
BEAWebLogic
Server®

Configuring WebLogic
Server Environments

Version 9.0
Revised: July 22, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Configuring WebLogic Server Environments iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-1

Related Documentation . 1-2

New and Changed Features in WebLogic Server Environments. 1-2

Server Self-Tuning for Production Environments . 1-2

New Overload Protection Increases Availability . 1-3

Network Channels Can Manage Traffic Between Server Instances 1-3

System-Wide Persistent Store . 1-4

2. Using Work Managers to Optimize Scheduled Work
Understanding How WebLogic Server Uses Thread Pools . 2-1

Understanding Work Managers . 2-2

Request Classes. 2-4

Context Request Class . 2-5

Constraints . 2-6

Stuck Thread Handling . 2-7

Assigning Work Managers to Applications and Application Components 2-7

Using Work Managers, Request Classes, and Constraints . 2-7

Dispatch Policy for EJB . 2-8

Dispatch Policy for Web Applications . 2-8

Deployment Descriptor Examples . 2-8

iv Configuring WebLogic Server Environments

Using Execute Queues. 2-13

3. Avoiding and Managing Overload
Configuring WebLogic Server to Avoid Overload Conditions. 3-1

Limiting Requests in the Thread Pool . 3-1

Work Managers and Thread Pool Throttling. 3-2

Limiting HTTP Sessions . 3-2

Exit on Out of Memory Exceptions . 3-3

Stuck Thread Handling. 3-3

WebLogic Server Self-Monitoring . 3-4

Overloaded Health State. 3-4

WebLogic Server Exit Codes . 3-4

4. Configuring Network Resources
Overview of Network Configuration. 4-1

New Network Configuration Features in WebLogic Server 4-2

Understanding Network Channels. 4-2

What Is a Channel?. 4-2

Rules for Configuring Channels . 4-3

Custom Channels Can Inherit Default Channel Attributes 4-3

Why Use Network Channels? . 4-3

Handling Channel Failures . 4-4

Upgrading Quality of Service Levels for RMI . 4-4

Standard WebLogic Server Channels . 4-4

The Default Network Channel . 4-5

Administration Port and Administrative Channel . 4-5

Using Internal Channels . 4-8

Channel Selection . 4-8

Configuring WebLogic Server Environments v

Internal Channels Within a Cluster . 4-8

Configuring a Channel . 4-9

Guidelines for Configuring Channels . 4-9

Channels and Server Instances . 4-9

Dynamic Channel Configuration. 4-9

Channels and Protocols . 4-10

Reserved Names . 4-10

Channels, Proxy Servers, and Firewalls . 4-10

Configuring Network Channels For a Cluster . 4-10

Create the Cluster . 4-10

Create and Assign the Network Channel. 4-11

Increase Packet Size When Using Many Channels . 4-11

Assigning a Custom Channel to an EJB . 4-12

5. Configuring Web Server Functionality
Overview of Configuring Web Server Components . 5-1

Configuring the Server. 5-2

Configuring the Listen Port . 5-2

Web Applications. 5-3

Web Applications and Clustering . 5-3

Designating a Default Web Application . 5-3

Configuring Virtual Hosting . 5-4

Virtual Hosting and the Default Web Application . 5-5

Setting Up a Virtual Host . 5-5

How WebLogic Server Resolves HTTP Requests. 5-6

Setting Up HTTP Access Logs . 5-8

Log Rotation . 5-8

Common Log Format . 5-9

vi Configuring WebLogic Server Environments

Setting Up HTTP Access Logs by Using Extended Log Format. 5-10

Creating the Fields Directive. 5-10

Supported Field identifiers . 5-10

Creating Custom Field Identifiers . 5-12

Preventing POST Denial-of-Service Attacks . 5-16

Setting Up WebLogic Server for HTTP Tunneling. 5-17

Configuring the HTTP Tunneling Connection. 5-17

Connecting to WebLogic Server from the Client . 5-18

Using Native I/O for Serving Static Files (Windows Only) . 5-19

6. Using the WebLogic Persistent Store
Overview of the Persistent Store . 6-2

Features of the Persistent Store . 6-3

High-Performance Throughput and Transactional Support . 6-3

Comparing File Stores and JDBC Stores . 6-3

Securing File Store Data. 6-4

High Availability For Persistent Stores . 6-4

Using the Default Persistent Store. 6-5

Default Store Location . 6-6

Example of a Default File Store . 6-6

Using Custom File Stores and JDBC Stores . 6-7

When to Use a Custom Persistent Store . 6-7

Methods of Creating a Persistent Store . 6-7

Creating a Custom (User-Defined) File Store . 6-8

Main Steps for Configuring a Custom File Store . 6-8

Example of a Custom File Store. 6-8

Guidelines for Configuring a Synchronous Write Policy. 6-9

Creating a JDBC Store. 6-10

Configuring WebLogic Server Environments vii

Main Steps for Configuring a JDBC Store . 6-10

Example of a JDBC Store . 6-10

Supported JDBC Drivers . 6-12

Automatically Creating a JDBC Store Table Using Default and Custom DDL Files . . .
6-13

Creating a JDBC Store Table Using a Custom DDL File 6-14

Enabling Oracle BLOB Record Columns . 6-14

Managing JDBC Store Tables. 6-15

Using the utils.Schema Utility to Delete a JDBC Store Table. 6-15

Guidelines for Configuring a JDBC Store . 6-16

Using Prefixes with a JDBC Store . 6-16

JDBC Store Table Rules . 6-17

Prefix Name Format Guidelines . 6-17

Recommended JDBC Data Source Settings for JDBC Stores 6-18

Automatic Reconnection to Failed Databases . 6-18

Required Setting for WebLogic Type 4 JDBC DB2 Drivers. 6-18

Handling JMS Transactions with JDBC Stores . 6-19

Monitoring a Persistent Store. 6-20

Monitoring Stores . 6-20

Monitoring Store Connections . 6-20

Limitations of the Persistent Store . 6-22

viii Configuring WebLogic Server Environments

Configuring WebLogic Server Environments 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Configuring WebLogic
Server Environments.

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-1

“Related Documentation” on page 1-2

“New and Changed Features in WebLogic Server Environments” on page 1-2

Document Scope and Audience
This document describes how you design, configure, and manage WebLogic Server®
environments. It is a resource for system administrators and operators responsible for
implementing a WebLogic Server installation. This document is relevant to all phases of a
software project, from development through test and production phases.

It is assumed that the reader is familiar with J2EE and Web technologies, object-oriented
programming techniques, and the Java programming language.

Guide to This Document
The document is organized as follows:

This chapter, “Introduction and Roadmap,” describes the scope of this guide and lists
related documentation.

I n t roduct i on and Roadmap

1-2 Configuring WebLogic Server Environments

Chapter 2, “Using Work Managers to Optimize Scheduled Work,” describes the WebLogic
Server execution model and the process of configuring application access to the execute
queue.

Chapter 3, “Avoiding and Managing Overload,” describes detecting, avoiding, and
recovering from overload conditions.

Chapter 4, “Configuring Network Resources,” describes optimizing your WebLogic Server
domain for your network.

Chapter 5, “Configuring Web Server Functionality,” describes using WebLogic Server as a
Web server.

Chapter 6, “Using the WebLogic Persistent Store,” describes configuring and monitoring
the persistent store, a built-in, high-performance storage solution for WebLogic Server
subsystems and services that require persistence.

Related Documentation
Understanding Domain Configuration

Administration Console Online Help

New and Changed Features in WebLogic Server Environments
The following sections describe key changes and improvements to WebLogic Server:

“Server Self-Tuning for Production Environments” on page 1-2

“New Overload Protection Increases Availability” on page 1-3

“Network Channels Can Manage Traffic Between Server Instances” on page 1-3

“System-Wide Persistent Store” on page 1-4

Server Self-Tuning for Production Environments
New self-tuning capabilities simplify the process of configuring WebLogic Server for production
environments with service level requirements that vary over time or by application. Self-tuning
helps prevent deadlocks during periods of peak demand. Self-tuning features are also useful if
your WebLogic Server environment hosts multiple applications with different performance and
availability requirements—for example, allowing you to allocate a greater percentage of

http://e-docs.bea.com/wls/docs90/domain_config/index.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/core/index.html

New and Changed Features in WebLog ic Serve r Env i ronments

Configuring WebLogic Server Environments 1-3

resources to a user-facing order processing application than to a back-end inventory management
application.

The new queue strategy enables administrators to allocate processing resources and manage
performance more effectively, by avoiding the effort and complexity involved in configuring,
monitoring, and tuning custom executes queues.

Key self-tuning features in WebLogic Server include:

Workload management—Administrators can define scheduling policies and constraints at
the domain level, application level, and module level.

Automatic thread count tuning—A thread pool can maximize throughput by automatically
changing its size, based on throughput history and queue size.

For more information, see “Using Work Managers to Optimize Scheduled Work” on page 2-1.

New Overload Protection Increases Availability
WebLogic Server 9.0 has improved capabilities for detecting when system load increases to the
point that application performance and stability might be at risk. These new features, referred to
as overload protection, are key to avoiding, and minimizing the negative effects of overload.

New overload features protect a server instance from out-of-memory (OOM) exceptions, execute
queue overloads, increasing the availability of a server or a cluster.

For more information, see “Avoiding and Managing Overload” on page 3-1.

Network Channels Can Manage Traffic Between Server
Instances
In addition to managing external network traffic, network channels can now manage network
traffic between server instances. Other new and improved configuration and control options for
network channels include:

SSL behaviors configurable on a per-channel basis.

Dynamic configuration and starting of channels without re-booting the server instance.

New capabilities for closing and restarting a channel.

Replication channel for replication traffic among server instances in a WebLogic Server
cluster.

For more information, see “Configuring Network Resources” on page 4-1.

I n t roduct i on and Roadmap

1-4 Configuring WebLogic Server Environments

System-Wide Persistent Store
The WebLogic Persistent Store is a built-in, high-performance storage solution for WebLogic
Server subsystems and services that require persistence, especially subsystem that require the
creation and deletion of short-lived data objects, such as transactional messages for JMS Servers.
Each server instance in a domain has a default persistent store that requires no configuration and
that can be used simultaneously by subsystems that do not require explicit selection of a particular
store, but can use the system’s default storage. These subsystems include JMS Servers, Web
Services, EJB Timer services, Store-and-Forward services, and the JTA Transaction Log
(TLOG). Optionally, administrators can configure dedicated file-based stores or
JDBC-accessible stores to suit their environment.

For more information, see “Using the WebLogic Persistent Store” on page 6-1.

Configuring WebLogic Server Environments 2-1

C H A P T E R 2

Using Work Managers to Optimize
Scheduled Work

WebLogic Server allows you to configure how your application prioitizes the execution of its
work. Based on rules you define and by monitoring actual runtime performance, WebLogic
Server can optimize the performance of your application and maintain service level agreements.
You define the rules and constraints for your application by defining a Work Manger and
applying it either globally to WebLogic Server domain or to a specific application component.

“Understanding How WebLogic Server Uses Thread Pools” on page 2-1

“Understanding Work Managers” on page 2-2

“Assigning Work Managers to Applications and Application Components” on page 2-7

“Using Work Managers, Request Classes, and Constraints” on page 2-7

“Deployment Descriptor Examples” on page 2-8

Understanding How WebLogic Server Uses Thread Pools
In previous versions of WebLogic Server, processing was performed in multiple execute queues.
Different classes of work were executed in different queues, based on priority and ordering
requirements, and to avoid deadlocks. In addition to the default execute queue,
weblogic.kernel.default, there were pre-configured queues dedicated to internal
administrative traffic, such as weblogic.admin.HTTP and weblogic.admin.RMI.

Users could control thread usage by altering the number of threads in the default queue, or
configure custom execute queues to ensure that particular applications had access to a fixed
number of execute threads, regardless of overall system load.

Us ing Work Managers to Opt imize Scheduled Work

2-2 Configuring WebLogic Server Environments

In WebLogic Server 9.0 there is a single thread pool, in which all types of work are executed.
WebLogic Server prioritizes work based on rules you define, and run-time metrics, including the
actual time it takes to execute a request and the rate at which requests are entering and leaving
the pool.

The common thread pool changes its size automatically to maximize throughput. The queue
monitors throughput over time and based on history, determines whether to adjust the thread
count. For example, if historical throughput statistics indicate that a higher thread count increased
throughput, WebLogic increases the thread count. Similarly, if statistics indicate that fewer
threads did not reduce throughput, WebLogic decreases the thread count. This new strategy
makes it easier for administrators to allocate processing resources and manage performance,
avoiding the effort and complexity involved in configuring, monitoring, and tuning custom
executes queues.

Understanding Work Managers
WebLogic Server 9.0 prioritizes work and allocates threads based on an execution model that
takes into account administrator-defined parameters and actual run-time performance and
throughput.

Administrators can configure a set of scheduling guidelines and associate them with one or more
applications, or with particular application components. For example, you can associate one set
of scheduling guidelines for one application, and another set of guidelines for other application.
At run-time, WebLogic Server uses these guidelines to assign pending work and enqueued
requests to execution threads.

To manage work in your applications, you define one or more of the following Work Manager
components:

Fair Share Request Class:

Response Time Request Class:

Min Threads Constraint:

Max Threads Constraint:

Capacity Constraint

Context Request Class:

For more information on these components, see “Request Classes” on page 2-4 or “Constraints”
on page 2-6

Unders tand ing Work Managers

Configuring WebLogic Server Environments 2-3

You can use any of these components to control the performance of your application by
referencing the name of the component in the application’s deployment descriptor. In addition,
you may define a Work Manager that encapsulates all of the above components (except Context
Request Class. See “Context Request Class” on page 2-5) and reference the name of the Work
Manager in your application’s deployment descriptor. You can define multiple Work Managers—
the appropriate number depends on how many distinct demand profiles exist across the
applications you host on WebLogic Server.

Work Managers can be configured at the domain level, application level, and module level in one
of the following configuration files:

config.xml—Work Managers specified in config.xml can be assigned to any
application, or application component, in the domain. You can use the Administration
Console to define a Work Manager.

weblogic-application.xml—Work Managers specified at the application level in can
be assigned to that application, or any component of that application.

weblogic-ejb-jar.xml or weblogic.xml—Work Managers specified at the
component-level can be assigned to that component.

weblogic-web-app.xml—Work Managers specified for a Web Application.

Listing 2-1 is an example of a Work Manager definition.

Listing 2-1 Work Manager Stanza

<work-manager>

<name>highpriority_workmanager</name>

<fair-share-request-class>

<name>high_priority</name>

<fair-share>100</fair-share>

</fair-share-request-class>

<min-threads-constraint>

<name>MinThreadsCountFive</name>

<count>5</count>

</work-manager>

To reference the Work Manager used in the example in Listing 2-1 in the dispatch policy of a
Web Application, add the code in Listing 2-2 to the Web Application’s web.xml file:

Us ing Work Managers to Opt imize Scheduled Work

2-4 Configuring WebLogic Server Environments

Listing 2-2 Referencing the Work Manager in a Web Application

<init-param>

<name>dispatch-policy</name>

<value>highpriority_workmanager</value>

</init-param>

The components you can define and use in a Work Manager are described in following sections.

Request Classes
A request class expresses a scheduling guideline that WebLogic Server uses to allocate threads
to requests. Request classes help ensure that high priority work is scheduled before less important
work, even if the high priority work is submitted after the lower priority work. WebLogic Server
takes into account how long it takes for requests to each module to complete

There are multiple types of request class, each of which expresses a scheduling guideline in
different terms. A Work Manager may specify only one request class.

fair-share-request-class—Specifies the average percentage of thread-use time
required to process requests.

For example, assume that WebLogic Server is running two modules. The Work Manager
for ModuleA specifies a fair-share-request-class of 80 and the Work Manager for
ModuleB specifies a fair-share-request-class of 20.

During a period of sufficient demand, with a steady stream of requests for each module
such that the number requests exceed the number of threads, WebLogic Server will allocate
80% and 20% of the thread-usage time to ModuleA and ModuleB, respectively.

response-time-request-class—This type of request class specifies a response time
goal in milliseconds. Response time goals are not applied to individual requests. Instaead,
WebLogic Server computes a tolerable waiting time for requests with that class by
subtracting the observed average thread use time from the response time goal, and
schedules schedule requests so that the average wait for requests with the class is
proportional to its tolerable waiting time.

For example, given that ModuleA and ModuleB in the previous example, have response
time goals of 2000 ms and 5000 ms, respectively, and the actual thread use time for an
individual request is less than its response time goal. During a period of sufficient demand,
with a steady stream of requests for each module such that the number requests exceed the
number of threads, and no “think time” delays between response and request, WebLogic
Server will schedule requests for ModuleA and ModuleB to keep the average response time

Unders tand ing Work Managers

Configuring WebLogic Server Environments 2-5

in the ratio 2:5. The actual average response times for ModuleA and ModuleB might be
higher or lower than the response time goals, but will be a common fraction or multiple of
the stated goal. For example, if the average response time for ModuleA requests is 1,000
ms., the average response time for ModuleB requests is 2,500 ms.

context-request-class—This type of request class assigns request classes to requests
based on context information, such as the current user or the current user’s group.

For example, the context-request-class in “Context Request Class” on page 2-5
assigns a request class to requests based on the value of the request’s subject and role
properties.

Context Request Class
A context request class allows you to define request classes in an application’s deployment
descriptor based on a user’s context. For example:

Listing 2-3 Context Request Class

<work-manager>
<name>responsetime_workmanager</name>
<response-time-request-class>

<name>my_response_time</name>
<goal-ms>2000</goal-ms>

</response-time-request-class>
</work-manager>

<work-manager>
<name>context_workmanager</name>
<context-request-class>
<name>test_context</name>
<context-case>

<user-name>system</user-name>
<request-class-name>high_fairshare</request-class-name>

</context-case>
<context-case>

<group-name>everyone</group-name>
<request-class-name>low_fairshare</request-class-name>

</context-case>
</context-request-class>

</work-manager>

Us ing Work Managers to Opt imize Scheduled Work

2-6 Configuring WebLogic Server Environments

Above, we explained the request classes based on fair share and response time by relating the
scheduling to other work using the same request class. A mix of fair share and response time
request classes is scheduled with a marked bias in favor of response time scheduling.

Constraints
A constraint defines minimum and maximum numbers of threads allocated to execute requests
and the total number of requests that can be queued or executing before WebLogic Server begins
rejecting requests.

You can define the following types of constraints:

max-threads-constraint—This constraint limits the number of concurrent threads
executing requests from the constrained work set. The default is unlimited. For example,
consider a constraint defined with maximum threads of 10 and shared by 3 entry points.
The scheduling logic ensures that not more than 10 threads are executing requests from the
three entry points combined.

A max-threads-constraint can be defined in terms of a the availability of resource that
requests depend upon, such as a connection pool.

A max-threads-constraint might, but does not necessarily, prevent a request class
from taking its fair share of threads or meeting its response time goal. Once the constraint
is reached the server does not schedule requests of this type until the number of concurrent
executions falls below the limit. The server then schedules work based on the fair share or
response time goal.

min-threads-constraint—This constraint guarantees a number of threads the server
will allocate to affected requests to avoid deadlocks. The default is zero. A
min-threads-constraint value of one is useful, for example, for a replication update
request, which is called synchronously from a peer.

A min-threads-constraint might not necessarily increase a fair share. This type of
constraint has an effect primarily when the server instance is close to a deadlock condition.
In that case Then, however, it the constraint will cause WebLogic Server to schedule a
request from a even if requests in the service class have gotten more than its fair share
recently.

capacity—This constrain causes the server to reject requests only when it has reached its
capacity. The default is zero. Note that the capacity includes all requests, queued or
executing, from the constrained work set. Work is rejected either when an individual
capacity threshold is exceeded or if the global capacity is exceeded.

This constraint is independent of the global queue threshold.

Ass ign ing Work Managers to App l i cat i ons and App l i cat i on Components

Configuring WebLogic Server Environments 2-7

Stuck Thread Handling
In response to stuck threads, you can define a Stuck Thread Work Manager component that can
shut down the Work Manager, (this causes all threads to be killed) move the application into
admin mode, or mark the server instance as failed. For instance, the Work Manager defined in
Listing 2-4 shuts down the Work Manager when two threads are stuck for longer than 30 seconds.

Listing 2-4 Stuck-Thread Work Manager

<work-manager>
<name>stuckthread_workmanager</name>
<work-manager-shutdown-trigger>

<max-stuck-thread-time>30</max-stuck-thread-time>
<stuck-thread-count>2</stuck-thread-count>

</work-manager-shutdown-trigger>
</work-manager>

Assigning Work Managers to Applications and Application
Components

Work Managers can be specified in the following descriptors:

config.xml

weblogic-application.xml

weblogic-ejb-jar.xml

weblogic-web-app.xml

If you do not assign a Work Manager to an application, it uses a default Work Manager.

A method is assigned to a Work Manager, using the <dispatch-policy> element in the
deployment descriptor. The <dispatch-policy> can also identify a custom execute queue, for
backward compatibility. For an example, see Listing 2-2, “Referencing the Work Manager in a
Web Application,” on page 2-4.

Using Work Managers, Request Classes, and Constraints
Work Managers, Request Classes, and Constraints require the following:

A definition. You may define a Work Managers, Request Classes, or Constraints globally
in the domain’s configuration using the Administration Console, (see Environments >

Us ing Work Managers to Opt imize Scheduled Work

2-8 Configuring WebLogic Server Environments

Work Managers in the Administration Console) or you may define them in one of the
deployment descriptors listed above. In either case, you assign a name to each.

A mapping. In your deployment descriptors you reference one of the Work Managers,
Request Classes, or Constraints by its name.

Dispatch Policy for EJB
weblogic-ejb-jar.xml—the value of the existing dispatch-policy tag under
weblogic-enterprise-bean can be a named dispatch-policy. For backwards
compatibility, it can also name an ExecuteQueue. In addition, we allow dispatch-policy,
max-threads, and min-threads, to specify named (or unnamed with numeric value for
constraints) policy and constraints for a list of methods, analogously to the present
isolation-level tag.

Dispatch Policy for Web Applications
weblogic.xml—also supports mappings analogous to the filter-mapping of the web.xml,
where named dispatch-policy, max-threads, or min-threads are mapped for url-patterns or servlet
names.

Deployment Descriptor Examples
This section contains examples for defining Work Managers in various types of deployment
descriptors.

For additional reference, see also the schema for these deployment descriptors:

weblogic-ejb-jar.xml schema

weblogic-application.xml schema

weblogic-web-app.xml schema

Listing 2-5 weblogic-ejb-jar.xml With Work Manager Entries

<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd">

http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd
http://www.bea.com/ns/weblogic/90/weblogic-application.xsd
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd

Deplo yment Desc r ip to r Examples

Configuring WebLogic Server Environments 2-9

<weblogic-enterprise-bean>
<ejb-name>WorkEJB</ejb-name>
<jndi-name>core_work_ejb_workbean_WorkEJB</jndi-name>
<dispatch-policy>weblogic.kernel.System</dispatch-policy>

</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
<ejb-name>NonSystemWorkEJB</ejb-name>
<jndi-name>core_work_ejb_workbean_NonSystemWorkEJB</jndi-name>
<dispatch-policy>workbean_workmanager</dispatch-policy>

</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
<ejb-name>MinThreadsWorkEJB</ejb-name>
<jndi-name>core_work_ejb_workbean_MinThreadsWorkEJB</jndi-name>
<dispatch-policy>MinThreadsCountFive</dispatch-policy>

</weblogic-enterprise-bean>

<work-manager>
<name>workbean_workmanager</name>

</work-manager>

<work-manager>
<name>stuckthread_workmanager</name>
<work-manager-shutdown-trigger>

<max-stuck-thread-time>30</max-stuck-thread-time>
<stuck-thread-count>2</stuck-thread-count>

</work-manager-shutdown-trigger>
</work-manager>

<work-manager>
<name>minthreads_workmanager</name>
<min-threads-constraint>

<name>MinThreadsCountFive</name>
<count>5</count>

</min-threads-constraint>
</work-manager>

<work-manager>
<name>lowpriority_workmanager</name>
<fair-share-request-class>

<name>low_priority</name>
<fair-share>10</fair-share>

</fair-share-request-class>
</work-manager>

<work-manager>
<name>highpriority_workmanager</name>

<fair-share-request-class>

Us ing Work Managers to Opt imize Scheduled Work

2-10 Configuring WebLogic Server Environments

<name>high_priority</name>
<fair-share>100</fair-share>

</fair-share-request-class>
</work-manager>

<work-manager>
<name>veryhighpriority_workmanager</name>

<fair-share-request-class>
<name>veryhigh_priority</name>
<fair-share>1000</fair-share>

</fair-share-request-class>
</work-manager>

Listing 2-6 weblogic-ejb-jar.xml with Connection Pool Based Max Thread Constraint

These EJBs are configured to get as many threads as there are instances of a resource they depend
upon—a connection pool, and an application scoped connection pool.

</weblogic-ejb-jar>
<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
 http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd">

 <weblogic-enterprise-bean>
 <ejb-name>ResourceConstraintEJB</ejb-name>
 <jndi-name>core_work_ejb_resource_ResourceConstraintEJB</jndi-name>
 <dispatch-policy>test_resource</dispatch-policy>
</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
<ejb-name>AppScopedResourceConstraintEJB</ejb-name>
<jndi-name>core_work_ejb_resource_AppScopedResourceConstraintEJB
</jndi-name>
<dispatch-policy>test_appscoped_resource</dispatch-policy>

</weblogic-enterprise-bean>

<work-manager>
<name>test_resource</name>
<max-threads-constraint>

<name>pool_constraint</name>
<pool-name>testPool</pool-name>

</max-threads-constraint>
</work-manager>

Deplo yment Desc r ip to r Examples

Configuring WebLogic Server Environments 2-11

<work-manager>
<name>test_appscoped_resource</name>
<max-threads-constraint>

<name>appscoped_pool_constraint</name>
<pool-name>AppScopedDataSource</pool-name>

</max-threads-constraint>
</work-manager>

</weblogic-ejb-jar>

Listing 2-7 weblogic-ejb-jar.xml with commonJ Work Managers

For information using commonJ, see the commonJ Javadocs.

Listing 2-8 weblogic-application.xml

<weblogic-application xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-application.xsd">

<max-threads-constraint>
<name>j2ee_maxthreads</name>
<count>1</count>

</max-threads-constraint>

<min-threads-constraint>
<name>j2ee_minthreads</name>
count>1</count>

</min-threads-constraint>

<work-manager>
<name>J2EEScopedWorkManager</name>
</work-manager>

</weblogic-application>

Listing 2-9 web application descriptor

This Web Application is deployed as part of the Enterprise Application defined in Listing 2-8,
“weblogic-application.xml,” on page 2-11. This Web Application’s descriptor defines two Work
Managers. Both Work Managers point to the same max threads constraint, j2ee_maxthreads

http://e-docs.bea.com/wls/docs90/javadocs/commonj/work/package-summary.html

Us ing Work Managers to Opt imize Scheduled Work

2-12 Configuring WebLogic Server Environments

which is defined in the application’s weblogic-application.xml file. Each Work Manager
specifies a different response time request class.

<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd">

<work-manager>
<name>fast_response_time</name>
<response-time-request-class>

<name>fast_response_time</name>
<goal-ms>2000</goal-ms>

</response-time-request-class>
<max-threads-constraint-name>j2ee_maxthreads
</max-threads-constraint-name>

</work-manager>

<work-manager>
<name>slow_response_time</name>
<max-threads-constraint-name>j2ee_maxthreads
</max-threads-constraint-name
<response-time-request-class>

<name>slow_response_time</name>
<goal-ms>5000</goal-ms>

</response-time-request-class>
</work-manager>

</weblogic-web-app>

Listing 2-10 web application descriptor

This descriptor defines a Work Manager using the context-request-class.

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd">

<work-manager>
<name>foo-servlet-1</name>
<request-class-name>test-fairshare2</request-class-name>
<max-threads-constraint>

Using Execute Queues

Configuring WebLogic Server Environments 2-13

<name>foo-mtc</name>
<pool-name>oraclePool</pool-name>

</max-threads-constraint>
</work-manager>

<work-manager>
<name>foo-servlet</name>
<context-request-class>
<name>test-context</name>
<context-case>
<user-name>anonymous</user-name>
<request-class-name>test-fairshare1</request-class-name>

</context-case>

<context-case>
<group-name>everyone</group-name>
<request-class-name>test-fairshare2</request-class-name>
</context-case>
</context-request-class>

</work-manager>
</weblogic-web-app>

Using Execute Queues

Us ing Work Managers to Opt imize Scheduled Work

2-14 Configuring WebLogic Server Environments

Configuring WebLogic Server Environments 3-1

C H A P T E R 3

Avoiding and Managing Overload

WebLogic Server 9.0 has new features for detecting, avoiding, and recovering from overload
conditions. WebLogic Server’s overload protection features help prevent the negative
consequences—degraded application performance and stability—that can result from continuing
to accept requests when the system capacity is reached.

“Configuring WebLogic Server to Avoid Overload Conditions” on page 3-1

“WebLogic Server Self-Monitoring” on page 3-4

“WebLogic Server Exit Codes” on page 3-4

Configuring WebLogic Server to Avoid Overload Conditions
When system capacitiy is reached, if an application server continues to accept requests,
application performance and stability can deteriorate. The following sections demonstrate how
you can configure WebLogic Server to minimize the negative results of system overload.

Limiting Requests in the Thread Pool
In WebLogic Server 9.0, all requests, whether related to system administration or application
activity—are processed by a single thread pool. An administrator can throttle the thread pool by
defining a maximum queue length. Beyond the configured value, WebLogic Server will refuse
requests, except for requests on administration channels.

Note: Administration channels allow access only to administrators. The limit you set on the
execute length does not effect administration channel requests, to ensure that reaching the

Avo id ing and Managing Over load

3-2 Configuring WebLogic Server Environments

maximum thread pool length does not prevent administrator access to the system. To
limit the number of administration requests allowed in the thread pool, you can configure
an administration channel, and set the Max Open Socket Value for the channel.

When the maximum number of enqueued requests is reached, WebLogic Server immediately
starts rejecting:

Web application requests.

Non-transactional RMI requests with a low fair share, beginning with those with the lowest
fair share.

If the overload condition continues to persist, higher priority requests will start getting
rejected, with the exception of JMS and transaction-related requests, for which overload
management is provided by the JMS and the transaction manager.

Throttle the thread pool by setting the Max execute queue Length field in the Administration
Console. (See Environments > Servers > Threads and select an execute queue.) The default value
of this field is 65536.

Work Managers and Thread Pool Throttling
An administrator can configure Work Managers to manage the thread pool at a more granular
level, for sets of requests that have similar performance, availability, or reliability requirements.
A Work Manager can specify the maximum requests of a particular request class that can be
queued. The maximum requests defined in a Work Manager works with global thread pool value.
The limit that is reached first is honored.

See “Using Work Managers to Optimize Scheduled Work” on page 2-1.

Limiting HTTP Sessions
An administrator can limit the number of active HTTP sessions based on detection of a
low-memory condition. This is useful in avoiding out of memory exceptions.

WebLogic Server refuses requests that create new HTTP sessions after the configured threshold
has been reached. In a WebLogic Server cluster, the proxy plug-in redirects a refused request to
another Managed Server in the cluster. A non-clustered server instance can re-direct requests to
alternative server instance.

The servlet container takes one of the following actions when maximum number of sessions is
reached:

Conf igur ing WebLog ic Serve r to Avo id Over load Cond i t ions

Configuring WebLogic Server Environments 3-3

If the server instance is in a cluster, a 503 response is sent back. The behavior after this
response is sent is determined by your load balancer or proxy server.

You set a limit for the number of simultaneous HTTP sessions in the deployment descriptor for
the Web Application. For example, the following element sets a limit of 12 sessions:

<session-descriptor>

<max-in-memory-sessions>12</max-in-memory-sessions>

</session-descriptor>

Exit on Out of Memory Exceptions
Administrators can configure WebLogic Server to exit upon an out of memory exception. This
feature allows you to minimize the impact of the out of memory condition—automatic shutdown
helps avoid application instability, and you can configure Node Manager or another HA tool to
automatically restart WebLogic Server, minimizing down-time.

You can configure this using the Administration Console, or by editing the following elements in
config.xml:

<overload-protection>

<panic-action>system-exit</panic-action>

</overload-protection>

For more information, see the attributes of the OverloadProtectionMBean.

Stuck Thread Handling
WebLogic Server checks for stuck threads periodically. If all application threads are stuck, a
server instance marks itself failed, if configured to do so, exits. You can configure Node Manager
or a third-part high-availability solution to restart the server instance for automatic failure
recovery.

Configure a server instance to exit when all application threads are stuck by checking the Exit
server process on detecting deadlock option on the Server->Overload Protection page in the
Administration Console.

You can configure these actions to occur when not all threads are stuck, but the number of stuck
threads have exceeded a configured threshold,

Shut down the Work Manager if it has stuck threads. A Work Manager that is shut down
will refuse new work and reject existing work in the queue by sending a rejection message.
In a cluster, clustered clients will fail over to another cluster member.

Avo id ing and Managing Over load

3-4 Configuring WebLogic Server Environments

Shut down the application if there are stuck threads in the application. The application is
shutdown by bringing it into admin mode. All Work Managers belonging to the application
are shut down, and behave as described above.

Mark the server instance as failed and shut it down it down if there are stuck threads in the
server. In a cluster, clustered clients that are connected or attempting to connect will fail
over to another cluster member.

For more information, see the attributes of the OverloadProtectionMBean.

WebLogic Server Self-Monitoring
The following sections describe WebLogic Server features that aid in determining and reporting
overload conditions.

Overloaded Health State
WebLogic Server 9.0 has a new health state—OVERLOADED—which is returned by the
ServerRuntimeMBean.getHealthState() when a server instance whose life cycle state is
RUNNING becomes overloaded. This condition occurs when Work Manager capacity is exceeded
or as a result of low memory.

The server instances health state returns to OK after the overload condition passes. An
administrator can suspend or shut down an OVERLOADED server instance.

WebLogic Server Exit Codes
When WebLogic Server exits it returns an exit code. The exit codes can be used by shell scripts
or HA agents to decide whether a server restart is necessary. See “WebLogic Server Exit Codes
and Restarting After Failure” in Managing Server Startup and Shutdown.

http://e-docs.bea.com/wls/docs90/server_start/failures.html#WebLogicServerExitCodesandRestartingAfterFailure
http://e-docs.bea.com/wls/docs90/server_start/failures.html#WebLogicServerExitCodesandRestartingAfterFailure

Configuring WebLogic Server Environments 4-1

C H A P T E R 4

Configuring Network Resources

Note: For a summary of new Networking features for WebLogic Server 9.0, see What's New in
WebLogic Server 9.0.

Configurable WebLogic Server resources, including network channels and domain-wide
administration ports, help you effectively utilize the network features of the machines that host
your applications and manage quality of service.

The following sections describe configurable WebLogic Server network resources, examples of
their use, and the configuration process:

“Overview of Network Configuration” on page 4-1

“Understanding Network Channels” on page 4-2

“Configuring a Channel” on page 4-9

“Assigning a Custom Channel to an EJB” on page 4-12

Overview of Network Configuration
For many development environments, configuring WebLogic Server network resources is simply
a matter of identifying a Managed Server’s listen address and listen port. However, in most
production environments, administrators must balance finite network resources against the
demands placed upon the network. The task of keeping applications available and responsive can
be complicated by specific application requirements, security considerations, and maintenance
tasks, both planned and unplanned.

http://e-docs.bea.com/wls/docs90/notes/new.html
http://e-docs.bea.com/wls/docs90/notes/new.html

Conf igur ing Ne twork Resources

4-2 Configuring WebLogic Server Environments

WebLogic Server allows you to control the network traffic associated with your applications in
a variety of ways, and configure your environment to meet the varied requirements of your
applications and end users. You can:

Designate the Network Interface Cards (NICs) and ports used by Managed Servers for
different types of network traffic.

Support multiple protocols and security requirements.

Specify connection and message timeout periods.

Impose message size limits.

You specify these and other connection characteristics by defining a network channel—the
primary configurable WebLogic Server resource for managing network connections. You
configure a network channel with the Servers-->Protocols-->Channels tab of the Administration
Console or by using NetworkAccessPointMBean.

New Network Configuration Features in WebLogic Server
In this version of WebLogic Server, the functionality of network channels is enhanced to simplify
the configuration process. Network channels now encompass the features that, in WebLogic
Server 7.x, required both network channels and network access points. In this version of
WebLogic Server, network access points are deprecated. The use of NetworkChannelMbean is
deprecated in favor of NetworkAccessPointMBean.

Understanding Network Channels
The sections that follow describe network channels and the standard channels that WebLogic
Server pre-configures, and discusses common applications for channels.

What Is a Channel?
A network channel is a configurable resource that defines the attributes of a network connection
to WebLogic Server. For instance, a network channel can define:

The protocol the connection supports.

The listen address.

The listen ports for secure and non-secure communication.

Connection properties such as the login timeout value and maximum message sizes.

Unders tanding Network Channe ls

Configuring WebLogic Server Environments 4-3

Whether or not the connection supports tunneling.

Whether the connection can be used to communicate with other WebLogic Server instances
in the domain, or used only for communication with clients.

Rules for Configuring Channels
Follow these guidelines when configuring a channel.

You can assign a particular channel to only one server instance.

You can assign multiple channels to a server instance.

Each channel assigned to a particular server instance must have a unique combination of
listen address, listen port, and protocol.

If you assign non-SSL and SSL channels to the same server instance, make sure that they
do not use the same port number.

Custom Channels Can Inherit Default Channel Attributes
If you do not assign a channel to a server instance, it uses WebLogic Server’s default channel,
which is automatically configured by WebLogic Server, based on the attributes in ServerMBean
or SSLMBean. The default channel is described in “The Default Network Channel” on page 4-5.

ServerMBean and SSLMBean represent a server instance and its SSL configuration. When you
configure a server instance’s Listen Address, Listen Port, and SSL Listen port, using the
Server-->Configuration-->General tab, those values are stored in the ServerMBean and
SSLMBean for the server instance.

If you do not specify a particular connection attribute in a custom channel definition, the channel
inherits the value specified for the attribute in ServerMBean. For example, if you create a
channel, and do not define its Listen Address, the channel uses the Listen Address defined in
ServerMBean. Similarly, if a Managed Server cannot bind to the Listen Address or Listen Port
configured in a channel, the Managed Server uses the defaults from ServerMBean or SSLMBean.

Why Use Network Channels?
You can use network channels to manage quality of service, meet varying connection
requirements, and improve utilization of your systems and network resources. For example,
network channels allow you to:

Conf igur ing Ne twork Resources

4-4 Configuring WebLogic Server Environments

Segregate different types of network traffic—You can configure whether or not a
channel supports outgoing connections. By assigning two channels to a server instance—
one that supports outgoing connections and one that does not—you can independently
configure network traffic for client connections and server connections, and physically
separate client and server network traffic onto different listen addresses or listen ports.

You can also segregate instance administration and application traffic by configuring a
domain-wide administration port or administration channel. For more information, see
“Administration Port and Administrative Channel” on page 4-5.

Support varied application or user requirements on the same Managed Server—You
can configure multiple channels on a Managed Server to support different protocols, or to
tailor properties for secure vs. non-secure traffic.

Segregate internal application network traffic—You can assign a specific channel to a
an EJB.

If you use a network channel with a server instance on a multi-homed machine, you must enter a
valid Listen Address either in ServerMBean or in the channel. If the channel and ServerMBean
Listen Address are blank or specify the localhost address (IP address 0.0.0.0 or 127.*.*.*), the
server binds the network channel listen port and SSL listen ports to all available IP addresses on
the multi-homed machine. See “The Default Network Channel” on page 4-5 for information on
setting the listen address in ServerMBean.

Handling Channel Failures
When initiating a connection to a remote server, and multiple channels with the same required
destination, protocol and quality of service exist, WebLogic Server will try each in turn until it
successfully establishes a connection or runs out of channels to try.

Upgrading Quality of Service Levels for RMI
For RMI lookups only, WebLogic Server may upgrade the service level of an outgoing
connection. For example, if a T3 connection is required to perform an RMI lookup, but an
existing channel supports only T3S, the lookup is performed using the T3S channel.

This upgrade behavior does not apply to server requests that use URLs, since URLs embed the
protocol itself. For example, the server cannot send a URL request beginning with http:// over
a channel that supports only https://.

Standard WebLogic Server Channels
WebLogic Server provides pre-configured channels that you do not have to explicitly define.

Unders tanding Network Channe ls

Configuring WebLogic Server Environments 4-5

Default channel—Every Managed Server has a default channel.

Administrative channel—If you configure a domain-wide Administration Port, WebLogic
Server configures an Administrative Channel for each Managed Server in the domain.

The Default Network Channel
Every WebLogic Server domain has a default channel that is generated automatically by
WebLogic Server. The default channel is based on the Listen Address and Listen Port defined in
the ServerMBean and SSLMBean. It provides a single Listen Address, one port for HTTP
communication (7001 by default), and one port for HTTPS communication (7002 by default).
You can configure the Listen Address and Listen Port using the Configuration-->General tab in
the Administration Console; the values you assign are stored in attributes of the ServerMBean
and SSLMBean.

The default configuration may meet your needs if:

You are installing in a test environment that has simple network requirements.

Your server uses a single NIC, and the default port numbers provide enough flexibility for
segmenting network traffic in your domain.

Using the default configuration ensures that third-party administration tools remain compatible
with the new installation, because network configuration attributes remain stored in
ServerMBean and SSLMBean.

Even if you define and use custom network channels for your domain, the default channel settings
remain stored in ServerMBean and SSLMBean, and are used if necessary to provide connections
to a server instance.

Administration Port and Administrative Channel
You can define an optional administration port for your domain. When configured, the
administration port is used by each Managed Server in the domain exclusively for
communication with the domain’s Administration Server.

Administration Port Capabilities
An administration port enables you to:

Start a server in standby state. This allows you to administer a Managed Server, while its
other network connections are unavailable to accept client connections. For more
information on the standby state, see “Standby State” in Managing Server Startup and
Shutdown.

http://e-docs.bea.com/wls/docs90/server_start/server_life.html#StandbyState

Conf igur ing Ne twork Resources

4-6 Configuring WebLogic Server Environments

Separate administration traffic from application traffic in your domain. In production
environments, separating the two forms of traffic ensures that critical administration
operations (starting and stopping servers, changing a server’s configuration, and deploying
applications) do not compete with high-volume application traffic on the same network
connection.

Administer a deadlocked server instance using the weblogic.Admin command line utility.
If you do not configure an administration port, administrative commands such as
THREAD_DUMP and SHUTDOWN will not work on deadlocked server instances.

If a administration port is enabled, WebLogic Server automatically generates an administration
channel based on the port settings upon server instance startup.

Administration Port Restrictions
The administration port accepts only secure, SSL traffic, and all connections via the port require
authentication. Enabling the administration port imposes the following restrictions on your
domain:

The Administration Server and all Managed Servers in your domain must be configured
with support for the SSL protocol. Managed Servers that do not support SSL cannot
connect with the Administration Server during startup—you will have to disable the
administration port in order to configure them.

Because all server instances in the domain must enable or disable the administration port at
the same time, you configure the administration port at the domain level. You can change
an individual Managed Server’s administration port number, but you cannot enable or
disable the administration port for an individual Managed Server. The ability to change the
port number is useful if you have multiple server instances with the same Listen Address.

After you enable the administration port, you must establish an SSL connection to the
Administration Server in order to start any Managed Server in the domain. This applies
whether you start Managed Servers manually, at the command line, or using Node
Manager. For instructions to establish the SSL connection, see “Administration Port
Requires SSL” on page 4-7.

After enabling the administration port, all Administration Console traffic must connect via
the administration port.

If multiple server instances run on the same computer in a domain that uses a domain-wide
administration port, you must either:

– Host the server instances on a multi-homed machine and assign each server instance a
unique listen address, or

Unders tanding Network Channe ls

Configuring WebLogic Server Environments 4-7

– Override the domain-wide port on all but one of one of the servers instances on the
machine. Override the port using the Local Administration Port Override option on the
Advanced Attributes portion of the Server->Connections->SSL Ports page in the
Administration Console.

Administration Port Requires SSL
The administration port requires SSL, which is enabled by default when you install WebLogic
Server. If SSL has been disabled for any server instance in your domain, including the
Administration Server and all Managed Servers, re-enable it using the Server-->
Configuration-->General tab in the Administration Console.

Ensure that each server instance in the domain has a configured default listen port or default SSL
listen port. The default ports are those you assign on the Server-->Configuration-->General tab
in the Administration Console. A default port is required in the event that the server cannot bind
to its configured administration port. If an additional default port is available, the server will
continue to boot and you can change the administration port to an acceptable value.

By default WebLogic Server is configured to use demonstration certificate files. To configure
production security components, follow the steps in “Configuring SSL” in Managing WebLogic
Security.

Configure Administration Port
Enable the administration port as described in “Enabling the Domain-Wide Administration Port”
in Administration Console Online Help.

After configuring the administration port, you must restart the Administration Server and all
Managed Servers to use the new administration port.

Booting Managed Servers to Use Administration Port
If you reboot Managed Servers at the command line or using a start script, specify the
Administration Port in the port portion of the URL. The URL must specify the https:// prefix,
rather than http://, as shown below.

-Dweblogic.management.server=https://host:admin_port

Note: If you use Node Manager for restarting the Managed Servers, it is not necessary to
modify startup settings or arguments for the Managed Servers. Node Manager
automatically obtains and uses the correct URL to start a Managed Server.

If the hostname in the URL is not identical to the hostname in the Administration Server’s
certificate, disable hostname verification in the command line or start script, as shown below:

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html

Conf igur ing Ne twork Resources

4-8 Configuring WebLogic Server Environments

-Dweblogic.security.SSL.ignoreHostnameVerification=true

Custom Administrative Channels
If the standard WebLogic Server administrative channel does not satisfy your requirements, you
can configure a custom channel for administrative traffic. For example, a custom administrative
channel allows you to segregate administrative traffic on a separate NIC.

To configure a custom channel for administrative traffic, configure the channel as described in
“Configuring a Channel” on page 4-9, and select “admin” as the channel protocol. Note the
configuration and usage guidelines described in:

“Administration Port Requires SSL” on page 4-7

“Booting Managed Servers to Use Administration Port” on page 4-7

Using Internal Channels
Previous version of WebLogic Server allowed you to configure multiple channels for external
traffic, but required you to use the default channel for internal traffic between server instances.
WebLogic Server 9.0 allows you to create network channels to handle administration traffic or
communications between clusters. This can be useful in the following situations:

internal administration traffic needs to occur over a secure connection, separate from other
network traffic.

other types of network traffic, for example replication data, need to occur over a separate
network connection.

certain types of network traffic need to be monitored.

Channel Selection
All internal traffic is handled via a network channel. If you have not created a custom network
channel to handle adinstrative or clustered traffic, WebLogic Server automatically selects a
default channel based on the protocol required for the connection. For more information on
default channels, see “The Default Network Channel” on page 4-5.

Internal Channels Within a Cluster
Within a cluster, internal channels can be created to handle to the following types of
server-to-server connections:

multicast traffic

Conf igur ing a Channe l

Configuring WebLogic Server Environments 4-9

replication traffic

administration traffic

For more information on configuring channels within a cluster, see “Configuring Network
Channels For a Cluster” on page 4-10.

Configuring a Channel
You can configure a network channel using Servers-->Protocols-->Channels tab in the
Administration Console or using the NetworkAccessPointMBean.

To configure a channel for clustered Managed Servers see, “Configuring Network Channels For
a Cluster” on page 4-10.

For a summary of key facts about network channels, and guidelines related to their configuration,
see “Guidelines for Configuring Channels” on page 4-9.

Guidelines for Configuring Channels
Follow these guidelines when configuring a channel.

Channels and Server Instances
Each channel you configure for a particular server instance must have a unique
combination of listen address, listen port, and protocol.

A channel can be assigned to a single server instance.

You can assign multiple channels to a server instance.

If you assign non-SSL and SSL channels to the same server instance, make sure that they
do not use the same combination of address and port number.

Dynamic Channel Configuration
In WebLogic Server 9.0, you can configure a network channel without restarting the server.
Additionally, you can start and stop dynamically configured channels while the server is
running. However, when you shutdown a channel while the server is running, the server
does not attempt to gracefully terminate any work in progress.

Conf igur ing Ne twork Resources

4-10 Configuring WebLogic Server Environments

Channels and Protocols
Some protocols do not support particular features of channels. In particular the COM
protocol does not support SSL or tunneling.

You must define a separate channel for each protocol you wish the server instance to
support, with the exception of HTTP.

HTTP is enabled by default when you create a channel, because RMI protocols typically
require HTTP support for downloading stubs and classes. You can disable HTTP support
on the Advanced Options portion of Servers-->Protocols-->Channels tab in the
Administration Console.

Reserved Names
WebLogic Server uses the internal channel names .WLDefaultChannel and
.WLDefaultAdminChannel and reserves the .WL prefix for channel names. do not begin
the name of a custom channel with the string .WL.

Channels, Proxy Servers, and Firewalls
If your configuration includes a a firewall between a proxy web server and a cluster (as described
in “Firewall Between Proxy Layer and Cluster”, in Using WebLogicServer Clusters, and the
clustered servers are configured with two custom channels for segregating https and http traffic,
those channels must share the same listen address. Furthermore if both http and https traffic needs
to be supported there must be a custom channel for each—it is not possible to use the default
configuration for one or the other.

If either of those channels has a PublicAddress defined, as is likely given existence of firewall
both channels must define PublicAddress, and they both must define the same
PublicAddress.

Configuring Network Channels For a Cluster
To configure a channel for clustered Managed Servers, note the information in “Guidelines for
Configuring Channels” on page 4-9, and follow the guidelines described in the following
sections.

Create the Cluster
If you have not already configured a cluster you can:

http://e-docs.bea.com/wls/docs90/cluster/planning.html#FirewallBetweenProxyLayerandCluster

Conf igur ing a Channe l

Configuring WebLogic Server Environments 4-11

Use the Configuration Wizard to create a new, clustered domain, following the instructions
in “Create a Clustered Domain” in Using WebLogic Clusters, or

Use the Administration Console to create a cluster in an existing domain, following the
instructions “Configuring a Cluster” in Administration Console Online Help.

For information and guidelines about configuring a WebLogic Server cluster, see “Before You
Start” in Using WebLogic Clusters.

Create and Assign the Network Channel
Use the instructions in “Configuring a Network Channel” in Administration Console Online Help
to create a new network channel for each Managed Server in the cluster. When creating the new
channels:

For each channel you want to use in the cluster, configure the channel identically, including
its name, on each Managed Server in the cluster.

Make sure that the listen port and SSL listen port you define for each Managed Server’s
channel are different than the Managed Server’s default listen ports. If the custom channel
specifies the same port as a Managed Server’s default port, the custom channel and the
Managed Server’s default channel will each try to bind to the same port, and you will be
unable to start the Managed Server.

If a cluster address has been explicitly configured for the cluster, it will be appear in the
Cluster Address field on the Server-->Protocols-->Channels-->Configuration tab.

If you are using dynamic cluster addressing, the cluster address field will be empty, and
you do not need to supply a cluster address. For information about the cluster address, how
WebLogic Server can dynamically generate the cluster address, see “Cluster Address” in
Using WebLogic Clusters.

Note: If you want to use dynamic cluster addressing, do not supply a cluster address on the
Server-->Protocols-->Channels-->Configuration tab. If you supply a cluster address
explicitly, that value will take precedence and WebLogic Server will not generate the
cluster address dynamically.

Increase Packet Size When Using Many Channels
Use of more than about twenty channels in a cluster can result in the formation of multicast header
transmissions that exceed the default maximum packet size. The MTUSize attribute in the Server
element of config.xml sets the maximum size for packets sent using the associated network
card to 1500. Sending packets that exceed the value of MTUSize can result in a

http://e-docs.bea.com/wls/docs90/cluster/setup.html#CreateAClusteredDomain
http://e-docs.bea.com/wls/docs90/cluster/setup.html#BeforeYouStart
http://e-docs.bea.com/wls/docs90/cluster/setup.html#BeforeYouStart
http://e-docs.bea.com/wls/docs90/cluster/setup.html#ClusterAddress

Conf igur ing Ne twork Resources

4-12 Configuring WebLogic Server Environments

java.lang.NegativeArraySizeException. You can avoid exceptions that result from packet
sizes in excess of MTUSize by increasing the value of MTUSize from its default value of 1500.

Assigning a Custom Channel to an EJB
You can assign a custom channel to an EJB. After you configure a custom channel, assign it to
an EJB using the network-access-point element in weblogic-ejb-jar.xml. For more
information, see “network-access-point” in Programming WebLogic Server EJBs.

http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html#network-access-point

Configuring WebLogic Server Environments 5-1

C H A P T E R 5

Configuring Web Server Functionality

The following sections describe how to configure a J2EE Web Application hosted on WebLogic
Server to function as a standard HTTP Web Server hosting static content. Web Applications also
can host dynamic content such as JSPs and Servlets. See Developing Web Applications, Servlets,
and JSPs for WebLogic Server.

“Overview of Configuring Web Server Components” on page 5-1

“Configuring the Server” on page 5-2

“Web Applications” on page 5-3

“Configuring Virtual Hosting” on page 5-4

“How WebLogic Server Resolves HTTP Requests” on page 5-6

“Setting Up HTTP Access Logs” on page 5-8

“Preventing POST Denial-of-Service Attacks” on page 5-16

“Setting Up WebLogic Server for HTTP Tunneling” on page 5-17

“Using Native I/O for Serving Static Files (Windows Only)” on page 5-19

Overview of Configuring Web Server Components
In addition to hosting dynamic Java-based distributed applications, WebLogic Server functions
as a Web server that handles high-volume Web sites, serving static files such as HTML files and

http://e-docs.bea.com/wls/docs90/webapp/index.html
http://e-docs.bea.com/wls/docs90/webapp/index.html

Conf igur ing Web Server Func t iona l i t y

5-2 Configuring WebLogic Server Environments

image files, as well as servlets and JavaServer Pages (JSP). WebLogic Server supports the HTTP
1.1 standard.

Configuring the Server
You can specify the port that each WebLogic Server listens on for HTTP requests. Although you
can specify any valid port number, if you specify port 80, you can omit the port number from the
HTTP request used to access resources over HTTP. For example, if you define port 80 as the
listen port, you can use the form http://hostname/myfile.html instead of
http://hostname:portnumber/myfile.html.

On UNIX systems, binding a process to a port lower than 1025 must be done from the account of
a privileged user, usually root. Consequently, if you want WebLogic Server to listen on port 80,
you must start WebLogic Server as a privileged user; yet it is undesirable from a security
standpoint to allow long-running processes like WebLogic Server to run with more privileges
than necessary. WebLogic needs root privileges only until the port is bound.

By setting the weblogic.system.enableSetUID property (and, if desired, the
weblogic.system.enableSetGID property) to true, you enable an internal process by which
WebLogic Server switches its UNIX user ID (UID) after it binds to port 80. The companion
properties, weblogic.system.nonPrivUser and weblogic.system.nonPrivGroup, identify a
non-privileged UNIX user account (and optionally a groupname) under which WebLogic Server
will run after startup.

You can switch to the UNIX account "nobody," which is the least privileged user on most UNIX
systems. If desired, you may create a UNIX user account expressly for running WebLogic Server.
Make sure that files needed by WebLogic Server, such as log files and the WebLogic classes, are
accessible by the non-privileged user. Once ownership of the WebLogic process has switched to
the non-privileged user, WebLogic will have the same read, write, and execute permissions as the
non-privileged user.

You define a separate listen port for non-SSL and secure (using SSL) requests. For additional
information on configuring Listen Ports, see “Understanding Network Channels.”

Configuring the Listen Port
1. Use the Administration Console to set the listen port to port 80. See Configure Listen Ports.

2. If the machine hosting WebLogic Server is running Windows, skip to step 8. in
“Configuring the Listen Port”.

Web App l icat ions

Configuring WebLogic Server Environments 5-3

3. Use the Administration Console to create a new Unix Machine. See Configure Machines.

4. Check the Enable Post-Bind UID field.

5. Enter the user name you want WebLogic Server to run as in the Post-Bind UID field.

6. Check the Enable Post-Bind GID fields.

7. Enter the group name you want WebLogic Server to run as in the Post-Bind GID field.

8. Click Save.

9. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes.

Web Applications
HTTP and Web Applications are deployed according to the Servlet 2.4 and JSP 2.0 specifications
from Sun Microsystems, which describe Web Applications as a standard for grouping the
components of a Web-based application. These components include JSP pages, HTTP servlets,
and static resources such as HTML pages or image files. In addition, a Web Application can
access external resources such as EJBs and JSP tag libraries. Each server can host any number of
Web Applications. You normally use the name of the Web Application as part of the URI you
use to request resources from the Web Application.

For more information, see Developing Web Applications, Servlets, and JSPs for WebLogic
Server.

Web Applications and Clustering
Web Applications can be deployed to a WebLogic Server cluster. When a user requests a resource
from a Web Application, the request is routed to one of the servers in the cluster that host the Web
Application. If an application uses a session object, then sessions must be replicated across the
nodes of the cluster. Several methods of replicating sessions are provided.

For more information, see Using WebLogic Server Clusters.

Designating a Default Web Application
Every server instance and virtual host in your domain can declare a default Web Application. The
default Web Application responds to any HTTP request that cannot be resolved to another
deployed Web Application. In contrast to all other Web Applications, the default Web
Application does not use the Web Application name as part of the URI. Any Web Application

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/machines/ConfigureMachines.html
http://e-docs.bea.com/wls/docs90/webapp/index.html
http://e-docs.bea.com/wls/docs90/webapp/index.html
http://e-docs.bea.com/wls/docs90/cluster/index.html

Conf igur ing Web Server Func t iona l i t y

5-4 Configuring WebLogic Server Environments

targeted to a server or virtual host can be declared as the default Web Application. (Targeting a
Web Application is discussed later in this section. For more information about virtual hosts, see
“Configuring Virtual Hosting” on page 5-4).

The examples domain that is shipped with WebLogic Server has a default Web Application
already configured. The default Web Application in this domain is named DefaultWebApp and
is located in the applications directory of the domain.

For example, if your Web Application is called shopping, you would use the following URL to
access a JSP called cart.jsp from the Web Application:

http://host:port/shopping/cart.jsp

If, however, you declared shopping as the default Web Application, you would access
cart.jsp with the following URL:

http://host:port/cart.jsp

(Where host is the host name of the machine running WebLogic Server and port is the port
number where the WebLogic Server is listening for requests.)

To designate a default Web Application for a server or virtual host, set the context root in the
application.xml or weblogic.xml file to "".

If you declare a default Web Application that fails to deploy correctly, an error is logged and users
attempting to access the failed default Web Application receive an HTTP 404 error message.

Configuring Virtual Hosting
Virtual hosting allows you to define host names that servers or clusters respond to. When you use
virtual hosting you use DNS to specify one or more host names that map to the IP address of a
WebLogic Server instance or cluster, and you specify which Web Applications are served by the
virtual host. When used in a cluster, load balancing allows the most efficient use of your
hardware, even if one of the DNS host names processes more requests than the others.

For example, you can specify that a Web Application called books responds to requests for the
virtual host name www.books.com, and that these requests are targeted to WebLogic Servers A,B
and C, while a Web Application called cars responds to the virtual host name www.autos.com
and these requests are targeted to WebLogic Servers D and E. You can configure a variety of
combinations of virtual host, WebLogic Server instances, clusters, and Web Applications,
depending on your application and Web server requirements.

Conf igur ing V i r tua l Hos t ing

Configuring WebLogic Server Environments 5-5

For each virtual host that you define you can also separately define HTTP parameters and HTTP
access logs. The HTTP parameters and access logs set for a virtual host override those set for a
server. You may specify any number of virtual hosts.

You activate virtual hosting by targeting the virtual host to a server or cluster of servers. Virtual
hosting targeted to a cluster will be applied to all servers in the cluster.

Virtual Hosting and the Default Web Application
You can also designate a default Web Application for each virtual host. The default Web
Application for a virtual host responds to all requests that cannot be resolved to other Web
Applications deployed on the same server or cluster as the virtual host.

Unlike other Web Applications, a default Web Application does not use the Web Application
name (also called the context path) as part of the URI used to access resources in the default Web
Application.

For example, if you defined virtual host name www.mystore.com and targeted it to a server on
which you deployed a Web Application called shopping, you would access a JSP called
cart.jsp from the shopping Web Application with the following URI:

http://www.mystore.com/shopping/cart.jsp

If, however, you declared shopping as the default Web Application for the virtual host
www.mystore.com, you would access cart.jsp with the following URI:

http://www.mystore.com/cart.jsp

For more information, see “How WebLogic Server Resolves HTTP Requests” on page 5-6.

When using multiple Virtual Hosts with different default web applications, you can not use single
sign-on, as each web application will overwrite the JSESSIONID cookies set by the previous web
application. This will occur even if the CookieName, CookiePath, and CookieDomain are
identical in each of the default web applications.

Setting Up a Virtual Host
1. Use the Administration Console to define a virtual host. See Virtual Host.

2. Add a line naming the virtual host to the etc/hosts file on your server to ensure that the
virtual host name can be resolved.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/virtual_hosts/VirtualHosts.html

Conf igur ing Web Server Func t iona l i t y

5-6 Configuring WebLogic Server Environments

How WebLogic Server Resolves HTTP Requests
When WebLogic Server receives an HTTP request, it resolves the request by parsing the various
parts of the URL and using that information to determine which Web Application and/or server
should handle the request. Table 5-1 demonstrates various combinations of requests for Web
Applications, virtual hosts, servlets, JSPs, and static files and the resulting response.

Note: If you package your Web Application as part of an Enterprise Application, you can
provide an alternate name for a Web Application that is used to resolve requests to the
Web Application. For more information, see Developing Web Applications, Servlets,
and JSPs for WebLogic Server.

Table 5-1 provides some sample URLs and the file that is served by WebLogic Server. The Index
Directories Checked column refers to the Index Directories attribute that controls whether or not
a directory listing is served if no file is specifically requested.

Table 5-1 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

http://host:port/apples No Welcome file* defined in
the apples Web
Application.

http://host:port/apples Yes Directory listing of the top
level directory of the
apples Web Application.

http://host:port/oranges/naval Does not
matter

Servlet mapped with
<url-pattern> of
/naval in the oranges
Web Application.

There are additional
considerations for servlet
mappings. For more
information, see
Configuring Servlets.

http://e-docs.bea.com/wls/docs90/webapp/configureservlet.html
http://e-docs.bea.com/wls/docs90/webapp/index.html
http://e-docs.bea.com/wls/docs90/webapp/index.html

How WebLog ic Se rve r Reso lves HTTP Requests

Configuring WebLogic Server Environments 5-7

http://host:port/naval Does not
matter

Servlet mapped with
<url-pattern> of
/naval in the oranges
Web Application and
oranges is defined as the
default Web Application.

For more information, see
Configuring Servlets.

http://host:port/apples/pie.jsp Does not
matter

pie.jsp, from the
top-level directory of the
apples Web Application.

http://host:port Yes Directory listing of the top
level directory of the
default Web Application

http://host:port No Welcome file* from the
default Web Application.

http://host:port/apples/myfile.html Does not
matter

myfile.html, from the
top level directory of the
apples Web Application.

http://host:port/myfile.html Does not
matter

myfile.html, from the
top level directory of the
default Web Application.

http://host:port/apples/images/red.gif Does not
matter

red.gif, from the images
subdirectory of the
top-level directory of the
apples Web Application.

http://host:port/myFile.html

Where myfile.html does not exist in the apples Web
Application and a default servlet has not been defined.

Does not
matter

Error 404

Table 5-1 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

http://e-docs.bea.com/wls/docs90/webapp/configureservlet.html

Conf igur ing Web Server Func t iona l i t y

5-8 Configuring WebLogic Server Environments

Setting Up HTTP Access Logs
WebLogic Server can keep a log of all HTTP transactions in a text file, in either common log
format or extended log format. Common log format is the default. Extended log format allows
you to customize the information that is recorded. You can set the attributes that define the
behavior of HTTP access logs for each server instance or for each virtual host that you define.

To set up HTTP logging for a server or a virtual host, refer to the following topics in the
Administration Console Online Help:

Enabling and Configuring HTTP Access Logs

Specifying HTTP Log File Settings for a Virtual Host

Log Rotation
You can rotate the log file based on either the size of the file or after a specified amount of time
has passed. When either criterion is met, the current access log file is closed and a new access log

http://www.fruit.com/ No Welcome file from the
default Web Application
for a virtual host with a host
name of
www.fruit.com.

http://www.fruit.com/ Yes Directory listing of the top
level directory of the
default Web Application
for a virtual host with a host
name of
www.fruit.com.

http://www.fruit.com/oranges/myfile.html Does not
matter

myfile.html, from the
oranges Web Application
that is targeted to a virtual
host with host name
www.fruit.com.

Table 5-1 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/logging/EnableAndConfigureHTTPLogs.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/virtual_hosts/ConfigureVirtualHostLogging.html

Set t ing Up HTTP Access Logs

Configuring WebLogic Server Environments 5-9

file is started. If you do not configure log rotation, the HTTP access log file grows indefinitely.
You can configure the name of the access log file to include a time and date stamp that indicates
when the file was rotated. If you do not configure a time stamp, each rotated file name includes
a numeric portion that is incremented upon each rotation. Separate HTTP access logs are kept for
each Virtual Host you have defined.

Common Log Format
The default format for logged HTTP information is the common log format. This standard format
follows the pattern:

host RFC931 auth_user [day/month/year:hour:minute:second

 UTC_offset] "request" status bytes

where:

host

Either the DNS name or the IP number of the remote client

RFC931

Any information returned by IDENTD for the remote client; WebLogic Server does not
support user identification

auth_user

If the remote client user sent a userid for authentication, the user name; otherwise “-”

day/month/year:hour:minute:second UTC_offset

Day, calendar month, year and time of day (24-hour format) with the hours difference
between local time and GMT, enclosed in square brackets

"request"

First line of the HTTP request submitted by the remote client enclosed in double quotes

status

HTTP status code returned by the server, if available; otherwise “-”

bytes

Number of bytes listed as the content-length in the HTTP header, not including the HTTP
header, if known; otherwise “-”

http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

Conf igur ing Web Server Func t iona l i t y

5-10 Configuring WebLogic Server Environments

Setting Up HTTP Access Logs by Using Extended Log Format
WebLogic Server also supports extended log file format, version 1.0, an emerging standard
defined by the draft specification from W3C. The current definitive reference is on the W3C
Technical Reports and Publications page

The extended log format allows you to specify the type and order of information recorded about
each HTTP communication. To enable this format, set the Format attribute on the HTTP tab in
the Administration Console to Extended. (See “Creating Custom Field Identifiers” on
page 5-12).

You specify what information should be recorded in the log file with directives, included in the
actual log file itself. A directive begins on a new line and starts with a # sign. If the log file does
not exist, a new log file is created with default directives. However, if the log file already exists
when the server starts, it must contain legal directives at the head of the file.

Creating the Fields Directive
The first line of your log file must contain a directive stating the version number of the log file
format. You must also include a Fields directive near the beginning of the file:

 #Version: 1.0

 #Fields: xxxx xxxx xxxx ...

Where each xxxx describes the data fields to be recorded. Field types are specified as either
simple identifiers, or may take a prefix-identifier format, as defined in the W3C specification.
Here is an example:

 #Fields: date time cs-method cs-uri

This identifier instructs the server to record the date and time of the transaction, the request
method that the client used, and the URI of the request for each HTTP access. Each field is
separated by white space, and each record is written to a new line, appended to the log file.

Note: The #Fields directive must be followed by a new line in the log file, so that the first log
message is not appended to the same line.

Supported Field identifiers
The following identifiers are supported, and do not require a prefix.

date

Date at which transaction completed, field has type <date>, as defined in the W3C
specification.

http://www.w3.org/TR/WD-logfile.html
http://www.w3.org/pub/WWW/TR
http://www.w3.org/pub/WWW/TR

Set t ing Up HTTP Access Logs

Configuring WebLogic Server Environments 5-11

time

Time at which transaction completed, field has type <time>, as defined in the W3C
specification.

time-taken

Time taken for transaction to complete in seconds, field has type <fixed>, as defined in
the W3C specification.

bytes

Number of bytes transferred, field has type <integer>.

Note that the cached field defined in the W3C specification is not supported in WebLogic Server.

The following identifiers require prefixes, and cannot be used alone. The supported prefix
combinations are explained individually.

 IP address related fields:
These fields give the IP address and port of either the requesting client, or the responding
server. These fields have type <address>, as defined in the W3C specification. The
supported prefixes are:

c-ip

The IP address of the client.

s-ip

The IP address of the server.

DNS related fields
These fields give the domain names of the client or the server and have type <name>, as
defined in the W3C specification. The supported prefixes are:

c-dns

The domain name of the requesting client.

s-dns

The domain name of the requested server.

sc-status

Status code of the response, for example (404) indicating a “File not found” status. This
field has type <integer>, as defined in the W3C specification.

sc-comment

The comment returned with status code, for instance “File not found”. This field has type
<text>.

Conf igur ing Web Server Func t iona l i t y

5-12 Configuring WebLogic Server Environments

cs-method

The request method, for example GET or POST. This field has type <name>, as defined
in the W3C specification.

cs-uri

The full requested URI. This field has type <uri>, as defined in the W3C specification.

cs-uri-stem

Only the stem portion of URI (omitting query). This field has type <uri>, as defined in the
W3C specification.

cs-uri-query

Only the query portion of the URI. This field has type <uri>, as defined in the W3C
specification.

Creating Custom Field Identifiers
You can also create user-defined fields for inclusion in an HTTP access log file that uses the
extended log format. To create a custom field you identify the field in the ELF log file using the
Fields directive and then you create a matching Java class that generates the desired output. You
can create a separate Java class for each field, or the Java class can output multiple fields. For a
sample of the Java source for such a class, see “Java Class for Creating a Custom ELF Field” on
page 5-16.

To create a custom field:

1. Include the field name in the Fields directive, using the form:

x-myCustomField.

Where myCustomField is a fully-qualified class name.

For more information on the Fields directive, see “Creating the Fields Directive” on
page 5-10.

2. Create a Java class with the same fully-qualified class name as the custom field you defined
with the Fields directive (for example myCustomField). This class defines the
information you want logged in your custom field. The Java class must implement the
following interface:
weblogic.servlet.logging.CustomELFLogger

In your Java class, you must implement the logField() method, which takes a
HttpAccountingInfo object and FormatStringBuffer object as its arguments:

Set t ing Up HTTP Access Logs

Configuring WebLogic Server Environments 5-13

– Use the HttpAccountingInfo object to access HTTP request and response data that
you can output in your custom field. Getter methods are provided to access this
information. For a complete listing of these get methods, see “Get Methods of the
HttpAccountingInfo Object” on page 5-13.

– Use the FormatStringBuffer class to create the contents of your custom field.
Methods are provided to create suitable output. For more information on these methods,
see the Javadocs for FormatStringBuffer.

3. Compile the Java class and add the class to the CLASSPATH statement used to start
WebLogic Server. You will probably need to modify the CLASSPATH statements in the
scripts that you use to start WebLogic Server.

Note: Do not place this class inside of a Web Application or Enterprise Application in
exploded or jar format.

4. Configure WebLogic Server to use the extended log format. For more information, see
“Setting Up HTTP Access Logs by Using Extended Log Format” on page 5-10.

Note: When writing the Java class that defines your custom field, do not execute any code that
is likely to slow down the system (For instance, accessing a DBMS or executing
significant I/O or networking calls.) Remember, an HTTP access log file entry is created
for every HTTP request.

Note: If you want to output more than one field, delimit the fields with a tab character. For more
information on delimiting fields and other ELF formatting issues, see Extended Log
Format.

Get Methods of the HttpAccountingInfo Object
The following methods return various data regarding the HTTP request. These methods are
similar to various methods of javax.servlet.ServletRequest,
javax.servlet.http.Http.ServletRequest, and
javax.servlet.http.HttpServletResponse.

For details on these methods see the corresponding methods in the Java interfaces listed in the
following table, or refer to the specific information contained in the table.

Table 5-2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

Object getAttribute(String name); javax.servlet.ServletRequest

Enumeration getAttributeNames(); javax.servlet.ServletRequest

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://www.w3.org/TR/WD-logfile-960221.html
http://www.w3.org/TR/WD-logfile-960221.html

Conf igur ing Web Server Func t iona l i t y

5-14 Configuring WebLogic Server Environments

String getCharacterEncoding(); javax.servlet.ServletRequest

int getResponseContentLength(); javax.servlet.ServletResponse.
setContentLength()

This method gets the content length of the response, as set
with the setContentLength() method.

String getContentType(); javax.servlet.ServletRequest

Locale getLocale(); javax.servlet.ServletRequest

Enumeration getLocales(); javax.servlet.ServletRequest

String getParameter(String name); javax.servlet.ServletRequest

Enumeration getParameterNames(); javax.servlet.ServletRequest

String[] getParameterValues(String
name);

javax.servlet.ServletRequest

String getProtocol(); javax.servlet.ServletRequest

String getRemoteAddr(); javax.servlet.ServletRequest

String getRemoteHost(); javax.servlet.ServletRequest

String getScheme(); javax.servlet.ServletRequest

String getServerName(); javax.servlet.ServletRequest

int getServerPort(); javax.servlet.ServletRequest

boolean isSecure(); javax.servlet.ServletRequest

String getAuthType(); javax.servlet.http.Http.ServletRequest

String getContextPath(); javax.servlet.http.Http.ServletRequest

Cookie[] getCookies(); javax.servlet.http.Http.ServletRequest

long getDateHeader(String name); javax.servlet.http.Http.ServletRequest

String getHeader(String name); javax.servlet.http.Http.ServletRequest

Table 5-2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html

Set t ing Up HTTP Access Logs

Configuring WebLogic Server Environments 5-15

Enumeration getHeaderNames(); javax.servlet.http.Http.ServletRequest

Enumeration getHeaders(String name); javax.servlet.http.Http.ServletRequest

int getIntHeader(String name); javax.servlet.http.Http.ServletRequest

String getMethod(); javax.servlet.http.Http.ServletRequest

String getPathInfo(); javax.servlet.http.Http.ServletRequest

String getPathTranslated(); javax.servlet.http.Http.ServletRequest

String getQueryString(); javax.servlet.http.Http.ServletRequest

String getRemoteUser(); javax.servlet.http.Http.ServletRequest

String getRequestURI(); javax.servlet.http.Http.ServletRequest

String getRequestedSessionId(); javax.servlet.http.Http.ServletRequest

String getServletPath(); javax.servlet.http.Http.ServletRequest

Principal getUserPrincipal(); javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromCookie();

javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromURL();

javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromUrl();

javax.servlet.http.Http.ServletRequest

boolean isRequestedSessionIdValid(); javax.servlet.http.Http.ServletRequest

String getFirstLine(); Returns the first line of the HTTP request, for example:
GET /index.html HTTP/1.0

long getInvokeTime(); Returns the length of time it took for the service method
of a servlet to write data back to the client.

Table 5-2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html

Conf igur ing Web Server Func t iona l i t y

5-16 Configuring WebLogic Server Environments

Listing 5-1 Java Class for Creating a Custom ELF Field

import weblogic.servlet.logging.CustomELFLogger;

import weblogic.servlet.logging.FormatStringBuffer;

import weblogic.servlet.logging.HttpAccountingInfo;

/* This example outputs the User-Agent field into a

 custom field called MyCustomField

*/

public class MyCustomField implements CustomELFLogger{

public void logField(HttpAccountingInfo metrics,

FormatStringBuffer buff) {

 buff.appendValueOrDash(metrics.getHeader("User-Agent"));

}

}
}

Preventing POST Denial-of-Service Attacks
A Denial-of-Service attack is a malicious attempt to overload a server with phony requests. One
common type of attack is to send huge amounts of data in an HTTP POST method. You can set
three attributes in WebLogic Server that help prevent this type of attack. These attributes are set
in the Console, under Servers or Virtual Hosts. If you define these attributes for a virtual host, the
values set for the virtual host override those set under Servers.

PostTimeoutSecs

Amount of time that WebLogic Server waits between receiving chunks of data in an
HTTP POST.

The default value for PostTimeoutSecs is 30.

int getResponseStatusCode(); javax.servlet.http.HttpServletResponse

String
getResponseHeader(String name);

javax.servlet.http.HttpServletResponse

Table 5-2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html

Set t ing Up WebLog ic Serve r f o r HTTP Tunne l ing

Configuring WebLogic Server Environments 5-17

MaxPostTimeSecs

Maximum time that WebLogic Server spends receiving post data. If this limit is triggered,
a PostTimeoutException is thrown and the following message is sent to the server log:

Post time exceeded MaxPostTimeSecs.

The default value for MaxPostTimeSecs is 30.

MaxPostSize

Maximum number of bytes of data received in a POST from a single request. If this limit
is triggered, a MaxPostSizeExceeded exception is thrown and the following message is
sent to the server log:

POST size exceeded the parameter MaxPostSize.

An HTTP error code 413 (Request Entity Too Large) is sent back to the client.

If the client is in listening mode, it gets these messages. If the client is not in listening
mode, the connection is broken.

The default value for MaxPostSize is -1.

Setting Up WebLogic Server for HTTP Tunneling
HTTP tunneling provides a way to simulate a stateful socket connection between WebLogic
Server and a Java client when your only option is to use the HTTP protocol. It is generally used
to tunnel through an HTTP port in a security firewall. HTTP is a stateless protocol, but WebLogic
Server provides tunneling functionality to make the connection appear to be a regular
T3Connection. However, you can expect some performance loss in comparison to a normal
socket connection.

Configuring the HTTP Tunneling Connection
Under the HTTP protocol, a client may only make a request, and then accept a reply from a server.
The server may not voluntarily communicate with the client, and the protocol is stateless,
meaning that a continuous two-way connection is not possible.

WebLogic HTTP tunneling simulates a T3Connection via the HTTP protocol, overcoming these
limitations. There are two attributes that you can configure in the Administration Console to tune
a tunneled connection for performance. It is advised that you leave them at their default settings
unless you experience connection problems. These properties are used by the server to determine
whether the client connection is still valid, or whether the client is still alive.

Conf igur ing Web Server Func t iona l i t y

5-18 Configuring WebLogic Server Environments

Enable Tunneling

Enables or disables HTTP tunneling. HTTP tunneling is disabled by default.

Note that the server must also support both the HTTP and T3 protocols in order to use
HTTP tunneling.

Tunneling Client Ping

When an HTTP tunnel connection is set up, the client automatically sends a request to the
server, so that the server may volunteer a response to the client. The client may also
include instructions in a request, but this behavior happens regardless of whether the client
application needs to communicate with the server. If the server does not respond (as part
of the application code) to the client request within the number of seconds set in this
attribute, it does so anyway. The client accepts the response and automatically sends
another request immediately.

Default is 45 seconds; valid range is 20 to 900 seconds.

Tunneling Client Timeout

If the number of seconds set in this attribute have elapsed since the client last sent a
request to the server (in response to a reply), then the server regards the client as dead, and
terminates the HTTP tunnel connection. The server checks the elapsed time at the interval
specified by this attribute, when it would otherwise respond to the client’s request.

Default is 40 seconds; valid range is 10 to 900 seconds.

Connecting to WebLogic Server from the Client
When your client requests a connection with WebLogic Server, all you need to do in order to use
HTTP tunneling is specify the HTTP protocol in the URL. For example:

 Hashtable env = new Hashtable();

 env.put(Context.PROVIDER_URL, "http://wlhost:80");

 Context ctx = new InitialContext(env);

On the client side, a special tag is appended to the http protocol, so that WebLogic Server knows
this is a tunneling connection, instead of a regular HTTP request. Your application code does not
need to do any extra work to make this happen.

The client must specify the port in the URL, even if the port is 80. You can set up your WebLogic
Server instance to listen for HTTP requests on any port, although the most common choice is port
80 since requests to port 80 are customarily allowed through a firewall.

You specify the listen port for WebLogic Server in the Administration Console under the
“Servers” node, under the “Network” tab.

Using Nat ive I /O fo r Se rv ing St at ic F i l es (Windows On l y)

Configuring WebLogic Server Environments 5-19

Using Native I/O for Serving Static Files (Windows Only)
When running WebLogic Server on Windows NT/2000/XP you can specify that WebLogic
Server use the native operating system call TransmitFile instead of using Java methods to serve
static files such as HTML files, text files, and image files. Using native I/O can provide
performance improvements when serving larger static files.

To use native I/O, add two parameters to the web.xml deployment descriptor of a Web
Application containing the files to be served using native I/O. The first parameter,
weblogic.http.nativeIOEnabled should be set to TRUE to enable native I/O file serving.
The second parameter, weblogic.http.minimumNativeFileSize sets the minimum file size
for using native I/O. If the file being served is larger than this value, native I/O is used. If you do
not specify this parameter, a value of 4K is used.

Generally, native I/O provides greater performance gains when serving larger files; however, as
the load on the machine running WebLogic Server increases, these gains diminish. You may need
to experiment to find the correct value for weblogic.http.minimumNativeFileSize.

The following example shows the complete entries that should be added to the web.xml
deployment descriptor. These entries must be placed in the web.xml file after the
<distributable> element and before <servlet> element.

<context-param>

<param-name>weblogic.http.nativeIOEnabled</param-name>

<param-value>TRUE</param-value>

</context-param>

<context-param>

<param-name>weblogic.http.minimumNativeFileSize</param-name>

<param-value>500</param-value>

</context-param>

weblogic.http.nativeIOEnabled can also be set as a context parameter in the
FileServlet.

Conf igur ing Web Server Func t iona l i t y

5-20 Configuring WebLogic Server Environments

Configuring WebLogic Server Environments 6-1

C H A P T E R 6

Using the WebLogic Persistent Store

The following sections explain how to configure and monitor the persistent store, which provides
a built-in, high-performance storage solution for WebLogic Server subsystems and services that
require persistence.

“Overview of the Persistent Store” on page 6-2

“Using the Default Persistent Store” on page 6-5

“Using Custom File Stores and JDBC Stores” on page 6-7

“Creating a Custom (User-Defined) File Store” on page 6-8

“Creating a JDBC Store” on page 6-10

“Guidelines for Configuring a JDBC Store” on page 6-16

“Monitoring a Persistent Store” on page 6-20

“Limitations of the Persistent Store” on page 6-22

Using the WebLog ic Pe rs is tent S to re

6-2 Configuring WebLogic Server Environments

Overview of the Persistent Store
The persistent store provides a built-in, high-performance storage solution for WebLogic Server
subsystems and services that require persistence. For example, it can store persistent JMS
messages or temporarily store messages sent using the Store-and-Forward feature. The persistent
store supports persistence to a file-based store or to a JDBC-enabled database.

Table 6-1 defines many of the WebLogic services and subsystems that can create connections to
the persistent store. Each subsystem that uses the persistent store specifies a unique connection
ID that identifies that subsystem.

For more information about the store connection IDs, see “Monitoring Store Connections” on
page 6-20.

Table 6-1 Persistent Store Users

Subsystem/Service What It Stores More Information

Diagnostic Service Log records, data events, and
harvested metrics.

“Understanding WLDF Configuration” in
Configuring and Using the WebLogic
Diagnostic Framework

JMS Messages Persistent messages and durable
subscribers.

“Understanding the Messaging Models” in
Programming WebLogic JMS

JTA Transaction Log
(TLOG)

Information about committed
transactions coordinated by the server
that may not have been completed.

“Managing Transactions” in Programming
WebLogic JTA

Path Service The mapping of a group of messages
to a messaging resource.

“Using the WebLogic Path Service” in
Configuring and Managing WebLogic JMS

Store-and-Forward
(SAF) Service Agents

Messages for a sending SAF agent for
retransmission to a receiving SAF
agent

“Understanding the Store-and-Forward
Service” in Configuring and Managing
WebLogic Store-and-Forward

Web Services Request and response SOAP
messages from an invocation of a
reliable WebLogic Web Service.

“Using Reliable SOAP Messaging” in
Programming Web Services for WebLogic
Server

EJB Timer Services EJB Timer objects. “Understanding Enterprise JavaBeans” in
Programming WebLogic Enterprise
JavaBeans

http://e-docs.bea.com/wls/docs90/wldf_configuring/understand_wldf_config.html
http://e-docs.bea.com/wls/docs90/jms/fund.html#messaging_models
http://e-docs.bea.com/wls/docs90/jta/trxman.html
http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#Path_Service
http://e-docs.bea.com/wls/docs90/saf_admin/overview.html
http://e-docs.bea.com/wls/docs90/saf_admin/overview.html
http://e-docs.bea.com/wls/docs90/webserv/advanced.html#reliable_messaging
http://e-docs.bea.com/wls/docs90/ejb/understanding.html

Overv i ew o f the Pe rs is tent S to re

Configuring WebLogic Server Environments 6-3

Features of the Persistent Store
The key features of the persistent store include:

Default file store for each server instance that requires no configuration

One store is shareable by multiple subsystems, as long as they are all targeted to the same
server instance or migratable target

High-performance throughput and transactional support

Modifiable parameters that let you create customized file stores and JDBC stores

Monitoring capabilities for persistent store statistics and open store connections

High-Performance Throughput and Transactional Support
Throughput is the main performance goal of the persistent store. Multiple subsystems can share
the same persistent store, as long as they are all targeted to the same server instance or migratable
target.

This is a performance advantage because the persistent store is treated as a single resource by the
transaction manager for a particular transaction, even if the transaction involves multiple services
that use the same store. For example, if JMS and EJB timers share a store, and a JMS message
and an EJB timer are created in a single transaction, the transaction will be one-phase and incur
a single resource write, rather than two-phase, which incurs four resource writes (two on each
resource), plus a transaction entry write (on the transaction log).

Both the file store and the JDBC store can survive a process crash or hardware power failure
without losing any committed updates. Uncommitted updates may be retained or lost, but in no
case will a transaction be left partially complete after a crash.

Comparing File Stores and JDBC Stores
The following are some similarities and differences between file stores and JDBC stores:

The default persistent store can only be a file store.

A JDBC store cannot be used as a default persistent store.

The transaction log (TLOG) can only be stored in a file store.

Using the WebLog ic Pe rs is tent S to re

6-4 Configuring WebLogic Server Environments

Both have the same transaction semantics and guarantees. As with JDBC store writes, file
store writes are guaranteed to be persisted to disk and are not simply left in an intermediate
(that is, unsafe) cache.

Both have the same application interface (no difference in application code).

All things being equal, file stores generally offer better throughput than a JDBC store.

Note: If a database is running on high-end hardware with very fast disks, and WebLogic
Server is running on slower hardware or with slower disks, then you may get better
performance from the JDBC store.

File stores are generally easier to configure and administer, and do not require that
WebLogic subsystems depend on any external component.

File stores generate no network traffic; whereas, JDBC stores will generate network traffic
if the database is on a different machine from WebLogic Server.

JDBC stores may make it easier to handle failure recovery since the JDBC interface can
access the database from any machine on the same network. With the file store, the disk
must be shared or migrated.

Securing File Store Data
In order to properly secure file store data, you must set appropriate directory permissions on all
your file store directories. If you require data encryption, you must use appropriate third-party
encryption software.

High Availability For Persistent Stores
For high availability, a persistent file-based store (default or custom) can be migrated along with
its parent server as part of the “server-level” migration feature, which provides both automatic
and manual migration at the server-level, rather than on the service level. For more information,
see “Server Migration” section of Using WebLogic Server Clusters. However, file-based stores
must be configured on a shared disk that is available to the migratable target servers in the cluster.

File-based stores can also be migrated as part of a “service-level” migration for JMS servers and
the JTA transaction recovery service, which can be moved from one server to another within a
cluster. For more information on service-level migration, see “Service Migration” in Using
WebLogic Server Clusters. However, file-based stores must still be configured on a shared disk
that is available to the migratable target servers in the cluster.

http://e-docs.bea.com/wls/docs90/cluster/failover.html#server_migration
http://e-docs.bea.com/wls/docs90/cluster/failover.html#service_migration

Us ing the Defau l t Pe rs is tent S to re

Configuring WebLogic Server Environments 6-5

Therefore, if you have applications that need access to persistent stores that reside on remote
machines after the migration of a JMS server or JTA transaction log, then you must implement
one of the following highly-available storage solutions:

File-based stores (default or custom) — Implement a hardware solution, such as a
dual-ported SCSI disk or Storage Area Network (SAN) to make a file store available from
shareable disks or remote machines.

Note: If a file store is disconnected and re-connected again, its host server instance must be
rebooted to successfully continue sending/receiving persistent JMS messages. For
example, if for some reason the file system containing a file store is unmounted and
then remounted, attempts to send persistent JMS messages will generate JMS
exceptions until the host server is rebooted.

JDBC-accessible stores — Configure a JDBC store and use JDBC to access this store,
which can be on yet another server. Applications can then take advantage of any
high-availability or failover solutions offered by your database vendor. In addition, JDBC
stores support multi data sources, which provide failover between nodes of a highly
available database system, such as redundant databases or Oracle Real Application Clusters
(RAC). For more information about using JDBC multi data sources, see “Configuring
JDBC Multi Data Sources” in Configuring and Managing WebLogic JDBC.

Any persistent store — Use high-availability clustering software such as VERITAS™
Cluster Server, which provides an integrated, out-of-the-box solution for BEA WebLogic
Server-based applications. Some other recommended high-availability software solutions
include SunCluster, IBM HACMP, or the equivalent.

Using the Default Persistent Store
Each server instance, including the administration server, has a default persistent store that
requires no configuration. The default store is a file-based store that maintains its data in a group
of files in a server instance’s data\store\default directory. A directory for the default store
is automatically created if one does not already exist. This default store is available to subsystems
that do not require explicit selection of a particular store and function best by using the system’s
default storage mechanism. For example, a JMS Server with no persistent store configured will
use the default store for its Managed Server and will support persistent messaging.

The default store can be configured by directly manipulating the DefaultFileStoreMBean
parameters. If this MBean is not defined in the domain’s configuration file, then the configuration
subsystem ensures that the DefaultFileStoreMBean always exists with the default values.

http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_multidatasources.html
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_multidatasources.html
http://e-docs.bea.com/wls/docs90//wlsmbeanref/mbeans/DefaultFileStoreMBean.html

Using the WebLog ic Pe rs is tent S to re

6-6 Configuring WebLogic Server Environments

Also, the Administration Console enables you to change the default store parameters, such as its
default directory location and Synchronous Write Policy, as described in “Modify the Default
Store Settings” in the Administration Console Online Help.

In addition to using the default file store, you can also configure a custom file store or JDBC store
to suit your specific needs, as explained in “Using Custom File Stores and JDBC Stores” on
page 6-7. One exception, however, is the transaction log (TLOG), which always uses the default
store. This is because the transaction log must always be available early in the server boot
process.

Default Store Location
The default store maintains its data in a data\store\default directory inside the servername
subdirectory of a domain’s root directory

For example, if no directory name is specified for the default file store, it defaults to:

bea_home\user_projects\domains\domain-name\servers\server-name\data\sto
re\default

where domainname is the root directory of your domain, typically
c:\bea\user_projects\domains\domainname, which is parallel to the directory in which
WebLogic Server program files are stored, typically c:\bea\weblogic90.

You can, however, specify another location for the default store by directly manipulating the
DefaultFileStoreMBean parameters or by using the Administration Console, as described in
“Modify the Default Store Settings” in the Administration Console Online Help.

Example of a Default File Store
Here’s an example of how a default file store may look in a domain’s configuration file, with the
default directory location and Synchronous Write Policy settings overridden:

<server>

 <name>myserver</name>

 <default-file-store>

 <directory>C:/store</directory>

 <synchronous-write-policy>Disabled</synchronous-write-policy>

 </default-file-store>

</server>

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/ConfigureDefaultStore.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/ConfigureDefaultStore.html
http://e-docs.bea.com/wls/docs90//wlsmbeanref/mbeans/DefaultFileStoreMBean.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/ConfigureDefaultStore.html

Us ing Custom F i l e S to res and JDBC Sto res

Configuring WebLogic Server Environments 6-7

Using Custom File Stores and JDBC Stores
In addition to using the default file store, you can also configure a file store or JDBC store to suit
your specific needs. A custom file store, like the default file store, maintains its data in a group
of files in a directory. However, you may want to create a custom file store so that the file store’s
data is persisted to a particular storage device. When configuring a file store directory, the
directory must be accessible to the server instance on which the file store is located.

A JDBC store can be configured when a relational database is used for storage. A JDBC store
enables you to store persistent messages in a standard JDBC-capable database, which is accessed
through a designated JDBC data source. The data is stored in the JDBC store’s database table,
which has a logical name of WLStore. It is up to the database administrator to configure the
database for high availability and performance.

For more information about configuring a persistent store, see “When to Use a Custom Persistent
Store” on page 6-7.

When to Use a Custom Persistent Store
WebLogic Server provides configuration options for creating a custom file store or JDBC store.
For example, you may want to:

Place a file store’s files on a particular device.

Use a JDBC store rather than a file store for a particular server instance.

Allow all physical stores in a cluster to share the same logical name.

Logically separate different services to use different files or tables. (This may simplify
administration and maintenance at the expense of reduced performance.)

Methods of Creating a Persistent Store
A customized persistent store can be configured in the following ways:

Use the Administration Console to configure a custom file store or JDBC store, as
described in “Configure Persistent Stores” in the Administration Console Online Help.

Directly edit the configuration file (config.xml) of the server instance that is hosting the
default persistent store.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/ConfigureStores.html

Using the WebLog ic Pe rs is tent S to re

6-8 Configuring WebLogic Server Environments

Use the WebLogic Java Management Extensions (JMX) to create persistent stores. JMX is
the J2EE solution for monitoring and managing resources on a network. For more
information see, “Developing Custom Management Utilities with JMX”.

Use the WebLogic Scripting Tool (WLST) to create persistent stores. WLST is a
command-line scripting interface that you use to interact with and configure WebLogic
Server instances and domains. For more information, see “WebLogic Scripting Tool”.

Use the WebLogic Configuration Wizard to change the options of the default persistent
store. For detailed information on how to use the Configuration Wizard to configure a
persistent store, see “Creating a New WebLogic Domain”.

Creating a Custom (User-Defined) File Store
The following sections provide an example of a custom file store and configuration guidelines for
choosing a synchronous write policy.

To create a custom file store, you can directly modify the default FileStoreMBean parameters.
For instructions on using the Administration Console to create a custom file store, see “Create
File Stores” in the Administration Console Online Help.

Main Steps for Configuring a Custom File Store
The main steps for creating a custom file store are as follows:

1. Create a directory where the file store’s data will be persisted.

2. Create a custom file store and specify the directory location that you created.

3. Associate the custom file store with the subsystem(s) that will be using it, such as:

– For JMS servers, select the custom file store on the General Configuration page.

– For Store-and-Forward agents, select the custom file store on the General Configuration
page.

Example of a Custom File Store
Here’s an example of how a custom file store may look in a domain’s configuration file with its
files kept in a /disk1/jmslog directory.

<file-store>

 <name>SampleFileStore</name>

 <target>myserver</target>

http://e-docs.bea.com/wls/docs90/jmx/index.html
http://e-docs.bea.com/wls/docs90/config_scripting/index.html
http://e-docs.bea.com/wls/docs90/../../common/docs90/confgwiz/newdom.html
http://e-docs.bea.com/wls/docs90//wlsmbeanref/mbeans/FileStoreMBean.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateFileStores.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateFileStores.html

Creat ing a Custom (Use r-Def ined) F i l e S to re

Configuring WebLogic Server Environments 6-9

 <directory>/disk1/jmslog</directory>

</file-store>

Table 6-2 briefly describes the file store configuration parameters that can be modified.

For instructions on configuring a custom file store using the Administration Console, see “Create
file stores” in the Administration Console Online Help.

Guidelines for Configuring a Synchronous Write Policy
With the default Synchronous Write Policy of Direct-Write, file store writes are written directly
to disk for Solaris and Windows operating systems. On Windows systems, this option generally
performs faster than the Cache-Flush option.

Changing the default policy to Disabled generally improves file store performance, often quite
dramatically, but at the expense of possibly losing sent messages or generating duplicate received
messages (even if messages are transactional) in the event of an operating system crash or a
hardware failure. This is because transactions are complete as soon as their writes are cached in

Table 6-2 File Store Configuration Options

Option Required What it does. . .

Name Yes The name of the file store, which must be unique across all stores in the
domain.

Targets Yes The server instance where a file store is targeted. Multiple subsystems
can share the same store, as long as they are all targeted to the same
server instance or migratable target.

Directory Yes The path name to the directory on the file system where the file store is
kept.

Logical Name No Optionally used with subsystems, like EJBs, when deploying a module
to an entire cluster, but also require a different physical store on each
server instance in the cluster. In such a configuration, each physical
store would have its own name, but all the persistent stores would share
the same logical name.

Synchronous Write
Policy

No Optionally defines how hard a file store will try to flush records to the
disk. Values are: Direct-Write (default), Cache-Flush, and Disabled.

For more information, see “Guidelines for Configuring a Synchronous
Write Policy” on page 6-9.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateFileStores.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateFileStores.html

Using the WebLog ic Pe rs is tent S to re

6-10 Configuring WebLogic Server Environments

memory, instead of waiting for the writes to successfully reach the disk. Simply shutting down
an operating system does not generate these failures, as an OS flushes all outstanding writes
during a normal shutdown. Instead, these failures can be emulated by abruptly shutting the power
off to a busy server.

Creating a JDBC Store
The following sections provide an example of a JDBC store, and information about creating a
database table for a JDBC store, either using existing DDL or It also includes instruction on
enabling Oracle blob record columns in a DDL file.

To create a JDBC store, you can directly modify the default JDBCStoreMBean parameters. For
instructions on using the Administration Console to create a JDBC store, see “Create JDBC
Stores” in the Administration Console Online Help.

For configuration guidelines on using prefixes with JDBC stores and recommended JDBC data
source settings, see “Guidelines for Configuring a JDBC Store” on page 6-16.

Main Steps for Configuring a JDBC Store
The main steps for creating a JDBC store are as follows:

1. Create a JDBC data source or multi data source to interface with the JDBC store.

2. Create a JDBC store and associate it with the JDBC data source or multi data source.

3. It is highly recommended that you configure the Prefix option to a unique value for each
configured JDBC store table.

4. Associate the JDBC store with the subsystem(s) that will be using it, such as:

– For JMS servers, select the JDBC store on the General Configuration page.

– For Store-and-Forward agents, select the JDBC store on the General Configuration
page.

Example of a JDBC Store
Here’s an example of how a JDBC store may look in the configuration file, using the JDBC data
source MyDataSource, and with a logical name specified:

<jdbc-store>

 <name>SampleJDBCStore</name>

 <target>yourserver</target>

http://e-docs.bea.com/wls/docs90//wlsmbeanref/mbeans/JDBCStoreMBean.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html

Creat ing a JDBC Sto re

Configuring WebLogic Server Environments 6-11

 <data-source>MyDataSource</data-source>

 <logical-name>Baz</logical-name>

</jdbc-store>

Table 6-3 describes the JDBC store configuration parameters that can be modified.

Table 6-3 JDBC Store Configuration Option

Option Required What it does. . .

Name Yes The name of the JDBC store, which must be unique across all stores in
the domain.

Targets Yes The server instance where a JDBC store is targeted. Multiple
subsystems can share the same store, as long as they are all targeted to
the same server instance or migratable target.

Data Source Yes The JDBC data source or multi data source used by this JDBC store to
access the store’s database table (WLStore). This data source or multi
data source must be targeted to the same server instance as the JDBC
store.

Note: You cannot specify a JDBC data source that is configured to
support global transactions. Therefore, the specified JDBC
data source must use a non-XA JDBC driver. You also cannot
enable Logging Last Resource or Emulate Two-Phase Commit
in the data source.

Prefix Name No The prefix for the JDBC store’s table is generally entered in the
following format: [[[catalog.]schema.]prefix]

When using multiple JDBC stores, it is required to set this option to a
unique value for each configured JDBC store. When no prefix is
specified, the JDBC store table name is simply WLStore and the
database implicitly determines the schema according the current user of
the JDBC connection. Also, two JDBC stores cannot share the same
database table. For more information, see “Using Prefixes with a JDBC
Store” on page 6-16.

Using the WebLog ic Pe rs is tent S to re

6-12 Configuring WebLogic Server Environments

For instructions on configuring a JDBC store using the Administration Console, see “Create
JDBC stores” in the Administration Console Online Help.]

Supported JDBC Drivers
When using a JDBC store, the backing database can be any database that is accessible through a
JDBC driver. WebLogic Server detects some drivers for supported databases.

For each of these databases, there are corresponding DDL (data definition language) files within
the WL_HOME\server\lib\weblogic.jar file, in the weblogic/store/io/jdbc/ddl
directory, where WL_HOME is the top-level directory of your WebLogic Server installation.

Logical Name No Optionally used with WebLogic Server subsystems, like EJBs, when
deploying a module to an entire cluster, but also require a different
physical store on each server instance in the cluster. In such a
configuration, each physical store would have its own name, but all the
persistent stores would share the same logical name.

Create Table from
DDL File

No Optionally used with supported DDL (data definition language) files to
create the JDBC store’s database table (WLStore). This option is
ignored when the JDBC store’s database table already exists. For more
information, see “Automatically Creating a JDBC Store Table Using
Default and Custom DDL Files” on page 6-13.

Table 6-3 JDBC Store Configuration Option

Option Required What it does. . .

Table 6-4 Supported JDBC Drivers and Corresponding DDL Files

Database DDL Files

Cloudscape cloudscape.ddl

IBM DB2 db2.ddl
db2v6.ddl

Informix informix.ddl

Microsoft SQL (MSSQL) Server msssql.ddl

HP NonStop SQL nssql.ddl

MySQL mysql.ddl

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html

Creat ing a JDBC Sto re

Configuring WebLogic Server Environments 6-13

The DDL files are actually text files containing the SQL commands (terminated by semicolons)
that create the JDBC store’s database table (WLStore). Therefore, if you are using a database that
is not included in this list, you can copy and edit any one of the existing DDL files to suit your
specific database, as described in “Creating a JDBC Store Table Using a Custom DDL File” on
page 6-14.

Automatically Creating a JDBC Store Table Using Default and
Custom DDL Files
The JDBC Store Configuration page provides an optional Create Table from DDL File option,
through which you can access a pre-configured DDL file that is used to create the JDBC store’s
backing table (WLStore). This option is ignored when the JDBC store’s backing table already
exists. It is mainly used to specify a custom DDL file created for an unsupported database, or
when upgrading JMS JDBC store tables from a prior release to a current JDBC Store table.

If a DDL file name is not specified in the Create Table from DDL File field, and the JDBC store
detects that its backing table does not already exist, the JDBC store automatically creates the table
by executing a pre-configured DDL file that is specific to the database vendor (see Supported
JDBC Drivers).

If a DDL file name is specified in the Create Table from DDL File field, and the JDBC store
detects that its backing table does not already exist, the JDBC store searches for the specified
DDL file in the file path first, and then, if not found, searches for the DDL file in the CLASSPATH.
Once found, the SQL within the DDL file is executed to create the JDBC store’s backing table.
If the configured file is not found and the table doesn’t already exist, the JDBC store will fail to
boot.

Oracle oracle.ddl
oracle_blob.ddl

Pointbase pointbase.ddl

Sybase sysbase.ddl

Times Ten timesten.ddl

Table 6-4 Supported JDBC Drivers and Corresponding DDL Files

Database DDL Files

Using the WebLog ic Pe rs is tent S to re

6-14 Configuring WebLogic Server Environments

Creating a JDBC Store Table Using a Custom DDL File
To use a different database from those listed in “Supported JDBC Drivers” on page 6-12, you can
copy and edit any one of the existing DDL template files to suit your specific database.

1. Use the JAR utility supplied with the JDK to extract the DDL files to the
/weblogic/store/io/jdbc/ddl directory using the following command:

jar xf weblogic.jar /weblogic/store/io/jdbc/ddl

Note: If you omit the weblogic/store/io/jdbc/ddl parameter, the entire jar file is
extracted.

2. Edit the DDL file for your database. An SQL command can span several lines and is
terminated with a semicolon (;). Lines beginning with pound signs (#) are comments.

3. Save your changes and rename the new DDL appropriately (for example,
mydatabase.ddl)

4. Create a JDBC store, as explained in “Create JDBC Stores” in the Administration Console
Online Help.

5. Use the Create Table from DDL File option on the General Configuration page to specify
your custom DDL file (for example, /mydatabase.ddl

Note: On Windows systems, for full path names always include the drive letter.

Enabling Oracle BLOB Record Columns
For Oracle databases, you can use the oracle_blob.ddl file to create a JDBC store table with
a BLOB record column type rather than the default LONG RAW record column type. The
oracle_blob.ddl file is pre-configured and supplied in the WebLogic CLASSPATH, as
described in “Supported JDBC Drivers” on page 6-12.

To use the Oracle BLOB DDL with a JDBC store:

1. Shut down the server instance that uses the JDBC store.

2. Delete the current JDBC table, as explained in “Managing JDBC Store Tables” on
page 6-15.

3. Reboot the server instance.

4. Create a new JDBC store, as explained in “Create JDBC Stores” in the Administration
Console Online Help.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html

Creat ing a JDBC Sto re

Configuring WebLogic Server Environments 6-15

5. In the Create Table from DDL File field on the General Configuration page, enter the
location of the oracle_blob.ddl file, as follows: /oracle_blob.ddl

6. Click Finish to create the JDBC store’s backing table.

If you need to preserve data already in a Oracle LONG RAW column, but still want to switch the
column to BLOB, do not use this method. Instead, consult the Oracle documentation for the SQL
ALTER TABLE command.

Managing JDBC Store Tables
The JDBC utils.Schema utility allows you to regenerate a new JDBC store database table
(WLStore) by deleting the existing version. Running this utility is usually not necessary, since
WebLogic Server automatically creates this table for you. However, if your existing JDBC store
database table somehow becomes corrupted, you can delete it using the utils.Schema utility.

The utils.Schema utility is a Java program that takes command-line arguments to specify the
following:

JDBC driver

Database connection information

Name of a file containing the SQL Data Definition Language (DDL) commands that create
the database table

Using the utils.Schema Utility to Delete a JDBC Store Table
Enter the utils.Schema command, as follows:

$ java utils.Schema url JDBC_driver [options] DDL_file

Note: To execute utils.Schema, your CLASSPATH must contain the weblogic.jar file.

Table 6-5 lists the utils.Schema command-line arguments.

Table 6-5 Command-line arguments for utils.Schema

Argument Description

url Database connection URL. This value must be a colon-separated
URL as defined by the JDBC specification.

JDBC_driver Full package name of the JDBC Driver class.

Using the WebLog ic Pe rs is tent S to re

6-16 Configuring WebLogic Server Environments

For example, the following command deletes a JDBC table named MYWLStore in an Oracle
server named DEMO, with the user name user1 and password foobar:
$ echo "drop MYWLStore;" > drop.ddl

$ java utils.Schema

jdbc:weblogic:oracle:DEMO \

weblogic.jdbc.oci.Driver -u user1 -p foobar -verbose \

drop.ddl

Guidelines for Configuring a JDBC Store
The following sections provide guidelines for using JDBC store prefixes, recommended
WebLogic JDBC data source settings for JDBC stores, and handling JMS transactions with JDBC
stores.

Using Prefixes with a JDBC Store
The JDBC store database contains a database table, named WLStore, that is generated
automatically and is used internally by WebLogic Server. The JDBC store provides an optional
Prefix Name parameter, which can be used to provide more precise access to the database table.

options Optional command options.

If required by the database, you can specify:
• The username and password as follows:

-u <username> -p <password>

• The Domain Name Server (DNS) name of the JDBC
database server as follows:
 -s <dbserver>

You can also specify the -verbose option, which causes
utils.Schema to echo SQL commands as they are executed.

DDL_file The full pathname of the DDL text file containing the SQL
commands that you want to execute. For more information, see
“Supported JDBC Drivers” on page 6-12.

Table 6-5 Command-line arguments for utils.Schema

Argument Description

Guide l ines fo r Conf igur ing a JDBC Sto re

Configuring WebLogic Server Environments 6-17

It is always a best practice to configure a prefix for the JDBC WLStore table name, especially
when:

The database requires fully-qualified names. (You should verify this with your database
administrator.)

There is more than one JDBC store instance sharing a database, since no two JDBC stores
can share the same table.

There are many tables in the database. Setting the prefix reduces the number of tables the
JDBC store must search through to find its table during boot.

JDBC Store Table Rules
To avoid potential data loss, follow these rules:

Each JDBC store table name must be unique.

If multiple JDBC stores share a table, the behavior is undefined and data loss is likely.

There is no procedure for combining two database tables into a single table.

Prefix Name Format Guidelines
For most databases, the Prefix Name option for the JDBC store’s backing database table should
be set in the following format for each configured JDBC store, which will result in a valid table
name when prepended to the JDBC store table name:

[[[catalog.]schema.]prefix]

Note that each period in the [[[catalog.]schema.]prefix] format is significant. Generally,
catalog identifies the set of system tables being referenced by the DBMS, and schema generally
corresponds to ID of the table owner (username). When no prefix is specified, the JDBC store
table name is simply WLStore and the database implicitly determines the schema according the
current user of the JDBC connection.

For example, in a production database, the database administrator could maintain a unique table
for the Sales department, as follows:

[[[Production.]JMSAdmin.]Sales]

The resulting table will be created in the Production catalog, under the JMSAdmin schema, and
will be named SalesWLStore.

For some DBMS vendors, such as Oracle, there is no catalog to set or choose, so the format
simplifies to [[schema.]prefix]. For more information, refer to your DBMS documentation

Using the WebLog ic Pe rs is tent S to re

6-18 Configuring WebLogic Server Environments

for instructions on fully-qualified table names, but note that the syntax specified by the DBMS
may differ from the format required for this option.

Caution: If the Prefix Name setting is changed, but the WLStore database table already exists
in the database, take care to preserve existing table data. In this case, the existing
database table must be renamed by a database administrator to match the new
configured table name.

Recommended JDBC Data Source Settings for JDBC Stores
The following settings are recommended when you use a JDBC data source or multi data source
for JDBC stores.

Automatic Reconnection to Failed Databases
WebLogic Server provides robust JDBC data sources that can automatically reconnect to failed
databases after they come back online, without requiring you to restart WebLogic Server. To take
advantage of this capability, and make your use of JDBC stores more robust, configure the
following options on the JDBC data source associated with the JDBC store:

TestConnectionsOnReserve="true"

TestTableName="SYSTABLES"

ConnectionCreationRetryFrequencySeconds="600"

For more information about JDBC default Test Table Names, see “Connection Testing Options
for a Data Source” in the Configuring and Managing WebLogic JDBC. For more information
about setting the number of database reconnection attempts, see the “Enabling Connection
Creation Retries” section in Configuring and Managing WebLogic JDBC.

Required Setting for WebLogic Type 4 JDBC DB2 Drivers
For data sources used as a JDBC store that use the WebLogic Type 4 JDBC driver for DB2, the
BatchPerformanceWorkaround property must be set to “true” due to internal JMS batching
requirements.

For more information, see the “Performance Workaround for Batch Inserts and Updates” section
in the WebLogic Type 4 JDBC Drivers documentation.

http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#test_opt
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#test_opt
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#connection_retry
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#connection_retry
http://e-docs.bea.com/wls/docs90/jdbc_drivers/db2.html#batchperf

Guide l ines fo r Conf igur ing a JDBC Sto re

Configuring WebLogic Server Environments 6-19

Handling JMS Transactions with JDBC Stores
You cannot configure a JDBC store to use a JDBC data source that is configured to support global
transactions. The JDBC store must use a JDBC data source that uses a non-XA JDBC driver. You
also cannot enable Logging Last Resource or Emulate Two-Phase Commit in the data source.

Because the JDBC store implements the XAResource interface, it acts as it’s own resource
manager and handles the transactions above the JDBC driver level. That is, the store itself
implements the XAResource and handles the transactions without depending on the database
(even when the messages are stored in the database).

This means that whenever you are using a JDBC store and a database (even if it is the same
database where the JMS messages are stored), then it is two-phase commit transaction.

For more information about using JMS transactions with a JDBC store, see “Using Transactions
with WebLogic JMS” in Programming WebLogic JMS.

From a performance perspective, you may also boost your performance as follows:

Ensure that the JDBC data source used for the database work exists on the same server
instance as the JMS destination—the transaction will still be two-phase, but it will be
handled with less network overhead.

Use file stores rather than JDBC stores.

Configure multiple services to share the same store if they will commonly be invoked
within the same transaction.

 If an application directly performs database operations in addition to invoking store
services (such as JMS) within the same transaction, consider using a JDBC data source
with Logging Last Resource (LLR) enabled for the database operations.

With the LLR optimization, the transaction will follow the two-phase commit protocol, but
the database operations will be handled in a single local transaction, which may improve
overall transaction performance. For more information on using the LLR optimization, see
“Understanding the Logging Last Resource Transaction Option” in Configuring and
Managing WebLogic JDBC.

http://e-docs.bea.com/wls/docs90/jms/trans.html
http://e-docs.bea.com/wls/docs90/jms/trans.html
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#llr

Using the WebLog ic Pe rs is tent S to re

6-20 Configuring WebLogic Server Environments

Monitoring a Persistent Store
You can monitor statistics for each existing persistent store and for each open store connection.

Monitoring Stores
Each persistent store is represented at runtime by an instance of the
PersistentStoreRuntimeMBean, which provides the following options.

Monitoring Store Connections
For each open persistent store connection, the persistent store also registers a
PersistentStoreConnectionRuntimemMBean, which provides the following options.

Table 6-6 Persistent Store Run-time Options

Option What it does. . .

CreateCount Number of create requests issued to this persistent store.

ReadCount Number of read requests issued to this persistent store.

UpdateCount Number of update requests issued by this persistent store.

DeleteCount Number of delete requests issued by this persistent store.

ObjectCount Number of objects contained in the persistent store.

Connections Number of active connections in the persistent store.

PhysicalWriteCount Number of times the persistent store flushes its data to durable storage.

Table 6-7 Persistent Store Connection Runtime Options

Option What it does. . .

CreateCount Number of create requests issued to this connection.

ReadCount Number of read requests issued to this connection.

UpdateCount Number of update requests issued by this connection.

DeleteCount Number of delete requests issued by this connection.

ObjectCount Number of objects contained in the connection.

http://e-docs.bea.com/wls/docs90//wlsmbeanref/mbeans/PersistentStoreRuntimeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/PersistentStoreConnectionRuntimeMBean.html

Moni to r ing a Pe rs is tent S to re

Configuring WebLogic Server Environments 6-21

Table 6-8 defines most of the runtime prefix names of the WebLogic services and subsystems
that can create a connection to the persistent store.

Table 6-8 Persistent Store Runtime Prefix Names

Subsystem/Service Runtime Prefix Name

Deployment weblogic.deploy.internal

where internal is the name of the deployment connection

Diagnostic Service weblogic.diagnostics.internal

where internal is the logical name of the diagnostic archive connection

EJB Timer Services weblogic.ejb.timer.internal

where internal uniquely identifies EJB deployments in a server instance

JMS Service JMS server:
weblogic.messaging.jmsServer.internal
where internal is the name of the JMS server connection

JMS durable subscriber:
weblogic.messaging.jmsServer.durablesubs.internal
where internal is the name of the durable subscriber connection

JTA Transaction Log
(TLOG)

weblogic.transaction.internal

where internal is the name of the TLOG connection

Path Service weblogic.messaging.PathService.internal

where internal is the name of the path service connection

SAF Service SAF agent
weblogic.messaging.SAFAgent@server1.internal
where internal is the name of the SAF agent’s connection

SAF durable subscriber:
weblogic.messaging.SAFAgent@server1.durablesubs.internal
where internal is the name of the durable subscriber connection

Web Services weblogic.wsee.server.store.internal

where internal is the name of the Web Service’s connection

Using the WebLog ic Pe rs is tent S to re

6-22 Configuring WebLogic Server Environments

Limitations of the Persistent Store
The following limitations apply to the persistent store:

A persistent file store should not be opened simultaneously by two server instances;
otherwise, there is no guarantee that the data in the file will not be corrupted. If possible,
the persistent store will attempt to return an error in this case, but it will not be possible to
detect this condition in every case. It is the responsibility of the administrator to ensure that
the persistent store is being used in an environment in which multiple servers will not try
to access the same store at the same time. (Two file stores are considered the “same store”
if they have the same name and the same directory.)

Two JDBC stores must not share the same database table, because this will result in data
corruption.

A persistent store may not survive arbitrary corruption. If the disk file is overwritten with
arbitrary data, then the results are undefined. The store may return inconsistent data in this
case, or even fail to recover at all.

A file store may return exceptions when its disk is full. However, it will resume normal
operation by no longer throwing an exception when disk space has been made available.
Also, the data in the persistent store must remain intact as described in the previous points.

	Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	New and Changed Features in WebLogic Server Environments
	Server Self-Tuning for Production Environments
	New Overload Protection Increases Availability
	Network Channels Can Manage Traffic Between Server Instances
	System-Wide Persistent Store

	Using Work Managers to Optimize Scheduled Work
	Understanding How WebLogic Server Uses Thread Pools
	Understanding Work Managers
	Request Classes
	Context Request Class
	Constraints
	Stuck Thread Handling

	Assigning Work Managers to Applications and Application Components
	Using Work Managers, Request Classes, and Constraints
	Dispatch Policy for EJB
	Dispatch Policy for Web Applications

	Deployment Descriptor Examples
	Using Execute Queues

	Avoiding and Managing Overload
	Configuring WebLogic Server to Avoid Overload Conditions
	Limiting Requests in the Thread Pool
	Work Managers and Thread Pool Throttling

	Limiting HTTP Sessions
	Exit on Out of Memory Exceptions
	Stuck Thread Handling

	WebLogic Server Self-Monitoring
	Overloaded Health State

	WebLogic Server Exit Codes

	Configuring Network Resources
	Overview of Network Configuration
	New Network Configuration Features in WebLogic Server

	Understanding Network Channels
	What Is a Channel?
	Rules for Configuring Channels
	Custom Channels Can Inherit Default Channel Attributes

	Why Use Network Channels?
	Handling Channel Failures
	Upgrading Quality of Service Levels for RMI

	Standard WebLogic Server Channels
	The Default Network Channel
	Administration Port and Administrative Channel
	Administration Port Capabilities
	Administration Port Restrictions
	Administration Port Requires SSL
	Configure Administration Port
	Booting Managed Servers to Use Administration Port
	Custom Administrative Channels

	Using Internal Channels
	Channel Selection
	Internal Channels Within a Cluster

	Configuring a Channel
	Guidelines for Configuring Channels
	Channels and Server Instances
	Dynamic Channel Configuration
	Channels and Protocols
	Reserved Names
	Channels, Proxy Servers, and Firewalls

	Configuring Network Channels For a Cluster
	Create the Cluster
	Create and Assign the Network Channel
	Increase Packet Size When Using Many Channels

	Assigning a Custom Channel to an EJB

	Configuring Web Server Functionality
	Overview of Configuring Web Server Components
	Configuring the Server
	Configuring the Listen Port

	Web Applications
	Web Applications and Clustering
	Designating a Default Web Application

	Configuring Virtual Hosting
	Virtual Hosting and the Default Web Application
	Setting Up a Virtual Host

	How WebLogic Server Resolves HTTP Requests
	Setting Up HTTP Access Logs
	Log Rotation
	Common Log Format
	Setting Up HTTP Access Logs by Using Extended Log Format
	Creating the Fields Directive
	Supported Field identifiers
	IP address related fields:
	DNS related fields

	Creating Custom Field Identifiers
	Get Methods of the HttpAccountingInfo Object

	Preventing POST Denial-of-Service Attacks
	Setting Up WebLogic Server for HTTP Tunneling
	Configuring the HTTP Tunneling Connection
	Connecting to WebLogic Server from the Client

	Using Native I/O for Serving Static Files (Windows Only)

	Using the WebLogic Persistent Store
	Overview of the Persistent Store
	Features of the Persistent Store
	High-Performance Throughput and Transactional Support
	Comparing File Stores and JDBC Stores
	Securing File Store Data
	High Availability For Persistent Stores

	Using the Default Persistent Store
	Default Store Location
	Example of a Default File Store

	Using Custom File Stores and JDBC Stores
	When to Use a Custom Persistent Store
	Methods of Creating a Persistent Store

	Creating a Custom (User-Defined) File Store
	Main Steps for Configuring a Custom File Store
	Example of a Custom File Store
	Guidelines for Configuring a Synchronous Write Policy

	Creating a JDBC Store
	Main Steps for Configuring a JDBC Store
	Example of a JDBC Store
	Supported JDBC Drivers
	Automatically Creating a JDBC Store Table Using Default and Custom DDL Files
	Creating a JDBC Store Table Using a Custom DDL File
	Enabling Oracle BLOB Record Columns

	Managing JDBC Store Tables
	Using the utils.Schema Utility to Delete a JDBC Store Table

	Guidelines for Configuring a JDBC Store
	Using Prefixes with a JDBC Store
	JDBC Store Table Rules
	Prefix Name Format Guidelines

	Recommended JDBC Data Source Settings for JDBC Stores
	Automatic Reconnection to Failed Databases
	Required Setting for WebLogic Type 4 JDBC DB2 Drivers

	Handling JMS Transactions with JDBC Stores

	Monitoring a Persistent Store
	Monitoring Stores
	Monitoring Store Connections

	Limitations of the Persistent Store

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

