‘.."‘

o 7
2 bea
L/

BEAWebLogic
Servere

Developing Applications
with WebLogic Server

Version 9.0
Revised: December 2, 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AqualLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

Overview of WebLogic Server Application Development

Document Scope and AUdIienCe.ot v it e 1-2
WebLogic Server and the J2EE Platform 1-2
Overview of J2EE Applications and Modules., 1-3
Web Application Modules. 1-3
SeTVICTS . . . ot 1-3
JavaServer Pages. 1-4
More Information on Web Application Modules 1-4
Enterprise JavaBean Modules 1-4
EIB OVeIVIEW . . . oottt e e e e 1-4
EJBs and WebLogic Server 1-5
Connector Modules 1-5
Enterprise Applicationst 1-6
WebLogic Web SeIVICESottt e e e e 1-7
XML Deployment DesCriptors. oottt ettt e e e 1-7
Automatically Generating Deployment Descriptors. 1-9
EIBGeN . .ot 1-10
Java-based Command-line Utilities. 1-10

STVET. .« o ettt 1-10
Development Software. e 1-11
Apache ANt 1-12

Developing Applications with WebLogic Server v

vi

Source Code Editoror IDE. 1-13

Database System and JDBC Driverttt 1-13
WEeb BrOWSET. . . . oot 1-14
Third-Party Software i 1-14

Using Ant Tasks to Configure and Use a WebLogic Server
Domain

Overview of Configuring and Starting Domains Using Ant Tasks 2-2
Starting Servers and Creating Domains Using the wlserver Ant Task............... 2-2
Basic Steps for Using wilservert 2-3
Sample build.xml Files forwlserver 2-3
wlserver Ant Task Reference. i i 2-4
Configuring a WebLogic Server Domain Using the wlconfig Ant Task 2-9
What the wiconfig Ant Task Does. i, 2-9
Basic Steps for Usingwlconfig i 2-10
Sample build.xml Files forwlconfig 2-11
Complete Example 2-11

Query and Delete Example. i 2-14
Example of Setting Multiple Attribute Values 2-14
wlconfig Ant Task Reference. i, 2-14
Main Attributes. 2-15

Nested Elements e 2-16

Using the libclasspath Ant Task i 2-22
libclasspath Task Definition. i, 2-22
libclasspath Ant Task Reference 2-22
Main libclasspath Attributes. i 2-22

Nested libclasspath Elements 2-23
Example libclasspath Ant Task. 2-23

Developing Applications with WebLogic Server

Creating a Split Development Directory Environment

Overview of the Split Development Directory Environment 3-2
Source and Build Directoriesvoittn i 3-2
Deploying from a Split Development Directory 3-3
Split Development Directory Ant Tasks. 3-5

Using the Split Development Directory Structure: Main Steps. 3-5

Organizing J2EE Components in a Split Development Directory 3-6
Source Directory OVEIVIEWottt ettt e et 3-7
Enterprise Application Configuration, 3-9
Web Applicationsottt 3-9
EIBs oo 3-11

Important Notes Regarding EJB Descriptors 3-11

Organizing Shared Classes in a Split Development Directory 3-12
Shared Utility Classes. vt it e e 3-12
Third-Party Libraries 3-13
Class Loading for Shared Classesouuiiiiiinennen... 3-13

Generating a Basic build.xml File Using weblogic.BuildXMLGen................ 3-13

Developing Multiple-EAR Projects Using the Split Development Directory. 3-15
Organizing Libraries and Classes Shared by Multiple EARs 3-16
Linking Multiple build.xml Files. i i 3-17

Best Practices for Developing WebLogic Server Applications. 3-17

Building Applications in a Split Development Directory

Compiling Applications Using wlcompile 4-1
Using includes and excludes Properties. 4-2
wlcompile Ant Task Attributes. i 4-2
Nested Javac OPtiONSo .v et ittt e e e e e 4-3
Setting the Classpath for Compiling Code. 4-3

Developing Applications with WebLogic Server vii

viii

Library Element for wlcompile and wlappe 4-3

Building Modules and Applications Using wlappe., 4-4
wlappc Ant Task Atributesttt 4-4
wlappc Ant Task Syntax.t 4-6
Syntax Differences between appc and wlappe. 4-7
weblogic.appc Reference. 4-7

weblogic.appe SYNtaxot 4-7
weblogic.appC OPLONS . . . oottt e e 4-7

Deploying and Packaging from a Split Development Directory

Deploying Applications Using wildeploy 5-2
Packaging Applications Using wlpackage i, 5-2
Archive versus Exploded Archive Directory., 5-2
wlpackage Ant Task. 5-3

Understanding WebLogic Server Application Classloading

Java Classloader OVerviewttt e 6-2
Java Classloader Hierarchy i, 6-2
Loading a Classottt 6-2
prefer-web-inf-classes Element 6-3
Changing Classes in a Running Program. 6-4

WebLogic Server Application Classloader Overview 6-4
Application Classloading. 6-4
Application Classloader Hierarchy 6-5
Custom Module Classloader Hierarchies. 6-7

Declaring the Classloader Hierarchy 6-8
User-Defined Classloader Restrictions. ooua... 6-10
Individual EJB Classloader for Implementation Classes. 6-12

Developing Applications with WebLogic Server

Application Classloading and Pass-by-Value or Reference................... 6-14

Resolving Class References Between Modules and Applications 6-15
About Resource Adapter Classesot eni ittt 6-15
Packaging Shared Utility Classes.oiiiriiii ... 6-16
Manifest Class-Path 6-16

Sharing Applications and Modules By Using J2EE Libraries. 6-17

Adding JARs to the System Classpath, 6-17

Developing Applications for Production Redeployment

What is Production Redeployment? 7-2
Supported and Unsupported Application Types, 7-2
Additional Application Support.ot 7-3
Programming Requirements and Conventionsc.c.oouiinnenn ... 7-3
Applications Should Be Self-Contained. 7-3
Versioned Applications Access the Current Version JNDI Tree by Default 7-4
Security Providers Must Be Compatible 7-4
Applications Must Specify a Version Identifier............. 7-4
Applications Can Access Name and Identifier. 7-5
Client Applications Use Same Version when Possible. 7-5
Assigning an Application Version.ttt 7-5
Application Version CONVENtions.uvunttn i, 7-6
Upgrading Applications to Use Production Redeployment. 7-6
Accessing Version Information. i 7-7

Creating Shared J2EE Libraries and Optional Packages

Overview of Shared J2EE Libraries and Optional Packages. 8-2
Optional Packages 8-3
Versioning Support for Libraries 8-3

Developing Applications with WebLogic Server ix

Shared J2EE Libraries and Optional Packages Compared 8-4

Additional Information 8-5
Creating Shared J2EE Librariesttt 8-5
Assembling Shared J2EE Library Files. 8-6
Assembling Optional Package Class Files. 8-7
Editing Manifest Attributes for Shared J2EE Libraries. 8-7
Packaging Shared J2EE Libraries for Distribution and Deployment 8-10
Referencing Shared J2EE Libraries in an Enterprise Application 8-11
URIs for Shared J2EE Libraries Deployed As a Standalone Module 8-14
Referencing Optional Packages from a J2EE Application or Module 8-14
Using weblogic.appmerge to Merge Librariescoiiiiinoo... 8-16
Using weblogic.appmerge fromthe CLI................................. 8-17
Using weblogic.appmerge asan Ant Task................................ 8-17
Integrating Shared J2EE Libraries with the Split Development Directory Environment 8-18
Deploying Shared J2EE Libraries and Dependent Applications 8-18
Web Application Shared J2EE Library Information. 8-19
Accessing Registered Shared J2EE Library Information with LibraryRuntimeMBean. 8-19
Order of Precedence of Modules When Referencing Shared J2EE Libraries. 8-20
Best Practices for Using Shared J2EE Libraries., 8-21

Programming Application Lifecycle Events

Understanding Application Lifecycle Events 9-2
Registering Events in weblogic-application.xml 9-3
Programming Basic Lifecycle Listener Functionality 9-3
Examples of Configuring Lifecycle Events with and without the URI Parameter. 9-5
Understanding Application Lifecycle Event Behavior During Re-deployment. 9-7

Developing Applications with WebLogic Server

Programming Context Propagation

Understanding Context Propagation, 10-1
Programming Context Propagation: Main Steps. 10-3
Programming Context PropagationinaClient........... 10-3
Programming Context Propagation in an Application. 10-5

Programming JavaMail with WebLogic Server

Overview of Using JavaMail with WebLogic Server Applications 11-2
Understanding JavaMail Configuration Files 11-2
Configuring JavaMail for WebLogic Server. 11-2
Sending Messages with JavaMail 11-3
Reading Messages with JavaMail 11-4

Threading and Clustering Topics
Using Threads in WebLogic Server 12-2

Programming Applications for WebLogic Server Clusters. 12-3

Enterprise Application Deployment Descriptor Elements

weblogic-application.xml Deployment Descriptor Elements A-1
weblogic-application A-2
B D A-10
MAX-CACKE-SIZE . . . o vttt et e A-14
XML L A-15
jdbe-connection-pool. A-17
SCCULIEY .+ vttt ettt e e e e e e e e e A-32
ApPlICAtiON-PArAIM\ttt ettt e A-32
classloader-structure A-33
BISEENET . . . oottt A-33
SEATEUD .« ottt e e A-34

Developing Applications with WebLogic Server Xi

Xii

WOTK-MANAGET . . . o\ ot ettt e A-35
SESSION-AESCIIPIOT . . . o\ vt ettt e e ettt et A-37
HDrarY . .o A-40
weblogic-application.xml Schema A-41
application.xml Schema A-41

wldeploy Ant Task Reference

Overview of the wideploy Ant Task. B-1
Basic Steps for Using wideployt B-2
Sample build.xml Files for wideploy B-2
wldeploy Ant Task Attribute Referenceo o.... B-4
Main Attributes B-4
Nested <files> Child Element B-11

Spring Applications Reference

About Spring on WebLogic Server.t C-2
Redesigning a J2EE-Based Application to a Spring-Based Application C-2
Configure Spring Inversion of Control C-3
Enable the Spring Web Services Client Service C-3
Make JMS Services Available to the Application at Runtime. C-4
Configure JMX: Expose the WebLogic Server Runtime MBean Server Connection to
S I .« ottt e C-5
Configure Spring JDBC to Communicate With the Connection Pool............ C-6
Use the Spring Transaction Abstraction Layer for Transaction Management. C-7
Make Use of WebLogic Server Clusteringcouiriinenen.... C-9
Clustered Spring Remoting. C-9
Spring Extension to the WebLogic Administration Console C-10
Installing the Spring Extension to the WebLogic Administration Console. C-10

Developing Applications with WebLogic Server

Exposing Spring Beans Through the WebLogic Administration Console. C-10

Developing Applications with WebLogic Server Xiii

Xiv Developing Applications with WebLogic Server

CHAPTERo

Overview of WebLogic Server
Application Development

The following sections provide an overview of WebLogic Server® applications and basic
concepts.

e “Document Scope and Audience” on page 1-2

e “Overview of J2EE Applications and Modules” on page 1-3
e “Web Application Modules” on page 1-3

e “Enterprise JavaBean Modules” on page 1-4

e “Connector Modules” on page 1-5

e “Enterprise Applications” on page 1-6

e “WebLogic Web Services” on page 1-7

e “XML Deployment Descriptors” on page 1-7

e “Development Software” on page 1-11

Developing Applications with WebLogic Server 1-1

Overview of WebLogic Server Application Development

Document Scope and Audience

This document is written for application developers who want to build WebLogic Server
e-commerce applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented programming
techniques, and the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and application
assemblers. Programmers and designers create modules that implement the business and
presentation logic for the application. Application assemblers assemble the modules into
applications that are ready to deploy on WebLogic Server.

WebLogic Server and the J2EE Platform

1-2

WebLogic Server implements Java 2 Platform, Enterprise Edition (J2EE) version 1.4
technologies. J2EE is the standard platform for developing multi-tier Enterprise applications
based on the Java programming language. The technologies that make up J2EE were developed
collaboratively by Sun Microsystems and other software vendors, including BEA Systems.

WebLogic Server J2EE applications are based on standardized, modular components. WebLogic
Server provides a complete set of services for those modules and handles many details of
application behavior automatically, without requiring programming.

J2EE defines module behaviors and packaging in a generic, portable way, postponing run-time
configuration until the module is actually deployed on an application server.

J2EE includes deployment specifications for Web applications, EJB modules, Web Services,
Enterprise applications, client applications, and connectors. J2EE does not specify how an
application is deployed on the target server—only how a standard module or application is
packaged.

For each module type, the specifications define the files required and their location in the
directory structure.

Note: Because J2EE is backward compatible, you can still run J2EE 1.4 applications on
WebLogic Server versions 8.1 and later.

Java is platform independent, so you can edit and compile code on any platform, and test your
applications on development WebLogic Servers running on other platforms. For example, it is
common to develop WebLogic Server applications on a PC running Windows or Linux,
regardless of the platform where the application is ultimately deployed.

Developing Applications with WebLogic Server

http://java.sun.com/j2ee/1.4/docs/index.html

Overview of J2EE Applications and Modules

For more information, refer to the J2EE 1.4 specification at:
http://java.sun.com/j2ee/download.html#platformspec.

Overview of J2EE Applications and Modules

A BEA WebLogic Server™ J2EE application consists of one of the following modules or
applications running on WebLogic Server:

e Web application modules—HTML pages, servlets, JavaServer Pages, and related files. See
“Web Application Modules” on page 1-3.

e Enterprise Java Beans (EJB) modules—entity beans, session beans, and message-driven
beans. See “Enterprise JavaBean Modules” on page 1-4.

e Connector modules—resource adapters. See “Connector Modules” on page 1-5.

e Enterprise applications—Web application modules, EJB modules, and resource adapters
packaged into an application. See “Enterprise Applications” on page 1-6.

Web Application Modules
A Web application on WebLogic Server includes the following files:
e At least one servlet or JSP, along with any helper classes.

e A web.xml deployment descriptor, a J2EE standard XML document that describes the
contents of a WAR file.

e Optionally, a weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

e A Web application can also include HTML and XML pages with supporting files such as
images and multimedia files.

Servlets

Servlets are Java classes that execute in WebLogic Server, accept a request from a client, process
it, and optionally return a response to the client. An HttpServlet is most often used to generate
dynamic Web pages in response to Web browser requests.

Developing Applications with WebLogic Server 1-3

http://java.sun.com/j2ee/download.html#platformspec

Overview of WebLogic Server Application Development

JavaServer Pages

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it possible to
embed Java code in a Web page. JSPs can call custom Java classes, known as tag libraries, using
HTML-like tags. The appc compiler compiles JSPs and translates them into servlets. WebLogic
Server automatically compiles JSPs if the servlet class file is not present or is older than the JSP
source file. See “Building Modules and Applications Using wlappc” on page 4-4.

You can also precompile JSPs and package the servlet class in a Web Application (WAR) file to
avoid compiling in the server. Servlets and JSPs may require additional helper classes that must
also be deployed with the Web application.

More Information on Web Application Modules

See:
e “Organizing J2EE Components in a Split Development Directory” on page 3-6.
e Developing Web Applications, Servlets, and JSPs for WebLogic Server

e Programming JSP Tag Extensions

Enterprise JavaBean Modules

14

Enterprise JavaBeans (EJBs) beans are server-side Java modules that implement a business task
or entity and are written according to the EJB specification. There are three types of EJBs: session
beans, entity beans, and message-driven beans.

EJB Overview

Session beans execute a particular business task on behalf of a single client during a single
session. Session beans can be stateful or stateless, but are not persistent; when a client finishes
with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually a relational database system.
Persistence—loading and saving data—can be bean-managed or container-managed. More than
just an in-memory representation of a data object, entity beans have methods that model the
behaviors of the business objects they represent. Entity beans can be accessed concurrently by
multiple clients and they are persistent by definition.

The container creates an instance of the message-driven bean or it assigns one from a pool to
process the message. When the message is received in the JMS Destination, the message-driven

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/webapp/index.html
http://e-docs.bea.com/wls/docs90/taglib/index.html

Connector Modules

bean assigns an instance of itself from a pool to process the message. Message-driven beans are
not associated with any client. They simply handle messages as they arrive.

EJBs and WebLogic Server

J2EE cleanly separates the development and deployment roles to ensure that modules are portable
between EJB servers that support the EJB specification. Deploying an EJB in WebLogic Server
requires running the WebLogic Server appc compiler to generate classes that enforce the EJB
security, transaction, and life cycle policies. See “Building Modules and Applications Using
wlappc” on page 4-4.

The J2EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise beans
packaged in an EJB application. It defines the beans’ types, names, and the names of their home
and remote interfaces and implementation classes. The ejb-jar.xml deployment descriptor
defines security roles for the beans, and transactional behaviors for the beans’ methods.

Additional deployment descriptors provide WebLogic-specific deployment information. A
weblogic-cmp-rdbms-jar.xml deployment descriptor unique to container-managed entity
beans maps a bean to tables in a database. The weblogic-ejb-jar.xml deployment descriptor
supplies additional information specific to the WebLogic Server environment, such as JNDI bind
names, clustering, and cache configuration.

For more information on Enterprise JavaBeans, see Programming WebLogic Enterprise
JavaBeans.

Connector Modules

Connectors (also known as resource adapters) contain the Java, and if necessary, the native
modules required to interact with an Enterprise Information System (EIS). A resource adapter
deployed to the WebLogic Server environment enables J2EE applications to access a remote EIS.
WebLogic Server application developers can use HTTP servlets, JavaServer Pages (JSPs),
Enterprise Java Beans (EJBs), and other APIs to develop integrated applications that use the EIS
data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure WebLogic
Server-specific deployment descriptor, weblogic-ra.xml file, and add this to the deployment
directory. Resource adapters can be deployed to WebLogic Server as stand-alone modules or as
part of an Enterprise application. See “Enterprise Applications” on page 1-6.

For more information on connectors, see Programming WebLogic Server Resource Adapters.

Developing Applications with WebLogic Server 1-5

http://e-docs.bea.com/wls/docs90/ejb/index.html
http://e-docs.bea.com/wls/docs90/resadapter/index.html

Overview of WebLogic Server Application Development

Enterprise Applications

1-6

An Enterprise application consists of one or more Web application modules, EJB modules, and
resource adapters. It might also include a client application. An Enterprise application is defined
by an application.xml file, which is the standard J2EE deployment descriptor for Enterprise
applications. If the application includes WebLogic Server-specific extensions, the application is
further defined by a weblogic-application.xml file. Enterprise Applications that include a
client module will also have a client-application.xml deployment descriptor and a
WebLogic run-time client application deployment descriptor. See Appendix A, “Enterprise
Application Deployment Descriptor Elements.”

For both production and development purposes, BEA recommends that you package and deploy
even stand-alone Web applications, EJBs, and resource adapters as part of an Enterprise
application. Doing so allows you to take advantage of BEA's new split development directory
structure, which greatly facilities application development. See Chapter 3, “Creating a Split
Development Directory Environment.”

An Enterprise application consists of Web application modules, EJB modules, and resource
adapters. It can be packaged as follows:

e For development purposes, BEA recommends the WebLogic split development directory
structure. Rather than having a single archived EAR file or an exploded EAR directory
structure, the split development directory has two parallel directories that separate source
files and output files. This directory structure is optimized for development on a single
WebLogic Server instance. See Chapter 3, “Creating a Split Development Directory
Environment.” BEA provides the wlpackage Ant task, which allows you to create an
EAR without having to use the JAR utility; this is exclusively for the split development
directory structure. See “Packaging Applications Using wlpackage” on page 5-2.

e For development purposes, BEA further recommends that you package stand-alone Web
applications and Enterprise JavaBeans (EJBs) as part of an Enterprise application, so that
you can take advantage of the split development directory structure. See “Organizing J2EE
Components in a Split Development Directory” on page 3-6.

e For production purposes, BEA recommends the exploded (unarchived) directory format.
This format enables you to update files without having to redeploy the application. To
update an archived file, you must unarchive the file, update it, then rearchive and redeploy
it.

e You can choose to package your application as a JAR archived file using the jar utility
with an . ear extension. Archived files are easier to distribute and take up less space. An
EAR file contains all of the JAR, WAR, and RAR module archive files for an application

Developing Applications with WebLogic Server

WebLogic Web Services

and an XML descriptor that describes the bundled modules. See “Packaging Applications
Using wlpackage” on page 5-2.
The META-INF/application.xml deployment descriptor contains an element for each Web
application, EJB, and connector module, as well as additional elements to describe security roles
and application resources such as databases. See Appendix A, “Enterprise Application
Deployment Descriptor Elements.”

WebLogic Web Services

Web services can be shared by and used as modules of distributed Web-based applications. They
commonly interface with existing back-end applications, such as customer relationship
management systems, order-processing systems, and so on. Web services can reside on different
computers and can be implemented by vastly different technologies, but they are packaged and
transported using standard Web protocols, such as HTTP, thus making them easily accessible by
any user on the Web. See Programming WebLogic Web Services.

A Web service consists of the following modules:

e A Web Service implementation hosted by a server on the Web. WebLogic Web Services
are hosted by WebLogic Server. A Web Service module may include either Java classes or
EJBs that implement the Web Service. Web Services are packaged either as Web
Application archives (WARs) or EJB modules (JARs) depending on the implementation.
See Programming WebLogic Web Services for more information.

A standard for transmitting data and Web service invocation calls between the Web service
and the user of the Web service. WebLogic Web Services use Simple Object Access
Protocol (SOAP) 1.1 as the message format and HTTP as the connection protocol.

A standard for describing the Web service to clients so they can invoke it. WebLogic Web
Services use Web Services Description Language (WSDL) 1.1, an XML-based
specification, to describe themselves.

A standard for clients to invoke Web services (JAX-RPC).

A standard for finding and registering the Web service (UDDI).

XML Deployment Descriptors

Modules and applications have deployment descriptors—XML documents—that describe the
contents of the directory or JAR file. Deployment descriptors are text documents formatted with
XML tags. The J2EE specifications define standard, portable deployment descriptors for J2EE

Developing Applications with WebLogic Server 1-1

http://e-docs.bea.com/wls/docs90/webserv/index.html
http://e-docs.bea.com/wls/docs90/webserv/index.html

Overview of WebLogic Server Application Development

modules and applications. BEA defines additional WebLogic-specific deployment descriptors
for deploying a module or application in the WebLogic Server environment.

Table 1-1 lists the types of modules and applications and their J2EE-standard and
WebLogic-specific deployment descriptors.

Table 1-1 J2EE and WebLogic Deployment Descriptors

Module or Scope
Application

Deployment Descriptors

Web Application J2EE

web . xml

See the Sun Microsystems Servlet 2.4 Schema.

WebLogic

weblogic.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd

See “weblogic.xml Deployment Descriptor Elements” in Developing
Web Applications for WebLogic Server for more information.

Enterprise Bean J2EE

ejb-jar.xml

See the Sun Microsystems EJB 2.1 Schema.

WebLogic

weblogic-ejb-jar.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd

See “The weblogic-ejb-jar.xml Deployment Descriptor” in
Programming WebLogic Enterprise JavaBeans.
weblogic-cmp-rdbms-jar.xml

Schema:

http://www.bea.com/ns/weblogic/90/weblogic-rdbms20-persistence.
xsd

See “The weblogic-cmp-rdbms-jar.xml Deployment Descriptor” in
Programming WebLogic Enterprise JavaBeans.

Web Services J2EE

webservices.xml

See the Sun Microsystems Web Services 1.1 Schema.

WebLogic

weblogic-webservices.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-wsee.xsd

See “WebLogic Web Service Deployment Descriptor Element
Reference” in Programming Web Services for WebLogic Server.

1-8

Developing Applications with WebLogic Server

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd
http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html
http://e-docs.bea.com/wls/docs90/webapp/index.html
http://e-docs.bea.com/wls/docs90/webapp/index.html
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html
http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd
http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html
http://www.bea.com/ns/weblogic/90/weblogic-rdbms20-persistence.xsd
http://e-docs.bea.com/wls/docs90/ejb/DDreference-cmp-jar.html
http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd
http://www.bea.com/ns/weblogic/90/weblogic-wsee.xsd
http://e-docs.bea.com/wls/docs90/webserv/index.html
http://e-docs.bea.com/wls/docs90/webserv/index.html

XML Deployment Descriptors

Table 1-1 J2EE and WebLogic Deployment Descriptors

Module or Scope Deployment Descriptors
Application
Resource Adapter J2EE ra.xml
See the Sun Microsystems Connector 1.5 Schema.
WebLogic weblogic-ra.xml

Schema: http://www.bea.com/ns/weblogic/90/weblogic-ra.xsd

See “weblogic-ra.xml Schema” in Programming WebLogic Server
Resource Adapters.

Enterprise Application J2EE

application.xml

See the Sun Microsystems Application 1.4 Schema.

WebLogic

weblogic-application.xml

Schema:
http://www.bea.com/ns/weblogic/90/weblogic-application.xsd

See “weblogic-application.xml Deployment Descriptor Elements” on
page A-1.

Client Application J2EE

application-client.xml

See the Sun Microsystems Application Client 1.4 Schema.

WebLogic

weblogic-appclient.xml
Schema: http://www.bea.com/ns/weblogic/90/weblogic-appclient.xsd

See Programming Stand-alone Clients.

Note: The XML Schemas for the WebLogic deployment descriptors listed in the preceding
table include elements from the weblogic-j2ee.xsd Schema, which describes common
elements shared among all WebLogic-specific deployment descriptors.

When you package a module or application, you create a directory to hold the deployment
descriptors—WEB-INF or META- INF—and then create the XML deployment descriptors in that

directory.

Automatically Generating Deployment Descriptors

WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

Developing Applications with WebLogic Server 1-9

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://www.bea.com/ns/weblogic/90/weblogic-ra.xsd
http://e-docs.bea.com/wls/docs90/resadapter/weblogic_ra_xml.html
http://e-docs.bea.com/wls/docs90/resadapter/index.html
http://e-docs.bea.com/wls/docs90/resadapter/index.html
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd
http://www.bea.com/ns/weblogic/90/weblogic-application.xsd
http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd
http://www.bea.com/ns/weblogic/90/weblogic-appclient.xsd
http://e-docs.bea.com/wls/docs90/client/index.html
http://www.bea.com/ns/weblogic/90/weblogic-j2ee.xsd

Overview of WebLogic Server Application Development

1-10

EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator or command-line tool that uses Javadoc
markup to generate EJB deployment descriptor files. You annotate your Bean class file with
Javadoc tags and then use EJBGen to generate the Remote and Home classes and the deployment
descriptor files for an EJB application, reducing to a single file you need to edit and maintain your
EJB . java and descriptor files. See “EJBGen Reference” in Programming WebLogic Enterprise
JavaBeans.

Java-bhased Command-line Utilities

WebLogic Server includes a set of Java-based command-line utilities that automatically generate
both standard J2EE and WebLogic-specific deployment descriptors for Web applications and
Enterprise Applications.

These command-line utilities examine the classes you have assembled in a staging directory and
build the appropriate deployment descriptors based on the servlet classes, and so on. These
utilities include:

® java weblogic.marathon.ddinit.EARInit—automatically generates the deployment
descriptors for Enterprise applications.

® java weblogic.marathon.ddinit.WebInit—automatically generates the
deployment descriptors for Web applications.

For an example of DDInit, assume that you have created a directory called c: \stage that
contains the JSP files and other objects that make up a Web application but you have not yet
created the web . xml and weblogic.xml deployment descriptors. To automatically generate
them, execute the following command:

prompt> java weblogic.marathon.ddInit.WebInit c:\stage

The utility generates the web . xml and weblogic.xml deployment descriptors and places them
in the WEB-INF directory, which DDInit will create if it does not already exist.

Upgrading Deployment Descriptors From Previous Releases of
J2EE and WebLogic Server

So that your applications can take advantage of the features in the current J2EE specification and
release of WebLogic Server, BEA recommends that you always upgrade deployment descriptors
when you migrate applications to a new release of WebLogic Server.

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/ejb/EJBGen_reference.html

Development Software

To upgrade the deployment descriptors in your J2EE applications and modules, first use the
weblogic.DDConverter tool to generate the upgraded descriptors into a temporary directory.
Once you have inspected the upgraded deployment descriptors to ensure that they are correct,
repackage your J2EE module archive or exploded directory with the new deployment descriptor
files.

Invoke weblogic.DDConverter with the following command:

java weblogic.DDConverter [options] archive file or_directory

where archive_file_or_directory refers to the archive file (EAR, WAR, JAR, or RAR) or
exploded directory of your Enterprise application, Web application, EJB, or resource adapter.

The following table describes the weblogic.DDConverter command options.

Table 1-2 weblogic.DDConverter Command Options

Option Description

-d <dir> Specifies the directory to which
descriptors are written.

-help Prints the standard usage message.

-quiet Turns off output messages except error
messages.

-verbose Turns on additional output used for
debugging.

The following example shows how to use the weblogic.DDConverter command to generate
upgraded deployment descriptors for the my . ear Enterprise application into the subdirectory
tempdir in the current directory:

java weblogic.DDConverter -d tempdir my.ear

Development Software

This section reviews required and optional tools for developing WebLogic Server applications.

Developing Applications with WebLogic Server 1-1

Overview of WebLogic Server Application Development

1-12

Apache Ant

The preferred BEA method for building applications with WebLogic Server is Apache Ant. Ant
is a Java-based build tool. One of the benefits of Ant is that is it is extended with Java classes,
rather than shell-based commands. BEA provides numerous Ant extension classes to help you
compile, build, deploy, and package applications using the WebLogic Server split development
directory environment.

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts in
eXtensible Markup Language (XML). XML tags define the targets to build, dependencies among
targets, and tasks to execute in order to build the targets. Ant libraries are bundled with WebLogic
Server to make it easier for our customers to build Java applications out of the box.

To use Ant, you must first set your environment by executing either the setExamplesEnv.cmd
(Windows) or setExamplesEnv.sh (UNIX) commands located in the
WL_SERVER\samples\domains\wl_server directory, where wL_SERVER is your WebLogic
Server installation directory.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html

Note: The Apache Jakarta Web site publishes online documentation for only the most current
version of Ant, which might be different from the version of Ant that is bundled with
WebLogic Server. Use the following command, after setting your WebLogic
environment, to determine the version of Ant bundled with WebLogic Server:

prompt> ant -version

To view the documentation for a specific version of Ant, such as the version included
with WebLogic Server, download the Ant zip file from
http://archive.apache.org/dist/ant/binaries/ and extract the documentation.

For more information on using Ant to compile your cross-platform scripts or using cross-platform
scripts to create XML scripts that can be processed by Ant, refer to any of the WebLogic Server
examples, such as
WL_HOME/samples/server/examples/src/examples/ejb20/basic/beanManaged/build
.xml.

Also refer to the following WebLogic Server documentation on building examples using Ant:

WL_HOME/samples/server/examples/src/examples/examples.html.

Developing Applications with WebLogic Server

http://jakarta.apache.org/ant/manual/index.html
http://archive.apache.org/dist/ant/binaries/

Development Software

Using A Third-Party Version of Ant

You can use your own version of Ant if the one bundled with WebLogic Server is not adequate
for your purposes. To determine the version of Ant that is bundled with WebLogic Server, run
the following command after setting your WebLogic environment:

prompt> ant -version

If you plan to use a different version of Ant, you can replace the appropriate JAR file in the
WL_HOME\server\lib\ant directory with an updated version of the file (where wL_HOME refers
to the main WebLogic installation directory, such as c: \bea\weblogic90) or add the new file
to the front of your CLASSPATH.

Changing the Ant Heap Size

By default the environment script allocates a heap size of 128 megabytes to Ant. You can increase
or decrease this value for your own projects by setting the -x option in your local ANT_0PTS
environment variable. For example:

prompt> setenv ANT_OPTS=-Xmx128m

If you want to set the heap size permanently, add or update the MEM_ARGS variable in the scripts
that set your environment, start WebLogic Server, and so on, as shown in the following snippet
from a Windows command script that starts a WebLogic Server instance:

set MEM_ARGS=-Xms32m -Xmx200m

See the scripts and commands in wL_HOME/server/bin for examples of using the MEM_ARGS
variable.

Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML pages, and
JavaServer Pages. An editor that gracefully handles Windows and UNIX line-ending differences
is preferred, but there are no other special requirements for your editor. You can edit HTML or
XML pages and JavaServer Pages with a plain text editor, or use a Web page editor such as
DreamWeaver. For XML pages, you can also use BEA XML Editor. See BEA dev2dev Online at
http://dev2dev.bea.com/index.jsp.

Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any DBMS that
you can access with a standard JDBC driver, but services such as WebLogic Java Message
Service (JMS) require a supported JDBC driver for Oracle, Sybase, Informix, Microsoft SQL

Developing Applications with WebLogic Server 1-13

http://dev2dev.bea.com/index.jsp

Overview of WebLogic Server Application Development

1-14

Server, IBM DB2, or PointBase. Refer to Platform Support to find out about supported database
systems and JDBC drivers.

Weh Browser

Most J2EE applications are designed to be executed by Web browser clients. WebLogic Server
supports the HTTP 1.1 specification and is tested with current versions of the Netscape
Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions you will
support. In your test plans, include testing plans for each supported version. Be explicit about
version numbers and browser configurations. Will your application support Secure Socket Layers
(SSL) protocol? Test alternative security settings in the browser so that you can tell your users
what choices you support.

If your application uses applets, it is especially important to test browser configurations you want
to support because of differences in the JVMs embedded in various browsers. One solution is to
require users to install the Java plug-in from Sun so that everyone has the same Java run-time
version.

Third-Party Software

You can use third-party software products to enhance your WebLogic Server development
environment. See BEA WebLogic Developer Tools Resources, which provides developer tools
information for products that support the BEA application servers.

To download some of these tools, see BEA WebLogic Server Downloads at

http://commerce.bea.com/downloads/weblogic server tools.Jjsp.

Note: Check with the software vendor to verify software compatibility with your platform and
WebLogic Server version.

Developing Applications with WebLogic Server

http://e-docs.bea.com/platform/suppconfigs/index.html
http://www.bea.com/products/weblogic/tools.shtml
http://commerce.bea.com/downloads/weblogic_server_tools.jsp

CHAPTERa

Using Ant Tasks to Configure and Use a
WebLogic Server Domain

The following sections describe how to start and stop WebLogic Server instances and configure
WebLogic Server domains using WebLogic Ant tasks that you can include in your development
build scripts:

e “Overview of Configuring and Starting Domains Using Ant Tasks” on page 2-2

“Starting Servers and Creating Domains Using the wlserver Ant Task” on page 2-2

“Configuring a WebLogic Server Domain Using the wlconfig Ant Task” on page 2-9

“Using the libclasspath Ant Task” on page 2-22

Developing Applications with WebLogic Server 2-1

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Overview of Configuring and Starting Domains Using Ant Tasks

WebLogic Server provides a pair of Ant tasks to help you perform common configuration tasks
in a development environment. The configuration tasks enable you to start and stop WebLogic
Server instances as well as create and configure WebLogic Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts for
demonstrating or testing your application with custom domains. For example, a single Ant build
script can:

e Compile your application using the wlcompile, wlappc, and Web Services Ant tasks.

Create a new single-server domain and start the Administration Server using the wlserver
Ant task.

Configure the new domain with required application resources using the wlconfig Ant
task.

Deploy the application using the wldeploy Ant task.

e Automatically start a compiled client application to demonstrate or test product features.

The sections that follow describe how to use the configuration Ant tasks, wlserver and
wlconfig.

Starting Servers and Creating Domains Using the wiserver Ant
Task

2-2

The wlserver Ant task enables you to start, reboot, shutdown, or connect to a WebLogic Server
instance. The server instance may already exist in a configured WebLogic Server domain, or you
can create a new single-server domain for development by using the generateconfig=true
attribute.

When you use the wlserver task in an Ant script, the task does not return control until the
specified server is available and listening for connections. If you start up a server instance using
wlserver, the server process automatically terminates after the Ant VM terminates. If you only
connect to a currently-running server using the wlserver task, the server process keeps running
after Ant completes.

The wlserver WebLogic Server Ant task extends the standard java Ant task
(org.apache.tools.ant.taskdefs.Java). This means that all the attributes of the java Ant
task also apply to the wlserver Ant task. For example, you can use the output and error
attributes to specify the name of the files to which output and standard errors of the wlserver

Developing Applications with WebLogic Server

Starting Servers and Creating Domains Using the wiserver Ant Task

Ant task is written, respectively. For full documentation about the attributes of the standard java
Ant task, see Java on the Apache Ant site.

Basic Steps for Using wliserver

To use the wlserver Ant task:

1. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

Note: The wlserver task is predefined in the version of Ant shipped with WebLogic
Server. If you want to use the task with your own Ant installation, add the following
task definition in your build file:

<taskdef name="wlserver"
classname="weblogic.ant.taskdefs.management .WLServer" />

2. Add a call to the wlserver task in the build script to start, shutdown, restart, or connect to a
server. See “wlserver Ant Task Reference” on page 2-4 for information about wlserver
attributes and default behavior.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant

Use ant -verbose to obtain more detailed messages from the wlserver task.

Sample build.xml Files for wiserver

The following shows a minimal wlserver target that starts a server in the current directory using
all default values:

<target name="wlserver-default">
<wlserver/>

</target>

This target connects to an existing, running server using the indicated connection parameters and
username/password combination:

Developing Applications with WebLogic Server 2-3

http://ant.apache.org/manual/CoreTasks/java.html
http://ant.apache.org/

Using Ant Tasks to Configure and Use a WebLogic Server Domain

<target name="connect-server">
<wlserver host="127.0.0.1" port="7001" username="weblogic"
password="weblogic" action="connect"/>

</target>
This target starts a WebLogic Server instance configured in the config subdirectory:

<target name="start-server">
<wlserver dir="./config" host="127.0.0.1" port="7001" action="start"/>

</target>

This target creates a new single-server domain in an empty directory, and starts the domain’s
server instance:

<target name="new-server">
<delete dir="./tmp"/>
<mkdir dir="./tmp"/>
<wlserver dir="./tmp" host="127.0.0.1" port="7001"
generateConfig="true" username="weblogic" password="weblogic"
action="start"/>

</target>

wlserver Ant Task Reference

The following table describes the attributes of the wlserver Ant task.

Table 2-1 Attributes of the wiserver Ant Task

Attribute Description Data Required?
Type
policy The path to the security policy file for the WebLogic File No

Server domain. This attribute is used only for starting
server instances.

dir The path that holds the domain configuration (for File No
example, ¢ : \bea\user_projects\mydomain). By
default, wlserver uses the current directory.

beahome The path to the BEA home directory (for example, File No
c:\bea).
weblogichome The path to the WebLogic Server installation directory File No

(for example, c : \bea\weblogic81l).

2-4 Developing Applications with WebLogic Server

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 Attributes of the wiserver Ant Task

Attribute Description Data Required?
Type
servername The name of the server to start, shutdown, reboot, or String Required
connect to. only when
A WebLogic Server instance is uniquely identified by its shutting
protocol, host, and port values, so if you use this set of dowg the)
attributes to specify the server you want to start, shutdown Administrati
or reboot, you do not need to specify its actual name using on server.
the servername attribute. The only exception is when
you want to shutdown the Administration server; in this
case you must specify this attribute.
The default value for this attribute is myserver.
domainname The name of the WebLogic Server domain in which the String No
server is configured.
adminserverurl The URL to access the Administration Server in the String Required for
domain. This attribute is required if you are starting up a starting
Managed Server in the domain. Managed
Servers.
username The username of an administrator account. If you omit String No
both the username and password attributes,
wlserver attempts to obtain the encrypted username
and password values from the boot . properties file.
See Boot Identity Files in the Managing Server Startup
and Shutdown for more information on
boot.properties.
password The password of an administrator account. If you omit String No
both the username and password attributes,
wlserver attempts to obtain the encrypted username
and password values from the boot . properties file.
See Boot Identity Files in the Managing Server Startup
and Shutdown for more information on
boot .properties.
pkpassword The private key password for decrypting the SSL private String No

key file.

Developing Applications with WebLogic Server 2-5

http://e-docs.bea.com/wls/docs90/server_start/overview.html#BootIdentityFiles
http://e-docs.bea.com/wls/docs90/server_start/index.html
http://e-docs.bea.com/wls/docs90/server_start/index.html
http://e-docs.bea.com/wls/docs90/server_start/overview.html#BootIdentityFiles
http://e-docs.bea.com/wls/docs90/server_start/index.html
http://e-docs.bea.com/wls/docs90/server_start/index.html

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Table 2-1 Attributes of the wiserver Ant Task

Attribute

Description

Data
Type

Required?

timeout

The maximum time, in milliseconds, that wlserver
waits for a server to boot. This also specifies the
maximum amount of time to wait when connecting to a
running server.

The default value for this attribute is 0, which means the
Ant task never times out.

long

No

timeoutSeconds

The maximum time, in seconds, that wl server waits for
a server to boot. This also specifies the maximum amount
of time to wait when connecting to a running server.

The default value for this attribute is 0, which means the
Ant task never times out.

long

productionmodeenable
d

Specifies whether a server instance boots in development
mode or in production mode.

Development mode enables a WebLogic Server instance
to automatically deploy and update applications that are in
the domain_name/autodeploy directory (where
domain_name is the name of a WebLogic Server
domain). In other words, development mode lets you use
auto-deploy. Production mode disables the
auto-deployment feature. See Deploying Applications
and Modules for more information.

Valid values for this attribute are True and False. The
default value is False (which means that by default a
server instance boots in development mode.)

Note: If you boot the server in production mode by
setting this attribute to True, you must reboot
the server to set the mode back to development
mode. Or in other words, you cannot reset the
mode on a running server using other
administrative tools, such as the WebLogic
Server Scripting Tool (WLST).

boolean

host

The DNS name or IP address on which the server instance
is listening.

The default value for this attribute is localhost.

String

2-6 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/deploy.html
http://e-docs.bea.com/wls/docs90/deployment/deploy.html

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 Attributes of the wiserver Ant Task

Attribute

Description

Data
Type

Required?

port

The TCP port number on which the server instance is
listening.

The default value for this attribute is 7001.

int

No

generateconfig

Specifies whether or not wlserver creates a new
domain for the specified server.

Valid values for this attribute are true and false. The
default value is false.

boolean

action

Specifies the action wlserver performs: start,
shutdown, reboot, or connect.

The shutdown action can be used with the optional
forceshutdown attribute perform a forced shutdown.

The default value for this attribute is start.

String

failonerror

This is a global attribute used by WebLogic Server Ant
tasks. It specifies whether the task should fail if it
encounters an error during the build.

Valid values for this attribute are true and false. The
default value is false.

Boolean

forceshutdown

This optional attribute is used in conjunction with the
action="shutdown" attribute to perform a forced
shutdown. For example:

<wlserver
host="${wls.host}"
port="${port}"
username="S${wls.username}"
password="${wls.password}"
action="shutdown"
forceshutdown="true" />

Valid values for this attribute are true and false. The
default value is false.

Boolean

protocol

Specifies the protocol that the wl server Ant task uses to

communicate with the WebLogic Server instance.

Valid values are t3, t3s, http, https, and iiop. The
default value is £3.

String

Developing Applications with WebLogic Server 2-1

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Table 2-1 Attributes of the wiserver Ant Task

Attribute

Description

Data
Type

Required?

forcelmplicitUpgrade

Specifies whether the wlserver Ant task, if run against
an 8.1 (or previous) domain, should implicitly upgrade it
to version 9.0.

Valid values are true or false. The default value is
false, which means that the Ant task does not implicitly
upgrade the domain, but rather, will fail with an error
indicating that the domain needs to be upgraded to version
9.0 of WebLogic Server.

For more information about upgrading domains, see
Upgrading WebLogic Application Environments.

Boolean

No.

configFile

Specifies the configuration file for your domain.

The value of this attribute must be a valid XML file that
conforms to the XML schema as defined in the BEA
WebLogic Server Configuration Reference.

The XML file must exist in the Administration Server's
root directory, which is either the current directory or the
directory that you specify with the dir attribute.

If you do not specify this attribute, the default value is
config.xml in the directory specified by the dir
attribute. If you do not specify the dir attribute, then the
default domain directory is the current directory.

String

No.

2-8 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/../../common/docs90/upgrade/index.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-1 Attributes of the wiserver Ant Task

Attribute Description Data
Type

useBootProperties Specifies whether to use the boot . properties file Boolean No
when starting a WebLogic Server instance. If this
attribute is set to true, WebLogic Server uses the
username and encrypted password stored in the
boot.properties file to start rather than any values
set with the username and password attributes.

Required?

Note: The values of the username and password
attributes are still used when shutting down or
rebooting the WebLogic Server instance. The
useBootProperties attribute applies only
when starting the server.

Valid values for this attribute are true and false.
The default value is false.

verbose Specifies that the Ant task output additional information =~ Boolean No
as it is performing its action.

Valid values for this attribute are true and false. The
default value is false.

Configuring a WebLogic Server Domain Using the wiconfig Ant
Task

The following sections describe how to use the wlconfig Ant task to configure a WebLogic
Server domain.

What the wiconfig Ant Task Does

The wlconfig Ant task enables you to configure a WebLogic Server domain by creating,
querying, or modifying configuration MBeans on a running Administration Server instance.
Specifically, wlconfig enables you to:

e Create new MBeans, optionally storing the new MBean Object Names in Ant properties.

e Set attribute values on a named MBean available on the Administration Server.

Developing Applications with WebLogic Server 2-9

Using Ant Tasks to Configure and Use a WebLogic Server Domain

2-10

e Create MBeans and set their attributes in one step by nesting set attribute commands within

create MBean commands.

e Query MBeans, optionally storing the query results in an Ant property reference.
e Query MBeans and set attribute values on all matching results.

e Establish a parent/child relationship among MBeans by nesting create commands within

other create commands.

Warning: The wlconfig Ant task works only against MBeans that are in the compatitibility

MBean server, which has been deprecated as of version 9.0 of WebLogic Server.

In particular, the wlconfig Ant task uses the deprecated BEA proprietary API
weblogic.management .MBeanHome to access WebLogic MBeans, the same as it
did in Version 8.1 of WebLogic Server. The Ant task does not use the standard JIMX
hﬁeﬁhoe(javax.management.MBeanServerConnection)K)dBCOVerBABean&

This means that the only MBeans that you can access using wlconfig are those
listed under the Deprecated MBeans category in the WebLogic Server MBean
Reference.

Basic Steps for Using wiconfig

1.

Set your environment in a command shell. See “Basic Steps for Using wlserver” on page 2-3
for details.

Note: The wlconfig task is predefined in the version of Ant shipped with WebLogic
Server. If you want to use the task with your own Ant installation, add the following
task definition in your build file:

<taskdef name="wlconfig"
classname="weblogic.ant.taskdefs.management .WLConfig" />

wlconfig is commonly used in combination with wlserver to configure a new WebLogic
Server domain created in the context of an Ant task. If you will be using wlconfig to
configure such a domain, first use wlserver attributes to create a new domain and start the
WebLogic Server instance.

Add an initial call to the wlconfig task to connect to the Administration Server for a
domain. For example:

<target name="doconfig”>

<wlconfig url="t3://localhost:7001" username="weblogic"

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

password="weblogic">

</target>
4. Add nested create, delete, get, set, and query elements to configure the domain.

5. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant doconfig

Use ant -verbose to obtain more detailed messages from the wlconfig task.

Sample build.xml Files for wiconfig

The following sections provide sample Ant build scripts for using the wlconfig Ant task.

Complete Example

This example shows a single build.xml file that creates a new domain using wlserver and
performs various domain configuration tasks with wlconfig. The configuration tasks set up
domain resources required by the Avitek Medical Records sample application.

The script starts by creating the new domain:

<target name="medrec.config">
<mkdir dir="config"/>
<wlserver username="a" password="a" servername="MedRecServer"
domainname="medrec" dir="config" host="localhost" port="7000"

generateconfig="true"/>

The script then starts the wlconfig task by accessing the newly-created server:

<wlconfig url="t3://localhost:7000" username="a" password="a">

Within the wlconfig task, the query element runs a query to obtain the Server MBean object
name, and stores this MBean in the $ {medrecserver} Ant property:

<query domain="medrec" type="Server" name="MedRecServer"

property="medrecserver" />

The script the uses a create element to create a new JDBC connection pool in the domain,
storing the object name in the $ {medrecpool} Ant property. Nested set elements in the create
operation set attributes on the newly-created MBean. The new pool is target to the server using
the $ {medrecserver} Ant property set in the query above:

Developing Applications with WebLogic Server 2-11

Using Ant Tasks to Configure and Use a WebLogic Server Domain

<create type="JDBCConnectionPool" name="MedRecPool"

property="medrecpool">

<set attribute="CapacityIncrement" value="1"/>

<set attribute="DriverName"
value="com.pointbase. jdbc.jdbcUniversalDriver" />

<set attribute="InitialCapacity" value="1"/>

<set attribute="MaxCapacity" value="10"/>

<set attribute="Password" value="MedRec"/>

<set attribute="Properties" value="user=MedRec"/>

<set attribute="RefreshMinutes" wvalue="0"/>

<gset attribute="ShrinkPeriodMinutes" value="15"/>

<set attribute="ShrinkingEnabled" value="true"/>

<set attribute="TestConnectionsOnRelease" value="false"/>

<set attribute="TestConnectionsOnReserve" value="false"/>

<set attribute="URL"
value="jdbc:pointbase:server://localhost/demo" />

<set attribute="Targets" value="${medrecserver}"/>

</create>

Next, the script creates a JDBC TX DataSource using the JDBC connection pool created above:

<create type="JDBCTxDataSource" name="Medical Records Tx DataSource">
<set attribute="JNDIName" value="MedRecTxDataSource"/>
<set attribute="PoolName" value="MedRecPool"/>
<set attribute="Targets" value="${medrecserver}"/>

</create>

The script creates a new JMS connection factory using nested set elements:

<create type="JMSConnectionFactory" name="Queue">
<set attribute="JNDIName" value="jms/QueueConnectionFactory"/>
<set attribute="XAServerEnabled" value="true"/>
<set attribute="Targets" value="${medrecserver}"/>

</create>

A new JMS JDBC store is created using the MedRecPool:

<create type="JMSJDBCStore" name="MedRecJDBCStore"
property="medrecjdbcstore">

<set attribute="ConnectionPool" value="${medrecpool}"/>

2-12 Developing Applications with WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

<set attribute="PrefixName" value="MedRec"/>

</create>

When creating a new JMS server, the script uses a nested create element to create a JMS queue,
which is the child of the JMS server:

<create type="JMSServer" name="MedRecJMSServer">
<set attribute="Store" value="${medrecjdbcstore}"/>
<set attribute="Targets" value="${medrecserver}"/>
<create type="JMSQueue" name="Registration Queue">
<set attribute="JNDIName" value="jms/REGISTRATION_MDB_QUEUE"/>
</create>

</create>

This script creates a new mail session and startup class:

<create type="MailSession" name="Medical Records Mail Session">
<set attribute="JNDIName" value="mail/MedRecMailSession"/>
<set attribute="Properties"
value="mail.user=joe;mail.host=mail.mycompany.com"/>
<set attribute="Targets" value="${medrecserver}"/>

</create>

<create type="StartupClass" name="StartBrowser">
<set attribute="Arguments" value="port=${listenport}"/>
<set attribute="ClassName"
value="com.bea.medrec.startup.StartBrowser" />
<gset attribute="FailureIsFatal" value="false"/>
<set attribute="Notes" value="Automatically starts a browser on

server boot."/>
<set attribute="Targets" value="${medrecserver}"/>
</create>

Finally, the script obtains the webserver MBean and sets the log filename using a nested set
element:

<guery domain="medrec" type="WebServer" name="MedRecServer">
<set attribute="LogFileName" value="logs/access.log"/>
</query>
</wlconfig>

</target>

Developing Applications with WebLogic Server 2-13

Using Ant Tasks to Configure and Use a WebLogic Server Domain

2-14

Query and Delete Example

The query element does not need to specify an MBean name when nested within a query
element:

<target name="queryDelete">
<wlconfig url="${adminurl}" username="${user}" password="${pass}"
failonerror="false">
<query query="${wlsdomain} :Name=MyNewServer2, *"
property="deleteQuery">
<delete/>
</query>
</wlconfig>

</target>

Example of Setting Multiple Attribute Values

The set element allows you to set an attribute value to multiple object names stored in Ant
properties. For example, the following target stores the object names of two servers in separate
Ant properties, then uses those properties to assign both servers to the target attribute of a new
JDBC Connection Pool:

<target name="multipleJDBCTargets">
<wlconfig url="${adminurl}" username="${user}" password="${pass}">
<guery domain="mydomain" type="Server" name="MyServer"
property="myserver"/>
<query domain="mydomain" type="Server" name="OtherServer"
property="otherserver" />
<create type="JDBCConnectionPool" name="sglpool" property="sglpool">

<set attribute="CapacityIncrement" value="1"/>

<set attribute="Targets" value="${myserver};${otherserver}"/>
</create>
</wlconfig>

</target>

wiconfig Ant Task Reference

The following sections describe the attributes and elements that can be used with wlconfig.

Developing Applications with WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Main Attributes

The following table describes the main attributes of the wlconfig Ant task.

Table 2-2 Main Attributes of the wiconfig Ant Task

Attribute

Description Data
Type

Required?

url

The URL of the domain’s Administration Server. String

Yes

username

The username of an administrator account. String

No

password

The password of an administrator account. String

To avoid having the plain text password appear in the
build file or in process utilities such as ps, first store a
valid username and encrypted password in a
configuration file using the weblogic.Admin
STOREUSERCONFIG command. Then omit both the
username and password attributes in your Ant build
file. When the attributes are omitted, wlconfig attempts
to login using values obtained from the default
configuration file.

If you want to obtain a username and password from a
non-default configuration file and key file, use the
userconfigfile and userkeyfile attributes with
wlconfig.

See STOREUSERCONFIG in the WebLogic Server
Command Reference for more information on storing and
encrypting passwords.

No

failonerror

This is a global attribute used by WebLogic Server Ant ~ Boolean

tasks. It specifies whether the task should fail if it
encounters an error during the build. This attribute is set
to true by default.

No

Developing Applications with WebLogic Server 2-15

http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://e-docs.bea.com/wls/docs90/admin_ref/index.html
http://e-docs.bea.com/wls/docs90/admin_ref/index.html

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Table 2-2 Main Attributes of the wiconfig Ant Task

Attribute Description Data Required?
Type
userconfigfile Specifies the location of a user configuration file touse File No

for obtaining the administrative username and password.
Use this option, instead of the username and
password attributes, in your build file when you do not
want to have the plain text password shown in-line or in
process-level utilities such as ps. Before specifying the
userconfigfile attribute, you must first generate the
file using the weblogic.Admin STOREUSERCONFIG
command as described in STOREUSERCONFIG in the
WebLogic Server Command Reference.

userkeyfile Specifies the location of a user key file to use for File No
encrypting and decrypting the username and password
information stored in a user configuration file (the
userconfigfile attribute). Before specifying the
userkeyfile attribute, you must first generate the key
file using the weblogic.Admin STOREUSERCONFIG
command as described in STOREUSERCONFIG in the
WebLogic Server Command Reference.

Nested Elements

wlconfig also has several elements that can be nested to specify configuration options:
® create
e delete
® set
o get
e query
e invoke

create

The create element creates a new MBean in the WebLogic Server domain. The wlconfig task
can have any number of create elements.

2-16 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://e-docs.bea.com/wls/docs90/admin_ref/index.html
http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://e-docs.bea.com/wls/docs90/admin_ref/index.html

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

A create element can have any number of nested set elements, which set attributes on the

newly-created MBean. A create element may also have additional, nested create elements that

create child MBeans.

The create element has the following attributes.

Table 2-3 Attributes of the create Element

Attribute Description Data Required?
Type

name The name of the new MBean object to create. String No
(wlconfig
supplies a
default name
if none is
specified.)

type The MBean type. String Yes

property The name of an optional Ant property that holds String No

the object name of the newly-created MBean.

Note: Ifyounesta create element inside of
another create element, you cannot
specify the property attribute for the
nested create element.

Developing Applications with WebLogic Server 2-11

Using Ant Tasks to Configure and Use a WebLogic Server Domain

delete

The delete element removes an existing MBean from the WebLogic Server domain. delete

takes a single attribute:

Table 2-4 Attribute of the delete Element

Attribute Description Data
Type

Required?

mbean The object name of the MBean to String
delete.

Required when the
deleteeclementis a direct
child of the wlconfig
task. Not required when
nested within a query

element.

set

The set element sets MBean attributes on a named MBean, a newly-created MBean, or on
MBeans retrieved as part of a query. You can include the set element as a direct child of the

wlconfig task, or nested within a create or query element.

The set element has the following attributes:

Table 2-5 Attributes of the set Element

Attribute Description Data Required?
Type

attribute The name of the MBean attribute to set. String Yes

value The value to set for the specified MBean attribute. String Yes

You can specify multiple object names (stored in
Ant properties) as a value by delimiting the entire
value list with quotes and separating the object
names with a semicolon. See “Example of Setting
Multiple Attribute Values” on page 2-14.

2-18 Developing Applications with WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Tahle 2-5 Attributes of the set Element

Attribute Description Data Required?
Type
mbean The object name of the MBean whose values are String Required
being set. This attribute is required only when the only when
set element is included as a direct child of the the set
main wlconfig task; it is not required when the element is a
set element is nested within the context of a direct child
create or query element. of the
wlconfig
task.
domain This attribute specifies the JIMX domain name for ~ String No
Security MBeans and third-party SPI MBeans. It
is not required for administration MBeans, as the
domain corresponds to the WebLogic Server
domain.
Note: You cannot use this attribute if the set
element is nested inside of a create
element.
get

The get element retrieves attribute values from an MBean in the WebLogic Server domain. The
wlconfig task can have any number of get elements.

The get element has the following attributes.

Table 2-6 Attributes of the get Element

Attribute Description Data Required?
Type
attribute The name of the MBean attribute whose value you String Yes

want to retrieve.

Developing Applications with WebLogic Server 2-19

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Table 2-6 Attributes of the get Element

Attribute Description Data Required?
Type
property The name of an Ant property that will hold the String Yes
retrieved MBean attribute value.
mbean The object name of the MBean you want to String Yes
retrieve attribute values from.
query
The query elements finds MBean that match a search pattern.
The query element supports the following nested child elements:
e set—performs set operations on all MBeans in the result set.
e get—performs get operations on all MBeans in the result set.
e create—ecach MBean in the result set is used as a parent of a new MBean.
e delete—performs delete operations on all MBeans in the result set.
e invoke—invokes all matching MBeans in the result set.
wlconfig can have any number of nested query elements.
query has the following attributes:
Table 2-7 Attributes of the query Element
Attribute Description Data Required?
Type
domain The name of the WebLogic Server domain in String No
which to search for MBeans.
type The type of MBean to query. String No
name The name of the MBean to query. String No
pattern A JMX query pattern. String No

2-20 Developing Applications with WebLogic Server

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-7 Attributes of the query Element

Attribute Description Data Required?
Type
property The name of an optional Ant property that will String No

store the query results.

domain This attribute specifies the JIMX domain name for ~ String No
Security MBeans and third-party SPI MBeans. It
is not required for administration MBeans, as the
domain corresponds to the WebLogic Server
domain.

invoke

The invoke element invokes a management operation for one or more MBeans. For WebLogic
Server MBeans, you usually use this command to invoke operations other than the
getAttribute and setAttribute that most WebLogic Server MBeans provide.

The invoke element has the following attributes.

Table 2-8 Attributes of the invoke Element

Attribute Description Data Required?
Type

mbean The object name of the MBean you want to String You must
invoke. specify either
thembean or
type
attribute of
the invoke
clement.

type The type of MBean to invoke. String You must
specify either
thembean or
type
attribute of
the invoke
element.

Developing Applications with WebLogic Server 2-21

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Tahle 2-8 Attributes of the invoke Element

Attribute Description Data Required?
Type
methodName The method of the MBean to invoke. String Yes
arguments The list of arguments (separated by spaces) to pass ~ String No
to the method specified by the methodName
attribute.

Using the libclasspath Ant Task

2-22

Use the 1ibclasspath Ant task to build applications that use libraries, such as application
libraries and web libraries.

e “libclasspath Task Definition” on page 2-22
e “wlserver Ant Task Reference” on page 2-4

e “Example libclasspath Ant Task™ on page 2-23

libclasspath Task Definition

To use the task with your own Ant installation, add the following task definition in your build file:

<taskdef name="libclasspath" classname="weblogic.ant.taskdefs.build.Lib

ClasspathTask" />

libclasspath Ant Task Reference

The following sections describe the attributes and elements that can be used with the
libclasspath Ant task.

e “Main libclasspath Attributes” on page 2-22

e “Nested libclasspath Elements” on page 2-23

Main libclasspath Attributes

The following table describes the main attributes of the 1ibclasspath Ant task.

Developing Applications with WebLogic Server

Table 2-9 Attributes of the libclasspath Ant Task

Using the libclasspath Ant Task

Attribute Description Required
basedir The root of .ear or .war file to extract One of the two attributes is
from. required.
basewar The name of the .war file to extract from. Ifbaselwa.r s specified,
basedir is ignored and the
library referenced in
basewar is used as the
.war file to extract
classpath or resourcepath
information from.
tmpdir The fully qualified name of the directory to ~ Yes.
be used for extracting libraries.
property Contains the classpath for the referenced Yes.

libraries.

Nested libclasspath Elements

libclasspath also has two elements that can be nested to specify configuration options. At least
one of the elements is required when using the 1ibclasspath Ant task:

librarydir

The following attribute is required when using this element:

dir—Specifies that all files in this directory are registered as available libraries.

library

The following attribute is required when using this element:

file—Register this file as an available library.

Example libclasspath Ant Task

This section provides example code of a libclasspath Ant task:

Developing Applications with WebLogic Server 2-23

Using Ant Tasks to Configure and Use a WebLogic Server Domain

Listing 2-1 Example libclasspath Ant Task Code

<taskdef name="libclasspath" classname="weblogic.ant.taskdefs.build.Lib

ClasspathTask" />

<!-- Builds classpath based on libraries defined in weblogic-applicatio
n.xml. -->
<target name="init.app.libs">
<libclasspath basedir="${src.dir}" tmpdir="${tmp.dir}" property="app
.lib.classpath">
<librarydir dir="${weblogic.home}/common/deployable-libraries/"/>

</libclasspath>

<echo message="app.lib.claspath is ${app.lib.classpath}" level="info"/>
</target>

2-24 Developing Applications with WebLogic Server

GHAPTERa

Creating a Split Development Directory
Environment

The following sections describe the steps for creating a WebLogic Server split development
directory that you can use to develop a J2EE application or module:

e “Overview of the Split Development Directory Environment” on page 3-2

e “Using the Split Development Directory Structure: Main Steps” on page 3-5

e “Organizing J2EE Components in a Split Development Directory” on page 3-6

e “Organizing Shared Classes in a Split Development Directory” on page 3-12

e “Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13

e “Developing Multiple-EAR Projects Using the Split Development Directory” on page 3-15

e “Best Practices for Developing WebLogic Server Applications” on page 3-17

Developing Applications with WebLogic Server 3-1

Creating a Split Development Directory Environment

Overview of the Split Development Directory Environment

The WebLogic split development directory environment consists of a directory layout and
associated Ant tasks that help you repeatedly build, change, and deploy J2EE applications.
Compared to other development frameworks, the WebLogic split development directory
provides these benefits:

e Fast development and deployment. By minimizing unnecessary file copying, the split
development directory Ant tasks help you recompile and redeploy applications quickly
without first generating a deployable archive file or exploded archive directory.

e Simplified build scripts. The BEA-provided Ant tasks automatically determine which
J2EE modules and classes you are creating, and build components in the correct order to
support common classpath dependencies. In many cases, your project build script can
simply identify the source and build directories and allow Ant tasks to perform their
default behaviors.

e Easy integration with source control systems. The split development directory provides a
clean separation between source files and generated files. This helps you maintain only
editable files in your source control system. You can also clean the build by deleting the
entire build directory; build files are easily replaced by rebuilding the project.

Source and Build Directories

The source and build directories form the basis of the split development directory environment.
The source directory contains all editable files for your project—Java source files, editable
descriptor files, JSPs, static content, and so forth. You create the source directory for an
application by following the directory structure guidelines described in “Organizing J2EE
Components in a Split Development Directory” on page 3-6.

The top level of the source directory always represents an Enterprise Application (. ear file),
even if you are developing only a single J2EE module. Subdirectories beneath the top level source
directory contain:

e Enterprise Application Modules (EJBs and Web Applications)

Note: The split development directory structure does not provide support for developing
new Resource Adapter components.

e Descriptor files for the Enterprise Application (application.xml and
weblogic-application.xml)

e Utility classes shared by modules of the application (for example, exceptions, constants)

3-2 Developing Applications with WebLogic Server

Overview of the Split Development Directory Environment

e Libraries (compiled. jar files, including third-party libraries) used by modules of the
application

The build directory contents are generated automatically when you run the wlcompile ant task
against a valid source directory. The wlcompile task recognizes EJB, Web Application, and
shared library and class directories in the source directory, and builds those components in an
order that supports common class path requirements. Additional Ant tasks can be used to build
Web Services or generate deployment descriptor files from annotated EJB code.

Figure 3-1 Source and Build Directories

=, sy

Java Sourcs, Compilad
Annatated .EJS

Static HTML and Deployment
Bruphlcs Deacriptors

Editable
Deploymont
Descriptors

Third-Party JAR
Fllax

The build directory contains only those files generated during the build process. The combination
of files in the source and build directories form a deployable J2EE application.

The build and source directory contents can be place in any directory of your choice. However,
for ease of use, the directories are commonly placed in directories named source and build,
within a single project directory (for example, \myproject\build and \myproject\source).

Deploying from a Split Development Directory

All WebLogic Server deployment tools (weblogic.Deployer, wldeploy, and the
Administration Console) support direct deployment from a split development directory. You
specify only the build directory when deploying the application to WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source directory for
deploying the application. If a required resource is not available in the source directory,

Developing Applications with WebLogic Server 3-3

Creating a Split Development Directory Environment

34

WebLogic Server then looks in the application’s build directory for that resource. For example,
if a deployment descriptor is generated during the build process, rather than stored with source
code as an editable file, WebLogic Server obtains the generated file from the build directory.

WebLogic Server discovers the location of the source directory by examining the

.beabuild. txt file that resides in the top level of the application’s build directory. If you ever
move or modify the source directory location, edit the .beabuild.txt file to identify the new
source directory name.

“Deploying and Packaging from a Split Development Directory” on page 5-1 describes the
wldeploy Ant task that you can use to automate deployment from the split directory
environment.

Figure 3-2 shows a typical deployment process. The process is initiated by specifying the build
directory with a WebLogic Server tool. In the figure, all compiled classes and generated
deployment descriptors are discovered in the build directory, but other application resources
(such as static files and editable deployment descriptors) are missing. WebLogic Server uses the
hidden .beabuild. txt file to locate the application’s source directory, where it finds the
required resources.

Figure 3-2 Split Directory Deployment

-

Sou
Direcion Bulld Diroctory
Jova Source, Campliad
JsPs, . —
Annotated EJB Classea
Static HTML Qeneratad
and Graphios ‘—l Deploymont iffe
Descriptors
Editable
Dop - boabulldtet
Doscriptors
THrdParty JAR I
Flles

Developing Applications with WebLogic Server

Using the Split Development Directory Structure: Main Steps

Split Development Directory Ant Tasks

BEA provides a collection of Ant tasks designed to help you develop applications using the split
development directory environment. Each Ant task uses the source, build, or both directories to
perform common development tasks:

e wlcompile—This Ant task compiles the contents of the source directory into

subdirectories of the build directory. wlcompile compiles Java classes and also processes
annotated . ejb files into deployment descriptors, as described in “Compiling Applications
Using wlcompile” on page 4-1.

wlappc—This Ant task invokes the appc compiler, which generates JSPs and
container-specific EJB classes for deployment. See “Building Modules and Applications
Using wlappc” on page 4-4.

wldeploy—This Ant task deploys any format of J2EE applications (exploded or archived)
to WebLogic Server. To deploy directly from the split development directory environment,
you specify the build directory of your application. See “wldeploy Ant Task Reference” on
page B-1.

wlpackage—This Ant task uses the contents of both the source and build directories to
generate an EAR file or exploded EAR directory that you can give to others for
deployment.

Using the Split Development Directory Structure: Main Steps

The following steps illustrate how you use the split development directory structure to build and
deploy a WebLogic Server application.

1.

Create the main EAR source directory for your project. When using the split development
directory environment, you must develop Web Applications and EJBs as part of an Enterprise
Application, even if you do not intend to develop multiple J2EE modules. See “Organizing
J2EE Components in a Split Development Directory” on page 3-6.

Add one or more subdirectories to the EAR directory for storing the source for Web
Applications, EJB components, or shared utility classes. See “Organizing J2EE
Components in a Split Development Directory” on page 3-6 and “Organizing Shared
Classes in a Split Development Directory” on page 3-12.

Store all of your editable files (source code, static content, editable deployment descriptors)
for modules in subdirectories of the EAR directory. Add the entire contents of the source
directory to your source control system, if applicable.

Developing Applications with WebLogic Server 3-5

Creating a Split Development Directory Environment

4. Set your WebLogic Server environment by executing either the setWLSEnv.cmd
(Windows) or setWLSEnv.sh (UNIX) script. The scripts are located in the
WL_HOME\server\bin\ directory, where wZ_HOME is the top-level directory in which
WebLogic Server is installed.

5. Use the weblogic.BuildxMLGen utility to generate a default build.xm1l file for use with
your project. Edit the default property values as needed for your environment. See
“Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13.

6. Use the default targets in the build.xml file to build, deploy, and package your application.
See “Generating a Basic build.xml File Using weblogic.BuildXMLGen” on page 3-13 for a
list of default targets.

Organizing J2EE Components in a Split Development Directory

The split development directory structure requires each project to be staged as a J2EE Enterprise
Application. BEA therefore recommends that you stage even stand-alone Web applications and
EJBs as modules of an Enterprise application, to benefit from the split directory Ant tasks. This
practice also allows you to easily add or remove modules at a later date, because the application
is already organized as an EAR.

Note: If your project requires multiple EARs, see also “Developing Multiple-EAR Projects
Using the Split Development Directory” on page 3-15.

The following sections describe the basic conventions for staging the following module types in
the split development directory structure:

e “Enterprise Application Configuration” on page 3-9
e “Web Applications” on page 3-9

e “EJBs” on page 3-11

e “Shared Utility Classes” on page 3-12

e “Third-Party Libraries” on page 3-13

The directory examples are taken from the splitdir sample application installed in
WL_HOME\samples\server\examples\src\examples\splitdir, where wr_HOME is your
WebLogic Server installation directory.

3-6 Developing Applications with WebLogic Server

Organizing J2EE Components in a Split Development Directory

Source Directory Overview

The following figure summarizes the source directory contents of an Enterprise Application
having a Web Application, EJB, shared utility classes, and third-party libraries. The sections that
follow provide more details about how individual parts of the enterprise source directory are
organized.

Developing Applications with WebLogic Server 3-1

Creating a Split Development Directory Environment

Figure 3-3 Overview of Enterprise Application Source Directory

Sourcs

halloWorkiEar

sl xml

— META-NF

|: appication.xmi
wobloglc-application. o

wab.aml
wobloglc.xml

Bre

Java Source Flles

— siatic directorios)

Static flles*
1 helloEJB

Jave Source Flivs
{In package directorfos}

META-INF

wabloglc-afh-jarxm|
| | applitiis wfjarami*

L ove Source Flies
it package directories)

— APP-NF

L Third-Party JAR Files

3-8 Developing Applications with WebLogic Server

Organizing J2EE Components in a Split Development Directory

Enterprise Application Configuration

The top level source directory for a split development directory project represents an Enterprise
Application. The following figure shows the minimal files and directories required in this

directory.

Figure 3-4 Enterprise Application Source Directory

Source

bulldxmi

META-INF

application.mi
wabloglc-application.xmi

The Enterprise Application directory will also have one or more subdirectories to hold a Web
Application, EJB, utility class, and/or third-party Jar file, as described in the following sections.

Web Applications

Web Applications use the basic source directory layout shown in the figure below.

Developing Applications with WebLogic Server 3-9

Creating a Split Development Directory Environment

Figure 3-5 Web Application Source and Build Directories

Source Eulld
helloWorkdEar heloWorkdEar
|_ helloWebApp |— hellcWebApp
—hellcjup |_
WEB-INF
—{ WEBANF L
clansos
et e
Jp_sorviot
|_ Java Sowrne Fies
(i pacimga dirsctories) JSFs
and Sarvists
[— wabam| ava Claxs Fifas
— woblogic.xml i
r-—-—-— |
-----i state* .
ey
Static Mes*
"Hot used In
hellcWordEar sampls

The key directories and files for the Web Application are:

e hellowebapp\ —The top level of the Web Application module can contain JSP files and
static content such as HTML files and graphics used in the application. You can also store
static files in any named subdirectory of the Web Application (for example,
helloWebApp\graphics Or helloWebApp\ static.)

® helloWebApp\WEB-INF\ —Store the Web Application’s editable deployment descriptor
files (web.xml and weblogic.xml) in the WEB-INF subdirectory.

® helloWebApp\WEB-INF\src —Store Java source files for Servlets in package
subdirectories under WEB-INF\src.

When you build a Web Application, the appc Ant task and jspc compiler compile JSPs into
package subdirectories under helloWebApp\WEB-INF\classes\jsp_servlet in the build
directory. Editable deployment descriptors are not copied during the build process.

3-10 Developing Applications with WebLogic Server

Organizing J2EE Components in a Split Development Directory

EJBs

EJBs use the source directory layout shown in the figure below.

Figure 3-6 EJB Source and Build Directories

Source Eulld
heloWoridEar hellcWordEar
I_ helloEJE I— hellcEJB
I_ Java Sowrne Fies ava Clazs Fifas
t [peckege direciories) fin pacimge directories)
fopo—r—— I
=---i METAMF - META-INF
- |
------ afbejarami* afbjarami
e WERODRC-Gffar X tlogic-cibfaraml
*Nat used in
helloWerldEar aample

The key directories and files for an EJB are:

e helloEJB\ —Store all EJB source files under package directories of the EJB module
directory. The source files can be either . java source files, or annotated . ejb files.

® helloEJB\META-INF\ —Store editable EJB deployment descriptors (ejb-jar.xml and
weblogic-ejb-jar.xml) in the META- INF subdirectory of the EJB module directory. The
helloWorldEar sample does not include a hel1o0EJB\META-INF subdirectory, because its
deployment descriptors files are generated from annotations in the . ejb source files. See
“Important Notes Regarding EJB Descriptors” on page 3-11.

During the build process, EJB classes are compiled into package subdirectories of the hel10EJB
module in the build directory. If you use annotated . ejb source files, the build process also
generates the EJB deployment descriptors and stores them in the hel10EJB\META-INF
subdirectory of the build directory.

Important Notes Regarding EJB Descriptors

EJB deployment descriptors should be included in the source META-INF directory and treated as
source code only if those descriptor files are created from scratch or are edited manually.

Developing Applications with WebLogic Server 3-11

Creating a Split Development Directory Environment

Descriptor files that are generated from annotated . ejb files should appear only in the build
directory, and they can be deleted and regenerated by building the application.

For a given EJB component, the EJB source directory should contain either:

e EJB source code in . java source files and editable deployment descriptors in META-INF
or:
e EJB source code with descriptor annotations in . ejb source files, and no editable
descriptors in META-INF .

In other words, do not provide both annotated . ejb source files and editable descriptor files for
the same EJB component.

Organizing Shared Classes in a Split Development Directory

3-12

The WebLogic split development directory also helps you store shared utility classes and libraries
that are required by modules in your Enterprise Application. The following sections describe the
directory layout and classloading behavior for shared utility classes and third-party JAR files.

Shared Utility Classes

Enterprise Applications frequently use Java utility classes that are shared among application
modules. Java utility classes differ from third-party JARs in that the source files are part of the
application and must be compiled. Java utility classes are typically libraries used by application
modules such as EJBs or Web applications.

Figure 3-7 Java Utility Class Directory

Source Buld
holloWoridEar helloWordEar
|_ applite |— APPINF
Java Sourne Fies I_ Java Class Files
(" paciagn cirectories) {in paciage directories)

Place the source for Java utility classes in a named subdirectory of the top-level Enterprise
Application directory. Beneath the named subdirectory, use standard package subdirectory
conventions.

Developing Applications with WebLogic Server

Generating a Basic build.xml File Using weblogic.BuildXMLGen

During the build process, the wlcompile Ant task invokes the javac compiler and compiles
Java classes into the APP-INF/classes/ directory under the build directory. This ensures that
the classes are available to other modules in the deployed application.

Third-Party Libraries

You can extend an Enterprise Application to use third-party . jar files by placing the files in the
APP-INF\1lib\ directory, as shown below:

Figure 3-8 Third-party Library Directory

Sourca

LT rar
L

I—mmmmu

Third-party JARs are generally not compiled, but may be versioned using the source control
system for your application code. For example, XML parsers, logging implementations, and Web
Application framework JAR files are commonly used in applications and maintained along with
editable source code.

During the build process, third-party JAR files are not copied to the build directory, but remain
in the source directory for deployment.

Class Loading for Shared Classes

The classes and libraries stored under APP-INF/classes and APP-INF/1ib are available to all
modules in the Enterprise Application. The application classloader always attempts to resolve
class requests by first looking in APP-INF/classes, then APP-INF/1ib.

Generating a Basic build.xml File Using weblogic.BuildXMLGen

After you set up your source directory structure, use the weblogic.BuildXMLGen utility to
create a basic build.xml file. weblogic.BuildXMLGen is a convenient utility that
generates an Ant build.xml file for Enterprise applications that are organized in the split

Developing Applications with WebLogic Server 3-13

Creating a Split Development Directory Environment

3-14

development directory structure. The utility analyzes the source directory and creates build and
deploy targets for the Enterprise application as well as individual modules. It also creates targets
to clean the build and generate new deployment descriptors.

The syntax for weblogic.BuildXMLGen is as follows:

java weblogic.BuildXMLGen [options] <source directory>
where options include:

o -help—yprint standard usage message

e -version—print version information

e -projectName <project name>—name of the Ant project

e -d <directory>—directory where build.xml is created. The default is the current
directory.

e -file <build.xml>—name of the generated build file

e -librarydir <directories>——create build targets for shared J2EE libraries in the
comma-separated list of directories. See “Creating Shared J2EE Libraries and Optional
Packages” on page 8-1.

e —username <username>—user name for deploy commands

e -password <password>—user password

After running weblogic .BuildXMLGen, edit the generated build.xm1l file to specify
properties for your development environment. The list of properties you need to edit are shown
in the listing below.

Listing 3-1 build.xml Editable Properties

<!-- BUILD PROPERTIES ADJUST THESE FOR YOUR ENVIRONMENT -->
<property name="tmp.dir" value="/tmp" />
<property name="dist.dir" value="${tmp.dir}/dist"/>
<property name="app.name" value="helloWorldEar" />
<property name="ear" value="${dist.dir}/${app.name}.ear"/>
<property name="ear.exploded" value="${dist.dir}/${app.name}_exploded"/>
<property name="verbose" value="true" />

<property name="user" value="USERNAME" />

Developing Applications with WebLogic Server

Developing Multiple-EAR Projects Using the Split Development Directory

<property name="password" value="PASSWORD" />
<property name="servername" value="myserver" />

<property name="adminurl" value="iiop://localhost:7001" />

In particular, make sure you edit the tmp . dir property to point to the build directory you want
to use. By default, the build.xm1 file builds projects into a subdirectory tmp.dir named after
the application (/tmp/hellowWorldEar in the above listing).

The following listing shows the default main targets created in the build.xm1l file. You can view
these targets at the command prompt by entering the ant -projecthelp command in the EAR
source directory.

Listing 3-2 Default build.xml Targets

appc Runs weblogic.appc on your application

build Compiles helloWorldEar application and runs appc

clean Deletes the build and distribution directories

compile Only compiles helloWorldEar application, no appc
compile.appStartup Compiles just the appStartup module of the application
compile.appUtils Compiles just the appUtils module of the application
compile.build.orig Compiles just the build.orig module of the application
compile.helloEJB Compiles just the helloEJB module of the application
compile.helloWebApp Compiles just the helloWebApp module of the application
compile.javadoc Compiles just the javadoc module of the application
deploy Deploys (and redeploys) the entire helloWorldEar application
descriptors Generates application and module descriptors

ear Package a standard J2EE EAR for distribution
ear.exploded Package a standard exploded J2EE EAR
redeploy.appStartup Redeploys just the appStartup module of the application
redeploy.appUtils Redeploys just the appUtils module of the application
redeploy.build.orig Redeploys just the build.orig module of the application
redeploy.helloEJB Redeploys just the helloEJB module of the application
redeploy.helloWebApp Redeploys just the helloWebApp module of application
redeploy.javadoc Redeploys just the javadoc module of the application
undeploy Undeploys the entire helloWorldEar application

Developing Multiple-EAR Projects Using the Split Development
Directory

The split development directory examples and procedures described previously have dealt with
projects consisting of a single Enterprise Application. Projects that require building multiple
Enterprise Applications simultaneously require slightly different conventions and procedures, as
described in the following sections.

Developing Applications with WebLogic Server 3-15

Creating a Split Development Directory Environment

Note: The following sections refer to the MedRec sample application, which consists of three
separate Enterprise Applications as well as shared utility classes, third-party JAR files,
and dedicated client applications. The MedRec source and build directories are installed
under WL_HOME/samples/server/medrec, where wL_HOME is the WebLogic Server
installation directory.

Organizing Libraries and Classes Shared by Multiple EARs

For single EAR projects, the split development directory conventions suggest keeping third-party
JAR files in the APP-INF/1ib directory of the EAR source directory. However, a multiple-EAR
project would require you to maintain a copy of the same third-party JAR files in the
APP-INF/1ib directory of each EAR source directory. This introduces multiple copies of the
source JAR files, increases the possibility of some JAR files being at different versions, and
requires additional space in your source control system.

To address these problems, consider editing your build script to copy third-party JAR files into
the APP-INF/1ib directory of the build directory for each EAR that requires the libraries. This
allows you to maintain a single copy and version of the JAR files in your source control system,
yet it enables each EAR in your project to use the JAR files.

The MedRec sample application installed with WebLogic Server uses this strategy, as shown in
the following figure.

Figure 3-9 Shared JAR Files in MedRec

I— medvecEar I— physiclanEar

U e Tgn

oomumons-"far commons-"_far
sxcsptions. jar sucspions.jar
struis.jar sirutx.jar

utlis jar utli jar

valua jar valua jar

MedRec takes a similar approach to utility classes that are shared by multiple EARs in the project.
Instead of including the source for utility classes within the scope of each ear that needs them,
MedRec keeps the utility class source independent of all EARs. After compiling the utility

3-16 Developing Applications with WebLogic Server

Best Practices for Developing WebLogic Server Applications

classes, the build script archives them and copies the JARs into the build directory under the
APP-INF/LIB subdirectory of each EAR that uses the classes, as shown in figure Figure 3-9.

Linking Multiple build.xml Files

When developing multiple EARSs using the split development directory, each EAR project
generally uses its own build.xml file (perhaps generated by multiple runs of
weblogic.BuildXMLGen.). Applications like MedRec also use a master build.xml file that
calls the subordinate build.xml files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build files within
a master build.xml file. The following line from the MedRec master build file shows its usage:

<ant inheritAll="false" dir="${root}/startupEar" antfile="build.xml"/>

The above task instructs Ant to execute the file named build.xml in the /startupEar
subdirectory. The inheritall parameter instructs Ant to pass only user properties from the
master build file tot the build.xml file in /startupEar.

MedRec uses multiple tasks similar to the above to build the startupEar, medrecEar, and
physicianEar applications, as well as building common utility classes and client applications.

Best Practices for Developing WebLogic Server Applications

BEA recommends the following “best practices” for application development.

e Package applications as part of an Enterprise application. See “Packaging Applications
Using wlpackage” on page 5-2.

e Use the split development directory structure. See “Organizing J2EE Components in a
Split Development Directory” on page 3-6.

e For distribution purposes, package and deploy in archived format. See “Packaging
Applications Using wlpackage” on page 5-2.

o In most other cases, it is more convenient to deploy in exploded format. See “Archive
versus Exploded Archive Directory” on page 5-2.

e Never deploy untested code on a WebLogic Server instance that is serving production
applications. Instead, set up a development WebLogic Server instance on the same
computer on which you edit and compile, or designate a WebLogic Server development
location elsewhere on the network.

Developing Applications with WebLogic Server 3-17

Creating a Split Development Directory Environment

e Even if you do not run a development WebLogic Server instance on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or J2EE APIs, the Java compiler needs
access to the weblogic. jar file and other JAR files in the distribution directory. Install
WebLogic Server on your development computer to make WebLogic distribution files
available locally.

3-18 Developing Applications with WebLogic Server

CHAPTERo

Building Applications in a Split
Development Directory

The following sections describe the steps for building WebLogic Server J2EE applications using
the WebLogic split development directory environment:

e “Compiling Applications Using wlcompile” on page 4-1

e “Building Modules and Applications Using wlappc” on page 4-4

Compiling Applications Using wicompile

You use the wlcompile Ant task to invoke the javac compiler to compile your application’s
Java components in a split development directory structure. The basic syntax of wlcompile
identifies the source and build directories, as in this command from the helloWorldEar sample:

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"/>
The following is the order in which events occur using this task:
1. wlcompile compiles the Java components into an output directory:

WL HOME\samples\server\examples\build\helloWorldEar\APP-INF\classes\

where wr,_HoME is the WebLogic Server installation directory.

2. wlcompile builds the EJBs and automatically includes the previously built Java modules
in the compiler's classpath. This allows the EJBs to call the Java modules without requiring
you to manually edit their classpath.

Developing Applications with WebLogic Server 4-1

Building Applications in a Split Development Directory

3. Finally, wlcompile compiles the Java components in the Web application with the EJB and
Java modules in the compiler's classpath. This allows the Web applications to refer to the
EJB and application Java classes without requiring you to manually edit the classpath.

Using includes and excludes Properties

More complex Enterprise applications may have compilation dependencies that are not
automatically handled by the wlcompile task. However, you can use the include and exclude
options to wlcompile to enforce your own dependencies. The includes and excludes
properties accept the names of Enterprise Application modules—the names of subdirectories in
the Enterprise application source directory—to include or exclude them from the compile stage.

The following line from the helloworldEar sample shows the appStartup module being
excluded from compilation:

<wlcompile srcdir="${src.dir}" destdir="S${dest.dir}"

excludes="appStartup"/>
wlcompile Ant Task Attributes
Table 4-1 contains Ant task attributes specific to wlcompile.

Table 4-1 wicompile Ant Task Attributes

Attribute Description

sredir The source directory.

destdir The build/output directory.

classpath Allows you to change the classpath used by wlcompile.
includes Allows you to include specific directories from the build.

excludes Allows you to exclude specific directories from the build.
librarydir Specifies a directory of shared J2EE libraries to add to the

classpath. See “Creating Shared J2EE Libraries and Optional
Packages” on page 8-1.

4-2 Developing Applications with WebLogic Server

Compiling Applications Using wicompile

Nested javac Options

The wlcompile Anttask can accept nested javac options to change the compile-time behavior.
For example, the following wlcompile command ignores deprecation warnings and enables
debugging:
<wlcompile srcdir="${mysrcdir}” destdir="${mybuilddir}”>
<javac deprecation="false” debug="true”
debuglevel="1lines,vars, source” />

</wlcompile>

Setting the Classpath for Compiling Code

Most WebLogic services are based on J2EE standards and are accessed through standard J2EE
packages. The Sun, WebLogic, and other Java classes required to compile programs that use
WebLogic services are packaged in the weblogic.jar file in the 1ib directory of your
WebLogic Server installation. In addition to weblogic. jar, include the following in your
compiler’s CLASSPATH:

e The 1ib\tools.jar file in the JDK directory, or other standard Java classes required by
the Java Development Kit you use.

e The examples.property file for Apache Ant (for examples environment). This file is
discussed in the WebLogic Server documentation on building examples using Ant located
at: samples\server\examples\src\examples\examples.html

e Classes for third-party Java tools or services your programs import.

e Other application classes referenced by the programs you are compiling.

Library Element for wicompile and wlappc

The 1ibrary element is an optional element used to define the name and optional version
information for a module that represents a shared J2EE library required for building an
application, as described in “Creating Shared J2EE Libraries and Optional Packages” on
page 8-1. The 1ibrary element can be used with both wlcompile and wlappc, described in
“Building Modules and Applications Using wlappc” on page 4-4.

The name and version information are specified as attributes to the library element, described in
“Library attributes” on page 4-4

Developing Applications with WebLogic Server 4-3

Building Applications in a Split Development Directory

Table 4-2 Library attributes

Attribute Description

file Required filename of a J2EE library

name The optional name of a required J2EE library.
specificationversion An optional specification version required for the library.
implementationversion An optional implementation version required for the library.

The format choices for both specificationversion and implementationversion are
described in “Referencing Shared J2EE Libraries in an Enterprise Application” on page 8-11.
The following output shows a sample 1ibrary reference:

<library file="c:\mylibs\lib.jar” name="ReqgLib”

specificationversion="90Beta” implementationversion="1.1" />

Building Modules and Applications Using wlappc

44

The weblogic.appc compiler generates JSPs and container-specific EJB classes for
deployment, and validates deployment descriptors for compliance with the current J2EE
specifications. appc performs validation checks between the application-level deployment
descriptors and the individual modules in the application as well as validation checks across the
modules.

wlappc is the Ant task interface to the weblogic.appc compiler. The following section
describe the wlappc options and usage.

Both weblogic.appc and the wlappc Ant task compile modules in the order in which they
appear in the application.xml deployment descriptor file that describes your Enterprise
application.

wlappc Ant Task Attributes

Table 4-3 describes Ant task options specific to wlappc. These options are similar to the
weblogic.appc command-line options, but with a few differences.

Notes: See “weblogic.appc Reference” on page 4-7 for a list of weblogic.appc options.

See also “Library Element for wlcompile and wlappc” on page 4-3.

Developing Applications with WebLogic Server

Building Modules and Applications Using wlappc

Table 4-3 wlappc Ant Task Attributes

Option
print
version

output <file>

forceGeneration

lineNumbers

basicClientJar

idl
idlOverwrite
idlVerbose

idINoValueTypes

idINoAbstractInterfaces

idlFactories
idlVisibroker

1d1Orbix

idDirectory <dir>

idIMethodSignatures <>

iiop

Description
Prints the standard usage message.
Prints appc version information.

Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be
unnecessary).

Adds line numbers to generated class files to aid in debugging.

Does not include deployment descriptors in client JARs
generated for EJBs.

Generates IDL for EJB remote interfaces.
Always overwrites existing IDL files.
Displays verbose information for IDL generation.

Does not generate valuetypes and the methods/attributes that
contain them.

Does not generate abstract interfaces and methods/attributes
that contain them.

Generates factory methods for valuetypes.
Generates IDL somewhat compatible with Visibroker 4.5 C++.

Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

Specifies the directory where IDL files will be created (default:
target directory or JAR)

Specifies the method signatures used to trigger IDL code
generation.

Generates CORBA stubs for EJBs.

Developing Applications with WebLogic Server 4-5

Building Applications in a Split Development Directory

iiopDirectory <dir>

keepgenerated

librarydir

compiler <javac>

Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

Keeps the generated . java files.

Specifies a directory of shared J2EE libraries to add to the
classpath. See “Creating Shared J2EE Libraries and Optional
Packages” on page 8-1.

Selects the Java compiler to use.

debug Compiles debugging information into a class file.
optimize Compiles with optimization on.

nowarn Compiles without warnings.

verbose Compiles with verbose output.

deprecation Warns about deprecated calls.

normi Passes flags through to Symantec's s;j.
runtimeflags Passes flags through to Java runtime

classpath <path> Selects the classpath to use during compilation.
advanced Prints advanced usage options.

wlappc Ant Task Syntax

The basic syntax for using the wlappc Ant task determines the destination source directory
location. This directory contains the files to be compiled by wlappc.

<wlappc source="${dest.dir}” />

The following is an example of a wlappc Ant task command that invokes two options (idl and

idlorverWrite) from Table 4-3.

<wlappc source="${dest.dir}"idl="true" idlOrverWrite="true"

4-6 Developing Applications with WebLogic Server

Building Modules and Applications Using wlappc

Syntax Differences between appc and wlappc

There are some syntax differences between appc and wlappc. For appc, the presence of a flag in
the command is a boolean. For wlappc, the presence of a flag in the command means that the
argument is required.

To illustrate, the following are examples of the same command, the first being an appc command
and the second being a wlappc command:

java weblogic.appc -idl foo.ear

<wlappc source="${dest.dir} idl="true"/>

weblogic.appc Reference

The following sections describe how to use the command-line version of the appc compiler. The
weblogic.appc command-line compiler reports any warnings or errors encountered in the
descriptors and compiles all of the relevant modules into an EAR file, which can be deployed to
WebLogic Server.

weblogic.appc Syntax
Use the following syntax to run appc:

prompt>java weblogic.appc [options] <ear, jar, or war file or directory>

weblogic.appc Options

The following are the available appc options:

Table 4-4 appc Options:

Option Description

-print Prints the standard usage message.

-version Prints appc version information.

-output <file> Specifies an alternate output archive or directory. If not set, the

output is placed in the source archive or directory.

-forceGeneration Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be
unnecessary).

Developing Applications with WebLogic Server 4-1

-library
<file[[@name=<string>][
@libspecver=<version>][
@libimplver=<version|stri
ng>]]>

-lineNumbers

-basicClientJar

-idl
-idlOverwrite
-idlVerbose

-idINoValueTypes

-idINoAbstractInterfaces

-idlFactories
-idlVisibroker

-id1Orbix

-idIDirectory <dir>

-idIMethodSignatures <>

-iiop

-iiopDirectory <dir>

-keepgenerated
-compiler <javac>

-8

Building Applications in a Split Development Directory

A comma-separated list of shared J2EE libraries. Optional
name and version string information must be specified in the
format described in “Referencing Shared J2EE Libraries in an
Enterprise Application” on page 8-11.

Adds line numbers to generated class files to aid in debugging.

Does not include deployment descriptors in client JARs
generated for EJBs.

Generates IDL for EJB remote interfaces.
Always overwrites existing IDL files.
Displays verbose information for IDL generation.

Does not generate valuetypes and the methods/attributes that
contain them.

Does not generate abstract interfaces and methods/attributes
that contain them.

Generates factory methods for valuetypes.
Generates IDL somewhat compatible with Visibroker 4.5 C++.

Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

Specifies the directory where IDL files will be created (default:
target directory or JAR)

Specifies the method signatures used to trigger IDL code
generation.

Generates CORBA stubs for EJBs.

Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

Keeps the generated . java files.
Selects the Java compiler to use.

Compiles debugging information into a class file.

Developing Applications with WebLogic Server

-0

-nowarn

-verbose
-deprecation
-normi
-J<option>
-classpath <path>

-advanced

Building Modules and Applications Using wlappc

Compiles with optimization on.

Compiles without warnings.

Compiles with verbose output.

Warns about deprecated calls.

Passes flags through to Symantec's s;j.

Passes flags through to Java runtime.

Selects the classpath to use during compilation.

Prints advanced usage options.

Developing Applications with WebLogic Server 4-9

Building Applications in a Split Development Directory

4-10 Developing Applications with WebLogic Server

CHAPTERa

Deploying and Packaging from a Split
Development Directory

The following sections describe the steps for deploying WebLogic Server J2EE applications
using the WebLogic split development directory environment:

e “Deploying Applications Using wldeploy” on page 5-2

e “Packaging Applications Using wlpackage” on page 5-2

Developing Applications with WebLogic Server 5-1

Deploying and Packaging from a Split Development Directory

Deploying Applications Using wideploy

The wldeploy task provides an easy way to deploy directly from the split development directory.
wlcompile provides most of the same arguments as the weblogic.Deployer directory. To
deploy from a split development directory, you simply identify the build directory location as the
deployable files, as in:

<wldeploy user="${user}" password="${password}"
action="deploy" source="${dest.dir}"

name="helloWorldEar" />

The above task is automatically created when you use weblogic.BuildxMLGen to create the
build.xml file.

See “wldeploy Ant Task Reference” on page B-1 for a complete command reference.

Packaging Applications Using wipackage

5-2

The wlpackage Ant task uses the contents of both the source and build directories to create either
adeployable archive file (. EaR file), or an exploded archive directory representing the Enterprise
Application (exploded .EaR directory). Use wlpackage when you want to deliver your
application to another group or individual for evaluation, testing, performance profiling, or
production deployment.

Archive versus Exploded Archive Directory

For production purposes, it is convenient to deploy Enterprise applications in exploded
(unarchived) directory format. This applies also to stand-alone Web applications, EJBs, and
connectors packaged as part of an Enterprise application. Using this format allows you to update
files directly in the exploded directory rather than having to unarchive, edit, and rearchive the
whole application. Using exploded archive directories also has other benefits, as described in
Deployment Archive Files Versus Exploded Archive Directories in Deploying Applications to
WebLogic Server.

You can also package applications in a single archived file, which is convenient for packaging
modules and applications for distribution. Archive files are easier to copy, they use up fewer file
handles than an exploded directory, and they can save disk space with file compression.

The Java classloader can search for Java class files (and other file types) in a JAR file the same
way that it searches a directory in its classpath. Because the classloader can search a directory or
a JAR file, you can deploy J2EE modules on WebLogic Server in either a JAR (archived) file or
an exploded (unarchived) directory.

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/deployunits.html#DeploymentFiles
http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/deployment/index.html

Packaging Applications Using wipackage

wlpackage Ant Task

In a production environment, use the wlpackage Ant task to package your split development
directory application as a traditional EAR file that can be deployed to WebLogic Server.
Continuing with the MedRec example, you would package your application as follows:

<wlpackage toFile="\physicianEAR\physicianEAR.ear" srcdir="\physicianEAR"
destdir="\build\physicianEAR"/>
<wlpackage toDir="\physicianEAR\explodedphysicianEar"

srcdir="\src\physicianEAR"

destdir="\build\physicianEAR" />

Developing Applications with WebLogic Server 5-3

Deploying and Packaging from a Split Development Directory

5-4 Developing Applications with WebLogic Server

CHAPTERa

Understanding WebLogic Server
Application Classloading

The following sections provide an overview of Java classloaders, followed by details about
WebLogic Server J2EE application classloading.

“Java Classloader Overview” on page 6-2

“WebLogic Server Application Classloader Overview” on page 6-4

“Resolving Class References Between Modules and Applications” on page 6-15
“Sharing Applications and Modules By Using J2EE Libraries” on page 6-17

“Adding JARs to the System Classpath” on page 6-17

Developing Applications with WebLogic Server 6-1

Understanding WebLogic Server Application Classloading

Java Classloader Overview

6-2

Classloaders are a fundamental module of the Java language. A classloader is a part of the Java
virtual machine (JVM) that loads classes into memory; a classloader is responsible for finding
and loading class files at run time. Every successful Java programmer needs to understand
classloaders and their behavior. This section provides an overview of Java classloaders.

Java Classloader Hierarchy

Classloaders contain a hierarchy with parent classloaders and child classloaders. The relationship
between parent and child classloaders is analogous to the object relationship of super classes and
subclasses. The bootstrap classloader is the root of the Java classloader hierarchy. The Java
virtual machine (JVM) creates the bootstrap classloader, which loads the Java development kit
(JDK) internal classes and java . * packages included in the JVM. (For example, the bootstrap
classloader loads java.lang.String.)

The extensions classloader is a child of the bootstrap classloader. The extensions classloader
loads any JAR files placed in the extensions directory of the JDK. This is a convenient means to
extending the JDK without adding entries to the classpath. However, anything in the extensions
directory must be self-contained and can only refer to classes in the extensions directory or JDK
classes.

The system classpath classloader extends the JDK extensions classloader. The system classpath
classloader loads the classes from the classpath of the JVM. Application-specific classloaders
(including WebLogic Server classloaders) are children of the system classpath classloader.

Note: What BEA refers to as a “system classpath classloader” is often referred to as the
“application classloader” in contexts outside of WebLogic Server. When discussing
classloaders in WebLogic Server, BEA uses the term “system” to differentiate from
classloaders related to J2EE applications (which BEA refers to as “application
classloaders™).

Loading a Class

Classloaders use a delegation model when loading a class. The classloader implementation first
checks its cache to see if the requested class has already been loaded. This class verification
improves performance in that its cached memory copy is used instead of repeated loading of a
class from disk. If the class is not found in its cache, the current classloader asks its parent for the
class. Only if the parent cannot load the class does the classloader attempt to load the class. If a
class exists in both the parent and child classloaders, the parent version is loaded. This delegation

Developing Applications with WebLogic Server

Java Classloader Overview

model is followed to avoid multiple copies of the same form being loaded. Multiple copies of the
same class can lead to a ClassCastException.

Classloaders ask their parent classloader to load a class before attempting to load the class
themselves. Classloaders in WebLogic Server that are associated with Web applications can be
configured to check locally first before asking their parent for the class. This allows Web
applications to use their own versions of third-party classes, which might also be used as part of
the WebLogic Server product. The “prefer-web-inf-classes Element” on page 6-3 section
discusses this in more detail.

prefer-web-inf-classes Element

The weblogic.xml Web application deployment descriptor contains a
<prefer-web-inf-classes> element (a sub-element of the <container-descriptor>
element). By default, this element is set to False. Setting this element to True subverts the
classloader delegation model so that class definitions from the Web application are loaded in
preference to class definitions in higher-level classloaders. This allows a Web application to use
its own version of a third-party class, which might also be part of WebLogic Server. See
“weblogic.xml Deployment Descriptor Elements.”

When using this feature, you must be careful not to mix instances created from the Web
application’s class definition with issuances created from the server’s definition. If such instances
are mixed, a ClassCastException results.

Listing 6-1 illustrates the prefer-web-inf-classes element, its description and default
value.

Listing 6-1 prefer-web-inf-classes Element

/**

* If true, classes located in the WEB-INF directory of a web-app will be
* loaded in preference to classes loaded in the application or system

* classloader.

* @default false

*/

boolean isPreferWebInfClasses();

void setPreferWebInfClasses (boolean b);

Developing Applications with WebLogic Server 6-3

http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html

Understanding WebLogic Server Application Classloading

Changing Classes in a Running Program

WebLogic Server allows you to deploy newer versions of application modules such as EJBs
while the server is running. This process is known as hot-deploy or hot-redeploy and is closely
related to classloading.

Java classloaders do not have any standard mechanism to undeploy or unload a set of classes, nor
can they load new versions of classes. In order to make updates to classes in a running virtual
machine, the classloader that loaded the changed classes must be replaced with a new classloader.
When a classloader is replaced, all classes that were loaded from that classloader (or any
classloaders that are offspring of that classloader) must be reloaded. Any instances of these
classes must be re-instantiated.

In WebLogic Server, each application has a hierarchy of classloaders that are offspring of the
system classloader. These hierarchies allow applications or parts of applications to be
individually reloaded without affecting the rest of the system. “WebLogic Server Application
Classloader Overview” on page 6-4 discusses this topic.

WebLogic Server Application Classloader Overview

6-4

This section provides an overview of the WebLogic Server application classloaders.

Application Classloading

WebLogic Server classloading is centered on the concept of an application. An application is
normally packaged in an Enterprise Archive (EAR) file containing application classes.
Everything within an EAR file is considered part of the same application. The following may be
part of an EAR or can be loaded as standalone applications:

e An Enterprise JavaBean (EJB) JAR file
e A Web application WAR file

e A resource adapter RAR file

Note: For information on Resource Adapters and classloading, see “About Resource Adapter
Classes” on page 6-15.

If you deploy an EJB and a Web application separately, they are considered two applications. If
they are deployed together within an EAR file, they are one application. You deploy modules
together in an EAR file for them to be considered part of the same application.

Developing Applications with WebLogic Server

WebLogic Server Application Classloader Overview

Every application receives its own classloader hierarchy; the parent of this hierarchy is the system
classpath classloader. This isolates applications so that application A cannot see the classloaders
or classes of application B. In hierarchy classloaders, no sibling or friend concepts exist.
Application code only has visibility to classes loaded by the classloader associated with the
application (or module) and classes that are loaded by classloaders that are ancestors of the
application (or module) classloader. This allows WebLogic Server to host multiple isolated
applications within the same JVM.

Application Classloader Hierarchy

WebLogic Server automatically creates a hierarchy of classloaders when an application is
deployed. The root classloader in this hierarchy loads any EJB JAR files in the application. A
child classloader is created for each Web application WAR file.

Because it is common for Web applications to call EJBs, the WebLogic Server application
classloader architecture allows JavaServer Page (JSP) files and servlets to see the EJB interfaces
in their parent classloader. This architecture also allows Web applications to be redeployed
without redeploying the EJB tier. In practice, it is more common to change JSP files and servlets
than to change the EJB tier.

The following graphic illustrates this WebLogic Server application classloading concept.

Developing Applications with WebLogic Server 6-5

Understanding WebLogic Server Application Classloading

Figure 6-1 WebLogic Server Classloading

System Classpath Loader

/

\

WebLogic Server /

Application 1 /
7

EJB1 EJB2

f

I
WebApp 1

Applicat% 2

EJB 3

f

\

WebApp 2

\

WebApp 3

6-6

If your application includes servlets and JSPs that use EJBs:

e Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them together in an
EAR file produces a classloader arrangement that allows the servlets and JSPs to find the EJB
classes. If you deploy the WAR and JAR files separately, WebLogic Server creates sibling
classloaders for them. This means that you must include the EJB home and remote interfaces in
the WAR file, and WebLogic Server must use the RMI stub and skeleton classes for EJB calls,
just as it does when EJB clients and implementation classes are in different JVMs. This concept
is discussed in more detail in the next section “Application Classloading and Pass-by-Value or

Reference” on page 6-14.

Developing Applications with WebLogic Server

Package the servlets and JSPs in a WAR file
Package the Enterprise JavaBeans in an EJB JAR file

Package the WAR and JAR files in an EAR file

WebLogic Server Application Classloader Overview

Note: The Web application classloader contains all classes for the Web application except for
the JSP class. The JSP class obtains its own classloader, which is a child of the Web
application classloader. This allows JSPs to be individually reloaded.

Custom Module Classloader Hierarchies

You can create custom classloader hierarchies for an application allowing for better control over
class visibility and reloadability. You achieve this by defining a classloader-structure
element in the weblogic-application.xml deployment descriptor file.

The following diagram illustrates how classloaders are organized by default for WebLogic
applications. An application level classloader exists where all EJB classes are loaded. For each
Web module, there is a separate child classloader for the classes of that module.

For simplicity, JSP classloaders are not described in the following diagram.

Figure 6-2 Standard Classloader Hierarchy

Application Classloader
[EJET] [EJBZ]

f]

Wyeh Application 1 Web Application 2
Classloader Classloader

This hierarchy is optimal for most applications, because it allows call-by-reference semantics
when you invoke EJBs. It also allows Web modules to be independently reloaded without
affecting other modules. Further, it allows code running in one of the Web modules to load
classes from any of the EJB modules. This is convenient, as it can prevent a Web module from
including the interfaces for EJBs that is uses. Note that some of those benefits are not strictly
J2EE-compliant.

The ability to create custom module classloaders provides a mechanism to declare alternate
classloader organizations that allow the following:

e Reloading individual EJB modules independently

Developing Applications with WebLogic Server 6-7

Understanding WebLogic Server Application Classloading

6-8

e Reloading groups of modules to be reloaded together
e Reversing the parent child relationship between specific Web modules and EJB modules

e Namespace separation between EJB modules

Declaring the Classloader Hierarchy

You can declare the classloader hierarchy in the WebLogic-specific application deployment
descriptor weblogic-application.xml.

The DTD for this declaration is as follows:

Listing 6-2 Declaring the Classloader Hierarchy

<!ELEMENT classloader-structure (module-ref*, classloader-structure*)>
<!ELEMENT module-ref (module-uri)>

<!ELEMENT module-uri (#PCDATA)>

The top-level element in weblogic-application.xml includes an optional
classloader-structure element. If you do not specify this element, then the standard

classloader is used. Also, if you do not include a particular module in the definition, it is assigned

a classloader, as in the standard hierarchy. That is, EJB modules are associated with the
application Root classloader, and Web application modules have their own classloaders.

The classloader-structure element allows for the nesting of classloader-structure

stanzas, so that you can describe an arbitrary hierarchy of classloaders. There is currently a
limitation of three levels. The outermost entry indicates the application classloader. For any
modules not listed, the standard hierarchy is assumed.

Note: JSP classloaders are not included in this definition scheme. JSPs are always loaded into
a classloader that is a child of the classloader associated with the Web module to which

it belongs.

For more information on the DTD elements, refer to Appendix A, “Enterprise Application
Deployment Descriptor Elements.”

The following is an example of a classloader declaration (defined in the
classloader-structure element in weblogic-application.xml):

Developing Applications with WebLogic Server

WebLogic Server Application Classloader Overview

Listing 6-3 Example Classloader Declaration

<classloader-structure>
<module-ref>
<module-uri>ejbl.jar</module-uri>
</module-ref>
<module-ref>
<module-uri>web3.war</module-uri>

</module-ref>

<classloader-structure>
<module-ref>
<module-uri>webl.war</module-uri>
</module-ref>

</classloader-structure>

<classloader-structure>
<module-ref>
<module-uri>ejb3.jar</module-uri>
</module-ref>
<module-ref>
<module-uri>web2.war</module-uri>
</module-ref>
<classloader-structure>
<module-ref>
<module-uri>webd .war</module-uri>
</module-ref>

</classloader-structure>

Developing Applications with WebLogic Server

Understanding WebLogic Server Application Classloading

<classloader-structure>
<module-ref>
<module-uri>ejb2.jar</module-uri>
</module-ref>
</classloader-structure>
</classloader-structure>

</classloader-structure>

The organization of the nesting indicates the classloader hierarchy. The above stanza leads to a
hierarchy shown in the following diagram.

Figure 6-3 Example Classloader Hierarchy

Application Classloader
[EJE1] [MEEBZ]

1 f

[WEB 1] [EJB3] WEB2]

t

WEE 4] | [EJB2]

User-Defined Classloader Restrictions

User-defined classloader restrictions give you better control over what is reloadable and provide
inter-module class visibility. This feature is primarily for developers. It is useful for iterative
development, but the reloading aspect of this feature is not recommended for production use,
because it is possible to corrupt a running application if an update includes invalid elements.

6-10 Developing Applications with WebLogic Server

WebLogic Server Application Classloader Overview

Custom classloader arrangements for namespace separation and class visibility are acceptable for
production use. However, programmers should be aware that the J2EE specifications say that
applications should not depend on any given classloader organization.

Some classloader hierarchies can cause modules within an application to behave more like
modules in two separate applications. For example, if you place an EJB in its own classloader so
that it can be reloaded individually, you receive call-by-value semantics rather than the
call-by-reference optimization BEA provides in our standard classloader hierarchy. Also note
that if you use a custom hierarchy, you might end up with stale references. Therefore, if you
reload an EJB module, you should also reload calling modules.

There are some restrictions to creating user-defined module classloader hierarchies; these are
discussed in the following sections.

Servlet Reloading Disabled

If you use a custom classloader hierarchy, servlet reloading is disabled for Web applications in
that particular application.

Nesting Depth

Nesting is limited to three levels (including the application classloader). Deeper nestings lead to
a deployment exception.

Module Types

Custom classloader hierarchies are currently restricted to Web and EJB modules.

Duplicate Entries

Duplicate entries lead to a deployment exception.

Interfaces

The standard WebLogic Server classloader hierarchy makes EJB interfaces available to all
modules in the application. Thus other modules can invoke an EJB, even though they do not
include the interface classes in their own module. This is possible because EJBs are always
loaded into the root classloader and all other modules either share that classloader or have a
classloader that is a child of that classloader.

With the custom classloader feature, you can configure a classloader hierarchy so that a callee’s
classes are not visible to the caller. In this case, the calling module must include the interface

Developing Applications with WebLogic Server 6-11

Understanding WebLogic Server Application Classloading

6-12

classes. This is the same requirement that exists when invoking on modules in a separate
application.

Call-by-Value Semantics

The standard classloader hierarchy provided with WebLogic Server allows for calls between
modules within an application to use call-by-reference semantics. This is because the caller is
always using the same classloader or a child classloader of the callee. With this feature, it is
possible to configure the classloader hierarchy so that two modules are in separate branches of
the classloader tree. In this case, call-by-value semantics are used.

In-Flight Work

Be aware that the classloader switch required for reloading is not atomic across modules. In fact,
updates to applications in general are not atomic. For this reason, it is possible that different
in-flight operations (operations that are occurring while a change is being made) might end up
accessing different versions of classes depending on timing.

Development Use Only

The development-use-only feature is intended for development use. Because updates are not
atomic, this feature is not suitable for production use.

Individual EJB Classloader for Implementation Classes

WebLogic Server allows you to reload individual EJB modules without requiring you to reload
other modules at the same time and having to redeploy the entire EJB module. This feature is
similar to how JSPs are currently reloaded in the WebLogic Server servlet container.

Because EJB classes are invoked through an interface, it is possible to load individual EJB
implementation classes in their own classloader. This way, these classes can be reloaded
individually without having to redeploy the entire EJB module. Below is a diagram of what the
classloader hierarchy for a single EJB module would look like. The module contains two EJBs
(Foo and Bar). This would be a sub-tree of the general application hierarchy described in the
previous section.

Developing Applications with WebLogic Server

WebLogic Server Application Classloader Overview

Figure 6-4 Example Classloader Hierarchy for a Single EJB Module

Module Classloader

Foo.class Ear.class
FooHome class EarHome class

[Any other classes either generated or from the JAR file]

f f

Foo Classloader Bar Classloader

Foolmpl.class Barlmpl class

Developing Applications with WebLogic Server 6-13

Understanding WebLogic Server Application Classloading

6-14

To perform a partial update of files relative to the root of the exploded application, use the
following command line:

Listing 6-4 Performing a Partial File Update

java weblogic.Deployer -adminurl url -user user -password password

-name myapp -redeploy myejb/foo.class

After the -redeploy command, you provide a list of files relative to the root of the exploded
application that you want to update. This might be the path to a specific element (as above) or a
module (or any set of elements and modules). For example:

Listing 6-5 Providing a List of Relative Files for Update

java weblogic.Deployer -adminurl url -user user -password password

-name myapp -redeploy mywar myejb/foo.class anotherejb

Given a set of files to be updated, the system tries to figure out the minimum set of things it needs
to redeploy. Redeploying only an EJB imp1 class causes only that class to be redeployed. If you
specify the whole EJB (in the above example, anotherejb) or if you change and update the EJB
home interface, the entire EJB module must be redeployed.

Depending on the classloader hierarchy, this redeployment may lead to other modules being
redeployed. Specifically, if other modules share the EJB classloader or are loaded into a
classloader that is a child to the EJB's classloader (as in the WebLogic Server standard classloader
module) then those modules are also reloaded.

Application Classloading and Pass-by-Value or Reference

Modern programming languages use two common parameter passing models: pass-by-value and
pass-by-reference. With pass-by-value, parameters and return values are copied for each method
call. With pass-by-reference, a pointer (or reference) to the actual object is passed to the method.

Developing Applications with WebLogic Server

Resolving Class References Between Modules and Applications

Pass by reference improves performance because it avoids copying objects, but it also allows a
method to modify the state of a passed parameter.

WebLogic Server includes an optimization to improve the performance of Remote Method
Interface (RMI) calls within the server. Rather than using pass by value and the RMI subsystem’s
marshalling and unmarshalling facilities, the server makes a direct Java method call using pass
by reference. This mechanism greatly improves performance and is also used for EJB 2.0 local
interfaces.

RMI call optimization and call by reference can only be used when the caller and callee are within
the same application. As usual, this is related to classloaders. Because applications have their own
classloader hierarchy, any application class has a definition in both classloaders and receives a
ClassCastException error if you try to assign between applications. To work around this,
WebLogic Server uses call-by-value between applications, even if they are within the same JVM.

Note: Calls between applications are slower than calls within the same application. Deploy
modules together as an EAR file to enable fast RMI calls and use of the EJB 2.0 local
interfaces.

Resolving Class References Between Modules and Applications

Your applications may use many different Java classes, including Enterprise Beans, servlets and
JavaServer Pages, utility classes, and third-party packages. WebLogic Server deploys
applications in separate classloaders to maintain independence and to facilitate dynamic
redeployment and undeployment. Because of this, you need to package your application classes
in such a way that each module has access to the classes it depends on. In some cases, you may
have to include a set of classes in more than one application or module. This section describes
how WebLogic Server uses multiple classloaders so that you can stage your applications
successfully.

About Resource Adapter Classes

With this release of WebLogic Server, each resource adapter now uses its own classloader to load
classes (similar to Web applications). As a result, modules like Web applications and EJBs that
are packaged along with a resource adapter in an application archive (EAR file) do not have
visibility into the resource adapter’s classes. If such visibility is required, you must place the
resource adapter classes in APP-INF/classes. You can also archive these classes (using the
JAR utility) and place them in the APP-INF/1ib of the application archive.

Make sure that no resource-adapter specific classes exist in your WebLogic Server system
classpath. If you need to use resource adapter-specific classes with Web modules (for example,

Developing Applications with WebLogic Server 6-15

Understanding WebLogic Server Application Classloading

6-16

an EJB or Web application), you must bundle these classes in the corresponding module’s archive
file (for example, the JAR file for EJBs or the WAR file for Web applications).

Packaging Shared Utility Classes

WebLogic Server provides a location within an EAR file where you can store shared utility
classes. Place utility JAR files in the APP-INF/11ib directory and individual classes in the
APP-INF/classes directory. (Do not place JAR files in the /classes directory or classes in
the /1ib directory.) These classes are loaded into the root classloader for the application.

This feature obviates the need to place utility classes in the system classpath or place classes in
an EJB JAR file (which depends on the standard WebLogic Server classloader hierarchy). Be
aware that using this feature is subtly different from using the manifest C1ass-Path described in
the following section. With this feature, class definitions are shared across the application. With
manifest Class-Path, the classpath of the referencing module is simply extended, which means
that separate copies of the classes exist for each module.

Manifest Class-Path

The J2EE specification provides the manifest Class-Path entry as a means for a module to
specify that it requires an auxiliary JAR of classes. You only need to use this manifest
Class-Path entry if you have additional supporting JAR files as part of your EJB JAR or WAR
file. In such cases, when you create the JAR or WAR file, you must include a manifest file with
a Class-Path element that references the required JAR files.

The following is a simple manifest file that references a utility.jar file:

Manifest-Version: 1.0 [CRLF]
Class-Path: utility.jar [CRLF]

In the first line of the manifest file, you must always include the Mani fest-Version attribute,
followed by a new line (CR | LF |CRLF) and then the C1ass-Path attribute. More information
about the manifest format can be found at:
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR

The manifest Class-Path entries refer to other archives relative to the current archive in which
these entries are defined. This structure allows multiple WAR files and EJB JAR files to share a
common library JAR. For example, if a WAR file contains a manifest entry of y. jar, this entry
should be next to the WAR file (not within it) as follows:

/<directory>/X.war

/<directory>/y.jars

Developing Applications with WebLogic Server

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR

Sharing Applications and Modules By Using J2EE Libraries

The manifest file itself should be located in the archive at META-INF/MANIFEST . MF.

For more information, see

http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html.

Sharing Applications and Modules By Using J2EE Libraries

This release of WebLogic Server includes a new feature, J2EE libraries, that provides an easy
way to share one or more different types of J2EE modules among multiple Enterprise
Applications. A J2EE library is a single module or collection of modules that is registered with
the J2EE application container upon deployment. For more information, see Chapter 8, “Creating
Shared J2EE Libraries and Optional Packages.”

Adding JARs to the System Classpath

WebLogic Server 9.0 introduces a 1ib subdirectory, located in the domain directory, that you can
use to add one or more JAR files to the WebLogic Server system classpath when servers start up.
The 1ib subdirectory is intended for JAR files that change infrequently and are required by all or
most applications deployed in the server, or by WebLogic Server itself. For example, you might
use the 1ib directory to store third-party utility classes that are required by all deployments in a
domain. You can also use it to apply patches to WebLogic Server.

The 1ib directory is not recommended as a general-purpose method for sharing a JARs between
one or two applications deployed in a domain, or for sharing JARs that need to be updated
periodically. If you update a JAR in the 1ib directory, you must reboot all servers in the domain
in order for applications to realize the change. If you need to share a JAR file or J2EE modules
among several applications, use the J2EE libraries feature described in “Creating Shared J2EE
Libraries and Optional Packages” on page 8-1.

To share JARs using the 1ib directory:
1. Shutdown all servers in the domain.

2. Copy the JAR file(s) to share into a 1ib subdirectory of the domain directory. For example:

mkdir c:\bea\weblogic90\samples\domains\wl_server\lib
cp c:\3rdpartyjars\utility.jar
c:\bea\weblogic90\samples\domains\wl_server\lib

Note: WebLogic Server must have read access to the 1ib directory during startup.

Note: The Administration Server does not automatically copy files in the 1ib directory to
Managed Servers on remote machines. If you have Managed Servers that do not share
the same physical domain directory as the Administration Server, you must manually

Developing Applications with WebLogic Server 6-17

http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html

Understanding WebLogic Server Application Classloading

copy JAR file(s) to the domain_name/1ib directory on the Managed Server
machines.

3. Start the Administration Server and all Managed Servers in the domain. WebLogic Server
appends JAR files found in the 1ib directory to the system classpath. Multiple files are
added in alphabetical order.

6-18 Developing Applications with WebLogic Server

CHAPTERa

Developing Applications for Production
Redeployment

The following sections describes how to program and maintain applications use the production
redeployment strategy:

e “What is Production Redeployment?” on page 7-2

e “Supported and Unsupported Application Types” on page 7-2

e “Programming Requirements and Conventions” on page 7-3

e “Assigning an Application Version” on page 7-5

e “Upgrading Applications to Use Production Redeployment” on page 7-6

e “Accessing Version Information” on page 7-7

Developing Applications with WebLogic Server 1-1

Developing Applications for Production Redeployment

What is Production Redeployment?

Production redeployment enables an Administrator to redeploy a new version of an application
in a production environment without stopping the deployed application or otherwise interrupting
the application’s availability to clients. Production redeployment works by deploying a new
version of an updated application alongside an older version of the same application. WebLogic
Server automatically manages client connections so that only new client requests are directed to
the new version. Clients already connected to the application during the redeployment continue
to use the older, retiring version of the application until they complete their work.

See Using Production Redeployment to Upgrade Applications for more information.

Supported and Unsupported Application Types

1-2

Production redeployment is supported primarily for applications with a Web application entry
point (HTTP clients). WebLogic Server 9.0 can automatically manage HTTP client entry points
to isolate connections to the newer and older application versions. This means that production
redeployment is supported for standalone Web Application modules, and for Enterprise
Applications that are accessed via an embedded Web Application module.

Applications that are accessed by Java clients, including applets, are specifically not supported
with production redeployment. Java clients that attempt a JNDI lookup of global bindings for a
versioned application receive a warning. These types of lookups must be avoided because they
interfere with WebLogic Server’s automatic management of client entry points during
application retirement and can cause an application version to be retired prematurely. Clients can
disable this checking by setting weblogic.jndi.WLContext . ALLOW_EXTERNAL_APP_LOOKUP
to true when performing JNDI lookups.

Enterprise Applications can contain any of the supported J2EE module types except Web
Services modules. Web Services modules are not supported for production redeployment, even
if you package the service in a WAR file. When a production redeployment operation is
requested, the WebLogic Server deployment API checks for the presence of Web Services
modules and throws an exception if one is found. Enterprise Applications can also include
application-scoped JMS and JDBC modules.

If an Enterprise Application includes a JCA resource adapter module, the module:
e Must be JCA 1.5 compliant

e Must implement the weblogic.connector.extensions. Suspendable interface

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/redeploy.html#productionredeployment

Programming Requirements and Conventions

e Must be used in an application-scoped manner, having enable-access-outside-app set
to “true” (the default value).

Before resource adapters in a newer version of the EAR are deployed, resource adapters in the
older application version receive a callback. WebLogic Server then deploys the newer application
version and retires the entire older version of the EAR.

Additional Application Support

Additional production redeployment support is provided for Enterprise Applications that are
accessed by inbound JMS messages from a global JIMS destination, and that use one or more
message-driven beans as consumers. For this type of application, WebLogic Server suspends
message-driven beans in the older, retiring application version before deploying message-driven
beans in the newer version. Production redeployment is not supported with JMS consumers that
use the JMS API for global JMS destinations. If the message-driven beans need to receive all
messages published from topics, including messages published while bean are suspended, use
durable subscribers.

Programming Requirements and Conventions

WebLogic Server performs production redeployment by deploying two instances of an
application simultaneously. You must observe certain programming conventions to ensure that
multiple instances of the application can co-exist in a WebLogic Server domain. The following
sections describe each programming convention required for using production redeployment.

Applications Should Be Self-Contained

As a best practice, applications that use the in-place redeployment strategy should be
self-contained in their use of resources. This means you should generally use application-scoped
JMS and JDBC resources, rather than global resources, whenever possible for versioned
applications.

If an application must use a global resource, you must ensure that the application supports safe,
concurrent access by multiple instances of the application. This same restriction also applies if
the application uses external (separately-deployed) applications, or uses an external property file.
WebLogic Server does not prevent the use of global resources with versioned applications, but
you must ensure that resources are accessed in a safe manner.

Looking up a global JNDI resource from within a versioned application results in a warning
message. To disable this check, set the INDI environment property

Developing Applications with WebLogic Server 1-3

Developing Applications for Production Redeployment

7-4

weblogic.jndi.WLContext .ALLOW_GLOBAL_RESOURCE_LOOKUP to true when performing
the JNDI lookup.

Similarly, looking up an external application results in a warning unless you set the JNDI
environment property, weblogic.jndi.WLContext .ALLOW_EXTERNAL_APP_LOOKUP, to true.

Versioned Applications Access the Current Version JNDI Tree by
Default

WebLogic Server binds application-scoped resources, such as JMS and JDBC application
modules, into a local JNDI tree available to the application. As with non-versioned applications,
versioned applications can look up application-scoped resources directly from this local tree.
Application-scoped JMS modules can be accessed via any supported IMS interfaces, such as the
JMS API or a message-driven bean.

Application modules that are bound to the global INDI tree should be accessed only from within
the same application version. WebLogic Server performs version-aware JNDI lookups and
bindings for global resources deployed in a versioned application. By default, an internal JNDI
lookup of a global resource returns bindings for the same version of the application.

If the current version of the application cannot be found, you can use the INDI environment
property weblogic.jndi.WLContext .RELAX_VERSION_LOOKUP to return bindings from the
currently active version of the application, rather than the same version.

Warning: Setweblogic.jndi.WLContext.RELAX VERSION_LOOKUP to true onlyifyou are
certain that the newer and older version of the resource that you are looking up are
compatible with one another.

Security Providers Must Be Compatible

Any security provider used in the application must support the WebLogic Server application
versioning SSPI. The default WebLogic Server security providers for authorization, role
mapping, and credential mapping support the application versioning SSPI.

Applications Must Specify a Version Identifier

In order to use production redeployment, both the current, deployed version of the application and
the updated version of the application must specify unique version identifiers. See “Assigning an
Application Version” on page 7-5.

Developing Applications with WebLogic Server

Assigning an Application Version

Applications Can Access Name and Identifier

Versioned applications can programmatically obtain both an application name, which remains
constant across different versions, and an application identifier, which changes to provide a
unique label for different versions of the application. Use the application name for basic display
or error messages that refer to the application’s name irrespective of the deployed version. Use
the application ID when the application must provide unique identifier for the deployed version
of the application. See “Accessing Version Information” on page 7-7 for more information about
the MBean attributes that provide the name and identifier.

Client Applications Use Same Version when Possible

As described in “What is Production Redeployment?” on page 7-2, WebLogic Server attempts to
route a client application’s requests to the same version of the application until all of the client’s
in-progress work has completed. However, if an application version is retired using a timeout
period, or is undeployed, the client’s request will be routed to the active version of the
application. In other words, a client’s association with a given version of an application is
maintained only on a “best-effort basis.”

This behavior can be problematic for client applications that recursively access other applications
when processing requests. WebLogic Server attempts to dispatch requests to the same versions
of the recursively-accessed applications, but cannot guarantee that an intermediate application
version is not undeployed manually or after a timeout period. If you have a group of related
applications with strict version requirements, BEA recommends packaging all of the applications
together to ensure version consistency during production redeployment.

Assigning an Application Version

BEA recommends that you specify the version identifier in the MANIFEST . MF of the application,
and automatically increment the version each time a new application is released for deployment.
This ensures that production redeployment is always performed when the administrator or
deployer redeploys the application.

For testing purposes, a deployer can also assign a version identifier to an application during
deployment and redeployment. See Assigning a Version Identifier During Deployment and
Redeployment in Deploying Applications to WebLogic Server.

Developing Applications with WebLogic Server 1-5

http://e-docs.bea.com/wls/docs90/deployment/redeploy.html#assignversion
http://e-docs.bea.com/wls/docs90/deployment/redeploy.html#assignversion
http://e-docs.bea.com/wls/docs90/deployment/index.html

Developing Applications for Production Redeployment

Application Version Conventions

WebLogic Server obtains the application version from the value of the
Weblogic-Application-Version property in the MANIFEST . MF file. The version string can be
a maximum of 215 characters long, and must consist of valid characters as identified in

Figure 7-1.

Table 7-1 Valid and Invalid Characters

Valid ASCII Characters Invalid Version Constructs

a-z

A-Z

0-9

(T3}

period (““.”), underscore
(“_"), or hyphen (“-”) in
combination with other
characters

For example, the following manifest file content describes an application with version “v1”:

Manifest-Version: 1.0
Created-By: 1.4.1_05-b01 (Sun Microsystems Inc.)

Weblogic-Application-Version: vl

Upgrading Applications to Use Production Redeployment

1-6

If you are upgrading applications for deployment to WebLogic Server 9.0, note that the Name
attribute retrieved from AppDeploymentMBean now returns a unique application identifier
consisting of both the deployed application name and the application version string. Applications
that require only the deployed application name must use the new ApplicationName attribute
instead of the Name attribute. Applications that require a unique identifier can use either the Name
or ApplicationIdentifier attribute, as described in “Accessing Version Information” on
page 7-7.

Developing Applications with WebLogic Server

Accessing Version Information

Accessing Version Information

Your application code can use new MBean attributes to retrieve version information for display,
logging, or other uses. Figure 7-2 describes the read-only attributes provided by
ApplicationMBean.

Table 7-2 Read-Only Version Attributes in ApplicationMBean

Attribute Name Description

ApplicationName A String that represents the deployment name of the
application

VersionIdentifier A String that uniquely identifies the current
application version across all versions of the same
application

ApplicationIdentifier A String that uniquely identifies the current
application version across all deployed applications
and versions

ApplicationRuntimeMBean also provides version information in the new read-only attributes
described in Figure 7-3, “Read-Only Version Attributes in ApplicationRuntimeMBean,” on
page 7-7.

Table 7-3 Read-Only Version Attributes in ApplicationRuntimeMBean

Attribute Name Description
ApplicationName A String that represents the deployment name of the
application

Developing Applications with WebLogic Server 1-1

Developing Applications for Production Redeployment

1-8

Attribute Name

Description

ApplicationVersion

A string that represents the version of the
application.

ActiveVersionState

An integer that indicates the current state of the
active application version. Valid states for an active
version are:

* ACTIVATED—indicates that one or more
modules of the application are active and
available for processing new client requests.

* PREPARED—indicates that WebLogic Server
has prepared one or more modules of the
application, but that it is not yet active.

* UNPREPARED—indicates that no modules of
the application are prepared or active.

See the WebLogic Server 9.0 API Reference for
more information.

Note that the currently active version does not
always correspond to the last-deployed version,
because the Administrator can reverse the
production redeployment process. See Rolling Back
the Production Redeployment Process in Deploying
Applications to WebLogic Server.

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/javadocs/index.html
http://e-docs.bea.com/wls/docs90/deployment/redeploy.html#revert
http://e-docs.bea.com/wls/docs90/deployment/redeploy.html#revert
http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/deployment/index.html

CHAPTERa

Creating Shared J2EE Libraries and
Optional Packages

The following sections describe how to share components and classes among applications using
shared J2EE libraries and optional packages:

“Overview of Shared J2EE Libraries and Optional Packages” on page 8-2
“Creating Shared J2EE Libraries” on page 8-5

“Referencing Shared J2EE Libraries in an Enterprise Application” on page 8-11
“Referencing Optional Packages from a J2EE Application or Module” on page 8-14
“Using weblogic.appmerge to Merge Libraries” on page 8-16

“Integrating Shared J2EE Libraries with the Split Development Directory Environment” on
page 8-18

“Deploying Shared J2EE Libraries and Dependent Applications” on page 8-18
“Web Application Shared J2EE Library Information” on page 8-19

“Accessing Registered Shared J2EE Library Information with LibraryRuntimeMBean” on
page 8-19

“Order of Precedence of Modules When Referencing Shared J2EE Libraries” on page 8-20

“Best Practices for Using Shared J2EE Libraries” on page 8-21

Developing Applications with WebLogic Server 8-1

Creating Shared J2EE Libraries and Optional Packages

Overview of Shared J2EE Libraries and Optional Packages

8-2

Prior to WebLogic Server 9.0, multiple Enterprise Applications could not easily share a single
J2EE module or a collection of modules. Sharing J2EE modules required you to either package
a copy of the modules in multiple EARs, or add the paths to the shared modules to the system
classpath and add duplicate deployment descriptors for the shared modules into each application
that referenced them. Copying modules made subsequent application updates difficult, because
an update to a shared module required re-copying and re-packaging all Enterprise Applications
that used the module. Adding modules to the system classpath also made updates difficult,
because it required rebooting the WebLogic Server instance in order to use an updated module.

The shared J2EE library feature in WebLogic Server 9.0 provides an easy way to share one or
more different types of J2EE modules among multiple Enterprise Applications. A shared J2EE
library is a single module or collection of modules that is registered with the J2EE application
container upon deployment. A shared J2EE library can be any of the following:

standalone EJB module

standalone Web application module

multiple EJB modules packaged in an Enterprise Application

multiple Web application modules package in an Enterprise Application

e single plain JAR file

BEA recommends that you package a shared J2EE library into its appropriate archive file (EAR,
JAR, or WAR). However, for development purposes, you may choose to deploy shared J2EE
libraries as exploded archive directories to facilitate repeated updates and redeployments.

After the shared J2EE library has been registered, you can deploy Enterprise Applications that
reference the library. Each referencing application receives a reference to the required library on
deployment, and can use the modules that make up the library as if they were packaged as part of
the referencing application itself. The library classes are added to the classpath of the referencing
application, and the referencing application’s deployment descriptors are merged (in memory)
with those of the modules that make up the shared J2EE library.

In general, this topic discusses shared J2EE libraries that can be referenced only by Enterprise
Applications. You can also create libraries that can be referenced only by another Web
application. The functionality is very similar to application libraries, although the method of
referencing them is slightly different. See “Web Application Shared J2EE Library Information”
on page 8-19 for details.

Developing Applications with WebLogic Server

Overview of Shared J2EE Libraries and Optional Packages

Note: WebLogic Server 9.0 also provides a simple way to add one or more JAR files to the
WebLogic Server System classpath, using the 1ib subdirectory of the domain directory.
See “Adding JARs to the System Classpath” on page 6-17.

Optional Packages

WebLogic Server supports optional packages as described in the J2EE 1.4 Specification, Section
8.2 Optional Package Support, with versioning described in Optional Package Versioning.
Optional packages provide similar functionality to J2EE libraries, allowing you to easily share a
single JAR file among multiple applications. As with J2EE libraries, optional packages must first
be registered with WebLogic Server by deploy the associated JAR file as an optional package.
After registering the package, you can deploy J2EE modules that reference the package in their
manifest files.

Optional packages differ from J2EE libraries because optional packages can be referenced from
any J2EE module (EAR, JAR, WAR, or RAR archive) or exploded archive directory. J2EE
libraries can be referenced only from a valid Enterprise Application.

For example, third-party Web Application Framework classes needed by multiple Web
Applications can be packaged and deployed in a single JAR file, and referenced by multiple Web
Application modules in the domain. Optional packages, rather than J2EE libraries, are used in this
case, because the individual Web Application modules must reference the shared JAR file. (With
J2EE libraries, only a complete Enterprise Application can reference the library).

Note: BEA documentation and WebLogic Server utilities use the term library to refer to both
J2EE libraries and optional packages. Optional packages are called out only when
necessary.

Versioning Support for Libraries

WebLogic Server supports versioning of shared J2EE libraries, so that referencing applications
can specify a required minimum version of the library to use, or an exact, required version.
WebLogic Server supports two levels of versioning for shared J2EE libraries, as described in the
Optional Package Versioning document:

e Specification Version—Identifies the version number of the specification (for example, the
J2EE specification version) to which a shared J2EE library or optional package conforms.

e Implementation Version—Identifies the version number of the actual code implementation
for the library or package. For example, this would correspond to the actual revision
number or release number of your code. Note that you must also provide a specification
version in order to specify an implementation version.

Developing Applications with WebLogic Server 8-3

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/versioning.html
http://java.sun.com/j2se/1.4.2/docs/guide/extensions/versioning.html

Creating Shared J2EE Libraries and Optional Packages

As a best practice, BEA recommends that you always include version information (an
implementation version, or both an implementation and specification version) when creating
shared J2EE libraries. Creating and updating version information as you develop shared
components allows you to deploy multiple versions of those components simultaneously for
testing. If you include no version information, or fail to increment the version string, then you
must undeploy existing libraries before you can deploy the newer one. See “Deploying Shared
J2EE Libraries and Dependent Applications” on page 8-18.

Versioning information in the referencing application determines the library and package version
requirements for that application. Different applications can require different versions of a given
library or package. For example, a production application may require a specific version of a
library, because only that library has been fully approved for production use. An internal
application may be configured to always use a minimum version of the same library. Applications
that require no specific version can be configured to use the latest version of the library.
“Referencing Shared J2EE Libraries in an Enterprise Application” on page 8-11.

Shared J2EE Libraries and Optional Packages Compared

Optional packages and shared J2EE libraries have the following features in common:
e Both are registered with WebLogic Server instances at deployment time.
e Both support an optional implementation version and specification version string.

e Applications that reference shared J2EE libraries and optional packages can specify
required versions for the shared files.

Optional packages differ from shared J2EE Libraries in the following basic ways:

e Optional packages are plain JAR files, whereas shared J2EE libraries can be plain JAR
files, J2EE Enterprise Applications, or standalone J2EE modules (EJB and Web
applications). This means that libraries can have valid J2EE and WebLogic Server
deployment descriptors. Any deployment descriptors in an optional package JAR file are
ignored.

e Any J2EE application or module can reference an optional package (using
META-INF/MANIFEST.MF), whereas only Enterprise Applications and Web applications can
reference a shared J2EE library (using weblogic-application.xml or weblogic.xml)

e Optional packages can reference other optional packages, but shared J2EE libraries cannot
reference other shared J2EE libraries.

8-4 Developing Applications with WebLogic Server

Creating Shared J2EE Libraries

In general, use shared J2EE libraries when you need to share one or more EJB, Web Application
or Enterprise Application modules among different Enterprise Applications. Use optional
packages when you need to share one or more classes (packaged in a JAR file) among different
J2EE modules.

Plain JAR files can be shared either as libraries or optional packages. Use optional packages if
you want to:

e Share a plain JAR file among multiple J2EE modules
e Reference shared JAR files from other shared JARs

e Share plain JARs as described by the J2EE 1.4 specification

Use shared J2EE libraries to share a plain JAR file if you only need to reference the JAR file from
one or more Enterprise Applications, and you do not need to maintain strict compliance with the
J2EE specification.

Note: BEA documentation and WebLogic Server utilities use the term shared J2EE library to
refer to both libraries and optional packages. Optional packages are called out only when
necessary.

Additional Information

For information about deploying and managing shared J2EE libraries, optional packages, and
referencing applications from the Administrator’s perspective, see Deploying Shared J2EE
Libraries and Dependent Applications in Deploying Applications to WebLogic Server.

Creating Shared J2EE Libraries

To create a new shared J2EE library that you can share with multiple applications:

1. Assemble the shared J2EE library into a valid, deployable J2EE module or Enterprise
Application. The library must have the required J2EE deployment descriptors for the J2EE
module or for an Enterprise Application.

See “Assembling Shared J2EE Library Files” on page 8-6.

2. Assemble optional package classes into a working directory.

See “Assembling Optional Package Class Files” on page 8-7.

3. Create and edit the MANIFEST . MF file for the shared J2EE library to specify the name and
version string information.

Developing Applications with WebLogic Server 8-5

http://e-docs.bea.com/wls/docs90/deployment/deploy.html#libraries
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#libraries
http://e-docs.bea.com/wls/docs90/deployment/index.html

Creating Shared J2EE Libraries and Optional Packages

8-6

See “Editing Manifest Attributes for Shared J2EE Libraries” on page 8-7.

4. Package the shared J2EE library for distribution and deployment.
See “Packaging Shared J2EE Libraries for Distribution and Deployment” on page 8-10.

Assembling Shared J2EE Library Files

The following types of J2EE modules can be deployed as a shared J2EE library:
e An EJB module, either an exploded directory or packaged in a JAR file.
e A Web Application module, either an exploded directory or packaged in a WAR file.
e An Enterprise application, either an exploded directory or packaged in an EAR file.

e A plain Java class or classes packaged in a JAR file.

Shared J2EE libraries have the following restrictions:
e You cannot reference a shared J2EE library from another library.

e You must ensure that context roots in Web application modules of the shared J2EE library
do not conflict with context roots in the referencing Enterprise Application. If necessary,
you can configure referencing applications to override a library’s context root. See
“Referencing Shared J2EE Libraries in an Enterprise Application” on page 8-11.

e Shared J2EE libraries cannot be nested. For example, if you are deploying an EAR as a
shared J2EE library, the entire EAR must be designated as the library. You cannot
designate individual J2EE modules within the EAR as separate, named libraries.

e As with any other J2EE module or Enterprise Application, a shared J2EE library must be
configured for deployment to the target servers or clusters in your domain. This means that
a library requires valid J2EE deployment descriptors as well as WebLogic Server-specific
deployment descriptors and an optional deployment plan. See Deploying Applications to
WebLogic Server.

BEA recommends packaging shared J2EE libraries as Enterprise Applications, rather than as
standalone J2EE modules. This is because the URI of a standalone module is derived from the
deployment name, which can change depending on how the module is deployed. By default,
WebLogic Server uses the deployment archive filename or exploded archive directory name as
the deployment name. If you redeploy a standalone shared J2EE library from a different file or
location, the deployment name and URI also change, and referencing applications that use the
wrong URI cannot access the deployed library.

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/deployment/index.html

Creating Shared J2EE Libraries

If you choose to deploy a shared J2EE library as a standalone J2EE module, always specify a
known deployment name during deployment and use that name as the URI in referencing
applications.

Assembling Optional Package Class Files

Any set of classes can be organized into an optional package file. The collection of shared classes
will eventually be packaged into a standard JAR archive. However, because you will need to edit
the manifest file for the JAR, begin by assembling all class files into a working directory:

1. Create a working directory for the new optional package. For example:

mkdir /apps/myOptPkg

2. Copy the compiled class files into the working directory, creating the appropriate package
sudirectories as necessary. For example:

mkdir -p /apps/myOptPkg/org/myorg/myProduct
cp /build/classes/myOptPkg/org/myOrg/myProduct/*.class
/apps/myOptPkg/org/myOrg/myProduct

3. Ifyou already have a JAR file that you want to use as an optional package, extract its
contents into the working directory so that you can edit the manifest file:

cd /apps/myOptPkg
jar xvf /build/libraries/myLib.jar

Editing Manifest Attributes for Shared J2EE Libraries

The name and version information for a shared J2EE library are specified in the
META-INF/MANIFEST.MF file. Table 8-1describes the valid shared J2EE library manifest
attributes.

Developing Applications with WebLogic Server 8-7

Creating Shared J2EE Libraries and Optional Packages

Tahle 8-1 Manifest Attributes for J2EE Libraries

Attribute Description

Extension-Name An optional string value that identifies the name of the shared
J2EE library. Referencing applications must use the exact
Extension-Name value to use the library.

As a best practice, always specify an Extension-Name value
for each library. If you do not specify an extension name, one is
derived from the deployment name of the library. Default
deployment names are different for archive and exploded archive
deployments, and they can be set to arbitrary values in the
deployment command.

8-8 Developing Applications with WebLogic Server

Creating Shared J2EE Libraries

Attribute Description

Specification-Version An optional String value that defines the specification version of
the shared J2EE library. Referencing applications can optionally
specify a required Specification-Version for a library; if
the exact specification version is not available, deployment of the
referencing application fails.

The Specification-Version uses the following format:

Major/minor version format, with version and revision
numbers separated by periods (such as “9.0.1.17)

Referencing applications can be configured to require either an
exact version of the shared J2EE library, a minimum version, or
the latest available version.

The specification version for a shared J2EE library can also be set
at the command-line when deploying the library, with some
restrictions. See “Deploying Shared J2EE Libraries and
Dependent Applications” on page 8-18.

Implementation-Version An optional String value that defines the code implementation
version of the shared J2EE library. You can provide an
Implementation-Version only if you have also defined a
Specification-Version.

Implementation-Version uses the following formats:

* Major/minor version format, with version and revision
numbers separated by periods (such as “9.0.1.17)

» Text format, with named versions (such as “9011Beta” or
“9.0.1.1.B”)

If you use the major/minor version format, referencing
applications can be configured to require either an exact version
of the shared J2EE library, a minimum version, or the latest
available version. If you use the text format, referencing
applications must specify the exact version of the library.

The implementation version for a shared J2EE library can also be
set at the command-line when deploying the library, with some
restrictions. See “Deploying Shared J2EE Libraries and
Dependent Applications” on page 8-18.

To specify attributes in a manifest file:

Developing Applications with WebLogic Server 8-9

Creating Shared J2EE Libraries and Optional Packages

8-10

. Open (or create) the manifest file using a text editor. For the example shared J2EE library, you

would use the commands:

cd /apps/myLibrary
mkdir META-INF
emacs META-INF/MANIFEST.MF

For the optional package example, use:

cd /apps/myOptPkg
mkdir META-INF
emacs META-INF/MANIFEST.MF

. In the text editor, add a string value to specify the name of the shared J2EE library. For

example:
Extension-Name: myExtension

Applications that reference the library must specify the exact Extension-Name in order to
use the shared files.

. As a best practice, enter the optional version information for the shared J2EE library. For

example:

Extension-Name: myExtension
Specification-Version: 2.0
Implementation-Version: 9.0.0

Using the major/minor format for the version identifiers provides the most flexibility when
referencing the library from another application (see Table 8-1 on page 8)

Note: Although you can optionally specify the Specification-version and
Implementation-Version at the command-line during deployment, BEA
recommends that you include these strings in the MANTFEST . MF file. Including
version strings in the manifest ensures that you can deploy new versions of the library
alongside older versions. See “Deploying Shared J2EE Libraries and Dependent
Applications” on page 8-18.

Packaging Shared J2EE Libraries for Distribution and
Deployment

If you are delivering the shared J2EE Library or optional package for deployment by an
Administrator, package the deployment files into an archive file (an .EaR file or standalone
module archive file for shared J2EE libraries, or a simple . JaR file for optional packages) for
distribution. See “Deploying and Packaging from a Split Development Directory” on page 5-1.

Developing Applications with WebLogic Server

Referencing Shared J2EE Libraries in an Enterprise Application

Because a shared J2EE library is packaged as a standard J2EE application or standalone module,
you may also choose to export a library’s deployment configuration to a deployment plan, as
described in Deploying Applications to WebLogic Server. Optional package .JAaR files contain
no deployment descriptors and cannot be exported.

For development purposes, you may choose to deploy libraries as exploded archive directories to
facilitate repeated updates and redeployments.

Referencing Shared J2EE Libraries in an Enterprise Application

A J2EE application can reference a registered shared J2EE library using entries in the
application’s weblogic-application.xml deployment descriptor. Table 8-2 describes the
XML elements that define a library reference.

Tahle 8-2 weblogic-application.xml Elements for Referencing a Shared J2EE Library

Element

library-ref

library-name

specification-version

Description

library-ref is the parent element in which you define a reference to a
shared J2EE library. Enclose all other elements within 1ibrary-ref.

A required string value that specifies the name of the shared J2EE library to
use. library-name must exactly match the value of the
Extension-Name attribute in the library’s manifest file. (See Table 8-1.)

An optional String value that defines the required specification version of
the shared J2EE library. If this element is not set, the application uses a
matching library with the highest specification version. If you specify a
string value using major/minor version format, the application uses a
matching library with the highest specification version that is not below the
configured value. If all available libraries are below the configured
specification-version, the application cannot be deployed. The
required version can be further constrained by using the exact-match
element, described below.

If you specity a String value that does not use major/minor versioning
conventions (for example, 9.0BETA) the application requires a shared J2EE
library having the exact same string value in the
Specification-Version attribute in the library’s manifest file. (See
Table 8-1 on page 8.)

Developing Applications with WebLogic Server 8-11

http://e-docs.bea.com/wls/docs90/deployment/index.html

Creating Shared J2EE Libraries and Optional Packages

Element

implementation-version

exact-match

context-root

8-12

Description

An optional String value that specifies the required implementation version
of the shared J2EE library. If this element is not set, the application uses a
matching library with the highest implementation version. If you specify a
string value using major/minor version format, the application uses a
matching library with the highest implementation version that is not below
the configured value. If all available libraries are below the configured
implementation-version, the application cannot be deployed. The
required implementation version can be further constrained by using the
exact-match element, described below.

If you specify a String value that does not use major/minor versioning
conventions (for example, 9.0BETA) the application requires a shared J2EE
library having the exact same string value in the
Implementation-Version attribute in the library’s manifest file. (See
Table 8-1 on page 8.)

An optional boolean value that determines whether the application should
use a shared J2EE library with a higher specification or implementation
version than the configured value, if one is available. By default this
element is false, which means that WebLogic Server uses higher-versioned
libraries if they are available. Set this element to true to require the exact
matching version as specified in the specification-version and
implementation-version elements.

An optional String value that provides an alternate context root to use for a
Web application shared J2EE library. Use this element if the context root of
a library conflicts with the context root of a Web Application in the
referencing J2EE application.

Web application shared J2EE library refers to special kind of library: a Web
application that is referenced by another Web application. See “Web
Application Shared J2EE Library Information” on page 8-19.

For example, this simple entry in the weblogic-application.xml descriptor references a
shared J2EE library, myLibrary:

<library-ref>

<library-name>myLibrary</library-name>

</library-ref>

In the above example, WebLogic Server attempts to find a library name myLibrary when
deploying the dependent application. If more than one copy of myLibrary is registered,

Developing Applications with WebLogic Server

Referencing Shared J2EE Libraries in an Enterprise Application

WebLogic Server selects the library with the highest specification version. If multiple copies of
the library use the selected specification version, WebLogic Server selects the copy having the
highest implementation version.

This example references a shared J2EE library with a requirement for the specification version:

<library-ref>
<library-name>myLibrary</library-name>
<specification-version>2.0</specification-version>

</library-ref>

In the above example, WebLogic Server looks for matching libraries having a specification
version of 2.0 or higher. If multiple libraries are at or above version 2.0, WebLogic Server
examines the selected libraries that use Float values for their implementation version and selects
the one with the highest version. Note that WebLogic Server ignores any selected libraries that
have a non-Float value for the implementation version.

This example references a shared J2EE library with both a specification version and a non-Float
value implementation version:

<library-ref>
<library-name>myLibrary</library-name>
<gspecification-version>2.0</specification-version>
<implementation-version>8lBeta</specification-Version>

</library-ref>

In the above example, WebLogic Server searches for a library having a specification version of
2.0 or higher, and having an exact match of 81Beta for the implementation version.

The following example requires an exact match for both the specification and implementation
versions:

<library-ref>
<library-name>myLibrary</library-name>
<gspecification-version>2.0</specification-version>
<implementation-version>8.1l</specification-Version>
<exact-match>true</exact-match>

</library-ref>

Developing Applications with WebLogic Server 8-13

Creating Shared J2EE Libraries and Optional Packages

URIs for Shared J2EE Libraries Deployed As a Standalone
Module

When referencing the URI of a shared J2EE library that was deployed as a standalone module
(EJB or Web Application), note that the module URI corresponds to the deployment name of the
shared J2EE library. This can be a name that was manually assigned during deployment, the name
of the archive file that was deployed, or the name of the exploded archive directory that was
deployed. If you redeploy the same module using a different file name or from a different
location, the default deployment name also changes and referencing applications must be updated
to use the correct URI.

To avoid this problem, deploy all shared J2EE libraries as Enterprise Applications, rather than as
standalone modules. If you choose to deploy a library as a standalone J2EE module, always
specify a known deployment name and use that name as the URI in referencing applications.

Referencing Optional Packages from a J2EE Application or
Module

8-14

Any J2EE archive (JAR, WAR, RAR, EAR) can reference one or more registered optional
packages using attributes in the archive’s manifest file.

Table 8-3 Manifest Attributes for Referencing Optional Packages

Attribute Description
Extension-List A required String value that defines a logical name for an optional
logical_name [...] package dependency. You can use multiple values in the

Extension-List attribute to designate multiple optional
package dependencies. For example:

Extension-List: dependencyl dependency?2

[logical_name-]Extension A required string value that identifies the name of an optional

-Name package dependency. This value must match the
Extension-Name attribute defined in the optional package’s
manifest file.

If you are referencing multiple optional packages from a single
archive, prepend the appropriate logical name to the
Extension-Name attribute. For example:

dependencyl-Extension-Name: myOptPkg

Developing Applications with WebLogic Server

Referencing Optional Packages from a J2EE Application or Module

Attribute Description

[Iogical_name-]Specifica An optional String value that defines the required specification

tion-Version version of an optional package. If this element is not set, the
archive uses a matching package with the highest specification
version. If you include a specification-version value
using the major/minor version format, the archive uses a matching
package with the highest specification version that is not below
the configured value. If all available package are below the
configured specification-version, the archive cannot be
deployed.

If you specify a String value that does not use major/minor
versioning conventions (for example, 9.0BETA) the archive
requires a matching optional package having the exact same
string value in the Specification-Version attribute in the
package’s manifest file. (See Table 8-1 on page 8.)

If you are referencing multiple optional packages from a single
archive, prepend the appropriate logical name to the
Specification-Version attribute.

[Iogical_name-]Implement An optional String value that specifies the required

ation-Version implementation version of an optional package. If this element is
not set, the archive uses a matching package with the highest
implementation version. If you specify a string value using the
major/minor version format, the archive uses a matching package
with the highest implementation version that is not below the
configured value. If all available libraries are below the
configured implementation-version, the application
cannot be deployed.

If you specify a String value that does not use major/minor
versioning conventions (for example, 9.0BETA) the archive
requires a matching optional package having the exact same
string value in the Implementation-Version attribute in the
package’s manifest file. (See Table 8-1 on page 8.)

If you are referencing multiple optional packages from a single
archive, prepend the appropriate logical name to the
Implementation-Version attribute.

For example, this simple entry in the manifest file for a dependent archive references two optional
packages, myAppPkg and my3rdPartyPkg:

Developing Applications with WebLogic Server 8-15

Creating Shared J2EE Libraries and Optional Packages

Extension-List: internal 3rdparty
internal-Extension-Name: myAppPkg
3rdparty-Extension-Name: my3rdPartyPkg

This example requires a specification version of 2.0 or higher for myappPkg:

Extension-List: internal 3rdparty
internal-Extension-Name: myAppPkg
3rdparty-Extension-Name: my3rdPartyPkg

internal-Specification-Version: 2.0

This example requires a specification version of 2.0 or higher for myAppPkg, and an exact match
for the implementation version of my3rdPartyPkg:

Extension-List: internal 3rdparty
internal-Extension-Name: myAppPkg
3rdparty-Extension-Name: my3rdPartyPkg
internal-Specification-Version: 2.0

3rdparty-Implementation-Version: 8.1GA

By default, when WebLogic Server deploys an application or module and it cannot resolve a
reference in the application’s manifest file to an optional package, WebLogic Server prints a
warning, but continues with the deployment anyway. You can change this behavior by setting the
system property weblogic.application.RequireOptionalPackages to true\thlyou
start WebLogic Server, either at the command line or in the command script file from which you
start the server. Setting this system property to true means that WebLogic Server does not
attempt to deploy an application or module if it cannot resolve an optional package reference in
its manifest file.

Using weblogic.appmerge to Merge Libraries

8-16

weblogic.appmerge is a tool that is used to merge libraries into an application, with merged
contents and merged descriptors. It also has the ability to write a merged application to disk. You
can then use weblogic.appmerge to understand a library merge by examining the merged
application you have written to disk.

e “Using weblogic.appmerge from the CLI” on page 8-17

e “Using weblogic.appmerge as an Ant Task” on page 8-17

Developing Applications with WebLogic Server

Using weblogic.appmerge to Merge Libraries

Using weblogic.appmerge from the CLI

Invoke weblogic.appmerge using the following syntax:

java weblogic.appmerge [options] <ear, jar, war file, or directory>

where valid options are shown in Table 8-4:

Table 8-4 weblogic.appmerge Options

Option Comment
-help Print the standard usage message.
-version Print version information.
-output <file> Specifies an alternate output archive or directory. If not set,

output is placed in the source archive or directory.

-plan <file> Specifies an optional deployment plan.

-verbose Provide more verbose output.

Comma-separated list of libraries. Each library may
optionally set its name and versions, if not already set in its
manifest, using the following syntax:

-library <file>

<file> [@name=<string>@libspecver=<version>

@libimplver=<version|string>].

-librarydir <dir> Registers all files in specified directory as libraries.

Example:
S java weblogic.appmerge -output CompleteSportsApp.ear -library Weather

.war,Calendar.ear SportsApp.ear

Using weblogic.appmerge as an Ant Task

The ant task provides similar functionality as the command line utility. It supports source,
output, libraryDir, plan and verbose attributes as well as multiple <1ibrary>

sub-elements. Here is an example:
<taskdef name="appmerge" classname="weblogic.ant.taskdefs.j2ee.AppMergeTas

k"/>

Developing Applications with WebLogic Server 8-11

Creating Shared J2EE Libraries and Optional Packages

<appmerge source="SportsApp.ear" output="CompleteSportsApp.ear">
<library file="Weather.war"/>
<library file="Calendar.ear"/>

</appmerge>

Integrating Shared J2EE Libraries with the Split Development
Directory Environment

The BuildxMLGen includes a -1ibrarydir option to generate build targets that include one or
more shared J2EE library directories. See “Generating a Basic build.xml File Using
weblogic.BuildXMLGen” on page 3-13.

The wlcompile and wlappc Ant tasks include a 1ibrarydir attribute and 1ibrary element to
specify one or more shared J2EE library directories to include in the classpath for application
builds. See “Building Applications in a Split Development Directory” on page 4-1.

Deploying Shared J2EE Libraries and Dependent Applications

8-18

Shared J2EE libraries are registered with one or more WebLogic Server instances by deploying
them to the target servers and indicating that the deployments are to be shared. Shared J2EE
libraries must be targeted to the same WebLogic Server instances you want to deploy applications
that reference the libraries. If you try to deploy a referencing application to a server instance that
has not registered a required library, deployment of the referencing application fails. See
Registering Libraries with WebLogic Server in Deploying Applications to WebLogic Server for
more information.

See Install a Shared J2EE Library for detailed instructions on installing (deploying) a shared
J2EE library using the Administration Console. See Target a Shared J2EE Library to a Server or
Cluster for instructions on using the Administration Console to target the library to the server or
cluster to which the application that is referencing the library is also targeted.

If you use the wldeploy Ant task as part of your iterative development process, use the 1ibrary,
libImplVer, and libSpecVer attributes to deploy a shared J2EE library. See Appendix B,
“wldeploy Ant Task Reference,” for details and examples.

After registering a shared J2EE library, you can deploy applications and archives that depend on
the library. Dependent applications can be deployed only if the target servers have registered all
required libraries, and the registered deployments meet the version requirements of the
application or archive. See Deploying Applications that Reference Libraries in Deploying
Applications to WebLogic Server for more information.

Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/deploy.html#reglib
http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/library/DeployLibrary.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/library/TargetLibrary.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/library/TargetLibrary.html
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#dependapp
http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/deployment/index.html

Web Application Shared J2EE Library Information

Web Application Shared J2EE Library Information

In general, this topic discusses shared J2EE libraries that can be referenced only by Enterprise
Applications. You can also create libraries that can be referenced only by another Web
application. The functionality is very similar to application libraries, although the method of
referencing them is slightly different.

Note: For simplicity, this section uses the term Web application library when referring to a
shared J2EE library that is referenced only by another Web application.

In particular:
e Web application libraries can only be referenced by other Web applications.

e Rather than update the weblogic-application.xml file, Web applications reference Web
application libraries by updating the weblogic.xml deployment descriptor file. The
elements are almost same as those described in “Referencing Shared J2EE Libraries in an
Enterprise Application” on page 8-11; the only difference is that the <context-root>
child element of <1ibrary-ref> is ignored in this case.

e You cannot reference any other type of shared J2EE library (EJB, Enterprise application, or
plain JAR file) from the weblogic.xml deployment descriptor file of a Web Application.

Other than these differences in how they are referenced, the way to create, package, and deploy
a Web application library is the same as that of a standard shared J2EE library.

Accessing Registered Shared J2EE Library Information with
LibraryRuntimeMBean

Each deployed shared J2EE library is represented by a LibraryRuntimeMBean. You can use this
MBean to obtain information about the library itself, such as its name or version. You can also
obtain the ApplicationRuntimeMBeans associated with deployed applications.
ApplicationRuntimeMBean provides two methods to access the libraries that the application is
using:

e getLibraryRuntimes () returns the shared J2EE libraries referenced in the
weblogic-application.xml file.

® getOptionalPackageRuntimes () returns the optional packages referenced in the
manifest file.

For more information, see the WebLogic Server 9.0 API Reference.

Developing Applications with WebLogic Server 8-19

Creating Shared J2EE Libraries and Optional Packages

Order of Precedence of Modules When Referencing Shared
J2EE Libraries

8-20

When an Enterprise Application references one or more shared J2EE libraries, and the application
is deployed to WebLogic Server, the server internally merges the information in the
weblogic-application.xml file of the referencing Enterprise Application with the
information in the deployment descriptors of the referenced libraries. The order in which this
happens is as follows:

1. When the Enterprise Application is deployed, WebLogic Server reads its
weblogic-application.xml deployment descriptor.

2. WebLogic Server reads the deployment descriptors of any referenced shared J2EE libraries.
Depending on the type of library (Enterprise Application, EJB, or Web application), the
read file might be weblogic-application.xml, weblogic.xml,
weblogic-ejb-jar.xml, and so on.

3. WebLogic Server first merges the referenced shared J2EE library deployment descriptors
(in the order in which they are referenced, one at a time) and then merges the
weblogic-application.xml file of the referencing Enterprise application on top of the
library descriptor files.

As aresult of the way the descriptor files are merged, the elements in the descriptors of the shared
J2EE libraries referenced first in the weblogic-application.xml file have precedence over
the ones listed last. The elements of the Enterprise application’s descriptor itself have precedence
over all elements in the library descriptors.

For example, assume that an Enterprise application called myapp references two shared J2EE
libraries (themselves packaged as Enterprise applications): myLiba and myLibB, in that order.
Both the myApp and myLiba applications include an EJB module called myEJB, and both the
myLiba and myLibB applications include an EJB module called myotherEJB.

Further assume that once the myapp application is deployed, a client invokes, via the myapp
application, the myEJB module. In this case, WebLogic Server actually invokes the EJB in the
myApp application (rather than the one in myLiba) because modules in the referencing application
have higher precedence over modules in the referenced applications. If a client invokes the
myOtherEJB EJB, then WebLogic Server invokes the one in myLiba, because the library is
referenced first in the weblogic-application.xml file of myApp, and thus has precedence over
the EJB with the same name in the myLibB application.

Developing Applications with WebLogic Server

Best Practices for Using Shared J2EE Libraries

Best Practices for Using Shared J2EE Libraries

Keep in mind these best practices when developing shared J2EE libraries and optional packages:

e Use shared J2EE Libraries when you want to share one or more J2EE modules (EJBs, Web
Applications, Enterprise Applications, or plain Java classes) with multiple Enterprise
Applications.

e If you need to deploy a standalone J2EE module, such as an EJB JAR file, as a shared
J2EE library, package the module within an Enterprise Application. Doing so avoids
potential URI conflicts, because the library URI of a standalone module is derived from the
deployment name.

e If you choose to deploy a shared J2EE library as a standalone J2EE module, always
specify a known deployment name during deployment and use that name as the URI in
referencing applications.

e Use optional packages when multiple J2EE archive files need to share a set of Java classes.

e If you have a set of classes that must be available to applications in an entire domain, and
you do not frequently update those classes (for example, if you need to share 3rd party
classes in a domain), use the domain /1ib subdirectory rather than using shared J2EE
libraries or optional packages. Classes in the /1ib subdirectory are added to the system
classpath at server start-up time.

e Always specify a specification version and implementation version, even if you do not
intend to enforce version requirements with dependent applications. Specifying versions
for shared J2EE libraries enables you to deploy multiple versions of the shared files for
testing.

e Always specify an Extension-Name value for each shared J2EE library. If you do not
specify an extension name, one is derived from the deployment name of the library.
Default deployment names are different for archive and exploded archive deployments, and
they can be set to arbitrary values in the deployment command

e When developing a Web Application for deployment as a shared J2EE library, use a unique
context root. If the context root conflicts with the context root in a dependent J2EE
application, use the context-root element in the EAR’s weblogic-application.xml
deployment descriptor to override the library’s context root.

e Package shared J2EE libraries as archive files for delivery to Administrators or deployers
in your organization. Deploy libraries from exploded archive directories during
development to allow for easy updates and repeated redeployments.

Developing Applications with WebLogic Server 8-21

Creating Shared J2EE Libraries and Optional Packages

e Deploy shared J2EE libraries to all WebLogic Server instances on which you want to
deploy dependent applications and archives. If a library is not registered with a server
instance on which you want to deploy a referencing application, deployment of the
referencing application fails.

8-22 Developing Applications with WebLogic Server

GHAPTERa

Programming Application Litecycle
Events

The following sections describe how to create applications that respond to WebLogic Server
application lifecycle events:

e “Understanding Application Lifecycle Events” on page 9-2
e “Registering Events in weblogic-application.xml” on page 9-3
e “Programming Basic Lifecycle Listener Functionality” on page 9-3

e “Examples of Configuring Lifecycle Events with and without the URI Parameter” on
page 9-5

e “Understanding Application Lifecycle Event Behavior During Re-deployment” on page 9-7

Warning: Application-scoped startup and shutdown classes have been deprecated in this
release of WebLogic Server. The information in this chapter about startup and
shutdown classes is provided only for backwards compatibility. Instead, you should
use lifecycle listener events in your applications.

Developing Applications with WebLogic Server 9-1

Programming Application Lifecycle Events

Understanding Application Lifecycle Events

Application lifecycle listener events provide handles on which developers can control behavior
during deployment, undeployment, and redeployment. This section discusses how you can use
the application lifecycle listener events.

Four application lifecycle events are provided with WebLogic Server, which can be used to
extend listener, shutdown, and startup classes. These include:
e Listeners—attachable to any event. Possible methods for Listeners are:
public void preStart (ApplicationLifecycleEvent evt) {}

— The preStart event is the beginning of the prepare phase, or the start of the application
deployment process.)

public void postStart (ApplicationLifecycleEvent evt) {}

— The postStart event is the end of the activate phase, or the end of the application
deployment process. The application is deployed.

public void preStop (ApplicationLifecycleEvent evt) {}

— The preStop event is the beginning of the deactivate phase, or the start of the
application removal or undeployment process.

public void postStop (ApplicationLifecycleEvent evt) {}

— The postStop event is the end of the remove phase, or the end of the application
removal or undeployment process.

e Shutdown classes only get postStop events.

Warning: Application-scoped shutdown classes have been deprecated in this release of
WebLogic Server. Use lifecycle listeners instead.

e Startup classes only get preStart events.

Warning: Application-scoped shutdown classes have been deprecated in this release of
WebLogic Server. Use lifecycle listeners instead.

Note: For Startup and Shutdown classes, you only implement a main{} method. If you
implement any of the methods provided for Listeners, they are ignored.

Note: No remove{} method is provided in the ApplicationLifecycleListener, because the
events are only fired at startup time during deployment (prestart and poststart) and
shutdown during undeployment (prestop and poststop).

9-2 Developing Applications with WebLogic Server

Registering Events in weblogic-application.xml

Registering Events in weblogic-application.xmi

In order to use these events, you must register them in the weblogic-application.xml
deployment descriptor. See “Application Deployment Descriptor Elements.” Define the
following elements:

e 1listener—Used to register user defined application lifecycle listeners. These are classes
that extend the abstract base class
weblogic.application.ApplicationLifecyclelListener.

e shutdown—~Used to register user-defined shutdown classes.

e startup—Used to register user-defined startup classes.

Programming Basic Lifecycle Listener Functionality

You create a listener by extending the abstract class (provided with WebLogic Server)
weblogic.application.ApplicationLifecycleListener. The container then searches
for your listener.

You override the following methods provided in the WebLogic Server
ApplicationlLifecyclelListener abstract class to extend your application and add any
required functionality:

e preStart{}
e postStart{}
e preStop{}

e postStop{}

Listing 9-1 illustrates how you override the ApplicationLifecycleListener. In this
example, the public class MyListener extends ApplicationLifecyclelListener

Listing 9-1 MyListener

import weblogic.application.ApplicationLifecycleListener;
import weblogic.application.ApplicationLifecycleEvent;
public class MyListener extends ApplicationLifecycleListener {

public void preStart (ApplicationLifecycleEvent evt) ({

Developing Applications with WebLogic Server 9-3

http://e-docs.bea.com/wls/docs90/programming/app_xml.html

Programming Application Lifecycle Events

System.out.println
("MyListener (preStart) -- we should always see you..");
} // preStart
public void postStart (ApplicationLifecycleEvent evt) ({
System.out.println
("MyListener (postStart) -- we should always see you..");
} // postStart
public void preStop (ApplicationLifecycleEvent evt) {
System.out.println
("MyListener (preStop) -- we should always see you..");
} // preStop
public void postStop (ApplicationLifecycleEvent evt) {
System.out.println
("MyListener (postStop) -- we should always see you..");
} // postStop
public static void main(String[] args) {
System.out.println
("MyListener (main): in main .. we should never see you..");

} // main

Listing 9-2 illustrates how you implement the shutdown class. The shutdown class is attachable
to preStop and postStop events. In this example, the public class MyShutdown extends

ApplicationLifecyclelistener

Listing 9-2 MyShutdown

import weblogic.application.ApplicationLifecycleListener;

9-4 Developing Applications with WebLogic Server

Examples of Configuring Lifecycle Events with and without the URI Parameter

import weblogic.application.ApplicationLifecycleEvent;
public class MyShutdown extends ApplicationLifecycleListener {
public static void main(String[] args) {
System.out.println
("MyShutdown (main) : in main .. should be for post-stop");

} // main

Listing 9-3 illustrates how you implement the startup class. The startup class is attachable to
preStart and postStart events. In this example, the public class MyStartup extends
ApplicationLifecyclelistener

Listing 9-3 MyStartup

import weblogic.application.ApplicationLifecycleListener;
import weblogic.application.ApplicationLifecycleEvent;
public class MyStartup extends ApplicationLifecycleListener ({
public static void main(String[] args) {
System.out.println
("MyStartup (main): in main .. should be for pre-start");

} // main

Examples of Configuring Lifecycle Events with and without the
URI Parameter

The following examples illustrate how you configure application lifecycle events in the
weblogic-application.xml deployment descriptor file. The URI parameter is not required.
You can place classes anywhere in the application $CLASSPATH. However, you must ensure that

Developing Applications with WebLogic Server 9-5

Programming Application Lifecycle Events

the class locations are defined in the SCLASSPATH. You can place listeners in
APP-INF/classes or APP-INF/1ib, if these directories are present in the EAR. In this case,
they are automatically included in the $CLASSPATH.

The following example illustrates how you configure application lifecycle events using the URI
parameter. In this case, the archive foo . jar contains the classes and exists at the top level of the
EAR file. For example: myEar/foo.jar

Listing 9-4 Configuring Application Lifecycle Events Using the URI Parameter

<listener>
<listener-class>MyListener</listener-class>
<listener-uri>foo.jar</listener-uri>

</listener>

<startup>
<startup-class>MyStartup</startup-class>
<startup-uri>foo.jar</startup-uri>

</startup>

<shutdown>
<shutdown-class>MyShutdown</shutdown-class>
<shutdown-uri>foo.jar</shutdown-uri>

</shutdown>

The following example illustrates how you configure application lifecycle events without using
the URI parameter.

Listing 9-5 Configuring Application Lifecycle Events without Using the URI Parameter

<listener>
<listener-class>MyListener</listener-class>

</listener>

Developing Applications with WebLogic Server

Understanding Application Lifecycle Event Behavior During Re-deployment

<startup>
<startup-class>MyStartup</startup-class>

</startup>

<shutdown>
<shutdown-class>MyShutdown</shutdown-class>

</shutdown>

Understanding Application Lifecycle Event Behavior During
Re-deployment

Application lifecycle events are only triggered if a full re-deployment of the application occurs.
During a full re-deployment of the application—provided the application lifecycle events have
been registered—the application lifecycle first commences the shutdown sequence, next
re-initializes its classes, and then performs the startup sequence.

For example, if your listener is registered for the full application lifecycle set of events (preStart,
postStart, preStop, postStop), during a full re-deployment, you see the following sequence of
events:

1.

2.

3.

preStop{}

postStop{}

Initialization takes place. (Unless you have set debug flags, you do not see the
initialization.)

. preStart{}

. postStart{}

Developing Applications with WebLogic Server 9-7

Programming Application Lifecycle Events

9-8 Developing Applications with WebLogic Server

CHAPTERm

Programming Context Propagation

The following sections describe how to use the context propagation APIs in your applications:
e “Understanding Context Propagation” on page 10-1
e “Programming Context Propagation: Main Steps” on page 10-3
e “Programming Context Propagation in a Client” on page 10-3

e “Programming Context Propagation in an Application” on page 10-5

Understanding Context Propagation

Context propagation allows programmers to associate information with an application which is
then carried along with every request. Furthermore, downstream components can add or modify
this information so that it can be carried back to the originator. Context propagation is also known
as work areas, work contexts, or application transactions.

Common use-cases for context propagation are any type of application in which information
needs to be carried outside the application, rather than the information being an integral part of
the application. Examples of these use cases include diagnostics monitoring, application
transactions, and application load-balancing. Keeping this sort of information outside of the
application keeps the application itself clean with no extraneous API usage and also allows the
addition of information to read-only components, such as 3rd party components.

Programming context propagation has two parts: first you code the client application to create a
WorkContextMap and WorkContext, and then add user data to the context, and then you code
the invoked application itself to get and possibly use this data. The invoked application can be of

Developing Applications with WebLogic Server 10-1

any type: EJB, Web Service, servlet, IMS topic or queue, and so on. See “Programming Context

Programming Context Propagation

Propagation: Main Steps” on page 10-3 for details.

The WebLogic context propagation APIs are in the weblogic.workarea package. The

following table describes the main interfaces and classes.

Table 10-1 Interfaces and classes of the WebLogic Context Propagation API

Interface or
Class

Description

WorkContext
Map Interface

Main context propagation interface used to tag applications with data
and propagate that information via application requests.
WorkContextMaps is part of the client or application’s JNDI
environment and can be accessed through JNDI by looking up the
name java: comp/WorkContextMap.

WorkContext
Interface

Interface used for marshaling and unmarshaling the user data that is
passed along with an application. This interface has four
implementing classes for marshaling and unmarshaling the following
types of data: simple 8-bit ASCII contexts (AsciiWorkContext),
long contexts (LongWorkContext), Serializable context
(SerializableWorkContext), and String contexts
(stringWorkContext).

WorkContext has one subinterface, PrimitiveWorkContext,
used to specifically marshal and unmarshal a single primitive data
item.

WorkContext
Output/Inpu
t Interfaces

Interfaces representing primitive streams used for marshaling and
unmarshaling, respectively, WorkContext implementations.

Propagation
Mode Interface

Defines the propagation properties of WorkContexts. Specifies
whether the WorkContext is propagated locally, across threads, across
RMI invocations, across JMS queues and topics, or across SOAP
messages. If not specified, default is to propagate data across remote
and local calls in the same thread.

PrimitiveCo
ntextFactor
y Class

Convenience class for creating WorkContexts that contain only
primitive data.

Developing Applications with WebLogic Server

Programming Context Propagation: Main Steps

For the complete API documentation about context propagation, see the weblogic.workarea
Javadocs.

Programming Context Propagation: Main Steps

The following procedure describes the high-level steps to use context propagation in your
application. It is assumed in the procedure that you have already set up your iterative
development environment and have an existing client and application that you want to update to
use context propagation by using the weblogic.workarea API

1. Update your client application to create the workContextMap and WorkContext objects and
then add user data to the context.

See “Programming Context Propagation in a Client” on page 10-3.

2. If your client application is standalone (rather than running in a J2EE component deployed
to WebLogic Server), ensure that its CLASSPATH includes the J2EE application client, also
called the thin client.

See Programming Stand-Alone Clients.

3. Update your application (EJB, Web Service, servlet, and so on) to also create a
WorkContextMap and then get the context and user data that you added from the client
application.

See “Programming Context Propagation in an Application” on page 10-5.

Programming Context Propagation in a Client

The following sample Java code shows a standalone Java client that invokes a Web Service; the
example also shows how to use the weblogic.workarea.* context propagation APIs to
associate user information with the invoke. The code relevant to context propagation is shown in
bold and explained after the example.

For the complete API documentation about context propagation, see the weblogic.workarea
Javadocs.

Note: See Programming Web Services for WebLogic Server for information on creating Web
Services and client applications that invoke them.

package examples.workarea.client;

import java.rmi.RemoteException;

Developing Applications with WebLogic Server 10-3

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/workarea/package-summary.html
http://e-docs.bea.com/wls/docs90/client/index.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/workarea/package-summary.html
http://e-docs.bea.com/wls/docs90/webserv/index.html

Programming Context Propagation

import javax.xml.rpc.ServiceException;
import javax.xml.rpc.Stub;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import weblogic.workarea.WorkContextMap;

import weblogic.workarea.WorkContext;

import weblogic.workarea.PrimitiveContextFactory;
import weblogic.workarea.PropagationMode;

import weblogic.workarea.PropertyReadOnlyException;

/**
* This is a simple standalone client application that invokes the
the <code>sayHello</code> operation of the WorkArea Web service.

@author Copyright (c) 2004 by BEA Systems. All Rights Reserved.
*/

public class Main {
public final static String SESSION_ID= "session_id_key";

public static void main(String[] args)
throws ServiceException, RemoteException, NamingException,
PropertyReadOnlyException{

WorkAreaService service = new WorkAreaService_Impl (args[0] + "?WSDL");
WorkAreaPortType port = service.getWorkAreaPort() ;

WorkContextMap map = (WorkContextMap)new
InitialContext () .lookup ("java:comp/WorkContextMap") ;

WorkContext stringContext = PrimitiveContextFactory.create("A String
Context");

// Put a string context
map.put (SESSION_ID, stringContext, PropagationMode.SOAP);

try {
String result = null;
result = port.sayHello("Hi there!");

System.out.println("Got result: " + result);
} catch (RemoteException e) {
throw e;

In the preceding example:

10-4 Developing Applications with WebLogic Server

Programming Context Propagation in an Application

e The following code shows how to import the needed weblogic.workarea. * classes,
interfaces, and exceptions:
import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
import weblogic.workarea.PrimitiveContextFactory;

import weblogic.workarea.PropagationMode;
import weblogic.workarea.PropertyReadOnlyException;

e The following code shows how to create a WworkContextMap by doing a JNDI lookup of
the context propagation-specific INDI name java:comp/WorkContextMap:

WorkContextMap map = (WorkContextMap)
new InitialContext () .lookup ("java:comp/WorkContextMap") ;

e The following code shows how to create a WworkContext by using the
PrimitiveContextFactory. In this example, the WorkContext consists of the simple
String value A String Context. This String value is the user data that is passed to the
invoked Web Service.

WorkContext stringContext =
PrimitiveContextFactory.create("A String Context");

e Finally, the following code shows how to add the context data, along with the key
SESSION_ID, to the WorkContextMap and associate it with the current thread. The
PropagationMode. SOAP constant specifies that the propagation happens over SOAP
messages; this is because the client is invoking a Web Service.

map.put (SESSION_ID, stringContext, PropagationMode.SOAP) ;

Programming Context Propagation in an Application

The following sample Java code shows a simple Java Web Service (JWS) file that implements a
Web Service. The JWS file also includes context propagation code to get the user data that is
associated with the invoke of the Web Service. The code relevant to context propagation is shown
in bold and explained after the example.

For the complete API documentation about context propagation, see the weblogic.workarea
Javadocs.

Note: See Programming Web Services for WebLogic Server for information on creating Web
Services and client applications that invoke them.

package examples.workarea;

import javax.naming.InitialContext;

Developing Applications with WebLogic Server 10-5

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/workarea/package-summary.html
http://e-docs.bea.com/wls/docs90/webserv/index.html

Programming Context Propagation

// Import the Context Propagation classes

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws.WLHttpTransport;

@WebService (name="WorkAreaPortType",
serviceName="WorkAreaService",
targetNamespace="http://example.org")

@WLHttpTransport (contextPath="workarea",
serviceUri="WorkAreaService",
portName="WorkAreaPort")

/*'k

* This JWS file forms the basis of simple WebLogic

* Web Service with a single operation: sayHello
*

*/
public class WorkAreaImpl {
public final static String SESSION_ID = "session_id_key";

@WebMethod ()
public String sayHello (String message) {

try {

WorkContextMap map = (WorkContextMap) new
InitialContext () .lookup ("java:comp/WorkContextMap") ;

WorkContext localwc = map.get (SESSION_ID);

System.out.println("local context: " + localwc);
System.out.println("sayHello: " + message);
return "Here is the message: '" + message + "'";

} catch (Throwable t) {

return "error";

10-6 Developing Applications with WebLogic Server

Programming Context Propagation in an Application

In the preceding example:

e The following code shows how to import the needed context propagation APIs; in this
case, only the WorkContextMap and WorkContext interfaces are needed:

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;

e The following code shows how to create a WorkContextMap by doing a JNDI lookup of
the context propagation-specific JNDI name java: comp/WorkContextMap:

WorkContextMap map = (WorkContextMap)
new InitialContext () .lookup ("java:comp/WorkContextMap") ;

o The following code shows how to get context’s user data from the current
WorkContextMap using a key; in this case, the key is the same one that the client
application set when it invoked the Web Service: SESSTON_ID:

WorkContext localwc = map.get (SESSION_ID) ;

Developing Applications with WebLogic Server 10-7

Programming Context Propagation

10-8 Developing Applications with WebLogic Server

cHAPTERa

Programming JavaMail with WebLogic
Server

The following sections contains information on additional WebLogic Server programming
topics:

e “Overview of Using JavaMail with WebLogic Server Applications” on page 11-2
e “Configuring JavaMail for WebLogic Server” on page 11-2
e “Sending Messages with JavaMail” on page 11-3

e “Reading Messages with JavaMail” on page 11-4

Developing Applications with WebLogic Server 11-1

Programming JavaMail with WebLogic Server

Overview of Using JavaMail with WebLogic Server Applications

WebLogic Server includes the JavaMail API version 1.3 reference implementation from Sun
Microsystems. Using the JavaMail AP, you can add email capabilities to your WebLogic Server
applications. JavaMail provides access from Java applications to Internet Message Access
Protocol (IMAP)- and Simple Mail Transfer Protocol (SMTP)-capable mail servers on your
network or the Internet. It does not provide mail server functionality; you must have access to a
mail server to use JavaMail.

Complete documentation for using the JavaMail API is available on the JavaMail page on the Sun
Web site at http://java.sun.com/products/javamail/index.html. This section describes how you
can use JavaMail in the WebLogic Server environment.

The weblogic.jar file contains the javax.mail and javax.mail.internet packagesﬁonl
Sun. weblogic.jar also contains the Java Activation Framework (JAF) package, which
JavaMail requires.

The javax.mail package includes providers for Internet Message Access protocol (IMAP) and
Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate POP3 provider for
JavaMail, which is not included in weblogic.jar. You can download the POP3 provider from
Sun and add it to the WebLogic Server classpath if you want to use it.

Understanding JavaMail Configuration Files

JavaMail depends on configuration files that define the mail transport capabilities of the system.
The weblogic. jar file contains the standard configuration files from Sun, which enable IMAP
and SMTP mail servers for JavaMail and define the default message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and message
types, you do not have to modify any JavaMail configuration files. If you do want to extend
JavaMail, download JavaMail from Sun and follow Sun’s instructions for adding your
extensions. Then add your extended JavaMail package in the WebLogic Server classpath in front
waeblogic.jar.

Configuring JavaMail for WebLogic Server

11-2

To configure JavaMail for use in WebLogic Server, you create a mail session in the WebLogic
Server Administration Console. This allows server-side modules and applications to access

JavaMail services with JNDI, using Session properties you preconfigure for them. For example,
by creating a mail session, you can designate the mail hosts, transport and store protocols, and the
default mail user in the Administration Console so that modules that use JavaMail do not have to

Developing Applications with WebLogic Server

http://java.sun.com/products/javamail/index.html

Sending Messages with JavaMail

set these properties. Applications that are heavy email users benefit because the mail session
creates a single javax.mail.Session object and makes it available via JINDI to any module that
needs it.

For information on using the Administration Console to create a mail session, see Configure
access to JavaMail in the Administration Console Online Help.

You can override any properties set in the mail session in your code by creating a
java.util.Properties object containing the properties you want to override. See “Sending
Messages with JavaMail” on page 11-3. Then, after you look up the mail session object in JNDI,
call the Session.getInstance () method with your Properties object to get a customized
Session.

Sending Messages with JavaMail

Here are the steps to send a message with JavaMail from within a WebLogic Server module:

1.

Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will also need
to import java.util.Properties:

import java.util.*;

import javax.activation.*;
import javax.mail.*;

import javax.mail.internet.*;
import javax.naming.*;

Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext () ;
Session session = (Session) ic.lookup ("myMailSession") ;

If you need to override the properties you set for the Session in the Administration Console,
create a java.util.Properties object and add the properties you want to override. Then
call getInstance () to get a new Session object with the new properties.

Properties props = new Properties();

props.put ("mail.transport.protocol", "smtp");
props.put ("mail.smtp.host", "mailhost");

// use mail address from HTML form for from address
props.put ("mail.from", emailAddress);

Session session2 = session.getInstance (props) ;

Construct a MimeMessage. In the following example, to, subject, and messageTxt are
String variables containing input from the user.

Message msg = new MimeMessage (session2);
msg.setFrom() ;

Developing Applications with WebLogic Server 11-3

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/mail/CreateMailSessions.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/mail/CreateMailSessions.html

Programming JavaMail with WebLogic Server

msg.setRecipients (Message.RecipientType.TO,
InternetAddress.parse(to, false));

msg.setSubject (subject) ;

msg.setSentDate (new Date()) ;

// Content is stored in a MIME multi-part message

// with one body part

MimeBodyPart mbp = new MimeBodyPart () ;

mbp.setText (messageTxt) ;

Multipart mp = new MimeMultipart();
mp . addBodyPart (mbp) ;
msg.setContent (mp) ;

5. Send the message.
Transport.send (msg) ;

The JNDI lookup can throw a NamingException on failure. JavaMail can throw a
MessagingException if there are problems locating transport classes or if communications with
the mail host fails. Be sure to put your code in a try block and catch these exceptions.

Reading Messages with JavaMail

11-4

The JavaMail API allows you to connect to a message store, which could be an IMAP server or
POP3 server. Messages are stored in folders. With IMAP, message folders are stored on the mail
server, including folders that contain incoming messages and folders that contain archived
messages. With POP3, the server provides a folder that stores messages as they arrive. When a
client connects to a POP3 server, it retrieves the messages and transfers them to a message store
on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain messages or
other folders. The default folder is at the top of the structure. The special folder name INBOX

refers to the primary folder for the user, and is within the default folder. To read incoming mail,
you get the default folder from the store, and then get the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified message
number or range of message numbers, or pre-fetching specific parts of messages into the folder’s
cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic Server
module:

1. Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will also need
K)hnportjava.util.Properties:

Developing Applications with WebLogic Server

Reading Messages with JavaMail

import java.util.*;

import javax.activation.*;
import javax.mail.*;

import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext () ;
Session session = (Session) ic.lookup("myMailSession") ;

3. Ifyou need to override the properties you set for the Session in the Administration Console,
create a Properties object and add the properties you want to override. Then call
getInstance () to get a new Session object with the new properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props.put ("mail.pop3.host", "mailhost");
Session session2 = session.getInstance (props) ;

4. Get a store object from the Session and call its connect () method to connect to the mail
server. To authenticate the connection, you need to supply the mailhost, username, and
password in the connect method:

Store store = session.getStore();
store.connect (mailhost, username, password) ;

5. Get the default folder, then use it to get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder ("INBOX") ;

6. Read the messages in the folder into an array of Messages:

Message|[] messages = folder.getMessages();

7. Operate on messages in the Message array. The Message class has methods that allow you
to access the different parts of a message, including headers, flags, and message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3 server. With
IMAP, however, the JavaMail API provides methods to create and manipulate folders and
transfer messages between them. If you use an IMAP server, you can implement a full-featured,
Web-based mail client with much less code than if you use a POP3 server. With POP3, you must
provide code to manage a message store via WebLogic Server, possibly using a database or file
system to represent folders.

Developing Applications with WebLogic Server 11-5

Programming JavaMail with WebLogic Server

11-6 Developing Applications with WebLogic Server

cHAPTER@

Threading and Clustering Topics

The following sections contain information on additional WebLogic Server programming topics:
e “Using Threads in WebLogic Server” on page 12-2

e “Programming Applications for WebLogic Server Clusters” on page 12-3

Developing Applications with WebLogic Server 1241

Threading and Clustering Topics

Using Threads in WebLogic Server

12-2

WebLogic Server is a sophisticated, multi-threaded application server and it carefully manages
resource allocation, concurrency, and thread synchronization for the modules it hosts. To obtain
the greatest advantage from WebLogic Server’s architecture, construct your application modules
created according to the standard J2EE APIs.

In most cases, avoid application designs that require creating new threads in server-side modules:

e Applications that create their own threads do not scale well. Threads in the JVM are a
limited resource that must be allocated thoughtfully. Your applications may break or cause
WebLogic Server to thrash when the server load increases. Problems such as deadlocks and
thread starvation may not appear until the application is under a heavy load.

e Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult to
anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings. For example,
an application that searches several repositories and returns a combined result set can return
results sooner if the searches are done asynchronously using a new thread for each repository
instead of synchronously using the main client thread.

If you must use threads in your application code, create a pool of threads so that you can control
the number of threads your application creates. Like a JDBC connection pool, you allocate a
given number of threads to a pool, and then obtain an available thread from the pool for your
runnable class. If all threads in the pool are in use, wait until one is returned. A thread pool helps
avoid performance issues and allows you to optimize the allocation of threads between WebLogic
Server execution threads and your application.

Be sure you understand where your threads can deadlock and handle the deadlocks when they
occur. Review your design carefully to ensure that your threads do not compromise the security
system.

To avoid undesirable interactions with WebLogic Server threads, do not let your threads call into
WebLogic Server modules. For example, do not use enterprise beans or servlets from threads that
you create. Application threads are best used for independent, isolated tasks, such as conversing
with an external service with a TCP/IP connection or, with proper locking, reading or writing to
files. A short-lived thread that accomplishes a single purpose and ends (or returns to the thread
pool) is less likely to interfere with other threads.

Avoid creating daemon threads in modules that are packaged in applications deployed on
WebLogic Server. When you create a daemon thread in an application module such as a Servlet,

Developing Applications with WebLogic Server

Programming Applications for WebLogic Server Clusters

you will not be able to redeploy the application because the daemon thread created in the original
deployment will remain running.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even to the point
of failure. Observe the application performance and WebLogic Server behavior and then add
checks to prevent failures from occurring in production.

Programming Applications for WebLogic Server Clusters

JSPs and Servlets that will be deployed to a WebLogic Server cluster must observe certain
requirements for preserving session data. See “Requirements for HTTP Session State
Replication” in Using WebLogic Server Clusters for more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB type. See
“Understanding WebLogic Enterprise JavaBeans” in Programming WebLogic Enterprise
JavaBeans for information about the capabilities of different EJB types in a cluster. EJBs can be
deployed to a cluster by setting clustering properties in the EJB deployment descriptor.

If you are developing either EJBs or custom RMI objects for deployment in a cluster, also refer
to “Using WebLogic JNDI in a Clustered Environment” in Programming WebLogic JNDI to
understand the implications of binding clustered objects in the JNDI tree.

Developing Applications with WebLogic Server 12-3

http://e-docs.bea.com/wls/docs90/cluster/failover.html#1022034
http://e-docs.bea.com/wls/docs90/cluster/failover.html#1022034
http://e-docs.bea.com/wls/docs90/cluster/index.html
http://e-docs.bea.com/wls/docs90/ejb/understanding.html
http://e-docs.bea.com/wls/docs90/jndi/jndi.html#jndi012
http://e-docs.bea.com/wls/docs90/jndi/index.html

Threading and Clustering Topics

12-4 Developing Applications with WebLogic Server

APPENDIXO

Enterprise Application Deployment
Descriptor Elements

The following sections describe Enterprise application deployment descriptors:
application.xml (a J2EE standard deployment descriptor) and
weblogic-application.xml (a WebLogic-specific application deployment descriptor).

The weblogic-application.xml file is optional if you are not using any WebLogic Server
extensions.

e “weblogic-application.xml Deployment Descriptor Elements” on page A-1
e “weblogic-application.xml Schema” on page A-41

e “application.xml Schema” on page A-41

weblogic-application.xml Deployment Descriptor Elements

The following sections describe the many of the individual elements that are defined in the
weblogic-application.xml Schema. The weblogic-application.xml file is the BEA
WebLogic Server-specific deployment descriptor extension for the application.xml
deployment descriptor from Sun Microsystems. This is where you configure features such as
shared J2EE libraries referenced in the application and EJB caching.

The file is located in the META-INF subdirectory of the application archive. The following
sections describe elements that can appear in the file.

Developing Applications with WebLogic Server A-1

Enterprise Application Deployment Descriptor Elements

weblogic-application

The weblogic-application element is the root element of the application deployment
descriptor.

The following table describes the elements you can define within a weblogic-application
element.

Element Required? Maximum Description
Number In
File

<ejb> Optional 1 Contains information that is specific to the EJB modules
that are part of a WebLogic application. Currently, one can
use the ejb element to specify one or more application level
caches that can be used by the application’s entity beans.

For more information on the elements you can define within
the ejb element, refer to “ejb” on page A-10.

<xml> Optional 1 Contains information about parsers and entity mappings for
XML processing that is specific to this application.

For more information on the elements you can define within
the xm1 element, refer to “xml” on page A-15.

<jdbc-connec Optional Unbounded Zero or more. Specifies an application-scoped JDBC
tion-pool> connection pool.

For more information on the elements you can define within
the jdbc-connection-pool element, refer to
“jdbc-connection-pool” on page A-17.

<security> Optional 1 Specifies security information for the application.

For more information on the elements you can define within
the security element, refer to “security” on page A-32.

A-2 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number In
File
<application Optional Unbounded Zero or more. Used to specify un-typed parameters that

-param>

affect the behavior of container instances related to the
application. The parameters listed here are currently
supported. Also, these parameters in
weblogic-application.xml can determine the
default encoding to be used for requests and for responses.

* webapp.encoding.default—Can be set to a
string representing an encoding supported by the JDK.
If set, this defines the default encoding used to process
servlet requests and servlet responses. This setting is
ignored if webapp.encoding.usevmdefault is
set to true. This value is also overridden for request
streams by the input-charset element of
weblogic.xml.

* webapp.encoding.usevmdefault—Can be set
to true or false. If true, the system property
file.encoding is used to define the default
encoding.

The following parameter is used to affect the behavior of
Web applications that are contained in this application.

* webapp.getrealpath.accept context path
—This is a compatibility switch that may be set to t rue
or false. If setto true, the context path of Web
applications is allowed in calls to the servlet API
getRealPath.

Example:
<application-param>

<param-name>webapp.encoding.default
</param-name>

<param-value>UTF8</param-value>
</application-param>

For more information on the elements you can define within
the application-param element, refer to
“application-param” on page A-32.

Developing Applications with WebLogic Server A-3

Enterprise Application Deployment Descriptor Elements

Element Required? Maximum Description

Number In

File
<classloader Optional Unbounded A classloader-structure element allows you to
-structure> define the organization of classloaders for this application.

The declaration represents a tree structure that represents the
classloader hierarchy and associates specific modules with
particular nodes. A module's classes are loaded by the
classloader that its associated with this element.

Example:

<classloader-structure>
<module-ref>
<module-uri>ejbl.jar</module-uri>
</module-ref>

</classloader-structure>

<classloader-structure>
<module-ref>
<module-uri>ejb2 jar</module-uri>
</module-ref>

</classloader-structure>

For more information on the elements you can define within
the classloader-structure element, refer to
“classloader-structure” on page A-33.

<listener> Optional Unbounded Zero or more. Used to register user defined application
lifecycle listeners. These are classes that extend the abstract
base class
weblogic.application.ApplicationLifecyc
leListener.

For more information on the elements you can define within
the 1istener element, refer to “listener” on page A-33.

A-4 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number In
File
<startup> Optional Unbounded Zero or more. Used to register user-defined startup classes.

For more information on the elements you can define within
the startup element, refer to “startup” on page A-34.

Note: Application-scoped startup and shutdown classes
have been deprecated in this release of WebLogic
Server. Instead, you should use lifecycle listener
events in your applications. For details, see
Chapter 9, “Programming Application Lifecycle
Events.”

<shutdown> Optional Unbounded Zero or more. Used to register user defined shutdown
classes.

For more information on the elements you can define within
the shutdown element, refer to “shutdown” on page A-34.

Note: Application-scoped startup and shutdown classes
have been deprecated in this release of WebLogic
Server. Instead, you should use lifecycle listener
events in your applications. For details, see
Chapter 9, “Programming Application Lifecycle
Events.”

Developing Applications with WebLogic Server A-5

Enterprise Application Deployment Descriptor Elements

Element Required? Maximum Description
Number In
File
<module> Optional Unbounded Represents a single WebLogic application module, such as
a JMS or JDBC module.

This element has the following child elements:
* name—The name of the module.

* type—The type of module. Valid values are JMS,
JDBC, or Interception.

* path—The path of the XML file that fully describes
the module, relative to the root of the Enterprise
application.

The following example shows how to specify a JMS module
called Work f1lows, fully described by the XML file
jms/Workflows-jms.xml:
<module>
<name>Workflows</name>
<type>JMS</type>
<path>jms/Workflows-jms.xml</path>
</module>

<library-ref Optional Unbounded A reference to a shared J2EE library.

> . . ey
For more information on the elements you can define within

the 1ibrary element, refer to “library” on page A-40.

<fair-share- Optional Unbounded Specifies a fair share request class, which is a type of Work

request> Manager request class. In particular, a fair share request
class specifies the average percentage of thread-use time
required to process requests.

The <fair-share-request> element can take the
following child elements:

* name—The name of the fair share request class.

* fair-share—An integer representing the average
percentage of thread-use time.

See Using Work Managers to Optimize Schedule Work.

A-6 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description

Number In

File
<response-ti Optional Unbounded Specifies a response time request class, which is a a type of
me-request> Work manager class. In particular, a response time request

class specifies a response time goal in milliseconds.

The <response-time-request> element can take the
following child elements:

* name—The name of the response time request class.
* goal-ms—The integer response time goal.

See Using Work Managers to Optimize Schedule Work.

<context-req Optional Unbounded Specifies a context request class, which is a a type of Work
uest> manager class. In particular, a context request class assigns
request classes to requests based on context information,
such as the current user or the current user's group.
The <context-request> element can take the
following child elements:

* name—The name of the context request class.

* context-case—An element that describes the
context.

The <context-case> element can itself take the
following child elements:

* user-name or group-name—The user or group to
which the context applies.

* request-class-name—The name of the request
class.

See Using Work Managers to Optimize Schedule Work.

Developing Applications with WebLogic Server A-1

http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html

Enterprise Application Deployment Descriptor Elements

Element

Required?

Maximum
Number In
File

Description

<max-threads
-constraint>

Optional

Unbounded

Specifies a max-threads-constraint Work Manager
constraint. A Work Manager constraint defines minimum
and maximum numbers of threads allocated to execute
requests and the total number of requests that can be queued
or executing before WebLogic Server begins rejecting
requests.

The max-threads constraint limits the number of concurrent
threads executing requests from the constrained work set.

The <max-threads-constraint> element can take the

following child elements:

¢ name—The name of the max-thread-constaint
constraint.

» Either count or pool-name—The integer maximum
number of concurrent threads, or the name of a
connection pool which determines the maximum.

See Using Work Managers to Optimize Schedule Work.

<min-threads
-constraint>

Optional

Unbounded

Specifies amin-threads-constraint Work Manager
constraint. A Work Manager constraint defines minimum
and maximum numbers of threads allocated to execute
requests and the total number of requests that can be queued
or executing before WebLogic Server begins rejecting
requests.

The min-threads constraint guarantees a number of threads
the server will allocate to affected requests to avoid
deadlocks.

The <min-threads-constraint> element can take the
following child elements:

¢ name—The name of the min-thread-constaint
constraint.

* count—The integer minimum number of threads.

See Using Work Managers to Optimize Schedule Work.

A-8 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number In
File
<capacity> Optional Unbounded Specifies a capacity Work Manager constraint. A Work

Manager constraint defines minimum and maximum
numbers of threads allocated to execute requests and the
total number of requests that can be queued or executing
before WebLogic Server begins rejecting requests.

The capacity constraint causes the server to reject requests
only when it has reached its capacity.

The <capacity> element can take the following child
elements:

* name—The name of the capacity constraint.
* count—The integer thread capacity.

See Using Work Managers to Optimize Schedule Work.

<work-manage
r>

Optional Unbounded

Specifies the Work Manager that is associated with the
application.

For more information on the elements you can define within
the work-manager element, refer to “work-manager” on
page A-35.

See Using Work Managers to Optimize Schedule Work for
detailed information on Work Managers.

<application
-admin-mode-
trigger>

Optional Unbounded

Specifies the number of stuck threads needed to bring the
application into administration mode.

You can specity the following child elements:
* max-stuck-thread-time—The maximum amount
of time, in seconds, that a thread should remain stuck.

* stuck-thread-count—Number of stuck threads
that triggers the stuck thread work manager.

<gsession-des
criptor>

Optional Unbounded

Specifies a list of configuration parameters for servlet
sessions.

For more information on the elements you can define within
the <session-descriptor> element, refer to
“session-descriptor” on page A-37.

Developing Applications with WebLogic Server A-9

http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html

Enterprise Application Deployment Descriptor Elements

ejb

The following table describes the elements you can define within an ejb element.

A-10 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<entity-cache> Optional Unbounded Zero or more. The entity-cache element is used to

define a named application level cache that is used to
cache entity EJB instances at runtime. Individual entity
beans refer to the application-level cache that they must
use, referring to the cache name. There is no restriction on
the number of different entity beans that may reference an
individual cache.

Application-level caching is used by default whenever an
entity bean does not specify its own cache in the
weblogic-ejb-jar.xml descriptor. Two default
caches named ExclusiveCache and
MultiVersionCache are used for this purpose. An
application may explicitly define these default caches to
specify non-default values for their settings. Note that the
caching-strategy cannot be changed for the default caches.
By default, a cache uses max-beans-in-cache with
a value of 1000 to specify its maximum size.

Example:

<entity-cache>

<entity-cache-name>ExclusiveCache</enti

ty-cache-name>
<max-cache-size>
<megabytes>50</megabytes>
</max-cache-size>

</entity-cache>

For more information on the elements you can define
within the entity-cache element, refer to
“entity-cache” on page A-12.

Developing Applications with WebLogic Server A-11

Enterprise Application Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<start-mbds-wi Optional 1 Allows you to configure the EJB container to start

th- application

Message Driven BeanS (MDBS) with the application. If
set to true, the container starts MDBS as part of the
application. If set to false, the container keeps MDBS in a
queue and the server starts them as soon as it has started
listening on the ports.

entity-cache

The following table describes the elements you can define within a entity-cache element.

Element Required? Maximum Description
Number in
File
<entity-cache- Required 1 Specifies a unique name for an entity bean cache. The
name> name must be unique within an ear file and may not be the
empty string.
Example:
<entity-cache-name>ExclusiveCache</enti
ty-cache-name>
<max-beans-in- Optional 1 Specifies the maximum number of entity beans that are
cache> If you allowed in the cache. If the limit is reached, beans may be
specify this passivated. This mechanism does not take into account the
clement actual amount of memory that different entity beans
you cannot require. This element can be set to a value of 1 or greater.

also specify
<maX-cac

he-size>.

Default Value: 1000

A-12 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<max-cache-siz Optional 1 Used to specify a limit on the size of an entity cache in
e> If you terms of memory size—expressed either in terms of bytes
specify this or megabytes. A bean prov1de.r should provide an estimate
element of the average size of a bean in the
you cannot webiogﬁ c-ej bf:j ar. xml. descrlptor 1f the }ll)ean uses
also specify a cache that spec? 1es 1ts maximum size using the .
<max-bea max-cache-size element. By default, a bean is
ns-in-ca assumed to have an average size of 100 bytes.
che>. For more information on the elements you can define
within the ejb element, refer to “max-cache-size” on
page A-14.
<max-queries-i Optional 1 Specifies the maximum SQL queries that can be present in
n-cache> the entity cache at a given moment.
<caching-strat Optional 1 Specifies the general strategy that the EJB container uses

egy>

to manage entity bean instances in a particular application
level cache. A cache buffers entity bean instances in
memory and associates them with their primary key value.

The caching-strategy element can only have one of
the following values:

* Exclusive—Caches a single bean instance in
memory for each primary key value. This unique
instance is typically locked using the EJB container’s
exclusive locking when it is in use, so that only one
transaction can use the instance at a time.

* MultiVersion—Caches multiple bean instances
in memory for a given primary key value. Each
instance can be used by a different transaction
concurrently.

Default Value: MultiVersion
Example:

<caching-strategy>Exclusive</caching-strategy>

Developing Applications with WebLogic Server A-13

Enterprise

Application Deployment Descriptor Elements

max-cache-size

The following table describes the elements you can define within a max-cache-size element.

Element

Required? Maximum Description
Number in
File

<bytes>

You must 1 The size of an entity cache in terms of memory size, expressed
specify in bytes.

either

<bytes>

or

<megabyt

es>

<megabytes> You must 1 The size of an entity cache in terms of memory size, expressed

specify in megabytes.
either

<bytes>

or

<megabyt

es>

A-14

Developing Applications with WebLogic Server

xml

weblogic-application.xml Deployment Descriptor Elements

The following table describes the elements you can define within an xm1 element.

Element Required? Maximum Description
Number in
File
<parser-factor Optional 1 The parent element used to specify a particular XML
y> parser or transformer for an enterprise application.
For more information on the elements you can define
within the parser-factory element, refer to
“parser-factory” on page A-16.
<entity-mappin Optional Unbounded Zero or More. Specifies the entity mapping. This mapping

g>

determines the alternative entity URI for a given public or
system ID. The default place to look for this entity URI is
the 1ib/xml/registry directory.

For more information on the elements you can define
within the entity-mapping element, refer to
“entity-mapping” on page A-17.

Developing Applications with WebLogic Server A-15

Enterprise Application Deployment Descriptor Elements

parser-factory

The following table describes the elements you can define within a parser-factory element.

Element

Required? Maximum
Number in
File

Description

<saxparser-fac
tory>

Optional 1

Allows you to set the SAXParser Factory for the XML
parsing required in this application only. This element
determines the factory to be used for SAX style parsing. If
you do not specify the saxparser-factory element
setting, the configured SAXParser Factory style in the
Server XML Registry is used.

Default Value: Server XML Registry setting

<document-buil
der-factory>

Optional 1

Allows you to set the Document Builder Factory for the
XML parsing required in this application only. This
element determines the factory to be used for DOM style
parsing. If you do not specify the
document-builder-factory element setting, the
configured DOM style in the Server XML Registry is
used.

Default Value: Server XML Registry setting

<transformer-f
actory>

Optional 1

Allows you to set the Transformer Engine for the style
sheet processing required in this application only. If you
do not specify a value for this element, the value
configured in the Server XML Registry is used.

Default value: Server XML Registry setting.

A-16 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

entity-mapping

The following table describes the elements you can define within an entity-mapping element.

Element Required? Maximum Description

Number in

File
<entity-mappin Required 1 Specifies the name for this entity mapping.
g-name>
<public-id> Optional 1 Specifies the public ID of the mapped entity.
<system-id> Optional 1 Specifies the system ID of the mapped entity.
<entity-uri> Optional 1 Specifies the entity URI for the mapped entity.
<when-to-cache Optional 1 Legal values are:

>
e cache-on-reference

e cache-at-initialization

e cache-never

The default value is cache-on-reference.

<cache-timeout Optional 1 Specifies the integer value in seconds.
-interval>

jdbc-connection-pool

Note: The jdbc-connection-pool element is deprecated. To define a data source in your
Enterprise application, you can package a JDBC module with the application. For more
information, see “Packaged JDBC Modules” in Configuring and Managing WebLogic
JDBC.

Developing Applications with WebLogic Server A-17

http://e-docs.bea.com/wls/docs90/jdbc_admin/packagedjdbc.html

Enterprise Application Deployment Descriptor Elements

The following table describes the elements you can define within a

jdbc-connection-pool element.

Element

Required? Maximum
Number in
File

Description

<data-source-j Required 1
ndi-name>

Specifies the JNDI name in the application-specific INDI
tree.

<connection-fa Required 1

ctory>

Specifies the connection parameters that define overrides
for default connection factory settings.

* user-name—Optional. The user-name clement
is used to override UserName in the
JDBCDataSourceFactoryMBean.

e url—Optional. The url element is used to override
URL in the JDBCDataSourceFactoryMBean.

* driver-class-name—Optional. The
driver-class-name element is used to override
DriverName in the
JDBCDataSourceFactoryMBean.

e connection-params—Zero or more.

* parameter+ (param-value, param-name)—
One or more

For more information on the elements you can define
within the connection-factory element, refer to
“connection-factory” on page A-19.

<pool-params> Optional 1

Defines parameters that affect the behavior of the pool.

For more information on the elements you can define
within the pool-params element, refer to
“pool-params” on page A-20.

<driver-params Optional 1

>

Sets behavior on WebLogic Server drivers.

For more information on the elements you can define
within the driver-params element, refer to
“driver-params” on page A-28.

<acl-name> Optional 1

DEPRECATED.

A-18

Developing Applications with WebLogic Server

connection-factory

The following table describes the elements you can define within a connection-factory

weblogic-application.xml Deployment Descriptor Elements

element.
Element Required? Maximum Description
Number in
File
<factory-name> Optional 1 Specifies the name of a
JDBCDataSourceFactoryMBean in the
config.xml file.
<connection-pr Optional 1 Specifies the connection properties for the connection

operties>

factory. Elements that can be defined for the
connection-properties element are:

user-name—Optional. Used to override UserName
in the JDBCDataSourceFactoryMBean.

password—Optional. Used to override Password in
the JDBCDataSourceFactoryMBean.

ur1—Optional. Used to override URL in the
JDBCDataSourceFactoryMBean.

driver-class-name—Optional. Used to
override DriverName in the
JDBCDataSourceFactoryMBean

connection-params—~Zero or more. Used to set
parameters which will be passed to the driver when
making a connection. Example:

<connection-params>
<parameter>
<description>Desc of param
</description>
<param-name>foo</param-name>
<param-value>xyz</param-value>
</parameter>
</connection-params>

Developing Applications with WebLogic Server A-19

Enterprise Application Deployment Descriptor Elements

pool-params

The following table describes the elements you can define within a pool-params element.

A-20 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<size-params> Optional 1 Defines parameters that affect the number of connections
in the pool.

* initial-capacity—Optional. The
initial-capacity element defines the number
of physical database connections to create when the
pool is initialized. The default value is 1.

* max-capacity—Optional. The mnax-capacity
element defines the maximum number of physical
database connections that this pool can contain. Note
that the JDBC Driver may impose further limits on
this value. The default value is 1.

* capacity-increment—Optional. The
capacity-increment element defines the
increment by which the pool capacity is expanded.
When there are no more available physical
connections to service requests, the pool creates this
number of additional physical database connections
and adds them to the pool. The pool ensures that it
does not exceed the maximum number of physical
connections as set by max—-capacity. The default
value is 1.

* shrinking-enabled—Optional. The
shrinking-enabled element indicates whether
or not the pool can shrink back to its
initial-capacity when connections are
detected to not be in use.

* shrink-period-minutes—Optional. The
shrink-period-minutes element defines the
number of minutes to wait before shrinking a
connection pool that has incrementally increased to
meet demand. The shrinking-enabled element
must be set to true for shrinking to take place.

* shrink-frequency-seconds—Optional.
* highest-num-waiters—Optional.

* highest-num-unavailable—Optional.

Developing Applications with WebLogic Server A-21

Enterprise Application Deployment Descriptor Elements

Element

Required? Maximum
Number in
File

Description

<xa-params> Optional 1

Defines the parameters for the XA DataSources.

debug-level—Optional. Integer. The
debug-1level element defines the debugging level
for XA operations. The default value is 0.

keep-conn-until-tx-complete-enabled—
Optional. Boolean. If you set the
keep-conn-until-tx-complete-enabled
element to true, the XA connection pool associates
the same XA connection with the distributed
transaction until the transaction completes.

end-only-once-enabled—Optional. Boolean.
Ifyousetthe end-only-once-enabled element
to true, the XAResource.end () method is only
called once for each pending

XAResource.start () method.

recover-only-once-enabled—Optional.
Boolean. If you set the recover-only-once-enabled
element to true, recover is only called one time on a
resource.

tx-context-on-close-needed—Optional. Set
the tx-context-on-close-needed element to
true if the XA driver requires a distributed
transaction context when closing various JDBC
objects (for example, result sets, statements,
connections, and so on). If set to t rue, the SQL
exceptions that are thrown while closing the JDBC
objects in no transaction context are swallowed.

new-conn-for-commit-enabled—Optional.
Boolean. If you set the
new-conn-for-commit-enabled element to
true, a dedicated XA connection is used for
commit/rollback processing of a particular distributed
transaction.

A-22

Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description

Number in

File
<xXa-params> Optional 1 * prepared-statement-cache-size—
Continued. .. Deprecated. Optional. Use the

prepared-statement-cache-size element to set the size
of the prepared statement cache. The size of the cache
is a number of prepared statements created from a
particular connection and stored in the cache for
further use. Setting the size of the prepared statement
cache to 0 turns it off.

Note: Prepared-statement-cache-sizeis
deprecated. Use cache-sizein
driver-params/prepared-statement.
See “driver-params” for more information.

* keep-logical-conn-open-on-release—
Optional. Boolean. Set the
keep-logical-conn-open-on-release
element to true, to keep the logical IDBC
connection open when the physical XA connection is
returned to the XA connection pool. The default value
is false.

* local-transaction-supported—Optional.
Boolean. Set the
local-transaction-supportedto true if
the XA driver supports SQL with no global
transaction; otherwise, set it to false. The default
value is false.

* resource-health-monitoring-enabled—Op
tional. Set the
resource-health-monitoring-enabled
element to true to enable JTA resource health
monitoring for this connection pool.

Developing Applications with WebLogic Server A-23

Enterprise Application Deployment Descriptor Elements

Element

Required? Maximum
Number in
File

Description

<xa-params> Optional 1
Continued. ..

xa-set-transaction-timeout—Optional.
Used in: xa-params
Example:
<xa-set-transaction-timeout>
true
</xa-set-transaction-timeout>
xa-transaction-timeout—Optional.

When the xa-set-transaction-timeout
value is set to true, the transaction manager invokes
setTransactionTimeout on the resource before calling
XAResource. start. The Transaction Manager
passes the global transaction timeout value. If this
attribute is set to a value greater than 0, then this value
is used in place of the global transaction timeout.

Default value: 0
Used in: xa-params
Example:
<xa-transaction-timeout>
30
</xa-transaction-timeout>

rollback-localtx-upon-connclose—
Optional.

When the
rollback-localtx-upon-connclose element
is true, the connection pool calls rol1lback () on the
connection before putting it back in the pool.
Default value: false

Used in: xa-params

Example:
<rollback-localtx-upon-connclose>

true
</rollback-localtx-upon-connclose>

A-24

Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element

Required?

Maximum
Number in
File

Description

<login-delay-s
econds>

Optional

1

Sets the number of seconds to delay before creating each
physical database connection. Some database servers
cannot handle multiple requests for connections in rapid
succession. This property allows you to build in a small
delay to let the database server catch up. This delay occurs
both during initial pool creation and during the lifetime of
the pool whenever a physical database connection is
created.

<leak-profilin
g-enabled>

Optional

Enables JDBC connection leak profiling. A connection
leak occurs when a connection from the pool is not closed
explicitly by calling the c1lose () method on that
connection. When connection leak profiling is active, the
pool stores the stack trace at the time the connection object
is allocated from the pool and given to the client. When a
connection leak is detected (when the connection object is
garbage collected), this stack trace is reported.

This element uses extra resources and will likely
slowdown connection pool operations, so it is not
recommended for production use.

Developing Applications with WebLogic Server A-25

Enterprise Application Deployment Descriptor Elements

Description

Element Required? Maximum
Number in
File

<connection-ch Optional 1

eck-params>

Defines whether, when, and how connections in a
pool is checked to make sure they are still alive.

table-name—Optional. The table-name
element defines a table in the schema that can be
queried.

check-on-reserve-enabled—Optional. If the
check-on-reserve-enabled element is set to true, then
the connection will be tested each time before it is
handed out to a user.

check-on-release-enabled—Optional. If
the check-on-release-enabledelementisset
to true, then the connection will be tested each time
a user returns a connection to the pool.

refresh-minutes—Optional. If the
refresh-minutes element is defined, a trigger is
fired periodically (based on the number of minutes
specified). This trigger checks each connection in the
pool to make sure it is still valid.

check-on-create-enabled—Optional. If set
to t rue, then the connection will be tested when it is
created.

connection-reserve-timeout-seconds—Op
tional. Number of seconds after which the call to
reserve a connection from the pool will timeout.

connection-creation-retry-frequency-s
econds—Optional. The frequency of retry attempts
by the pool to establish connections to the database.

inactive-connection-timeout-seconds—
Optional. The number of seconds of inactivity after
which reserved connections will forcibly be released
back into the pool.

A-26

Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<connection-ch Optional 1 * test-frequency-seconds—Optional. The
eck-params> number of seconds between database connection tests.
Continued... After every test-frequency-seconds interval, unused
database connections are tested using table-name.
Connections that do not pass the test will be closed
and reopened to re-establish a valid physical database
connection. If table-name is not set, the test will
not be performed.
* init-sgl—Optional. Specifies a SQL query that
automatically runs when a connection is created.
<jdbcxa-debug- Optional 1 This is an internal setting.
level>
<remove-infect Optional 1 Controls whether a connection is removed from the pool

ed-connections
-enabled>

when the application asks for the underlying vendor
connection object. Enabling this attribute has an impact on
performance; it essentially disables the pooling of
connections (as connections are removed from the pool
and replaced with new connections).

Developing Applications with WebLogic Server A-27

Enterprise Application Deployment Descriptor Elements

driver-params

The following table describes the elements you can define within a driver-params element.

A-28 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<statement> Optional 1 Defines the driver-params statement. Contains the
following optional element: profiling-enabled.
Example:
<statement>

<profiling-enabled>true
</profiling-enabled>
</statement>

Developing Applications with WebLogic Server A-29

Enterprise Application Deployment Descriptor Elements

Element

Required? Maximum
Number in
File

Description

<prepared-stat Optional 1

ement

Enables the running of JDBC prepared statement cache
profiling. When enabled, prepared statement cache
profiles are stored in external storage for further analysis.
This is a resource-consuming feature, so it is
recommended that you turn it off on a production server.
The default value is false.

* profiling-enabled—Optional.

* cache-profiling-threshold—Optional.
The cache-profiling-threshold element
defines a number of statement requests after which the
state of the prepared statement cache is logged. This
element minimizes the output volume. This is a
resource-consuming feature, so it is recommended
that you turn it off on a production server.

* cache-size—Optional. The cache-size
element returns the size of the prepared statement
cache. The size of the cache is a number of prepared
statements created from a particular connection and
stored in the cache for further use.

* parameter-logging-enabled—Optional.
During SQL roundtrip profiling it is possible to store
values of prepared statement parameters. The
parameter-logging-enabled element
enables the storing of statement parameters. This is a
resource-consuming feature, so it is recommended
that you turn it off on a production server.

* max-parameter-length—Optional. During
SQL roundtrip profiling it is possible to store values
of prepared statement parameters. The
max-parameter-length element defines
maximum length of the string passed as a parameter
for JDBC SQL roundtrip profiling. This is a
resource-consuming feature, so you should limit the
length of data for a parameter to reduce the output
volume.

* cache-type—Optional.

A-30

Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element

Required? Maximum
Number in
File

Description

<row-prefetch-
enabled>

Optional 1

Specifies whether to enable row prefetching between a
client and WebLogic Server for each ResultSet.

When an external client accesses a database using JDBC
through Weblogic Server, row prefetching improves
performance by fetching multiple rows from the server to
the client in one server access. WebLogic Server ignores

this setting and does not use row prefetching when the
client and WebLogic Server are in the same JVM

<row-prefetch-
size>

Optional 1

Specifies the number of result set rows to prefetch for a
client.

The optimal value depends on the particulars of the query.
In general, increasing this number increases performance,
until a particular value is reached. At that point further
increases do not result in any significant increase in
performance.

Note: Typically you will not see any increase in
performance after 100 rows. The default value
should be adequate for most situations.

Valid values for this element are between 2 and 65536.
The default value is 48.

<stream-chunk-
size>

Optional 1

Specifies the data chunk size for streaming data types,
which are pulled from WebLogic Server to the client as
needed.

Developing Applications with WebLogic Server A-31

Enterprise Application Deployment Descriptor Elements

security

The following table describes the elements you can define within a security element.

Element Required? Maximum Description
Number in
File
<realm-name> Optional 1 Names a security realm to be used by the application. If

none is specified, the system default realm is used

<security-role Optional Unbounded Declares a mapping between an application-wide security
-assignment> role and one or more WebLogic Server principals.
Example:

<security-role-assignment>
<role-name>
PayrollAdmin
</role-name>
<principal-name>
Tanya
</principal-name>
<principal-name>
Fred
</principal-name>
<principal-name>
system
</principal-name>
</security-role-assignment>

application-param

The following table describes the elements you can define within a application-param

element.
Element Required? Maximum Description
Number in
File
<description> Optional 1 Provides a description of the application parameter.

A-32 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description

Number in

File
<param-name> Required 1 Defines the name of the application parameter.
<param-value> Required 1 Defines the value of the application parameter.

classloader-structure

The following table describes the elements you can define within a classloader-structure

element.
Element Required? Maximum Description
Number in
File
<module-ref> Optional Unbounded The following list describes the elements you can define
within a module-ref element:
* module-uri—Zero or more. Defined within the
module-ref element.
<classloader-s Optional Unbounded Allows for arbitrary nesting of classloader structures for
tructure> an application. However, for this version of WebLogic
Server, the depth is restricted to three levels.
listener

The following table describes the elements you can define within a 1istener element.

Element Required? Maximum Description
Number in
File
<listener-clas Required 1 Name of the user’s implementation of
s> ApplicationLifecyclelListener.
<listener-uri> Optional 1 A JAR file within the EAR that contains the

implementation. If you do not specify the
listener-uri,itis assumed that the class is visible to
the application.

Developing Applications with WebLogic Server A-33

Enterprise Application Deployment Descriptor Elements

startup

The following table describes the elements you can define within a startup element.

Application-scoped startup and shutdown classes have been deprecated in this

release of WebLogic Server. Instead, you should use lifecycle listener events in your
applications. For details, see Chapter 9, “Programming Application Lifecycle

Defines the name of the class to be run when the
application is being deployed.

Defines a JAR file within the EAR that contains the
startup-class. If startup-uri is not defined,
then its assumed that the class is visible to the application.

Warning:
Events.”
Element Required? Maximum Description
Number in
File
<startup-class Required 1
>
<startup-uri> Optional 1
shutdown

The following table describes the elements you can define within a shutdown element.

Warning: Application-scoped startup and shutdown classes have been deprecated in this
release of WebLogic Server. Instead, you should use lifecycle listener events in your
applications. For details, see Chapter 9, “Programming Application Lifecycle
Events.”

Element Required Maximum Description

Optional Number in
File

<shutdown-clas Required 1 Defines the name of the class to be run when the

s> application is undeployed.

<shutdown-uri> Optional 1 Defines a JAR file within the EAR that contains the
shutdown-class. If you do not define the
shutdown-uri element, it is assumed that the class is
visible to the application.

A-34 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

work-manager

The following table describes the elements you can define within a work-manager element.

See Using Work Managers to Optimize Schedule Work for examples and information on Work Managers.

Element

Required? Maximum
Number in
File

Description

<name>

Required 1

The name of the Work Manager.

<response-time
-request-class
>

Optional 1

See the description of the
<response-time-request> element in
“weblogic-application” on page A-2 for
information on this child element of <work-managers>.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<context-reqguest-class>, or
<request-class-name>.

<fair-share-re
quest-class>

Optional 1

See the description of the <fair-share-request>
element in “weblogic-application” on

page A-2 for information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<response-time-request-class>,
<context-request-class>, or
<request-class-name>.

<context-reque
st-class>

Optional 1

See the description of the <context-request>
element in “weblogic-application” on
page A-2 for information on this child element of
<work-manager>.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<response-time-request-class>, or
<request-class-name>.

<request-class
-name>

Optional 1

The name of the request class.

If you specify this element, you cannot also specify
<fair-share-request-class>,
<context-request-class>, or
<response-time-request-class>.

Developing Applications with WebLogic Server A-35

http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html

Enterprise Application Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<min-threads-c Optional 1 See the description of the
onstraint> <min-threads-constraint> element in
“weblogic-application” on page A-2 for
information on this child element of <work-manager>.
If you specify this element, you cannot also specify
<min-threads-constaint-name>.
<min-threads-c Optional 1 The name of the min-threads constraint.
c:nstralnt—name If you specify this element, you cannot also specify
<min-threads-constaint>.
<max-threads-c Optional 1 See the description of the
onstraint> <max-threads-constraint> element in
“weblogic-application” on page A-2 for
information on this child element of <work-manager>.
If you specify this element, you cannot also specify
<max-threads-constaint-name>.
<max-threads-c Optional 1 The name of the max-threads constraint.
onstraint-name If you specify this element, you cannot also specify
> .
<max-threads-constaint>.
<capacity> Optional 1 See the description of the <capacity> element in

“weblogic-application” on page A-2 for
information on this child element of <work-manager>.

If you specify this element, you cannot also specify
<capacity-name>.

<capacity-name Optional

>

The name of the thread capacity constraint.

If you specify this element, you cannot also specify
<capacity>.

A-36

Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description

Number in

File
<work-manager- Optional 1 Used to specify a Stuck Thread Work Manager
shutdown-trigg component that can shut down the Work Manager in
er> response to stuck threads.

You can specify the following child elements:

* max-stuck-thread-time—The maximum
amount of time, in seconds, that a thread should
remain stuck.

* stuck-thread-count—Number of stuck threads
that triggers the stuck thread work manager.

If you specify this element, you cannot also specify

<ignore-stuck-threads>.

<ignore-stuck- Optional 1 Specifies whether the Work Manager should ignore stuck
threads> threads and never shut down even if threads become stuck.

If you specify this element, you cannot also specify

<work-manager-shutdown-trigger>.

session-descriptor
The following table describes the elements you can define within a session-descriptor
element.
Element Required? Maximum Description
Number in
File

<timeout-secs> Optional

1

Specifies the number of seconds after which the session
times out.

Default value is 3600 seconds.

<invalidation- Optional
interval-secs>

Specifies the number of seconds of the invalidation trigger
interval.

Default value is 60 seconds.

Developing Applications with WebLogic Server A-37

Enterprise Application Deployment Descriptor Elements

Element Required? Maximum Description

Number in

File
<debug-enabled Optional 1 Specifies whether debugging is enabled for HTTP
> sessions.

Default value is false.
<id-length> Optional 1 Specifies the length of the session ID.

Default value is 52.
<tracking-enab Optional 1 Specifies whether session tracking is enabled between
led> HTTP requests.

Default value is true.
<cache-size> Optional 1 Specifies the cache size for JDBC and file persistent

sessions.

Default value is 1028.
<max-in-memory Optional 1 Specifies the maximum sessions limit for
-sessions> memory/replicated sessions.

Default value is -1, or unlimited.
<cookies-enabl Optional 1 Specifies the Web application container should set
ed> cookies in the response.

Default value is true.
<cookie-name> Optional 1 Specifies the name of the cookie that tracks sessions.

Default name is JSESSIONID.
<cookie-path> Optional 1 Specifies the session tracking cookie path.

Default value is /.
<cookie-domain Optional 1 Specifies the session tracking cookie domain.

g Default value is null.
<cookie-commen Optional 1 Specifies the session tracking cookie comment.

t>

Default value is null.

A-38 Developing Applications with WebLogic Server

weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File

<cookie-secure Optional 1 Specifies whether the session tracking cookie is marked
> secure.

Default value is false.
<cookie-max-ag Optional 1 Specifies that maximum age of the session tracking
e-secs> cookie.

Default value is -1, or unlimited.
<persistent-st Optional 1 Specifies the type of storage for session persistence.
ore-type> You can specify the following values:

pecily g

* memory—Default value.

* replicated—Requires clustering.

* replicated_if_clustered—Defaults to

memory in non-clustered case.

« file

e Jjdbc

» cookie
<persistent-st Optional 1 Specifies the name of the cookie that holds the attribute
ore-cookie-nam name and values when using cookie-based session
e> persistence.

Default value is WLCOOKIE.
<persistent-st Optional 1 Specifies the name of the directory when using
ore-dir> file-based session persistence. The directory is relative

to the temporary directory defined for the Web

application.

Default value is session_db.
<persistent-st Optional 1 Specifies the name of the JDBC connection pool when
ore-pool> using jdbc-based session persistence.
<persistent-st Optional 1 Specifies the name of the database table when using

ore-table>

jdbc-based session persistence.

Default value is wl_servlet_sessions.

Developing Applications with WebLogic Server A-39

Enterprise Application Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<jdbc-column-n Optional 1 Alternative name for the
ame-max-inacti wl_max_inactive_interval column name when
ve-interval> using jdbc-based session persistence. Required for
certain databases that do not support long column names
<jdbc-connecti Optional 1 DEPRECATED
on-timeout-sec
S>
<url-rewriting Optional 1 Specifies whether URL rewriting is enabled.
-enabled> Default value is true.
<http-proxy-ca Optional 1 Specifies whether WebLogic Server adds the following
ching-of-cooki HTTP header to the response:
es> Cache-control: no-cache=set-cookie
This header specifies that proxy caches should not cache
the cookies.
Default value is true, which means that the header is
NOT added. Set this element to false if you want the
header added to the response.
<encode-sessio Optional 1 Specifies whether WebLogic Server should encode the
n-id-in-query- session ID in the path parameters.
params> Default value is false.
<monitoring-at Optional 1 Used to tag runtime information for different sessions. For
tribute-name> example, set this element to username if you have a
username attribute that is guaranteed to be unique.
<sharing-enabl Optional 1 Specifies whether HTTP sessions are shared across

ed>

multiple Web applications.

Default value is false.

library

The following table describes the elements you can define within a library element.

A-40 Developing Applications with WebLogic Server

weblogic-application.xml Schema

See Chapter 8, “Creating Shared J2EE Libraries and Optional Packages,” for additional

information and examples.

Element Required? Maximum Description
Number in
File
<library-name> Required 1 Specifies the name of the referenced shared J2EE library.
<specification Optional 1 Specifies the minimum specification-version required.
-version>
<implementatio Optional 1 Specifies the minimum implementation-version required.
n-version>
<exact-match> Optional 1 Specifies whether there must be an exact match between
the specification and implementation version that is
specified and that of the referenced library.
Default value is false.
<context-root> Optional 1 Specifies the context-root of the references Web

Applications shared J2EE library.

weblogic-application.xml Schema

See http://www.bea.com/ns/weblogic/90/weblogic-application.xsd for the XML Schema of the
weblogic-application.xml deployment descriptor file.

application.xml Schema

For more information about application.xml deployment descriptor elements, see the J2EE
1.4 schema available at http://java.sun.com/xml/ns/j2ee/application_1 4.xsd.

Developing Applications with WebLogic Server A-41

http://www.bea.com/ns/weblogic/90/weblogic-application.xsd
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd

Enterprise Application Deployment Descriptor Elements

A-42 Developing Applications with WebLogic Server

APPENDIXG

wldeploy Ant Task Reference

The following sections describe tools for deploying applications and standalone modules to
WebLogic Server:

e “Overview of the wldeploy Ant Task™ on page B-1
e “Basic Steps for Using wldeploy” on page B-2
e “Sample build.xml Files for wldeploy” on page B-2

o “wldeploy Ant Task Attribute Reference” on page B-4

Overview of the wideploy Ant Task

The wldeploy Ant task enables you to perform weblogic.Deployer functions using attributes
specified in an Ant XML file. You can use wldeploy along with other WebLogic Server Ant
tasks to create a single Ant build script that:

e Builds your application from source, using wlcompile, appc, and the Web Services Ant
tasks.

e Creates, starts, and configures a new WebLogic Server domain, using the wlserver and
wlconfig Ant tasks.

e Deploys a compiled application to the newly-created domain, using the wldeploy Ant
task.

Developing Applications with WebLogic Server B-1

wldeploy Ant Task Reference

See “Using Ant Tasks to Configure and Use a WebLogic Server Domain™ on page 2-1 for more
information about wlserver and wlconfig. See “Building Applications in a Split Development
Directory” on page 4-1 for information about wlcompile.

Basic Steps for Using wideploy

To use the wldeploy Ant task:

1.

Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the directory
WL_HOME\server\bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your WebLogic Server
installation.

In the staging directory, create the Ant build file (build.xml by default). If you want to use
an Ant installation that is different from the one installed with WebLogic Server, start by
defining the wldeploy Ant task definition:

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management.WLDeploy" />

If necessary, add task definitions and calls to the wlserver and wlconfig tasks in the build
script to create and start a new WebLogic Server domain. See “Using Ant Tasks to
Configure and Use a WebLogic Server Domain” on page 2-1 for information about

wlserver and wlconfig.

Add a call to wldeploy to deploy your application to one or more WebLogic Server
instances or clusters. See “Sample build.xml Files for wideploy” on page B-2 and
“wldeploy Ant Task Attribute Reference” on page B-4.

Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging
directory, optionally passing the command a target argument:

prompt> ant

Sample build.xml Files for wideploy

The following example shows a wldeploy target that deploys an application to a single
WebLogic Server instance:

B-2

Developing Applications with WebLogic Server

Sample build.xml Files for wideploy

<target name="deploy">
<wldeploy
action="deploy" verbose="true" debug="true"
name="DeployExample" source="output/redeployEAR"
user="weblogic" password="weblogic"
adminurl="t3://localhost:7001" targets="myserver" />
</target>

The following example shows a corresponding task to undeploy the application; the example
shows that when you undeploy or redeploy an application, you do not specify the source archive
file or exploded directory, but rather, just its deployed name.:

<target name="undeploy">
<wldeploy
action="undeploy" verbose="true" debug="true"
name="DeployExample"
user="weblogic" password="weblogic"
adminurl="t3://localhost:7001" targets="myserver"
failonerror="false" />

</target>

The following example shows how to perform a partial redeploy of the application; in this case,
just a single WAR file in the application is redeployed:

<target name="redeploy_ partial">
<wldeploy

action="redeploy" verbose="true"
name="DeployExample"
user="weblogic" password="weblogic"
adminurl="t3://localhost:7001" targets="myserver"
deltaFiles="examples/general/redeploy/SimpleImpl.war" />

</target>

The following example uses the nested <files> child element of wldeploy to specify a
particular file in the application that should be undeployed:

<target name="undeploy_ partial">
<wldeploy
action="undeploy" verbose="true" debug="true"
name="DeployExample"

user="weblogic" password="weblogic"

Developing Applications with WebLogic Server B-3

wldeploy Ant Task Reference

adminurl="t3://localhost:7001" targets="myserver"
failonerror="false">
<files
dir="${current-dir}/output/redeployEAR/examples/general/redeploy"
includes="SimpleImpl.jsp" />
</wldeploy>
</target>

The following example shows how to deploy a J2EE library called myLibrary whose source files
are located in the output /myLibrary directory:

<target name="deploy">
<wldeploy action="deploy" name="myLibrary"
source="output/myLibrary" library="true"
user="weblogic" password="weblogic"
verbose="true" adminurl="t3://localhost:7001"
targets="myserver" />

</target>

wideploy Ant Task Attribute Reference

The following sections describe the attributes and child element <files> of the wideploy Ant
task.

Main Attributes

The following table describes the main attributes of the wldeploy Ant task.

These attributes mirror some of the arguments of the weblogic.Deployer command. BEA
provides an Ant task version of the weblogic.Deployer command so that developers can easily
deploy and test their applications as part of the iterative development process. Typically,
however, administrators use the weblogic.Deployer command, and not the wldeploy Ant
task, to deploy applications in a production environment. For that reason, see the
weblogic.Deployer Command-Line Reference in Deploying Applications to WebLogic Server for

B-4 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/wldeployer.html
http://e-docs.bea.com/wls/docs90/deployment/index.html

wldeploy Ant Task Attribute Reference

the full and complete definition of the attributes of the wldeploy Ant task. The table below is
provided just as a quick summary.

Table B-1 Attributes of the wildeploy Ant Task

Attribute

Description

Data
Type

action

The deployment action to perform.

Valid values are deploy, cancel, undeploy, redeploy,
distribute, start, and stop.

String

adminmode

Specifies that the deployment action puts the application into Administration
mode.

Administration mode restricts access to an application to a configured
Administration channel.

Valid values for this attribute are true and false. Default valueis false,
which means that by default the application is deployed in production mode
so that all clients can access it immediately.

Boolean

adminurl

The URL of the Administration Server.

The format of the value of this attribute is protocol://host: port,
where protocol is either http or £3, host is the host on which the
Administration Server is running, and port is the port which the
Administration Server is listening.

Note: In order to use the HTTP protocol, you must enable the http
tunnelling option in the Administration Console.

String

altappdd

Specifies the name of an alternate J2EE deployment descriptor
(application.xml) to use for deployment.

If you do not specify this attribute, and you are deploying an Enterprise
application, the default deployment descriptor is called
application.xml and is located in the META-INF subdirectory of the
main application directory or archive (specified by the source attribute.)

String

altwlsappdd

Specifies the name of an alternate WebLogic Server deployment descriptor
(weblogic-application.xml) to use for deployment.

If you do not specify this attribute, and you are deploying an Enterprise
application, the default deployment descriptor is called
weblogic-application.xml and is located in the META-INF
subdirectory of the main application directory or archive (specified by the
source attribute.)

String

Developing Applications with WebLogic Server

B-5

wldeploy Ant Task Reference

Table B-1 Attributes of the wldeploy Ant Task

Attribute

Description

Data
Type

appversion

The version identifier of the deployed application.

String

debug

Enable wldeploy debugging messages.

Boolean

deltaFiles

Specifies a comma- or space-separated list of files, relative to the root
directory of the application, which are to be redeployed.

Use this attribute only in conjunction with action="redeploy" to
perform a partial redeploy of an application.

String

external stage

Specifies whether the deployment uses external_stage deployment
mode.

In this mode, the Ant task does not copy the deployment files to target
servers; instead, you must ensure that deployment files have been copied to
the correct subdirectory in the target servers' staging directories.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to
Managed Servers is stage; the default mode to the Administration Server
and in single-server cases is nostage.

See Controlling Deployment File Copying with Staging Modes.

Boolean

failonerror

This is a global attribute used by WebLogic Server Ant tasks. It specifies
whether the task should fail if it encounters an error during the build.

Valid values for this attribute are true and false. Default value is true.

Boolean

graceful

Stops the application after existing HTTP clients have completed their work.

You can use this attribute only when stopping or undeploying an application,
or in other words, you must also specify either the action="stop" or
action="undeploy" attributes.

Valid values for this attribute are t rue and false. Default value is false.

Boolean

id

Identification used for obtaining status or cancelling the deployment.

You assign a unique ID to an application when you deploy it, and then
subsequently use the ID when redeploying, undeploying, stopping, and so
on.

If you do not specify this attribute, the Ant task assigns a unique ID to the
application.

String

B-6 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/deploy.html#stage

wldeploy Ant Task Attribute Reference

Table B-1 Attributes of the wldeploy Ant Task

Attribute

Description

Data
Type

ignoresessions

This option immediately places the application into Administration mode
without waiting for current HTTP sessions to complete.

You can use this attribute only when stopping or undeploying an application,
or in other words, you must also specify either the action="stop" or
action="undeploy" attributes.

Valid values for this attribute are true and false. Default valueis false.

Boolean

libImplVer

Specifies the implementation version of a J2EE library or optional package.

This attribute can be used only if the library or package does not include a
implementation version in its manifest file. You can specify this attribute
only in combination with the 1ibrary attribute.

See “Creating Shared J2EE Libraries and Optional Packages” on page 8-1.

String

library

Identifies the deployment as a shared J2EE library or optional package. You
must specify the 1ibrary attribute when deploying or distributing any
J2EE library or optional package.

Valid values for this attribute are true and false. Default valueis false.

See “Creating Shared J2EE Libraries and Optional Packages” on page 8-1.

Boolean

libSpecVer

Provides the specification version of a J2EE library or optional package.

This attribute can be used only if the library or package does not include a
specification version in its manifest file. You can specify this attribute only
in combination with the 1ibrary attribute.

See “Creating Shared J2EE Libraries and Optional Packages” on page 8-1.

String

name

The deployment name for the deployed application.

If you do not specify this attribute, WebLogic Server assigns a deployment
name to the application, based on its archive file or exploded directory.

String

Developing Applications with WebLogic Server

B-1

wldeploy Ant Task Reference

Table B-1 Attributes of the wldeploy Ant Task

Attribute

Description Data
Type

nostage

Specifies whether the deployment uses nostage deployment mode. Boolean

In this mode, the Ant task does not copy the deployment files to target
servers, but leaves them in a fixed location, specified by the source
attribute. Target servers access the same copy of the deployment files.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to
Managed Servers is stage; the default mode to the Administration Server
and in single-server cases is nostage.

See Controlling Deployment File Copying with Staging Modes.

nowait

Specifies whether wldeploy returns immediately after making a Boolean
deployment call (by deploying as a background task).

password

The administrative password. String

To avoid having the plain text password appear in the build file or in
process utilities such as ps, first store a valid username and encrypted
password in a configuration file using the weblogic.Admin
STOREUSERCONFIG command. Then omit both the username and
password attributes in your Ant build file. When the attributes are omitted,
wldeploy attempts to login using values obtained from the default
configuration file.

If you want to obtain a username and password from a non-default
configuration file and key file, use the userconfigfile and
userkeyfile attributes with wldeploy.

See STOREUSERCONFIG in the weblogic.Admin Command-Line
Reference for more information on storing and encrypting passwords.

plan

Specifies a deployment plan to use when deploying the application or String
module.

By default, wldeploy does not use an available deployment plan, even if
you are deploying from an application root directory that contains a plan.

planversion

The version identifier of the deployment plan. String

B-8 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/deploy.html#stage
http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://e-docs.bea.com/wls/docs90/admin_ref/cli.html

wldeploy Ant Task Attribute Reference

Table B-1 Attributes of the wldeploy Ant Task

Attribute

Description Data
Type

remote

Specifies whether the server is located on a different machine. This affects Boolean
how filenames are transmitted.

Valid values for this attribute are true and false. Default value is false,
which means that the Ant task assumes that all source paths are valid paths
on the local machine.

retiretimeout

Specifies the number of seconds before WebLogic Server undeploys the int
currently-running version of this application or module so that clients can
start using the new version.

It is assumed, when you specify this attribute, that you are starting,
deploying, or redeploying a new version of an already-running application.

See Updating Applications in a Production Environment.

securityModel

Specifies the security model to use for this deployment. Possible security String
models are:

* Deployment descriptors only

» Customize roles

» Customize roles and policies

» Security realm configuration (advanced model)

Valid actual values for this attribute are DDOnly, CustomRoles,
CustomRolesAndPolicy, or Advanced.

See Options for Securing EJB and Web Application Resources for more
information on these security models

source

The archive file or exploded directory to deploy. File

stage

Specifies whether the deployment uses stage deployment mode. Boolean

In this mode, the Ant task copies deployment files to target servers' staging
directories.

You can specify only one of the following attributes: stage, nostage, or
external_stage. If none is specified, the default deployment mode to
Managed Servers is stage; the default mode to the Administration Server
and in single-server cases is nostage.

See Controlling Deployment File Copying with Staging Modes.

Developing Applications with WebLogic Server B-9

http://e-docs.bea.com/wls/docs90/deployment/redeploy.html
http://e-docs.bea.com/wls/docs90/secwlres/secejbwar.html
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#stage

wldeploy Ant Task Reference

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type
submoduletargets Specifies JMS server targets for resources defined within a JMS application ~ String
module.
The value of this attribute is a comma-separated list of JMS server names.
See the Using Sub-Module Targeting with JIMS Application Modules.
targets The list of target servers to which the application is deployed. String
The value of this attribute is a comma-separated list of the target servers,
clusters, or virtual hosts.
If you do not specify a target list when deploying an application, the target
defaults to the Administration Server instance.
timeout The maximum time to wait for a deployment to succeed. int
upload Specifies whether the source file(s) are copied to the Administration Boolean
Server’s upload directory prior to deployment.
Use this attribute when you are on a remote machine and you cannot copy
the deployment files to the Administration Server by other means.
Valid values for this attribute are true and false. Default value is false.
usenonexclusivelock Specifies that the deployment action (deploy, redeploy, stop, and so on) uses Boolean
the existing lock on the domain that has already been acquired by the same
user performing the action.
This attribute is particularly useful when the user is using multiple
deployment tools (Ant task, command line, Administration console, and so
on) simultaneously and one of the tools has already acquired a lock on the
domain.
Valid values for this attribute are true and false. Default value is false.
user The administrative username. String
userconfigfile Specifies the location of a user configuration file to use for obtaining the String

administrative username and password. Use this option, instead of the user
and password attributes, in your build file when you do not want to have
the plain text password shown in-line or in process-level utilities such as ps.
Before specifying the userconfigfile attribute, you must first generate
the file using the weblogic .Admin STOREUSERCONFIG command as
described in STOREUSERCONFIG in the weblogic.Admin Command-Line
Reference.

B-10 Developing Applications with WebLogic Server

http://e-docs.bea.com/wls/docs90/deployment/deploy.html#submodule_jms
http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://e-docs.bea.com/wls/docs90/admin_ref/cli.html

wldeploy Ant Task Attribute Reference

Table B-1 Attributes of the wldeploy Ant Task

Attribute Description Data
Type
userkeyfile Specifies the location of a user key file to use for encrypting and decrypting String

the username and password information stored in a user configuration file
(the userconfigfile attribute). Before specifying the userkeyfile
attribute, you must first generate the key file using the weblogic.Admin
STOREUSERCONFIG command as described in STOREUSERCONFIG in
the weblogic.Admin Command-Line Reference.

verbose Specifies whether wldeploy displays verbose output messages. Boolean

Nested <files> Child Element

The wldeploy Ant task also includes the <files> child element that can be nested to specify a
list of files on which to perform a deployment action (for example, a list of JSPs to undeploy.)

Warning: Use of <files> to redeploy a list of files in an application has been deprecated in
this release. Instead, use the deltaFiles attribute of wideploy.

The <files> element works the same as the standard <fileset> Ant task (except for the
difference in actual task name). Therefore, see the Apache Ant Web site for detailed reference
information about the attributes you can specify for the <files> element.

Developing Applications with WebLogic Server B-11

http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://e-docs.bea.com/wls/docs90/admin_ref/cli.html
http://ant.apache.org/manual/CoreTypes/fileset.html

wldeploy Ant Task Reference

B-12 Developing Applications with WebLogic Server

APPENDIXG

Spring Applications Reference

The following sections describe developing and managing Spring Framework-based applications
for WebLogic Server. In most cases, the information in these sections is described from the
perspective of creating MedRec-Spring.

e “About Spring on WebLogic Server” on page C-2
e “Redesigning a J2EE-Based Application to a Spring-Based Application” on page C-2

e “Spring Extension to the WebLogic Administration Console” on page C-10

Developing Applications with WebLogic Server C-1

Spring Applications Reference

About Spring on WebLogic Server

To demonstrate the ways in which Spring can take advantage of WebLogic Server’s enterprise
features, BEA redesigned the Avitek Medical Records sample application (MedRec) to replace
core J2EE components with Spring components. For additional information on MedRec
architecture and its redesign see the article "Spring Integration with WebLogic Server" at
http://dev2dev.bea.com/pub/a/2005/09/spring_integration_weblogic_server.html.

The following sections describe key steps that BEA performed when redesigning MedRec. You
can use this information if you want to redesign your own J2EE-based WebLogic Server
applications to use Spring components. You can also leverage this information if you want to
create a new application, based on Spring components, for WebLogic Server.

It is assumed that you are familiar with J2EE concepts, WebLogic Server 9.0, and the Spring
Framework. For information on WebLogic Server 9.0, see BEA WebLogic Server 9.0
Documentation. For information on the Spring Framework, see
http://www.springframework.org/.

Redesigning a J2EE-Based Application to a Spring-Based
Application

C-2

To transform a J2EE-based application to a Spring-based application, you perform the following
steps as desired:

1. Configure Spring Inversion of Control.

2. Enable the Spring Web Services Client Service. Spring offers a JAX-RPC factory which
produces a proxy for Web Services.

3. Make JMS Services Available to the Application at Runtime.

4. Configure JMX: Expose the WebLogic Server Runtime MBean Server Connection to
Spring.

5. Configure Spring JDBC to Communicate With the Connection Pool.
6. Use the Spring Transaction Abstraction Layer for Transaction Management.

7. Make Use of WebLogic Server Clustering and Clustered Spring Remoting.

The following sections describe the details of redesigning a J2EE-based application to a
Spring-based application. Where appropriate, these sections include sample code. In most cases
the sample code is from MedRec-Spring.

Developing Applications with WebLogic Server

http://dev2dev.bea.com/pub/a/2005/09/spring_integration_weblogic_server.html
http://e-docs.bea.com/wls/docs90/index.html
http://e-docs.bea.com/wls/docs90/index.html
http://www.springframework.org/

Redesigning a J2EE-Based Application to a Spring-Based Application

Configure Spring Inversion of Control

In Spring, references to other beans (injected properties) are configured via a Spring
configuration XML file, applicationContext-web.xml.

In MedRec-Spring, BEA replaced stateless session EJBs with POJOs in the Spring configuration
file src\medrecEar\web\WEB-INF\applicationContext-web.xml as follows
<bean name="/patient/record"
class="com.bea.medrec.web.patient.actions.ViewRecordAction">
<property name="medRecClientServiceFacade">
<ref bean="medRecClientServiceFacade"/>
</property>

</bean>

Then, in the application code, BEA defined setter methods for the corresponding bean. For
example:

protected MedRecClientServiceFacade medRecClientServiceFacade;
public void setMedRecClientServiceFacade (
MedRecClientServiceFacade pMedRecClientServiceFacade) {

this.medRecClientServiceFacade = pMedRecClientServiceFacade;

Enable the Spring Web Services Client Service

To use Spring’s JAX-RPC factory which produces a proxy for Web Services, you configure the
Spring JaxRpcPortProxyFactoryBean by implementing code such as the following; in
MedRec-Spring, BEA implemented this code in the Spring configuration file

src\physicianEar\APP-INF\classes\applicationContext-phys-service.xml.

<!-- reliable asynchronous web service for sending new medical records to
medrec -->

<bean id="reliableClientWebServicesPortType"
class="org.springframework.remoting.jaxrpc.JaxRpcPortProxyFactoryBean"
lazy-init="true">

<property name="wsdlDocumentUrl"
value="http://${WS_HOST} :${WS_PORT} /ws_phys/PhysicianWebServices?WSDL" />

<property name="portName" value="PhysicianWebServicesPort"/>

Developing Applications with WebLogic Server c-3

Spring Applications Reference

<property name="jaxRpcService">

<ref bean="generatedReliableService"/>

</property>

<property name="servicelnterface"
value="com.bea.physician.webservices.client.PhysicianWebServicesPortType"/
>

<property name="username" value="medrec_webservice_user"/>
<property name="password" value="weblogic"/>

<property name="customProperties">

<props>

<prop key="weblogic.wsee.complex">true</prop>

</props>

</property>

</bean>

<> <!-- allows the jaxRpcService class to execute its constructor which
loads in type mappings -->

<bean id="generatedReliableService"
class="com.bea.physician.webservices.client.PhysicianWebServices_Impl">

</bean>

In this code example, note that:
e The serviceInterface represents Web Services operations.

e The customProperties property allows for custom WebLogic Server Web Service stub
properties.

e The jaxRpcService value is set to WebLogic Server’s generated JAX-RPC
implementation service.

Make JMS Services Available to the Application at Runtime

In Spring, you must configure JMS services so that they are provided to the application during
runtime. You can do this via a Spring Bean that represents a messaging destination. In Med-Rec
Spring, BEA made JMS services available to the application at runtime by implementing the
following code in the Spring configuration file

src\medrecEar\APP-INF\classes\applicationContext-jms.xml.

<bean id="uploadQueue"

class="org.springframework.jndi.JndiObjectFactoryBean">

C-4 Developing Applications with WebLogic Server

Redesigning a J2EE-Based Application to a Spring-Based Application

<property name="jndiName"
value="com.bea.medrec.messagging.MedicalRecordUploadQueue" />

</bean>

<bean id="jmsConnFactory"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName"
value="com.bea.medrec.messagging.MedRecQueueConnectionFactory" />

</bean>

<bean id="uploadJdmsTemplate"
class="org.springframework.jms.core.JmsTemplate">

<property name="connectionFactory">
<ref bean="jmsConnFactory"/>

</property>

<property name="defaultDestination">
<ref bean="uploadQueue"/>

</property>

</bean>

Configure JMX: Expose the WebLogic Server Runtime MBean
Server Connection to Spring

You can expose WebLogic Server’s MBean Server to Spring through Spring’s
MBeanServerConnectionFactoryBean, which is a convenience factory that produces an
MBeanServerConnection that is established and cached during application deployment and can
later be operated on by referencing beans. The MBeanServerConnectionFactoryBean can be
configured to return the WebLogic Server Runtime MBean Server, and to obtain a connection to
the WebLogic Server Domain Runtime MBean Server and the WebLogic Server Edit MBean
Server.

Developing Applications with WebLogic Server C-5

Spring Applications Reference

C-6

Note: Because the WebLogic Server Domain Runtime MBean Server is not active during
deployment, you must configure the MBeanServerConnectionFactoryBean to use
Spring’s lazy instantiation. Lazy instantiation fetches the Spring Bean when it is invoked.

Exposing the WebLogic Server Runtime MBean Server Connection to Spring is demonstrated in
the following code example, which, in MedRec-Spring, BEA implemented in the Spring
configuration file medrecEar/APP-INF/classes/applicationContext-jmx.xml.

<> <!-- expose weblogic server's runtime mbeanserver connection -->
<bean id="runtimeMbeanServerConnection"

class="org.springframework. jmx.support.MBeanServerConnectionFactoryBean">
<property name="serviceUrl"
value="service:jmx:t3://${WS_HOST}:${WS_PORT}/jndi/weblogic.management.mbe
anservers.runtime"/>

<property name="environment">

<props>

<prop key="java.naming.security.principal">${WS_ USERNAME}</prop>

<prop key="java.naming.security.credentials">${WS_ USERNAME}</prop>

<prop
key="Jmx.remote.protocol.provider.pkgs">weblogic.management.remote</prop>
</props>

</property>

</bean>

Configure Spring JDBC to Communicate With the Connection
Pool

In MedRec-Spring, BEA used a data source that references a JDBC connection pool that is
managed by WebLogic Server and also employed Spring’s JdbcDaoSupport class. For
information on JdbcDaoSupport, see the Spring documentation.

For an example of the way in which BEA implemented JDBC, see the MedRec-Spring class

src\medrecEar\dao\com\bea\medrec\dao\jdbc\JdbcPatientDao.java

See also the following code examples, which, for MedRec-Spring, BEA implemented in the
Spring configuration files
src\medrecEar\APP-INF\classes\applicationContext-db.xml and
src\medrecEar\APP-INF\classes\applicationContext-jdbc.xml, respectively.

applicationContext-db.xml code example:

Developing Applications with WebLogic Server

Redesigning a J2EE-Based Application to a Spring-Based Application

<!-- datasource pool -->

<bean id="dataSource"
class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName" value="jdbc/MedRecGlobalDataSourceXA"/>

</bean>

applicationContext—jdbc.xmlCOdeexmnpk:

<bean id="patientDao"
class="com.bea.medrec.dao.jdbc.JdbcPointBasePatientDao"
autowire="byType" />

Additionally, in MedRec-Spring, BEA replaced entity EJBs with POJOs and made use of Spring
JDBC for persistence. For an example, see the MedRec-Spring class
\src\medrecEar\core\com\bea\medrec\domain\Address.java

Use the Spring Transaction Abstraction Layer for Transaction
Management

Spring supports distributed transactions through WebLogic Server’s JTA implementation. You
can also configure the Spring transaction manager to delegate responsibility to the WebLogic
Server JTA transaction manager. This is accomplished via Spring’s
WebLogicJdtaTransactionManager class. BEA used this approach with MedRec-Spring in
order to exactly mirror transaction management in the original version of MedRec.

To use the Spring transaction abstraction layer for transaction management and delegate
responsibility to the WebLogic Server JTA transaction manager, you implement code such as the
following, which BEA implemented in the Spring configuration files
src\medrecEar\APP-INF\classes\applicationContext-tx.xml and
src\medrecEar\APP-INF\classes\applicationContext-service.xml, respectively.

applicationContext—tx.XmlCOdeexmnpk:

<!-- spring's transaction manager delegates to WebLogic Server's transaction
manager -->

<bean id="transactionManager"

class="org.springframework. transaction.jta.WebLogicJtaTransactionManager">

<property name="transactionManagerName"

Developing Applications with WebLogic Server c-7

Spring Applications Reference

C-8

value="javax.transaction.TransactionManager"/>

</bean>

applicationContext-service.xml code example:

<!-- base transaction proxy for which medrec spring beans inherit-->
< bean id="baseTransactionProxy"

class="org.springframework. transaction.interceptor.TransactionProxyFactory
Bean"

abstract="true">

<property name="transactionManager" ref="transactionManager"/>
<property name="transactionAttributes">

<props>

<prop key="activate*">PROPAGATION_REQUIRED</prop>

<prop key="create*">PROPAGATION_REQUIRED</prop>

<prop key="compose*">PROPAGATION_REQUIRED</prop>

<prop key="deny*">PROPAGATION_REQUIRED</prop>

<prop key="getRecord*">PROPAGATION_REQUIRED, readOnly</prop>

<prop key="getPatient*">PROPAGATION_REQUIRED, readOnly</prop>

<prop key="getLog*">PROPAGATION_NOT_ SUPPORTED</prop>

<prop key="process*">PROPAGATION_REQUIRED</prop>

<prop key="save*">PROPAGATION_REQUIRED</prop>

<prop key="send*">PROPAGATION_REQUIRED</prop>

</props>

</property>

< /bean>

<!-- single point of service for all medrec clients -->
<bean id="medRecClientServiceFacade"
parent="baseTransactionProxy">

<property name="target">

<bean class="com.bea.medrec.service.MedRecClientServiceFacadeImpl">
<property name="adminService">

<ref bean="adminService"/>

</property>

<property name="patientService">

<ref bean="patientService"/>

</property>

<property name="recordService">

<ref bean="recordService"/>

Developing Applications with WebLogic Server

Redesigning a J2EE-Based Application to a Spring-Based Application

</property>

<property name="recordXmlProcessorService">
<ref bean="recordXmlProcessorService"/>
</property>

</bean>

</property>

</bean>

The transactionaAttributes you specify define the way in which Spring begins and ends
transactions. Because MedRec-Spring delegates transaction management to WebLogic JTA,
management tasks such as transaction suspension and rollback are handled as specified by
WebLogic’s transaction manager.

For more information on WebLogicJtaTransactionManager, see “Implementing Transaction
Suspension in Spring” at http://dev2dev.bea.com/pub/a/2005/07/spring_transactions.html.

Make Use of WebLogic Server Clustering

Spring applications can take advantage of WebLogic Server’s clustering features. Because most
Spring applications are packaged as Web applications (.war files), you need do not need to do
anything special in order to take advantage of WebLogic Server clusters; all you need to do is
deploy your Spring application to the servers in a WebLogic Server cluster.

Clustered Spring Remoting

The certification of Spring 1.2.5 on WebLogic Server 9.0 extends the Spring
JndiRmiProxyFactoryBean and its associated service exporter so that it supports proxying with
any J2EE RMI implementation. To use the extension to the JndiRmiProxyFactoryBean and its
exporter:

1. Configure client support by implementing code such as the following:

<bean id="proProxy"
class="org.springframework.remoting.rmi.JndiRmiProxyFactoryBean">
<property name="jndiName" value="t3://${serverName}:S${rmiPort}/order"/>
</property>

<property name="jndiEnvironment">

<props>

<prop key="java.naming.factory.url.pkgs">weblogic.jndi.factories</prop>
</props>

</property>

<property name="servicelnterface"
value="org.springframework.samples.jpetstore.domain.logic.OrderService"

Developing Applications with WebLogic Server c-9

http://dev2dev.bea.com/pub/a/2005/07/spring_transactions.html

Spring Applications Reference

/>
</bean>

2. Configure the service exporter by implementing code such as the following:

<bean id="order-pro"
class="org.springframework.remoting.rmi.JndiRmiServiceExporter">
<property name="service" ref="petStore"/>

<property name="servicelnterface"
value="org.springframework.samples.jpetstore.domain.logic.OrderService"
/>

<property name="jndiName" value="order"/>

</bean>

Spring Extension to the WebLogic Administration Console

Cc-10

You can use a Spring extension to the WebLogic Server Administration Console to monitor and
manage Spring Beans, attributes, and operations that are defined in your application.

Installing the Spring Extension to the WebLogic
Administration Console

To install the Spring extension to the WebLogic Administration Console, perform the following
steps:

1. Copy the spring-ext-server.jar file to your yourdomain/console-ext directory.
2. Copy the spring-ext-client.jar file to your application’s WEB-INF/1ib directory.

3. Restart WebLogic Server.

Exposing Spring Beans Through the WebLogic Administration
Console

In order to be able to access Spring Beans that are not MBeans through the Web Logic
Administration Console, you must configure an MBeanExporter in the
applicationContext.xml file and specify which beans to expose via the assembler. Make sure
that the applicationName property is the deployed name of your application.

Developing Applications with WebLogic Server

	Overview of WebLogic Server Application Development
	Document Scope and Audience
	WebLogic Server and the J2EE Platform
	Overview of J2EE Applications and Modules
	Web Application Modules
	Servlets
	JavaServer Pages
	More Information on Web Application Modules

	Enterprise JavaBean Modules
	EJB Overview
	EJBs and WebLogic Server

	Connector Modules
	Enterprise Applications
	WebLogic Web Services
	XML Deployment Descriptors
	Automatically Generating Deployment Descriptors
	EJBGen
	Java-based Command-line Utilities

	Upgrading Deployment Descriptors From Previous Releases of J2EE and WebLogic Server

	Development Software
	Apache Ant
	Source Code Editor or IDE
	Database System and JDBC Driver
	Web Browser
	Third-Party Software

	Using Ant Tasks to Configure and Use a WebLogic Server Domain
	Overview of Configuring and Starting Domains Using Ant Tasks
	Starting Servers and Creating Domains Using the wlserver Ant Task
	Basic Steps for Using wlserver
	Sample build.xml Files for wlserver
	wlserver Ant Task Reference

	Configuring a WebLogic Server Domain Using the wlconfig Ant Task
	What the wlconfig Ant Task Does
	Basic Steps for Using wlconfig
	Sample build.xml Files for wlconfig
	Complete Example
	Query and Delete Example
	Example of Setting Multiple Attribute Values

	wlconfig Ant Task Reference
	Main Attributes
	Nested Elements

	Using the libclasspath Ant Task
	libclasspath Task Definition
	libclasspath Ant Task Reference
	Main libclasspath Attributes
	Nested libclasspath Elements

	Example libclasspath Ant Task

	Creating a Split Development Directory Environment
	Overview of the Split Development Directory Environment
	Source and Build Directories
	Deploying from a Split Development Directory
	Split Development Directory Ant Tasks

	Using the Split Development Directory Structure: Main Steps
	Organizing J2EE Components in a Split Development Directory
	Source Directory Overview
	Enterprise Application Configuration
	Web Applications
	EJBs
	Important Notes Regarding EJB Descriptors

	Organizing Shared Classes in a Split Development Directory
	Shared Utility Classes
	Third-Party Libraries
	Class Loading for Shared Classes

	Generating a Basic build.xml File Using weblogic.BuildXMLGen
	Developing Multiple-EAR Projects Using the Split Development Directory
	Organizing Libraries and Classes Shared by Multiple EARs
	Linking Multiple build.xml Files

	Best Practices for Developing WebLogic Server Applications

	Building Applications in a Split Development Directory
	Compiling Applications Using wlcompile
	Using includes and excludes Properties
	wlcompile Ant Task Attributes
	Nested javac Options
	Setting the Classpath for Compiling Code
	Library Element for wlcompile and wlappc

	Building Modules and Applications Using wlappc
	wlappc Ant Task Attributes
	wlappc Ant Task Syntax
	Syntax Differences between appc and wlappc
	weblogic.appc Reference
	weblogic.appc Syntax
	weblogic.appc Options

	Deploying and Packaging from a Split Development Directory
	Deploying Applications Using wldeploy
	Packaging Applications Using wlpackage
	Archive versus Exploded Archive Directory
	wlpackage Ant Task

	Understanding WebLogic Server Application Classloading
	Java Classloader Overview
	Java Classloader Hierarchy
	Loading a Class
	prefer-web-inf-classes Element
	Changing Classes in a Running Program

	WebLogic Server Application Classloader Overview
	Application Classloading
	Application Classloader Hierarchy
	Custom Module Classloader Hierarchies
	Declaring the Classloader Hierarchy
	User-Defined Classloader Restrictions

	Individual EJB Classloader for Implementation Classes
	Application Classloading and Pass-by-Value or Reference

	Resolving Class References Between Modules and Applications
	About Resource Adapter Classes
	Packaging Shared Utility Classes
	Manifest Class-Path

	Sharing Applications and Modules By Using J2EE Libraries
	Adding JARs to the System Classpath

	Developing Applications for Production Redeployment
	What is Production Redeployment?
	Supported and Unsupported Application Types
	Additional Application Support

	Programming Requirements and Conventions
	Applications Should Be Self-Contained
	Versioned Applications Access the Current Version JNDI Tree by Default
	Security Providers Must Be Compatible
	Applications Must Specify a Version Identifier
	Applications Can Access Name and Identifier
	Client Applications Use Same Version when Possible

	Assigning an Application Version
	Application Version Conventions

	Upgrading Applications to Use Production Redeployment
	Accessing Version Information

	Creating Shared J2EE Libraries and Optional Packages
	Overview of Shared J2EE Libraries and Optional Packages
	Optional Packages
	Versioning Support for Libraries
	Shared J2EE Libraries and Optional Packages Compared
	Additional Information

	Creating Shared J2EE Libraries
	Assembling Shared J2EE Library Files
	Assembling Optional Package Class Files
	Editing Manifest Attributes for Shared J2EE Libraries
	Packaging Shared J2EE Libraries for Distribution and Deployment

	Referencing Shared J2EE Libraries in an Enterprise Application
	URIs for Shared J2EE Libraries Deployed As a Standalone Module

	Referencing Optional Packages from a J2EE Application or Module
	Using weblogic.appmerge to Merge Libraries
	Using weblogic.appmerge from the CLI
	Using weblogic.appmerge as an Ant Task

	Integrating Shared J2EE Libraries with the Split Development Directory Environment
	Deploying Shared J2EE Libraries and Dependent Applications
	Web Application Shared J2EE Library Information
	Accessing Registered Shared J2EE Library Information with LibraryRuntimeMBean
	Order of Precedence of Modules When Referencing Shared J2EE Libraries
	Best Practices for Using Shared J2EE Libraries

	Programming Application Lifecycle Events
	Understanding Application Lifecycle Events
	Registering Events in weblogic-application.xml
	Programming Basic Lifecycle Listener Functionality
	Examples of Configuring Lifecycle Events with and without the URI Parameter
	Understanding Application Lifecycle Event Behavior During Re-deployment

	Programming Context Propagation
	Understanding Context Propagation
	Programming Context Propagation: Main Steps
	Programming Context Propagation in a Client
	Programming Context Propagation in an Application

	Programming JavaMail with WebLogic Server
	Overview of Using JavaMail with WebLogic Server Applications
	Understanding JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	Sending Messages with JavaMail
	Reading Messages with JavaMail

	Threading and Clustering Topics
	Using Threads in WebLogic Server
	Programming Applications for WebLogic Server Clusters

	Enterprise Application Deployment Descriptor Elements
	weblogic-application.xml Deployment Descriptor Elements
	weblogic-application
	ejb
	max-cache-size
	xml
	jdbc-connection-pool
	security
	application-param
	classloader-structure
	listener
	startup
	shutdown
	work-manager
	session-descriptor
	library

	weblogic-application.xml Schema
	application.xml Schema

	wldeploy Ant Task Reference
	Overview of the wldeploy Ant Task
	Basic Steps for Using wldeploy
	Sample build.xml Files for wldeploy
	wldeploy Ant Task Attribute Reference
	Main Attributes
	Nested <files> Child Element

	Spring Applications Reference
	About Spring on WebLogic Server
	Redesigning a J2EE-Based Application to a Spring-Based Application
	Configure Spring Inversion of Control
	Enable the Spring Web Services Client Service
	Make JMS Services Available to the Application at Runtime
	Configure JMX: Expose the WebLogic Server Runtime MBean Server Connection to Spring
	Configure Spring JDBC to Communicate With the Connection Pool
	Use the Spring Transaction Abstraction Layer for Transaction Management
	Make Use of WebLogic Server Clustering
	Clustered Spring Remoting

	Spring Extension to the WebLogic Administration Console
	Installing the Spring Extension to the WebLogic Administration Console
	Exposing Spring Beans Through the WebLogic Administration Console

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

