.."‘

%
z hea’
%

BEAWebLogic
Servere

WebLogic Server
Performance and Tuning

Version 9.0
Revised: April 3, 2006

Copyright

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

1. Introduction and Roadmap

Document Scope and Audience.ttt e
Guide to this Documentt
Performance Features of thisRelease

Related Documentationttt

2. Top Tuning Recommendations for WebLogic Server

Tune Pool Sizest
Use the Prepared Statement Cache iiiiiininan ..
Use Logging Last Resource Optimization.vunirerninenenn...
Tune Connection Backlog Buffering.
Tune the Chunk Size
Use Optimistic or Read-only Concurrencyouveninernennnenn...
Use Local Interfaces.
Use eager-relationship-caching 0.,
Tune HTTP Sessionso oottt e e e

Tune Messaging Applicationsoittn ettt

3. Performance Tuning Roadmap

Performance Tuning Roadmap i,
Understand Your Performance Objectives,
Measure Your Performance Metrics.o i,

Monitor Disk and CPU Utilization

BEA WebLogic Server Performance and Tuning

Monitor Data Transfers Across the Network 3.3

Locate Bottlenecks in Your System., 3-4
Minimize Impact of Bottlenecks 3-4
Tune Your Applicationo.uniiinii i 3-4
Tuneyour DB 3-5

Tune WebLogic Server Performance Parameters........................ 3-5

Tune Your JVM. . .o 3-5

Tune the Operating System.ttt 3-5
Achieve Performance Objectives.vi it 3-6
TUNING TIPS . o o oottt e e e e 3-6

4. Operating System Tuning

Basic OS Tuning Conceptsottt ittt e et e e 4-1
Solaris Tuning Parametersttt 4-2
Setting TCP Parameters With the ndd Command 4-2
Setting Parameters In the /etc/system File. 4-3
CE Gigabit Network Card Settingst 4-4
Linux Tuning Parametersttt 4-4
HP-UX Tuning Parametersout ittt n 4-5
Windows Tuning Parameters oottt 4-6
Other Operating System Tuning Information.......... 4-6
5. Tuning Java Virtual Machines (JVMs)
JVM Tuning Considerationsttt ettt 5-2
Which JVM for Your System? 5-3
Changing To a Different JVM 5-3
Garbage Collection e 5-3
VM Heap Size and Garbage Collection. 5-4

vi BEA WebLogic Server Performance and Tuning

Choosing a Garbage Collection Scheme 5-4

Using Verbose Garbage Collection to Determine Heap Size................... 5-5
Specifying Heap Size Values i 5-7
Tuning Tips for Heap Sizes. 5-7

BEA JRockit JVM Heap Size Optionsoviiinienennnnan .. 5-8

Java HotSpot VM Heap Size Options.ccoviiiinerninenann... 5-9
Automatically Logging Low Memory Conditions. 5-11
Manually Requesting Garbage Collectioncccviiinan.... 5-11
Requesting Thread Stacks 5-12
Enable Spinning for IA32 Platforms i, 5-12
SUN JDK . L 5-12
BEA JROCKIL. . . .ot 5-12
... 5-13

6. Tuning the WebLogic Persistent Store

Overview of Persistent StOresottt 6-1
Using the Default Persistent Store i 6-1
Using Custom File Stores and JDBC Stores, 6-2
Using JMS Paging Stores.o.vtt ettt e 6-2

Best Practices When Using Persistent Stores, 6-3

Tuning JDBC StOresottt e e e e 6-3

Tuning File Storesot e 6-3

/. Tuning WebLogic Server

Setting Java Parameters for Starting WebLogic Server 7-1
Development vs. Production Mode Default Tuning Values 7-2
Thread Managementt 7-3

Tuning a Work Manager. 7-4

BEA WebLogic Server Performance and Tuning vii

Tuning EXecute QUeUESot vttt e e e 7-4

Understanding the Differences Between Work Managers and Execute Queues 7-5

Migrating from Previous Releases, 7-5

Tuning the Stuck Thread Detection Behavior 7-6
Tuning Network I/O o 7-7
TUNING MUXETS . .« ottt et e et e e e e e e e e e 7-7
Which Platforms Have Performance Packs? 7-8
Enabling Performance Packs 7-9
Changing the Number of Available Socket Readers 7-9
Network Channels o 7-9
Tuning Message SizZeo vt ittt e e 7-10
Tune the Chunk Parameters. 7-10
Tuning Connection Backlog Buffering 7-11
Setting Your Java Compiler 7-12
Changing Compilers from the Administration Console 7-12
Setting Your Compiler in weblogic.xml 7-13
Compiling EJB Classesttt ittt 7-13
Compiling on UNIX. e 7-13
Using WebLogic Server Clusters to Improve Performance 7-14
Scalability and High Availability. 7-14
How to Ensure Scalability for WebLogic Clusters 7-15
Database Bottlenecks 7-15

Session Replication.ttt i 7-16
Invalidation of Entity EJBs. i 7-16
Invalidation of HTTP sessionst 7-17

JNDI Binding, Unbinding and Rebinding 7-17

viii BEA WebLogic Server Performance and Tuning

Performance Considerations When Running Multiple Server Instances on Multi-CPU

MaChines oottt e 7-17

How to Monitor a WebLogic Server Domain.ccveno.... 7-18
Using the Administration Console to Monitor WebLogic Server 7-18
Using JMX to Monitor WebLogic Server oo ... 7-18
Using WLST to Monitor WebLogic Server.cooiiiien. .. 7-18
dev2dev Resources to Monitor WebLogic Server 7-18
Third-Party Tools to Monitor WebLogic Server 7-19

8. DataBase Tuning

General SUZEEStIONS vttt e e e 8-1
Database-Specific Tuning i 8-2
Oracleo 8-2
Microsoft SQL Server 8-4
N 0] 8-4

9. Tuning WebLogic Server EJBs

General EJB Tuning Tips . ..o oottt et ettt 9-1
Tuning EJB Caches 9-2
Tuning the Stateful Session BeanCache 9-2
Tuning the Entity BeanCache 9-2
Transaction-Level Caching 9-3
Caching between transactions.ouetni oo, 9-3

Tuning the Query Cache. 9-3
Tuning EJB POOIS 9-4
Tuning the Stateless Session BeanPool. 9-4
Tuning the MDB Pool 9-4
Tuning the Entity Bean Pool 9-5
CMP Entity Bean Tuningttt et 9-5

BEA WebLogic Server Performance and Tuning ix

Use Eager Relationship Caching 9-6

Use JDBC Batch Operationsuuintetnie i eeiei e 9-6
Tuned Updatesot 9-6
Using Field Groupsot e e et 9-6
include-updates 9-7
call-by-reference 9-7
Bean-level Pessimistic Locking. i, 9-7
CONCUITENCY SIAtEEY . .« . v vttt ettt e e e ettt e ettt 9-8
Tuning In Response to Monitoring Statisticscouiriininenernen .. 9-9
Cache MisS Ratio.o e 9-9
Lock Waiter Ratio o 9-10
Lock Timeout Ratio e 9-10
Pool Miss Ratio 9-11
Destroyed Bean Ratio i, 9-11
Pool Timeout Ratio i 9-12
Transaction Rollback Ratio i 9-12
Transaction Timeout Ratio. i 9-13
10.Tuning JDBC Applications
Tune the Number of Database Connections 10-1
Waste NOt . ..o e 10-2
Use Test Connections on Reserve with Care oo, 10-2
Cache Prepared and Callable Statements, 10-3
Use Best Design Practices.ttt 10-3

11.Tuning Logging Last Resource
Whatis LLR? oo 11-1
LLR Tuning Guidelinesttt 11-2

X BEA WebLogic Server Performance and Tuning

12.Tuning WebLogic JMS

Defining QUotaottt 12-1
QuUOta RESOUICES. . . .\t 12-2
Destination-Level Quota i 12-2
IMS Server-Level Quota 12-3
Specifying a Blocking Send Policy on IMS Servers 12-3
Defining a Send Timeout on Connection Factories 12-4

Compressing MESSAZES . .« o v o vt vttt ettt e e 12-5

Paging Out Messages To Free UpMemoryot .. 12-6
Specifying a Message Paging Directory.cuiiiinnnan .. 12-6
Tuning the Message Buffer Size Option 12-6

Controlling the Flow of Messages on JMS Servers and Destinations. 12-7
How Flow Control Works. 12-7
Configuring Flow Control 12-8
Flow Control Thresholds i 12-9

Handling Expired MeSSages oottt it e 12-11
Defining a Message Expiration Policy. 12-11

Configuring an Expiration Policy on Topics.c.coun... 12-11

Configuring an Expiration Policy on Queues. 12-12

Configuring an Expiration Policy on Templates. 12-13

Defining an Expiration Logging Policy 12-14

Enabling Active Message Expiration., 12-16

Configuring a JMS Server to Actively Scan Destinations for Expired Messages . .
12-16

Tuning MessageMaXimUIMo .v ettt et et et et 12-16
Setting Maximum Message SizeonaClient 12-17

Tuning Applications Using Unit-of-Order 12-17

BEA WebLogic Server Performance and Tuning Xi

BeSt PractiCes oottt e 12-18

Using UOO and Distributed Destinations,. oo, 12-18

Migrating Old Applications to Use UOO, 12-18
13.Tuning WebLogic JMS Store-and-Forward

Best PractiCest 13-1

TUNING TIPS . o v oottt e e e 13-2

14.Tuning WebLogic Message Bridge

Best Practicest 14-1
Changing the Batch Size. 14-2
Changing the Batch Interval 14-2
Changing the Quality of Service. i 14-2
Using Multiple Bridge Instances. i 14-3
Changing the Thread Pool Size. i 14-3
Avoiding Durable Subscriptions. 14-4
Co-locating Bridges with Their Source or Target Destination 14-4
Changing the Asynchronous Mode Enabled Attribute 14-4

15.Tuning Resource Adapters

Classloading Optimizations for Resource Adapters 15-2
Connection OptimizZations. ovv ittt ettt e et e e e e 15-2
Thread Managementttt e et 15-2
InteractionSpec Interface. i 15-2

16.Tuning Web Applications

Best PractiCesoi i 16-1
Disable Page Checks i 16-1
Use Custom JSP Tags.ot e e 16-2

Xii BEA WebLogic Server Performance and Tuning

Precompile JSPs i
Use Service Level Agreementsouinitnininnnnneannnn.
Related Reading o i e e
Session Management.vuuu ittt et e e e
Managing Session Persistenceoutuiii it
Minimizing SESSIONSttt t ettt et et

Aggregating Session Data

17.Tuning WebLogic Tuxedo Connector

Configuration Guidelines. i e

BesSt PractiCes.o

A. Related Reading: Performance Tools and Information

BEA Systems, Inc. Information.
Sun Microsystems Information,
Linux OS Information
Hewlett-Packard Company Information i,
Microsoft Information
Web Performance Tuning Information
Network Performance Tools
Load Testing Toolsot
Performance Analysis TOOIS
Production Performance Management i iiiiainan..
Benchmarking Information
Java Virtual Machine (JVM) Information.,
Enterprise JavaBeans Information.
WebLogic Store Information.

Java Message Service (JMS) Information.

BEA WebLogic Server Performance and Tuning

xiii

Java Database Connectivity (JDBC) Information. A-9

General Performance Information. i A-10
B. Using the WebLogic 8.1 Thread Pool Model
How to Enable the WebLogic 8.1 Thread Pool Model. B-1
Tuning the Default Execute Queue.t B-2
Should You Modify the Default Thread Count? B-3
Using Execute Queues to Control Thread Usage B-4
Creating EXecute QUEUES.ottt e e et B-5
Modifying the Thread Count it B-7
Tuning Execute Queues for Overflow Conditions. B-8
Assigning Servlets and JSPs to Execute Queues. B-9
Assigning EJBs and RMI Objects to Execute Queues. B-10
Monitoring Execute Threads. i B-10
Allocating Execute Threads to Act as Socket Readers.......................... B-11
Setting the Number of Socket Reader Threads For a Server Instance. B-11
Setting the Number of Socket Reader Threads on Client Machines B-12
Tuning the Stuck Thread Detection Behavior. B-12

C. Capacity Planning

Capacity Planning Factors. C-1
Programmatic and Web-based Clients. C-2
RMI and Server Traffic i C-3
SSL Connections and Performance C-3
WebLogic Server Process Load Cc-4
Database Server Capacity and User Storage Requirements. Cc-4
Concurrent SESSIONS. vttt et et e e C-4
Network Loado C-5

Xiv BEA WebLogic Server Performance and Tuning

Clustered Configurationsvtttr ettt C-5

Application Design.ottt C-6
Assessing Your Application Performance Objectives., C-6
Hardware TUning.ttt e ettt et C-6

Benchmarks for Evaluating Performance. C-6

Supported Platforms.o C-6
Network Performance C-7

Determining Network Bandwidth C-7
Related Information. C-8

BEA WebLogic Server Performance and Tuning XV

Xvi BEA WebLogic Server Performance and Tuning

Introduction and Roadmap

This section describes the contents and organization of this guide—WebLogic Server
Performance and Tuning.

e “Document Scope and Audience” on page 1-1
e “Guide to this Document” on page 1-1
e “Performance Features of this Release” on page 1-3

e “Related Documentation” on page 1-4

Document Scope and Audience

This document is written for people who monitor performance and tune the components in a
WebLogic Server platform. It is assumed that readers know server administration and hardware
performance tuning fundamentals, the WebLogic Server platform, XML, and the Java
programming language.

Guide to this Document

e This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

e Chapter 2, “Top Tuning Recommendations for WebLogic Server,” discusses the most
frequently recommended steps for achieving optimal performance tuning for applications
running on WebLogic Server.

BEA WebLogic Server Performance and Tuning 1-1

Introduction and Roadmap

1-2

Chapter 3, “Performance Tuning Roadmap,” provides a roadmap to help tune your
application environment to optimize performance:

Chapter 4, “Operating System Tuning,” discusses operating system issues.
Chapter 5, “Tuning Java Virtual Machines (JVMs),” discusses JVM tuning considerations.

Chapter 7, “Tuning WebLogic Server,” contains information on how to tune WebLogic
Server to match your application needs.

Chapter 6, “Tuning the WebLogic Persistent Store,” provides information on how to tune a
persistent store.

Chapter 8, “DataBase Tuning,” provides information on how to tune your data base.

Chapter 9, “Tuning WebLogic Server EJBs,” provides information on how to tune
applications that use EJBs.

Chapter 10, “Tuning JDBC Applications,” provides information on how to tune JDBC
applications.

Chapter 11, “Tuning Logging Last Resource,” provides information on how to tune
Logging Last Resource transaction optimization.

Chapter 12, “Tuning WebLogic JMS,” provides information on how to tune applications
that use WebLogic JMS.

Chapter 13, “Tuning WebLogic JMS Store-and-Forward,” provides information on how to
tune applications that use JMS Store-and-Forward.

Chapter 14, “Tuning WebLogic Message Bridge,” provides information on how to tune
applications that use the Weblogic Message Bridge.

Chapter 15, “Tuning Resource Adapters,” provides information on how to tune applications
that use resource adaptors.

Chapter 16, “Tuning Web Applications,” provides best practices for tuning WebLogic Web
applications and application resources:

Chapter 17, “Tuning WebLogic Tuxedo Connector,” provides information on how to tune
applications that use WebLogic Tuxedo Connector.

Appendix A, “Related Reading: Performance Tools and Information,” provides an
extensive performance-related reading list.

BEA WebLogic Server Performance and Tuning

Performance Features of this Release

e Appendix B, “Using the WebLogic 8.1 Thread Pool Model,” provides information on using
execute queues.

e Appendix C, “Capacity Planning,” provides an introduction to capacity planning.

Performance Features of this Release

WebLogic Server 9.0 introduces the following performance enhancements:

e Support for CommonJ Timer and Work Manager API Specification. WebLogic Server 9.0
supports part of the BEA and IBM Joint Specifications (CommonlJ) described at
http://dev2dev.bea.com/technologies/commonj/index.jsp. In particular, this release
implements the Timer and Work Manager 1.1 Specification, available at
http://dev2dev.bea.com/technologies/commonj/twm/index.jsp.

e Server self-tuning for production environments. New self-tuning capabilities simplify the
process of configuring WebLogic Server for production environments with service level
requirements that vary over time or by application. Self-tuning helps prevent deadlocks
during periods of peak demand. Self-tuning features are also useful if your WebLogic
Server environment hosts multiple applications with different performance and availability
requirements—for example, allowing you to allocate a greater percentage of resources to a
user-facing order processing application than to a back-end inventory management
application.

e New overload protection increases availability. New overload features protect a server
instance from out-of-memory (OOM) exceptions, execute queue overloads, increasing the
availability of a server or a cluster.

e Query Caching provides a cache to store results from arbitrary non-primary key finders for
EJB 2.0 CMP read-only beans. This feature may increase the performance of read-only
beans up to an order of magnitude by avoiding database hits. Query caching also works for
internal finders used to implement container-managed relationships where the target is a
read-only bean and for the newly introduced SQL finders. See “Tuning WebLogic Server
EJBs” on page 9-1.

e Comprehensive monitoring and diagnostic tools. See “Understanding WLDF
Configuration” in Configuring and Using the WebLogic Diagnostic Framework.

e The WebLogic Server Persistent Store, which provides a built-in, high-performance storage
solution for subsystems and services that require persistence. See “Using the WebLogic
Persistent Store” in Configuring WebLogic Server Environments.

BEA WebLogic Server Performance and Tuning 1-3

http://dev2dev.bea.com/technologies/commonj/index.jsp
http://dev2dev.bea.com/technologies/commonj/twm/index.jsp
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html

Introduction and Roadmap

e Logging Last Resource (LLR) optimization can significantly improve transaction
performance by safely eliminating some of the 2PC XA overhead for database processing,
especially for two-phase commit database insert, update, and delete operations. See
“Understanding the Logging Last Resource Transaction Option” in Configuring and
Managing WebLogic JDBC.

e JMS Unit-of-Order enables concurrent processing of multiple ordered sets of messages
within a single destination. See “Using Message Unit-of-Order” in Programming WebLogic
JMS.

e JMS Store-and-Forward provides higher performance when forwarding messages between
WebLogic Server 9.X domains. See “Understanding the Store-and-Forward Service” in
Configuring and Managing WebLogic Store-and-Forward.

For a comprehensive listing of the new WebLogic Server features introduced in release 9.0, see
“What's New in WebLogic Server 9.0” in Release Notes.

Related Documentation

For related information about administering and tuning WebLogic Server, see Appendix A,
“Related Reading: Performance Tools and Information.”

1-4 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#llr
http://e-docs.bea.com/wls/docs90/jms/uoo.html
http://e-docs.bea.com/wls/docs90/saf_admin/overview.html
http://e-docs.bea.com/wls/docs90/notes/new.html

CHAPTERa

Top Tuning Recommendations for
WebLogic Server

Performance tuning WebLogic Server and your WebLogic Server application is a complex and
iterative process. To get you started, we have created a short list of recommendations to help you
optimize your application’s performance. These tuning techniques are applicable to nearly all
WebLogic applications.

“Tune Pool Sizes” on page 2-1

“Use the Prepared Statement Cache” on page 2-2

“Use Logging Last Resource Optimization” on page 2-2
“Tune Connection Backlog Buffering” on page 2-2
“Tune the Chunk Size” on page 2-2

“Use Optimistic or Read-only Concurrency” on page 2-3
“Use Local Interfaces” on page 2-3

“Use eager-relationship-caching” on page 2-3

“Tune HTTP Sessions” on page 2-3

“Tune Messaging Applications” on page 2-4

Tune Pool Sizes

Provide pool sizes (such as pools for JDBC connections, Stateless Session EJBs, and MDBs) that
maximize concurrency for the expected thread utilization.

BEA WebLogic Server Performance and Tuning 2-1

Top Tuning Recommendations for WebLogic Server

e For WebLogic Server releases 9.0 and higher—A server instance uses a self-tuned
thread-pool. The best way to determine the appropriate pool size is to monitor the pool's
current size, shrink counts, grow counts, and wait counts. See “Thread Management” on
page 7-3.

e For releases prior to WebLogic Server 9.0— In general, the number of connections should
equal the number of threads that are expected to be required to process the requests
handled by the pool. The most effective way to ensure the right pool size is to monitor it
and make sure it does not shrink and grow. See “Using the WebLogic 8.1 Thread Pool
Model” on page B-1.

Use the Prepared Statement Cache

The prepared statement cache keeps compiled SQL statements in memory, thus avoiding a
round-trip to the database when the same statement is used later. See “Cache Prepared and
Callable Statements” on page 10-3.

Use Logging Last Resource Optimization

When using transactional database applications, consider using the JDBC data source Logging
Last Resource (LLR) transaction policy instead of XA. The LLR optimization can significantly
improve transaction performance by safely eliminating some of the 2PC XA overhead for
database processing, especially for two-phase commit database insert, update, and delete
operations. For more information, see “Tuning Logging Last Resource” on page 11-1.

Tune Connection Backlog Buffering

You can tune the number of connection requests that a WebLogic Server instance accepts before
refusing additional requests. This tunable applies primarily for web applications. See “Tuning
Connection Backlog Buffering” on page 7-11.

Tune the Chunk Size

A chunk is a unit of memory that the WebLogic Server network layer, both on the client and
server side, uses to read data from and write data to sockets. A server instance maintains a pool
of these chunks. For applications that handle large amounts of data per request, increasing the
value on both the client and server sides can boost performance. See “Tune the Chunk
Parameters” on page 7-10.

2-2 BEA WebLogic Server Performance and Tuning

Use Optimistic or Read-only Concurrency

Use Optimistic or Read-only Concurrency

Use optimistic concurrency with cache-between-transactions or read-only concurrency with
query-caching for CMP EJBs wherever possible. Both of these two options leverage the Entity
Bean cache provided by the EJB container.

e Optimistic-concurrency with cache-between-transactions work best with read-mostly
beans. Using verify-reads in combination with these provides high data consistency
guarantees with the performance gain of caching. See “Tuning WebLogic Server EJBs” on
page 9-1.

e Query-caching is a WebLogic Server 9.0 feature that allows the EJB container to cache
results for arbitrary non-primary-key finders defined on read-only EJBs. All of these
parameters can be set in the application/module deployment descriptors. See “CMP Entity
Bean Tuning” on page 9-5.

Use Local Interfaces

Use local-interfaces or use call-by-reference semantics to avoid the overhead of serialization
when one EJB calls another or an EJB is called by a servlet/JSP in the same application. Note the
following:
e In release prior to WebLogic Server 8.1, call-by-reference is turned on by default. For
releases of WebLogic Server 8.1 and higher, call-by-reference is turned off by default.

Older applications migrating to WebLogic Server 8.1 and higher that do not explicitly turn
on call-by-reference may experience a drop in performance.

o This optimization does not apply to calls across different applications.

Use eager-relationship-caching

Use eager-relationship-caching wherever possible. This feature allows the EJB container to load
related beans using a single SQL statement. It improves performance by reducing the number of
database calls to load related beans in transactions when a bean and it's related beans are expected
to be used in that transaction. See “Tuning WebLogic Server EJBs” on page 9-1.

Tune HTTP Sessions

Optimize your application so that it does as little work as possible when handling session
persistence and sessions. You should also design a session management strategy that suits your
environment and application. See “Session Management” on page 16-3.

BEA WebLogic Server Performance and Tuning 2-3

Top Tuning Recommendations for WebLogic Server

Tune Messaging Applications

BEA provides messaging users a rich set of performance tunables. In general, you should always
configure quotas and paging. See:

e “Tuning the WebLogic Persistent Store” on page 6-1
e “Tuning WebLogic JMS” on page 12-1
e “Tuning WebLogic JMS Store-and-Forward” on page 13-1

e “Tuning WebLogic Message Bridge” on page 14-1

2-4 BEA WebLogic Server Performance and Tuning

CHAPTERa

Performance Tuning Roadmap

Performance tuning WebLogic Server and your WebLogic Server application is a complex and
iterative process. The following sections provide a tuning roadmap and tuning tips for you can
use to improve system performance:

e “Performance Tuning Roadmap” on page 3-1

e “Tuning Tips” on page 3-6

Performance Tuning Roadmap

The following steps provide a roadmap to help tune your application environment to optimize
performance:

1. “Understand Your Performance Objectives” on page 3-1
2. “Measure Your Performance Metrics” on page 3-2

3. “Locate Bottlenecks in Your System” on page 3-4

4. “Minimize Impact of Bottlenecks” on page 3-4

5. “Achieve Performance Objectives” on page 3-6

Understand Your Performance Objectives

To determine your performance objectives, you need to understand the application deployed and
the environmental constraints placed on the system. Gather information about the levels of
activity that components of the application are expected to meet, such as:

BEA WebLogic Server Performance and Tuning 3-1

Performance Tuning Roadmap

3-2

The anticipated number of users.

The number and size of requests.

The amount of data and its consistency.

e Determining your target CPU utilization.

Your target CPU usage should not be 100%, you should determine a target CPU utilization
based on your application needs, including CPU cycles for peak usage. If your CPU
utilization is optimized at 100% during normal load hours, you have no capacity to handle
a peak load. In applications that are latency sensitive and maintain the ability for a fast
response time is important, high CPU usage (approaching 100% utilization) can reduce
response times while throughput stays constant or even increases because of work queuing
up in the server. For such applications, a 70% - 80% CPU utilization recommended. A
good target for non-latency sensitive applications is about 90%.

Performance objectives are limited by constraints, such as
e The configuration of hardware and software such as CPU type, disk size vs. disk speed,
sufficient memory.

There is no single formula for determining your hardware requirements. The process of
determining what type of hardware and software configuration is required to meet
application needs adequately is called capacity planning. Capacity planning requires
assessment of your system performance goals and an understanding of your application.
Capacity planning for server hardware should focus on maximum performance
requirements. See “Capacity Planning” on page C-1.

e The ability to interoperate between domains, use legacy systems, support legacy data.

e Development, implementation, and maintenance costs.

You will use this information to set realistic performance objectives for your application
environment, such as response times, throughput, and load on specific hardware.

Measure Your Performance Metrics

After you have determined your performance criteria in “Understand Your Performance
Objectives” on page 3-1, take measurements of the metrics you will use to quantify your
performance objectives. See “Load Testing Tools” on page A-6. The following sections provide
information on measuring basic performance metrics:

e “Monitor Disk and CPU Utilization” on page 3-3

BEA WebLogic Server Performance and Tuning

Performance Tuning Roadmap

e “Monitor Data Transfers Across the Network™ on page 3-3

Monitor Disk and CPU Utilization

Run your application under a high load while monitoring the:
e Application server (disk and CPU utilization)

e Database server (disk and CPU utilization)

The goal is to get to a point where the application server achieves your target CPU utilization. If
you find that the application server CPU is under utilized, confirm whether the database is bottle
necked. If the database CPU is 100 percent utilized, then check your application SQL calls query
plans. For example, are your SQL calls using indexes or doing linear searches? Also, confirm
whether there are too many ORDER BY clauses used in your application that are affecting the
database CPU. See “Operating System Tuning” on page 4-1.

If you discover that the database disk is the bottleneck (for example, if the disk is 100 percent
utilized), try moving to faster disks or to a RAID (redundant array of independent disks)
configuration, assuming the application is not doing more writes then required.

Once you know the database server is not the bottleneck, determine whether the application
server disk is the bottleneck. Some of the disk bottlenecks for application server disks are:

e Persistent Store writes
e Transaction logging (tlogs)
e HTTP logging

e Server logging

The disk I/0 on an application server can be optimized using faster disks or RAID, disabling
synchronous JMS writes, using JTA direct writes for tlogs, or increasing the HTTP log buffer.

Monitor Data Transfers Across the Network

Check the amount of data transferred between the application and the application server, and
between the application server and the database server. This amount should not exceed your
network bandwidth; otherwise, your network becomes the bottleneck. See “Setting TCP
Parameters With the ndd Command” on page 4-2.

BEA WebLogic Server Performance and Tuning 3-3

Performance Tuning Roadmap

34

Locate Bottlenecks in Your System

If you determine that neither the network nor the database server is the bottleneck, start looking
at your operating system, JVM, and WebLogic Server configurations. Most importantly, is the
machine running WebLogic Server able to get your target CPU utilization with a high client load?
If the answer is no, then check if there is any locking taking place in the application. You should
profile your application using a commercially available tool (for example, JProbe or Optimizelt)
to pinpoint bottlenecks and improve application performance.

Tip: Even if you find that the CPU is 100 percent utilized, you should profile your application
for performance improvements.

For more information about application profiling tools, see “Performance Analysis Tools” on
page A-6.

Minimize Impact of Bottlenecks

In this step, you tune your environment to minimize the impact of bottlenecks on your
performance objectives. It is important to realize that in this step you are minimizing the impact
of bottlenecks, not eliminating them. Tuning allows you to adjust resources to achieve your
performance objectives. For the scope of this document, this includes (from most important to
least important):

e “Tune Your Application” on page 3-4

e “Tune your DB” on page 3-5

e “Tune WebLogic Server Performance Parameters” on page 3-5
e “Tune Your JVM” on page 3-5

e “Tune the Operating System” on page 3-5

e “Tuning the WebLogic Persistent Store” on page 6-1

Tune Your Application

To quote the authors of Mastering BEA WebLogic Server: Best Practices for Building and
Deploying J2EE Applications: “Good application performance starts with good application
design. Overly-complex or poorly-designed applications will perform poorly regardless of the
system-level tuning and best practices employed to improve performance.” In other words, a
poorly designed application can create unnecessary bottlenecks. For example, resource
contention could be a case of poor design, rather than inherent to the application domain.

BEA WebLogic Server Performance and Tuning

Performance Tuning Roadmap

For more information, see:
e “Tuning WebLogic Server EJBs” on page 9-1
e “Tuning JDBC Applications” on page 10-1
e “Tuning WebLogic JMS” on page 12-1
e “Tuning WebLogic JMS Store-and-Forward” on page 13-1
e “Tuning WebLogic Message Bridge” on page 14-1
e “Tuning Resource Adapters” on page 15-1
e “Tuning Web Applications” on page 16-1

e “Tuning WebLogic Tuxedo Connector” on page 17-1

Tune your DB

Your database can be a major enterprise-level bottleneck. Database optimization can be complex
and vender dependent. See “DataBase Tuning” on page 8-1.

Tune WebLogic Server Performance Parameters

The WebLogic Server uses a number of OOTB (out-of-the-box) performance-related parameters
that can be fine-tuned depending on your environment and applications. Tuning these parameters
based on your system requirements (rather than running with default settings) can greatly
improve both single-node performance and the scalability characteristics of an application. See
“Tuning WebLogic Server” on page 7-1.

Tune Your JVM

The Java virtual machine (JVM) is a virtual “execution engine” instance that executes the
bytecodes in Java class files on a microprocessor. See “Tuning Java Virtual Machines (JVMs)”
on page 5-1.

Tune the Operating System

Each operating system sets default tuning parameters differently. For Windows platforms, the
default settings are usually sufficient. However, the UNIX and Linux operating systems usually
need to be tuned appropriately. See “Operating System Tuning” on page 4-1.

BEA WebLogic Server Performance and Tuning 3-5

Performance Tuning Roadmap

Achieve Performance Objectives

Performance tuning is an iterative process. After you have minimized the impact of bottlenecks
on your system, go to Step 2, “Measure Your Performance Metrics” on page 3-2 and determine
if you have met your performance objectives.

Tuning Tips
This section provides tips and guidelines when tuning overall system performance:

e Performance tuning is not a silver bullet. Simply put, good system performance depends
on: good design, good implementation, defined performance objectives, and performance
tuning.

e Performance tuning is ongoing process. Implement mechanisms that provide performance
metrics which you can compare against your performance objectives, allowing you to
schedule a tuning phase before your system fails.

e The object is to meet your performance objectives, not eliminate all bottlenecks. Resources
within a system are finite. By definition, at least one resource (CPU, memory, or I/O) will
be a bottleneck in the system. Tuning allows you minimize the impact of bottlenecks on
your performance objectives.

e Design your applications with performance in mind:
— Keep things simple - avoid inappropriate use of published patterns.
— Apply J2EE performance patterns.

— Optimize your Java code.

3-6 BEA WebLogic Server Performance and Tuning

Operating System Tuning

Tune your operating system according to your operating system documentation. For Windows
platforms, the default settings are usually sufficient. However, the Solaris and Linux platforms
usually need to be tuned appropriately. The following sections describe issues related to operating
system performance:

e “Basic OS Tuning Concepts” on page 4-1

e “Solaris Tuning Parameters” on page 4-2

e “Linux Tuning Parameters” on page 4-4

e “HP-UX Tuning Parameters” on page 4-5

e “Windows Tuning Parameters” on page 4-6

e “Other Operating System Tuning Information” on page 4-6

Basic 0S Tuning Concepts

Proper OS tuning improves system performance by preventing the occurrence of error conditions.
Operating system error conditions always degrade performance. Typically most error conditions
are TCP tuning parameter related and are caused by the operating system’s failure to release old

sockets from a close_wait call. Common errors are “connection refused”, “too many
open files” on the server-side, and “address in use: connect” on the client-side.

In most cases, these errors can be prevented by adjusting the TCP wait_time value and the TCP
queue size. Although users often find the need to make adjustments when using tunnelling, OS

BEA WebLogic Server Performance and Tuning 4-1

Operating System Tuning

tuning may be necessary for any protocol under sufficiently heavy loads. The following sections
provide information on tuning parameters for various operating systems.

Solaris Tuning Parameters

The following sections provide information on tuning Solaris operating systems:

e “Setting TCP Parameters With the ndd Command” on page 4-2

e “Setting Parameters In the /etc/system File” on page 4-3

e “CE Gigabit Network Card Settings” on page 4-4

Setting TCP Parameters With the ndd Command

Set the following TCP-related tuning parameters using the ndd command, as demonstrated in the

following example:

ndd -set /dev/tcp tcp_conn_req max_qg 16384

Table 4-1 Suggested TCP-Related Parameter Values

Parameter Suggested Value
/dev/tcp tcp_time_wait_interval 60000
/dev/tcp tcp_conn_req max_Jg 16384
/dev/tcp tcp_conn_reqg max_g0 16384
/dev/tcp tcp_ip_abort_interval 60000
/dev/tcp tcp_keepalive_interval 7200000
/dev/tcp tcp_rexmit_interval_initial 4000
/dev/tcp tcp_rexmit_interval_max 10000
/dev/tcp tcp_rexmit_interval_min 3000
/dev/tcp tcp_smallest_anon_port 32768
/dev/tcp tcp_xmit_hiwat 131072
/dev/tcp tcp_recv_hiwat 131072

4-2 BEA WebLogic Server Performance and Tuning

Solaris Tuning Parameters

Table 4-1 Suggested TCP-Related Parameter Values

Parameter Suggested Value
/dev/ce instance 0
/dev/ce rx_intr_time 32

Note: Prior to Solaris 2.7, the tcp_time wait interval parameter was called
tcp_close wait_interval. This parameter determines the time interval that a TCP
socket is kept alive after issuing a close call. The default value of this parameter on
Solaris is four minutes. When many clients connect for a short period of time, holding
these socket resources can have a significant negative impact on performance. Setting
this parameter to a value of 60000 (60 seconds) has shown a significant throughput
enhancement when running benchmark JSP tests on Solaris. You might want to reduce
this setting further if the server gets backed up with a queue of half-opened connections.

Tip: Use the netstat -s -P tcp command to view all available TCP parameters.

Setting Parameters In the /etc/system File

Each socket connection to the server consumes a file descriptor. To optimize socket performance,
you need to configure your operating system to have the appropriate number of file descriptors.
Therefore, you should change the default file descriptor limits, as well as the hash table size and
other tuning parameters in the /etc/systen file, to the recommended values in the following
table.

Note: You must reboot your machine anytime you modify /etc/system parameters.

Table 4-2 Suggested /etc/system Values

Parameter Suggested Value
set rlim_fd_cur 8192

set rlim_fd_max 8192

set tcp:tcp_conn_hash_size 32768

set shmsys:shminfo_shmmax 4294967295

Note: This should only be set for machines that have
at least 4 GB RAM or higher.

BEA WebLogic Server Performance and Tuning 4-3

Operating System Tuning

Table 4-2 Suggested /etc/system Values

Parameter Suggested Value
set autoup 900
set tune_t_fsflushr 1

CE Gigabit Network Card Settings

If you are using CE gigabit cards, we recommend using the following settings.

Table 4-3 Suggested CE Gigabit Card Values

Parameter Suggested Value
set ce:ce_bcopy_thresh 256

set ce:ce_dvma_thresh 256

set ce:ce_taskqg disable 1

set ce:ce_ring size 256

set ce:ce_comp_ring_size 1024

set ce:ce_tx_ring_size 4096

For more information about Solaris tuning options, see:

e Solaris Tunable Parameters Reference Manual (Solaris 8), at
http://docs.sun.com/app/docs/doc/806-6779

e Solaris Tunable Parameters Reference Manual (Solaris 9), at
http://docs.sun.com/app/docs/doc/806-7009

e Solaris Tunable Parameters Reference Manual (Solaris 10), at
http://docs.sun.com/app/docs/doc/817-0404

Linux Tuning Parameters

For Linux operating systems, the following settings are recommended for optimal performance.

44

BEA WebLogic Server Performance and Tuning

http://docs.sun.com/app/docs/doc/806-6779
http://docs.sun.com/app/docs/doc/806-7009
http://docs.sun.com/app/docs/doc/817-0404

Table 4-4 Suggested Linux Values

HP-UX Tuning Parameters

Parameter Suggested Value
/sbin/ifconfig lo mtu 1500
kernel .msgmni 1024

kernel.sem

1000 32000 32 512

fs.file-max 65535
kernel.shmmax 21474836438
net.ipv4d.tcp_max_syn_backlog 8192

For more information about Linux tuning, you should consult your Linux vendor’s

documentation. Also, the Ipsysctl Tutorial 1.0.4, at

http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html, describes all of

the IP options provided by Linux.

HP-UX Tuning Parameters

For HP-UX operating systems, the following TCP settings are recommended for optimal

performance.

Table 4-5 Suggested HP-UX TCP Values

Parameter Suggested Value
tcp_conn_req max 4096
tecp_xmit_hiwater_def 1048576
tcp_ip_abort_interval 60000
tcp_rexmit_interval_initial 4000
tcp_keepalive_interval 900000

For more HP-UX tuning information, see the Tunable Kernel Parameters reference
documentation, at http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203 .html.

BEA WebLogic Server Performance and Tuning 4-5

http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html
http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html

Operating System Tuning

Windows Tuning Parameters

For Windows platforms, the default settings are usually sufficient. However, under sufficiently
heavy loads it may be necessary to adjust the MaxUserPort and TcpTimedwWaitDelay. These
parameters determine the availability of user ports requested by an application.

By default, ephemeral (that is, short-lived) ports are allocated between the values of 1024 and
5000 inclusive using the MaxUserPort parameter. The TcpTimedWaitDelay parameter, which
controls the amount of time the OS waits to reclaim a port after an application closes a TCP
connection, has a default value of 4 minutes. During a heavy loads, these limits may be exceeded
resulting in an address in use: connect exception. If you experience address in use:
connect exceptions try setting the MaxUserPort and TcpTimedwaitDelay registry values
under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameterskey:

MaxUserPort = dword:00004e20 (20,000 decimal)
TcpTimedWaitDelay = dword:000000le (30 decimal)

Increase the value of the MaxUserPort parameter if the exception persists.

For more information about Windows 2000 tuning options, see:

e The Microsoft Windows 2000 TCP/IP Implementation Details white paper, at
http://Www.microsoft.com/windows2000/techinfo/howitworks/communication
s/networkbasics/tcpip_implement.asp.

e The Windows 2000 Performance Tuning white paper at
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/o
ptimize/perftune.mspx.

Other Operating System Tuning Information

46

For more information about HP-UX, and AIX tuning options, refer to the following Web sites:

e For AIX tuning information, see the AIX 5L Version 5.2 Performance Management Guide,
at
http://publibl6.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd
.htm.

e Maximum memory for a user process — Check your operating system documentation for
the maximum memory available for a user process. In some operating systems, this value
is as low as 128 MB. Also, refer to your operating system documentation.For more
information about memory management, see Chapter 5, “Tuning Java Virtual Machines
(JVMs).”

BEA WebLogic Server Performance and Tuning

http://www.microsoft.com/windows2000/techinfo/howitworks/communications/networkbasics/tcpip_implement.asp
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/optimize/perftune.mspx
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd.htm

Other Operating System Tuning Information

BEA WebLogic Server Performance and Tuning 4-1

Operating System Tuning

4-8 BEA WebLogic Server Performance and Tuning

CHAPTERa

Tuning Java Virtual Machines (JVMs)

The Java virtual machine (JVM) is a virtual “execution engine” instance that executes the
bytecodes in Java class files on a microprocessor. How you tune your JVM affects the
performance of WebLogic Server and your applications. envelope

The following sections discuss JVM tuning options for WebLogic Server:
e “JVM Tuning Considerations” on page 5-2

e “Which JVM for Your System?” on page 5-3

“Garbage Collection” on page 5-3

“Enable Spinning for [A32 Platforms” on page 5-12

BEA WebLogic Server Performance and Tuning 5-1

Tuning Java Virtual Machines (JVMs)

JVM Tuning Considerations

Table 5-1 presents general JVM tuning considerations for WebLogic Server.

5-2

Table 5-1 General JVM Tuning Considerations

Tuning Factor

Information Reference

JVM vendor and version

Use only production JVMs on which WebLogic Server has
been certified. This release of WebLogic Server supports
only those JVMs that are J2SE 5.0-compliant.

The Supported Configurations pages at
http://e-docs.bea.com/platform/suppconfig
s/index.html are frequently updated and contains the
latest certification information on various platforms.

Tuning heap size and garbage
collection

For WebLogic Server heap size tuning details, see “Garbage
Collection” on page 5-3.

Choosing a GC (garbage
collection) scheme

Depending on your application, there are a number of GC
schemes available for managing your system memory, as

described in “Choosing a Garbage Collection Scheme” on
page 5-4.

Mixed client/server JVMs

Deployments using different JVM versions for the client and
server are supported in WebLogic Server. See the support
page for Mixed Client/Server JVMs, at
http://e-docs.bea.com/platform/suppconfig
s/index.html#mix.

UNIX threading models

Choices you make about Solaris threading models can have
a large impact on the performance of your JVM on Solaris.
You can choose from multiple threading models and
different methods of synchronization within the model, but
this varies from JVM to JVM.

See “Performance Documentation For the Java Hotspot
Virtual Machine: Threading” on Sun Microsystems’ Web
site at
http://http://java.sun.com/docs/hotspot/t
hreads/threads.html.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html#mix
http://java.sun.com/docs/hotspot/threads/threads.html
http://java.sun.com/docs/hotspot/threads/threads.html

Which JVM for Your System?

Which JVM for Your System?

Although this section focuses on Sun Microsystems’ J2SE 5.0 JVM for the Windows, UNIX, and
Linux platforms, the BEA JRockit JVM was developed expressly for server-side applications and
optimized for Intel architectures to ensure reliability, scalability, manageability, and flexibility
for Java applications. For more information about the benefits of using JRockit on Windows and
Linux platforms, see Introduction to JRockit JDK, at
http://e-docs.bea.com/wljrockit/docs50/intro/index.html.

For more information on JVMs in general, see the Introduction to the JVM specification, at
http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduction.doc.ht
m1#3057. For links to related reading for JVM tuning, see Appendix A, “Related Reading:
Performance Tools and Information.”

Changing To a Different JVM

When you create a domain, if you choose to customize the configuration, the Configuration
Wizard presents a list of JDKs that WebLogic Server installed. From this list, you choose the
JVM that you want to run your domain and the wizard configures the BEA start scripts based on
your choice. After you create a domain, if you want to use a different JVM, see “Changing the
JVM That Runs Servers” at

http://e-docs.bea.com/wls/docs90/server_start/overview.html#ChangingJVM.

Garbage Collection

Garbage collection is the VM’s process of freeing up unused Java objects in the Java heap. The
following sections provide information on tuning your VM’s garbage collection:

e “VM Heap Size and Garbage Collection” on page 5-4

e “Choosing a Garbage Collection Scheme” on page 5-4

e “Using Verbose Garbage Collection to Determine Heap Size” on page 5-5
e “Specifying Heap Size Values” on page 5-7

e “Automatically Logging Low Memory Conditions” on page 5-11

e “Manually Requesting Garbage Collection” on page 5-11

e “Requesting Thread Stacks” on page 5-12

BEA WebLogic Server Performance and Tuning 5-3

http://e-docs.bea.com/wljrockit/docs50/intro/index.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduction.doc.html#3057
http://e-docs.bea.com/wls/docs90/server_start/overview.html#ChangingJVM
http://e-docs.bea.com/wls/docs90/server_start/overview.html#ChangingJVM

Tuning Java Virtual Machines (JVMs)

5-4

VM Heap Size and Garbage Collection

The Java heap is where the objects of a Java program live. It is a repository for live objects, dead
objects, and free memory. When an object can no longer be reached from any pointer in the
running program, it is considered “garbage” and ready for collection. A best practice is to tune
the time spent doing garbage collection to within 5% of execution time.

The JVM heap size determines how often and how long the VM spends collecting garbage. An
acceptable rate for garbage collection is application-specific and should be adjusted after
analyzing the actual time and frequency of garbage collections. If you set a large heap size, full
garbage collection is slower, but it occurs less frequently. If you set your heap size in accordance
with your memory needs, full garbage collection is faster, but occurs more frequently.

The goal of tuning your heap size is to minimize the time that your JVM spends doing garbage
collection while maximizing the number of clients that WebLogic Server can handle at a given
time. To ensure maximum performance during benchmarking, you might set high heap size

values to ensure that garbage collection does not occur during the entire run of the benchmark.

You might see the following Java error if you are running out of heap space:

java.lang.OutOfMemoryError <<no stack trace available>>
java.lang.OutOfMemoryError <<no stack trace available>>

Exception in thread "main"
To modify heap space values, see “Specifying Heap Size Values” on page 5-7.

To configure WebLogic Server to detect automatically when you are running out of heap space

and to address low memory conditions in the server, see “”” on page 5-13.

Choosing a Garbage Collection Scheme

Depending on which JVM you are using, you can choose from several garbage collection
schemes to manage your system memory. For example, some garbage collection schemes are
more appropriate for a given type of application. Once you have an understanding of the
workload of the application and the different garbage collection algorithms utilized by the JVM,
you can optimize the configuration of the garbage collection.

Refer to the following links for in-depth discussions of garbage collection options for your JVM:

e For an overview of the garbage collection schemes available with Sun’s HotSpot VM, see
Tuning Garbage Collection with the 5.0 Java Virtual Machine, at
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html.

BEA WebLogic Server Performance and Tuning

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

Garbage Collection

e For a comprehensive explanation of the collection schemes available, see Improving Java
Application Performance and Scalability by Reducing Garbage Collection Times and
Sizing Memory Using JDK 1.4.1 at
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecoll
ection2/.

e For a discussion of the garbage collection schemes available with the BEA JRockit JDK,
see Using the BEA JRockit Memory Management System, at

http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html.

e For some pointers about garbage collection from an HP perspective, see Performance
tuning Java™: Tuning steps, at
http://h21007 .www2 .hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1
701,1604,00.html.

Using Verbose Garbage Collection to Determine Heap Size

The verbose garbage collection option (verbosegc) enables you to measure exactly how much
time and resources are put into garbage collection. To determine the most effective heap size, turn
on verbose garbage collection and redirect the output to a log file for diagnostic purposes.

The following steps outline this procedure:

1. Monitor the performance of WebLogic Server under maximum load while running your
application.

2. Use the -verbosegc option to turn on verbose garbage collection output for your JVM and
redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic Server
informational and error messages, and provides a more useful log for diagnostic purposes.

For example, on Windows and Solaris, enter the following:

% java -ms32m -mx200m -verbosegc -classpath $CLASSPATH
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\bea"
-Dweblogic.management .username=%WLS_USER%
-Dweblogic.management . password=%WLS_PW%
-Dweblogic.management . server=%ADMIN_URLS%
-Dweblogic.ProductionModeEnabled=%STARTMODES%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"
weblogic.Server

>> logfile.txt 2>&1

where the logfile.txt 2>&1 command redirects both the standard error and standard
output to a log file.

BEA WebLogic Server Performance and Tuning 5-5

http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/
http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html
http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,1604,00.html

Tuning Java Virtual Machines (JVMs)

5-6

On HPUX, use the following option to redirect stderr stdout to a single file:
-Xverbosegc:file=/tmp/gc$s.out

where $$ maps to the process ID (PID) of the Java process. Because the output includes
timestamps for when garbage collection ran, you can infer how often garbage collection
occurs.

. Analyze the following data points:

a. How often is garbage collection taking place? In the weblogic . log file, compare the
time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take longer than
3 to 5 seconds.

c. What is your average memory footprint? In other words, what does the heap settle back
down to after each full garbage collection? If the heap always settles to 85 percent free,
you might set the heap size smaller.

. Review the New generation heap sizes (Sun) or Nursery size (BEA Jrockit).

For BEA Jrockit: see “BEA JRockit JVM Heap Size Options” on page 5-8.

For Sun: see “Java HotSpot VM Heap Size Options” on page 5-9.

. Make sure that the heap size is not larger than the available free RAM on your system.

Use as large a heap size as possible without causing your system to “swap” pages to disk.
The amount of free RAM on your system depends on your hardware configuration and the
memory requirements of running processes on your machine. See your system
administrator for help in determining the amount of free RAM on your system.

. If you find that your system is spending too much time collecting garbage (your allocated

virtual memory is more than your RAM can handle), lower your heap size.

Typically, you should use 80 percent of the available RAM (not taken by the operating
system or other processes) for your JVM.

. Ifyou find that you have a large amount of available free RAM remaining, run more

instances of WebLogic Server on your machine.

Remember, the goal of tuning your heap size is to minimize the time that your JVM spends
doing garbage collection while maximizing the number of clients that WebLogic Server
can handle at a given time.

BEA WebLogic Server Performance and Tuning

Garbage Collection

Note: JVM vendors may provide other options to print comprehensive garbage collection
reports. For example, you can use the BEA JRockit JVM -Xgcreport option to print a
comprehensive garbage collection report at program completion, see “Viewing Garbage
Collection Behavior”, at
http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html.

Specifying Heap Size Values

System performance is greatly influenced by the size of the Java heap available to the JVM. This
section describes the command line options you use to define the heap sizes values.You must
specify Java heap size values each time you start an instance of WebLogic Server. This can be
done either from the java command line or by modifying the default values in the sample startup
scripts that are provided with the WebLogic distribution for starting WebLogic Server.

e “Tuning Tips for Heap Sizes” on page 5-7
e “BEA JRockit JVM Heap Size Options” on page 5-8

e “Java HotSpot VM Heap Size Options” on page 5-9

Tuning Tips for Heap Sizes

The following section provides general guidelines for tuning VM heap sizes:

e The heap sizes should be set to values such that the maximum amount of memory used by
the VM does not exceed the amount of available physical RAM. If this value is exceeded,
the OS starts paging and performance degrades significantly. The VM always uses more
memory than the heap size. The memory required for internal VM functionality, native
libraries outside of the VM, and permanent generation memory (for the Sun VM only:
memory required to store classes and methods) is allocated in addition to the heap size
settings.

e When using a generational garbage collection scheme, the nursery size should not exceed
more than half the total Java heap size. Typically, 25% to 40% of the heap size is adequate.

e In production environments, set the minimum heap size and the maximum heap size to the
same value to prevent wasting VM resources used to constantly grow and shrink the heap.
This also applies to the New generation heap sizes (Sun) or Nursery size (BEA Jrockit).

BEA WebLogic Server Performance and Tuning 5-1

http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html
http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html

Tuning Java Virtual Machines (JVMs)

5-8

BEA JRockit JVM Heap Size Options

Although BEA JRockit provides automatic heap resizing heuristics, they are not optimal for all
applications. In most situations, best performance is achieved by tuning the VM for each
application by adjusting the heaps size options shown in Table 5-2.

Table 5-2 BEA JRockit JVM Heap Size Options

Setting the Nursery -Xns Optimally, you should try to make the nursery as
large as possible while still keeping the garbage
collection pause times acceptably low. This is
particularly important if your application is
creating a lot of temporary objects.

The maximum size of a nursery cannot exceed
95% of the maximum heap size.

Setting minimum -Xms BEA recommends setting the minimum heap size
heap size (-Xms) equal to the maximum heap size (-Xmx)
to minimize garbage collections.

Setting maximum —-Xmx Setting a low maximum heap value compared to
heap size the amount of live data decrease performance by
forcing frequent garbage collections.

Setting garbage -Xgc: parallel

collection

Performs adaptive =~ -XXaggressive:memor To do this, the bottleneck detector will run with a
optimizations as % higher frequency from the start and then gradually
early as possible in lower its frequency. This options also tells BEA
the Java application JRockit to use the available memory aggressively.
run.

For example, when you start a WebLogic Server instance from a java command line, you could
specify the BEA JRockit VM heap size values as follows:

$ java -XnslOm -Xms512m -Xmx512m

The default size for these values is measured in bytes. Append the letter ‘k’ or ‘K’ to the value to
indicate kilobytes, ‘m’ or ‘M’ to indicate megabytes, and ‘g’ or ‘G’ to indicate gigabytes. The
example above allocates 10 megabytes of memory to the Nursery heap sizes and 512 megabytes of
memory to the minimum and maximum heap sizes for the WebLogic Server instance running in
the JVM.

BEA WebLogic Server Performance and Tuning

Garbage Collection

For detailed information about setting the appropriate heap sizes for WebLogic’s JRockit JVM,
see Tuning the JRockit JVM, at
http://edocs.bea.com/wljrockit/docs50/tuning/index.html.

Other BEA JRockit VM Options

BEA provides other command-line options to improve the performance of your BEA JRockit
VM. For detailed information, see BEA JRockit JDK Command Line Options by Name, at
http://e-docs.bea.com/jrockit/docs50/options.html.

Java HotSpot VM Heap Size Options

You achieve best performance by individually tuning each application. However, configuring the
Java HotSpot VM heap size options listed in Table 5-3 when starting WebLogic Server increases
performance for most applications.

These options may differ depending on your architecture and operating system. See your
vendor’s documentation for platform-specific JVM tuning options.

Table 5-3 Java Heap Size Options

Task

Option

Comments

Setting the New generation
heap size

-XX:NewSize

As a general rule, set -XX:NewSize to be
one-fourth the size of the heap size. Increase the
value of this option for larger numbers of short-lived
objects.

Be sure to increase the New generation as you
increase the number of processors. Memory
allocation can be parallel, but garbage collection is
not parallel.

Setting the maximum New
generation heap size

-XX:MaxNewSize

Set the maximum size of the New Generation heap
size.

Setting New heap size
ratios

-XX:SurvivorRatio

The New generation area is divided into three
sub-areas: Eden, and two survivor spaces that are
equal in size.

Configure the ratio of the Eden/survivor space size.
Try setting this value to 8, and then monitor your
garbage collection.

BEA WebLogic Server Performance and Tuning 5-9

http://edocs.bea.com/wljrockit/docs50/tuning/index.html
http://e-docs.bea.com/jrockit/docs50/options.html

Tuning Java Virtual Machines (JVMs)

Table 5-3 Java Heap Size Options (Continued)

Task Option Comments

Setting minimum heap size -Xms As a general rule, set minimum heap size (-Xms)
equal to the maximum heap size (-Xmx) to minimize
garbage collections.

Setting maximum heap size -Xmx Set the maximum size of the heap.

Setting Big Heaps and -XX:+UseISM See

Intimate Shared Memory -XX:+AggressiveHe http://java.sun.com/docs/hotspot/ism

ap .html

5-10

For example, when you start a WebLogic Server instance from a java command line, you could
specify the HotSpot VM heap size values as follows:

$ java -XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8 -Xms512m
-Xmx512m

The default size for these values is measured in bytes. Append the letter ‘k’ or ‘K’ to the value to
indicate kilobytes, ‘m’ or ‘M’ to indicate megabytes, and ‘g’ or ‘G’ to indicate gigabytes. The
example above allocates 128 megabytes of memory to the New generation and maximum New
generation heap sizes, and 512 megabytes of memory to the minimum and maximum heap sizes for
the WebLogic Server instance running in the JVM.

Other Java HotSpot VM Options

Sun provides other standard and non-standard command-line options to improve the performance
of your VM. How you use these options depends on how your application is coded.

Test both your client and server JVMs to see which options perform better for your particular
application. The Sun Microsystems Java HotSpot VM Options document provides information
on the command-line options and environment variables that can affect the performance
characteristics of the Java HotSpot Virtual Machine. See
http://java.sun.com/docs/hotspot/VMOptions.html.

For additional examples of the HotSpot VM options, see:

e Standard Options for Windows (Win32) VMs at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/java.html.

e Standard Options for Solaris VMs at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/java.html.

BEA WebLogic Server Performance and Tuning

http://java.sun.com/docs/hotspot/ism.html
http://java.sun.com/docs/hotspot/VMOptions.html
http://java.sun.com/j2se/1.4.1/docs/tooldocs/windows/java.html#standard
http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/java.html#standard

Garbage Collection

e Standard Options for Linux VMs at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/linux/java.html.

Sun Microsystems’ Java Virtual Machine document provides a detailed discussion of the Client
and Server implementations of the Java virtual machine for J2SE 5.0. See
http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html.

Automatically Logging Low Memory Conditions

WebLogic Server enables you to automatically log low memory conditions observed by the
server. WebLogic Server detects low memory by sampling the available free memory a set
number of times during a time interval. At the end of each interval, an average of the free memory
is recorded and compared to the average obtained at the next interval. If the average drops by a
user-configured amount after any sample interval, the server logs a low memory warning
message in the log file and sets the server health state to “warning.”

To log low memory conditions:
1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will configure
log low memory conditions.

3. On the Configuration > Tuning tab, update as necessary:

Low Memory GCThreshold—Threshold at which the server instance logs a low memory
warning and changes the health state to warning.

Low Memory Sample Size—Number of times the server instance samples free memory
during the Low Memory Time Interval.

Low Memory Time Interval—Amount of time, in seconds, that defines the interval over
which the server instance determines average free memory values.

4. Click Save.

5. Reboot the server instance to use the new low memory detection values.

Manually Requesting Garbage Collection

You may find it necessary to manually request full garbage collection from the Administration
Console. When you do, remember that garbage collection is costly as the JVM often examines
every living object in the heap.

To request garbage collection:

BEA WebLogic Server Performance and Tuning 5-11

http://java.sun.com/j2se/1.5.0/docs/tooldocs/linux/java.html#standard
http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html

Tuning Java Virtual Machines (JVMs)

1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will request
garbage collection.

3. Expand the Monitoring > Performance tab.

4. Click Garbage Collect.

Requesting Thread Stacks

You may find it necessary to display thread stacks while tuning your applications.

To display a thread stack:
1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will request
garbage collection.

3. Expand the Monitoring > Performance tab.

4. Click Dump Thread Stacks.

Enable Spinning for I1A32 Platforms

5-12

If you are running a high-stress application with heavily contended locks on a multiprocessor
system, you can attempt to improve performance by using spinning. This option enables the
ability to spin the lock for a short time before going to sleep.

Sun JDK

Sun has changed the default lock spinning behavior in JDK 5.0 on the Windows IA32 platform.
For the JDK 5.0 release, lock spinning is disabled by default. For this release, BEA has explicitly
enabled spinning in the environment scripts used to start WebLogic Server. To enable spinning,
use the following VM option:

-XX:+UseSpinning

BEA JRockit

The BEA JRockit VM automatically adjusts the spinning for different locks, eliminating the need
set this parameter.

BEA WebLogic Server Performance and Tuning

Note: Inthe BEA JRockit 8.1 SDK release, spinning was adjusted by setting
-XXenablefatspin option.

BEA WebLogic Server Performance and Tuning 5-13

Tuning Java Virtual Machines (JVMs)

5-14 BEA WebLogic Server Performance and Tuning

CHAPTERa

Tuning the WebLogic Persistent Store

The following sections explain how to tune the persistent store, which provides a built-in,
high-performance storage solution for WebLogic Server subsystems and services that require
persistence.

e “Overview of Persistent Stores” on page 6-1
e “Best Practices When Using Persistent Stores” on page 6-3
e “Tuning JDBC Stores” on page 6-3

e “Tuning File Stores” on page 6-3

Overview of Persistent Stores

The following sections provide information on using persistent stores.
e “Using the Default Persistent Store” on page 6-1
e “Using Custom File Stores and JDBC Stores” on page 6-2

e “Using JMS Paging Stores” on page 6-2

Using the Default Persistent Store

Each server instance, including the administration server, has a default persistent store that

requires no configuration. The default store is a file-based store that maintains its data in a group
of files in a server instance’s data\store\default directory. A directory for the default store
is automatically created if one does not already exist. This default store is available to subsystems

BEA WebLogic Server Performance and Tuning 6-1

Tuning the WebLogic Persistent Store

6-2

that do not require explicit selection of a particular store and function best by using the system’s
default storage mechanism. For example, a JMS Server with no persistent store configured will
use the default store for its Managed Server and will support persistent messaging. See:

e “Using the WebLogic Persistent Store” in Configuring WebLogic Server Environments.

e “Modify the Default Store Settings” in Administration Console Online Help.

Using Custom File Stores and JDBC Stores

In addition to using the default file store, you can also configure a file store or JDBC store to suit
your specific needs. A custom file store, like the default file store, maintains its data in a group
of files in a directory. However, you may want to create a custom file store so that the file store's
data is persisted to a particular storage device. When configuring a file store directory, the
directory must be accessible to the server instance on which the file store is located.

A JDBC store can be configured when a relational database is used for storage. A JDBC store
enables you to store persistent messages in a standard JDBC-capable database, which is accessed
through a designated JDBC data source. The data is stored in the JDBC store's database table,
which has a logical name of WLStore. It is up to the database administrator to configure the
database for high availability and performance. See:

e “When to Use a Custom Persistent Store” in Configuring WebLogic Server Environments.
e “Comparing File Stores and JDBC Stores” in Configuring WebLogic Server Environments.

e “Creating a Custom (User-Defined) File Store” in Configuring WebLogic Server
Environments.

e “Creating a JDBC Store” in Configuring WebLogic Server Environments.

Using JMS Paging Stores

Each JMS server implicitly creates a file based paging store. When the WebLogic Server JVM
runs low on memory, this store is used to page non-persistent messages as well as JDBC store
persistent messages. Depending on the application, paging stores may generate heavy disk
activity.

Note: File store persistent messages do not page using a paging store, such messages page
directly into and out of their respective file stores.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/config_wls/store.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/ConfigureDefaultStore.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html#whentouse
http://e-docs.bea.com/wls/docs90/config_wls/store.html#compare
http://e-docs.bea.com/wls/docs90/config_wls/store.html#CreatingaCustomFileStore
http://e-docs.bea.com/wls/docs90/config_wls/store.html#CreatingaJDBCStore

Best Practices When Using Persistent Stores

JMS paging stores usually require no tuning. You can optionally change the directory location

and the thresholds setting at which paging begins. See “Paging Out Messages To Free Up
Memory” on page 12-6.

Best Practices When Using Persistent Stores

e For subsystems that share the same server instance, share one store between multiple

subsystems rather than using a store per subsystem. Sharing a store is more efficient for the
following reasons:

— A single store batches concurrent requests into single I/Os which reduces overall disk
usage.

— Transactions in which only one resource participates are lightweight one-phase

transactions. Conversely, transactions in which multiple stores participate become are
heavier weight two-phase transactions.

For example, configure all SAF agents and JMS servers that run on the same server
instance so that they share the same store.

e Add a new store only when the old store(s) no longer scale.

Tuning JDBC Stores

The location of the JDBC store DDL that is used to initialize empty stores is now configurable.
This simplifies the use of custom DDL for database table creation, which is sometimes used for
database specific performance tuning. For information, see “Create JDBC stores” in

Administration Console Online Help and “Using the WebLogic Persistent Store” in Configuring
WebLogic Server Environments.

Tuning File Stores

The following section provides information on tuning File Stores:

e For basic (non-RAID) disk hardware, consider dedicating one disk per file store. A store
can operate up to four to five times faster if it does not have to compete with any other
store on the disk. Remember to consider the existence of the default file store in addition to
each configured store and a JMS paging store for each JMS server.

e Use Direct-Write synchronous write policy.

BEA WebLogic Server Performance and Tuning 6-3

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html

Tuning the WebLogic Persistent Store

— For releases of WebLogic Server 9.0 and higher, Direct-write is the default write

policy. In most applications Direct-write provides better performance than the
Cache-Flush write policy.

Note: The Direct-Write write-policy (default) can be unsafe on Microsoft Windows.
As with other vendors that use a direct write policy, MS-Windows system
administrators must ensure that the Windows disk configuration doesn't cache
direct-writes in memory instead of flushing them to disk. See
getSynchronousWritePolicy.

— File stores in releases prior to Weblogic Server 9.0 default to the Cache-Flush write
policy.

e The Disabled write-policy option can dramatically improve performance, especially at
low client loads. However, it is unsafe because writes become asynchronous and data can
be lost in the event of Operating System or power failure.

e When performing head-to-head vendor comparisons, make sure all the write policies for

the persistent store are equivalent. Some non-WebLogic vendors default to the equivalent
of the Disabled.

e [f disk performance continues to be a bottleneck, consider purchasing disk or RAID
controller hardware that has a built-in “write-back cache”. These caches significantly
improve performance by temporarily storing persistent data in volatile memory. Use a
battery backed write-back caches to provide protection from power outages, host machine
failure, and operating system failure.

6-4 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/FileStoreMBean.html#SynchronousWritePolicy

Tuning WebLogic Server

The following sections describe how to tune WebLogic Server to match your application needs.

“Setting Java Parameters for Starting WebLogic Server” on page 7-1
“Development vs. Production Mode Default Tuning Values” on page 7-2
“Thread Management” on page 7-3

“Tuning Network 1/0” on page 7-7

“Setting Your Java Compiler” on page 7-12

“Using WebLogic Server Clusters to Improve Performance” on page 7-14

“How to Monitor a WebLogic Server Domain” on page 7-18

Setting Java Parameters for Starting WebLogic Server

Java parameters must be specified whenever you start WebLogic Server. For simple invocations,
this can be done from the command line with the weblogic.Server command. However,

because the arguments needed to start WebLogic Server from the command line can be lengthy
and prone to error, BEA recommends that you incorporate the command into a script. To simply

this process, you can modify the default values in the sample scripts that are provided with the
WebLogic distribution to start WebLogic Server, as described in “Specifying Java Options for a
WebLogic Server Instance” at

http://e-docs.bea.com/wls/docs90/server_start/overview.html#JavaOptions.

BEA WebLogic Server Performance and Tuning 1-1

http://e-docs.bea.com/wls/docs90/server_start/overview.html#JavaOptions
http://e-docs.bea.com/wls/docs90/server_start/overview.html#JavaOptions

Tuning WebLogic Server

If you used the Configuration Wizard to create your domain, the WebLogic startup scripts are
located in the domain-name directory where you specified your domain. By default, this directory
iS BEA_HOME\user_projects\domain\domain-name, where BEA_HOME is the directory that
contains the product installation, and domain-name is the name of the domain directory defined
by the selected configuration template. For more information about creating domains using the
Configuration Wizard, see “Creating Domains Using the Configuration Wizard” at

http://e-docs.bea.com/common/docs90/confgwiz/intro.html.

You need to modify some default Java values in these scripts to fit your environment and
applications. The important performance tuning parameters in these files are the JaAva_HOME
parameter and the Java heap size parameters:

e Change the value of the variable Java_HOME to the location of your JDK. For example:

set JAVA_HOME=C:\bea\jdkl150_03

e For higher performance throughput, set the minimum java heap size equal to the maximum
heap size. For example:

"$JAVA_HOME%\bin\java" -server -Xms512m -Xmx512m -classpath
$CLASSPATHS -

See “Specifying Heap Size Values” on page 5-7 for details about setting heap size options.

Development vs. Production Mode Default Tuning Values

1-2

You can indicate whether a domain is to be used in a development environment or a production
environment. WebLogic Server uses different default values for various services depending on
the type of environment you specify. Specify the startup mode for your domain as shown in the
following table.

Table 7-1 Startup Modes

Choose this mode when...

Development You are creating your applications. In this mode, the
configuration of security is relatively relaxed, allowing you
to auto-deploy applications.

Production Your application is running in its final form. In this mode,
security is fully configured.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/common/docs90/confgwiz/intro.html

Thread Management

Table 7-2 lists the performance-related configuration parameters that differ when switching from
development to production startup mode.

Table 7-2 Differences Between Development and Production Modes

Tuning Parameter

In development mode . . .

In production mode . . .

SSL

You can use the demonstration digital
certificates and the demonstration
keystores provided by the WebLogic
Server security services. With these
certificates, you can design your
application to work within
environments secured by SSL.

For more information about
managing security, see “Configuring
SSL” in Securing WebLogic Server.

You should not use the demonstration
digital certificates and the
demonstration keystores. If you do
so, a warning message is displayed.

Deploying Applications

WebLogic Server instances can
automatically deploy and update
applications that reside in the
domain_name/autodeploy directory
(where domain_name is the name of a
domain).

It is recommended that this method be
used only in a single-server
development environment.

For more information, see
“Auto-Deploying Applications in
Development Domains” in Deploying
Applications to WebLogic Server.

The auto-deployment feature is
disabled, so you must use the
WebLogic Server Administration
Console, the weblogic.Deployer tool,
or the WebLogic Scripting Tool
(WLST). For more information, see
Deploying Applications to WebLogic
Server .

JDBC Connection Pool:
MaxCapacity

The default capacity is 15
connections.

The default capacity is 25
connections.

For information on switching the startup mode from development to production, see Change to
Production Mode in the Administration Console Online Help.

Thread Management

WebLogic Server provides the following mechanisms to manage threads to perform work.

BEA WebLogic Server Performance and Tuning 1-3

http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#autodeploy
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#autodeploy
http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/domainconfig/ChangeRuntimeModes.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/domainconfig/ChangeRuntimeModes.html

Tuning WebLogic Server

7-4

e “Tuning a Work Manager” on page 7-4
e “Tuning Execute Queues” on page 7-4

e “Understanding the Differences Between Work Managers and Execute Queues” on
page 7-5

e “Tuning the Stuck Thread Detection Behavior” on page 7-6

Tuning a Work Manager

In this release, WebLogic Server allows you to configure how your application prioritizes the
execution of its work. Based on rules you define and by monitoring actual runtime performance,
WebLogic Server can optimize the performance of your application and maintain service level
agreements (SLA).

You tune the thread utilization of a server instance by defining rules and constraints for your
application by defining a Work Manger and applying it either globally to WebLogic Server
domain or to a specific application component. The primary tuning considerations are:

e “How Many Work Managers are Needed?” on page 7-4

e “What are the SLA Requirements for Each Work Manager?” on page 7-4

See Using Work Managers to Optimize Scheduled Work in Configuring WebLogic Server
Environments.

How Many Work Managers are Needed?

Each distinct SLA requirement needs a unique work manager.

What are the SLA Requirements for Each Work Manager?

Service level agreement (SLA) requirements are defined by instances of request classes. A
request class expresses a scheduling guideline that a server instance uses to allocate threads. See
“Understanding Work Managers” in Configuring WebLogic Server Environments.

Tuning Execute Queues

Note: Execute Queues are deprecated in this release of WebLogic Server. BEA recommends
migrating applications to use work managers.

In previous versions of WebLogic Server, processing was performed in multiple execute queues.
Different classes of work were executed in different queues, based on priority and ordering

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html#1063790.

Thread Management

requirements, and to avoid deadlocks. See “Using the WebLogic 8.1 Thread Pool Model” on
page B-1.

Understanding the Differences Between Work Managers and
Execute Queues

The easiest way to conceptually visualize the difference between the execute queues of previous
releases with work managers is to correlate execute queues (or rather, execute-queue managers)
with work managers and decouple the one-to-one relationship between execute queues and
thread-pools.

For releases prior to WebLogic Server 9.0, incoming requests are put into a default execute queue
or a user-defined execute queue. Each execute queue has an associated execute queue manager
that controls an exclusive, dedicated thread-pool with a fixed number of threads in it. Requests
are added to the queue on a first-come-first-served basis. The execute-queue manager then picks
the first request from the queue and an available thread from the associated thread-pool and
dispatches the request to be executed by that thread.

For releases of WebLogic Server 9.0 and higher, there is a single priority-based execute queue in
the server. Incoming requests are assigned an internal priority based on the configuration of work
managers you create to manage the work performed by your applications. The server increases
or decreases threads available for the execute queue depending on the demand from the various
work-managers. The position of a request in the execute queue is determined by its internal
priority:

e The higher the priority, closer it is placed to the head of the execute queue.

e The closer to the head of the queue, more quickly the request will be dispatched a thread to
use.

Work managers provide you the ability to better control thread utilization (server performance)
than execute-queues, primarily due to the many ways that you can specify scheduling guidelines
for the priority-based thread pool. These scheduling guidelines can be set either as numeric values
or as the capacity of a server-managed resource, like a JDBC connection pool.

Migrating from Previous Releases

If you upgrade application domains from prior releases that contain execute queues, the resulting
9.0 domain will contain execute queues.

BEA WebLogic Server Performance and Tuning 1-5

Tuning WebLogic Server

1-6

e Migrating application domains from a previous release to WebLogic Server 9.0 does not
automatically convert an execute queues to work manager.

e If execute queues are present in the upgraded application configuration, the server instance
assigns work requests appropriately to the execute queue specified in the
dispatch-policy.

e Requests without a dispatch-policy use the self-tuning thread pool.

For more information on migrating a domain, see Upgrading WebLogic Application
Environments at http://e-docs.bea.com/common/docs90/upgrade/intro.html.

Tuning the Stuck Thread Detection Behavior

WebLogic Server automatically detects when a thread in an execute queue becomes “stuck.”
Because a stuck thread cannot complete its current work or accept new work, the server logs a
message each time it diagnoses a stuck thread.

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for a set period
of time. You can tune a server’s thread detection behavior by changing the length of time before
a thread is diagnosed as stuck, and by changing the frequency with which the server checks for
stuck threads. Although you can change the criteria WebLogic Server uses to determine whether
a thread is stuck, you cannot change the default behavior of setting the “warning” and “critical”
health states when all threads in a particular execute queue become stuck. For more information,
see “Configuring WebLogic Server to Avoid Overload Conditions” in Configuring WebLogic
Server Environments.

To configure thread detection behavior:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
thread detection behavior.

4. On the Configuration > Tuning tab, update as necessary:

e stuck Thread Max Time—Amount of time, in seconds, that a thread must be continually
working before a server instance diagnoses a thread as being stuck.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/common/docs90/upgrade/intro.html
http://e-docs.bea.com/common/docs90/upgrade/intro.html
http://e-docs.bea.com/wls/docs90/config_wls/overload.html

7.

Tuning Network 1/0

>stuck Thread Timer Interval—Amount of time, in seconds, after which a server
instance periodically scans threads to see if they have been continually working for the
configured Stuck Thread Max Time.

Click save.

To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

You must reboot the server to use the new thread detection behavior values.

Tuning Network 1/0

The following sections provide information on network communication between clients and
servers (including t3 and IIOP protocols, and their secure versions):

“Tuning Muxers” on page 7-7

“Which Platforms Have Performance Packs?”” on page 7-8
“Enabling Performance Packs” on page 7-9

“Changing the Number of Available Socket Readers” on page 7-9
“Network Channels” on page 7-9

“Tuning Message Size” on page 7-10

“Tune the Chunk Parameters” on page 7-10

“Tuning Connection Backlog Buffering” on page 7-11

Tuning Muxers

WebLogic Server uses software modules called muxers to read incoming requests on the server
and incoming responses on the client. These muxers are of two primary types: the Java muxer or
native muxer.

A Java muxer has the following characteristics:

Uses pure Java to read data from sockets.
It is also the only muxer available for RMI clients.

Blocks on reads until there is data to be read from a socket. This behavior does not scale
well when there are a large number of sockets and/or when data arrives infrequently at

BEA WebLogic Server Performance and Tuning 1-1

Tuning WebLogic Server

1-8

sockets. This is typically not an issue for clients, but it can create a huge bottleneck for a
server.

Native muxers use platform-specific native binaries to read data from sockets. The majority of all
platforms provide some mechanism to poll a socket for data. For example, Unix systems use the
poll system and the Windows architecture uses completion ports. Native provide superior
scalability because they implement a non-blocking thread model. When a native muxer is used,
the server creates a fixed number of threads dedicated to reading incoming requests. BEA
recommends using the default setting of selected for the Enable Native IO parameter which
allows the server automatically selects the appropriate muxer for the server to use.

If the Enable Native IO parameter isnot selected, the server instance exclusively uses the Java
muxer. This maybe acceptable if there are a small number of clients and the rate at which requests
arrive at the server is fairly high. Under these conditions, the Java muxer performs as well as a
native muxer and eliminate Java Native Interface (JNI) overhead. Unlike native muxers, the
number of threads used to read requests is not fixed and is tunable for Java muxers by configuring
the Percent Socket Readers parameter setting in the Administration Console. See “Changing
the Number of Available Socket Readers” on page 7-9. Ideally, you should configure this
parameter so the number of threads roughly equals the number of remote concurrently connected
clients up to 50% of the total thread pool size. Each thread waits for a fixed amount of time for
data to become available at a socket. If no data arrives, the thread moves to the next socket.

Which Platforms Have Performance Packs?

Benchmarks show major performance improvements when you use native performance packs on
machines that host WebLogic Server instances. Performance packs use a platform-optimized,
native socket multiplexor to improve server performance. For example, the native socket reader
multiplexor threads have their own execute queue and do not borrow threads from the default
execute queue, which frees up default execute threads to do application work

To see which platforms currently have performance packs available:

1. Go to the Certifications Pages at
http://e-docs.bea.com/platform/suppconfigs/index.html.

2. Select your platform from the list of certified platforms.

3. Use your browser’s Edit —Find to locate all instances of “Performance Pack” to verify
whether it is included for the platform.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/platform/suppconfigs/index.html

Tuning Network 1/0

Enabling Performance Packs

The use of native performance packs are enabled by default in the configuration shipped with
your distribution. You can use the Administration Console to verify that performance packs are
enabled.

To enable native 10:
1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will enable
native IO.

3. Expand the Configuration > Tuning tab.
4. If the Enable Native IO check box is not selected, select the check box.

5. Click Save.

Changing the Number of Available Socket Readers

If you must use the pure-Java socket reader implementation for host machines, you can improve
the performance of socket communication by configuring the proper number of socket reader
threads for each server instance and client machine.

To change the percentage of execute threads used as socket readers:
1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will configure
the number of available socket readers.

3. Expand the Configuration > Tuning tab.

4. On the Configuration > Tuning tab, update socket Readers. The value of this parameter
is the percentage of execute threads from the self-tuning thread pool that can be used as
socket readers. This value can not exceed 50% of the thread pool. The default value is 33.

5. Click Save.

Network Channels

Network channels, also called network access points, allow you to specify different quality of
service (QOS) parameters for network communication. Each network channel is associated with
its own exclusive socket using a unique IP address and port. By default, requests from a

BEA WebLogic Server Performance and Tuning 1-9

Tuning WebLogic Server

1-10

multi-threaded client are multiplexed over the same remote connection and the server instance
reads requests from the socket one at a time. If the request size is large, this becomes a bottleneck.

Although the primary role of a network channel is to control the network traffic for a server
instance, you can leverage the ability to create multiple custom channels to allow a
multi-threaded client to communicate with server instance over multiple connections, reducing
the potential for a bottleneck. To configure custom multi-channel communication, use the
following steps:

1. Configure multiple network channels using different IP and port settings. See “Configure
custom network channels” in Administration Console Online Help.

2. Inyour client-side code, use a INDI URL pattern similar to the pattern used in clustered
environments. The following is an example for a client using two network channels:

t3://<ipl>:<portl>,<ip2>:<port2>

See “Understanding Network Channels” in Configuring WebLogic Server Environments.

Tuning Message Size

WebLogic Server allows you to specify a maximum incoming request size to reduce the potential
for Denial of Service (DoS) attacks by preventing a server from being bombarded by a series of
large requests. You can set a global value or set specific values for different protocols and
network channels. Although it does not directly impact performance, JMS applications that
aggregate messages before sending to a destination may be refused if the aggregated size is
greater than specified value. See “Servers: Protocols: General” in Administration Console Online
Help and “Tuning MessageMaximum” on page 12-16.

Tune the Chunk Parameters

A chunk is a unit of memory that the WebLogic Server network layer, both on the client and
server side, uses to read data from and write data to sockets. To reduce memory allocation costs,
a server instance maintains a pool of these chunks. For applications that handle large amounts of
data per request, increasing the value on both the client and server sides can boost performance.
The default chunk size is about 4K. Use the following properties to tune the chunk size and the
chunk pool size:

® weblogic.Chunksize—Sets the size of a chunk (in bytes). The primary situation in
which this may need to be increased is if request sizes are large. It should be set to values
that are multiples of the network’s maximum transfer unit (MTU), after subtracting from

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/channels/ConfigureCustomNetworkChannelsForNonclusteredServers.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/channels/ConfigureCustomNetworkChannelsForNonclusteredServers.html
http://e-docs.bea.com/wls/docs90/config_wls/network.html#UnderstandingNetworkChannels
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverserverprotocolsgeneraltitle.html

Tuning Network 1/0

the value any Ethernet or TCP header sizes. Set this parameter to the same value on the
client and server.

® weblogic.utils.io.chunkpoolsize—Sets the maximum size of the chunk pool. The
default value is 2048. The value may need to be increased if the server starts to allocate
and discard chunks in steady state. To determine if the value needs to be increased, monitor
the CPU profile or use a memory/ heap profiler for call stacks invoking the constructor
weblogic.utils.io.Chunk.

® weblogic.PartitionSize—Sets the number of pool partitions used (default is 4). The
chunk pool can be a source of significant lock contention as each request to access to the
pool must be synchronized. Partitioning the thread pool spreads the potential for contention
over more than one partition.

Tuning Connection Backlog Buffering

You can tune the number of connection requests that a WebLogic Server instance will accept
before refusing additional requests. The Accept Backlog parameter specifies how many
Transmission Control Protocol (TCP) connections can be buffered in a wait queue. This
fixed-size queue is populated with requests for connections that the TCP stack has received, but
the application has not accepted yet.

You can tune the number of connection requests that a WebLogic Server instance will accept
before refusing additional requests. For more information on TCP tuning, see “Basic OS Tuning
Concepts” on page 4-1.

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
connection backlog buffering.

4. Expand the Configuration > Tuning tab.

5. Modify the Accept Backlog value as necessary to tune the number of TCP connections the
server instance can buffer in the wait queue.

e [f many connections are dropped or refused at the client, and no other error messages are
on the server, the Accept Backlog value might be set too low.

BEA WebLogic Server Performance and Tuning 1-11

Tuning WebLogic Server

e Ifyou are getting “connection refused” messages when you try to access WebLogic Server,
raise the Accept Backlog value from the default by 25 percent. Continue increasing the
value by 25 percent until the messages cease to appear.

e The default value is 50 and the maximum value is operating system dependent.

6. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

Setting Your Java Compiler

1-12

The standard Java compiler for compiling JSP servlets is javac. You can improve performance
significantly by setting your server’s java compiler to sj or jikes instead of javac.

Changing Compilers from the Administration Console

You can change the compiler and compiler options server instance uses when compiling Java
code.

To change the standard Java compiler values for a server:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will change
server compiler options.

4. On the Configuration > General tab, update the Java Compiler parameter with the full
path of the compiler to use for all applications hosted on this server that need to compile
Java code.

5. Click Advanced.

6. Update the following compiler options as necessary:

Prepend to classpath—Options to prepend to the Java compiler classpath when
compiling Java code.

Append to classpath—Options to append to the Java compiler classpath when compiling
Java code.

Extra RMI Compiler Options—Options passed to the RMIC compiler during server-side
generation.

BEA WebLogic Server Performance and Tuning

Setting Your Java Compiler

Extra EJB Compiler Options—Options passed to the EJB compiler during server-side
generation.

7. Click Save.

8. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

9. You must reboot the server to use the new compiler values.

Setting Your Compiler in weblogic.xml

Inthe weblogic.xml file, the jsp-descriptor element defines parameter names and values for
servlet JSPs.

e Use the compileCommand parameter to specify the Java compiler for compiling the
generated JSP servlets.

o Use the precompile parameter to configure WebLogic Server to precompile your JSPs
when WebLogic Server starts up.

For more information about setting your server’s java compiler in the weblogic.xml file, see the
jsp-descriptor element at
http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#jsp-descriptor

Compiling EJB Classes

Use the weblogic.appc utility to compile EJB 2.x and 1.1 container classes. If you compile Jar
files for deployment into the EJB container, you must use weblogic.appc to generate the
container classes. By default, ejbc uses the javac compiler. For faster performance, specify a
different compiler (such as Symantec sj) using the -compiler flag.

For more information, see “Implementing Enterprise Java Beans” in Programming WebLogic
EJB.

Compiling on UNIX

If you receive the following error message received when compiling JSP files on a UNIX
machine:

failed: java.io.IOException: Not enough space

Try any or all of the following solutions:

BEA WebLogic Server Performance and Tuning 1-13

http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#jsp-parameters
http://e-docs.bea.com/wls/docs90/ejb/implementing.html

Tuning WebLogic Server

e Add more RAM if you have only 256 MB.

e Raise the file descriptor limit, for example:
set rlim_fd max = 4096

set rlim_fd_cur = 1024

Using WebLogic Server Clusters to Improve Performance

1-14

A WebLogic Server cluster is a group of WebLogic Servers instances that together provide
fail-over and replicated services to support scalable high-availability operations for clients within
a domain. A cluster appears to its clients as a single server but is in fact a group of servers acting
as one to provide increased scalability and reliability.

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic Server
instances. Clustered WebLogic Server instances within a domain behave similarly to
non-clustered instances, except that they provide failover and load balancing. The Administration
Server for the domain manages all the configuration parameters for the clustered and
non-clustered instances.

For more information about clusters, see “Understanding WebLogic Server Clustering” at

http://e-docs.bea.com/wls/docs90/cluster/overview.html.

Scalability and High Availability

Scalability is the ability of a system to grow in one or more dimensions as more resources are
added to the system. Typically, these dimensions include (among other things), the number of
concurrent users that can be supported and the number of transactions that can be processed in a
given unit of time.

Given a well-designed application, it is entirely possible to increase performance by simply
adding more resources. To increase the load handling capabilities of WebLogic Server, add
another WebLogic Server instance to your cluste—without changing your application. Clusters
provide two key benefits that are not provided by a single server: scalability and availability.

WebLogic Server clusters bring scalability and high-availability to J2EE applications in a way
that is transparent to application developers. Scalability expands the capacity of the middle tier
beyond that of a single WebLogic Server or a single computer. The only limitation on cluster
membership is that all WebLogic Servers must be able to communicate by IP multicast. New
WebLogic Servers can be added to a cluster dynamically to increase capacity.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/

Using WebLogic Server Clusters to Improve Performance

A WebLogic Server cluster guarantees high-availability by using the redundancy of multiple
servers to insulate clients from failures. The same service can be provided on multiple servers in
a cluster. If one server fails, another can take over. The ability to have a functioning server take
over from a failed server increases the availability of the application to clients.

Caution: Provided that you have resolved all application and environment bottleneck issues,
adding additional servers to a cluster should provide linear scalability. When doing
benchmark or initial configuration test runs, isolate issues in a single server
environment before moving to a clustered environment.

Clustering in the Messaging Service is provided through distributed destinations; connection
concentrators, and connection load-balancing (determined by connection factory targeting); and
clustered Store-and-Forward (SAF). Client load-balancing with respect to distributed
destinations is tunable on connection factories. Distributed destination Message Driven Beans
(MDBs) that are targeted to the same cluster that hosts the distributed destination automatically
deploy only on cluster servers that host the distributed destination members and only process
messages from their local destination. Distributed queue MDBs that are targeted to a different
server or cluster than the host of the distributed destination automatically create consumers for
every distributed destination member. For example, each running MDB has a consumer for each
distributed destination queue member.

How to Ensure Scalability for WebLogic Clusters

In general, any operation that requires communication between the servers in a cluster is a
potential scalability hindrance. The following sections provide information on issues that impact
the ability to linearly scale clustered WebLogic servers:

e “Database Bottlenecks™” on page 7-15

e “Session Replication” on page 7-16

e “Invalidation of Entity EJBs” on page 7-16

e “Invalidation of HTTP sessions” on page 7-17

e “JNDI Binding, Unbinding and Rebinding” on page 7-17

Datahase Bottlenecks

In many cases where a cluster of WebLogic servers fails to scale, the database is the bottleneck.
In such situations, the only solutions are to tune the database or reduce load on the database by

BEA WebLogic Server Performance and Tuning 1-15

Tuning WebLogic Server

1-16

exploring other options. See “DataBase Tuning” on page 8-1 and “Tuning JDBC Applications”
on page 10-1.

Session Replication

User session data can be stored in two standard ways in a J2EE application: stateful session EJBs
or HTTP sessions. By themselves, they are rarely a impact cluster scalability. However, when
coupled with a session replication mechanism required to provide high-availability, bottlenecks
are introduced. If a J2EE application has Web and EJB components, you should store user session
data in HTTP sessions:

e HTTP session management provides more options for handling fail-over, such as
replication, a shared DB or file.

e Superior scalability.

e Replication of the HTTP session state occurs outside of any transactions. Stateful session
bean replication occurs in a transaction which is more resource intensive.

e The HTTP session replication mechanism is more sophisticated and provides optimizations
a wider variety of situations than stateful session bean replication.

See “Session Management” on page 16-3.

Invalidation of Entity EJBs

This applies to entity EJBs that use a concurrency strategy of Optimistic or Readonly with a
read-write pattern.

Optimistic—When an Optimistic concurrency bean is updated, the EJB container sends a
multicast message to other cluster members to invalidate their local copies of the bean. This is
done to avoid optimistic concurrency exceptions being thrown by the other servers and hence the
need to retry transactions. If updates to the EJBs are frequent, the work done by the servers to
invalidate each other’s local caches become a serious bottleneck. A flag called
cluster-invalidation-disabled (default false) is used to turn off such invalidations. This is
set in the rdbms descriptor file.

ReadOnly with a read-write pattern—In this pattern, persistent data that would otherwise be
represented by a single EJB are actually represented by two EJBs: one read-only and the other
updateable. When the state of the updateable bean changes, the container automatically
invalidates corresponding read-only EJB instance. If updates to the EJBs are frequent, the work
done by the servers to invalidate the read-only EJBs becomes a serious bottleneck.

BEA WebLogic Server Performance and Tuning

Using WebLogic Server Clusters to Improve Performance

Invalidation of HTTP sessions

Similar to “Invalidation of Entity EJBs” on page 7-16, HTTP sessions can also be invalidated.
This is not as expensive as entity EJB invalidation, since only the session data stored in the
secondary server needs to be invalidated. BEA advises users to not invalidate sessions unless
absolutely required.

JNDI Binding, Unbinding and Rebinding

In general, INDI binds, unbinds and rebinds are expensive operations. However, these operations
become a bigger bottleneck in clustered environments because JNDI tree changes have to be
propagated to all members of a cluster. If such operations are performed too frequently, they can
reduce cluster scalability significantly.

Performance Considerations When Running Multiple Server
Instances on Multi-CPU Machines

With multi-processor machines, additional consideration must be given to the ratio of the number
of available CPUs to clustered WebLogic Server instances. Because WebLogic Server has no
built-in limit to the number of server instances that reside in a cluster, large, multi-processor
servers, such as Sun Microsystems’ Sun Enterprise 10000, can potentially host very large clusters
or multiple clusters.

In order to determine the optimal ratio of CPUs to WebLogic server instances, you must first
ensure that an application is truly CPU-bound, rather than network or disk I/0-bound. Use the
following steps to determine the optional ratio of CPUs to server instances:

1. Test your application to determine the Network Requirements.

If you discover that an application is primarily network I/0O-bound, consider measures to
increase network throughput before increasing the number of available CPUs. For truly
network I/O-bound applications, installing a faster network interface card (NIC) may
increase performance more than additional CPUs, because most CPUs would remain idle
while waiting to read available sockets.

2. Test your application to determine the Disk I/O Requirements.

If you discover that an application is primarily disk I/O-bound, consider upgrading the
number of disk spindles or individual disks and controllers before allocating additional
CPUs.

BEA WebLogic Server Performance and Tuning 1-11

Tuning WebLogic Server

3. Begin performance tests using a ratio of one WebLogic Server instance for every available
CPU.

4. If CPU utilization is consistently at or near 100 percent, increase the ratio of CPUs to server
instances by adding an additional CPU. Add additional CPUs until utilization reaches an
acceptable level. Remember, always reserve some spare CPU cycles on your production
systems to perform any administration tasks that may occur.

How to Monitor a WebLogic Server Domain

1-18

The following sections provide information on how to monitor WebLogic Server domains:
e “Using the Administration Console to Monitor WebLogic Server” on page 7-18
e “Using JMX to Monitor WebLogic Server” on page 7-18
e “Using WLST to Monitor WebLogic Server” on page 7-18
e “dev2dev Resources to Monitor WebLogic Server” on page 7-18

e “Third-Party Tools to Monitor WebLogic Server” on page 7-19

Using the Administration Console to Monitor WebLogic Server

The tool for monitoring the health and performance of your WebLogic Server domain is the
Administration Console. See “Monitor servers” in Administration Console Online Help.

Using JMX to Monitor WebLogic Server

WebLogic Server® provides its own set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources. See “Developing Custom Management Utilities with JMX".

Using WLST to Monitor WebLogic Server

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that system
administrators and operators use to monitor and manage WebLogic Server instances and
domains. See “WebLogic Scripting Tool”.

dev2dev Resources to Monitor WebLogic Server

dev2dev.bea.com provides product downloads, articles, sample code, product documentation,
tutorials, white papers, news groups, and other key content for WebLogic Server.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/monitoring/MonitorServers.html
http://e-docs.bea.com/wls/docs90/jmx/index.html
http://e-docs.bea.com/wls/docs90/config_scripting/index.html
http://dev2dev.bea.com/

How to Monitor a WebLogic Server Domain

Third-Party Tools to Monitor WebLogic Server

BEA partners with other companies that provide production monitoring and management tools.
See “Production Performance Management” on page A-7.

BEA WebLogic Server Performance and Tuning 1-19

Tuning WebLogic Server

1-20 BEA WebLogic Server Performance and Tuning

DataBase Tuning

Your database can be a major enterprise-level bottleneck. Configure your database for optimal
performance by following the tuning guidelines in this section and in the product documentation
for the database you are using.

e “General Suggestions” on page 8-1

e “Database-Specific Tuning” on page §-2

General Suggestions

This section provides general database tuning suggestions:

e Good database design — Distribute the database workload across multiple disks to avoid
or reduce disk overloading. Good design also includes proper sizing and organization of
tables, indexes, and logs.

e Disk I/O optimization — Disk I/O optimization is related directly to throughput and
scalability. Access to even the fastest disk is orders of magnitude slower than memory
access. Whenever possible, optimize the number of disk accesses. In general, selecting a
larger block/buffer size for I/O reduces the number of disk accesses and might substantially
increase throughput in a heavily loaded production environment.

e Checkpointing — This mechanism periodically flushes all dirty cache data to disk, which
increases the 1/O activity and system resource usage for the duration of the checkpoint.
Although frequent checkpointing can increase the consistency of on-disk data, it can also
slow database performance. Most database systems have checkpointing capability, but not
all database systems provide user-level controls. Oracle, for example, allows administrators

BEA WebLogic Server Performance and Tuning 8-1

DataBase Tuning

to set the frequency of checkpoints while users have no control over SQLServer 7.x
checkpoints. For recommended settings, see the product documentation for the database
you are using.

e Disk and database overhead can sometimes be dramatically reduced by batching multiple
operations together and/or increasing the number of operations that run in parallel
(increasing concurrency). Examples:

— Increasing the value of the Message bridge Batchsize or the Store-and-Forward
WindowSize can improve performance as larger batch sizes produce fewer but larger
I/Os.

Programmatically leveraging JDBC’s batch APIs.

Use the MDB transaction batching feature. .

Increasing concurrency by increasing max-beans-in-free-pool and the thread pool
size for MDBs (or decreasing it if batching can be leveraged).

Database-Specific Tuning

8-2

The following sections provide basic tuning suggestions for Oracle, SQL Server, and Sybase:
e “Oracle” on page 8-2
e “Microsoft SQL Server” on page 8-4
e “Sybase” on page 8-4

Note: Always check the tuning guidelines in your database-specific vendor documentation.

Oracle

This section describes performance tuning for Oracle.

e Number of processes — On most operating systems, each connection to the Oracle server
spawns a shadow process to service the connection. Thus, the maximum number of
processes allowed for the Oracle server must account for the number of simultaneous
users, as well as the number of background processes used by the Oracle server. The
default number is usually not big enough for a system that needs to support a large number
of concurrent operations. For platform-specific issues, see your Oracle administrator’s
guide. The current setting of this parameter can be obtained with the following query:

SELECT name, value FROM vS$Sparameter WHERE name = 'processes';

BEA WebLogic Server Performance and Tuning

Database-Specific Tuning

e Buffer pool size —The buffer pool usually is the largest part of the Oracle server system
global area (SGA). This is the location where the Oracle server caches data that it has read
from disk. For read-mostly applications, the single most important statistic that affects data
base performance is the buffer cache hit ratio. The buffer pool should be large enough to
provide upwards of a 95% cache hit ratio. Set the buffer pool size by changing the value,
in data base blocks, of the db_cache_size parameter in the init.ora file.

e Shared pool size — The share pool in an important part of the Oracle server system global
area (SGA). The SGA is a group of shared memory structures that contain data and control
information for one Oracle database instance. If multiple users are concurrently connected
to the same instance, the data in the instance’s SGA is shared among the users. The shared
pool portion of the SGA caches data for two major areas: the library cache and the
dictionary cache. The library cache stores SQL-related information and control structures
(for example, parsed SQL statement, locks). The dictionary cache stores operational
metadata for SQL processing.

For most applications, the shared pool size is critical to Oracle performance. If the shared
pool is too small, the server must dedicate resources to managing the limited amount of
available space. This consumes CPU resources and causes contention because Oracle
imposes restrictions on the parallel management of the various caches. The more you use
triggers and stored procedures, the larger the shared pool must be. The
SHARED_POOL_SIZE initialization parameter specifies the size of the shared pool in bytes.

The following query monitors the amount of free memory in the share pool:

SELECT * FROM v$sgastat
WHERE name = 'free memory' AND pool = 'shared pool';

e Maximum opened cursor — To prevent any single connection taking all the resources in
the Oracle server, the OPEN_CURSORS initialization parameter allows administrators to limit
the maximum number of opened cursors for each connection. Unfortunately, the default
value for this parameter is too small for systems such as WebLogic Server. Cursor
information can be monitored using the following query:

SELECT name, value FROM v$sysstat
WHERE name LIKE 'opened cursor$';

e Database block size — A block is Oracle’s basic unit for storing data and the smallest unit
of I/0. One data block corresponds to a specific number of bytes of physical database
space on disk. This concept of a block is specific to Oracle RDBMS and should not be
confused with the block size of the underlying operating system. Note that since the block
size affects physical storage, this value can be set only during the creation of the database;
it cannot be changed once the database has been created. The current setting of this
parameter can be obtained with the following query:

BEA WebLogic Server Performance and Tuning 8-3

DataBase Tuning

8-4

SELECT name, value FROM v$parameter WHERE name = 'db_block_size';

e Sort area size — Increasing the sort area increases the performance of large sorts because it
allows the sort to be performed in memory during query processing. This can be important,
as there is only one sort area for each connection at any point in time. The default value of
this init.ora parameter is usually the size of 6—8 data blocks. This value is usually
sufficient for OLTP operations but should be increased for decision support operation,
large bulk operations, or large index-related operations (for example, recreating an index).
When performing these types of operations, you should tune the following init.ora
parameters (which are currently set for 8K data blocks):

sort_area_size = 65536
sort_area_retained_size = 65536

Microsoft SQL Server

The following guidelines pertain to performance tuning parameters for Microsoft SQL Server
databases. For more information about these parameters, see your Microsoft SQL Server
documentation.

e Store tempdb on a fast I/O device.
e Increase the recovery interval if perfmon shows an increase in 1/O.

e Use an I/O block size larger than 2 KB.

Sybase

The following guidelines pertain to performance tuning parameters for Sybase databases. For
more information about these parameters, see your Sybase documentation.

e Lower recovery interval setting results in more frequent checkpoint operations, resulting in
more I/O operations.

e Use an I/O block size larger than 2 KB.

e Sybase controls the number of engines in a symmetric multiprocessor (SMP) environment.
They recommend configuring this setting to equal the number of CPUs minus 1.

BEA WebLogic Server Performance and Tuning

CHAPTERa

Tuning WebLogic Server EJBs

The following sections describe how to tune WebLogic Server EJBs to match your application
needs:

e “General EJB Tuning Tips” on page 9-1
e “Tuning EJB Caches” on page 9-2

e “Tuning EJB Pools” on page 9-4

e “CMP Entity Bean Tuning” on page 9-5

e “Tuning In Response to Monitoring Statistics” on page 9-9

General EJB Tuning Tips

e Deployment descriptors are schema-based. Descriptors that are new in this release of
WebLogic Server are not available as DTD-based descriptors.

e Avoid using the RequiresNew transaction parameter. Using RequiresNew causes the EJB
container to start a new transaction after suspending any current transactions. This means
additional resources, including a separate data base connection are allocated.

e Use local-interfaces or set call-by-reference to true to avoid the overhead of serialization
when one EJB calls another or an EJB is called by a servlet/JSP in the same application.
Note the following:

— In release prior to WebLogic Server 8.1, call-by-reference is turned on by default. For
releases of WebLogic Server 8.1 and higher, call-by-reference is turned off by default.

BEA WebLogic Server Performance and Tuning 9-1

Tuning WebLogic Server EJBs

Older applications migrating to WebLogic Server 8.1 and higher that do not explicitly
turn on call-by-reference may experience a drop in performance.

— This optimization does not apply to calls across different applications.

e Use Stateless session beans over Stateful session beans whenever possible. Stateless

session beans scale better than stateful session beans because there is no state information
to be maintained.

WebLogic Server provides additional transaction performance benefits for EJBs that reside
in a WebLogic Server cluster. When a single transaction uses multiple EJBs, WebLogic
Server attempts to use EJB instances from a single WebLogic Server instance, rather than
using EJBs from different servers. This approach minimizes network traffic for the
transaction. In some cases, a transaction can use EJBs that reside on multiple WebLogic
Server instances in a cluster. This can occur in heterogeneous clusters, where all EJBs have
not been deployed to all WebLogic Server instances. In these cases, WebLogic Server uses
a multitier connection to access the datastore, rather than multiple direct connections. This
approach uses fewer resources, and yields better performance for the transaction. However,
for best performance, the cluster should be homogeneous — all EJBs should reside on all

available WebLogic Server instances.

Tuning EJB Caches

9-2

The following sections provide information on how to tune EJB caches:
e “Tuning the Stateful Session Bean Cache” on page 9-2
e “Tuning the Entity Bean Cache” on page 9-2

e “Tuning the Query Cache” on page 9-3

Tuning the Stateful Session Bean Cache

The EJB Container caches stateful session beans in memory up to a count specified by the

max-beans-in-cache parameter specified in weblogic-ejb-jar.xml. This parameter should

be set equal to the number of concurrent users. This ensures minimum passivation of stateful
session beans to disk and subsequent activation from disk which yields better performance.

Tuning the Entity Bean Cache

Entity beans are cached at two levels by the EJB container:

e “Transaction-Level Caching” on page 9-3

BEA WebLogic Server Performance and Tuning

Tuning EJB Caches

e “Caching between transactions” on page 9-3

Transaction-Level Caching

Once an entity bean has been loaded from the database, it is always retrieved from the cache
whenever it is requested when using the £indByPrimaryKey or invoked from a cached reference
in that transaction. Note that getting an entity bean using a non-primary key finder always
retrieves the persistent state of the bean from the data base.

Caching between transactions

Entity bean instances are also cached between transactions. However, by default, the persistent
state of the entity beans are not cached between transactions. To enable caching between
transactions, set the value of the cache-between-transactions parameter to true.

Is it safe to cache the state? This depends on the concurrency-strategy for that bean. The
entity-bean cache is really only useful when cache-between-transactions can be safely set
to true. In cases where ejbactivate () and ejbPassivate () callbacks are expensive, it is still
a good idea to ensure the entity-cache size is large enough. Even though the persistent state may
be reloaded at least once per transaction, the beans in the cache are already activated. The value
of the cache-size is set by the deployment descriptor parameter max-beans-in-cache and
should be set to maximize cache-hits. In most situations, the value need not be larger than the
product of the number of rows in the table associated with the entity bean and the number of
threads expected to access the bean concurrently.

Tuning the Query Cache

Query Caching is a new feature in WebLogic Server 9.0 that allows read-only CMP entity beans
to cache the results of arbitrary finders. Query Caching is supported for all finders except
prepared-query finders. The query cache can be an application-level cache as well as a
bean-level cache. The size of the cache is limited by the weblogic-ejb-jar.xml parameter
max-queries-in-cache. The finder-level flaginthe weblogic-cmp-rdbms descriptor file,
enable-query-caching is used to specify whether the results of that finder are to be cached. A
flag with the same name has the same purpose for internal relationship finders when applied to
the weblogic-relationship-role element. Queries are evicted from the query-cache under
the following circumstances:

e The query is least recently used and the query-cache has hit its size limit.

e At least one of the EJBs that satisfy the query has been evicted from the entity bean cache,
regardless of the reason.

BEA WebLogic Server Performance and Tuning 9-3

Tuning WebLogic Server EJBs

e The query corresponds to a finder that has eager-relationship-caching enabled and
the query for the associated internal relationship finder has been evicted from the related
bean's query cache.

It is possible to let the size of the entity-bean cache limit the size of the query-cache by setting
the max-queries-in-cache parameter to 0, since queries are evicted from the cache when the
corresponding EJB is evicted. This may avoid some lock contention in the query cache, but the
performance gain may not be significant.

Tuning EJB Pools

9-4

The following section provides information on how to tune EJB pools:
e “Tuning the Stateless Session Bean Pool” on page 9-4
e “Tuning the MDB Pool” on page 9-4

e “Tuning the Entity Bean Pool” on page 9-5

Tuning the Stateless Session Bean Pool

The EJB container maintains a pool of stateless session beans to avoid creating and destroying
instances. Though generally useful, this pooling is even more important for performance when
the ejbCreate () and the setSessionContext () methods are expensive. The pool has a lower
as well as an upper bound. The upper bound is the more important of the two.

e The upper bound is specified by the max-beans-in-free-pool parameter. It should be
set equal to the number of threads expected to invoke the EJB concurrently. Using too
small of a value impacts concurrency.

e The lower bound is specified by the initial-beans-in-free-pool parameter.
Increasing the value of initial-beans-in-free-pool increases the time it takes to
deploy the application containing the EJB and contributes to startup time for the server.
The advantage is the cost of creating EJB instances is not incurred at run time. Setting this
value too high wastes memory.

Tuning the MDB Pool

The lifecycle of MDBs is very similar to stateless session beans. The MDB pool has the same
tuning parameters as stateless session beans and the same factors apply when tuning them. In
general, most users will find that the default values are adequate for most applications.

BEA WebLogic Server Performance and Tuning

CMP Entity Bean Tuning

Tuning the Entity Bean Pool

The entity bean pool serves two purposes:
e A target objects for invocation of finders via reflection.

e A pool of bean instances the container can recruit if it cannot find an instance for a
particular primary key in the cache.

The entity pool contains anonymous instances (instances that do not have a primary key). These
beans are not yet active (meaning ejbActivate () has not been invoked on them yet), though
the EJB context has been set. Entity bean instances evicted from the entity cache are passivated
and put into the pool. The tunables are the initial-beans-in-free-pool and
max-beans-in-free-pool. Unlike stateless session beans and MDBs, the
max-beans-in-free-pool has no relation with the thread count. You should increase the value
of max-beans-in-free-pool if the entity bean constructor or setEnityContext () methods
are expensive.

CMP Entity Bean Tuning

The largest performance gains in entity beans are achieved by using caching to minimize the
number of interactions with the data base. However, in most situations, it is not realistic to be able
to cache entity beans beyond the scope of a transaction. The following sections provide
information on WebLogic Server EJB container features, most of which are configurable, that
you can use to minimize database interaction safely:

e “Use Eager Relationship Caching” on page 9-6
e “Use JDBC Batch Operations” on page 9-6

e “Tuned Updates” on page 9-6

e “Using Field Groups” on page 9-6

e “include-updates” on page 9-7

e “call-by-reference” on page 9-7

e “Bean-level Pessimistic Locking” on page 9-7

e “Concurrency Strategy” on page 9-8

BEA WebLogic Server Performance and Tuning 9-5

Tuning WebLogic Server EJBs

9-6

Use Eager Relationship Caching

Using eager relationship caching allows the EJB container to load related entity beans using a
single SQL join. Use only when the same transaction accesses related beans. See Relationship
Caching in Programming WebLogic Server Enterprise JavaBeans.

Use JDBC Batch Operations

JDBC batch operations are turned on by default in the EJB container. The EJB container
automatically re-orders and executes similar data base operations in a single batch which
increases performance by eliminating the number of data base round trips. BEA recommends
using batch operations.

Tuned Updates

When an entity EJB is updated, the EJB container automatically updates in the data base only
those fields that have actually changed. As a result the update statements are simpler and if a bean
has not been modified, no data base call is made. Because different transactions may modify
different sets of fields, more than one form of update statements may be used to store the bean in
the data base. It is important that you account for the types of update statements that may be used
when setting the size of the prepared statement cache in the JDBC connection pool. See “Cache
Prepared and Callable Statements” on page 10-3.

Using Field Groups

Field groups allow the user to segregate commonly used fields into a single group. If any of the
fields in the group is accessed by application/bean code, the entire group is loaded using a single
SQL statement. This group can also be associated with a finder. When the finder is invoked and
finders-load-bean is true, it loads only those fields from the data base that are included in the
field group. This means that if most transactions do not use a particular field that is slow to load,
such as a BLOB, it can be excluded from a field-group. Similarly, if an entity bean has a lot of
fields, but a transaction uses only a small number of them, the unused fields can be excluded.

Note: Be careful to ensure that fields that are accessed in the same transaction are not
configured into separate field-groups. If that happens, multiple data base calls occur to
load the same bean, when one would have been enough.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/ejb/entity.html#relationship_caching
http://e-docs.bea.com/wls/docs90/ejb/entity.html#relationship_caching

CMP Entity Bean Tuning

include-updates

This flag causes the EJB container to flush all modified entity beans to the data base before
executing a finder. If the application modifies the same entity bean more than once and executes
a non-pk finder in-between in the same transaction, multiple updates to the data base are issued.
This flag is turned on by default to comply with the EJB specification.

If the application has transactions where two invocations of the same or different finders could
return the same bean instance and that bean instance could have been modified between the finder
invocations, it makes sense leaving include-updates turned on. If not, this flag may be safely
turned off. This eliminates an unnecessary flush to the data base if the bean is modified again after
executing the second finder. This flag is specified for each finder in the cmp-rdbms descriptor.

call-by-reference

When it is turned off, method parameters to an EJB are passed by value, which involves
serialization. For mutable, complex types, this can be significantly expensive. Consider using for
better performance when:

e The application does not require call-by-value semantics, such as method parameters are
not modified by the EJB.

or

e If modified by the EJB, the changes need not be invisible to the caller of the method.

This flag applies to all EJBs, not just entity EJBs. It also applies to EJB invocations between
servlets/JSPs and EJBs in the same application. The flag is turned off by default to comply with
the EJB specification. This flag is specified at the bean-level in the WebLogic-specific
deployment descriptor.

Bean-level Pessimistic Locking

Bean-level pessimistic locking is implemented in the EJB container by acquiring a data base lock
when loading the bean. When implemented, each entity bean can only be accessed by a single
transaction in a single server at a time. All other transactions are blocked, waiting for the owning
transaction to complete. This is a useful alternative to using a higher data base isolation level,
which can be expensive at the RDBMS level. This flag is specified at the bean level in the
cmp-rdbms deployment descriptor.

Note: Ifthe lock is not exclusive lock, you man encounter deadlock conditions. If the data base
lock is a shared lock, there is potential for deadlocks when using that RDBMS.

BEA WebLogic Server Performance and Tuning 9-7

Tuning WebLogic Server EJBs

9-8

Concurrency Strategy

The concurrency-strategy deployment descriptor tells the EJB container how to handle
concurrent access of the same entity bean by multiple threads in the same server instance. Set this
parameter to one of four values:

e Exclusive—The EJB container ensures there is only one instance of an EJB for a given
primary key and this instance is shared among all concurrent transactions in the server with
the container serializing access to it. This concurrency setting generally does not provide
good performance unless the EJB is used infrequently and chances of concurrent access is
small.

® Database—This is the default value and most commonly used concurrency strategy. The
EJB container defers concurrency control to the database. The container maintains multiple
instances of an EJB for a given primary-key and each transaction gets it's own copy. In
combination with this strategy, the database isolation-level and bean level pessimistic
locking play a major role in determining if concurrent access to the persistent state should
be allowed. Note that it is possible for multiple transactions to access the bean concurrently
so long as it does not need to go to the database, as would happen when the value of
cache-between-transactions is true. However, setting the value of
cache-between-transactions to true unsafe and not recommended with the Dababase
concurrency strategy.

e optimistic—The goal of the optimistic concurrency strategy is to minimize locking at
the data base and while continuing to provide data consistency. The basic assumption is
that the persistent state of the EJB is changed very rarely. The container attempts to load
the bean in a nested transaction so that the isolation-level settings of the outer transaction
does not cause locks to be acquired at the data base. At commit-time, if the bean has been
modified, a predicated update is used to ensure it's persistent state has not been changed by
some other transaction. If so, an OptimisticConcurrencyException is thrown and must
be handled by the application.

Since EJBs that can use this concurrency strategy are rarely modified, using
cache-between-transactions on can boost performance significantly. This strategy
also allows commit-time verification of beans that have been read, but not changed. This is
done by setting the verify-rows parameter to Read in the cmp-rdbms descriptor. This
provides very high data-consistency while at the same time minimizing locks at the data
base. However, it does slow performance somewhat. It is recommended that the optimistic
verification be performed using a version column: it is faster, followed closely by
timestamp, and more distantly by modified and read. The modified value does not apply if
verify-rows is set to Read.

BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html#concurrency-strategy

Tuning In Response to Monitoring Statistics

When an optimistic concurrency bean is modified in a server that is part of a cluster, the
server attempts to invalidate all instances of that bean cluster-wide in the expectation that it
will prevent OptimisticConcurrencyExceptions. In some cases, it may be more cost
effective to simply let other servers throw an OptimisticConcurrencyException. in this
case, turn off the cluster-wide invalidation by setting the
cluster-invalidation-disabled flag in the cmp-rdbms descriptor.

e Readonly—The ReadOnly value is the most performant. When selected, the container
assumes the EJB is non-transactional and automatically turns on
cache-between-transactions. Bean states are updated from the data base at periodic,
configurable intervals or when the bean has been programmatically invalidated. The
interval between updates can cause the persistent state of the bean to become stale. This is
the only concurrency-strategy for which query-caching can be used. See “Caching
between transactions” on page 9-3.

Tuning In Response to Monitoring Statistics

The WebLogic Server Administration Console reports a wide variety of EJB runtime monitoring
statistics, many of which are useful for tuning your EJBs. This section discusses how some of
these statistics can help you tune the performance of EJBs.

To display the statistics in the Administration Console, see “Monitoring EJBs” in Administration
Console Online Help. If you prefer to write a custom monitoring application, you can access the
monitoring statistics using JMX or WLST by accessing the relevant runtime MBeans. See
Runtime MBeans in the WebLogic Server® MBean Reference.

Cache Miss Ratio

The cache miss ratio is a ratio of the number of times a container cannot find a bean in the cache
(cache miss) to the number of times it attempts to find a bean in the cache (cache access):

Cache Miss Ratio = (Cache Total Miss Count / Cache Total Access Count) * 100

A high cache miss ratio could be indicative of an improperly sized cache. If your application uses
a certain subset of beans (read primary keys) more frequently than others, it would be ideal to size
your cache large enough so that the commonly used beans can remain in the cache as less
commonly used beans are cycled in and out upon demand. If this is the nature of your application,
you may be able to decrease your cache miss ratio significantly by increasing the maximum size
of your cache.

If your application doesn’t necessarily use a subset of beans more frequently than others,
increasing your maximum cache size may not affect your cache miss ratio. We recommend

BEA WebLogic Server Performance and Tuning 9-9

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/ejb/MonitorEJBs.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html

Tuning WebLogic Server EJBs

9-10

testing your application with different maximum cache sizes to determine which give the lowest
cache miss ratio. It is also important to keep in mind that your server has a finite amount of
memory and therefore there is always a trade-off to increasing your cache size.

Lock Waiter Ratio

When using the Exclusive concurrency strategy, the lock waiter ratio is the ratio of the number
of times a thread had to wait to obtain a lock on a bean to the total amount of lock requests issued:

Lock Waiter Ratio = (Current Waiter Count / Current Lock Entry Count) * 100

A high lock waiter ratio can indicate a suboptimal concurrency strategy for the bean. If acceptable
for your application, a concurrency strategy of Database or Optimistic will allow for more
parallelism than an Exclusive strategy and remove the need for locking at the EJB container level.

Because locks are generally held for the duration of a transaction, reducing the duration of your
transactions will free up beans more quickly and may help reduce your lock waiter ratio. To
reduce transaction duration, avoid grouping large amounts of work into a single transaction
unless absolutely necessary.

Lock Timeout Ratio

When using the Exclusive concurrency strategy, the lock timeout ratio is the ratio of timeouts
to accesses for the lock manager:

Lock Timeout Ratio =(Lock Manager Timeout Total Count / Lock Manager Total

Access Count) * 100

The lock timeout ratio is closely related to the lock waiter ratio. If you are concerned about the
lock timeout ratio for your bean, first take a look at the lock waiter ratio and our recommendations
for reducing it (including possibly changing your concurrency strategy). If you can reduce or
eliminate the number of times a thread has to wait for a lock on a bean, you will also reduce or
eliminate the amount of timeouts that occur while waiting.

A high lock timeout ratio may also be indicative of an improper transaction timeout value. The
maximum amount of time a thread will wait for a lock is equal to the current transaction timeout
value.

If the transaction timeout value is set too low, threads may not be waiting long enough to obtain
access to a bean and timing out prematurely. If this is the case, increasing the
trans-timeout-seconds value for the bean may help reduce the lock timeout ratio.

BEA WebLogic Server Performance and Tuning

Tuning In Response to Monitoring Statistics

Take care when increasing the trans-timeout-seconds, however, because doing so can cause
threads to wait longer for a bean and threads are a valuable server resource. Also, doing so may
increase the request time, as a request ma wait longer before timing out.

Pool Miss Ratio

The pool miss ratio is a ratio of the number of times a request was made to get a bean from the
pool when no beans were available, to the total number of requests for a bean made to the pool:

Pool Miss Ratio = (Pool Total Miss Count / Pool Total Access Count) * 100
If your pool miss ratio is high, you must determine what is happening to your bean instances.
There are three things that can happen to your beans.

e They are in use.

e They were destroyed.

e They were removed.

Follow these steps to diagnose the problem:

1. Check your destroyed bean ratio to verify that bean instances are not being destroyed.

Investigate the cause and try to remedy the situation.

2. Examine the demand for the EJB, perhaps over a period of time.

One way to check this is via the Beans in Use Current Count and Idle Beans Count
displayed in the Administration Console. If demand for your EJB spikes during a certain
period of time, you may see a lot of pool misses as your pool is emptied and unable to fill
additional requests.

As the demand for the EJB drops and beans are returned to the pool, many of the beans
created to satisfy requests may be unable to fit in the pool and are therefore removed. If
this is the case, you may be able to reduce the number of pool misses by increasing the
maximum size of your free pool. This may allow beans that were created to satisfy demand
during peak periods to remain in the pool so they can be used again when demand once
again increases.

Destroyed Bean Ratio

The destroyed bean ratio is a ratio of the number of beans destroyed to the total number of
requests for a bean.

Destroyed Bean Ratio = (Total Destroyed Count / Total Access Count) * 100

BEA WebLogic Server Performance and Tuning 9-11

Tuning WebLogic Server EJBs

9-12

To reduce the number of destroyed beans, BEA recommends against throwing non-application
exceptions from your bean code except in cases where you want the bean instance to be
destroyed. A non-application exception is an exception that is either a java.rmi.RemoteException
(including exceptions that inherit from RemoteException) or is not defined in the throws clause
of a method of an EJB’s home or component interface.

In general, you should investigate which exceptions are causing your beans to be destroyed as
they may be hurting performance and may indicate problem with the EJB or a resource used by
the EJB.

Pool Timeout Ratio

The pool timeout ratio is a ratio of requests that have timed out waiting for a bean from the pool
to the total number of requests made:

Pool Timeout Ratio = (Pool Total Timeout Count / Pool Total Access Count) *
100

A high pool timeout ratio could be indicative of an improperly sized free pool. Increasing the
maximum size of your free pool via the max-beans-in-free-pool setting will increase the
number of bean instances available to service requests and may reduce your pool timeout ratio.

Another factor affecting the number of pool timeouts is the configured transaction timeout for
your bean. The maximum amount of time a thread will wait for a bean from the pool is equal to
the default transaction timeout for the bean. Increasing the trans-timeout-seconds setting in
your weblogic-ejb-jar.xml file will give threads more time to wait for a bean instance to
become available.

Users should exercise caution when increasing this value, however, since doing so may cause
threads to wait longer for a bean and threads are a valuable server resource. Also, request time
might increase because a request will wait longer before timing out.

Transaction Rollback Ratio

The transaction rollback ratio is the ratio of transactions that have rolled back to the number of
total transactions involving the EJB:

Transaction Rollback Ratio = (Transaction Total Rollback Count / Transaction
Total Count) * 100

Begin investigating a high transaction rollback ratio by examining the Transaction Timeout Ratio
reported in the Administration Console. If the transaction timeout ratio is higher than you expect,
try to address the timeout problem first.

BEA WebLogic Server Performance and Tuning

Tuning In Response to Monitoring Statistics

An unexpectedly high transaction rollback ratio could be caused by a number of things. We
recommend investigating the cause of transaction rollbacks to find potential problems with your
application or a resource used by your application.

Transaction Timeout Ratio

The transaction timeout ratio is the ratio of transactions that have timed out to the total number
of transactions involving an EJB:

Transaction Timeout Ratio = (Transaction Total Timeout Count / Transaction
Total Count) * 100

A high transaction timeout ratio could be caused by the wrong transaction timeout value. For
example, if your transaction timeout is set too low, you may be timing out transactions before the
thread is able to complete the necessary work. Increasing your transaction timeout value may
reduce the number of transaction timeouts.

You should exercise caution when increasing this value, however, since doing so can cause
threads to wait longer for a resource before timing out. Also, request time might increase because
a request will wait longer before timing out.

A high transaction timeout ratio could be caused by a number of things such as a bottleneck for
a server resource. We recommend tracing through your transactions to investigate what is causing
the timeouts so the problem can be addressed.

BEA WebLogic Server Performance and Tuning 9-13

Tuning WebLogic Server EJBs

9-14 BEA WebLogic Server Performance and Tuning

Tuning JDBC Applications

The following sections provide tips on how to get the best performance from JDBC applications:
e “Tune the Number of Database Connections” on page 10-1
e “Waste Not” on page 10-2
e “Use Test Connections on Reserve with Care” on page 10-2
e “Cache Prepared and Callable Statements” on page 10-3

e “Use Best Design Practices” on page 10-3

Tune the Number of Database Connections

A straightforward and easy way to boost performance of JDBC in WebLogic Server applications
is to set the value of Initial Capacity equal to the value for Maximum Capacity when
configuring connection pools in your data source.

Creating a database connection is a relatively expensive process in any environment. Typically,
a connection pool starts with a small number of connections. As client demand for more

connections grow, the