Keyed-Reference-I1D $
uddi-Key-Value) MAY (uddi-Key-Name $ uddi-Keyed-Reference-TModel-Key)
X-ORIGIN "acumen defined”)

objectClasses: (11827.0001.2.9 NAME “uddi-tModel-Instance-Info* DESC
"tModelInstancelnfo® SUP TOP STRUCTURAL MUST (uddi-tModel-Instance-Info-ID $
uddi-tMI1-TModel-Key) MAY (uddi-Description) X-ORIGIN "acumen defined”)
objectClasses: (11827.0001.2.10 NAME “uddi-Instance-Details” DESC
"instanceDetails® SUP TOP STRUCTURAL MUST (uddi-Instance-Details-I1D) MAY (
uddi-Description $ uddi-Instance-Parms) X-ORIGIN "acumen defined”)
objectClasses: (11827.0001.2.11 NAME “uddi-Overview-Doc" DESC
"overviewDoc" SUP TOP STRUCTURAL MUST (uddi-Overview-Doc-1D) MAY (
uddi-Description $ uddi-Overview-URL) X-ORIGIN "acumen defined”)
objectClasses: (11827.0001.2.12 NAME "uddi-Ref-Object” DESC
"an object class conatins a reference to another entry® SUP TOP STRUCTURAL MUST
(uddi-Ref-Attribute) X-ORIGIN "acumen defined”)

objectClasses: (11827.0001.2.13 NAME "uddi-Ref-Auxiliary-Object” DESC
"an auxiliary type object used iIn another structural class to hold a reference
to a third entry” SUP TOP AUXILIARY MUST (uddi-Ref-Attribute) X-ORIGIN "acumen
defined”)

objectClasses: (11827.0001.2.14 NAME “uddi-ou-container- DESC
"an organizational unit with uddi attributes®™ SUP organizationalunit STRUCTURAL
MAY (uddi-next-id $ uddi-var) X-ORIGIN "acumen defined”)

objectClasses: (11827.0001.2.15 NAME “uddi-User~ DESC "a

Programming Web Services for WebLogic Server 12-11

Publishing and Finding Web Services Using UDDI

User with uddi attributes®™ SUP inetOrgPerson STRUCTURAL MUST (uid $
uddi-user-language $ uddi-user-quota-entity $ uddi-user-quota-service $
uddi-user-quota-tmodel $ uddi-user-quota-binding $ uddi-user-quota-assertion $
uddi-user-quota-messagesize) X-ORIGIN “acumen defined®)

Description of Properties in the uddi.properties File

The following tables describe properties of the uddi .properties file, categorized by the type
of UDDI feature they describe:

Basic UDDI Configuration

UDDI User Defaults

General Server Configuration

Logger Configuration

Connection Pools

LDAP Datastore Configuration

Replicated LDAP Datastore Configuration
File Datastore Configuration

General Security Configuration

LDAP Security Configuration

File Security Configuration

Tahle 12-2 Basic UDDI Configuration

UDDI Property Key Description

auddi.discoveryurl DiscoveryURL prefix that is set for each saved business entity.

Typically this is the full URL to the uddilistener servlet, so that
the full DiscoveryURL results in the display of the stored
BusinessEntity data.

auddi.inquiry.secure Permissible values are true and false. When set to true,

inquiry calls to UDDI Server are limited to secure https
connections only. Any UDDI inquiry calls through a regular http
URL are rejected.

12-12

Programming Web Services for WebLogic Server

Tahle 12-2 Basic UDDI Configuration

ubDI 2.0 Server

UDDI Property Key

Description

auddi.publish.secure

Permissible values are true and false. When set to true,
publish calls to UDDI Server are limited to secure https
connections only. Any UDDI publish calls through a regular
http URL are rejected.

auddi.search.maxrows

Maximum number of returned rows for search operations. When
the search results in a higher number of rows then the limit set
by this property, the result is truncated.

auddi.search.timeout

Timeout value for search operations. The value is indicated in
milliseconds.

auddi.siteoperator

Name of the UDDI registry site operator. The specified value
will be used as the operator attribute, saved in all future
BusinessEntity registrations. This attribute will later be returned
in responses, and indicates which UDDI registry has generated
the response.

security.cred.life

Credential life, specified in seconds, for authentication. Upon
authentication of a user, an AuthToken is assigned which will be
valid for the duration specified by this property.

pluggableTModel file.list

UDDI Server is pre-populated with a set of Standard TModels.
You can further customize the UDDI server by providing your
own taxonomies, in the form of TModels. Taxonomies must be
defined in XML files, following the provided XML schema. The
value of this property a comma-separated list of URIs to such
XML files. Values that refer to these TModels are checked and
validated against the specified taxonomy.

Programming Web Services for WebLogic Server 12-13

Publishing and Finding Web Services Using UDDI

12-14

Table 12-3 UDDI User Defaults

UDDI Property Key

Description

auddi.default.lang

User's initial language, assigned to user profile by default at the
time of creation. User profile settings can be changed at sign-up
or later.

auddi.default.quota.assertion

User's initial assertion quota, assigned to user profile by default
at the time of creation. The assertion quota is the maximum
number of publisher assertions that the user is allowed to
publish. To impose no limits, set a value of -1. A user's profile
settings can be changed at sign-up or later.

auddi.default.quota.binding

User's initial binding quota, assigned to user profile by default at
the time of creation. The binding quota is the maximum number
of binding templates that the user is allowed to publish, per each
business service. To impose no limits, set a value of -1. A user's
profile settings can be changed at sign-up or later.

auddi.default.quota.entity

User's initial business entity quota, assigned to user profile by

default at the time of creation. The entity quota is the maximum
number of business entities that the user is allowed to publish.

To impose no limits, set a value of -1. A user's profile settings

can be changed at sign-up or later.

auddi.default.quota.messageSize

User's initial message size limit, assigned to his user profile by
default at the time of creation. The message size limit is the
maximum size of a SOAP call that the user may send to UDDI
Server. To impose no limits, set a value of -1. A user's profile
settings can be changed at sign-up or later.

auddi.default.quota.service

User's initial service quota, assigned to user profile by default at
the time of creation. The service quota is the maximum number
of business services that the user is allowed to publish, per each
business entity. To impose no limits, set a value of -1. A user's
profile settings can be changed at sign-up or later.

auddi.default.quota.tmodel

User's initial TModel quota, assigned to user profile by default
at the time of creation. The TModel quota is the maximum
number of TModels that the user is allowed to publish. To
impose no limits, set a value of -1. A user's profile settings can
be changed at sign-up or later.

Programming Web Services for WebLogic Server

Table 12-4 General Server Configuration

ubDI 2.0 Server

UDDI Property Keys

Description

auddi.datasource.type

Location of physical storage of UDDI data. This value defaults
to WLS, which indicates that the internal LDAP directory of
WebLogic Server is to be used for data storage. Other
permissible values include LDAP, ReplicalLDAP, and File.

auddi.security.type

UDDI Server's security module (authentication). This value
defaults to WLS, which indicates that the default security realm
of WebLogic Server is to be used for UDDI authentication. As
such, a WebLogic Server user would be an UDDI Server user
and any WebL ogic Server administrator would also be an UDDI
Server administrator, in addition to members of the UDDI
Server administrator group, as defined in UDDI Server settings.
Other permissible values include LDAP and Fi le.

auddi.license.dir

Location of the UDDI Server license file. In the absence of this
property, the WL_HOME/server/1ib directory is assumed to
be the default license directory, where WL_HOME is the main
WebLogic Server installation directory. Some WebLogic users
are exempt from requiring a UDDI Server license for the basic
UDDI Server components, while they may need a license for
additional components (for example., UDDI Server Browser).

auddi.license.file

Name of the license file. In the absence of this property,

uddi license.xml is presumed to be the default license
filename. Some WebLogic users are exempt from requiring an
UDDI Server license for the basic UDDI Server components,
while they may need a license for additional components (e.g.,
UDDI Server Browser).

Programming Web Services for WebLogic Server 12-15

Publishing and Finding Web Services Using UDDI

12-16

Table 12-5 Logger Gonfiguration

UDDI Property Key

Description

logger.file.maxsize

Maximum size of logger output files (if output is sent to file), in
Kilobytes. Once an output file reaches maximum size, it is
closed and a new log file is created.

logger.indent.enabled

Permissible values are true and false. When set to true, log
messages beginning with "+" and "-", typically TRACE level
logs, cause an increase or decrease of indentation in the output.

logger.indent.size

Size of each indentation (how many spaces for each indent),
specified as an integer.

logger.log.dir

Absolute or relative path to a directory where log files are
stored.

logger.log.file.stem

String that is prefixed to all log file names.

logger.log.type

Determines whether log messages are sent to the screen, to a file
or to both destinations. Permissible values, respectively, are:
LOG_TYPE_SCREEN, LOG_TYPE_FILE, and
LOG_TYPE_SCREEN_FILE.

logger.output.style Determines whether logged output will simply contain the
message, or thread and timestamp information will be included.
Permissible values are OUTPUT_LONG and OUTPUT_SHORT.

logger.quiet Determines whether the logger itself displays information

messages. Permissible values are true and false.

logger.verbosity

Logger's verbosity level. Permissible values (case sensitive) are
TRACE, DEBUG, INFO, WARNING and ERROR, where each
severity level includes the following ones accumulatively.

Programming Web Services for WebLogic Server

Table 12-6 Connection Pools

ubDI 2.0 Server

UDDI Property Key

Description

datasource.ldap.pool.increment

Number of new connections to create and add to the pool when
all connections in the pool are busy

datasource.ldap.pool.initialsize

Number of connections to be stored at the time of creation and
initialization of the pool.

datasource.ldap.pool.maxsize

Maximum number of connections that the pool may hold.

datasource.ldap.pool.systemmaxsize

Maximum number of connections created, even after the pool
has reached its capacity. Once the pool reaches its maximum
size, and all connections are busy, connections are temporarily
created and returned to the client, but not stored in the pool.
However, once the system max size is reached, all requests for
new connections are blocked until a previously busy connection
becomes available.

Tahle 12-7 LDAP Datastore Configuration

UDDI Property Key

Description

datasource.ldap.manager.uid

Back-end LDAP server administrator or privileged user ID, (for
example, cn=Directory Manager) who can save data in LDAP.

datasource.ldap.manager.password

Password for the datasource.ldap.manager.uid, establishes
connections with the LDAP directory used for data storage.

datasource.ldap.server.url

"ldap://" URL to the LDAP directory used for data storage.

datasource.ldap.server.root

Root entry of the LDAP directory used for data storage (e.g.,
dc=acumenat, dc=com).

Note: Inareplicated LDAP environment, there are "m" LDAP masters and "n" LDAP replicas,
respectively numbered from 0 to (m-1) and from 0 to (n-1). The fifth part of the property

keys below, quoted as
instance defined.

, refers to this number and differs for each LDAP server

Programming Web Services for WebLogic Server 12-17

Publishing and Finding Web Services Using UDDI

Table 12-8 Replicated LDAP Datastore Configuration

UDDI Property Key Description

datasource.ldap.server.master.i.manager.uid Administrator or privileged user ID for this
"master" LDAP server node, (for example,
cn=Directory Manager) who can save data in
LDAP.

datasource.ldap.server.master.i.manager.password Password for the
datasource.ldap.server.master.i.manager.uid,
establishes connections with the relevant "master"
LDAP directory to write data.

datasource.ldap.server.master.i.url "|dap://" URL to the corresponding LDAP
directory node.

datasource.ldap.server.master.i.root Root entry of the corresponding LDAP directory
node (for example, dc=acumenat, dc=com).

datasource.ldap.server.replica.i.manager.uid User ID for this "replica" LDAP server node (for
example, cn=Directory Manager); this person can
read the UDDI data from LDAP.

datasource.ldap.server.replica.i.manager.password Password for
datasource.ldap.server.replica.i.manager.uid,
establishes connections with the relevant "replica
LDAP directory to read data.

datasource.ldap.server.replica.i.url "Idap://" URL to the corresponding LDAP
directory node.

datasource.ldap.server.replica.i.root Root entry of the corresponding LDAP directory
node (for example, dc=acumenat, dc=com).

Table 12-9 File Datastore Configuration

UDDI Property Key Description

datasource.file.directory Directory where UDDI data is stored in the file system.

12-18 Programming Web Services for WebLogic Server

Table 12-10 General Security Configuration

ubDI 2.0 Server

UDDI Property Key

Description

security.custom.group.operators

Security group name, where the members of this group are
treated as UDDI administrators.

Table 12-11 LDAP Security Configuration

UDDI Property Key

Description

security.custom.ldap.manager.uid

Security LDAP server administrator or privileged user 1D
(for example, cn=Directory Manager); this person can save
data in LDAP.

security.custom.ldap.manager.password

The value of this property is the password for the above user
ID, and is used to establish connections with the LDAP
directory used for security.

security.custom.ldap.url

The value of this property is an "ldap://" URL to the LDAP
directory used for security.

security.custom.ldap.root

Root entry of the LDAP directory used for security (for
example, dc=acumenat, dc=com).

security.custom.ldap.userroot

User’s root entry on the security LDAP server. For example,
ou=People.

security.custom.ldap.group.root

Operator entry on the security LDAP server. For example,
"cn=UDDI Administrators, ou=Groups". This entry
contains IDs of all UDDI administrators.

Table 12-12 File Security Configuration

UDDI Property Key

Description

security.custom.file.userdir

Directory where UDDI security information (users and groups)
is stored in the file system.

Programming Web Services for WebLogic Server 12-19

Publishing and Finding Web Services Using UDDI

UDDI Directory Explorer

The UDDI Directory Explorer allows authorized users to publish Web Services in private
WebLogic Server UDDI registries and to modify information for previously published Web
Services. The Directory Explorer provides access to details about the Web Services and
associated WSDL files (if available.)

The UDDI Directory Explorer also enables you to search both public and private UDDI registries
for Web Services and information about the companies and departments that provide these Web
Services.

To invoke the UDDI Directory Explorer in your browser, enter:
http://host:port/uddiexplorer

where
e host is the computer on which WebLogic Server is running.

e port is the port number where WebLogic Server listens for connection requests. The
default port number is 7001.

You can perform the following tasks with the UDDI Directory Explorer:
e Search public registries
e Search private registries
e Publish to a private registry
e Modify private registry details
e Setup UDDI directory explorer

For more information about using the UDDI Directory Explorer, click the Explorer Help link on
the main page.

UDDI Client API

12-20

WebLogic Server includes an implementation of the client-side UDDI API that you can use in
your Java client applications to programmatically search for and publish Web Services.

The two main classes of the UDDI client APl are Inquiry and Publish. Use the Inquiry class
to search for Web Services in a known UDDI registry and the Publish class to add your Web
Service to a known registry.

Programming Web Services for WebLogic Server

Pluggable tModel

WebLogic Server provides an implementation of the following client UDDI API packages:
® weblogic.uddi.client.service
® weblogic.uddi.client.structures.datatypes
® weblogic.uddi.client.structures.exception
® weblogic.uddi.client.structures.request
® weblogic.uddi.client.structures.response

For detailed information on using these packages, see the UDDI API Javadocs at
{DOCROQT}javadocs/index.html.

Pluggable tModel

A taxonomy is basically a tModel used as reference by a categoryBag or identifierBag. A major
distinction is that in contrast to a simple tModel, references to a taxonomy are typically checked
and validated. WebLogic Server’s UDDI Server takes advantage of this concept and extends this
capability by introducing custom taxonomies, called "pluggable tModels". Pluggable tModels
allow users (UDDI administrators) to add their own checked taxonomies to the UDDI registry,
or overwrite standard taxonomies.

To add a pluggable tModel:

1. Create an XML file conforming to the specified format described in “XML Schema for
Pluggable tModels” on page 12-23, for each tModelKey/categorization.

2. Add the comma-delimited, fully qualified file names to the pluggableTModel . file.list
property in the uddi -properties file used to configure UDDI Server. For example:

pluggableTModel . file. list=c:/temp/catl.xml,c:/temp/cat2.xml

See “Configuring the UDDI 2.0 Server” on page 12-5 for details about the uddi.properties
file.

3. Restart WebLogic Server.

The following sections include a table detailing the XML elements and their permissible values,
the XML schema against which pluggable tModels are validated, and a sample XML.

XML Elements and Permissible Values

The following table describes the elements of the XML file that describes your pluggable
tModels.

Programming Web Services for WebLogic Server 12-21

Publishing and Finding Web Services Using UDDI

Table 12-13 Description of the XML Elements to Configure Pluggable tModels

Element/Attrib Required Role Values Comments
ute
Taxonomy Required Root Element
checked Required Whether this true / false If false,
categorization is keyValue will
checked or not. not be validated.
type Required The type of the categorization/ See
tModel. identifier / valid uddi-org-types
values as defined tModel for valid
in uddi-org-types values.
applicability Optional Constraints on No constraint is
where the tModel assumed if this
may be used. element is not
provided
scope Required if the businessEntity / tModel may be
applicability businessService/ used in
element is bindingTemplate tModellnstancel
included. / tModel nfo if scope
“bindingTemplat
e” is specified.
tModel Required The actual ValidtModelKey
tModel, must be
according to the provided.
UDDI data
structure.
categories Required if
checked is set to
true.
category Required if Holds actual keyName / category may be
element keyName and keyValue pairs nested for
categories is keyValue pairs. grouping or tree
included structure.

12-22

Programming Web Services for WebLogic Server

Pluggable tModel

Table 12-13 Description of the XML Elements to Configure Pluggable tModels

Element/Attrib Required Role Values Comments
ute

keyName Required

keyValue Required

XML Schema for Pluggahle tModels

The XML Schema against which pluggable tModels are validated is as follows:

<simpleType name="type'>
<restriction base='"string"/>
</simpleType>

<simpleType name="checked">
<restriction base="NMTOKEN">
<enumeration value="true"/>
<enumeration value="false'/>
</restriction>
</simpleType>

<element name='scope'" type="'string"/>

<element name = "applicability" type = "uddi:applicability"/>

<complexType name = "applicability">
<sequence>
<element ref = "uddi:scope”™ minOccurs = "1" maxOccurs = "'4"/>
</sequence>
</complexType>

<element name="category' type="uddi:category'/>

<complexType name = '‘category'>
<sequence>
<element ref = "uddi:category' minOccurs = "0" maxOccurs = "‘unbounded"/>

</sequence>
<attribute name = "keyName'" use = "required" type=''string"/>
<attribute name = "keyValue' use = "required" type="string"/>

</complexType>

Programming Web Services for WebLogic Server 12-23

Publishing and Finding Web Services Using UDDI

<element name="categories" type="‘uddi:categories"/>

<complexType name = '‘categories'>
<sequence>
<element ref = "uddi:category' minOccurs = "1" maxOccurs = "‘unbounded"/>
</sequence>
</complexType>

<element name=""Taxonomy" type="'uddi:Taxonomy'/>

<complexType name=""Taxonomy''>

<sequence>
<element ref = "uddi:applicability"” minOccurs = "0" maxOccurs = "1"/>
<element ref = "uddi:tModel"™ minOccurs = "1" maxOccurs = "1"/>
<element ref = "uddi:categories" minOccurs = "0" maxOccurs = "1"/>
</sequence>
<attribute name = "type'" use = "required" type="uddi:type'/>
<attribute name = "checked" use = "required" type="uddi:checked"/>
</complexType>

Sample XML for a Pluggable tModel

The following shows a sample XML for a pluggable tModel:

<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope
xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<Taxonomy checked=""true" type='"‘categorization” xmlns="urn:uddi-org:api_v2" >
<applicability>
<scope>businessEntity</scope>
<scope>businessService</scope>
<scope>bindingTemplate</scope>
</applicability>
<tModel +tModelKey=""uuid:COB9FE13-179F-41DF-8A5B-5004DB444tt2" >
<name> sample pluggable tModel </name>
<description>used for test purpose only </description>
<overviewDoc>
<overviewURL>http://www.abc.com </overviewURL>
</overviewDoc>
</tModel>
<categories>
<category keyName="'namel " keyValue="1">

12-24 Programming Web Services for WebLogic Server

Pluggable tModel

<category keyName="namell" keyValue="12">
<category keyName="'namelll" keyValue="111"">
<category keyName='"namellll" keyValue="1111"/>
<category keyName='"namelll2" keyValue="1112"/>
</category>
<category keyName="namell2" keyValue="112">
<category keyName='"namell21"™ keyValue="1121"/>
<category keyName="namell22" keyValue='1122"/>
</category>
</category>
</category>
<category keyName="'name2 " keyValue="2">
<category keyName="name21" keyValue="22">
<category keyName="'name211" keyValue="211">
<category keyName='"name2111" keyValue="2111"/>
<category keyName='"name2112" keyValue="2112"/>
</category>
<category keyName="name212" keyValue='"'212">
<category keyName='"name2121"™ keyValue="2121"/>
<category keyName="name2122" keyValue='2122"/>
</category>
</category>
</category>
</categories>
</Taxonomy>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Programming Web Services for WebLogic Server

12-25

Publishing and Finding Web Services Using UDDI

12-26 Programming Web Services for WebLogic Server

cHAPTER@

Upgrading WebLogic Web Services
From Previous Releases 10 9.2

The following sections describe how to upgrade a pre-9.2 WebLogic Server Web Service to run
in the 9.2 Web Service runtime environment:

e “Upgrading a 9.0 or 9.1 WebLogic Web Service to 9.2” on page 13-1
e “Upgrading an 8.1 WebLogic Web Service to 9.2” on page 13-2

Upgrading a 9.0 or 9.1 WebLogic Web Service to0 9.2

If your 9.0/9.1 Web Service used any of the following features, then you must recompile the Web
Service before you redeploy it to WebLogic Server 9.2:

e Conversations
e @weblogic.jws.Context JWS annotation

e weblogic.wsee. jws.JwsContext API

To recompile, simply rerun the jwsc Ant task against the JWS file that implements your Web
Service.

If your 9.0/9.1 Web Service did not use these features, then you can redeploy it to WebLogic
Server 9.2 without making any changes or recompiling it.

Programming Web Services for WebLogic Server 13-1

Upgrading WebLogic Web Services From Previous Releases to 9.2

Upgrading an 8.1 WebLogic Web Service to 9.2

This section describes how to upgrade an 8.1 WebLogic Web Service to use the new Version 9.2
Web Services runtime environment. The 9.2 runtime is based on the Implementing Enterprise
Web Services 1.1 specification (JSR-921, which is the 1.1 maintenance release of JSR-109). The
9.2 programming model uses standard JDK 1.5 metadata annotations, as specified by the Web
Services Metadata for the Java Platform specification (JSR-181).

Note: 8.1 WebLogic Web Services will continue to run, without any changes, on Version 9.2
of WebLogic Server because the 8.1 Web Services runtime is still supported in 9.2,
although it is deprecated and will be removed from the product in future releases. For this
reason, BEA highly recommends that you follow the instructions in this chapter to
upgrade your 8.1 Web Service to 9.2.

Upgrading your 8.1 Web Service includes the following high-level tasks; the procedures in later
sections go into more detail:
e Update the 8.1 Java source code of the Java class or stateless session EJB that implements
the Web Service so that the source code uses JWS annotations.

Version 9.2 WebLogic Web Services are implemented using JWS files, which are Java files
that contains JWS annotations. The jwsc Ant task always implements the Web Service as a
plain Java file unless you explicitly implement javax.ejb.SessionBean in your JWS
file. This latter case is not typical. This programming model differs from that of 8.1, where
you were required to specify the type of backend component (Java class or EJB).

e Update the Ant build script that builds the Web Service to call the 9.2 WebLogic Web
Service Ant task jwsc instead of the 8.1 servicegen task.

In the sections that follow it is assumed that:

e You previously used servicegen to generate your 8.1 Web Service and that, more
generally, you use Ant scripts in your development environment to iteratively develop Web
Services and other J2EE artifacts that run on WebL ogic Server. The procedures in this
section direct you to update existing Ant bui Id.xml files.

e You have access to the Java class or EJB source code for your 8.1 Web Service.
This section does not discuss the following topics:

e Upgrading a JIMS-implemented 8.1 Web Service.

e Upgrading Web Services from versions previous to 8.1.

13-2 Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

e Upgrading a client application that invokes an 8.1 Web Service to one that invokes a 9.2
Web Service. For details on how to write a client application that invokes a 9.2 Web
Service, see Chapter 9, “Invoking Web Services.”

Upgrading an 8.1 Java Class-Implemented WebLogic Web
Service to 9.2: Main Steps

To upgrade an 8.1 Java class-implemented Web Service to use the 9.2 WebLogic Web Services
runtime:

1. Open a command window and set your WebLogic Server 9.2 environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your 9.2 domain directory.

The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/upgrade_pojo

3. Create an src directory under the project directory, as well as sub-directories that correspond
to the package name of the new 9.2 JWS file (shown later in this procedure) that corresponds
to the old 8.1 Java class:

prompt> cd /myExamples/upgrade_pojo
prompt> mkdir src/examples/webservices/upgrade_pojo

4. Copy the old Java class that implements the 8.1 Web Service to the
src/examples/webservices/upgrade_pojo directory of the working directory. Rename
the file, if desired.

5. Edit the Java file, as described in the following steps. See the old and new sample Java files
in “Example of an 8.1 Java File and the Corresponding 9.2 JWS File” on page 13-5 for
specific examples.

a. If needed, change the package name and class name of the Java file to reflect the new 9.2
source environment.

b. Add import statements to import both the standard and WebLogic-specific JWS
annotations.

c. Add, at a minimum, the following JWS annotation:

Programming Web Services for WebLogic Server 13-3

Upgrading WebLogic Web Services From Previous Releases to 9.2

13-4

— The standard @webService annotation at the Java class level to specify that the JWS

file implements a Web Service.
BEA recommends you also add the following annotations:

The standard @SOAPBinding annotation at the class-level to specify the type of Web
Service, such as document-literal-wrapped or RPC-encoded.

The WebLogic-specific @WLHttpTransport annotation at the class-level to specify the
context and service URIs that are used in the URL that invokes the deployed Web
Service.

The standard @WebMethod annotation at the method-level for each method that is
exposed as a Web Service operation.

See Chapter 5, “Programming the JWS File,” for general information about using JWS
annotations in a Java file.

. You might need to add additional annotations to your JWS file, depending on the 8.1 Web

Service features you want to carry forward to 9.2. In 8.1, many of these features were
configured with attributes of servicegen. See “Mapping of servicegen Attributes to JWS
Annotations or jwsc Attributes” on page 13-19 for a table that lists equivalent JWS
annotation, if available, for features you enabled in 8.1 using servicegen attributes.

6. Copy the old build.xml file that built the 8.1 Web Service to the 9.2 working directory.

7. Update your Ant bui Id.xml file to execute the jwsc Ant task, along with other supporting
tasks, instead of servicegen.

BEA recommends that you create a new target, such as build-service, in your Ant
build file and add the jwsc Ant task call to compile the new JWS file you created in the
preceding steps. Once this target is working correctly, you can remove the old
servicegen Ant task.

The following procedure lists the main steps to update your bui ld.xml file; for details on
the steps, see the standard iterative development process outlined in Chapter 4, “Iterative
Development of WebLogic Web Services.”

See “Example of an 8.1 and Updated 9.2 Ant Build File for Java Class-Implemented Web
Services” on page 13-7 for specific examples of the steps in the following procedure.

a. Add the jwsc taskdef to the bui ld.xml file.

b. Create abuild-service target and add the tasks needed to build the 9.2 Web Service, as

described in the following steps.

Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

c. Add the jwsc task to the build file. Set the srdir attribute to the src directory
(/myExamples/upgrade_pojo/src, in this example) and the destdir attribute to the
root Enterprise application directory you created in the preceding step.

Set the File attribute of the <jws> child element to the name of the new JWS file,
created earlier in this procedure.

You may need to specify additional attributes to the jwsc task, depending on the 8.1
Web Service features you want to carry forward to 9.2. In 8.1, many of these features
were configured using attributes of servicegen. See “Mapping of servicegen
Attributes to JWS Annotations or jwsc Attributes” on page 13-19 for a table that
describes if there is an equivalent jwsc attribute for features you enabled using
servicegen attributes

8. Execute the build-service Ant target. Assuming all the tasks complete successfully, the
resulting Enterprise application contains your upgraded 9.2 Web Service.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15 and “Browsing to the
WSDL of the Web Service” on page 4-17 for additional information about deploying and testing
your Web Service.

Based on the sample Java code shown in the following sections, the URL to invoke the WSDL
of the upgraded 9.2 Web Service is:

http://host:port/upgradeP0J0/Hel loWor 1d?WSDL

Example of an 8.1 Java File and the Corresponding 9.2 JWS File

Assume that the following sample Java class implemented a 8.1 Web Service:

package examples.javaclass;

/**
* Simple Java class that implements the HelloWorld Web service. It takes
* as iInput an integer and a String, and returns a message that includes these
* two parameters.

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/
public final class HelloWorld81 {

/**

* Returns a text message that includes the integer and String input
* parameters.

*

Programming Web Services for WebLogic Server 13-5

Upgrading WebLogic Web Services From Previous Releases to 9.2

*/
public String sayHello(int num, String s) {

System.out.printIn(‘'sayHello operation has been invoked with arguments " +
" and " + num);

String returnValue = "This message brought to you by the letter "+s+" and
the number "“+num;

return returnvValue;

An equivalent JWS file for a 9.2 Java class-implemented Web Service is shown below, with the
differences shown in bold. Note that some of the JWS annotation values are taken from attributes
of the 8.1 servicegen Ant task shown in “Example of an 8.1 and Updated 9.2 Ant Build File for
Java Class-Implemented Web Services” on page 13-7:

package examples.webservices.upgrade_pojo;
// Import standard JWS annotations

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;

// 1Import WebLogic JWS anntoation
import weblogic. jws.WLHttpTransport;

/**
Simple Java class that implements the HelloWorld92 Web service. It takes

*

* as Input an integer and a String, and returns a message that includes these
* two parameters.
*
*

@author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

@WebService(name=""HelloWor 1d92PortType", serviceName="HelloWorld",
targetNamespace=""http://example.org")

@SOAPBiInding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

@WLHttpTransport(contextPath=""upgradeP0J0O", serviceUri="HelloWorld",
portName=""Hel loWor1d92Port')

13-6 Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

public class HelloWorld92Impl {

/**

* Returns a text message that includes the integer and String input
* parameters.
*

*/

@webMethod ()
public String sayHello(int num, String s) {

the

System.out.printIn('sayHello operation has been invoked with arguments " +
" and " + num);

String returnValue = "This message brought to you by the letter "+s+" and
number *‘+num;

return returnValue;

Example of an 8.1 and Updated 9.2 Ant Build File for Java Class-Implemented
Web Services

The following simple bui 1d.xml file shows the 8.1 way to build a WebLogic Web Service using
the servicegen Ant task; in the example, the Java file that implements the 8.1 Web Service has
already been compiled into the examples.javaclass.Hellowor1dsl class:

<project name="javaclass-webservice" default="all" basedir="_">
<I-- set global properties for this build -->
<property name="'source" value="_"/>

<property name="build" value="${source}/build"/>
<property name="war_Ffile" value="HelloWorldWS._war" />
<property name="ear_Ffile" value=""HelloWorldApp.ear" />
<property name="namespace' value="http://examples.org" />

<target name="all" depends="'clean, ear'/>

<target name='"'clean'>
<delete dir="${build}"/>
</target>

<I-- example of old 8.1 servicegen call to build Web Service -->

<target name="ear"'>
<servicegen

Programming Web Services for WebLogic Server 13-1

Upgrading WebLogic Web Services From Previous Releases to 9.2

destEar="${bui ld}/${ear_fFile}"

warName=""${war_Ffile}">

<service
JavaClassComponents=""examples. javaclass.Hellowor1d81"
targetNamespace=""${namespace}"
serviceName="HelloWorld"
serviceURI="/HelloWorld"
generateTypes="True"
expandMethods="True">

</service>

</servicegen>
</target>

</project>

An equivalent bui Id.xml file that calls the jwsc Ant task to build a 9.2 Web Service is shown
below, with the relevant tasks discussed in this section in bold. In the example, the new JWS file
that implements the 9.2 Web Service is called Hel loWor1d921Impl _java:

<project name="‘webservices-upgrade_pojo" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server.name' value="myserver" />

<property name="ear.deployed.name” value="upgradePOJOEar" />
<property name="example-output" value="output” />
<property name="ear-dir" value="${example-output}/upgradePOJOEar" />

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends="'clean,build-service,deploy"” />

13-8 Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

<target name="'clean" depends="undeploy'>
<delete dir="${example-output}"/>
</target>

<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}">

<jws File="examples/webservices/upgrade_pojo/HelloWorld92Impl.java" />
</jwsc>
</target>

<target name="deploy'>
<wldeploy action="deploy" name=""${ear.deployed.name}"
source="${ear-dir}" user="${wls._username}"
password=""${wls.password}" verbose="true"
adminurl="t3://%{wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name=""${ear.deployed.name}"
failonerror="false"
user="${wls._username}"” password="${wls._password}" verbose='"true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server._name}" />
</target>

</project>

Upgrading an 8.1 EJB-Implemented WebLogic Web Service
to 9.2: Main Steps

The following procedure describes how to upgrade an 8.1 EJB-implemented Web Service to use
the 9.2 WebLogic Web Services runtime.

The 9.2 Web Services programming model is quite different from the 8.1 model in that it hides
the underlying implementation of the Web Service. Rather than specifying up front that you want
the Web Service to be implemented by a Java class or an EJB, the jwsc Ant task always picks a

Programming Web Services for WebLogic Server 13-9

Upgrading WebLogic Web Services From Previous Releases to 9.2

13-10

plain Java class implementation, unless you have explicitly implemented
javax.ejb.SessionBean in the JWS file, which is not typical. For this reason, the following
procedure does not show how to import EJB classes or use EJBGen, even though the 8.1 Web
Service was explicitly implemented with an EJB. Instead, the procedure shows how to create a
standard JWS file that is the 9.2 equivalent to the 8.1 EJB-implemented Web Service.

1.

Open a command window and set your 9.2 WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your 9.2 domain directory.

The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

Create a project directory:

prompt> mkdir /myExamples/upgrade_ejb

Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the new 9.2 JWS file (shown later on in this procedure) that
corresponds to your 8.1 EJB implementation:

prompt> cd /myExamples/upgrade_ejb
prompt> mkdir src/examples/webservices/upgrade_ejb

Copy the 8.1 EJB Bean file that implemented javax.ejb.SessionBean to the
src/examples/webservices/upgrade_ejb directory of the working directory. Rename
the file, if desired.

Note: You do not need to copy over the 8.1 Home and Remote EJB files.

Edit the EJB Bean file, as described in the following steps. See the old and new sample Java
files in “Example of 8.1 EJB Files and the Corresponding 9.2 JWS File” on page 13-12 for
specific examples.

a. If needed, change the package name and class name of the Java file to reflect the new 9.2
source environment.

b. Optionally remove the import statements that import the EJB classes (javax.ejb.>).
These classes are no longer needed in the upgraded JWS file.

c. Add import statements to import both the standard and WebLogic-specific JWS
annotations.

d. Ensure that the JWS file does not implement javax.ejb.SessionBean anymore by
removing the implements SessionBean code from the class declaration.

Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

e. Remove all the EJB-specific methods:
— ejbActivate()
— ejbRemove()

ejbPassivate()
ejbCreate()

f. Add, at a minimum, the following JWS annotation:

— The standard @webService annotation at the Java class level to specify that the JWS
file implements a Web Service.

BEA recommends you also add the following annotations:

— The standard @SOAPBinding annotation at the class-level to specify the type of Web
Service, such as document-literal-wrapped or RPC-encoded.

— The WebLogic-specific @WLHttpTransport annotation at the class-level to specify the
context and service URIs that are used in the URL that invokes the deployed Web
Service.

— The standard @webMethod annotation at the method-level for each method that is
exposed as a Web Service operation.

See Chapter 5, “Programming the JWS File,” for general information about using JWS
annotations in a Java file.

g. You might need to add additional annotations to your JWS file, depending on the 8.1 Web
Service features you want to carry forward to 9.2. In 8.1, many of these features were
configured using attributes of servicegen. See “Mapping of servicegen Attributes to
JWS Annotations or jwsc Attributes” on page 13-19 for a table that lists equivalent JWS
annotation, if available, for features you enabled in 8.1 using servicegen attributes.

6. Copy the old build.xml file that built the 8.1 Web Service to the 9.2 working directory.

7. Update your Ant bui Id.xml file to execute the jwsc Ant task, along with other supporting
tasks, instead of servicegen.

BEA recommends that you create a new target, such as build-service, in your Ant
build file and add the jwsc Ant task call to compile the new JWS file you created in the
preceding steps. Once this target is working correctly, you can remove the old
servicegen Ant task.

The following procedure lists the main steps to update your bui Id.xml file; for details on
the steps, see the standard iterative development process outlined in Chapter 4, “Iterative
Development of WebLogic Web Services.”

Programming Web Services for WebLogic Server 13-11

Upgrading WebLogic Web Services From Previous Releases to 9.2

13-12

See “Example of an 8.1 and Updated 9.2 Ant Build File for an 8.1 EJB-Implemented Web
Service” on page 13-17 for specific examples of the steps in the following procedure.

a. Add the jwsc taskdef to the bui ld.xml file.

b. Create abuild-service target and add the tasks needed to build the 9.2 Web Service, as
described in the following steps.

c. Add the jwsc task to the build file. Set the srdir attribute to the src directory
(/myExamples/upgrade_ejb/src, in this example) and the destdir attribute to the
root Enterprise application directory you created in the preceding step.

Set the Fi le attribute of the <jws> child element to the name of the new JWS file,
created earlier in this procedure.

You may need to specify additional attributes to the jwsc task, depending on the 8.1
Web Service features you want to carry forward to 9.2. In 8.1, many of these features
were configured using attributes of servicegen. See “Mapping of servicegen
Attributes to JWS Annotations or jwsc Attributes” on page 13-19 for a table that
indicates whether there is an equivalent jwsc attribute for features you enabled using
servicegen attributes.

8. Execute the build-service Ant target. Assuming all tasks complete successfully, the
resulting Enterprise application contains your upgraded 9.2 Web Service.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15 and “Browsing to the
WSDL of the Web Service” on page 4-17 for additional information about deploying and testing
your Web Service.

Based on the sample Java code shown in the following sections, the URL to invoke the WSDL
of the upgraded 9.2 Web Service is:

http://host:port/upgradeEJB/HelloWorldService?WSDL

Example of 8.1 EJB Files and the Corresponding 9.2 JWS File

Assume that the Bean, Home, and Remote classes and interfaces, shown in the next three
sections, implemented the 8.1 stateless session EJB which in turn implemented an 8.1 Web
Service.

The equivalent 9.2 JWS file is shown in “Equivalent 9.2 JWS File” on page 13-15. The
differences between the 8.1 and 9.2 classes are shown in bold. Note that some of the JWS
annotation values are taken from attributes of the 8.1 servicegen Ant task shown in “Example
of an 8.1 and Updated 9.2 Ant Build File for an 8.1 EJB-Implemented Web Service” on

page 13-17.

Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

8.1 SessionBean Class
package examples.statelessSession;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

/**

HelloWorldBean is a stateless session EJB. It has a single method,
sayHello(), that takes an integer and a String and returns a String.

<p>

The sayHello() method is the public operation of the Web service based on
this EJB.

ok X % ok X% X

@author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public class HelloWorldBean81 implements SessionBean {

private static final boolean VERBOSE = true;
private SessionContext ctx;

// You might also consider using WebLogic"s log service
private void log(String s) {

iT (VERBOSE) System.out.printin(s);
¥

/**

* Single EJB business method.

*/

public String sayHello(int num, String s) {

System.out.printin(sayHello in the HelloWorld EJB has "+
"been invoked with arguments "™ + s + " and " + num);

String returnValue = "This message brought to you by the "+
"letter "+s+" and the number "‘+num;

return returnvalue;

}

/**
* This method is required by the EJB Specification,
* but is not used by this example.

*/
public void ejbActivate() {
log("'ejbActivate called™);

}

Programming Web Services for WebLogic Server 13-13

Upgrading WebLogic Web Services From Previous Releases to 9.2

/**
* This method is required by the EJB Specification,
* but s not used by this example.
*
*/
public void ejbRemove() {
log('ejbRemove called™);

/**
* This method is required by the EJB Specification,
* but is not used by this example.
*/
public void ejbPassivate() {
log("'ejbPassivate called™);

/**

* Sets the session context.

*

* @param ctx SessionContext Context for session

*/

public void setSessionContext(SessionContext ctx) {
log(''setSessionContext called™);
this.ctx = ctx;

}

/**
* This method is required by the EJB Specification,
* but is not used by this example.

*/
public void ejbCreate () throws CreateException {
log('ejbCreate called™);

}

8.1 Remote Interface
package examples.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

/**
* The methods in this interface are the public face of HelloWorld.
* The signatures of the methods are identical to those of the EJBean, except
* that these methods throw a java.rmi.RemoteException.

13-14 Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

*

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public interface HelloWorld81 extends EJBObject {

/**

* Simply says hello from the EJB

*

* @param num int number to return

* @param s String string to return

* @return String returnValue

* @exception RemoteException if there is
*

a communications or systems failure
*/

String sayHello(int num, String s)

throws RemoteException;

8.1 EJB Home Interface
package examples.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb._EJBHome;

/**

* This interface is the Home interface of the HelloWorld stateless session EJB.
*

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/
public interface HelloWorldHome81 extends EJBHome {
/**
* This method corresponds to the ejbCreate method in the
* HelloWorldBean81.java file.
*
/
HelloWorld81 create()
throws CreateException, RemoteException;

Equivalent 9.2 JWS File

The differences between the 8.1 and 9.2 files are shown in bold. The value of some JWS
annotations are taken from attributes of the 8.1 servicegen Ant task shown in “Example of an
8.1 and Updated 9.2 Ant Build File for an 8.1 EJB-Implemented Web Service” on page 13-17

Programming Web Services for WebLogic Server 13-15

Upgrading WebLogic Web Services From Previous Releases to 9.2

package examples.webservices.upgrade_ejb;
// Import the standard JWS annotations

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic specific annotation
import weblogic. jws_WLHttpTransport;
// Class-level annotations

@WebService(name="HelloWor 1d92PortType", serviceName="HelloWorldService",
targetNamespace="http://example.org")

@SOAPBiInding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

@WLHttpTransport(contextPath=""upgradeEJB", serviceUri="HelloWorldService",
portName=""Hel loWor 1d92Port')

/**
* HelloWorld92Impl is the JWS equivalent of the HelloWorld81 EJB that
* implemented the 8.1 Web Service. It has a single method,

* sayHello(), that takes an integer and a String and returns a String.
* <p>

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.

>/

public class HelloWorld92Impl {

/** the sayHello method will become the public operation of the Web
* Service.
*/

@webMethod ()
public String sayHello(int num, String s) {

System.out._printin(‘'sayHello in the HelloWorld92 Web Service has "+
"been invoked with arguments " + s + " and " + num);

String returnValue = "This message brought to you by the "+
"letter "+s+" and the number "+num;

return returnValue;

13-16 Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

Example of an 8.1 and Updated 9.2 Ant Build File for an 8.1 EJB-Implemented
Web Service

The following simple bui Id . xml file shows the 8.1 way to build an EJB-implemented WebL ogic
Web Service using the servicegen Ant task. Following this example is an equivalent
build.xml file that calls the jwsc Ant task to build a 9.2 Web Service.

<project name="ejb-webservice" default="all" basedir="_."">
<I-- set global properties for this build -->
<property name="source" value="_."/>

<property name="build" value="${source}/build"/>
<property name="ejb_Ffile" value=""HelloWorldWS._jar" />
<property name="war_Ffile" value=""HelloWorldWS.war" />
<property name="ear_File" value="HelloWorldApp.ear"™ />
<property name="'namespace" value="http://examples.org" />

<target name="all" depends="clean,ear'/>

<target name='"clean'>
<delete dir="${build}"/>
</target>

<I-- example of old 8.1 servicegen call to build Web Service -->

<target name="‘ejb">
<delete dir="${build}" />
<mkdir dir="${build}"/>
<mkdir dir="${build}/META-INF"/>
<copy todir="${build}/META-INF">
<fileset dir="${source}">
<include name="ejb-jar.xml"/>
</fTileset>
</copy>
<javac srcdir="${source}" includes="HelloWorld*._java"
destdir="${build}" />
<jar jarfile="${ejb_file}" basedir="${build}" />
<wlappc source="${ejb_fFile}" />
</target>

<target name="ear" depends="'ejb"">
<servicegen

Programming Web Services for WebLogic Server 13-17

Upgrading WebLogic Web Services From Previous Releases to 9.2

destEar="${build}/${ear_Tfile}"

warName=""${war_TFile}'>

<service
ejbJar="${ejb_Tfile}"
targetNamespace=""${namespace}"
serviceName="Hel loWorldService"
serviceURI="/Hel loWorldService"
generateTypes=""True"
expandMethods="True">

</service>

</servicegen>
</target>

</project>

An equivalent bui Id.xml file that calls the jwsc Ant task to build a 9.2 Web Service is shown
below, with the relevant tasks discussed in this section in bold:

<project name="webservices-upgrade_ejb" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port"” value="7001" />

<property name="wls.server._name" value="myserver" />

<property name="ear.deployed.name" value="upgradeEJB" />
<property name="example-output" value="output” />
<property name="ear-dir" value="${example-output}/upgradeEJB" />

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends="'clean,build-service,deploy"” />

13-18 Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

<target name="'clean" depends="undeploy'>
<delete dir="${example-output}"/>
</target>

<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}">

<jws file="examples/webservices/upgrade_ejb/HelloWorld92Impl.java" />
</jwsc>
</target>

<target name="deploy'>
<wldeploy action="deploy" name=""${ear.deployed.name}"
source="${ear-dir}" user="${wls._username}"
password=""${wls.password}" verbose="true"
adminurl="t3://%{wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name=""${ear.deployed.name}"
failonerror="false"
user="${wls._username}"” password="${wls._password}" verbose='"true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server._name}" />
</target>

</project>

Mapping of servicegen Attributes to JWS Annotations or
jwsc Attributes

The following table maps the attributes of the 8.1 servicegen Ant task to their equivalent 9.2
JWS annotation or jwsc attribute.

The attributes listed in the first column are a mixture of attributes of the main servicegen Ant
task and attributes of the four child elements of servicegen (<service>, <client>,
<handlerChain>, and <security>)

Programming Web Services for WebLogic Server 13-19

Upgrading WebLogic Web Services From Previous Releases to 9.2

See Appendix B, “JWS Annotation Reference,” and “jwsc” on page A-17 for more information
about the 9.2 JWS annotations and jwsc Ant task.

Table 13-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of Equivalent JWS Annotation or jwsc Attribute
servicegen Attribute

contextURI contextPath attribute of the WebL ogic-specific
@WLHttpTransport annotation.

destEAR destdir attribute of the jwsc Ant task.

keepGenerated keepGenerated attribute of the jwsc Ant task.

mergeWithExistingWs No equivalent.

overwrite No equivalent.

warName name attribute of the <jws> child element of the jwsc Ant
task.

ejbJAR No direct equivalent, because the jwsc Ant task generates Web

(attribute of the service child Service artifacts from a JWS file, rather than a compiled EJB or

element) Java class.
Indirect equivalent is the Fi le attribute of the <jws> child
element of the jwsc Ant task that specifies the name of the WS
file.

excludeEJBs No equivalent.

(attribute of the service child

element)

expandMethods No equivalent.

(attribute of the service child

element)

generateTypes No equivalent.

(attribute of the service child
element)

13-20 Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

Tahle 13-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

ignoreAuthHeader

(attribute of the service child
element)

No equivalent.

includeEJBs

(attribute of the service child
element)

No equivalent.

JavaClassComponents

(attribute of the service child
element)

No direct equivalent, because the jwsc Ant task generates Web
Service artifacts from a JWS file, rather than a compiled EJB or
Java class.

Indirect equivalent is the Fi le attribute of the <jws> child
element of the jwsc Ant task that specifies the name of the IWS
file.

JMSAction

(attribute of the service child
element)

No equivalent because JIMS-implemented Web Services are not
supported in the 9.2 release.

JMSConnectionFactory

(attribute of the service child
element)

No equivalent because JIMS-implemented Web Services are not
supported in the 9.2 release.

JMSDestination

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 9.2 release.

JMSDestinationType

(attribute of the service child
element)

No equivalent because JIMS-implemented Web Services are not
supported in the 9.2 release.

JMSMessageType

(attribute of the service child
element)

No equivalent because JIMS-implemented Web Services are not
supported in the 9.2 release.

JMSOperationName

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 9.2 release.

Programming Web Services for WebLogic Server 13-21

Upgrading WebLogic Web Services From Previous Releases to 9.2

13-22

Tahle 13-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

protocol

(attribute of the service child
element)

One of the following WebL ogic-specific annotations:
e @WLHttpTransport
e @WLImsTransport

serviceName

(attribute of the service child
element)

serviceName attribute of the standard @WebService
annotation.

servicelURI

(attribute of the service child
element)

serviceUri attribute of the WebLogic-specific
@WLHttpTransport or @WLJImsTransport annotations.

style
(attribute of service child element)

style attribute of the standard @SOAPBinding annoation.

typeMappingFile

(attribute of the service child
element)

No equivalent.

targetNamespace

(attribute of the service child
element)

targetNamespace attribute of the standard @wWebService
annotation.

userS0AP12

(attribute of the service child
element)

value attribute of the WebLogic-specific
@weblogic. jws.Binding JWS annotation

clientJarName
(attribute of client child element)

No equivalent.

packageName

(attribute of the client child
element)

No direct equivalent.

Use the packageName attribute of the cl ientgen Ant task to
generate client-side Java code and artifacts.

saveWSDL

(attribute of the client child
element)

No equivalent.

Programming Web Services for WebLogic Server

Upgrading an 8.1 WebLogic Web Service to 9.2

Tahle 13-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

userServerTypes

(attribute of the client child
element)

No equivalent.

handlers

(attribute of the handlerChain
child element)

Standard @Hand lerChain or @SOAPMessageHandlers
annotation.

name

(attribute of the handlerChain
child element)

Standard @Hand lerChain or @SOAPMessageHandlers
annotation.

duplicateElimination

(attribute of the reliabi lity child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains Web Service reliable messaging
policy assertions.

See “Using Web Service Reliable Messaging” on page 6-1.

persistDuration

(attribute of the reliabi ity child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains Web Service reliable messaging
policy assertions.

See “Using Web Service Reliable Messaging” on page 6-1.

enablePasswordAuth

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” on page 10-3.

encryptKeyName

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” on page 10-3

Programming Web Services for WebLogic Server

13-23

Upgrading WebLogic Web Services From Previous Releases to 9.2

13-24

Tahle 13-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

encryptKeyPass

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” on page 10-3

password

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” on page 10-3

signKeyName

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” on page 10-3

signKeyPass

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” on page 10-3

username

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See “Configuring Message-Level Security (Digital Signatures
and Encryption)” on page 10-3

Programming Web Services for WebLogic Server

Ant Task Reference

The following sections provide reference information about the WebLogic Web Services Ant
tasks:

“Overview of WebLogic Web Services Ant Tasks” on page A-1

“clientgen” on page A-5

“jwsc” on page A-17

“wsdlc” on page A-53

For detailed information on how to integrate and use these Ant tasks in your development
environment to program a Web Service and a client application that invokes the Web Service,
see:

e “Iterative Development of WebLogic Web Services Starting From Java: Main Steps” on
page 4-3

o “lterative Development of WebLogic Web Services Starting From a WSDL File: Main
Steps” on page 4-5

e Chapter 9, “Invoking Web Services”

Overview of WebLogic Web Services Ant Tasks

Ant is a Java-based build tool, similar to the make command but much more powerful. Ant uses
XML-based configuration files (called bui Id.xml by default) to execute tasks written in Java.

Programming Web Services for WebLogic Server A-1

Ant Task Reference

BEA provides a number of Ant tasks that help you generate important Web Service-related
artifacts.

The Apache Web site provides other useful Ant tasks for packaging EAR, WAR, and EJB JAR
files. For more information, see http://jakarta.apache.org/ant/manual/.

Note: The Apache Jakarta Web site publishes online documentation for only the most current
version of Ant, which might be different from the version of Ant that is bundled with
WebLogic Server. To determine the version of Ant that is bundled with WebLogic
Server, run the following command after setting your WebLogic environment:

prompt> ant -version

To view the documentation for a specific version of Ant, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

List of Web Services Ant Tasks

The following table provides an overview of the Web Service Ant tasks provided by BEA.

Tahle A-1 WebLogic Web Services Ant Tasks

Ant Task Description

clientgen Generates the JAX-RPC Service stubs and other client-side files used to invoke a Web
Service.

jwsc Compiles a JWS-annotated file into a Web Service. JWS refers to Java Web
Service.

wsdlc Generates a partial Web Service implementation based on a WSDL file.

A-2

Using the Web Services Ant Tasks

To use the Ant tasks:

1. Set your environment.

On Windows NT, execute the setDomainEnv.cmd command, located in your domain
directory. The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

Programming Web Services for WebLogic Server

Overview of WebLogic Web Services Ant Tasks

On UNIX, execute the setDomainEnv.sh command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

. Create a file called bui 1d.xml that will contain a call to the Web Services Ant tasks.

The following example shows a simple bui 1d.xml file with a single target called clean:
<project name="my-webservice'>

<target name="clean">
<delete>
<fileset dir="tmp" />
</delete>
</target>

</project>
This clean target deletes all files in the temp subdirectory.

Later sections provide examples of specifying the Ant task in the build.xml file.

For each WebLogic Web Service Ant task you want to execute, add an appropriate task
definition and target to the bui Id.xml file using the <taskdef> and <target> elements.
The following example shows how to add the jwsc Ant task to the build file; the attributes of
the task have been removed for clarity:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service">
<jwsc attributes go here...>

</jwsc>
</target>

You can, of course, name the WebLogic Web Services Ant tasks anything you want by
changing the value of the name attribute of the relevant <taskdef> element. For
consistency, however, this document uses the names jwsc, clientgen, and wsdlc
throughout.

. Execute the Ant task or tasks specified in the bui Id.xml file by typing ant in the same
directory as the build.xml file and specifying the target:

prompt> ant build-service

Programming Web Services for WebLogic Server A-3

Ant Task Reference

A-4

Setting the Classpath for the WebLogic Ant Tasks

Each WebLogic Ant task accepts a classpath attribute or element so that you can add new
directories or JAR files to your current CLASSPATH environment variable.

The following example shows how to use the classpath attribute of the jwsc Ant task to add a
new directory to the CLASSPATH variable:

<jwsc srcdir="MyJWSFile.java"
classpath="${java.class.path};my_fab_directory"

</jwsc>
The following example shows how to add to the CLASSPATH by using the <classpath>
element:

<jwsc ...>
<classpath>
<pathelement path="${java.class.path}" />
<pathelement path="my_fab_directory" />
</classpath>

</jwsc>
The following example shows how you can build your CLASSPATH variable outside of the

WebLogic Web Service Ant task declarations, then specify the variable from within the task
using the <classpath> element:

<path id="myClassID">
<pathelement path="${java.class.path}"/>
<pathelement path="${additional .pathl}"/>
<pathelement path="${additional .path2}"/>
</path>

<jwsc>
<classpath refid="myClassID" />

</jwsc>

Programming Web Services for WebLogic Server

clientgen

Note: The Java Ant utility included in WebLogic Server uses the ant (UNIX) or ant.bat
(Windows) configuration files in the WL_HOME\server\bin directory to set various
Ant-specific variables, where WL_HOME is the top-level directory of your WebLogic
Server installation If you need to update these Ant variables, make the relevant changes
to the appropriate file for your operating system.

Differences in Operating System Case Sensitivity When
Manipulating WSDL and XML Schema Files

Many WebLogic Web Service Ant tasks have attributes that you can use to specify a file, such as
a WSDL or an XML Schema file.

The Ant tasks process these files in a case-sensitive way. This means that if, for example, the
XML Schema file specifies two user-defined types whose names differ only in their capitalization
(for example, MyReturnType and MYRETURNTYPE), the clientgen Ant task correctly generates
two separate sets of Java source files for the Java representation of the user-defined data type:
MyReturnType. java and MYRETURNTYPE. java.

However, compiling these source files into their respective class files might cause a problem if
you are running the Ant task on Microsoft Windows, because Windows is a case insensitive
operating system. This means that Windows considers the files MyReturnType. java and
MYRETURNTYPE . java to have the same name. So when you compile the files on Windows, the
second class file overwrites the first, and you end up with only one class file. The Ant tasks,
however, expect that two classes were compiled, thus resulting in an error similar to the
following:

c:\src\com\bea\order\MyReturnType.java:14:
class MYRETURNTYPE is public, should be declared in a file named
MYRETURNTYPE. java
public class MYRETURNTYPE
N

To work around this problem rewrite the XML Schema so that this type of naming conflict does
not occur, or if that is not possible, run the Ant task on a case sensitive operating system, such as
Unix.

clientgen

The clientgen Ant task generates, from an existing WSDL file, the client component files that
client applications use to invoke both WebLogic and non-WebLogic Web Services. These files
include:

Programming Web Services for WebLogic Server A-5

Ant Task Reference

A-6

e The Java source code for the JAX-RPC Stub and Service interface implementations for
the particular Web Service you want to invoke.

e The Java source code for any user-defined XML Schema data types included in the WSDL
file.

e The JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java user-defined data types and their corresponding XML Schema
types in the WSDL file.

e A client-side copy of the WSDL file.

Two types of client applications use the generated artifacts of clientgen to invoke Web
Services:

e Stand-alone Java clients that do not use the J2EE client container.

e J2EE clients, such as EJBs, JSPs, and Web Services, that use the J2EE client container.

You typically use the destDir attribute of clientgen to specify the directory into which all the
artifacts should be generated, and then compile the generate Java files yourself using the javac
Ant task. However, clientgen also provides a destFi le attribute if you want the Ant task to
compile the Java files for you and package them, along with the other generated artifacts, into the
specified JAR file. You must specify one of either destFile or destDir, although you cannot
specify both.

WARNING: The fully qualified name of the clientgen Ant task supported in this release of
WebLogic Serverisweblogic.wsee.tools.anttasks.ClientGenTask. This
is different from the clientgen Ant task supported in version 8.1 of WebLogic
Server, which is weblogic.webservice.clientgen.

Although the 8.1 clientgen Ant task is still provided in this release of WebL ogic
Server, it is deprecated. If you want to generate the client artifacts to invoke a 9.X
WebLogic Web Service, be sure you use the 9.X version of clientgen and not
the 8.1 version. For example, if you have upgraded an 8.1 Web Service t0 9.2,
but your Ant scripts explicitly call the 8.1 clientgen Ant task by specifying its
fully qualified name, then you must update your Ant scripts to call the 9.X
clientgen instead.

Taskdef Classname

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

Programming Web Services for WebLogic Server

clientgen

Examples

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<target name="build_client">

<clientgen
wsdl="http://example.com/myapp/myservice.wsdl"
destDir="/output/clientclasses"
packageName=""myapp.myservice.client"”
serviceName="StockQuoteService" />

<javac ... />
</target>

When the sample build_client target is executed, clientgen uses the WSDL file specified
by the wsdl attribute to generate all the client-side artifacts needed to invoke the Web Service
specified by the serviceName attribute. The clientgen Ant task generates all the artifacts into
the Zoutput/clientclasses directory. All generated Java code is in the

myapp -myservice.client package. After clientgen has finished, the javac Ant task then
compiles the Java code, both clientgen-generated as well as your own client application that
uses the generated artifacts and contains your business code.

If you want the clientgen Ant task to compile and package the generated artifacts for you,
specify the destFi le attribute rather than destDir:

<clientgen
wsdl="http://example.com/myapp/myservice.wsdl"
destFile="/output/jarfiles/myclient.jar"
packageName=""myapp.myservice.client"”
serviceName=""StockQuoteService" />

In the preceding example, you do not need to also specify the javac Ant task after clientgen
in the bui Id.xml file, because the Java code has already been compiled.

You typically execute the clientgen Ant task on a WSDL file that is deployed on the Web and
accessed using HTTP. Sometimes, however, you might want to execute clientgen on a static

WSDL file that is packaged in an archive file, such as the WAR or JAR file generated by the jwsc
Ant task. In this case you must use the following syntax for the wsdl attribute:

wsdl="jar:file:archive_filel!WSDL_file"

Programming Web Services for WebLogic Server A-7

Ant Task Reference

where archive_fi le refers to the full (or relative to the current directory) name of the archive
file and wsDL_Fi le refers to the full pathname of the WSDL file, relative to the root directory of
the archive file. For example:

<clientgen

wsdl="jar:file:output/myEAR/examples/webservices/simple/Simplelmpl _war!/WE
B-INF/SimpleService.wsdl"
destDir="/output/clientclasses"
packageName=""myapp.myservice.client"/>

The preceding example shows how to execute clientgen on a static WSDL file called
SimpleService.wsdl, which is packaged in the WEB- INF directory of a WAR file called
Simplelmpl .war, which is located in the output/myEAR/examples/webservices/simple
sub-directory of the directory that contains the bui ld.xml file.

You can use the standard Ant <sysproperty> nested element to set Java properties, such as the
username and password of a valid WebLogic Server user (if you have enabled access control on
the Web Service) or the name of a client-side trust store that contains trusted certificates, as
shown in the following example:

<clientgen
wsdI="http://example.com/myapp/mySecuredService._wsdl"
destDir="/output/clientclasses"
packageName=""myapp.mysecuredservice.client"
serviceName=""SecureStockQuoteService"
<sysproperty key="javax.net.ssl.trustStore"
value=""/keystores/DemoTrust. jks"/>
<sysproperty key="weblogic.wsee.client.ssl._stricthostchecking"
value="false"/>
<sysproperty key="javax.xml.rpc.security.auth_username"
value="juliet"/>
<sysproperty key="javax.xml.rpc.security.auth_password"
value="'secret"/>
</clientgen>

Child Element

The clientgen Ant task has one WebL ogic-specific child element: <xsdConfig>.

A-8 Programming Web Services for WebLogic Server

clientgen

Use the <xsdConfig> child element to specify one or more XMLBeans configuration files,
which by convention end in .xsdconfig. Use this element if your Web Service uses Apache
XMLBeans data types as parameters or return values.

The <xsdConfig> element is similar to the standard Ant <Fileset> element and has all the
same attributes. See the Apache Ant documentation on the Fileset element for the full list of
attributes you can specify.

See“Standard Ant Attributes and Elements That Apply To clientgen” on page A-16 for the list of
elements associated with the standard Ant javac task that you can also set for the clientgen
Ant task.

Attributes

The table in the following section describes the attributes of the clientgen Ant task.
See“Standard Ant Attributes and Elements That Apply To clientgen” on page A-16 for the list of
attributes associated with the standard Ant javac task that you can also set for the clientgen
Ant task.

Programming Web Services for WebLogic Server A-9

Ant Task Reference

WebLogic-Specific clientgen Attributes

Table A-2 Attributes of the clientgen Ant Task

Attribute

Description

Data Type

Required?

autoDetectWrapped

Specifies whether the cl ientgen Ant task should
try to determine whether the parameters and return
type of document-literal Web Services are of type
wrapped or bare.

When the cl ientgen Ant task parses a WSDL file
to create the JAX-RPC stubs, it attempts to
determine whether a document-literal Web Service
uses wrapped or bare parameters and return types
based on the names of the XML Schema elements,
the name of the operations and parameters, and so
on. Depending on how the names of these
components match up, the clientgen Ant task
makes a best guess as to whether the parameters are
wrapped or bare. In some cases, however, you might
want the Ant task to always assume that the
parameters are of type bare; in this case, set the
autoDetectWrapped attribute to Fal se.

Valid values for this attribute are True or False.
The default value is True.

Boolean

No.

destDir

Directory into which the clientgen Ant task
generates the client source code, WSDL, and client
deployment descriptor files.

You can set this attribute to any directory you want.
However, if you are generating the client
component files to invoke a Web Service from an
EJB, JSP, or other Web Service, you typically set
this attribute to the directory of the J2EE component
which holds shared classes, such as META- INF for
EJBs, WEB-INF/classes for Web Applications,
or APP-INF/classes for Enterprise
Applications. If you are invoking the Web Service
from a stand-alone client, then you can generate the
client component files into the same source code
directory hierarchy as your client application code.

String

You must
specify either
thedestFile
or destDir
attribute, but
not both.

A-10 Programming Web Services for WebLogic Server

clientgen

Tahle A-2 Attributes of the clientgen Ant Task

Attribute Description DataType Required?
destFile Name of a JAR file or exploded directory into which ~ String You must
the clientgen task packages the client source specify either
code, compiled classes, WSDL, and client thedestFile
deployment descriptor files. If you specify this or destDir
attribute, the clientgen Ant task also compiles attribute, but
all Java code into classes. not both.

To create or update a JAR file, use a .jar suffix
when specifying the JAR file, such as
myclientjar. jar. If the attribute value does not
have a . jar suffix, then the clientgen task
assumes you are referring to a directory name.

If you specify a JAR file or directory that does not
exist, the clientgen task creates a new JAR file
or directory.

failonerror Specifies whether the clientgen Ant task Boolean No.
continues executing in the event of an error.

Valid values for this attribute are True or False.
The default value is True, which means
clientgen continues executing even after it
encounters an error.

Note: When this attribute is set to False, it
aborts the Ant task only when there is an
issue with Java compilation. It does not
abort the Ant task when other problems
occeur.

Programming Web Services for WebLogic Server A-11

Ant Task Reference

Tahle A-2 Attributes of the clientgen Ant Task

Attribute

Description

Data Type

Required?

generateAsyncMethods

Specifies whether the clientgen Ant task should
include methods in the generated JAX-RPC stubs
that client applications can use to invoke a Web
Service operation asynchronously.

For example, if you specify True (which is also the
default value), and one of the Web Service
operations in the WSDL is called getQuote, then
the clientgen Ant task also generates a method
called getQuoteAsync in the JAX-RPC stubs
which client applications invoke instead of the
original getQuote method. This asynchronous
flavor of the operation also has an additional
parameter, of data type
weblogic.wsee.async.AsyncPreCallCon
text, that client applications can use to set
asynchronous properties, contextual variables, and
S0 on.

See “Invoking a Web Service Using Asynchronous
Request-Response” on page 6-19 for full
description and procedures about this feature.

Note: If the Web Service operation is marked as
one-way, the cl ientgen Ant task never
generates the asynchronous flavor of the
JAX-RPC stub, even if you explicitly set
the generateAsyncMethods attribute
to True.

Valid values for this attribute are True or False.
The default value is True, which means the
asynchronous methods are generated by default.

Boolean

No.

A-12 Programming Web Services for WebLogic Server

Tahle A-2 Attributes of the clientgen Ant Task

clientgen

Attribute

Description

DataType Required?

generatePolicyMethods

Specifies whether the clientgen Ant task should
include WS-Policy-loading methods in the
generated JAX-RPC stubs. These methods can be
used by client applications to load a local
WS-Policy file.

If you specify True, four flavors of a method called
getXXXSoapPort() are added as extensions to
the JAX-RPC Service interface in the generated
client stubs, where XXX refers to the name of the
Web Service. Client applications can use these
methods to load and apply local WS-Policy files,
rather than apply any WS-Policy files deployed
with the Web Service itself. Client applications can
specify whether the local WS-Policy file applies to
inbound, outbound, or both SOAP messages and
whether to load the local WS-Policy from an
InputStream or a URI.

Valid values for this attribute are True or False.
The default value is Fal se, which means the
additional methods are not generated.

See “Using a Client-Side Security WS-Policy File”
on page 9-27 for more information.

Boolean No.

handlerChainFile

Specifies the name of the XML file that describes
the client-side SOAP message handlers that execute
when a client application invokes a Web Service.

Each handler specified in the file executes twice:

« directly before the client application sends the
SOAP request to the Web Service

« directly after the client application receives the
SOAP response from the Web Service

If you do not specify this cl ientgen attribute,
then no client-side handlers execute, even if they are
in your CLASSPATH.

See “Creating and Using Client-Side SOAP
Message Handlers” on page 9-22 for details and
examples about creating client-side SOAP message
handlers.

String No

Programming Web Services for WebLogic Server A-13

Ant Task Reference

Tahle A-2 Attributes of the clientgen Ant Task

Attribute

Description Data Type

Required?

includeGlobal Types

Specifies that the cl ientgen Ant task should Boolean
generate Java representations of all XML Schema

data types in the WSDL, rather than just the data

types that are explicitly used in the Web Service

operations.

Valid values for this attribute are True or False.
The default value is Fal se, which means that
clientgen generates Java representations for
only the actively-used XML data types.

No.

jaxRPCWrappedArraySt
yle

When the clientgen Ant task is generating the Boolean
Java equivalent to XML Schema data types in the
WSDL file, and the task encounters an XML
complex type with a single enclosing sequence with
a single element with the maxOccurs attribute
equal to unbounded, the task generates, by default,
a Java structure whose name is the lowest named
enclosing complex type or element. To change this
behavior so that the task generates a literal array
instead, set the jaxRPCWrappedArrayStyle to
False.

Valid values for this attribute are True or False.
The default value is True.

No.

overwrite

Specifies whether the client component files (source Boolean
code, WSDL, and deployment descriptor files)

generated by this Ant task should be overwritten if

they already exist.

If you specify True, new artifacts are always
generated and any existing artifacts are overwritten.

If you specify False, the Ant task overwrites only
those artifacts that have changed, based on the
timestamp of any existing artifacts.

Valid values for this attribute is True or False.
The default value is True.

No.

A-14 Programming Web Services for WebLogic Server

Tahle A-2 Attributes of the clientgen Ant Task

clientgen

Attribute Description DataType Required?
packageName Package name into which the generated JAX-RPC String No.
client interfaces and stub files are packaged.
If you do not specify this attribute, the cl ientgen
Ant task generates Java files whose package name is
based on the targetNamespace of the WSDL file.
For example, if the targetNamespace is
http://example.org, then the package name
might be org.example or something similar. If
you want control over the package name, rather than
let the Ant task generate one for you, then you
should specify this attribute.
If you do specify this attribute, BEA recommends
you use all lower-case letters for the package name.
serviceName Name of the Web Service in the WSDL file for String Thisattribute is
which the corresponding client component files required only if
should be generated. the WSDL file
The Web Service name corresponds to the contains more
<service> element in the WSDL file. than On?
<service>
The generated JAX-RPC mapping file and element.
client-side copy of the WSDL file will use this
name. For example, if you set serviceName to The Ant task
CuteService, the JAX-RPC mapping file will be |_'eturns anerror
called if you do not
cuteService_java wsdl_mapping.xml spef:lfy this
and the client-side copy of the WSDL will be called attribute and_
CuteService_saved_wsdl .wsdl. the WSDL file
contains more
than one
<service>
element.
wsdl Full path name or URL of the WSDL that describes String Yes.

aWeb Service (either WebLogic or non-WebLogic)
for which the client component files should be
generated.

The generated stub factory classes in the client JAR
file use the value of this attribute in the default
constructor.

Programming Web Services for WebLogic Server A-15

Ant Task Reference

Standard Ant Attributes and Elements That Apply To clientgen

In addition to the WebL ogic-defined clientgen attributes, you can also define the following
standard javac attributes; see the Ant documentation for additional information about each
attribute:

e bootclasspath

e bootClasspathRef
e classpath

e classpathRef

e compiler

e debug

e debugLevel

e depend

e deprecation

e destdir

e encoding

e extdirs

e failonerror

e fork

e includeantruntime
e includejavaruntime
e listfiles

e memorylnitialSize
e memoryMaximumSize
e nowarn

e optimize

e proceed

e source

e sourcepath

e sourcepathRef

e tempdir

A-16 Programming Web Services for WebLogic Server

jwsc

e verbose

You can use the standard Ant <sysproperty> child element to specify properties required by
the Web Service from which you are generating client-side artifacts. For example, if the Web
Service is secured, you can use the javax.xml . rpc.security.auth.username|password
properties to set the authenticated username and password. See the Ant documentation for the
jJava Ant task for additional information about <sysproperty>.

You can also use the following standard Ant child elements with the clientgen Ant task:
o <FileSet>
® <SourcePath>
e <Classpath>

o <Extdirs>

jwsc
The jwsc Ant task takes as input one or more Java Web Service (JWS) files that contains both

standard (JSR-181) and WebLogic-specific JWS annotations and generates all the artifacts you
need to create a WebLogic Web Service. The generated artifacts include:

e Java source files that implement a standard JSR-921 Web Service, such as the service
endpoint interface (called JWS_ClassNamePortType. java, where JWS_ClassName refers
to the JWS class).

o All required deployment descriptors. In addition to the standard webservices.xml and
JAX-RPC mapping files, the jwsc Ant task also generates the WebLogic-specific Web
Services deployment descriptor (weblogic-webservices.xml).

e The XML Schema representation of any Java user-defined types used as parameters or
return values to the methods of the JWS files that are specified to be exposed as public
operations.

e The WSDL file that publicly describes the Web Service.

After generating all the artifacts, the jwsc Ant task compiles the Java and JWS files, packages
the compiled classes and generated artifacts into a deployable Web application WAR file, and
finally creates an exploded Enterprise Application directory that contains the JAR file. You then
deploy this Enterprise Application to WebLogic Server.

Note: Although not typical, you can code your JWS file to explicitly implement
javax.ejb.SessionBean. See “Should You Implement a Stateless Session EJB?” on
page 5-16 for details. In this case, jwsc packages the Web Service in an EJB JAR file

Programming Web Services for WebLogic Server A-17

Ant Task Reference

A-18

and generates the required EJB-related artifacts, such as the ejb-jar.xml and
weblogic-ejb-jar.xml deployment descriptor files. However, because this case is not
typical, it is assumed in this section that jwsc packages your Web Service in a Web
application WAR file, and EJB-specific information is called out only when necessary.

You specify the JWS file or files you want the jwsc Ant task to compile using the <jws> element.
If the <jws> element is an immediate child of the jwsc Ant task, then jwsc generates a separate
WAR file for each JWS file. If you want all the JWS files, along with their supporting artifacts,
to be packaged in a single WAR file, then group all the <jws> elements under a single <module>
element. A single WAR file reduces WebLogic server resources and allows the Web Services to
share common objects, such as user-defined data types. Using this method you can also specify
the same context path for the Web Services; if they are each packaged in their own WAR file then
each service must also have a unique context path.

When you use the <module> element, you can use the <jwsfi leset> child element to search for
a list of JWS files in one or more directories, rather than list each one individually using <jws>.

The following sections discuss additional important information about jwsc:
e “Specifying the Transport Used to Invoke the Web Service” on page A-18
e “How to Determine the Final Context Root of a WebLogic Web Service” on page A-19
e “Generating Client Artifacts for an Invoked Web Service” on page A-21

e “Updating an Existing Enterprise Application or Web Application” on page A-21
See “Examples” on page A-21 for examples of all the topics discussed in these sections.

Specifying the Transport Used to Invoke the Weh Service

When you program your JWS file, you can use an annotation to specify the transport that clients
use to invoke the Web Service, in particular @weblogic. jws.WLHttpTransport or
@weblogic.jws.WLIMSTransport. You can specify only one of instance of a particular
transport annotation in the JWS file. For example, although you cannot specify two different
@WLHttpTransport annotations, you can specify one @WLHttpTransport and one
@WLJImsTransport annotation. However, you might not know at the time that you are coding the
JWS file which transport best suits your needs. For this reason, it is often better to specify the
transport at build-time.

The <jws> element includes the following optional child-elements for specifying the transports
(HTTP/S or JMS) that are used to invoke the Web Service:

Programming Web Services for WebLogic Server

jwsc

o WLHttpTransport—Specifies the context path and service URI sections of the URL used to
invoke the Web Service over the HTTP/S transport, as well as the name of the port in the
generated WSDL.

e WLJIMSTransport—Specifies the context path and service URI sections of the URL used
to invoke the Web Service over the JMS transport, as well as the name of the port in the
generated WSDL. You also specify the name of the JMS queue and connection factory that
you have already configured for JMS transport.

The following guidelines describe the usage of the transport elements for the jwsc Ant task:

e The transports you specify to jwsc always override any corresponding transport
annotations in the JWS file. In addition, all attributes of the transport annotation are
ignored, even if you have not explicitly specified the corresponding attribute for the
transport element, in which case the default value of the transport element attribute is used.

e You can specify both transport elements for a particular JWS file. However, you can
specify only one instance of a particular transport element. For example, although you
cannot specify two different <WLHttpTransport> elements for a given JWS file, you can
specify one <WLHttpTransport> and one <WLJmsTransport> element.

e The value of the serviceURI attribute must be unique for <wLIMSTransport> and
<WLHttpTransport> when you specify both transports in one JWS file.

e All transports associated with a particular JWS file must specify the same contextPath
attribute value.

o If you specify more than one transport element for a particular JWS file, the value of the
portName attribute for each element must be unique among all elements. This means that
you must explicitly specify this attribute if you add more than one transport child element
to <jws>, because the default value of the element will always be the same and thus cause
an error when running the jwsc Ant task.

o |f you do not specify any transport, as either one of the transport elements to the jwsc Ant
task or a transport annotation in the JWS file, then the Web Service’s default URL
corresponds to the default value of the WLHttpTransport element.

How to Determine the Final Context Root of a WebLogic Weh Service

There are a variety of places where the context root (also called context path) of a WebLogic Web
Service can be specified. This section describes how to determine which is the true context root
of the service based on its configuration, even if it is has been set in multiple places.

Programming Web Services for WebLogic Server A-19

Ant Task Reference

A-20

In the context of this discussion, a Web Service context root is the string that comes after the
host:port portion of the Web Service URL. For example, if the deployed WSDL of a
WebLogic Web Service is as follows:

http://hostname:7001/Ffinancial/GetQuote?WSDL
The context root for this Web Service is financial.

The following list describes the order of precedence, from most to least important, of all possible
context root specifications:

1. The contextPath attribute of the <modulle> element and <jws> element (when used as a
direct child of the jwsc Ant task.)

2. The contextPath attribute of the <WLXXXTransport> child elements of <jws>.
3. The contextPath attribute of the @WLXXXTransport JWS annotations.

4. The default value of the context root, which is the name of the JWS file without any extension.

Suppose, for example, that you specified the @WLHttpTransport annotation in your JWS file
and set its contextPath attribute to financial. If you do not specify any additional
contextPath attributes in the jwsc Ant task in your bui 1d.xml file, then the context root for
this Web Service would be financial.

Assume that you then update the build.xml file and add a <WLHttpTransport> child element
to the <jws> element that specifies the JWS file and set its contextPath attribute to finance.
The context root of the Web Service would now be Ffinance. If, however, you then group the
<jws> element (including its child <wLHttpTransport> element) under a <module> element,
and set its contextPath attribute to money, then the context root of the Web Service would now
be money.

If you do not specify any contextPath attribute in either the JWS file or the jwsc Ant task, then
the context root of the Web Service is the default value: the name of the JWS file without its

* _java extension. This means that if you have not specified either the @WLXXXTransport
annotations or <WLXXXTransport> child elements of <jws>, but group two or more <jws>
elements under a <module> element, then you must specify the contextPath attribute of
<module> to specify the common context root used by all the Web Services in the module. This
is because the default context roots for all the Web Services in the module are most likely going
to be different (due to different names of the implementing JWS files), which is not allowed in a
single WAR file.

Programming Web Services for WebLogic Server

jwsc

Generating Client Artifacts for an Invoked Web Service

If one or more of the JWS files to be compiled itself includes an invoke of a different Web
Service, then you can use the <cl ientgen> element of jwsc to generate and compile the required
client component files, such as the JAX-RPC Stub and Service interface implementations for
the particular Web Service you want to invoke. These files are packaged in the generated WAR
file so as to make them available to the invoking Web Service.

Updating an Existing Enterprise Application or Web Application

Typically, jwsc generates a new Enterprise Application exploded directory at the location
specified by the destDir attribute. However, if you specify an existing Enterprise Application as
the destination directory, jwsc updates any existing application.xml file with the new Web
Services information.

Similarly, jwsc typically generates new Web application deployment descriptors (web.xml and
weblogic.xml) that describe the generated Web application. If, however, you have an existing
Web application to which you want to add Web Services, you can use the <descriptor> child
element of the <module> element to specify existing web .xml and weblogic.xml files; in this
case, jwsc copies these files to the destDi r directory and adds new information to them. Use the
standard Ant <fi leset> element to copy the other existing Web application files to the destDir
directory.

WARNING: The existing web.xml and weblogic.xml files pointed to by the <descriptor>
element must be XML Schema-based, not DTD-based which will cause the jwsc
Ant task to fail with a validation error.

Taskdef Classname

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

Examples

The following examples show how to use the jwsc Ant task by including it in a bui 1d-service
target of the bui ld.xml Ant file that iteratively develops your Web Service. See Chapter 3,
“Common Web Services Use Cases and Examples,” and Chapter 4, “Iterative Development of
WebLogic Web Services,” for samples of complete bui Id.xml files that contain many other
targets that are useful when iteratively developing a WebLogic Web Service, such as clean,
deploy, client, and run.

Programming Web Services for WebLogic Server A-21

Ant Task Reference

The following sample shows a very simple usage of jwsc:

<target name="build-service'>
<jwsc
srcdir="src"
destdir="output/TestEar">
<jws File=""examples/webservices/jwsc/TestServicelmpl.java" />
</jwsc>
</target>

In the preceding example, the JWS file called TestServicelmpl . java is located in the
src/examples/webservices/jwsc sub-directory of the directory that contains the bui ld.xml
file. The jwsc Ant task generates the Web Service artifacts in the output/TestEar
sub-directory. In addition to the Web Service JAR file, the jwsc Ant task also generates the
application.xml file that describes the Enterprise Application in the
output/TestEar/META-INF directory

The following example shows a more complicated use of jwsc:

<path id="add.class.path">
<pathelement path="${myclasses-dir}"/>
<pathelement path="${java.class.path}'"/>
</path>

<target name="build-service2">
<jwsc
srcdir="src"
destdir="output/TestEar"
verbose=""on"
debug=""on"
keepGenerated="yes"
classpathref="add.class.path" >
<jws File=""examples/webservices/jwsc/TestServicelmpl.java" />
<jws File=""examples/webservices/jwsc/AnotherTestServicelmpl.java" />
<jws File=""examples/webservices/jwsc/SecondTestServicelmpl._java"™ />
</jwsc>
</target>

The preceding example shows how to enable debugging and verbose output, and how to specify
that jwsc not regenerate any existing temporary files in the output directory. The example shows

A-22 Programming Web Services for WebLogic Server

jwsc

how to use classpathref attribute to add to the standard CLASSPATH by referencing a path
called add.class.path that has been specified elsewhere in the bui Id.xml file using the
standard Ant <path> target.

The example also shows how to specify multiple JWS files, resulting in separate Web Services
packaged in their own Web application WAR files, although all are still deployed as part of the
same Enterprise Application. If you want all three Web Services packaged in a single WAR file,
group the <jws> elements under a <modulle> element, as shown in the following example:

<target name="build-service3">
<jwsc
srcdir="src"
destdir="output/TestEar" >
<module contextPath="test" name="myJar" >
<jws File=""examples/webservices/jwsc/TestServicelmpl.java" />
<jws File=""examples/webservices/jwsc/AnotherTestServicelmpl.java" />
<jws file="examples/webservices/jwsc/SecondTestServicelmpl._java" />
</module>
</jwsc>
</target>

The preceding example shows how to package all three Web Services in a WAR file called
myJAR .war, located at the top level of the Enterprise Application exploded directory. The
contextPath attribute of <module> specifies that the context path of all three Web Services is
test; this value overrides any context path specified in a transport annotation of the JWS files.

The following example shows how to specify that the Web Service can be invoked using all
transports (HTTP/HTTPS/IMS):

<target name="build-service4'>

<jwsc
srcdir="src"
destdir="output/TestEar">
<jws File="examples/webservices/jwsc/TestServicelmpl._java'>
<WLHttpTransport
contextPath="TestService" serviceUri="TestService"
portName="TestServicePortHTTP"/>
<WLImsTransport
contextPath="TestService" serviceUri="JMSTestService"
portName=""TestServicePortJMS"

Programming Web Services for WebLogic Server A-23

Ant Task Reference

queue=""JMSTransportQueue'/>
<clientgen
wsdl="http://examples.org/complex/ComplexService?WSDL"
serviceName=""ComplexService"
packageName=""examples.webservices.simple_client"/>
</jws>
</jwsc>
</target>

The preceding example also shows how to use the <clientgen> element to generate and include
the client-side artifacts (such as the JAX-RPC Stub and Service implementations) of the Web
Service described by http://examples.org/complex/ComplexService?WSDL. This
indicates that the TestServicelmpl . java JWS file, in addition to implementing a Web Service,
must also acts as a client to the ComplexService Web Service and must include Java code to
invoke operations of ComplexService.

The following example is very similar to the preceding one, except that it groups the <jws>
elements under a <module> element:

<target name="build-service5">
<jwsc
srcdir="src"
destdir="output/TestEar"'>
<module contextPath="TestService" >
<jws File=""examples/webservices/jwsc/TestServicelmpl_java'">
<WLHttpTransport
serviceUri="TestService"
portName=""TestServicePortl'/>
</jws>
<jws File=""examples/webservices/jwsc/AnotherTestServicelmpl.java" />
<jws File=""examples/webservices/jwsc/SecondTestServicelmpl.java" />
<clientgen
wsdIl=""http://examples.org/complex/ComplexService?WSDL"
serviceName=""ComplexService"
packageName=""examples.webservices.simple_client" />
</module>
</jwsc>
</target>

A-24 Programming Web Services for WebLogic Server

jwsc

In the preceding example, the individual transport elements no longer define their own
contextPath attributes; rather, the parent <module> element defines it instead. This improves
maintenance and understanding of what jwsc actually does. Also note that the <clientgen>
element is a child of <module>, and not <jws> as in the previous example.

The following example show how to use the <jwsfileset> element:

<target name="build-service6">
<jwsc
srcdir="src"
destdir="output/TestEar" >
<module contextPath=""test" name="myJar" >
<jwsFileset srcdir="src/examples/webservices/jwsc" >
<include name="**/*_java" />
</jwsTileset>
</module>
</jwsc>
</target>

In the example, jwsc searches for *_ java files in the directory
src/examples/webservices/jwsc, relative to the directory that contains build.xml,
determines which Java files contain JWS annotations, and then processes each file as if it had
been specified with a <jws> child element of <module>. The <include> element is a standard
Ant element, described in the documentation for the standard <Fi lesSet> task.

The following example shows how to specify that jwsc Ant task not create new Web application
deployment descriptors, but rather, add to existing ones:

<target name="build-service7">
<jwsc

srcdir="src"

destdir="output/TestEar" >

<module contextPath="test" name="myJar' explode="true" >
<jws file="examples/webservices/jwsc/AnotherTestServicelmpl.java" />
<FileSet dir="webapp” >

<include name="**/*_java" />

</FileSet>
<descriptor file="webapp/WEB-INF/web.xml" />
<descriptor file="webapp/WEB-INF/weblogic.xml" />

</module>

Programming Web Services for WebLogic Server A-25

Ant Task Reference

A-26

</jwsc>
</target>

In the preceding example, the explode=""true™ attribute of <module> specifies that the
generated Web application should be in exploded directory format, rather than the default WAR
archive file. The <descriptor> child elements specify jwsc should copy the existing web.xml
and weblogic.xml files, located in the webapp/WEB- INF subdirectory of the directory that
contains the bui Id.xml file, to the new Web application exploded directory, and that new Web
Service information from the specified JWS file should be added to the files, rather than jwsc
creating new ones. The example also shows how to use the standard Ant <Fi leSet> task to copy
additional files to the generated WAR file; if any of the copied files are Java files, the jwsc Ant
task compiles the files and puts the compiled classes into the classes directory of the Web
application.

Attributes and Child Elements of the jwsc Ant Task

The jwsc Ant task has a variety of attributes and two child elements: <jws> and <module>. The
<modu le> element simply groups one or more JWS files (also specified with the <jws> element)
into a single module (WAR file); if you do not specify <module>, then each JWS file is packaged
into its own module, or WAR file.

The <jws> element (when used as either a child element of <jwsc> or <module>) has three
optional child elements: <wWLHttpTransport>, <WLHttpsTransport>, and
<WLJIMSTransport>. See “Specifying the Transport Used to Invoke the Web Service” on
page A-18 for common information about using the transport elements.

The <clientgen> and <descriptor> elements are children only of the elements that generate
modules: either the actual <module> element itself, or <jws> when used as a child of jwsc, rather
than a child of <module>.

The <jwsfileset> element can be used only as a child of <module>.

The following graphic describes the hierarchy of the jwsc Ant task.

Programming Web Services for WebLogic Server

Figure A-1 Element Hierarchy of jwsc Ant Task

|

jwsc ‘

_|

jws |

4¢ WLHttpTransport 2 ‘

_{ WLHttpsTransport 2 |
4{ WLJIMSTransport 2 ‘

_¢ clientgen *|
4| descriptor *|

“

module * ‘

L]

WLHttpTransport ? ‘

WLHttpsTransport ? ‘

WLJIMSTransport 2 ‘

_{ clientgen * ‘
4{ descriptor * ‘
4{ jwsfileset * ‘

4‘

xsdConfig * |

y

No annotation: Exactly one
*: Zero or more
+: One or more
? . Zero or one

jwsc

The table in the following section describes the attributes of the jwsc Ant task. See“Standard Ant

Attributes and Child Elements That Apply to jwsc” on page A-31 for the list of attributes
associated with the standard Ant javac task that you can also set for the jwsc Ant task.

Programming Web Services for WebLogic Server

A-27

Ant Task Reference

WebLogic-Specific jwsc Attributes

Table A-3 Attributes of the jwsc Ant Task

Attribute

Description

Required?

applicationXml

Specifies the full name and path of the application.xml
deployment descriptor of the Enterprise Application. If you specify an
existing file, the jwsc Ant task updates it to include the Web Services
information. If the file does not exist, jwsc creates it. The jwsc Ant
task also creates or updates the corresponding
weblogic-application.xml file in the same directory.

If you do not specify this attribute, jwsc creates or updates the file
destDir/META-INF/application.xml, where destDir is the
Jwsc attribute.

No.

destdir

The full pathname of the directory that will contain the compiled JWS
files, XML Schemas, WSDL, and generated deployment descriptor
files, all packaged into a JAR or WAR file.

The Jwsc Ant task creates an exploded Enterprise Application at the
specified directory, or updates one if you point to an existing application
directory. The jwsc task generates the JAR or WAR file that
implements the Web Service in this directory, as well as other needed
files, such as the application.xml file in the META- INF directory;
the jwsc Ant task updates an existing application.xml file if it
finds one, or creates a new one if not. Use the applicationXML
attribute to specify a different application.xml from the
default.

Yes.

destEncoding

Specifies the character encoding of the output files, such as the
deployment descriptors and XML files. Examples of character
encodings are SHIFT-JIS and UTF-8.

The default value of this attribute is UTF-8.

No.

A-28 Programming Web Services for WebLogic Server

Tahle A-3 Attributes of the jwsc Ant Task

jwsc

Attribute

Description

Required?

dotNetStyle

Specifies that the jwsc Ant task should generate a .NET-style Web
Service.

In particular, this means that, in the WSDL of the Web Service, the value
of the name attribute of the <part> element that corresponds to the return
parameter is parameters rather than returnParameters. This
applies only to document-literal-wrapped Web Services.

The valid values for this attribute are true and false. The default
value is true, which means .NET-style Web Service are generated by
default.

No

enableAsyncService

Specifies whether the Web Service is using one or more of the
asynchronous features of WebLogic Web Service: Web Service reliable
messaging, asynchronous request-response, buffering, or conversations.

In the case of Web Service reliable messaging, you must ensure that this
attribute is enabled for both the reliable Web Service and the Web
Service that is invoking the operations reliably. In the case of the other
features (conversations, asynchronous request-response, and buffering),
the attribute must be enabled only on the client Web Service.

When this attribute is set to true (default value), WebLogic Server
automatically deploys internal modules that handle the asynchronous
Web Service features. Therefore, if you are not using any of these
features in your Web Service, consider setting this attribute to false so
that WebL ogic Server does not waste resources by deploying unneeded
internal modules.

Valid values for this attribute are true and false. The default value is
true.

Note: This attribute is deprecated as of Version 9.2 of WebLogic
Server.

No.

jaxRpcByteArrayStyle

This attribute is used for mapping byte[] and Byte[] data types to
xsd:base64Binary type for a RPC/encoded Web Service. It applies
only for JAX-RPC based Web Services.

When this attribute is set to true, generated mappings for byte[] and
Byte[] data types are compliant with the JAX-RPC guidelines.

Valid values for this attribute are true and false. The default value is
false.

No.

Programming Web Services for WebLogic Server

A-29

Ant Task Reference

Table A-3 Attributes of the jwsc Ant Task

Attribute

Description

Required?

keepGenerated

Specifies whether the Java source files and artifacts generated by this
Ant task should be regenerated if they already exist.

If you specify no, new Java source files and artifacts are always
generated and any existing artifacts are overwritten.

If you specify yes, the Ant task regenerates only those artifacts that
have changed, based on the timestamp of any existing artifacts.

Valid values for this attribute are yes or no. The default value is no.

No.

sourcepath

The full pathname of top-level directory that contains the Java files
referenced by the JWS file, such as JavaBeans used as parameters or
user-defined exceptions. The Java files are in sub-directories of the
sourcepath directory that correspond to their package names. The
sourcepath pathname can be either absolute or relative to the
directory which contains the Ant bui Id.xml file.

For example, if sourcepath is /src and the JWS file references a
JavaBean called MyType . java which is in the
webservices.financial package, then this implies that the
MyType. java Java file is stored in the
/src/webservices/financial directory.

The default value of this attribute is the value of the srcdir attribute.

This means that, by default, the JWS file and the objects it references are
in the same package. If this is not the case, then you should specify the

sourcepath accordingly.

No.

A-30 Programming Web Services for WebLogic Server

jwsc

Tahle A-3 Attributes of the jwsc Ant Task

Attribute

Description Required?

srcdir

The full pathname of top-level directory that contains the JWS file you Yes.
want to compile (specified with the Fi le attribute of the <jws> child
element). The JWS file is in sub-directories of the srcdir directory

that corresponds to its package name. The srcdir pathname can be

either absolute or relative to the directory which contains the Ant

build.xml file.

For example, if srcdir is /src and the JWS file called
MyService.javaisin the webservices. financial package,
then this implies that the MyService. java JWS file is stored in the
/src/webservices/financial directory.

srcEncoding

Specifies the character encoding of the input files, such as the JWS file No.
or configuration XML files. Examples of character encodings are
SHIFT-JIS and UTF-8.

The default value of this attribute is the character encoding set for the
JVM.

Standard Ant Attributes and Child Elements That Apply to jwsc

In addition to the WebL ogic-defined jwsc attributes, you can also define the following standard
javac attributes; see the Ant documentation for additional information about each attribute:

bootclasspath

bootClasspathRef

classpath

classpathRef

compiler
debug
debugLevel
depend
deprecation
destdir
encoding

extdirs

Programming Web Services for WebLogic Server A-31

Ant Task Reference

A-32

e failonerror
e fork
e includeantruntime
e includejavaruntime
o listfiles
e memorylnitialSize
e memoryMaximumSize
e nowarn
e optimize
e proceed
e source
e sourcepath
e sourcepathRef
e tempdir
e verbose
You can also use the following standard Ant child elements with the jwsc Ant task:
e <SourcePath>
e <Classpath>
e <Extdirs>
jws
The <jws> element specifies the name of a JWS file that implements your Web Service and for

which the Ant task should generate Java code and supporting artifacts and then package into a
deployable WAR file inside of an Enterprise Application.

You can specify the <jws> element in the following two different levels of the jwsc element
hierarchy:

e An immediate child element of the jwsc Ant task. In this case, jwsc generates a separate
WAR file for each JWS file. You typically use this method if you are specifying just one
JWS file to the jwsc Ant task.

e A child element of the <module> element, which in turn is a child of jwsc. In this case,
Jwsc generates a single WAR file that includes all the generated code and artifacts for all

Programming Web Services for WebLogic Server

jwsc

the JWS files grouped within the <module> element. This method is useful if you want all
JWS files to share supporting files, such as common Java data types.

You are required to specify either a <jws> or <module> child element of jwsc.

See Figure A-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page A-21 for examples of using the element.

You can use the standard Ant <Fi leSet> child element with the <jws> element of jwsc.

The following table describes the attributes of the <jws> element. The description specifies
whether the attribute applies in the case that <jws> is a child of jwsc, is a child of <module> or
in both cases.

Programming Web Services for WebLogic Server A-33

Ant Task Reference

Table A-4 Attributes of the <jws> Element of the jwsc Ant Task

Attribute Description Required?
compiledWsdl Full pathname of the JAR file generated by the wsdlc Ant task based on Only
an existing WSDL file. The JAR file contains the JWS interface file that required
implements a Web Service based on this WSDL, as well as data binding for the
artifacts for converting parameter and return value data between its Java “starting
and XML representations; the XML Schema section of the WSDL defines from
the XML representation of the data. WSDL”
You use this attribute only in the “starting from WSDL” use case, in which ~ YS€ Case.
you first use the wsdlc Ant task to generate the JAR file, along with the
JWS file that implements the generated JWS interface. After you update
the JWS implementation class with business logic, you run the jwsc Ant
task to generate a deployable Web Service, using the Fi le attribute to
specify this updated JWS implementation file.
You do not use the compi ledWsdl attribute for the “starting from Java”
use case in which you write your JWS file from scratch and the WSDL file
that describes the Web Service is generated by the WebLogic Web
Services runtime.
Applies to <jws> when used as a child of both jwsc and <module>.
contextPath Context root of the Web Service. No.

For example, assume the deployed WSDL of a WebLogic Web Service is
as follows:

http://hostname:7001/financial/GetQuote?WSDL
The context root for this Web Service is Financial.

The value of this attribute overrides any other context path set for the JWS
file. This includes the transport-related JWS annotations, as well as the
transport-related child elements of <jws>.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is
HelloWorldImpl . java, then the default value of its contextPath is
HelloWorldImpl.

Applies only when <jws> is a direct child of jwsc.

A-34 Programming Web Services for WebLogic Server

jwsc

Tahle A-4 Attributes of the <jws> Element of the jwsc Ant Task

Attribute Description Required?
explode Specifies whether the generated WAR file that contains the deployable No.

Web Service is in exploded directory format or not.

Valid values for this attribute are true or false. Default value is

fal se, which means that jwsc generates an actual WAR archive file,

and not an exploded directory.

Applies only when <jws> is a direct child of jwsc.
file The name of the JWS file that you want to compile. The jwsc Anttask Yes.

looks for the file in the srcdir directory.
Applies to <jws> when used as a child of both jwsc and <module>.

includeSchemas

The full pathname of the XML Schema file that describes an XMLBeans Required if
parameter or return value of the Web Service. you are

To specify more than one XML Schema file, use either a comma or using an

semi-colon as a delimiter: x’\g;zletane
. S
includeSchemas="po.xsd,customer.xsd" asa P

This attribute is only supported in the case where the JWS file explicitly parameter

uses an XMLBeans data type as a parameter or return value of a Web or return

Service operation. If you are not using the XMLBeans data type, the jwsc value.
Ant task returns an error if you specify this attribute.

Additionally, you can use this attribute only for Web Services whose
SOAP binding is document-literal-bare. Because the default SOAP
binding of a WebLogic Web Service is document-literal-wrapped, the
corresponding JWS file must include the following JWS annotation:
@SOAPBinding(
style=SOAPBinding.Style.DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.BARE)

For more information on XMLBeans, see
http://dev2dev.bea.com/technologies/xmlbeans/index.jsp.

Applies to <jws> when used as a child of both jwsc and <module>.

Note: Asof WebLogic Server 9.1, using XMLBeans 1.X data types (in
other words, extensions of com.bea.xml .XmlObject) as
parameters or return types of a WebLogic Web Service is
deprecated. New applications should use XMLBeans 2.x data

types.

Programming Web Services for WebLogic Server A-35

Ant Task Reference

Table A-4 Attributes of the <jws> Element of the jwsc Ant Task

Attribute Description Required?

name The name of the generated WAR file (or exploded directory, if the No.

explode attribute is set to true) that contains the deployable Web
Service. If an actual JAR archive file is generated, the name of the file will
have a .war extension.

The default value of this attribute is the name of the JWS file, specified by
the Fi le attribute.

Applies only when <jws> is a direct child of jwsc.

wsdlOnly Specifies that only a WSDL file should be generated for this JWS file. No.

Note: Although the other artifacts, such as the deployment descriptors
and service endpoint interface, are not generated, data binding
artifacts are generated because the WSDL must include the XML
Schema that describes the data types of the parameters and return
values of the Web Service operations.

The WSDL is generated into the destDi r directory. The name of the file
isJWS_ClassNameService.wsdl, where JWS_ClassName refers to
the name of the JWS class. JWS_ClassNameService is also the name
of Web Service in the generated WSDL file.

If you set this attribute to true but also set the explode attribute to
false (which is also the default value), then jwsc ignores the explode
attribute and always generates the output in exploded format.

Valid values for this attribute are true or false. The default value is
false, which means that all artifacts are generated by default, not just the
WSDL file.

Applies only when <jws> is a child of jwsc.

A-36

module

The <module> element groups one or more <jws> elements together so that their generated code
and artifacts are packaged in a single Web application (WAR) file. The <modulle> element is a
child of the main jwsc Ant task.

You can group only Web Services implemented with the same backend component (Java class or
stateless session EJB) under a single <module> element; you can not mix and match. By default,
Jwsc always implements your Web Service as a plain Java class; the only exception is if you have
explicitly implemented javax.ejb.SessionBean in your JWS file. This means, for example,
that if one of the JWS files specified by the <jws> child element of <module> implements

Programming Web Services for WebLogic Server

jwsc

jJavax.ejb.SessionBean, then all its sibling <jws> files must also implement

javax.ejb.SessionBean. If this is not possible, then you can not group all the JWS files under
a single <module>.

The Web Services within a module must have the same contextPath, but must have unique
serviceURIs. You can set the common contextPath by specifying it as an attribute to the
<module> element, or ensuring that the @WLXXXTransport annotations and/or
<WLXXXTrasnsport> elements for each Web Service have the same value for the contextPath
attribute. The jwsc Ant task validates these values and returns an error if they are not unique.

You must specify at least one <jws> child element of <module>.

See Figure A-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page A-21 for examples of using the element.

The following table describes the attributes of the <module> element.

Programming Web Services for WebLogic Server A-317

Ant Task Reference

Table A-5 Attributes of the <module> Element of the jwsc Ant Task

Attribute Description Required?
contextPath Context root of all the Web Services contained in this module. Only
For example, assume the deployed WSDL of a WebLogic Web Service is required to
as follows: ensure that
the context
http://hostname:7001/financial/GetQuote?WSDL roots of
The context root for this Web Service is Financial. multiple
. . . Web
The value of this attribute overrides any other context path set for any of s e?vi cesin
the JWS files contained in this module. This includes the transport-related asingle
JWS annotations, as well as the transport-related child elements of <jws>. WAR are
The default value of this attribute is the name of the JWS file, without its the same.
extension. For example, if the name of the JWS file is See “How
HelloWorldImpl . java, then the default value of its contextPath is to
HelloWorldImpl. Determine
the Final
Context
Root of a
WebLogic
Web
Service”
on
page A-19
explode Specifies whether the generated WAR file that contains the deployable No.

Web Service(s) is in exploded directory format or not.

Valid values for this attribute are true or false. Default value is
false, which means that jwsc generates an actual WAR archive file,
and not an exploded directory.

A-38 Programming Web Services for WebLogic Server

Table A-5 Attributes of the <module> Element of the jwsc Ant Task

jwsc

Attribute

Description

Required?

name

The name of the generated WAR file (or exploded directory, if the
explode attribute is set to true) that contains the deployable Web
Service(s). If an actual WAR archive file is generated, the name of the file
will have a .war extension.

The default value of this attribute is_jws.

No.

wsdlOnly

Specifies that only a WSDL file should be generated for each JWS file
specified by the <jws> child element of <module>.

Note: Although the other artifacts, such as the deployment descriptors
and service endpoint interface, are not generated, data binding
artifacts are generated because the WSDL must include the XML
Schema that describes the data types of the parameters and return
values of the Web Service operations.

The WSDL is generated into the destDi r directory. The name of the file
is IWS_ClassNameService.wsdl, where JWS_ClassName refers to
the name of the JWS class. JWS_ClassNameService is also the name
of Web Service in the generated WSDL file.

If you set this attribute to true but also set the exp lode attribute to
false (which is also the default value), then jwsc ignores the explode
attribute and always generates the output in exploded format.

Valid values for this attribute are true or false. The default value is
fal se, which means that all artifacts are generated by default, not just the
WSDL file.

No.

WLHttpTransport

Use the WLHttpTransport element to specify the context path and service URI sections of the
URL used to invoke the Web Service over the HTTP transport, as well as the name of the port in
the generated WSDL.

The <WLHttpTransport> element is a child of the <jws> element.

You can specify one or zero <WLHttpTransport> elements for a given JWS file.

See “Specifying the Transport Used to Invoke the Web Service” on page A-18 for guidelines to
follow when specifying this element.

See Figure A-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page A-21 for examples of using the element.

Programming Web Services for WebLogic Server

A-39

Ant Task Reference

The following table describes the attributes of <WLHttpTransport>.

Table A-6 Attributes of the <WLHttpTransport> Child Element of the <jws> Element

Attribute

Description

Required?

contextPath

Context root of the Web Service.

For example, assume the deployed WSDL of a WebLogic Web

Service is as follows:
http://hostname:7001/financial/GetQuote?WSDL

The contextPath for this Web Service is Financial.

The default value of this attribute is the name of the JWS file,
without its extension. For example, if the name of the JWS file is
HelloWorldImpl . java, then the default value of its contextPath
is HelloworldImpl.

No.

serviceUri

Web Service URI portion of the URL.

For example, assume the deployed WSDL of a WebLogic Web

Service is as follows:
http://hostname:7001/financial/GetQuote?WSDL

The serviceUri for this Web Service is GetQuote.

The default value of this attribute is the name of the JWS file,
without its extension. For example, if the name of the JWS file is
HelloWorldImpl . java, then the default value of its serviceUri
is HelloworldImpl.

No.

portName

The name of the port in the generated WSDL. This attribute maps to
the name attribute of the <port> element in the WSDL.

The default value of this attribute is based on the

@javax. jws.WebService annotation of the JWS file. In
particular, the default portName is the value of the name attribute
of @WebService annotation, plus the actual text SoapPort. For
example, if @WebService.name is set to MyService, then the
default portName is MyServiceSoapPort.

No.

WLHttpsTransport

WARNING: The <WLHttpsTransport>element is deprecated as of version 9.2 of WebLogic
Server. You should use the <WLHttpTransport> element instead because it now

A-40 Programming Web Services for WebLogic Server

jwsc

supports both the HTTP and HTTPS protocols. If you want client applications to
access the Web Service using only the HTTPS protocol, then you must specify the
@weblogic. jws.security.UserDataConstraint JWS annotation in your
JWS file.

Use the WLHttpsTransport element to specify the context path and service URI sections of the
URL used to invoke the Web Service over the secure HTTPS transport, as well as the name of
the port in the generated WSDL.

The <WLHttpsTransport> element is a child of the <jws> element.
You can specify one or zero <WLHttpsTransport> elements for a given JWS file.

See “Specifying the Transport Used to Invoke the Web Service” on page A-18 for guidelines to
follow when specifying this element.

See Figure A-1 for a visual description of where this element fits in the jwsc element hierarchy.

The following table describes the attributes of <WLHttpsTransport>.

Programming Web Services for WebLogic Server A-41

Ant Task Reference

Table A-7 Attributes of the <WLHttpsTransport> Child Element of the <jws> Element

Attribute Description Required?

contextPath Context root of the Web Service. No.
For example, assume the deployed WSDL of a WebLogic Web Service is
as follows:
https://hostname:7001/financial/GetQuote?WSDL
The contextPath for this Web Service is financial.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is
HelloWorldImpl . java, then the default value of its contextPath is
HelloWorldImpl.

serviceUri Web Service URI portion of the URL. No.
For example, assume the deployed WSDL of a WebLogic Web Service is
as follows:
https://hostname:7001/financial/GetQuote?WSDL
The serviceUri for this Web Service is GetQuote.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is
HelloWorldImpl . java, then the default value of its serviceUri is
HelloWorldImpl.

portName The name of the port in the generated WSDL. This attribute maps to the ~ No.
name attribute of the <port> element in the WSDL.

The default value of this attribute is based on the

@javax. jws.WebService annotation of the JWS file. In particular,
the default portName is the value of the name attribute of @WebService
annotation, plus the actual text SoapPort. For example, if
@WebService.name is set to MyService, then the default portName
is MyServiceSoapPort.

WLIMSTransport

Use the WLIMSTransport element to specify the context path and service URI sections of the
URL used to invoke the Web Service over the JMS transport, as well as the name of the port in

A-42 Programming Web Services for WebLogic Server

jwsc

the generated WSDL.. You also specify the name of the JMS queue and connection factory that
you have already configured for JMS transport.

The <WLHImsTransport> element is a child of the <jws> element.

You can specify one or zero <WLJImsTransport> elements for a given JWS file.

See “Specifying the Transport Used to Invoke the Web Service” on page A-18 for guidelines to
follow when specifying this element.

See Figure A-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page A-21 for examples of using the element.

The following table describes the attributes of <WLImsTransport>.

Table A-8 Attributes of the <WLIMSTransport> Child Element of the <jws> Element

Attribute

Description

Required?

contextPath

Context root of the Web Service.

For example, assume the deployed WSDL of a WebLogic Web Service is

as follows:
http://hostname:7001/Ffinancial/GetQuote?WSDL

The contextPath for this Web Service is financial.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is
HelloWorldImpl . java, then the default value of its contextPath is
HelloWorldImpl.

No.

serviceUri

Web Service URI portion of the URL.

For example, assume the deployed WSDL of a WebLogic Web Service is

as follows:
http://hostname:7001/Ffinancial/GetQuote?WSDL

The serviceUri for this Web Service is GetQuote.

The default value of this attribute is the name of the JWS file, without its
extension. For example, if the name of the JWS file is
HelloWorldImpl . java, then the default value of its serviceUri is
HelloWorldimpl.

No

Programming Web Services for WebLogic Server

A-43

Ant Task Reference

Tahle A-8 Attributes of the <WLIMSTransport> Child Element of the <jws> Element

Attribute Description Required?

portName The name of the port in the generated WSDL. This attribute maps to the ~ No.
name attribute of the <port> element in the WSDL.

The default value of this attribute is based on the

@javax. jws.WebService annotation of the JWS file. In particular,
the default portName is the value of the name attribute of @WebService
annotation, plus the actual text SoapPort. For example, if
@WebService.name is set to MyService, then the default portName
is MyServiceSoapPort.

queue The JNDI name of the JMS queue that you have configured for the IMS ~ No.
transport. See “Using JMS Transport as the Connection Protocol” on
page 7-1 for details about using JMS transport.

The default value of this attribute, if you do not specify it, is
weblogic.wsee.DefaultQueue. You must still create this IMS
queue in the WebLogic Server instance to which you deploy your Web
Service.

connectionFactory The JNDI name of the JMS connection factory that you have configured No.
for the JMS transport.

The default value of this attribute is the default JMS connection factory for
your WebLogic Server instance.

clientgen

Use the <clientgen> element if the JWS file itself invokes another Web Service and you want
the jwsc Ant task to automatically generate and compile the required client-side artifacts and
package them in the Web application WAR file together with the Web Service. The client-side
artifacts include:

e The Java source code for the JAX-RPC Stub and Service interface implementations for
the particular Web Service you want to invoke.

e The Java source code for any user-defined XML Schema data types included in the WSDL
file.

e The JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java user-defined data types and their corresponding XML Schema
types in the WSDL file.

A-44 Programming Web Services for WebLogic Server

jwsc

See Figure A-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page A-21 for examples of using the element.

You can specify the standard Ant <sysproperty> child element to specify properties required
by the Web Service from which you are generating client-side artifacts. For example, if the Web
Service is secured, you can use the javax.xml . rpc.security.auth.username|password
properties to set the authenticated username and password. See the Ant documentation for the
java Ant task for additional information about <sysproperty>.

The following table describes the attributes of the <clientgen> element.

Programming Web Services for WebLogic Server A-45

Ant Task Reference

Table A-9 Attributes of the <clientgen> Element

Attribute

Description Required?

autoDetectWrapped

Specifies whether the jwsc Ant task should try to No.
determine whether the parameters and return type of
document-literal Web Services are of type wrapped or

bare.

When the jwsc Ant task parses a WSDL file to create the
JAX-RPC stubs, it attempts to determine whether a
document-literal Web Service uses wrapped or bare
parameters and return types based on the names of the
XML Schema elements, the name of the operations and
parameters, and so on. Depending on how the names of
these components match up, the jwsc Ant task makes a
best guess as to whether the parameters are wrapped or
bare. In some cases, however, you might want the Ant task
to always assume that the parameters are of type bare; in
this case, set the autoDetectWrapped attribute to
False.

Valid values for this attribute are True or False. The
default value is True.

handlerChainFile

Specifies the name of the XML file that describes the No.
client-side SOAP message handlers that execute when the
JWS file invokes a Web Service.

Each handler specified in the file executes twice:

e directly before the JWS sends the SOAP request to the
invoked Web Service.

e directly after the JWS receives the SOAP response
from the invoked Web Service.

If you do not specify this attribute, then no client-side
handlers execute when the Web Service is invoked from
the JWS file, even if they are in your CLASSPATH.

See “Creating and Using Client-Side SOAP Message
Handlers” on page 9-22 for details and examples about
creating client-side SOAP message handlers.

A-46 Programming Web Services for WebLogic Server

jwsc

Tahle A-9 Attributes of the <clientgen> Element

Attribute

Description Required?

generateAsyncMethods

Specifies whether the jwsc Ant task should include No.
methods in the generated JAX-RPC stubs that the JWS

file can use to invoke a Web Service operation

asynchronously.

For example, if you specify True (which is also the
default value), and one of the Web Service operations in
the WSDL is called getQuote, then the jwsc Ant task
also generates a method called getQuoteAsync in the
JAX-RPC stubs which the JWS file can use instead of the
original getQuote method. This asynchronous flavor of
the operation also has an additional parameter, of data
type

weblogic.wsee.async.AsyncPreCal lContext,
that the JWS file can use to set asynchronous properties,
contextual variables, and so on.

See “Invoking a Web Service Using Asynchronous
Request-Response” on page 6-19 for full description and
procedures about this feature.

Note: If the operation of the Web Service being
invoked in the JWS file is marked as one-way,
the jwsc Ant task never generates the
asynchronous flavor of the JAX-RPC stub, even
if you explicitly set the
generateAsyncMethods attribute to True.

Valid values for this attribute are True or False. The

default value is True, which means the asynchronous
methods are generated by default.

Programming Web Services for WebLogic Server A-41

Ant Task Reference

Table A-9 Attributes of the <clientgen> Element

Attribute

Description

Required?

generatePolicyMethods

Specifies whether the jwsc Ant task should include
WS-Policy-loading methods in the generated JAX-RPC
stubs. You can use these methods in your JWS file, when
invoking the Web Service, to load a local WS-Policy file.

If you specify True, four flavors of a method called
getXXXSoapPort() are added as extensions to the
JAX-RPC Service interface in the generated client
stubs, where XXX refers to the name of the Web Service.
You can program the JWS file to use these methods to
load and apply local WS-Policy files, rather than apply
any WS-Policy file deployed with the Web Service itself.
You can specify in the JWS file whether the local
WS-Policy file applies to inbound, outbound, or both
SOAP messages and whether to load the local WS-Policy
file from an InputStream or a URI.

Valid values for this attribute are True or False. The
default value is Fal se, which means the additional
methods are not generated.

See “Using a Client-Side Security WS-Policy File” on
page 9-27 for more information.

No.

includeGlobal Types

Specifies that the jwsc Ant task should generate Java
representations of all XML Schema data types in the
WSDL, rather than just the data types that are explicitly
used in the Web Service operations.

Valid values for this attribute are True or False. The
default value is Fal se, which means that jwsc generates
Java representations for only the actively-used XML data

types.

A-48 Programming Web Services for WebLogic Server

Tahle A-9 Attributes of the <clientgen> Element

jwsc

Attribute Description Required?
jaxRPCWrappedArrayStyle ~ When the jwsc Ant task is generating the Java equivalent No.
to XML Schema data types in the WSDL file, and the task
encounters an XML complex type with a single enclosing
sequence with a single element with the maxOccurs
attribute equal to unbounded, the task generates, by
default, a Java structure whose name is the lowest named
enclosing complex type or element. To change this
behavior so that the task generates a literal array instead,
set the jaxRPCWrappedArrayStyle to False.
Valid values for this attribute are True or False. The
default value is True
packageName Package name into which the generated JAX-RPC client Yes.
interfaces and stub files are packaged.
BEA recommends you use all lower-case letters for the
package name.
serviceName Name of the Web Service in the WSDL file for which the This attribute is
corresponding client-side artifacts should be generated. required only if the
The Web Service name corresponds to the <service> YWSDLfile
element in the WSDL file. contains mo_re than
one <service>
The generated JAX-RPC mapping file and client-side element.
copy of the WSDL file will use this name. For example, if
you set serviceName to CuteService, the JAX-RPC The Ant task .
mapping file will be called retumns an error _'f
cuteService_java_wsdl_mapping.xml and the you do pot specify
client-side copy of the WSDL will be called this attribute and
CuteService_saved wsdl.wsdl. the W_SDL file
contains more than
one <service>
element.
wsdl Full path name or URL of the WSDL that describesaWeb Yes.

Service (either WebLogic or non-WebLogic) for which
the client artifacts should be generated.

The generated JAX-RPC stub factory classes use the
value of this attribute in the default constructor.

Programming Web Services for WebLogic Server

A-49

Ant Task Reference

descriptor

Use the <descriptor> element to specify that, rather than create new Web application
deployment descriptors when generating the WAR that will contain the implementation of the
Web Service, the jwsc task should instead copy existing files and update them with the new
information. This is useful when you have an existing Web application to which you want to add
one or more Web Services. You typically use this element together with the standard <Fi leSet>
Ant task to copy other existing Web application artifacts, such as HTML files and Java classes,
to the jwsc-generated Web application.

You can use this element with only the following two deployment descriptor files:
e web._xml
e weblogic.xml

Use a separate <descriptor> element for each deployment descriptor file.

The <descriptor> element is a child of either <module> or <jws>, when the latter is a direct
child of the main jwsc Ant task.

WARNING: The existing web.xml and weblogic.xml files pointed to by the <descriptor>
element must be XML Schema-based, not DTD-based which will cause the jwsc
Ant task to fail with a validation error.

See Figure A-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page A-21 for examples of using the element.

The following table describes the attributes of the <descriptor> element.

Table A-10 Attributes of the <descriptor> Element

Attribute Description Required?

file

Full pathname (either absolute or relative to the directory that containsthe Yes.
build.xml file) of the existing deployment descriptor file. The
deployment descriptor must be XML Schema-based, not DTD-based.

The Jwsc Ant task does not update this file directly, but rather, copies it
to the newly-generated Web application.

A-50

Programming Web Services for WebLogic Server

jwsc

jwsfileset

Use the <jwsfi leset> child element of <module> to specify one or more directories in which
the jwsc Ant task searches for JWS files to compile. The list of JWS files that jwsc finds is then
treated as if each file had been individually specified with the <jws> child element of <module>.

Use the standard nested elements of the <Fi leSet> Ant task to narrow the search. For example,
use the <include> element to specify the pattern matching that <jwsfileset> should follow
when determining the JWS files it should include in the list. See the Ant documentation for details
about <Fi leSet> and its nested elements.

See Figure A-1 for a visual description of where this element fits in the jwsc element hierarchy.
See “Examples” on page A-21 for examples of using the element.

The following table describes the attributes of the <jwsfi leset> element.

Programming Web Services for WebLogic Server A-51

Ant Task Reference

Table A-11 Attributes of the <jwsfileset> Element

Attribute Description Required?
includeSchemas The full pathname of the XML Schema file that describes an XMLBeans Required if
parameter or return value of the Web Service. you are
To specify more than one XML Schema file, use either a comma or using an
semi-colon as a delimiter: ér\:lj:;etane
includeSchemas="po.xsd,customer.xsd" asa yp
This attribute is only supported in the case where the JWS file explicitly parameter
uses an XMLBeans data type as a parameter or return value of a Web or return
Service operation. If you are not using the XMLBeans data type, the jwsc value.
Ant task returns an error if you specify this attribute.
Additionally, you can use this attribute only for Web Services whose
SOAP binding is document-literal-bare. Because the default SOAP
binding of a WebLogic Web Service is document-literal-wrapped, the
corresponding JWS file must include the following JWS annotation:
@SOAPBinding(
style=SOAPBinding.Style_DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.BARE)
For more information on XMLBeans, see
http://dev2dev.bea.com/technologies/xmlbeans/index.jsp.
Note: Asof WebLogic Server 9.1, using XMLBeans 1.X data types (in
other words, extensions of com.bea.xml .XmlObject) as
parameters or return types of a WebLogic Web Service is
deprecated. New applications should use XMLBeans 2.x data
types.
srcdir Specifies the directories (separated by semi-colons) that the jwsc Ant Yes.
task should search for JWS files to compile.
xsdConfig

Use the <xsdConfig> child element to specify one or more XMLBeans configuration files,
which by convention end in .xsdconfig. Use this element if your Web Service uses Apache
XMLBeans data types as parameters or return values.

A-52 Programming Web Services for WebLogic Server

wsdlc

The <xsdConfig> element is similar to the standard Ant <Fi leset> element and has all the

same attributes. See the Apache Ant documentation on the Fileset element for the full list of
attributes.

wsdlc

The wsdlc Ant task generates, from an existing WSDL file, a set of artifacts that together provide
a partial Java implementation of the Web Service described by the WSDL file.

By default, it is assumed that the WSDL file includes a single <service> element from which
the wsdlc Ant task generates artifacts. You can, however, use the srcServiceName attribute to
specify a specific Web Service, in the case that there is more than one <service> element in the
WSDL file, or use the srcPortName attribute to specify a specific port of a Web Service in the
case that there is more than one <port> child element for a given Web Service.

o A JWS interface file that implements the Web Service described by the WSDL file. The
interface includes full method signatures that implement the Web Service operations, and

JWS annotations (such as @webService and @SOAPBinding) that implement other aspects
of the Web Service.

WARNING: The JWS interface is generated into a JAR file, neither of which you should
ever update. It is discussed in this section only because later you need to
specify this JAR file to the jwsc Ant task when you compile your JWS
implementation file into a Web Service.

e Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the Web Service parameters and return values. The XML Schema of the

data types is specified in the WSDL, and the Java representation is generated by the wsdlc
Ant task.

WARNING: These artifacts are generated into a JAR file, along with the JWS interface file,
none of which you should ever update. It is discussed in this section only
because later you need to specify this JAR file to the jwsc Ant task when you
compile your JWS implementation file into a Web Service.

o A JWS file that contains a stubbed-out implementation of the generated JWS interface.

e Optional Javadocs for the generated JWS interface.

After running the wsdlc Ant task, (which typically you only do once) you update the generated
JWS implementation file, in particular by adding Java code to the methods so that they function
as you want. The generated JWS implementation file does not initially contain any business logic

Programming Web Services for WebLogic Server A-53

Ant Task Reference

A-54

because the wsdlc Ant task obviously does not know how you want your Web Service to
function, although it does know the shape of the Web Service, based on the WSDL file.

When you code the JWS implementation file, you can also add additional JWS annotations,
although you must abide by the following rules:

e The only standard JSR-181 JWS annotations you can include in the JWS implementation
file are @webService, @HandlerChain, @S0APMessageHandler, and
@SOAPMessageHandlers. If you specify any other JWS-181 JWS annotations, the jwsc
Ant task will return an error when you try to compile the JWS file into a Web Service.

e Additionally, you can specify only the serviceName and endpointinterface attributes
of the @webService annotation. Use the serviceName attribute to specify a different
<service> WSDL element from the one that the wsdlc Ant task used, in the rare case that
the WSDL file contains more than one <service> element. Use the endpointinterface
attribute to specify the JWS interface generated by the wsdlc Ant task.

e You can specify any WebL ogic-specific JWS annotation that you want.

Finally, after you have coded the JWS file so that it works as you want, iteratively run the jwsc
Ant task to generate a complete Java implementation of the Web Service. Use the compi ledwsdl
attribute of jwsc to specify the JAR file generated by the wsdIc Ant task which contains the JWS
interface file and data binding artifacts. By specifying this attribute, the jwsc Ant task does not
generate a new WSDL file but instead uses the one in the JAR file. Consequently, when you
deploy the Web Service and view its WSDL, the deployed WSDL will look just like the one from
which you initially started.

Note: The only potential difference between the original and deployed WSDL is the value of
the location attribute of the <address> element of the port(s) of the Web Service. The
deployed WSDL will specify the actual hostname and URI of the deployed Web Service,
which is most likely different from that of the original WSDL. This difference is to be
expected when deploying a real Web Service based on a static WSDL.

See “Creating a Web Service from a WSDL File” on page 3-14 for a complete example of using
the wsdlc Ant task in conjunction with jwsc.

Taskdef Classname

<taskdef name="wsdlc"
classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

Programming Web Services for WebLogic Server

wsdlc

Example

The following excerpt from an Ant bui Id.xml file shows how to use the wsdlc and jwsc Ant
tasks together to build a WebLogic Web Service. The build file includes two different targets:
generate-from-wsdl that runs the wsdlc Ant task against an existing WSDL file, and
build-service that runs the jwsc Ant task to build a deployable Web Service from the artifacts
generated by the wsdlc Ant task:

<taskdef name="wsdlc"
classname="'weblogic.wsee.tools.anttasks.WsdlcTask"/>

<taskdef name="jwsc"
classname=""'weblogic.wsee.tools.anttasks.JwscTask" />

<target name="'generate-from-wsdl'>

<wsdlc
srcWsdl="wsdl_files/TemperatureService._wsdl"

destJwsDir="output/compiledWsdl"
destimpIDir="output/impl"
packageName=""examples.webservices.wsdlc" />

</target>
<target name="build-service'">
<jwsc

srcdir="src"
destdir="output/wsdlcEar'>

<jws file="examples/webservices/wsdlc/TemperaturePortTypelmpl.java"
compi ledWsdI="output/compiledWsdl/TemperatureService_wsdl_jar" />

</jwsc>
</target>

In the example, the wsdlc Ant task takes as input the TemperatureService.wsdl file and
generates the JAR file that contains the JWS interface and data binding artifacts into the directory
output/compiledWsdl. The name of the JAR file is TemperatureService wsdl.jar. The
Ant task also generates a JWS file that contains a stubbed-out implementation of the JWS
interface into the output/impl/examples/webservices/wsdlc directory (a combination of
the value of the destImpIDir attribute and the directory hierarchy corresponding to the specified
packageName). The name of the stubbed-out JWS implementation file is based on the name of
the <portType> element in the WSDL file that corresponds to the first <service> element. For

Programming Web Services for WebLogic Server A-55

Ant Task Reference

A-56

example, if the portType name is TemperaturePortType, then the generated JWS
implementation file is called TemperaturePortTypelmpl . java.

After running wsdlc, you code the stubbed-out JWS implementation file, adding your business
logic. Typically, you move this JWS file from the wsd 1 c-output directory to a more permanent
directory that contains your application source code; in the example, the fully coded
TemperaturePortTypelmpl . java JWS file has been moved to the directory
src/examples/webservices/wsdlc/. You then run the jwsc Ant task, specifying this JWS
file as usual. The only additional attribute you must specify is compi ledwsd1 to point to the JAR
file generated by the wsd1c Ant task, as shown in the preceding example. This indicates that you
do not want the jwsc Ant task to generate a new WSDL file, because you want to use the original
one that has been compiled into the JAR file.

Child Element

The wsdlc Ant task has one WebL ogic-specific child element: <xsdConfig>.

Use the <xsdConTfig> child element to specify one or more XMLBeans configuration files,
which by convention end in .xsdconfig. Use this element if your Web Service uses Apache
XMLBeans data types as parameters or return values.

The <xsdConfig> element is similar to the standard Ant <Fileset> element and has all the
same attributes. See the Apache Ant documentation on the Fileset element for the full list of
attributes you can specify.

See“Standard Ant javac Attributes That Apply To wsdlc” on page A-62 for the list of elements
associated with the standard Ant javac task that you can also set for the wsdlc Ant task.

Attributes

The table in the following section describes the attributes of the wsdlc Ant task. See*Standard
Ant javac Attributes That Apply To wsdlc” on page A-62 for the list of attributes associated with
the standard Ant javac task that you can also set for the wsdlc Ant task.

Programming Web Services for WebLogic Server

wsdlc

WebLogic-Specific wsdlc Attributes

Table A-12 Attributes of the wsdlc Ant Task

Attribute

Description Data Type Required?

autoDetectWrap
ped

Specifies whether the wsd ¢ Ant task should try to Boolean No.
determine whether the parameters and return type of

document-literal Web Services are of type wrapped or

bare.

When the wsd I c Ant task parses a WSDL file to create
the partial JWS file that implements the Web Service, it
attempts to determine whether a document-literal Web
Service uses wrapped or bare parameters and return types
based on the names of the XML Schema elements, the
name of the operations and parameters, and so on.
Depending on how the names of these components match
up, the wsd I c Ant task makes a best guess as to whether
the parameters are wrapped or bare. In some cases,
however, you might want the Ant task to always assume
that the parameters are of type bare; in this case, set the
autoDetectWrapped attribute to False.

Valid values for this attribute are True or False. The
default value is True.

desImplDir

Directory into which the stubbed-out JWS String No.
implementation file is generated.

The generated JWS file implements the generated JWS
interface file (contained within the JAR file). You update
this JWS implementation file, adding Java code to the
methods so that they behave as you want, then later
specify this updated JWS file to the jwsc Ant task to
generate a deployable Web Service.

Programming Web Services for WebLogic Server A-57

Ant Task Reference

Tahle A-12 Attributes of the wsdlc Ant Task

Attribute

Description Data Type

Required?

destJavadocDir

Directory into which Javadoc that describes the JWS String
interface is generated.

Because you should never unjar or update the generated
JAR file that contains the JWS interface file that
implements the specified Web Service, you can get
detailed information about the interface file from this
generated Javadoc. You can then use this documentation,
together with the generated stubbed-out JWS
implementation file, to add business logic to the partially
generated Web Service.

No.

destJwsDir

Directory into which the JAR file that contains the JWS String
interface and data binding artifacts should be generated.

The name of the generated JAR file is
WSDLFile_wsdl . jar, where WSDLFi le refers to the
root name of the WSDL file. For example, if the name of
the WSDL file you specify to the Fi le attribute is
MyService.wsdl, then the generated JAR file is
MyService_wsdl . jar.

Yes.

explode

Specifies whether the generated JAR file that containsthe Boolean
generated JWS interface file and data binding artifacts is
in exploded directory format or not.

Valid values for this attribute are true or fal se. Default
value is false, which means that wsd I c generates an
actual JAR archive file, and not an exploded directory.

No.

jaxRPCWrapped
ArrayStyle

When the wsdlc Ant task is generating the Java Boolean
equivalent to XML Schema data types in the WSDL file,

and the task encounters an XML complex type with a

single enclosing sequence with a single element with the
maxOccurs attribute equal to unbounded, the task

generates, by default, a Java structure whose name is the

lowest named enclosing complex type or element. To

change this behavior so that the task generates a literal

array instead, set the jaxRPCWrappedArrayStyle to

False.

Valid values for this attribute are True or False. The
default value is True.

No.

A-58 Programming Web Services for WebLogic Server

Tahle A-12 Attributes of the wsdlc Ant Task

wsdlc

Attribute Description Data Type Required?
packageName Package into which the generated JWS interface and String No.
implementation files should be generated.
If you do not specify this attribute, the wsdlc Ant task
generates a package name based on the
targetNamespace of the WSDL.
srcBindingName Name of the WSDL binding from which the JWS String. Only if the
interface file should be generated. WSDL file
The wsdlc Ant task runs against the first <service> contains more
element it finds in the WSDL file. Therefore, you only tha[1 on(_e
need to specify the srcBindingName attribute if there is ;2;]2?“' ng>

more than one <binding> element associated with this
first <service> element.

If the namespace of the binding is the same as the
namespace of the service, then you just need to specify the
name of the binding for the value of this attribute. For
example:

srcBindingName="MyBinding"

However, if the namespace of the binding is different from
the namespace of the service, then you must also specify
the namespace URI, using the following format:

srcBindingName="{URI}BindingName"

For example, if the namespace URI of the MyBinding

binding is www . examples. org, then you specify the

attribute value as follows:
srcBindingName=""{www.examples.org}MyB
inding"

Note: This attribute is deprecated as of Version 9.2 of

WebLogic Server. Use srcPortName or
srcServiceName instead.

Programming Web Services for WebLogic Server A-59

Ant Task Reference

Tahle A-12 Attributes of the wsdlc Ant Task

Attribute

Description Data Type

Required?

srcPortName

Name of the WSDL port from which the JWS interface String.
file should be generated.

Set the value of this attribute to the value of the name
attribute of the <port> element that corresponds to the
Web Service port for which you want to generate a JWS
interface file. The <port> element is a child element of
the <service> element in the WSDL file.

If you specify this attribute, you cannot also specify
srcServiceName. If you do not specify this attribute,
wsd I c generates a JWS interface file from the service
specified by srcServiceName.

No.

A-60 Programming Web Services for WebLogic Server

Tahle A-12 Attributes of the wsdlc Ant Task

wsdlc

Attribute

Description

Data Type Required?

srcServiceName

Name of the Web Service from which the JWS interface
file should be generated.

Set the value of this attribute to the value of the name
attribute of the <service> element that corresponds to
the Web Service for which you want to generate a JWS
interface file.

The wsdlc Ant task generates a single JWS endpoint
interface and data binding JAR file for a given Web
Service. This means that if the <service> element
contains more than one <port> element, the following
must be true:

* The bindings for each port must be the same or
equivalent to each other.

e The transport for each port must be different. The
wsdlc Ant task determines the transport for a port
from the address listed in its <address> child
element. Because WebLogic Web Services support
only three transports (JMS, HTTP, and HTTPS), this
means that there can be at most three <port> child
elements for the <service> element specified by
this attribute. The generated JWS implementation file
will then include the corresponding
@WLXXXTransport annotations.

If you specify this attribute, you cannot also specify
srcPortName.

If you do not specify either this or the srcPortName
attribute, the WSDL file must include only one
<service> element. The wsdlc Ant task generates the
JWS interface file and data binding JAR file from this
single Web Service.

srcWsdl

Name of the WSDL from which to generate the JAR file
that contains the JWS interface and data binding artifacts.

The name must include its pathname, either absolute or
relative to the directory which contains the Ant
build.xml file.

String Yes.

Programming Web Services for WebLogic Server A-61

Ant Task Reference

Standard Ant javac Attributes That Apply To wsdic

In addition to the WebLogic-defined wsd ¢ attributes, you can also define the following standard
javac attributes; see the Ant documentation for additional information about each attribute:

e bootclasspath

e bootClasspathRef
e classpath

e classpathRef

e compiler

e debug

e debuglLevel

e depend

e deprecation

e destdir

e encoding

e extdirs

e failonerror

e fork

e includeantruntime
e includejavaruntime
o listfiles

e memorylnitialSize
e memoryMaximumSize
e nowarn

e optimize

e proceed

e source

e sourcepath

e sourcepathRef

e tempdir

A-62 Programming Web Services for WebLogic Server

wsdlc

e verbose
You can also use the following standard Ant child elements with the wsdlc Ant task:
o <FileSet>
e <SourcePath>
e <Classpath>

o <Extdirs>

Programming Web Services for WebLogic Server A-63

Ant Task Reference

A-64 Programming Web Services for WebLogic Server

JWS Annotation Reference

The following sections provide reference documentation about standard (JSR-181) and
WebLogic-specific JWS annotations:

e “Overview of JWS Annotation Tags” on page B-1
e “Standard JSR-181 JWS Annotations Reference” on page B-4

e “WebLogic-Specific JWS Annotations Reference” on page B-16

Overview of JWS Annotation Tags

The WebLogic Web Services programming model uses the new JDK 5.0 metadata annotations
feature (specified by JSR-175). In this programming model, you create an annotated Java file and
then use Ant tasks to compile the file into the Java source code and generate all the associated
artifacts.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains the Java
code that determines how your Web Service behaves. A JWS file is an ordinary Java class file
that uses annotations to specify the shape and characteristics of the Web Service. The JWS
annotations you can use in a JWS file include the standard ones defined by the Web Services
Metadata for the Java Platform specification (JSR-181) as well as a set of WebLogic-specific
ones. This chapter provides reference information about both of these set of annotations.

You can target a JWS annotation at either the class-, method- or parameter-level in a JWS file.
Some annotations can be targeted at more than one level, such as @SecurityRoles that can be

Programming Web Services for WebLogic Server B-1

JWS Annotation Reference

targeted at both the class- and method-level. The documentation in this section lists the level to
which you can target each annotation.

The following example shows a simple JWS file that uses both standard JSR-181 and
WebLogic-specific JWS annotations, shown in bold:

package examples.webservices.complex;
// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface
import weblogic. jws.WLHttpTransport;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType", its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"

@webService(serviceName=""ComplexService", name='"ComplexPortType",
targetNamespace=""http://example.org")

// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and service
// URI used to build the URI of the Web Service is "complex/ComplexService"

@WLHttpTransport(contextPath=""complex', serviceUri="ComplexService",
portName=""ComplexServicePort')

/**

* This JWS file forms the basis of a WebLogic Web Service. The Web Services
* has two public operations:

*

* - echolnt(int)

* - echoComplexType(BasicStruct)

*

B-2 Programming Web Services for WebLogic Server

Overview of JWS Annotation Tags

The Web Service is defined as a "‘document-literal’ service, which means
that the SOAP messages have a single part referencing an XML Schema element
that defines the entire body.

* ok % X %

@author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public class ComplexImpl {

// Standard JWS annotation that specifies that the method should be exposed
// as a public operation. Because the annotation does not include the

// member-value "operationName'™, the public name of the operation is the
// same as the method name: echolnt.

// The WebResult annotation specifies that the name of the result of the

// operation in the generated WSDL is "IntegerOutput", rather than the

// default name “return®. The WebParam annotation specifies that the input
// parameter name in the WSDL file is "Integerlnput" rather than the Java
// name of the parameter, "input".

@webMethod()
@WebResult(name=""IntegerOutput",
targetNamespace="http://example.org/complex')
public int echolnt(
@webParam(name=""Integerlnput",
targetNamespace="http://example.org/complex')
int input)
{
System.out.printin(echolnt " + input + " to you too!");
return input;

}

// Standard JWS annotation to expose method "echoStruct™ as a public operation
// called "echoComplexType"

// The WebResult annotation specifies that the name of the result of the

// operation in the generated WSDL is "EchoStructReturnMessage",

// rather than the default name "return®.

@webMethod(operationName="echoComplexType')
@WebResult(name="EchoStructReturnMessage",
targetNamespace=""http://example.org/complex’)
public BasicStruct echoStruct(BasicStruct struct)
{
System.out._printIn(*echoComplexType called");
return struct;
}
}

Programming Web Services for WebLogic Server B-3

JWS Annotation Reference

Standard JSR-181 JWS Annotations Reference

B-4

The Web Services Metadata for the Java Platform (JSR-181) specification defines the standard
annotations you can use in your JWS file to specify the shape and behavior of your Web Service.
This section briefly describes each annotation, along with its attributes. See Chapter 5,
“Programming the JWS File,” for examples. For more detailed information about the annotations,
such as the Java annotation type definition and additional examples, see the specification.

This section documents the following standard JWS annotations:
e javax.jws.WebService
e javax.jws.WebMethod
e javax.jws.Oneway
e javax.jws.WebParam
e javax.jws.WebResult
e javax.jws.HandlerChain
e javax.jws.soap.SOAPBInding
e javax.jws.soap.SOAPMessageHandler
e javax.jws.soap.InitParam

e javax.jws.soap.SOAPMessageHandlers

javax.jws.WehService

Description
Target: Class

Specifies that the JWS file implements a Web Service.

Programming Web Services for WebLogic Server

Standard JSR-181 JWS Annotations Reference

Attributes

Table B-1 Attributes of the javax.jws.WebService JWS Annotation

Name Description

Data Type

Required?

name Name of the Web Service. Maps to the
<wsdl : portType> element in the WSDL file.

Default value is the unqualified name of the Java class in
the JWS file.

String

No.

targetNamespace The XML namespace used for the WSDL and XML
elements generated from this Web Service.

The default value is specified by the JAX-RPC
specification.

String.

serviceName Service name of the Web Service. Maps to the
<wsdl :service> element in the WSDL file.

Default value is the unqualified name of the Java class in
the JWS file, appended with the string Service.

String

wsdlLocation Relative or absolute URL of a pre-defined WSDL file. If
you specify this attribute, the jwsc Ant task does not
generate a WSDL file, and returns an error if the JWS file
is inconsistent with the port types and bindings in the
WSDL file.

Note: The wsdlc Ant task uses this attribute when it
generates the endpoint interface JWS file from a
WSDL. Typically, users never use the attribute
in their own JWS files.

String.

endpointinterface Fully qualified name of an existing service endpoint
interface file. If you specify this attribute, it is assumed
that you have already created the endpoint interface file
and it is in your CLASSPATH.

String.

No.

Example

@WebService(name="JMSTransportPortType",
serviceName="JMSTransportService",
targetNamespace=""http://example.org"™)

Programming Web Services for WebLogic Server B-5

JWS Annotation Reference

javax.jws.WebMethod

Description
Target: Method

Specifies that the method is exposed as a public operation of the Web Service. You must
explicitly use this annotation to expose a method; if you do not specify this annotation, the
method by default is not exposed.

Attributes

Table B-2 Attributes of the javax.jws.WebMethod JWS Annotation

Name Description Data Type Required?

operationName Name of the operation. Maps to the String No.

<wsdl :operation> element in the WSDL file.

Default value is the name of the method.

action The action for this operation. For SOAP bindings, the String No.

value of this attribute determines the value of the
SOAPAction header in the SOAP messages.

B-6

Example
@WebMethod(operationName=""echoComplexType')

public BasicStruct echoStruct(BasicStruct struct)

{

}

javax.jws.Oneway

Description
Target: Method

Specifies that the method has only input parameters, but does not return a value. This annotation
must be used only in conjunction with the @webMethod annotation.

Programming Web Services for WebLogic Server

Standard JSR-181 JWS Annotations Reference

It is an error to use this annotation on a method that returns anything other than void, takes a
Holder class as an input parameter, or throws checked exceptions.

This annotation does not have any attributes.

Example

@webMethod()

@0neway ()
public void helloWorld(String input) {

}

javax.jws.WebParam

Description
Target: Parameter

Customizes the mapping between operation input parameters of the Web Service and elements
of the generated WSDL file. Also used to specify the behavior of the parameter.

Attributes

Table B-3 Attributes of the javax.jws.WebParam JWS Annotation

Name Description DataType Required?

name Name of the parameter in the WSDL file. String No.

For RPC-style Web Services, the name maps to the
<wsdl : part> element that represents the parameter.
For document-style Web Services, the name is the local
name of the XML element that represents the parameter.

The default value is the name of the method’s parameter.

targetNamespace The XML namespace of the parameter. This value isused ~ String No.
only used for document-style Web Services, in which the
parameter maps to an XML element.

The default value is the targetNamespace of the Web
Service.

Programming Web Services for WebLogic Server B-7

JWS Annotation Reference

Tahle B-3 Attributes of the javax.jws.WebParam JWS Annotation

Name Description Data Type

Required?

mode The direction in which the parameter is flowing. enum

Valid values are:

< WebParam.Mode. IN

< WebParam.Mode.OUT

e WebParam.Mode. INOUT

Default value is WebParam._Mode . IN.

If you specify WebParam.Mode .OUT or
WebParam.Mode . INOUT, then the data type of the
parameter must be Holder, or extend Holder. For
details, see the JAX-RPC specification.

WebParam.Mode.OUT and WebParam.Mode . INOUT
modes are only supported for RPC-style Web Services or
for parameters that map to headers.

No.

header Specifies whether the value of the parameter is found in boolean

the SOAP header. By default parameters are in the SOAP
body.

Valid values are true and false. Default value is
false.

No.

B-8

Example

@webMethod ()
public int echolnt(
@webParam(name=""Integerinput",
targetNamespace="http://example.org/complex')
int input)

{
}
javax.jws.WebResult

Description
Target: Method

Programming Web Services for WebLogic Server

Standard JSR-181 JWS Annotations Reference

Customizes the mapping between the Web Service operation return value and the corresponding
element of the generated WSDL file.

Attributes

Tahle B-4 Attributes of the javax.jws.WebResult JWS Annotation

Name

Description Data Type Required?

name

Name of the parameter in the WSDL file. String No.

For RPC-style Web Services, the name maps to the
<wsd |l : part> element that represents the return value.
For document-style Web Services, the name is the local
name of the XML element that represents the return value.

The default value is the hard-coded name result.

targetNamespace

The XML namespace of the return value. This value is String No.
used only used for document-style Web Services, in
which the return value maps to an XML element.

The default value is the targetNamespace of the Web
Service.

Example

@webMethod(operationName="echoComplexType')
@WebResult(name="EchoStructReturnMessage",

targetNamespace=""http://example.org/complex’)

public BasicStruct echoStruct(BasicStruct struct)

{

}

javax.jws.HandlerChain

Description
Target: Class

Programming Web Services for WebLogic Server B-9

JWS Annotation Reference

Associates a Web Service with an external file that contains the configuration of a handler chain.
The configuration includes the list of handlers in the chain, the order in which they execute, the
initialization parameters, and so on.

Use the @HandlerChain annotation, rather than the @SOAPMessageHandlers annotation, in
your JWS file if:

e You want multiple Web Services to share the same configuration.
e Your handler chain includes handlers for multiple transports.

e You want to be able to change the handler chain configuration for a Web Service without
recompiling the JWS file that implements it.

It is an error to combine this annotation with the @S0OAPMessageHandlers annotation.

For the XML Schema of the external configuration file, additional information about creating it,
and additional examples, see the Web Services Metadata for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

Attributes

Table B-5 Attributes of the javax.jws.HandlerChain JWS Annotation

Name Description DataType Required?

file

URL, either relative or absolute, of the handler chain String Yes
configuration file. Relative URLSs are relative to the
location of JWS file.

name Name of the handler chain (in the configuration file String Yes.

pointed to by the fi I e attribute) that you want to
associate with the Web Service.

B-10

Example

package examples.webservices.handler;

@webService (...)

@HandlerChain(file="HandlerConfig.xml', name="SimpleChain')

Programming Web Services for WebLogic Server

Standard JSR-181 JWS Annotations Reference

public class HandlerChainlmpl {

}

javax.jws.soap.SOAPBinding

Description
Target: Class
Specifies the mapping of the Web Service onto the SOAP message protocol.

Attributes

Tahle B-6 Attributes of the javax.jws.soap.SOAPBinding JWS Annotation

Name Description Data Type Required?

style

Specifies the message style of the request and response enum No.
SOAP messages.

Valid values are:
e SOAPBinding.Style.RPC
e SOAPBiInding.Style.DOCUMENT.

Default value is SOAPBinding.Style.DOCUMENT.

Programming Web Services for WebLogic Server B-11

JWS Annotation Reference

Tahle B-6 Attributes of the javax.jws.soap.SOAPBinding JWS Annotation

Name

Description Data Type

Required?

use

Specifies the formatting style of the request and response enum
SOAP messages.

Valid values are:
e SOAPBiInding.Use.LITERAL
e SOAPBinding.Use.ENCODED

Default value is SOAPBinding.Use.LITERAL.

No.

parameterStyle

Determines whether method parameters represent the enum
entire message body, or whether the parameters are

elements wrapped inside a top-level element named after

the operation.

Valid values are:

e SOAPBinding.ParameterStyle.BARE
= SOAPBinding.ParameterStyle. WRAPPED

Default value is
SOAPBinding.ParameterStyle.WRAPPED

Note: This attribute applies only to Web Services of
style document-literal. Or in other words, you
can specify this attribute only if you have also set
the sty le attribute to
SOAPBinding.Style.DOCUMENT and the
use attribute to
SOAPBinding.Use.LITERAL

No.

B-12

Example

package examples.webservices.bindings;

@WebService (...)

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,

use=SOAPBinding.Use.LITERAL,

parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

public class Bindingsimpl {

Programming Web Services for WebLogic Server

Standard JSR-181 JWS Annotations Reference

javax.jws.soap.SOAPMessageHandler

Description

Target: None; this annotation can be used only inside of a @SOAPMessageHandler array.

Specifies a particular SOAP message handler in a @SOAPMessageHandler array. The annotation
includes attributes to specify the class name of the handler, the initialization parameters, list of
SOAP headers processed by the handler, and so on.

Attributes

Table B-7 Attributes of the javax.jws.soap.SOAPMessageHandler JWS Annotation

Name Description Data Type Required?
name Name of the SOAP message handler. String No.
The default value is the name of the class that
implements the Hand I er interface (or extends the
GenericHandler abstract class.)
className Name of the handler class. String Yes.
initParams Array of name/value pairs that is passed to the handler ~ Array of No.
class during initialization. @InitParam
roles List of SOAP roles implemented by the handler. Array of String No.
headers List of SOAP headers processed by the handler. Array of String No.
Each element in this array contains a QName which
defines the header element processed by the handler.
Example

package examples.webservices.handlers;

@wWebService (...)

Programming Web Services for WebLogic Server B-13

JWS Annotation Reference

@SOAPMessageHandlers ({
@SOAPMessageHandler (
className=""examples.webservices.soap_handlers.simple.ServerHandlerl'),
@SOAPMessageHandler (
className=""examples.webservices.soap_handlers.simple.ServerHandler2™)

)

public class Handlersimpl {

}

javax.jws.soap.InitParam

Description

Target: None; this annotation can be used only as a value to the initParams attribute of the
@SOAPMessageHand ler annotation.

Use this annotation in the initParams attribute of the @SOAPMessageHandler annotation to
specify the array of parameters (name/value pairs) that are passed to a handler class during
initialization.

Attributes

Table B-8 Attributes of the javax.jws.soap.InitParam JWS Annotation

Name Description Data Type Required?
name Name of the initialization parameter. String Yes.
value Value of the initialization parameter. String Yes.

javax.jws.soap.SOAPMessageHandlers

Description
Target: Class

B-14 Programming Web Services for WebLogic Server

Standard JSR-181 JWS Annotations Reference

Specifies an array of SOAP message handlers that execute before and after the operations of a
Web Service. Use the @SOAPMessageHandler annotation to specify a particular handler.
Because you specify the list of handlers within the JWS file itself, the configuration of the handler
chain is embedded within the Web Service.

Use the @SOAPMessageHandlers annotation, rather than @HandlerChain, if:

e You prefer to embed the configuration of the handler chain inside the Web Service itself,
rather than specify the configuration in an external file.

e Your handler chain includes only SOAP handlers and none for any other transport.

e You prefer to recompile the JWS file each time you change the handler chain
configuration.

The @SOAPMessageHandlers annotation is an array of @SOAPMessageHandler types. The
handlers run in the order in which they appear in the annotation, starting with the first handler in
the array.

This annotation does not have any attributes.

Example

package examples.webservices.handlers;

@WebService (...)

@SOAPMessageHandlers ({
@SOAPMessageHandler (
className=""examples.webservices.soap_handlers.simple.ServerHandlerl™),
@SOAPMessageHandler (
className=""examples.webservices.soap_handlers.simple.ServerHandler2'")

)

public class Handlerslimpl {

Programming Web Services for WebLogic Server B-15

JWS Annotation Reference

WebLogic-Specific JWS Annotations Reference

WebLogic Web Services define a set of JWS annotations that you can use to specify behavior and
features in addition to the standard JSR-181 JWS annotations. In particular, the
WebLogic-specific annotations are:

e “weblogic.jws.AsyncFailure” on page B-17

e “weblogic.jws.AsyncResponse” on page B-20

e “weblogic.jws.Binding” on page B-23

e “weblogic.jws.BufferQueue” on page B-25

e “weblogic.jws.Callback” on page B-26

e “weblogic.jws.CallbackMethod” on page B-28
e “weblogic.jws.CallbackService” on page B-29
e “weblogic.jws.Context” on page B-31

e “weblogic.jws.Conversation” on page B-33

e “weblogic.jws.Conversational” on page B-35

e “weblogic.jws.MessageBuffer” on page B-38

e “weblogic.jws.Policies” on page B-40

e “weblogic.jws.Policy” on page B-41

o “weblogic.jws.ReliabilityBuffer” on page B-43
e “weblogic.jws.ReliabilityErrorHandler” on page B-45
e “weblogic.jws.ServiceClient” on page B-47

e “weblogic.jws.StreamAttachments” on page B-51
e “weblogic.jws.Transactional” on page B-52

e “weblogic.jws.Types” on page B-54

e “weblogic.jws.WildcardBinding” on page B-56
e “weblogic.jws.WildcardBindings” on page B-57

B-16 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

e “weblogic.jws.WLHttpTransport” on page B-57

e “weblogic.jws.WLHttpsTransport” on page B-59

e “weblogic.jws.WLJmsTransport” on page B-61

e “weblogic.jws.WSDL” on page B-62

e “weblogic.jws.security.CallbackRolesAllowed” on page B-64
o “weblogic.jws.security.RolesAllowed” on page B-65

e “weblogic.jws.security.RolesReferenced” on page B-66

e “weblogic.jws.security.RunAs” on page B-67

o “weblogic.jws.security.SecurityRole” on page B-68

e “weblogic.jws.security.SecurityRoleRef” on page B-70

e “weblogic.jws.security.UserDataConstraint” on page B-71

o “weblogic.jws.security.WssConfiguration” on page B-73

e “weblogic.jws.soap.SOAPBInding” on page B-74

o “weblogic.jws.security.SecurityRoles (deprecated)” on page B-77

o “weblogic.jws.security.Securityldentity (deprecated)” on page B-79

weblogic.jws.AsyncFailure

Description
Target: Method

Specifies the method that handles a potential failure when the main JWS file invokes an operation
of another Web Service asynchronously.

When you invoke, from within a JWS file, a Web Service operation asynchronously, the response
(or exception, in the case of a failure) does not return immediately after the operation invocation,
but rather, at some later point in time. Because the operation invocation did not wait for a
response, a separate method in the JWS file must handle the response when it does finally return;
similarly, another method must handle a potential failure. Use the @AsyncFai lure annotation to
specify the method in the JWS file that will handle the potential failure of an asynchronous
operation invocation.

Programming Web Services for WebLogic Server B-17

JWS Annotation Reference

B-18

The @AsyncFai lure annotation takes two parameters: the name of the JAX-RPC stub for the
Web Service you are invoking and the name of the operation that you are invoking
asynchronously. The JAX-RPC stub is the one that has been annotation with the
@ServiceClient annotation.

The method that handles the asynchronous failure must follow these guidelines:
e Return void.

e Be named onMethodNameAsyncFai lure, where MethodName is the name of the method
you are invoking asynchronously (with initial letter always capitalized.)

In the main JWS file, the call to the asynchronous method will look something like:
port.getQuoteAsync (apc, symbol);

where getQuote is the non-asynchronous name of the method, apc is the asynchronous
pre-call context, and symbol is the usual parameter to the getQuote operation.

e Have two parameters: the asynchronous post-call context (contained in the
weblogic.wsee.async.AsyncPostCal IContext object) and the Throwable exception,
potentially thrown by the asynchronous operation call.

Within the method itself you can get more information about the method failure from the context,
and query the specific type of exception and act accordingly.

Typically, you always use the @AsyncFai lure annotation to explicitly specify the method that
handles asynchronous operation failures. The only time you would not use this annotation is if
you want a single method to handle failures for two or more stubs that invoke different Web
Services. In this case, although the stubs connect to different Web Services, each Web Service
must have a similarly named method, because the Web Services runtime relies on the name of the
method (onMethodNameAsyncFai lure) to determine how to handle the asynchronous failure,
rather than the annotation. However, if you always want a one-to-one correspondence between a
stub and the method that handles an asynchronous failure from one of the operations, then BEA
recommends that you explicitly use @AsyncFai lure.

See “Invoking a Web Service Using Asynchronous Request-Response” on page 6-19 for detailed
information and examples of using this annotation.

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Attributes

Table B-9 Attributes of the weblogic.jws.AsyncFailure JWS Annotation Tag

Name Description DataType Required?

target The name of the JAX-RPC stub of the Web Service for String Yes
which you want to invoke an operation asynchronously.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

operation The name of the operation that you want to invoke String Yes.
asynchronously.

This is the actual name of the operation, as it appears in
the WSDL file. When you invoke this operation in the
main code of the JWS file, you add Async to its name.

For example, if set operation=""getQuote", then in
the JWS file you invoke it asynchronously as follows:

port.getQuoteAsync (apc, symbol);

Example

The following sample snippet shows how to use the @AsyncFai lure annotation in a JWS file
that invokes the operation of another Web Service asynchronously; only the relevant Java code
is included:

package examples.webservices.async_req_res;
public class StockQuoteClientimpl {

@ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
serviceName=""StockQuoteService", portName="StockQuote')
private StockQuotePortType port;

@WebMethodpublic void getQuote (String symbol) {

AsyncPreCal IContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
apc.setProperty(*'symbol™, symbol);

try {
port.getQuoteAsync(apc, symbol);

Programming Web Services for WebLogic Server B-19

JWS Annotation Reference

System.out._printIn(*in getQuote method of StockQuoteClient WS'™);

catch (RemoteException e) {
e.printStackTrace();

}

@AsyncFai lure(target="port", operation="getQuote)
public void onGetQuoteAsyncFailure(AsyncPostCallContext apc, Throwable e) {

System.out.printIn(""----————-——————————— ");
e._printStackTrace();
System.out.printIhn("'---———-—--—————————- ");

}

The example shows a JAX-RPC stub called port, used to invoke the Web Service located at
http://localhost:7001/async/StockQuote. The getQuote operation is invoked
asynchronously, and any exception from this invocation is handled by the
onGetQuoteAsyncFai lure method, as specified by the @AsyncFai lure annotation.

weblogic.jws.AsyncResponse

Description
Target: Method

Specifies the method that handles the response when the main JWS file invokes an operation of
another Web Service asynchronously.

When you invoke, from within a JWS file, a Web Service operation asynchronously, the response
does not return immediately after the operation invocation, but rather, at some later point in time.
Because the operation invocation did not wait for a response, a separate method in the JWS file
must handle the response when it does finally return. Use the @AsyncResponse annotation to
specify the method in the JWS file that will handle the response of an asynchronous operation
invocation.

The @AsyncResponse annotation takes two parameters: the name of the JAX-RPC stub for the
Web Service you are invoking and the name of the operation that you are invoking
asynchronously. The JAX-RPC stub is the one that has been annotation with the
@ServiceClient annotation.

The method that handles the asynchronous response must follow these guidelines:

B-20 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

e Return void.

e Be named onMethodNameAsyncResponse, where MethodName is the name of the method
you are invoking asynchronously (with initial letter always capitalized.)

In the main JWS file, the call to the asynchronous method will look something like:
port.getQuoteAsync (apc, symbol);

where getQuote is the non-asynchronous name of the method, apc is the asynchronous
pre-call context, and symbol is the usual parameter to the getQuote operation.

e Have two parameters: the asynchronous post-call context (contained in the
weblogic.wsee.async.AsyncPostCal IContext object) and the usual return value of
the operation.

Within the asynchronous-response method itself you add the code to handle the response. You
can also get more information about the method invocation from the context.

Typically, you always use the @AsyncResponse annotation to explicitly specify the method that
handles asynchronous operation responses. The only time you would not use this annotation is if
you want a single method to handle the response for two or more stubs that invoke different Web
Services. In this case, although the stubs connect to different Web Services, each Web Service
must have a similarly named method, because the Web Services runtime relies on the name of the
method (onMethodNameAsyncResponse) to determine how to handle the asynchronous
response, rather than the annotation. However, if you always want a one-to-one correspondence
between a stub and the method that handles an asynchronous response from one of the operations,
then BEA recommends that you explicitly use @AsyncResponse.

See “Invoking a Web Service Using Asynchronous Request-Response” on page 6-19 for detailed
information and examples of using this annotation.

Programming Web Services for WebLogic Server B-21

JWS Annotation Reference

Attributes

Table B-10 Attributes of the weblogic.jws.AsyncResponse JWS Annotation Tag

Name Description DataType Required?

target The name of the JAX-RPC stub of the Web Service for String Yes
which you want to invoke an operation asynchronously.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

operation The name of the operation that you want to invoke String Yes.
asynchronously.

This is the actual name of the operation, as it appears in
the WSDL file. When you invoke this operation in the
main code of the JWS file, you add Async to its name.

For example, if set operation=""getQuote", then in
the JWS file you invoke it asynchronously as follows:

port.getQuoteAsync (apc, symbol);

Example

The following sample snippet shows how to use the @AsyncResponse annotation in a JWS file
that invokes the operation of another Web Service asynchronously; only the relevant Java code
is included:

package examples.webservices.async_req_res;
public class StockQuoteClientimpl {

@ServiceClient(wsdlLocation="http://localhost:7001/async/StockQuote?WSDL",
serviceName=""StockQuoteService', portName="StockQuote')
private StockQuotePortType port;

@WebMethodpublic void getQuote (String symbol) {

AsyncPreCallContext apc = AsyncCallContextFactory.getAsyncPreCallContext();
apc.setProperty(*'symbol™, symbol);

try {
port.getQuoteAsync(apc, symbol);

B-22 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

System.out._printIn(’"in getQuote method of StockQuoteClient WS™);

¥

catch (RemoteException e) {
e.printStackTrace();

¥

@AsyncResponse(target="port", operation="getQuote'™)
public void onGetQuoteAsyncResponse(AsyncPostCallContext apc, int quote) {

System.out._printIn("-----——————————————);

System.out.printin(*'Got quote " + quote);

System.out.printIhn("--—————---—---————— ;s
}

The example shows a JAX-RPC stub called port, used to invoke the Web Service located at
http://1ocalhost:7001/async/StockQuote. The getQuote operation is invoked
asynchronously, and the response from this invocation is handled by the
onGetQuoteAsyncResponse method, as specified by the @AsyncResponse annotation.

weblogic.jws.Binding

Description
Target: Class

Specifies whether the Web Service uses version 1.1 or 1.2 of the Simple Object Access Protocol
(SOAP) implementation when accepting or sending SOAP messages. By default, WebLogic
Web Services use SOAP 1.1.

Programming Web Services for WebLogic Server B-23

JWS Annotation Reference

Attributes

Table B-11 Attributes of the weblogic.jws.Binding JWS Annotation Tag

Name

Description Data Type

Required?

value

Specifies the version of SOAP used in the request and enum
response SOAP messages when the Web Service is

invoked.

Valid values for this attribute are:

= Type.SOAP11

= Type.SOAP12

The default value is Type - SOAP11.

No

Example

The following example shows how to specify SOAP 1.2; only the relevant code is shown:

package examples.webservices.soapl2;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.Binding;

@webService(name=""SOAP12PortType",

serviceName=""SOAP12Service",
targetNamespace="http://example.org")

@Binding(Binding.Type.SOAP12)

public class SOAP12Impl {

B-24

@webMethod ()
public String sayHello(String message) {

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

weblogic.jws.BufferQueue

Description
Target: Class

Specifies the INDI name of the JMS queue to which WebLogic Server:
e stores a buffered Web Service operation invocation.

e stores a reliable Web Service operation invocation.

When used with buffered Web Services, you use this annotation in conjunction with
@MessageBuffer, which specifies the methods of a JWS that are buffered. When used with
reliable Web Services, you use this annotation in conjunction with @Policy, which specifies the
reliable messaging WS-Policy file associated with the Web Service.

If you have enabled buffering or reliable messaging for a Web Service, but do not specify the
@BuffereQueue annotation, WebLogic Server uses the default Web Services JMS queue
(weblogic.wsee.DefaultQueue) to store buffered or reliable operation invocations. This IMS
queue is also the default queue for the JMS transport features. It is assumed that you have already
created this JMS queue if you intend on using it for any of these features.

See “Creating Buffered Web Services” on page 6-50 and “Using Web Service Reliable
Messaging” on page 6-1 for detailed information and examples of creating buffered or reliable
Web Services.

Attributes

Tahle B-12 Attributes of the weblogic.jws.BufferQueue JWS Annotation Tag

Name Description Data Type Required?

name The JNDI name of the JIMS queue to which the buffered String Yes
or reliable operation invocation is queued.

Example

The following example shows a code snippet from a JWS file in which the public operation is
buffered and the JMS queue to which WebLogic Server queues the operation invocation is called
my .buffere.queue; only the relevant Java code is shown:

Programming Web Services for WebLogic Server B-25

JWS Annotation Reference

package examples.webservices.buffered;

@webService(name="BufferedPortType",
serviceName="BufferedService",
targetNamespace=""http://example.org")

@BufferQueue(name=""my.buffer._queue')

public class Bufferedimpl {

@webMethod ()
@MessageBuffer(retryCount=10, retryDelay="10 seconds')
@0neway ()
public void sayHelloNoReturn(String message) {
System.out.printIn('sayHelloNoReturn: " + message);
}
}

weblogic.jws.Callback

Description
Target: Field

Specifies that the annotated variable is a callback, which means that you can use the variable to
send callback events back to the client Web Service that invoked an operation of the target Web
Service.

You specify the @Cal Iback annotation in the target Web Service so that it can call back to the
client Web Service. The data type of the annotated variable is the callback interface.

The callback feature works between two WebLogic Web Services. When you program the
feature, however, you create the following three Java files:

e Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically generates an
implementation of the interface. The implementation simply passes a message from the
target Web Service back to the client Web Service. The generated Web Service is deployed
to the same WebLogic Server that hosts the client Web Service.

B-26 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

e JWS file that implements the target Web Service: The target Web Service includes one
or more standard operations that invoke a method defined in the callback interface; this
method in turn sends a message back to the client Web Service that originally invoked the
operation of the target Web Service.

e JWS file that implements the client Web Service: The client Web Service invokes an
operation of the target Web Service. This Web Service includes one or more methods that
specify what the client should do when it receives a callback message back from the target
Web Service via a callback method.

See “Using Callbacks to Notify Clients of Events” on page 6-27 for additional overview and
procedural information about programming callbacks.

The @Cal Iback annotation does not have any attributes.

Example

The following example shows a very simple target Web Service in which a variable called
callback is annotated with the @Cal Iback annotation. The data type of the variable is

Cal lbacklInterface; this means a callback Web Service must exist with this name. After the
variable is injected with the callback information, you can invoke the callback methods defined
in Cal IbackInterface; in the example, the callback method is cal IbackOperation()

The text in bold shows the relevant code:
package examples.webservices.callback;

import weblogic. jws._WLHttpTransport;
import weblogic. jws.Callback;

import javax.jws.WebService;
import javax.jws.WebMethod;

@webService(name=""Cal lbackPortType",
serviceName=""TargetService",
targetNamespace="http://examples.org/"")

@WLHttpTransport(contextPath="cal lback",
serviceUri="TargetService",
portName=""TargetServicePort')

public class TargetServicelmpl {

@Cal lback
CallbacklInterface callback;

Programming Web Services for WebLogic Server B-27

JWS Annotation Reference

@webMethod
public void targetOperation (String message) {

callback.callbackOperation (message);

}

weblogic.jws.CallbackMethod

Description
Target: Method

Specifies the method in the client Web Service that handles the messages it receives from the
callback Web Service. Use the attributes to link the callback message handler methods in the
client Web Service with the callback method in the callback interface.

The callback feature works between two WebLogic Web Services. When you program the
feature, however, you create the following three Java files:

e Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically generates an
implementation of the interface. The implementation simply passes a message from the
target Web Service back to the client Web Service. The generated Web Service is deployed
to the same WebLogic Server that hosts the client Web Service.

o JWS file that implements the target Web Service: The target Web Service includes one
or more standard operations that invoke a method defined in the callback interface; this
method in turn sends a message back to the client Web Service that originally invoked the
operation of the target Web Service.

e JWS file that implements the client Web Service: The client Web Service invokes an
operation of the target Web Service. This Web Service includes one or more methods that
specify what the client should do when it receives a callback message back from the target
Web Service via a callback method.

See “Using Callbacks to Notify Clients of Events” on page 6-27 for additional overview and
procedural information about programming callbacks.

B-28 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Attributes

Table B-13 Attributes of the weblogic.jws.CallbackMethod JWS Annotation Tag

Name Description DataType Required?

operation Specifies the name of the callback method in the String Yes
callback interface for which this method will handle
callback messages.

target Specifies the name of the JAX-RPC stub for which you String Yes
want to receive callbacks.

The stub is the one that has been annotated with the
@ServiceClient field-level annotation.

Example

The following example shows a method of a client Web Service annotated with the

@Cal IbackMethod annotation. The attributes show that a variable called port must have
previously been injected with JAX-RPC stub information and that the annotated method will
handle messages received from a callback operation called cal IbackOperation().

@Cal IbackMethod(target="port", operation="callbackOperation')

@Cal IbackRolesAl lowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell'))

public void callbackHandler(String msg) {

System.out.println (msg);
}

weblogic.jws.CallbackService

Description
Target: Class

Specifies that the JWS file is actually a Java interface that describes a callback Web Service. This
annotation is analogous to the @javax. jws.WebService, but specific to callbacks and with a
reduced set of attributes.

Programming Web Services for WebLogic Server B-29

JWS Annotation Reference

B-30

The callback feature works between two WebLogic Web Services. When you program the
feature, however, you create the following three Java files:

e Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the jwsc Ant task automatically generates an
implementation of the interface. The implementation simply passes a message from the
target Web Service back to the client Web Service. The generated Web Service is deployed
to the same WebLogic Server that hosts the client Web Service.

o JWS file that implements the target Web Service: The target Web Service includes one
or more standard operations that invoke a method defined in the callback interface; this
method in turn sends a message back to the client Web Service that originally invoked the
operation of the target Web Service.

e JWS file that implements the client Web Service: The client Web Service invokes an
operation of the target Web Service. This Web Service includes one or more methods that
specify what the client should do when it receives a callback message back from the target
Web Service via a callback method.

Use the @Cal Ibacklnterface annotation to specify that the Java file is a callback interface file.

When you program the callback interface, you specify one or more callback methods; as with
standard non-callback Web Services, you annotate these methods with the

@javax. jws.WebMethod annotation to specify that they are Web Service operations. However,
contrary to non-callback methods, you never write the actual implementation code for these
callback methods; rather, when you compile the client Web Service with the jwsc Ant task, the
task automatically creates an implementation of the interface and packages it into a Web Service.
This generated implementation specifies that the callback methods all do the same thing: send a
message from the target Web Service that invokes the callback method back to the client Web
Service.

See “Using Callbacks to Notify Clients of Events” on page 6-27 for additional overview and
procedural information about programming callbacks.

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Attributes

Table B-14 Attributes of the weblogic.jws.CallbackService JWS Annotation Tag

Name Description DataType Required?
name Name of the callback Web Service. Maps to the String No.
<wsdl : portType> element in the WSDL file.
Default value is the unqualified name of the Java class in
the JWS file.
serviceName Service name of the callback Web Service. Maps to the String No.

<wsdl :service> element in the WSDL file.

Default value is the unqualified name of the Java class in
the JWS file, appended with the string Service.

Example

The following example shows a very simple callback interface. The resulting callback Web

Service has one callback method, cal IbackOperation().
package examples.webservices.callback;
import weblogic.jws.CallbackService;

import javax.jws.Oneway;
import javax.jws.WebMethod;

@CallbackService
public interface Callbacklnterface {

@WebMethod
@0neway
public void callbackOperation (String msg);

}

weblogic.jws.Context

Description
Target: Field

Programming Web Services for WebLogic Server B-31

JWS Annotation Reference

B-32

Specifies that the annotated field provide access to the runtime context of the Web Service.

When a client application invokes a WebLogic Web Service that was implemented with a JWS
file, WebLogic Server automatically creates a context that the Web Service can use to access, and
sometimes change, runtime information about the service. Much of this information is related to
conversations, such as whether the current conversation is finished, the current values of the
conversational properties, changing conversational properties at runtime, and so on. Some of the
information accessible via the context is more generic, such as the protocol that was used to
invoke the Web Service (HTTP/S or JMS), the SOAP headers that were in the SOAP message
request, and so on. The data type of the annotation field must be
weblogic.wsee . jws.JwsContext, which is a WebLogic Web Service API that includes
methods to query the context.

For additional information about using this annotation, see “Accessing Runtime Information
about a Web Service Using the JwsContext” on page 5-11.

This annotation does not have any attributes.

Example

The following snippet of a JWS file shows how to use the @Context annotation; only parts of the
file are shown, with relevant code in bold:

import weblogic. jws.Context;

import weblogic.wsee. jws.JwsContext;

public class JwsContextimpl {

@Context
private JwsContext ctx;

@webMethod ()
public String getProtocol() {

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

weblogic.jws.Conversation

Description
Target: Method

Specifies that a method annotated with the @Conversation annotation can be invoked as part of
a conversation between two WebLogic Web Services or a stand-alone Java client and a
conversational Web Service.

The conversational Web Service typically specifies three methods, each annotated with the
@Conversation annotation that correspond to the start, continue, and finish phases of a
conversation. Use the @Conversational annotation to specify, at the class level, that a Web
Service is conversational and to configure properties of the conversation, such as the maximum
idle time.

If the conversation is between two Web Services, the client service uses the @ServiceClient
annotation to specify the wsdl, service name, and port of the invoked conversational service. In
both the service and stand-alone client cases, the client then invokes the start, continue, and finish
methods in the appropriate order to conduct a conversation.The only additional requirement to
make a Web Service conversational is that it implement java.io.Serializable.

See “Creating Conversational Web Services” on page 6-37 for detailed information and
examples of using this annotation.

Programming Web Services for WebLogic Server B-33

JWS Annotation Reference

Attributes

Table B-15 Attributes of the weblogic.jws.Conversation JWS Annotation Tag

Name Description DataType Required?

value Specifies the phase of a conversation that the annotated enum No.

method implements.

Possible values are:

e Phase.START
Specifies that the method starts a new conversation. A
call to this method creates a new conversation 1D and
context, and resets its idle and age timer.

< Phase.CONTINUE
Specifies that the method is part of a conversation in
progress. A call to this method resets the idle timer.
This method must always be called after the start
method and before the finish method.

e Phase.FINISH

Specifies that the method explicitly finishes a
conversation in progress.

Default value is Phase . CONT INUE

B-34

Example

The following sample snippet shows a JWS file that contains three methods, start, middle, and
finish) that are annotated with the @Conversation annotation to specify the start, continue,
and finish phases, respectively, of a conversation.

public class ConversationalServicelmpl implements Serializable {

@webMethod
@Conversation (Conversation.Phase.START)
public String start() {
// Java code for starting a conversation goes here

}

@WebMethod
@Conversation (Conversation.Phase.CONTINUE)

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

public String middle(String message) {
// Java code for continuing a conversation goes here

}

@webMethod
@Conversation (Conversation.Phase.FINISH)
public String finish(String message) {
// Java code for finishing a conversation goes here

3
}

weblogic.jws.Conversational

Description
Target: Class

Specifies that a JWS file implements a conversational Web Service.

You are not required to use this annotation to specify that a Web Service is conversational; by
simply annotating a single method with the @Conversation annotation, all the methods of the
JWS file are automatically tagged as conversational. Use the class-level @Conversational
annotation only if you want to change some of the conversational behavior or if you want to
clearly show at the class level that the JWS if conversational.

If you do use the @Conversational annotation in your JWS file, you can specify it without any
attributes if their default values suit your needs. However, if you want to change values such as
the maximum amount of time that a conversation can remain idle, the maximum age of a
conversation, and so on, specify the appropriate attribute.

See “Creating Conversational Web Services” on page 6-37 for detailed information and
examples of using this annotation.

Programming Web Services for WebLogic Server B-35

JWS Annotation Reference

Attributes

Table B-16 Attributes of the weblogic.jws.Conversational JWS Annotation Tag

Name Description DataType Required?
maxldleTime Specifies the amount of time that a conversation can remain String No.
idle before it is finished by WebLogic Server. Activity is
defined by a client Web Service executing one of the phases
of the conversation.
Valid values are a number and one of the following terms:
= seconds
= minutes
= hours
- days
- years
For example, to specify a maximum idle time of ten minutes,
specify the annotation as follows:
@Conversational (maxldleTime="10 minutes')
If you specify a zero-length value (such as 0 seconds, or 0
minutes and so on), then the conversation never times out
due to inactivity.
Default value is 0 seconds.
maxAge The amount of time that a conversation can remain active String No

before it is finished by WebLogic Server.

Valid values are a number and one of the following terms:
= seconds
e minutes

e hours
< days
- years

For example, to specify a maximum age of three days, specify
the annotation as follows:

@Conversational (maxAge="3 days")
Default value is 1 day.

B-36 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Tahle B-16 Attributes of the weblogic.jws.Conversational JWS Annotation Tag

Name Description Data Type Required?

runAsStartUser Specifies whether the continue and finish phases of an existing boolean No.
conversation are run as the user who started the conversation.

Typically, the same user executes the start, continue, and
finish methods of a conversation, so that changing the value of
this attribute has no effect. However, if you set the
singlePrincipal attribute to false, which allows users
different from the user who initiated the conversation to
execute the continue and finish phases of an existing
conversation, then the runAsStartUser attribute specifies
which user the methods are actually “run as”: the user who
initiated the conversation or the different user who executes
subsequent phases of the conversation.

Valid values are true and false. Default value is false.

singlePrincipal Specifies whether users other than the one who started a boolean No
conversation are allowed to execute the continue and finish
phases of the conversation.

Typically, the same user executes all phases of a conversation.
However, if you set this attribute to false, then other users
can obtain the conversation 1D of an existing conversation and
use it to execute later phases of the conversation.

Valid values are true and false. Default value is false.

Example

The following sample snippet shows how to specify that a JWS file implements a conversational
Web Service. The maximum amount of time the conversation can be idle is ten minutes, and the
maximum age of the conversation, regardless of activity, is one day. The continue and finish
phases of the conversation can be executed by a user other than the one that started the
conversation; if this happens, then the corresponding methods are run as the new user, not the
original user.

package examples.webservices.conversation;

@Conversational (maxldleTime="10 minutes",
maxAge=""1 day",

Programming Web Services for WebLogic Server B-37

JWS Annotation Reference

B-38

runAsStartUser=false,
singlePrincipal=false)

public class ConversationalServicelmpl implements Serializable {

weblogic.jws.MessageBuffer

Description
Target: Class, Method

Specifies which public methods of a JWS are buffered. If specified at the class-level, then all
public methods are buffered; if you want only a subset of the methods to be buffered, specify the
annotation at the appropriate method-level.

When a client Web Service invokes a buffered operation of a different WebLogic Web Service,
WebLogic Server (hosting the invoked Web Service) puts the invoke message on a JMS queue
and the actual invoke is dealt with later on when the WebLogic Server delivers the message from
the top of the IMS queue to the Web Service implementation. The client does not need to wait
for a response, but rather, continues on with its execution. For this reason, buffered operations
(without any additional asynchronous features) can only return void and must be marked with
the @Oneway annotation. If you want to buffer an operation that returns a value, you must use
asynchronous request-response from the invoking client Web Service. See “Invoking a Web
Service Using Asynchronous Request-Response” on page 6-19 for more information.

Buffering works only between two Web Services in which one invokes the buffered operations
of the other.

Use the optional attributes of @MessageBuffer to specify the number of times the IMS queue
attempts to invoke the buffered Web Service operation until it is invoked successfully, and the
amount of time between attempts.

Use the optional class-level @BufferQueue annotation to specify the JMS queue to which the
invoke messages are queued. If you do not specify this annotation, the messages are queued to
the default Web Service queue, weblogic.wsee.DefaultQueue.

See “Creating Buffered Web Services” on page 6-50 for detailed information and examples for
using this annotation.

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Attributes

Table B-17 Attributes of the weblogic.jws.MessageBuffer JWS Annotation Tag

Name Description DataType Required?

retryCount Specifies the number of times that the JMS queue on the int No
invoked WebL ogic Server instance attempts to deliver the
invoking message to the Web Service implementation
until the operation is successfully invoked.

Default value is 3.

retryDelay Specifies the amount of time that elapses between String No
message delivery retry attempts. The retry attempts are
between the invoke message on the JMS queue and
delivery of the message to the Web Service
implementation.
Valid values are a number and one of the following terms:
= seconds
e minutes
= hours
= days
- years
For example, to specify a retry delay of two days, specify:

@MessageBuffer(retryDelay="2 days')
Default value is 5 seconds.

Example

The following example shows a code snippet from a JWS file in which the public operation
sayHel loNoReturn is buffered and the JMS queue to which WebLogic Server queues the
operation invocation is called my . buffere . queue. The WebLogic Server instance that hosts the
invoked Web Service tries a maximum of 10 times to deliver the invoke message from the JMS
queue to the Web Service implementation, waiting 10 seconds between each retry. Only the
relevant Java code is shown in the following snippet:

package examples.webservices.buffered;

Programming Web Services for WebLogic Server B-39

JWS Annotation Reference

B-40

@webService(name="BufferedPortType",
serviceName="BufferedService",
targetNamespace=""http://example.org")

@BufferQueue(name=""my.buffer.queue')

public class Bufferedimpl {

@webMethod ()
@MessageBuffer(retryCount=10, retryDelay="10 seconds')

@0oneway ()
public void sayHelloNoReturn(String message) {
System.out.printIn('sayHelloNoReturn: " + message);

}
}

weblogic.jws.Policies

Description
Target: Class, Method
Specifies an array of @weblogic.jws.Policy annotations.

Use this annotation if you want to attach more than one WS-Policy files to a class or method of
a JWS file. If you want to attach just one WS-Policy file, you can use the
@weblogic.jws.Policy on its own.

See “Using Web Service Reliable Messaging” on page 6-1 and “Configuring Message-Level
Security (Digital Signatures and Encryption)” on page 10-3 for detailed information and
examples of using this annotation.

This JWS annotation does not have any attributes.

Example

@Policies({
@Policy(uri="policy:firstPolicy.xml'),
@Policy(uri="policy:secondPolicy.xml')

1))

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

weblogic.jws.Policy

Description
Target: Class, Method

Specifies that a WS-Policy file, which contains information about digital signatures, encryption,
or Web Service reliable messaging, should be applied to the request or response SOAP messages.

This annotation can be used on its own to apply a single WS-Policy file to a class or method. If
you want to apply more than one WS-Policy file to a class or method, use the
@weblogic. jws.Policies annotation to group them together.

If this annotation is specified at the class level, the indicated WS-Policy file or files are applied
to every public operation of the Web Service. If the annotation is specified at the method level,
then only the corresponding operation will have the WS-Policy file applied.

By default, WS-Policy files are applied to both the request (inbound) and response (outbound)
SOAP messages. You can change this default behavior with the direction attribute.

Also by default, the specified WS-Policy file is attached to the generated and published WSDL
file of the Web Service so that consumers can view all the WS-Policy requirements of the Web
Service. Use the attachToWsdl attribute to change this default behavior.

See “Using Web Service Reliable Messaging” on page 6-1 and “Configuring Message-Level
Security (Digital Signatures and Encryption)” on page 10-3 for detailed information and
examples of using this annotation.

WARNING: Asiis true for all JWS annotations, the @Pol icy annotation cannot be overridden
at runtime, which means that the WS-Policy file you specify at buildtime using
the annotation will always be associated with the Web Service. This means, for
example, that although you can view the associated WS-Policy file at runtime
using the Administration Console, you cannot delete (unassociate) it. You can,
however, associate additional WS-Policy files using the console; see Associate a
WS-Policy file with a Web Service for detailed instructions.

Programming Web Services for WebLogic Server B-41

JWS Annotation Reference

Attributes

Table B-18 Attributes of the weblogic.jws.Policies JWS Annotation Tag

Name

Description Data Type

Required?

uri

Specifies the location from which to retrieve the String
WS-Policy file.

Use the http: prefix to specify the URL of a WS-Policy
file on the Web.

Use the pol icy: prefix to specify that the WS-Policy file
is packaged in the Web Service archive file or in a
shareable J2EE library of WebLogic Server, as shown in
the following example:

@Policy(uri="policy:MyPolicyFile.xml")

If you are going to publish the WS-Policy file in the Web
Service archive, the WS-Policy XML file must be located
in either the META-INF/policies or
WEB-INF/policies directory of the EJB JAR file (for
EJB implemented Web Services) or WAR file (for Java
class implemented Web Services), respectively.

For information on publishing the WS-Policy file in a
library, see Creating Shared J2EE Libraries and Optional
Packages.

Yes.

direction

Specifies when to apply the policy: on the inbound request enum
SOAP message, the outbound response SOAP message,

or both (default).

Valid values for this attribute are:

e Policy.Direction.both

e Policy.Direction. inbound

< Policy.Direction.outbound

The default value is Policy.Direction.both.

No.

attachToWsdl

Specifies whether the WS-Policy file should be attached boolean
to the WSDL that describes the Web Service.

Valid values are true and false. Default value is
false.

No.

B-42 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Example
@Policy(uri="policy:myPolicy.xml",
attachToWsdl=true,
direction=Policy.Direction.outbound)

weblogic.jws.ReliabilityBuffer

Description
Target: Method

Use this annotation to configure reliable messaging properties for an operation of a reliable Web
Service, such as the number of times WebLogic Server should attempt to deliver the message
from the JMS queue to the Web Service implementation, and the amount of time that the server
should wait in between retries.

Note: It is assumed when you specify this annotation in a JWS file that you have already
enabled reliable messaging for the Web Service by also including a @Policy annotation
that specifies a WS-Policy file that has Web Service reliable messaging policy assertions.

If you specify the @Reliabi lityBuffer annotation, but do not enable reliable
messaging with an associated WS-Policy file, then WebLogic Server ignores this
annotation.

See “Using Web Service Reliable Messaging” on page 6-1 for detailed information about
enabling Web Services reliable messaging for your Web Service.

Programming Web Services for WebLogic Server B-43

JWS Annotation Reference

Attributes

Table B-19 Attributes of the weblogic.jws.ReliabilityBuffer JWS Annotation Tag

Name

Description Data Type

Required?

retryCount

Specifies the number of times that the JMS queue on the int
destination WebLogic Server instance attempts to deliver

the message from a client that invokes the reliable

operation to the Web Service implementation.

Default value is 3.

No

retryDelay

Specifies the amount of time that elapses between String

message delivery retry attempts. The retry attempts are

between the client’s request message on the JIMS queue

and delivery of the message to the Web Service

implementation.

Valid values are a number and one of the following terms:

= seconds

< minutes

< hours

- days

- years

For example, to specify a retry delay of two days, specify:
@ReliabilityBuffer(retryDelay="2
days')

Default value is5 seconds.

No

Example

The following sample snippet shows how to use the @Rel iabi I ityBuffer annotation at the
method-level to change the default retry count and delay of a reliable operation; only relevant
Java code is shown:

package examples.webservices.reliable;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.Oneway;

B-44 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

import weblogic.jws_.ReliabilityBuffer;
import weblogic.jws.Policy;

@WebService(name="ReliableHelloWorldPortType",
serviceName="ReliableHel loWorldService')

@Policy(uri="ReliableHelloWorldPolicy.xml",
direction=Policy.Direction. inbound,
attachToWsdl=true)

public class ReliableHelloWorldImpl {

@webMethod ()

@oneway ()
@ReliabilityBuffer(retryCount=10, retryDelay="10 seconds')

public void helloWorld(String input) {
System.out._printin(*" Hello World " + input);

}
}

weblogic.jws.ReliabilityErrorHandler

Description
Target: Method

Specifies the method that handles the error that results when a client Web Service invokes a
reliable Web Service, but the client does not receive an acknowledgement that the reliable Web
Service actually received the message.

This annotation is relevant only when you implement the Web Service reliable messaging
feature; you specify the annotation in the client-side Web Service that invokes a reliable Web
Service.

The method you annotate with the @Rel iabi I ityErrorHandler annotation takes a single
parameter of data type weblogic.wsee.reliability.ReliabilityErrorContext. You can
use this context to get more information about the cause of the error, such as the operation that
caused it, the target Web Service, the fault, and so on. The method must return void.

Programming Web Services for WebLogic Server B-45

JWS Annotation Reference

The single attribute of the @Reliabi l ityErrorHandler annotation specifies the variable into
which you have previously injected the JAX-RPC stub information of the reliable Web Service
that the client Web Service is invoking; you inject this information in a variable using the
@weblogic. jws.ServiceClient annotation.

Attributes

Table B-20 Attributes of the weblogic.jws.ReliabilityErrorHandler JWS Annotation Tag

Name Description Data Type Required?

target Specifies the target stub name for which this method String Yes

handles reliability failures.

B-46

Example

The following code snippet from a client Web Service that invokes a reliable Web Service shows
how to use the @Reliabi lityErrorHandler annotation; not all code is shown, and the code
relevant to this annotation is shown in bold:

package examples.webservices.reliable;

import weblogic.jws.ServiceClient;
import weblogic.jws.ReliabilityErrorHandler;

import examples.webservices.reliable._ReliableHelloWorldPortType;

import weblogic.wsee.reliability.ReliabilityErrorContext;
import weblogic.wsee.reliability.ReliableDeliveryException;

@WebService(name="ReliableClientPortType",

public class ReliableClientimpl

{

@ServiceClient(

wsdlLocation="http://localhost:7001/ReliableHel loWorld/ReliableHelloWorld?
wsbL™,

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

serviceName="ReliableHelloWorldService",
portName="ReliableHelloWorldServicePort')

private ReliableHelloWorldPortType port;

@WebMethod
public void callHelloWorld(String input, String serviceUrl)
throws RemoteException {

}

@ReliabilityErrorHandler(target="port")
public void onReliableMessageDeliveryError(ReliabilityErrorContext ctx) {

ReliableDeliveryException fault = ctx.getFault();

String message = null;

if (fault !'= null) {

message = ctx.getFault().getMessage();

3

String operation = ctx.getOperationName();

System.out.printin(*'Reliable operation " + operation + ' may have not
invoked. The error message is ' + message);

3
}

In the example, the port variable has been injected with the JAX-RPC stub that corresponds to
the ReliableHel loWorldService Web Service, and it is assumed that at some point in the
client Web Service an operation of this stub is invoked. Because the

onReliableMessageDel iveryError method is annotated with the
@ReliabilityErrorHandler annotation and is linked with the port JAX-RPC stub, the
method is invoked if there is a failure in an invoke of the reliable Web Service. The reliable error
handling method uses the Reliabi lityErrorContext object to get more details about the cause
of the failure.

weblogic.jws.ServiceClient

Description
Target: Field

Programming Web Services for WebLogic Server B-47

JWS Annotation Reference

B-48

Specifies that the annotated variable in the JWS file is a JAX-RPC stub used to invoke another
WebLogic Web Service when using the following features:

e Web Service reliable messaging
e asynchronous request-response

e conversations

You use the reliable messaging and asynchronous request-response features only between two
Web Services; this means, for example, that you can invoke a reliable Web Service operation
only from within another Web Service, not from a stand-alone client. In the case of reliable
messaging, the feature works between any two application servers that implement the
WS-ReliableMessaging 1.0 specification. In the case of asynchronous request-response, the
feature works only between two WebLogic Server instances.

You use the @ServiceClient annotation in the client Web Service to specify which variable is
a JAX-RPC port type for the Web Service described by the @ServiceClient attributes. The
Enterprise Application that contains the client Web Service must also include the JAX-RPC stubs
of the Web Service you are invoking; you generate the stubs with the clientgen Ant task.

See Chapter 6, “Advanced JWS Programming: Implementing Asynchronous Features,” for
additional information and examples of using the @ServiceClient annotation.

Programming Web Services for WebLogic Server

Attributes

WebLogic-Specific JWS Annotations Reference

Table B-21 Attributes of the weblogic.jws.ServiceClient JWS Annotation Tag

Name

Description

Data Type

Required?

serviceName

Specifies the name of the Web Service that you are
invoking. Corresponds to the name attribute of the
<service> element in the WSDL of the invoked Web
Service.

If you used a JWS file to implement the invoked Web
Service, this attribute corresponds to the serviceName
attribute of the @WebService JWS annotation in the
invoked Web Service.

String

Yes

portName

Specifies the name of the port of the Web Service you are
invoking. Corresponds to the name attribute of the
<port> child element of the <service> element.

If you used a JWS file to implement the invoked Web
Service, this attribute corresponds to the portName
attribute of the @WLHttpTransport JWS
annotation in the invoked Web Service.

If you do not specify this attribute, it is assumed that the
<service> element in the WSDL contains only one
<port> child element, which @ServiceClient uses.
If there is more than one port, the client Web Service
returns a runtime exception.

String

wsdlLocation

Specifies the WSDL file that describes the Web Service
you are invoking.

If you do not specify this attribute, the client Web Service
uses the WSDL file from which the cl ientgen Ant task
created the JAX-RPC Service implementation of the
Web Service to be invoked.

String

endpointAddress

Specifies the endpoint address of the Web Service you are
invoking.

If you do not specify this attribute, the client Web Service
uses the endpoint address specified in the WSDL file.

String

No.

Programming Web Services for WebLogic Server B-49

JWS Annotation Reference

Example

The following JWS file excerpt shows how to use the @ServiceClient annotation in a client
Web Service to annotate a field (port) with the JAX-RPC stubs of the Web Service being
invoked (called ReliableHel loworldService whose WSDL is at the URL
http://1ocalhost:7001/ReliableHel loWorld/ReliableHel lowor1d?WSDL); only
relevant parts of the example are shown;

package examples.webservices.reliable;

import javax.jws.WebService;

import weblogic.jws.ServiceClient;

import examples.webservices.reliable.ReliableHelloWorldPortType;
@webService(..-.

public class ReliableClientimpl

{

@ServiceClient(

wsdlLocation="http://localhost:7001/ReliableHel loWorld/ReliableHelloWorld?
wsDL",

serviceName="ReliableHelloWorldService",

portName="ReliableHel loWorldServicePort')

private ReliableHelloWorldPortType port;

@WebMethod

public void callHelloWorld(String input, String serviceUrl)
throws RemoteException {
port_helloWorld(input);

System.out.printIn(’" Invoked the ReliableHelloWorld.helloWorld operation
reliably.");

}

B-50 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

weblogic.jws.StreamAttachments

Description
Target: Class

Specifies that the WebLogic Web Services runtime use streaming APIs when reading the
parameters of all methods of the Web Service. This increases the performance of Web Service
operation invocation, in particular when the parameters are large, such as images.

You cannot use this annotation if you are also using the following features in the same Web
Service:

e Conversations
e Reliable Messaging
e JMS Transport

e A proxy server between the client application and the Web Service it invokes

The @StreamAttachments annotation does not have any attributes.

Example

The following simple JWS file shows how to specify the @StreamAttachments annotation; the
single method, echoAttachment(), simply takes a DataHandler parameter and echoes it back
to the client application that invoked the Web Service operation. The WebLogic Web Services
runtime uses streaming when reading the DataHandler content.

package examples.webservices.stream_attach;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic.jws.StreamAttachments;

import javax.activation.DataHandler;
import java.rmi.RemoteException;

@WebService(name=""StreamAttachPortType",
serviceName=""StreamAttachService",
targetNamespace=""http://example.org"™)

Programming Web Services for WebLogic Server B-51

JWS Annotation Reference

@WLHttpTransport(contextPath=""stream attach",
serviceUri="StreamAttachService",
portName="'StreamAttachServicePort')

@StreamAttachments

/**
* Example of stream attachments
*/

public class StreamAttachlmpl {

@webMethod()
public DataHandler echoAttachment(DataHandler dh) throws RemoteException {

return dh;

}
}

weblogic.jws.Transactional

Description
Target: Class, Method

Specifies whether the annotated operation, or all the operations of the JWS file when the
annotation is specified at the class-level, runs or run inside of a transaction. By default, the
operations do not run inside of a transaction.

B-52 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Attributes

Table B-22 Attributes of the weblogic.jws.Transactional JWS Annotation Tag

Name Description DataType Required?

value Specifies whether the operation (when used at the method boolean No.
level) or all the operations of the Web Service (when
specified at the class level) run inside of a transaction.

Valid values are true and false. Default value is
false.

timeout Specifies a timeout value, in seconds, for the current int No
transaction.

The default value for this attribute is 30 seconds.

Example

The following example shows how to use the @Transactional annotation to specify that an
operation of a Web Service executes as part of a transaction:

package examples.webservices.transactional;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws.WLHttpTransport;
import weblogic. jws.Transactional;

@WebService(name="TransactionPojoPortType",
serviceName="TransactionPojoService",
targetNamespace=""http://example.org"™)

@WLHttpTransport(contextPath=""transactionsPojo",
serviceUri="TransactionPojoService",
portName=""TransactionPojoPort')

/**

* This JWS file forms the basis of simple WeblLogic

* Web Service with a single operation: sayHello. The operation executes
* as part of a transaction.

*

*

@author Copyright (c) 2004 by BEA Systems. All rights reserved.
*/

Programming Web Services for WebLogic Server B-53

JWS Annotation Reference

public class TransactionPojolmpl {

@webMethod ()
@Transactional (value=true)

public String sayHello(String message) {

}

B-54

System.out.printIn('sayHello:" + message);
return "Here is the message: ""

+ message + ""'';

weblogic.jws.Types

Description
Target: Method, Parameter

Specifies a comma-separated list of fully qualified Java class names of the alternative data types
for a return type or parameter. The alternative data types must extend the data type specified in
the method signature; if this is not the case, the jwsc Ant task returns a validation error when you
compile the JWS file into a Web Service.

For example, assume you have created the Address base data type, and then created USAAddress
and CAAddress that extend this base type. If the method signature specifies that it takes an
Address parameter, you can annotate the parameter with the @Types annotation to specify that
that the public operation also takes USAAddress and CAAddress as a parameter, in addition to
the base Address data type.

You can also use this annotation to restrict the data types that can be contained in parameters or
return values of collection data types, such as java.util .Collectionor java.util.List. By
restricting the allowed contained data types, the generated WSDL is specific and unambiguous,
and the Web Services runtime can do a better job of qualifying the parameters when a client
application invokes a Web Service operation.

If you specify this annotation at the method-level, then it applies only to the return value. If you
want the annotation to apply to parameters, you must specify it at the parameter-level for each
relevant parameter.

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Attributes

Table B-23 Attributes of the weblogic.jws.Types JWS Annotation Tag

Name Description DataType Required?

value Comma-separated list of fully qualified class names for String[] Yes
either the alternative data types that can also be used
instead of the original data type, or the allowed data types
contained in the collection-type parameter or return value.

Example

The following example shows a simple JWS file that uses the @Types annotation, with relevant
Java code shown in bold:

package examples.webservices.types;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic.jws.Types;

import examples.webservices.types._BasicStruct;

@WebService(serviceName="TypesService",
name=""TypesPortType",
targetNamespace=""http://example.org™)

@WLHttpTransport(contextPath=""types",
serviceUri="TypesService",
portName=""TypesServicePort')

public class Typesimpl {

@webMethod()
@Types({"'examples.webservices.types.ExtendedStruct'})
public BasicStruct echoStruct(
@Types({"'examples.webservices.types.ExtendedStruct}) BasicStruct
struct)
{

System.out.printIn(*echoStruct called™);

Programming Web Services for WebLogic Server B-55

JWS Annotation Reference

return struct;

}
}

In the example, the signature of the echoStruct() method shows that it takes a BasicStruct
value as both a parameter and a return value. However, because both the method and the struct
parameter are annotated with the @Types annotation, a client application invoking the
echoStruct operation can also pass it a parameter of data type ExtendedStruct; in this case
the operation also returns an ExtendedStruct value. It is assumed that ExtendedStruct
extends BasicStruct.

weblogic.jws.WildcardBinding

Description
Target: Class

Specifies the XML Schema data type to which a wildcard class, such as

javax.xml .soap.SOAPElement Or org.apache.xmlbeans.XmlObject, binds. By default,
these Java data types bind to the <xsd:any> XML Schema data type. By using this class-level
annotation, you can specify that the wildcard classes bind to <xsd:anyType> instead.

Attributes

Table B-24 Attributes of the weblogic.jws.WildcardBinding JWS Annotation Tag

Name Description DataType Required?

className Specifies the fully qualified name of the wildcard class for ~ String Yes.
which this binding applies. Typical values are
Javax.xml .soap.SOAPElement and
org.apache.xmlbeans.XmlObject.

binding Specifies the XML Schema data type to which the enum Yes.
wildcard class should bind.
You can specify one of the following values:
= WildcardParticle_ANY
e WildcardParticle. ANYTYPE

B-56 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Example

The following example shows how to use the @wi IdcardBinding annotation to specify that the
Apache XMLBeans data type XMLObject should bind to the <xsd:any> XML Schema data type
for this Web Service:

@wildcardBindings({
@wildcardBinding(className=""org.apache.xmlbeans.XmlObject",
binding=WildcardParticle._ANY),
@wildcardBinding(className="0org.apache.xmlbeans._.XmlObject[]",
binding=WildcardParticle_ANY)})
public class Simplelmpl {

weblogic.jws.WildcardBindings

Description
Target: Class

Specifies an array of @weblogic.jws.WildcardBinding annotations.
This JWS annotation does not have any attributes.

See “weblogic.jws.WildcardBinding” on page B-56 for an example.

weblogic.jws.WLHttpTransport

Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web Service
over the HTTP transport, as well as the name of the port in the generated WSDL.

You can specify this annotation only once (maximum) in a JWS file.

Programming Web Services for WebLogic Server B-57

JWS Annotation Reference

Attributes

Table B-25 Attributes of the weblogic.jws.WLHttpTransport JWS Annotation Tag

Name

Description

Data Type

Required?

contextPath

Context path of the Web Service. You use this value in the
URL that invokes the Web Service.

For example, assume you set the context path for a Web
Service to Financial; apossible URL for the WSDL of
the deployed WebLogic Web Service is as follows:

http://hostname:7001/Ffinancial/GetQuo
te?WSDL
The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is Hel loWor 1dImpl . java, then the default
value of its contextPath is Hel lowor IdImpl.

String

No.

serviceUri

Web Service URI portion of the URL. You use this value
in the URL that invokes the Web Service.

For example, assume you set this attribute to GetQuote;
a possible URL for the deployed WSDL of the service is
as follows:

http://hostname:7001/financial/GetQuo
te?WSDL
The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is Hel loWor 1dImpl . java, then the default
value of its serviceUri is Hel loWor 1dImpl.

String

No.

portName

The name of the port in the generated WSDL. This
attribute maps to the name attribute of the <port>
element in the WSDL.

The default value of this attribute is based on the
@javax. jws.WebService annotation of the JWS file.
In particular, the default portName is the value of the
name attribute of @WebService annotation, plus the
actual text SoapPort. For example, if
@WebService.name is set to MyService, then the
default portName is MyServiceSoapPort.

String

No.

B-58 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Example

@WLHttpTransport(contextPath=""complex",
serviceUri="ComplexService",
portName=""ComplexServicePort')

weblogic.jws.WLHttpsTransport

Description
Target: Class

WARNING: The @weblogic.jws.WLHttpsTransportannotation is deprecated as of version
9.2 of WebLogic Server. You should use the
@weblogic. jws.WLHttpTransport annotation instead because it now supports
both the HTTP and HTTPS protocols. If you want client applications to access the
Web Service using only the HTTPS protocol, then you must specify the
@weblogic. jws.security.UserDataConstraint JWS annotation in your
JWS file.

Specifies the context path and service URI sections of the URL used to invoke the Web Service
over the HTTPS transport, as well as the name of the port in the generated WSDL.

You can specify this annotation only once (maximum) in a JWS file.

Programming Web Services for WebLogic Server B-59

JWS Annotation Reference

Attributes

Table B-26 Attributes of the weblogic.jws.WLHttpsTransport JWS Annotation Tag

Name

Description

Data Type

Required?

contextPath

Context path of the Web Service. You use this value in the
URL that invokes the Web Service.

For example, assume you set the context path for a Web
Service to Financial; apossible URL for the WSDL of
the deployed WebLogic Web Service is as follows:

https://hostname:7001/financial/GetQu
ote?WSDL
The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is Hel loWor 1dImpl . java, then the default
value of its contextPath is Hel lowor IdImpl.

String

No.

serviceUri

Web Service URI portion of the URL. You use this value
in the URL that invokes the Web Service.

For example, assume you set this attribute to GetQuote;
a possible URL for the deployed WSDL of the service is
as follows:

https://hostname:7001/financial/GetQu
ote?WSDL
The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is Hel loWor 1dImpl . java, then the default
value of its serviceUri is Hel loWor 1dImpl.

String

No.

portName

The name of the port in the generated WSDL. This
attribute maps to the name attribute of the <port>
element in the WSDL.

The default value of this attribute is based on the
@javax. jws.WebService annotation of the JWS file.
In particular, the default portName is the value of the
name attribute of @WebService annotation, plus the
actual text SoapPort. For example, if
@WebService.name is set to MyService, then the
default portName is MyServiceSoapPort.

String

No.

B-60 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Example

@WLHttpsTransport(portName="helloSecurePort",
contextPath=""secure",
serviceUri="SimpleSecureBean')

weblogic.jws.WLImsTransport

Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web Service
over the JMS transport, as well as the name of the port in the generated WSDL.. You also use this
annotation to specify the JMS queue to which WebLogic Server queues the SOAP request

messages from invokes of the operations.

You can specify this annotation only once (maximum) in a JWS file.

Attributes

Tahle B-27 Attributes of the weblogic.jws.WLImsTransport JWS Annotation Tag

Name Description Data Type Required?
contextPath Context root of the Web Service. You use this value inthe String No.
URL that invokes the Web Service.
serviceUri Web Service URI portion of the URL used by client String No.
applications to invoke the Web Service.
queue The JNDI name of the JMS queue that you have String No.

configured for the JMS transport. See “Using JMS
Transport as the Connection Protocol” on page 7-1 for
details about using JMS transport.

The default value of this attribute, if you do not specify it,
isweblogic.wsee.DefaultQueue. You must still
create this JIMS queue in the WebLogic Server instance to
which you deploy your Web Service.

Programming Web Services for WebLogic Server B-61

JWS Annotation Reference

Tahle B-27 Attributes of the weblogic.jws.WLImsTransport JWS Annotation Tag

Name Description Data Type Required?

portName The name of the port in the generated WSDL. This String No.
attribute maps to the name attribute of the <port>
element in the WSDL.

If you do not specify this attribute, the jwsc generates a
default name based on the name of the class that
implements the Web Service.

connectionFactory The JNDI name of the JMS connection factory that you String Yes.
have configured for the JMS transport. See “Using IMS
Transport as the Connection Protocol” on page 7-1 for
details about using JMS transport.

Example

The following example shows how to specify that the JWS file implements a Web Service that is
invoked using the JMS transport. The JMS queue to which WebLogic Server queues SOAP
message requests from invokes of the service operations is IMSTransportQueue; it is assumed
that this JMS queue has already been configured for WebLogic Server.

WLImsTransport(contextPath="transports",
serviceUri="JMSTransport",
queue=""JMSTransportQueue",
portName="JMSTransportServicePort")

weblogic.jws.WSDL

Description

Target: Class

Specifies whether to expose the WSDL of a deployed WebLogic Web Service.
By default, the WSDL is exposed at the following URL.:

http://[host]: [port]/[contextPath]/[serviceUri]?WSDL

where:

e host refers to the computer on which WebLogic Server is running.

B-62 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

e port refers to the port number on which WebLogic Server is listening (default value is
7001).

e contextPath and serviceUri refer to the value of the contextPath and serviceUri
attributes, respectively, of the @WLHttpTransport JWS annotation of the JWS file that
implements your Web Service.

For example, assume you used the following @WLHttpTransport annotation:

@WLHttpTransport(portName="helloPort",
contextPath="hello",
serviceUri="Simplelmpl™)

The URL to get view the WSDL of the Web Service, assuming the service is running on a host
called ariel at the default port number, is:

http://ariel-7001/hello/Simplelmpl?WSDL

Attributes

Table B-28 Attributes of the weblogic.jws.WSDL JWS Annotation Tag

Name Description DataType Required?
exposed Specifies whether to expose the WSDL of a deployed boolean No.
Web Service.

Valid values are true and fal se. Default value is true,
which means that by default the WSDL is exposed.

Example

The following use of the @wSDL annotation shows how to specify that the WSDL of a deployed
Web Service not be exposed; only relevant Java code is shown:

package examples.webservices;
import....

@WebService(name="WsdlAnnotationPortType",
serviceName="WsdlAnnotationService",
targetNamespace="http://example.org")

@WSDL (exposed=false)

Programming Web Services for WebLogic Server B-63

JWS Annotation Reference

public class WsdlAnnotationlmpl {

}

weblogic.jws.security.CallbackRolesAllowed

Description
Target: Method, Field
Specifies an array of @SecurityRole JWS annotations that list the roles that are allowed to

invoke the callback methods of the Web Service. A user that is mapped to an unspecified role,
or is not mapped to any role at all, would not be allowed to invoke the callback methods.

If you use this annotation at the field level, then the specified roles are allowed to invoke all
callback operations of the Web Service. If you use this annotation at the method-level, then the
specified roles are allowed to invoke only that callback method. If specified at both levels, the
method value overrides the field value if there is a conflict.

Attributes

Tahle B-29 Attributes of the weblogic.jws.security.CallbackRolesAllowed JWS Annotation Tag

Name Description DataType Required?

value Array of String[] Yes.

@weblogic. jws.security.RolesAllowed that
list the roles allowed to invoke the callback methods.

B-64

Example

The following example shows how to use the @Cal IbackRolesAl lowed annotation at the
method level to specify that the role engineer is allowed to invoke the callback method:

@Cal lbackMethod(target=""port", operation="callbackOperation')

@Cal lbackRolesAl lowed(@SecurityRole(role="engineer",
mapToPrincipals="shackell'))

public void callbackHandler(String msg) {

System.out.println (msg);

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

}

weblogic.jws.security.RolesAllowed

Description

Target: Class, Method

JWS annotation used to enable basic authentication for a Web Service. In particular, it specifies
an array of @SecurityRole JWS annotations that describe the list of roles that are allowed to

invoke the Web Service. A user that is mapped to an unspecified role, or is not mapped to any
role at all, would not be allowed to invoke the Web Service.

If you use this annotation at the class-level, then the specified roles are allowed to invoke all
operations of the Web Service. To specify roles for just a specific set of operations, specify the
annotation at the operation-level.

Attributes

Tahle B-30 Attributes of the weblogic.jws.security.RolesAllowed JWS Annotation Tag

Name Description DataType Required?

value Array of String[] Yes.
@weblogic. jws.security.RolesAl lowed that
list the roles allowed to invoke the Web Service methods

Example

package examples.webservices.security_roles;

import weblogic. jws.security.RolesAllowed;
import weblogic. jws.security.SecurityRole;

@WebService(name="SecurityRolesPortType",
serviceName="SecurityRolesService",
targetNamespace="http://example.org")

@RolesAllowed ({
@SecurityRole (role="manager",

Programming Web Services for WebLogic Server B-65

JWS Annotation Reference

B-66

mapToPrincipals={ "juliet”,"amanda" }),
@SecurityRole (role="vp')
)

public class SecurityRolesimpl {

In the example, only the roles manager and vp are allowed to invoke the Web Service. Within
the context of the Web Service, the users juliet and amanda are assigned the role manager. The
role vp, however, does not include a mapToPrincipals attribute, which implies that users have
been mapped to this role externally. It is assumed that you have already added the two users
(Juliet and amanda) to the WebLogic Server security realm.

weblogic.jws.security.RolesReferenced

Description

Target: Class

JWS annotation used to specify the list of role names that reference actual roles that are allowed
to invoke the Web Service. In particular, it specifies an array of @SecurityRoleRef JWS

annotations, each of which describe a link between a referenced role name and an actual role
defined by a @SecurityRole annotation.

This JWS annotation does not have any attributes.

Example

package examples.webservices.security_roles;

import weblogic.jws.security.RolesAllowed;
import weblogic.jws.security.SecurityRole;
import weblogic. jws.security.RolesReferenced;
import weblogic.jws.security.SecurityRoleRef;

@webService(name="SecurityRolesPortType",
serviceName="SecurityRolesService",
targetNamespace="http://example.org')

@RolesAllowed ({
@SecurityRole (role="manager",

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

mapToPrincipals={ "juliet”,"amanda" }),
@SecurityRole (role="vp™)
)

@RolesReferenced (
@SecurityRoleRef (role="mgr", link="manager')

)

public class SecurityRoleslmpl {

In the example, the role mgr is linked to the role manager, which is allowed to invoke the Web
Service. This means that any user who is assigned to the role of mgr is also allowed to invoke the
Web Service.

weblogic.jws.security.RunAs

Description
Target: Class
Specifies the role and user identity which actually runs the Web Service in WebL ogic Server.

For example, assume that the @RunAs annotation specifies the roleA role and userA principal.
This means that even if the Web Service is invoked by userB (mapped to roleB), the relevant
operation is actually executed internal as userA.

Attributes

Table B-31 Attributes of the weblogic.jws.security.RunAs JWS Annotation

Name Description DataType Required?
role Specifies the role which the Web Service should be runas. String Yes.
mapToPrincipal Specifies the principal user that maps to the role. String Yes.

It is assumed that you have already configured the
specified principal (user) as a valid WebLogic Server
user, typically using the Administration Console. See
Create Users for details.

Programming Web Services for WebLogic Server B-67

JWS Annotation Reference

B-68

Example

package examples.webservices.security_roles;

import weblogic.jws.security.RunAs;

@WebService(name="SecurityRunAsPortType",
serviceName=""SecurityRunAsService",
targetNamespace=""http://example.org")

@RunAs (role="manager', mapToPrincipal="juliet")

public class SecurityRunAsimpl {

The example shows how to specify that the Web Service is always run as user juliet, mapped
to the role manager, regardless of who actually invoked the Web Service.

weblogic.jws.security.SecurityRole

Description
Target: Class, Method

Specifies the name of a role that is allowed to invoke the Web Service. This annotation is always
specified in the JWS file as a member of a @RolesAl lowed array.

When a client application invokes the secured Web Service, it specifies a user and password as
part of its basic authentication. It is assumed that an administrator has already configured the user
as a valid WebLogic Server user using the Administration Console; for details see Create Users.

The user that is going to invoke the Web Service must also be mapped to the relevant role. You
can perform this task in one of the following two ways:

e Use the Administration Console to map the user to the role. In this case, you do not specify
the mapToPrincipals attribute of the @SecurityRole annotation. For details, see Add
Users to Roles.

e Map the user to a role only within the context of the Web Service by using the
mapToPrincipals attribute to specify one or more users.

To specify that multiple roles are allowed to invoke the Web Service, include multiple
@SecurityRole annotations within the @RolesAl lowed annotation.

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

Attributes

Table B-32 Attributes of the weblogic.jws.security.SecurityRole JWS Annotation

Name Description DataType Required?

role The name of the role that is allowed to invoke the Web String Yes
Service.

mapToPrincipals An array of user names that map to the role. String[] No

If you do not specify this attribute, it is assumed that you
have externally defined the mapping between users and
the role, typically using the Administration Console.

Example

package examples.webservices.security_roles;

import weblogic.jws.security.RolesAllowed;
import weblogic. jws.security.SecurityRole;

@WebService(name="SecurityRolesPortType",
serviceName="SecurityRolesService",
targetNamespace=""http://example.org")

@RolesAllowed ({
@SecurityRole (role="manager",
mapToPrincipals={ "juliet","amanda" }),
@SecurityRole (role="vp™)
)

public class SecurityRoleslImpl {

In the example, only the roles manager and vp are allowed to invoke the Web Service. Within
the context of the Web Service, the users jul iet and amanda are assigned the role manager. The
role vp, however, does not include a mapToPrincipals attribute, which implies that users have
been mapped to this role externally. It is assumed that you have already added the two users
(Juliet and amanda) to the WebLogic Server security realm.

Programming Web Services for WebLogic Server B-69

JWS Annotation Reference

weblogic.jws.security.SecurityRoleRef

Description
Target: Class

Specifies a role name reference that links to an already-specified role that is allowed to invoke
the Web Service.

Users that are mapped to the role reference can invoke the Web Service as long as the referenced
role is specified in the @RolesAl lowed annotation of the Web Service.

Attributes

Table B-33 Attributes of the weblogic.jws.security.SecurityRoleRef JWS Annotation

Name Description Data Type Required?
role Name of the role reference. String Yes.
link Name of the already-specified role that is allowed to String Yes.

invoke the Web Service. The value of this attribute
corresponds to the value of the role attribute of a
@SecurityRole annotation specified in the same
JWS file.

B-70

Example

package examples.webservices.security_roles;

import weblogic.jws.security.RolesAllowed;
import weblogic.jws.security.SecurityRole;
import weblogic.jws.security.RolesReferenced;
import weblogic. jws.security.SecurityRoleRef;

@WebService(name="SecurityRolesPortType",
serviceName=""SecurityRolesService",
targetNamespace="http://example.org"™)

@RolesAllowed ({
@SecurityRole (role="manager",

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

mapToPrincipals={ "juliet”,"amanda" }),
@SecurityRole (role="vp™)
)

@RolesReferenced (
@SecurityRoleRef (role="mgr", link="manager')

)

public class SecurityRoleslmpl {

In the example, the role mgr is linked to the role manager, which is allowed to invoke the Web
Service. This means that any user who is assigned to the role of mgr is also allowed to invoke the
Web Service.

weblogic.jws.security.UserDataConstraint

Description
Target: Class

Specifies whether the client is required to use the HTTPS transport when invoking the Web
Service.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection between the client and
Web Service if the transport attribute of this annotation is set to either Transport. INTEGRAL
or Transport.CONFIDENTIAL in the JWS file that implements the Web Service.

If you specify this annotation in your JWS file, you must also specify the

weblogic. jws.WLHttpTransport annotation (or the <WLHttpTransport> element of the
Jwsc Ant task) to ensure that an HTTPS binding is generated in the WSDL file by the jwsc Ant
task.

Programming Web Services for WebLogic Server B-1

JWS Annotation Reference

Attributes

Table B-34 Attributes of the weblogic.jws.security.UserDataConstraint JWS Annotation

Name Description DataType Required?

transport Specifies whether the client is required to use the HTTPS ~ enum No
transport when invoking the Web Service.

Valid values are:

¢ Transport.NONE—Specifies that the Web Service
does not require any transport guarantees.

e Transport. INTEGRAL—Specifies that the Web
Service requires that the data be sent between the
client and Web Service in such a way that it cannot be
changed in transit.

¢ Transport.CONFIDENT IAL—Specifies that the
Web Service requires that data be transmitted so as to
prevent other entities from observing the contents of
the transmission.

Default value is Transport.NONE.

Example

package examples.webservices.security_https;
import weblogic.jws.security.UserDataConstraint;

@WebService(name="SecurityHttpsPortType",
serviceName=""SecurityHttpsService",
targetNamespace=""http://example.org")

@UserDataConstraint(
transport=UserDataConstraint.Transport.CONFIDENTIAL)

public class SecurityHttpsimpl {

B-72 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

weblogic.jws.security.WssConfiguration

Description
Target: Class

Specifies the name of the Web Service security configuration you want the Web Service to use.
If you do not specify this annotation in your JWS file, the Web Service is associated with the
default security configuration (called default_wss) if it exists in your domain.

The @wssConfiguration annotation only makes sense if your Web Service is configured for
message-level security (encryption and digital signatures). The security configuration, associated
to the Web Service using this annotation, specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption
and digital signatures, and so on.

WebLogic Web Services are not required to be associated with a security configuration; if the
default behavior of the Web Services security runtime is adequate then no additional
configuration is needed. If, however, a Web Service requires different behavior from the default
(such as using an X.509 certificate for identity, rather than the default username/password token),
then the Web Service must be associated with a security configuration.

Before you can successfully invoke a Web Service that specifies a security configuration, you
must use the Administration Console to create it. For details, see Create a Web Services security
configuration. For general information about message-level security, see “Configuring
Message-Level Security (Digital Signatures and Encryption)” on page 10-3.

Attributes

Tahle B-35 Attributes of the weblogic.jws.security.WssConfiguration JWS Annotation Tag

Name Description DataType Required?

value Specifies the name of the Web Service security String Yes.
configuration that is associated with this Web Service.
The default configuration is called defaul t_wss.

You must create the security configuration (even the
default one) using the Administration Console before you
can successfully invoke the Web Service.

Programming Web Services for WebLogic Server B-73

JWS Annotation Reference

B-74

Example

The following example shows how to specify that a Web Service is associated with the
my_security_configuration security configuration; only the relevant Java code is shown:

package examples.webservices.wss_configuration;

import javax.jws.WebService;

import weblogic. jws.security.WssConfiguration;

@WebService(...

@wssConfiguration(value="my_security_configuration')

public class WssConfigurationlmpl {

weblogic.jws.soap.S0APBinding

Description
Target: Method
Specifies the mapping of a Web Service operation onto the SOAP message protocol.

This annotation is analogous to @javax. jws.soap.SOAPBinding except that it applies to a
method rather than the class. With this annotation you can specify, for example, that one Web
Service operation uses RPC-encoded SOAP bindings and another operation in the same Web
Service uses document-literal-wrapped SOAP bindings.

Note: Because @weblogic.jws.soap.SO0APBinding and @javax. jws.soap.SOAPBinding
have the same class name, be careful which annotation you are referring to when using it
in your JWS file.

Programming Web Services for WebLogic Server

Attributes

WebLogic-Specific JWS Annotations Reference

Table B-36 Attributes of the weblogic.jws.soap.SOAPBinding JWS Annotation

Name

Description

Data Type

Required?

style

Specifies the message style of the request and response
SOAP messages of the invoked annotated operation.

Valid values are:
= SOAPBinding.Style.RPC
¢ SOAPBinding.Style_.DOCUMENT

Default value is SOAPBinding.Style.DOCUMENT.

enum

No.

use

Specifies the formatting style of the request and response
SOAP messages of the invoked annotated operation.

Valid values are:
e SOAPBinding.Use.LITERAL
= SOAPBinding.Use.ENCODED

Default value is SOAPBinding.Use.LITERAL.

enum

No.

parameterStyle

Determines whether method parameters represent the
entire message body, or whether the parameters are
elements wrapped inside a top-level element named after
the operation.

Valid values are:

* SOAPBiInding.ParameterStyle.BARE
= SOAPBinding.ParameterStyle.WRAPPED

Default value is
SOAPBinding.ParameterStyle.WRAPPED

Note: This attribute applies only to Web Services of
style document-literal. Or in other words, you
can specify this attribute only if you have also set
the sty l e attribute to
SOAPBinding.-Style.DOCUMENT and the
use attribute to
SOAPBiInding.Use.LITERAL.

enum

No.

Programming Web Services for WebLogic Server B-75

JWS Annotation Reference

Example

The following simple JWS file shows how to specify that, by default, the operations of the Web
Service use document-literal-wrapped SOAP bindings; you specify this by using the

@javax. jws.soap.SOAPBinding annotation at the class-level. The example then shows how to
specify different SOAP bindings for individual methods by using the

@weblogic. jws.soap.SOAPBinding annotation at the method-level. In particular, the
sayHel loDocL itBare() method uses document-literal-bare SOAP bindings, and the

sayHe l loRPCEncoded () method uses RPC-encoded SOAP bindings.

package examples.webservices.soap_binding_method;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

import weblogic. jws.WLHttpTransport;

@WebService(name="SoapBindingMethodPortType",
serviceName=""SoapBindingMethodService",
targetNamespace="http://example.org"™)

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
use=SOAPBinding.Use_LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

@WLHttpTransport(contextPath="soap_binding_method",
serviceUri="SoapBindingMethodService",
portName=""SoapBindingMethodServicePort')

/**

* Simple JWS example that shows how to specify soap bindings for a method.
*/

public class SoapBindingMethodImpl {

@webMethod()

@weblogic. jws.soap.SOAPBinding(
style=SOAPBinding.Style _DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.BARE)

public String sayHelloDocLitBare(String message) {
System.out._printin(‘'sayHelloDocLitBare"™ + message);

B-76 Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

return ""Here is the message: + message + """;

}

@webMethod()

@weblogic.jws.soap.SOAPBinding(
style=SOAPBinding.Style.RPC,
use=SO0APBinding.Use.ENCODED)

public String sayHelloRPCEncoded (String message) {
System.out.printin(*sayHel loRPCEncoded" + message);

return "Here is the message: + message + """;

}
}

weblogic.jws.security.SecurityRoles (deprecated)

Description
Target: Class, Method

Note: The @weblogic.security.jws.SecurityRoles JWS annotation is deprecated
beginning in WebLogic Server 9.0.

Specifies the roles that are allowed to access the operations of the Web Service.

If you specify this annotation at the class level, then the specified roles apply to all public
operations of the Web Service. You can also specify a list of roles at the method level if you want
to associate different roles to different operations of the same Web Service.

Note: The @SecurityRoles annotation is supported only within the context of an
EJB-implemented Web Service. For this reason, you can specify this annotation only
inside of a JWS file that explicitly implements javax.ejb.SessionBean. See Securing
Enterprise JavaBeans (EJBs) for conceptual information about what it means to secure
access to an EJB. See “Should You Implement a Stateless Session EJB?” on page 5-16
for information about explicitly implementing an EJB in a JWS file.

Programming Web Services for WebLogic Server B-77

JWS Annotation Reference

Attributes

Tahle B-37 Attributes of the weblogic.jws.security.SecurityRoles JWS Annotation

Name Description DataType Required?
rolesAllowed Specifies the list of roles that are allowed to access the Array of No.
Web Service. String

This annotation is the equivalent of the
<method-permission> element in the
ejb-jar.xml deployment descriptor of the stateless
session EJB that implements the Web Service.

rolesReferenced Specifies a list of roles referenced by the Web Service. Array of No.

The Web Service may access other resources using the ~ St'"d

credentials of the listed roles.

This annotation is the equivalent of the
<security-role-ref>elementin the
ejb-jar.xml deployment descriptor of the stateless
session EJB that implements the Web Service.

B-78

Example

The following example shows how to specify, at the class-level, that the Web Service can be
invoked only by the Admin role; only relevant parts of the example are shown:

package examples.webservices.security_roles;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import weblogic.ejbgen.Session;

import javax.jws.WebService;

import weblogic.jws.security.SecurityRoles;
@Session(ejbName="SecurityRolesEJB")
@WebService(...

// Specifies the roles who can invoke the entire Web Service

Programming Web Services for WebLogic Server

WebLogic-Specific JWS Annotations Reference

@SecurityRoles(rolesAllowed="Admnin")

public class SecurityRoleslmpl implements SessionBean {

weblogic.jws.security.Securityldentity (deprecated)

Description
Target: Class

Note: The @weblogic.security.jws.Securityldentity JWS annotation is deprecated
beginning in WebLogic Server 9.1.

Specifies the identity assumed by the Web Service when it is invoked.

Unless otherwise specified, a Web Service assumes the identity of the authenticated invoker. This
annotation allows the developer to override this behavior so that the Web Service instead
executes as a particular role. The role must map to a user or group in the WebLogic Server
security realm.

Note: The @Securityldentity annotation only makes sense within the context of an
EJB-implemented Web Service. For this reason, you can specify this annotation only
inside of a JWS file that explicitly implements javax.ejb.SessionBean. See Securing
Enterprise JavaBeans (EJBs) for conceptual information about what it means to secure
access to an EJB. See “Should You Implement a Stateless Session EJB?” on page 5-16
for information about explicitly implementing an EJB in a JWS file.

Attributes

Tahle B-38 Attributes of the weblogic.jws.security.Securityldentity JWS Annotation

Name Description DataType Required?

value Specifies the role which the Web Service assumes when it~ String Yes.
is invoked. The role must map to a user or group in the
WebLogic Server security realm.

Programming Web Services for WebLogic Server B-79

JWS Annotation Reference

Example

The following example shows how to specify that the Web Service, when invoked, runs as the
Admiin role:

package examples.webservices.security_roles;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import weblogic.ejbgen.Session;

import javax.jws.WebService;

import weblogic.jws.security.Securityldentity;
@Session(ejbName="SecurityRolesEJB")

@WebService(...

// Specifies that the Web Service runs as the Admin role
@Securityldentity(value="Admin")

public class SecurityRoleslImpl implements SessionBean {

B-80 Programming Web Services for WebLogic Server

APPENDIXG

Web Service Reliable Messaging Policy
Assertion Reference

The following sections provide reference information about Web Service reliable messaging
policy assertions in a WS-Policy file:

e “Overview of a WS-Policy File That Contains Web Service Reliable Messaging
Assertions” on page C-1

e “Graphical Representation” on page C-2

e “Example of a WS-Policy File With Web Service Reliable Messaging Assertions” on
page C-3

e “Element Description” on page C-3

Overview of a WS-Policy File That Contains Weh Service
Reliable Messaging Assertions

You use WS-Policy files to configure the reliable messaging capabilities of a WebLogic Web
Service running on a destination endpoint. Use the @Pol icy JWS annotations in the JWS file that
implements the Web Service to specify the name of the WS-Policy file that is associated with a
Web Service.

A WS-Policy file is an XML file that conforms to the WS-Policy specification. The root element
of aWS-Policy file is always <wsp:Pol icy>. To configure Web Service reliable messaging, you
first add a <wsrm:RMAssertion> child element; its main purpose is to group all the reliable

messaging policy assertions together. Then you add as child elements to <wsrm-RMAssertion>

Programming Web Services for WebLogic Server Cc-1

Web Service Reliable Messaging Policy Assertion Reference

the assertions that enable the type of Web Service reliable messaging you want. All these
assertions conform to the WS-PolicyAssertions specification.

WARNING: You must enter the assertions in the ordered listed in the graphic below. See
“Graphical Representation” on page C-2.

WebLogic Server includes two WS-Policy files (Defaul tReliability.xml and
LongRunningReliabi lity.xml) that contain typical reliable messaging assertions that you can
use if you do not want to create your own WS-Policy file. For details about these two files, see
“Use of WS-Policy Files for Web Service Reliable Messaging Configuration” on page 6-2.

See “Using Web Service Reliable Messaging” on page 6-1 for task-oriented information about
creating a reliable WebLogic Web Service.

Graphical Representation

C-2

The following graphic describes the element hierarchy of Web Service reliable messaging policy
assertions in a WS-Policy file.

Figure 13-1 Element Hierarchy of Web Service Reliable Messaging Policy Assertions

Policy |

4{ wsrm:RMAssertion

4| wsrm:Inactivity Timeout ‘
4| wsrm:BaseRetransmissioninterval ‘
4| wsrm:ExponentialBackoff ‘
v 4| wsrm:Acknowledgementinterval ‘
4{ beapolicy:Expires |
4’ beapolicy:QOS ‘

Programming Web Services for WebLogic Server

Example of a WS-Policy File With Web Service Reliable Messaging Assertions

Example of a WS-Policy File With Web Service Reliable
Messaging Assertions

The following example shows a simple WS-Policy file used to configure reliable messaging for
a WebLogic Web Service:

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsrm=""http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlIns:beapolicy="http://www._bea.com/wsrm/policy"
>

<wsrm:RMAssertion >
<wsrm: InactivityTimeout
Milliseconds="600000" />
<wsrm:BaseRetransmissionlnterval
Milliseconds="3000" />
<wsrm:ExponentialBackoff />
<wsrm:Acknowledgementinterval
Milliseconds="200" />
<beapolicy:Expires Expires="P1D" optional="true'"/>
</wsrm:RMAssertion>

</wsp:Policy>

Element Description
beapolicy:Expires

Specifies an amount of time after which the reliable Web Service expires and does not accept any
new sequences. Client applications invoking this instance of the reliable Web Service will receive
an error if they try to invoke an operation after the expiration duration.

The default value of this element, if not specified in the WS-Policy file, is for the Web Service to
never expires.

Programming Web Services for WebLogic Server c-3

Web Service Reliable Messaging Policy Assertion Reference

Table C-1 Attributes of <beapolicy:Expires>

Attribute Description Required?

Expires The amount of time after which the reliable Web Service expires. The Yes
format of this attribute conforms to the XML Schema duration data
type. For example, to specify that the reliable Web Service expires
after 3 hours, specify Expires="P3H".

beapolicy:Q0S
Specifies the delivery assurance (or Quality Of Service) of the Web Service:

o AtMostOnce—Messages are delivered at most once, without duplication. It is possible that
some messages may not be delivered at all.

e Atl eastOnce—Every message is delivered at least once. It is possible that some messages
be delivered more than once.

e ExactlyOnce—Every message is delivered exactly once, without duplication.

e InOrder—Messages are delivered in the order that they were sent. This delivery assurance
can be combined with the preceding three assurances.

The default value of this element, if not specified in the WS-Policy file, is ExactlyOnce
InOrder.

C-4 Programming Web Services for WebLogic Server

Element Description

Table C-2 Attributes of <beapolicy:00S>

Attribute Description Required?

QOs

Specifies the delivery assurance. You can specify exactly one of the Yes
following values:

= AtMostOnce

= AtlLeastOnce

= ExactlyOnce

You can also add the InOrder string to specify that the messages be
delivered in order.

If you specify one of the XXXOnce values, but do not specify
InOrder, then the messages are not guaranteed to be in order. This is
different from the default value if the entire QOS element is not
specified (exactly once in order).

Example: <beapolicy:Q0S QO0S="AtMostOnce InOrder"
/>

wsrm:Acknowledgementinterval

Specifies the maximum interval, in milliseconds, in which the destination endpoint must transmit
a stand alone acknowledgement.

A destination endpoint can send an acknowledgement on the return message immediately after it
has received a message from a source endpoint, or it can send one separately in a stand alone
acknowledgement. In the case that a return message is not available to send an acknowledgement,
a destination endpoint may wait for up to the acknowledgement interval before sending a stand
alone acknowledgement. If there are no unacknowledged messages, the destination endpoint may
choose not to send an acknowledgement.

This assertion does not alter the formulation of messages or acknowledgements as transmitted.
Its purpose is to communicate the timing of acknowledgements so that the source endpoint may
tune appropriately.

This element is optional. If you do not specify this element, the default value is set by the store
and forward (SAF) agent configured for the destination endpoint.

Programming Web Services for WebLogic Server C-5

Web Service Reliable Messaging Policy Assertion Reference

Table C-3 Attributes of <wsrm:Acknowledgementinterval>

Attribute Description Required?

Milliseconds Specifies the maximum interval, in milliseconds, in which the Yes.
destination endpoint must transmit a stand alone acknowledgement.

wsrm:BaseRetransmissioninterval

Specifies the interval, in milliseconds, that the source endpoint waits after transmitting a message
and before it retransmits the message.

If the source endpoint does not receive an acknowledgement for a given message within the
interval specified by this element, the source endpoint retransmits the message. The source
endpoint can modify this retransmission interval at any point during the lifetime of the sequence
of messages. This assertion does not alter the formulation of messages as transmitted, only the
timing of their transmission.

This element can be used in conjunctions with the <wsrm:ExponentialBackoff> element to
specify that the retransmission interval will be adjusted using the algorithm specified by the
<wsrm:ExponentialBackoff> element.

This element is optional. If you do not specify this element, the default value is set by the store
and forward (SAF) agent configured for the source endpoint. If using the Administration Console
to configure the SAF agent, this value is labeled Retry Delay Base.

Table C-4 Attributes of <wsrm:BaseRetransmissioninterval>

Attribute Description Required?
Milliseconds Number of milliseconds the source endpoint waits to retransmit Yes.
message.

wsrm:ExponentialBackoff

Specifies that the retransmission interval will be adjusted using the exponential backoff
algorithm.

C-6 Programming Web Services for WebLogic Server

Element Description

This element is used in conjunction with the <wsrm:BaseRetransmissionInterval>element.
If a destination endpoint does not acknowledge a sequence of messages for the amount of time
specified by <wsrm:BaseRetransmissionlInterval>, the exponential backoff algorithm will
be used for timing of successive retransmissions by the source endpoint, should the message
continue to go unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals should
increase exponentially, based on the base retransmission interval. For example, if the base
retransmission interval is 2 seconds, and the exponential backoff element is set in the WS-Policy
file, successive retransmission intervals if messages continue to be unacknowledged are 2, 4, 8,
16, 32, and so on.

This element is optional. If not set, the same retransmission interval is used in successive retries,
rather than the interval increasing exponentially.

This element has no attributes.

wsrm:InactivityTimeout

Specifies (in milliseconds) a period of inactivity for a sequence of messages. A sequence of
messages is defined as a set of messages, identified by a unique sequence number, for which a
particular delivery assurance applies; typically a sequence originates from a single source
endpoint. If, during the duration specified by this element, a destination endpoint has received no
messages from the source endpoint, the destination endpoint may consider the sequence to have
been terminated due to inactivity. The same applies to the source endpoint.

This element is optional. If it is not set in the WS-Policy file, then sequences never time-out due
to inactivity.

Tahle C-5 Attributes of <wsrm:InactivityTimeout>

Attribute Description Required?
Milliseconds The number of milliseconds that defines a period of inactivity. Yes.
wsrm:RMAssertion
Main Web Service reliable messaging assertion that groups all the other assertions under a single
element.

Programming Web Services for WebLogic Server Cc-7

Web Service Reliable Messaging Policy Assertion Reference

The presence of this assertion in a WS-Policy file indicates that the corresponding Web Service
must be invoked reliably.

Table C-6 Attributes of <wsrm:RMAssertion>

Attribute Description Required?

optional Specifies whether the Web Service requires the operations to be No.
invoked reliably.

Valid values for this attribute are true and false. Default value is
false.

c-8 Programming Web Services for WebLogic Server

APPENDlxa

Security Policy Assertion Reference

The following sections provide reference information about the security assertions you can
configure in a WS-Policy file:

“Overview of a WS-Policy File That Contains Security Assertions” on page D-1
“Graphical Representation” on page D-2

“Example of a Policy File With Security Elements” on page D-5

“Element Description” on page D-6

“Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
Signed” on page D-21

Overview of a WS-Policy File That Contains Security
Assertions

You use WS-Policy files to configure the message-level security of a WebLogic Web Service.
Use the @Policy and @Policies JWS annotations in the JWS file that implements the Web
Service to specify the name of the WS-Policy file that is associated with a WebLogic Web
Service.

A WS-Policy file is an XML file that conforms to the WS-Policy specification. The root element
of a WS-Policy file is always <wsp:Policy>. To configure message-level security, you add
policy assertions that specify the type of tokens supported for authentication and how the SOAP
messages should be encrypted and digitally signed.

Programming Web Services for WebLogic Server D-1

Security Policy Assertion Reference

Note: These security policy assertions are based on the assertions described in the December
18, 2002 version of the Web Services Security Policy Language (WS-SecurityPolicy)
specification. This means that although the exact syntax and usage of the assertions in
WebLogic Server are different, they are similar in meaning to those described in the
specification. The assertions are not based on the latest update of the specification (13
July 2005.)

WebLogic Server includes five WS-Policy files (Auth.xml, Sign.xml, Encrypt.xml,
Wssc-dk.xml, and Wssc-sct.xml) that contain typical security assertions that you can use if
you do not want to create your own WS-Policy file. For details about these files, see “Using
WS-Policy Files for Message-Level Security Configuration” on page 10-4.

See “Configuring Message-Level Security (Digital Signatures and Encryption)” on page 10-3 for
task-oriented information about creating a message-level secured WebLogic Web Service.

Graphical Representation

D-2

The following graphic describes the element hierarchy of the security assertions in a WS-Policy
file.

Programming Web Services for WebLogic Server

Graphical Representation

Figure 13-2 Element Hierarchy of Security WS-Policy Assertions

Programming Web Services for WebLogic Server

D-3

Security Policy Assertion Reference

|

Policy ‘

D-4

4| Identity |

_¢ SupportedTokens ? |
L{ SecurityToken + ‘

No annotation: Exactly one
* . Zero or more
+: One or more
? . Zero or one

Claims ? ‘

—| SupportedTokens ? ‘

4| UsePassword ?

—1 ConfirmationMethod ?

. /—{ TokenLifeTime ?
4‘ Integrity ———
’{ ength 7
4{ SignatureAlgorithm | 9

|
|
|
|

——— _ — Label ?
4. CanonicalizationAlgorithm ‘

\—{ SecurityToken +

4¢ Target + |

4{ DigestAlgorithm

|

4{ Transform *

4{ MessageParts

4{ Confidentiality ‘

4' KeyWrappingAlgorithm |

4‘ Target + |

4{ EncryptionAlgorithm

4| Transform *

4| MessageParts

|

4| KeylInfo

4‘ SecurityToken *

4’ SecurityTokenReference * ‘

4{ MessageAge ‘

Programming Web Services for WebLogic Server

Example of a Policy File With Security Elements

Example of a Policy File With Security Elements

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"

xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssecurity-
utility-1.0.xsd"
xmIns:wls="http://www._bea.com/wls90/security/policy/wsee#part"
>

<wssp: ldentity>
<wssp:SupportedTokens>
<wssp:SecurityToken
TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token-pro
file-1.0#SAMLAssertionlD">
<wssp:Claims>
<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
</wssp:Claims>
</wssp:SecurityToken>
</wssp:SupportedTokens>
</wssp: ldentity>

<wssp:Confidentiality>
<wssp:KeyWrappingAlgorithm
URI=""http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>

<wssp:Target>
<wssp:EncryptionAlgorithm
URI="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc"/>
<wssp:MessageParts
Dialect="http://www._bea.com/wls90/security/policy/wsee#part">
wls:SecurityHeader (Assertion)
</wssp:MessageParts>
</wssp:Target>

<wssp:Target>
<wssp:EncryptionAlgorithm
URI="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc'"/>

<wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part'>

wsp:Body()</wssp:MessageParts>
</wssp:Target>

<wssp:KeylInfo />
</wssp:Confidentiality>

Programming Web Services for WebLogic Server D-5

Security Policy Assertion Reference

</wsp:Policy>

Element Description

CanonicalizationAlgorithm

Specifies the algorithm used to canonicalize the SOAP message elements that are digitally
signed.
Note: The WebLogic Web Services security runtime does not support specifying an

InclusiveNamespaces PrefixList that contains a list of namespace prefixes or a token
indicating the presence of the default namespace to the canonicalization algorithm.

Table D-1 Attributes of <CanonicalizationAlgorithm>

Attribute Description Required?

URI

The algorithm used to canonicalize the SOAP message being signed. Yes.
You can specify only the following canonicalization algorithm:
http://www._w3.0rg/2001/10/xml-exc-cl4n#

D-6

Claims

Specifies additional metadata information that is associated with a particular type of security
token. Depending on the type of security token, you can or must specify the following child
elements:

e For username tokens, you can define a <UsePassword> child element to specify whether
you want the SOAP messages to use password digests.

e For SAML tokens, you must define a <ConfirmationMethod> child element to specify
the type of SAML confirmation (sender-vouches or holder-of-key).

By default, a security token for a secure conversation has a lifetime of 12 hours. To change this
default value, define a <TokenLifeTime> child element to specify a new lifetime, in
milliseconds, of the security token.

This element does not have any attributes.

Programming Web Services for WebLogic Server

Element Description

Confidentiality

Specifies that part or all of the SOAP message must be encrypted, as well as the algorithms and
keys that are used to encrypt the SOAP message.

For example, a Web Service may require that the entire body of the SOAP message must be
encrypted using triple-DES.

Table D-2 Attributes of <Confidentiality>

Attribute Description Required?

SupportTrustl0 . No.

The valid values for this attribute are true and false. The default
value is false.

ConfirmationMethod

Specifies the type of confirmation method that is used when using SAML tokens for identity. You
must specify one of the following two values for this element: sender-vouches or
holder-of-key. For example:

<wssp:Claims>
<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
</wssp:Claims>

This element does not have any attributes.
The <ConfirmationMethod> element is required only if you are using SAML tokens.

The exact location of the <ConfirmationMethod> assertion in the WS-Policy file depends on
the type configuration method you are configuring. In particular:

sender-vouches:

Specify the <ConfirmationMethod> assertion within an <ldentity> assertion, as shown in the
following example:

<?xml version="1.0"?>

<wsp:Policy
xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www._bea.com/wls90/security/policy"

Programming Web Services for WebLogic Server D-7

Security Policy Assertion Reference

D-8

xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecur
ity-utility-1.0.xsd"
xmins:wls="http://www.bea.com/wls90/security/policy/wsee#part"
>

<wssp: ldentity>
<wssp:SupportedTokens>
<wssp:SecurityToken

TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-token
-profile-1._0#SAMLAssertionID">
<wssp:Claims>
<wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
</wssp:Claims>
</wssp:SecurityToken>
</wssp: SupportedTokens>
</wssp: ldentity>

</wsp:Policy>
holder-of-key:

Specify the <ConfirmationMethod> assertion within an <Integrity> assertion. The reason
you put the SAML token in the <Integrity> assertion for this confirmation method is that the
Web Service runtime must prove the integrity of the message, which is not required by
sender-vouches

For example:
<?xml version="1.0"?>
<wsp:Policy

xmIns:wsp=""http://schemas.xmlsoap.org/ws/2004/09/policy"
xmIns:wssp="http://www.bea.com/wls90/security/policy"

xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssecur
ity-utility-1.0.xsd"
xmIns:wls="http://www.bea.com/wls90/security/policy/wsee#part'>

<wssp: Integrity>
<wssp:SignatureAlgorithm
URI="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>

Programming Web Services for WebLogic Server

Element Description

<wssp:CanonicalizationAlgorithm
URI="http://www.w3.0rg/2001/10/xml-exc-cl4n#"/>

<wssp:Target>
<wssp:DigestAlgorithm
URI=""http://www.w3.0rg/2000/09/xmldsig#shal" />
<wssp:MessageParts
Dialect=""http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp:Body ()
</wssp:MessageParts>
</wssp:Target>

<wssp:SupportedTokens>
<wssp:SecurityToken
IncludelnMessage=""true""

TokenType="http://docs.oasis-open.org/wss/2004/01/0asis-2004-01-saml-token
-profile-1.0#SAMLAssertionlD">
<wssp:Claims>
<wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
</wssp:Claims>
</wssp:SecurityToken>
</wssp:SupportedTokens>
</wssp: Integrity>

</wsp:Policy>

For more information about the two SAML confirmation methods (sender-vouches or
holder-of-key), see SAML Token Profile Support in WebLogic Web Services.

DigestAlgorithm

Specifies the digest algorithm that is used when digitally signing the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message you
want to digitally sign.

Programming Web Services for WebLogic Server D-9

Security Policy Assertion Reference

Table D-3 Attributes of <DigestAlgorithm>

Attribute Description Required?

URI The digest algorithm that is used when digitally signing the Yes.
specified parts of a SOAP message.
You can specify only the following digest algorithm:
http://www.w3.0rg/2000/09/xmldsig#shal

EncryptionAlgorithm

Specifies the encryption algorithm that is used when encrypting the specified parts of a SOAP
message. Use the <MessageParts> sibling element to specify the parts of the SOAP message you
want to digitally sign.

Table D-4 Attributes of <EncryptionAlgorithm>

Attribute Description Required?
URI The encryption algorithm used to encrypt specified parts of the SOAP ~ Yes.
message.

Valid values are:

http://www.w3.0rg/2001/04/xmlenc#tripledes-chc
http://www._w3.0rg/2001/04/xmlenc#kw-tripledes
http://www.w3.0rg/2001/04/xmlenc#aes128-cbc

Note: When interoperating with Web Services built with
WebLogic Workshop 8.1, you must specify
http://www._.w3.0rg/2001/04/xmlenc#aes128-c
bc as the encryption algorithm.

Identity

Specifies the type of security tokens (username, X.509, or SAML) that are supported for
authentication.

This element has no attributes.

D-10 Programming Web Services for WebLogic Server

Element Description

Integrity
Specifies that part or all of the SOAP message must be digitally signed, as well as the algorithms
and keys that are used to sign the SOAP message.

For example, a Web Service may require that the entire body of the SOAP message must be
digitally signed and only algorithms using SHA1 and an RSA key are accepted.

Table D-5 Attributes of <Integrity>

Attribute Description Required?

SignToken Specifies whether the security token, specified using the No.
<SecurityToken> child element of <Integrity>, should also
be digitally signed, in addition to the specified parts of the SOAP
message.

The valid values for this attribute are true and false. The default
value is true.

SupportTrustl0 . No.

The valid values for this attribute are true and false. The default
value is false.

X509AuthCond
itional

Keyinfo
Used to specify the security tokens that are used for encryption.

This element has no attributes.

KeyWrappingAlgorithm

Specifies the algorithm used to encrypt the message encryption key.

Programming Web Services for WebLogic Server D-11

Security Policy Assertion Reference

Table D-6 Attributes of <KeyWrappingAlgorithm>

Attribute Description Required?

URI

The algorithm used to encrypt the SOAP message encryption ves.
key.
Valid values are:
e http://www.w3.0rg/2001/04/xmlenc#rsa-1_5
(to specify the RSA-v1.5 algorithm)
e http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgflp
(to specify the RSA-OAEP algorithm)

D-12

Lahel

Specifies a label for the security context token. Used when configuring WS-SecureConversation
security contexts.

This element has no attributes.

Length

Specifies the length of the key when using security context tokens and derived key tokens. This
assertion only applies to WS-SecureConversation security contexts.

The default value is 32.

This element has no attributes.

MessageAge
Specifies the acceptable time period before SOAP messages are declared stale and discarded.

When you include this security assertion in your WS-Policy file, the Web Services runtime adds
a <Timestamp> header to the request or response SOAP message, depending on the direction
(inbound, outbound, or both) to which the WS-Policy file is associated. The <Timestamp> header
indicates to the recipient of the SOAP message when the message expires.

For example, assume that your WS-Policy file includes the following <MessageAge> assertion:
<wsp:Policy

xmIns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

Programming Web Services for WebLogic Server

Element Description

xmIns:wssp="http://www.bea.com/wls90/security/policy"

xmIns:wsu=""http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wss-wssecur
ity-utility-1.0.xsd"
>

<wssp:MessageAge Age="'300" />
</wsp:Policy>

The resulting generated SOAP message will have a <Timestamp> header similar to the following
excerpt:

<wsu:Timestamp
wsu : 1d=""Dy2PFsX3ZQacqNKEANpXbNMnMhm2BmGOA2WDc2EOJpiaaTmbYNwT"*

xmIns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecur
ity-utility-1.0.xsd">
<wsu:Created>2005-11-09T17:46:55Z</wsu:Created>
<wsu:Expires>2005-11-09T17:51:55Z</wsu:Expires>
</wsu:Timestamp>

In the example, the recipient of the SOAP message discards the message if received after
2005-11-09T17:51:55Z, or five minutes after the message was created.

The Web Services runtime, when generating the SOAP message, sets the <Created> header to
the time when the SOAP message was created and the <Expiires> header to the creation time
plus the value of the Age attribute of the <MessageAge> assertion.

The following table describes the attributes of the <MessageAge> assertion.

Table D-7 Attributes of <MessageAge>

Attribute Description Required?
Age Specifies the actual maximum age time-out for a SOAP message, in ~ No.
seconds.

Programming Web Services for WebLogic Server D-13

Security Policy Assertion Reference

The following table lists the properties that describe the timestamp behavior of the WebLogic
Web Services security runtime, along with their default values.

Table 13-2 Timestamp Behavior Properties

Property Description Default Value

Clock Specifies whether the Web Service assumes synchronized clocks. true
Synchronized

Clock Precision If clocks are synchronized, describes the accuracy of the 60000

synchronization. milliseconds

Note: This property is deprecated as of release 9.2 of WebLogic
Web Services. Use the Clock Skew property instead. If both
properties are set, then Clock Skew takes precedence.

Clock Skew Specifies the allowable difference, in milliseconds, between the 60000

sender and receiver of the message. milliseconds

Lax Precision Allows you to relax the enforcement of the clock precision property. false

Note: This property is deprecated as of release 9.2 of WebLogic
Web Services. Use the Clock Skew property instead.

Max Processing Specifies the freshness policy for received messages. -1
Delay

Validity Period Represents the length of time the sender wants the outbound message 60 seconds

to be valid.

D-14

You typically never need to change the values of the preceding timestamp properties. However,
if you do need to, you must use the Administration Console to create the default_wss Web
Service Security Configuration, if it does not already exist, and then update its timestamp
configuration by clicking on the Timestamp tab. See Create a Web Service security
configuration for task information and Domains: Web Services Security: Timestamp for
additional reference information about these timestamp properties.

Programming Web Services for WebLogic Server

Element Description

MessageParts

Specifies the parts of the SOAP message that should be signed or encrypted, depending on the

grand-parent of the element.

functions within this assertion to specify the parts of the SOAP message.

You can use either an XPath 1.0 expression or a set of pre-defined

The MessageParts assertion is always a child of a Target assertion. The Target assertion can

be a child of either an Integrity assertion (to specify how the SOAP message is digitally

signed) or a Confidential ity assertion (to specify how the SOAP messages are encrypted.)

See “Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
Signed” on page D-21 for detailed information about using this assertion, along with a variety of

examples.

Table D-8 Attributes of <MessageParts>

Attribute

Description

Required?

Dialect

Identifies the dialect used to identity the parts of the SOAP message Yes.
that should be signed or encrypted. If this attribute is not specified,
then XPath 1.0 is assumed.

The value of this attribute must be one of the following:

http://www._w3.0rg/TR/1999/REC-xpath-19991116 :
Specifies that an XPath 1.0 expression should be used against the
SOAP message to specify the part to be signed or encrypted.

http://schemas.xmlsoap.org/2002/12/wsse#part :
Convenience dialect used to specify that the entire SOAP body
should be signed or encrypted.

http://ww.bea.com/wls90/security/policy/wsee#p
art : Convenience dialect to specify that the WebLogic-specific
headers should be signed or encrypted. You can also use this
dialect to use QNames to specify the parts of the security header
that should be signed or encrypted.

See “Using MessageParts To Specify Parts of the SOAP Messages
that Must Be Encrypted or Signed” on page D-21 for examples of
using these dialects.

Programming Web Services for WebLogic Server

Security Policy Assertion Reference

SecurityToken

Specifies the security token that is supported for authentication, encryption or digital signatures,
depending on the parent element.

For example, if this element is defined in the <lIdentity> parent element, then is specifies that
a client application, when invoking the Web Service, must attach a security token to the SOAP
request. For example, a Web Service might require that the client application present a SAML
authorization token issued by a trusted authorization authority for the Web Service to be able to
access sensitive data. If this element is part of <Confidentiality>, then it specifies the token
used for encryption.

The specific type of the security token is determined by the value of its TokenType attribute, as
well as its parent element.

By default, a security token for a secure conversation has a lifetime of 12 hours. To change this
default value, add a <Claims> child element that itself has a <TokenLifeTime> child element,
as described in “Claims” on page D-6.

Table D-9 Attributes of <SecurityToken>

Attribute Description Required?
DerivedFromToke . No.
nType

D-16 Programming Web Services for WebLogic Server

Element Description

Tahle D-9 Attributes of <SecurityToken>

Attribute Description Required?

IncludelnMessage Specifies whether to include the token in the SOAP message. No.
Valid values are true or false.

The default value of this attribute is fal se when used in the
<Confidentiality> assertion and true when used in the
<Integrity> assertion.

The value of this attribute is always true when used in the
<ldentity> assertion, even if you explicitly set it to false.

TokenType Specifies the type of security token. Valid values are: Yes.

¢ http://docs.oasis-open.org/wss/2004/01/o0asis-2
00401-wss-x509-token-profile-1.0#X509v3 (To
specify a binary X.509 token)

¢ http://docs.oasis-open.org/wss/2004/01/o0asis-2
00401-wss-username-token-profile-1.0#Usernam
eToken (To specify a username token)

e http://docs.oasis-open.org/wss/2004/01/0asis-2
004-01-saml-token-profile-1.0#SAMLAssertionl
D (To specify a SAML token)

SecurityTokenReference

For internal use only.

You should never include this security assertion in your custom WS-Policy file; it is described in
this section for informational purposes only. The WebLogic Web Services runtime automatically
inserts this security assertion in the WS-Policy file that is published in the dynamic WSDL of the
deployed Web Service. The security assertion specifies WebLogic Server’s public key; the client
application that invokes the Web Service then uses it to encrypt the parts of the SOAP message
specified by the WS-Policy file. The Web Services runtime then uses the server’s private key to
decrypt the message.

SignatureAlgorithm

Specifies the cryptographic algorithm used to compute the digital signature.

Programming Web Services for WebLogic Server D-17

Security Policy Assertion Reference

Table D-10 Attributes of <SignatureAlgorithm>

Attribute Description Required?

URI

Specifies the cryptographic algorithm used to compute the signature. Yes.
Note: Be sure that you specify an algorithm that is compatible with
the certificates you are using in your enterprise.

Valid values are:

http://www.w3.0rg/2000/09/xmldsig#rsa-shal
http://www._w3.0rg/2000/09/xmldsig#dsa-shal

D-18

SupportedTokens

Specifies the list of supported security tokens that can be used for authentication, encryption, or
digital signatures, depending on the parent element.

This element has no attributes.

Target

Encapsulates information about which targets of a SOAP message are to be encrypted or signed,
depending on the parent element.

The child elements also depend on the parent element; for example, when used in <Integrity>,
you can specify the <DigestAlgorithm>, <Transform>, and <MessageParts> child elements.
When used in <Confidential ity>, you can specify the <EncryptionAlgorithm>,
<Transform>, and <MessageParts> child elements.

You can have one or more targets.

Programming Web Services for WebLogic Server

Element Description

Table D-11 Attributes of <Target>

Attribute Description Required?
encryptContent Specifies whether to encrypt an entire element, or just its content. No.
Only This attribute can be specified only when <Target> is a child

element of <Confidentiality>.

Default value of this attribute is true, which means that only the
content is encrypted.

TokenLifeTime

Specifies the lifetime, in seconds, of the security context token or derived key token. This element
is used only when configuring WS-SecurityConversation security contexts.

The default lifetime of a security token is 12 hours (43,200 seconds).

This element has no attributes.

Transform

Specifies the URI of a transformation algorithm that is applied to the parts of the SOAP message
that are signed or encrypted, depending on the parent element.

You can specify zero or more transforms, which are executed in the order they appear in the
<Target> parent element.

Programming Web Services for WebLogic Server D-19

Security Policy Assertion Reference

Table D-12 Attributes of <Transform>

Attribute

Description Required?

URI

Specifies the URI of the transformation algorithm. Yes.
Valid URIs are:

e http://www.w3.0rg/2000/09/xmldsig#base64
(Base64 decoding transforms)

e http://www.w3_.0org/TR/1999/REC-xpath-19991116
(XPath filtering)

For detailed information about these transform algorithms, see

XML-Signature Syntax and Processing.

UsePassword

Specifies that whether the plaintext or the digest of the password appear in the SOAP messages.
This element is used only with username tokens.

D-20

Programming Web Services for WebLogic Server

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

Table D-13 Attributes of <UsePassword>

Attribute Description Required?

Type

Specifies the type of password. Valid values are: Yes.

e http://docs.oasis-open.org/wss/2004/01/0asis-20
0401-wss-username-token-profile-1.0#PasswordT
ext : Specifies that cleartext passwords should be used in the
SOAP messages.

¢ http://docs.oasis-open.org/wss/2004/01/o0asis-20
0401-wss-username-token-profile-1.0#PasswordD
igest : Specifies that password digests should be used in the
SOAP messages.

Note: For backward compatibility reasons, the two preceding URIs

can also be specified with an initial "www." For example:

e http://ww.docs.oasis-open.org/wss/2004/01/oasi
s-200401-wss-username-token-profile-1.0#Passw
ordText

e http://www._docs.oasis-open.org/wss/2004/01/oasi
S-200401-wss-username-token-profile-1.0#Passw
ordDigest

Using MessageParts To Specify Parts of the SOAP
Messages that Must Be Encrypted or Signed

When you use either the Integrity or Confidentiality assertion in your WS-Policy file, you
are required to also use the Target child assertion to specify the targets of the SOAP message to
digitally sign or encrypt. The Target assertion in turn requires that you use the MessageParts
child assertion to specify the actual parts of the SOAP message that should be digitally signed or
encrypted. This section describes various ways to use the MessageParts assertion.

See “Example of a Policy File With Security Elements” on page D-5 for an example of a
complete WS-Policy file that uses the MessageParts assertion within a Confidentiality
assertion. The example shows how to specify that the entire body, as well as the Assertion
security header, of the SOAP messages should be encrypted.

You use the Dialect attribute of MessageParts to specify the dialect used to identify the SOAP
message parts. The WebLogic Web Services security runtime supports the following three
dialects:

Programming Web Services for WebLogic Server D-21

Security Policy Assertion Reference

D-22

e XPath 1.0
e Pre-Defined wsp:Body() Function

e WebLogic-Specific Header Functions

Be sure that you specify a message part that actually exists in the SOAP messages that result from
a client invoke of a message-secured Web Service. If the Web Services security runtime
encounters an inbound SOAP message that does not include a part that the WS-Palicy file
indicates should be signed or encrypted, then the Web Services security runtime returns an error
and the invoke fails. The only exception is if you use the WebL ogic-specific
wls:SystemHeader () function to specify that any WebLogic-specific SOAP header in a SOAP
message should be signed or encrypted; if the Web Services security runtime does not find any
of these headers in the SOAP message, the runtime simply continues with the invoke and does
not return an error.

XPath 1.0

This dialect enables you to use an XPath 1.0 expression to specify the part of the SOAP message
that should be signed or encrypted. The value of the Dialect attribute to enable this dialect is
http://www._w3.0rg/TR/1999/REC-xpath-19991116

You typically want to specify that the parts of a SOAP message that should be encrypted or
digitally signed are child elements of either the soap:Body or soap:Header elements. For this
reason, BEA provides the following two functions that take as parameters an XPath expression:

e wsp:GetBody(xpath_expression)—Specifies that the root element from which the
XPath expression starts searching is soap:Body.

e wsp:GetHeader (xpath_expression)—Specifies that the root element from which the
XPath expression starts searching is soap:Header.

You can also use a plain XPath expression as the content of the MessageParts assertion, without

one of the preceding functions. In this case, the root element from which the XPath expression
starts searching is soap:Envelope.

The following example specifies that the Add Int part, with namespace prefix n1 and located in
the SOAP message body, should be signed or encrypted, depending on whether the parent
Target parent is a child of Integrity or Confidential ity assertion:

<wssp:MessageParts
Dialect="http://www.w3.0rg/TR/1999/REC-xpath-19991116"
xmIns:nl="http://www._bea.com/foo">

Programming Web Services for WebLogic Server

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

wsp:GetBody(./nl:AddInt)
</wssp:MessageParts>

The preceding example shows that you should define the namespace of a part specified in the
XPath expression (n1 in the example) as an attribute to the MessageParts assertion, if you have
not already defined the namespace elsewhere in the WS-Policy file.

The following example is similar, except that the part that will be signed or encrypted is
wsu:Timestamp, which is a child element of wsee:Security and is located in the SOAP
message header:

<wssp:MessageParts
Dialect="http://www.w3.0rg/TR/1999/REC-xpath-19991116">
wsp:GetHeader (./wsse:Security/wsu:Timestamp)
</wssp:MessageParts>

In the preceding example, it is assumed that the wsee : and wse : namespaces have been defined
elsewhere in the WS-Policy file.

Note: It isbeyond the scope of this document to describe how to create XPath expressions. For
detailed information, see the XML Path Language (XPath), Version 1.0, specification.

Pre-Defined wsp:Body() Function

The XPath dialect described in “XPath 1.0” on page D-22 is flexible enough for you to pinpoint
any part of the SOAP message that should be encrypted or signed. However, sometimes you

might just want to specify that the entire SOAP message body be signed or encrypted. In this case
using an XPath expression is unduly complicated, so BEA recommends you use the dialect that
pre-defines the wsp:Body () function for just this purpose, as shown in the following example:

<wssp:MessageParts
Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part'>
wsp:Body ()
</wssp:MessageParts>

WebLogic-Specific Header Functions

BEA provides its own dialect that pre-defines a set of functions to easily specify that some or all
of the WebLogic security or system headers should be signed or encrypted. Although you can
achieve the same goal using the XPath dialect, it is much simpler to use this WebLogic dialect.
You enable this dialect by setting the Dialect attribute to
http://www.bea.com/wls90/security/policy/wsee#part.

Programming Web Services for WebLogic Server D-23

Security Policy Assertion Reference

D-24

The wls:SystemHeaders() function specifies that all of the WebLogic-specific headers should
be signed or encrypted. These headers are used internally by the WebLogic Web Services runtime
for various features, such as reliable messaging and addressing. The headers are:

e wsrm:SequenceAcknowledgement
e wsrm:AckRequested
® wsrm:Sequence
e wsa:Action
e wsa:FaultTo
e wsa:From
e wsa:MessagelD
e wsa:RelatesTo
e wsa:ReplyTo
e wsa:To
e wsax:SetCookie
The following example shows how to use the wls:SystemHeader () function:

<wssp:MessageParts
Dialect=""http://www.bea.com/wls90/security/policy/wsee#part'>
wls:SystemHeaders()
</wssp:MessageParts>

Use the wls:SecurityHeader (header) function to specify a particular part in the security
header that should be signed or encrypted, as shown in the following example:

<wssp:MessageParts
Dialect="http://www.bea.com/wls90/security/policy/wsee#part">
wls:SecurityHeader(wsa:From)
</wssp:MessageParts>

In the example, only the wsa:From security header is signed or encrypted. You can specify any
of the preceding list of headers to the wls:SecurityHeader() function.

Programming Web Services for WebLogic Server

APPENDlxa

WebLogic Web Service Deployment
Descriptor Element Reference

The following sections provide information about the WebLogic-specific Web Services
deployment descriptor file, weblogic-webservices.xml:

e “Overview of weblogic-webservices.xml” on page E-1

e “Graphical Representation” on page E-2

e “XML Schema” on page E-4

e “Example of a weblogic-webservices.xml Deployment Descriptor File” on page E-4

e “Element Description” on page E-4

Overview of weblogic-webservices.xml

The standard J2EE deployment descriptor for Web Services is called webservices.xml. This
file specifies the set of Web Services that are to be deployed to WebLogic Server and the
dependencies they have on container resources and other services. See the Web Services XML
Schema for a full description of this file.

The WebLogic equivalent to the standard J2EE webservices.xml deployment descriptor file is
called weblogic-webservices.xml. This file contains WebLogic-specific information about a
WebLogic Web Service, such as the URL used to invoke the deployed Web Service, and so on.

Both deployment descriptor files are located in the same location on the J2EE archive that
contains the Web Service. In particular:

Programming Web Services for WebLogic Server E-1

WebLogic Web Service Deployment Descriptor Element Reference

e For Java class-implemented Web Services, the Web Service is packaged as a Web
application WAR file and the deployment descriptors are located in the WEB-INF
directory.

e For stateless session EJB-implemented Web Services, the Web Service is packaged as an
EJB JAR file and the deployment descriptors are located in the META-INF directory.

The structure of the weblogic-webservices.xml file is similar to the structure of the J2EE
webservices.xml file in how it lists and identifies the Web Services that are contained within
the archive. For example, for each Web Service in the archive, both files have a
<webservice-description> child element of the appropriate root element (<webservices>
for the J2EE webservices.xml file and <weblogic-webservices> for the
weblogic-webservices.xml file)

Typically users never need to update either deployment descriptor files, because the jwsc Ant
task automatically generates the files for you based on the value of the JWS annotations in the
JWS file that implements the Web Service. For this reason, this section is published for
informational purposes only.

The data type definitions of two elements in the weblogic-webservices.xml file (login-config
and transport-guarantee) are imported from the J2EE Schema for the web.xml file. See the
Servlet Deployment Descriptor Schema for details about these elements and data types.

Graphical Representation

E-2

The following graphic describes the element hierarchy of the weblogic-webservices.xml
deployment descriptor file.

Programming Web Services for WebLogic Server

Graphical Representation

Figure 13-3 Element Hierarchy of weblogic-webservices.xml

weblogic-webservices ‘

—| webservice-description + ‘

_| webservice-description-name |

4<

wsdl-publish-file ? ‘

4{

port-component + |

4{ port-component-name ‘

4{ service-endpoint-address ? ‘

4{ webservice-contextpath |

4{ webservice-serviceuri ‘

_{ deployment-listener-list ? ‘

\—{ deployment-listener + ‘

4{ wsdl ? ‘

_{ exposed |

_|

login-config ? |

4|

transport-guarantee ? ‘

—| webservice-security ? |

—

mbean-name ‘

No annotation: Exactly one
*:Zero or more
+. One or more
? . Zero or one

Programming Web Services for WebLogic Server E-3

WebLogic Web Service Deployment Descriptor Element Reference

XML Schema

For the XML Schema file that describes the weblogic-webservices.xml deployment
descriptor, see http://www.bea.com/ns/weblogic/90/weblogic-wsee.xsd.

Example of a weblogic-webservices.xml Deployment
Descriptor File

The following example shows a simple weblogic-webservices.xml deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?7>
<weblogic-webservices xmlns="http://www._bea.com/ns/weblogic/90">

<webservice-description>
<webservice-description-name>MyService</webservice-description-name>
<port-component>
<port-component-name>MyServiceServicePort</port-component-name>
<service-endpoint-address>
<webservice-contextpath>/MyService</webservice-contextpath>
<webservice-serviceuri>/MyService</webservice-serviceuri>
</service-endpoint-address>
</port-component>
</webservice-description>

</weblogic-webservices>

Element Description
deployment-listener-list

For internal use only.

deployment-listener

For internal use only.

exposed

Boolean attribute indicating whether the WSDL should be exposed to the public when the Web
Service is deployed.

E-4 Programming Web Services for WebLogic Server

Element Description

login-config
The j2ee: login-config element specifies the authentication method that should be used, the

realm name that should be used for this application, and the attributes that are needed by the form
login mechanism.

The XML Schema data type of the j2ee: login-config element is j2ee: login-configType,
and is defined in the J2EE Schema that describes the standard web_.xml deployment descriptor.
For the full reference information, see http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd.

mbean-name

Specifies the name of the Web Service security configuration (specifically an instantiation of the
WebserviceSecurityMBean) that is associated with the Web Services described in the
deployment descriptor file. The default configuration is called default_wss.

The associated security configuration specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption
and digital signatures, and so on.

You must create the security configuration (even the default one) using the Administration
Console before you can successfully invoke the Web Service.

Note: The Web Service security configuration described by this element applies to all Web
Services contained in the weblogic-webservices.xml file. The jwsc Ant task always
packages a Web Service in its own JAR or WAR file, so this limitation is not an issue if
you always use the jwsc Ant task to generate a Web Service. However, if you update the
weblogic-webservices.xml deployment descriptor manually and add additional Web
Service descriptions, you cannot associate different security configurations to different
services.

port-component

The <port-component> element is a holder of other elements used to describe a Web Service
port.

The child elements of the <port-component> element specify WebLogic-specific
characteristics of the Web Service port, such as the context path and service URI used to invoke
the Web Service after it has been deployed to WebLogic Server.

Programming Web Services for WebLogic Server E-5

WebLogic Web Service Deployment Descriptor Element Reference

E-6

port-component-name

The <port-component-name> child element of the <port-component> element specifies the
internal name of the WSDL port.

The value of this element must be unique for all <port-component-name> elements within a
single weblogic-webservices.xnl file.

service-endpoint-address

The <service-endpoint-address> element groups the WebL ogic-specific context path and
service URI values that together make up the Web Service endpoint address, or the URL that
invokes the Web Service after it has been deployed to WebLogic Server.

These values are specified with the <webservice-contextpath> and
<webserivce-serviceuri> child elements.

Note: During a Web Service deployment, modifying the values of
<webservice-contextpath> and <webserivce-serviceuri> elements in
weblogic-webservices.xml file does not change <service-endpoint-address>.
At deployment time if you need to change the context path and service URI, set values
for the following elements:

e <context-root>in weblogic-application.xml file to change context path.
See weblogic-application.xml Deployment Descriptor Elements.

e <url-pattern>inweb.xml file to change service URI. See web.xml Deployment
Descriptor Elements.

transport-guarantee

The j2ee:transport-guarantee element specifies the type of communication between the
client application invoking the Web Service and WebLogic server.

The value of this element is either NONE, INTEGRAL, or CONFIDENTIAL. NONE means that
the application does not require any transport guarantees. A value of INTEGRAL means that the
application requires that the data sent between the client and server be sent in such a way that it
cannot be changed in transit. CONFIDENTIAL means that the application requires that the data
be transmitted in a way that prevents other entities from observing the contents of the
transmission. In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag indicates
that the use of SSL is required.

Programming Web Services for WebLogic Server

Element Description

The XML Schema data type of the j2ee: transport-guarantee element is
jJ2ee:transport-guaranteeType, and is defined in the J2EE Schema that describes the
standard web .xm1 deployment descriptor. For the full reference information, see
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd.

weblogic-webservices

The <weblogic-webservices> element is the root element of the WebLogic-specific Web
Services deployment descriptor (weblogic-webservices.xml).

The element specifies the set of Web Services contained in the J2EE component archive in which
the deployment descriptor is also contained. The archive is either an EJB JAR file (for stateless
session EJB-implemented Web Services) or a WAR file (for Java class-implemented Web
Services)

webservice-contextpath

The <webservice-contextpath> element specifies the context path portion of the URL used
to invoke the Web Service.

The URL to invoke a Web Service deployed to WebLogic Server is:
http://host:port/contextPath/serviceURI

where
e host is the host computer on which WebLogic Server is running.
e port is the port address to which WebLogic Server is listening.
e contextPath is the value of this element

e serviceURI is the value of the webservice-serviceuri element.

When using the jwsc Ant task to generate a Web Service from a JWS file, the value of the
<webservice-contextpath> element is taken from the contextPath attribute of the
WebLogic-specific @WLHttpTransport annotation or the <WLHttpTransport> child element
of jwsc.

webservice-description

The <webservice-description> element is a holder of other elements used to describe a Web
Service.

Programming Web Services for WebLogic Server E-7

WebLogic Web Service Deployment Descriptor Element Reference

The <webservice-description> element defines a set of port components (specified using
one or more <port-component> child elements) that are associated with the WSDL ports
defined in the WSDL document.

There may be multiple <webservice-description> elements defined within a single
weblogic-webservices.xml file, each corresponding to a particular stateless session EJB or
Java class contained within the archive, depending on the implementation of your Web Service.
In other words, an EJB JAR contains the EJBs that implement a Web Service, a WAR file
contains the Java classes.

webservice-description-name

The <webservice-description-name> element specifies the internal name of the Web
Service.

The value of this element must be unique for all <webservice-description-name> elements
within a single weblogic-webservices.xml file.

wehservice-security

Element used to group together all the security-related elements of the
weblogic-webservices.xml deployment descriptor.

wehservice-serviceuri

The <webservice-serviceuri> element specifies the Web Service URI portion of the URL
used to invoke the Web Service.

The URL to invoke a Web Service deployed to WebLogic Server is:
http://host:port/contextPath/serviceURI

where
e host is the host computer on which WebLogic Server is running.
e port is the port address to which WebLogic Server is listening.
e contextPath is the value of the webservice-contextpath element

e serviceURI is the value of this element.

When using the jwsc Ant task to generate a Web Service from a JWS file, the value of the
<webservice-serviceuri> element is taken from the serviceURI attribute of the

E-8 Programming Web Services for WebLogic Server

Element Description

WebLogic-specific @WLHttpTransport annotation or the <WLHttpTransport> child element
of jwsc.

wsdl

Element used to group together all the WSDL -related elements of the
weblogic-webservices.xml deployment descriptor.

wsdl-publish-file

The <wsdl-publish-fi le> element specifies a directory (on the computer which hosts the Web
Service) to which WebLogic Server should publish a hard-copy of the WSDL file of a deployed
Web Service; this is in addition to the standard WSDL file accessible via HTTP.

For example, assume that your Web Service is implemented with an EJB, and its WSDL file is
located in the following directory of the EJB JAR file, relative to the root of the JAR:

META-INF/wsdl/a/b/Fool .wsdl

Further assume that the weblogic-webservices.xml file includes the following element for a
given Web Service:

<wsdl-publish-Ffile>d:/bar</wsdl-publish-file>

This means that when WebLogic Server deploys the Web Service, the server publishes the

WSDL file at the standard HTTP location, but also puts a copy of the WSDL file in the following
directory of the computer on which the service is running:

d:/bar/a/b/Foo.wsdl

WARNING: Only specify this element if client applications that invoke the Web Service need
to access the WSDL via the local file system or FTP; typically, client applications
access the WSDL using HTTP, as described in “Browsing to the WSDL of the
Web Service” on page 4-17.

The value of this element should be an absolute directory pathname. This directory must exist on
every machine which hosts a WebLogic Server instance or cluster to which you deploy the Web
Service.

Programming Web Services for WebLogic Server E-9

WebLogic Web Service Deployment Descriptor Element Reference

E-10 Programming Web Services for WebLogic Server

