
BEAWebLogic
Server®

 and
WebLogic
Express™

Programming WebLogic
JSP Tag Extensions

Version 9.1
Revised: January 12, 2006

Copyright
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents
Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to this Document . 1-2

Related Documentation . 1-2

New and Changed JSP Features in This Release . 1-3

Understanding and Creating Custom JSP Tags
Tag Handler API and Implementation . 2-1

Custom Tag Library . 2-3

Custom Tag Format . 2-3

What Can You Do with Custom Tags? . 2-4

Creating and Configuring a JSP Tag Library: Example Procedures 2-5

Creating a Tag Library Descriptor
Writing the Tag Library Descriptor . 3-2

Sample Tag Library Descriptor . 3-6

The DynamicAttributes Interface. 3-7

Tag Handler Support of Dynamic Attributes . 3-7

Dynamic Attributes Example . 3-8

Dynamic Attributes Syntax. 3-9

Implementing the Tag Handler
Simple Tag Handler Life Cycle (SimpleTag Interface). 4-1
Programming WebLogic Enterprise JavaBeans iii

Events in the Simple Tag Handler Life Cycle . 4-2

JSP Fragments . 4-4

Tag Handler Life Cycle (Tag and BodyTag Interfaces) . 4-5

Iteration Over a Body Tag (IterationTag Interface) . 4-8

Handling Exceptions within a Tag Body . 4-8

Using Tag Attributes . 4-8

Defining New Scripting Variables . 4-9

Dynamically Named Scripting Variables . 4-10

Defining Variables in the Tag Library Descriptor . 4-11

Writing Cooperative Nested Tags . 4-11

Using a Tag Library Validator . 4-11

Administration and Configuration
Configuring JSP Tag Libraries . 5-1

Packaging a JSP Tag Library as JAR File. 5-2
iv Programming WebLogic Enterprise JavaBeans

Programming WebLogic JSP Tag Extensions 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming WebLogic JSP
Tag Extensions:

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-2.

“New and Changed JSP Features in This Release” on page 1-3

Document Scope and Audience
The JSP 2.0 specification enables you to create and use custom tags in Java Server Pages (JSPs).
Custom tags are an excellent way to abstract the complexity of business logic from the
presentation of Web pages in a way that is easy for the Web author to use and control. You can
use custom JSP tag extensions in JSP pages to generate dynamic content, and you can use a
variety of Web development tools to create the presentation.

WebLogic Server fully supports the tag extension mechanism described in the JSP 2.0
Specification available at http://java.sun.com/products/jsp/download.html.

This document is a resource for software developers who want to create and use custom tags in
JavaServer Pages (JSPs). It is also a resource for Web authors who want to use custom tags in
JSPs.

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html

I n t roduct i on and Roadmap

1-2 Programming WebLogic JSP Tag Extensions

This document does not address production phase administration, monitoring, or performance
tuning topics. For links to WebLogic Server documentation and resources for these topics, see
“Related Documentation” on page 1-2.

It is assumed that the reader is familiar with J2EE and JSP concepts.

Guide to this Document
This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

Chapter 2, “Understanding and Creating Custom JSP Tags,” provides an overview of
custom JSP tag functionality, format, and components, as well as procedures for creating
and configuring a tag library.

Chapter 3, “Creating a Tag Library Descriptor,” describes how to create a tag library
descriptor (TLD) file.

Chapter 4, “Implementing the Tag Handler,” describes how to write Java classes that
implement the functionality of an extended tag.

Chapter 5, “Administration and Configuration,” provides an overview of administration
and configuration tasks for using JSP tag extensions.

Related Documentation
This document contains JSP extension-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

Developing Web Applications, Servlets, and JSPs with WebLogic Server is a guide to
developing WebLogic Server applications.

Developing Applications with WebLogic Server is a guide to developing WebLogic Server
applications.

Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications.

JavaServer Pages Tutorial from Sun Microsystems at
http://java.sun.com/products/jsp/docs.html

http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/programming/index.html
message URL http://e-docs.bea.com/wls/docs91/deployment/index.html
http://java.sun.com/products/jsp/docs.html

New and Changed JSP Features in Th is Re lease

Programming WebLogic JSP Tag Extensions 1-3

JSP product overview from Sun Microsystems at
http://www.java.sun.com/products/jsp/index.html

JSP 2.0 Specification from Sun Microsystems at
http://java.sun.com/products/jsp/download.html

New and Changed JSP Features in This Release
There are no new or changed JSP featues in this release.

For information about new and changed JSP features in WebLogic Server 9.0, see these sections
in WebLogic Server 9.0 Release Notes:

“JSP 2. 0 Implementation” lists new JSP features.

“WebLogic Server Known and Resolved Issues” lists known problems for WebLogic
Server.

http://www.java.sun.com/products/jsp/index.html
http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs90/notes/new.html#1225583
http://e-docs.bea.com/wls/docs90/issues/known_resolved.html

I n t roduct i on and Roadmap

1-4 Programming WebLogic JSP Tag Extensions

Programming WebLogic JSP Tag Extensions 2-1

C H A P T E R 2

Understanding and Creating Custom
JSP Tags

The following sections provide an overview of custom JSP tag functionality, format, and
components, as well as procedures for creating and configuring a tag library:

“Tag Handler API and Implementation” on page 2-1

“Custom Tag Library” on page 2-3

“Custom Tag Format” on page 2-3

“What Can You Do with Custom Tags?” on page 2-4

“Creating and Configuring a JSP Tag Library: Example Procedures” on page 2-5

Tag Handler API and Implementation
You write a custom JSP tag by writing a Java class called a tag handler.

The JSP 2.0 API defines a set of classes and interfaces that you use to write custom tag handlers.
Documentation for the javax.servlet.jsp.tagext API is available at
http://java.sun.com/j2ee/j2sdkee/techdocs/api/index.html.

Your tag handler must be of one of the following two types:

Classic Tag Handlers implement one of three interfaces:

Tag

Implement the javax.servlet.jsp.tagext.Tag interface if you are creating a
custom tag that does not need access to its interface. The API also provides a

http://java.sun.com/j2ee/j2sdkee/techdocs/api/index.html

Unders tanding and Crea t ing Cus tom JSP Tags

2-2 Programming WebLogic JSP Tag Extensions

convenience class TagSupport that implements the Tag interface and provides
default empty methods for the methods defined in the interface.

BodyTag

Implement the javax.servlet.jsp.tagext.BodyTag interface if your custom
tag needs to use a body. The API also provides a convenience class
BodyTagSupport that implements the BodyTag interface and provides default
empty methods for the methods defined in the interface. Because BodyTag extends
Tag it is a super set of the interface methods.

IterationTag

Implement the javax.servlet.jsp.tagext.IterationTag interface to extend
Tag by defining an additional method doAfterBody() that controls the
reevaluation of the body.

Simple Tag Handlers (SimpleTag interface):

Implement the javax.servlet.jsp.tagext.SimpleTag interface if you wish to use
a much simpler invocation protocol. The SimpleTag interface does not extend the
javax.servlet.jsp.tagext.Tag interface as does the BodyTag interface. Therefore,
instead of supporting the doStartTag() and doEndTag() methods, the SimpleTag
interface provides a simple doTag() method, which is called once and only once for
each tag invocation.

You write the tag handler class by doing one of the following:

Implement one of three interfaces, SimpleTag, Tag, or BodyTag, which define methods
that are invoked during the life cycle of the tag.

Extend an abstract base class that implements the SimpleTag, Tag, or BodyTag interfaces.

Extending an abstract base class relieves the tag handler class from having to implement all
methods in the interfaces and also provides other convenient functionality. The
SimpleTagSupport, TagSupport, and BodyTagSupport classes implement the SimpleTag,
Tag or BodyTag interfaces and are included in the API.

You can include one or more custom JSP tags in a tag library. You define a tag library by a tag
library descriptor (.tld) file. The TLD describes the syntax for each tag and ties it to the Java
classes that execute its functionality.

Custom Tag L ibra ry

Programming WebLogic JSP Tag Extensions 2-3

Custom Tag Library
JSP tag libraries include one or more custom JSP tags and are defined in a tag library descriptor
(.tld) file. To use a custom tag library from a JSP page, reference its tag library descriptor with
a <%@ taglib %> directive. For example:

 <%@ taglib uri="myTLD" prefix="mytaglib" %>

uri

The JSP engine attempts to find the tag library descriptor by matching the uri attribute to
a uri that is defined in the Web application deployment descriptor (web.xml) with the
<taglib-uri> element. For example, myTLD in the above the taglib directive would
reference its tag library descriptor (library.tld) in the Web application deployment
descriptor like this:

<taglib>

 <taglib-uri>myTLD</taglib-uri>
 <taglib-location>library.tld</taglib-location>

</taglib>

prefix

The prefix attribute assigns a label to the tag library. You use this label to reference its
associated tag library when writing your pages using custom JSP tags. For example, if the
library (called mytaglib) from the example above defines a new tag called newtag, you
would use the tag in your JSP page like this:

<mytaglib:newtag>

For more information, see “Creating a Tag Library Descriptor” on page 3-1.

Custom Tag Format
A custom tag format can be empty, called an empty tag, or can contain a body, called a body tag.
Both types of tags can accept a number of attributes that are passed to the Java class that
implements the tag. For more details, see “Handling Exceptions within a Tag Body” on page 4-8.

An empty tag takes the following form:

<mytaglib:newtag attr1="aaa" attr2="bbb" ... />

A body tag takes the following form:

<mytaglib:newtag attr1="aaa" attr2="bbb" ... >

 body

</mytaglib:newtag>

Unders tanding and Crea t ing Cus tom JSP Tags

2-4 Programming WebLogic JSP Tag Extensions

A tag body can include more JSP syntax, and even other custom JSP tags that also have nested
bodies. Tags can be nested within each other to any level. For example:

<mytaglib:tagA>

 <h2>This is the body of tagA</h2>

 You have seen this text <mytaglib:counter /> times!

 <p>

 <mytaglib:repeater repeat=4>

 <p>Hello World!

 </mytaglib:repeater>

</mytaglib:tagA>

The preceding example uses three custom tags to illustrate the ability to nest tags within a body
tag. The tags function like this:

The body tag <mytaglib:tagA> only sees the HTML output from its evaluated body. That
is, the nested JSP tags <mytaglib:counter> and <mytaglib:repeater> are first
evaluated and their output becomes part of the evaluated body of the <mytaglib:tagA>
tag.

The body of a body tag is first evaluated as JSP and all tags that it contains are translated,
including nested body tags, whose bodies are recursively evaluated. The result of an
evaluated body can then be used directly as the output of a body tag, or the body tag can
determine its output based on the content of the evaluated body.

The output generated from the JSP of a body tag is treated as plain HTML. That is, the
output is not further interpreted as JSP.

What Can You Do with Custom Tags?
Custom tags can perform the following tasks:

Produce output. The output of the tag is sent to the surrounding scope. The scope can be
one of the following:

– If the tag is included directly in the JSP page, then the surrounding scope is the JSP
page output.

– If the tag is nested within another parent tag, then the output becomes part of the
evaluated body of its parent tag.

Define new objects that can be referenced and used as scripting variables in the JSP page.
A tag can introduce fixed-named scripting variables, or can define a dynamically named
scripting variable with the id attribute.

Creat ing and Conf igur ing a JSP Tag L ib ra ry : Example P rocedures

Programming WebLogic JSP Tag Extensions 2-5

Iterate over body content of the tags until a certain condition is met. Use iteration to create
repetitive output, or to repeatedly invoke a server side action.

Determine whether the rest of the JSP page should be processed as part of the request, or
skipped.

An empty tag can perform server-side work based on the tag’s attributes. The action that
the tag performs can determine whether the rest of the page is interpreted or some other
action is taken, such as a redirect. This function is useful for checking that users are logged
in before accessing a page, and redirecting them to a login page if necessary.

An empty tag can insert content into a page based on its attributes. You can use such a tag
to implement a simple page-hits counter or another template-based insertion.

An empty tag can define a server-side object that is available in the rest of the page, based
on its attributes. You can use this tag to create a reference to an EJB, which is queried for
data elsewhere in the JSP page.

A body tag has the option to process its output before the output becomes part of the
HTML page sent to the browser, evaluate that output, and then determine the resulting
HTML that is sent to the browser. This functionality could be used to produce “quoted
HTML,” reformatted content, or used as a parameter that you pass to another function,
such as an SQL query, where the output of the tag is a formatted result set.

A body tag can repeatedly process its body until a particular condition is met.

Creating and Configuring a JSP Tag Library: Example
Procedures

Perform the following steps to create and use custom JSP tags:

1. Write a tag handler class. When you use a custom tag in your JSP, this class executes the
functionality of the tag. A tag handler class implements one of three interfaces:
javax.servlet.jsp.tagext.BodyTag

javax.servlet.jsp.tagext.Tag

javax.servlet.jsp.tagext.SimpleTag

Your tag handler class is implemented as part of a tag library. For more information, see
“Implementing the Tag Handler” on page 4-1.

Unders tanding and Crea t ing Cus tom JSP Tags

2-6 Programming WebLogic JSP Tag Extensions

2. Reference the tag library in your JSP source using the JSP <taglib> directive. A tag
library is a collection of JSP tags. Include this directive at the top of your JSP source. For
more information, see “Configuring JSP Tag Libraries” on page 5-1.

3. Write the tag library descriptor (TLD). The TLD defines the tag library and provides
additional information about each tag, such as the name of the tag handler class, attributes,
and other information about the tags. For more information, see “Creating a Tag Library
Descriptor” on page 3-1.

4. Reference the TLD in the Web application deployment descriptor (web.xml).

5. Use your custom tag in your JSP. For more information, see “Configuring JSP Tag
Libraries” on page 5-1.

Programming WebLogic JSP Tag Extensions 3-1

C H A P T E R 3

Creating a Tag Library Descriptor

The following sections describe how to create a tag library descriptor (TLD):

“Overview of Tag Library Descriptors” on page 3-2

“Writing the Tag Library Descriptor” on page 3-2

“Sample Tag Library Descriptor” on page 3-6

“The DynamicAttributes Interface” on page 3-7

“Tag Handler Support of Dynamic Attributes” on page 3-7

Creat ing a Tag L ib ra ry Desc r ip to r

3-2 Programming WebLogic JSP Tag Extensions

Overview of Tag Library Descriptors
A tag library allows a developer to group together tags with related functionality. A tag library
uses a tag library descriptor (TLD) file that describes the tag extensions and relates them to their
Java classes. WebLogic Server and some authoring tools use the TLD to get information about
the extensions. TLD files have the file extension .tld and are written in XML notation.

Writing the Tag Library Descriptor
Order the elements in the tag library descriptor file as they are defined in the XSD. This ordering
is used in the following procedure. The XML parser throws an exception if you incorrectly order
the TLD elements.

The body of the TLD contains additional nested elements inside of the
<taglib> ... </taglib> element. These nested elements are also described in the steps
below. For display in this document, nested elements are indented from their parent elements, but
indenting is not required in the TLD.

The example in “Sample Tag Library Descriptor” on page 3-6 declares a new tag called code.
The functionality of this tag is implemented by the Java class
weblogic.taglib.quote.CodeTag.

To create a TLD:

1. Create a text file with an appropriate name and the extension .tld, and save it in the WEB-INF
directory of the Web application containing your JSP(s). Content beneath the WEB-INF
directory is non-public and is not served over HTTP by WebLogic Server.

2. Include the following header:

<taglib version="2.0" xmlns="http://java.sun.com/xml/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2
_0.xsd">

3. Add the contents of the TLD, embedded in a <taglib> element, as indicated in steps 4-7.
The contents include elements containing information about the tag library and elements
that define each tag. For example:

<taglib>
 ... body of taglib descriptor ...
</taglib>

4. Identify the tag library:

Wri t ing the Tag L ib rary Descr ip to r

Programming WebLogic JSP Tag Extensions 3-3

<tlib-version>version_number</tlib-version>

(Required) The version number of the tag library.

<jsp-version>version_number</jsp-version>

(Required) Describes the JSP specification version (number) this tag library
requires in order to function. The default is 2.0.

<short-name>TagLibraryName</short-name>

(Required) Assigns a short name to this tag library. This element is not used by
WebLogic Server.

<uri>unique_string</uri>

(Required) Defines a public URI that uniquely identifies this version of the tag
library.

<display-name>display_name</display-name>

(Optional) Contains a short name that is intended to be displayed by tools.

<icon>
<small-icon>icon.jpg</small-icon>

(Optional) Contains the name of a file containing a small (16 x 16) icon image. The
file name is a relative path within the tag library. The image must be either in the
JPEG or GIF format, and the file name must end with the suffix ".jpg" or ".gif"
respectively. The icon can be used by tools.

<large-icon>icon.jpg</large-icon>

(Optional) Contains the name of a file containing a large (32 x 32) icon image. The
file name is a relative path within the tag library. The image must be either in the
JPEG or GIF format, and the file name must end with the suffix ".jpg" or ".gif"
respectively. The icon can be used by tools.

</icon>

<description>...text...</description>

(Required) Defines an arbitrary text string describing the tag library.

<validator>unique_string</validator>

(Optional) Provides information on the scripting variables defined by this tag. A
translation-time error occurs if a tag that has one or more variable subelements has
a TagExtraInfo class that returns a non-null object.

<listener>unique_string</listener>

(Optional) Defines an optional event listener object to be instantiated and
registered automatically.

Creat ing a Tag L ib ra ry Desc r ip to r

3-4 Programming WebLogic JSP Tag Extensions

5. Define a tag library validator (Optional).

<validator>

Top level element for a validator.

<validator-class>my.validator</validator-class>

(Required) The Java class that performs the validation.

<init-param>

(Optional) Defines initialization parameters for the validator class.

<param-name>param</param-name>

Defines the name of this parameter.

<param-value>value</param-value>

Defines the name of this parameter.

6. Define a tag.

Use a separate <tag> element to define each new tag in the tag library. The <tag> element
takes the following nested tags:

<name>tag_name</name>

(Required) Defines the name of the tag. This is used when referencing the tag in a JSP file,
after the “:” symbol, For example:

<mytaglib:tag_name>

For more information, see ““WebLogic Server Known and Resolved Issues” lists
known problems for WebLogic Server.” on page 1-3.

<tag-class>package.class.name</tag-class>

(Required) Declares the tag handler class that implements the functionality of this
tag. Specify the fully qualified package name of the class.
Locate the class file under the WEB-INF/classes directory, in a directory
structure reflecting the package name. You can also package the classes in a tag
library jar file; for more information, see “Packaging a JSP Tag Library as JAR
File” on page 5-2.

<tei-class>package.class.name</tei-class>

(Optional) Declares the subclass of TagExtraInfo that describes the scripting
variables introduced by this tag. If your tag does not define new scripting variables,
it does not use this element. Specify the fully qualified package name of the class.
You can perform validation of the tag’s attributes in this class.
Place the class files under the WEB-INF/classes directory of your Web
application, under a directory structure reflecting the package name. You can also

Wri t ing the Tag L ib rary Descr ip to r

Programming WebLogic JSP Tag Extensions 3-5

package the classes in a tag library jar file; for more information, see “Packaging
a JSP Tag Library as JAR File” on page 5-2.

<body-content>empty | JSP | scriptless | tagdependent</body-content>

(Optional) Defines the content of the tag body.
empty means that you use the tag in the empty tag format in the JSP page. For
example: <taglib:tagname/>
JSP means that the contents of the tag can be interpreted as a JSP and that you must
use the tag in the body tag format. For example:
<taglib:tagname>...</taglib:tagname>.
scriptless means that the contents of the tag do not contain any scripts or
scripting elements.
tagdependent means that your tag will interpret the contents of the body as a
non-JSP (for example, an SQL statement).

<attribute>

(Optional) Defines the name of the attribute as it appears in the tag element in
the JSP page. For example:

<taglib:mytag myAttribute="myAttributeValue">

Use a separate <attribute> element to define each attribute that the tag can
take. Tag attributes allow the JSP author to alter the behavior of your tags.

<name>myAttribute</name>

<required>true | false</required>

(Optional) Defines whether this attribute has optional use in the JSP page.
If not defined here, the default is false — that is, the attribute is optional by
default.
If true is specified, and the attribute is not used in a JSP page, a

translation-time error occurs.

<rtexprvalue>true | false</rtexprvalue>

(Optional) Defines whether this attribute can take a scriptlet expression as a
value, allowing it to be dynamically calculated at request time.

If this element is not specified, the value is presumed to be false.

</attribute>

7. Define scripting variables (optional).

Within the <tag> element, you can define scripting variables.

Creat ing a Tag L ib ra ry Desc r ip to r

3-6 Programming WebLogic JSP Tag Extensions

<variable>
Top level element for declaring a variable.

<name-given>someName</name-given>
Defines the name of the variable, or you can define the name from an attribute
using.

<name-from-attribute>attrName</name-from-attribute>
Names the variable with the value of attrName.

<variable-class>some.java.type</variable-class>

The Java type of this variable.

<declare>true</declare>
(Optional) If set to true, indicates that the variable is to be defined.

<scope>AT_BEGIN</scope>

The scope of the scripting variable. Valid options are:
NESTED (The variable is only available inside the tag body)
AT_BEGIN (The variable is defined just before executing the body)
AT_END (The variable is defined just after executing the body.)

 </variable>

Sample Tag Library Descriptor
The following is a sample listing of a tag library descriptor.

Listing 3-1 Sample Tag Library Descriptor (tld)

<taglib version="2.0" xmlns="http://java.sun.com/xml/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_0.

xsd">

<taglib>

 <tlib-version>2.0</tlib-version>

 <jsp-version>2.0</jsp-version>

 <short-name>quote</short-name>

<uri>tag lib version id</uri>

<description>

The DynamicAt t r ibutes In te r face

Programming WebLogic JSP Tag Extensions 3-7

 This tag library contains several tag extensions

 useful for formatting content for HTML.

 </description>

 <tag>

 <name>code</name>

 <tag-class>weblogic.taglib.quote.CodeTag</tag-class>

 <body-content>tagdependent</body-content>

 <attribute>

 <name>fontAttributes</name>

 </attribute>

 <attribute>

 <name>commentColor</name>

 </attribute>

 <attribute>

 <name>quoteColor</name>

 </attribute>

 </tag>

</taglib>

The DynamicAttributes Interface
The DynamicAttributes interface, supported by the JSP 2.0 container, allows you to use tags with
values that are treated in a consistent manner but with names that are not necessarily known at
development time. For example, if you want to customize the width portion of the <table>
HTML tag by determining its value at runtime, you could make use of the DynamicAttributes
interface to customize only the portion of the tag you want to change, without needing to specify
anything about the other portions of the <table> tag (border, cellspacing, and so on).
Without the DynamicAttributes interface, you would have needed to write a Tag Handler or other
complicated code to accomplish the task of determining the value of width dynamically at
runtime.

Tag Handler Support of Dynamic Attributes
The TLD is what ultimately determines whether a tag handler accepts dynamic attributes or not.
If a tag handler declares that it supports dynamic attributes in the TLD but it does not implement
the DynamicAttributes interface, the tag handler must be considered invalid by the container.

Creat ing a Tag L ib ra ry Desc r ip to r

3-8 Programming WebLogic JSP Tag Extensions

If the dynamic-attributes element (a child element to the tag element for the tag library
being authored) for a tag being invoked contains the value true, the following requirements
apply:

For each attribute specified in the tag invocation that does not have a corresponding
attribute element in the TLD for this tag, a call must be made to
setDynamicAttribute(), passing in the namespace of the attribute (or null if the
attribute does not have a namespace or prefix), the name of the attribute without the
namespace prefix, and the final value of the attribute.

Dynamic attributes must be considered to accept request-time expression values.

Dynamic attributes must be treated as though they were of type java.lang.Object.

The JSP container must recognize dynamic attributes that are passed to the tag handler
using the <jsp:attribute> standard action.

If the setDynamicAttribute() method throws JspException, the doStartTag() or
doTag() method is not invoked for this tag, and the exception must be treated in the same
manner as if it came from a regular attribute setter method.

For a JSP document in either standard or XML syntax, if a dynamic attribute has a prefix
that does not map to a namespace, a translation error must occur. In standard syntax, only
namespaces defined using taglib directives are recognized.

Dynamic Attributes Example
In the following example, assume attributes a and b are declared using the attribute element in
the TLD, attributes d1 and d2 are not declared, and the dynamic-attributes element is set to
true. You set the attributes using the calls:

setA("1"),

setDynamicAttribute(null, "d1", "2"),

setDynamicAttribute("http://www.foo.com/jsp/taglib/mytag.tld", "d2",
"3"),

setB("4"),

setDynamicAttribute(null, "d3", "5"), and

setDynamicAttribute("http://www.foo.com/jsp/taglib/mytag.tld", "d4",
"6").

Tag Handle r Suppor t o f Dynamic A t t r ibu tes

Programming WebLogic JSP Tag Extensions 3-9

Listing 3-2 Dynamic Attribute Example

<jsp:root xmlns:mytag="http://www.foo.com/jsp/taglib/mytag.tld"

version="2.0">

<mytag:invokeDynamic a="1" d1="2" mytag:d2="3">

<jsp:attribute name="b">4</jsp:attribute>

<jsp:attribute name="d3">5</jsp:attribute>

<jsp:attribute name="mytag:d4">6</jsp:attribute>

</mytag:invokeDynamic>

</jsp:root>

Dynamic Attributes Syntax
For a tag to declare that it accepts dynamic attributes, it must implement the
DynamicAttributes interface. The syntax is as follows:

public interface DynamicAttributes

You must also configure an entry for the tag in the TLD to indicate dynamic attributes are
accepted. For any attribute that is not declared in the TLD for this tag, instead of getting an error
at translation time, the setDynamicAttribute() method is called, with the name and value of
the attribute. You configure the tag to remember the names and values of the dynamic attributes.

The setDynamicAttribute() method is called when a tag declared to accept dynamic
attributes passes an attribute that is not declared in the TLD. The syntax is as follows:

public void setDynamicAttribute(java.lang.String uri, java.lang.String

localName, java.lang.Object value)

The parameter values are as follows:

uri - the namespace of the attribute, or null if in the default namespace.

localName - the name of the attribute being set.

value - the value of the attribute.

A JspException is thrown if the tag handler signals that it does not accept the given attribute.
The container must not call doStartTag() or doTag() for this tag.

Creat ing a Tag L ib ra ry Desc r ip to r

3-10 Programming WebLogic JSP Tag Extensions

For more information on these interfaces, refer to the DynamicAttributes API at
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/DynamicAttributes.html.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/DynamicAttributes.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/jsp/tagext/DynamicAttributes.html

Programming WebLogic JSP Tag Extensions 4-1

C H A P T E R 4

Implementing the Tag Handler

The following sections describe how to write Java classes that implement the functionality of an
extended tag:

“Simple Tag Handler Life Cycle (SimpleTag Interface)” on page 4-1

“Tag Handler Life Cycle (Tag and BodyTag Interfaces)” on page 4-5

“Iteration Over a Body Tag (IterationTag Interface)” on page 4-8

“Handling Exceptions within a Tag Body” on page 4-8

“Using Tag Attributes” on page 4-8

“Defining New Scripting Variables” on page 4-9

“Writing Cooperative Nested Tags” on page 4-11

“Using a Tag Library Validator” on page 4-11

Simple Tag Handler Life Cycle (SimpleTag Interface)
Simple tag handlers present a much simpler invocation protocol than do classic tag handlers. The
tag library descriptor maps tag library declarations to their physical underlying implementations.
A simple tag handler is represented in Java by a class that implements the SimpleTag interface.

The life cycle of a simple tag handler is straightforward and is not complicated by caching
semantics. Once a simple tag handler is instantiated by the container, it is executed and then
discarded. The same instance must not be cached and reused. Initial performance metrics show

Implement ing the Tag Handle r

4-2 Programming WebLogic JSP Tag Extensions

that caching a tag handler instance does not necessarily lead to greater performance. To
accommodate such caching makes writing portable tag handlers difficult and makes the tag
handler prone to error.

In addition to being simpler to work with, simple tag extensions do not rely directly on any servlet
APIs, which allows for potential future integration with other technologies. This capability is
facilitated by the JspContext class, which Page-Context extends. JspContext provides
generic services such as storing the JspWriter and keeping track of scoped attributes, whereas
PageContext has functionality specific to serving JSPs in the context of servlets. Whereas the
Tag interface relies on PageContext, SimpleTag only relies on JspContext. The body of
SimpleTag, if present, is translated into a JSP fragment and passed to the setJspBody method.
The tag can then execute the fragment as many times as needed. See “JSP Fragments” on
page 4-4.

Unlike classic tag handlers, the SimpleTag interface does not extend Tag. Instead of supporting
doStartTag() and doEndTag(), the SimpleTag interface provides a simple doTag() method,
which is called once and only once for any given tag invocation. All tag logic, iteration, body
evaluations, and so on are performed in this single method. Thus, simple tag handlers have the
equivalent power of BodyTag, but with a much simpler lifecycle and interface.

To support body content, the setJspBody() method is provided. The container invokes the
setJspBody() method with a JspFragment object encapsulating the body of the tag. The tag
handler implementation can call invoke() on that fragment to evaluate the body. The
SimpleTagSupport convenience class provides getJsp-Body() and other useful methods to
make this even easier.

Events in the Simple Tag Handler Life Cycle
The following describes the lifecycle of simple tag handlers, from creation to invocation. When
a simple tag handler is invoked, the following events occur (in order):

1. Simple tag handlers are created initially using a zero argument constructor on the
corresponding implementation class. Unlike classic tag handlers, a simple tag handler
instance must never be pooled by the container. A new instance must be created for each tag
invocation.

2. The setJspContext() and setParent() methods are invoked on the tag handler. The
setParent() method need not be called if the value being passed in is null. In the case of
tag files, a JspContext wrapper is created so that the tag file can appear to have its own
page scope. Calling getJspContext() must return the wrapped Jsp-Context.

Simple Tag Hand le r L i fe Cyc le (S impleTag In te r face)

Programming WebLogic JSP Tag Extensions 4-3

3. The attributes specified as XML element attributes (if any) are evaluated next, in the order
in which they are declared, according to the following rules (referred to as "evaluating an
XML element attribute" below). The appropriate bean property setter is invoked for each. If
no setter is defined for the specified attribute but the tag accepts dynamic attributes, the
setDynamicAttribute() method is invoked as the setter.

If the attribute is a scripting expression (for example, "<%= 1+1 %>" in JSP syntax, or
"%= 1+1 %" in XML syntax), the expression is evaluated, and the result is converted and
passed to the setter.

Otherwise, if the attribute contains any expression language expressions (for example,
"Hello ${name}"), the expression is evaluated, and the result is converted and passed to
the setter.

Otherwise, the attribute value is taken verbatim, converted, and passed to the setter.

4. The value for each <jsp:attribute> element is evaluated, and the corresponding bean
property setter methods are invoked for each, in the order in which they appear in the body
of the tag. If no setter is defined for the specified attribute but the tag accepts dynamic
attributes, the setDynamicAttribute() method is invoked as the setter.

Otherwise, if the attribute is not of type JspFragment, the container evaluates the body of
the <jsp:attribute> element. This evaluation can be done in a container-specific
manner. Container implementors should note that in the process of evaluating this body,
other custom actions may be invoked.

Otherwise, if the attribute is of type JspFragment, an instance of a Jsp-Fragment object
is created and passed in.

5. The value for the body of the tag is determined, and if a body exists the setJsp-Body()
method is called on the tag handler.

If the tag is declared to have a body-content of empty or no body or an empty body is
passed for this invocation, then setJspBody() is not called.

Otherwise, the body of the tag is either the body of the <jsp:body> element, or the body
of the custom action invocation if no <jsp:body> or <jsp:attribute> elements are
present. In this case, an instance of a Jsp-Fragment object is created and it is passed to
the setter. If the tag is declared to have a body-content of tagdependent, the
JspFragment must echo the body’s contents verbatim.

Otherwise, if the tag is declared to have a body-content of type scriptless, the
JspFragment must evaluate the body’s contents as a JSP scriptless body.

6. The doTag() method is invoked.

Implement ing the Tag Handle r

4-4 Programming WebLogic JSP Tag Extensions

7. The implementation of doTag() performs its function, potentially calling other tag handlers
(if the tag handler is implemented as a tag file) and invoking fragments.

8. The doTag() method returns, and the tag handler instance is discarded. If
Skip-PageException is thrown, the rest of the page is not evaluated and the request is
completed. If this request was forwarded or included from another page (or servlet), only
the current page evaluation stops.

9. For each tag scripting variable declared with scopes AT_BEGIN or AT_END, the appropriate
scripting variables and scoped attributes are declared, as with classic tag handlers.

JSP Fragments
A JSP fragment is a portion of JSP code passed to a tag handler that can be invoked as many times
as needed. You can think of a fragment as a template that is used by a tag handler to produce
customized content. Thus, unlike simple attributes which are evaluated by the container,
fragment attributes are evaluated by tag handlers during tag invocation.

JSP fragments can be parameterized using the JSP expression language (JSP EL) variables in the
JSP code that composes the fragment. The JSP EL variables are set by the tag handler, thus
allowing the handler to customize the fragment each time it is invoked. For more information on
the JSP expression language, see “WebLogic JSP Reference” in Developing Web Applications,
Servlets, and JSPs for WebLogic Server.

During the simple tag handler lifecycle, the body of a SimpleTag, if present, is translated into a
JSP fragment and passed to the setJspBody method. During the translation phase, various
sections of the page are translated into implementations of the
javax.servlet.jsp.tagext.JspFragment abstract class, before being passed to a tag
handler. This is done automatically for any JSP code in the body of a named attribute (one that
is defined by <jsp:attribute>) that is declared to be a fragment, or of type JspFragment, in
the tag library descriptor (TLD). This is also automatically done for the body of any tag handled
by a simple tag handler. Once passed in, the tag handler can then evaluate and re-evaluate the
fragment as many times as needed, or even pass it along to other tag handlers, in the case of tag
files.

A JSP fragment can be parameterized by a tag handler by setting page-scoped attributes in the
JspContext associated with the fragment. These attributes can then be accessed by way of the
expression language.

A translation error must occur if a piece of JSP code that is to be translated into a JSP fragment
contains scriptlets or scriptlet expressions.

http://e-docs.bea.com/wls/docs91/webapp/reference.html
http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/webapp/index.html

Tag Handle r L i fe Cyc l e (Tag and BodyTag In te r faces)

Programming WebLogic JSP Tag Extensions 4-5

Tag Handler Life Cycle (Tag and BodyTag Interfaces)
The methods inherited from the Tag or BodyTag interfaces and implemented by the tag handler
class are invoked by the JSP engine at specific points during the processing of the JSP page.
These methods signify points in the life cycle of a tag and are executed in the following sequence:

1. When the JSP engine encounters a tag in a JSP page, a new tag handler is initialized. The
setPageContext() and setParent() methods of the javax.servlet.jsp.tagext.Tag
interface are invoked to set up the environment context for the tag handler. As a tag developer,
you need not implement these methods if you extend the TagSupport or BodyTagSupport
base classes.

2. The setXXXX() JavaBean-like methods for each tag attribute are invoked. For more details,
see “Handling Exceptions within a Tag Body” on page 4-8.

3. The doStartTag() method is invoked. You can define this method in your tag handler
class to initialize your tag handler or open connections to any resources it needs, such as a
database.

At the end of the doStartTag() method, you can determine whether the tag body should
be evaluated by returning one of the following value constants from your tag handler class:

SKIP_BODY

Directs the JSP engine to skip the body of the tag. Return this value if the tag is an
empty-body tag. The body-related parts of the tag’s life cycle are skipped, and the
next method invoked is doEndTag().

EVAL_BODY_INCLUDE

Directs the JSP engine to evaluate and include the content of the tag body. The
body-related parts of the tag’s life cycle are skipped, and the next method invoked
is doEndTag().
You can only return this value for tags that implement the Tag interface. This
allows you to write a tag that can determine whether its body is included, but is not
concerned with the contents of the body. You cannot return this value if your tag
implements the BodyTag interface (or extends the BodyTagSuport class).

EVAL_BODY_TAG

Instructs the JSP engine to evaluate the tag body, then invokes the doInitBody()
method. You can only return this value if your tag implements the BodyTag
interface (or extends the BodyTagSupport class).

Implement ing the Tag Handle r

4-6 Programming WebLogic JSP Tag Extensions

4. The setBodyContent() method is invoked. At this point, any output from the tag is
diverted into a special JspWriter called BodyContent, and is not sent to the client. All
content from evaluating the body is appended to the BodyContent buffer. This method
allows the tag handler to store a reference to the BodyContent buffer so it is available to
the doAfterBody() method for post-evaluation processing.

If the tag is passing output to the JSP page (or the surrounding tag scope if it is nested), the
tag must explicitly write its output to the parent-scoped JspWriter between this point in
the tag life cycle and the end of the doEndTag() method. The tag handler can gain access
to the enclosing output using the getEnclosingWriter() method.

You do not need to implement this method if you are using the BodyTagSupport
convenience class, because the tag keeps a reference to the BodyContent and makes the
reference available through the getBodyContent() method.

5. The doInitBody() method is invoked. This method allows you to perform some work
immediately before the tag body is evaluated for the first time. You might use this
opportunity to set up some scripting variables, or to push some content into the
BodyContent before the tag body. The content you prepend here will not be evaluated as
JSP—unlike the tag body content from the JSP page.

The significant difference between performing work in this method and performing work at
the end of the doStartTag() method (once you know you are going to return
EVAL_BODY_TAG) is that with this method, the scope of the tag’s output is nested and does
not go directly to the JSP page (or parent tag). All output is now buffered in a special type
of JspWriter called BodyContent.

6. The doAfterBody() method is invoked. This method is called after the body of the tag is
evaluated and appended to the BodyContent buffer. Your tag handler should implement
this method to perform some work based on the evaluated tag body. If your handler extends
the convenience class BodyTagSupport, you can use the getBodyContent() method to
access the evaluated body. If you are simply implementing the BodyTag interface, you
should have defined the setBodyContent() method where you stored a reference to the
BodyContent instance.

At the end of the doAfterBody() method, you can determine the life cycle of the tag
again by returning one of the following value constants:

 SKIP_BODY
Directs the JSP engine to continue, not evaluating the body again. The life cycle of
the tag skips to the doEndTag() method.

Tag Handle r L i fe Cyc l e (Tag and BodyTag In te r faces)

Programming WebLogic JSP Tag Extensions 4-7

 EVAL_BODY_TAG
Directs the JSP engine to evaluate the body again. The evaluated body is appended
to the BodyContent and the doAfterBody() method is invoked again.

At this point, you may want your tag handler to write output to the surrounding scope.
Obtain a writer to the enclosing scope using the BodyTagSupport.getPreviousOut()
method or the BodyContent.getEnclosingWriter() method. Either method obtains the
same enclosing writer.

Your tag handler can write the contents of the evaluated body to the surrounding scope, or
can further process the evaluated body and write some other output. Because the
BodyContent is appended to the existing BodyContent upon each iteration through the
body, you should only write out the entire iterated body content once you decide you are
going to return SKIP_BODY. Otherwise, you will see the content of each subsequent
iteration repeated in the output.

7. The out writer in the pageContext is restored to the parent JspWriter. This object is
actually a stack that is manipulated by the JSP engine on the pageContext using the
pushBody() and popBody() methods. Do not, however, attempt to manipulate the stack
using these methods in your tag handler.

8. The doEndTag() method is invoked. Your tag handler can implement this method to
perform post-tag, server side work, write output to the parent scope JspWriter, or close
resources such as database connections.

Your tag handler writes output directly to the surrounding scope using the JspWriter
obtained from pageContext.getOut() in the doEndTag() method. The previous step
restored pageContext.out to the enclosing writer when popBody() was invoked on the
pageContext.

You can control the flow for evaluation of the rest of the JSP page by returning one of the
following values from the doEngTag() method:

 EVAL_PAGE
Directs the JSP engine to continue processing the rest of the JSP page.

 SKIP_PAGE
Directs the JSP engine to skip the rest of the JSP page.

9. The release() method is invoked. This occurs just before the tag handler instance is
de-referenced and made available for garbage collection.

Implement ing the Tag Handle r

4-8 Programming WebLogic JSP Tag Extensions

Iteration Over a Body Tag (IterationTag Interface)
A tag that implements the javax.servlet.jsp.tagext.IterationTag interface has a
method available called doAfterBody() that allows you to conditionally re-evaluate the body of
the tag. If doAFterBody() returns IterationTag.EVAL_BODY_AGAIN, the body is
re-evaluated, if doAFterBody() returns Tag.SKIP_BODY, the body is skipped and the
doEndTag() method is called. For more information, see the J2EE Javadocs for this interface.
(You can download the Javadocs from Sun Microsystems at
http://java.sun.com/products/jsp/download/index.html.)

Handling Exceptions within a Tag Body
You can catch exceptions thrown from within a tag by implementing the doCatch() and
doFinally() methods of the javax.servlet.jsp.tagext.TryCatchFinally interface. For
more information, see the J2EE Javadocs for this interface. (You can download the Javadocs from
Sun Microsystems at http://java.sun.com/products/jsp/download/index.html.)

Using Tag Attributes
Your custom tags can define any number of attributes that can be specified from the JSP page.
You can use these attributes to pass information to the tag handler and customize its behavior.

You declare each attribute name in the TLD, in the <attribute> element. This declares the
name of the attribute and other attribute properties.

Your tag handler must implement setter and getter methods based on the attribute name, similar
to the JavaBean convention. For example, if you declare an attribute named foo, your tag handler
must define the following public methods:

public void setFoo(String f);

public String getFoo();

Note that the first letter of the attribute name is capitalized after the set/get prefix.

The JSP engine invokes the setter methods for each attribute appropriately after the tag handler
is initialized and before the doStartTag() method is called. Generally, you should implement
the setter methods to store the attribute value in a member variable that is accessible to the other
methods of the tag handler.

http://java.sun.com/products/jsp/download/index.html
http://java.sun.com/products/jsp/download.html

Def in ing New Sc r ip t ing Var iab les

Programming WebLogic JSP Tag Extensions 4-9

Defining New Scripting Variables
Your tag handler can introduce new scripting variables that can be referenced by the JSP page at
various scopes. Scripting variables can be used like implicit objects within their defined scope.

Define a new scripting variable by using the <tei-class> element to identify a Java class that
extends javax.servlet.jsp.tagext.TagExtraInfo. For example:

<tei-class>weblogic.taglib.session.ListTagExtraInfo</tei-class>

Then write the TagExtraInfo class. For example:

package weblogic.taglib.session;

import javax.servlet.jsp.tagext.*;

public class ListTagExtraInfo extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {

return new VariableInfo[] {

new VariableInfo("username",

"String",

true,

VariableInfo.NESTED),

new VariableInfo("dob",

"java.util.Date",

true,

VariableInfo.NESTED)

};

}

}

The example above defines a single method, getVariableInfo(), which returns an array of
VariableInfo elements. Each element defines a new scripting variable. The example shown
above defines two scripting variables called username and dob, which are of type
java.lang.String and java.util.Date, respectively.

The constructor for VariableInfo() takes four arguments.

A String that defines the name of the new variable.

A String that defines the Java type of the variable. Give the full package name for types
in packages other than the java.lang package.

Implement ing the Tag Handle r

4-10 Programming WebLogic JSP Tag Extensions

A boolean that declares whether the variable must be instantiated before use. Set this
argument to “true” unless your tag handler is written in a language other than Java.

An int declaring the scope of the variable. Use a static field from VariableInfo shown
here:

VariableInfo.NESTED

Available only within the start and end tags of the tag.

VariableInfo.AT_BEGIN

Available from the start tag until the end of the page.

VariableInfo.AT_END

Available from the end tag until the end of the page.

Configure your tag handler to initialize the value of the scripting variables via the page context.
For example, the following Java source could be used in the doStartTag() method to initialize
the values of the scripting variables defined above:

pageContext.setAttribute("name", nameStr);

pageContext.setAttribute("dob", bday);

Where the first parameter names the scripting variable, and the second parameter is the value
assigned. Here, the Java variable nameStr is of type String and bday is of type
java.util.Date.

You can also access variables created with the TagExtraInfo class by referencing it the same
way you access a JavaBean that was created with useBean.

Dynamically Named Scripting Variables
It is possible to define the name of a new scripting variable from a tag attribute. This definition
allows you to use multiple instances of a tag that define a scripting variable at the same scope,
without the scripting variables of the tag clashing. In order to achieve this from your class that
extends TagExtraInfo, you must get the name of the scripting variable from the TagData that
is passed into the getVariableInfo() method.

From TagData, you can retrieve the value of the attribute that names the scripting variable using
the getAttributeString() method. There is also the getId() method that returns the value
of the id attribute, which is often used to name a new implicit object from JSP tag.

Wri t ing Coope rat i ve Nested Tags

Programming WebLogic JSP Tag Extensions 4-11

Defining Variables in the Tag Library Descriptor
You can define variables in the TLD. For more information, see “Define scripting variables
(optional).” on page 3-5.

Writing Cooperative Nested Tags
You can design your tags to implicitly use properties from tags they are nested within. For
example, in the code example called SQL Query (see the
samples/examples/jsp/tagext/sql directory of your WebLogic Server installation) a
<sql:query> tag is nested within a <sql:connection> tag. The query tag searches for a parent
scope connection tag and uses the JDBC connection established by the parent scope.

To locate a parent scope tag, your nested tag uses the static findAncestorWithClass() method
of the TagSupport class. The following is an example taken from the QueryTag example.

try {

 ConnectionTag connTag = (ConnectionTag)

 findAncestorWithClass(this,

 Class.forName("weblogic.taglib.sql.ConnectionTag"));

 } catch(ClassNotFoundException cnfe) {

 throw new JspException("Query tag connection "+

 "attribute not nested "+

 "within connection tag");

}

This example returns the closest parent tag class whose tag handler class matched the class given.
If the direct parent tag is not of this type, then it is parent is checked and so on until a matching
tag is found, or a ClassNotFoundException is thrown.

Using this feature in your custom tags can simplify the syntax and usage of tags in the JSP page.

Using a Tag Library Validator
A Tag Library Validator is a user-written Java class that you can use to perform validation of the
XML view of a JSP page. validate(String, String, PageData) on the validator class is
invoked by the JSP compiler at translation time (when the JSP is converted to a servlet) and
returns a null string if the page is validated or a string containing error information it the
validation fails.

To implement a Tag Library Validator:

Implement ing the Tag Handle r

4-12 Programming WebLogic JSP Tag Extensions

1. Write the validator class. A validator class extends the
javax.servlet.jsp.tagext.TagLibraryValidator class.

2. Reference the validator in the tag library descriptor. For example:

<validator>
 <validator-class>

myapp.tools.MyValidator
</validator-class>

</validator>

3. (Optional) Define initialization parameters. Your validator class can get and use
initialization parameters. For example:

<validator>
 <validator-class>

myapp.tools.MyValidator
</validator-class>
<init-param>

<param-name>myInitParam</param-name>
<param-value>foo</param-value>

</init-param>
</validator>

4. Package the validator class in the WEB-INF/classes directory of a Web application.You
can also package the classes in a tag library jar file; for more information, see “Packaging a
JSP Tag Library as JAR File” on page 5-2.

Programming WebLogic JSP Tag Extensions 5-1

C H A P T E R 5

Administration and Configuration

The following sections provide an overview of administration and configuration tasks for using
JSP tag extensions:

“Configuring JSP Tag Libraries” on page 5-1

“Packaging a JSP Tag Library as JAR File” on page 5-2

Configuring JSP Tag Libraries
The following steps describe how to configure a JSP tag library. You can also package a tag
library as a jar file (see “Packaging a JSP Tag Library as JAR File” on page 5-2).

1. Create a tag library descriptor (TLD).

For more information, see “Creating a Tag Library Descriptor” on page 3-1.

2. Reference this TLD in the Web application deployment descriptor, web.xml. For example:

<taglib>

 <taglib-uri>myTLD</taglib-uri>
 <taglib-location>WEB-INF/library.tld</taglib-location>

</taglib>

In this example the tag library descriptor is a file called library.tld. Always specify the
location of the tld relative to the root of the Web application.

3. Place the tag library descriptor file in the WEB-INF directory of the Web application.

4. Reference the tag library in the JSP page.

Admin is t ra t i on and Conf igurat ion

5-2 Programming WebLogic JSP Tag Extensions

In your JSP, reference the tag library with a JSP directive. For example:

<%@ taglib uri="myTLD" prefix="mytaglib" %>

5. Place the tag handler Java class files for your tags in the WEB-INF/classes directory of
your Web application.

6. Deploy the Web application on WebLogic Server. For more information, see “Deploying
and Packaging from a Split Development Directory” in Developing WebLogic Server
Applications.

Packaging a JSP Tag Library as JAR File
In addition to the procedure described in the previous section “Configuring JSP Tag Libraries,”
you can also package a JSP tag library as a jar file:

1. Create a TLD (tag library descriptor) file named taglib.tld.

For more information, see “Creating a Tag Library Descriptor” on page 3-1.

2. Create a directory containing the compiled Java tag handler class files used in your tag
library.

3. Create a subdirectory of the directory you created in step 2 and call it META-INF.

4. Copy the taglib.tld file you created in step 1. into the META-INF directory you created in
step 3.

5. Archive your compiled Java class files into a jar file by executing the following command
from the directory you created in step 2.

jar cv0f myTagLibrary.jar

(where myTagLibrary.jar is a name you provide)

6. Copy the jar file into the WEB-INF/lib directory of the Web application that uses your tag
library.

7. Reference this tag library descriptor in the Web application deployment descriptor,
web.xml. For example:

<taglib>
<taglib-uri>myjar.tld</taglib-uri>
<taglib-location>

/WEB-INF/lib/myTagLibrary.jar
</taglib-location>

</taglib>

http://e-docs.bea.com/wls/docs91/programming/splitdeploy.html
http://e-docs.bea.com/wls/docs91/programming/splitdeploy.html
http://e-docs.bea.com/wls/docs91/programming/index.html

Packag ing a JSP Tag L ib ra r y as JAR F i l e

Programming WebLogic JSP Tag Extensions 5-3

8. Reference the tag library in your JSP. For example:

<%@ taglib uri="myjar.tld" prefix="wl" %>

Admin is t ra t i on and Conf igurat ion

5-4 Programming WebLogic JSP Tag Extensions

	Introduction and Roadmap
	Understanding and Creating Custom JSP Tags
	Creating a Tag Library Descriptor
	Implementing the Tag Handler
	Administration and Configuration
	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	New and Changed JSP Features in This Release

	Understanding and Creating Custom JSP Tags
	Tag Handler API and Implementation
	Custom Tag Library
	Custom Tag Format
	What Can You Do with Custom Tags?
	Creating and Configuring a JSP Tag Library: Example Procedures

	Creating a Tag Library Descriptor
	Overview of Tag Library Descriptors
	Writing the Tag Library Descriptor
	Sample Tag Library Descriptor
	The DynamicAttributes Interface
	Tag Handler Support of Dynamic Attributes
	Dynamic Attributes Example
	Dynamic Attributes Syntax

	Implementing the Tag Handler
	Simple Tag Handler Life Cycle (SimpleTag Interface)
	Events in the Simple Tag Handler Life Cycle
	JSP Fragments

	Tag Handler Life Cycle (Tag and BodyTag Interfaces)
	Iteration Over a Body Tag (IterationTag Interface)
	Handling Exceptions within a Tag Body
	Using Tag Attributes
	Defining New Scripting Variables
	Dynamically Named Scripting Variables
	Defining Variables in the Tag Library Descriptor

	Writing Cooperative Nested Tags
	Using a Tag Library Validator

	Administration and Configuration
	Configuring JSP Tag Libraries
	Packaging a JSP Tag Library as JAR File

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

