
BEAWebLogic
Server®

Developing Custom
Management Utilities
with JMX

Version 9.0
Revised: September 6, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Developing Custom Management Utilities with JMX v

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-2

Guide to this Document . 1-2

Related Documentation . 1-2

New and Changed JMX Features in This Release . 1-3

JMX 1.2 and JMX Remote API 1.0 (JSR-160) . 1-4

Deprecated MBeanHome and Type-Safe Interfaces. 1-4

Changes to the Model for Distributing Configuration Data in a Domain 1-5

Changes to the MBean Data Model . 1-5

New Functionally Aligned MBean Servers . 1-7

Changes in Subsystem MBeans . 1-7

Facilities for Registering Custom MBeans . 1-7

New Reference Document for WebLogic Server MBeans . 1-8

 . 1-8

2. Understanding WebLogic Server MBeans
Basic Organization of a WebLogic Server Domain. 2-1

Separate MBean Types for Monitoring and Configuring . 2-2

The Life Cycle of WebLogic Server MBeans . 2-2

WebLogic Server MBean Data Model. 2-4

Containment and Reference Relationships . 2-4

Containment Relationship . 2-4

vi Developing Custom Management Utilities with JMX

Reference Relationship . 2-6

WebLogic Server MBean Object Names . 2-6

MBean Servers . 2-8

Connecting to MBean Servers . 2-10

Local Connections to MBean Servers . 2-10

Remote Connections to MBean Servers . 2-11

Service MBeans . 2-11

3. Overview of WebLogic Server Subsystem MBeans
Domain and Server Logging Configuration . 3-1

JMS Server and JMS System Module Configuration . 3-5

JDBC Resource Configuration . 3-11

4. Accessing WebLogic Server MBeans with JMX
Set Up the Classpath for Remote Clients . 4-1

Make Remote Connections to an MBean Server . 4-2

Example: Connecting to the Domain Runtime MBean Server 4-3

Best Practices: Choosing an MBean Server. 4-5

Remote Connections Using Only JDK Classes . 4-7

Make Local Connections to the Runtime MBean Server . 4-7

Navigate MBean Hierarchies . 4-8

Example: Printing the Name and State of Servers . 4-9

Example: Monitoring Servlets . 4-12

5. Managing a Domain’s Configuration with JMX
Editing MBean Attributes: Main Steps . 5-2

Start an Edit Session. 5-3

Change Attributes or Create New MBeans . 5-4

Save Changes to the Pending Configuration Files. 5-5

Developing Custom Management Utilities with JMX vii

Activate Your Saved Changes . 5-5

Example: Changing the Administration Port . 5-5

Exception Types Thrown by Edit Operations . 5-9

Listing and Undoing Changes . 5-9

List Unsaved Changes . 5-10

List Unactivated Changes. 5-10

List Changes in the Current Activation Task . 5-12

Undoing Changes . 5-13

Tracking the Activation of Changes . 5-13

Listing the Status of the Current Activation Task . 5-14

Listing All Activation Tasks Stored in Memory . 5-14

Purging Completed Activation Tasks from Memory . 5-15

Managing Locks . 5-16

Best Practices: Recommended Pattern for Editing and Handling Exceptions 5-17

Setting and Getting Encrypted Values. 5-21

Set the Value of an Encrypted Attribute (Recommended Technique) 5-21

Set the Value of an Encrypted Attribute (Compatibility Technique) 5-22

Back Up an Encrypted Value . 5-23

6. Managing Security Realms with JMX
Understanding the Hierarchy of Security MBeans . 6-1

Base Provider Types and Mix-In Interfaces . 6-2

Security MBeans . 6-2

Choosing an MBean Server to Manage Security Realms . 6-13

Working with Existing Security Providers . 6-13

Discovering Available Services . 6-15

Example: Adding Users to a Realm . 6-17

Modifying the Realm Configuration . 6-20

viii Developing Custom Management Utilities with JMX

7. Using Notifications and Monitor MBeans
Best Practices: Listening Directly Compared to Monitoring . 7-1

Best Practices: Listening for WebLogic Server Events . 7-2

Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics 7-5

Listening for Notifications from WebLogic Server MBeans: Main Steps 7-7

Creating a Notification Listener. 7-8

Listening from a Remote JVM . 7-9

Best Practices: Creating a Notification Listener. 7-9

Configuring a Notification Filter . 7-10

Creating a Custom Filter. 7-11

Registering a Notification Listener and Filter . 7-11

Packaging and Deploying Listeners on WebLogic Server. 7-14

Example: Listening for The Registration of Configuration MBeans. 7-16

Using Monitor MBeans to Observe Changes: Main Steps . 7-21

Monitor MBean Types and Notification Types . 7-21

Errors and the MonitorNotification Type Property. 7-23

Creating a Notification Listener for a Monitor MBean . 7-23

Registering the Monitor and Listener . 7-24

Example: Registering a CounterMonitorMBean and Its Listener 7-25

8. Configuring WebLogic Server JMX Services
Example: Using WebLogic Scripting Tool to Make a Domain Read-Only 8-2

Developing Custom Management Utilities with JMX 1-1

C H A P T E R 1

Introduction and Roadmap

To integrate third-party management systems with the WebLogic Server management system,
WebLogic Server provides standards-based interfaces that are fully compliant with the Java
Management Extensions (JMX) specification. Software vendors can use these interfaces to
monitor WebLogic Server MBeans, to change the configuration of a WebLogic Server domain,
and to and monitor the distribution (activation) of those changes to all server instances in the
domain. While JMX clients can perform all WebLogic Server management functions without
using BEA’s proprietary classes, BEA recommends that remote JMX clients use WebLogic
Server protocols (such as T3) to connect to WebLogic Server instances.

This document describes creating JMX clients that monitor and modify WebLogic Server
resources.

The following sections describe the contents and organization of this guide—Developing Custom
Management Utilities with JMX.

“Document Scope and Audience” on page 1-2

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-2

“New and Changed JMX Features in This Release” on page 1-3

I n t roduct i on and Roadmap

1-2 Developing Custom Management Utilities with JMX

Document Scope and Audience
This document is a resource for software vendors who develop JMX-compatible management
systems. It also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server® or considering the use of JMX for a particular application.

It is assumed that the reader is familiar with J2EE and general application management concepts.
This document emphasizes a hands-on approach to developing a limited but useful set of JMX
management services. For information on applying JMX to a broader set of management
problems, refer to the JMX specification or other documents listed in “Related Documentation”
on page 1-2.

Guide to this Document
This chapter, Introduction and Roadmap, introduces the organization of this guide.

Chapter 2, “Understanding WebLogic Server MBeans,” describes the JMX services that
you use to monitor and manage WebLogic Server MBeans and introduces the data model
that organizes WebLogic Server MBeans.

Chapter 3, “Overview of WebLogic Server Subsystem MBeans,” introduces the MBeans
that can be used to monitor and manage various subsystems of WebLogic Server.

Chapter 4, “Accessing WebLogic Server MBeans with JMX,” provides instructions and
examples for accessing WebLogic Server MBeans from a JMX client.

Chapter 5, “Managing a Domain’s Configuration with JMX,” provides instructions and
examples for managing a WebLogic Server domain’s configuration through JMX.

Chapter 7, “Using Notifications and Monitor MBeans,” describes working with
notifications and listeners to listen for changes in WebLogic Server MBean attributes.

Chapter 8, “Configuring WebLogic Server JMX Services,” describes how to specify which
JMX services are available in a domain.

Related Documentation
The Sun Developer Network includes a Web site that provides links to books, white papers, and
additional information on JMX: http://java.sun.com/products/JavaManagement/.

To view the JMX 1.2 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html.

http://java.sun.com/products/JavaManagement/
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

New and Changed JMX Features in Th is Re lease

Developing Custom Management Utilities with JMX 1-3

To view the JMX Remote API 1.0 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html.

You can view the API reference for the javax.management* packages from:
http://java.sun.com/j2se/1.5.0/docs/api/overview-summary.html.

For guidelines on developing other types of management services for WebLogic Server
applications, see the following documents:

Using WebLogic Logging Services for Application Logging describes WebLogic support for
internationalization and localization of log messages, and shows you how to use the
templates and tools provided with WebLogic Server to create or edit message catalogs that
are locale-specific.

Configuring and Using the WebLogic Diagnostic Framework describes how system
administrators can collect application monitoring data that has not been exposed through
JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see the following
documents:

Developing WebLogic Server Applications is a guide to developing WebLogic Server
applications.

Developing Manageable Applications with JMX describes how to create and register
custom MBeans.

New and Changed JMX Features in This Release
Release 9.0 introduces several important changes to the WebLogic Server JMX implementation:

“JMX 1.2 and JMX Remote API 1.0 (JSR-160)” on page 1-4

“Deprecated MBeanHome and Type-Safe Interfaces” on page 1-4

“Changes to the Model for Distributing Configuration Data in a Domain” on page 1-5

“Changes to the MBean Data Model” on page 1-5

“Changes in Subsystem MBeans” on page 1-7

“New Functionally Aligned MBean Servers” on page 1-7

“New Reference Document for WebLogic Server MBeans” on page 1-8

http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://java.sun.com/j2se/1.5.0/docs/api/overview-summary.html
http://e-docs.bea.com/wls/docs90/i18n/index.html
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs90/programming/index.html
http://e-docs.bea.com/wls/docs90/jmxinst/index.html

I n t roduct i on and Roadmap

1-4 Developing Custom Management Utilities with JMX

JMX 1.2 and JMX Remote API 1.0 (JSR-160)
WebLogic Server uses the Java Management Extensions (JMX) 1.2 implementation that is
included in JDK 1.5. Prior to WebLogic Server 9.0, WebLogic Server used its own JMX
implementation based on the JMX 1.0 specification.

Remote JMX clients can use the standard JMX remote API 1.0 (JSR-160) to connect to the JMX
agents in WebLogic Server. (See http://jcp.org/en/jsr/detail?id=160.) Prior to 9.0, the JMX
remote API had not been published and remote JMX clients had to use BEA’s proprietary APIs
to connect to WebLogic Server.

Deprecated MBeanHome and Type-Safe Interfaces
Now that the JMX remote APIs (JSR-160) are published, BEA’s proprietary API for remote JMX
access, weblogic.management.MBeanHome, is no longer needed and is therefore deprecated.

The MBeanHome API also made it possible for BEA to provide a typed API layer over its JMX
layer that you could use to interact with WebLogic Server MBeans. Your JMX application
classes could import type-safe interfaces for WebLogic Server MBeans; retrieve a reference to
the MBeans through the weblogic.management.MBeanHome interface; and invoke the MBean
methods directly.

The typed API layer is also deprecated. Instead of this API-like programming model, all JMX
applications should use the standard JMX programming model, in which clients use the
javax.management.MBeanServerConnection interface to discover MBeans, attributes, and
attribute types at runtime. In this JMX model, clients interact indirectly with MBeans through the
MBeanServerConnection interface.

If any of your classes import the type-safe interfaces (which are under weblogic.management),
BEA recommends that you update to using the standard JMX programming model. See
Accessing WebLogic Server MBeans with JMX in Developing Custom Management Utilities
with JMX. If you do not update your JMX clients, they will use the domain’s compatibility
MBean server, which is enabled by default.

If you were using the MBeanHome API to automate common configuration tasks, consider using
the new WebLogic Scripting Tool (WLST) instead of JMX. WLST is a command-line scripting
interface that manages and monitors active or inactive WebLogic Server domains. The WLST
scripting environment is based on the Java scripting interpreter Jython. In addition to WebLogic
scripting functions, you can use common features of interpreted languages, including local
variables, conditional variables, and flow control statements. You can extend the WebLogic

http://jcp.org/en/jsr/detail?id=160
http://e-docs.bea.com/wls/docs90/jmx/accessWLS.html

New and Changed JMX Features in Th is Re lease

Developing Custom Management Utilities with JMX 1-5

scripting language by following the Jython language syntax. See http://www.jython.org. For
more information on WLST, see WebLogic Scripting Tool.

Changes to the Model for Distributing Configuration Data in a
Domain
You can now collect modifications to a domain configuration and distribute them as a group
throughout the domain. This release also contains APIs that you can use to monitor the
distribution of changes.

The Administration Server hosts a set of pending MBeans, which are the in-memory
representation of all pending changes to a domain’s configuration (pending MBean data is backed
up in a pending config.xml file). Changes in pending MBeans do not take effect immediately.
You must explicitly distribute them in a process that resembles a transaction. If any Managed
Server is unable to consume a change, the entire set of changes in a distribution process is rolled
back. This transactional process is the only way to change a domain’s configuration through
JMX. See Managing a Domain’s Configuration with JMX in Developing Custom Management
Utilities with JMX.

Prior to WebLogic Server 9.0, the Administration Server hosted a set of MBeans (administration
MBeans) that represented the persisted configuration for all servers and server resources in a
domain. To enhance performance, each server instance replicated these MBeans locally and used
the replicas, called local configuration MBeans. When a JMX client changed an administration
MBean, the Administration Server immediately updated the local configuration MBeans on all
server instances in the domain even if the server itself could not integrate the change. In some
cases, a local configuration MBean could not be updated unless you restarted a server instance,
and the replica and its master administration MBean would contain different values. In addition,
JMX clients could directly access local configuration MBeans and change their values, which
also resulted in an inconsistent state between replica and master MBean.

Changes to the MBean Data Model
TThe JMX specification does not impose a model for organizing MBeans. However, because the
configuration of a WebLogic Server domain is specified in an XML document, WebLogic Server
organizes its MBeans into a hierarchical model that reflects the XML document structure.

For example, the root of a domain’s configuration document is <domain> and below the root are
child elements such as <server> and <cluster>. Each domain maintains a single MBean of
type DomainMBean to represent the <domain> root element. Within DomainMBean, JMX

http://e-docs.bea.com/wls/docs90/config_scripting/using_WLST.html
http://e-docs.bea.com/wls/docs90/jmx/editWLS.html

I n t roduct i on and Roadmap

1-6 Developing Custom Management Utilities with JMX

attributes provide access to the MBeans that represent child elements such as <server> and
<cluster>.

Prior to WebLogic Server 9.0:

Inconsistencies in the data model existed across WebLogic Server subsystems.

JMX clients could create and access WebLogic Server MBeans by invoking
MBeanServer.createMBean and passing a correctly constructed, hierarchical object
name. However, if a JMX client incorrectly constructed the object name, the MBean would
be created and registered but not recognized within the WebLogic Server data model.

As of WebLogic Server 9.0:

The data model is consistent across WebLogic Server subsystems.

To enable JMX clients to control MBean life cycles, WebLogic Server MBeans contain
operations that follow the design pattern for Java bean factory methods: for each child, a
parent MBean contains a createChild and destroyChild operation, where Child is the
short name of the MBean’s type. (The short name is the MBean’s unqualified type name
without the MBean suffix. For example, createServer). The parent also contains a
lookupChild operation and a Children attribute.

For example, DomainMBean contains the createServer, destroyServer, and
lookupServer operations and it contains a Servers attribute.

There is no other option for creating child MBeans.

JMX clients no longer need to construct JMX object names in order to retrieve a WebLogic
Server MBean. Instead, they navigate the MBean hierarchy by successively invoking code
similar to the following:

ObjectName on =
javax.management.MBeanServerConnection.getAttribute

(object-name, attribute);

where:

– object-name is the object name of the current node (MBean) in the MBean hierarchy.

– attribute is the name of an attribute in the current MBean that refers to another
MBean.

The compatibility MBean server (which you must enable if your JMX clients still use the
deprecated MBeanHome interface) will register new instances of WebLogic Server MBeans
only if the JMX client has specified a correctly constructed, hierarchical object name for
the instance.

New and Changed JMX Features in Th is Re lease

Developing Custom Management Utilities with JMX 1-7

To access the hierarchy, clients can use a set of new service MBeans which are registered in an
MBean server under object names that are immutable and well defined. A JMX client supplies
this object name to retrieve the service MBean. Then it uses the service MBean’s attributes and
operations to retrieve the root of a WebLogic Server MBean hierarchy.

New Functionally Aligned MBean Servers
An Administration Server maintains three MBean servers, each of which provides access to
different MBean hierarchies. The Edit MBean Server provides access to the domain’s editable
configuration MBeans; the Domain Runtime MBean Server provides federated access to all
runtime MBeans and read-only configuration MBeans in the domain; and the Runtime MBean
Server provides access only to the runtime and read-only configuration MBeans on the
Administration Server.

Each Managed Server maintains a Runtime MBean Server, which provides access only to its
runtime and read-only configuration MBeans.

JMX clients use the standard javax.remote.access (JSR-160) APIs to access and interact with
MBeans registered in the MBean servers.

See MBean Servers in Developing Custom Management Utilities with JMX.

Changes in Subsystem MBeans
WebLogic Server now enables application developers to create and package descriptors for the
application’s services (such as JMS and JDBC services) in the application EAR file. When you
deploy the application, WebLogic Server creates an instance of the service and configures it as
defined in the descriptor. To support these application-scoped services, many subsystems have
deprecated all or part of their old JMX interfaces and replaced them with new or updated MBeans.

See WebLogic Server MBean Reference, which lists all deprecated and new MBeans for
WebLogic Server 9.0.

Facilities for Registering Custom MBeans
Prior to WebLogic Server 9.0, if you wanted to register custom MBeans in an MBean server on
a WebLogic Server instance, you could either create your own MBean server or use
weblogic.management.RemoteMBeanServer to register in WebLogic Server’s MBean server.

As of 9.0 and JDK 1.5, you can do any of the following from a JMX client that is running in a
WebLogic Server JVM:

http://e-docs.bea.com/wls/docs90/jmx/understandWLS.html#MBeanServers
http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html

I n t roduct i on and Roadmap

1-8 Developing Custom Management Utilities with JMX

(Recommended) Access the Runtime MBean Server through JNDI and register custom
MBeans in the Runtime MBean Server.

Register custom MBeans in the JVM’s platform MBean server.

Create your own MBean server.

See Use the Runtime MBean Server in Developing Manageable Applications with JMX.

New Reference Document for WebLogic Server MBeans
All public WebLogic Server MBeans are described in a new document, WebLogic Server MBean
Reference. For each MBean, the document describes:

The MBean’s factory methods and other points of access within WebLogic Server MBean
trees

The data type, read-write privileges, and other information for each attribute

The parameters, signature, and other information for each operation

http://e-docs.bea.com/wls/docs90/jmxinst/designapp.html#UseRuntimeMBeanServer
http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html

Developing Custom Management Utilities with JMX 2-1

C H A P T E R 2

Understanding WebLogic Server
MBeans

WebLogic Server® provides its own set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources. The following sections describe how WebLogic Server
distributes and maintains its MBeans:

“Basic Organization of a WebLogic Server Domain” on page 2-1

“Separate MBean Types for Monitoring and Configuring” on page 2-2

“The Life Cycle of WebLogic Server MBeans” on page 2-2

“WebLogic Server MBean Data Model” on page 2-4

“MBean Servers” on page 2-8

WebLogic Server MBean Reference provides a detailed reference for all WebLogic Server
MBeans.

Basic Organization of a WebLogic Server Domain
A WebLogic Server administration domain is a collection of one or more servers and the
applications and resources that are configured to run on the servers. Each domain must include a
special server instance that is designated as the Administration Server. The simplest domain
contains a single server instance that acts as both Administration Server and host for applications
and resources. This domain configuration is commonly used in development environments.
Domains for production environments usually contain multiple server instances (Managed
Servers) running independently or in groups called clusters. In such environments, the
Administration Server does not host production applications. For more information about

http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html

Unders tanding WebLog ic Serve r MBeans

2-2 Developing Custom Management Utilities with JMX

domains, refer to "Understanding WebLogic Server Domains" in Understanding Domain
Configuration.

Separate MBean Types for Monitoring and Configuring
All WebLogic Server MBeans can be organized into one of the following general types based on
whether the MBean monitors or configures servers and resources:

Runtime MBeans contain information about the runtime state of a server and its
resources. They generally contain only data about the current state of a server or resource,
and they do not persist this data. When you shut down a server instance, all runtime
statistics and metrics from the runtime MBeans are destroyed.

Configuration MBeans contain information about the configuration of servers and
resources. They represent the information that is stored in the domain’s XML configuration
documents.

Configuration MBeans for system modules contain information about the configuration of
services such as JDBC data sources and JMS topics that have been targeted at the system
level. Instead of targeting these services at the system level, you can include services as
modules within an application. These application-level resources share the life cycle and
scope of the parent application. However, WebLogic Server does not provide MBeans for
application modules. See Supported Deployment Units in Deploying Applications to
WebLogic Server.

The Life Cycle of WebLogic Server MBeans
The life cycle of a runtime MBean follows that of the resource for which it exposes runtime data.
For example, when you start a server instance, the server instantiates a ServerRuntimeMBean
and populates it with the current runtime data. Each resource updates the data in its runtime
MBean as its state changes. The resource destroys its runtime MBeans when it is stopped.

For a configuration MBean, the life cycle is as follows:

1. Each server in the domain has its own copy of the domain’s configuration documents (which
consist of a config.xml file and subsidiary files). During a server’s startup cycle, it contacts
the Administration Server to update its configuration files with any changes that occurred
while it was shut down. Then it instantiates configuration MBeans to represent the data in the
configuration documents. (See Figure 2-1.)

Note: By default, a Managed Server will start even if it cannot contact the Administration
Server to update its configuration files. This default setting creates the possibility that
Managed Servers across the domain might run with inconsistent configurations. For

http://e-docs.bea.com/wls/docs90/domain_config/understand_domains.html
http://e-docs.bea.com/wls/docs90/deployment/understanding.html#SupportedDeploymentUnits

The L i fe Cyc le o f WebLog ic Se rve r MBeans

Developing Custom Management Utilities with JMX 2-3

information about changing this default, see "Starting a Managed Server When the
Administration Server Is Not Accessible" in Managing Server Startup and Shutdown.

Figure 2-1 Initializing Configuration MBeans on Administration Server

The configuration MBeans enable each server instance in the domain to have an identical
in-memory representation of the domain’s configuration.

2. To control changes to the domain’s configuration, JMX clients have read-only access to
these configuration MBeans.

The Administration Server maintains a separate, editable copy of the domain’s
configuration documents in the domain’s config/pending directory. It uses the data in
these pending documents to instantiate a set of configuration MBeans that JMX clients can
modify. After a JMX client modifies one of these configuration MBeans, the client directs
the Administration Server to save the modifications in the pending configuration
documents. Then the client starts a transactional process that updates the read-only
configuration documents and configuration MBeans for all server instances in the domain.

For more information, see Managing Configuration Changes in Understanding Domain
Configuration.

3. Configuration MBeans are destroyed when you shut down the server instance that hosts
them.

WebLogic Server Instance

<Server

ListenPort="7001"
 Name="MedRecServer"

>

<domain>

</domain>

config.xml

ServerMBean

Name="MedRecServer"

</server>

ListenPort="7011"
 <server>

<name>MedRecServer</name>

<listen-port>
7011

</listen-port>

http://e-docs.bea.com/wls/docs90/server_start/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs90/server_start/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs90/domain_config/changes.html

Unders tanding WebLog ic Serve r MBeans

2-4 Developing Custom Management Utilities with JMX

WebLogic Server MBean Data Model
The JMX specification does not impose a model for organizing MBeans. However, because the
configuration of a WebLogic Server domain is specified in an XML document, WebLogic Server
organizes its MBeans into a hierarchical model that reflects the XML document structure.

For example, the root of a domain’s configuration document is <domain> and below the root are
child elements such as <server> and <cluster>. Each domain maintains a single MBean of
type DomainMBean to represent the <domain> root element. Within DomainMBean, JMX
attributes provide access to the MBeans that represent child elements such as <server> and
<cluster>.

The following sections describe the patterns that WebLogic Server MBeans use to model the
underlying XML configuration:

“Containment and Reference Relationships” on page 2-4

“WebLogic Server MBean Object Names” on page 2-6

Containment and Reference Relationships
MBean attributes that provide access to other MBeans represent one of following types of
relationships:

Containment, which reflects a parent-child relationship between the corresponding XML
elements in the domain’s configuration document.

Reference, which reflects a sibling or other non-ancestor, non-descendant relationship.

Containment Relationship
The XML excerpt in Listing 2-1 illustrates a containment relationship between <domain> and
<server> and <domain> and <cluster>.

Listing 2-1 Containment Relationship in XML

<domain>

<server>

<name>MyServer</name>

</server>

<cluster>

WebLog ic Serve r MBean Data Mode l

Developing Custom Management Utilities with JMX 2-5

<name>MyCluster</name>

</cluster>

</domain>

To reflect this relationship, DomainMBean has two attributes, Servers and Clusters. The value
of the Servers attribute is an array of object names javax.management.ObjectName[]) for
all ServerMBeans that have been created in the domain. The value of the Clusters attribute is
an array of object names for all ClusterMBeans.

Another aspect of the containment relationship is expressed in a set of MBean operations that
follow the design pattern for Java bean factory methods: for each contained (child) MBean, the
parent MBean provides a createChild and destroyChild operation, where Child is the short
name of the MBean’s type. (The short name is the MBean’s unqualified type name without the
MBean suffix. For example, createServer).

Note: JMX clients cannot use javax.management.MBeanServer.create() or register()
to create and register instances of WebLogic Server MBeans because WebLogic Server
does not make its MBean implementation classes publicly available.

If you create and register custom MBeans (MBeans you have created to manage your
applications), you will have access to your own implementation files and you can use the
standard MBeanServer.create() or register() methods. Custom MBeans are not
part of the WebLogic Server data model and do not participate in its factory method
model.

In some cases, an MBean’s factory methods are not public because of dependencies within a
server instance. In these cases the parent manages the life cycle of its children. For example, each
ServerMBean must have one and only one child LogMBean to configure the server’s local log file.
The factory methods for LogMBean are not public, and ServerMBean maintains the life cycle of
its LogMBean.

With a containment relationship, the parent MBean also contains a lookupChild operation. If you
know the user-supplied name that was used to create a specific server or resource, you can use
the lookup operation in the parent MBean to get the object name. For example, DomainMBean
includes an operation named lookupServers(String name), which takes as a parameter the
name that was used to create a server instance. If you named a server MS1, you could pass a
String object that contains MS1 to the lookupServers method and the method would return the
object name for MS1.

Unders tanding WebLog ic Serve r MBeans

2-6 Developing Custom Management Utilities with JMX

Reference Relationship
The XML excerpt in Listing 2-2 illustrates a reference relationship between <server> and
<cluster>.

Listing 2-2 Reference Relationship in XML

<domain>

<server>

<name>MyServer</name>

<cluster>MyCluster</cluster>

</server>

<cluster>

<name>MyCluster</name>

</cluster>

</domain>

While a server logically belongs to a cluster, the <server> and <cluster> elements in the
domain’s configuration file are siblings. To reflect this relationship, ServerMBean has a
Cluster attribute whose value is the object name (javax.management.ObjectName) of the
ClusterMBean to which the server belongs.

MBeans in a reference relationship do not provide factory methods.

WebLogic Server MBean Object Names
All MBeans must be registered in an MBean server under an object name of type
javax.management.ObjectName. WebLogic Server follows a convention in which object
names for child MBeans contain part of its parent MBean object name.

Note: If you learn the WebLogic Server naming conventions, you can understand where an
MBean instance resides in the data hierarchy by observing its object name. However, if
you use containment attributes or lookup operations to get object names for WebLogic
Server MBeans, your JMX applications do not need to construct or parse object names.

WebLogic Sever naming conventions encode its MBean object names as follows:

com.bea:Name=name,Type=type[,TypeOfParentMBean=NameOfParentMBean]
[,TypeOfParentMBean1=NameOfParentMBean1]...

WebLog ic Serve r MBean Data Mode l

Developing Custom Management Utilities with JMX 2-7

where:

com.bea: is the JMX domain name.

For WebLogic Server MBeans, the JMX domain is always com.bea. If you create custom
MBeans for your applications, name them with your own JMX domain.

Name=name,Type=type[,TypeOfParentMBean=NameOfParentMBean]
[,TypeOfParentMBean1=NameOfParentMBean1]... is a set of JMX key properties.

The order of the key properties is not significant, but the name must begin with com.bea:.

Table 2-1 describes the key properties that WebLogic Server encodes in its MBean object names.

Table 2-1 WebLogic Server MBean Object Name Key Properties

This Key Property Specifies

Name=name The string that you provided when you created the resource that the MBean
represents. For example, when you create a server, you must provide a name for the
server, such as MS1. The ServerMBean that represents MS1 uses Name=MS1 in
its JMX object name.

If you create an MBean, you must specify a value for this Name component that is
unique amongst all other MBeans in a domain.

Type=type For configuration MBeans and runtime MBeans, the short name of the MBean’s
type. The short name is the unqualified type name without the MBean suffix. For
example, for an MBean that is an instance of the ServerRuntimeMBean, use
ServerRuntime.

For MBeans that manage services targeted at the system level, the fully qualified
name of the MBean’s type including any Bean or MBean suffix. For example, for
an MBean that manages a system-level JDBC data source, use
weblogic.j2ee.descriptor.wl.JDBCDataSourceBean.

Unders tanding WebLog ic Serve r MBeans

2-8 Developing Custom Management Utilities with JMX

MBean Servers
At the core of any JMX agent is the MBean server, which acts as a container for MBeans.

TypeOfParentMBean=
NameOfParentMBean

To create a hierarchical namespace, WebLogic Server MBeans use one or more
instances of this attribute in their object names. The levels of the hierarchy are used
to indicate scope. For example, a LogMBean at the domain level of the hierarchy
manages the domain-wide message log, while a LogMBean at a server level
manages a server-specific message log.

WebLogic Server child MBeans with implicit creator methods use the same value
for the Name property as the parent MBean. For example, the LogMBean that is a
child of the MedRecServer Server MBean uses Name=MedRecServer in its
object name:

medrec:Name=MedRecServer,Type=Log,Server=MedRecServer
WebLogic Server cannot follow this convention when a parent MBean has multiple
children of the same type.

Some MBeans use multiple instances of this component to provide unique
identification. For example, the following is the object name for an
EJBComponentRuntime MBean for in the MedRec sample application:
medrec:ApplicationRuntime=MedRecServer_MedRecEAR,
Name=MedRecServer_MedRecEAR_Session
EJB,ServerRuntime=MedRecServer,Type=EJBComponentRuntime

The ApplicationRuntime=MedRecServer_MedRecEAR key property
indicates that the EJB instance is a module within the MedRec enterprise
application and a child of the MedRecServer_MedRecEAR
ApplicationRuntimeMBean. The ServerRuntime=MedRecServer key
property indicates that the EJB instance is currently deployed on a server named
MedRecServer and a child of the MedRecServer ServerRuntimeMBean.

Location=servername When you access runtime MBeans or configuration MBeans through the Domain
Runtime MBean Server, the MBean object names include a
Location=servername key property which specifies the name of the server
instance on which that MBean is located. See “MBean Servers” on page 2-8.

Singleton MBeans, such as DomainRuntimeMBean and
ServerLifeCycleRuntimeMBean exist only on the Administration Server and
do not need to include this key property.

Table 2-1 WebLogic Server MBean Object Name Key Properties

This Key Property Specifies

MBean Serve rs

Developing Custom Management Utilities with JMX 2-9

The JVM for an Administration Server maintains three MBean servers provided by BEA and
optionally maintains the platform MBean server, which is provided by the JDK itself. The JVM
for a Managed Server maintains only one BEA MBean server and the optional platform MBean
server.

Table 2-2 describes each MBean server.

Table 2-2 MBean Servers in a WebLogic Server Domain

This MBean server Creates, registers, and provides access to...

Domain Runtime MBean
Server

MBeans for domain-wide services. This MBean server also acts as a
single point of access for MBeans that reside on Managed Servers.

If your JMX client accesses WebLogic Server MBeans in this MBean
server by constructing object names, the client must add a
Location=servername key property to the MBean object name. See
“WebLogic Server MBean Object Names” on page 2-6.

Only the Administration Server hosts an instance of this MBean server.

Runtime MBean Server MBeans that expose monitoring, runtime control, and the active
configuration of a specific WebLogic Server instance. You can also
register your own (custom) MBeans in this MBean server (see Use the
Runtime MBean Server in Developing Manageable Applications with
JMX).

Each server in the domain hosts an instance of this MBean server.

http://e-docs.bea.com/wls/docs90/jmxinst/designapp.html#UseRuntimeMBeanServer
http://e-docs.bea.com/wls/docs90/jmxinst/designapp.html#UseRuntimeMBeanServer

Unders tanding WebLog ic Serve r MBeans

2-10 Developing Custom Management Utilities with JMX

Connecting to MBean Servers
JMX enables both local and remote access to MBean servers, but JMX clients use different APIs
for the two types of access and WebLogic Server MBean servers expose different capabilities to
local clients and remote clients.

Local Connections to MBean Servers
JMX clients running within a WebLogic Server JVM can access the server’s Runtime MBean
Server directly through JNDI and must be authenticated to do so. This is the only WebLogic
Server MBean server that allows local access. When accessed from a local client, the Runtime
MBean Server returns its javax.management.MBeanServer interface, which enables clients to

Edit MBean Server Pending configuration MBeans and operations that control the
configuration of a WebLogic Server domain. It exposes a
ConfigurationManagerMBean for locking, saving, and activating
changes.

Only the Administration Server hosts an instance of this MBean server.

The JVM’s platform
MBean server

MBeans provided by the JDK that contain monitoring information for the
JVM itself. You can register custom MBeans in this MBean server, but
BEA recommends that you register them in its Runtime MBean Server.

You can also configure the WebLogic Server Runtime MBean Server to
be the platform MBean server, in which case the platform MBean server
provides access to JVM MBeans, Runtime MBeans, and active
configuration MBeans that are on a single server instance. See Using the
JVM Platform MBean Server in Developing Manageable Applications
with JMX.

Note: Remote access to the platform MBean server can be secured
only by standard JDK 1.5 security features (see
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.ht
ml#remote). If you have configured the WebLogic Server
Runtime MBean Server to be the platform MBean server,
enabling remote access to the platform MBean server creates an
access path to WebLogic Server MBeans that is not secured
through the WebLogic Server security framework.

Table 2-2 MBean Servers in a WebLogic Server Domain

This MBean server Creates, registers, and provides access to...

http://e-docs.bea.com/wls/docs90/jmxinst/designapp.html#UsingJVMPlatformMBeanServer
http://e-docs.bea.com/wls/docs90/jmxinst/designapp.html#UsingJVMPlatformMBeanServer
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote

MBean Serve rs

Developing Custom Management Utilities with JMX 2-11

access WebLogic Server Means and to create, register, and access custom MBeans. See “Make
Local Connections to the Runtime MBean Server” on page 4-7.

JMX clients can also access the local JVM’s platform MBean server. The WebLogic Server
security framework does not control access to the platform MBean server. Any local client can
access the MBeans in this MBean server. See Using the JVM Platform MBean Server in
Developing Manageable Applications with JMX.

Remote Connections to MBean Servers
Remote JMX clients (clients running in a different JVM from the MBean server) can use the
javax.management.remote APIs to access any WebLogic MBean server. Clients must
authenticate through the WebLogic Server security framework to do so. When accessed from a
remote client, a WebLogic Server MBean server returns its
javax.management.MBeanServerConnection interface, which enables clients only to access
MBeans; remote clients cannot create and register custom MBeans. See “Make Remote
Connections to an MBean Server” on page 4-2.

You can enable remote access to the platform MBean server, but such access is not secured by
the WebLogic Server security framework; instead, you must use standard JDK 1.5 security
features. See http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote. If it is
essential that remote JMX clients have access to the JVM MBeans in the platform MBean server,
see Using the JVM Platform MBean Server in Developing Manageable Applications with JMX.

Service MBeans
Within each MBean server, WebLogic Server registers a service MBean under a simple object
name. The attributes and operations in this MBean serve as your entry point into the WebLogic
Server MBean hierarchies and enable JMX clients to navigate to all WebLogic Server MBeans
in an MBean server after supplying only a single object name. See Table 2-3.

JMX clients that do not use the entry point (service) MBean must correctly construct an MBean’s
object name to get and set the MBean’s attributes or invoke its operations. Because the object
names must be unique, they are usually long and difficult to construct from a client.

http://e-docs.bea.com/wls/docs90/jmxinst/designapp.html#UsingJVMPlatformMBeanServer
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote
http://e-docs.bea.com/wls/docs90/jmxinst/designapp.html#UsingJVMPlatformMBeanServer

Unders tanding WebLog ic Serve r MBeans

2-12 Developing Custom Management Utilities with JMX

Table 2-3 Service MBeans

MBean Server Service MBean JMX object name:

The Domain Runtime
MBean Server

DomainRuntimeServiceMBean

Provides access to MBeans for domain-wide
services such as application deployment, JMS
servers, and JDBC data sources. It also is a
single point for accessing the hierarchies of all
runtime MBeans and all active configuration
MBeans for all servers in the domain.

See DomainRuntimeServiceMBean in
WebLogic Server MBean Reference.

com.bea:Name=
DomainRuntimeService,
Type=weblogic.managem
ent.mbeanservers.doma
inruntime.DomainRunti
meServiceMBean

Runtime MBean Servers RuntimeServiceMBean

Provides access to runtime MBeans and active
configuration MBeans for the current server.

See RuntimeServiceMBean in WebLogic
Server MBean Reference.

com.bea:Name=
RuntimeService,
Type=weblogic.managem
ent.mbeanservers.runt
ime.RuntimeServiceMBe
an

The Edit MBean Server EditServiceMBean

Provides the entry point for managing the
configuration of the current WebLogic Server
domain.

See EditServiceMBean in WebLogic Server
MBean Reference.

com.bea:Name=
EditService,
Type=weblogic.managem
ent.mbeanservers.edit
.EditServiceMBean

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DomainRuntimeServiceMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/RuntimeServiceMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/EditServiceMBean.html

Developing Custom Management Utilities with JMX 3-1

C H A P T E R 3

Overview of WebLogic Server
Subsystem MBeans

The following sections describe the MBeans that can be used to manage various subsystems of
WebLogic Server:

“Domain and Server Logging Configuration” on page 3-1

“JMS Server and JMS System Module Configuration” on page 3-5

“JDBC Resource Configuration” on page 3-11

In addition, for a description of MBeans that can be used to manage WebLogic Security, see
“Understanding the Hierarchy of Security MBeans” on page 6-1.

Domain and Server Logging Configuration
Within a WebLogic Server domain, several MBeans configure logging services. Table 3-1
introduces the MBeans and Figure 3-1 illustrates where the MBeans are located in the
configuration MBean hierarchy.

Overv iew o f WebLog ic Se rve r Subsys tem MBeans

3-2 Developing Custom Management Utilities with JMX

Table 3-1 MBeans for Domain and Server Logging

This MBean... Configures...

LogMBean • Threshold severity level and filter settings for logging
output.

• Whether the server logging is based on a Log4j
implementation or the default Java Logging APIs.

• Whether to redirect the JVM stdout and stderr output to the
registered log destinations.

The Administration Server maintains an instance of
LogMBean for the domain-wide message log, and each server
instance maintains its own instance for its local server log.

See LogMBean in the WebLogic Server MBean Reference.

LogFileMBean Log file names and the location, file-rotation criteria, and
number of files that a WebLogic Server instance uses to store
log messages.

See LogFileMBean in the WebLogic Server MBean
Reference.

LogFilterMBean A log filter which determines which messages a server instance
sends to the registered log destinations. Each log filter is
represented by its own instance of LogFilterMBean.

A log filter can be defined at the domain or server level.

See LogFilterMBean in the WebLogic Server MBean
Reference.

ServerMBean Path prefix for the server's JTA transaction log files.

See ServerMBean in the WebLogic Server MBean Reference.

WebServerMBean Logging HTTP requests.

See WebServerMBean in the WebLogic Server MBean
Reference.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/LogMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/LogFileMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/LogFilterMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/WebServerMBean.html

Domain and Serve r Logg ing Conf igurat ion

Developing Custom Management Utilities with JMX 3-3

VirtualHostMBean Logging HTTP requests for virtual hosts that you define.

See VirtualHostMBean in the WebLogic Server MBean
Reference.

JMSServerMBean Message log file for this JMS Server.

See JMSServerMBean in the WebLogic Server MBean
Reference.

Table 3-1 MBeans for Domain and Server Logging

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/VirtualHostMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JMSServerMBean.html

Overv iew o f WebLog ic Se rve r Subsys tem MBeans

3-4 Developing Custom Management Utilities with JMX

Figure 3-1 Logging MBeans

DomainMBean

LogMBean

LogFilterMBean

ServerMBean

LogMBean

WebServerMBean

VirtualHostMBean

JMSServerMBean

WebServerLogMBean

JMSMessageLogFileMBean

WebServerLogMBean

StdoutFilterMBean

MemoryBufferFilterMBean

LogFileFilterMBean

DomainLogBroadcastFilterMBean

JMS Se rve r and JMS System Modu le Conf igurat ion

Developing Custom Management Utilities with JMX 3-5

JMS Server and JMS System Module Configuration
Within a WebLogic Server domain, multiple MBeans configure JMS servers and JMS system
module resources. As in prior releases, JMS servers are persisted in the domain's config.xml file
and multiple JMS servers can be configured on the various WebLogic Server instances in a
cluster, as long as they are uniquely named. When a JMS system module is created using JMX,
WebLogic Server creates a JMS system module descriptor file in the config\jms subdirectory
of the domain directory, and adds a reference to the module in the domain’s config.xml file as
a JMSSystemResource element. This reference includes the path to the JMS system module file
and a list of target servers and clusters on which the system module is deployed.

Table 3-2 introduces the MBeans and Figure 3-2 illustrates where the MBeans are located in the
configuration MBean hierarchy.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

This MBean... Configures...

JMSServerMBean A JMS server is configuration entity that acts as a management
container for targeted destination resources (queues and topics)
in a JMS system module. A JMS server's primary responsibility
for its destinations is to maintain information on what
persistent store is used for any persistent messages that arrive
on the destinations, and to maintain the states of durable
subscribers created on the destinations. As a container for
targeted destinations, any configuration or run-time changes to
a JMS server can affect all of its destinations.

See JMSServerMBean in the WebLogic Server MBean
Reference.

JMSSystemResourceMBean A JMS system resource is a resource whose definition is part of
the system configuration rather than an application. The
descriptor for the resource is linked through the WebLogic
configuration file, but resides in a separate descriptor file.

See JMSSystemResourceMBean in the WebLogic Server
MBean Reference.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JMSServerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JMSSystemResourceMBean.html

Overv iew o f WebLog ic Se rve r Subsys tem MBeans

3-6 Developing Custom Management Utilities with JMX

SubDeploymentMBean Subdeployments enable administrators to deploy some
resources in a JMS module to a JMS server and other JMS
resources to a server instance or cluster. Standalone queues or
topics can only be targeted to a single JMS server. Whereas,
connection factories, uniform distributed destinations (UDDs),
and foreign servers can be targeted to one or more JMS servers,
one or more server instances, or to a cluster. Therefore,
standalone queues or topics cannot be associated with a
subdeployment if other members of the subdeployment are
targeted to multiple JMS servers. However, UDDs can be
associated with such subdeployments since the purpose of
UDDs is to distribute its members to multiple JMS servers in a
domain.

See SubDeploymemtMBean in the WebLogic Server MBean
Reference.

JMSBean The top of the JMS module bean tree. JMS modules all have a
JMSBean as their root bean (a bean with no parent).

See JMSBean in the WebLogic Server MBean Reference.

DestinationKeyBean Defines a unique sort order that destinations can apply to
arriving messages. By default messages are sorted in FIFO
(first-in, first-out) order, which sorts ascending based on each
message's unique JMSMessageID. However, you can
configure destination key to use a different sorting scheme for
a destination, such as LIFO (last-in, first-out).

See DestinationKeyBean in the WebLogic Server MBean
Reference.

DistributedQueueBean Defines a set of queues that are distributed on multiple JMS
servers, but which are accessible as a single, logical topic to
JMS clients. Distributed queues can help with load balancing
and distribution, and have many of the same properties as
standalone queues.

See DistributedQueueBean in the WebLogic Server
MBean Reference.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/SubDeploymentMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JMSBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DestinationKeyBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DistributedQueueBean.html

JMS Se rve r and JMS System Modu le Conf igurat ion

Developing Custom Management Utilities with JMX 3-7

DistributedTopicBean Defines a set of topics that are distributed on multiple JMS
servers, but which are accessible as a single, logical topic to
JMS clients. Distributed topics can help with load balancing
and distribution, and have many of the same properties as
standalone topics.

See DistributedTopicBean in the WebLogic Server
MBean Reference.

ForeignServerBean Defines foreign messaging providers or remote WebLogic
Server instances that are not part of the current domain. This is
useful when integrating with another vendor's JMS product, or
when referencing remote instances of WebLogic Server in
another cluster or domain in the local WebLogic JNDI tree.

See ForeignServerBean in the WebLogic Server MBean
Reference.

JMSConnectionFactoryBean Defines a set of connection configuration parameters that are
used to create connections for JMS clients. Connection
factories can configure properties of the connections returned
to the JMS client, and also provide configurable options for
default delivery, transaction, and message flow control
parameters.

See JMSConnectionFactoryBean in the WebLogic Server
MBean Reference.

QueueBean Defines a point-to-point destination type, which are used for
asynchronous peer communications. A message delivered to a
queue is distributed to only one consumer. Several aspects of a
queue's behavior can be configured, including thresholds,
logging, delivery overrides, and delivery failure options.

See QueueBean in the WebLogic Server MBean Reference.

QuotaBean Controls the allotment of system resources available to
destinations. For example, the number of bytes a destination is
allowed to store can be configured with a Quota resource.

See QuotaBean in the WebLogic Server MBean Reference.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DistributedTopicBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ForeignServerBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JMSConnectionFactoryBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/QueueBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/QuotaBean.html

Overv iew o f WebLog ic Se rve r Subsys tem MBeans

3-8 Developing Custom Management Utilities with JMX

SAFRemoteContextBean Defines the URL of the remote server instance or cluster where
a JMS destination is exported from. It also contains the security
credentials to be authenticated and authorized in the remote
cluster or server.

See SAFRemoteContextBean in the WebLogic Server
MBean Reference.

SAFErrorHandlingBean Defines the action to take when the SAF service fails to
forward messages to remote destinations. Configuration
options include an Error Handling Policy (Redirect, Log,
Discard, or Always-Forward), a Log Format, and sending
Retry parameters.

See SAFErrorHandlingBean in the WebLogic Server
MBean Reference.

SAFImportedDestinationsBe
an

Defines a collection of imported store-and-forward (SAF)
destinations. A SAF destination is a representation of a queue
or topic in a remote server instance or cluster that is imported
into the local cluster or server instance, so that the local server
instance or cluster can send messages to the remote server
instance or cluster. All JMS destinations are automatically
exported by default, unless the Export SAF Destination
parameter on a destination is explicitly disabled. Each
collection of SAF imported destinations is associated with a
remote SAF context resource, and, optionally, a SAF error
handling resource.

See SAFImportedDestinationsBean in the WebLogic
Server MBean Reference.

TemplateBean Defines a set of default configuration settings for multiple
destinations. If a destination specifies a template and does not
explicitly set the value of a parameter, then that parameter will
take its value from the specified template.

See TemplateBean in the WebLogic Server MBean
Reference.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/SAFRemoteContextBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/SAFErrorHandlingBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/SAFImportedDestinationsBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/TemplateBean.html

JMS Se rve r and JMS System Modu le Conf igurat ion

Developing Custom Management Utilities with JMX 3-9

TopicBean Defines a publish/subscribe destination type, which are used
for asynchronous peer communications. A message delivered
to a topic is distributed to all topic consumers. Several aspects
of a topic's behavior can be configured, including thresholds,
logging, delivery overrides, delivery failure, and multicasting
parameters.

See TopicBean in the WebLogic Server MBean Reference.

UniformDistributedQueueBe
an

Defines a uniformly configured distributed queue, whose
members have a consistent configuration of all distributed
queue parameters, particularly in regards to weighting,
security, persistence, paging, and quotas. These uniform
distributed queue members are created on JMS servers based
on the targeting of the uniform distributed queue. Uniform
distributed queues can help with message load balancing and
distribution, and have many of the same properties as
standalone queues, including thresholds, logging, delivery
overrides, and delivery failure parameters.

See UniformDistributedQueueBean in the WebLogic
Server MBean Reference.

UniformDistributedTopicBe
an

Defines a uniformly configured distributed topic, whose
members have a consistent configuration of all uniform
distributed queue parameters, particularly in regards to
weighting, security, persistence, paging, and quotas. These
uniform distributed topic members are created on JMS servers
based on the targeting of the uniform distributed topic.
Uniform distributed topics can help with message load
balancing and distribution, and have many of the same
properties as standalone topics, including thresholds, logging,
delivery overrides, and delivery failure parameters.

See UniformDistributedTopicBean in the WebLogic
Server MBean Reference.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/TopicBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UniformDistributedQueueBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UniformDistributedTopicBean.html

Overv iew o f WebLog ic Se rve r Subsys tem MBeans

3-10 Developing Custom Management Utilities with JMX

Figure 3-2 JMS Server and JMS System Resource MBeans

ClusterMBean

ServerMBean

JMSServerMBean

SubdeploymentMBean

JMSSystemResourceMBean

JMSBean

DomainMBean

QueueBean DestinationKeyBean

TopicBean TemplateBean

JMSConnectionFactoryBean QuotaBean

DistributedQueueBean ForeignServerBean

DistributedTopicBean SAFRemoteContextBean

UniformDistributedQueueBean SAFErrorHandlingBean

UniformDistributedTopicBean SAFImportedDestinationsBean

JDBC Resource Conf igurat ion

Developing Custom Management Utilities with JMX 3-11

JDBC Resource Configuration
When you create a JDBC resource (data source or multi-data source) using the Administration
Console or using the WebLogic Scripting Tool (WLST), WebLogic Server creates a JDBC
module in the config/jdbc subdirectory of the domain directory, and adds a reference to the
module in the domain’s configuration file (config.xml).

Table 3-3 introduces the MBeans and Figure 3-3 illustrates where the MBeans are located in the
configuration MBean hierarchy.

Table 3-3 MBeans for JDBC Resources

This MBean... Configures...

JDBCSystemResourceMBean A container for the JavaBeans created from a data source
module. However, all JMX access for a JDBC data source is
through the JDBCSystemResourceMBean. You cannot
directly access the individual JavaBeans created from the data
source module.

See JDBCSystemResourceMBean in the WebLogic Server
MBean Reference.

JDBCDataSourceBean The top of the JDBC data source bean tree. JDBC data sources
all have a JDBCDataSourceBean as their root bean (a bean with
no parent).

See JDBCDataSourceBean in the WebLogic Server MBean
Reference.

JDBCDriverParamsBean Contains the driver parameters of a data source. Configuration
parameters for the JDBC Driver used by a data source are
specified using a driver parameters bean.

See JDBCDriverParamsBean in the WebLogic Server
MBean Reference.

JDBCConnectionPoolParamsB
ean

Contains the connection pool parameters of a data source.
Configuration parameters for a data source's connection pool
are specified using the connection pool parameters bean.

See JDBCDConnectionPoolParamsBean in the WebLogic
Server MBean Reference.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCSystemResourceMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDriverParamsBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCConnectionPoolParamsBean.html

Overv iew o f WebLog ic Se rve r Subsys tem MBeans

3-12 Developing Custom Management Utilities with JMX

JDBCDataSourceParamsBean Contains the basic usage parameters of a data source.
Configuration parameters for the basic usage of a data source
are specified using a data source parameters bean.

See JDBCDataSourceParamsBean in the WebLogic Server
MBean Reference.

JDBCXAParamsBean Contains the XA-related parameters of a data source.
Configuration parameters for a data source's XA-related
behavior are specified using a XA parameters bean.

See JDBCXAParamsBean in the WebLogic Server MBean
Reference.

Table 3-3 MBeans for JDBC Resources

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceParamsBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCXAParamsBean.html

JDBC Resource Conf igurat ion

Developing Custom Management Utilities with JMX 3-13

Figure 3-3 JDBC Resource MBeans

JDBCConnectionPoolParamsBean

JDBCDriverParamsBean

JDBCDataSourceBean

JDBCSystemResourceMBean

DomainMBean

JDBCDriverParamsBean

JDBCDriverParamsBean

Overv iew o f WebLog ic Se rve r Subsys tem MBeans

3-14 Developing Custom Management Utilities with JMX

Developing Custom Management Utilities with JMX 4-1

C H A P T E R 4

Accessing WebLogic Server MBeans
with JMX

The following sections describe how to access WebLogic Server MBeans from a JMX client:

“Set Up the Classpath for Remote Clients” on page 4-1

“Make Remote Connections to an MBean Server” on page 4-2

“Make Local Connections to the Runtime MBean Server” on page 4-7

“Navigate MBean Hierarchies” on page 4-8

“Example: Printing the Name and State of Servers” on page 4-9

“Example: Monitoring Servlets” on page 4-12

Set Up the Classpath for Remote Clients
If your JMX client runs in its own JVM (that is, a JVM that is not a WebLogic Server instance),
include the following JAR file in the client’s classpath:

WL_HOME\lib\wljmxclient.jar

where WL_HOME is the directory in which you installed WebLogic Server.

This JAR contains BEA’s implementation of the HTTP and IIOP protocols and its proprietary T3
protocol. With BEA’s implementation, JMX clients send login credentials with their connection
request and the WebLogic Server security framework authenticates the clients. Only
authenticated clients can access MBeans that are registered in a WebLogic Server MBean server.

Access ing WebLog ic Se rve r MBeans w i th JMX

4-2 Developing Custom Management Utilities with JMX

Note: While BEA recommends that you use its implementation of the HTTP and IIOP
protocols or its proprietary T3 protocol, JMX clients can use the IIOP protocol that is
defined in the standard JDK. See “Remote Connections Using Only JDK Classes” on
page 4-7.

Make Remote Connections to an MBean Server
Each WebLogic Server domain includes three types of MBean servers, each of which provides
access to different MBean hierarchies. See “MBean Servers” on page 2-8.

To connect to a WebLogic MBean server:

1. Describe the address of the MBean server by constructing a
javax.management.remote.JMXServiceURL object.

Pass the following parameter values to the constructor (see JMXServiceURL in the J2SE
5.0 API Specification):

– One of the following values as the protocol for communicating with the MBean server:
t3, t3s, http, https, iiop, iiops

– Listen address of the WebLogic Server instance that hosts the MBean server

– Listen port of the WebLogic Server instance

– Absolute JNDI name of the MBean server. The JNDI name must start with /jndi/ and
be followed by one of the JNDI names described in Table 4-1.

2. Construct a javax.management.remote.JMXConnector object. This object contains
methods that JMX clients use to connect to MBean servers.

The constructor method for JMXConnector is:
javax.management.remote.JMXConnectorFactory.

connector(JMXServiceURL serviceURL, Map<String,?> environment)

Table 4-1 JNDI Names for WebLogic MBean Servers

MBean Server JNDI Name

Domain Runtime MBean
Server

weblogic.management.mbeanservers.domainruntime

Runtime MBean Server weblogic.management.mbeanservers.runtime

Edit MBean Server weblogic.management.mbeanservers.edit

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

Make Remote Connect i ons to an MBean Serve r

Developing Custom Management Utilities with JMX 4-3

Pass the following parameter values to the constructor (see JMXConnectorFactory in the
J2SE 5.0 API Specification):

– The JMXServiceURL object you created in the previous step.

– A hash map that contains the following name-value pairs:
javax.naming.Context.SECURITY_PRINCIPAL, admin-user-name

javax.naming.Context.SECURITY_CREDENTIALS, admin-user-password

javax.management.remote.JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAG

ES, “weblogic.management.remote"

The weblogic.management.remote package defines the protocols that can be used to
connect to the WebLogic MBean servers. Remote JMX clients must include the classes
in this package on their classpath. See “Set Up the Classpath for Remote Clients” on
page 4-1.

3. Connect to the WebLogic MBean server by invoking the
JMXConnector.getMBeanServerConnection() method.

The method returns an object of type javax.management.MBeanServerConnection.

The MBeanServerConnection object is your connection to the WebLogic MBean server.
You can use it for local and remote connections. See MBeanServerConnection in the
J2SE 5.0 API Specification.

4. BEA recommends that when your client finishes its work, close the connection to the
MBean server by invoking the JMXConnector.close() method.

Example: Connecting to the Domain Runtime MBean Server
Note the following about the code in Listing 4-1:

The class uses global variables, connection and connector, to represent the connection
to the MBean server. The initConnection() method, which assigns the value to the
connection and connector variables, should be called only once per class instance to
establish a single connection that can be reused within the class.

The initConnection() method takes the username and password (along with the server’s
listen address and listen port) as arguments that are passed when the class is instantiated.
BEA recommends this approach because it prevents your code from containing
unencrypted user credentials. The String objects that contain the arguments will be
destroyed and removed from memory by the JVM’s garbage collection routine.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXConnectorFactory.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html

Access ing WebLog ic Se rve r MBeans w i th JMX

4-4 Developing Custom Management Utilities with JMX

When the class finishes its work, it invokes JMXConnector.close() to close the
connection to the MBean server. (See JMXConnector in the J2SE 5.0 API Specification.)

Listing 4-1 Connecting to the Domain Runtime MBean Server

public class MyConnection {

private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectName service;

/*
* Initialize connection to the Domain Runtime MBean Server.
*/
public static void initConnection(String hostname, String portString,

String username, String password) throws IOException,
MalformedURLException {

String protocol = "t3";
Integer portInteger = Integer.valueOf(portString);
int port = portInteger.intValue();
String jndiroot = "/jndi/";
String mserver = "weblogic.management.mbeanservers.domainruntime";

JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
jndiroot + mserver);

Hashtable h = new Hashtable();
h.put(Context.SECURITY_PRINCIPAL, username);
h.put(Context.SECURITY_CREDENTIALS, password);
h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");
connector = JMXConnectorFactory.connect(serviceURL, h);
connection = connector.getMBeanServerConnection();

}

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

MyConnection c= new MyConnection();
initConnection(hostname, portString, username, password);

...
connector.close();

}
}

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/JMXConnector.html

Make Remote Connect i ons to an MBean Serve r

Developing Custom Management Utilities with JMX 4-5

Best Practices: Choosing an MBean Server
A WebLogic Server domain maintains three types of MBean servers, each of which fulfills a
specific function. Access MBeans through the MBean server that supports the task you are trying
to complete:

To modify the configuration of the domain, use the Edit MBean Server.

To monitor changes to the pending hierarchy of configuration MBeans, use the Edit
MBean Server.

To monitor only active configuration MBeans (and not runtime MBeans), use a Runtime
MBean Server.

Monitoring through a Runtime MBean Server requires less memory and network traffic
than monitoring through the Domain Runtime MBean Server. (WebLogic Server does not
initialize the Domain Runtime MBean Server until a client requests a connection to it.)

In most cases, all server instances in the domain have the same set of configuration data
and it therefore does not matter whether you monitor the Runtime MBean Server on the
Administration Server or on a Managed Server. However, if you make a change that a
server cannot consume until it is restarted, the server will no longer accept any changes
and its configuration data could become outdated. In this case, monitoring this server’s
Runtime MBean Server indicates only the configuration for the specific server instance. To
understand the process of changing a WebLogic Server domain and activating the changes,
see Managing Configuration Changes in Understanding Domain Configuration.

If your client monitors runtime MBeans for multiple servers, or if your client runs in a
separate JVM, BEA recommends that you connect to the Domain Runtime MBean Server
on the Administration Server instead of connecting separately to each Runtime MBean
Server on each server instance in the domain.

If you register a JMX listener and filter with an MBean in the Domain Runtime MBean
server, the JMX filter runs in the same JVM as the MBean it monitors. For example, if you
register a filter with an MBean on a Managed Server, the filter runs on the Managed Server
and forwards only messages that satisfy the filter criteria to the listener.

In general, code that uses the Domain Runtime MBean Server is easier to maintain and is
more secure for the following reasons:

http://e-docs.bea.com/wls/docs90/domain_config/changes.html

Access ing WebLog ic Se rve r MBeans w i th JMX

4-6 Developing Custom Management Utilities with JMX

– Your code only needs to construct a single URL for connecting to the Domain Runtime
MBean Server on the Administration Server. Thereafter, the code can look up values
for all server instances and optionally filter the results.

– If your code uses the Runtime MBean Server to read MBean values on multiple server
instances, it must construct a URL for each server instance, each of which has a unique
listen address/listen port combination.

– You can route all administrative traffic in a WebLogic Server domain through the
Administration Server’s secured administration port, and you can use a firewall to
prevent connections to Managed Server administration ports from outside the firewall.

The trade off for directing all JMX requests through the Domain Runtime MBean Server is
a slight degradation in performance due to network latency and increased memory usage.
Connecting directly to each Managed Servers’s Runtime MBean Server to read MBean
values eliminates the network hop that the Domain Runtime MBean Server makes to
retrieve a value from a Managed Server. However, for most network topologies and
performance requirements, the simplified code maintenance and enhanced security that the
Domain Runtime MBean Server enables is preferable.

Figure 4-1 Domain Runtime MBean Server versus Runtime MBean Server

Administration Server

MBeanServerConnection

JMX Client

Managed Server

Managed Server

MBeanServerConnection MBeanServerConnection

(not recommended)

Domain Runtime MBean Server

Runtime MBean Server

Runtime MBean Server

Make Loca l Connect ions to the Runt ime MBean Serve r

Developing Custom Management Utilities with JMX 4-7

Remote Connections Using Only JDK Classes
BEA recommends that you use WebLogic Server classes to connect from remote JMX clients.
However, it is possible for remote JMX clients to connect to a WebLogic Server JMX agent using
only the classes in the JDK. To do so:

1. Enable the IIOP protocol for the WebLogic Server instance that hosts your MBeans.
Configure the default IIOP user to be a WebLogic Server user with Administrator privileges.

See Enable and Configure IIOP in Administration Console Online Help.

2. In your JMX client, construct a javax.management.JMXConnector object as follows:
String hostname = “WLS-host”
int port = WLS-port
String protocol = "rmi";
String jndiroot= new String("/jndi/iiop://" + hostname + ":" +

port + "/");
String mserver = "MBean-server-JNDI-name";

JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
jndiroot + mserver);

Hashtable h = new Hashtable();
h.put(Context.SECURITY_PRINCIPAL, username);
h.put(Context.SECURITY_CREDENTIALS, password);

connector = JMXConnectorFactory.connect(serviceURL, h);

where WLS-host and WLS-port are the listen address and listen port of a WebLogic Server
instance and MBean-server-JNDI-name is one of the values listed in Table 4-1, “JNDI
Names for WebLogic MBean Servers,” on page 4-2.

Note that the hash table you create does not include the name of a protocol package. By leaving
this value as null, the JMX client uses the protocol definitions from the
com.sun.jmx.remote.protocol package, which is in the JDK.

Make Local Connections to the Runtime MBean Server
Local clients can access a WebLogic Server instance’s Runtime MBean Server through the JNDI
tree instead of constructing a JMXServiceURL object. Only the Runtime MBean Server registers
itself in the JNDI tree.

When accessed from JNDI, the Runtime MBean Server returns its
javax.management.MBeanServer interface. This interface contains all of the methods in the
MBeanServerConnection interface plus additional methods such as registerMBean(), which

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/channels/EnableAndConfigureIIOP.html

Access ing WebLog ic Se rve r MBeans w i th JMX

4-8 Developing Custom Management Utilities with JMX

local process can use to register custom MBeans. (See MBeanServer in the J2SE 5.0 API
Specification.)

If the classes for the JMX client are located at the top level of an enterprise application (that is, if
they are deployed from the application’s APP-INF directory), then the JNDI name for the
Runtime MBean Server is:
java:comp/env/jmx/runtime

If the classes for the JMX client are located in a J2EE module, such as an EJB or Web application,
then the JNDI name for the Runtime MBeanServer is:
java:comp/jmx/runtime

For example:
InitialContext ctx = new InitialContext();

server = (MBeanServer)ctx.lookup("java:comp/jmx/runtime");

Navigate MBean Hierarchies
WebLogic Server organizes its MBeans in a hierarchical data model. (See “WebLogic Server
MBean Data Model” on page 2-4.) In this model, all parent MBeans include attributes that
contain the object names of their children. You use the child’s object name in standard JMX APIs
to get or set values of the child MBean’s attributes or invoke its methods.

To navigate the WebLogic Server MBean hierarchy:

1. Initiate a connection to an MBean server.

See the previous section, “Make Remote Connections to an MBean Server” on page 4-2.

Initiating the connection returns an object of type
javax.management.MBeanServerConnection.

2. Obtain the object name for an MBean at the root of an MBean hierarchy by invoking the
MBeanServerConnection.getAttribute(ObjectName object-name,
String attribute) method where:

– object-name is the object name of the service MBean that is registered in the MBean
server. (See “Service MBeans” on page 2-11.)

Table 2-3, “Service MBeans,” on page 2-12 describes the type of service MBeans that
are available in each type of MBean server.

– attribute is the name of a service MBean attribute that contains the root MBean.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServer.html

Example : P r in t ing the Name and S ta te o f Se rve rs

Developing Custom Management Utilities with JMX 4-9

3. Successively invoke code similar to the following:
ObjectName on =

MBeanServerConnection.getAttribute(object-name, attribute)
where:

– object-name is the object name of the current node (MBean) in the MBean hierarchy.

– attribute is the name of an attribute in the current MBean that contains one or more
instances of a child MBean. If the attribute contains multiple children, assign the output
to an object name array, ObjectName[].

To determine an MBean’s location in an MBean hierarchy, refer to the MBean’s description in
WebLogic Server MBean Reference. For each MBean, the WebLogic Server MBean Reference
lists the parent MBean that contains the current MBean’s factory methods. For an MBean whose
factory methods are not public, the WebLogic Server MBean Reference lists other MBeans from
which you can access the current MBean.

Example: Printing the Name and State of Servers
The code example in Listing 4-2 connects to the Domain Runtime MBean Server and uses the
DomainRuntimeServiceMBean to get the object name for each ServerRuntimeMBean in the
domain. Then it retrieves and prints the value of each server’s ServerRuntimeMBean Name and
State attributes.

Note the following about the code in Listing 4-2:

In addition to the connection and connector global variables, the class assigns the
object name for the WebLogic Server service MBean to a global variable. Methods within
the class will use this object name frequently, and once it is defined it does not need to
change.

The printServerRuntimes() method gets the value of the
DomainRuntimeServiceMBean ServerRuntimes attribute, which contains an array of all
ServerRuntimeMBean instances in the domain. (See DomainRuntimeServiceMBean in
WebLogic Server MBean Reference.)

Listing 4-2 Example: Print the Name and State of Servers

import java.io.IOException;

import java.net.MalformedURLException;

import java.util.Hashtable;

http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DomainRuntimeServiceMBean.html

Access ing WebLog ic Se rve r MBeans w i th JMX

4-10 Developing Custom Management Utilities with JMX

import javax.management.MBeanServerConnection;

import javax.management.MalformedObjectNameException;

import javax.management.ObjectName;

import javax.management.remote.JMXConnector;

import javax.management.remote.JMXConnectorFactory;

import javax.management.remote.JMXServiceURL;

import javax.naming.Context;

public class PrintServerState {

private static MBeanServerConnection connection;

private static JMXConnector connector;

private static final ObjectName service;

// Initializing the object name for DomainRuntimeServiceMBean

// so it can be used throughout the class.

static {

try {

service = new ObjectName(

"com.bea:Name=DomainRuntimeService,Type=weblogic.management.

 mbeanservers.domainruntime.DomainRuntimeServiceMBean");

}catch (MalformedObjectNameException e) {

throw new AssertionError(e.getMessage());

}

}

/*

* Initialize connection to the Domain Runtime MBean Server

*/

public static void initConnection(String hostname, String portString,

String username, String password) throws IOException,

MalformedURLException {

String protocol = "t3";

Integer portInteger = Integer.valueOf(portString);

int port = portInteger.intValue();

String jndiroot = "/jndi/";

String mserver = "weblogic.management.mbeanservers.domainruntime";

JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname,

port, jndiroot + mserver);

Hashtable h = new Hashtable();

Example : P r in t ing the Name and S ta te o f Se rve rs

Developing Custom Management Utilities with JMX 4-11

h.put(Context.SECURITY_PRINCIPAL, username);

h.put(Context.SECURITY_CREDENTIALS, password);

h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");

connector = JMXConnectorFactory.connect(serviceURL, h);

connection = connector.getMBeanServerConnection();

}

/*

* Print an array of ServerRuntimeMBeans.

* This MBean is the root of the runtime MBean hierarchy, and

* each server in the domain hosts its own instance.

*/

public static ObjectName[] getServerRuntimes() throws Exception {

return (ObjectName[]) connection.getAttribute(service,

"ServerRuntimes");

}

/*

* Iterate through ServerRuntimeMBeans and get the name and state

*/

public void printNameAndState() throws Exception {

ObjectName[] serverRT = getServerRuntimes();

System.out.println("got server runtimes");

int length = (int) serverRT.length;

for (int i = 0; i < length; i++) {

String name = (String) connection.getAttribute(serverRT[i],

"Name");

String state = (String) connection.getAttribute(serverRT[i],

"State");

System.out.println("Server name: " + name + ". Server state: "

+ state);

}

}

public static void main(String[] args) throws Exception {

String hostname = args[0];

String portString = args[1];

String username = args[2];

String password = args[3];

Access ing WebLog ic Se rve r MBeans w i th JMX

4-12 Developing Custom Management Utilities with JMX

PrintServerState s = new PrintServerState();

initConnection(hostname, portString, username, password);

s.printNameAndState();

connector.close();

}

}

Example: Monitoring Servlets
Each servlet in a Web application provides instance of ServletRuntimeMBean which contains
information about the servlet’s runtime state. (See ServletRuntimeMBean in WebLogic Server
MBean Reference.)

In the WebLogic Server data model, the path to a ServletRuntimeMBean is as follows:

1. The Domain Runtime MBean Server (for all servlets on all servers in the domain), or the
Runtime MBean Server on a specific server instance.

2. DomainRuntimeServiceMBean or RuntimeServiceMBean, ServerRuntimes attribute.

3. ServerRuntimeMBean, ApplicationRuntimes attribute.

4. ApplicationRuntimeMBean, ComponentRuntimes attribute.

The ComponentRuntimes attribute contains many types of component runtime MBeans,
one of which is WebAppComponentRuntimeMBean. When you get the value of this
attribute, you use the child MBean’s Type attribute to get a specific type of component
runtime MBean.

5. WebAppComponentRuntimeMBean, ServletRuntimes attribute.

The code in Listing 4-3 navigates the hierarchy described in the previous paragraphs and gets
values of ServletRuntimeMBean attributes.

Listing 4-3 Monitoring Servlets

import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServletRuntimeMBean.html

Example : Mon i to r ing Se rv le ts

Developing Custom Management Utilities with JMX 4-13

import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class MonitorServlets {
private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectName service;

// Initializing the object name for DomainRuntimeServiceMBean
// so it can be used throughout the class.
static {

try {
service = new ObjectName(
"com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanser
vers.domainruntime.DomainRuntimeServiceMBean");

}catch (MalformedObjectNameException e) {
throw new AssertionError(e.getMessage());

}
}

/*
* Initialize connection to the Domain Runtime MBean Server
*/
public static void initConnection(String hostname, String portString,

String username, String password) throws IOException,
MalformedURLException {
String protocol = "t3";
Integer portInteger = Integer.valueOf(portString);
int port = portInteger.intValue();
String jndiroot = "/jndi/";
String mserver = "weblogic.management.mbeanservers.domainruntime";

JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname,
port, jndiroot + mserver);

Hashtable h = new Hashtable();
h.put(Context.SECURITY_PRINCIPAL, username);
h.put(Context.SECURITY_CREDENTIALS, password);
h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");
connector = JMXConnectorFactory.connect(serviceURL, h);
connection = connector.getMBeanServerConnection();

}

/*
* Get an array of ServerRuntimeMBeans

Access ing WebLog ic Se rve r MBeans w i th JMX

4-14 Developing Custom Management Utilities with JMX

*/
public static ObjectName[] getServerRuntimes() throws Exception {

return (ObjectName[]) connection.getAttribute(service,
"ServerRuntimes");

}

/*
* Get an array of WebApplicationComponentRuntimeMBeans
*/
public void getServletData() throws Exception {

ObjectName[] serverRT = getServerRuntimes();
int length = (int) serverRT.length;
for (int i = 0; i < length; i++) {

ObjectName[] appRT =
(ObjectName[]) connection.getAttribute(serverRT[i],
"ApplicationRuntimes");

int appLength = (int) appRT.length;
for (int x = 0; x < appLength; x++) {

System.out.println("Application name: " +
(String)connection.getAttribute(appRT[x], "Name"));

ObjectName[] compRT =
(ObjectName[]) connection.getAttribute(appRT[x],
"ComponentRuntimes");

int compLength = (int) compRT.length;
for (int y = 0; y < compLength; y++) {

System.out.println(" Component name: " +
(String)connection.getAttribute(compRT[y], "Name"));

String componentType =
(String) connection.getAttribute(compRT[y], "Type");

System.out.println(componentType.toString());
if (componentType.toString().equals("WebAppComponentRuntime")){

ObjectName[] servletRTs = (ObjectName[])
connection.getAttribute(compRT[y], "Servlets");

int servletLength = (int) servletRTs.length;
for (int z = 0; z < servletLength; z++) {

System.out.println(" Servlet name: " +
(String)connection.getAttribute(servletRTs[z],
"Name"));

System.out.println(" Servlet context path: " +
(String)connection.getAttribute(servletRTs[z],
"ContextPath"));

System.out.println(" Invocation Total Count : " +
(Object)connection.getAttribute(servletRTs[z],
"InvocationTotalCount"));

}
}

}
}

Example : Mon i to r ing Se rv le ts

Developing Custom Management Utilities with JMX 4-15

}
}

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

MonitorServlets s = new MonitorServlets();
initConnection(hostname, portString, username, password);
s.getServletData();
connector.close();

}
}

Access ing WebLog ic Se rve r MBeans w i th JMX

4-16 Developing Custom Management Utilities with JMX

Developing Custom Management Utilities with JMX 5-1

C H A P T E R 5

Managing a Domain’s Configuration
with JMX

The following sections describe managing a WebLogic Server domain’s configuration through
JMX:

“Editing MBean Attributes: Main Steps” on page 5-2

“Listing and Undoing Changes” on page 5-9

“Tracking the Activation of Changes” on page 5-13

“Managing Locks” on page 5-16

“Best Practices: Recommended Pattern for Editing and Handling Exceptions” on page 5-17

“Setting and Getting Encrypted Values” on page 5-21

To understand the process of changing a WebLogic Server domain and activating the changes,
see Managing Configuration Changes in Understanding Domain Configuration.

http://e-docs.bea.com/wls/docs90/domain_config/changes.html

Managing a Domain ’s Conf igura t ion w i th JMX

5-2 Developing Custom Management Utilities with JMX

Editing MBean Attributes: Main Steps
To edit MBean attributes:

1. Start an Edit Session.

All edits to MBean attributes occur within the context of an edit session, and within each
WebLogic Server domain only one edit session can be active at a time. Once a user has
started an edit session, WebLogic Server locks other users from accessing the pending
configuration MBean hierarchy. See “Managing Locks” on page 5-16.

2. Change Attributes or Create New MBeans.

Changing an MBean attribute or creating a new MBean updates the in-memory hierarchy
of pending configuration MBeans. If you end your edit session before saving these
changes, the unsaved changes will be discarded.

3. Save Changes to the Pending Configuration Files.

When you are satisfied with your changes to the in-memory hierarchy, save them to the
domain’s pending configuration files. Any changes that you save remain in the pending
configuration files until they have been activated or explicitly reverted. If you end your
edit session before activating the saved changes, you or someone else can activate them in
a subsequent edit session.

You can iteratively make changes and save changes before activating them. For example,
you can create and save a server. Then you can configure the new server’s listen port and
listen address and save those changes. Organizing your code in this way can facilitate
correcting any validation errors.

4. Activate Your Saved Changes.

When you activate your changes, WebLogic Server copies the saved, pending
configuration files to all servers in the domain. Each server evaluates the changes and
indicates whether it can consume them. If it can, then it updates its active configuration
files and in-memory hierarchy of configuration MBeans.

5. Restart any server instances that have been updated with changes that require a server
restart.

For an example of editing MBeans and activating the edits, see “Example: Changing the
Administration Port” on page 5-5.

Edi t ing MBean At t r ibutes : Main S teps

Developing Custom Management Utilities with JMX 5-3

Start an Edit Session
To start an edit session:

1. Initiate a connection to the Edit MBean Server.

The connection returns an object of type java.management.MBeanServerConnection.

See “Make Remote Connections to an MBean Server” on page 4-2.

2. Get the object name for ConfigurationManagerMBean.

ConfigurationManagerMBean provides methods to start and stop edit sessions, and save,
undo, and activate configuration changes. (See ConfigurationManagerMBean in
WebLogic Server MBean Reference.)

Each domain has only one instance of ConfigurationManagerMBean and it is contained
in the EditServiceMBean ConfigurationManager attribute. EditServiceMBean is
your entry point for all edit operations. It has a simple, fixed object name and contains
attributes and operations for accessing all other MBeans in the Edit MBean Server.

To get the ConfigurationManagerMBean object name, use the following method:
MBeanServerConnection.getAttribute(

ObjectName object-name, String attribute)

where:

– object-name is the literal
“com.bea:Name=EditService,Type=weblogic.management.mbeanservers.edit

.EditServiceMBean”, which is the object name of EditServiceMBean.

– attribute is the literal “ConfigurationManager”, which is the name of the attribute
in EditServiceMBean that contains ConfigurationManagerMBean.

3. Start an edit session.

To start an edit session, invoke the
ConfigurationManagerMBean startEdit(int waitTime, int timeout) operation
where:

– waitTime specifies how many milliseconds ConfigurationManagerMBean waits to
establish a lock on the edit MBean hierarchy. You cannot establish a lock if other edits
are in progress unless you have administrator privileges (see “Managing Locks” on
page 5-16).

– timeout specifies how many milliseconds you have to complete your edit session. If
the time expires before you save or activate your edits, all of your unsaved changes are
discarded.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ConfigurationManagerMBean.html

Managing a Domain ’s Conf igura t ion w i th JMX

5-4 Developing Custom Management Utilities with JMX

The startEdit operation returns either of the following:

– If it cannot establish a lock on the edit tree within the amount of time that you
specified, it throws
weblogic.management.mbeanservers.edit.EditTimedOutException.

– If it successfully locks the edit tree, it returns an object name for DomainMBean, which
is the root of the edit MBean hierarchy.

Change Attributes or Create New MBeans
To change the attribute values of existing MBeans, create new MBeans, or delete MBeans:

1. Navigate the hierarchy of the edit tree and retrieve an object name for the MBean that you
want to edit. To create or delete MBeans, retrieve an object name for the MBean that contains
the appropriate factory methods.

See “Navigate MBean Hierarchies” on page 4-8.

2. To change the value of an MBean attribute, invoke the
MBeanServerConnection.setAttribute(object-name, attribute) method where:

– object-name is the object name of the MBean that you want to edit.

– attribute is a javax.management.Attribute object, which contains the name of
the MBean attribute that you want to change and its new value.

To create an MBean, invoke the MBean’s create method. For example, the factory method
to create an instance of ServerMBean is createServer(String name) in DomainMBean.
In WebLogic Server MBean Reference, each MBean describes the location of its factory
methods. (See ServerMBean.)

3. (Optional) If you organize your edits into multiple steps, consider validating your changes
after each step by invoking the ConfigurationManagerMBean validate() operation.

The validate method verifies that all unsaved changes satisfy dependencies between
MBean attributes and makes other checks that cannot be made at the time that you set the
value of a single attribute.

If it finds validation errors, the validate() operation throws an exception of type
weblogic.management.mbeanservers.edit.ValidationException. See “Exception
Types Thrown by Edit Operations” on page 5-9.

Validating is optional because the save() operation also validates changes before saving.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html

Edi t ing MBean At t r ibutes : Main S teps

Developing Custom Management Utilities with JMX 5-5

Save Changes to the Pending Configuration Files
Save your changes by invoking the ConfigurationManagerMBean save() operation.

Activate Your Saved Changes
To activate your saved changes throughout the domain:

1. Invoke the ConfigurationManagerMBean activate(long timeout) operation where
timeout specifies how many milliseconds the operation has to complete.

The activate operation returns an object name for an instance of
ActivationTaskMBean, which contains information about the activation request. See
“Listing and Undoing Changes” on page 5-9.

When the activate operation succeeds or times out, it releases your lock on the editable
MBean hierarchy.

2. Close your connection to the MBean server by invoking JMXConnector.close().

Example: Changing the Administration Port
The code example in Listing 5-1 changes the context path that you use to access the
Administration Console for a domain. This behavior is defined by the DomainMBean
ConsoleContextPath attribute.

Note the following about the code example:

For information on how the class connects to the Edit MBean Server, see “Make Remote
Connections to an MBean Server” on page 4-2.

To simplify the code for learning purposes, exception handling in Listing 5-1 is minimal.
See “Best Practices: Recommended Pattern for Editing and Handling Exceptions” on
page 5-17.

Listing 5-1 Example: Changing the Administration Console’s Context Path

import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;

import javax.management.Attribute;
import javax.management.MBeanServerConnection;

Managing a Domain ’s Conf igura t ion w i th JMX

5-6 Developing Custom Management Utilities with JMX

import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class EditWLSMBeans {
private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectName service;

// Initializing the object name for EditServiceMBean
// so it can be used throughout the class.
static {

try {
service = new ObjectName(

"com.bea:Name=EditService,Type=weblogic.management.mbeanservers.
edit.EditServiceMBean");

} catch (MalformedObjectNameException e) {
throw new AssertionError(e.getMessage());

}
}

/**
* --
* Methods to start an edit session.
* NOTE: Error handling is minimal to help you see the
* main steps in editing MBeans. Your code should
* include logic to catch and process exceptions.
* --
*/

/*
* Initialize connection to the Edit MBean Server.
*/
public static void initConnection(String hostname, String portString,

String username, String password) throws IOException,
MalformedURLException {

String protocol = "t3";
Integer portInteger = Integer.valueOf(portString);
int port = portInteger.intValue();
String jndiroot = "/jndi/";
String mserver = "weblogic.management.mbeanservers.edit";

JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
jndiroot + mserver);

Edi t ing MBean At t r ibutes : Main S teps

Developing Custom Management Utilities with JMX 5-7

Hashtable h = new Hashtable();
h.put(Context.SECURITY_PRINCIPAL, username);
h.put(Context.SECURITY_CREDENTIALS, password);
h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");
connector = JMXConnectorFactory.connect(serviceURL, h);
connection = connector.getMBeanServerConnection();

}

/**
* Start an edit session.
*/
public ObjectName startEditSession() throws Exception {

// Get the object name for ConfigurationManagerMBean.
ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,

"ConfigurationManager");

// Instruct MBeanServerConnection to invoke
// ConfigurationManager.startEdit(int waitTime int timeout).
// The startEdit operation returns a handle to DomainMBean, which is
// the root of the edit hierarchy.
ObjectName domainConfigRoot = (ObjectName)

connection.invoke(cfgMgr,"startEdit",
new Object[] { new Integer(60000),
new Integer(120000) }, new String[] { "java.lang.Integer",
"java.lang.Integer" });

if (domainConfigRoot == null) {
// Couldn't get the lock
throw new Exception("Somebody else is editing already");

}
return domainConfigRoot;

/**
* --
* Methods to change MBean attributes.
* --
*/

/**
* Modify the DomainMBean's ConsoleContextPath attribute.
*/
public void editConsoleContextPath(ObjectName cfgRoot) throws Exception {

// The calling method passes in the object name for DomainMBean.
// This method only needs to set the value of an attribute
// in DomainMBean.
Attribute adminport = new Attribute("ConsoleContextPath", new String(

"secureConsoleContext"));
connection.setAttribute(cfgRoot, adminport);
System.out.println("Changed the Admin Console context path to " +

Managing a Domain ’s Conf igura t ion w i th JMX

5-8 Developing Custom Management Utilities with JMX

"secureConsoleContext");
}

/**
* --
* Method to activate edits.
* --
*/
public ObjectName activate() throws Exception {

// Get the object name for ConfigurationManagerMBean.
ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,

"ConfigurationManager");
// Instruct MBeanServerConnection to invoke
// ConfigurationManager.activate(long timeout).
// The activate operation returns an ActivationTaskMBean.
// You can use the ActivationTaskMBean to track the progress
// of activating changes in the domain.
ObjectName task = (ObjectName) connection.invoke(cfgMgr, "activate",

new Object[] { new Long(120000) }, new String[] { "java.lang.Long" });
return task;

}

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

EditWLSMBeans ewb = new EditWLSMBeans();

// Initialize a connection with the MBean server.
initConnection(hostname, portString, username, password);

// Get an object name for the Configuration Manager.
ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,

"ConfigurationManager");

// Start an edit session.
ObjectName cfgRoot = ewb.startEditSession();
// Edit the server log MBeans.
ewb.editConsoleContextPath(cfgRoot);

// Save and activate.
connection.invoke(cfgMgr, "save", null, null);
ewb.activate();

// Close the connection with the MBean server.
connector.close();

}
}

L is t ing and Undo ing Changes

Developing Custom Management Utilities with JMX 5-9

Exception Types Thrown by Edit Operations
Table 5-1 describes all of the exception types that WebLogic Server can throw during edit
operations. When WebLogic Server throws such an exception, the MBean server wraps the
exception in javax.management.MBeanException. (See MBeanException in the J2SE 5.0
API Specification.)

Listing and Undoing Changes
The following sections describe working with changes that you have made during an edit session:

“List Unsaved Changes” on page 5-10

“List Unactivated Changes” on page 5-10

“List Changes in the Current Activation Task” on page 5-12

“Undoing Changes” on page 5-13

WebLogic Server describes changes in a Change object, which is of type
javax.management.openmbean.CompositeType. See CompositeType in the J2SE 5.0 API
Specification.

Through JMX, you can access information about the changes to a domain’s configuration that
have occurred during the current server session only. WebLogic Server maintains an archive of
configuration files, but the archived data and comparisons of archive versions is not available
through JMX.

Table 5-1 Exception Types Thrown by Edit Operations

Exception Type Thrown When

EditTimedOutException The request to start an edit session times out.

NotEditorException You attempt to edit MBeans without having a lock or when an
administrative user cancels your lock and starts an edit session.

ValidationException You set an MBean attribute’s value to the wrong data type, outside an
allowed range, not one of a specified set of values, or incompatible with
dependencies in other attributes.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanException.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeType.html

Managing a Domain ’s Conf igura t ion w i th JMX

5-10 Developing Custom Management Utilities with JMX

List Unsaved Changes
For each change that you make to an MBean attribute, WebLogic Server creates a Change object
which contains information about the change. You can access these objects from the
ConfigurationManagerMBean Changes attribute until you save the changes. See
ConfigurationManagerMBean Changes in WebLogic Server MBean Reference.

Any unsaved changes are discarded when your edit session ends.

To list unsaved changes:

1. Start an edit session and change at least one MBean attribute.

2. Get the value of the ConfigurationManagerMBean Changes attribute and assign the
output to a variable of type Object[].

3. For each object in the array, invoke Object.toString() to output a description of the
change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast
each item in the array as a CompositeType and invoke CompositeType methods on the
change. See CompositeType in the J2SE 5.0 API Specification.

The code in Listing 5-2 creates a method that lists unsaved changes. It assumes that the calling
method has already established a connection to the Edit MBean Server.

Listing 5-2 Example Method that Lists Unsaved Changes

public void listUnsaved() throws Exception {
ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
"ConfigurationManager");
Object[] list = (Object[])connection.getAttribute(cfgMgr, "Changes");
int length = (int) list.length;
for (int i = 0; i < length; i++) {

System.out.println("Unsaved change: " + list[i].toString());
}

}

List Unactivated Changes
When anyone saves changes, WebLogic Server persists the changes in the pending configuration
files. The changes remain in these files, even across multiple editing sessions, unless a user who

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ConfigurationManagerMBean.html#Changes
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeType.html

L is t ing and Undo ing Changes

Developing Custom Management Utilities with JMX 5-11

has started an edit session invokes the ConfigurationManagerMBean
undoUnactivatedChanges() operation, which reverts all unactivated changes from the
pending files.

The ConfigurationManagerMBean UnactivatedChanges attribute contains Change objects
for both unsaved changes and changes that have been saved but not activated. (There is no
attribute that contains only saved but unactivated changes.) See ConfigurationManagerMBean
UnactivatedChanges in WebLogic Server MBean Reference.

To list changes that you have saved in the current editing session but not activated, or changes
that your or others have saved in previous editing sessions but not activated:

1. Start an edit session and change at least one MBean attribute.

2. Get the value of the ConfigurationManagerMBean UnactivatedChanges attribute and
assign the output to a variable of type Object[].

3. For each object in the array, invoke Object.toString() to output a description of the
change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast
each item in the array as a CompositeType and invoke CompositeType methods on the
change. See CompositeType in the J2SE 5.0 API Specification.

The code in Listing 5-3 creates a method that lists unactivated changes. It assumes that the calling
method has already established a connection to the Edit MBean Server.

Listing 5-3 Example Method that Lists Unactivated Changes

public void listUnactivated() throws Exception {
ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
"ConfigurationManager");
Object[] list = (Object[])connection.getAttribute(cfgMgr,

"UnactivatedChanges");
int length = (int) list.length;
for (int i = 0; i < length; i++) {

System.out.println("Unactivated changes: " + list[i].toString());
}

}

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ConfigurationManagerMBean.html#UnactivatedChanges
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ConfigurationManagerMBean.html#UnactivatedChanges
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeType.html

Managing a Domain ’s Conf igura t ion w i th JMX

5-12 Developing Custom Management Utilities with JMX

List Changes in the Current Activation Task
When you activate changes, WebLogic Server creates an instance of ActivationTaskMBean,
which contains one Change object for each change that is being activated. You can access these
ActivationTaskMBeans from either of the following:

The ConfigurationManagerMBean activate() method returns an object name for the
ActivationTaskMBean that describes the current activation task.

The ConfigurationManagerMBean CompletedActivationTasks attribute can
potentially contain a list of all ActivationTaskMBean instances that have been created
during the current Administration Server instantiation. See “Listing All Activation Tasks
Stored in Memory” on page 5-14.

To list changes in the current activation task only:

1. Start an edit session.

2. Assign the output of the activate operation to an instance variable of type
javax.management.ObjectName.

3. Get the value of the ActivationTaskMBean Changes attribute. and assign the output to a
variable of type Object[].

4. For each object in the array, invoke Object.toString() to output a description of the
change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast
each item in the array as a CompositeType and invoke CompositeType methods on the
change. See CompositeType in the J2SE 5.0 API Specification.

The code in Listing 5-4 creates a method that lists all changes activated in the current editing
session. It assumes that the calling method has already established a connection to the Edit
MBean Server.

Listing 5-4 Example Method that Lists Changes in the Current Activation Task

public void activateAndList()
throws Exception {
ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,

"ConfigurationManager");
ObjectName task = (ObjectName) connection.invoke(cfgMgr, "activate",

new Object[] { new Long(120000) }, new String[] { "java.lang.Long" });
Object[] changes = (Object[])connection.getAttribute(task, "Changes");

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeType.html

T rack ing the Ac t i vat i on o f Changes

Developing Custom Management Utilities with JMX 5-13

int i = (int) changes.length;
for (int i = 0; i< i; i++) {

System.out.println("Changes activated: " + changes[i].toString());
}

}

Undoing Changes
ConfigurationManagerMBean provides two operations for undoing changes made during an
editing session:

undo

Reverts unsaved changes.

undoUnactivatedChanges

Reverts all changes, saved or unsaved, that have not yet been activated. If other users have
saved changes in a previous editing session but not activated those changes, invoking the
ConfigurationManagerMBean undoUnactivatedChanges() operation reverts those
changes as well.

After you invoke this method, the pending configuration files are identical to the working
configuration files that the active servers use.

To undo changes, start an edit session and invoke the ConfigurationManagerMBean undo or
undoUnactivatedChanges operation.

For example:
connection.invoke(cfgMgr, "undo", null, null);

Tracking the Activation of Changes
In addition to maintaining a list of changes, each ActivationTaskMBean that WebLogic Server
creates when you invoke the activate operation describes which user activated the changes, the
status of the activation task, and the time at which the changes were activated.

The Administration Server maintains instances of ActivationTaskMBean in memory only; they
are not persisted and are destroyed when you shut down the Administration Server. Because the
ActivationTaskMBean instances contain a list of Change objects (each of which describes a
single change to an MBean attribute), they use a significant amount of memory. To save memory,
by default the Administration Server maintains only a few of the most recent

Managing a Domain ’s Conf igura t ion w i th JMX

5-14 Developing Custom Management Utilities with JMX

ActivationTaskMBean instances in memory. To change the default, increase the value of the
ConfigurationManagerMBean CompletedActivationTasksCount attribute.

The following sections describe working with instances of ActivationTaskMBean:

“Listing the Status of the Current Activation Task” on page 5-14

“Listing All Activation Tasks Stored in Memory” on page 5-14

“Purging Completed Activation Tasks from Memory” on page 5-15

Listing the Status of the Current Activation Task
When you invoke the activate operation, WebLogic Server returns an ActivationTaskMBean
instance to represent the activation task.

The ActivationTaskMBean State attribute describes the status of the activation task. This
attribute stores an int value and ActivationTaskMBean defines constants for each of the int
values. See ActivationTaskMBean in WebLogic Server MBean Reference.

To list the status of the current activation task:

1. Start an edit session and change at least one MBean attribute.

2. Invoke the ConfigurationManagerMBean activate(long timeout) operation and
assign the output to a variable of type ActivationTaskMBean.

3. Get the value of the ActivationTaskMBean State attribute.

Listing All Activation Tasks Stored in Memory
The ActivationTaskMBean that the activate operation returns describes only a single
activation task. The Administration Server keeps this ActivationTaskMBean in memory until
you purge it (see “Purging Completed Activation Tasks from Memory” on page 5-15) or the
number of activation tasks exceeds the value of the ConfigurationManagerMBean
CompletedActivationTasksCount attribute.

To access all ActivationTaskMBean instances that are currently stored in memory (see
Listing 5-5):

1. Connect to the Edit MBean Server. (You do not need to start an edit session.)

2. Get the value of the ConfigurationManagerMBean CompletedActivationTasks
attribute and assign the output to a variable of type Object[].

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ActivationTaskMBean.html

T rack ing the Ac t i vat i on o f Changes

Developing Custom Management Utilities with JMX 5-15

3. (Optional) For each object in the array, get and print the value of ActivationTaskMBean
attributes such as User and State.

See ActivationTaskMBean in WebLogic Server MBean Reference.

4. (Optional) For each object in the array, get the value of the Changes attribute. Invoke
Object.toString() to output the value of the Change object.

Listing 5-5 Example Method that Lists All Activation Tasks in Memory

public void listActivated() throws Exception {
ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
"ConfigurationManager");
ObjectName[] list = (ObjectName[])connection.getAttribute(cfgMgr,

"CompletedActivationTasks");
System.out.println("Listing completed activation tasks.");
int length = (int) list.length;
for (int i = 0; i < length; i++) {

System.out.println("Activation task " + i);
System.out.println("User who started activation: " +

connection.getAttribute(list[i], "User"));
System.out.println("Task state: " + connection.getAttribute(list[i],

"State"));
System.out.println("Start time: " + connection.getAttribute(list[i],

"StartTime"));

Object[] changes = (Object[])connection.getAttribute(list[i], "Changes");
int l = (int) changes.length;
for (int y = 0; y < l; y++) {

System.out.println("Changes activated: " + changes[y].toString());
}

}
}

Purging Completed Activation Tasks from Memory
Because the ActivationTaskMBean instances contain a list of Change objects (each of which
describes a single change to an MBean attribute), they use a significant amount of memory.

If the Administration Server is running out of memory, you can purge completed activation tasks
from memory. Then decrease the value of the ConfigurationManagerMBean
CompletedActivationTasksCount attribute.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ActivationTaskMBean.html

Managing a Domain ’s Conf igura t ion w i th JMX

5-16 Developing Custom Management Utilities with JMX

To purge completed activation tasks from memory, connect to the Edit MBean Server and invoke
the ConfigurationManagerMBean purgeCompletedActivationTasks operation.

For example:
connection.invoke(cfgMgr, "purgeCompletedActivationTasks", null, null);

Managing Locks
To prevent changes that could leave the pending configuration MBean hierarchy in an
inconsistent state, only one user at a time can edit MBeans. When a user invokes the
ConfigurationManagerMBean startEdit operation, the ConfigurationManagerMBean
prevents other users (locks) from starting edit sessions.

The following actions remove the lock:

The ConfigurationManagerMBean activate operation succeeds or times out.

You can use the ActivationTaskMBean waitForTaskCompletion operation to block
until the activation process is complete.

The ConfigurationManagerMBean stopEdit operation succeeds.

A user with administrator privileges invokes the ConfigurationManagerMBean
cancelEdit operation while another user has the lock.

For example, connection.invoke(cfgMgr, "cancelEdit", null, null);

An edit session has been started under a user identity and another process starts an edit
session under the same user identity.

For example, if you use the Administration Console to start an edit session and shortly
afterwards use the WebLogic Scripting Tool (WLST) to start an edit session under the
same user identity, the WLST session will remove the lock from your Administration
Console session.

To prevent another process from starting an edit session under your user identity, get an
exclusive lock by passing a boolean of value true to the startEdit operation. See
startEdit(waitTimeInMillis, timeOutInMillis, exclusive) in the WebLogic
Server MBean Reference.

All unsaved changes are lost when the lock is removed.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ConfigurationManagerMBean.html#startEdit

Bes t P ract ices : Recommended Pat te rn f o r Ed i t ing and Hand l ing Except ions

Developing Custom Management Utilities with JMX 5-17

Best Practices: Recommended Pattern for Editing and Handling
Exceptions

BEA recommends that you organize your editing code into several try-catch blocks. Such an
organization will enable you to catch specific types of errors and respond appropriately. For
example, instead of abandoning the entire edit session if a change is invalid, your code can save
the changes, throw an exception and exit without attempting to activate invalid changes.

JMX agents wrap all exceptions in a generic exception of type
javax.management.MBeanException. A JMX client can use the
MBeanException.getTargetException() to unwrap the wrapped exception.

Consider using the following structure (see the pseudo-code in Listing 5-6):

A try block that connects to the Edit MBean Server, starts an edit session, and makes and
saves changes.

After this try block, one catch block for each of the following types of exception wrapped
within MBeanException:
– EditTimedOutException

This exception is thrown if the ConfigurationManagerMBean startEdit()
operation cannot get a lock within the amount of time that you specify.

– NotEditorException

This exception is thrown if the edit session times out or an administrator cancels your
edit session. (See “Managing Locks” on page 5-16.)

– ValidationException

This exception is thrown if you set a value in an MBean that is the wrong data type,
outside an allowed range, not one of a specified set of values, or incompatible with
dependencies in other attributes.

Within the code that handles ValidationException, include a try block that either
attempts to correct the validation error or stops the edit session by invoking the
ConfigurationManagerMBean stopEdit() operation. If the try block stops the edit
session, its catch block should ignore the NotEditorException. This exception
indicates that you no longer have a lock on the pending configuration MBean
hierarchy; however, because you want to abandon changes and release your lock
anyway, it is not an error condition for this exception to be thrown.

A try block that activates the changes that have been saved.

Managing a Domain ’s Conf igura t ion w i th JMX

5-18 Developing Custom Management Utilities with JMX

The ConfigurationManager activate(long timeout) operation returns an instance of
ActivationTaskMBean, which contains information about the activation task. BEA
recommends that you set the timeout period for activate() to a minute and then check
the value of the ActivationTaskMBean State attribute.

If State contains the constant STATE_COMMITTED, then your changes have been
successfully activated in the domain. You can use a return statement at this point to end
your editing work. The lock that you created with startEdit() releases after the
activation task succeeds.

If State contains a different value, the activation has not succeeded in the timeout period
that you specified in activate(long timeout). You can get the value of the
ActivationTaskMBean Error attribute to find out why.

After this try block, one catch block to catch the following type of wrapped exception:

– NotEditorException

If this exception is thrown while trying to activate changes, your changes were not
activated because your edit session timed out or was cancelled by an administrator.

(Optional) A try block that undoes the saved changes.

If your class does not return in the activation try block, then your activation task was not
successful. If you do not want these saved changes to be activated by a future attempt to
activate changes, then invoke the ConfigurationManagerMBean
undoUnactivatedChanges() operation.

Otherwise, the pending configuration files retain your saved changes. The next time any
user attempts to activate saved changes, WebLogic Server will attempt to activate your
saved changes along with any other saved changes.

After this try block, one catch block to ignore the following type of wrapped exception:

– NotEditorException

A try block to stop the edit session.

If your activation attempt fails and you are ready to abandon changes, there is no need to
wait until your original timeout period to expire. You can stop editing immediately.

After this try block, one catch block to ignore the following type of exception:

– NotEditorException

Throw the exception that is stored in the ActivationTaskMBean Error attribute.

Bes t P ract ices : Recommended Pat te rn f o r Ed i t ing and Hand l ing Except ions

Developing Custom Management Utilities with JMX 5-19

Listing 5-6 Code Outline for Editing and Exception Handling

try {
//Initialize the connection and start the edit session

...
ObjectName domainConfigRoot = (ObjectName) connection.invoke(cfgMgr,

"startEdit",
new Object[] { new Integer(30000), new Integer(300000) },
new String[] { “java.lang.Integer”, “java.lang.Integer” });

// Modify the domain
...
// Save your changes
 connection.invoke(cfgMgr, "save", null, null);

} catch (MBeanException e) {
Exception targetException = e.getTargetException();
if (targetException instanceof EditTimedOutException) {

// Could not get the lock. Notify user
...
throw new MyAppCouldNotStartEditException(e);

}
if (targetException instanceof NotEditorException) {

...
throw new MyAppEditSessionFailed(e);

}
if (targetException instanceof ValidationException) {

...
try {

connection.invoke(cfgMgr, "stopEdit", null, null);
// A wrapped NotEditorException here indicates that you no longer have a
// lock on the pending configuration MBean hierarchy; however,
// because you want to abandon changes and release your lock anyway,
// it is not an error condition for this exception to be thrown
// and you can safely ignore it.
} catch (MBeanException e) {

Exception targetException = e.getTargetException();
if (targetException instanceof NotEditorException) {

//ignore
}

}
throw new MyAppEditChangesInvalid(e);

}
else {
throw MBeanException (e);
}

}

Managing a Domain ’s Conf igura t ion w i th JMX

5-20 Developing Custom Management Utilities with JMX

// Changes have been saved, now activate them
try {

// Activate the changes
ActivationTaskMBean task = (ObjectName) connection.invoke(cfgMgr,

"activate",
new Object[] { new Long(60000) },
new String[] { "java.lang.Long" });

// Everything worked, just return.
String status = (String) connection.getAttribute(task, "State");
if (status.equals(“4”))
return;

// If there is an activation error, use ActivationTaskMBean.getError
// to get information about the error
failure = connection.getAttribute(task, "Error");

// If you catch a wrapped NotEditorException, your changes were not activated
// because your edit session ended or was cancelled by an administrator.
// Throw the wrapped exception.
} catch (MBeanException e) {

Exception targetException = e.getTargetException();
if (targetException instanceof NotEditorException) {

...
throw new MyAppEditSessionFailed(e);

}
}

// If your class executes the remaining lines, it is because activating your
// saved changes failed.

// Optional: You can undo the saved changes that failed to activate. If you
// do not undo your saved changes, they will be activated the next time
// someone attempts to activate changes.
// try {
// {
// connection.invoke(cfgMgr, "undoUnactivatedChanges", null, null);
// catch(MBeanException e) {
// Exception targetException = e.getTargetException();
// if (targetException instanceof NotEditorException) {
// ...
// throw new MyAppEditSessionFailed(e);
// }
// }

// Stop the edit session
try {

connection.invoke(cfgMgr, "stopEdit", null, null);
// If your activation attempt fails and you are ready to abandon
// changes, there is no need to wait until your original timeout

Set t ing and Get t ing Encr ypted Va lues

Developing Custom Management Utilities with JMX 5-21

// period to expire. You can stop editing immediately
// and you can safely ignore any wrapped NotEditorException.

} catch (MBeanException e) {
Exception targetException = e.getTargetException();
if (targetException instanceof NotEditorException) {

//ignore
}

}
...
// Output the information about the error that caused the activation to
// fail.
throw new MyAppEditSessionFailed(connection.getAttribute(task, "Error"));

Setting and Getting Encrypted Values
To prevent unauthorized access to sensitive data such as passwords, some attributes in WebLogic
Server configuration MBeans are encrypted. The attributes persist their values in the domain’s
config.xml file as an encrypted string and represent the in-memory value in the form of an
encrypted byte array. The names of encrypted attributes end with Encrypted. For example, the
ServerMBean exposes the password that is used to secure access through the IIOP protocol in an
attribute named DefaultIIOPPasswordEncrypted. To support backwards compatibility, and
to enable remote JMX clients to set passwords for WebLogic Server MBeans, each encrypted
attribute provides a less secure means to encrypt and set its value.

The following sections describe how to work with encrypted attributes:

“Set the Value of an Encrypted Attribute (Recommended Technique)” on page 5-21

“Set the Value of an Encrypted Attribute (Compatibility Technique)” on page 5-22

“Back Up an Encrypted Value” on page 5-23

Set the Value of an Encrypted Attribute (Recommended
Technique)
To use this technique (see Listing 5-7):

1. In the same WebLogic Server JVM that hosts the MBean attribute, write a value to a byte
array.

Managing a Domain ’s Conf igura t ion w i th JMX

5-22 Developing Custom Management Utilities with JMX

2. Pass the byte array to the weblogic.management.EncryptionHelper.encrypt(
byte[]) method and pass its return value to the
MBeanServerConnection.setAttribute method.

Avoid assigning the encrypted byte array to a variable because this causes the unencrypted
byte array to remain in memory until it is garbage collected and the memory is reallocated.

3. Clear the original byte array using the
weblogic.management.EncryptionHelper.clear() method.

Listing 5-7 Example: Set the Value of an Encrypted Attribute (Recommended Technique)

public void editDefaultIIOPPassword(ObjectName cfgRoot) throws Exception {
// Get the ServerMBean from the DomainMBean
ObjectName server = (ObjectName) connection.invoke(cfgRoot,

"lookupServer", new Object[] { "myserver" },
new String[] { "java.lang.String" });
// Get new password from standard in. Assign it to a byte array.
System.out.println("Enter new password and press enter: ");
byte userinput[] = new byte[10];
System.in.read(userinput);
// Encrypt the byte array and set it as the encrypted
// attribute value.
Attribute newpassword = new Attribute("DefaultIIOPPasswordEncrypted",

weblogic.management.EncryptionHelper.encrypt(userinput));
connection.setAttribute(server, newpassword);
System.out.println("New password is set to: " +

connection.getAttribute(server, "DefaultIIOPPasswordEncrypted"));
// Clear the byte array.
weblogic.management.EncryptionHelper.clear(userinput);
}

Set the Value of an Encrypted Attribute (Compatibility
Technique)
Prior to 9.0, JMX clients used a different technique for setting encrypted values. JMX clients can
continue to use this compatibility technique, and if you want to set encrypted values from a
remote JMX client, this is the only technique available. The compatibility technique is less secure
because it creates a String that contains your unencrypted password. Even though WebLogic
Server converts the String to an encrypted byte array, the String will remain in memory until
it is garbage collected and the memory is reallocated.

Set t ing and Get t ing Encr ypted Va lues

Developing Custom Management Utilities with JMX 5-23

To use the compatibility technique:

1. Write a value to a String.

2. Pass the String as a parameter to the MBeanServerConnection.setAttribute method,
but instead of setting the value of the encrypted attribute, set the value for the corresponding
non-encrypted attribute.

WebLogic Server converts the String to an encrypted byte array and sets it as
CustomIdentityKeyStorePassPhraseEncrypted. (It does not set a value for
CustomIdentityKeyStorePassPhrase).

For example, to set the CustomIdentityKeyStorePassPhraseEncrypted from a remote
JMX client, invoke the MBeanServerConnection.setAttribute for an attribute named
CustomIdentityKeyStorePassPhrase.

For example:

public void editDefaultIIOPPassword(ObjectName cfgRoot, String password)

throws Exception {

// Get the ServerMBean from the DomainMBean

ObjectName server = (ObjectName) connection.invoke(cfgRoot,

"lookupServer",

 new Object[]{"myserver"},new String[]{"java.lang.String"});

Attribute newpassword = new Attribute("DefaultIIOPPassword",

“mypassword”);

connection.setAttribute(server, newpassword);

}

Back Up an Encrypted Value
To make a backup copy of a password, use the getter method of the MBean’s encrypted value to
retrieve the encrypted byte array. Then write the value of the byte array to a file. WebLogic Server
does not provide APIs or other utilities for decrypting values that it has encrypted.

If you need to restore the password value, you can load the saved value into a byte array and pass
it as a parameter to the MBeanServerConnection.setAttribute method (see “Set the Value
of an Encrypted Attribute (Recommended Technique)” on page 5-21).

Note: Because each WebLogic Sever domain uses its own encryption algorithm, you must back
up and restore passwords separately for each domain even if the unencrypted value for
the password is the same for all domains.

Instead of backing up the same encrypted password for each domain, you can use the
getter method of an MBean’s corresponding unencrypted value. This getter unencrypts

Managing a Domain ’s Conf igura t ion w i th JMX

5-24 Developing Custom Management Utilities with JMX

the password and copies into a String. The String will not be erased from memory
until it is garbage collected and the memory is reallocated.

Developing Custom Management Utilities with JMX 6-1

C H A P T E R 6

Managing Security Realms with JMX

A security realm comprises mechanisms for protecting WebLogic resources. Each security realm
consists of a set of configured security providers, which are modular components that handle
specific aspects of security. You can create a JMX client that uses the providers in a realm to add
or remove security data such as users and groups. You can also create a client that adds or
removes providers and makes other changes to the realm configuration.

The following sections describe managing security realms with JMX:

“Understanding the Hierarchy of Security MBeans” on page 6-1

“Choosing an MBean Server to Manage Security Realms” on page 6-13

“Working with Existing Security Providers” on page 6-13

“Modifying the Realm Configuration” on page 6-20

For more information about WebLogic Security, see Understanding WebLogic Security.

Understanding the Hierarchy of Security MBeans
Like other subsystems, the WebLogic Server security framework organizes its MBeans in a
hierarchy that JMX clients can navigate without constructing JMX object names. However, the
set of MBean types that are available in a security realm depends on which security providers you
have installed in the realm, and the set of services that each security provider enables depends on
how the provider was created.

The root of the security realm hierarchy is the RealmMBean. It contains all of the providers that
have been configured for the realm. For example, its Authorizers attribute contains all

http://e-docs.bea.com/wls/docs90/secintro/index.html

Managing Secur i t y Rea lms w i th JMX

6-2 Developing Custom Management Utilities with JMX

authorization providers that have been configured for the realm. WebLogic Server installs a
default set of security providers; therefore, by default the RealmMBean Authorizers attribute
contains a DefaultAuthorizerMBean. However, you can uninstall these default providers and
replace them with any number of your own providers or third-party providers. For information
about the default security providers, see Configuring WebLogic Security Providers and
Configuring Authorization Providers in Securing WebLogic Server.

Base Provider Types and Mix-In Interfaces
Each security provider must extend a base provider type. For example,
DefaultAuthorizerMBean extends AuthorizerMBean, and any custom or third-party
authorization provider also extends AuthorizerMBean. If a JMX client gets the value of the
RealmMBean Authorizers attribute, the MBean server returns all MBeans in the realm that
extend AuthorizerMBean. The JMX client can iterate through the list of providers and select one
based on the value of its Name attribute or other criteria.

Base provider types can be enhanced by extending a set of optional mix-in interfaces. For
example, if an authentication provider extends the UserEditorMBean, then the provider can add
users to the realm.

Security MBeans
WebLogic Server’s Security MBeans configure security providers in a security realm. The
following tables describe the MBeans that configure different types of security providers.

Table 6-1. describes the MBeans that configure Authentication security providers, as well
as the abstract MBean classes that Authentication providers must extend. In addition to the
MBeans in this table, WebLogic Server includes configuration MBeans for each
out-of-the-box Authentication provider.

Table 6-2 describes the MBeans that configure security providers, other than
Authentication security providers.

Table 6-3 describes optional MBean mixin interfaces that security providers can support
for management and utility purposes.

For more information about configuring WebLogic security providers, see Configuring
WebLogic Security Providers and Configuring Authentication Providers in Securing WebLogic
Server. Figure 6-1 illustrates where the MBeans are located in the configuration MBean
hierarchy.

http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/atn.html
http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/providers.html
http://e-docs.bea.com/wls/docs90/secmanage/atn.html

Unders tand ing the H ie ra rchy o f Secur i t y MBeans

Developing Custom Management Utilities with JMX 6-3

Table 6-1 MBeans for Authentication Security Providers

This MBean... Configures...

AuthenticationProviderMBe
an

The base MBean for all MBean implementations that manage
Authentication providers. If your Authentication provider uses
the WebLogic Security SSPI to provide login services, then
your MBean must extend
weblogic.management.security.authentication
.Authenticator. If your Authentication provider uses the
WebLogic Security SPI to provide identity-assertion services,
then your MBean must extend
weblogic.management.security.authentication
.IdentityAsserter.

See AuthenticationProviderMBean in the WebLogic
Server MBean Reference.

AuthenticatorMBean The SSPI MBean that all Authentication providers with login
services must extend. This MBean provides a ControlFlag
to determine whether the Authentication provider is a
REQUIRED, REQUISITE, SUFFICENT, or OPTIONAL part
of the login sequence.

See AuthenticatorMBean in the WebLogic Server MBean
Reference.

IdentityAsserterMBean The SSPI MBean that all Identity Assertion providers must
extend. This MBean enables an Identity Assertion provider to
specify the token types for which it is capable of asserting
identity.

See IdentityAsserterMBean in the WebLogic Server
MBean Reference.

ServletAuthenticationFilt
erMBean

The SSPI MBean that all Servlet Authentication Filter
providers must extend. This MBean is just a marker interface.
It has no methods on it.

See ServletAuthenticationFilterMBean in the
WebLogic Server MBean Reference.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/AuthenticationProviderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/AuthenticatorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/IdentityAsserterMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServletAuthenticationFilterMBean.html

Managing Secur i t y Rea lms w i th JMX

6-4 Developing Custom Management Utilities with JMX

.

Table 6-2 MBeans for Other Security Providers

This MBean... Configures...

AdjudicatorMBean The SSPI MBean that all Adjudication providers must extend.

See AdjudicatorMBean in the WebLogic Server MBean
Reference.

DefaultAdjudicatorMBean Configuration attributes for the WebLogic Adjudication
provider.

See DefaultAdjudicatorMBean in the WebLogic Server
MBean Reference.

AuditorMBean The SSPI MBean that all Auditing providers must extend.

See AuditorMBean in the WebLogic Server MBean
Reference.

DefaultAuditorMBean Configuration attributes for the WebLogic Auditing provider.

See DefaultAuditorMBean in the WebLogic Server
MBean Reference.

AuthorizerMBean The SSPI MBean that all Authorization providers must extend.

See AuthorizerMBean in the WebLogic Server MBean
Reference.

DeployableAuthorizerMBean The SSPI MBean that must be extended by all Authorization
providers that can store policies created while deploying a Web
application or EJB.

See DeployableAuthorizerMBean in the WebLogic
Server MBean Reference.

DefaultAuthorizerMBean Configuration attributes for the WebLogic Authorization
provider.

See DefaultAuthorizerMBean in the WebLogic Server
MBean Reference.

CredentialMapperMBean The SSPI MBean that all Credential Mapping providers must
extend.

See CredentialMapperMBean in the WebLogic Server
MBean Reference.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/AdjudicatorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DefaultAdjudicatorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/AuditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DefaultAuditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/AuthorizerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DeployableAuthorizerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DefaultAuthorizerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/CredentialMapperMBean.html

Unders tand ing the H ie ra rchy o f Secur i t y MBeans

Developing Custom Management Utilities with JMX 6-5

DeployableCredentialMappe
rMBean

The SSPI MBean that must be extended by all Credential
Mapper providers that can store credential maps created while
deploying a component.

See DeployableCredentialMapperMBean in the
WebLogic Server MBean Reference.

DefaultCredentialMapperMB
ean

Configuration attributes for the WebLogic Credential Mapping
provider, a username/password Credential Mapping provider.

See DefaultCredentialMapperMBean in the WebLogic
Server MBean Reference.

PKICredentialMapperMBean Configuration attributes for the PKI Credential Mapping
provider, a key pair Credential Mapping provider.

See PKICredentialMapperMBean in the WebLogic Server
MBean Reference.

SAMLCredentialMapperMBean Configuration attributes for the SAML Credential Mapping
provider, a Security Assertion Markup Language Credential
Mapping provider.

See SAMLCredentialMapperMBean in the WebLogic
Server MBean Reference.

CertPathProviderMBean The base MBean for all certification path providers.

See CertPathProviderMBean in the WebLogic Server
MBean Reference.

CertPathBuilderMBean The SSPI MBean that all certification path providers with
CertPathBuilder services must extend.

See CertPathBuilderMBean in the WebLogic Server
MBean Reference.

CertPathValidatorMBean The SSPI MBean that all certification path providers with
CertPathValidator services must extend.

See CertPathValidatorMBean in the WebLogic Server
MBean Reference.

Table 6-2 MBeans for Other Security Providers

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DeployableCredentialMapperMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DefaultCredentialMapperMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/PKICredentialMapperMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/SAMLCredentialMapperMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/CertPathProviderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/CertPathBuilderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/CertPathValidatorMBean.html

Managing Secur i t y Rea lms w i th JMX

6-6 Developing Custom Management Utilities with JMX

CertificateRegistryMBean Configures and manages the certificate registry. It is both a
builder and a validator. It supports building from the end
certificate, the end certificate's subject DN, the end certificate's
issuer DN and serial number, and the end certificate's subject
key identifier.

See CertificateRegistryMBean in the WebLogic Server
MBean Reference.

WebLogicCertPathProviderM
Bean

The SSPI MBean that all certification path providers with
CertPathBuilder services must extend.

See WebLogicCertPathProviderMBean in the WebLogic
Server MBean Reference.

RoleMapperMBean The base MBean for Role Mapping providers. A Role Mapping
provider for a non-deployable module must extend this MBean
directly. A Role Mapping provider for a deployable module
must extend the DeployableRoleMapperMBean.

See RoleMapperMBean in the WebLogic Server MBean
Reference.

DeployableRoleMapperMBean The SSPI MBean that must be extended by Role Mapping
providers that can store roles created while deploying a Web
application or EJB.

See DeployableRoleMapperMBean in the WebLogic
Server MBean Reference.

DefaultRoleMapperMBean Configuration attributes for the WebLogic Role Mapping
provider.

See DefaultRoleMapperMBean in the WebLogic Server
MBean Reference.

Table 6-2 MBeans for Other Security Providers

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/CertificateRegistryMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/WebLogicCertPathProviderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/RoleMapperMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DeployableRoleMapperMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DefaultRoleMapperMBean.html

Unders tand ing the H ie ra rchy o f Secur i t y MBeans

Developing Custom Management Utilities with JMX 6-7

.

Table 6-3 MBean Mixin Interfaces for Security Providers

This MBean... Configures...

ContextHandlerMBean Provides a set of attributes for ContextHandler support. An
Auditor provider MBean can optionally implement this
MBean.

See ContextHandlerMBean in the WebLogic Server
MBean Reference.

GroupEditorMBean Provides a set of methods for creating, editing, and removing
groups. An Authentication provider MBean can optionally
implement this MBean.

See GroupEditorMBean in the WebLogic Server MBean
Reference.

GroupMemberListerMBean Provides a method for listing a group's members. An
Authentication provider MBean can optionally implement this
MBean.

See GroupMemberListerMBean in the WebLogic Server
MBean Reference.

GroupMembershipHierarchyC
acheMBean

Provides configuration attributes that are required to support
the Group Membership Hierarchy Cache. An Authentication
provider MBean can optionally implement this MBean.

See GroupMembershipHierarchyCacheMBean in the
WebLogic Server MBean Reference.

GroupReaderMBean Provides a set of methods for reading data about groups. An
Authentication provider MBean can optionally implement this
MBean.

See GroupReaderMBean in the WebLogic Server MBean
Reference.

MemberGroupListerMBean Provides a method for listing the groups that contain a member.
An Authentication provider MBean can optionally implement
this MBean.

See MemberGroupListerMBean in the WebLogic Server
MBean Reference.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ContextHandlerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/GroupEditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/GroupMemberListerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/GroupMembershipHierarchyCacheMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/GroupReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MemberGroupListerMBean.html

Managing Secur i t y Rea lms w i th JMX

6-8 Developing Custom Management Utilities with JMX

UserEditorMBean Provides a set of methods for creating, editing, and removing
users. An Authentication provider MBean can optionally
implement this MBean.

See UserEditorMBean in the WebLogic Server MBean
Reference.

UserLockoutManagerMBean Lists and manages lockouts on user accounts. An
Authentication provider MBean can optionally implement this
MBean.

See UserLockoutManagerMBean in the WebLogic Server
MBean Reference.

UserPasswordEditorMBean Provides two methods for changing a user's password. An
Authentication provider MBean can optionally implement this
MBean.

See UserPasswordEditorMBean in the WebLogic Server
MBean Reference.

UserReaderMBean Provides a set of methods for reading data about users. An
Authentication provider MBean can optionally implement this
MBean.

See UserReaderMBean in the WebLogic Server MBean
Reference.

UserRemoverMBean Provides a method for removing users. An Authentication
provider MBean can optionally implement this MBean.

See UserRemoverMBean in the WebLogic Server MBean
Reference.

RoleEditorMBean Provides a set of methods for creating, editing, and removing
roles. A Role Mapping provider MBean can optionally
implement this MBean.

See RoleEditorMBean in the WebLogic Server MBean
Reference.

Table 6-3 MBean Mixin Interfaces for Security Providers

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserEditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserLockoutManagerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserPasswordEditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ContextHandlerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserRemoverMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/RoleEditorMBean.html

Unders tand ing the H ie ra rchy o f Secur i t y MBeans

Developing Custom Management Utilities with JMX 6-9

RoleListerMBean Provides a set of methods for listing data about roles. A Role
Mapping provider MBean can optionally implement this
MBean.

See RoleListerMBean in the WebLogic Server MBean
Reference.

RoleReaderMBean Provides a set of methods for reading roles. A Role Mapping
provider MBean can optionally implement this MBean.

See RoleReaderMBean in the WebLogic Server MBean
Reference.

PolicyEditorMBean Provides a set of methods for creating, editing, and removing
policies. An Authorization provider MBean can optionally
implement this MBean.

See PolicyEditorMBean in the WebLogic Server MBean
Reference.

PolicyListerMBean Provides a set of methods for listing data about policies. An
Authorization provider MBean can optionally implement this
MBean.

See PolicyListerMBean in the WebLogic Server MBean
Reference.

PolicyReaderMBean Provides a set of methods for reading policies. An
Authorization provider MBean can optionally implement this
MBean.

See PolicyReaderMBean in the WebLogic Server MBean
Reference.

PKICredentialMapEditorMBe
an

Provides a set of methods for creating, editing, and removing a
credential map that matches users, resources and credential
action to keystore aliases and the corresponding passwords. A
PKICredentialMapping provider MBean can optionally
implement this MBean.

See PKICredentialMapEditorMBean in the WebLogic
Server MBean Reference.

Table 6-3 MBean Mixin Interfaces for Security Providers

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/RoleListerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/RoleReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/PolicyEditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/PolicyListerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/PolicyReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/PKICredentialMapEditorMBean.html

Managing Secur i t y Rea lms w i th JMX

6-10 Developing Custom Management Utilities with JMX

PKICredentialMapReaderMBe
an

Provides a set of methods for reading a credential map that
matches users and resources to keystore aliases and their
corresponding passwords that can then be used to retrieve key
information or public certificate information from the
configured keystores. A PKICredentialMapping provider
MBean can optionally implement this MBean.

See PKICredentialMapReaderMBean in the WebLogic
Server MBean Reference.

UserPasswordCredentialMap
EditorMBean

Provides a set of methods for creating, editing, and removing a
credential map that matches WebLogic users to remote
usernames and their corresponding passwords. A Credential
Mapping provider MBean can optionally extend this MBean.

See UserPasswordCredentialMapEditorMBean in the
WebLogic Server MBean Reference.

UserPasswordCredentialMap
ExtendedReaderMBean

Provides a set of methods for reading credentials and credential
mappings. Credential mappings match WebLogic users to
remote usernames and passwords. A Credential Mapping
provider MBean can optionally extend this MBean.

See
UserPasswordCredentialMapExtendedReaderMBea
n in the WebLogic Server MBean Reference.

UserPasswordCredentialMap
ReaderMBean

Provides a set of methods for reading credentials and credential
mappings. Credential mappings match WebLogic users to
remote usernames and passwords. A Credential Mapping
provider MBean can optionally extend this MBean.

See UserPasswordCredentialMapReaderMBean in the
WebLogic Server MBean Reference.

ImportMBean Provides a set of methods for importing provider specific data.
An optional mixin interface that any security provider may
extend.

See ImportMBean in the WebLogic Server MBean Reference.

Table 6-3 MBean Mixin Interfaces for Security Providers

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/PKICredentialMapReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserPasswordCredentialMapEditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserPasswordCredentialMapExtendedReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserPasswordCredentialMapExtendedReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserPasswordCredentialMapReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ImportMBean.html

Unders tand ing the H ie ra rchy o f Secur i t y MBeans

Developing Custom Management Utilities with JMX 6-11

ExportMBean Provides a set of methods for exporting provider specific data.
An optional mixin interface that any security provider may
extend.

See ExportMBean in the WebLogic Server MBean Reference.

ListerMBean Provides a general mechanism for returning lists. Derived
MBeans extend this interface to add methods that access the
data of the current object in the list. An optional mixin interface
that any security provider may extend.

See ListerMBean in the WebLogic Server MBean Reference.

NameListerMBean Defines a method used to return lists of names. An optional
mixin interface that any security provider may extend.

See NameListerMBean in the WebLogic Server MBean
Reference.

LDAPServerMBean Provides methods to get configuration parameters needed for
connecting to an external LDAP server. An optional mixin
interface that any security provider may extend.

See LDAPServerMBean in the WebLogic Server MBean
Reference.

ApplicationVersionerMBean The SSPI MBean that security providers extend to indicate that
the provider supports versionable applications. An optional
mixin interface that a RoleMapper, Authorizer, or
CredentialMapper provider MBean may extend.

See ApplicationerVersionMBean in the WebLogic
Server MBean Reference.

Table 6-3 MBean Mixin Interfaces for Security Providers

This MBean... Configures...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ExportMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ListerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/NameListerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/LDAPServerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ApplicationVersionerMBean.html

Managing Secur i t y Rea lms w i th JMX

6-12 Developing Custom Management Utilities with JMX

Figure 6-1 Security MBeans

RealmMBean

AdjudicatorMBean

DomainMBean

 AuthenticationProviderMBean

 AuthorizerMBean

 AuditorMBean

 CertPathProviderMBean

 CredentialMapperMBean

 RoleMapperMBean

 KeyStoreMBean

 UserLockoutManagerMBean

 AuthenticatorMBean

 IdentityAsserterMBean

SecurityConfigurationMBean

Choos ing an MBean Serve r t o Manage Secur i t y Rea lms

Developing Custom Management Utilities with JMX 6-13

Choosing an MBean Server to Manage Security Realms
When using JMX to manage security realms, you must use two different MBean servers
depending on your task:

To set the value of a security MBean attribute, you must use the Edit MBean Server.

To add users, groups, roles, and policies, or to invoke other operations in a security
provider MBean, you must use a Runtime MBean Server or the Domain Runtime MBean
Server.

In addition, to prevent the possibility of incompatible changes, you cannot invoke
operations in security provider MBeans if your client or another JMX client has an edit
session currently active.

For example, the value of the MinimumPasswordLength attribute in
DefaultAuthenticatorMBean is stored in the domain’s configuration document. Because all
modifications to this document are controlled by WebLogic Server, to change the value of this
attribute you must use the Edit MBean Server and acquire a lock on the domain’s configuration.
The createUser operation in DefaultAuthenticatorMBean adds data to an LDAP server,
which is not controlled by WebLogic Server. To prevent incompatible changes between the
DefaultAuthenticatorMBean’s configuration and the data that it uses in the LDAP server, you
cannot invoke the createUser operation if you or other users are in the process of modifying the
MinimumPasswordLength attribute. In addition, because changing this attribute requires you to
restart WebLogic Server, you cannot invoke the createUser operation until you have restarted
the server.

Working with Existing Security Providers
Because security providers can extend optional mix-in interfaces, not all security providers can
perform all tasks. This flexibility enables your organization’s security architect to design a realm
for your security needs. The flexibility also makes the design of your JMX clients dependent upon
the design and configuration of each realm.

For example, some realms might contain three types of Authentication providers:

One that extends UserEditorMBean to save administrative users to an LDAP server

One that extends UserEditorMBean to save customers to a database management system

One that does not extend UserEditorMBean and is used only to authenticate existing users

Managing Secur i t y Rea lms w i th JMX

6-14 Developing Custom Management Utilities with JMX

To work with the Authentication providers in this realm, your JMX client must be able to
determine which one can add users to the appropriate repository.

Table 6-4 discusses techniques for finding a security provider that is appropriate for your task.

Table 6-4 Finding a Provider in the Realm

Technique Description

Find by name Each security provider instance is assigned a short name when an
administrator configures it for the realm. Your JMX client can look up all
providers of a specific type (such as all Authentication providers) and
choose the one that matches a name.

For an example of such a JMX client, start the WebLogic Server Examples
Server. From the Examples Server home page, click on “Extending a
Realm Using JMX.” The source for this JMX client is installed as
WL_HOME/samples/server/medrec/src/medrecEar/
adminWebApp/WEB-INF/src/com/bea/medrec/
actions/CreateNewAdminAction.java

where WL_HOME is the location in which you installed WebLogic Server.

If you use this technique, consider saving the name of the security provider
in a configuration file instead of hard-coding it in your JMX client. The
configuration file enables system administrators to change the providers in
the realm and update the properties file instead of requiring you to update
and recompile the JMX client.

Work ing wi th Ex is t ing Secur i t y P rov ide rs

Developing Custom Management Utilities with JMX 6-15

Discovering Available Services
To create a JMX client that finds MBeans by type or mix-in interface:

1. Connect to a WebLogic Server Runtime MBean Server. See “Make Remote Connections to
an MBean Server” on page 4-2.

All WebLogic Server instances maintain their own Runtime MBean Server, and you can
connect to any server’s Runtime MBean Server.

2. Get all security provider MBeans of a specific type in the realm (for example, get all
Authentication provider MBeans):

Find by MBean type If the system administrator always wants to use the same type of provider
for a task, then your JMX client can find the provider MBean that is of the
specified type.

For example, if the system administrator always wants to use a
SQLAuthenticatorMBean to add customers to a realm, your JMX
client can find an instance of SQLAuthenticatorMBean.

While this technique requires no user input, it assumes:
• There will always be an instance of SQLAuthenticatorMBean in

the realm and this one instance extends UserEditorMBean.
• If there are multiple instances of SQLAuthenticatorMBean, all of

them extend UserEditorMBean and it does not matter which
instance is used.

See “Discovering Available Services” on page 6-15.

Use any provider that extends
the mix-in interface you need

You can create a JMX client that learns about the class hierarchy for each
provider MBean instance and chooses an instance that extends the mix-in
interface you need for your task. For example, your client can discover
which Authentication provider extends UserEditorMBean. See
“Discovering Available Services” on page 6-15.

Use this technique if you know that your security realm will contain only
one MBean that extends the needed mix-in interface, or if it does not matter
which one you use.

Table 6-4 Finding a Provider in the Realm

Technique Description

Managing Secur i t y Rea lms w i th JMX

6-16 Developing Custom Management Utilities with JMX

a. Use either the RuntimeServiceMBean or DomainRuntimeServiceMBean to navigate
the following path through the WebLogic Server MBean hierarchy:
DomainMBean to SecurityConfigurationMBean to RealmMBean.

See “Navigate MBean Hierarchies” on page 4-8.

b. Get the value of the RealmMBean attribute that contains instances of the security provider
type.

For example, to get all Authentication providers, get the value of the RealmMBean
AuthenticationProviders attribute.

3. For each security provider MBean in the RealmMBean attribute, get the name of the
MBean’s class (see Listing 6-1):

a. Get the provider MBean’s javax.management.ModelMBeanInfo object.

Use MBeanServerConnection.getMBeanInfo(Provider-MBean)
where Provider-MBean is a provider MBean that you retrieved from RealmMBean.

b. Get the MBean info’s javax.management.Descriptor object, and then get the value of
the Descriptor’s interfaceClassName field.

4. Use the WebLogic Server MBean type service to find all security provider MBean classes
that extend a particular base type or mix-in interface (see Listing 6-1):

a. Determine the fully-qualified interface name of the base type or mix-in interface.

Each entry in the WebLogic Server MBean Reference lists the fully-qualified interface
name of WebLogic Server provider MBeans. If you use a third-party provider, refer to
the third-party documentation for this information.

For example, the fully-qualified interface name of the UserEditorMBean mix-in
interface is
weblogic.management.security.authentication.UserEditorMBean. (See
UserEditorMBean in the WebLogic Server MBean Reference.)

b. Construct the MBeanTypeService MBean’s object name.

The MBeanTypeService MBean is always registered under the following
javax.management.ObjectName:
com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.

MBeanTypeService

c. Invoke the MBeanTypeService MBean’s getSubtypes(java.lang.String
beanInterface) operation, where:

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserEditorMBean.html

Work ing wi th Ex is t ing Secur i t y P rov ide rs

Developing Custom Management Utilities with JMX 6-17

beanInterface is the fully-qualified interface name that you determined in Step 1.

The operation returns an array of java.lang.String objects.

5. Compare the output of the MBean type service with the class name of each provider MBean
instance (see Listing 6-1).

6. If the provider MBean’s class implements or extends the interface from step 4a, invoke
operations on the provider MBean.

Listing 6-1 Example: Determine If a Provider MBean Instance Extends UserEditorMBean Mix-In Interface

ObjectName MBTservice = new ObjectName(
"com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.
MBeanTypeService");

for (int p = 0; atnProviders != null && p < atnProviders.length; p++) {
ModelMBeanInfo info = (ModelMBeanInfo)
mBeanServerConnection.getMBeanInfo(atnProviders[p]);
Descriptor desc = info.getMBeanDescriptor();
String className = (String)desc.getFieldValue("interfaceClassName");
String[] mba = (String[]) mBeanServerConnection.invoke(MBTservice,

"getSubtypes", new Object[] {
"weblogic.management.security.authentication.UserEditorMBean" },
new String[] { "java.lang.String" });

boolean isEditor = false;
for (int i = 0; i < mba.length; i++) {

if (mba[i].equals(className)){
userEditor = atnProviders[p];
isEditor = true;
break;

}
if (isEditor = true) break;

}
}

Example: Adding Users to a Realm
The code example in Listing 6-2 adds a user to a security realm and adds the user to the
Administrators group by searching through all of the authentication providers in the realm and
using the first one that extends UserEditorMBean.

Note the following about the code example:

Managing Secur i t y Rea lms w i th JMX

6-18 Developing Custom Management Utilities with JMX

Similar to the code in the MedRec example domain, the user name and password come
from a JavaBean that was created from an Apache Struts action.

To see the MedRec code:

a. Start the WebLogic Server Examples Server.

b. From the Examples Server home page, click on “Extending a Realm Using JMX.”

The code does not need to lock the domain’s configuration because it is not modifying the
configuration of the security MBean itself. Instead, it is invoking an operation in the
default Authorization provider which saves security data in an LDAP server.

Listing 6-2 Example: Adding Users to a Realm

public ActionForward createNewAdmin(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws ClientException, Exception {
logger.info("Create New Admin");
CreateAdminBean user = (CreateAdminBean) form;
logger.debug(user.toString());

MBeanServerConnection mBeanServerConnection =
this.getDomainMBeanServerConnection(request);

ObjectName service = new
ObjectName("com.bea:Name=DomainRuntimeService,"+
"Type=weblogic.management.mbeanservers.domainruntime.
DomainRuntimeServiceMBean");

ObjectName domainMBean =
(ObjectName) mBeanServerConnection.getAttribute(service,
"DomainConfiguration");

ObjectName securityConfiguration =
(ObjectName) mBeanServerConnection.getAttribute(domainMBean,
"SecurityConfiguration");

ObjectName defaultRealm =
(ObjectName) mBeanServerConnection.
getAttribute(securityConfiguration, "DefaultRealm");

ObjectName[] atnProviders =
(ObjectName[]) mBeanServerConnection.getAttribute(defaultRealm,
"AuthenticationProviders");

ObjectName userEditor = null;
ObjectName MBTservice = new ObjectName(

"com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.
MBeanTypeService");

Work ing wi th Ex is t ing Secur i t y P rov ide rs

Developing Custom Management Utilities with JMX 6-19

for (int p = 0; atnProviders != null && p < atnProviders.length; p++) {
ModelMBeanInfo info = (ModelMBeanInfo)
mBeanServerConnection.getMBeanInfo(atnProviders[p]);
Descriptor desc = info.getMBeanDescriptor();
String className = (String)desc.getFieldValue("interfaceClassName");
String[] mba = (String[]) mBeanServerConnection.invoke(MBTservice,

"getSubtypes", new Object[] {
"weblogic.management.security.authentication.UserEditorMBean" },
new String[] { "java.lang.String" });

boolean isEditor = false;
for (int i = 0; i < mba.length; i++) {

if (mba[i].equals(className)){
userEditor = atnProviders[p];
isEditor = true;
break;

}
if (isEditor = true) break;

}
}

try {
mBeanServerConnection.invoke(

userEditor, "createUser",
new Object[] {user.getUsername(), user.getPassword(),

"MedRec Admininistator"},
new String[] {"java.lang.String", "java.lang.String",

"java.lang.String"}
);

} catch (MBeanException ex) {
Exception e = ex.getTargetException();
if (e instanceof AlreadyExistsException) {

logger.info("User, " + user.getUsername() + ", already exists.");
ActionErrors errors = new ActionErrors();
errors.add("invalidUserName",

new ActionError("invalid.username.already.exists"));
saveErrors(request, errors);
return mapping.findForward("create.new.admin");

} else {
logger.debug(e);
return mapping.findForward("create.new.admin");

}
}

try {
mBeanServerConnection.invoke(

userEditor, "addMemberToGroup",
new Object[] {"Administrators", user.getUsername()},
new String [] {"java.lang.String", "java.lang.String"}

);

Managing Secur i t y Rea lms w i th JMX

6-20 Developing Custom Management Utilities with JMX

mBeanServerConnection.invoke(
userEditor, "addMemberToGroup",
new Object[] {"MedRecAdmins", user.getUsername()},
new String [] {"java.lang.String", "java.lang.String"}

);
} catch (MBeanException ex) {

Exception e = ex.getTargetException();
if (e instanceof NameNotFoundException) {

logger.info("Invalid Group Name.");
ex.printStackTrace();
return mapping.findForward("create.new.admin");

} else {
logger.debug(e);
return mapping.findForward("create.new.admin");

}
}
logger.info("MedRec Administrator successfully created.");
return mapping.findForward("create.new.admin.successful");

}

Modifying the Realm Configuration
While security provider MBeans handle specific aspects of security, such as authentication and
authorization, two other MBeans handle general, realm-wide and domain-wide aspects of
security:

RealmMBean represents a security realm. JMX clients can use it to add or remove security
providers and to specify such behaviors as whether Web and EJB containers call the
security framework on every access or only when security is set in the deployment
descriptors.

SecurityConfigurationMBean specifies domain-wide security settings such as
connection filters and URL-pattern matching behavior for security constraints, servlets,
filters, and virtual-hosts in the WebApp container and external security policies.

These two MBeans persist their data in WebLogic Server configuration files. Therefore, to
modify attribute values in RealmMBean or SecurityConfigurationMBean, you must use the
Edit MBean Server and ConfigurationManagerMBean as described in “Managing a Domain’s
Configuration with JMX” on page 5-1.

Developing Custom Management Utilities with JMX 7-1

C H A P T E R 7

Using Notifications and Monitor
MBeans

JMX provides two ways to monitor MBeans: MBeans can emit notifications when specific events
occur (such as a change in an attribute value), or a special type of MBean called a monitor MBean
can poll another MBean and periodically emit notifications to describe an attribute value. You
create Java classes called listeners that listen for these notifications and respond appropriately.
For example, your management utility can include a listener that receives notifications when
applications are deployed, undeployed, or redeployed.

All WebLogic Server configuration MBeans emit notifications when attribute values change, and
some runtime MBeans do.

The following sections describe working with notifications and listeners:

“Best Practices: Listening Directly Compared to Monitoring” on page 7-1

“Best Practices: Listening for WebLogic Server Events” on page 7-2

“Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics” on page 7-5

“Listening for Notifications from WebLogic Server MBeans: Main Steps” on page 7-7

“Using Monitor MBeans to Observe Changes: Main Steps” on page 7-21

Best Practices: Listening Directly Compared to Monitoring
If the MBean that you want to monitor emits notifications, you can choose whether to create a
listener object that listens for changes in the MBean or a monitor MBean that periodically polls
the MBean and emits notifications only when its attributes change in specific ways. The

Using No t i f i cat ions and Moni to r MBeans

7-2 Developing Custom Management Utilities with JMX

technique that you choose depends mostly on the complexity of the situations in which you want
to receive notifications.

If your requirements are simple, registering a listener directly with an MBean is the preferred
technique because the MBean pushes its notifications to your listener and you are notified of a
change almost immediately. However, the base classes that you implement for a listener and
optional filter (javax.management.NotificationListener and NotificationFilter)
provide few facilities for comparing values with thresholds and other values. (See the
javax.management package in the J2SE 5.0 API Specification.)

If your notification requirements are sufficiently complex, or if you want to monitor a group of
changes that are not directly associated with a single change in the value of an MBean attribute,
use a monitor MBean. (See the javax.management.monitor package in the J2SE 5.0 API
Specification.) The monitor MBeans provide a rich set of tools for comparing data and sending
notifications only under specific circumstances. However, the monitor periodically polls the
observed MBean for changes in attribute value and you are notified of a change only as frequently
as the polling interval that you specify.

Best Practices: Listening for WebLogic Server Events
The WebLogic Server JMX agent and WebLogic Server MBeans emit different types of
notification objects for different types of events. Many event types trigger multiple MBeans to
emit notifications at different points within the event process. Table 7-1 describes common event
types and recommends the MBean with which a JMX monitoring application should register to
listen for notifications.

Note: Each JMX notification object contains an attribute named Type, which contains a
dot-delimited string. Do not confuse discussions of this Type attribute with a
notification’s object type.

The Type attribute offers a way to categorize and filter notifications. For example, if your
custom MBeans emit notifications, JMX conventions suggest that you set your
notification object’s Type attribute to a string that starts with your company name:
mycompany.myapp.valueIncreased.

All JMX notification objects extend the javax.management.Notification object
type. JMX and WebLogic Server define additional notification object types, such as
javax.management.AttributeChangeNotification. The additional object types
contain specialized sets of information that are appropriate for different types of events.
(See the list of Notification subclasses for javax.management.Notification in
the J2SE 5.0 API Specification. Also see

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/monitor/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/Notification.html

Best P ract i ces : L i s ten ing fo r WebLog ic Se rve r Events

Developing Custom Management Utilities with JMX 7-3

weblogic.management.logging.WebLogicLogNotification in the WebLogic
Server API Reference.)

Table 7-1 Events and Notification Objects

Event Listening Recommendation

A WebLogic Server
instance starts or stops

To receive a notification when a server starts or stops, register a listener with each
server’s ServerLifeCycleRuntimeMBean in the Domain Runtime MBean
Server and configure an AttributeChangeNotificationFilter.

Each server in a domain provides its own ServerLifeCycleRuntimeMBean,
which is available through the Domain Runtime MBean Server even if the server
itself is not active. When you start a server instance, the server’s
ServerLifeCycleRuntimeMBean updates the value of its State attribute
and emits an AttributeChangeNotification.

For an example of such a listener and filter, see “Listening for Notifications from
WebLogic Server MBeans: Main Steps” on page 7-7.

Note: This recommendation assumes that you start a domain’s Administration
Server before starting Managed Servers. If a Managed Server starts
before the Administration Server, a listener in the Domain Runtime
MBean Server (which runs only on the Administration Server) will not be
initialized at the time the Managed Server’s
ServerLifeCycleRuntimeMBean changes its state to RUNNING. If
you cannot guarantee that the Administration Server starts first, use the
JMX timer service to periodically query the Domain Runtime MBean
Server for MBeans whose object name contains the
Type=ServerRuntime key property. An MBean that matches this
query is a ServerRuntimeMBean, which each server instance creates
as part of its startup process. If the query finds a newly created
ServerRuntimeMBean, you know that a new server instance has been
started. See MBeanServerConnection queryNames.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/management/logging/WebLogicLogNotification.html

Using No t i f i cat ions and Moni to r MBeans

7-4 Developing Custom Management Utilities with JMX

A WebLogic Server
resource is created or
destroyed

When you create a resource such as a server or a JDBC data source, WebLogic
Server registers the resource’s configuration MBean in the MBean server. When
you delete a resource, WebLogic Server unregisters the configuration MBean.

To listen for the registration and unregistration of MBeans, register a listener with
javax.management.MBeanServerDelegate, which emits notifications of
type javax.management.MBeanServerNotification
when MBeans are registered or unregistered.

If you register a listener with MBeanServerDelegate in the Edit MBean
Server, you receive notifications when someone modifies the pending MBean
hierarchy.

If you register a listener in the Runtime MBean Server or the Domain Runtime
MBean Server, you receive notifications only when pending changes have been
successfully activated in the domain. If you are interested solely in monitoring
configuration data (and are not interested in monitoring runtime statistics), register
your listener in only one Runtime MBean Server. See “Best Practices: Choosing
an MBean Server” on page 4-5.

See “Example: Listening for The Registration of Configuration MBeans” on
page 7-16.

The configuration of a
WebLogic Server resource
is modified

All configuration MBeans emit notifications of type
AttributeChangeNotification when their attribute values change.

To receive this notification, register a listener with the MBean that is in the
Domain Runtime MBean Server or Runtime MBean Server (see “Best Practices:
Choosing an MBean Server” on page 4-5).

If you register an MBean in the Edit MBean Server, you receive notifications when
someone modifies the pending MBean hierarchy.

If you register a listener in the Runtime MBean Server or the Domain Runtime
MBean Server, you receive notifications only when pending changes have been
successfully activated in the domain. If you are interested solely in monitoring
configuration data (and are not interested in monitoring runtime statistics), register
your listener in only one Runtime MBean Server. See “Best Practices: Choosing
an MBean Server” on page 4-5.

Table 7-1 Events and Notification Objects

Best P ract i ces : L i s ten ing o r Mon i to r ing WebLog ic Serve r Runt ime Stat is t i cs

Developing Custom Management Utilities with JMX 7-5

Best Practices: Listening or Monitoring WebLogic Server
Runtime Statistics

WebLogic Server MBeans provide detailed statistics on the runtime state of its services and
resources. The statistics in Table 7-2 provide a general overview of the performance of
WebLogic Server. You can listen for changes to these statistics by creating a listener and
registering it directly with the MBeans that contain the attributes or you can configure monitor
MBeans to periodically poll and report only the statistics that you consider to be significant. (See
“Registering a Notification Listener and Filter” on page 7-11 and “Registering the Monitor and
Listener” on page 7-24.)

The runtime state of a
WebLogic Server resource
changes

Some runtime MBeans emit notifications of type
AttributeChangeNotification when their attribute values change. To
receive this notification, register a listener with the MBean in the Domain Runtime
MBean Server.

If a runtime MBean does not emit notifications, you can create a monitor MBean
that polls the runtime MBean. See “Using Monitor MBeans to Observe Changes:
Main Steps” on page 7-21.

A WebLogic Server
resource emits a log
message

When a WebLogic Server resource generates a log message, the server’s
weblogic.management.runtime.LogBroadcasterRuntimeMBean
emits a notification of type
weblogic.management.logging.WebLogicLogNotification, which
can be cast as the standard javax.management.Notification class.

To listen for log message notifications, register a listener with
LogBroadcasterRuntimeMBean. You can listen for the standard JMX
notifications, or if you want to retrieve detailed information about the log
messages, listen for WebLogicLogNotifications, which contains methods
that you can use to retrieve detailed information. Listening for
WebLogicLogNotifications requires you to import this WebLogic Server
class into your listener class.

To see a list of error messages that WebLogic Server resources generate, refer to
WebLogic Server Message Catalogs.

For more information, see WebLogicLogNotification in the WebLogic
Server API Reference.

Table 7-1 Events and Notification Objects

http://e-docs.bea.com/wls/docs90/messages/index.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/management/logging/WebLogicLogNotification.html

Using No t i f i cat ions and Moni to r MBeans

7-6 Developing Custom Management Utilities with JMX

Table 7-2 Commonly Monitored WebLogic Server Runtime Statistics

To track this statistic... Listen or monitor this MBean attribute...

The current state of server. MBean Type: ServerLifeCycleRuntimeMBean

Attribute Name: State

Activity on the server’s listen ports. MBean Type: ServerRuntimeMBean

Attribute Name: OpenSocketsCurrentCount

MBean Type: ServerMBean

Attribute Name: AcceptBacklog

Use these two attributes together to compare the current activity on the
server’s listen ports to the total number of requests that can be
backlogged on the ports.

Memory and thread use. MBean Type: ThreadPoolRuntimeMBean

Attribute Name: ExecuteThreadIdleCount

Indicates the number of threads in a server’s execute queue that are
taking up memory space but are not being used to process data.

MBean Type: ThreadPoolRuntimeMBean

Attribute Name: PendingUserRequestCount

Indicates the number of user requests waiting in a server’s execute
queue.

MBean Type: JVMRuntimeMBean

Attribute Name: HeapSizeCurrent

Indicates the amount of memory (in bytes) that is currently available in
the server’s JVM heap.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerLifeCycleRuntimeMBean.html#State
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerRuntimeMBean.html#OpenSocketsCurrentCount
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html#AcceptBacklog
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ThreadPoolRuntimeMBean.html#ExecuteThreadIdleCount
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ThreadPoolRuntimeMBean.html#PendingUserRequestCount
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JVMRuntimeMBean.html#HeapSizeCurrent

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Developing Custom Management Utilities with JMX 7-7

Listening for Notifications from WebLogic Server MBeans: Main
Steps

To listen directly for the notifications that an MBean emits:

1. Create a listener class in your application. See “Creating a Notification Listener” on page 7-8.

Database connections. MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ActiveConnectionsCurrentCount

Indicates the current number of active connections in a JDBC
connection pool.

MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ActiveConnectionsHighCount

The high water mark of active connections in a JDBC connection pool.
The count starts at zero each time the connection pool is instantiated.

MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: LeakedConnectionCount

Indicates the total number of leaked connections. Leaked connections
are connections that have been checked out but never returned to the
connection pool via a close() call; it is important to monitor the total
number of leaked connections, as a leaked connection cannot be used
to fulfill later connection requests.

MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ConnectionDelayTime

Indicates the average time to connect to a connection pool.

MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: FailuresToReconnectCount

Indicates when the connection pool fails to reconnect to its data store.
Applications may notify a listener when this attribute increments, or
when the attribute reaches a threshold, depending on the level of
acceptable downtime.

Table 7-2 Commonly Monitored WebLogic Server Runtime Statistics

To track this statistic... Listen or monitor this MBean attribute...

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceRuntimeMBean.html#ActiveConnectionsCurrentCount
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceRuntimeMBean.html#ActiveConnectionsHighCount
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceRuntimeMBean.html#LeakedConnectionCount
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceRuntimeMBean.html#ConnectionDelayTime
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceRuntimeMBean.html#FailuresToReconnectCount

Using No t i f i cat ions and Moni to r MBeans

7-8 Developing Custom Management Utilities with JMX

2. Create an additional class that registers your listener and an optional filter with the MBean
whose notifications you want to receive. See “Configuring a Notification Filter” on
page 7-10 and “Registering a Notification Listener and Filter” on page 7-11.

3. Package and deploy the listener and registration class. See “Packaging and Deploying
Listeners on WebLogic Server” on page 7-14.

Creating a Notification Listener
To create a notification listener:

1. Create a class that implements javax.management.NotificationListener.

See NotificationListener in the J2SE 5.0 API Specification.

2. Within the class, add a NotificationListener.handleNotification(Notification
notification, java.lang.Object handback) method.

Note: Your implementation of this method should return as soon as possible to avoid
blocking its notification broadcaster.

3. (Optional) In most listening situations, you want to know more than the simple fact that an
MBean has emitted a notification object. For example, you might want to know the value of
the notification object’s Type attribute, which is used to classify the type of event that
caused the notification to be emitted.

To retrieve information from a notification object, within your handleNotification
method invoke the object’s methods. Because all notification types extend
javax.management.Notification, the following Notification methods are available
for all notifications:

– getMessage()

– getSequenceNumber()

– getTimeStamp()

– getType()

– getUserData()

See Notification in the J2SE 5.0 API Specification.

Most notification types provide additional methods for retrieving data that is specific to the
notification. For example, javax.management.AttributeChangeNotification
provides getNewValue() and getOldValue(), which you can use to determine how the
attribute value has changed.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/NotificationListener.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/Notification.html

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Developing Custom Management Utilities with JMX 7-9

Listing 7-1 is a simple listener that uses AttributeChangeNotification methods to retrieve
the name of an attribute with a changed value, and the old and new values.

Listing 7-1 Notification Listener

import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;
import javax.management.AttributeChangeNotification;

public class MyListener implements NotificationListener {

public void handleNotification(Notification notification, Object obj) {

if(notification instanceof AttributeChangeNotification) {
AttributeChangeNotification attributeChange =

(AttributeChangeNotification) notification;
System.out.println("This notification is an

AttributeChangeNotification");
System.out.println("Observed Attribute: " +

attributeChange.getAttributeName());
System.out.println("Old Value: " + attributeChange.getOldValue());
System.out.println("New Value: " + attributeChange.getNewValue());

}
}

}

Listening from a Remote JVM
As of JMX 1.2, there are no special requirements for programming a listener that runs in a
different JVM from the MBean to which it is listening.

Once you establish a connection to the remote JMX agent (using
javax.management.MBeanServerConnection), JMX takes care of sharing data between the
JVMs. See “Registering a Notification Listener and Filter” on page 7-11 for instructions on
establishing a connection from a remote JVM.

Best Practices: Creating a Notification Listener
Consider the following recommendations while creating your NotificationListener class:

Unless you use a notification filter, your listener receives all notifications (of all
notification types) from the MBeans with which it is registered.

Using No t i f i cat ions and Moni to r MBeans

7-10 Developing Custom Management Utilities with JMX

Instead of using one listener for all possible notifications that an MBean emits, the best
practice is to use a combination of filters and listeners. While having multiple listeners
adds to the amount of time for initializing the JVM, the trade-off is ease of code
maintenance.

If your WebLogic Server environment contains multiple instances of MBean types that you
want to monitor, you can create one notification listener and then create as many
registration classes as MBean instances that you want to monitor.

For example, if your WebLogic Server domain contains three JDBC data sources, you can
create one listener class that listens for AttributeChangeNotifications. Then, you
create three registration classes. Each registration class registers the listener with a specific
instance of JDBCDataSourceRuntimeMBean.

While the handleNotification method signature includes an argument for a handback
object, your listener does not need to retrieve data from or otherwise manipulate the
handback object. It is an opaque object that helps the listener to associate information
regarding the MBean emitter.

Your implementation of the handleNotification method should return as soon as
possible to avoid blocking its notification broadcaster.

If you invoke a method from a specialized notification type, wrap the method calls in an if
statement to prevent your listener from invoking the method on notification objects of all
types.

Configuring a Notification Filter
As of JDK 1.5, the JDK includes two simple filter classes that you can configure to forward
notifications that match criteria that you specify. To configure one of the JDK’s filter classes:

1. In the class that registers your listener with an MBean create an instance of
javax.management.NotificationFilterSupport or
AttributeChangeNotificationFilter.

2. Invoke a filter class method to specify filter criteria.

See NotificationFilterSupport or AttributeChangeNotificationFilter in the
J2SE 5.0 API Specification.

For example, the following lines of code configure an AttributeChangeNotificationFilter
that forwards only attribute change notifications and only if there is a change in an attribute
named State:

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/NotificationFilterSupport.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/AttributeChangeNotificationFilter.html

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Developing Custom Management Utilities with JMX 7-11

AttributeChangeNotificationFilter filter =

new AttributeChangeNotificationFilter();

filter.enableAttribute("State");

Creating a Custom Filter
If the JDK’s filter class is too simplistic for your needs, you can create more sophisticated, custom
filter classes. (See NotificationFilter in the J2SE 5.0 API Specification.) However, BEA
recommends that you use the JDK filter classes whenever possible: using a custom filter
complicates the packaging and deployment of your listener and filter. See “Packaging and
Deploying Listeners on WebLogic Server” on page 7-14.

Registering a Notification Listener and Filter
After you implement a notification listener class, you create an additional class that registers your
listener (and optionally configures and registers a filter) with an MBean instance.

To register a notification listener and filter with an MBean:

1. Initialize a connection to the Domain Runtime MBean Server.

See “Make Remote Connections to an MBean Server” on page 4-2.

2. To register with a WebLogic Server MBean, navigate the MBean hierarchy and retrieve an
object name for the MBean that you want to listen to. See “Navigate MBean Hierarchies”
on page 4-8.

To register with a custom MBean, create an ObjectName that contains the MBean’s JMX
object name. See javax.management.ObjectName in the J2SE 5.0 API Specification.

3. Instantiate the listener class that you created.

4. (Optional) Instantiate and configure one of the JDK’s filter classes or instantiate a custom
class.

5. Register the listener and filter by passing the MBean’s object name, listener class, and filter
class to the MBeanServerConnection.addNotificationListener (
ObjectName name, ObjectName listener, NotificationFilter filter,

Object handback) method.

The example class registers the listener from Listing 7-1 and the JDK’s
AttributeChangeNotificationFilter with all ServerLifeCycleRuntimeMBeans in a
domain. The class does not pass a handback object.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/NotificationFilter.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html

Using No t i f i cat ions and Moni to r MBeans

7-12 Developing Custom Management Utilities with JMX

In the example, weblogic is a user who has permission to view and modify MBean attributes.
For information about permissions to view and modify MBeans, refer to "Security Roles" in the
Securing WebLogic Resources guide.

The example class also includes some code that keeps the RegisterListener class active and
not exit the main program. Usually this code is not necessary because a listener class runs in the
context of some larger application that is responsible for invoking the class and keeping it active.
It is included here so you can easily compile and see the example working.

Listing 7-2 Registering a Listener with ServerLifeCycleRuntimeMBean

import java.util.Hashtable;
import java.io.IOException;
import java.net.MalformedURLException;

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.MalformedObjectNameException;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

import javax.management.AttributeChangeNotificationFilter;

public class RegisterListener {
private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectName service;
// Initializing the object name for DomainRuntimeServiceMBean
// so it can be used throughout the class.
static {

try {
service = new ObjectName(
"com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanserv
ers.domainruntime.DomainRuntimeServiceMBean");

}catch (MalformedObjectNameException e) {
throw new AssertionError(e.getMessage());

}
}

/*
* Initialize connection to the Domain Runtime MBean server
* each server in the domain hosts its own instance.
*/
public static void initConnection(String hostname, String portString,

http://e-docs.bea.com/wls/docs90/secwlres/secroles.html

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Developing Custom Management Utilities with JMX 7-13

String username, String password) throws IOException,
MalformedURLException {
String protocol = "t3";
Integer portInteger = Integer.valueOf(portString);
int port = portInteger.intValue();
String jndiroot = "/jndi/";
String mserver = "weblogic.management.mbeanservers.domainruntime";
JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,

jndiroot + mserver);

Hashtable h = new Hashtable();
h.put(Context.SECURITY_PRINCIPAL, username);
h.put(Context.SECURITY_CREDENTIALS, password);
h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");
connector = JMXConnectorFactory.connect(serviceURL, h);
connection = connector.getMBeanServerConnection();

}

/*
* Get an array of ServerLifeCycleRuntimeMBeans
*/
public static ObjectName[] getServerLCRuntimes() throws Exception {

ObjectName domainRT = (ObjectName) connection.getAttribute(service,
"DomainRuntime");

return (ObjectName[]) connection.getAttribute(domainRT,
"ServerLifecycleRuntimes");

}

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

try {
//Instantiating your listener class.
MyListener listener = new MyListener();
AttributeChangeNotificationFilter filter =

new AttributeChangeNotificationFilter();
filter.enableAttribute("State");

initConnection(hostname, portString, username, password);

//Passing the name of the MBeans and your listener class to the
//addNotificationListener method of MBeanServer.
ObjectName[] serverLCRT = getServerLCRuntimes();
int length= (int) serverLCRT.length;
for (int i=0; i < length; i++) {

connection.addNotificationListener(serverLCRT[i], listener,

Using No t i f i cat ions and Moni to r MBeans

7-14 Developing Custom Management Utilities with JMX

filter, null);
System.out.println("\n[myListener]: Listener registered with"

+serverLCRT[i]);
}

//Keeping the remote client active.
System.out.println("pausing...........");
System.in.read();

} catch(Exception e) {
System.out.println("Exception: " + e);

}
}

}

Packaging and Deploying Listeners on WebLogic Server
You can package and deploy a JMX listener as a remote application, a WebLogic Server startup
class (which makes the listener available as soon as a server boots), or within one of your other
applications that you deploy on WebLogic Server.

If you use a filter from the JDK, you do not need to package the filter class. It is always available
through the JDK.

Table 7-3 describes how to package and deploy your listeners and any custom filters.

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Developing Custom Management Utilities with JMX 7-15

Table 7-3 Packaging and Deploying Listeners and Custom Filters

If you deploy the
listener...

Do this for the listener... Do this for a custom filter...

As a remote application Make the listener’s class available on the
remote client’s classpath.

Make the filter’s class available on the
remote client’s classpath.

Also add the filter class to the classpath
of each server instance that hosts the
monitored MBeans by archiving the
class in a JAR file and copying the JAR
in each server’s lib directory. See
Domain Directory Contents in
Understanding Domain Configuration.

http://e-docs.bea.com/wls/docs90/domain_config/config_files.html#domain_dir_contents

Using No t i f i cat ions and Moni to r MBeans

7-16 Developing Custom Management Utilities with JMX

Example: Listening for The Registration of Configuration
MBeans
When you create a WebLogic Server resource, such as a server or a JDBC data source, WebLogic
Server creates a configuration MBean and registers it in the Domain Runtime MBean Server.

As a WebLogic Server
startup class

Add the listener class to the server’s
classpath by archiving the class in a JAR
file and copying the JAR in the server’s
lib directory.

Add the filter class to the server’s
classpath by archiving the class in a JAR
file and copying the JAR in the server’s
lib directory. See Domain Directory
Contents in Understanding Domain
Configuration.

As part of an
application that you
deploy on WebLogic
Server

Package the listener class with the
application.

Package the listener class with the
application.

Also add the filter class to the classpath
of each server instance that hosts the
monitored MBeans by doing one of the
following:
• Archiving the class in a JAR file and

copying the JAR in each server’s
lib directory. See Domain
Directory Contents in
Understanding Domain
Configuration.

• Using the JMX MLet service to
make the filter class available to the
MBean server. See
javax.management.loading.
MLet in the J2SE 5.0 API
Specification and the JMX 1.2
specification, which you can
download from
http://jcp.org/aboutJava/community
process/final/jsr003/index3.html.

Table 7-3 Packaging and Deploying Listeners and Custom Filters

If you deploy the
listener...

Do this for the listener... Do this for a custom filter...

http://e-docs.bea.com/wls/docs90/domain_config/config_files.html#domain_dir_contents
http://e-docs.bea.com/wls/docs90/domain_config/config_files.html#domain_dir_contents
http://e-docs.bea.com/wls/docs90/domain_config/config_files.html#domain_dir_contents
http://e-docs.bea.com/wls/docs90/domain_config/config_files.html#domain_dir_contents
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/loading/MLet.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/loading/MLet.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Developing Custom Management Utilities with JMX 7-17

To listen for these events, register a listener with javax.management.MBeanServerDelegate,
which emits a notification of type
javax.management.MBeanServerNotification each time an MBean is registered or
unregistered. See MBeanServerDelegate in the J2SE 5.0 API Specification.

Note the following about the example listener in Listing 7-3:

To provide information about which type of WebLogic Server MBean has been registered,
the listener looks at the object name of the registered MBean. All WebLogic Server MBean
object names contain a key property whose name is “Type” and whose value indicates the
type of MBean. For example, instances of ServerRuntimeMBean contain the
Type=ServerRuntime key property in their object names.

All JMX notifications contain a Type attribute, whose value offers a way to categorize and
filter notifications. The Type attribute in MBeanServerNotification contains only one
of two possible strings: "JMX.mbean.registered" or "JMX.mbean.unregistered". JMX
notifications also contain a getType method that returns the value of the Type attribute.

The listener in Listing 7-3 invokes different lines of code depending on the value of the
Type attribute.

If a JDBCDataSourceRuntimeMBean has been registered, the listener passes the MBeans’
object name to a custom method. The custom method registers a listener and configures a
filter for the JDBCDataSourceRuntimeMBean; this MBean listener emits messages when
the MBean’s Enabled attribute changes.

The implementation of the custom method is located in the registration class (not the filter
class) so that the method can reuse registration class’s connection to the MBean server.
Such reuse is an efficient use of resources and eliminates the need to store credentials and
URLs in multiple classes.

Listing 7-3 Example: Listening for MBeans Being Registered and Unregistered

import javax.management.Notification;

import javax.management.NotificationListener;

import javax.management.MBeanServerNotification;

import javax.management.ObjectName;

public class DelegateListener implements NotificationListener {

public void handleNotification(Notification notification, Object obj) {

if (notification instanceof MBeanServerNotification) {

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerDelegateMBean.html

Using No t i f i cat ions and Moni to r MBeans

7-18 Developing Custom Management Utilities with JMX

MBeanServerNotification msnotification =

(MBeanServerNotification) notification;

// Get the value of the MBeanServerNotification

// Type attribute, which contains either

// "JMX.mbean.registered" or "JMX.mbean.unregistered"

String nType = msnotification.getType();

// Get the object name of the MBean that was registered or

// unregistered

ObjectName mbn = msnotification.getMBeanName();

// Object names for WebLogic Server MBeans always contain

// a "Type" key property, which indicates the

// MBean's type (such as ServerRuntime or Log)

String key = mbn.getKeyProperty("Type");

if (nType.equals("JMX.mbean.registered")) {

System.out.println("A " + key + " has been created.");

System.out.println("Full MBean name: " + mbn);

System.out.println("Time: " + msnotification.getTimeStamp());

if (key.equals("JDBCDataSourceRuntime")) {

// Registers a listener with a ServerRuntimeMBean.

// By defining the "registerwithServerRuntime" method

// in the "ListenToDelegate" class, you can reuse the

// connection that "ListenToDelegate" established;

// in addition to being an efficient way to use resources,

// it eliminates the need to store credentials and URLs in

// multiple classes.

ListenToDelegate.registerwithJDBCDataSourceRuntime(mbn);

}

}

if (nType.equals("JMX.mbean.unregistered")) {

System.out.println("An MBean has been unregistered");

System.out.println("Server name: " +

mbn.getKeyProperty("Name"));

System.out.println("Time: " + msnotification.getTimeStamp());

System.out.println("Full MBean name: "

+ msnotification.getMBeanName());

}

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Developing Custom Management Utilities with JMX 7-19

}

}

}

Listing 7-4 shows methods from a registration class. Note the following:

The JMX object name for MBeanServerDelegate is always
"JMImplementation:type=MBeanServerDelegate".

The main method configures an instance of
javax.management.NotificationFilterSupport to forward notifications only if value
of the notification’s Type attribute starts with "JMX.mbean.registered" or
"JMX.mbean.unregistered".

The registerwithJDBCDataSourceRuntime method registers the listener in Listing 7-1,
“Notification Listener,” on page 7-9 with the specified JDBCDataSourceRuntimeMBean
instance. The method also configures a
javax.management.AttributeChangeNotificationFilter, which forwards only
AttributeChangeNotifications that describe changes to an attribute named Enabled.

To compile and run these methods, use the supporting custom methods from Listing 7-2 and run
the resulting class as a remote JMX client.

Listing 7-4 Example: Registering a Listener with MBeanServerDelegate

public static void main(String[] args) throws Exception {

String hostname = args[0];

String portString = args[1];

String username = args[2];

String password = args[3];

ObjectName delegate = new ObjectName(

"JMImplementation:type=MBeanServerDelegate");

try {

//Instantiating your listener class.

StartStopListener slistener = new StartStopListener();

NotificationFilterSupport filter = new NotificationFilterSupport();

filter.enableType("JMX.mbean.registered");

filter.enableType("JMX.mbean.unregistered");

Using No t i f i cat ions and Moni to r MBeans

7-20 Developing Custom Management Utilities with JMX

/* Invoke a custom method that establishes a connection to the

* Domain Runtime MBean Server and uses an instance of

* MBeanServerConnection to represents the connection. The custom

* method assigns the MBeanServerConnection to a class-wide, static

* variable named "connection".

*/

initConnection(hostname, portString, username, password);

//Passing the name of the MBeans and your listener class to the

//addNotificationListener method of MBeanServer.

connection.addNotificationListener(delegate, slistener, filter,

null);

System.out.println("\n[myListener]: Listener registered ...");

//Keeping the remote client active.

System.out.println("pausing...........");

System.in.read();

} catch (Exception e) {

System.out.println("Exception: " + e);

}

}

// Called by the listener if it receives notification of a

// JDBCDataSourceRuntimeMBean being registered.

public static void registerwithJDBCDataSourceRuntime(ObjectName mbname) {

try {

MyListener mylistener = new MyListener();

AttributeChangeNotificationFilter filter =

new AttributeChangeNotificationFilter();

filter.enableAttribute("Enabled");

connection.addNotificationListener(mbname, mylistener,

filter, null);

} catch (Exception e) {

System.out.println("Exception: " + e);

}

}

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Developing Custom Management Utilities with JMX 7-21

Using Monitor MBeans to Observe Changes: Main Steps
To configure and use monitor MBeans:

1. Choose the type of monitor MBean type that supports your monitoring needs. “Monitor
MBean Types and Notification Types” on page 7-21

2. Create a listener class that can listen for notifications from monitor MBeans. See “Creating
a Notification Listener for a Monitor MBean” on page 7-23.

3. Create a class that creates, registers and configures a monitor MBean, registers your listener
class with the monitor MBean, and then starts the monitor MBean. See “Registering the
Monitor and Listener” on page 7-24

Monitor MBean Types and Notification Types
JMX provides monitor MBeans that are specialized to observe specific types of changes:

StringMonitorMBean observes attributes whose value is a String.

Use this monitor to periodically observe attributes such as
ServerLifeCycleRuntimeMBean State.

See javax.management.monitor.StringMonitor in the J2SE 5.0 API Specification,
which implements StringMonitorMBean.

GaugeMonitorMBean observes attributes whose value is a Number.

Use this monitor to observe an attribute whose value fluctuates as a result of normal
operations. Configure the gauge monitor to emit a notification if the value of the attribute
fluctuates outside a specific range. For example, you can use it to monitor the
ThreadPoolRuntimeMBean StandbyThreadCount attribute to verify that the number of
unused but available threads in a server falls within an acceptable range.

See javax.management.monitor.GaugeMonitor in the J2SE 5.0 API Specification,
which implements GaugeMonitorMBean.

CounterMonitorMBean observes attributes whose value is a Number.

Use this monitor to observe an attribute whose value only increases as a result of normal
operation. Configure the counter monitor to emit a notification if the value of the attribute
crosses an upper threshold. You can also configure the counter monitor to increase the
threshold and then reset the threshold at a specified point.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/monitor/StringMonitor.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/monitor/GaugeMonitor.html

Using No t i f i cat ions and Moni to r MBeans

7-22 Developing Custom Management Utilities with JMX

For example, to track the overall number of hits on a server and to be notified each time
100 additional hits have accumulated, use a counter monitor that observes the
ServerRuntimeMBean SocketsOpenedTotalCount attribute.

See javax.management.monitor.CounterMonitor in the J2SE 5.0 API Specification,
which implements CounterMonitorMBean.

All monitor MBeans emit notifications of type
javax.management.monitor.MonitorNotification. When a monitor MBean generates a
notification, it describes the event that generated the notification by writing a specific value into
the notification’s Type property. Table 7-4 describes the value of the Type property that the
different types of monitor MBeans encode. A filter or listener can use the notification’s
getType() method to retrieve the String in the Type property.

Table 7-4 Monitor MBeans and the MonitorNotification Type Property

A Monitor MBean of This
Type

Encodes This String in the MonitorNotification’s Type Property

CounterMonitor jmx.monitor.counter.threshold when the value of the counter reaches or
exceeds a threshold known as the comparison level.

GaugeMonitor • jmx.monitor.gauge.high if the observed attribute value is increasing
and becomes equal to or greater than the high threshold value. Subsequent
crossings of the high threshold value do not cause further notifications unless
the attribute value becomes equal to or less than the low threshold value.

• jmx.monitor.gauge.low if the observed attribute value is decreasing and
becomes equal to or less than the low threshold value. Subsequent crossings of
the low threshold value do not cause further notifications unless the attribute
value becomes equal to or greater than the high threshold value.

StringMonitor • jmx.monitor.string.matches if the observed attribute value matches
the string to compare value. Subsequent matches of the string to compare values
do not cause further notifications unless the attribute value differs from the
string to compare value.

• jmx.monitor.string.differs if the attribute value differs from the
string to compare value. Subsequent differences from the string to compare
value do not cause further notifications unless the attribute value matches the
string to compare value.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/monitor/CounterMonitor.html

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Developing Custom Management Utilities with JMX 7-23

Errors and the MonitorNotification Type Property
If an error occurs, all monitors encode one of the following values in the notification’s Type
property:

jmx.monitor.error.mbean, which indicates that the observed MBean is not registered in
the MBean Server. The observed object name is provided in the notification.

jmx.monitor.error.attribute, which indicates that the observed attribute does not
exist in the observed object. The observed object name and observed attribute name are
provided in the notification.

jmx.monitor.error.type, which indicates that the object instance of the observed
attribute value is null or not of the appropriate type for the given monitor. The observed
object name and observed attribute name are provided in the notification.

jmx.monitor.error.runtime, which contains exceptions that are thrown while trying to
get the value of the observed attribute (for reasons other than the cases described above).

The counter and the gauge monitors can also encode jmx.monitor.error.threshold into the
Type property under the following circumstances:

For a counter monitor, when the threshold, the offset, or the modulus is not of the same
type as the observed counter attribute.

For a gauge monitor, when the low threshold or high threshold is not of the same type as
the observed gauge attribute.

Creating a Notification Listener for a Monitor MBean
When an observed attributes meets the criteria that you specify, a monitor MBean emits a
notification. There are no special requirements for creating a listener for a
MonitorNotification. The steps are the same as those described in “Creating a Notification
Listener” on page 7-8 except:

You listen for notifications of type MonitorNotification.

Optionally, you can import the javax.management.monitor.MonitorNotification
class and invoke its methods to retrieve additional information about the event that
generated the notification.

See Listing 7-5.

Using No t i f i cat ions and Moni to r MBeans

7-24 Developing Custom Management Utilities with JMX

Listing 7-5 Listener for Monitor Notifications

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.monitor.MonitorNotification;

public class MonitorListener implements NotificationListener {
public void handleNotification(Notification notification, Object obj) {

if(notification instanceof Notification) {
Notification notif = (Notification) notification;
System.out.println("Notification type" + notif.getType());
System.out.println("Message: " + notif.getMessage());

}
if (notification instanceof MonitorNotification) {

MonitorNotification mn = (MonitorNotification) notification;
System.out.println("Observed Attribute: " +

mn.getObservedAttribute());
System.out.println("Trigger: " + mn.getTrigger());

}
}

}

Registering the Monitor and Listener
Recall that to use a monitor MBean, you first must create and register an instance of the monitor
MBean in the MBean server. Then you register a listener with the monitor MBean that you
created. You can do all of this in a single class.

To register a monitor MBean, register your listener, and start the monitor MBean:

1. Initialize a connection to the Domain Runtime MBean Server.

See “Make Remote Connections to an MBean Server” on page 4-2.

2. Create an ObjectName for your monitor MBean instance.

See javax.management.ObjectName in the J2SE 5.0 API Specification.

BEA recommends that your object name starts with the name of your organization and
includes key properties that clearly identifies the purpose of the monitor MBean instance.

For example, mycompany:Name=SocketMonitor,Type=CounterMonitor

3. Create and register one of the monitor MBeans.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Developing Custom Management Utilities with JMX 7-25

Use javax.management.MBeanServerConnection.createMBean(String classname
ObjectName name) method where:

– classname is one of the following values:
javax.management.monitor.CounterMonitor
javax.management.monitor.GaugeMonitor
javax.management.monitor.StringMonitor

– name is the object name that you created for the monitor MBean instance.

4. Configure the monitor MBean by setting the value of its attributes.

For guidelines on which attributes to set, see the javax.management.monitoring
package in the J2SE 5.0 API Specification.

5. To specify the MBean that your monitor MBean monitors (the observed MBean), invoke
the monitor MBean’s addObservedObject(ObjectName objectname) and
addObservedAttribute(String attributename) operations where.

– objectname is the ObjectName of the observed MBean

– attributename is the name of the attribute in the observed MBean that you want to
monitor

A single instance of a monitor MBean can monitor multiple MBeans. Invoke the
addObservedObject and addObservedAttribute operation for each MBean instance
that you want to monitor.

6. Instantiate the listener object that you created in “Creating a Notification Listener for a
Monitor MBean” on page 7-23.

7. Optionally instantiate and configure a filter.

8. Register the listener and optional filter with the monitor MBean. Do not register the
listener with the observed MBean.

Invoke the monitor MBean’s addNotificationListener(NotificationListener
listener, NotificationFilter filter, Object handback) method.

9. Start the monitor by invoking the monitor MBean’s start() operation.

Example: Registering a CounterMonitorMBean and Its Listener
Listing 7-6 shows the main() method of a class that creates and configures a
CounterMonitorMBean to observe the SocketsOpenedTotalCount attribute in each

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/monitor/package-summary.html

Using No t i f i cat ions and Moni to r MBeans

7-26 Developing Custom Management Utilities with JMX

ServerRuntimeMBean instance in a domain. (See SocketsOpenedTotalCount in WebLogic
Server MBean Reference.)

The code example connects to the Domain Runtime MBean Server so that it can monitor multiple
instances of ServerRuntimeMBean. Note the following:

Only one instance of CounterMonitorMBean monitors all instances of
ServerRuntimeMBean. The Domain Runtime MBean Server gives the
CounterMonitorMBean federated access to instances of ServerRuntimeMBean that are
running in a different JVM.

Only one instance of your listener class and the filter class listens and filters notifications
from the CounterMonitorMBean.

To compile and run this main method, use the supporting custom methods from Listing 7-2 and
run the resulting class as a remote JMX client.

Listing 7-6 Example: Registering a CounterMonitorMBean and Its Listener

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

try {
/* Invokes a custom method that establishes a connection to the
* Domain Runtime MBean Server and uses an instance of
* MBeanServerConnection to represents the connection. The custom
* method assigns the MBeanServerConnection to a class-wide, static
* variable named "connection".
*/
initConnection(hostname, portString, username, password);

//Creates and registers the monitor MBean.
ObjectName monitorON =

new ObjectName("mycompany:Name=mySocketMonitor,Type=CounterMonitor");
String classname = "javax.management.monitor.CounterMonitor";
System.out.println("===> create mbean "+monitorON);
connection.createMBean(classname, monitorON);

//Configure the monitor MBean.
Number initThreshold = new Long(2);
Number offset = new Long(1);
connection.setAttribute(monitorON,

new Attribute("InitThreshold", initThreshold));

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerRuntimeMBean.html#SocketsOpenedTotalCount

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Developing Custom Management Utilities with JMX 7-27

connection.setAttribute(monitorON, new Attribute("Offset", offset));
connection.setAttribute(monitorON,

new Attribute("Notify", new Boolean(true)));

//Gets the object names of the MBeans that you want to monitor.
ObjectName[] serverRT = getServerRuntimes();
int length= (int) serverRT.length;
for (int i=0; i < length; i++) {

//Sets each instance of ServerRuntime MBean as a monitored MBean.
System.out.println("===> add observed mbean "+serverRT[i]);
connection.invoke(monitorON, "addObservedObject",

new Object[] { serverRT[i] },
new String[] { "javax.management.ObjectName" });

Attribute attr = new Attribute("ObservedAttribute",
"SocketsOpenedTotalCount");

connection.setAttribute(monitorON, attr);
}

// Instantiates your listener class and configures a filter to
// forward only counter monitor messages.
MonitorListener listener = new MonitorListener();
NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enableType("jmx.monitor.counter");
filter.enableType("jmx.monitor.error");

//Uses the MBean server's addNotificationListener method to
//register the listener and filter with the monitor MBean.
System.out.println("===> ADD NOTIFICATION LISTENER TO "+monitorON);
connection.addNotificationListener(monitorON, listener, filter, null);
System.out.println("\n[myListener]: Listener registered ...");

//Starts the monitor.
connection.invoke(monitorON, "start", new Object[] { }, new String[] { });

//Keeps the remote client active.
System.out.println("pausing...........");
System.in.read();

} catch(Exception e) {
System.out.println("Exception: " + e);
e.printStackTrace();

}
}

Using No t i f i cat ions and Moni to r MBeans

7-28 Developing Custom Management Utilities with JMX

Developing Custom Management Utilities with JMX 8-1

C H A P T E R 8

Configuring WebLogic Server JMX
Services

Within a WebLogic Server domain, you can specify which JMX services are available. For
example, in a production environment you can disable the WebLogic Server editing service and
therefore prevent most runtime changes to the domain.

The following attributes of JMXMBean determine which JMX services are available in a domain
(see JMXMBean in WebLogic Server MBean Reference):

EditMBeanServerEnabled controls whether JMX clients, including utilities such as the
Administration Console and the WebLogic Scripting Tool, can modify a domain’s
configuration.

DomainMBeanServerEnabled controls whether JMX clients can access all runtime
MBeans and read-only configuration MBeans through a single connection to the Domain
Runtime MBean Server.

RuntimeMBeanServerEnabled controls whether JMX clients can access a specific
server’s runtime MBeans and read-only configuration MBeans through the server’s
Runtime MBean Server.

PlatformMBeanServerEnabled controls whether all WebLogic Server instances start
their Runtime MBean Servers as the JDK platform MBean server. This makes it possible to
access WebLogic Server MBeans and the JVM platform MBeans from a single MBean
server.

CompatibilityMBeanServerEnabled enables JMX clients to use the deprecated
weblogic.management.MBeanHome interface to access WebLogic Server MBeans.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JMXMBean.html

Conf igur ing WebLog ic Serve r JMX Serv ices

8-2 Developing Custom Management Utilities with JMX

ManagementEJBEnabled controls whether the current WebLogic Server domain supports
the J2EE Management APIs.

Example: Using WebLogic Scripting Tool to Make a Domain
Read-Only

The following example uses the WebLogic Scripting Tool (WLST) to set the JMXMBean
EditMBeanServerEnabled attribute to false. It assumes that you are running WLST on a
Windows computer, that you created a domain under c:\mydomain, and that you have not
deleted the scripts that WebLogic Server creates along with your domain.

Caution: The following steps prevent JMX clients (including the WebLogic Server
Administration Console and the WebLogic Scripting Tool in online mode) from
modifying the domain's configuration. You can still modify the domain configuration
through the offline editing feature of WebLogic Scripting Tool.

These steps do not prevent JMX clients from deploying or undeploying modules
because the WebLogic Server deployment service does not use JMX.

1. Start the domain’s Administration Server.

2. In a command prompt, set up the required environment by running the following script:

c:\mydomain\setDomainEnv.cmd

3. In the same command prompt, enter the following commands:

a. java weblogic.WLST

b. connect('weblogic','weblogic')

c. edit()

d. startEdit()

e. cd('JMX/mydomain')

f. set('EditMBeanServerEnabled','false')

g. activate()

h. exit()

Developing Custom Management Utilities with JMX Index-1

Index

A
administration domain. See domain 2-1
Administration MBeans

WebLogicObjectName 2-7
Administration Servers

defined 2-1

C
Configuration MBeans

defined 2-2
See also Local Configuration MBeans and

Administration MBeans
CounterMonitor objects

type of notifications emitted 7-22

D
destroying MBeans 2-2
domains

defined 2-1

E
error notification types 7-23

G
GaugeMonitor objects

type of notifications emitted 7-22

H
handleNotification method 7-8

I
instantiating MBeans 2-2

J
JMX specification 1-2

L
listeners

creating 7-7, 7-23
defined 7-1

Local Configuration MBeans
WebLogicObjectName 2-7

log messages 7-5

M
Managed Servers

defined 2-1
MBean types, defined 2-7
MBeans

notifications generated 7-2
MBeanServer interface

registering listeners 7-11
monitor MBeans

types 7-21
monitoring attributes of MBeans

main steps 7-21

N
names of MBeans 2-7

Index-2 Developing Custom Management Utilities with JMX

P
persistence

of runtime data 2-2

R
Runtime MBeans

defined 2-2
distribution 2-2
persistence 2-2
WebLogicObjectName 2-7

S
StringMonitor objects

type of notifications emitted 7-22

T
type, MBean 2-7

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	New and Changed JMX Features in This Release
	JMX 1.2 and JMX Remote API 1.0 (JSR-160)
	Deprecated MBeanHome and Type-Safe Interfaces
	Changes to the Model for Distributing Configuration Data in a Domain
	Changes to the MBean Data Model
	New Functionally Aligned MBean Servers
	Changes in Subsystem MBeans
	Facilities for Registering Custom MBeans
	New Reference Document for WebLogic Server MBeans

	���
	Understanding WebLogic Server MBeans
	Basic Organization of a WebLogic Server Domain
	Separate MBean Types for Monitoring and Configuring
	The Life Cycle of WebLogic Server MBeans
	WebLogic Server MBean Data Model
	Containment and Reference Relationships
	Containment Relationship
	Reference Relationship

	WebLogic Server MBean Object Names

	MBean Servers
	Connecting to MBean Servers
	Local Connections to MBean Servers
	Remote Connections to MBean Servers

	Service MBeans

	���
	Overview of WebLogic Server Subsystem MBeans
	Domain and Server Logging Configuration
	JMS Server and JMS System Module Configuration
	JDBC Resource Configuration

	���
	Accessing WebLogic Server MBeans with JMX
	Set Up the Classpath for Remote Clients
	Make Remote Connections to an MBean Server
	Example: Connecting to the Domain Runtime MBean Server
	Best Practices: Choosing an MBean Server
	Remote Connections Using Only JDK Classes

	Make Local Connections to the Runtime MBean Server
	Navigate MBean Hierarchies
	Example: Printing the Name and State of Servers
	Example: Monitoring Servlets

	���
	Managing a Domain’s Configuration with JMX
	Editing MBean Attributes: Main Steps
	Start an Edit Session
	Change Attributes or Create New MBeans
	Save Changes to the Pending Configuration Files
	Activate Your Saved Changes
	Example: Changing the Administration Port
	Exception Types Thrown by Edit Operations

	Listing and Undoing Changes
	List Unsaved Changes
	List Unactivated Changes
	List Changes in the Current Activation Task
	Undoing Changes

	Tracking the Activation of Changes
	Listing the Status of the Current Activation Task
	Listing All Activation Tasks Stored in Memory
	Purging Completed Activation Tasks from Memory

	Managing Locks
	Best Practices: Recommended Pattern for Editing and Handling Exceptions
	Setting and Getting Encrypted Values
	Set the Value of an Encrypted Attribute (Recommended Technique)
	Set the Value of an Encrypted Attribute (Compatibility Technique)
	Back Up an Encrypted Value

	���
	Managing Security Realms with JMX
	Understanding the Hierarchy of Security MBeans
	Base Provider Types and Mix-In Interfaces
	Security MBeans

	Choosing an MBean Server to Manage Security Realms
	Working with Existing Security Providers
	Discovering Available Services
	Example: Adding Users to a Realm

	Modifying the Realm Configuration

	Using Notifications and Monitor MBeans
	Best Practices: Listening Directly Compared to Monitoring
	Best Practices: Listening for WebLogic Server Events
	Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics
	Listening for Notifications from WebLogic Server MBeans: Main Steps
	Creating a Notification Listener
	Listening from a Remote JVM
	Best Practices: Creating a Notification Listener

	Configuring a Notification Filter
	Creating a Custom Filter

	Registering a Notification Listener and Filter
	Packaging and Deploying Listeners on WebLogic Server
	Example: Listening for The Registration of Configuration MBeans

	Using Monitor MBeans to Observe Changes: Main Steps
	Monitor MBean Types and Notification Types
	Errors and the MonitorNotification Type Property

	Creating a Notification Listener for a Monitor MBean
	Registering the Monitor and Listener
	Example: Registering a CounterMonitorMBean and Its Listener

	Configuring WebLogic Server JMX Services
	Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

