‘.."‘

o 7
2 bea
L/

BEAWebLogic
Servere

Using Web Server
Plug-Ins with WebLogic
Server

Version 9.0
Document Revised:April 27, 2006

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AqualLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

1. Introduction and Roadmap

Document Scope and Audience. it 1-1
Guide to this Document. 1-1
Related Documentation ittt 1-2

Understanding Using Web Server Plug-Ins With WebLogic
Server

Installing and Configuring the Apache HTTP Server Plug-In

Overview of the Apache HTTP Server Plug-In. 3-1
Keep-Alive Connections in Apache Version 1.3.X........... 3-2
Keep-Alive Connections in Apache Version2.0 3-2
Proxying Requeststtt 3-2
Certificationsttt 3-3

Installing the Apache HTTP Server Plug-In oo, 3-3
Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object 3-3
Installing the Apache HTTP Server Plug-In as a Statically Linked Module 3-8

Configuring the Apache HTTP Server Plug-In. 3-10
Editing the httpd.conf File 3-10
Including a weblogic.conf File in the httpd.conf File 3-12

Creating weblogic.confFiles. i i 3-13
Sample weblogic.conf Configuration Files. 3-15
Template for the Apache HTTP Server httpd.confFile.................. 3-17
Setting Up Perimeter Authentication.ot . 3-18
Using SSL with the Apache Plug-In i, 3-19

Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server3-19

Using Web Server Plug-Ins With WebLogic Server iii

Issues with SSL-Apache Configuration. 3-19

Connection Errors and Clustering Failover. oo, 3-21
Possible Causes of Connection Failures 3-21
Tuning to Reduce Connection Refused Errors 3-21
Failover with a Single, Non-Clustered WebLogic Server 3-23
The Dynamic Server List. e 3-23
Failover, Cookies, and HTTP SeSSionsttt 3-23

4. Installing and Configuring the Microsoft IIS Plug-In

Overview of the Microsoft Internet Information Server Plug-In 4-1
Connection Pooling and Keep-Alive 4-2
Proxying Requests oot 4-2

CertificationSottt 4-3

Installing and Configuring the Microsoft Internet Information Server Plug-In 4-3

Proxying Requests from Multiple Virtual Websites to WebLogic Server 4-9
Sample iisproxy.ini File 4-10

Creating ACLs Through IIS 4-11

Setting Up Perimeter Authentication iiuiiiiniinennnn... 4-11

Using SSL with the Microsoft Internet Information Server Plug-In. 4-12

Proxying Servlets from IIS to WebLogic Server 4-13

Testing the Installation i 4-14

Connection Errors and Clustering Failover. 4-15
Possible Causes of Connection Failures 4-15
Failover with a Single, Non-Clustered WebLogic Server 4-15
The Dynamic Server List. e 4-15
Failover, Cookies, and HTTP Sessionst .. 4-16

iv Using Web Server Plug-Ins With WebLogic Server

5. Installing and Configuring the Netscape Enterprise Server
Plug-In

Overview of the Netscape Enterprise Server Plug-In 5-1
Connection Pooling and Keep-Alive i, 5-2
Proxying Requestst e 5-2

Installing and Configuring the Netscape Enterprise Server Plug-In................. 5-3
Guidelines for Modifying the obj.confFile 5-8
Sample obj.conf File (Not Using a WebLogic Cluster) 5-9
Sample obj.conf File (Using a WebLogic Cluster). 5-11

Setting Up Perimeter Authentication.ttt 5-13

Using SSL withthe NESPlug-In i, 5-14

Connection Errors and Clustering Failover. 5-16
Possible Causes of Connection Failures. 5-16
Failover with a Single, Non-Clustered WebLogic Server 5-16
The Dynamic Server List e e 5-16
Failover, Cookies, and HTTP Sessionsuuiiiiinennn.. 5-16
Failover Behavior When Using Firewalls and Load Directors 5-17

6. Proxying Requests to Another Web Server

Overview of Proxying Requests to Another Web Server 6-1

Setting Up a Proxy to a Secondary Web Server, 6-1

Sample Deployment Descriptor for the Proxy Servlet 6-2

/. Parameters for Web Server Plug-Ins

Entering Parameters in Web Server Plug-In Configuration Files 7-1

General Parameters for Web Server Plug-Ins 7-1

SSL Parameters for Web Server Plug-Ins 7-14

Using Web Server Plug-Ins With WebLogic Server

vi Using Web Server Plug-Ins With WebLogic Server

Introduction and Roadmap

This section describes the contents and organization of this guide—Using Web Server Plug-Ins
with WebLogic Server.

e “Document Scope and Audience” on page 1-1
e “Guide to this Document” on page 1-1

e “Related Documentation” on page 1-2

Document Scope and Audience

This document explains use of plug-ins provided for proxying requests to third party
administration servers. This document is intended mainly for system administrators who manage

the WebLogic Server® application platform and its various subsystems.

Guide to this Document

e This chapter, “Introduction and Roadmap,” introduces the organization of this guide.

e Chapter 2, “Understanding Using Web Server Plug-Ins With WebLogic Server,” describes
the plug-ins available for use with WebLogic Server.

e Chapter 3, “Installing and Configuring the Apache HTTP Server Plug-In,” explains how to
install and configure the WebLogic Server Apache plug-in.

e Chapter 4, “Installing and Configuring the Microsoft IIS Plug-In,” explains how to install
and configure the WebLogic Server plug-in for the Microsoft Internet Information Server.

Programming Web Services for WebLogic Server 1-1

Introduction and Roadmap

e Chapter 5, “Installing and Configuring the Netscape Enterprise Server Plug-In,” explains
how to install and configure the Netscape Enterprise Server proxy plug-in.

e Chapter 6, “Proxying Requests to Another Web Server,” describes the use of WebLogic
Server as a proxy, forwarding HTTP requests to other Web servers.

e Chapter 7, “Parameters for Web Server Plug-Ins,” discusses the parameters for Web server
plug-ins.

Related Documentation

This document contains information on using web server plug-ins.

For information on using a proxy plug-sin, see the following document:

o Using WebLogic Server Clusters for information on load balancing servlets and JSPs using
a proxy plug-in..

1-2 Programming Web Services for WebLogic Server

http://e-docs.bea.com/wls/docs90/cluster/index.html

CHAPTERa

Understanding Using Web Server
Plug-Ins With WebLogic Server

The following sections describe the plug-ins provided by BEA Systems for use with WebLogic
Server:

e “What Are Plug-Ins?” on page 2-1

e “Plug-Ins Included with WebLogic Server” on page 2-2

What Are Plug-Ins?

Plug-ins are small software programs that developers use to extend a WebLogic Server
implementation. Plug-ins enable WebLogic Server to communicate with applications deployed
on Apache HTTP Server, Netscape Enterprise Server, or Microsoft’s Internet Information Server.
Typically, WebLogic Server handles the application requests that require dynamic functionality,
the requests that can best be served with dynamic HTML pages or JSPs (Java Server Pages).

WebLogic Server Plug-Ins do not support two-way SSL. However, the Plug-Ins can be set up to
require the client certificate and pass it on to WebLogic Server. For example:

apache ssl
SSLVerifyClient require
SSLVerifyDepth 10

SSLOptions +FakeBasicAuth +ExportCertData +CompatEnvVars +StrictRequire

Note: The above list represents the various ways of implementing SSL and may not apply to all
the plug-in types. For a complete list of parameters, see “SSL Parameters for Web Server

Using Web Server Plug-Ins With WebLogic Server 2-1

Understanding Using Web Server Plug-Ins With WebLogic Server

Plug-Ins” on page 7-14. For information about parameters required to configure SSL, for
your Web Server, refer to the respective Web Server documentation.

Plug-Ins Included with WebLogic Server

WebLogic Server includes plug-ins for the following Web servers:
e Apache HTTP Server
e Microsoft Internet Information Server

e Netscape Enterprise Server

2-2 Using Web Server Plug-Ins With WebLogic Server

CHAPTERa

Installing and Configuring the Apache
HTTP Server Plug-In

The following sections describe how to install and configure the Apache HTTP Server Plug-In:

“Overview of the Apache HTTP Server Plug-In” on page 3-1
“Installing the Apache HTTP Server Plug-In” on page 3-3
“Configuring the Apache HTTP Server Plug-In” on page 3-10
“Template for the Apache HTTP Server httpd.conf File” on page 3-17
“Sample weblogic.conf Configuration Files” on page 3-15

“Setting Up Perimeter Authentication” on page 3-18

“Using SSL with the Apache Plug-In” on page 3-19

“Issues with SSL-Apache Configuration” on page 3-19

“Connection Errors and Clustering Failover” on page 3-21

Overview of the Apache HTTP Server Plug-In

The Apache HTTP Server Plug-In allows requests to be proxied from an Apache HTTP Server
to WebLogic Server. The plug-in enhances an Apache installation by allowing WebLogic Server
to handle requests that require the dynamic functionality of WebLogic Server.

The plug-in is intended for use in an environment where an Apache Server serves static pages,
and another part of the document tree (dynamic pages best generated by HTTP Servlets or
JavaServer Pages) is delegated to WebLogic Server, which may be operating in a different

Using Web Server Plug-Ins With WebLogic Server 3-1

Installing and Configuring the Apache HTTP Server Plug-In

3-2

process, possibly on a different host. To the end user—the browser—the HTTP requests
delegated to WebLogic Server still appear to be coming from the same source.

HTTP-tunneling, a technique which allows HTTP requests and responses access through a
company’s firewall, can also operate through the plug-in, providing non-browser clients access
to WebLogic Server services.

The Apache HTTP Server Plug-In operates as an Apache module within an Apache HTTP
Server. An Apache module is loaded by Apache Server at startup, and then certain HTTP requests
are delegated to it. Apache modules are similar to HTTP servlets, except that an Apache module
is written in code native to the platform.

Keep-Alive Connections in Apache Version 1.3.x

Version 1.3.x of the Apache HTTP Server Plug-In creates a socket for each request and closes
the socket after reading the response. Because Apache HTTP Server is multiprocessed,
connection pooling and keep-alive connections between WebLogic Server and the Apache HTTP
Server Plug-In cannot be supported.

Keep-Alive Connections in Apache Version 2.0

Version 2.0 of the Apache HTTP Server Plug-In improves performance by using a reusable pool
of connections from the plug-in to WebLogic Server. The plug-in implements HTTP 1.1
keep-alive connections between the plug-in and WebLogic Server by reusing the same
connection in the pool for subsequent requests from the same client. If the connection is inactive
for more than 30 seconds, (or a user-defined amount of time) the connection is closed and
returned to the pool. You can disable this feature if desired. For more information, see
“KeepAliveEnabled”.

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you specify. You
can proxy requests based on the URL of the request (or a portion of the URL). This is called
proxying by path. You can also proxy requests based on the MIME type of the requested file. Or
you can use a combination of the two methods. If a request matches both criteria, the request is
proxied by path. You can also specify additional parameters for each type of request that define
additional behavior of the plug-in. For more information, see “Configuring the Apache HTTP
Server Plug-In” on page 3-10.

Using Web Server Plug-Ins With WebLogic Server

Installing the Apache HTTP Server Plug-In

Certifications

The Apache HTTP Server Plug-In is supported on Linux, Solaris, Windows, and HPUX11
platforms. For information on support for specific versions of Apache, see the BEA WebLogic
Server Certifications Page

Installing the Apache HTTP Server Plug-In

You install the Apache HTTP Server Plug-In as an Apache module in your Apache HTTP Server
installation. There are two ways that this module can be compiled and linked to Apache—as a
statically linked module (available only for Apache version 1.3.x), or as a Dynamic Shared
Object (DSO).

Statically linking a plug-in module requires recompiling Apache, which may be inconvenient.

A DSO is compiled as a library that is dynamically loaded by the server at run time, and can be
installed without recompiling Apache.

Installing the Apache HTTP Server Plug-In as a Dynamic
Shared Object

The Apache plug-in is distributed as a shared object (. so) for Solaris, Linux, Windows, and
HPUX11 platforms. BEA WebLogic supplies versions of shared object files that vary according
to platform, whether or not SSL is to be used between the client and Apache, and the SSL
encryption strength (regular or 128 bit—128 bit versions are only installed if you install the 128
bit version of WebLogic Server).

Table 3-1, “Locations of Plug-In Shared Object Files,” on page 3-4 shows the directories of your
WebLogic Server installation that contain shared object files for various platforms (where
WL _HOME is the top-level installation directory for the WebLogic platform).

Table 3-2, “Apache Plug-In Shared Object File Versions,” on page 3-5 identifies the WebLogic
Server Apache Plug-In modules for different versions of Apache HTTP Server and different
encryption strengths.

Using Web Server Plug-Ins With WebLogic Server 3-3

http://e-docs.bea.com/platform/suppconfigs
http://e-docs.bea.com/platform/suppconfigs

Installing and Configuring the Apache HTTP Server Plug-In

Table 3-1 Locations of Plug-In Shared Object Files

Operatin) .
P & Shared Object Location
System
Solaris WL_HOME/weblogic90/server/plugin/solaris/sparc
WL_HOME/weblogic90/server/plugin/solaris/x86
Linux WL_HOME/weblogic90/server/plugin/linux/1686
WL_HOME/weblogic90/server/plugin/linux/ia64
WL_HOME/weblogic90/server/plugin/linux/s390
WL_HOME /weblogic90/server/plugin/linux/x86_64
Windows (Apache WL_HOME\weblogic90\server\plugin\win\32
2.0 only) WL_HOME\weblogic90\server\plugin\win\64
WL_HOME\weblogic90\server\plugin\win\x64
HPUXI11 WL_HOME/weblogic90/server/plugin/hpuxll/IPF64

WL_HOME /weblogic90/server/plugin/hpuxll/PA_RISC

Warning: If you are running Apache 2.0.x server on HP-UX11, set the
environment variables specified immediately below before you
build the Apache server. Because of a problem with the order in
which linked libraries are loaded on HP-UX, a core dump can
result if the load order is not preset as an environment variable
before building. Set the following environment variables before
proceeding with the Apache configure, make, and make
install steps, (described in Apache HTTP Server
documentation at
http://httpd.apache.org/docs-2.1/install.html#configure):

export EXTRA_LDFLAGS="-1lstd -lstream -1Csup -1lm -1cl
-1dld -lpthread’

Choose the appropriate version of the plug-in shared object from the following table:

3-4 Using Web Server Plug-Ins With WebLogic Server

http://httpd.apache.org/docs-2.1/install.html#configure

Table 3-2 Apache Plug-In Shared Object File Versions

Installing the Apache HTTP Server Plug-In

Apache Version

Regular Strength Encryption

128-hit Encryption

Standard Apache Version
1.x

mod_wl.so

mod_wll28.so

Apache w/ SSL/EAPI
Version 1.x

(Stronghold,
modssl etc.)

mod_wl_ssl.so

mod_wl1l28_ssl.so

Apache + Raven
Version 1.x

Required because Raven
applies frontpage patches
that makes the plug-in
incompatible with the
standard shared object

mod_wl_ssl raven.so

mod_wll28_ ssl_ raven.so

Standard Apache Version
2.X

mod_wl_20.so

mod_wl28_20.so

To install the Apache HTTP Server Plug-In as a dynamic shared object:

1.

Shared Object Files,” on page 3-4.

Plug-In Shared Object File Versions,” on page 3-5.

enabled.

Locate the shared object directory for your platform using Table 3-1, “Locations of Plug-In

Identify the plug-in shared object file for your version of Apache in Table 3-2, “Apache

Verify that the WebLogic Server Apache HTTP Server Plug-In mod_so . c module is

The Apache HTTP Server Plug-In will be installed in your Apache HTTP Server
installation as an Apache Dynamic Shared Object (DSO). DSO support in Apache is based
on a module mod_so . c, which must be enabled before mod _wl.so is loaded. If you
installed Apache HTTP Server using the script supplied by Apache, mod_so.c is already
enabled. Verify that mod_so.c is enabled by executing the following command:

APACHE_HOME\bin\apache -1

(Where apacHE_HOME is the directory containing your Apache HTTP Server installation.)

Using Web Server Plug-Ins With WebLogic Server 3-5

Installing and Configuring the Apache HTTP Server Plug-In

3-6

This command lists all enabled modules. If mod_so.c is not listed, you must rebuild your
Apache HTTP Server, making sure that the following options are configured:

-—-enable-module=so
--enable-rule=SHARED CORE

See Apache 1.3 Shared Object (DSO) Support at http://httpd.apache.org/docs/dso.html.

. Install the Apache HTTP Server Plug-In module.

— For Apache 1.x, use a command shell to navigate to the directory in your WebLogic
Server installation that contains the shared object for your platform and activate the
weblogic_module by issuing this command (note that you must have Perl installed to
run this Perl script):

perl APACHE_HOME\bin\apxs -1 —-a —-n weblogic mod_wl.so

This command copies the mod_w1 . so file to the APACHE_HOME\1ibexec directory. It
also adds two lines of instructions for weblogic_module to the httpd.conf file and
activates the module. Make sure that the following lines were added to your
APACHE_HOME/conf /httpd.conf file in your Apache 1.x server installation:

LoadModule weblogic_module libexec/mod_wl.so
AddModule mod_weblogic.c

For information about the Apache utility apxs (APache eXtenSion) see
http://httpd.apache.org/docs/programs/apxs.html).

— For Apache 2.x, install the plug-in by copying the mod_wl_20.so file to the
APACHE_HOME\modules directory and adding the following line to your
APACHE_HOME/conf/httpd. conf file manually:

LoadModule weblogic_module modules/mod_wl_20.so

. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in “General Parameters
for Web Server Plug-Ins” on page 7-1. To modify the behavior of your Apache HTTP
Server Plug-In, define these parameters:

— In a Location block, for parameters that apply to proxying by path, or

— In an IfModule block, for parameters that apply to proxying by MIME type.

. Verify the syntax of the APACHE HOME\conf\httpd.conf file with the following

commands:

Using Web Server Plug-Ins With WebLogic Server

http://httpd.apache.org/docs/dso.html
http://httpd.apache.org/docs/programs/apxs.html

Installing the Apache HTTP Server Plug-In

For Apache 1.x, APACHE_HOME\bin\apachectl configtest

For Apache 2.x, APACHE_HOME\bin\apachectl -t

The output of this command reports any errors in your ht tpd. conf file or returns:
Syntax OK

. Restart Weblogic Server.

Start (or restart if you have changed the configuration) Apache HTTP Server.

. Test the plug-in by opening a browser and setting the URL to the Apache Server +
“/weblogic/”, which should bring up the default WebLogic Server HTML page, welcome
file, or default servlet, as defined for the default Web Application on WebLogic Server. For
example:

http://myApacheserver.com/weblogic/

Using Web Server Plug-Ins With WebLogic Server 3-1

Installing and Configuring the Apache HTTP Server Plug-In

Installing the Apache HTTP Server Plug-In as a Statically
Linked Module

To install the Apache HTTP Server Plug-In as a statically linked module:

1. Unpack the Apache Plug-In distribution using the following command:
tar -xvf apache_1.3.x.tar

2. Within the unpacked distribution switch to the src/modules directory.

3. Create a directory called weblogic.

4. Locate the linked library file for your platform.

Each library file is distributed as a separate version, depending on the platform and the
encryption strength for SSL (regular or 128-bit—128-bit versions are only installed if you
install the 128-bit version of WebLogic Server). The library files are located in the
following directories of your WebLogic Server installation:

Table 3-3 Locations of Plug-In Files

Operating Shared Object Location

System

Solaris $BEA_HOME/weblogic90/server/plugin/solaris/sparc/libweblogic.a
SBEA_HOME /weblogic90/server/plugin/solaris/sparc/libweblogicl28
.a

Linux SBEA_HOME /weblogic90/server/plugin/linux/i686/libweblogic.a

SBEA_HOME /weblogic90/server/plugin/linux/i686/libweblogicl28.a
SBEA_HOME/weblogic90/server/plugin/linux/s390/1libweblogic.a
SBEA_HOME/weblogic90/server/plugin/linux/s390/1libweblogicl28.a

Choose the appropriate shared object from the following table.

Table 3-4 Statically Linked Modules for Different Levels of Encryption

Apache Version Regular Strength 128-hit

Encryption Encryption
Standard Apache Version libweblogic.a libweblogicl28.a
1.3.x

3-8 Using Web Server Plug-Ins With WebLogic Server

10.

11.

12.

13.
14.

Installing the Apache HTTP Server Plug-In

If you are using the Gnu C Compiler (gcc), gee 2.95.x is the recommended version.

Copy Makefile.libdir, Makefile.tmpl from the 1ib directory of your WebLogic
Server installation to src\modules\weblogic

Copy libweblogic.a (use libweblogic128.a instead, if you are using 128 bit security.)
from the same directory containing the linked library file to src\modules\weblogic.

If you are using regular strength encryption, execute the following command from the
Apache 1.3 home directory:

configure --activate-module=src\modules\weblogic\libweblogic.a

If you are using 128 bit encryption, execute the following command (on a single line) from
the Apache 1.3 home directory:

configure--activate-module=
src\modules\weblogic\libweblogicl28.a

Execute the following command:

make

Execute the following command:

make install

Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in “General Parameters
for Web Server Plug-Ins” on page 7-1. To modify the behavior of your Apache HTTP
Server Plug-In, define these parameters:

— In a Location block, for parameters that apply to proxying by path, or

— In an IfModule block, for parameters that apply to proxying by MIME type.

Verify the syntax of the APACHE _HOME\conf\httpd.conf file with the following
commands:

For Apache 1.x, APACHE_HOME\bin\apachectl configtest
For Apache 2.x, APACHE_HOME\bin\apachectl -t
The output of this command reports any errors in your httpd. conf file or returns:

Syntax OK

Restart Weblogic Server.

Start (or restart if you have changed the configuration) Apache HTTP Server.

Using Web Server Plug-Ins With WebLogic Server 3-9

Installing and Configuring the Apache HTTP Server Plug-In

15. Test the plug-in by opening a browser and setting the URL to the Apache Server +
“/weblogic/”, which should bring up the default WebLogic Server HTML page, welcome
file, or default servlet, as defined for the default Web Application on WebLogic Server. For
example:

http://myApacheserver.com/weblogic/

Configuring the Apache HTTP Server Plug-In

3-10

After installing the plug-in in the Apache HTTP Server, configure the WebLogic Server Apache
Plug-In and configure the server to use the plug-in. This section explains how to edit the Apache
httpd. conf file to instruct the Apache server to load the WebLogic Server library for the plug-in
as an Apache module, and to specify the application requests that should be handled by the
module.

Editing the httpd.conf File

Edit the httpd. conf file in your Apache HTTP server installation to configure the Apache
HTTP Server Plug-In.

This section explains how to locate and edit the httpd. conf file, to configure the server to use
the WebLogic Server Apache Plug-In, to proxy requests by path or by MIME type, to enable
HTTP tunneling, and to use other WebLogic Server plug-in parameters.

1. Open the httpd.conf file.

The file is located at APACHE HOME\conf\httpd.conf (Where APACHE HOME is the root
directory of your Apache HTTP server installation). See a sample httpd.conf file at
“Template for the Apache HTTP Server httpd.conf File” on page 3-17.

2. Ensure that the WebLogic Server modules are included.

— For Apache 1.x, verify that the following two lines were added to the httpd. conf file
when you ran the apxs utility:

LoadModule weblogic_module libexec\mod_wl.so
AddModule mod_weblogic.c

— For Apache 2.x, manually add the following line to the httpd.conf file:
LoadModule weblogic_module modules\mod_wl_20.so
3. Add an 1fModule block that defines one of the following:

For a non-clustered WebLogic Server:

Using Web Server Plug-Ins With WebLogic Server

Configuring the Apache HTTP Server Plug-In

The WebLogicHost and WebLogicPort parameters.
For a cluster of WebLogic Servers:

The WebLogicCluster parameter.
For example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001

</IfModule>

To proxy requests by MIME type, add a MatchExpression line to the TfModule block.
Note that if both MIME type and proxying by path are enabled, proxying by path takes
precedence over proxying by MIME type.

For example, the following IfModule block for a non-clustered WebLogic Server specifies
that all files with MIME type . jsp are proxied:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp

</IfModule>

You can also use multiple MatchExpressions, for example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

If you are proxying requests by MIME type to a cluster of WebLogic Servers, use the
WebLogicCluster parameter instead of the WebLogicHost and WebLogicPort
parameters. For example:

<IfModule mod_weblogic.c>
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

To proxy requests by path, use the Location block and the SetHandler statement.
SetHandler specifies the handler for the Apache HTTP Server Plug-In module. For
example the following Location block proxies all requests containing /weblogic in the
URL:

Using Web Server Plug-Ins With WebLogic Server 3-11

Installing and Configuring the Apache HTTP Server Plug-In

3-12

<Location /weblogic>

SetHandler weblogic-handler
PathTrim /weblogic
</Location>

The PathTrim parameter specifies a string trimmed from the beginning of the URL before
the request is passed to the WebLogic Server instance (see “General Parameters for Web
Server Plug-Ins” on page 7-1).

. Optionally, enable HTTP tunneling for t3 or IIOP.

a. To enable HTTP tunneling if you are using the t3 protocol and weblogic.jar, add the
following Location block to the httpd. conf file:

<Location /HTTPClnt>
SetHandler weblogic-handler
</Location>

b. To enable HTTP tunneling if you are using the IIOP, the only protocol used by the
WebLogic Server thin client, wiclient.jar, add the following Location block to the
httpd. conf file:

<Location /iiop>
SetHandler weblogic-handler
</Location>

. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in “General Parameters
for Web Server Plug-Ins” on page 7-1. To modify the behavior of your Apache HTTP
Server Plug-In, define these parameters either:

— In a Location block, for parameters that apply to proxying by path, or

— In an IfModule block, for parameters that apply to proxying by MIME type.

Including a weblogic.conf File in the httpd.conf File

If you want to keep several separate configuration files, you can define parameters in a separate
configuration file called weblogic.conf file, by using the Apache Include directive in an
IfModule block in the httpd. conf file:

<IfModule mod_weblogic.c>
Config file for WebLogic Server that defines the parameters
Include conf/weblogic.conf

</IfModule>

The syntax of weblogic.conf files is the same as that for the httpd. conf file.

Using Web Server Plug-Ins With WebLogic Server

Configuring the Apache HTTP Server Plug-In

This section describes how to create weblogic . conf files, and includes sample weblogic. conf
files.

Creating weblogic.conf Files

Be aware of the following when constructing a weblogic.conf file.

<

e Ifyou are using SSL between the Apache HTTP Server Plug-In and WebLogic Server, you
cannot define parameters in a file accessed, as the weblogic.conf file is, via the Apache
Include directive.

e Enter each parameter on a new line. Do not put ‘=" between a parameter and its value. For
example:

PARAM 1 wvaluel
PARAM 2 value2
PARAM_ 3 value3

If a request matches both a MIME type specified in a MatchExpression in an IfModule
block and a path specified in a Location block, the behavior specified by the Location
block takes precedence.

e [fyou define the CookieName parameter (see
http://e-docs.bea.com/wls/docs90/webapp/weblogic xml.html#session-de
scriptor), you must define it in an IfModule block.

e Ifyou use an Apache HTTP Server <virtualHost> block, you must include all
configuration parameters (MatchExpression, for example) for the virtual host within the
<virtualHost> block (see Apache Virtual Host documentation).

If you want to have only one log file for all the virtual hosts configured in your
environment, you can achieve it using global properties. Instead of specifying the same
Debug, WLLogFile and WLTempDir properties in each virtual host you can specify them
just once in the <IfModule> tag

Sample httpd.conf file:

IfModule mod weblogic.c>

WebLogicClusteragarwalp02:8005,agarwalp02:8006

Debug ON
WLLogFile c:/tmp/global proxy.log
WLTempDir "c:/myTemp"

Using Web Server Plug-Ins With WebLogic Server 3-13

http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#session-descriptor
http://httpd.apache.org/docs/vhosts/

Installing and Configuring the Apache HTTP Server Plug-In

3-14

DebugConfigInfo On
KeepAliveEnabled ON
KeepAliveSecs 15
</IfModule>
<Location /jurl>
SetHandler weblogic-handler
WebLogicCluster agarwalp01:7001
</Location>
<Location /web>
SetHandler weblogic-handler
PathTrim /web
Debug OFF
WLLogFile c:/tmp/web _log.log

</Location>

<Location /foo>
SetHandler weblogic-handler
PathTrim /foo
Debug ERR
WLLogFile c:/tmp/foo_proxy.log
</Location>

o All the requests which match /jurl/* will have Debug Level set to ALL and log messages
will be logged to c:/tmp/global_proxy.log file. All the requests which match /web/* will
have Debug Level set to OFF and no log messages will be logged. All the requests which
match /foo/* will have Debug Level set to ERR and log messages will be logged to
c:/tmp/foo_proxy.log file

e BEA recommends that you use the MatchExpression statement instead of the <files>
block.

Using Web Server Plug-Ins With WebLogic Server

Configuring the Apache HTTP Server Plug-In

Sample weblogic.conf Configuration Files

The following examples of weblogic.conf files may be used as templates that you can modify
to suit your environment and server. Lines beginning with # are comments.

Example Using WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in

the <Location> or <Files> blocks. (Except WebLogicHost,

H*+ F= H F*

WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
ErrorPage http://myerrorpage.mydomain.com
MatchExpression *.jsp

</IfModule>

HAFHAHH SR A SRS HAHHAF A HA SRS H R AR SRS

Example Using Multiple WebLogic Clusters

In this example, the MatchExpression parameter syntax for expressing the filename pattern, the
WebLogic Server host to which HTTP requests should be forwarded, and various other
parameters is as follows:

MatchExpression [filename pattern] [WebLogicHost=host]

[paramName=value]
The first MatchExpression parameter below specifies the filename pattern * . jsp, and then
names the single webLogicHost. The paramName=value combinations following the pipe
symbol specify the port at which WebLogic Server is listening for connection requests, and also
activate the Debug option. The second MatchExpression specifies the filename pattern * . http
and identifies the webLogicCluster hosts and their ports. The paramName=value combination
following the pipe symbol specifies the error page for the cluster.

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in

the <Location> or <Files> blocks (Except WebLogicHost,

H*+ F= H H*

WebLogicPort, WebLogicCluster, and CookieName.)

Using Web Server Plug-Ins With WebLogic Server 3-15

Installing and Configuring the Apache HTTP Server Plug-In

<IfModule mod_weblogic.c>
MatchExpression *.jsp WebLogicHost=myHost |WebLogicPort=7001|Debug=0N
MatchExpression
*.html WebLogicCluster:myHostl:7282,myHost2:7283|ErrorPage:
http://www.xyz.com/error.html
</IfModule>

Example Without WebLogic Clusters

These parameters are common for all URLs which are

directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,

WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp

</IfModule>

Example Configuring Multiple Name-Based Virtual Hosts

VirtualHostl = localhost:80
<VirtualHost 127.0.0.1:80>
DocumentRoot "C:/test/VirtualHostl"
ServerName localhost:80<IfModule mod weblogic.c>
#... WLS parameter
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.Jjsp PathPrepend=/test2
</IfModule>
</VirtualHost>

VirtualHost2 = 127.0.0.2:80
<VirtualHost 127.0.0.2:80>
DocumentRoot "C:/test/VirtualHostl"
ServerName 127.0.0.2:80
<IfModule mod weblogic.c>
#... WLS parameter
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2

3-16 Using Web Server Plug-Ins With WebLogic Server

Configuring the Apache HTTP Server Plug-In

#... WLS parameter
</IfModule>
</VirtualHost><IfModule mod weblogic.c>

You must define a unique value for 'ServerName'or some Plug-In parameters will not work as
expected.

Template for the Apache HTTP Server httpd.conf File

This section contains a sample httpd. conf file for Apache 1.3. You can use this sample as a
template and modify it to suit your environment and server. Lines beginning with # are
comments.

Note that Apache HTTP Server is not case sensitive.
HAFHAHH SR A SRS HAHHAH RS HA S H R RS RS A

APACHE-HOME/conf /httpd.conf file
HASHARH AR AR AR H AR HA R AR A HA S AR AR AR H A H AR HA R AR A

LoadModule weblogic_module libexec/mod_wl.so
AddModule mod_weblogic.c

<Location /weblogic>
SetHandler weblogic-handler
PathTrim /weblogic
ErrorPage http://myerrorpagel.mydomain.com

</Location>

<Location /servletimages>
SetHandler weblogic-handler
PathTrim /something
ErrorPage http://myerrorpagel.mydomain.com

</Location>

<IfModule mod_weblogic.c>
MatchExpression *.jsp
WebLogicCluster wlsl.com:7001,wls2.com:7001,wls3.com:7001
ErrorPage http://myerrorpage.mydomain.com

</IfModule>

Using Web Server Plug-Ins With WebLogic Server 3-17

Installing and Configuring the Apache HTTP Server Plug-In

Setting Up Perimeter Authentication

Use perimeter authentication to secure WebLogic Server applications that are accessed via the
Apache Plug-In.

3-18

A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access
your WebLogic Server application, including users who access your WebLogic Server
application through the Apache HTTP Server Plug-In. Create an Identity Assertion Provider that
will safely secure your Plug-In as follows:

1.

Create a custom Identity Assertion Provider on your WebLogic Server application. See How
to Develop a Custom Identity Assertion Provider in Developing Security Providers for
WebLogic Server.

Configure the custom Identity Assertion Provider to support the Cert token type and make
Cert the active token type. See How to Create New Token Types in Developing Security
Providers for WebLogic Server.

Set clientCertProxy to True in the web.xml deployment descriptor file for the Web
application (or, if using a cluster, optionally set the Client Cert Proxy Enabled
attribute to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab). The clientCertProxy attribute can be used with
a third party proxy server, such as a load balancer or an SSL accelerator, to enable 2-way
SSL authentication. For more information about the clientCertProxy attribute, see
context-param in Developing Web Applications, Servlets and JSPs for WebLogic Server.

Once you have set clientCertProxy, be sure to use a connection filter to ensure that
WebLogic Server accepts connections only from the machine on which the Apache Plug-In
is running. See Using Network Connection Filters in Programming WebLogic Security.

Web server plug-ins require a trusted Certificate Authority file in order to use SSL between
the plug-in and WebLogic Server. Use Sun Microsystems' keytool utility to export a trusted
Certificate Authority file from the DemoTrust.jks keystore file that resides in

BEA_ HOME/weblogic90/server/lib.

a. To extract the wisdemoca file, for example, use the command:
keytool -export -file trustedcafile.der -keystore DemoTrust.jks -alias
wlsdemoca

Change the alias name to obtain a different trusted CA file from the keystore.

To look at all of the keystore's trusted CA files, use:
keytool -list -keystore DemoTrust.jks

Press enter if prompted for password.

Using Web Server Plug-Ins With WebLogic Server

http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1089150
http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1089150
http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1155765
http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html
http://e-docs.bea.com/wls/docs90/security/con_filtr.html

Using SSL with the Apache Plug-In

b. To convert the Certificate Authority file to pem format: java utils.der2pem
trustedcafile.der

See Identity Assertion Providers in Developing Security Providers for WebLogic Server.

Using SSL with the Apache Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection between the
Apache HTTP Server Plug-In and WebLogic Server. The SSL protocol provides confidentiality
and integrity to the data passed between the Apache HTTP Server Plug-In and WebLogic Server.

The Apache HTTP Server Plug-In does rot use the transport protocol (http or https) specified
in the HTTP request (usually by the browser) to determine whether or not the SSL protocol is
used to protect the connection between the Apache HTTP Server Plug-In and WebLogic Server.

Although two-way SSL can be used between the HTTP client and Apache HTTP server, note that
one-way SSL is used between Apache HTTP Server and WebLogic Server.

Configuring SSL Between the Apache HTTP Server Plug-In and
WebLogic Server

To use the SSL protocol between Apache HTTP Server Plug-In and WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring SSL at
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html.

2. Configure the WebLogic Server SSL listen port. For more information, see Configuring SSL
at http://e-docs.bea.com/wls/docs90/secmanage/ssl.html.

3. Inthe Apache Server, set the WwebLogicPort parameter in the httpd.conf file to the
WebLogic Server SSL listen port configured in step 2.

4. Inthe Apache Server, set the SecureProxy parameter in the httpd.conf file to ON.

5. Set any additional parameters in the httpd. conf file that define information about the SSL
connection. For a complete list of the SSL parameters that you can configure for the
plug-in, see “SSL Parameters for Web Server Plug-Ins” on page 7-14.

Issues with SSL-Apache Configuration

These known issues arise when you configure the Apache plug-in to use SSL:

e To prepare the plugin configuration, double click the lock and go to the certificates path:

Using Web Server Plug-Ins With WebLogic Server 3-19

http://e-docs.bea.com/wls/docs90/dvspisec/ia.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html

Installing and Configuring the Apache HTTP Server Plug-In

3-20

* Select the root CA (at the top)
* Display it
* Detail and then copy this certificate to a file using the Coded "Base
64 X509" option
* Save the file, for example, to yMyWeblogicCAToTrust .cery (which is also a

PEM file)

The PathTrim parameter (see “General Parameters for Web Server Plug-Ins” on page 7-1)
must be configured inside the <Location> tag.

The following configuration is incorrect:

<Location /weblogic>
SetHandler weblogic-handler
</Location>

<IfModule mod_weblogic.c>
WebLogicHost localhost
WebLogicPort 7001
PathTrim /weblogic
</IfModule>

The following configuration is the correct setup:

<Location /weblogic>
SetHandler weblogic-handler
PathTrim /weblogic
</Location>

The Include directive does not work with Apache SSL. You must configure all
parameters directly in the httpd. conf file. Do not use the following configuration when
using SSL:

<IfModule mod_weblogic.c>
MatchExpression *.jsp
Include weblogic.conf
</IfModule>

The current implementation of the WebLogic Server Apache Plug-In does not support the
use of multiple certificate files with Apache SSL.

Using Web Server Plug-Ins With WebLogic Server

Connection Errors and Clustering Failover

Connection Errors and Clustering Failover

When the Apache HTTP Server Plug-In attempts to connect to WebLogic Server, the plug-in uses
several configuration parameters to determine how long to wait for connections to the WebLogic
Server host and, after a connection is established, how long the plug-in waits for a response. If
the plug-in cannot connect or does not receive a response, the plug-in attempts to connect and
send the request to other WebLogic Server instances in the cluster. If the connection fails or there
is no response from any WebLogic Server in the cluster, an error message is sent.

Figure 3-1 “Connection Failover” on page 3-24 demonstrates how the plug-in handles failover.

Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate the
following problems:

e Physical problems with the host machine
e Network problems

e Other server failures

Failure of all WebLogic Server instances to respond could indicate the following problems:
e WebLogic Server is not running or is unavailable
e A hung server
e A database problem

e An application-specific failure

Tuning to Reduce Connection_Refused Errors

Under load, an Apache plug-in may receive CONNECTION REFUSED errors from a back-end
WebLogic Server instance. Follow these tuning tips to reduce CONNECTION REFUSED
errors:

e Increase the AcceptBackLog setting in the configuration of your WebLogic Server
domain.

e On Apache 2.x, set the Keepalive directive in the httpd. conf file to On. For example:

KeepAlive: Whether or not to allow persistent connections (more than

Using Web Server Plug-Ins With WebLogic Server 3-21

Installing and Configuring the Apache HTTP Server Plug-In

3-22

one request per connection). Set to "Off" to deactivate.
#
KeepAlive On
See Apache HTTP Server 2.0 documentation at http://httpd.apache.org/docs-project/.
Apache 1.3.x does not support this feature.
e Decrease the time wait interval. This setting varies according to the operating system you
are using. For example:

— On Windows NT, set the TcpTimedwaitDelay on the proxy and WebLogic Server
servers to a lower value. Set the TIME WAIT interval in Windows NT by editing the
registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay

If this key does not exist you can create it as a DWORD value. The numeric value is
the number of seconds to wait and may be set to any value between 30 and 240. If not
set, Windows NT defaults to 240 seconds for TIME_WAIT.

— On Windows 2000, lower the value of the TcpTimedwaitDelay by editing the registry
key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

— On Solaris, reduce the setting tcp_time_wait_interval to one second (for both the
WebLogic Server machine and the Apache machine, if possible):

sndd /dev/tcp
param name to set - tcp_time_wait_interval

value=1000

e Increase the open file descriptor limit on your machine. This limit varies by operating
system. Using the 1imit (.csh) or ulimit (.sh) directives, you can make a script to
increase the limit. For example:

#!/bin/sh
ulimit -S -n 100
exec httpd
e On Solaris, increase the values of the following tunables on the WebLogic Server machine:
— tcp_conn_req max_q

— tcp_conn_req _max_q0

Using Web Server Plug-Ins With WebLogic Server

http://httpd.apache.org/docs-project/

Connection Errors and Clustering Failover

Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server instance the plug-in only attempts to connect
to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP 503 error
message is returned. The plug-in continues trying to connect to that same WebLogic Server
instance until ConnectTimeoutSecs is exceeded.

The Dynamic Server List

When you use the WebLogicCluster parameter in your httpd.conf or weblogic. conf file to
specify a list of WebLogic Servers, the plug-in uses that list as a starting point for load balancing
among the members of the cluster. After the first request is routed to one of these servers, a
dynamic server list is returned containing an updated list of servers in the cluster. The updated
list adds any new servers in the cluster and deletes any that are no longer part of the cluster or that
have failed to respond to requests. This list is updated automatically with the HTTP response
when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions

When a request contains session information stored in a cookie or in the POST data, or encoded
in a URL, the session ID contains a reference to the specific server instance in which the session
was originally established (called the primary server) and a reference to an additional server
where the original session is replicated (called the secondary server). A request containing a
cookie attempts to connect to the primary server. If that attempt fails, the request is routed to the
secondary server. If both the primary and secondary servers fail, the session is lost and the plug-in
attempts to make a fresh connection to another server in the dynamic cluster list. See Figure 3-1
“Connection Failover” on page 3-24.

Note: If the POST data is larger than 64K, the plug-in will not parse the POST data to obtain
the session ID. Therefore, if you store the session ID in the POST data, the plug-in cannot
route the request to the correct primary or secondary server, resulting in possible loss of
session data.

Using Web Server Plug-Ins With WebLogic Server 3-23

Installing and Configuring the Apache HTTP Server Plug-In

Figure 3-1 Connection Failover
wfﬂ;wéﬁ:gsgmam Parse headers and return
the request is proxied by response to the client
the plug-in
l b

Plug-in receives request
from the Web server

Mark this server as
‘bad"” in the
dynamic server list

h

WeblLogic
Session ID In
request?

Connect to primary
server defined in
cockie

Total time of this request

successful within

Connect to
secondary server yes
defined in cookie
Send HTTP error na
code 5xx to client A
T— 'Y
Try nex! server in
dynamic server list or | C edsmﬁz IDrS d
NebLogicClustor anneclionRetrySeconds
Max retries
exceeded?
no
Yy ¥ ¥ Y
Send headers and POST data to Wiait for response for »5 A7 ves
‘WeblLogic server WLIOTimeOuiSecs

Notes: The HTTP error code thrown by the plug-in depends on the situation. Plug-in will return
the HTTP error code 500 in the following conditions:

o Neither WebLogicCluster nor WebLogicPort was specified in the httpd.conf file.

3-24 Using Web Server Plug-Ins With WebLogic Server

Connection Errors and Clustering Failover

e Unable to resolve the WebLogicHost parameter specified in the httpd.conf file.
e Port number specified by WebLogicPort, in the httpd.conf file, exceeds 65535.
e Unsuccessful in parsing the request while applying the PathTrim property.

e The request header is of type Unknown Transfer-Encoding.

Failed to read the chunked request.

Encounetered an error reading POST data from client.

Failed to open a temporary(temp) file.

Failed to write POST data to the temp file.

Encounetered an error reading POST data from the temp file.

POST timed out.

SSL was specified without the parameter trusted CAFile.
On the other hand, the HTTP error code 503 is returned when:

e The maximum number of retries is exceeded. This value is computed by dividing
ConnectTimeoutSecs by ConnectRetrySecs.

e Idempotent is OFF.

Using Web Server Plug-Ins With WebLogic Server 3-25

Installing and Configuring the Apache HTTP Server Plug-In

3-26 Using Web Server Plug-Ins With WebLogic Server

GHAPTERo

Installing and Configuring the
Microsoftt IS Plug-In

The following sections describe how to install and configure the Microsoft Internet Information
Server Plug-In.

“Overview of the Microsoft Internet Information Server Plug-In” on page 4-1
“Certifications” on page 4-3

“Installing and Configuring the Microsoft Internet Information Server Plug-In” on page 4-3
“Proxying Requests from Multiple Virtual Websites to WebLogic Server” on page 4-9
“Sample iisproxy.ini File” on page 4-10

“Creating ACLs Through IIS” on page 4-11

“Setting Up Perimeter Authentication” on page 4-11

“Using SSL with the Microsoft Internet Information Server Plug-In” on page 4-12
“Proxying Servlets from IIS to WebLogic Server” on page 4-13

“Testing the Installation” on page 4-14

“Connection Errors and Clustering Failover” on page 4-15

Overview of the Microsoft Internet Information Server Plug-In

The Microsoft Internet Information Server Plug-In allows requests to be proxied from a
Microsoft Internet Information Server (IIS) to WebLogic Server. The plug-in enhances an IIS

Using Web Server Plug-Ins With WebLogic Server 4-1

Installing and Configuring the Microsoft IIS Plug-In

42

installation by allowing WebLogic Server to handle those requests that require the dynamic
functionality of WebLogic Server.

You use the Microsoft Internet Information Server Plug-In in an environment where the Internet
Information Server (IIS) serves static pages such as HTML pages, while dynamic pages such as
HTTP Servlets or JavaServer Pages are served by WebLogic Server. WebLogic Server may be
operating in a different process, possibly on a different host. To the end user—the browser—the
HTTP requests delegated to WebLogic Server still appear to be coming from IIS. The
HTTP-tunneling facility of the WebLogic client-server protocol also operates through the
plug-in, providing access to all WebLogic Server services.

Connection Pooling and Keep-Alive

The Microsoft Internet Information Server Plug-In improves performance using a pool of
connections from the plug-in to WebLogic Server. The plug-in implements HTTP 1.1 keep-alive
connections between the plug-in and WebLogic Server by re-using the same connection for
subsequent requests from the same client. If the connection is inactive for more than 30 seconds,
(or a user-defined amount of time) the connection is closed. The connection with the client can
be reused to connect to the same client at a later time if it has not timed out. You can disable this
feature if desired. For more information, see “KeepAliveEnabled” on page 7-11.

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you specify. You
can proxy requests based on either the URL of the request or a portion of the URL. This is called
proxying by path.

You can also proxy a request based on the MIME type of the requested file, which called proxying
by file extension.

You can also enable both methods. If you do enable both methoda and a request matches both
criteria, the request is proxied by path.

You can also specify additional parameters for each of these types of requests that define
additional behavior of the plug-in. For more information, see “Installing and Configuring the
Microsoft Internet Information Server Plug-In” on page 4-3.

Using Web Server Plug-Ins With WebLogic Server

Certifications

Certifications

For the latest information on operating system and IIS version compatibility with the Microsoft
Internet Information Server Plug-In, see the platform support page at
http://e-docs.bea.com/platform/suppconfigs/configs90/90 over/overview.html.

Installing and Configuring the Microsoft Internet Information
Server Plug-In

To install the Microsoft Internet Information Server Plug-In:

1.

Copy the iisproxy.dll file from the wi_HOME/server/plugin/win/32,
WL_HOME/server/plugin/win/64, or WL_HOME/server/plugin/win/x64 directory of
your WebLogic Server installation (where wr,_HONME is the top-level directory for the
WebLogic Platform and Server and contains the WebLogic Server installation files into a
convenient directory that is accessible to IIS). This directory must also contain the
iisproxy.ini file that you will create in step 2. Set the user permissions for the iisproxy.dll
file to include the name of the user who will be running IIS. One way to do this is by right
clicking on the iisproxy.dll file and selecting Permissions, then adding the username of the
person who will be running IIS.

If you want to configure proxying by file extension (MIME type) complete this step. (You
can configure proxying by path in addition to or instead of configuring by MIME type. See
step 3.)

a. Start the Internet Information Service Manager by selecting it from the Start menu.

b. In the left panel of the Service Manager, select your website (the default is “Default Web
Site”).

W Internet Information Services (11S) Manager - g’ T : =10] x|
Y8 Bl acion Yew Window el ===
le» 8@ FRE(R|2]>» = u
K4 internet Information Services | Name | Path | Status
-0 Qa7S (local computer)) dils
- _l Application Pools | weblogic
BEHZ) Web Skes | error. hitmi
] Default Web Site
] Josh
- _] Web Service Extension: %
< (L3 || KN |]

Using Web Server Plug-Ins With WebLogic Server 4-3

http://e-docs.bea.com/platform/suppconfigs/suppconfigs/configs90/90_over/overview.html
http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/overview.html

Installing and Configuring the Microsoft I1S Plug-In

c. Click the “Play” arrow in the toolbar to start.

d. Open the properties for the selected website by right-clicking the website selection in the
left panel and selecting Properties.

W Internet Information Services (I1S) Manager i =] |
9 File Action View Window Help ‘ B Tl Jed |
o O X FEB[R(2] > - |
[mntemnet Information Services [Name [Fath [sestus

=% QA78 (local computer) 20 dis

) application Pools
El-) web Sites

1§ Josh Explore

) web Servic 2Pen
Permissions
Browss

| weblogic
|=] error.himl

Start:
Stop
Pause

Hew >

4| Al Tasks 3 |

Opens property sheet Fi Yiew > ‘
e Window from Here
Delste
Rename
Refresh
Export: List...

Help

e. Inthe Properties panel, select the Home Directory tab, and click the Configuration button
in the Applications Settings section.

4-4 Using Web Server Plug-Ins With WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In

Default Web Site Properties ; 21x]

Documents I Directory Security l HTTF Headers I Cuskom Errors I
webSite | Performance | ISAPI Filters Home Directory
The content For this resource should come from:
&+ A directory located on this computer
! " A share located on another computer
{ " A redirection ko a LRL

Local path: I C:ipluginsiiishome Erowse. .. |

= Scripk source access = Log wisits
¥ Read v Index this resource
IV write

¥ Directory browsing

Application settings

Application name: I Default Application
Starting poink: <Default Web Site=
Execute permissions: IScr'pts and Executables
Application pool: IDeFaLitnppPod
(6] 4 | Cancel I apply E Help |

f. On the Mappings tab, click the Add button to add file types and configure them to be
proxied to WebLogic Server.

Using Web Server Plug-Ins With WebLogic Server 4-5

Installing and Configuring the Microsoft IIS Plug-In

46

L

Application Configuration x|
Mappings IOptions I Debugging I I%

¥ Cache ISAPI extensions

— application extensions

Extens. .. I Executable Path I Werbs -

.as3 CWINDOWSsystem32iinetsrviasp.dl GET,HEA..

.asp CWINDOWS | system32linetsrviasp.dl GET,HEA.._ |

.odx CHWINDOWShsystem32iinetsrviasp.dl GET,HEA..

.cer CHWINDOWSsystem32iinetsrviasp.dl GET,HEA..

.idc CWINDOW S system32iinetsrihttp. .. GET,POiI’lll
»

| |

Edit... Eemove |

wWildcard application maps {order of implementation):

Inserkt... I
Edit. .. I
Remove I

Mowve Up I MMave Cown |

Ok I Cancel Help |

In the Add dialog box, browse to find the “iisproxy.d11” file.
Set the Extension to the type of file that you want to proxy to WebLogic Server.

If you are configuring for IIS 6.0 or later, be sure to deselect the “Check that file exists”
check box. The behavior of this check has changed from earlier versions of IIS: it used to
check that the i isproxy.d11 file exists; now it checks that files requested from the proxy
exist in the root directory of the Web server. If the check does not find the files there, the
iisproxy.dll file will not be allowed to proxy requests to the WebLogic Server.

In the Directory Security tab, set the Method exclusions as needed to create a secure
installation.

When you finish, click the OK button to save the configuration. Repeat this process for
each file type you want to proxy to WebLogic.

When you finish configuring file types, click the OK button to close the Properties panel.

Note: Inthe URL, any path information you add after the server and port is passed directly

to WebLogic Server. For example, if you request a file from IIS with the URL:
http://myiis.com/jspfiles/myfile.jsp
it is proxied to WebLogic Server with a URL such as

http://mywebLogic:7001/jspfiles/myfile.jsp

Using Web Server Plug-Ins With WebLogic Server

Installing and Configuring the Microsoft Internet Information Server Plug-In

Note: To avoid out-of-process errors, do not deselect the "Cache ISAPI Applications"
check box.

3. If you want to configure proxying by path complete this step. (In addition to proxying by
file type, you can configure the Microsoft Internet Information Server Plug-In to serve files
based on their path by specifying some additional parameters in the iisproxy.ini file.)
Proxying by path takes precedence over proxying by MIME type.

You can also proxy multiple websites defined in IIS by path. For more information, see
“Proxying Requests from Multiple Virtual Websites to WebLogic Server” on page 4-9.

To configure proxying by path:
a. Start the Internet Information Service Manager by selecting it from the Start menu.

1. Place the iisforward.dl1l file in the same directory as the iisproxy.dll file and add the
iisforward.dll file as a filter service in IIS (WebSite Properties —ISAPI Filters tab —Add
the iisforward dl11). Setthe user permissions for the iisforward.dll file to include the name
of the user who will be running IIS. One way to do this is by right clicking on the iisproxy.dll
file and selecting Permissions, then adding the username of the person who will be running
1IS.

b. Register .wlforward as a special file type to be handled by iisproxy.dll inIIS.

c. Define the property WlForwardPath in iisproxy.ini.WlForwardPath defines the
path that is proxied to WebLogic Server, for example: WlForwardpath=/weblogic.

d. Set the PathTrim parameter to trim off the WlForwardPath when necessary. For
example, using

WlForwardPath=/weblogic
PathTrim=/weblogic

trims a request from IIS to Weblogic Server. Therefore, /weblogic/session is
changed to /session.

e. If you want requests that do not contain extra path information (in other words, requests
containing only a host name), set the DefaultFileName parameter to the name of the
welcome page of the Web Application to which the request is being proxied. The value of
this parameter is appended to the URL.

f. Ifyou need to debug your application, set the Debug=0N parameter in iisproxy.ini. A
c:\tmp\iisforward.log is generated containing a log of the plug-in’s activity that you
can use for debugging purposes.

2. In WebLogic Server, create the iisproxy.ini file.

Using Web Server Plug-Ins With WebLogic Server 4-1

Installing and Configuring the Microsoft IIS Plug-In

4-8

The iisproxy.ini file contains name=value pairs that define configuration parameters
for the plug-in. The parameters are listed in “General Parameters for Web Server Plug-Ins’
on page 7-1.

i)

Use the example iisproxy.ini file in this section (“Sample iisproxy.ini File”” on
page 4-10) as a template for your iisproxy.ini file.

Note: Changes in the parameters will not go into effect until you restart the “IIS Admin
Service” (under services, in the control panel).

BEA recommends that you locate the iisproxy.ini file in the same directory that
contains the iisproxy.dl1 file. You can also use other locations. If you place the file
elsewhere, note that WebLogic Server searches for iisproxy.ini in the following
directories, in the following order:

a. in the same directory where iisproxy.d11 is located

b. in the home directory of the most recent version of WebLogic Server that is referenced in
the Windows Registry. (If WebLogic Server does not find the iisproxy.ini file in the
home directory, it continues looking in the Windows Registry for older versions of
WebLogic Server and looks for the iisproxy.ini file in the home directories of those
installations.)

c. in the directory c:\weblogic, if it exists

Define the WebLogic Server host and port number to which the Microsoft Internet
Information Server Plug-In proxies requests. Depending on your configuration, there are
two ways to define the host and port:

— If'you are proxying requests to a single WebLogic Server, define the WebLogicHost
and WebLogicPort parameters in the iisproxy.ini file. For example:

WebLogicHost=1localhost
WebLogicPort=7001

— If you are proxying requests to a cluster of WebLogic Servers, define the
WebLogicCluster parameter in the iisproxy.ini file. For example:

WebLogicCluster=myweblogic.com:7001, yourweblogic.com:7001

Where myweblogic.comand yourweblogic.com are instances of Weblogic Server
running in a cluster.

Optionally, enable HTTP tunneling by following the instructions for proxying by path (see
step 8 above), substituting the WebLogic Server host name and the WebLogic Server port
number, or the name of a WebLogic Cluster that you wish to handle HTTP tunneling
requests.

Using Web Server Plug-Ins With WebLogic Server

Proxying Requests from Multiple Virtual Websites to WebLogic Server

a. Ifyou are using weblogic.jar and the T3 protocol, set WlForwardpath to this URL
pattern:

WlForwardPath=*/HTTPClnt*

b. Ifyou are using IIOP, which is the only protocol used by the WebLogic Server thin client,
wlclient.jar, set the value of WiForwardPath to */iiop*:

WlForwardPath=*/iiop*
You do not need to use the PathTrim parameter.

Set any additional parameters in the iisproxy.ini file. A complete list of parameters is
available in the appendix “General Parameters for Web Server Plug-Ins” on page 7-1.

If you are proxying servlets from IIS to WebLogic Server and you are not proxying by path,
read the section “Proxying Servlets from IIS to WebLogic Server” on page 4-13.

The installed version of IIS with its initial settings does not allow the iisproxy.d11. Use
the IIS Manager console to enable the Plug-In:

a. Open the IIS Manager console.
b. Select Web Service Extensions.

c. Set “All Unknown ISAPI Extensions” to Allowed.

Proxying Requests from Multiple Virtual Websites to WebLogic
Server

To proxy requests from multiple websites (defined as virtual directories in IIS) to WebLogic
Server:

1.

Create a new directory for the virtual directories. This directory will contain d11 and ini files
used to define the proxy.

Copy iisforward.dll to the directory you created in stepl.
Register the iisforward.dll for each website with IIS.

Create a file called iisforward. ini. Place this file in the same directory that contains
iisforward.dll. This file should contain the following entry for each virtual website
defined in IIS:

vhostN=websiteName: port
websiteName: port=dll_directory/iisproxy.ini

Using Web Server Plug-Ins With WebLogic Server 4-9

Installing and Configuring the Microsoft IIS Plug-In

Where:

N is an integer representing the virtual website. The first virtual website you define
should use the integer 1 and each subsequent website should increment this number by
1.

— websiteName is the name of the virtual website as registered with IIS.
— port is the port number where IIS listens for HTTP requests.
— d11_directory is the path to the directory you created in step 1.

For example:

vhostl=strawberry.com:7001
strawberry.com:7001=c:\strawberry\iisproxy.ini
vhost2=blueberry.com:7001
blueberry.com:7001=c:\blueberry\iisproxy.ini

5. Create an iisproxy.ini file for the virtual eebsites, as described in step 2. in “Proxying
Requests”. Copy this iispoxy.ini file to the directory you created in step 1.

6. Copy iisproxy.dll to the directory you created in step 1.

7. InIIS, set the value for the Application Protection option to high (isolated). If the
Application Protection option is set to Medium(pooled), the iisproxy.dll that registered as
the first website will always be invoked. In this event, all the requests will be proxied to the
same WLS instances defined in the iisproxy.ini of the first website.

Sample iisproxy.ini File

Here is a sample iisproxy.ini file for use with a single, non-clustered WebLogic Server.
Comment lines are denoted with the “#” character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.

WebLogicHost=1localhost
WebLogicPort=7001
ConnectTimeoutSecs=20

ConnectRetrySecs=2

Here is a sample iisproxy.ini file with clustered WebLogic Servers. Comment lines are
denoted with the “#” character.

4-10 Using Web Server Plug-Ins With WebLogic Server

Creating ACLs Through IIS

This file contains initialization name/value pairs

for the IIS/WebLogic plug-in.

WebLogicCluster=myweblogic.com:7001, yourweblogic.com:7001
ConnectTimeoutSecs=20

ConnectRetrySecs=2

Note: Ifyou are using SSL between the plug-in and WebLogic Server, the port number should
be defined as the SSL listen port.

Creating ACLs Through IIS

ACLs will not work through the Microsoft Internet Information Server Plug-In if the
Authorization header is not passed by IIS. Use the following information to ensure that the
Authorization header is passed by IIS.

When using Basic Authentication, the user is logged on with local log-on rights. To enable the
use of Basic Authentication, grant each user account the Log On Locally user right on the IIS
server. Two problems may result from Basic Authentication's use of local logon:

o [f the user does not have local logon rights, Basic Authentication does not work even if the
FrontPage, IIS, and Windows NT configurations appear to be correct.

e A user who has local log-on rights and who can obtain physical access to the host
computer running IIS will be permitted to start an interactive session at the console.

To enable Basic Authentication, in the Directory Security tab of the console, ensure that the
Allow Anonymous option is “on” and all other options are “off”.

Setting Up Perimeter Authentication

Use perimeter authentication to secure your WebLogic Server applications that are accessed via
the Microsoft Internet Information Server Plug-In.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access
your WebLogic Server application, including users who access your WebLogic Server
application through the Microsoft Internet Information Server Plug-In. Create an Identity
Assertion Provider that will safely secure your Plug-In as follows:

1. Create a custom Identity Assertion Provider on your WebLogic Server application. See How
to Develop a Custom Identity Assertion Provider in Developing Security Providers for
WebLogic Server.

Using Web Server Plug-Ins With WebLogic Server 4-1

http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1089150
http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1089150

Installing and Configuring the Microsoft IIS Plug-In

. Configure the custom Identity Assertion Provider to support the "Cert" token type and make

it the active token type. See How to Create New Token Types in Developing Security
Providers for WebLogic Server.

Set the clientCertProxy attribute to True in the web.xm1 deployment descriptor file for
the Web application (or, if using a cluster, optionally set the Client Cert Proxy
Enabled attribute to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab). See context-param in Developing Web
Applications for WebLogic Server.

. Once you have set clientCertProxy, be sure to use a connection filter to ensure that

WebLogic Server accepts connections only from the machine on which the Microsoft
Internet Information Server Plug-In is running. See Using Network Connection Filters in
Programming WebLogic Security.

. Web server plug-ins require a trusted Certificate Authority file in order to use SSL between

the plug-in and WebLogic Server. Use Sun Microsystems' keytool utility to export a trusted
Certificate Authority file from the DemoTrust.jks keystore file that resides in
BEA_ HOME/weblogic90/server/lib.

a. To extract the wisdemoca file, for example, use the command:
keytool -export -file trustedcafile.der -keystore DemoTrust.jks -alias
wlsdemoca

Change the alias name to obtain a different trusted CA file from the keystore.

To look at all of the keystore's trusted CA files, use:
keytool -list -keystore DemoTrust.jks

Press enter if prompted for password.

b. To convert the Certificate Authority file to pem format: java utils.der2pem
trustedcafile.der

See Identity Assertion Providers in Developing Security Providers for WebLogic Server for more
information about Identity Assertion Providers.

Using SSL with the Microsoft Internet Information Server
Plug-In

4-12

You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
WebLogic Server and the Microsoft Internet Information Server Plug-In. The SSL protocol
provides confidentiality and integrity to the data passed between the Microsoft Internet
Information Server Plug-In and WebLogic Server.

Using Web Server Plug-Ins With WebLogic Server

http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1155765
http://e-docs.bea.com/wls/docs90/webapp/web_xml.html#contextparam
http://e-docs.bea.com/wls/docs90/security/con_filtr.html
http://e-docs.bea.com/wls/docs90/dvspisec/ia.html

Proxying Servlets from IIS to WebLogic Server

The Microsoft Internet Information Server Plug-In does not use the transport protocol (http or
https) to determine whether the SSL protocol will be used to protect the connection between the
proxy plug-in and the Microsoft Internet Information Server. In order to use the SSL protocol
with the Microsoft Internet Information Server Plug-In, configure the WebLogic Server instance
receiving the proxied requests to use the SSL protocol. The port on the WebLogic Server that is
configured for secure SSL communication is used by the Microsoft Internet Information Server
Plug-In to communicate with the Microsoft Internet Information Server.

To use the SSL protocol between Microsoft Internet Information Server Plug-In and WebLogic

Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring SSL at
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html.

2. Configure the WebLogic Server SSL listen port. For more information, see Configuring SSL
at http://e-docs.bea.com/wls/docs90/secmanage/ssl.html.

3. Set the webLogicPort parameter in the iisproxy.ini file to the listen port configured in
step 2.

4. Set the SecureProxy parameter in the iisproxy.ini file to on.

5. Set additional parameters in the iisproxy.ini file that define the SSL connection. For a
complete list of parameters, see “SSL Parameters for Web Server Plug-Ins” on page 7-14.

For example:

WebLogicHost=myweblogic.com
WebLogicPort=7002
SecureProxy=0N

Proxying Servlets from 1IS to WebLogic Server

You can proxy servlets by path if the iisforward.d11 is registered as a filter. You would then
invoke your servlet with a URL similar to the following:
http://IISserver/weblogic/myServlet

To proxy servlets if iisforward.dll is not registered as a filter, you must configure servlet
proxying by file type.To proxy servlets by file type:

1. Register an arbitrary file type (extension) with IIS to proxy the request to the WebLogic
Server, as described in step 2. under “Installing and Configuring the Microsoft Internet
Information Server Plug-In” on page 4-3.

Using Web Server Plug-Ins With WebLogic Server 4-13

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html

Installing and Configuring the Microsoft IIS Plug-In

2.

Register your servlet in the appropriate Web Application. For more information on
registering servlets, see Configuring Servlets at
http://e-docs.bea.com/wls/docs90/webapp/components.html#configuring-ser
vlets.

Invoke your servlet with a URL formed according to this pattern:

http://www.myserver.com/virtualName/anyfile.ext

where virtualName is the URL pattern defined in the <servlet-mapping> element of
the Web Application deployment descriptor (web .xm1) for this servlet and ext is a file
type (extension) registered with IIS for proxying to WebLogic Server. The anyfile part of
the URL is ignored in this context.

Note:

— If the image links called from the servlet are part of the Web Application, you must
also proxy the requests for the images to WebLogic Server by registering the
appropriate file types (probably .gif and .jpg) with IIS. You can, however, choose to
serve these images directly from IIS if desired.

— If the servlet being proxied has links that call other servlets, then these links must also
be proxied to WebLogic Server, conforming to the pattern described in step 3.

Testing the Installation

After you install and configure the Microsoft Internet Information Server Plug-In, follow these
steps for deployment and testing:

4-14

1.
2.
3.

Make sure WebLogic Server and IIS are running.
Save a JSP file into the document root of the default Web Application.

Open a browser and set the URL to the IIS + f£ilename. jsp as shown in this example:
http://myii.server.com/filename. jsp

If filename.jsp is displayed in your browser, the plug-in is functioning.

Using Web Server Plug-Ins With WebLogic Server

http://e-docs.bea.com/wls/docs90/webapp/configureservlet.html

Connection Errors and Clustering Failover

Connection Errors and Clustering Failover

When the Microsoft Internet Information Server Plug-In attempts to connect to WebLogic
Server, the plug-in uses several configuration parameters to determine how long to wait for
connections to the WebLogic Server host, and, after a connection is established, how long the
plug-in waits for a response. If the plug-in cannot connect or does not receive a response, the
plug-in attempts to connect and sends the request to other WebLogic Servers in the cluster. If the
connection fails or there is no response from any WebLogic Server instance in the cluster, an error
message is sent.

Figure 4-1 “Connection Failover” on page 4-17 demonstrates how the plug-in handles failover.

Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate problems
with the host machine, networking problems, or other server failures.

Failure of any WebLogic Server instance in the cluster to respond, could indicate that WebLogic
Server is not running or is unavailable, a hung server, a database problem, or other application
failure.

Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server, the plug-in only attempts to connect to the
server defined with the WebLogicHost parameter. If the attempt fails, an HTTP 503 error
message is returned. The plug-in continues trying to connect to WebLogic Server until
ConnectTimeoutSecs is exceeded.

The Dynamic Server List

When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the plug-in
uses that list as a starting point for load balancing among the members of the cluster. After the
first request is routed to one of these servers, a dynamic server list is returned containing an
updated list of servers in the cluster. The updated list adds any new servers in the cluster and
deletes any that are no longer part of the cluster or that have failed to respond to requests. This
list is updated automatically with the HTTP response when a change in the cluster occurs.

Using Web Server Plug-Ins With WebLogic Server 4-15

Installing and Configuring the Microsoft IIS Plug-In

4-16

Failover, Cookies, and HTTP Sessions

When a request contains a session information stored in a cookie, in the POST data, or by URL
encoding, the session ID contains a reference to the specific server in which the session was
originally established (called the primary server) and a reference to an additional server where
the original session is replicated (called the secondary server). A request containing a cookie
attempts to connect to the primary server. If that attempt fails, the request is routed to the
secondary server. If both the primary and secondary servers fail, the session is lost and the plug-in
attempts to make a fresh connection to another server in the dynamic cluster list. For more
information see Figure 4-1 “Connection Failover” on page 4-17.

Note: If the POST data is larger than 64K, the plug-in will not parse the POST data to obtain
the session ID. Therefore, if you store the session ID in the POST data, the plug-in cannot
route the request to the correct primary or secondary server, resulting in possible loss of
session data.

Using Web Server Plug-Ins With WebLogic Server

Connection Errors and Clustering Failover

Figure 4-1 Connection Failover
wfﬂ;wéﬁ:gsgmam Parse headers and return
the request is proxied by response to the client
the plug-in
l b

Plug-in receives request
from the Web server

Mark this server as
‘bad"” in the
dynamic server list

h

WeblLogic
Session ID In
request?

Connect to primary
server defined in
cockie

Total time of this request

successful within

Connect to
secondary server yes
defined in cookie
Send HTTP error
code 5xx to client SRR
3 'Y
o
Yot successiul within no
WL Sockat TimeOut,
Try nex! server in
dynamic server list or | C edsmﬁz IDrS d
WobLagicCluster anneclionRetrySeconds
Max retries
exceeded?
no
Yy ¥ ¥ Y
Send headers and POST data to Wiait for response for e Sarver A7 ves
‘WeblLogic server WLIOTimeOutSecs

Notes: The HTTP error code thrown by the plug-in depends on the situation. Plug-in will return
the HTTP error code 500 in the following conditions:

o Neither WebLogicCluster nor WebLogicPort was specified in the httpd.conf file.

Using Web Server Plug-Ins With WebLogic Server 4-17

Installing and Configuring the Microsoft IIS Plug-In

e Unable to resolve the WebLogicHost parameter specified in the httpd.conf file.
e Port number specified by WebLogicPort, in the httpd.conf file, exceeds 65535.
e Unsuccessful in parsing the request while applying the PathTrim property.

e The request header is of type Unknown Transfer-Encoding.

Failed to read the chunked request.

Encounetered an error reading POST data from client.

Failed to open a temporary(temp) file.

Failed to write POST data to the temp file.
e Encounetered an error reading POST data from the temp file.
e POST timed out.
e SSL was specified without the parameter trustedCAFile.

On the other hand, the HTTP error code 503 is returned when:

e The maximum number of retries is exceeded. This value is computed by dividing
ConnectTimeoutSecs by ConnectRetrySecs.

e Idempotent is OFF.

4-18 Using Web Server Plug-Ins With WebLogic Server

CHAPTERa

Installing and Configuring the
Netscape Enterprise Server Plug-In

The following sections describe how to install and configure the Netscape Enterprise Server
(NES) proxy plug-in:

“Overview of the Netscape Enterprise Server Plug-In” on page 5-1

“Installing and Configuring the Netscape Enterprise Server Plug-In” on page 5-3
“Setting Up Perimeter Authentication” on page 5-13

“Using SSL with the NES Plug-In” on page 5-14

“Connection Errors and Clustering Failover” on page 5-16

“Failover Behavior When Using Firewalls and Load Directors” on page 5-17
“Sample obj.conf File (Not Using a WebLogic Cluster)” on page 5-9

“Sample obj.conf File (Using a WebLogic Cluster)” on page 5-11

Overview of the Netscape Enterprise Server Plug-In

The Netscape Enterprise Server Plug-In enables requests to be proxied from Netscape Enterprise
Server (NES, also called iPlanet) to WebLogic Server. The plug-in enhances an NES installation
by allowing WebLogic Server to handle those requests that require the dynamic functionality of
WebLogic Server.

The Netscape Enterprise Server Plug-In is designed for an environment where Netscape
Enterprise Server serves static pages, and a Weblogic Server instance (operating in a different

Using Web Server Plug-Ins With WebLogic Server 5-1

Installing and Configuring the Netscape Enterprise Server Plug-In

5-2

process, possibly on a different machine) is delegated to serve dynamic pages, such as JSPs or
pages generated by HTTP Servlets. The connection between WebLogic Server and the Netscape
Enterprise Server Plug-In is made using clear text or Secure Sockets Layer (SSL). To the end
user—the browser—the HTTP requests delegated to WebLogic Server appear to come from the
same source as the static pages. Additionally, the HTTP-tunneling facility of WebLogic Server
can operate through the Netscape Enterprise Server Plug-In, providing access to all WebLogic
Server services (not just dynamic pages).

The Netscape Enterprise Server Plug-In operates as an NES module (see
http://home.netscape.com/servers/index.html) within a Netscape Enterprise Server.
The NES module is loaded by NES at startup, and then certain HTTP requests are delegated to it.
NES is similar to an HTTP (Java) servlet, except that an NES module is written in code native to
the platform.

For more information on supported versions of Netscape Enterprise Server and iPlanet servers,
see the BEA WebLogic Server Certifications Page.

Connection Pooling and Keep-Alive

The WebLogic Server Netscape Enterprise Server Plug-In provides efficient performance by
using a re-usable pool of connections from the plug-in to WebLogic Server. The NES plug-in
automatically implements “keep-alive” connections between the plug-in and WebLogic Server.
If a connection is inactive for more than 30 seconds or a user-defined amount of time, the
connection is closed. You can disable this feature if desired. For more information, see
“KeepAliveEnabled” on page 7-11.

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you specify. You
can proxy requests based on the URL of the request (or a portion of the URL). This is called
proxying by path. You can also proxy request based on the MIMFE type of the requested file. Or
you can use a combination of both methods. If a request matches both criteria, the request is
proxied by path. You can also specify additional parameters for each of these types of requests
that define additional behavior of the plug-in. For more information, see “Installing and
Configuring the Netscape Enterprise Server Plug-In” on page 5-3.

Using Web Server Plug-Ins With WebLogic Server

http://home.netscape.com/servers/index.html
http://e-docs.bea.com/platform/suppconfigs

Installing and Configuring the Netscape Enterprise Server Plug-In

Installing and Configuring the Netscape Enterprise Server
Plug-In

To install and configure the Netscape Enterprise Server Plug-In:

1.

Copy the library.

The WebLogic NES plug-in module is distributed as a shared object (. so) on UNIX
platforms and as a dynamic-link library (.d11) on Windows. These files are located in the
WL_HOME/server/plugin/OperatingSystem/Architecture directory of your
WebLogic Server distribution. wZ_HOME represents the top level installation directory for
your WebLogic platform. The server directory contains installation files for WebLogic
Server. OperatingSystem refers to the operating system, such as UNIX or Windows.

Choose the appropriate library file for your environment from the Certifications table at
http://e-docs.bea.com/wls/certifications/certifications/index.html and
copy that file into the file system where NES is located.

Read“Guidelines for Modifying the obj.conf File” on page 5-8, then modify the NES
obj .conf file as described in the following steps. The obj.conf file defines which
requests are proxied to WebLogic Server and other configuration information.

Locate and open obj . conf.
The obj . conf file for your NES instance is in the following location:
NETSCAPE_HOME/https-INSTANCE_NAME/config/obj.conf

Where NETSCAPE_HOME is the root directory of the NES installation, and TNSTANCE _NAME
is the particular “instance” or server configuration that you are using. For example, on a
UNIX machine called myunixmachine, the obj . conf file would be found here:

/usr/local/netscape/enterprise-351/
https-myunixmachine/config/obj.conf

Instruct NES to load the native library (the .so or .d11 file) as an NES module.
To use iPlanet 4.x or earlier, add the following lines to the beginning of the obj . conf file.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/SHARED _LIBRARY

Init fn="wl_init"

Where SHARED_LIBRARY is the shared object or d11 (for example 1ibproxy.so) that you
installed in step 1. under “Installing and Configuring the Netscape Enterprise Server
Plug-In” on page 5-3. The function “load-modules” tags the shared library for loading

Using Web Server Plug-Ins With WebLogic Server 5-3

http://e-docs.bea.com/platform/suppconfigs

Installing and Configuring the Netscape Enterprise Server Plug-In

5-4

when NES starts up. The values “wl_proxy” and “wl_init” identify the functions that the
Netscape Enterprise Server Plug-In executes.

To use iPlanet 6.0, add the following lines to the beginning of the magnus . conf file. These
lines instruct NES to load the native library (the .so or .d11 file) as an NES module:

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/SHARED LIBRARY

Init fn="wl_init"

Where SHARED_ LIBRARY is the shared object or d11 (for example 1ibproxy.so) that you
installed in step 1. under “Installing and Configuring the Netscape Enterprise Server
Plug-In” on page 5-3. The function “load-modules” tags the shared library for loading
when NES starts up. The values “wl_proxy” and “wl_init” identify the functions that the
Netscape Enterprise Server Plug-In executes.

If you want to proxy requests by URL, (also called proxying by path.) create a separate
<Object> tag for each URL that you want to proxy and define the PathTrim parameter.
(You can proxy requests by MIME type, in addition to or instead of proxying requests by
path. See step 6. Proxying by path supersedes proxying by MIME type.) The following is
an example of an <Object> tag that proxies a request containing the string * /weblogic/*.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"
</Object>

To create an <Object> tag to proxy requests by URL:
a. Specify a name for this object (optional) inside the opening <Object> tag using the name

attribute. The name attribute is informational only and is not used by the Netscape
Enterprise Server Plug-In. For example:

<Object name=myObject ...>

b. Specify the URL to be proxied within the <Object> tag, using the ppath attribute. For
example:

<Object name=myObject ppath="*/weblogic/*>

The value of the ppath attribute can be any string that identifies requests intended for
Weblogic Server. When you use a ppath, every request that contains that path is
redirected. For example, a ppath of “* /weblogic/*” redirects every request that
begins “http://enterprise.com/weblogic” to the Netscape Enterprise Server
Plug-In, which sends the request to the specified Weblogic host or cluster.

Using Web Server Plug-Ins With WebLogic Server

C.

Note:

Installing and Configuring the Netscape Enterprise Server Plug-In

Add the service directive within the <Object> and </0Object> tags. In the Service
directive you can specify any valid parameters as name=value pairs. Separate multiple
name=value pairs with one and only one space. For example:

Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"

For a complete list of parameters, see “General Parameters for Web Server Plug-Ins”
on page 7-1. You must specify the following parameters:

For a non-clustered WebLogic Server:
The webLogicHost and WebLogicPort parameters.

For a cluster of WebLogic Server instances:
The webLogicCluster parameter.

Always begin the service directive with Service fn=wl_proxy, followed by valid
name=value pairs of parameters.

Here is an example of the object definitions for two separate ppaths that identify
requests to be sent to different instances of WebLogic Server:

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"
</Object>

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy WebLogicHost=otherserver.com\
WebLogicPort=7008

</Object>

Parameters that are not required, such as PathTrim, can be used to further configure the
way the ppath is passed through the Netscape Enterprise Server Plug-In. For a complete
list of plug-in parameters, see “General Parameters for Web Server Plug-Ins” on

page 7-1.

6. If you are proxying requests by MIME type, add any new MIME types referenced in the
obj . conf file to the MIME. types file. You can add MIME types by using the Netscape
server console or by editing the MIME . types file directly.

To directly edit the MIME. types file, open the file for edit and type the following line:

type=text/jsp exts=jsp

Note: For NES 4.0 (iPlanet), instead of adding the MIME type for JSPs, change the existing

MIME type from

magnus-internal/jsp

Using Web Server Plug-Ins With WebLogic Server 5-5

Installing and Configuring the Netscape Enterprise Server Plug-In

5-6

to
text/jsp.

To use the Netscape console, select Manage Preferences—Mime Types, and make the
additions or edits.

All requests with a designated MIME type extension (for example, . jsp) can be proxied to
the WebLogic Server, regardless of the URL. To proxy all requests of a certain file type to
WebLogic Server:

a. Add a service directive to the existing default Object definition. (<Object
name=default ...>)

For example, to proxy all JSPs to a WebLogic Server, the following Service directive
should be added affer the last line that begins with:

NameTrans fn=....
and before the line that begins with:
PathCheck.

Service method=" (GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicHost=192.1.1.4 WebLogicPort=7001 PathPrepend=/jspfiles

This service directive proxies all files with the . jsp extension to the designated
WebLogic Server, where they are served with a URL like this:

http://WebLogic:7001/jspfiles/myfile.jsp

The value of the PathPrepend parameter should correspond to the context root of a
Web Application that is deployed on the WebLogic Server or cluster to which requests
are proxied.

After adding entries for the Netscape Enterprise Server Plug-In, the default object
definition will be similar to the following example, with the additions shown in bold:

® <Object name=default>

NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"

NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"

Service method=" (GET|HEAD|POST|PUT)" type=text/jsp\
fn=wl_proxy WebLogicHost=localhost WebLogicPort=7001\
PathPrepend=/jspfiles

Using Web Server Plug-Ins With WebLogic Server

Installing and Configuring the Netscape Enterprise Server Plug-In

PathCheck fn=nt-uri-clean

PathCheck fn="check-acl" acl="default"

PathCheck fn=find-pathinfo

PathCheck fn=find-index index-names="index.html,home.html"

If a required parameter is missing from the configuration, when the object is invoked it
issues an HTML error that notes the missing parameter from the configuration.

ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method= (GET |HEAD) type=magnus-internal/imagemap\ fn=imagemap
Service method= (GET|HEAD) \
type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) \
type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

b. Addasimilar service statement to the default object definition for all other MIME types
that you want to proxy to WebLogic Server.

c. To configure proxy-by-MIME for the JSP, you must add the following entry to the
mime.types file

type=text/jsp exts=jsp

For proxy-by-MIME to work properly you need to disable JAVA from the Sun One Web
Server otherwise SUN One will try to serve all requests that end in *.jsp and will return a
404 error as it will fail to locate the resource under $doc_root.

To disable JAVA from the Sun One Web Server, comment out the following in the obj.conf

file under the name="default"#NameTrans fn="ntrans-j2ee" name="j2ee" and
restart the webserver.

8. Optionally, if you are proxying by path, enable HTTP-tunneling:

a. Ifyou are using weblogic.jar and tunneling the t3 protocol, add the following object
definition to the obj . conf file, substituting the WebLogic Server host name and the
WebLogic Server port number, or the name of a WebLogic Cluster that you wish to handle
HTTP tunneling requests.
<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicHost=192.192.1.4\ WebLogicPort=7001
</Object>

b. Ifyou are tunneling IIOP, which is the only protocol used by the WebLogic Server thin
client, wlclient.jar, add the following object definition to the obj . conf file,
substituting the WebLogic Server host name and the WebLogic Server port number, or the
name of a WebLogic Cluster that you wish to handle HTTP tunneling requests.

Using Web Server Plug-Ins With WebLogic Server 5-7

Installing and Configuring the Netscape Enterprise Server Plug-In

<Object name="tunnel" ppath="*/iiop*">
Service fn=wl_proxy WebLogicHost=192.192.1.4\ WebLogicPort=7001
</Object>

9. Deploy and test the Netscape Enterprise Server Plug-In
a. Start WebLogic Server.

b. Start Netscape Enterprise Server. If NES is already running, you must either restart it or
apply the new settings from the console in order for the new settings to take effect.

c. To test the Netscape Enterprise Server Plug-In, open a browser and set the URL to the
Netscape Enterprise Server + /weblogic/, which should bring up the default WebLogic
Server HTML page, welcome file, or default servlet, as defined for the default Web
Application as shown in this example:

http://myenterprise.server.com/weblogic/

For information on how to create a default Web Application, see Developing Web
Applications, Servlets and JSPs for WebLogic Server.

Guidelines for Modifying the obj.conf File

To use the Netscape Enterprise Server Plug-In, you must make several modifications to the NES
obj . conf file. These modifications specify how requests are proxied to WebLogic Server. You
can proxy requests by URL or by MIME type. The procedure for each is described in “Installing
and Configuring the Netscape Enterprise Server Plug-In” on page 5-3.

The Netscape obj . conf file is very strict about the placement of text. To avoid problems, note
the following regarding the obj . conf file:

e Eliminate extraneous leading and trailing white space. Extra white space can cause your
Netscape server to fail.

e If you must enter more characters than you can fit on one line, place a backslash (\) at the
end of that line and continue typing on the following line. The backslash directly appends
the end of the first line to the beginning of the following line. If a space is necessary
between the words that end the first line and begin the second line, be certain to use one
space, either at the end of the first line (before the backslash), or at the beginning of the
second line.

e Do not split attributes across multiple lines. (For example, all servers in a cluster must be
listed in the same line, following WebLogicCluster.)

5-8 Using Web Server Plug-Ins With WebLogic Server

http://e-docs.bea.com/wls/docs90/webapp/overview.html
http://e-docs.bea.com/wls/docs90/webapp/overview.html

Installing and Configuring the Netscape Enterprise Server Plug-In

Sample obj.conf File (Not Using a WebLogic Cluster)

Below is an example of lines that should be added to the obj . conf file if you are not using a
cluster. You can use this example as a template that you can modify to suit your environment and
server. Lines beginning with # are comments.

Note: Make sure that you do not include any extraneous white space in the obj . conf file.
Copying and pasting from the samples below sometimes adds extra white space, which
can create problems when reading the file.

You can read the full documentation on Enterprise Server configuration files in the Netscape
Enterprise Server Plug-In documentation.

—mm o BEGIN SAMPLE OBJ.CONF CONFIGURATION ~---------

(no cluster)

The following line locates the NES library for loading at
startup, and identifies which functions within the library are
NES functions. Verify the path to the library (the value

of the shlib=<...> parameter) and that the file is

H*+ F= H HF I

readable, or the server fails to start.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/libproxy.so

Init fn="wl_init"

Configure which types of HTTP requests should be handled by the
NES module (and, in turn, by WebLogic). This is done

with one or more "<Object>" tags as shown below.

Here we configure the NES module to pass requests for
"/weblogic" to a WebLogic Server listening at port 7001 on

the host myweblogic.server.com.

<Object name="weblogic" ppath="*/weblogic/*">

Service fn=wl_proxy WebLogicHost=myweblogic.server.com\
WebLogicPort=7001 PathTrim="/weblogic"

</Object>

Here we configure the plug-in so that requests that
match "/servletimages/" is handled by the
plug-in/WebLogic.

Using Web Server Plug-Ins With WebLogic Server 5-9

Installing and Configuring the Netscape Enterprise Server Plug-In

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy WebLogicHost=192.192.1.4 WebLogicPort=7001
</Object>

This Object directive works by file extension rather than
request path. To use this configuration, you must also add

a line to the mime.types file:
type=text/jsp exts=jsp

#
#
#
#
#
#
This configuration means that any file with the extension
".Jjsp" are proxied to WebLogic. Then you must add the

Service line for this extension to the Object "default",
#

which should already exist in your obj.conf file:

<Object name=default>

NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"

NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"
Service method=" (GET |HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicHost=localhost WebLogicPort=7001 PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean

PathCheck fn="check-acl" acl="default"

PathCheck fn=find-pathinfo

PathCheck fn=find-index index-names="index.html,home.html"

ObjectType fn=type-by-extension

ObjectType fn=force-type type=text/plain

Service method:(GET|HEAD) type=magnus-internal/imagemap\ fn=imagemap

Service method=(GET|HEAD) \

type=magnus-internal/directory fn=index-common

Service method:(GET|HEAD) type=*~magnus-internal/* fn=send-file

AddLog fn=flex-log name="access"

</Object>

The following directive enables HTTP-tunneling of the
WebLogic protocol through the NES plug-in.

5-10 Using Web Server Plug-Ins With WebLogic Server

Installing and Configuring the Netscape Enterprise Server Plug-In

<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicHost=192.192.1.4 WebLogicPort=7001
</Object>

Sample obj.conf File (Using a WebLogic Cluster)

Below is an example of lines that should be added to obj . conf if you are using a WebLogic
Server cluster. You can use this example as a template that you can modify to suit your
environment and server. Lines beginning with # are comments.

Note: Make sure that you do not include any extraneous white space in the obj . conf file.
Copying and pasting from the samples below sometimes adds extra white space, which
can create problems when reading the file.

For more information, see the full documentation on Enterprise Server configuration files from
Netscape.

- BEGIN SAMPLE OBJ.CONF CONFIGURATION ---------

(using a WebLogic Cluster)

#

The following line locates the NES library for loading at

startup, and identifies which functions within the library are
NES functions. Verify the path to the library (the value

of the shlib=<...> parameter) and that the file is

readable, or the server fails to start.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/libproxy.so

Init fn="wl_init"

Configure which types of HTTP requests should be handled by the
NES module (and, in turn, by WebLogic). This is done

with one or more "<Object>" tags as shown below.

Here we configure the NES module to pass requests for

"/weblogic" to a cluster of WebLogic Servers.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy \

WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001, \

Using Web Server Plug-Ins With WebLogic Server 5-11

Installing and Configuring the Netscape Enterprise Server Plug-In

theirweblogic.com:7001" PathTrim="/weblogic"
</Object>

Here we configure the plug-in so that requests that
match "/servletimages/" are handled by the
plug-in/WebLogic.

<Object name="si" ppath="*/servletimages/*">

Service fn=wl_proxy \

WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001, \
theirweblogic.com:7001"

</Object>

This Object directive works by file extension rather than
request path. To use this configuration, you must also add
a line to the mime.types file:

#

type=text/jsp exts=jsp

#

This configuration means that any file with the extension
".Jjsp" is proxied to WebLogic. Then you must add the

Service line for this extension to the Object "default",
which should already exist in your obj.conf file:

<Object name=default>

NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"

NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"

NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"
Service method=" (GET |HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001, \
theirweblogic.com:7001", PathPrepend=/jspfiles

PathCheck fn=nt-uri-clean

PathCheck fn="check-acl" acl="default"

PathCheck fn=find-pathinfo

PathCheck fn=find-index index-names="index.html,home.html"

ObjectType fn=type-by-extension

5-12 Using Web Server Plug-Ins With WebLogic Server

Setting Up Perimeter Authentication

ObjectType fn=force-type type=text/plain

Service method=(GET|HEAD) type=magnus-internal/imagemap\ fn=imagemap
Service method= (GET|HEAD) \

type=magnus-internal/directory fn=index-common
Service method:(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

The following directive enables HTTP-tunneling of the
WebLogic protocol through the NES plug-in.

<Object name="tunnel" ppath="*/HTTPClnt*">

Service fn=wl_proxy WebLogicCluster="myweblogic.com:7001,\
yourweblogic.com:7001, theirweblogic.com:7001"

</Object>

Setting Up Perimeter Authentication

Use perimeter authentication to secure your WebLogic Server applications that are accessed via
the Netscape Enterprise Server Plug-In.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems that access
your WebLogic Server application, including users who access your WebLogic Server
application through the Netscape Enterprise Server Plug-In. Create an Identity Assertion
Provider that will safely secure your Plug-In as follows:

1. Create a custom Identity Assertion Provider on your WebLogic Server application. See How
to Develop a Custom Identity Assertion Provider in Developing Security Providers for
WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the "Cert" token type and make
it the active token type. See How to Create New Token Types in Developing Security
Providers for WebLogic Server.

3. Set the clientCertProxy attribute to True in the web.xm1 deployment descriptor file for
the Web application (or, if using a cluster, optionally set the Client Cert Proxy
Enabled attribute to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab). See context-param in Developing Web
Applications, Servlets and JSPs for WebLogic Server.

Using Web Server Plug-Ins With WebLogic Server 5-13

http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1089150
http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1089150
http://e-docs.bea.com/wls/docs90/dvspisec/ia.html#1155765
http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html

Installing and Configuring the Netscape Enterprise Server Plug-In

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure that
WebLogic Server accepts connections only from the machine on which the Netscape
Enterprise Server Plug-In is running. See Using Network Connection Filters in
Programming WebLogic Security.

5. Web server plug-ins require a trusted Certificate Authority file in order to use SSL between
the plug-in and WebLogic Server. Use Sun Microsystems' keytool utility to export a trusted
Certificate Authority file from the DemoTrust.jks keystore file that resides in
BEA HOME/weblogic90/server/lib.

a. To extract the wlsdemoca file, for example, use the command:
keytool -export -file trustedcafile.der -keystore DemoTrust.jks -alias
wlsdemoca

Change the alias name to obtain a different trusted CA file from the keystore.

To look at all of the keystore's trusted CA files, use:
keytool -list -keystore DemoTrust.jks

Press enter if prompted for password.

b. To convert the Certificate Authority file to pem format: java utils.der2pem
trustedcafile.der

6.

See Identity Assertion Providers in Developing Security Providers for WebLogic Server for more
information about Identity Assertion Providers.

Using SSL with the NES Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection between the
Netscape Enterprise Server Plug-In, and WebLogic Server. The SSL protocol provides
confidentiality and integrity to the data passed between the Netscape Enterprise Server Plug-In
and WebLogic Server.

The Netscape Enterprise Server Plug-In does not use the transport protocol (http or https)
specified in the HTTP request (usually by the browser) to determine whether or not the SSL
protocol will be used to protect the connection between the Netscape Enterprise Server Plug-In
and WebLogic Server.

To use the SSL protocol between Netscape Enterprise Server Plug-In and WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring the SSL
Protocol at http://e-docs.bea.com/wls/docs90/secmanage/ssl.html.

5-14 Using Web Server Plug-Ins With WebLogic Server

http://e-docs.bea.com/wls/docs90/security/con_filtr.html
http://e-docs.bea.com/wls/docs90/dvspisec/ia.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html

Using SSL with the NES Plug-In

. Configure the WebLogic Server SSL listen port. For more information, see Configuring the
SSL Protocol at http://e-docs.bea.com/wls/docs90/secmanage/ssl.html.

Set the webLogicPort parameter in the Service directive in the obj . conf file to the
listen port configured in step 2.

Set the SecureProxy parameter in the Service directive in the obj . conf file file to on.

Set additional parameters in the Service directive in the obj . conf file that define
information about the SSL connection. For a complete list of parameters, see “SSL
Parameters for Web Server Plug-Ins” on page 7-14.

Using Web Server Plug-Ins With WebLogic Server 5-15

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html

Installing and Configuring the Netscape Enterprise Server Plug-In

Connection Errors and Clustering Failover

5-16

When the Netscape Enterprise Server Plug-In attempts to connect to WebLogic Server, the
plug-in uses several configuration parameters to determine how long to wait for connections to
the WebLogic Server host, and, after a connection is established, how long the plug-in waits for
a response. If the plug-in cannot connect or does not receive a response, the plug-in attempts to
connect and send the request to other WebLogic Servers in the cluster. If the connection fails or
there is no response from any WebLogic Server in the cluster, an error message is sent.

Figure 5-1 “Connection Failover” on page 5-17 demonstrates how the plug-in handles failover.

Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate possible
problems with the host machine, networking problems, or other server failures.

Failure of all WebLogic Server instances to respond, could indicate that WebLogic Server is not
running or is unavailable, a hung server, a database problem, or other application failure.

Failover with a Single, Non-Clustered WebLogic Server

If you are running a single WebLogic Server instance, the plug-in attempts to connect to that
server which is defined with the webLogicHost parameter. If the attempt fails, an HTTP 503
error message is returned. The plug-in continues trying to connect to WebLogic Server until
ConnectTimeoutSecs is exceeded.

The Dynamic Server List

When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the plug-in
uses that list as a starting point for load balancing among the members of the cluster. After the
first request is routed to one of these servers, a dynamic server list is returned containing an
updated list of servers in the cluster. The updated list adds any new servers in the cluster and
deletes any that are no longer part of the cluster or that have failed to respond to requests. This
list is updated automatically with the HTTP response when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions

When a request contains session information stored in a cookie, in the POST data, or by URL
encoding, the session ID contains a reference to the specific server in which the session was
originally established (called the primary server) and a reference to an additional server where

Using Web Server Plug-Ins With WebLogic Server

Connection Errors and Clustering Failover

the original session is replicated (called the secondary server). A request containing a cookie
attempts to connect to the primary server. If that attempt fails, the request is routed to the
secondary server. If both the primary and secondary servers fail, the session is lost and the plug-in
attempts to make a fresh connection to another server in the dynamic cluster list. For more
information, see Figure 5-1 “Connection Failover” on page 5-17.

Note: If the POST data is larger than 64K, the plug-in will not parse the POST data to obtain
the session ID. Therefore, if you store the session ID in the POST data, the plug-in cannot
route the request to the correct primary or secondary server, resulting in possible loss of
session data.

Failover Behavior When Using Firewalls and Load Directors

In most configurations, the Netscape Enterprise Server Plug-In sends a request to the primary
instance of a cluster. When that instance is unavailable, the request fails over to the secondary
instance. However, in some configurations that use combinations of firewalls and load-directors,
any one of the servers (firewall or load-directors) can accept the request and return a successful
connection while the primary instance of WebLogic Server is unavailable. After attempting to
direct the request to the primary instance of WebLogic Server (which is unavailable), the request
is returned to the plug-in as “connection reset.”

Requests running through combinations of firewalls (with or without load-directors) are handled
by WebLogic Server. In other words, responses of connection reset fail over to a secondary
instance of WebLogic Server. Because responses of connection reset fail over in these
configurations, servlets must be idempotent. Otherwise duplicate processing of transactions may
result.

Figure 5-1 Connection Failover

Using Web Server Plug-Ins With WebLogic Server 5-11

Installing and Configuring the Netscape Enterprise Server Plug-In

Client sends HTTP
request 1o Web server and Parse headers and !etum
the request is proxied by response to the client
the plug-in
l 1

Plug-in receives request
from the Web server

Mark this server as
‘bad"” in the
dynamic server list

h

WeblLogic
Session ID In
request?

v
Connect to primary
server defined in
cockie

Total time of this request
exceeded
onnection TimeOuiSecs

successful within

Connect to
secondary server yes
defined in cookie
Send HTTP error na
code 5xx to client A
'Y
successiul within
WL Sockat TimeOut,
Try nex! server in
dynamic server list or | C msmnzws d
NebLogicClustor anneclionRetrySeconds
Max retries
exceeded?
no
Yy ¥ ¥ Y
Send headers and POST data to Wiait for response for »5 A7 ves
‘WeblLogic server WLIOTimeOuiSecs

Notes: The HTTP error code thrown by the plug-in depends on the situation. Plug-in will return
the HTTP error code 500 in the following conditions:

o Neither WebLogicCluster nor WebLogicPort was specified in the httpd.conf file.
e Unable to resolve the WebLogicHost parameter specified in the httpd.conf file.

5-18 Using Web Server Plug-Ins With WebLogic Server

Connection Errors and Clustering Failover

Port number specified by WebLogicPort, in the httpd.conf file, exceeds 65535.

Unsuccessful in parsing the request while applying the PathTrim property.

The request header is of type Unknown Transfer-Encoding.

Failed to read the chunked request.

Encounetered an error reading POST data from client.

Failed to open a temporary(temp) file.

Failed to write POST data to the temp file.

Encounetered an error reading POST data from the temp file.

POST timed out.

SSL was specified without the parameter trusted CAFile.
On the other hand, the HTTP error code 503 is returned when

e The maximum number of retries is exceeded. This value is computed by dividing
ConnectTimeoutSecs by ConnectRetrySecs.

e Idempotent is OFF.

Using Web Server Plug-Ins With WebLogic Server 5-19

Installing and Configuring the Netscape Enterprise Server Plug-In

5-20 Using Web Server Plug-Ins With WebLogic Server

CHAPTERa

Proxying Requests to Another Web
Server

The following sections discuss how to proxy HTTP requests to another Web server:
e “Overview of Proxying Requests to Another Web Server” on page 6-1
e “Setting Up a Proxy to a Secondary Web Server” on page 6-1

e “Sample Deployment Descriptor for the Proxy Servlet” on page 6-2

Overview of Proxying Requests to Another Web Server

When you use WebLogic Server as your primary Web server, you may also want to configure
WebLogic Server to pass on, or proxy, certain requests to a secondary Web server, such as
Netscape Enterprise Server, Apache, or Microsoft Internet Information Server. Any request that
gets proxied is redirected to a specific URL.You can even proxy to another Web server on a
different machine.You proxy requests based on the URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP request, redirects
it to the proxy URL, and sends the response to the client's browser back through WebLogic
Server. To use the Ht tpProxyServlet, you must configure it in a Web Application and deploy
that Web Application on the WebLogic Server that is redirecting requests.

Setting Up a Proxy to a Secondary Web Server

To set up a proxy to a secondary HTTP server:

1. Register the proxy servlet in your Web Application deployment descriptor (see “Sample
web.xml for Use with ProxyServlet” on page 6-2). The Web Application must be the default

Using Web Server Plug-Ins With WebLogic Server 6-1

Proxying Requests to Another Web Server

Web Application of the server instance that is responding to requests. The class name for the
]HoxySeﬂddisweblogic.servlet.proxy.HttpProxyServlet.Fornuneinﬂﬂnmﬁon
see Developing Web Applications, Servlets, and JSPs for WebLogic Server.

2. Define an initialization parameter for the ProxyServlet with a <param-name> of
redirectURL and a <param-value> containing the URL of the server to which proxied
requests should be directed.

3. Map the proxyServlet to a <url-pattern>. Specifically, map the file extensions you
wish to proxy, for example * . jsp, or *.html. Use the <servlet-mapping> element in the
web.xml Web Application deployment descriptor.

If you set the <url-pattern> to “/”, then any request that cannot be resolved by
WebLogic Server is proxied to the remote server. However, you must also specifically map
the following extensions: *.jsp, *.html, and *.html if you want to proxy files ending
with those extensions.

4. Deploy the Web Application on the WebLogic Server instance that redirects incoming
requests.

Sample Deployment Descriptor for the Proxy Servlet

The following is an sample of a Web Applications deployment descriptor for using the Proxy
Servlet.

Listing 6-1 Sample web.xml for Use with ProxyServiet

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.
//DTD Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>

<servlet>
<servlet-name>ProxyServlet</servlet-name>

<servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet-class>

<init-param>
<param-name>redirectURL</param-name>
<param-value>

server:port

6-2 Using Web Server Plug-Ins With WebLogic Server

http://e-docs.bea.com/wls/docs90/webapp/index.html

Sample Deployment Descriptor for the Proxy Servlet

</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

Using Web Server Plug-Ins With WebLogic Server

6-3

Proxying Requests to Another Web Server

6-4 Using Web Server Plug-Ins With WebLogic Server

CHAPTERa

Parameters for Web Server Plug-Ins

The following sections describe the parameters that you use to configure the Apache, Netscape,
and Microsoft IIS Web server plug-ins:

e Entering Parameters in Web Server Plug-In Configuration Files
e General Parameters for Web Server Plug-Ins

e SSL Parameters for Web Server Plug-Ins

Entering Parameters in Weh Server Plug-In Configuration Files

You enter the parameters for each Web server plug-in in special configuration files. Each Web
server has a different name for this configuration file and different rules for formatting the file.
For details, see the following sections on each plug-in:

e “Installing and Configuring the Apache HTTP Server Plug-In” on page 3-1
e “Installing and Configuring the Microsoft IIS Plug-In” on page 4-1

e “Installing and Configuring the Netscape Enterprise Server Plug-In” on page 5-1

General Parameters for Web Server Plug-Ins

Note: Parameters are case sensitive.

Using Web Server Plug-Ins With WebLogic Server 1-1

Parameters for Web Server Plug-Ins

Table 7-1
Parameter Default Description
WebLogicHost none WebLogic Server host (or virtual host name as defined in
(Required when proxying to a WebLogic Server) to which HTTP requests should be
single WebLogic Server.) forwarded.
If you are using a WebLogic cluster, use the
WebLogicCluster parameter instead of WebLogicHost.
WebLogicPort none Port at which the WebLogic Server host is listening for

(Required when proxying to a
single WebLogic Server.)

connection requests from the plug-in (or from other servers). (If
you are using SSL between the plug-in and WebLogic Server,
set this parameter to the SSL listen port (see Configuring the SSL
Protocol at
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html) and set
the SecureProxy parameter to ON).

If you are using a WebLogic Cluster, use the
WebLogicCluster parameter instead of WebLogicPort.

1-2 Using Web Server Plug-Ins With WebLogic Server

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html

General Parameters for Web Server Plug-Ins

Table 7-1
Parameter Default Description
WebLogicCluster none List of WebLogic Servers that can be used for load balancing.

(Required when proxying to a
cluster of WebLogic Servers.)

The server or cluster list is a list of host:port entries. If a mixed
set of clusters and single servers is specified, the dynamic list
returned for this parameter will return only the clustered servers.

The method of specifying the parameter, and the required format
vary by plug-in. See the examples in:

» "Installing and Configuring the Netscape Enterprise Server
Plug-In (NSAPI)"

» "Installing and Configuring the Microsoft Internet
Information Server (ISAPI) Plug-In"

« "Installing and Configuring the Apache HTTP Server
Plug-In"

If you are using SSL between the plug-in and WebLogic Server,
set the port number to the SSL listen port (see Configuring the
SSL Protocol at
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html) and set
the SecureProxy parameter to ON.

The plug-in does a simple round-robin between all available
servers. The server list specified in this property is a starting
point for the dynamic server list that the server and plug-in
maintain. WebLogic Server and the plug-in work together to
update the server list automatically with new, failed, and
recovered cluster members.

You can disable the use of the dynamic cluster list by setting the
DynamicServerList parameter to OFF

The plug-in directs HTTP requests containing a cookie,
URL-encoded session, or a session stored in the POST data to
the server in the cluster that originally created the cookie.

Using Web Server Plug-Ins With WebLogic Server 1-3

http://e-docs.bea.com/wls/docs90/plugins/nsapi.html
http://e-docs.bea.com/wls/docs90/plugins/isapi.html
http://e-docs.bea.com/wls/docs90/plugins/apache.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html

Parameters for Web Server Plug-Ins

Tahle 7-1

Parameter Default

Description

PathTrim null

String trimmed by the plug-in from the beginning of the original
URL, before the request is forwarded to WebLogic Server. For
example, if the URL

http://myWeb.server.com/weblogic/foo

is passed to the plug-in for parsing and if PathTrim has been
set to strip off /weblogic before handing the URL to
WebLogic Server, the URL forwarded to WebLogic Server is:

http://myWeb.server.com:7001/foo

Note that if you are newly converting an existing third-party
server to proxy requests to WebLogic Server using the plug-in,
you will need to change application paths to /foo to include
weblogic/foo.Youcanuse PathTrimand PathPrepend
in combination to change this path.

PathPrepend null

String that the plug-in prepends to the beginning of the original
URL, after PathTrim is trimmed and before the request is
forwarded to WebLogic Server.

ConnectTimeoutSecs 10

Maximum time in seconds that the plug-in should attempt to
connect to the WebLogic Server host. Make the value greater
than ConnectRetrySecs. If ConnectTimeoutSecs
expires without a successful connection, even after the
appropriate retries (see ConnectRetrySecs), an HTTP
503/Service Unavailable response is sent to the client.

You can customize the error response by using the ErrorPage
parameter.

ConnectRetrySecs 2

Interval in seconds that the plug-in should sleep between
attempts to connect to the WebLogic Server host (or all of the
servers in a cluster). Make this number less than the
ConnectTimeoutSecs. The number of times the plug-in tries
to connect before returning an HTTP 503 /Service
Unavailable response to the client is calculated by dividing
ConnectTimeoutSecs by ConnectRetrySecs.

To specify no retries, set ConnectRetrySecs equal to
ConnectTimeoutSecs. However, the plug-in attempts to
connect at least twice.

You can customize the error response by using the ErrorPage
parameter.

1-4 Using Web Server Plug-Ins With WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1
Parameter Default Description
Debug OFF Sets the type of logging performed for debugging operations.

The debugging information is written to the

/tmp/wlproxy . log file on UNIX systems and
c:\TEMP\wlproxy.log on Windows NT/2000 systems.
Override this location and filename by setting the WLLogFile
parameter to a different directory and file. Ensure that the tmp or
TEMP directory has write permission assigned to the user who
is logged in to the server. Set any of the following logging
options (HFC, HTW, HFW, and HTC options may be set in
combination by entering them separated by commas, for
example “HFC, HTW”):

ON
The plug-in logs informational and error
messages.
OFF
No debugging information is logged.
HFC
The plug-in logs headers from the client,
informational, and error messages.
HTW
The plug-in logs headers sent to WebLogic Server,
and informational and error messages.
HFW
The plug-in logs headers sent from WebLogic
Server, and informational and error messages.
HTC
The plug-in logs headers sent to the client,
informational messages, and error messages.
ERR
Prints only the Error messages in the plug-in.
ALL

The plug-in logs headers sent to and from the
client, headers sent to and from WebLogic Server,
information messages, and error messages.

Using Web Server Plug-Ins With WebLogic Server 1-5

Parameters

Tahle 7-1

for Web Server Plug-Ins

Parameter

Default

Description

WLLogFile See the

Debug
parameter

Specifies path and file name for the log file that is generated
when the Debug parameter is set to ON. You must create this
directory before setting this parameter.

WLDNSRefreshInterval 0 (Lookup

once,
during
startup)

Only applies to NSAPI and Apache.

If defined in the proxy configuration, specifies number of
seconds interval at which WebLogic Server refreshes DNS
name to IP mapping for a server. This can be used in the event
that a WebLogic Server instance is migrated to a different IP
address, but the DNS name for that server's IP remains the same.
In this case, at the specified refresh interval the DNS<->IP
mapping will be updated.

WLTempDir See the

Debug
parameter

Specifies the directory where a wlproxy . log will be created.
If the location fails, the Plug-In resorts to creating the log file
under C: / temp in Windows and /tmp in all Unix platforms.

Also specifies the location of the _w1_proxy directory for post
data files.

When both WLTempDir and WLLogFile are set, WLLogFile
will override as to the location of wlproxy.log. WLTempDir
will still determine the location of _wl_proxy directory.

DebugConfigInfo OFF

Enables the special query parameter
“__WebLogicBridgeConfig”. Use it to get details about
configuration parameters from the plug-in.

For example, if you enable “__wWebLogicBridgeConfig”
by setting DebugConfigInfo and then send a request that
includes the query string ?__ WebLogicBridgeConfig,then
the plug-in gathers the configuration information and run-time
statistics and returns the information to the browser. The plug-in
does not connect to WebLogic Server in this case.

This parameter is strictly for debugging and the format of the
output message can change with releases. For security purposes,
keep this parameter turned OFF in production systems.

1-6

Using Web Server Plug-Ins With WebLogic Server

General Parameters for Web Server Plug-Ins

Table 7-1
Parameter Default Description
StatPath false If set to true, the plug-in checks the existence and permissions

(Not available for the Microsoft
Internet Information Server
Plug-In)

of the translated path (“Proxy-Path-Translated”) of the request
before forwarding the request to WebLogic Server.

If the file does not exist, an HTTP 404 File Not Found
response is returned to the client. If the file exists but is not
world-readable, an HTTP 403 /Forbidden response is
returned to the client. In either case, the default mechanism for
the Web server to handle these responses fulfills the body of the
response. This option is useful if both the WebLogic Server Web
Application and the Web Server have the same document root.

You can customize the error response by using the ErrorPage
parameter.

ErrorPage none

You can create your own error page that is displayed when your
Web server is unable to forward requests to WebLogic Server.

WLSocketTimeoutSecs 2 (must
be
greater
than 0)

Set the timeout for the socket while connecting, in seconds.

WLIOTimeoutSecs (new 300
name for
HungServerRecoverSecs)

Defines the amount of time the plug-in waits for a response to a
request from WebLogic Server. The plug-in waits for
HungServerRecoverSecs for the server to respond and then
declares that server dead, and fails over to the next server. The
value should be set to a very large value. If the value is less than
the time the servlets take to process, then you may see
unexpected results.

Minimum value: 10
Maximum value: Unlimited

Idempotent ON

When set to ON and if the servers do not respond within
WLIOTimeoutSecs (new name for
HungServerRecoverSecs), the plug-ins fail over.

If set to “OFF” the plug-ins do not fail over. If you are using the
Netscape Enterprise Server Plug-In, or Apache HTTP Server
you can set this parameter differently for different URLSs or
MIME types.

Using Web Server Plug-Ins With WebLogic Server 1-1

Parameters for Web Server Plug-Ins

Tahle 7-1

Parameter

Default

Description

CookieName

JSESSIO
NID

If you change the name of the WebLogic Server session cookie
in the WebLogic Server Web application, you need to change
the CookieName parameter in the plug-in to the same value.
The name of the WebLogic session cookie is set in the
WebLogic-specific deployment descriptor, in the
<session-descriptor> (see
http://e-docs.bea.com/wls/docs90/webapp/we
blogic xml.html#session-descriptor) element.

DefaultFileName

none

If the URI is “/” then the plug-in performs the following steps:
1. Trims the path specified with the PathTrim parameter.
2. Appends the value of DefaultFileName.

3. Prepends the value specified with PathPrepend.

This procedure prevents redirects from WebLogic Server.

Set the DefaultFileName to the default welcome page of the
Web Application in WebLogic Server to which requests are
being proxied. For example, Ifthe Defaul tFileName is set to
welcome.html, an HTTP request like
“http://somehost/weblogic” becomes
“http://somehost/weblogic/welcome.html”. For
this parameter to function, the same file must be specified as a
welcome file in all the Web Applications to which requests are
directed. For more information, see “Configuring Welcome
Pages” at
http://e-docs.bea.com/wls/docs90/webapp/conf
igureservlet.

Note for Apache users: If you are using Stronghold or Raven
versions, define this parameter inside of a Locat ion block, and
not in an I fModule block.

MaxPostSize

Maximum allowable size of POST data, in bytes. If the
content-length exceeds MaxPostSize, the plug-in returns an
error message. If set to -1, the size of POST data is not checked.
This is useful for preventing denial-of-service attacks that
attempt to overload the server with POST data.

1-8 Using Web Server Plug-Ins With WebLogic Server

http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs90/webapp/configureservlet.html
http://e-docs.bea.com/wls/docs90/webapp/configureservlet.html

General Parameters for Web Server Plug-Ins

Table 7-1
Parameter Default Description
MatchExpression none When proxying by MIME type, set the filename pattern inside

(Apache HTTP Server only)

of an IfModule block using the MatchExpression
parameter.
Example when proxying by MIME type:
<IfModule mod_weblogic.c>
MatchExpression *.jsp
WebLogicHost=myHost | paramName=value
</IfModule>

Example when proxying by path:

<IfModule mod_weblogic.c>
MatchExpression /weblogic
WebLogicHost=myHost | paramName=value
</IfModule>

It is possible to define a new parameter for MatchExpression
using the following syntax:

MatchExpression *.jsp PathPrepend=/test
PathTrim=/foo

Using Web Server Plug-Ins With WebLogic Server 1-9

Parameters for Web Server Plug-Ins

Tahle 7-1

Parameter

Default

Description

FileCaching

ON

When set to ON, and the size of the POST data in a request is
greater than 2048 bytes, the POST data is first read into a
temporary file on disk and then forwarded to the WebLogic
Server in chunks of 8192 bytes. This preserves the POST data
during failover, allowing all necessary data to be repeated to the
secondary if the primary goes down.

Note that when FileCaching is ON, any client that tracks the
progress of the POST will see that the transfer has completed
even though the data is still being transferred between the
WebServer and WebLogic. So, if you want the progress bar
displayed by a browser during the upload to reflect when the
data is actually available on the WebLogic Server, you might not
want to have FileCaching ON.

When set to OFF and the size of the POST data in a request is
greater than 2048 bytes, the reading of the POST data is
postponed until a WebLogic Server cluster member is identified
to serve the request. Then the Plugin reads and immediately
sends the POST data to the WebLogic Server in chunks of 8192
bytes.

Note that turning FileCaching OFF limits failover. If the
WebLogic Server primary server goes down while processing
the request, the POST data already sent to the primary cannot be
repeated to the secondary.

Finally, regardless of how FileCaching is set, if the size of the
POST data is 2048 bytes or less the plugin will read the data into
memory and use it if needed during failover to repeat to the
secondary.

FilterPriorityLevel

(Microsoft Internet Information
Server only)

The values for this parameter are 0 (low), 1 (medium), and 2
(high). The default value is 2. This priority should be put in
iisforward.ini file. This property is used to set the priority level
for the iisforward.dll filter in IIS. Priority level is used by IIS to
decide which filter will be invoked first, in case multiple filters
match the incoming request.

1-10 Using Web Server Plug-Ins With WebLogic Server

Tahle 7-1

General Parameters for Web Server Plug-Ins

Parameter Default

Description

WLExcludePathOrMimeTyp none
e

This parameter allows you make exclude certain requests from
proxying.

This parameter can be defined locally at the Location tag level

as well as globally. When the property is defined locally, it does
not override the global property but defines a union of the two

parameters.

WlForwardPath null

(Microsoft Internet Information
Server only)

IfwlForwardPath is set to "/" all requests are proxied. To
forward any requests starting with a particular string, set
WlForwardPath to the string. For example, setting
WlForwardPathto /weblogic forwards all requests starting
with /weblogic to Weblogic Server.

This parameter is required if you are proxying by path. You can
set multiple strings by separating the strings with commas. For
example: WlForwardPath=/weblogic, /bea.

KeepAliveSecs 20

(Does not apply to Apache
HTTP Server version 1.3.x)

The length of time after which an inactive connection between
the plug-in and WebLogic Server is closed. You must set
KeepAliveEnabled to true (ON when using the Apache
plug-in) for this parameter to be effective.

The value of this parameter must be less than or equal to the
value of the Duration field set in the Administration Console on
the Server/HTTP tab, or the value set on the server Mbean
with the KeepAliveSecs attribute.

KeepAliveEnabled true

(Does not apply to Apache (Netscape

HTTP Server version 1.3.x) an.d
Microsoft

IS
plug-ins)
ON
(Apache
plug-in)

Enables pooling of connections between the plug-in and
WebLogic Server.

Valid values for the Netscape and Microsoft IIS plug-ins are
true and false.

Valid values for the Apache plug-in are ON and OFF.

Using Web Server Plug-Ins With WebLogic Server 1-11

Parameters for Web Server Plug-Ins

Tahle 7-1

Parameter Default

Description

QueryFromRequest OFF
(Apache HTTP Server only)

When set to ON, specifies that the Apache plug-in use
(request_rec *)r->the request

to pass the query string to WebLogic Server. (For more
information, see your Apache documentation.) This behavior is
desirable in the following situations:

* When a Netscape version 4.x browser makes requests that
contain spaces in the query string

» Ifyou are using Raven Apache 1.5.2 on HP

When set to OFF, the Apache plug-in uses

(request_rec *)r->args to pass the query string to

WebLogic Server.

MaxSkipTime 10

If a WebLogic Server listed in either the WebLogicCluster
parameter or a dynamic cluster list returned from WebLogic
Server fails, the failed server is marked as “bad” and the plug-in
attempts to connect to the next server in the list.

MaxSkips sets the amount of time after which the plug-in will
retry the server marked as “bad.” The plug-in attempts to
connect to a new server in the list each time a unique request is
received (that is, a request without a cookie).

DynamicServerList ON

When set to OFF, the plug-in ignores the dynamic cluster list
used for load balancing requests proxied from the plug-in and
only uses the static list specified with the WebLogicCluster
parameter. Normally this parameter should remain set to ON.

There are some implications for setting this parameter to OFF:

» Ifone or more servers in the static list fails, the plug-in could
waste time trying to connect to a dead server, resulting in
decreased performance.

» Ifyou add a new server to the cluster, the plug-in cannot
proxy requests to the new server unless you redefine this
parameter. WebLogic Server automatically adds new
servers to the dynamic server list when they become part of
the cluster.

1-12 Using Web Server Plug-Ins With WebLogic Server

Tahle 7-1

General Parameters for Web Server Plug-Ins

Parameter

Default

Description

WLProxySSL

OFF

Set this parameter to ON to maintain SSL communication
between the plug-in and WebLogic Server when the following
conditions exist:

e An HTTP client request specifies the HTTPS protocol

* The request is passed through one or more proxy servers
(including the WebLogic Server proxy plug-ins)

* The connection between the plug-in and WebLogic Server
uses the HTTP protocol

When WLProxySSL is set to ON, the location header returned
to the client from WebLogic Server specifies the HTTPS
protocol.

WLLocalIP

none

Defines the IP address to bind to when the plug-in connects to a
WebLogic Server instance running on a multihomed machine.

If WLLocalIP is not set, a random IP address on the
multi-homed machine is used.

Using Web Server Plug-Ins With WebLogic Server 1-13

Parameters for Web Server Plug-Ins

SSL Parameters for Web Server Plug-Ins

Server Gated Cryptography certificates are not supported for use with WebLogic Server Proxy
Plug-Ins. Non-SGC certificates work appropriately and allow SSL communication between
WebLogic Server and the plug-in.

Note: Parameters are case sensitive.

Table 7-2 SSL Parameter

Parameter Default Description

EnforceBasi Strong This parameter closes a security hole which existed with SSL certificate
cConstraint validation where certificate chains with invalid V3 CA certificates would
s not be properly rejected. This allowed certificate chains with invalid

intermediate CA certificates, rooted with a valid CA certificate to be
trusted. X509 V3 CA certificates are required to contain the
BasicConstraints extension, marked as being a CA, and marked as a
critical extension. This checking protects against non-CA certificates
masquerading as intermediate CA certificates.

The levels of enforcement are as follows:

OFF

This level entirely disables enforcement and is not recommended. Most
current commercial CA certificates should work under the default
STRONG setting.

EnforceBasicConstraints=off

EnforceBasicConstraints=false

STRONG

Default. The BasicConstraints for V3 CA certificates are checked and
the certificates are verified to be CA certificates.
EnforceBasicConstraints=strong
EnforceBasicConstraints=true

STRICT

This level does the same checking as the STRONG level, but in addition
it also strictly enforces IETF RFC 2459 which specifies the
BasicConstraints for CA certificates also must be marked as "critical".
This is not the default setting because a number of current commercially
available CA certificates don't conform to RFC 2459 and don't mark the
BasicConstraints as critical. Set this if you want to strict conformance to
RFC 2459.

EnforceBasicConstraints=strict

1-14 Using Web Server Plug-Ins With WebLogic Server

Tahle 7-2 SSL Parameter

SSL Parameters for Web Server Plug-Ins

Parameter

Default

Description

SecureProxy

OFF

Set this parameter to ON to enable the use of the SSL protocol for all
communication between the plug-in and WebLogic Server. Remember
to configure a port on the corresponding WebLogic Server for the SSL
protocol before defining this parameter.

This parameter may be set at two levels: in the configuration for the main
server and—if you have defined any virtual hosts—in the configuration
for the virtual host. The configuration for the virtual host inherits the SSL
configuration from the configuration of the main server if the setting is
not overridden in the configuration for the virtual host.

TrustedCAFi
le

none

Name of the file that contains the digital certificates for the trusted
certificate authorities for the plug-in. This parameter is required if the
SecureProxy parameter is set to ON.

The filename must include the full directory path of the file.

RequireSSLH
ostMatch

true

Determines whether the host name to which the plug-in is connecting
must match the Subject Distinguished Name field in the digital
certificate of the WebLogic Server to which the proxy plug-in is
connecting.

When specifying SecureProxy=ON and RequireSSLHostMatch=true in
the plug-in, then the value specified in the ListenAddress property
should exactly match the hostname value specified in the certificate.

When using the ExternalDNSName property for WebLogic Server and
setting SecureProxy=ON and RequireSSLHostMatch=true in the
plug-in, then the value specified in the ExternalDNSName property
should exactly match the hostname value specified in the certificate.

SSLHostMatc
hOID

22

The ASN.1 Object ID (OID) that identifies which field in the Subject
Distinguished Name of the peer digital certificate is to be used to perform
the host match comparison. The default for this parameter corresponds
to the CommonName field of the Subject Distinguished Name. Common
OID values are:

e Sur Name—23

¢ Common Name—22

¢ Email—13

* Organizational Unit—30
¢ Organization—29

* Locality—26

Using Web Server Plug-Ins With WebLogic Server 1-15

Parameters for Web Server Plug-Ins

1-16 Using Web Server Plug-Ins With WebLogic Server

A
Apache plug-in 1
and clusters 15
and SSL 19
httpd.conf file 10
installing 3
parameters 6, 9, 12
sample httpd.conf file 17
C
Configuration
Apache plug-in 6, 9, 12
Microsoft-IIS (proxy) plug-in 7
ConnectionRetrySecs 4
ConnectionTimeoutSecs 4
D
Debug 5
DebugConfiglnfo 6
DefaultFileName 8
DynamicServerList 12
E
ErrorPage 7
F
FileCaching 10
H
HungServerRecoverSecs 7
I
Idempotent 7
Introduction to Plug-Ins 1
K
KeepAliveSecs 11
M
MatchExpression 9
MaxPostSize 8
MaxSkips 12
Microsoft-1IS (proxy) plug-in

Configuration 7
proxying requests 3
proxying servlets 13
testing 14
N
Netscape (proxy) Plug-in 1
and clustering 17
MIME types 5
obj.conf file 8
sample obj.conf file 9
p
PathPrepend 4
PathTrim 4
proxying requests 1
Microsoft-I1IS (proxy) plug-in 3
ProxyServlet 1
sample deployment descriptor 2
Q
QueryFromRequest 12
R
RequireSSLHostMatch 15
S
SecureProxy 15
SSLHostMatchOID 15
StatPath 7
T
Table 2-1, “Locations of Plug-In Shared Object Files,” on page 2-4 5
TrustedCAFile 15
A\
WebLogicCluster 3
WebLogicHost 2
WebLogicPort 2
What are Plug-Ins 1
WLForwardPath 11

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation

	Understanding Using Web Server Plug-Ins With WebLogic Server
	What Are Plug-Ins?
	Plug-Ins Included with WebLogic Server

	Installing and Configuring the Apache HTTP Server Plug-In
	Overview of the Apache HTTP Server Plug-In
	Keep-Alive Connections in Apache Version 1.3.x
	Keep-Alive Connections in Apache Version 2.0
	Proxying Requests
	Certifications

	Installing the Apache HTTP Server Plug-In
	Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object
	Installing the Apache HTTP Server Plug-In as a Statically Linked Module

	Configuring the Apache HTTP Server Plug-In
	Editing the httpd.conf File
	Including a weblogic.conf File in the httpd.conf File
	Creating weblogic.conf Files
	Sample weblogic.conf Configuration Files
	Template for the Apache HTTP Server httpd.conf File

	Setting Up Perimeter Authentication
	Using SSL with the Apache Plug-In
	Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server
	Issues with SSL-Apache Configuration

	Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Tuning to Reduce Connection_Refused Errors
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	Installing and Configuring the Microsoft IIS Plug-In
	Overview of the Microsoft Internet Information Server Plug-In
	Connection Pooling and Keep-Alive
	Proxying Requests

	Certifications
	Installing and Configuring the Microsoft Internet Information Server Plug-In
	Proxying Requests from Multiple Virtual Websites to WebLogic Server
	Sample iisproxy.ini File

	Creating ACLs Through IIS
	Setting Up Perimeter Authentication
	Using SSL with the Microsoft Internet Information Server Plug-In
	Proxying Servlets from IIS to WebLogic Server
	Testing the Installation
	Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	Installing and Configuring the Netscape Enterprise Server Plug-In
	Overview of the Netscape Enterprise Server Plug-In
	Connection Pooling and Keep-Alive
	Proxying Requests

	Installing and Configuring the Netscape Enterprise Server Plug-In
	Guidelines for Modifying the obj.conf File
	Sample obj.conf File (Not Using a WebLogic Cluster)
	Sample obj.conf File (Using a WebLogic Cluster)

	Setting Up Perimeter Authentication
	Using SSL with the NES Plug-In
	Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions
	Failover Behavior When Using Firewalls and Load Directors

	Proxying Requests to Another Web Server
	Overview of Proxying Requests to Another Web Server
	Setting Up a Proxy to a Secondary Web Server
	Sample Deployment Descriptor for the Proxy Servlet

	Parameters for Web Server Plug-Ins
	Entering Parameters in Web Server Plug-In Configuration Files
	General Parameters for Web Server Plug-Ins
	SSL Parameters for Web Server Plug-Ins

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

