0?7,

% hea:
BEAWebLogic
Servere
Programming WebLogic

JMS

Version 9.0
Revised: July 22, 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AqualLogic, BEA Aqualogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLlogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

1. Introduction and Roadmap

Document Scope and Audience.t 1-1
Guide to this Document 1-2
Related Documentationttt 1-3
Samples and Tutorials for the JMS Developer 1-3
Avitek Medical Records Application (MedRec) and Tutorials 1-3
JMS Examples in the WebLogic Server Distribution. 1-4
New and Changed JMS Features In ThisRelease 1-4
2. Understanding WebLogic JMS

Overview of the Java Message Service and WebLogic JIMS. 2-2
What Is the Java Message Service?t 2-2
Implementation of Java Specifications. 2-2
J2EE Specification.ot e 2-3

IMS Specificationot 2-3
WebLogic JMS Architecture.otnt i i 2-3
Major COMPONENLSottt ettt e e e e e e e 2-4
Understanding the Messaging Models. 2-4
Point-to-Point Messagingottt 2-4
Publish/Subscribe Messaging.ot 2-5
Message Persistencevvu ittt e 2-6
Value-Added Public JMS API Extensions., 2-7

Programming WebLogic JMS v

Understanding the IMS AP 2-10

ConnectionFactory 2-11
Using the Default Connection Factories. 2-11
Configuring and Deploying Connection Factories...................... 2-12
The ConnectionFactory Class. 2-13

CONNECHION . . . oottt e e 2-13

SESSION .« ottt 2-14
Non-Transacted SEsSIONttt 2-16
Transacted SeSSIONoou it 2-17

Destination. e 2-18
Distributed Destinationst 2-19

MessageProducer and MessageConsumer.oueninnenenennen... 2-19

MESSAZE .« oo vttt e e e 2-21
Message Header Fields. o i, 2-21
Message Property Fields. i 2-26
Message Body. 2-27

ServerSessionPoolFactory i 2-28

ServerSessionPool 2-29

SerVerSesSION. . . .ottt 2-29

ConnectioNCONSUMET. vt o vttt ettt e et e et e e e 2-29

3. Best Practices for Application Design

Message Design. o 3-1
Serializing Application Objects.t 3-2
Serializing Strings.ot 3-2
Server-side serialization. L 3-2
SeleCtion.ot 3-2

Message COMPIESSION.ottt ettt et et e e e e e 3-2

vi Programming WebLogic JMS

Message Properties and Message Header Fields. 3-3

Message Orderingttt e 3-3
Topics VvS. QUEUESttt 3-3
Asynchronous vs. Synchronous Consumersc.o.iinininnnnenan.. 3-4
Persistent vs. Non-Persistent Messages. o.vttn ittt 3-4
Deferring Acknowledges and Commits.ttt 3-6
Using AUTO_ACK for Non-Durable Subscribers 3-6
Alternative Qualities of Service, Multicast and No-Acknowledge. 3-7

Using MULTICAST_NO_ACKNOWLEDGE 3-7

Using NO_ACKNOWLEDGE. i 3-7
Avoid Multi-threading. o 3-8

4. Developing a Basic JMS Application

Importing Required Packages 4-2
Setting Up a JIMS Application. i 4-2
Step 1: Look Up a Connection Factory inJNDI 4-4
Step 2: Create a Connection Using the Connection Factory 4-5
Create a Queue CONNeCtioN.o vttt ettt eeeneenn 4-5
Create a Topic Connectiono.uiuininnininennenenen... 4-5
Step 3: Create a Session Using the Connection 4-6
Create @ QUEUE SeSSION. . .. oottt ittt ettt et 4-6
Create a TOpic S€SSIONttt e 4-6
Step 4: Look Up a Destination (Queue or Topic). 4-7
Server Affinity When Looking Up Destinations. 4-8

Step 5: Create Message Producers and Message Consumers Using the Session and
Destinations.oou it 4-8
Create QueueSenders and QueueReceivers 4-9
Create TopicPublishers and TopicSubscribers 4-10

Programming WebLogic JMS vii

Step 6a: Create the Message Object (Message Producers) 4-11

Step 6b: Optionally Register an Asynchronous Message Listener (Message Consumers)

4-12
Step 7: Start the Connection. i 4-13
Example: Setting Up a PTP Application 4-13
Example: Setting Up a Pub/Sub Application. 4-17
Sending MeSSagesottt e 4-20
Create aMessage Object i 4-20
Define a Message.o ittt 4-20
Send the Message to a Destinationo iu.... 4-21
Send a Message Using Queue Sender. 4-21
Send a Message Using TopicPublisher. 4-23
Setting Message Producer Attributes. 4-24
Example: Sending Messages Within a PTP Application..................... 4-26
Example: Sending Messages Within a Pub/Sub Application. 4-26
Receiving MeSSages vvv vttt e e 4-27
Receiving Messages Asynchronously 4-27
Asynchronous Message Pipeline 4-28
Receiving Messages Synchronously, 4-29

Example: Receiving Messages Synchronously Within a PTP Application . .. 4-29
Example: Receiving Messages Synchronously Within a Pub/Sub Application 4-30

Recovering Received Messages.t 4-30
Acknowledging Received Messages. 4-31
Releasing Object Resources 4-31

5. Managing Your Applications
Managing Rolled Back, Recovered, Redelivered, or Expired Messages 5-2
Setting a Redelivery Delay for Messagesc.c.iuiininiinenen.... 5-2

viii Programming WebLogic JMS

Setting a Redelivery Delay 5-2

Overriding the Redelivery Delay on a Destination. 5-3

Setting a Redelivery Limit for Messages. 5-4
Configuring a Message Redelivery Limit On a Destination. 5-4
Configuring an Error Destination for Undelivered Messages. 5-4

Ordered Redelivery of Messagesove it 5-5
Required Message Pipeline Setting for the Messaging Bridge and MDBs. 5-5
Performance Limitations. i 5-6
Handling Expired Messages.ttt i e 5-6
Setting Message Delivery Times.ttt 5-6
Setting a Delivery Time on Producers 5-6
Setting a Delivery Time on MeSsagesc.vuvenin i, 5-7
Overriding aDelivery Time i i 5-8
Interaction With the Time-to-Live Value 5-8

Setting a Relative Time-to-Deliver Override 5-8

Setting a Scheduled Time-to-Deliver Override. 5-8

JMS Schedule Interface. i 5-10
Managing CONNECIONSo v vttt et et e e e e e e e et 5-11
Defining a Connection Exception Listener 5-11
Accessing Connection Metadata i i 5-12
Starting, Stopping, and Closinga Connectionc.o.vuvenenon. .. 5-13
Managing SESSIONS vttt et e e 5-14
Defining a Session Exception Listener. 5-15
ClOSING @ SESSION . & ¢ . vttt et e et e e e e 5-15
Managing Destinations oottt 5-16
Dynamically Creating Destinationsc..v it 5-16
Dynamically Deleting Destinations, 5-17
Preconditions for Deleting Destinations 5-17

Programming WebLogic JMS ix

What Happens when a Destinationis Deleted 5-17

Message Timestamps for Troubleshooting Deleted Destinations. 5-19

Deleted Destination StatiSticsoov vt 5-19

Using Temporary Destinations 5-19
Creating a Temporary QUEUEottt 5-20
Creating a Temporary TOpiC.ottt e 5-20
Deleting a Temporary Destination. 5-20
Setting Up Durable Subscriptions.t 5-21
Defining the Persistent Storet 5-21
Defining the ClientID 5-22
Creating Subscribers for a Durable Subscription. 5-23
Deleting Durable Subscriptions.ttt 5-24
Modifying Durable Subscriptionst 5-24
Managing Durable Subscriptions. i 5-25
Setting and Browsing Message Header and Property Fields 5-25
Setting Message Header Fields 5-25
Setting Message Property Fields i, 5-28
Browsing Header and Property Fields. 5-31
FAltering MeSSages. . .« oo vttt ettt e e e e e e 5-33
Defining Message Selectors Using SQL Statements. 5-34
Defining XML Message Selectors Using XML Selector Method. 5-34
Displaying Message Selectorst 5-36
Indexing Topic Subscriber Message Selectors To Optimize Performance 5-36
Sending XML MeESSaAZeS . « .+« v vttt et e e e e 5-38
WebLogic XML APIs 5-38
Using a String Representation o . 5-38
Using a DOM Representationouininiinenenennenenennen. 5-39

Programming WebLogic JMS

6. Using JMS Module Helper to Manage Applications

Configuring JMS System Resources Using JIMSModuleHelper. 6-1
Configuring JMS Servers and Store-and-Forward Agents 6-2
JMSModuleHelper Sample Code i 6-2
Creating a JMS System Resource. i .. 6-2
Deleting a JMS System Resource. i 6-4
Best Practices when Using IMSModuleHelper. 6-6

/. Using Multicasting with WebLogic Server

Benefits of using Multicasting.ot e 7-1
Limitations of using Multicasting i 7-1
Configuring Multicasting for WebLogic Server 7-2

Prerequesites for Multicasting i 7-2

Step 1: Set Up the JMS Application, Creating Multicast Session and Topic Subscriber.

7-3
Step 2: Set Up the Message Listener, 7-4
Dynamically Configuring Multicasting Configuration Attributes. 7-4
Example: Multicast TTL e e 7-5

8. Using Distributed Destinations

What is a Distributed Destination? i 8-1
Why Use a Distributed Destination. 8-2
Creating a Distributed Destination 8-2
Types of Distributed Destinations. 8-2
Uniform Distributed Destinations i iiiiiinon.. 8-2
Weighted Distributed Destinations. 8-3
Using Distributed Destinations i 8-3
Using Distributed Queues. 8-4

Programming WebLogic JMS Xi

Queue Forwarding 8-4

QUEUESENAETS oottt 8-4
QUEUERECEIVETS . . oottt e et ettt e e 8-5
QUEUEBIOWSETS. . . o ottt e e e e e 8-5

Using Distributed TOPICS oo it 8-6
TopicPublishers. 8-6
TopicSubscribers. 8-7
Deploying Message-Driven Beans on a Distributed Topic. 8-8
Accessing Distributed Destination Members. 8-8
Accessing Uniform Destination Members 8-8
Accessing Weighted Destination Members 8-10
Distributed Destination Failover 8-10
Using Message-Driven Beans with Distributed Destinations. 8-10
Common Use Cases for Distributed Destinations. 8-11
Maximizing Production 8-11
Maximizing Availability 8-12
USINZ QUEUES . . . o ettt et e e et e e e e 8-12

USINg TOPICS . . o v vttt e e 8-12

SUCK MESSAZES .+« . v v vt ettt et e e 8-13

9. Enhanced J2EE Support for Using WebLogic JMS With EJBs and
Servlets

Enabling WebLogic JMS WIappersottt e 9-1
Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors9-2
Declaring a Wrapped JMS Connection Factory 9-2
Declaring JMS Destinationso.vunin ittt 9-3

Sending a JMS Message In a J2EE Container 9-4

What’s Happening Under the JMS Wrapper Coversc.ooveiinon.... 9-5

Xii Programming WebLogic JMS

Automatically Enlisting Transactionsc.ciiinieninon .. 9-6

Container-Managed Security 9-6
Connection Testing. 9-7
J2ZEE Complianceo 9-7
Pooled JMS Connection Objectsttt 9-8
Improving Performance Through Pooling. 9-8
Speeding Up JNDI Lookups by Pooling Session Objects 9-8
Speeding Up Object Creation Through Caching 9-9
Enlisting the Proper Transaction Mode iiion... 9-9
Examples of JMS Wrapper Functions. 9-10
ejb-jarXml. 9-10
weblogic-ejb-jar.xml. L 9-11
PoOITeSt.Javaot 9-12
PoolTestHome.java.o o e e 9-12
PoolTestBean.javat 9-13
Simplified Access to Remote or Foreign JMS Providers 9-15

10.Using Message Unit-of-Order

What Is Message Unit-Of-Order? 10-1
Understanding Message Processing with Unit-of-Order. 10-1
Message Processing According to the JMS Specification.................... 10-2
Message Processing with Unit-of-Order 10-2
Message Delivery with Unit-of-Order 10-3
Message Unit-of-Order Case Study. 10-4
Joe Ordersabook. 10-4
What Happened to Joe’s Order. 10-5
How Message Unit-of-Order Solves the Problem 10-6
How to Create a Unit-of-Order 10-8

Programming WebLogic JMS Xiii

Creating a Unit-of-Order Programmatically 10-8

Creating a Unit-of-Order Administratively 10-9
Configuring Unit-of-Order for a Connection Factory 10-9
Unit-of-Order Naming Rules. 10-9
Message Unit-of-Order Advanced Topicst 10-10
What Happens When a Message Is Delayed During Processing?. 10-11
What Happens When a Filter Makes a Message Undeliverable 10-11
What Happens When Destination Sort Keysare Used 10-12
Using Unit-of-Order with Distributed Destinations. 10-12
Using the Path Service i 10-12

Using Hash-based Routing 10-12

Using Unit-of-Order with Topics. i 10-13
Using Unit-of-Order with JMS Message Management. 10-13
Using Unit-of-Order with WebLogic Store-and-Forward 10-14
Using Unit-of-Order with WebLogic Messaging Bridge. 10-14
Limitations to Message Unit-of-Order, 10-14

11.Using Transactions with WebLogic JMS

Overview of Transactions i i 11-1
Using JMS Transacted SESSIONSot ittt 11-2
Step 1: Set Up JMS Application, Creating Transacted Session................ 11-3
Step 2: Perform Desired Operations iiiiinaon... 11-4
Step 3: Commit or Roll Back the JMS Transacted Session................... 11-4
Using JTA User Transactionsttt 11-4
Step 1: Set Up JMS Application, Creating Non-Transacted Session. 11-5
Step 2: Look Up User Transactionin JNDI. 11-6
Step 3: Start the JTA User Transaction iiuian... 11-6
Step 4: Perform Desired Operations, 11-6

Xiv Programming WebLogic JMS

Step 5: Commit or Roll Back the JTA User Transaction 11-6

Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans11-7

Example: JMS and EJB in a JTA User Transaction 11-7
12.WebLogic JMS C API

What Is the WebLogic IMS C API? 12-1
System Requirements 12-2
WebLogic JMS C API Code Examples., 12-3
Design Principles. 12-3
JavaObjects MaptoHandles. 12-3
Thread Utilization. e 12-3
Exception Handling 12-4
Type Conversions.ttt e 12-4
Integer (Int)o 12-4

Long (Iong)ot 12-4
Character (Char).t e e 12-4

SN . o 12-4
Memory Allocation and Garbage Collection. 12-6
Closing Connections.u. ittt et 12-6
Helper Functions i i 12-6
Security Considerations.ttt 12-6
Implementation Guidelines 12-7

13.Recovering from a WebLogic Server Failure

Programming Considerationsttt iin i, 13-1

Migrating JIMS Datatoa New Server.t ienen .. 13-1
A. Deprecated WebLogic JMS Features

Defining Server Session Pools. A-2

Programming WebLogic JMS XV

Xvi

Step 1: Look Up Server Session Pool Factory in INDI.................... ... A-4

Step 2: Create a Server Session Pool Using the Server Session Pool Factory. A-5
Create a Server Session Pool for Queue Connection Consumers. A-5
Create a Server Session Pool for Topic Connection Consumers A-6

Step 3: Create a Connection CONSUMET « .« .« vttt vtvn et e e ee e A-6
Create a Connection Consumer for Queues A-6
Create a Connection Consumer for Topics.o .. A-7

Example: Setting Up a PTP Client Server SessionPool A-8

Example: Setting Up a Pub/Sub Client Server Session Pool.................. A-10

Programming WebLogic JMS

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming WebLogic
JMS.

e “Document Scope and Audience” on page 1-1

e “Guide to this Document” on page 1-2

e “Related Documentation” on page 1-3

e “Samples and Tutorials for the JMS Developer” on page 1-3

e “New and Changed JMS Features In This Release” on page 1-4

Document Scope and Audience

This document is a resource for software developers who want to develop and configure
applications that include WebLogic Server Java Message Service (JMS). It also contains
information that is useful for business analysts and system architects who are evaluating
WebLogic Server or considering the use of WebLogic Server JMS for a particular application

The topics in this document are relevant during the design and development phases of a software
project. The document also includes topics that are useful in solving application problems that are
discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance
tuning JMS topics. For links to WebLogic Server documentation and resources for these topics,
see “Related Documentation” on page 1-3.

Programming WebLogic JMS 1-1

Introduction and Roadmap

It is assumed that the reader is familiar with J2EE and JMS concepts. This document emphasizes
the value-added features provided by WebLogic Server JMS and key information about how to
use WebLogic Server features and facilities to get a JMS application up and running.

Guide to this Document

1-2

e This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this

guide.

e Chapter 2, “Understanding WebLogic JMS,” provides an overview of the Java Message

Service. It also describes WebLogic JMS components and features.

Chapter 3, “Best Practices for Application Design,” provides design options for WebLogic
Server JMS, application behaviors to consider during the design process, and
recommended design patterns.

Chapter 4, “Developing a Basic JMS Application,” describes how to develop a WebLogic
JMS application.

Chapter 5, “Managing Your Applications,” describes how to programatically manage your
JMS applications using value-added WebLogic JMS features.

Chapter 6, “Using JMS Module Helper to Manage Applications,” describes how to
programatically create and manage JMS servers, Store-and-Forward Agents, and JMS
system resources.

Chapter 7, “Using Multicasting with WebLogic Server,” describes how to use Multicasting
to enable the delivery of messages to a select group of hosts that subsequently forward the
messages to subscribers.

Chapter 8, “Using Distributed Destinations,” describes how to use distributed destinations
with WebLogic JMS.

Chapter 9, “Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets,”
describes “best practice” methods that make it easier to use WebLogic JMS in conjunction
with J2EE components, like Enterprise Java Beans and Servlets.

Chapter 10, “Using Message Unit-of-Order,” describes how to use Message Unit-of-Order
to provide strict message ordering when using WebLogic JMS queues.

Chapter 11, “Using Transactions with WebLogic JMS,” describes how to use transactions
with WebLogic JMS.

Programming WebLogic JMS

Related Documentation

e Chapter 12, “WebLogic JMS C API,” provides information on how to develop C programs
that interoperate with WebLogic JMS.

e Chapter 13, “Recovering from a WebLogic Server Failure,” describes how to terminate a
JMS application gracefully if a server fails and how to migrate JMS data after server
failure.

e Appendix A, “Deprecated WebLogic IMS Features,” describes features that have been
deprecated for this release of WebLogic Server:

Related Documentation

This document contains JMS-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

o Configuring and Managing WebLogic JMS for information about configuring and
managing JMS resources.

e Configuring and Managing WebLogic Store-and-Forward for information about the
benefits and usage of the Store-and-Forward service with WebLogic JMS.

e Using the WebLogic Persistent Store for information about the benefits and usage of the
system-wide WebLogic Persistent Store.

e Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications.

Samples and Tutorials for the JMS Developer

In addition to this document, BEA Systems provides a variety of code samples and tutorials for
JMS developers. The examples and tutorials illustrate WebLogic Server JMS in action, and
provide practical instructions on how to perform key JMS development tasks.

BEA recommends that you run some or all of the JMS examples before developing your own
JMS applications.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application

Programming WebLogic JMS 1-3

http://e-docs.bea.com/wls/docs90/jms_admin/index.html
http://e-docs.bea.com/wls/docs90/saf_admin/index.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html
message URL http://e-docs.bea.com/wls/docs90/deployment/index.html

Introduction and Roadmap

provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the wL_HOME\ samples\domains\medrec directory, where wr_HONME is the top-level
installation directory for WebLogic Platform.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs) that work
together to process requests from web applications, web services, and workflow applications, and
future client applications. The application includes message-driven, stateless session, stateful
session, and entity EJBs.

JMS Examples in the WebLogic Server Distribution

WebLogic Server 9.0 optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where wr,_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server 9.0 Start menu.

New and Changed JMS Features In This Release

1-4

For a comprehensive listing of the new WebLogic JMS feature introduced in release 9.0, see New
and Changed JMS Features In This Release in Configuring and Managing WebLogic JMS.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jms_admin/intro.html#WhatsNewJMS
http://e-docs.bea.com/wls/docs90/jms_admin/intro.html#WhatsNewJMS

CHAPTERa

Understanding WebLogic JMS

These sections briefly review the different Java Message Service (JMS) concepts and features,
and describe how they work with other application objects and WebLogic Server.

It is assumed the reader is familiar with Java programming and JMS 1.1 concepts and features.
e “Overview of the Java Message Service and WebLogic JMS” on page 2-2
e “Understanding the Messaging Models” on page 2-4
e “Value-Added Public JMS API Extensions” on page 2-7
e “Understanding the JMS API” on page 2-10

Programming WebLogic JMS 2-1

Understanding WebLogic JMS

Overview of the Java Message Service and WebLogic JMS

2-2

WebLogic JMS is an enterprise-class messaging system that is tightly integrated into the
WebLogic Server platform. It fully supports the JMS Specification and also provides numerous
WebLogic JMS Extensions that go above and beyond the standard JMS APIs.

What Is the Java Message Service?

An enterprise messaging system enables applications to communicate with one another through
the exchange of messages. A message is a request, report, and/or event that contains information
needed to coordinate communication between different applications. A message provides a level
of abstraction, allowing you to separate the details about the destination system from the
application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging systems.
Specifically, IMS:

e Enables Java applications sharing a messaging system to exchange messages

e Simplifies application development by providing a standard interface for creating, sending,
and receiving messages

The following figure illustrates WebLogic JMS messaging.

Figure 2-1 WebLogic JMS Messaging

Weblogic JMS

e
|- Tl
I‘I"'"]
Application A - |\.,,|E - Application B
=

i
ji
Message Producer Message Consumer

As illustrated in the figure, WebLogic JMS accepts messages from producer applications and
delivers them to consumer applications.

Implementation of Java Specifications

WebLogic Server is compliant with the following Java specifications.

Programming WebLogic JMS

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/package-summary.html

Overview of the Java Message Service and WebLogic JMS

J2EE Specification

WebLogic Server is compliant with the Sun Microsystems J2EE 1.4 specification.

JMS Specification

WebLogic Server is fully compliant with the JMS 1.1 Specification and can be used in
production.

WebLogic JMS Architecture

The following figure illustrates the WebLogic JMS architecture..

Figure 2-2 WebLogic JMS Architecture

Webl ogic Server
Weblogic MS
A
Client 1 JMS Server
t Al
. —— . -
T
w
| JNDI "l
Al-= A
B1-»B
B2-»B «<
B
Client 2 i
B1 B
- ; Persiste
- - - > Storage
e gge—— —
,——— -y JMS Server
WebLogic JMS

Where: Al and B1 are connecton factories and B2 is a queue.

Programming WebLogic JMS 2-3

http://java.sun.com/products/jms/docs.html

Understanding WebLogic JMS

Major Components

The major components of the WebLogic JIMS Server architecture, as illustrated in Figure 2-2,
include:

e JMS servers that can host a defined set of modules and any associated persistent storage
that reside on a WebLogic Server instance.

e JMS modules contains configuration resources (such as queues, topics, and connections
factories) and are defined by XML documents that conform to the weblogic-jmsmd.xsd
schema.

e Client JMS applications that either produce messages to destinations or consume messages
from destinations.

e JNDI (Java Naming and Directory Interface), which provides a resource lookup facility.

e WebLogic persistent storage (file store or JDBC-accessible) for storing persistent message
data.

Understanding the Messaging Models

2-4

JMS supports two messaging models: point-to-point (PTP) and publish/subscribe (pub/sub). The
messaging models are very similar, except for the following differences:

e PTP messaging model enables the delivery of a message to exactly one recipient.

e Pub/sub messaging model enables the delivery of a message to multiple recipients.

Each model is implemented with classes that extend common base classes. For example, the PTP
class javax.jms.Queue and the pub/sub class javax. jms.Topic both extend the class

javax.jms.Destination.
Each message model is described in detail in the following sections.

Note: The terms producer and consumer are used as generic descriptions of applications that
send and receive messages, respectively, in either messaging model. For each specific
messaging model, however, unique terms specific to that model are used when referring
to producers and consumers.

Point-to-Point Messaging

The point-to-point (PTP) messaging model enables one application to send a message to another.
PTP messaging applications send and receive messages using named queues. A queue sender

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Queue.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Topic.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html

Understanding the Messaging Models

(producer) sends a message to a specific queue. A queue receiver (consumer) receives messages
from a specific queue.

The following figure illustrates PTP messaging.

Figure 2-3 Point-to-Point (PTP) Messaging

: listening E
1
H i I
Application Al HEbLDg::KJMS : Application Al E
= i !
- ! :
application A2 —>— B = - ! |applicatiomn A2| |
l};a} :
1)
Application A3 MEEEHQE Queue E Application A3 E
i 1
Message Producers Message Consumers
(Queue Senders) {Queue Receivers)

Multiple queue senders and queue receivers can be associated with a single queue, but an
individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, WebLogic JMS determines
which one will receive the next message on a first come, first serve basis. If no queue receivers
are listening on the queue, messages remain in the queue until a queue receiver attaches to the
queue.

Publish/Subscribe Messaging

The publish/subscribe (pub/sub) messaging model enables an application to send a message to
multiple applications. Pub/sub messaging applications send and receive messages by subscribing
to a fopic. A topic publisher (producer) sends messages to a specific topic. A topic subscriber
(consumer) retrieves messages from a specific topic.

The following figure illustrates pub/sub messaging.

Programming WebLogic JMS 2-5

Understanding WebLogic JMS

Figure 2-4 Publish/Subscribe (Pub/Sub) Messaging

| listening
|
WeblLogic JMS i
Application Al E::q: : Application Bl
b 1
(e
=]
Application A2 —} - E:;.__.‘E - | Bpplication B2
R |
=)
Application A3 MEBSHQE Tﬂpiﬂ : Application B3
|
1

Message Producers Message Consumers
(Topic Publishers) (Topic Subscribers)

Unlike with the PTP messaging model, the pub/sub messaging model allows multiple topic
subscribers to receive the same message. JMS retains the message until all topic subscribers have
received it.

The Pub/Sub messaging model supports durable subscribers, allowing you to assign a name to a
topic subscriber and associate it with a user or application. For more information about durable
subscribers, see “Setting Up Durable Subscriptions” on page 5-21.

Message Persistence

As per the “Message Delivery Mode” section of the JMS Specification, messages can be
specified as persistent or non-persistent:

e A persistent message is guaranteed to be delivered once-and-only-once. The message
cannot be lost due to a JMS provider failure and it must not be delivered twice. It is not
considered sent until it has been safely written to a file or database. WebLogic JMS writes
persistent messages to a WebLogic persistent store (disk-base file or JDBC-accessible
database) that is optionally targeted by each JMS server during configuration.

e Non-persistent messages are not stored. They are guaranteed to be delivered at-most-once,
unless there is a JMS provider failure, in which case messages may be lost, and must not
be delivered twice. If a connection is closed or recovered, all non-persistent messages that
have not yet been acknowledged will be redelivered. Once a non-persistent message is
acknowledged, it will not be redelivered.

For information about using the system-wide, WebLogic Persistent Store, see Using the
WebLogic Persistent Store.

2-6 Programming WebLogic JMS

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html

Value-Added Public JMS APl Extensions

Value-Added Public JMS APl Extensions

WebLogic JMS is tightly integrated into the WebLogic Server platform, allowing you to build
highly-secure J2EE applications that can be easily monitored and administered through the
WebLogic Server console. In addition to fully supporting XA transactions, WebLogic JMS also

features high availability through its clustering and service migration features, while also
providing seamless interoperability with other versions of WebLogic Server and third-party
messaging providers. For a detailed listing of these value-added features for WebLogic JMS, see
Understanding JMS Resource Configuration in Configuring and Managing WebLogic JMS.

In addition to the standard JMS APIs specified by the JMS Specification, WebLogic Server
provides numerous weblogic. jms.extensions APIs, which includes the classes and methods

described in the following table.

Table 2-1 WebLogic JMS Public API Extensions

Interface/Class

Function

ConsumerlInfo,

DestinationInfo

Provides consumer and destination information to
management clients in CompositeData format.

JMSMessageFactorylmpl,

Provides a factory and methods to:

WLMessageFactory * Create JMS messages

* Create JMS bytes messages

* Create JMS map messages

* Creating JMS object messages

* Creating JMS stream messages

* Creating JMS text messages

* Creating JMS XML messages
JMSMessagelnfo Provide browsing and message manipulation using JMX.
JMSModuleHelper, Monitors JMS runtime MBeans and manages JMS Module

JMSNamedEntityModifier

configuration entities in a JMS module.

JMSRuntimeHelper Monitors JMS runtime JMX MBeans.

MDBTransaction Associates a message delivered to a MDB (message-driven
bean) with a transaction.

WLDestination Determines if a destination is a queue or a topic.

Programming WebLogic JMS 2-1

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/ConsumerInfo.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/DestinationInfo.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSMessageFactoryImpl.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLMessageFactory.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSMessageInfo.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSNamedEntityModifier.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSRuntimeHelper.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/MDBTransaction.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLDestination.html
http://e-docs.bea.com/wls/docs90/jms_admin/overview.html
http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/package-summary.html

Understanding WebLogic JMS

Table 2-1 WebLogic JMS Public API Extensions

Interface/Class

Function

WLMessage Sets a delivery time for messages, redelivery limits, and send
timeouts.

WLMessageProducer Sets a message delivery times for producers and
Unit-of-Order names.

WLQueueSession, Provides additional fields and methods that are not supported

WLSession, by javax.jms.QueueSession, javax.jms.Session,

)) and javax.jms.TopicSession.

WLTopicSession

XMLMessage Creates XML messages.

Schedule Sets a scheduled delivery times for messages.

JMSHelper Monitors JMS runtime MBeans.

Deprecated in this release of WebLogic Server. Replaced by
JMSModuleHelper.

ServerSessionPoolFactory,

ServerSessionPoolListener

Provides interfaces for creating server session pools and
message listeners.

Note: Session pool configuration objects are
deprecated for this release of WebLogic Server.
They are not a required part of the J2EE
specification, do not support JTA user
transactions, and are largely superseded by
message-driven beans (MDBs), which are a
required part of J2EE. For more information on
designing MDBs, see “Message-Driven EJBs”
in Programming WebLogic Enterprise
JavaBeans.

This API also supports NO_ACKNOWLEDGE and MULTICAST NO_ACKNOWLEDGE acknowledge
modes, and extended exceptions, including throwing an exception:

e To the session exception listener (if set), when one of its consumers has been closed by the
server as a result of a server failure, or administrative intervention.

2-8 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLMessage.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLMessageProducer.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLQueueSession.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/XMLMessage.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/Schedule.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSHelper.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/ServerSessionPoolListener.html
http://e-docs.bea.com/wls/docs90/ejb/message_beans.html

Value-Added Public JMS APl Extensions

e From a multicast session when the number of messages received by the session, but not yet
delivered to the message listener, exceeds the maximum number of messages allowed for
that session.

e From a multicast consumer when it detects a sequence gap (message received out of
sequence) in the data stream.

Programming WebLogic JMS 2-9

Understanding WebLogic JMS

Understanding the JMS API

To create a JMS applications, use the javax.jms APIL The API allows you to create the class
objects necessary to connect to the JMS, and send and receive messages. JMS class interfaces are
created as subclasses to provide queue- and topic-specific versions of the common parent classes.

The following table lists the JMS classes described in more detail in subsequent sections. For a
complete description of all JMS classes, see the javax.jms or weblogic.jms.extensions

2-10

Javadoc.

Table 2-2 WebLogic JMS Classes

JMS Class

Description

ConnectionFactory

Encapsulates connection configuration information. A
connection factory is used to create connections. You look
up a connection factory using JNDI.

Connection Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Session Defines a serial order for the messages produced and
consumed.

Destination Identifies a queue or topic, encapsulating the address of a

specific provider. Queue and topic destinations manage
the messages delivered from the PTP and pub/sub
messaging models, respectively.

MessageProducer and

Provides the interface for sending and receiving

MessageConsumer messages. Message producers send messages to a queue
or topic. Message consumers receive messages from a
queue or topic.

Message Encapsulates information to be sent or received.

ServerSessionPoolFacto

ry1

Encapsulates configuration information for a
server-managed pool of message consumers. The server
session pool factory is used to create server session pools.

ServerSessionPool?

Provides a pool of server sessions that can be used to
process messages concurrently for connection consumers.

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-summary.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-summary.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/package-summary.html

Understanding the JMS API

Table 2-2 WebLogic JMS Classes

JMS Class Description
ServerSession’ Associates a thread with a JMS session.
ConnectionConsumer? Specifies a consumer that retrieves server sessions to

process messages concurrently.

1. Supports an optional JMS interface for processing multiple messages concurrently.
2. Supports an optional JMS interface for processing multiple messages concurrently.
3. Supports an optional JMS interface for processing multiple messages concurrently.
4. Supports an optional JMS interface for processing multiple messages concurrently.

For information about configuring JMS resouces, see “Configuring JMS System Resources” in
Configuring and Managing WebLogic JMS. The procedure for setting up a JMS application is
presented in “Setting Up a JMS Application” on page 4-2.

ConnectionFactory

A ConnectionFactory encapsulates connection configuration information, and enables JMS
applications to create a Connection. A connection factory supports concurrent use, enabling
multiple threads to access the object simultaneously. You can use the preconfigured default
connection factories provided by WebLogic JMS, or you can configure one or more connection
factories to create connections with predefined attributes that suit your application.

Using the Default Connection Factories
WebLogic JMS defines two default connection factories, which you can look up using the

following JNDI names:

® weblogic.jms.ConnectionFactory

® weblogic.jms.XAConnectionFactory

You only need to create a user-defined a connection factory if the settings of the default factories
are not suitable for your application. The main difference between the preconfigured settings for
the default connection factories is the default value for the “XA Connection Factory Enabled”
attribute which is used to enable JTA transactions, as shown in the following table.

Programming WebLogic JMS 2-11

http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html

Understanding WebLogic JMS

2-12

Table 2-3 XA Transaction(al) Settings for Default Connection Factories

Default Connection Factory. . . XA Connection Factory Enabled setting is. . .

weblogic.jms.ConnectionFactory False

weblogic.jms.XAConnectionFactory True

An XA factory is required for JMS applications to use JTA user-transactions, but is not required
for transacted sessions. For more information about using transactions with WebLogic JMS, see
Chapter 11, “Using Transactions with WebLogic JMS.”

All other default factory configuration attributes are set to the same default values as a
user-defined connection factory.

For more information about the XA Connection Factory Enabled attribute, and to see the default
values for the other connection factory attributes, see “JMS Connection Factory: Configuration:
Transactions” in the Administration Console Online Help.

Another distinction when using the default connection factories is that you have no control over
targeting the WebLogic Server instances where the connection factory may be deployed.
However, you can disable the default connection factories on a per-server basis.

For more information on enabling or disabling the default connection factories, see “Servers:
Configuration: Services” in the Administration Console Online Help.

To deploy a connection factory on specific independent servers, on specific servers within a
cluster, or on an entire cluster, you must configure a new connection factory and specify the
appropriate target, as explained in “Configuring and Deploying Connection Factories” on
page 2-12.

Note: For backwards compatibility, WebLogic JMS still supports two deprecated default
connection factories. The JNDI names for these factories are:
javax.jms.QueueConnectionFactory and
javax.jms.TopicConnectionFactory.

Configuring and Deploying Connection Factories

A system administrator can define and configure one or more connection factories to create
connections with predefined attributes and WebLogic Server will add them to the JNDI space

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigtransactionstitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigtransactionstitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverserverconfigservicestitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverserverconfigservicestitle.html

Understanding the JMS API

during startup. The application then retrieves a connection factory using WebLogic JNDI. Any
user-defined connection factories must be uniquely named.

For information on configuring connection factories, see “Configure connection factories” in the
Administration Console Online Help.

A system administrator establishes cluster-wide, transparent access to JMS destinations from any
server in the cluster by targeting to the cluster or by targeting to one or more server instances in
the cluster. This way, each connection factory can be deployed on multiple WebLogic Server
instances. For more information on JMS clustering, refer to “Configuring Clustered WebLogic
IJMS Resources” in Configuring and Managing WebLogic JMS.

The ConnectionFactory Class

The ConnectionFactory class does not define methods; however, its subclasses define methods
for the respective messaging models. A connection factory supports concurrent use, enabling
multiple threads to access the object simultaneously.

Note: For this release, you can use the JMS Version 1.1 specification connecton factories or
you can choose to use the subclasses.

The following table describes the ConnectionFactory subclasses.

Table 2-4 ConnectionFactory Subclasses

Subclass. . . In Messaging Is Used to Create. ..
Model. . .
QueueConnectionFactor PTP QueueConnection to a JMS PTP provider.
Yy
TopicConnectionFactor Pub/Sub TopicConnection to a JMS Pub/Sub
Yy provider.

To learn how to use the ConnectionFactory class within an application, see “Developing a
Basic JMS Application” on page 4-1, or the javax.jms.ConnectionFactory Javadoc.

Connection

A Connection represents an open communication channel between an application and the
messaging system, and is used to create a Session for producing and consuming messages. A
connection creates server-side and client-side objects that manage the messaging activity
between an application and JMS. A connection may also provide user authentication.

Programming WebLogic JMS 2-13

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html
http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html
http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionFactory.html

Understanding WebLogic JMS

A Connection is created by a ConnectionFactory, obtained through a JNDI lookup.

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish a single connection for all messaging. In the
WebLogic Server, IMS traffic is multiplexed with other WebLogic services on the client
connection to the server. No additional TCP/IP connections are created for JMS. Servlets and
other server-side objects may also obtain JMS Connections.

By default, a connection is created in stopped mode. For information about how and when to start
a stopped connection, see “Starting, Stopping, and Closing a Connection” on page 5-13.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

Note: For this release, you can use the JMS Version 1.1 specification connecton objects or you
can choose to use the subclasses.

The following table describes the Connection subclasses.

Table 2-5 Connection Subclasses

Subclass. .. In Messaging Is Used to Create. . .
Model. ..
QueueConnection PTP QueueSessions, and consists of a connection to a JMS

PTP provider created by QueueConnectionFactory.

TopicConnection Pub/sub TopicSessions, and consists of a connection to a JMS

pub/sub provider created by
TopicConnectionFactory.

2-14

To learn how to use the Connection class within an application, see “Developing a Basic IMS
Application” on page 4-1, or the javax. jms.Connection Javadoc.

Session

A Session object defines a serial order for the messages produced and consumed, and can create
multiple message producers and message consumers. The same thread can be used for producing
and consuming messages. If an application wants to have a separate thread for producing and
consuming messages, the application should create a separate session for each function.

A Session is created by a Connection.

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Connection.html

Understanding the JMS API

Note: A session and its message producers and consumers can only be accessed by one thread
at a time. Their behavior is undefined if multiple threads access them simultaneously.

The following table describes the Session subclasses.

Tahle 2-6 Session Subclasses

Subclass. . . In Messaging Provides a Context for. . .
Model. ..
QueueSession PTP Producing and consuming messages for a JMS PTP

provider. Created by QueueConnection.

TopicSession Pub/sub Producing and consuming messages for a JMS pub/sub
provider. Created by TopicConnection.

To learn how to use the Session class within an application, see “Developing a Basic JIMS
Application” on page 4-1, or the javax. jms.Session and

weblogic.jms.extensions.WLSession javadocs.

Programming WebLogic JMS 2-15

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Session.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLSession.html

Understanding WebLogic JMS

Non-Transacted Session

In a non-transacted session, the application creating the session selects one of the five
acknowledge modes defined in the following table.

Table 2-7 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The Session object acknowledges receipt of a message once the
receiving application method has returned from processing it.

CLIENT_ACKNOWLEDGE The Session object relies on the application to call an acknowledge
method on a received message. Once the method is called, the session
acknowledges all messages received since the last acknowledge.

This mode allows an application to receive, process, and acknowledge
a batch of messages with one call.

Note: In the Administration Console, if the Acknowledge Policy
attribute on the connection factory is set to Previous, but
you want to acknowledge all received messages for a given
session, then use the last message to invoke the acknowledge
method.

For more information on the Acknowledge Policy attribute, see “JMS
Connection Factory: Configuration: General” in the
Administration Console Online Help.

DUPS_OK_ACKNOWLEDGE The Session object acknowledges receipt of a message once the
receiving application method has returned from processing it;
duplicate acknowledges are permitted.

This mode is most efficient in terms of resource usage.
Note: You should avoid using this mode if your application cannot

handle duplicate messages. Duplicate messages may be sent
if an initial attempt to deliver a message fails.

2-16 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfiggeneraltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfiggeneraltitle.html

Understanding the JMS API

Table 2-7 Acknowledge Modes Used for Non-Transacted Sessions (Continued)

Acknowledge Mode

Description

NO_ACKNOWLEDGE

No acknowledge is required. Messages sent to a NO_ACKNOWLEDGE
session are immediately deleted from the server. Messages received in
this mode are not recovered, and as a result messages may be lost
and/or duplicate message may be delivered if an initial attempt to
deliver a message fails.

This mode is supported for applications that do not require the quality
of service provided by session acknowledge, and that do not want to
incur the associated overhead.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may
be sent if an initial attempt to deliver a message fails.

MULTICAST_NO_ACKNOWLEDGE

Multicast mode with no acknowledge required.

Messages sent to a MULTICAST_NO_ACKNOWLEDGE session share
the same characteristics as NO_ACKNOWLEDGE mode, described
previously.

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service provided by
session acknowledge. For more information on multicasting, see
“Using Multicasting with WebLogic Server” on page 7-1.

Note: Use only with topics. You should avoid using this mode if
your application cannot handle lost or duplicate messages.
Duplicate messages may be sent if an initial attempt to
deliver a message fails.

Transacted Session

In a transacted session, only one transaction is active at any given time. Any number of messages
sent or received during a transaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an application
commits a transaction, all the messages that the application received during the transaction are
acknowledged by the messaging system and messages it sent are accepted for delivery. If an
application rolls back a transaction, the messages that the application received during the
transaction are not acknowledged and messages it sent are discarded.

Programming WebLogic JMS 2-11

Understanding WebLogic JMS

JMS can participate in distributed transactions with other Java services, such as EJB, that use the
Java Transaction API (JTA). Transacted sessions do not support this capability as the transaction
is restricted to accessing the messages associated with that session. For more information about
using JMS with JTA, see “Using JTA User Transactions” on page 11-4.

Destination

A Destination object can be either a queue or topic, encapsulating the address syntax for a
specific provider. The JMS specification does not define a standard address syntax due to the
variations in syntax between providers.

Similar to a connection factory, an administrator defines and configures the destination and the
WebLogic Server adds it to the INDI space during startup. Applications can also create
temporary destinations that exist only for the duration of the JMS connection in which they are
created.

Note: Administrators can also configure multiple physical destinations as members of a single
distributed destination set within a server cluster. For more information, see “Distributed
Destinations” on page 2-19.

On the client side, Queue and Topic objects are handles to the object on the server. Their methods
only return their names. To access them for messaging, you create message producers and
consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously. JMS Queues and Topics extend javax.jms.Destination.

Note: For this release, you can use the JMS Version 1.1 specification destination objects or you
can choose to use the subclasses.

The following table describes the Destination subclasses.

Table 2-8 Destination Subclasses

Subclass Messaging Manages Messages for
Model
Queue PTP JMS point-to-point provider.
TemporaryQueue PTP JMS point-to-point provider, and exists for the duration of

the JMS connection in which the messages are created. A
temporary queue can be consumed only by the queue
connection that created it.

2-18

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html

Understanding the JMS API

Table 2-8 Destination Subclasses (Continued)

Subclass Messaging Manages Messages for
Model
Topic Pub/sub JMS pub/sub provider.
TemporaryTopic Pub/sub JMS pub/sub provider, and exists for the duration of the IMS

connection in which the messages are created. A temporary
topic can be consumed only by the topic connection that
created it.

Note: An application has the option of browsing queues by creating a QueueBrowser object in
its queue session. This object produces a snapshot of the messages in the queue at the
time the queue browser is created. The application can view the messages in the queue,
but the messages are not considered read and are not removed from the queue. For more
information about browsing queues, see “Setting and Browsing Message Header and
Property Fields” on page 5-25.

To learn how to use the Destination class within an application, see “Developing a Basic IMS

Application” on page 4-1, or the javax. jms.Destination Javadoc.

Distributed Destinations

Administrators can configure multiple physical destinations as members of a single distributed
destination set within a WebLogic Server cluster. Once properly configured, your producers and
consumers are able to send and receive to the distributed destination. WebLogic JMS then
distributes the messaging load across all available destination members within the distributed
destination.

e For more information on using a distributed destination with your applications, see “Using
Distributed Destinations” on page 8-1.

e For instructions on configuring a distributed queues, see “Configure uniform distributed
queues” in the Administration Console Online Help.

e For instructions on configuring a distributed topics, see “Configure uniform distributed
topics” in the Administration Console Online Help.

MessageProducer and MessageConsumer

A MessageProducer sends messages to a queue or topic. A MessageConsumer receives
messages from a queue or topic. Message producers and consumers operate independently of one

Programming WebLogic JMS 2-19

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureDistributedQueues.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureDistributedQueues.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureDistributedTopics.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureDistributedTopics.html

Understanding WebLogic JMS

another. Message producers generate and send messages regardless of whether a message
consumer has been created and is waiting for a message, and vice versa.

A Session creates the MessageProducers and MessageConsumers that are attached to queues
and topics.

The message sender and receiver objects are created as subclasses of the MessageProducer and

MessageConsumer classes.

Note: For this release, you can use the JMS Version 1.1 specification message producer and
consumer objects or you can choose to use the subclasses.

The fOllOWing table describes the MessageProducer and MessageConsumer subclasses.

Table 2-9 MessageProducer and MessageConsumer Subclasses

Subclass In Messaging Performs the Following Function

Model
QueueSender PTP Sends messages for a JMS point-to-point provider.
QueueReceiver PTP Receives messages for a JMS point-to-point provider.
TopicPublisher Pub/sub Sends messages for a JMS pub/sub provider.
TopicSubscriber Pub/sub Receives messages for a JMS pub/sub provider.

2-20

The PTP model, as shown in the figure “Point-to-Point (PTP) Messaging” on page 2-5, allows
multiple sessions to receive messages from the same queue. However, a message can only be
delivered to one queue receiver. When there are multiple queue receivers, WebLogic JMS defines
the next queue receiver that will receive a message on a first-come, first-serve basis.

The pub/sub model, as shown in the figure “Publish/Subscribe (Pub/Sub) Messaging” on
page 2-6, allows messages to be delivered to multiple topic subscribers. Topic subscribers can be
durable or non-durable, as described in “Setting Up Durable Subscriptions” on page 5-21.

An application can use the same JMS connection to both publish and subscribe to a single topic.
Because topic messages are delivered to all subscribers, an application can receive messages it
has published itself. To prevent clients from receiving messages that they publish, a JMS
application can set a noLocal attribute on the topic subscriber, as described in “Step 5: Create
Message Producers and Message Consumers Using the Session and Destinations” on page 4-8.

Programming WebLogic JMS

Understanding the JMS API

To learn how to use the MessageProducer and MessageConsumer classes within an application,
see “Setting Up a JMS Application” on page 4-2, or the javax. jms.MessageProducer and

javax.jms.MessageConsumer javadocs.

Message

A Message encapsulates the information exchanged by applications. This information includes
three components:

e “Message Header Fields” on page 2-21
e “Message Property Fields” on page 2-26
e “Message Body” on page 2-27

Message Header Fields

Every JMS message contains a standard set of header fields that is included by default and
available to message consumers. Some fields can be set by the message producers.

For information about setting message header fields, see “Setting and Browsing Message Header
and Property Fields” on page 5-25, or to the javax. jms.Message Javadoc.

Programming WebLogic JMS 2-21

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Understanding WebLogic JMS

The following table describes the fields in the message headers and shows how values are defined
for each field.

2-22 Programming WebLogic JMS

Understanding the JMS API

Table 2-10 Message Header Fields

Field

Description

Defined by

JMSCorrelationID

Specifies one of the following: a WebLogic JMSMessageID
(described later in this table), an application-specific string, or a
byte[] array. The JMSCorrelationID is used to correlate
messages and is set directly on the message by the application
before send ().

There are two common applications for this field.

The first application is to link messages by setting up a
request/response scheme, as follows:

1. When an application sends a message, it stores the
JMSMessageID value assigned to it.

2. When an application receives the message, it copies the
JMSMessageID into the JMSCorrelationID field of a
response message that it sends back to the sending
application.

The second application is to use the JMSCorrelationID field
to carry any String you choose, enabling a series of messages to
be linked with some application-determined value.

Application

JMSDeliveryMode

Specifies PERSISTENT or NON_PERSISTENT messaging.
This field is set on the producer or as parameter sent by the
application before send ().

When a persistent message is sent, it is stored in the WebLogic
Persistent Store. The send () operation is not considered
successful until delivery of the message can be guaranteed. A
persistent message is guaranteed to be delivered at least once.

WebLogic JMS does not store non-persistent messages in the
persistent store. This mode of operation provides the lowest
overhead. They are guaranteed to be delivered at least once
unless there is a system failure, in which case messages may be
lost. If a connection is closed or recovered, all non-persistent
messages that have not yet been acknowledged will be
redelivered. Once a non-persistent message is acknowledged, it
will not be redelivered.

This value is overwritten by a call to producer.send (),
setting this value directly on the message has no effect. The
values set by the producer can be queried using the message
supplied to producer.send () or when the message is
received by a consumer.

send ()

method

Programming WebLogic JMS

2-23

http://e-docs.bea.com/wls/docs90/config_wls/store.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html

Understanding WebLogic JMS

Table 2-10 Message Header Fields (Continued)

Field

Description

Defined by

JMSDeliveryTime

Defines the earliest absolute time at which a message can be
delivered to a consumer. This field is set by the application
before send () and depends on t imeToDeliver, whichis set
on the producer.

This field can be used to sort messages in a destination and to
select messages. For purposes of data type conversion, the
JMSDeliveryTime is a long integer.

send ()

method

JMSDestination

Specifies the destination (queue or topic) to which the message
is to be delivered. This field is set when creating producer or as
parameter sent by the application before send ().

This value is overwritten by a call to producer.send (),
setting this value directly on the message has no effect. The
values set by the producer can be queried using the message
supplied to producer.send () or when the message is
received by a consumer. When a message is received, its
destination value must be equivalent to the value assigned when
it was sent.

send ()

method

JMSExpiration

Specifies the expiration, or time-to-live value, for a message.
This field is set by the application before send () . Depends on
timeToLive, which is set on the producer or as a parameter
sent by the application to send ().

WebLogic JMS calculates the JMSExpiration value as the
sum of the application’s time-to-live and the current GMT. If the
application specifies time-to-live as 0, IMSExpiration is set
to 0, which means the message never expires.

WebLogic JMS removes expired messages from the system to
prevent their delivery.

send ()

method

JMSMessagelD

Contains a string value that uniquely identifies each message
sent by a JMS Provider.This field is set internally by send ().

All JMSMessageIDs start with an ID: prefix.

This value is overwritten by a call to producer.send (),
setting this value directly on the message has no effect. The
values set by the producer can be queried using the message
supplied to producer.send () or when the message is
received by a consumer. When the message is received, it
contains a provider-assigned value.

send ()

method

2-24 Programming WebLogic JMS

Understanding the JMS API

Table 2-10 Message Header Fields (Continued)

Field

Description

Defined by

JMSPriority

Specifies the priority level. This field is set on the producer or as
parameter sent by the application before send ().

JMS defines ten priority levels, 0 to 9, 0 being the lowest
priority. Levels 0-4 indicate gradations of normal priority, and
level 5-9 indicate gradations of expedited priority.

When the message is received, it contains the value specified by
the method sending the message.

You can sort destinations by priority by configuring a
destination key, as described in “Configure destination keys” in
the Administration Console Online Help.

send () method

JMSRedelivered

Specifies a flag set when a message is redelivered because no
acknowledge was received. This flag is of interest to a receiving
application.

If set, the flag indicates that JMS may have delivered the
message previously because one of the following is true:

* The application has already received the message, but did
not acknowledge it.

¢ The session's recover () method was called to restart the
session beginning after the last acknowledged message. For
more information about the recover () method, see
“Recovering Received Messages™ on page 4-30.

WebLogic IMS

JMSReplyTo

Specifies a queue or topic to which reply messages should be
sent. This field is set set directly on the message by the
application before send ().

This feature can be used with the JMSCorrelationID header
field to coordinate request/response messages.

Simply setting the JMSReplyTo field does not guarantee a

response; it simply enables the receiving application to respond.

Application

Programming WebLogic JMS 2-25

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/destination_keys/ConfigureDestinationKeys.html

Understanding WebLogic JMS

Table 2-10 Message Header Fields (Continued)

Field

Description

Defined by

JMSTimestamp

Contains the time at which the message was sent. WebLogic
JMS writes the timestamp in the message when it accepts the
message for delivery, not when the application sends the
message.

When the message is received, it contains the timestamp.

The value stored in the field is a Java millis time value.

WebLogic IMS

JMSType

Specifies the message type identifier (String) set directly on the
message by the application before send ().

The JMS specification allows some flexibility with this field in
order to accommodate diverse JMS providers. Some messaging
systems allow application-specific message types to be used.
For such systems, the JMSType field could be used to hold a
message type ID that provides access to the stored type
definitions.

WebLogic JMS does not restrict the use of this field.

Application

Message Property Fields

The property fields of a message contain header fields added by the sending application. The
properties are standard Java name/value pairs. Property names must conform to the message
selector syntax specifications defined in the javax. jms .Message Javadoc. The following values
are valid: boolean, byte, double, float, int, long, short, and String.

WebLogic Server supports the use of the following JMS (JMSX) defined properties as defined in
the Java(TM) Message Service Specification Final Release 1.1:

2-26 Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/products/jms/docs.html

Table 2-11 JMSX Property

Understanding the JMS API

Type Description

IMSXUserID System generated property that identifies the user sending the
message. See “Configure connection factory security parameters” in
the Administration Console Online Help and Message ID
Propagation Security Enhancement in Configuring and Managing
WebLogic JMS.

IMSXDeliveryCount System generated property that specifies the number of message
delivery attempts where first attempt is 1.

IMSXGroupID Identity of the message group.

JMSXGroupSeq Sequence number of a message within a group.

Although message property fields may be used for application-specific purposes, JMS provides
them primarily for use in message selectors. You determine how the JMS properties are used in
your enviroment. You may choose to include them in some messages and omit them from others
depending upon your processing criteria. For more information, see:

e “Setting and Browsing Message Header and Property Fields” on page 5-25

e “Filtering Messages” on page 5-33

e Java(TM) Message Service Specification Final Release 1.1.

Message Body

A message body contains the content being delivered from producer to consumer.

Programming WebLogic JMS 2-21

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureSecurityParams.html
http://e-docs.bea.com/wls/docs90/jms_admin/intro.html#JMSXUserID
http://e-docs.bea.com/wls/docs90/jms_admin/intro.html#JMSXUserID
http://java.sun.com/products/jms/docs.html

Understanding WebLogic JMS

The following table describes the types of messages defined by JMS. All message types extend
javax.jms.Message, Which consists of message headers and properties, but no message body.

Table 2-12 JMS Message Types

Type Description

javax.jms.BytesMessage Stream of uninterpreted bytes, which must be understood by the sender and
receiver. The access methods for this message type are stream-oriented
readers and writers based on java.io.DataInputStream and
java.io.DataOutputStream.

javax.jms.MapMessage Set of name/value pairs in which the names are strings and the values are
Java primitive types. Pairs can be read sequentially or randomly, by
specifying a name.

javax.jms.ObjectMessage Single serializable Java object.

javax.jms.StreamMessage Similar to a BytesMessage, except that only Java primitive types are written
to or read from the stream.

javax.jms.TextMessage Single String. The TextMessage can also contain XML content.

weblogic.jms.extensions. XMLMe XML content. Use of the XMLMessage type facilitates message filtering,
ssage which is more complex when performed on XML content shipped in a
TextMessage.

For more information, see the javax.jms .Message Javadoc. For more information about the
access methods and, if applicable, the conversion charts associated with a particular message
type, see the Javadoc for that message type.

ServerSessionPoolFactory

Note: Session pool and connection consumer configuration objects are deprecated in this
release of WebLogic Server. They are not a required part of the J2EE specification, do
not support JTA user transactions, and are largely superseded by message-driven beans
(MDBs), which are simpler, easier to manage, and more capable. For more information
on designing MDBs, see “Message-Driven EJBs” in Programming WebLogic Enterprise
JavaBeans.

A server session pool is a WebLogic-specific JMS feature that enables you to process messages
concurrently. A server session pool factory is used to create a server-side ServerSessionPool.

2-28 Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/BytesMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MapMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ObjectMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/StreamMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TextMessage.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/XMLMessage.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://e-docs.bea.com/wls/docs90/ejb/message_beans.html

Understanding the JMS API

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory:<name>, where <name>
specifies the name of the JMS server to which the session pool is created. The WebLogic Server
adds the default server session pool factory to the JNDI space during startup and the application
subsequently retrieves the server session pool factory using WebLogic JNDI.

To learn how to use the server session pool factory within an application, see “Defining Server
Session Pools” on page A-2, or the

weblogic.jms.extnesions.ServerSessionPoolFactory Javadoc.

ServerSessionPool

A serverSessionPool application server object provides a pool of server sessions that
connection consumers can retrieve in order to process messages concurrently.

A serverSessionPool is created by the ServerSessionPoolFactory object obtained
through a JNDI lookup.

To learn how to use the server session pool within an application, see “Defining Server Session
Pools” on page A-2, or the javax.jms.ServerSessionPool Javadoc.

ServerSession

A serverSession application server object enables you to associate a thread with a JMS session
by providing a context for creating, sending, and receiving messages.

A ServerSession is created by a ServerSessionPool object.

To learn how to use the server session within an application, see “Defining Server Session Pools”
on page A-2, or the javax.jms.ServerSession Javadoc.

ConnectionConsumer

A ConnectionConsumer object uses a server session to process received messages. If message
traffic is heavy, the connection consumer can load each server session with multiple messages to
minimize thread context switching.

A ConnectionConsumer is created by a Connection object.

To learn how to use the connection consumers within an application, see “Defining Server
Session Pools” on page A-2, or the javax.jms.ConnectionConsumer Javadoc.

Note: Connection consumer listeners run on the same JVM as the server.

Programming WebLogic JMS 2-29

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ServerSessionPool.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ServerSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Understanding WebLogic JMS

2-30 Programming WebLogic JMS

CHAPTERa

Best Practices for Application Design

These sections discuss design options for WebLogic Server IMS, application behaviors to
consider during the design process, and recommended design patterns.

“Message Design” on page 3-1

“Message Compression” on page 3-2

“Message Properties and Message Header Fields” on page 3-3

“Message Ordering” on page 3-3

“Topics vs. Queues” on page 3-3

“Asynchronous vs. Synchronous Consumers” on page 3-4

“Persistent vs. Non-Persistent Messages™ on page 3-4

“Deferring Acknowledges and Commits” on page 3-6

“Using AUTO_ACK for Non-Durable Subscribers” on page 3-6

“Alternative Qualities of Service, Multicast and No-Acknowledge” on page 3-7

“Avoid Multi-threading” on page 3-8

Message Design

This section provides information on how to design messages improve messaging performance:

Programming WebLogic JMS 3-1

Best Practices for Application Design

Serializing Application Objects

The CPU cost of serializing Java objects can be significant. This expense, in turn, affects JIMS
Object messages. You can offset this cost, to some extent, by having application objects
implement java.io.Externalizable, but there still will be significant overhead in
marshalling the class descriptor. To avoid the cost of having to write the class descriptors of
additional objects embedded in an Object message, have these objects implement
Externalizable, and call readExternal and writeExternal on them directly. For example,
call obj .writeExternal (stream) rather than stream.writeObject (obj). Using Bytes and
Stream messages is generally a preferred practice.

Serializing strings

Serializing Java strings is more expensive than serializing other Java primitive types. Strings are
also memory intensive, they consume two bytes of memory per Character, and cannot compactly
represent binary data (integers, for example). In addition, the introduction of string-based
messages often implies an expensive parse step in the application in order to process the String
into something the application can make direct use of. Bytes, Stream, Map and even Object
messages are therefore sometimes preferable to Text and XML messages. Similarly, it is
preferable to avoid the use of strings in message properties, especially if they are large.

Server-side serialization

WebLogic JMS servers do not incur the cost of serializing non-persistent messages. Serialization
of non-persistent message types is incurred by the remote client. Persistent are serialized by the
server.

Selection

Using a selector is expensive. This consideration is important when you are deciding where in the
message to store application data that is accessed via JMS selectors.

Message Compression

3-2

Compressing large messages in a JMS application can improve performance. This reduces the
amount of time required to transfer messages across the network, reduces the amount of memory
used by the JMS server, and, if the messages are persistent, reduces the size of persistent writes.
Text and XML messages can often be compressed significantly. Of course, compression is
achieved at the expense of an increase in the CPU usage of the client.

Programming WebLogic JMS

Message Properties and Message Header Fields

Keep in mind that the benefits of compression become questionable for "smaller" messages. If a
message is less than a few KB in size, compression can actually increase its size. The JDK
provides built-in compression libraries. For details, see the "java.util.zip" package.

Message Properties and Message Header Fields

Instead of user-defined message properties, consider using standard JMS message header fields
or the message body for message data. Message properties incur an extra cost in serialization, and
are more expensive to access than standard JMS message header fields.

Also, avoid embedding large amounts of data in the properties field or the header fields; only
message bodies are paged out when paging is enabled. Consequently, if user-defined message
properties are defined in an application, avoid the use of large string properties.

Message Ordering

You should use Message Unit-of-Order rather than Ordered Redelivery to guarantee ordered
message processing. The advantages of Unit-of-Order over Ordered Redelivery are:

e Ease of configuration.

— Does not require a custom connection factory for asynchronous receivers, such as
setting MessagingMaximum to 1 when using message-driven beans (MDBs).

— Simple configuration when using distributed destinations.
e Preserves message order during processing delays.

e Preserves message order during transaction rollback or session recovery.

BEA recommends applications that use Ordered Redelivery upgrade to Message Unit-of-Order.

Topics vs. Queues

Surprisingly, when you are starting to design your application, it is not always immediately
obvious whether it would be better to use a Topic or Queue. In general, you should choose a Topic
only if one of the following conditions applies:

e The same message must be replicated to multiple consumers.
e A message should be dropped if there are no active consumers that would select it.

e There are many subscribers, each with a unique selector.

Programming WebLogic JMS 3-3

http://e-docs.bea.com/wls/docs90/jms/uoo.html
http://e-docs.bea.com/wls/docs90/jms/manage_apps.html#ordered_redelivery

Best Practices for Application Design

It is interesting to note that a topic with a single durable subscriber is semantically similar to a
queue. The differences are as follows:

e If you change a topic selector for a durable subscriber, all previous messages in the
subscription are deleted, while if you change a queue selector for consumer, no messages
in the queue are deleted.

e A queue may have multiple consumers, and will distribute its messages in a round-robin
fashion, whereas a topic subscriber is limited to only one consumer.

Asynchronous vs. Synchronous Consumers

In general, asynchronous (onMessage) consumers perform and scale better than synchronous
consumers:

e Asynchronous consumers create less network traffic. Messages are pushed unidirectionally,
and are pipelined to the message listener. Pipelining supports the aggregation of multiple
messages into a single network call.

e Asynchronous consumers use fewer threads. An asynchronous consumer does not use a
thread while it is inactive. A synchronous consumer consumes a thread for the duration of
its receive call. As a result, a thread can remain idle for long periods, especially if the call
specifies a blocking timeout.

e For application code that runs on a server, it is almost always best to use asynchronous
consumers, typically via MDBs. The use of asynchronous consumers prevents the
application code from doing a blocking operation on the server. A blocking operation, in
turn, idles a server-side thread; it can even cause deadlocks. Deadlocks occur when
blocking operations consume all threads. When no threads remain to handle the operations
required to unblock the blocking operation itself, that operation never stops blocking.

Persistent vs. Non-Persistent Messages

When designing an application, make sure you specify that messages will be sent in
non-persistent mode unless a persistent QOS is required. We recommend non-persistent mode
because unless synchronous writes are disabled, a persistent QOS almost certainly causes a
significant degradation in performance.

Note: Take special care to avoid persisting messages unintentionally. Occasionally an
application sends persistent messages even though the designer intended the messages to
be sent in non persistent mode.

3-4 Programming WebLogic JMS

Persistent vs. Non-Persistent Messages

If your messages are truly non-persistent, none should end up in a regular JMS store. To make
sure that none of your messages are unintentionally persistent, check whether the JMS store size
grows when unconsumed messages are accumulating on the JMS server. Here is how message
persistence is determined, in order of precedence:

e Producer's connection's connection factory configuration:

— PERSISTENT (default)
— NON_PERSISTENT

JMS Producer API override on QueueSender and TopicPublisher:

— setDeliveryMode(DeliveryMode. PERSISTENT)

— setDeliveryMode(DeliveryMode. NON_PERSISTENT)

— setDeliveryMode(DeliveryMode. DEFAULT_DELIVERY_MODE) (default)

JMS Producer API per message override on QueueSender and TopicPublisher:
— for queues, optional deliveryMode parameter on send()

— for topics, optional deliveryMode parameter on publish()

Override on destination configuration:
— Persistent
— Non-Persistent
— No-Delivery (default, implies no override)
e Override on JMS server configuration:
— No store configured implies Non-Persistent. (default)

— Store configured implies no-override.

Non-durable subscribers only:

— In WebLogic releases 7.0 and higher, if there are no subscribers, or there are only
non-durable subscribers for a topic, the messages will be downgraded to non-persistent.
(Because non-durable subscribers exist only for the life of the JMS server, there is no
reason to persist the message.)

e Temporary destinations:

Programming WebLogic JMS 3-5

Best Practices for Application Design

— Because temporary destinations exist only for the lifetime of their host JMS server,
there is no reason to persist their messages. WebLogic JMS automatically forces all
messages in a temporary destination to non-persistent.

Durable subscribers require a persistent store to be configured on their JMS server, even if they
receive only non-persistent messages. A durable subscription is persisted to ensure that it
continues through a server restart, as required by the JMS specification. WebLogic JMS will
throw a JIMSException if an attempt is made to create a durable subscription on a JMS server with
no store configured.

Deferring Acknowledges and Commits

Because sends are generally faster than receives, consider reducing the overhead associated with
receives by deferring acknowledgment of messages until several messages have been received
and can be acknowledged collectively. If you are using transactions substitute the word "commit"
for "acknowledge."

Deferment of acknowledgements is not likely to improve performance for non-durable
subscriptions, however, because of internal optimizations already in place.

It may not be possible to implement deferred acknowledgements for asynchronous listeners. If an
asynchronous listener acknowledges only every 10 messages, but for some reason receives only
5, then the last few messages may not be acknowledged. One possible solution is to have the
asynchronous consumer post synchronous, non-blocking receives from within its onMessage()
callback to receive subsequent messages. Another possible solution is to have the listener start a
timer that, when triggered, sends a message to the listener's destination in order to wake it up and
complete the outstanding work that has not yet been acknowledged—provided the wake-up
message can be directed solely at the correct listener.

Using AUTO_ACK for Non-Durable Subscribers

3-6

In WebLogic Server 7.0 and higher, non-durable, non-transactional topic subscribers are
optimized to store local copies of the message on the client side, thus reducing network overhead
when acknowledgements are being issued. This optimization yields a 10-20% performance
improvement, where the improvement is more evident under higher subscriber loads.

One side effect of this optimization, particularly for high numbers of concurrent topic

subscribers, is the overhead of client-side garbage collection, which can degrade performance for
message subscriptions. To prevent such degradation, we recommended allocating a larger heap
size on the subscriber client. For example, in a test of 100 concurrent subscribers running in 10

Programming WebLogic JMS

Alternative Qualities of Service, Multicast and No-Acknowledge

JVMs, it was found that giving clients an initial and maximum heap size of 64MB for each JVM
was sufficient.

Alternative Qualities of Service, Multicast and No-Acknowledge

WebLogic JMS 6.0 and above provide alternative qualities of service (QOS) extensions that can
aid performance.

Using MULTICAST_NO_ACKNOWLEDGE

Non-durable topic subscribers can subscribe to messages using MULTICAST NO_ACKNOWLEDGE .
If a topic has such subscribers, the JMS server will broadcast messages to them using multicast
mode. Multicast improves performance considerably and provides linear scalability, as the
network only needs to handle only one message, regardless of the number of subscribers, rather
than one message per subscriber. Multicast messages may be lost if the network is congested, or
if the client falls behind in processing them. Calls to "recover()" or "acknowledge()" have no
effect on multicast messages.

Note: On the client side, each multicasting session requires a dedicated thread to retrieve
messages off the multicast socket. Therefore, you should increase the JMS client-side
thread pool size to adjust for this.

This QOS extension has the same level of guarantee as some JMS implementations default QOS
from vendors other than BEA WebLogic Server for non-durable topic subscriptions. The JMS
1.0.2 specification specifically allows non-durable topic messages to be dropped (deleted) if the
subscriber is not ready for them. WebLogic JMS actually has a higher QOS for non-durable topic
subscriptions by default than the JMS 1.0.2 specification requires.

Using NO_ACKNOWLEDGE

A no-acknowledge delivery mode implies that the server gives messages to consumers, but does
not expect acknowledge to be called. Instead, the server pre-acknowledges the message. In this
acknowledge mode, calls to recover will not work, as the message is already acknowledged. This
mode saves the overhead of an additional network call to acknowledge, at the expense of possibly
losing a message when a server failure, a network failure, or a client failure occurs.

Note: If an asynchronous client calls close () in this scenario, all messages in the
asynchronous pipeline are lost.

Asynchronous consumers that use a NO_ACKNOWLEDGE QOS may wish to tune down their
message pipeline size in order to reduce the number of lost messages in the event of a crash.

Programming WebLogic JMS 3-7

Best Practices for Application Design

Avoid Multi-threading

The JMS Specification states that multi-threading a session, producer, consumer, or message
method results in undefined behavior except when calling close () . For this release, if WebLogic
JMS determines that you created a multi-threaded producer, the server instance throws a
JMSException. If your application is thread limited, try increasing the number of producers and
sessions.

3-8 Programming WebLogic JMS

http://java.sun.com/products/jms/docs.html

GHAPTERa

Developing a Basic JMS Application

The following sections provide information on the steps required to develop a basic JIMS
application:

1. “Importing Required Packages” on page 4-2

2. “Setting Up a JMS Application” on page 4-2

3. “Sending Messages” on page 4-20

4. “Receiving Messages” on page 4-27

5. “Acknowledging Received Messages” on page 4-31

6. “Releasing Object Resources” on page 4-31

In addition to the application development steps defined in the previous figure, you can also
optionally perform any of the following steps during your design development:

e Manage connection and session processing
e Create destinations dynamically
e Create durable subscriptions

e Manage message processing by setting and browsing message header and property fields,
filtering messages, and/or processing messages concurrently

e Use JMS within transactions (described in “Using Transactions with WebLogic JIMS” on
page 11-1)

Programming WebLogic JMS 4-1

Developing a Basic JMS Application

Note: For more information about the JMS classes described in this section, access the JMS
Javadoc supplied on the Sun Microsystems’ Java Website.

Importing Required Packages

The following table lists the packages that are commonly used by WebLogic JMS applications.
Table 4-1 WebLogic JMS Packages

Package Description

javax.jms Sun Microsystems’ JMS API. This package is always
used by WebLogic JMS applications.

javax.naming JNDI packages required for server and destination

weblogic jndi lookups.

javax.transaction.UserTransaction JTA API required for JTA user transaction support.

weblogic.jms.extensions WebLogic-specific JIMS public API that provides

additional classes and methods, as described in
“Value-Added Public JMS API Extensions” on
page 2-7.

weblogic.jms.extensions.ServerSessionPoolFactory Deprecated in WebLogic Server 8.1.

Setting Up a JMS Application

Before you can send and receive messages, you must set up a JMS application. The following
figure illustrates the steps required to set up a JMS application.

4-2 Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/package-summary.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jndi/package-summary.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://www.java.sun.com/products/jms/docs.html
http://www.java.sun.com/products/jms/docs.html

Setting Up a JMS Application

Figure 4-1 Setting Up a JMS Application

Step 1. Look up JMS
Connection Factory
in JNDI

!

Step 2. Create a Connection
Using the
Connection Factory

Step 3. Create a Session
Using the
Connection

.

Step 4. Look up Destinations
{Queues and Topics)
in JNDI

i

Step 5. Create Message Producers
and Message Consumers
Using Session and Destinations

Step 6a. Create the
Message Object

Step 6b. Optionally Register
Asynchronous Message Listener

57

Step 7. Start the Connection

The setup steps are described in the following sections. Detailed examples of setting up a
Point-to-Point (PTP) and Publish/Subscribe (Pub/Sub) application are also provided. The
examples are excerpted from the examples. jms package provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms directory, where WI_HOME is the
top-level directory of your WebLogic Platform installation.

Programming WebLogic JMS 4-3

Developing a Basic JMS Application

4-4

Before proceeding, ensure that the system administrator responsible for configuring WebLogic
Server has configured the required JMS resources, including the connection factories, JMS
servers, and destinations.

e For more information, see “Configure Messaging” in the Administration Console Online
Help.

e For more information about the JMS classes and methods described in these sections, see
“Understanding the JMS API” on page 2-10, or the javax. jms, or the

weblogic.jms.extensions Javadoc.

e For information about setting up transacted applications and JTA user transactions, see
“Using Transactions with WebLogic JMS” on page 11-1.

Step 1: Look Up a Connection Factory in JNDI

Before you can look up a connection factory, it must be defined as part of the configuration
information. WebLogic JMS provides two default connection factories that are included as part
of the configuration. They can be looked up using the JNDI names,
weblogic.jms.ConnectionFactory and weblogic.jms.XAConnectionFactory, which is
configured to enable JTA transactions. The administrator can configure new connection factories
during configuration; however, these factories must be uniquely named or the server will not
boot. For information on configuring connection factories and the defaults that are available, see
“Configure connection factories” in the Administration Console Online Help.

Once the connection factory has been defined, you can look it up by first establishing a JNDI
context (context) using the InitialContext () method. For any application other than a
servlet application, you must pass an environment used to create the initial context.

Once the context is defined, to look up a connection factory in JNDI, execute one of the following
commands, for PTP or Pub/Sub messaging, respectively:

QueueConnectionFactory queueConnectionFactory =

(QueueConnectionFactory) context.lookup (CF_name) ;

TopicConnectionFactory topicConnectionFactory =

(TopicConnectionFactory) context.lookup (CF_name) ;
The cF_name argument specifies the connection factory name defined during configuration.

For more information about the ConnectionFactory class, see “ConnectionFactory” on
page 2-11 or the javax.jms.ConnectionFactory Javadoc.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/ConfigureJMSService.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-summary.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionFactory.html

Setting Up a JMS Application

Step 2: Create a Connection Using the Connection Factory

You can create a connection for accessing the messaging system by using the
ConnectionFactory methods described in the following sections.

For more information about the Connection class, see “Connection” on page 2-13 or the

javax.jms.Connection Javadoc.

Create a Queue Connection

The QueueConnectionFactory provides the following two methods for creating a queue
connection:

public QueueConnection createQueueConnection (

) throws JMSException

public QueueConnection createQueueConnection (
String userName,
String password

) throws JMSException

The first method creates a QueueConnection; the second method creates a QueueConnection
using a specified user identity. In each case, a connection is created in stopped mode and must be
started in order to accept messages, as described in “Step 7: Start the Connection” on page 4-13.

For more information about the QueueConnectionFactory class methods, see the
javax.jms.QueueConnectionFactory Javadoc. For more information about the

QueueConnection class, see the javax.jms.QueueConnection Javadoc.

Create a Topic Connection

The TopicConnectionFactory provides the following two methods for creating a topic
connection:

public TopicConnection createTopicConnection (

) throws JMSException

public TopicConnection createTopicConnection (
String userName,

String password

) throws JMSException

Programming WebLogic JMS 4-5

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Connection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueConnectionFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueConnection.html

Developing a Basic JMS Application

4-6

The first method creates a TopicConnection; the second method creates a TopicConnection
using a specified user identity. In each case, a connection is created in stopped mode and must be
started in order to accept messages, as described in “Step 7: Start the Connection” on page 4-13.

For more information about the TopicConnectionFactory class methods, see the
javax.jms.TopicConnectionFactory Javadoc. For more information about the
TopicConnection class, see the javax.jms . TopicConnection Javadoc.

Step 3: Create a Session Using the Connection

You can create one or more sessions for accessing a queue or topic using the Connection
methods described in the following sections.

Note: A session and its message producers and consumers can only be accessed by one thread
at a time. Their behavior is undefined if multiple threads access them simultaneously.

For more information about the Session class, see “Session” on page 2-14 or the

javax.jms.Session Javadoc.

Create a Queue Session
The QueueConnection class defines the following method for creating a queue session:

public QueueSession createQueueSession (
boolean transacted,
int acknowledgeMode

) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted (true) or
non-transacted (false), and an integer that indicates the acknowledge mode for non-transacted
sessions, as described in Table 2-7, “Acknowledge Modes Used for Non-Transacted Sessions,”
on page 2-16. The acknowledgeMode attribute is ignored for transacted sessions. In this case,
messages are acknowledged when the transaction is committed using the commit () method.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc. For more information about the QueueSession class,
see the javax. jms.QueueSession Javadoc.

Create a Topic Session
The TopicConnection class defines the following method for creating a topic session:

public TopicSession createTopicSession (

boolean transacted,

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicConnectionFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Session.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSession.html

Setting Up a JMS Application

int acknowledgeMode

) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted (true) or
non-transacted (false), and an integer that indicates the acknowledge mode for non-transacted
sessions, as described in “Acknowledge Modes Used for Non-Transacted Sessions” on

page 2-16. The acknowledgeMode attribute is ignored for transacted sessions. In this case,
messages are acknowledged when the transaction is committed using the commit () method.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc. For more information about the TopicSession class,
see the javax.jms.TopicSession Javadoc.

Step 4: Look Up a Destination (Queue or Topic)

Before you can look up a destination, the destination must be configured by the WebLogic JMS
system administrator, as described in “Configure topics” and “Configure queues” in the
Administration Console Online Help.

Once the destination has been configured, you can look up a destination by establishing a JNDI
context (context), which has already been accomplished in “Step 1: Look Up a Connection
Factory in INDI” on page 4-4, and executing one of the following commands, for PTP or Pub/Sub
messaging, respectively:

Queue gueue = (Queue) context.lookup (Dest_name) ;
Topic topic = (Topic) context.lookup (Dest_name) ;
The Dest_name argument specifies the destination’s JNDI name defined during configuration.

If you do not use a JNDI namespace, you can use the following QueueSession or
TopicSession method to reference a queue or topic, respectively:

public Queue createQueue (
String queueName

) throws JMSException

public Topic createTopic (
String topicName

) throws JMSException

The syntax for the queueName and/or topicName string is
modulename ! JMS_Server_Name/Destination_Name (for example,
myModule!myjmsserver/mydestination).

Programming WebLogic JMS 4-7

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicSession.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopics.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueues.html

Developing a Basic JMS Application

4-8

Note: The createQueue () and createTopic () methods do not create destinations
dynamically; they create only references to destinations that already exist. For
information about creating destinations dynamically, see “Using JMS Module Helper to
Manage Applications” on page 6-1.

For more information about these methods, see the javax. jms.QueueSession and

javax.jms.TopicSession Javadoc, respectively.

Once the destination has been defined, you can use the following Queue or Topic method to
access the queue or topic name, respectively:

public String getQueueName (
) throws JMSException

public String getTopicName (
) throws JMSException

To ensure that the queue and topic names are returned in printable format, use the toString ()
method.

For more information about the Destination class, see “Destination” on page 2-18 or the
javax.jms.Destination Javadoc.

Server Affinity When Looking Up Destinations

The createTopic () and createQueue () methods also allow a ". /Destination_Name"
syntax to indicate server affinity when looking up destinations. This will locate destinations that
are locally deployed in the same JVM as the JMS connection’s connection factory host. If the
name is not on the local JVM an exception is thrown, even though the same name might be
deployed on a different JVM.

An application might use this convention to avoid hard-coding the server name when using the
createTopic () and createQueue () methods so that the code can be reused on different JMS
servers without requiring any changes.

Step 5: Create Message Producers and Message Consumers
Using the Session and Destinations

You can create message producers and message consumers by passing the destination reference
to the Session methods described in the following sections.

Note: Each consumer receives its own local copy of a message. Once received, you can modify
the header field values; however, the message properties and message body are read only.

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html

Setting Up a JMS Application

(Attempting to modify the message properties or body at this point will generate a
MessageNotWriteableException.) You can modify the message body by executing
the corresponding message type’s clearbody () method to clear the existing contents
and enable write permission.

For more information about the MessageProducer and MessageConsumer classes, see
“MessageProducer and MessageConsumer” on page 2-19, or the
javax.jms.MessageProducer and javax.jms.MessageConsumer Javadocs, respectively.

Create QueueSenders and QueueReceivers

The QueueSession object defines the following methods for creating queue senders and
receivers:

public QueueSender createSender (
Queue queue
) throws JMSException

public QueueReceiver createReceiver (
Queue queue
) throws JMSException

public QueueReceiver createReceiver (
Queue queue,
String messageSelector

) throws JMSException

You must specify the queue object for the queue sender or receiver being created. You may also
specify a message selector for filtering messages. Message selectors are described in more detail
in “Filtering Messages” on page 5-33.

If you pass a value of null to the createSender () method, you create an anonymous producer.
In this case, you must specify the queue name when sending messages, as described in “Sending
Messages” on page 4-20.

Once the queue sender or receiver has been created, you can access the queue name associated
with the queue sender or receiver using the following QueueSender or QueueReceiver method:

public Queue getQueue (

) throws JMSException

For more information about the QueueSession class methods, see the
javax.jms.QueueSession Javadoc. For more information about the QueueSender and

Programming WebLogic JMS 4-9

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSession.html

Developing a Basic JMS Application

4-10

QueueReceiver classes, see the javax.jms.QueueSender and javax.jms.QueueReceiver

Javadocs, respectively.

Create TopicPublishers and TopicSubscribers

The TopicSession object defines the following methods for creating topic publishers and topic
subscribers:

public TopicPublisher createPublisher (
Topic topic

) throws JMSException

public TopicSubscriber createSubscriber (
Topic topic

) throws JMSException

public TopicSubscriber createSubscriber (
Topic topic,

String messageSelector,

boolean noLocal

) throws JMSException

Note: The methods described in this section create non-durable subscribers. Non-durable topic
subscribers only receive messages sent while they are active. For information about the
methods used to create durable subscriptions enabling messages to be retained until all
messages are delivered to a durable subscriber, see “Creating Subscribers for a Durable
Subscription” on page 5-23. In this case, durable subscribers only receive messages that
are published after the subscriber has subscribed.

You must specify the topic object for the publisher or subscriber being created. You may also
specify a message selector for filtering messages and a noLocal flag (described later in this
section). Message selectors are described in more detail in “Filtering Messages” on page 5-33.

If you pass a value of null to the createPublisher () method, you create an anonymous
producer. In this case, you must specify the topic name when sending messages, as described in
“Sending Messages” on page 4-20.

An application can have a JMS connection that it uses to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, the application can receive
messages it has published itself. To prevent this behavior, a JMS application can set a noLocal
flag to true.

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSender.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueReceiver.html

Setting Up a JMS Application

Once the topic publisher or subscriber has been created, you can access the topic name associated
with the topic publisher or subscriber using the following TopicPublisher or
TopicSubscriber method:

Topic getTopic (

) throws JMSException

In addition, you can access the noLocal variable setting associated with the topic subscriber
using the following TopicSubscriber method:

boolean getNoLocal (

) throws JMSException

For more information about the TopicSession class methods, see the
javax.jms.TopicSession Javadoc. For more information about the TopicPublisher and
TopicSubscriber classes, see the javax.jms.TopicPublisher and
javax.jms.TopicSubscriber Javadocs, respectively.

Step 6a: Create the Message Object (Message Producers)

Note: This step applies to message producers only.

To create the message object, use one of the following Session or WLSession class methods:

e Session Methods

Note: These methods are inherited by both the QueueSession and TopicSession
subclasses.

public BytesMessage createBytesMessage (
) throws JMSException

public MapMessage createMapMessage (
) throws JMSException

public Message createMessage (
) throws JMSException

public ObjectMessage createObjectMessage (
) throws JMSException

public ObjectMessage createObjectMessage (
Serializable object
) throws JMSException

public StreamMessage createStreamMessage (
) throws JMSException

Programming WebLogic JMS 4-1

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicPublisher.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicSubscriber.html

Developing a Basic JMS Application

4-12

public TextMessage createTextMessage (
) throws JMSException

public TextMessage createTextMessage (
String text
) throws JMSException

e WLSession Method

public XMLMessage createXMLMessage (
String text
) throws JMSException
For more information about the Session and WLSession class methods, see the
javax.jms.Session and weblogic.jms.extensions.WLSession Javadocs, respectively.
For more information about the Message class and its methods, see “Message” on page 2-21, or
the javax.jms.Message Javadoc.

Step 6b: Optionally Register an Asynchronous Message
Listener (Message Consumers)

Note: This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message listener by
performing the following steps:

1. Implement the javax.jms.MessageListener interface, which includes an onMessage ()
method.

Note: For an example of the onMessage () method interface, see “Example: Setting Up a
PTP Application” on page 4-13.

If you wish to issue the close () method within an onMessage () method call, the
system administrator must select the Allow Close In OnMessage option when
configuring the connection factory. For more information on configuring connection
factory options, see Configuring JMS Resources in Configuring and Managing
WebLogic JMS.

2. Set the message listener using the following MessageConsumer method, passing the
listener information as an argument:

public void setMessageListener (
MessageListener listener
) throws JMSException

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Session.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLSession.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageListener.html
http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html#jms_connection_factories_config

Setting Up a JMS Application

3. Optionally, implement an exception listener on the session to catch exceptions, as described
in “Defining a Connection Exception Listener” on page 5-11.

You can unset a message listener by calling the MessageListener () method with a value of
null.

Once a message listener has been defined, you can access it by calling the following
MessageConsumer method:

public Messagelistener getMessageListener (

) throws JMSException

Note: WebLogic JMS guarantees that multiple onMessage () calls for the same session will not
be executed simultaneously.

If a message consumer is closed by an administrator or as the result of a server failure, a
ConsumerClosedException is delivered to the session exception listener, if one has been
defined. In this way, a new message consumer can be created, if necessary. For information about
defining a session exception listener, see “Defining a Connection Exception Listener” on

page 5-11.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer class

methods, see “MessageProducer and MessageConsumer” on page 2-19 or the

javax.jms.MessageConsumer Javadoc.

Step 7: Start the Connection

You start the connection using the Connection class start () method.

For additional information about starting, stopping, and closing a connection, see “Starting,
Stopping, and Closing a Connection” on page 5-13 or the javax. jms.Connection Javadoc.

Example: Setting Up a PTP Application

The following example is excerpted from the examples . jms.queue.QueueSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
wL_HOME is the top-level directory of your WebLogic Platform installation. The init () method
shows how to set up and start a QueueSession for a JMS application. The following shows the
init () method, with comments describing each setup step.

Programming WebLogic JMS 4-13

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Connection.html

Developing a Basic JMS Application

Define the required variables, including the JNDI context, JMS connection factory, and queue
static variables.

public final static String JNDI_FACTORY=
"weblogic.jndi.WLInitialContextFactory";

public final static String JMS_FACTORY=
"weblogic.examples. jms.QueueConnectionFactory";

public final static String

QUEUE="weblogic.examples.jms.exampleQueue";

private QueueConnectionFactory gconFactory;
private QueueConnection gcon;

private QueueSession gsession;

private QueueSender gsender;

private Queue queue;

private TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext (args[0]);

private static InitialContext getInitialContext (
String url
) throws NamingException
{
Hashtable env = new Hashtable() ;
env.put (Context.INITIAL_CONTEXT_ FACTORY, JNDI_FACTORY) ;
env.put (Context.PROVIDER_URL, url);
return new InitialContext (env) ;

}

Note: When setting up the JNDI initial context for an EJB or servlet, use the following method:

Context ctx = new InitialContext () ;

Create all the necessary objects for sending messages to a JMS queue. The ctx object is the JNDI
initial context passed in by the main () method.

public void init(

Context ctx,

4-14 Programming WebLogic JMS

Setting Up a JMS Application

String queueName
) throws NamingException, JMSException
{

Step 1
Look up a connection factory in JNDI.
gconFactory = (QueueConnectionFactory) ctx.lookup (JMS_FACTORY) ;
Step 2

Create a connection using the connection factory.

gcon = gconFactory.createQueueConnection() ;

Step 3

Create a session using the connection. The following code defines the session as non-transacted
and specifies that messages will be acknowledged automatically. For more information about
transacted sessions and acknowledge modes, see “Session” on page 2-14.

gsession = gcon.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE) ;

Step 4
Look up a destination (queue) in JNDI.

queue = (Queue) ctx.lookup (queueName) ;

Step 5

Create a reference to a message producer (queue sender) using the session and destination
(queue).

gsender = gsession.createSender (queue) ;

Step 6
Create the message object.

msg = gsession.createTextMessage() ;

Step 7

Start the connection.

Programming WebLogic JMS 4-15

Developing a Basic JMS Application

4-16

gcon.start () ;
}

The init () method for the examples. jms.gueue.QueueReceive example is similar to the
QueuesSend init () method shown previously, with the one exception. Steps 5 and 6 would be
replaced by the following code, respectively:

greceiver = gsession.createReceiver (queue) ;

greceiver.setMessageListener (this);

In the first line, instead of calling the createSender () method to create a reference to the queue
sender, the application calls the createReceiver () method to create the queue receiver.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the queue session, it is passed to the
examples.jms.QueueReceive.onMessage () method. The following code excerpt shows the
onMessage () interface from the QueueReceive example:

public void onMessage (Message msg)
{
try {
String msgText;
if (msg instanceof TextMessage) ({
msgText = ((TextMessage)msg) .getText () ;

} else { // If it is not a TextMessage...
msgText = msg.toString();
}

System.out.println("Message Received: "+ msgText);

if (msgText.equalsIgnoreCase("quit")) {

synchronized(this) ({

quit = true;

this.notifyAll(); // Notify main thread to quit

}
} catch (JMSException jmse) {
jmse.printStackTrace() ;

}

Programming WebLogic JMS

Setting Up a JMS Application

The onMessage () method processes messages received through the queue receiver. The method
verifies that the message is a TextMessage and, if it is, prints the text of the message. If
onMessage () receives a different message type, it uses the message's toString () method to
display the message contents.

Note: Itis good practice to verify that the received message is the type expected by the handler
method.

For more information about the JMS classes used in this example, see “Understanding the JMS
API” on page 2-10 or the javax.jms Javadoc.

Example: Setting Up a Pub/Sub Application

The following example is excerpted from the examples.jms. topic.TopicSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\topic directory, where
wL_HOME is the top-level directory of your WebLogic Platform installation. The init () method
shows how to set up and start a topic session for a JMS application. The following shows the
init () method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and topic
static variables.

public final static String JNDI_FACTORY=
"weblogic.jndi.WLInitialContextFactory";

public final static String JMS_FACTORY=
"weblogic.examples.jms.TopicConnectionFactory";

public final static String

TOPIC="weblogic.examples.jms.exampleTopic";

protected TopicConnectionFactory tconFactory;
protected TopicConnection tcon;

protected TopicSession tsession;

protected TopicPublisher tpublisher;
protected Topic topic;

protected TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext (args[0]);

Programming WebLogic JMS 4-17

http://www.java.sun.com/products/jms/docs.html

Developing a Basic JMS Application

private static InitialContext getInitialContext (
String url
) throws NamingException
{
Hashtable env = new Hashtable() ;
env.put (Context .INITIAL_CONTEXT FACTORY, JNDI_FACTORY) ;
env.put (Context.PROVIDER_URL, url);
return new InitialContext (env) ;

}
Note: When setting up the JNDI initial context for a servlet, use the following method:

Context ctx = new InitialContext () ;

Create all the necessary objects for sending messages to a JMS queue. The ctx object is the JNDI
initial context passed in by the main () method.

public void init(

Context ctx,

String topicName

) throws NamingException, JMSException
{

Step 1
Look up a connection factory using JNDI.

tconFactory =

(TopicConnectionFactory) ctx.lookup (JMS_FACTORY) ;

Step 2
Create a connection using the connection factory.

tcon = tconFactory.createTopicConnection() ;

Step 3

Create a session using the connection. The following defines the session as non-transacted and
specifies that messages will be acknowledged automatically. For more information about setting
session transaction and acknowledge modes, see “Session” on page 2-14.

tsession = tcon.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE) ;

4-18 Programming WebLogic JMS

Setting Up a JMS Application

Step 4
Look up the destination (topic) using JNDI.

topic = (Topic) ctx.lookup (topicName) ;

Step 5
Create a reference to a message producer (topic publisher) using the session and destination
(topic).

tpublisher = tsession.createPublisher (topic);

Step 6
Create the message object.

msg = tsession.createTextMessagel() ;

Step 7
Start the connection.

tcon.start () ;

}

Theinit()Ineﬂuxiﬁntheexamples.jms.topic.TopicReceiveexanqﬂeisshnﬂartothe
TopicSend init () method shown previously with on exception. Steps 5 and 6 would be
replaced by the following code, respectively:

tsubscriber = tsession.createSubscriber (topic);

tsubscriber.setMessagelListener (this) ;

In the first line, instead of calling the createPublisher () method to create a reference to the
topic publisher, the application calls the createSubscriber () method to create the topic
subscriber.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the topic session, it is passed to the
examples.jms.TopicSubscribe.onMessage () method. The onMessage () interface for the
TopicReceive example is the same as the QueueReceive onMessage () interface, as described
in “Example: Setting Up a PTP Application” on page 4-13.

For more information about the JMS classes used in this example, see “Understanding the JMS
API” on page 2-10 or the javax. jms Javadoc.

Programming WebLogic JMS 4-19

http://www.java.sun.com/products/jms/docs.html

Developing a Basic JMS Application

Sending Messages

4-20

Once you have set up the JMS application as described in “Setting Up a JMS Application” on
page 4-2, you can send messages. To send a message, you must perform the following steps:

1. “Create a Message Object” on page 4-20.
2. “Define a Message” on page 4-20

3. “Send the Message to a Destination” on page 4-21

For more information about the JMS classes for sending messages and the message types, see the
javax.jms.Message Javadoc. For information about receiving messages, see “Receiving
Messages” on page 4-27.

Create a Message Object

This step has already been accomplished as part of the client setup procedure, as described in
“Step 6a: Create the Message Object (Message Producers)” on page 4-11.

Define a Message

This step may have been accomplished when setting up an application, as described in “Step 6a:
Create the Message Object (Message Producers)” on page 4-11. Whether or not this step has
already been accomplished depends on the method that was called to create the message object.
For example, for TextMessage and ObjectMessage types, when you create a message object, you
have the option of defining the message when you create the message object.

If a value has been specified and you do not wish to change it, you can proceed to step 3.

If a value has not been specified or if you wish to change an existing value, you can define a value
using the appropriate set method. For example, the method for defining the text of a
TextMessageisanOHO“S:

public void setText (
String string
) throws JMSException
Note: Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void clearBody (
) throws JMSException

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Sending Messages

For more information about the methods used to define messages, see the javax.jms.Session

Javadoc.

Send the Message to a Destination

You can send a message to a destination using a message producer—queue sender (PTP) or topic
publisher (Pub/Sub)—and the methods described in the following sections. The Destination
and MessageProducer objects were created when you set up the application, as described in

“Setting Up a JMS Application” on page 4-2.

Note: If multiple topic subscribers are defined for the same topic, each subscriber will receive
its own local copy of a message. Once received, you can modify the header field values;
however, the message properties and message body are read only. You can modify the
message body by executing the corresponding message type’s clearbody () method to
clear the existing contents and enable write permission.

For more information about the MessageProducer class, see “MessageProducer and

MessageConsumer” on page 2-19 or the javax. jms .MessageProducer Javadoc.

Send a Message Using Queue Sender

You can send messages using the following QueueSender methods:

public void send(
Message message

) throws JMSException

public void send(
Message message,
int deliveryMode,
int priority,
long timeToLive

) throws JMSException

public void send(
Queue queue,
Message message

) throws JMSException

public void send(
Queue queue,
Message message,

int deliveryMode,

Programming WebLogic JMS

4-2

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Session.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.html

Developing a Basic JMS Application

4-22

int priority,
long timeToLive

) throws JMSException

You must specify a message. You may also specify the queue name (for anonymous message
producers), delivery mode (DeliveryMode.PERSISTENT Or
DeliveryMode.NON_PERSISTENT), priority (0-9), and time-to-live (in milliseconds). If not
specified, the delivery mode, priority, and time-to-live attributes are set to one of the following:

e Connection factory or destination override configuration attributes defined for the
producer, as described “Configure default delivery parameters” in the Administration
Console Online Help.

e Values specified using the message producer’s set methods, as described in “Setting
Message Producer Attributes” on page 4-24.

Notes: WebLogic JMS also provides the following proprietary attributes, as described in
“Setting Message Producer Attributes” on page 4-24:

e TimeToDeliver (thatis, birth time), which represents the delay before a sent
message is made visible on its target destination.

® RedeliveryLimit, which determines the number of times a message is
redelivered after a recover or rollback.

® SendTimeout, which is the maximum time the producer will wait for space when
sending a message.

If you define the delivery mode as PERSISTENT, you should configure a backing store for the
destination, as described in “Configure persistent stores” in the Administration Console Online
Help.

Note: If no backing store is configured, then the delivery mode is changed to NON_PERSISTENT
and messages are not written to the persistent store.

If the queue sender is an anonymous producer (that is, if when the queue was created, the name
was set to null), then you must specify the queue name (using one of the last two methods) to
indicate where to deliver messages. For more information about defining anonymous producers,
see “Create QueueSenders and QueueReceivers” on page 4-9.

For example, the following code sends a persistent message with a priority of 4 and a time-to-live
of one hour:

QueueSender.send (message, DeliveryMode.PERSISTENT, 4, 3600000);

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureDefaultDeliveryParams.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/ConfigureStores.html

Sending Messages

For additional information about the QueueSender class methods, see the

javax.jms.QueueSender Javadoc.

Send a Message Using TopicPublisher

You can send messages using the following TopicPublisher methods:

public void publish/(
Message message

) throws JMSException

public void publish(
Message message,
int deliveryMode,
int priority,
long timeToLive

) throws JMSException

public void publish/(
Topic topic,
Message message

) throws JMSException

public void publish(
Topic topic,
Message message,
int deliveryMode,
int priority,
long timeToLive

) throws JMSException

You must provide a message. You may also specify the topic name, delivery mode
(DeliveryMode.PERSISTENT Or DeliveryMode.NON_PERSISTENT), priority (0-9), and
time-to-live (in milliseconds). If not specified, the delivery mode, priority, and time-to-live

attributes are set to one of the following:

e Connection factory or destination override configuration attributes defined for the
producer, as described “Configure default delivery parameters” in the Administration

Console Online Help.

e Values specified using the message producer’s set methods, as described in “Setting

Message Producer Attributes” on page 4-24.

Programming WebLogic JMS 4-23

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSender.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureDefaultDeliveryParams.html

Developing a Basic JMS Application

424

Notes: WebLogic JMS also provides the following proprietary attributes, as described in
“Setting Message Producer Attributes” on page 4-24:

e TimeToDeliver (that is, birth time), which represents the delay before a sent
message is made visible on its target destination.

® RedeliveryLimit, which determines the number of times a message is
redelivered after a recover or rollback.

e SendTimeout, which is the maximum time the producer will wait for space when
sending a message.

If you define the delivery mode as PERSISTENT, you should configure a backing store, as
described in “Configure persistent stores” in the Administration Console Online Help.

Note: If no backing store is configured, then the delivery mode is changed to NON_PERSISTENT
and no messages are stored.

If the topic publisher is an anonymous producer (that is, if when the topic was created, the name
was set to null), then you must specify the topic name (using either of the last two methods) to
indicate where to deliver messages. For more information about defining anonymous producers,
see “Create TopicPublishers and TopicSubscribers” on page 4-10.

For example, the following code sends a persistent message with a priority of 4 and a time-to-live
of one hour:

TopicPublisher.publish (message, DeliveryMode.PERSISTENT,
4,3600000) ;

For more information about the TopicPublisher class methods, see the
javax.jms.TopicPublisher Javadoc.

Setting Message Producer Attributes

As described in the previous section, when sending a message, you can optionally specify the
delivery mode, priority, and time-to-live values. If not specified, these attributes are set to the
connection factory configuration attributes, as described in “Configure connection factories” in
the Administration Console Online Help.

Alternatively, you can set the delivery mode, priority, time-to-deliver, time-to-live, and
redelivery delay (timeout), and redelivery limit values dynamically using the message producer’s
set methods. The following table lists the message producer set and get methods for each
dynamically configurable attribute.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/ConfigureStores.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicPublisher.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html

Note:

Sending Messages

The delivery mode, priority, time-to-live, time-to-deliver, redelivery delay (timeout), and

redelivery limit attribute settings can be overridden by the destination using the Delivery
Mode Override, Priority Override, Time To Live Override, Time To Deliver Override,
Redelivery Delay Override, and Redelivery Limit configuration attributes, as described in
“Configure message delivery overrides: Queues” and “Configure message delivery
overrides: Topics”in the Administration Console Online Help.

Table 4-2 Message Producer Set and Get Methods

Attribute Set Method Get Method
Delivery Mode public void setDeliveryMode (public int getDeliveryMode (
int deliveryMode) throws JMSException
) throws JMSException
Priority public void setPriority (public int getPriority(

int defaultPriority
) throws JMSException

) throws JMSException

Time-To-Live

public void setTimeToLive (
long timeToLive
) throws JMSException

public long getTimeToLive (
) throws JMSException

Time-To-Deliver

public void setTimeToDeliver (
long timeToDeliver
) throws JMSException

public long getTimeToDeliver (
) throws JMSException

Redelivery Limit

public void setRedeliveryLimit (
int redeliveryLimit
) throws JMSException

public int getredeliveryLimit (
) throws JMSException

Send Timeout

public void setsendTimeout (
long sendTimeout
) throws JMSException

public long getsendTimeout (
) throws JMSException

Note:

JMS defines optional MessageProducer methods for disabling the message ID and

timestamp information. However, these methods are ignored by WebLogic JMS.

For more information about the MessageProducer class methods, see Sun’s

javax.jms.MessageProducer Javadoc or the

weblogic.jms.extensions.WLMessageProducer Javadoc.

Programming WebLogic JMS 4-25

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueOverrides.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicOverrides.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicOverrides.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageProducer.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/package-summary.html

Developing a Basic JMS Application

4-26

Example: Sending Messages Within a PTP Application

The following example is excerpted from the examples . jms.queue.QueueSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. The example shows
the code required to create a TextMessage, set the text of the message, and send the message to
a queue.

msg = gsession.createTextMessage() ;

public void send(
String message
) throws JMSException
{
msg.setText (message) ;
gsender.send (msg) ;
}

For more information about the QueueSender class and methods, see the
javax.jms.QueueSender Javadoc.

Example: Sending Messages Within a Pub/Sub Application

The following example is excerpted from the examples.jms. topic.TopicSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\topic(ﬁranoma\vhmﬁ
WL_HOME is the top-level directory of your WebLogic Platform installation. It shows the code
required to create a TextMessage, set the text of the message, and send the message to a topic.

msg = tsession.createTextMessage() ;

public void send(
String message

) throws JMSException
{

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueSender.html

Receiving Messages

msg.setText (message) ;
tpublisher.publish (msg) ;
}

For more information about the TopicPublisher class and methods, see the
javax.jms.TopicPublisher Javadoc.

Receiving Messages

Once you have set up the JMS application as described in “Setting Up a JMS Application” on
page 4-2, you can receive messages.

To receive a message, you must create the receiver object and specify whether you want to
receive messages asynchronously or synchronously, as described in the following sections.

The order in which messages are received can be controlled by the following:

e Message delivery attributes (delivery mode and sorting criteria) defined during
configuration or as part of the send () method, as described in “Sending Messages™ on
page 4-20.

e Destination sort order set using destination keys, as described in “Configure destination
keys” in the Administration Console Online Help.

Once received, you can modify the header field values; however, the message properties and
message body are read-only. You can modify the message body by executing the corresponding
message type’s clearbody () method to clear the existing contents and enable write permission.

For more information about the JMS classes for receiving messages and the message types, see
the javax.jms.Message Javadoc. For information about sending messages, see “Sending
Messages” on page 4-20.

Receiving Messages Asynchronously

This procedure is described within the context of setting up the application. For more
information, see “Step 6b: Optionally Register an Asynchronous Message Listener (Message
Consumers)” on page 4-12.

Note: You can control the maximum number of messages that may exist for an asynchronous
consumer and that have not yet been passed to the message listener by setting the
Messages Maximum attribute when configuring the connection factory.

Programming WebLogic JMS 4-21

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicPublisher.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/destination_keys/ConfigureDestinationKeys.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/destination_keys/ConfigureDestinationKeys.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Developing a Basic JMS Application

4-28

Asynchronous Message Pipeline

If messages are produced faster than asynchronous message listeners (consumers) can consume
them, a JMS server will push multiple unconsumed messages in a batch to another session with
available asynchronous message listeners. These in-flight messages are sometimes referred to as
the message pipeline, or in some JMS vendors as the message backlog. The pipeline or backlog
size is the number of messages that have accumulated on an asynchronous consumer, but which
have not been passed to a message listener.

Configuring a Message Pipeline

You can control a client’s maximum pipeline size by configuring the Messages Maximum
attribute on the client’s connection factory, which is defined as the “maximum number of
messages that can exist for an asynchronous consumer and that have not yet been passed to the
message listener”. The default setting is /0. For more information on configuring a JMS
connection factory, see “Configure connection factories” in the Administration Console Online
Help.

Behavior of Pipelined Messages

Once a message pipeline is configured, it will exhibit the following behavior:

e Statistics — JMS monitoring statistics reports backlogged messages in a message pipeline
as pending (for queues and durable subscribers) until they are either committed or
acknowledged.

e Performance — Increasing the Messages Maximum pipeline size may improve
performance for high-throughput applications. Note that a larger pipeline will increase
client memory usage, as the pending pipelined messages accumulate on the client JVM
before the asynchronous consumer’s listener is called.

e Sorting — Messages in an asynchronous consumer’s pipeline are not sorted according to
the consumer destination’s configured sort order; instead, they remain in the order in which
they are pushed from the JMS server. For example, if a destination is configured to sort by
priority, high priority messages will not jump ahead of low priority messages that have
already been pushed into an asynchronous consumer’s pipeline.

Notes: The Messages Maximum pipeline size setting on the connection factory is not related to
the Messages Maximum quota settings on JMS servers and destinations.

Pipelined messages are sometimes aggregated into a single message on the network
transport. If the messages are sufficiently large, the aggregate size of the data written may
exceed the maximum value for the transport, which may cause undesirable behavior. For

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html

Receiving Messages

example, the t3 protocol sets a default maximum message size of 10,000,000 bytes, and
is configurable on the server with the MaxT3MessageSize attribute. This means that if
ten 2 megabyte messages are pipelined, the t3 limit may be exceeded.

Receiving Messages Synchronously

To receive messages synchronously, use the following MessageConsumer methods:

public Message receive(

) throws JMSException

public Message receive(
long timeout

) throws JMSException

public Message receiveNoWait (

) throws JMSException

In each case, the application receives the next message produced. If you call the receive ()
method with no arguments, the call blocks indefinitely until a message is produced or the
application is closed. Alternatively, you can pass a timeout value to specify how long to wait for
a message. If you call the receive () method with a value of 0, the call blocks indefinitely. The
receiveNowait () method receives the next message if one is available, or returns null; in this
case, the call does not block.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer class
methods, see the javax. jms.MessageConsumer Javadoc.

Example: Receiving Messages Synchronously Within a PTP Application

The following example is excerpted from the examples. jms.queue.QueueReceive example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. Rather than set a
message listener, you would call greceiver.receive () for each message. For example:

greceiver = gsession.createReceiver (queue) ;

greceiver.receive() ;

The first line creates the queue receiver on the queue. The second line executes a receive ()
method. The receive () method blocks and waits for a message.

Programming WebLogic JMS 4-29

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageConsumer.html

Developing a Basic JMS Application

4-30

Example: Receiving Messages Synchronously Within a Pub/Sub Application

The following example is excerpted from the examples. jms. topic.TopicReceive example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\topic directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. Rather than set a
message listener, you would call tsubscriber.receive () for each message.

For example:

tsubscriber = tsession.createSubscriber (topic) ;
Message msg = tsubscriber.receive();

msg.acknowledge () ;

The first line creates the topic subscriber on the topic. The second line executes a receive ()
method. The receive () method blocks and waits for a message.

Recovering Received Messages

Note: This section applies only to non-transacted sessions for which the acknowledge mode is
set to CLIENT_ACKNOWLEDGE, as described in Table 2-7, “Acknowledge Modes Used for
Non-Transacted Sessions,” on page 2-16. Synchronously received
AUTO_ACKNOWLEDGE messages may not be recovered; they have already been
acknowledged.

An application can request that JMS redeliver messages (unacknowledge them) using the
following method:

public void recover (

) throws JMSException

The recover () method performs the following steps:
e Stops message delivery for the session

e Tags all messages that have not been acknowledged (but may have been delivered) as
redelivered

e Resumes sending messages starting from the first unacknowledged message for that
session

Note: Messages in queues are not necessarily redelivered in the same order that they were
originally delivered, nor to the same queue consumers. For information to guarantee the
correct ordering of redelivered messages, see “Ordered Redelivery of Messages™ on
page 5-5.

Programming WebLogic JMS

Acknowledging Received Messages

Acknowledging Received Messages

Note: This section applies only to non-transacted sessions for which the acknowledge mode is
set to CLIENT_ACKNOWLEDGE, as described in Table 2-7, “Acknowledge Modes Used for
Non-Transacted Sessions,” on page 2-16.

To acknowledge a received message, use the following Message method:

public void acknowledge (

) throws JMSException

The acknowledge () method depends on how the connection factory’s Acknowledge Policy
attribute is configured, as follows:

e The default policy of “All” specifies that calling acknowledge on a message acknowledges
all unacknowledged messages received on the session.

e The “Previous” policy specifies that calling acknowledge on a message acknowledges only
unacknowledged messages up to, and including, the given message. Messages that are not
acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the acknowledge
mode is set to CLIENT ACKNOWLEDGE. Otherwise, the method is ignored.

Releasing Object Resources

When you have finished using the connection, session, message producer or consumer,
connection consumer, or queue browser created on behalf of a JMS application, you should
explicitly close them to release the resources.

Enter the close () method to close JMS objects, as follows:

public void close(

) throws JMSException

When closing an object:

e The call blocks until the method call completes or until any outstanding asynchronous
receiver onMessage () calls complete.

e All associated sub-objects are also closed. For example, when closing a session, all
associated message producers and consumers are also closed. When closing a connection,
all associated sessions are also closed.

For more information about the impact of the close () method for each object, see the
appropriate javax.jms Javadoc. In addition, for more information about the connection or

Programming WebLogic JMS 4-31

http://www.java.sun.com/products/jms/docs.html

Developing a Basic JMS Application

4-32

Session close () method, see “Starting, Stopping, and Closing a Connection” on page 5-13 or
“Closing a Session” on page 5-15, respectively.

The following example is excerpted from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue(ﬁreCKHy;\Vhere
WL_HOME is the top-level directory of your WebLogic Platform installation. This example shows
the code required to close the message consumer, session, and connection objects.

public void close(

) throws JMSException
{

greceiver.close() ;
gsession.close();
gcon.close() ;

}

In the QueueSend example, the close () method is called at the end of main () to close objects
and free resources.

Programming WebLogic JMS

Managing Your Applications

The following sections describe how to programatically manage your JMS applications using
value-added WebLogic IMS features:

e “Managing Rolled Back, Recovered, Redelivered, or Expired Messages” on page 5-2

“Setting Message Delivery Times” on page 5-6

“Managing Connections” on page 5-11

“Managing Sessions” on page 5-14

“Managing Destinations” on page 5-16

“Using Temporary Destinations” on page 5-19

“Setting Up Durable Subscriptions” on page 5-21

“Setting and Browsing Message Header and Property Fields” on page 5-25
“Filtering Messages” on page 5-33

“Sending XML Messages” on page 5-38

Programming WebLogic JMS

5-1

Managing Your Applications

Managing Rolled Back, Recovered, Redelivered, or Expired
Messages

The following sections describe how to manage rolled back or recovered messages:
e “Setting a Redelivery Delay for Messages™ on page 5-2
e “Setting a Redelivery Limit for Messages” on page 5-4
e “Ordered Redelivery of Messages” on page 5-5

e “Handling Expired Messages” on page 5-6

Setting a Redelivery Delay for Messages

You can delay the redelivery of messages when a temporary, external condition prevents an

application from properly handling a message. This allows an application to temporarily inhibit
the receipt of “poison” messages that it cannot currently handle. When a message is rolled back
or recovered, the redelivery delay is the amount of time a message is put aside before an attempt

is made to redeliver the message.

If IMS immediately redelivers the message, the error condition may not be resolved and the

application may still not be able to handle the message. However, if an application is configured
for aredelivery delay, then when it rolls back or recovers a message, the message is set aside until
the redelivery delay has passed, at which point the messages are made available for redelivery.

All messages consumed and subsequently rolled back or recovered by a session receive the
redelivery delay for that session at the time of rollback or recovery. Messages consumed by

multiple sessions as part of a single user transaction will receive different redelivery delays as a

function of the session that consumed the individual messages. Messages that are left

unacknowledged or uncommitted by a client, either intentionally or as a result of a failure, are not

assigned a redelivery delay.

Setting a Redelivery Delay

A session inherits the redelivery delay from its connection factory when the session is created.
The RedeliveryDelay attribute of a connection factory is configured using the Administration

Console.

For more information, see “Configure connection factories” in the Administration Console
Online Help.

5-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html

Managing Rolled Back, Recovered, Redelivered, or Expired Messages

The application that creates the session can then override the connection factory setting using
WebLogic-specific extensions to the javax. jms. Session interface. The session attribute is
dynamic and can be changed at any time. Changing the session redelivery delay affects all
messages consumed and rolled back (or recovered) by that session after the change except when
the message is in a session using non-durable topics.

Note: When a session is using non-durable topics, the setRedel iveryDelay method does not
apply. This may result in unexpected behavior if you are using a non-durable topic
consumer to drive a workflow.

The method for setting the redelivery delay on a session is provided through the
weblogic.jms.extensions.WLSession interface, which is an extension to the
javax.jms.Session interface. To define a redelivery delay for a session, use the following
methods:

public void setRedeliveryDelay (
long redeliveryDelay
) throws JMSException;

public long getRedeliveryDelay (
) throws JMSException;

For more information on the WLSession class, refer to the

weblogic.jms.extensions.WLSession Javadoc.

Overriding the Redelivery Delay on a Destination

Regardless of what redelivery delay is set on the session, the destination where a message is being
rolled back or recovered can override the setting. The redelivery delay override applied to the
redelivery of a message is the one in effect at the time a message is rolled back or recovered.

The RedeliveryDelayOverride attribute of a destination is configured using the
Administration Console. For more information, see:

e “Configure message delivery failure options: Queues” in the Administration Console
Online Help

e “Configure message delivery failure options: Topics” in the Administration Console Online
Help

Programming WebLogic JMS 5-3

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicDeliveryFailure.html

Managing Your Applications

5-4

Setting a Redelivery Limit for Messages

You can specify a limit on the number of times that WebLogic JMS will attempt to redeliver a
message to an application. Once WebLogic JMS fails to redeliver a message to a destination for
a specific number of times, the message can be redirected to an error destination that is associated
to the message destination. If the redelivery limit is configured, but no error destination is
configured, then persistent or non-persistent messages are simply deleted when they reach their
redelivery limit.

Alternatively, you can set the redelivery limit value dynamically using the message producer’s
set method, as described in “Setting Message Producer Attributes” on page 4-24.

Configuring a Message Redelivery Limit On a Destination

When a destination’s attempts to redeliver a message to a consumer reaches a specified redelivery
limit, then the destination deems the message undeliverable. The RedeliveryLimit attribute is
set on a destination and is configurable using the Administration Console. This setting overrides
the redelivery limit set on the message producer. For more information, see:

e “Configure message delivery failure options: Queues” in the Administration Console
Online Help.

e “Configure message delivery failure options: Topics” in the Administration Console Online
Help.

Configuring an Error Destination for Undelivered Messages

If an error destination is configured on the JMS server for undelivered messages, then when a
message has been deemed undeliverable, the message will be redirected to a specified error
destination. The error destination can be either a queue or a topic, and it must be configured on
the same JMS server as the destination for which it is defined. If no error destination is
configured, then undeliverable messages are simply deleted.

The ErrorDestination attribute is configured using the Administration Console. For more
information, see:

e “Configure message delivery failure options: Queues” in the Administration Console
Online Help.

e “Configure message delivery failure options: Topics” in the Administration Console Online
Help.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicDeliveryFailure.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicDeliveryFailure.html

Managing Rolled Back, Recovered, Redelivered, or Expired Messages

Ordered Redelivery of Messages

Note: BEA recommends that applications that use Ordered Redelivery upgrade to Message
Unit-of-Order. See “Using Message Unit-of-Order” on page 10-1.

As per the IMS Specification, all messages initially delivered to a consumer from a given
producer are guaranteed to arrive at the consumer in the order in which they were produced.
WebLogic JMS goes above and beyond this requirement by providing the “Ordered Redelivery
of Messages” feature, which guarantees the correct ordering of redelivered messages as well.

In order to provide this guarantee, WebLogic JMS must impose certain constraints. They are:

e Single consumers — ordered redelivery is only guaranteed when there is a single
consumer. If there are multiple consumers, then there are no guarantees about the order in
which any individual consumer will receive messages.

Note: With respect to MDBs (message-driven beans), the number of consumers is a
function of the number of MDB instances deployed for a given MDB. The initial and
maximum values for the number of instances must be set to /. Otherwise no ordering
guarantees can be made with respect to redelivered messages.

e Sort order — if a given destination is sorted, has JMS destination keys defined, and
another message is produced such that the message would be placed at the top of the
ordering, then no guarantee can be made between the redelivery of an existing message
and the delivery of the incoming message.

e Message selection — if a consumer is using a selector, then ordering on redelivery is only
guaranteed between the message being redelivered and other messages that match the
criteria for that selector. There are no guarantees of order with respect to messages that do
not match the selector.

e Redelivery delay — if a message has a redelivery delay period and is recovered or rolled
back, then it is unavailable for the delay period. During that period, other messages can be
delivered before the delayed message—even though these messages were sent after the
delayed message.

e Messages pending recovery — ordered redelivery does not apply to redelivered messages
that end up in a pending recovery state due to a server failure or a system reboot.

Required Message Pipeline Setting for the Messaging Bridge and MDBs

For asynchronous consumers or JMS applications using the WebLogic Messaging Bridge or
MDBs, the size of the message pipeline must be set to /. The pipeline size is set using the
Messages Maximum attribute on the JMS connection factory used by the receiving application.

Programming WebLogic JMS 5-5

http://java.sun.com/products/jms/docs.html

Managing Your Applications

Any value higher than / means there may be additional in-flight messages that will appear ahead
of aredelivered message. MDB applications must define an application-specific JMS connection
factory and set the Messages Maximum attribute value to / on that connection factory, and then
reference the connection factory in the EJB descriptor for their MDB application.

For more information about programming EJBs, see “Designing Message-Driven EJBs” in
Programming WebLogic Enterprise JavaBeans.

Performance Limitations

JMS applications that implement the Ordered Redelivery feature will incur performance
degradation for asynchronous consumers using JTA transactions (specifically, MDBs and the
WebLogic Messaging Bridge). This is caused by a mandatory reduction in the number of in-flight
messages to exactly /, so messages are not aggregated when they are sent to the client.

Handling Expired Messages

WebLogic JMS has an active message Expiration Policy feature that allows you to control how
the system searches for expired messages and how it handles them when they are encountered.
This feature ensures that expired messages are cleaned up immediately, either by simply
discarding expired messages, discarding expired messages and logging their removal, or
redirecting expired messages to an error destination configured on the local IMS server.

Setting Message Delivery Times

5-6

You can schedule message deliveries to an application for specific times in the future. Message
deliveries can be deferred for short periods of time (such as seconds or minutes) or for long
stretches of time (for example, hours later for batch processing). Until that delivery time, the
message is essentially invisible until it is delivered, allowing you to schedule work at a particular
time in the future.

Messages are not sent on a recurring basis; they are sent only once. In order to send messages on
a recurring basis, a received scheduled message must be sent back to its original destination.
Typically, the receive, the send, and any associated work should be under the same transaction to
ensure exactly-once semantics.

Setting a Delivery Time on Producers

Support for setting and getting a time-to-deliver on an individual producer is provided through
the weblogic.jms.extensions.WLMessageProducer interface, which is an extension to the

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ejb/message_beans.html

Setting Message Delivery Times

javax.jms.MessageProducer interface. To define a time-to-deliver on an individual producer,
use the following methods:

public void setTimeToDeliver (
long timeToDeliver

) throws JMSException;

public long getTimeToDeliver (
) throws JMSException;

For more information on the WLMessageProducer class, refer to the

weblogic.jms.extensions.WLMessageProducer Javadoc.

Setting a Delivery Time on Messages

The DeliveryTime is a JMS message header field that defines the earliest absolute time at which
the message can be delivered. That is, the message is held by the messaging system and is not
given to any consumers until that time.

As a JMS header field, the DeliveryTime can be used to sort messages in a destination or to
select messages. For purposes of data type conversion, the delivery time is stored as a long
integer.

Note: Setting a delivery time value on a message has no effect on this field, because JMS will
always override the value with the producer’s value when the message is sent or
published. The message delivery time methods described here are similar to other JMS
message fields that are set through the producer, including the delivery mode, priority,
time-to-deliver, time-to-live, redelivery delay, and redelivery limit fields. Specifically,
the setting of these fields is reserved for JMS providers, including WebLogic JMS.

The support for setting and getting the delivery time on a message is provided through the
weblogic.jms.extensions.WLMessage interface, which is an extension to the
javax.jms.Message interface. To define a delivery time on a message, use the following
methods:

public void setJMSDeliveryTime (
long deliveryTime

) throws JMSException;

public long getJdMSDeliveryTime (
) throws JMSException;

For more information on the WLMessage class, refer to the
weblogic.jms.extensions.WLMessage Javadoc.

Programming WebLogic JMS 5-7

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLMessageProducer.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLMessage.html

Managing Your Applications

Overriding a Delivery Time

When a producer is created it inherits its TimeToDeliver attribute, expressed in milliseconds,
from the connection factory used to create the connection that the producer is a part of. Regardless
of what time-to-deliver is set on the producer, the destination to which a message is being sent or
published can override the setting. An administrator can set the TimeToDeliverOverride
attribute on a destination in either a relative or scheduled string format.

Interaction With the Time-to-Live Value

If the specified time-to-live value (JMSExpiration) is less than or equal to the specified
time-to-deliver value, then the message delivery succeeds. However, the message is then silently
expired.

Setting a Relative Time-to-Deliver Override

Arelative TimeToDeliverOverride is a String specified as an integer, and is configurable using
the Administration Console.

Setting a Scheduled Time-to-Deliver Override

A scheduled TimeToDeliverOverride can also be specified using the
weblogic.jms.extensions.Schedule class, which provides methods that take a schedule and

return the next scheduled time for delivering messages.

Example Description

00 0,30 * * * * Exact next nearest half-hour

* % 0,30 4-5 * * * Anytime in the first minute of the half hours in the 4 A.M. and
5 A.M. hours

* % % 9-16 * * * Between 9 A.M. and 5 P.M. (9:00.00 A.M. to 4:59.59 P.M.)

* ok okox 814 * 2 The second Tuesday of the month

* & % 13-16 * * 0 Between 1 P.M. and 5 P.M. on Sunday

* ok ko ox 3] % The last day of the month

* & % % 15 41 The next time April 15th occurs on a Sunday

0001**2-6;0002**1,7 1A.M.onweekdays;2 A.M. on weekends

5-8

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/Schedule.html

Setting Message Delivery Times

A cron-like string is used to define the schedule. The format is defined by the following BNF
syntax:

schedule := millisecond second minute hour dayOfMonth month
dayOfWeek

The BNF syntax for specifying the second field is as follows:

second := * | secondList

secondList := secondItem [, secondList]

secondItem := secondvValue | secondRange

SecondRange := secondValue - secondValue

Similar BNF statements for milliseconds, minute, hour, day-of-month, month, and day-of-week
can be derived from the second syntax. The values for each field are defined as non-negative
integers in the following ranges:

milliSecondvalue := 0-999
milliSecondvalue := 0-999
secondValue := 0-59
minutevValue := 0-59
hourvalue = 0-23
dayOfMonthvalue := 1-31
monthValue = 1-12
dayOfWeekValue := 1-7

Note: These values equate to the same ranges that the java.util.Calendar class uses, except
for monthvalue. The java.util.Calendar range for monthvalue is 0-11, rather than
1-12.

Using this syntax, each field can be represented as a range of values indicating all times between
the two times. For example, 2-6 in the dayOfweek field indicates Monday through Friday,
inclusive. Each field can also be specified as a comma-separated list. For instance, a minute field
of 0,15,30, 45 means every quarter hour on the quarter hour. Lastly, each field can be defined
as both a set of individual values and ranges of values. For example, an hour field of 9-17, 0
indicates between the hours of 9 A.M. and 5 P.M., and on the hour of midnight.

Additional semantics are as follows:

Programming WebLogic JMS 5-9

Managing Your Applications

5-10

If multiple schedules are supplied (using a semi-colon (;) as the separator), the next
scheduled time for the set is determined using the schedule that returns the soonest value.
One use for this is for specifying schedules that change based on the day of the week (see
the final example below).

e A value of 1 (one) for the dayOfweek equates to Sunday.

e A value of * means every time for that field. For instance, a * in the Month field means
every month. A * in the Hour field means every hour.

e A value of 1 or 1last (not case sensitive) indicates the greatest possible value for a field.

e If a day-of-month is specified that exceeds the normal maximum for a month, then the
normal maximum for that month will be specified. For example, if it is February during a
leap year and 31 was specified, then the scheduler will schedule as if 29 was specified
instead. This means that setting the month field to 31 always indicates the last day of the
month.

o If milliseconds are specified, they are rounded down to the nearest 50th of a second. The
values are 0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded to 0-39 and 50-999 gets
rounded to 39-999.

Note: When a Calendar is not supplied as a method parameter to one of the static methods in
this class, the calendar used is a java.util.GregorianCalendar with a default
java.util.TimeZone and a default java.util.Locale

JMS Schedule Interface

The weblogic.jms.extensions. schedule class has methods that will return the next
scheduled time that matches the recurring time expression. This expression uses the same syntax
as the TimeToDeliverOverride. The time returned in milliseconds can be relative or absolute.

For more information on the wL.Session class, refer to the
weblogic.jms.extensions.Schedule Javadoc.

You can define the next scheduled time after the given time using the following method:

public static Calendar nextScheduledTime (
String schedule,
Calendar calendar

) throws ParseException ({

You can define the next scheduled time after the current time using the following method:

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/Schedule.html

Managing Connections

public static Calendar nextScheduledTime (
String schedule,

) throws ParseException {

You can define the next scheduled time after the given time in absolute milliseconds using the
following method:

public static long nextScheduledTimeInMillis (
String schedule,
long timeInMillis

) throws ParseException

You can define the next scheduled time after the given time in relative milliseconds using the
following method:

public static long nextScheduledTimeInMillisRelative(
String schedule,
long timeInMillis

) throws ParseException ({

You can define the next scheduled time after the current time in relative milliseconds using the
following method:

public static long nextScheduledTimeInMillisRelative(
String schedule
) throws ParseException ({

Managing Connections

The following sections describe how to manage connections:
e Defining a Connection Exception Listener
e Accessing Connection Metadata

e Starting, Stopping, and Closing a Connection

Defining a Connection Exception Listener

An exception listener asynchronously notifies an application whenever a problem occurs with a
connection. This mechanism is particularly useful for a connection waiting to consume messages
that might not be notified otherwise.

Programming WebLogic JMS 5-11

Managing Your Applications

Note: The purpose of an exception listener is not to monitor all exceptions thrown by a
connection, but to deliver those exceptions that would not be otherwise be delivered.

You can define an exception listener for a connection using the following Connection method:

public void setExceptionListener (
ExceptionListener listener

) throws JMSException
You must specify an ExceptionListener object for the connection.

The JMS Provider notifies an exception listener, if one has been defined, when it encounters a
problem with a connection using the following ExceptionListener method:

public void onException (
JMSException exception

)
The JMS Provider specifies the exception that describes the problem when calling the method.
You can access the exception listener for a connection using the following Connection method:

public ExceptionListener getExceptionListener (

) throws JMSException

Accessing Connection Metadata

You can access the metadata associated with a specific connection using the following
Connection method:

public ConnectionMetaData getMetaData (

) throws JMSException

This method returns a ConnectionMetaData object that enables you to access JMS metadata.
The following table lists the various type of JMS metadata and the get methods that you can use
to access them.

JMS Metadata Get Method

Version public String getdMSVersion (
) throws JMSException

Major version public int getdMSMajorVersion (
) throws JMSException

Programming WebLogic JMS

Managing Connections

JMS Metadata Get Method

Minor version public int getJMSMinorVersion (
) throws JMSException

Provider name public String getJdMSProviderName (
) throws JMSException

Provider version public String getProviderVersion (
) throws JMSException

Provider major version public int getProviderMajorVersion (
) throws JMSException

Provider minor version public int getProviderMinorVersion (
) throws JMSException

JMSX property names public Enumeration get/IMSXPropertyNames(
) throws JMSException

For more information about the ConnectionMetaData class, see the
javax.jms.ConnectionMetaData Javadoc.

Starting, Stopping, and Closing a Connection

To control the flow of messages, you can start and stop a connection temporarily using the
start () and stop () methods, respectively, as follows.

The start () and stop () method details are as follows:

public void start(
) throws JMSException

public void stop(
) throws JMSException

A newly created connection is stopped—no messages are received until the connection is started.
Typically, other IMS objects are set up to handle messages before the connection is started, as
described in “Setting Up a JMS Application” on page 4-2. Messages may be produced on a
stopped connection, but cannot be delivered to a stopped connection.

Once started, you can stop a connection using the stop () method. This method performs the
following steps:

Programming WebLogic JMS 5-13

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionMetaData.html

Managing Your Applications

e Pauses the delivery of all messages. No applications waiting to receive messages will
return until the connection is restarted or the time-to-live value associated with the message
is reached.

e Waits until all message listeners that are currently processing messages have completed.

Typically, a JMS Provider allocates a significant amount of resources when it creates a
connection. When a connection is no longer being used, you should close it to free up resources.
A connection can be closed using the following method:

public void close(

) throws JMSException

This method performs the following steps to execute an orderly shutdown:

e Terminates the receipt of all pending messages. Applications may return a message or null
if a message was not available at the time of the close.

e Waits until all message listeners that are currently processing messages have completed.

e Rolls back in-process transactions on its transacted sessions (unless such transactions are
part of an external JTA user transaction). For more information about JTA user
transactions, see “Using JTA User Transactions” on page 11-4.

e Does not force an acknowledge of client-acknowledged sessions. By not forcing an
acknowledge, no messages are lost for queues and durable subscriptions that require
reliable processing.

When you close a connection, all associated objects are also closed. You can continue to use the
message objects created or received via the connection, except the received message’s
acknowledge () method. Closing a closed connection has no effect.

Note: Attempting to acknowledge a received message from a closed connection’s session
throws an I1legalStateException.

Managing Sessions

The following sections describe how to manage sessions, including:
e Defining a Session Exception Listener

e Closing a Session

5-14 Programming WebLogic JMS

Managing Sessions

Defining a Session Exception Listener

An exception listener asynchronously notifies a client in the event a problem occurs with a
session. This is particularly useful for a session waiting to consume messages that might not be
notified otherwise.

Note: The purpose of an exception listener is not to monitor all exceptions thrown by a session,
only to deliver those exceptions that would otherwise be undelivered.

You can define an exception listener for a session using the following WLSession method:

public void setExceptionListener (
ExceptionListener listener

) throws JMSException
You must specify an ExceptionListener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it encounters a
problem with a session using the following ExceptionListener method:

public void onException (
JMSException exception
)

The JMS Provider specifies the exception encountered that describes the problem when calling
the method.

You can access the exception listener for a session using the following WLSession method:

public ExceptionListener getExceptionListener (

) throws JMSException

Note: Because there can only be one thread per session, an exception listener and message
listener (used for asynchronous message delivery) cannot execute simultaneously.
Consequently, if a message listener is executing at the time a problem occurs, execution
of the exception listener is blocked until the message listener completes its execution. For
more information about message listeners, see “Receiving Messages Asynchronously”
on page 4-27.

Closing a Session

As with connections, a JMS Provider allocates a significant amount of resources when it creates
a session. When a session is no longer being used, it is recommended that it be closed to free up
resources. A session can be closed using the following Session method:

Programming WebLogic JMS 5-15

Managing Your Applications

public void close(
) throws JMSException

Note: The close () method is the only Session method that can be invoked from a thread that
is separate from the session thread.

This method performs the following steps to execute an orderly shutdown:

e Terminates the receipt of all pending messages. Applications may return a message or null
if a message was not available at the time of the close.

e Waits until all message listeners that are currently processing messages have completed.

e Rolls back in-process transactions (unless such transactions are part of external JTA user
transaction). For more information about JTA user transactions, see “Using JTA User
Transactions” on page 11-4.

e Does not force an acknowledge of client acknowledged sessions, ensuring that no
messages are lost for queues and durable subscriptions that require reliable processing.

When you close a session, all associated producers and consumers are also closed.

Note: If you want to issue the close () method within an onMessage () method call, the
system administrator must select the Allow Close In OnMessage check box when
configuring the connection factory.

Managing Destinations

The following sections describe how to create and delete destinations:
e Dynamically Creating Destinations

e Dynamically Deleting Destinations

Dynamically Creating Destinations

You can create destinations dynamically using:
e Using JMS Module Helper to Manage Applications

e Using Temporary Destinations

The associated procedures for creating dynamic destinations are described in the following
sections.

5-16 Programming WebLogic JMS

Managing Destinations

Dynamically Deleting Destinations

You can dynamically delete JMS destinations (queue or topic) using any of the following
methods:

e “Using JIMS Module Helper to Manage Applications” on page 6-1
e Administration console

e User-defined JMX application

The JMS server removes the deleted destination in real time, therefore, it’s not necessary to
redeploy the JIMS server for the deletion to take effect. The associated procedures for dynamically
deleting destinations are described in the following sections.

Preconditions for Deleting Destinations
In order to successfully delete a destination, the following preconditions must be met:

e The destination must not be a member of a distributed destination. For more information,
see “Using Distributed Destinations” on page 8-1.

e The destination must not be the error destination for some other destination. For more
information, see .

If either of these preconditions cannot be met, then the deletion will not be allowed.

What Happens when a Destination is Deleted

When a destination is deleted, the following behaviors and semantics apply:

e Physical deletion of existing messages — all durable subscribers for the deleted destination
are permanently deleted. All messages, persistent and non-persistent, stored in the deleted
destination are permanently removed from the messaging system.

e No longer able to create producers, consumers, and browsers — once a destination is
deleted, applications will no longer be able to create producers, consumers, or browsers for
the deleted destination. Any attempt to do so will result in the application receiving an
InvalidDestinationException — as if the destination does not exist.

e Closing of consumers — all existing consumers for the deleted destination are closed. The
closing of a consumer generates a ConsumerClosedException, which is delivered to the
ExceptionListener, if any, of the parent session, and which will read “Destination was
deleted”.

Programming WebLogic JMS 5-11

Managing Your Applications

5-18

When a consumer is closed, if it has an outstanding receive () operation, then that
operation is cancelled and the caller receives a null indicating that no message is
available. Attempts by an application to do anything but close () a closed consumer will
result in an I1llegalStateException.

Closing of browsers — all browsers for the deleted destination are closed. Attempts by an
application to do anything but close () a closed browser will result in an
IllegalStateException. Closing of a browser implicitly closes all enumerations
associated with the browser.

Closing of enumerations — all enumerations for the deleted destination are closed. The
behavior after an enumeration is closed depends on the last call before the enumeration
was closed. If a call to hasMoreElements () returns a value of true, and no subsequent
call to nextElement () has been made, then the enumeration guarantees that the next
element can be enumerated. This produces the specifics. When the last call before the close
was to hasMoreElements (), and the value returned was true, then the following
behaviors apply:

The first call to nextElement () will return a message.

Subsequent calls to nextElement () will throw a NoSuchElementException.

Calls to hasMoreElements () made before the first call to nextElement () will return
true.

— Calls to hasMoreElements () made after the first call to nextElement () will return
false.

If a given enumeration has never been called, or the last call before the close was to
nextElement (), or the last call before the close was to hasMoreElements () and the
value returned was false, then the following behaviors apply:

— Calls to hasMoreElements () will return false.

— Calls to nextElement () will throw a NoSuchElementException.

Blocking send operations cancelled — all blocking send operations posted against the
deleted destination are cancelled. Send operations waiting for quota will receive a
ResourceAllocationException. For more information on using blocking send
operations.

Uncommitted transactions unaffected — the deletion of a destination does not affect
existing uncommitted transactions. Any uncommitted work associated with a deleted
destination is allowed to complete as part of the transaction. However, since the destination
is deleted, the net result of all operations (rollback, commit, etc.) is the deletion of the
associated messages.

Programming WebLogic JMS

Using Temporary Destinations

Message Timestamps for Troubleshooting Deleted Destinations

If a destination with persistent messages is deleted and then immediately recreated while the JMS
server is not running, the JMS server will compare the version number of the destination (using
the CreationTime field in the configuration config.xml file) and the version number of the
destination in the persistent messages. In this case, the left over persistent messages for the older
destination will have an older version number than the version number in the config.xml file
for the recreated destination, and when the JMS server is rebooted, the left over persistent
messages are simply discarded.

However, if a persistent message somehow has a version number that is newer than the version
number in the config.xml for the recreated destination, then either the system clock was rolled
back when the destination was deleted and recreated (while the JMS server was not running), or
a different config.xml is being used. In this situation, the JMS server will fail to boot. To save
the persistent message, you can set the version number (the CreationTime field) in the
config.xml to match the version number in the persistent message. Otherwise, you can change
the version number in the config.xml so that it is newer than the version number in the
persistent message; this way, the JMS server can delete the message when it is rebooted.

Deleted Destination Statistics

Statistics for the deleted destination and the hosting JMS server are updated as the messages are
physically deleted. However, the deletion of some messages can be delayed pending the outcome
of another operation. This includes messages sent and/or received in a transaction, as well as
unacknowledged non-transactional messages received by a client.

Using Temporary Destinations

Temporary destinations enable an application to create a destination, as required, without the
system administration overhead associated with configuring and creating a server-defined
destination.

JMS applications can use the JMSReplyTo header field to return a response to a request. The
sender application may optionally set the JMSReplyTo header field of its messages to its
temporary destination name to advertise the temporary destination that it is using to other
applications.

Temporary destinations exist only for the duration of the current connection, unless they are
removed using the delete () method, described in “Deleting a Temporary Destination” on
page 5-20.

Programming WebLogic JMS 5-19

Managing Your Applications

5-20

Because messages are never available if the server is restarted, all PERSISTENT messages are
silently made NON_PERSISTENT. As a result, temporary destinations are not suitable for business
logic that must survive a restart.

Note: Temporary destinations are enabled by default via the JMS server's Hosting
Temporary Template attribute. However, if you want to create temporary destinations
with specific settings, you need to modify the default Temporary Template values
uﬁngthe]ﬁﬁsSmVefSTemporary Template and Module Containing Temporary
Template attributes, as explained in “Configure general JMS server properties” in the
Administration Console Online Help.

The following sections describe how to create a temporary queue (PTP) or temporary topic
(Pub/Sub).

Creating a Temporary Queue

You can create a temporary queue using the following QueueSession method:

public TemporaryQueue createTemporaryQueue (

) throws JMSException

For example, to create a reference to a TemporaryQueue that will exist only for the duration of
the current connection, use the following method call:

QueueSender = Session.createTemporaryQueue () ;

Creating a Temporary Topic
You can create a temporary topic using the following TopicSession method:

public TemporaryTopic createTemporaryTopic (

) throws JMSException

For example, to create a reference to a temporary topic that will exist only for the duration of the
current connection, use the following method call:

TopicPublisher = Session.createTemporaryTopic () ;

Deleting a Temporary Destination

When you finish using a temporary destination, you can delete it (to release associated resources)
using the following TemporaryQueue or TemporaryTopic method

public void delete(
) throws JMSException

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSServerGeneral.html

Setting Up Durable Subscriptions

Setting Up Durable Subscriptions

WebLogic JMS supports durable and non-durable subscriptions.

For durable subscriptions, WebLogic JMS stores a message in a persistent file or database until
the message has been delivered to the subscribers or has expired, even if those subscribers are not
active at the time that the message is delivered. A subscriber is considered active if the Java object
that represents it exists. Durable subscriptions are supported for Pub/Sub messaging only.

Note: Durable subscriptions cannot be created for distributed topics. However, you can still
create a durable subscription on distributed topic member and the other topic members
will forward the messages to the member that has the durable subscription. For more
information on using distributed topics, see “Using Distributed Destinations” on
page 8-1.

For non-durable subscriptions, WebLogic JMS delivers messages only to applications with an

active session. Messages sent to a topic while an application is not listening are never delivered

to that application. In other words, non-durable subscriptions last only as long as their subscriber
objects. By default, subscribers are non-durable.

The following sections describe:

Defining the Persistent Store

Defining the Client ID

Creating Subscribers for a Durable Subscription

Deleting Durable Subscriptions

Modifying Durable Subscriptions

e Managing Durable Subscriptions

Defining the Persistent Store

You must configure a persistent file or database store and assign it to your JMS server so
WebLogic JMS can store a message until it has been delivered to the subscribers or has expired.

e Create a JMS file store or JMS JDBC backing store using the Stores node.

e Target the configured store to your JMS server by selecting it from the Store field’s
drop-down list on the JMS Server —Configuration —General tab.

Note: No two JMS servers can use the same backing store.

Programming WebLogic JMS 5-21

Managing Your Applications

5-22

Defining the Client ID

To support durable subscriptions, a client identifier (client ID) must be defined for the
connection.

Note: The JMS client ID is not necessarily equivalent to the WebLogic Server username, that
is, a name used to authenticate a user in the WebLogic security realm. You can, of course,
set the JMS client ID to the WebLogic Server username, if it is appropriate for your JMS
application.

The client ID can be supplied in two ways:

e The first method is to configure the connection factory with the client ID. For WebLogic
JMS, this means adding a separate connection factory definition during configuration for
each client ID. Applications then look up their own topic connection factories in JNDI and
use them to create connections containing their own client IDs. For more information about
configuring a connection factory with a client ID.

o Alternatively, the preferred method is for an application that can set its client ID in the
connection after the connection is created by calling the following connection method:

public void setClientID(
String clientID
) throws JMSException

You must specify a unique client ID. If you use this alternative approach, you can use the
default connection factory (if it is acceptable for your application) and avoid the need to
modify the configuration information. However, applications with durable subscriptions
must ensure that they call setClientID() immediately after creating their topic
connection.

If a client ID is already defined for the connection, an I1legalStateException is
thrown. If the specified client ID is already defined for another connection, an
InvalidClientIDException is thrown.

Note: When specifying the client ID using the setClientID() method, there is a risk that
a duplicate client ID may be specified without throwing an exception. For example,
if the client IDs for two separate connections are set simultaneously to the same value,
arace condition may occur and the same value may be assigned to both connections.
You can avoid this risk of duplication by specifying the client ID during
configuration.

To display a client ID and test whether or not a client ID has already been defined, use the
following Connection method:

Programming WebLogic JMS

Setting Up Durable Subscriptions

public String getClientID(
) throws JMSException
Note: Support for durable subscriptions is a feature unique to the Pub/Sub messaging model, so
client IDs are used only with topic connections; queue connections also contain client
IDs, but JMS does not use them.

Durable subscriptions should not be created for a temporary topic, because a temporary
topic is designed to exist only for the duration of the current connection.

Creating Subscribers for a Durable Subscription

You can create subscribers for a durable subscription using the following TopicSession
methods:

public TopicSubscriber createDurableSubscriber (
Topic topic,
String name

) throws JMSException

public TopicSubscriber createDurableSubscriber (
Topic topic,

String name,

String messageSelector,

boolean noLocal

) throws JMSException

You must specify the name of the topic for which you are creating a subscriber, and the name of
the durable subscription.

73]

Note: Valid durable subscription names can not include the following characters: comma “,”,

“w__» (T8 L]

equals “=”, colon “:”, asterisk “*”, percent “% ", or question mark”?”."

You may also specify a message selector for filtering messages and a noLocal flag (described
later in this section). Message selectors are described in more detail in “Filtering Messages” on
page 5-33. If you do not specify a messageSelector, by default all messages are searched.

An application can use a JMS connection to both publish and subscribe to the same topic.
Because topic messages are delivered to all subscribers, an application can receive messages it
has published itself. To prevent this, a JMS application can set a noLocal flag to true. The
noLocal value defaults to false.

The durable subscription name must be unique per client ID. For information on defining the
client ID for the connection, see “Defining the Client ID” on page 5-22.

Programming WebLogic JMS 5-23

Managing Your Applications

5-24

Only one session can define a subscriber for a particular durable subscription at any given time.
Multiple subscribers can access the durable subscription, but not at the same time. Durable
subscriptions are stored within the file or database.

Deleting Durable Subscriptions

To delete a durable subscription, you use the following TopicSession method:

public void unsubscribe (
String name

) throws JMSException
You must specify the name of the durable subscription to be deleted.

You cannot delete a durable subscription if any of the following are true:
e A TopicSubscriber is still active on the session.

e A message received by the durable subscription is part of a transaction or has not yet been
acknowledged in the session.

Note: You can also delete durable subscriptions from the Administration Console. For
information on managing durable subscriptions, see “Managing Durable Subscriptions”
on page 5-25.

Modifying Durable Subscriptions

To modify a durable subscription, perform the following steps:

1. Optionally, delete the durable subscription, as described in “Deleting Durable Subscriptions”
on page 5-24.

This step is optional. If not explicitly performed, the deletion will be executed implicitly
when the durable subscription is recreated in the next step.

2. Use the methods described in “Creating Subscribers for a Durable Subscription” on
page 5-23 to recreate a durable subscription of the same name, but specifying a different
topic name, message selector, or noLocal value.

The durable subscription is recreated based on the new values.

Note: When recreating a durable subscription, be careful to avoid creating a durable
subscription with a duplicate name. For example, if you attempt to delete a durable
subscription from a JMS server that is unavailable, the delete call fails. If you
subsequently create a durable subscription with the same name on a different JMS server,

Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields

you may experience unexpected results when the first JMS server becomes available.
Because the original durable subscription has not been deleted, when the first JMS server
again becomes available, there will be two durable subscriptions with duplicate names.

Managing Durable Subscriptions

You can monitor and delete durable subscriptions from the Administration Console.

Setting and Browsing Message Header and Property Fields

WebLogic JMS provides a set of standard header fields that you can define to identify and route
messages. In addition, property fields enable you to include application-specific header fields
within a message, extending the standard set. You can use the message header and property fields
to convey information between communicating processes.

The primary reason for including data in a property field rather than in the message body is to
support message filtering via message selectors. Except for XML message extensions, data in the
message body cannot be accessed via message selectors. For example, suppose you use a property
field to assign high priority to a message. You can then design a message consumer containing a
message selector that accesses this property field and selects only messages of expedited priority.
For more information about selectors, see “Filtering Messages” on page 5-33.

Setting Message Header Fields

JMS messages contain a standard set of header fields that are always transmitted with the
message. They are available to message consumers that receive messages, and some fields can be
set by the message producers that send messages. Once a message is received, its header field
values can be modified.

When modifying (overriding) header field values, you need to take into consideration instances
when message fields are overwritten by the JMS subsystem. For instance, setting the priority on
a producer affects the priority of the message, but a value supplied to the send () method
overrides the setting on the producer. Similarly, values set on a destination override values set by
the producer or values supplied to the send () method. The only way to verify the value of header
fields is to query the message after a send () method.

For a description of the standard messages header fields, see “Message Header Fields” on
page 2-21.

The following table lists the Message class set and get methods for each of the supported data
types.

Programming WebLogic JMS 5-25

Managing Your Applications

Note: In some cases, the send () method overrides the header field value set using the set ()
method, as indicated in the following table.

Header Field Set Method Get Method

JMSCorrelationID public void public String
setJMSCorrelationID(getJMSCorrelationID(
String correlationID) throws JMSException

) throws JMSException

public bytel]
getJMSCorrelationIDAsBytes (
) throws JMSException

JMSDestinationl public void public Destination
setJMSDestination (getJMSDestination (
Destination destination) throws JMSException

) throws JMSException

JMSDeliveryMode! public void public int getJMSDeliveryMode (
setJMSDeliveryMode () throws JMSException
int deliveryMode
) throws JMSException

JMSDeliveryTimel public void public long
setdJMSDeliveryTime (getJMSDeliveryTime (
long deliveryTime) throws JMSException

) throws JMSException

JMSDeliveryMode! public void public int getJMSDeliveryMode (
setdJMSDeliveryMode () throws JMSException
int deliveryMode
) throws JMSException

5-26 Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields

Header Field Set Method Get Method

public void setJMSMessagelD (public String getJdMSMessagelID (
String id) throws JMSException
) throws JMSException

JMSMessageIDl

Note: In addition to the set method, the
weblogic.jms.extensions

.JMSRuntimeHelper class
provides the following methods
to convert between
pre-WebLogic JMS 6.0 and 6.1
JMSMessageID formats

public void
oldJMSMessageIDToNew (
String id,
long timeStamp
) throws JMSException

public void
newJMSMessageIDToO1ld (
String id,
long timeStamp
) throws JMSException

JMSPriority!

public void setdMSPriority(
int priority
) throws JMSException

public int getJMSPriority(
) throws JMSException

JMSRedelivered!

public void
setJMSRedelivered (
boolean redelivered
) throws JMSException

public boolean
getJMSRedelivered (
) throws JMSException

JMSRedeliveryLim
it!

public void
setJMSRedeliveryLimit (
int redelivered
) throws JMSException

public int
getJMSRedeliveryLimit (
) throws JMSException

JMSReplyTo

public void setdMSReplyTo (
Destination replyTo
) throws JMSException

public Destination
getJMSReplyTo (
) throws JMSException

Programming WebLogic JMS 5-21

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSRuntimeHelper.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSRuntimeHelper.html

Managing Your Applications

Header Field Set Method Get Method
JMSTimeStampl public void setJMSTimeStamp (public long getJMSTimeStamp (
long timestamp) throws JMSException

) throws JMSException

JMSType public void setJMSType (public String getJMSType (
String type) throws JMSException
) throws JMSException

1. The corresponding set () method has no impact on the message header field when the send () method
is executed. If set, this header field value will be overridden during the send () operation.

The examples. jms.sender.SenderServlet example, provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\sender directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation, shows how to set
header fields in messages that you send and how to display message header fields after they are
sent.

For example, the following code, which appears after the send () method, displays the message
ID that was assigned to the message by WebLogic JMS:

System.out.println("Sent message " +
msg.getdJMSMessageID() + " to " +
msg.getdJMSDestination()) ;

Setting Message Property Fields

To set a property field, call the appropriate set method and specify the property name and value.
To read a property field, call the appropriate get method and specify the property name.

The sending application can set properties in the message, and the receiving application can
subsequently view them. The receiving application cannot change the properties without first
clearing them using the following clearProperties () method:

public void clearProperties(

) throws JMSException
This method does not clear the message header fields or body.

Note: The gMsx property name prefix is reserved for JMS. The connection metadata contains a
list of JMSX properties, which can be accessed as an enumerated list using the

5-28 Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields

getJMSXPropertyNames () method. For more information, see “Accessing Connection

Metadata” on page 5-12.

The gms_ property name prefix is reserved for provider-specific properties; it is not
intended for use with standard JMS messaging.

The property field can be set to any of the following types: boolean, byte, double, float, int, long,
short, or string. The following table lists the Message class set and get methods for each of the

supported data types.

Table 5-1 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method
boolean public void setBooleanProperty (public boolean
String name, getBooleanProperty (
boolean value String name
) throws JMSException) throws JMSException
byte public void setByteProperty (public byte getByteProperty (
String name, String name
byte wvalue) throws JMSException
) throws JMSException
double public void setDoubleProperty (public double getDoubleProperty (
String name, String name
double value) throws JMSException
) throws JMSException
float public void setFloatProperty (public float getFloatProperty (
String name, String name
float value) throws JMSException
) throws JMSException
int public void setIntProperty (public int getIntProperty (
String name, String name
int value) throws JMSException
) throws JMSException
long public void setLongProperty (public long getLongProperty (

String name,
long value) throws JMSException

String name
) throws JMSException

Programming WebLogic JMS 5-29

Managing Your Applications

Table 5-1 Message Property Set and Get Methods for Data Types (Continued)

Data Type Set Method Get Method

short public void setShortProperty (public short getShortProperty (
String name, String name
short value) throws JMSException

) throws JMSException

String public void setStringProperty (public String getStringProperty (
String name, String name
String value) throws JMSException

) throws JMSException

In addition to the set and get methods described in the previous table, you can use the
setObjectProperty () and getObjectProperty () methods to use the objectified primitive
values of the property type. When the objectified value is used, the property type can be
determined at execution time rather than during the compilation. The valid object types are
boolean, byte, double, float, int, long, short, and string.

You can access all property field names using the following Message method:

public Enumeration getPropertyNames (

) throws JMSException

This method returns all property field names as an enumeration. You can then retrieve the value
of each property field by passing the property field name to the appropriate get method, as
described in the previous table, based on the property field data type.

The following table is a conversion chart for message properties. It allows you to identify the type
that can be read based on the type that has been written.

Table 5-2 Message Property Conversion Chart

Property Can Be Read As. . .

Written As. .. - -
hoolea hyte double float int long short String
n

boolean X X

byte X X X X X

double X

5-30 Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields

Table 5-2 Message Property Conversion Chart (Continued)

Property Can Be Read As. . .

Written As. .. - -
boolea hyte double float int long short String
n

float X X X

int X X X

long X X

Object X X X X X X

short X X X X

String X X X X X X X X

You can test whether or not a property value has been set using the following Message method:

public boolean propertyExists (
String name

) throws JMSException

You specify a property name and the method returns a boolean value indicating whether or not
the property exists.

For example, the following code sets two String properties and an int property:

msg.setStringProperty ("User", user);
msg.setStringProperty ("Category", category) ;
msg.setIntProperty ("Rating", rating);

For more information about message property fields, see “Message Property Fields” on
page 2-26 or the javax.jms.Message Javadoc.

Browsing Header and Property Fields

Note: Only queue message header and property fields can be browsed. You cannot browse
topic message header and property fields.

You can browse the header and property fields of messages on a queue using the following
QueueSession methods:

Programming WebLogic JMS 5-31

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Managing Your Applications

5-32

public QueueBrowser createBrowser (
Queue queue

) throws JMSException

public QueueBrowser createBrowser (
Queue queue,
String messageSelector

) throws JMSException

You must specify the queue that you wish to browse. You may also specify a message selector to
filter messages that you are browsing. Message selectors are described in more detail in “Filtering
Messages” on page 5-33.

Once you have defined a queue, you can access the queue name and message selector associated
with a queue browser using the following QueueBrowser methods:

public Queue getQueue (

) throws JMSException

public String getMessageSelector (
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the following
QueueBrowser method:

public Enumeration getEnumeration (

) throws JMSException

The examples.jms.gueue.QueueBrowser example, provided with WebLogic Server in the
WL_HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation, shows how to access
the header fields of received messages.

For example, the following code line is an excerpt from the QueueBrowser example and creates
the QueueBrowser object:

gbrowser = gsession.createBrowser (queue) ;

The following provides an excerpt from the displayQueue () method defined in the
QueueBrowser example. In this example, the QueueBrowser object is used to obtain an
enumeration that is subsequently used to scan the queue’s messages.

public void displayQueue (
) throws JMSException
{

Programming WebLogic JMS

Filtering Messages

Enumeration e = gbrowser.getEnumeration() ;

Message m = null;

if (! e.hasMoreElements()) {
System.out.println("There are no messages on this queue.");

} else {

System.out.println("Queued JMS Messages: ");
while (e.hasMoreElements()) {
m = (Message) e.nextElement () ;
System.out.println("Message ID " + m.getJMSMessageID() +
" delivered " + new Date(m.getJMSTimestamp())
" to " + m.getJMSDestination());
}
}

When a queue browser is no longer being used, you should close it to free up resources. For more
information, see ‘“Releasing Object Resources™ on page 4-31.

For more information about the QueueBrowser class, see the javax. jms.QueueBrowser
Javadoc.

Filtering Messages

In many cases, an application does not need to be notified of every message that is delivered to
it. Message selectors can be used to filter unwanted messages, and subsequently improve
performance by minimizing their impact on network traffic.

Message selectors operate as follows:

e The sending application sets message header or property fields to describe or classify a
message in a standardized way.

e The receiving applications specify a simple query string to filter the messages that they
want to receive.

Because message selectors cannot reference the contents (body) of a message, some information
may be duplicated in the message property fields (except in the case of XML messages).

You specify a selector when creating a queue receiver or topic subscriber, as an argument to the
QueueSession.createReceiver () Or TopicSession.createSubscriber () methods,

respectively. For information about creating queue receivers and topic subscribers, see “Step 5:

Programming WebLogic JMS 5-33

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueBrowser.html

Managing Your Applications

5-34

Create Message Producers and Message Consumers Using the Session and Destinations” on
page 4-8.

The following sections describe how to define a message selector using SQL statements and
XML selector methods, and how to update message selectors. For more information about setting
header and property fields, see “Setting and Browsing Message Header and Property Fields” on
page 5-25 and “Setting Message Property Fields” on page 5-28, respectively.

Defining Message Selectors Using SQL Statements

A message selector is a boolean expression. It consists of a String with a syntax similar to the
where clause of an SQL select statement.

The following excerpts provide examples of selector expressions.
salary > 64000 and dept in ('eng', 'ga')

)

(product like 'WebLogic%' or product like '$T3')

and version > 3.0

hireyear between 1990 and 1992

or fireyear is not null
fireyear - hireyear > 4

The following example shows how to set a selector when creating a queue receiver that filters out
messages with a priority lower than 6.

String selector = "JMSPriority >= 6";

gsession.createReceiver (queue, selector);

The following example shows how to set the same selector when creating a topic subscriber.

String selector = "JMSPriority >= 6";

gsession.createSubscriber (topic, selector);

For more information about the message selector syntax, see the javax. jms.Message Javadoc.

Defining XML Message Selectors Using XML Selector Method

For XML message types, in addition to using the SQL selector expressions described in the
previous section to define message selectors, you can use the following method:

String JMS_BEA_SELECT(String type, String expression)

Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Filtering Messages

JMS_BEA_SELECT is a built-in function in WebLogic JMS SQL syntax. You specify the syntax

type, which must be set to xpath (XML Path Language) and an XPath expression. The XML path
language is defined in the XML Path Language (XPath) document, which is available at the XML
Path Language Web site at: http: //www.w3.org/TR/xpath

Note: Pay careful attention to your XML message syntax, since malformed XML messages (for
example, a missing end tag) will not match any XML selector.

The method returns a null value under the following circumstances:

e The message does not parse.

e The message parses, but the element is not present.

e If a message parses and the element is present, but the message contains no value (for

example, <order></order>).

For example, consider the following XML excerpt:

<order>

<item>

</item>

<item>

</item>

<item>

</item>

</order>

The following example shows how to retrieve the name of the second item in the previous

<i1d>007</1id>
<name>Hand-held Power Drill</name>
<description>Compact, assorted colors.</description>

<price>$34.99</price>

<id>123</1id>
<name>Mitre Saw</name>
<description>Three blades sizes.</description>

<price>$69.99</price>

<id>66</id>
<name>Socket Wrench Set</name>
<description>Set of 10.</description>

<price>$19.99</price>

example. This method call returns the string, Mitre Saw.

Programming WebLogic JMS

5-35

http://www.w3.org/TR/xpath

Managing Your Applications

5-36

String sel = "JMS_BEA_SELECT(‘'xpath’, ‘/order/item[2]/name/text()’) =
‘Mitre Saw’”;

Pay careful attention to the use of double and single quotes and spaces. Note the use of single
quotes around xpath, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous example.
This method call returns the string, 66.

String sel = "JMS_BEA_SELECT(‘xpath’, ‘/order/item[3]/id/text()’) =

\ 66 rn ;

Displaying Message Selectors

You can use the following MessageConsumer method to display a message selector:

public String getMessageSelector (
) throws JMSException

This method returns either the currently defined message selector or null if a message selector is
not defined.

Indexing Topic Subscriber Message Selectors To Optimize
Performance

For a certain class of applications, WebLogic JMS can significantly optimize topic subscriber
message selectors by indexing them. These applications typically have a large number of
subscribers, each with a unique identifier (like a user name), and they need to be able to quickly
send a message to a single subscriber, or to a list of subscribers. A typical example is an instant
messaging application where each subscriber corresponds to a different user, and each message
contains a list of one or more target users.

To activate optimized subscriber message selectors, subscribers must use the following syntax for
their selectors:

"identifier IS NOT NULL"

where identifier is an arbitrary string that is not a predefined JMS message property (e.g.,
neither JMSCorrelationID nor JMSType). Multiple subscribers can share the same identifier.

WebLogic JMS uses this exact message selector syntax as a hint to build internal subscriber
indexes. Message selectors that do not follow the syntax, or that include additional or and AND
clauses, are still honored, but do not activate the optimization.

Programming WebLogic JMS

Filtering Messages

Once subscribers have registered using this message selector syntax, a message published to the
topic can target specific subscribers by including one or more identifiers in the message’s user
properties, as illustrated in the following example:

// Set up a named subscriber, where "wilma" is the name of
// the subscriber and subscriberSession is a JMS TopicSession.

// Note that the selector syntax used activates the optimization.

TopicSubscriber topicSubscriber =
subscriberSession.createSubscriber (
(Topic)context.lookup ("IMTopic"),
"Wilma IS NOT NULL",

/* noLocal= */ true);

// Send a message to subscribers "Fred" and "Wilma",
// where publisherSession is a JMS TopicSession. Subscribers
// with message selector expressions "Wilma IS NOT NULL"

// or "Fred IS NOT NULL" will receive this message.

TopicPublisher topicPublisher =
publisherSession.createPublisher (

(Topic)context.lookup ("IMTopic") ;

TextMessage msg =
publisherSession.createTextMessage ("Hi there!");
msg.setBooleanProperty ("Fred", true);

msg.setBooleanProperty ("Wilma", true);

topicPublisher.publish (msg) ;

Notes:

The optimized message selector and message syntax is based on the standard JMS API;
therefore, applications that use this syntax will also work on versions of WebLogic JMS
that do not have optimized message selectors, as well as on non-WebLogic JMS
products. However, these versions will not perform as well as versions that include this
enhancement.

The message selector optimization will have no effect on applications that use the
MULTICAST NO_ACKNOWLEDGE acknowledge mode. These applications have no need no
need for the enhancement anyway, since the message selection occurs on the client side
rather than the server side.

Programming WebLogic JMS 5-37

Managing Your Applications

Sending XML Messages

5-38

Note: This release does not support streaming. Only text and DOM representations of XML
documents are supported.

Previous releases of the WebLogic Server JMS API only provided messaging of XML documents
using the string type. For this release, the WebLogic Server IMS API also provides native
support for the Document Object Model (DOM) to send XML messages.

The following sections provide information on WebLogic JMS API extensions that provide
enhanced support for XML messages.

e “WebLogic XML APIs” on page 5-38
e Using a String Representation

e Using a DOM Representation

WebLogic XML APIs

The section provides information on the WebLogic XML APIs for transformation of XML
between string and DOM representations:

e XMLMessage-Use to send messages with XML content.

® WLSession.createXMLMessage- Use to create an XML message.

It is possible for the payload of xMLMessage to be set using one XML representation and
retrieved using a different representation. For example, it is valid for the XMLMessage body to
be set using a String representation and be retrieved using a DOM representation.

Using a String Representation

Use the following steps to publish an XML message using a string type:
1. Serialize the XML to a StringWriter.
2. Call tostring on the StringWriter and pass it into message . setText.

3. Publish the message.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/XMLMessage.html

Sending XML Messages

Using a DOM Representation

Sending XML messages using a DOM representation provides a significant performance
improvement over sending messages as a String. Use the following steps to publish an XML
message using a Dom Representation:

1. If necessary, generate a DOM document from your XML source.
2. Pass the DOM document into XMLMessage . setDocument.

3. Publish the message.

Programming WebLogic JMS 5-39

Managing Your Applications

5-40 Programming WebLogic JMS

CHAPTERa

Using JMS Module Helper to Manage
Applications

The weblogic.jms.extensions.JMSModuleHelper class contains APIs that you can use to
programmatically create and manage JMS servers, Store-and-Forward Agents, and JMS system
resources.

e “Configuring JIMS System Resources Using JIMSModuleHelper” on page 6-1
e “Configuring JMS Servers and Store-and-Forward Agents” on page 6-2
e “JMSModuleHelper Sample Code” on page 6-2

e “Best Practices when Using JMSModuleHelper” on page 6-6

Configuring JMS System Resources Using JMSModuleHelper

JMSModuleHelper provides the following API signatures to manage a system module and JMS
resources, such as queues and topics:

e Create a resource

Create and modify resource
e Delete a resource
e Find and modify a resource

e Find using a template

You can manage a system module, including the JMS resources it contains by providing the
domain MBean or by providing the initial context to the administration server in the API

Programming WebLogic JMS 6-1

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSModuleHelper.html

Using JMS Module Helper to Manage Applications

signature. For more information on JMS system resources, see “Configuring JMS System
Resources” in the Administration Console Help.

Configuring JMS Servers and Store-and-Forward Agents

JMSModuleHelper provides the following method APIs to manage JMS servers and
Store-and-Forward Agents:

e Create JMS servers and Store-and-Forward Agents
e Delete JMS servers and Store-and-Forward Agents
e Deploy JMS servers and Store-and-Forward Agents

e Undelploy JMS servers and Store-and-Forward Agents

You can manage JMS servers and Store-and-Forward Agents by providing the domain MBean or
by providing the initial context to the administration server in the API signature. For more
information, see:

e “Configuring JMS System Resources” in the Administration Console Help.

e “Understanding the Store-and-Forward Service” in the Administration Console Help.

JMSModuleHelper Sample Code

This section provides sample code to create and delete a JMS system resource module.

Creating a JMS System Resource

The module contains a connection factory and a topic.

Listing 6-1 Create JMS System Resources

private static void createdMSUsingJdMSModuleHelper (Context ctx) {

System.out.println(
"\n\n.... Configure JMS Resource for C API Topic Example\n\n");

6-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs90/saf_admin/overview.html

JMSModuleHelper Sample Code

try {

MBeanHome mbeanHome =
ctx.lookup (MBeanHome .ADMIN_JNDI_NAME) ;

(MBeanHome)
DomainMBean domainMBean = mbeanHome.getActiveDomain () ;

String domainMBeanName = domainMBean.getName () ;

ServerMBean[] servers = domainMBean.getServers() ;

String jmsServerName = "examplesJMSServer";

//
// create a JMSSystemResource "CapiTopic-jms"

//
String resourceName = "CapiTopic-jms";

JMSModuleHelper.createJMSSystemResource (

ctx,
resourceName,
servers|[0] .getName ()) ;
JMSSystemResourceMBean jmsSR
JMSModuleHelper. findJMSSystemResource (

ctx,
resourceName) ;

JMSBean jmsBean = jmsSR.getJMSResource() ;

System.out.println("Created JMSSystemResource " + resourceName) ;

//
// create a JMSConnectionFactory "CConFac"

//

String factoryName = "CConFac";

String jndiName = "CConFac";
JMSModuleHelper.createConnectionFactory (
ctx,
resourcelName,
factoryName,
jndiName,
servers|[0] .getName ()) ;

JMSConnectionFactoryBean factory
jmsBean.lookupConnectionFactory (factoryName) ;

Programming WebLogic JMS 6-3

Using JMS Module Helper to Manage Applications

System.out.println("Created Factory " + factory.getName());

//
// create a topic "CTopic"
//
String topicName = "CTopic";
String topicjndiName = "CTopic";
JMSModuleHelper.createTopic (
ctx,
resourceName,
jmsServerName,
topicName,
topicjndiName) ;
TopicBean topic = jmsBean.lookupTopic (topicName) ;
System.out.println("Created Topic " + topic.getName()) ;
} catch (Exception e) {
System.out.println("Example configuration failed :" + e.getMessag
e());

e.printStackTrace() ;

Deleting a JMS System Resource

The following code removes JMS system resources.

Listing 6-2 Delete JMS System Resources

private static void deletedMSUsingJMSModuleHelper (Context ctx) {

6-4 Programming WebLogic JMS

JMSModuleHelper Sample Code

System.out.println("\n\n.... Remove JMS System Resource for C API Top
ic Example\n\n");
try {

MBeanHome mbeanHome =
(MBeanHome) ctx.lookup (MBeanHome.ADMIN_JNDI_NAME) ;
DomainMBean domainMBean = mbeanHome.getActiveDomain () ;
String domainMBeanName = domainMBean.getName () ;

ServerMBean[] servers = domainMBean.getServers() ;

String jmsServerName = "examplesJMSServer";
//
// delete JMSSystemResource "CapiTopic-jms"
//

String resourceName = "CapiTopic-jms";

JMSModuleHelper.deleteJMSSystemResource (
ctx,
resourceName
) ;
} catch (Exception e) {
System.out.println ("Example configuration failed
:" + e.getMessage());

e.printStackTrace() ;

Programming WebLogic JMS 6-5

Using JMS Module Helper to Manage Applications

Best Practices when Using JMSModuleHelper

This section provides best practices information when using JMSModuleHelper to configure
JMS servers and resources:

e Trap for Null MBean objects (such as servers, JMS servers, modules) before trying to
manipulate the MBean object.

e A create or delete method call can fail without throwing an exception. In addition, a
thrown exception does not necessarily indicate that the method call failed.

e The time required to create the destination on the JMS server and propagate the
information to the JNDI namespace can be significant. The propagation delay increases if
the environment contains multiple servers. It is recommended that you test for the
existence of the queue or topic, respectively, using the session createQueue () or
createTopic () method, rather than perform a JNDI lookup. By doing so, you can avoid
some of the propagation-specific delay.

For example, the following method, £indQueue (), attempts to access a dynamically
created queue, and if unsuccessful, sleeps for a specified interval before retrying. A
maximum retry count is established to prevent an infinite loop.

private static Queue findQueue (
QueueSession gueueSession,
String jmsServerName,
String queueName,
int retryCount,
long retryInterval
) throws JMSException
{
String wlsQueueName = jmsServerName + “/” + queueName;
String command = “QueueSession.createQueue(“ +
wlsQueueName + “)”;

long startTimeMillis = System.currentTimeMillis();

for (int i=retryCount; i>=0; i--) {
try {
System.out.println(“*Trying “ + command) ;

Queue queue = queueSession.createQueue (wlsQueueName) ;
System.out.println(command + “succeeded after “ +
(retryCount - 1 + 1) + “ tries in “ +

(System.currentTimeMillis() - startTimeMillis) +

6-6 Programming WebLogic JMS

Best Practices when Using JMSModuleHelper

“millis.”);

return queue;

} catch (JMSException je) {

if (retryCount == 0) throw je;

}

try {

System.out.println(command + “> failed, pausing “ +
retryInterval + ™ millis.”);

Thread.sleep (retryInterval) ;

} catch (InterruptedException ignore) {}

}

throw new JMSException(“out of retries”);

You can then call the findQueue () method after the JMSModuleHelper class method call
to retrieve the dynamically created queue once it becomes available. For example:
JMSModuleHelper .createPermanentQueueAsync (ctx, domain, jmsServerName,
gueueName, jndiName) ;
Queue queue = findQueue(gsess, jmsServerName, queueName,

retry_ count, retry interval);

Programming WebLogic JMS 6-7

Using JMS Module Helper to Manage Applications

6-8 Programming WebLogic JMS

cHAPTERﬂ

Using Multicasting with WebLogic
Server

Multicasting enables the delivery of messages to a select group of hosts that subsequently forward
the messages to subscribers. The following sections provide information on the benefits,
limitations, and configuration of using mutlticasing with WebLogic Server:

e “Benefits of using Multicasting” on page 7-1
e “Limitations of using Multicasting” on page 7-1

e “Configuring Multicasting for WebLogic Server” on page 7-2

Benefits of using Multicasting

The benefits of multicasting include:

e Near real-time delivery of messages to host group.

e High scalability due to the reduction in the amount of resources required by the JIMS server
to deliver messages to subscribers.

Limitations of using Multicasting

The limitations of multicasting include:

e Multicast messages are not guaranteed to be delivered to all members of the host group.
For messages requiring reliable delivery and recovery, you should not use multicasting.

Programming WebLogic JMS 1-1

Using Multicasting with WebLogic Server

e For interoperability with different versions of WebLogic Server, clients cannot have an
earlier release of WebLogic Server installed than the host. They must all have at least the
same version or higher.

For an example of when multicasting might be useful, consider a stock ticker. When accessing
stock quotes, timely delivery is more important than reliability. When accessing the stock
information in real-time, if all or a portion of the contents is not delivered, the client can simply
request the information to be resent. Clients would not want to have the information recovered,
in this case, as by the time it is redelivered, it would be out-of-date.

Configuring Multicasting for WebLogic Server

1-2

The following figure illustrates the steps required to set up multicasting.

Figure 7-1 Setting Up Multicasting

Step 1: Set Up JMS Application, Creating
Multicast Session and Topic Subscriber

h 4
[Step 2: Set Up Message Listener lo J

Receive Messages Asynchronously

Note: Multicasting is only supported for the Pub/Sub messaging model, and only for
non-durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.

Prerequesites for Multicasting

Before setting up multicasting, the connection factory and destination must be configured to
support multicasting, as follows:

e For each connection factory, the system administrator configures the maximum number of
outstanding messages that can exist on a multicast session and whether the most recent or
oldest messages are discarded in the event the maximum is reached. If the message
maximum is reached, a DataOverrunException is thrown, and messages are
automatically discarded. These attributes are also dynamically configurable, as described in
“Dynamically Configuring Multicasting Configuration Attributes” on page 7-4.

e For each destination, the Multicast Address (IP), Port, and TTL (Time-To-Live) attributes
are specified. To better understand the TTL attribute setting, see “Example: Multicast
TTL” on page 7-5.

Programming WebLogic JMS

Configuring Multicasting for WebLogic Server

Note: Itis strongly recommended that you seek the advice of your network administrator when
configuring the multicast IP address, port, and time-to-live attributes to ensure that the
appropriate values are set.

For more information, see “Configure topic multicast parameters” in the Administration Console
Online Help.

Step 1: Set Up the JMS Application, Creating Multicast Session

and Topic Subscriber

Set up the JMS application as described in “Setting Up a JMS Application” on page 4-2.
However, when creating sessions, as described in “Step 3: Create a Session Using the
Connection” on page 4-6, specify that the session would like to receive multicast messages by
setting the acknowledgeMode value to MULTICAST NO_ACKNOWLEDGE.

Note: Multicasting is only supported for the Pub/Sub messaging model for non-durable
subscribers. An attempt to create a durable subscriber on a multicast session will cause a
JMSException to be thrown.

For example, the following method illustrates how to create a multicast session for the Pub/Sub
messaging model.

tsession = tcon.createTopicSession (
false,
WLSession.MULTICAST_NO_ACKNOWLEDGE
)

Note: On the client side, each multicasting session requires one dedicated thread to retrieve
messages off the socket. Therefore, you should increase the JIMS client-side thread pool
size to adjust for this. For more information on adjusting the thread pool size, see the
“Tuning Thread Pools and EJB Pools” section in the “WebLogic JMS Performance
Guide” white paper, at
http://dev2dev.bea.com/resourcelibrary/whitepapers/index.jsp#server,
which discusses tuning JMS client-side thread pools.

In addition, create a topic subscriber, as described in “Create TopicPublishers and
TopicSubscribers” on page 4-10.

For example, the following code illustrates how to create a topic subscriber:

tsubscriber = tsession.createSubscriber (myTopic) ;

Note: The createSubscriber () method fails if the specified destination is not configured to
support multicasting.

Programming WebLogic JMS 1-3

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateMulticast.html
http://dev2dev.bea.com/products/wlserver/whitepapers/WL_JMS_Perform_GD.jsp
http://dev2dev.bea.com/products/wlserver/whitepapers/WL_JMS_Perform_GD.jsp

Using Multicasting with WebLogic Server

1-4

Step 2: Set Up the Message Listener

Multicast topic subscribers can only receive messages asynchronously. If you attempt to receive
synchronous messages on a multicast session, a JMSException is thrown.

Set up the message listener for the topic subscriber, as described in “Receiving Messages
Asynchronously” on page 4-27.

For example, the following code illustrates how to establish a message listener:
tsubscriber.setMessagelListener (this) ;

When receiving messages, WebLogic JMS tracks the order in which messages are sent by the
destinations. If a multicast subscriber’s message listener receives the messages out of sequence,
resulting in one or more messages being skipped, a SequenceGapException will be delivered
to the ExceptionListener for the session(s) present. If a skipped message is subsequently
delivered, it will be discarded. For example, in the following figure, the subscriber is receiving
messages from two destinations simultaneously.

Figure 7-2 Multicasting Sequence Gap
Destination 1 Destination 2

[l Al QD
S 7

\ /
NN

Subscriber
Upon receiving the “4” message from Destination 1, a SequenceGapException is thrown to
notify the application that a message was received out of sequence. If subsequently received, the

“3” message will be discarded.

Note: The larger the messages being exchanged, the greater the risk of encountering a
SequenceGapException.

Dynamically Configuring Multicasting Configuration
Attributes

During configuration, for each connection factory the system administrator configures the
following information to support multicasting:

Programming WebLogic JMS

Configuring Multicasting for WebLogic Server

e Messages maximum specifying the maximum number of outstanding messages that can
exist on a multicast session.

e Overrun policy specifying whether recent or older messages are discarded in the event the
messages maximum is reached.

If the messages maximum is reached, a DataOverrunException is thrown and messages are
automatically discarded based on the overrun policy. Alternatively, you can set the messages
maximum and overrun policy using the Session set methods.

The following table lists the Session set and get methods for each dynamically configurable
attribute.

Table 7-1 Message Producer Set and Get Methods

Attribute Set Method Get Method
Messages public void setMessagesMaximum (public int getMessagesMaximum (
Maximum int messagesMaximum) throws JMSException

) throws JMSException

Overrun Policy public void setOverrunPolicy (public int getOverrunPolicy(
int overrunPolicy) throws JMSException
) throws JMSException

Note: The values set using the set methods take precedence over the configured values.

For more information about these session class methods, see the
weblogic.jms.extensions.WLSession Javadoc. For more information on these multicast
configuration attributes, see “Configure topic multicast parameters” in the Administration
Console Online Help.

Example: Multicast TTL

Note: The following example is a very simplified illustration of how the Multicast TTL
(time-to-live) destination configuration attribute impacts the delivery of messages across
routers. It is strongly advised that you seek the assistance of your network administrator
when configuring the multicast TTL attribute to ensure that the appropriate value is set.

The Multicast TTL is independent of the message time-to-live.

The following example illustrates how the Multicast TTL destination configuration attribute
impacts the delivery of messages across routers.

Programming WebLogic JMS 1-5

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateMulticast.html

Using Multicasting with WebLogic Server

1-6

For more information, see “Configure topic multicast parameters” in the Administration Console
Online Help.

Consider the following network diagram.

Figure 7-3 Multicast TTL Example

TTL Count
Subnet A | |
Multicast Router 1]
Pubslisher . . .
- -

Subnet B | | |

m B m Em

R R —— T

Multicast Subscriber = e =

Subnet C | | l
= | 2
I...-‘-'=-.-5I.. 5 e e Pl
Multicast Subscriber

In the figure, the network consists of three subnets: Subnet A containing the multicast publisher,
and Subnets B and C each containing one multicast subscriber.

If the Multicast TTL attribute is set to O (indicating that the messages cannot traverse any routers
and are delivered on the current subnet only), when the multicast publisher on Subnet A publishes
a message, the message will not be delivered to any of the multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one router), when
the multicast publisher on Subnet A publishes a message, the multicast subscriber on Subnet B
will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can traverse two
routers), when the multicast publisher on Subnet A publishes a message, the multicast subscribers
on Subnets B and C will receive the message.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateMulticast.html

GHAPTERa

Using Distributed Destinations

The following sections describe the concepts and functionality of distributed destinations
necessary to design higher availability applications:

“What is a Distributed Destination?” on page 8-1

“Why Use a Distributed Destination” on page 8-2

“Creating a Distributed Destination” on page 8-2

“Types of Distributed Destinations” on page §-2

“Using Distributed Destinations” on page 8-3

“Using Message-Driven Beans with Distributed Destinations” on page 8-10

“Common Use Cases for Distributed Destinations” on page 8-11

What is a Distributed Destination?

A distributed destination is a set of destinations (queues or topics) that are accessible as a single,
logical destination to a client. A distributed destination has the following characteristics:

It is referenced by its own JNDI name.

Members of the set are usually distributed across multiple servers within a cluster, with
each destination member belonging to a separate JMS server.

Programming WebLogic JMS 8-1

http://e-docs.bea.com/wls/docs90/jms/fund.html#destination

Using Distributed Destinations

Why Use a Distributed Destination

Applications that use distributed destinations are more highly available than applications that use
simple destinations because WebLogic JMS provides load balancing and failover for member
destinations of a distributed destination within a cluster. Once properly configured, your
producers and consumers are able to send and receive messages through the distributed
destination. WebLogic JMS then balances the messaging load across all available members of the
distributed destination. When one member becomes unavailable due a server failure, traffic is
then redirected toward other available destination members in the set. For more information on
how destination members are load balanced, see “Configuring Distributed Destinations” in
Configuring and Managing WebLogic JMS.

Creating a Distributed Destination

Distributed destinations are created by the system administrator using the Administration
Console. For more information, see “Configuring Distributed Destinations” in Configuring and
Managing WebLogic JMS.

Types of Distributed Destinations

8-2

WebLogic Server supports two types of distributed destinations:
e “Uniform Distributed Destinations” on page 8-2

e “Weighted Distributed Destinations” on page 8-3

Uniform Distributed Destinations

In a uniform distributed destination (UDD), each of the member destinations has a consistent
configuration of all distributed destination parameters, particularly in regards to weighting,
security, persistence, paging, and quotas.

BEA recommends using UDDs because you no longer need to create or designate destination
members, but instead rely on WebLogic Server to uniformly create the necessary members on the
JMS servers to which a UDD is targeted. This feature of UDDs provides dynamic updating of a
UDD when a new member is added or a member is removed.

For example, if UDD is targeted to a cluster, there is a UDD member on every JMS server in the
cluster. If a new JMS server is added, a new UDD member is dynamically added to the UDD.
Likewise, if a JMS server is removed, the corresponding UDD member is removed from the
UDD. This allows UDDs to provide higher availability by eliminating bottlenecks caused by

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config

Using Distributed Destinations

configuration errors. For more information, see “Configuring Distributed Destinations” in
Configuring and Managing WebLogic JMS.

Weighted Distributed Destinations

In a weighted distributed destination, the member destinations do not have a consistent
configuration of all distributed destination parameters, particularly in regards to weighting,
security, persistence, paging, and quotas.

BEA recommends converting weighted distributed destinations to UDDs because of the
administrative inflexibility when creating members that are intended to carry extra message load
or have extra capacity (more weight). Lack of a consistent member configuration can lead to
unforeseen administrative and application problems because the weighted distributed destination
can not be deployed consistently across a cluster.

For more information, see “Configuring Distributed Destinations” in Configuring and Managing
WebLogic JMS.

Using Distributed Destinations

A distributed destination is a set of physical JMS destination members (queues or topics) that is
accessed through a single JNDI name. As such, a distributed destination can be looked up using
JNDIL. It implements the javax.jms.Destination interface, and can be used to create
producers, consumers, and browsers.

Because a distributed destination can be served by multiple WebLogic Servers within a cluster,
when creating a reference to a distributed destination by using one of the createQueue () or
createTopic () methods, the name supplied is simply the name of the
JMSDistributedQueueMBean Or JMSDistributedTopicMBean preceded by the parent module
name, separated by an exclamation point (!). No JMS server name or separating forward slash (/)
is required.

For example, the following code illustrates how to look up a distributed destination topic:
topic = myTopicSession.createTopic ("myModuel !myDistributedTopic") ;

Note: When calling the createQueue () or createTopic () methods, any string containing a
forward slash (/), is assumed to be the name of a distributed destination member—not
the name of a distributed destination. If no such destination member exists, then the call
will fail with an InvalidDestinationException. See “Deploying Message-Driven
Beans on a Distributed Topic” on page 8-8

Programming WebLogic JMS 8-3

http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Destination.html

Using Distributed Destinations

8-4

Using Distributed Queues

A distributed queue is a set of physical JMS queue members. As such, a distributed queue can be
used to create a QueueSender, QueueReceiver, and a QueueBrowser. The fact that a
distributed queue represents multiple physical queues is mostly transparent to your application.

The queue members can be located anywhere, but must all be served by JMS servers in a single
server cluster. When a message is sent to a distributed queue, it is sent to exactly one of the
physical queues in the set of members for the distributed queue. Once the message arrives at the
queue member, it is available for receipt by consumers of that queue member only.

This section provides information on using distributed queues:
e “Queue Forwarding” on page 8-4
e “QueueSenders” on page 8-4
e “QueueReceivers” on page 8-5

e “QueueBrowsers” on page 8-5

Queue Forwarding

Queue members can forward messages to other queue members by configuring the Forward
Delay attribute in the Administration Console, which is disabled by default. This attribute defines
the amount of time, in seconds, that a distributed queue member with messages, but which has no
consumers, will wait before forwarding its messages to other queue members that do have
consumers.

QueueSenders

After creating a queue sender, if the queue supplied at creation time was a distributed queue, then
each time a message is produced using the sender a decision is made as to which queue member
will receive the message. Each message is sent to a single physical queue member.

The message is not replicated in any way. As such, the message is only available from the queue
member where it was sent. If that physical queue becomes unavailable before a given message is
received, then the message is unavailable until that queue member comes back online.

It is not enough to send a message to a distributed queue and expect the message to be received
by a queue receiver of that distributed queue. Since the message is sent to only one physical queue
member, there must be a queue receiver receiving or listening on that queue member.

Programming WebLogic JMS

Using Distributed Destinations

Note: For information on the load-balancing heuristics for distributed queues with zero
consumers, see ‘“Configuring Distributed Destinations” in Configuring and Managing
WebLogic JMS.

QueueReceivers

When creating a queue receiver, if the supplied queue is a distributed queue, then a single
physical queue member is chosen for the receiver at creation time. The created QueueReceiver
is pinned to that queue member until the queue receiver loses its access to the queue member. At
that point, the consumer will receive a JMSException, as follows:

e If the queue receiver is synchronous, then the exception is returned to the user directly.

e If the queue receiver is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener defined for the
consumer session, if any.

Upon receiving such an exception, an application can close its queue receiver and recreate it. If
any other queue members are available within the distributed queue, then the creation will
succeed and the new queue receiver will be pinned to one of those queue members. If no other
queue member is available, then the application won’t be able to recreate the queue receiver and
will have to try again later.

Note: For information on the load-balancing heuristics for distributed queues with zero
consumers, see “Configuring Distributed Destinations” in Configuring and Managing
WebLogic JMS.

QueueBrowsers

When creating a queue browser, if the supplied queue is a distributed queue, then a single
physical queue member is chosen for the browser at creation time. The created queue browser is
pinned to that queue member until the receiver loses its access to the queue member. At that point,
any calls to the queue browser will receive a JMSException. Any calls to the enumeration will
return a NoSuchElementException.

Note: The queue browser can only browse the queue member that it is pinned to. Even though
a distributed queue was specified at creation time, the queue browser cannot see or
browse messages for the other queue members in the distributed destination.

Programming WebLogic JMS 8-5

http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config

Using Distributed Destinations

8-6

Using Distributed Topics

A distributed topic is a set of physical JMS topic members. As such, a distributed topic can be
used to create a TopicPublisher and TopicSubscriber. The fact that a distributed topic
represents multiple physical topics is mostly transparent to the application.

Note: Durable subscribers (DurableTopicSubscriber) cannot be created for distributed
topics. However, you can still create a durable subscription on distributed topic member
and the other topic members will forward the messages to the topic member that has the
durable subscription.

The topic members can be located anywhere but must all be served either by a single WebLogic
Server or any number of servers in a cluster. When a message is sent to a distributed topic, it is
sent to all of the topic members in the distributed topic set. This allows all subscribers to the
distributed topic to receive messages published for the distributed topic.

A message published directly to a topic member of a distributed destination (that is, the publisher
did not specify the distributed destination) is also forwarded to all the members of that distributed
topic. This includes subscribers that originally subscribed to the distributed topic, and which
happened to be assigned to that particular topic member. In other words, publishing a message to
a specific distributed topic member automatically forwards it to all the other distributed topic
members, just as publishing a message to a distributed topic automatically forwards it to all of its
distributed topic members. For more information about looking up specific distributed
destination members, see “Accessing Distributed Destination Members” on page 8-8.

This section provides information on using distributed queues:
e “TopicPublishers” on page 8-6
e “TopicSubscribers” on page 8-7

e “Deploying Message-Driven Beans on a Distributed Topic” on page 8-8

TopicPublishers

When creating a topic publisher, if the supplied destination is a distributed destination, then any
messages sent to that distributed destination are sent to all available topic members for that
distributed topic, as follows:

e If one or more of the distributed topic members is not reachable, and the message being
sent is non-persistent, then the message is sent only to the available topic members.

e If one or more of the distributed topic members is not reachable, and the message being
sent is persistent, then the message is stored and forwarded to the other topic members

Programming WebLogic JMS

Using Distributed Destinations

when they become reachable. However, the message can only be persistently stored if the
topic member has a JMS store configured.

Note:

Every effort is made to first forward the message to distributed members that utilize
a persistent store. However, if none of the distributed members utilize a store, then
the message is still sent to one of the members according to the selected
load-balancing algorithm, as described in “Configuring Distributed Destinations” in
Configuring and Managing WebLogic JMS.

o If all of the distributed topic members are unreachable (regardless of whether the message
is persistent or non-persistent), then the publisher receives a JMSException when it tries
to send a message.

TopicSubscribers

When creating a topic subscriber, if the supplied topic is a distributed topic, then the topic
subscriber receives messages published to that distributed topic. If one or more of the topic
members for the distributed topic are not reachable by a topic subscriber, then depending on
whether the messages are persistent or non-persistent the following occurs:

e Any persistent messages published to one or more unreachable distributed topic members
are eventually received by topic subscribers of those topic members once they become
reachable. However, the messages can only be persistently stored if the topic member has a
JMS store configured.

e Any non-persistent messages published to those unreachable distributed topic members
will not be received by that topic subscriber.

Note:

If a JMS store is configured for a JMS server that is hosting a distributed topic
member, then all the Distributed Topic System Subscribers associated with that
member destination are treated as durable subscriptions, even when a topic member
does not have a JMS store explicitly configured. As such, the saving of all the
messages sent to these distributed topic subscribers in memory can result in
unexpected memory and disk consumption. Therefore, a recommended best design
practice when deploying distributed destination is to consistently configure all
member destinations: either with a JMS store for durable messages, or without a JMS
store for non-durable messages. For example, if you want all of your distributed topic
subscribers to be non-durable, but some member destinations implicitly have a JMS
store configured because their associated JMS server uses a JMS store, then you need
to explicitly set the StoreEnabled attribute to False for each member destination to
override the JMS server setting.

Programming WebLogic JMS 8-7

http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config

Using Distributed Destinations

8-8

Ultimately, a topic subscriber is pinned to a physical topic member. If that topic member becomes
unavailable, then the topic subscriber will receive a JMSException, as follows:

o If the topic subscriber is synchronous, then the exception is returned to the user directly.

o If the topic subscriber is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener defined for the
consumer session, if any.

Upon receiving such an exception, an application can close its topic subscriber and recreate it. If
any other topic member is available within the distributed topic, then the creation should be
successful and the new topic subscriber will be pinned to one of those topic members. If no other
topic member is available, then the application will not be able to recreate the topic subscriber
and will have to try again later.

Deploying Message-Driven Beans on a Distributed Topic

When an MDB is deployed on a distributed topic and is targeted to a WebLogic Server instance
in a cluster that is hosting two members of the distributed topic on a JIMS server, the MDB gets
deployed on both the members of the distributed topic. This occurs because MDBs are pinned to
a distributed topic member’s destination name.

Therefore, you will receive [number of messages sent] * [number of distributed topic members]
more messages per MDB, depending on how may distributed topic members are deployed on a
WebLogic Server instance. For example, if a JMS server contains two distributed topic members,
then two MDBs are deployed, one for each member, so you will receive twice as many messages.

Accessing Distributed Destination Members

The following sections provide information on how to directly access a member a of a distributed
destination.

Note: Applications defeat load balancing by directly accessing the individual physical
destinations. For more information, see “Configuring Distributed Destinations” in
Configuring and Managing WebLogic JMS.

Accessing Uniform Destination Members

In order to access a uniform destination member within a uniform distributed destination, you
must look up the JNDI name or the member name using the
weblogic.jms.extensions.JMSModuleHelper class uddMakeName and
uddMemberJNDIName APIs. You can then use the JNDI name or supply the module name

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/JMSModuleHelper.html

Using Distributed Destinations

followed by an exclamation point (!), the JMS server name followed by a forward slash (/), and
the member name.

For example, the following code illustrates how to look up a particular member of a uniform
distributed queue (myQueue), on a JMS server (myServer) in module (myModule):

gueue = myQueueSession.createQueue ("myModule!myServer/myQueue") ;

Note: When calling the createQueue () or createTopic () methods, any string containing a
forward slash (/), is assumed to be the name of a distributed destination member—not a
distributed destination. If no such destination member exists, then the call will fail with
an InvalidDestinationException.

uddMakeName

This API returns the member name of a uniform distributed destination, given the name of the
uniform distributed destination and the JMS server upon which the member is deployed or to be
deployed.

public static String uddMemberName (String jmsServerName, String name) {
return (uddMakeName (jmsServerName, name)) ;
}
where:
® jmsServerName is the configured name of a JMS Server.
e name is the configured name of a uniform distributed destination.

e Returns String[] array of JMS server names.

uddMemberJNDIName

This API returns the JNDI name of a uniform distributed destination member, given the JNDI
name of the uniform distributed destination and the JMS server upon which the member is
deployed or to be deployed.

public static String uddMemberJNDIName (String jmsServerName, String name) {
return (uddMakeName (jmsServerName, name)) ;
}

where:

® jmsServerName is the configured name of a JMS Server.

Programming WebLogic JMS 8-9

Using Distributed Destinations

e name is the configured name of a uniform distributed destination.

e Returns String[] array of JMS server names.

Accessing Weighted Destination Members

In order to access a weighted destination member within a distributed destination, you must look
up the destination member using the configured JNDI name, or supply the module name followed
by an exclamation point (!), the JMS server name followed by a forward slash (/), and the
JMSQueueMBean Or JMSTopicMBean configuration MBean name.

For example, the following code illustrates how to look up a particular member of a weighted
distributed queue (myQueue), on a JMS server (myServer) in module (myModule):

gueue = myQueueSession.createQueue ("myModule!myServer/myQueue") ;

Note: When calling the createQueue () or createTopic () methods, any string containing a
forward slash (/), is assumed to be the name of a distributed destination member—not a
distributed destination. If no such destination member exists, then the call will fail with
an InvalidDestinationException.

Distributed Destination Failover

Note: If the distributed queue member on which a queue producer is created should fail, yet the
WebLogic Server instance where the producer’s JMS connection resides is still running,
the producer remains alive and WebLogic JMS will fail it over to another distributed
queue member, irrespective of whether the Load Balancing option is enabled. For
example, a WebLogic cluster contains WLSServerl, WLSServer2, and WLSServer3 and
you are connected to WLServer?2. If server WLSServer 2 fails, WebLogic JMS fail the
producer over to one of the remaining cluster members. For more information, see
“Configuring Distributed Destinations” in Configuring and Managing WebLogic JMS.

A simple way to failover a client connected to a failed distributed destination is to write reconnect
logic in the client code to connect to the distributed destination after catching onException.

Using Message-Driven Beans with Distributed Destinations

8-10

A message-driven bean (MDB) acts as a JMS message listener, which is similar to an event
listener except that it receives messages instead of events. For more information on MDBs, see:

e MDBs and Messaging Models in Programming WebLogic Enterprise JavaBeans

e MDB Deployment Options in Programming WebLogic Enterprise JavaBeans.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs90/ejb/message_beans.html#messaging_models
http://e-docs.bea.com/wls/docs90/ejb/message_beans.html#mdb_deployment_options

Common Use Cases for Distributed Destinations

Common Use Cases for Distributed Destinations

The following sections provide common use case scenarios when using distributed destinations:
e “Maximizing Production” on page 8-11
e “Maximizing Availability” on page 8-12

e “Stuck Messages” on page 8-13

Maximizing Production

To maximize message production, Bea recommends that each member of a distributed
destination be associated with a producer and a consumer. The following diagram demonstrates
how to efficiently provide maximum message production and high availability using a UDD

without using load balancing:

Figure 8-1 Paired Producers and Consumers

Producer 1 ~ ~Producer 2

—

NN
¢ ¢

Consumer 1 Consumer 2

In this situation, UDDI is a uniform distributed destination composed of two physical members:
D1 and D2. Each physical destination has a producer/consumer pair and the effective path for a

Programming WebLogic JMS 8-11

Using Distributed Destinations

8-12

message follows the solid line from the producer through the destination member to the
consumer. If you are using ordering, you should have a producer for each expected
Unit-of-Order. See Using Unit-of-Order with Distributed Destinations in Programming
WebLogic JMS.

Maximizing Availability

This section provides information on how to maximize message availability.

Using Queues

Ideally, its best to pair a producer with a consumer but it is not always practical. The rate that
messages are consumed is the limiting factor that determines the message throughput of your
application. You can increase the availability of consumers by using load balancing between
member destinations. In this situation, consumers are not paired with a producer as the UDD load
balances an incoming message to the next available consumer using the assigned load balancing
algorithm.

Note: Some combinations of Unit-of-Order features can result in the starvation of competing
Unit-of-Order message streams, including the under utilization of resources when the
number of consumers exceed the number of in-flight messages with different
Unit-of-Order names. You will need to test your applications under maximum loads to
optimize your system's performance and eliminate conditions that under utilize
resources.

Using Topics
When using a distributed topic, every member destination will forward its messages to every
other member of the distributed topic.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jms/uoo.html

Common Use Cases for Distributed Destinations

Figure 8-2 Using Distributed Topics

Producer 1 ‘ Producer 2
¢ l ¢

Consumer 1 Consumer 2

In this situation, UDDI is a uniform distributed destination composed of two physical members:
D1 and D2. Each physical destination has a producer/consumer pair. Each consumer receives
messages sent by Producer 1 and Producer 2.

Stuck Messages

In this situation, a producer is sending messages to one member of a UDD but there is no
consumer available to get the message. This typically happens as a producer sends a message to
one of the destinations (D1) and a consumer is listening for messages on another destination (D2).

Programming WebLogic JMS 8-13

Using Distributed Destinations

Figure 8-3 Stuck Messages

Producer 1

AL

¢

Consumer 2

UDD1 is a uniform distributed destination composed of two physical members: D1 and D2. D1
has a producer and D2 has a consumer. Avoid this configuration by using producer/consumer
pairs or by configuring forwarding on the destination.

8-14 Programming WebLogic JMS

CHAPTERa

Enhanced J2EE Support for Using
WebLogic JMS With EJBs and Servlets

Usability features that are generally hidden behind the J2EE standard have been enhanced to
make it easier to access EJB and servlet containers with WebLogic JMS or third-party JMS
providers. In fact, implementing this “JMS wrapper” support, as described in this section, is the
best practice method of sending a WebLogic JMS message from inside an EJB or servlet.

“Enabling WebLogic JIMS Wrappers” on page 9-1

“What’s Happening Under the JMS Wrapper Covers” on page 9-5
“Improving Performance Through Pooling” on page 9-8
“Examples of JMS Wrapper Functions” on page 9-10

“Simplified Access to Remote or Foreign JMS Providers” on page 9-15

“Simplified Access to Remote or Foreign JMS Providers” on page 9-15 briefly describes the
Administration Console support for foreign JMS providers. This feature makes it possible to
easily map foreign JMS providers — including remote instances of WebLogic Server in another
cluster or domain — so that they appear in the local JNDI tree as a local JIMS object.

Enabling WebLogic JMS Wrappers

WebLogic Server uses JMS wrappers that make it easier to use WebLogic JMS inside a J2EE
component, such as an EJB or a servlet, while also providing a number of enhanced usability and
performance features:

Programming WebLogic JMS 9-1

Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets

9-2

e Automatic pooling of JMS connection and session objects (and some pooling of message
producer objects as well).

e Automatic transaction enlistment for WebLogic JMS implementations and for third-party
JMS providers that support two-phase commit transactions (XA protocol).

e Testing of the JMS connection, as well as reestablishment after a failure.

e Security credentials that are managed by the EJB or servlet container.

“What’s Happening Under the JMS Wrapper Covers” on page 9-5 describes how WebLogic
Server implements these features behind the scenes.

Declaring JMS Objects as Resources In the EJB or Servlet
Deployment Descriptors

You enable these enhanced J2EE features by declaring a JMS connection factory as a
resource-ref in the EJB or servlet deployment descriptors, as described in “Declaring a
Wrapped JMS Connection Factory” on page 9-2. For example, when a connection factory is
declared as a resource-ref, a JMS application can look it up from JNDI using the
java:comp/env/ subtree that is created for each EJB or servlet. It is important to note that the
features listed above are only enabled when using a JMS resource inside the deployment
descriptors. The EJB and servlet programmers still have direct access to the JMS provider by
performing a direct JNDI lookup of the connection factory or destination.

For more information about packaging EJBs, see “Implementing Enterprise JavaBeans” in
Programming WebLogic Enterprise JavaBeans. For more information about programming
servlets, see “Creating and Configuring Servlets” in Programming WebLogic HTTP Servlets.

Declaring a Wrapped JMS Connection Factory

You can declare a JMS connection factory as part of an EJB or servlet by defining a
resource-ref element in the ejb-jar.xml or web.xml file, respectively. This process creates
a “wrapped” JMS connection factory that can benefit from the more advanced session pooling,
automatic transaction enlistment, connection monitoring, and container-managed security
features described in “Improving Performance Through Pooling” on page 9-8.

Here is an example of such a connection factory element:

<resource-ref>
<res-ref-name>jms/QCF</res-ref-name>

<res-type>javax.jms.QueueConnectionFactory</res-type>

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ejb/implementing.html
http://e-docs.bea.com/wls/docs90/webapp/configureservlet.html

Enabling WebLogic JMS Wrappers

<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

This element declares that a JMS QueueConnectionFactory object will be bound into JNDI, at
the location:

java:comp/env/QCF

This JNDI name is only valid inside the context of the EJB or servlet where the resource-ref
is declared, which is what the java: comp/env JNDI context signifies.

In addition to this element, there must be a matching resource-description element in the
weblogic-ejb-jar.xml (for EJBs) or weblogic.xml (for servlets) file that tells the J2EE
container which JMS connection factory to put in that location. Here is an example:

<resource-description>
<res-ref-name>jms/QCF</res-ref-name>
<jndi-name>weblogic.jms.ConnectionFactory</jndi-name>

</resource-description>

The connection factory specified here must already exist in the global JNDI tree. (This example
uses one of the default JMS connection factories that is automatically created when the built-in
WebLogic IMS server is used). To use another WebLogic JMS connection factory from the same
cluster, simply include that connection factory’s JNDI name inside the jndi-name element. To
use a connection factory from another vendor, or from another WebLogic Server cluster, create
a Foreign JMS Server.

If the JNDI name specified in the resource-description element is incorrect, then the
application is still deployed. However, you will receive an error when you try to use the
connection factory.

Declaring JMS Destinations

You can also bind a JMS queue or topic destination into the java : comp/env/jms JNDI tree by
declaring it as a resource-env-ref element in the ejb-jar.xml or web.xml deployment
descriptors. The transaction enlistment, pooling, connection monitoring features take place in the
connection factory, not in the destinations. However, this feature is useful for consistency, and to
make an application less dependent on a particular configuration of WebLogic Server, since
destinations can easily be modified by simply changing the corresponding resource-env-ref
description, without having to recompile the source code.

Here is an example of such a queue destination element:

Programming WebLogic JMS 9-3

Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets

9-4

<resource-env-ref>
<resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

This element declares that a JMS Queue destination object will be bound into JNDI, at the
location:

java:comp/env/TESTQUEUE

As with a referenced connection factory, this JNDI name is only valid inside the context of the
EJB or servlet where the resource-ref is declared.

You must also define a matching resource-env-description element in the
weblogic-ejb-jar.xml or weblogic.xml file. This provides a layer of indirection which
allows you to easily modify referenced destinations just by changing the corresponding
resource-env-ref deployment descriptors.

<resource-env-description>
<res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>
<jndi-name>jmstest.destinations.TESTQUEUE</jndi-name>

</resource-env-description>

The queue or topic destination specified here must already exist in the global INDI tree. Again,
if the destination does not exist, the application is deployed, but an exception is thrown when you
try to use the destination.

Sending a JMS Message In a J2EE Container

After you declare the JMS connection factory and destination resources in the deployment
descriptors so that they are mapped to the java: comp/env JNDI tree, you can use them to send
and/or receive JMS messages inside an EJB or a servlet.

For example, the following code fragment sends a message:

InitialContext ic = new InitialContext();
QueueConnectionFactory gcf =
(QueueConnectionFactory) ic.lookup ("java:comp/env/jms/QCF") ;
Queue destQueue =
(Queue) ic.lookup ("java:comp/env/jms/TESTQUEUE") ;
ic.close() ;
QueueConnection connection = gcf.createQueueConnection() ;

try {

Programming WebLogic JMS

What’s Happening Under the JMS Wrapper Covers

QueueSession session = connection.createQueueSession (0, false);
QueueSender sender = session.createSender (destQueue) ;
TextMessage msg = session.createTextMessage ("This is a test");
sender.send (msg) ;

} finally {

connection.close() ;

}

This is standard code that complies with the J2EE specification and should run on any EJB or
servlet product that properly supports J2EE — the difference is that it runs more efficiently on
WebLogic Server, because under the covers various objects are pooled, as described in ‘“Pooled
JMS Connection Objects” on page 9-8.

Note that this code fragment uses a try. . . f£inally block to guarantee that the close () method
on the JMS Connection object is executed even if one of the statements inside the block throws
an exception. If no connection pooling were being done, then this block would be necessary in
order to ensure that the connection is closed, and to prevent server resources from being wasted.
But since WebLogic Server pools some of the objects that are created by this code fragment, it is
even more important that close () be called; otherwise, the EJB or servlet container will not
know when to return the object to the pool.

Also, none of the transactional XA extensions to the JMS API are used in this code fragment.
Instead, the container uses them internally if the JMS code is used inside a transaction context.
But whether XA is used internally, the user-written code is the same, and does not use any JMS
XA classes. This is what is specified by J2EE. Writing EJB code in this way enables you to run
EJBs in an environment where transactions are present or in a non-transactional environment, just
by changing the deployment descriptors.

Caution: When using a wrapped JMS connection factory, which is obtained by using the
resource-ref feature and looked up by using the java:comp/env/jms JNDI tree
context, then the EJB must not use the transactional XA interfaces.

What’s Happening Under the JMS Wrapper Covers

This section explains what is actually taking place under the covers when WebLogic Server
creates a set of wrappers around the JMS objects. For example, the code fragment in “Sending a
JMS Message In a J2EE Container” on page 9-4, shows an instance of a WebLogic-specific
wrapper class being returned rather than the actual JMS connection factory because the
connection factory was looked up from the java:comp/env JNDI tree. This wrapper object

Programming WebLogic JMS 9-5

Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets

9-6

intercepts certain calls to the JMS provider and inserts the correct J2EE behavior, as described in
the following sections.

Automatically Enlisting Transactions

This feature works for either WebLogic JMS implementations or for third-party JMS providers
that support two-phase commit transactions (XA protocol). If a wrapped JMS connection sends
or receives a message inside a transaction context, the JMS session being used to send or receive
the message is automatically enlisted in the transaction through the XA capabilities of the JMS
provider. This is the case whether the transaction was started implicitly because the JMS code
was invoked inside an EJB with container-managed transactions enabled, or whether the
transaction was started manually using the UserTransaction interface in a servlet or an EJB
that supports bean-managed transactions.

However, if an EJB or servlet attempts to send or receive a message inside a transaction context
and the JMS provider does not support XA, the send () or receive () call throws the following
exception:

[J2EE:160055] Unable to use a wrapped JMS session in the transaction because
two-phase commit is not available.

Therefore, if you are using a JMS provider that doesn’t support XA to send or receive a message
inside a transaction, either declare the EJB with a transaction mode of Not Supported or suspend
the transaction using one of the JTA APIs.

Container-Managed Security

WebLogic JMS uses the security credentials that are present on the thread when the EJB or servlet
container is invoked. For foreign JMS providers, however, when you declare a JMS connection
factory via a resource-ref element in the weblogic-ejb-jar.xml or web.xml file, there is

an optional sub-element called res-auth. This element may have one of two settings:

Container — When you set the res-auth element to Container, security to the JMS provider
is managed by the J2EE container. In this case, if the JMS connection factory was mapped into
the INDI tree using a Foreign JMS Connection Factory configuration MBean, then the user name
and password from that MBean is used (see “Simplified Access to Remote or Foreign IMS
Providers” on page 9-15). Otherwise, WebLogic Server connects to the provider with no user
name or password specified. In this mode, it is an error to pass a user name and password to the
createConnection () method of the JMS connection factory.

Application — When you set the res-auth element to Application, any user name or
password on the MBean is ignored. Instead, the application code must specify a user name and

Programming WebLogic JMS

What’s Happening Under the JMS Wrapper Covers

password to the createConnection () method of the JMS connection factory, or use the version
of createConnection () with no user name or password if none are required.

Connection Testing

The JMS wrapper classes monitor each connection that is established to the JMS provider. They
do this in two ways:

e Registering a JMS ExceptionListener object on the connection.

e Testing the connection every two minutes by sending a message to a temporary queue or
topic and then receiving it again.

J2EE Compliance

The J2EE specification states that you should not be allowed to make certain JMS API calls inside
a J2EE application. The JMS wrappers enforce these restrictions by throwing the following
exceptions when they are violated:

e On the connection object, the methods createConnectionConsumer (),
createDurableConnectionConsumer (), setClientID(), setExceptionListener (),
and stop () should not be called.

e On the session object, the methods getMessageListener () and
setMessageListener () should not be called.

e On the consumer object (a QueueReceiver or TopicSubscriber object), the methods
getMessageListener () and setMessageListener () should not be called.

Furthermore, the createSession () method, and the associated createQueueSession () and
createTopicSession () methods, are handled differently. The createSession () method
takes two parameters: an “acknowledgement” mode and a “transacted” flag. When used inside an
EJB, these two parameters are ignored. If a transaction is present, then the JMS session is enlisted
in the transaction as described in “Automatically Enlisting Transactions” on page 9-6; otherwise,
it is not. By default, the acknowledgement mode is set to “auto acknowledge”. This behavior is
expected by the J2EE specification.

Note: This may make it more difficult to receive messages from inside an EJB, but the
recommended way to receive messages from inside an EJB is to use a MDB, as described
in “Designing and Developing Message-Driven EIBs” in Programming WebLogic
Enterprise JavaBeans.

Programming WebLogic JMS 9-7

http://e-docs.bea.com/wls/docs90/ejb/message_beans.html

Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets

Inside a servlet, however, the parameters to createQueueSession () and
createTopicSession () are handled normally, and users can make use of all the various
message acknowledgement modes.

Pooled JMS Connection Objects

The JMS wrappers pool various session objects in order to make code like the example provided
in “Sending a JMS Message In a J2EE Container” on page 9-4 more efficient. A pooled JIMS
connection is a session pool used by EJBs and servlets that use a resource-ref element in their
deployment descriptor to define their JMS connection factories, as discussed in “Declaring a
Wrapped JMS Connection Factory” on page 9-2.

Improving Performance Through Pooling

9-8

The automatic pooling of connections and other objects by the JMS wrappers means that it is
efficient to write code as shown in “Sending a JMS Message In a J2EE Container” on page 9-4.
Although in this example the Connection Factory, Connection, and Session objects are created
every time a message is sent, in reality these three classes work together so that when they are
used as shown, they do little more than retrieve a Session object from the pool.

Speeding Up JNDI Lookups by Pooling Session Objects

The JNDI lookups of the Connection Factory and Destination objects can be expensive in terms
of performance. This is particularly true if the Destination object points to a Foreign JMS
Destination MBean, and therefore, is a lookup on a non-local JNDI provider. Because the
Connection Factory and Destination objects are thread-safe, they can be looked up once inside an
EJB or servlet at creation time, which saves the time required to perform the lookup each time.

Inside a servlet, these lookups can be performed inside the init () method. The Connection
Factory and Destination objects may then be assigned to an instance variable and reused
whenever a message is sent.

Inside an EJB, these lookups can be performed inside the ejbCreate () method and assigned to
an instance variable. For a session bean, each instance of the bean will then have its own copy.
Since stateless session beans are pooled, this method is also very efficient (and is perfectly
consistent with the J2EE specifications), because the number of a times that lookups occur is
drastically reduced by pooling the JMS connection objects. (Caching these objects in a static
member of the EJB class may work, but it is discouraged by the J2EE specification.)

Programming WebLogic JMS

Improving Performance Through Pooling

However, if these objects are cached inside the ejbCreate () or init () method, then the EJB
or servlet must have some way to recreate them if there has been a failure. This is necessary
because some JMS providers, like WebLogic JMS, may invalidate a Destination object after a
server failure. So, if the EJB runs on Server A, and JMS runs on Server B, then the EJB on Server
A will have to perform the JNDI lookup of the objects from Server B again after that server has
recovered. The example, “PoolTestBean.java” on page 9-13 includes a sample EJB that performs
this caching and relookup process correctly.

Speeding Up Object Creation Through Caching

Once Connection Factory object and/or Destination object pooling has been established, it may
be tempting to cache other objects, such as the Connection, Session, and Producer objects, inside
the ejbcreate () method. This will work, but it is not always the most efficient solution.
Essentially, by doing this you are removing a Session object from the cache and permanently
assigning it to a particular EJB, whereas by using the JMS wrappers as designed, that Session
object can be shared by other EJBs and servlets as well. Furthermore, the wrappers attempt to
reestablish a JMS connection and create new session objects if there is a communication failure
with the JMS provider, but this will not work if you cache the Session object on your own.

Enlisting the Proper Transaction Mode

When a JMS send () or receive () operation is performed inside a transaction, the EJB or
servlet automatically enlists the JMS provider in the transaction. A transaction can be started
automatically inside an EJB or servlet that has container-managed transactions, or it can be
started explicitly using the UserTransaction interface. In either case, the container
automatically enlists the JMS provider. However, if the underlying JMS connection factory used
by the EJB or servlet does not support XA, the container throws an exception.

Performing the transaction enlistment has overhead. Furthermore, if an XA connection factory is
used, but the send () or receive () method is invoked outside a transaction, the container must
still create a JTA transaction to wrap the send () or receive () method in order to ensure that
the operation properly takes place no matter which JMS provider is used. Although this is only a
one-phase commit, it can still slow down the server.

Therefore, when writing an EJB or servlet that uses a JMS resource in a non-transactional
manner, it is best to use a JMS connection factory that is not configured to support XA.

Programming WebLogic JMS 9-9

Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets

Examples of JMS Wrapper Functions

9-10

The following files make up a simple stateless EJB session bean that uses the WebLogic IMS
wrapper functions to send a transactional message (sendxATransactional) when an EJB is
called. Although this example uses a session bean, the same XML descriptors and bean class
(with very few changes) can be used for a message-driven bean.

ejb-jarxml
This section describes the EJB components. For the “JMS wrapper” code snippets provided in
this section, note that this section declares the resource-ref and resource-env-ref elements

for the wrapped JMS connection factory (QueueConnectionFactory) and referenced JIMS
destination (TESTQUEUE).

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>

<enterprise-beans>

<session>
<ejb-name>PoolTestBean</ejb-name>
<home>weblogic.jms.pool. test.PoolTestHome</home>
<remote>weblogic.jms.pool.test.PoolTest</remote>
<ejb-class>weblogic.jms.pool.test.PoolTestBean</ejb-class>
<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

<resource-ref>
<res-ref-name>jms/QCF</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

<resource-env-ref>

<resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>

Programming WebLogic JMS

Examples of JMS Wrapper Functions

<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>
</session>

</enterprise-beans>

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>PoolTestBean</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

</assembly-descriptor>

</ejb-jar>

weblogic-ejb-jarxml

This section declares matching resource-description queue connection factory and queue
destination elements that tell the J2EE container which JMS connection factory and destination
to put in that location.

<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
"-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd">

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>PoolTestBean</ejb-name>
<stateless-session-descriptor>
<pool>
<max-beans-in-free-pool>8</max-beans-in-free-pool>
<initial-beans-in-free-pool>2</initial-beans-in-free-pool>
</pool>

</stateless-session-descriptor>

Programming WebLogic JMS 9-11

Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets

<reference-descriptor>
<resource-description>
<res-ref-name>jms/QCF</res-ref-name>
<jndi-name>weblogic.jms.XAConnectionFactory</jndi-name>
</resource-description>
<resource-env-description>
<res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>
<jndi-name>TESTQUEUE</jndi-name>
</resource-env-description>
</reference-descriptor>
<jndi-name>PoolTest</jndi-name>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

PoolTest.java

This section defines the “remote” interface for the PoolTest bean. It declares one method, called

sendXATransactional.

package weblogic.jms.pool.test;

import java.rmi.*;

import javax.ejb.*;

public interface PoolTest extends EJBObject

{

public String sendXATransactional (String text)

throws RemoteException;

PoolTestHome.java

This section defines the “home” interface for the PoolTest bean. It is required by the EJB
specification.

package weblogic.jms.pool.test;

import java.rmi.*;

import javax.ejb.*;

9-12 Programming WebLogic JMS

Examples of JMS Wrapper Functions

public interface PoolTestHome
extends EJBHome

{

PoolTest create()

throws CreateException, RemoteException;

PoolTestBean.java

This section defines the actual EJB code. It sends a message whenever the
sendxXATransactional method is called.

package weblogic.jms.pool.test;

import java.lang.reflect.*;
import java.rmi.*;

import javax.ejb.*;

import javax.jms.*;

import javax.naming.*;

import javax.transaction.*;

public class PoolTestBean

extends PoolTestBeanBase
implements SessionBean

{

private SessionContext context;
private QueueConnectionFactory qgcf;

private Queue destination;

public void ejbActivate()
{
}

public void ejbRemove ()
{
}

public void ejbPassivate()
{

Programming WebLogic JMS 9-13

Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets

public void setSessionContext (SessionContext ctx)

{

context = ctx;

}

private void lookupJNDIObjects ()

throws NamingException

{
InitialContext ic = new InitialContext () ;
try {
gcf =
(QueueConnectionFactory)ic.lookup
("java:comp/env/jms/QCF") ;
destination =
(Queue) ic.lookup ("java:comp/env/jms/TESTQUEUE") ;
} finally {
ic.close();
}
}

public void ejbCreate()
throws CreateException
{
try {
lookupdNDIObjects () ;
} catch (NamingException ne) {
throw new CreateException(ne.toString());
}
}

public String sendXATransactional (String text)
throws RemoteException

{

String id = "Not sent yet";
try {
if ((gcf == null) || (destination == null)) {

9-14 Programming WebLogic JMS

Simplified Access to Remote or Foreign JMS Providers

lookupdNDIObjects () ;
}

QueueConnection connection = gcf.createQueueConnection() ;

try {

QueueSession session = connection.createQueueSession
(false, 0);

TextMessage message = session.createTextMessage
(text) ;

QueueSender sender = session.createSender (destination) ;

sender.send (message) ;
id = message.getdJMSMessagelID() ;
} finally {
connection.close() ;
}
} catch (Exception e) {
// Invalidate the JNDI objects if there is a failure
// this is necessary because the destination object
// may become invalid if the destination server has
// been shut down
gcf = null;
destination = null;
throw new RemoteException("Failure in EJB: " + e);
}
return id;
}
}

Simplified Access to Remote or Foreign JMS Providers

Another set of foreign JMS provider features makes it possible to create a “symbolic link”
between a JMS connection factory or destination object in an third-party JNDI provider to an
object inside the local WebLogic Server. This feature can also be used to reference remote
instances of WebLogic Server in another cluster or domain in the local WebLogic JNDI tree.

There are three System Module MBeans for this task:

e Foreign Server — Contains information about the remote JNDI provider, including its
initial context factory, URL, and additional parameters. It is the parent of the Foreign
Connection Factory and Foreign Destination MBeans. It can be targeted to an independent

Programming WebLogic JMS 9-15

Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets

9-16

WebLogic Server or to a cluster. For more information see, “ForeignServerBean” in the
WebLogic Server MBean Reference.

e Foreign Connection Factory — represents a foreign connection factory. It contains the
name of the connection factory in the remote JNDI provider, the name to map it to in the
server’s JNDI tree, and an optional user name and password. The user name and password
are only used when a Foreign Connection Factory is used inside a resource-reference
in an EJB or a servlet, with the “Container” mode of authentication. It creates
non-replicated JNDI objects on each WebLogic Server instance to which the parent
Foreign Connection Factory MBean is targeted. (To create the JNDI object on every node
in a cluster, target the parent MBean to the cluster.). For more information see,
“ForeignConnectionFactoryBean” in the WebLogic Server MBean Reference.

e Foreign Destination — represents a foreign destination. It contains the name to look up on
the foreign JNDI provider, and the name to map it to on the local server.

For information on how to configure foreign resources using the Administration Console, see
Configuring JMS System Resources in Configuring and Managing WebLogic JMS.

Once deployed, these foreign System Module MBeans work by creating objects in the local
server’s JNDI tree, which then perform the lookup of the referenced remote JMS objects
whenever the foreign System Module MBeans are looked up. This means that the local server and
the remote JNDI directory are never out of sync. However, from a performance perspective, it
means that a JNDI lookup of one of these MBeans can potentially be expensive. The sections
under “Improving Performance Through Pooling” on page 9-8 describes some ways to improve
the performance of these remote lookups.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ForeignServerBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ForeignConnectionFactoryBean.html
http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html#accessing_foreign_providers

CHAPTERm

Using Message Unit-of-Order

The following sections describe how to use Message Unit-of-Order to provide strict message
ordering when using WebLogic JMS:

e “What Is Message Unit-Of-Order?” on page 10-1

e “Understanding Message Processing with Unit-of-Order” on page 10-1
e “Message Unit-of-Order Case Study” on page 10-4

e “How to Create a Unit-of-Order” on page 10-8

e “Message Unit-of-Order Advanced Topics” on page 10-10

e “Limitations to Message Unit-of-Order” on page 10-14

What Is Message Unit-0f-Order?

Message Unit-of-Order is a WebLogic Server value-added feature that enables a stand-alone
message producer, or a group of producers acting as one, to group messages into a single unit with
respect to the processing order. This single unit is called a Unit-of-Order and requires that all
messages from that unit be processed sequentially in the order they were created.

Understanding Message Processing with Unit-of-Order

The following sections compare message processing as described by the JMS specification with
message processing enhanced by using WebLogic Server’s Message Unit-of-Order feature.

Programming WebLogic JMS 10-1

Using Message Unit-of-Order

10-2

e “Message Processing According to the JMS Specification” on page 10-2
e “Message Processing with Unit-of-Order” on page 10-2

e “Message Delivery with Unit-of-Order” on page 10-3

Message Processing According to the JMS Specification

While the Java Message Service Specification provides an ordered message delivery, it does so
in a very strict sense. It defines order between a single instance of a producer and a single instance
of a consumer, but does not take into account the following common situations:

e Many consumers on one queue. See “Using Distributed Destinations” on page 8-1.

Multiple producers within a single application acting as a single producer. See “Using
Distributed Destinations” on page 8-1.

e Message recoveries or transaction rollbacks where other messages from the same producer
can be delivered to another consumer for processing. See “What Happens When a Message
Is Delayed During Processing?” on page 10-11.

e Use of filters and destination sort keys. See “Message Unit-of-Order Advanced Topics” on
page 10-10.

Message Processing with Unit-of-Order

The WebLogic Server Unit-of-Order feature enables a message producer or group of message

producers acting as one, to group messages into a single unit that is processed sequentially in the
order the messages were created. The message processing of a single message is complete when
a message is acknowledged, committed, recovered, or rolled back. Until message processing for
a message is complete, the remaining unprocessed messages for that Unit-of-Order are blocked.

This section provides information on rules for JMS acknowledgement modes when using
Message Unit-of-Order:

e No messages from a Unit-of-Order are processed in parallel when the acknowledgement
mode is CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, Or DUPS_OK_ACKNOWLEDGE .

e When the consumer is closed, the current message processing is completed, regardless of
the session's acknowledge mode.

e CLIENT_ACKNOWLEDGE — The application calling Message . acknowledge and
Session.recover indicate which messages are completely processed in the
Unit-of-Order.

Programming WebLogic JMS

http://www.java.sun.com/products/jms/docs.html
http://www.java.sun.com/products/jms/docs.html

Understanding Message Processing with Unit-of-Order

e AUTO_ACKNOWLEDGE — The session automatically acknowledges a client's receipt of a
message when it has either successfully returned from a call to receive or when the
MessageListener that was called returns successfully.

— Asynchronous mode: Successful completion or exception of onMessage (msg)
indicates when a message is completely processed.

— Synchronous mode: For a given consumer, such as consumer A, consumerA.receive
is completed when one of the following occurs: consumera.receive,
consumerA. setMessageListener, Or consumerA.close.

e DUPS_OK_ACKNOWLEDGE — The session automatically acknowledges a client's receipt of a
message when it has either successfully returned from a call to receive or when the
MessageListener that was called returns successfully.

— Asynchronous mode: Successful completion or exception of onMessage (msg)
indicates when a message is completely processed.

— Synchronous mode: For a given consumer, such as consumer A,
consumerA.receive () is completed when one of the following occurs:
consumerA.receive (), consumerA.setMessageListener (), Or
consumerA.close ().

® NO_ACKNOWLEDGE — The session provides no order processing guarantees. Messages can be
processed in parallel to different available consumers.

Message Delivery with Unit-of-Order

Message Unit-of-Order provides that messages are delivered in accordance with the following
rules:

e Member messages of a Unit-of-Order are delivered to queue consumers sequentially in the
order they were created. The message order within a Unit-of-Order will not be affected by
sort criteria, priority, or filters. However, messages that are uncommitted, have a
Redelivery Delay, or have an unexpired TimetoDeliver timer will delay messages that
arrive after them.

e Unit-of-Order messages are processed one at a time. The processing completion of one
message allows the next message in the Unit-of-Order to be delivered.

e Unit-of-Order messages sent to a distributed queue reside on only one physical member of
the distributed queue. For more information, see “Using Unit-of-Order with Distributed
Destinations” on page 10-12.

Programming WebLogic JMS 10-3

Using Message Unit-of-Order

o All uncommitted or unacknowledged messages from the same Unit-of-Order must be in the
same transaction, or if non-transactional, the same JMSSession. When one message in the
Unit-of-Order is uncommitted or unacknowledged, the other messages are deliverable only
to the same transaction or JMSSession. This keeps all unacknowledged messages from the
same Unit-of-Order in one recoverable operation and allows order to be maintained despite
rollbacks or recoveries.

e A queue that has several messages from the same Unit-of-Order must complete processing
all of them before they can be delivered to any queue consumer or the next message can be
delivered to the queue.

For Example, when Messages M; through M, are delivered:

— as part of a transaction and the transaction is rolled back (processing is complete). Then
messages M through M,, are delivered to any available consumer.

— outside of a transaction and the messages are recovered (processing is complete). Then
messages M through M,, are delivered to any available consumer.

— outside of a transaction and the messages are acknowledged (processing is complete).
Then the undelivered message M,,, is delivered to any available consumer.

Message Unit-of-Order Case Study

This section provides a simple case study for Message Unit-of-Order based on ordering a book
from an online bookstore.

e “Joe Orders a book™ on page 10-4
e “What Happened to Joe’s Order” on page 10-5

e “How Message Unit-of-Order Solves the Problem” on page 10-6

Joe Orders a book

XYZ Online Bookstore implements a simple processing design that uses JMS to process
customer orders. The JMS processing system is composed of:

o A message producer sending to a queue (Queuel).

e Multiple message driven beans (MDBs), such as MdbX and MdbY, that process messages
from Queuel.

e A database (myDB) that contains order and order status information.

10-4 Programming WebLogic JMS

Message Unit-of-Order Case Study

Joe logs into his XYZ Online Bookstore account and searches his favorite book topics. He
chooses a book, proceeds to the checkout, and completes the sales transaction. Then Joe realizes
he has previously purchased this same item, so he cancels the order. One week later, the book is
delivered to Joe.

What Happened to Joe’s Order

In Joe’s ordering scenario, his cancel order message was processed before his purchase order
message. The result was that Joe received a book he did not wish to purchase. The following steps
demonstrate how Joe’s order was processed.

The following diagram and corresponding actions demonstrate how Joe’s order was processed.

Figure 10-1 Workflow for Joe’s Order

MdbX

&)

MdbY

(6)

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queuel.

Programming WebLogic JMS 10-5

Using Message Unit-of-Order

10-6

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queuel.

5. MdbX takes message A from Queuel.

6. MdbY takes message B from Queuel.

7. MdbY writes the cancel message to the database. Because there is no corresponding order
message, there is no order message to remove from the database.

8. MdbX writes the order message to the database.

9. An application responsible for shipping books reads the database, sees the order message,
and initiates shipment to Joe’s home.

Although the Java Message Service Specification provides an ordered message delivery, it only
provides ordered message delivery between a single instance of a producer and a single instance
of a consumer. In Joe’s case, multiple MDBs where available to consume messages from Queuel
and the processing order of the messages was no longer guaranteed.

How Message Unit-of-Order Solves the Problem

To ensure that all messages in Joe’s order are processed correctly, the system administrator for
XYZ Bookstore configures a Message Unit-of-Order based on a user session, such that all
messages from a user session have a Unit-of-Order name attribute with the value of the session
id. See “How to Create a Unit-of-Order” on page 10-8. All messages created during Joe’s user
session are processed sequentially in the order they were created because WebLogic Server
guarantees that messages in a Unit-of-Order are not processed in parallel.

The following diagram and corresponding actions demonstrate how Joe’s order was processed
using Message Unit-of-Order.

Programming WebLogic JMS

http://www.java.sun.com/products/jms/docs.html

Message Unit-of-Order Case Study

Figure 10-2 Workflow for Joe’s Order Using Unit-of-Order

MdbX

&)

MdbY

(6,7)

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queuel.
3. Joe cancels the order.

4. The cancel order (message B) is placed on Queuel.
5. MdbX takes message A from Queuel.

6. MdbY takes message B from Queuel.

7. Message B on MdbY is blocked until MdbX acknowledges the order message. See “What
Happens When a Message Is Delayed During Processing?”” on page 10-11.

8. Message A is committed and written to the database.

9. Message B is committed and written to the database.

Programming WebLogic JMS 10-7

Using Message Unit-of-Order

Because there is a corresponding order message, Joe’s order is removed from the database
and he does not receive a book.

How to Create a Unit-of-Order

10-8

The following sections describe how to create a Message Unit-of-Order. Also see “Message
Delivery with Unit-of-Order” on page 10-3 and “Message Unit-of-Order Advanced Topics” on
page 10-10.

e “Creating a Unit-of-Order Programmatically” on page 10-8
e “Creating a Unit-of-Order Administratively” on page 10-9

e “Unit-of-Order Naming Rules” on page 10-9

Creating a Unit-of-Order Programmatically

Use the setUnitOfOrder () method of the WLMessageProducer interface to associate a
producer with a Unit-of-Order name.

For example:
getProducer () .setUnitOfOrder (“myUOOname”) ;
The Unit-of-Order name attribute value is set to myUOOname.

Once a producer is associated with a Unit-of-Order, all messages sent by this producer are
processed as a Unit-of-Order until either the producer is closed or the association between the
producer and the Unit-of-Order is dissolved.

The following code provides an example of how to associate a producer with a Unit-of-Order:

Listing 10-1 Using the WLMessageProducer Interface to Create a Unit-of-Order

queue = (Queue) (ctx.lookup (destName)) ;

gsender = (WLMessageProducer) gs.createProducer (queue) ;
gsender.setUnitOfOrder () ;

uooname = gsender.getUnitOfOrder () ;

System.out.println("Using UnitOfOrder :" + uooname) ;

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/package-summary.html

How to Create a Unit-of-Order

Creating a Unit-of-Order Administratively

The following section provides information on how to configure JMS connection factories or
JMS destinations to enable Message Unit-of-Order.

Configuring Unit-of-Order for a Connection Factory

Use one of the following methods to configure JMS connection factories to enable Message
Unit-of-Order:

e Configure a connection factory to always use a user-generated Unit-of-Order name. As a
result, all producers created from such a connection factory have Unit-of-Order enabled.
See “Configure unit-of-order parameters” in the Administration Console Help.

e Configure a connection factory to always use a system-generated Unit-of-Order name for
each session. See “Configure unit-of-order parameters” in the Administration Console
Help.

e A client can call WLProducer.setUnitOfOrder (name) and change the initial connection
factory setting on the producer.

e Configure a destination to always use a system-generated Unit-of-Order name. See
“Configure unit-of-order parameters” in the Administration Console Help.

You should administratively configure a Unit-of-Order on a connection factory or destination
when interoperating with legacy JMS applications. This method provides a simple mechanism to
ensure messages are processed in the order they are created without making any code changes.

Unit-of-Order Naming Rules

A Unit-of-Order is identified by a name attribute. Within a destination, messages that have the
same value for the Unit-of-Order name attribute belong to the same Unit-of-Order. The name can
be provided by either the system or the application. Messages in the same Unit-of-Order all share
the same name. See “How to Create a Unit-of-Order” on page 10-8.

The name attribute for a Unit-of-Order must adhere to the following rules:

Programming WebLogic JMS 10-9

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureUOOParams.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureUOOParams.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureUOOParams.html

Using Message Unit-of-Order

A valid value for the Unit-of-Order name attribute is any non-null and non-empty string.

System-generated Unit-of-Order names are timestamp-based and statistically unique.

Applications can supply their own Unit-of-Order names. For example, WebLogic
Integration applications can use Workflow names and Web Services applications can use
conversation names.

Message Unit-of-Order has its own name space. A Unit-of-Order does not need to be
unique with respect to other named objects. For instance, it is valid to have a Unit-of-Order
named Foo and a queue named Foo.

e The scope of a Message Unit-of-Order is limited to a single destination. Two different
Units of Order on two destinations can have the same name.

e One or more producers can send messages with the same Unit-of-Order name by using the
same string to create the Unit-of-Order. The Unit-of-Order name can be extracted from a
delivered message. Example:

msg.getStringProperty ("JMS_BEA_UnitOfOrder") ;

So a system-generated Unit-of-Order name can be used by more than one producer. This
paradigm works just as well for application-assigned Unit-of-Order names. It will be most
efficient if the information is serialized in only one place, so a property like Conversation
ID can be stored only as the Unit-of-Order name. This paradigm does not work when the
message has been sent through a non-Unit-of-Order JMS provider (releases prior to
WebLogic 9.0 or non-WebLogic IMS providers).

Message Unit-of-Order Advanced Topics

10-10

The following sections describe how Unit-of-Order processes messages in advanced or more
complex situations:

e “What Happens When a Message Is Delayed During Processing?” on page 10-11
e “What Happens When a Filter Makes a Message Undeliverable” on page 10-11
e “What Happens When Destination Sort Keys are Used” on page 10-12

e “Using Unit-of-Order with Distributed Destinations” on page 10-12

e “Using Unit-of-Order with Topics” on page 10-13

e “Using Unit-of-Order with JMS Message Management” on page 10-13

e “Using Unit-of-Order with WebLogic Store-and-Forward” on page 10-14

Programming WebLogic JMS

Message Unit-of-Order Advanced Topics

e “Using Unit-of-Order with WebLogic Messaging Bridge” on page 10-14

What Happens When a Message Is Delayed During
Processing?

There are many situations that can occur during message processing that would normally change
the order in which a message is processed. The following is a short list of typical message
processing states that make a message not ready for delivery:

e A message is within an uncommitted transaction.

e A message’s TimeToDeliver value prevents it from being delivered until the
TimeToDeliver interval has elapsed.

e A consumer calls a recover or rollback that prevents a message from being re-delivered
until the RedeliveryDelay interval has elapsed.

Suppose messages A and B arrive respectively in the same Unit-of-Order, and message A cannot
be delivered for any reason listed above. Even though nothing is delaying the delivery of message
B, it is not deliverable until message A in its Unit-of-Order has been delivered.

What Happens When a Filter Makes a Message Undeliverable

Using a filter and a Unit-of-Order can provide unexpected behaviors. Suppose messages A
through Z are in the same Unit-of-Order in the same Queue. Consumer1 has a filter, and messages
A, B, and C satisfy the filter, and they are delivered to Consumerl.

1. Messages D through Z are undeliverable until messages A, B, and C are acknowledged.
2. Messages A, B, and C are acknowledged or recovered.
3. Message D is available to the message delivery system.
4. Message D does not pass the filter and can never be presented to Consumerl.
5. Messages E through Z are undeliverable until message D is processed.
e The transaction that contains message D must be rolled back.

e Once message D is processed, messages E through Z can be delivered.

For more information, see “Filtering Messages” on page 5-33.

Programming WebLogic JMS 10-11

Using Message Unit-of-Order

10-12

What Happens When Destination Sort Keys are Used

Destination sort keys control the order in which messages are presented to consumers when
messages are not part of a Unit-of-Order or are not part of the same Unit-of-Order.

For example:

Messages A and B arrive and in the same Unit-of-Order on a queue that is sorted by
priority and the sort order is decending, but message B has a higher priority than A.

Even though message B has a higher priority than message A, message B is still not deliverable
until message A has been processed because they are in the same Unit-of-Order. If a message C
arrives and either does not have a Unit-of-Order or is not in the same Unit-of-Order as message
A, the priority setting of message C and the priority setting of message A determine the delivery
order. See Configuring JMS System Resources in Configuring and Managing WebLogic JMS.

Using Unit-of-Order with Distributed Destinations

As previously discussed in the “Message Processing According to the JMS Specification” on
page 10-2, the Java Message Service Specification does not guarantee ordered message delivery
when applications use distributed queues. WebLogic JMS directs messages with the same
Unit-of-Order and having a distributed destination target to the same distributed destination
member. The member is selected by the destination’s Unit-of-Order configuration:

e “Using the Path Service” on page 10-12

e “Using Hash-based Routing” on page 10-12

Using the Path Service

You can configure the WebLogic Path Service to provide a persistent map that can store the
information required to route the messages contained in a Unit-of-Order to its destination
resource—a member of a distributed destination. If the WebLogic Path Service is configured for
a distributed destination, the routing path to a member destination is determined by the server
using the run-time load balancing heuristics for the distributed queue. See “Using WebLogic Path
Service” in Configuring and Managing WebLogic JMS.

Using Hash-based Routing

If the WebLogic Path Service is not configured, the default routing path to a member queue is
chosen by the server based on the hash codes of the Message Unit-of-Order name and the

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html#configure_jms_destination_key
http://www.java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#pathservice
message URL http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#pathservice
message URL http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#pathservice
http://e-docs.bea.com/wls/docs90/jms_admin/advance_config.html#pathservice

Message Unit-of-Order Advanced Topics

distributed queue members. An advantage of this routing mechanism is that routes to a distributed
queue member are calculated quickly and do not require persistent storage in a cluster.

Consider the following when implementing Message Unit-of-Order in conjunction with
Hash-based routing:

e If a distributed queue member has an associated Unit-of-Order and is removed from the
distributed queue, new messages are sent to a different distributed queue member and the
messages will not be continuous with older messages.

e If a distributed Queue member has an associated Unit-of-Order and is unreachable, the
producer sending the message will throw a JMSOrderException and the messages are not
routed to other distributed Queue members. The exception is thrown because the IMS
messaging system can not meet the quality-of-service required — only one distributed
destination member consumes messages for a particular Unit-of-Order.

Using Unit-of-Order with Topics

Assigning a Unit-of-Order does not prohibit parallel processing of a message by two subscribers
on the same topic. Since individual subscribers for a topic have their own destination and message
list, similar to a queue with one consumer, messages are processed by all subscribers according
to the Unit-of-Order assigned at the time of production.

If messages are sent to a distributed topic, the order of the messages on a particular physical
member is defined by the order the messages arrive at the member. See “Publish/Subscribe
Messaging” on page 2-5.

Using Unit-of-Order with JMS Message Management

JMS message management allows a JMS administrator to move and delete most messages in a
running JMS Server. This allows an administrator to violate the delivery rules specified in
“Message Delivery with Unit-of-Order” on page 10-3.

If messages A, B, C, and D are produced and sent to destination D1 and belong to Unit-of-Order
foo, consider the following:

e Moving messages C and D to destination D2 may allow parallel processing of messages
from both destinations.

e Moving messages B and C to destination D2 may allow parallel processing of message A
and messages B and C. After message A is processed, message D is deliverable.

Programming WebLogic JMS 10-13

Using Message Unit-of-Order

For applications that depend on maintaining message order, a best practice is to move all of the
messages in a Unit-of-Order as a single group.

To ensure Unit-of-Order delivery rules are maintained, use the following steps:
1. Pause the source destination and the target destination.
2. Select all of the messages with the Unit-of-Order you would like to move.

3. Move the selected messages to the target destination. If necessary, sort them according to
the order that you want them processed.

4. Resume the source and target destinations.

For more information, see “Troubleshooting WebLogic JMS” in Configuring and Managing
WebLogic JMS.

Using Unit-of-Order with WebLogic Store-and-Forward

WebLogic Store-and-Forward supports Message Unit-of-Order. For example, a
Store-and-Forward producer sends messages with a Unit-of-Order named Foo. If the producer
disconnects and reconnects through a different connection, the producer creates another
Unit-of-Order with the name Foo and continues sending messages. All messages sent before and
after the reconnect are directed through the same Store-and-Forward agent. See Configuring and
Managing WebLogic Store-and-Forward.

Using Unit-of-Order with WebLogic Messaging Bridge

If both the source and target destinations are WebLogic Server 9.0 Messaging Bridge instances,
you can enable PreserveMsgProperty on the Messaging Bridge to preserve the Unit-of Order
name and set the producer's Unit-of-Order accordingly. See Configuring and Managing
WebLogic Messaging Bridge.

Limitations to Message Unit-of-Order

This section provides additional general information to consider when using Message
Unit-of-Order:

e A browser enumeration contains the current queue messages in the order they are to be
received by the browser, where current is defined as those messages that are deliverable.
At most, the first message within a Unit-of-Order is deliverable. Subsequent messages in
the same Unit-of-Order are not deliverable.

10-14 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jms_admin/troubleshoot.html
http://e-docs.bea.com/wls/docs90/saf_admin/index.html
http://e-docs.bea.com/wls/docs90/saf_admin/index.html
http://e-docs.bea.com/wls/docs90/bridge/index.html
http://e-docs.bea.com/wls/docs90/bridge/index.html

Limitations to Message Unit-of-Order

e Some combinations of Unit-of-Order features can result in the starvation of competing
Unit-of-Order message streams, including the under utilization of resources when the
number of consumers exceed the number of in-flight messages with different Unit-of-Order
names. You will need to test your applications under maximum loads to optimize your
system’s performance and eliminate conditions that under utilize resources.

e This release of WebLogic Server Message Unit-of-Order does not support clients
connecting to a non-Unit-of-Order JMS provider (releases prior to WebLogic 9.0 or
non-WebLogic JMS providers).

Programming WebLogic JMS 10-15

Using Message Unit-of-Order

10-16 Programming WebLogic JMS

GHAPTERa

Using Transactions with WebLogic JMS

The following sections describe how to use transactions with WebLogic IMS:
e “Overview of Transactions” on page 11-1
e “Using JMS Transacted Sessions” on page 11-2
e “Using JTA User Transactions” on page 11-4

e “Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans”
on page 11-7

e “Example: IMS and EJB in a JTA User Transaction” on page 11-7

Note: For more information about the JMS classes described in this section, access the latest
JMS Specification and Javadoc supplied on the Sun Microsystems’ Java Web site at the
following location: http://java.sun.com/products/jms/docs.html

Overview of Transactions

A transaction enables an application to coordinate a group of messages for production and
consumption, treating messages sent or received as an atomic unit.

When an application commits a transaction, all of the messages it received within the transaction
are removed from the messaging system and the messages it sent within the transaction are
actually delivered. If the application rolls back the transaction, the messages it received within
the transaction are returned to the messaging system and messages it sent are discarded.

Programming WebLogic JMS 111

http://java.sun.com/products/jms/docs.html

Using Transactions with WebLogic JMS

When a topic subscriber rolls back a received message, the message is redelivered to that
subscriber. When a queue receiver rolls back a received message, the message is redelivered to
the queue, not the consumer, so that another consumer on that queue may receive the message.

For example, when shopping online, you select items and store them in an online shopping cart.
Each ordered item is stored as part of the transaction, but your credit card is not charged until you
confirm the order by checking out. At any time, you can cancel your order and empty your cart,
rolling back all orders within the current transaction.

There are three ways to use transactions with JMS:
e If you are using only JMS in your transactions, you can create a JMS transacted session.

e If you are mixing other operations, such as EJB, with JMS operations, you should use a
Java Transaction API (JTA) user transaction in a non-transacted JMS session.

e Use message driven beans.

To enable multiple JMS servers in the same JTA user transaction, or to combine JMS operations
with non-JMS operations (such as EJB), the two-phase commit license is required. For more
information, see “Using JTA User Transactions” on page 11-4.

The following sections explain how to use a JMS transacted session and JTA user transaction.

Note: When using transactions, it is recommended that you define a session exception listener
to handle any problems that occur before a transaction is committed or rolled back, as
described in “Defining a Session Exception Listener” on page 5-15.

If the acknowledge () method is called within a transaction, it is ignored. If the
recover () method is called within a transaction, a JMSException is thrown.

Using JMS Transacted Sessions

11-2

A JMS transacted session supports transactions that are located within the session. A JMS
transacted session’s transaction will not have any effects outside of the session. For example,
rolling back a session will roll back all sends and receives on that session, but will not roll back
any database updates. JTA user transactions are ignored by JMS transacted sessions.

Transactions in JMS transacted sessions are started implicitly, after the first occurrence of a send
or receive operation, and chained together—whenever you commit or roll back a transaction,
another transaction automatically begins.

Before using a JMS transacted session, the system administrator should adjust the connection
factory (Transaction Timeout) and/or session pool (Transaction) attributes, as necessary for the
application development environment.

Programming WebLogic JMS

Using JMS Transacted Sessions

The following figure illustrates the steps required to set up and use a JMS transacted session.

Figure 11-1 Setting Up and Using a JMS Transacted Session

Step 1: Set Up JMS Application,
Creating Transacted Session
»
r ™
Step 2. Perform Desired Operations

e ‘ /

Step 3: Commit or Roll Back the
JMS Transacted Session
vy

Step 1: Set Up JMS Application, Creating Transacted Session

Set up the JMS application as described in “Setting Up a JMS Application” on page 4-2, however,
when creating sessions, as described in “Step 3: Create a Session Using the Connection” on
page 4-6, specify that the session is to be transacted by setting the transacted boolean value to

true.

For example, the following methods illustrate how to create a transacted session for the PTP and
Pub/sub messaging models, respectively:

gsession = gcon.createQueueSession (
true,
Session.AUTO_ACKNOWLEDGE
)
tsession = tcon.createTopicSession (
true,
Session.AUTO_ACKNOWLEDGE
)i
Once defined, you can determine whether or not a session is transacted using the following
session method:

public boolean getTransacted (

) throws JMSException

Note: The acknowledge value is ignored for transacted sessions.

Programming WebLogic JMS 11-3

Using Transactions with WebLogic JMS

Step 2: Perform Desired Operations

Perform the desired operations assoicated with the current transaction.

Step 3: Commit or Roll Back the JMS Transacted Session

Once you have performed the desired operations, execute one of the following methods to
commit or roll back the transaction.

To commit the transaction, execute the following method:

public void commit (

) throws JMSException

The commit () method commits all messages sent or received during the current transaction. Sent
messages are made visible, while received messages are removed from the messaging system.

To roll back the transaction, execute the following method:

public void rollback(
) throws JMSException

The rollback () method cancels any messages sent during the current transaction and returns
any messages received to the messaging system.

If either the commit () or rollback () methods are issued outside of a JMS transacted session,
aIllegalStateException is thrown.

Using JTA User Transactions

11-4

The Java Transaction API (JTA) supports transactions across multiple data resources. JTA is
implemented as part of WebLogic Server and provides a standard Java interface for
implementing transaction management.

You program your JTA user transaction applications using the
javax.transaction.UserTransaction object to begin, commit, and roll back the
transactions. When mixing JMS and EJB within a JTA user transaction, you can also start the
transaction from the EJB, as described in “Transactions in EJB Applications” in Programming
WebLogic JTA.

You can start a JTA user transaction after a transacted session has been started; however, the JTA
transaction will be ignored by the session and vice versa.

WebLogic Server supports the two-phase commit protocol (2PC), enabling an application to
coordinate a single JTA transaction across two or more resource managers. It guarantees data

Programming WebLogic JMS

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs90/jta/trxejb.html

Using JTA User Transactions

integrity by ensuring that transactional updates are committed in all of the participating resource
managers, or are fully rolled back out of all the resource managers, reverting to the state prior to
the start of the transaction.

Note: A separate 2PC transaction license is required to support this protocol.

Before using a JTA transacted session, the system administrator must configure the connection
factories to support JTA user transactions by selecting the XA Connection Factory Enabled check
box.

The following figure illustrates the steps required to set up and use a JTA user transaction.

Figure 11-2 Setting Up and Using a JTA User Transaction

Step 1: Set Up JMS Application,
Creating Non-Transacted Session

v

' I
Step 2: Look Up User

Transaction In JNDI

AN ‘ /
' ™
Step 3: Start the JTA User Transaction
A # v
" ™
Step 4: Perform Desired Operations
A J

v

Step 5: Commit or Roll Back the
JTA User Transaction

Step 1: Set Up JMS Application, Creating Non-Transacted
Session

Set up the JMS application as described in “Setting Up a JMS Application” on page 4-2, however,
when creating sessions, as described in “Step 3: Create a Session Using the Connection” on
page 4-0, specify that the session is to be non-transacted by setting the transacted boolean
value to false.

For example, the following methods illustrate how to create a non-transacted session for the PTP
and Pub/sub messaging models, respectively.

Programming WebLogic JMS 11-5

Using Transactions with WebLogic JMS

11-6

gsession = gcon.createQueueSession (
false,

Session.AUTO_ACKNOWLEDGE

)i

tsession = tcon.createTopicSession (
false,

Session.AUTO_ACKNOWLEDGE

)

Note: When a user transaction is active, the acknowledge mode is ignored.

Step 2: Look Up User Transaction in JNDI

The application uses JNDI to return an object reference to the UserTransaction object for the
WebLogic Server domain.

You can look up the UserTransaction object by establishing a JNDI context (context) and
executing the following code, for example:

UserTransaction xact = ctx.lookup(“javax.transaction.UserTransaction”) ;

Step 3: Start the JTA User Transaction

Start the JTA user transaction using the UserTransaction.begin () method. For example:

xact.begin () ;

Step 4: Perform Desired Operations

Perform the desired operations associated with the current transaction.

Step 5: Commit or Roll Back the JTA User Transaction

Once you have performed the desired operations, execute one of the following commit () or
rollback () methods on the UserTransaction object to commit or roll back the JTA user
transaction.

To commit the transaction, execute the following commit () method:

xact.commit () ;

Programming WebLogic JMS

Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans

The commit () method causes WebLogic Server to call the Transaction Manager to complete the
transaction, and commit all operations performed during the current transaction. The Transaction
Manager is responsible for coordinating with the resource managers to update any databases.

To roll back the transaction, execute the following rollback () method:
xact.rollback() ;

The rollback () method causes WebLogic Server to call the Transaction Manager to cancel the
transaction, and roll back all operations performed during the current transactions.

Once you call the commit () or rollback () method, you can optionally start another transaction
by calling xact.begin ().

Asynchronous Messaging Within JTA User Transactions Using
Message Driven Beans

Because JMS cannot determine which, if any, transaction to use for an asynchronously delivered
message, JMS asynchronous message delivery is not supported within JTA user transactions.

However, message driven beans provide an alternative approach. A message driven bean can
automatically begin a user transaction just prior to message delivery.

For information on using message driven beans to simulate asynchronous message delivery, see
“Designing Message-Driven EJBs” in Programming WebLogic EJB.

Example: JMS and EJB in a JTA User Transaction

The following example shows how to set up an application for mixed EJB and JMS operations in
a JTA user transaction by looking up a javax.transaction.UserTransaction using JNDI,
and beginning and then committing a JTA user transaction. In order for this example to run, the
XA Connection Factory Enabled check box must be selected when the system administrator
configures the connection factory.

Note: In addition to this simple JTA User Transaction example, refer to the example provided
with WebLogic JTA, located in the

WL_HOME\samples\server\examples\src\examples\jta\jmsjdbc directory,
where where wL_HOME is the top-level directory of your WebLogic Platform installation.

Import the appropriate packages, including the javax.transaction.UserTransaction
package.

import java.io.*;

import java.util.*;

Programming WebLogic JMS 1-1

http://e-docs.bea.com/wls/docs90/ejb/message_beans.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html

Using Transactions with WebLogic JMS

import javax.transaction.UserTransaction;
import javax.naming.*;

import javax.jms.*;
Define the required variables, including the JTA user transaction variable.

public final static String JTA_USER_XACT=

"javax.transaction.UserTransaction";

Step 1
Set up the JMS application, creating a non-transacted session. For more information on setting
up the JMS application, refer to “Setting Up a JMS Application” on page 4-2.

//JMS application setup steps including, for example:

gsession = gcon.createQueueSession(false,
Session.CLIENT_ ACKNOWLEDGE) ;

Step 2

Look up the UserTransaction using JNDI.

UserTransaction xact = (UserTransaction)
ctx.lookup (JTA_USER_XACT) ;

Step 3
Start the JTA user transaction.

xact.begin() ;

Step 4
Perform the desired operations.

// Perform some JMS and EJB operations here.

Step 5
Commit the JTA user transaction.

xact .commit ()

11-8 Programming WebLogic JMS

WebLogic JMS C API

The following sections describe how to use the WebLogic JMS C API:

“What Is the WebLogic JMS C API?” on page 12-1
“System Requirements” on page 12-2

“WebLogic IMS C API Code Examples”

“Design Principles” on page 12-3

“Security Considerations” on page 12-6

“Implementation Guidelines” on page 12-7

What Is the WebLogic JMS C API?

The WebLogic IMS C API is an application program interface that enables you to create C client
applications that can access WebLogic JMS applications and resources. The C client application
then uses the Java Native Interface (JNI) to access the client-side Java JMS classes. See

Figure 12-1.

For this release, the WebLogic JMS C API adheres to the JMS Version 1.1 specification to
promote the porting of Java JMS 1.1 code. For more information, see the WebLogic JIMS C API
Javadocs.

Programming WebLogic JMS 121

http://java.sun.com/docs/books/tutorial/native1.1/
http://e-docs.bea.com/wls/docs90/javadocs/JmsCApi/index.html
http://e-docs.bea.com/wls/docs90/javadocs/JmsCApi/index.html

WebLogic JMS C API

Figure 12-1 WebLogic JMS C API Client Application Environment

WebLogic IMS
C API Client

(JMS Service)
(WebLogic Server) (WebLogic Client)

Network
Server JVM Client JVM

Server Process Client Process

System Requirements

The following section provides information on the system requirements needed to use the
WebLogic JMS C API in your environment:

o A list of supported operating systems for the WebLogic JMS C API is located at Supported
Interoperability Tools in Supported Configurations for WebLogic Platform.

e A supported JVM for your operating system. See WebLogic Platform 9.0 Supported
Configurations in Supported Configurations for WebLogic Platform.

e An ANSI C compiler for your operating system.

e Use one of the following WebLogic clients to connect your C client applications to your
JMS applications:

— The WebLogic application client (weblogic.jar file).

12-2 Programming WebLogic JMS

http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/supp_connect.html
http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/supp_connect.html
http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/overview.html
http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/overview.html

WebLogic JMS C APl Code Examples

— The WebLogic JMS thin client (wljmsclient.jar file). See the WebLogic JMS Thin
Client in Programming Stand-alone Clients.

WebLogic JMS C APl Code Examples

BEA Systems provides samples for JMS developers that illustrate how to configure and develop
the WebLogic JMS C API clients. See http://dev2dev.bea.com/code/index.jsp.

Design Principles

The following sections discuss guiding principals for porting or developing applications for the
WebLogic JMS C APIL:

“Java Objects Map to Handles” on page 12-3

“Thread Utilization” on page 12-3

“Exception Handling” on page 12-4

“Type Conversions” on page 12-4

“Memory Allocation and Garbage Collection” on page 12-6
“Closing Connections” on page 12-6

“Helper Functions” on page 12-6

Java Objects Map to Handles

The WebLogic JMS C API is handle-based to promote modular code implementation. This
means that in your application, you implement Java objects as handles in C code. The details of
how a JMS object is implemented is hidden inside a handle. However, unlike in Java, when you
are done with a handle, you must explicitly free it by calling the corresponding Close or Destroy
methods. See “Memory Allocation and Garbage Collection” on page 12-6.

Thread Utilization

The handles returned from the WebLogic JMS C API are as thread safe as their Java counterparts.
For example:

javax.jms.Session objects are not thread safe, and the corresponding WebLogic JMS C
API handle, dmsSession, is not thread safe.

Programming WebLogic JMS 12-3

http://e-docs.bea.com/wls/docs90/client/jms_thin_client.html
http://e-docs.bea.com/wls/docs90/client/jms_thin_client.html
http://dev2dev.bea.com/code/index.jsp
http://e-docs.bea.com/wls/docs90/javadocs/JmsCApi/JmsConnection_8h.html#a11
http://e-docs.bea.com/wls/docs90/javadocs/JmsCApi/JmsContext_8h.html#a3

WebLogic JMS C API

12-4

® java.jms.Connection objects are thread safe, and the corresponding WebLogic JMS C
API handle, dmsConnection, is thread safe.

As long as concurrency control is managed by the C client application, all objects returned by the
WebLogic JMS C API may be used in any thread.

Exception Handling

Note: The WebLogic JMS C API uses integer return codes.

Exceptions in the WebLogic JMS C API are local to a thread of execution. The WebLogic JMS
C API has the following exception types:

® JavaThrowable represents the class java.lang.Throwable.
e JavaException represents the class java.lang.Exception.

e JmsException represents the class javax.jms.JMSException. All standard subclasses
of JMSException are determined by bits in the type descriptor of the exception. The type
descriptor is returned with a call to JmsGetLastException.

Type Conversions

When you interoperate between Java code and C code, typically one of the main tasks is
converting a C type to a Java type. For example, a short type is a two-byte entity in Java as well
as in C. The following type conversions that require special handling:

Integer (int)

Integer (int) converts to JMS321 (4-byte signed value).

Long (long)

Long (long) converts to JMS641I (8-byte signed value).

Character (char)

Character (char) converts to short (2-byte java character).

String

String converts to JmsString.

Programming WebLogic JMS

Design Principles

Java strings are arrays of two-byte characters. In C, strings are generally arrays of one-byte
UTF-8 encoded characters. Pure ASCII strings fit into the UTF-8 specification as well. For more
information on UTF-8 string, see www.unicode.org. It is inconvenient for C programmers to
translate all strings into the two-byte Java encoding. The JmsString structure allows C clients
to use native strings or Java strings, depending on the requirements of the application.

JmsString supports two kinds of string:
e Native C string (CSTRING)

® JavaString (UNISTRING)

A union of the UNISTRING and CSTRING called uniorc has a character pointer called string
that can be used for a NULL terminated UTF-8 encoded C string. The uniorc union provides a
structure called uniString, which contains a void pointer for the string data and an integer
length (bytes).

When the stringType element of JmsString is used as input, you should set it to CSTRING or
UNISTRING, depending on the type of string input. The corresponding data field contains the
string used as input.

The UNISTRING encoding encodes every two bytes as a single Java character. The two-byte
sequence is big-endian. Unicode calls this encoding UTF-16BE (as opposed to UTF-16LE, which
is a two-byte sequence that is little-endian). The cSTRING encoding expects a UTF-8 encoded
string.

When the stringType element of JmsString is used as output, the caller has the option to let
the API allocate enough space for output using malloc, or you can supply the space and have the
system copy the returned string into the provided bytes. If the appropriate field in the union
(either string or data) is NULL, then the API allocates enough space for the output usingmalloc.
It is the callers responsibility to free this allocated space using free when the memory is no
longer in use. If the appropriate field in the union (string or data) is not NULL, then the
allocatedsSize field of JmsString must contain the number of bytes available to be written.

If there is not enough space in the string to contain the entire output, then allocatedSize sets
to the amount of space needed and the API called returns JMs_NEED_SPACE. The appropriate field
in the JmsString (either string or data) contains as much data as could be stored up to the
allocatedsSize bytes. In this case, the NULL character may or may not have been written at the
end of the C string data returned. Example:

To allocate one hundred bytes for the string output from a text message, you would set the
data pointer and the allocatedSize field to one hundred. The
JmsMessageGetTextMessage API returns JMS_NEED_SPACE with allocatedSize set to

Programming WebLogic JMS 12-5

http://www.unicode.org

WebLogic JMS C API

two hundred. Call realloc on the original string to reset the data pointer and call the
function again. Now the call succeeds and you are able to extract the string from the
message handle. Alternatively, you can free the original buffer and allocate a new buffer of
the correct size.

Memory Allocation and Garbage Collection

All resources that you allocate must also be disposed of it properly. In Java, garbage collection
cleans up all objects that are no longer referenced. However, in C, all objects must be explicitly
cleaned up. All WebLogic JMS C API handles given to the user must be explicitly destroyed.
Notice that some handles have a verb that ends in Close while others end in Destroy. This
convention distinguishes between Java objects that have a close method and those that do not.
Example:

e The javax.jms.Session object has a close method so the WebLogic JMS C API has a
JmsSessionClose function.

e The javax.jms.ConnectionFactory ObjeCt does not have a close method so the
WebLogic JMS C API has a gmsConnectionFactoryDestroy function.

Note: A handle that has been closed or destroyed should never be referenced again.

Closing Connections

In Java JMS, closing a connection implicitly closes all subordinate sessions, producers, and
consumers. In the WebLogic JMS C API, closing a connection does not close any subordinate
sessions, producers, or consumers. After a connection is closed, all subordinate handles are no
longer available and need to be explicitly closed.

Helper Functions

The WebLogic JIMS C API provides some helper functions that do not exist in WebLogic JMS.
These helpers are explained fully in the WebLogic JMS C APIL For example:

JmsMessageGetSubclass operates on a JmsMessage handle and returns an integer
corresponding to the subclass of the message. In JMS, this could be accomplished using
instanceof.

Security Considerations

The WebLogic IMS C API supports WebLogic compatibility realm security mode based on a
username and password. The username and password must be passed to the initial context in

12-6 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/javadocs/JmsCApi/index.html
http://e-docs.bea.com/wls/docs90/javadocs/JmsCApi/JmsMessage_8h.html#a13

Implementation Guidelines

the SECURITY_PRINCIPAL and SECURITY_CREDENTIALS fields of the hash table used to create
the InitialContext object.

Implementation Guidelines

Be aware of the following when you implement the WebLogic JMS C API:
e [t does not support WebLogic Server JIMS extensions, including XML messages.
e It does not support JMS Object messages.

e It creates an error log if an error is detected in the client. This error log is named
ULOG . mmddyy (month/day/year). This log file is fully internationalized using the NLSPATH,
LOCALE, and LANG environment variables of the client.

e Users who want to translate the message catalog can use the gencat utility provided on
Windows or the gencat utility of the host platform. If the generated catalog file is placed
according to the NLSPATH, LOCALE, and LANG variables, then the translated catalog will be
used when writing messages to the log file.

e You can set the following environment variables in the client environment:
— JMSDEBUG— Provides verbose debugging output from the client.
— JMSJVMOPTS—Provides extra arguments to the JVM loaded by the client.

— ULOGPFX— Configures the pathname and file prefix where the error log file is placed.

Programming WebLogic JMS 12-1

WebLogic JMS C API

12-8 Programming WebLogic JMS

cHAPTER@

Recovering from a WebLogic Server
Failure

The following sections describe how to terminate a JMS application gracefully if a server fails
and how to migrate JMS data after server failure.

Programming Considerations

You may want to program your JMS application to terminate gracefully in the event of a
WebLogic Server failure. For example:

Table 13-1 Programming Considerations for Server Failures

If a WebLogic Server Instance Fails Then...

and...
You are connected to the failed A JMSException is delivered to the connection exception listener.
WebLogic Server instance You must restart the application once the server is restarted or replaced.

A JMS Server is targeted on the failed A ConsumerClosedException is delivered to the session
WebLogic Server instance exception listener. You must re-establish any message consumers that
have been lost.

Migrating JMS Data to a New Server

WebLogic JMS uses the migration framework implemented in the WebLogic Server core, which
allows WebLogic JMS respond properly to migration requests and bring a WebLogic JMS server
online and offline in an orderly fashion. This includes both scheduled migrations as well as
migrations in response to a WebLogic Server failure.

Programming WebLogic JMS 13-1

Recovering from a WebLogic Server Failure

Once properly configured, a JMS server and all of its destinations can migrate to another
WebLogic Server within a cluster.

You can recover JMS data from a failed WebLogic Server by starting a new server and doing one
or more of the tasks in Table 13-2.

Note: There are special considerations when you migrate a service from a server instance that
has crashed or is unavailable to the Administration Server. If the Administration Server
cannot reach the previously active host of the service at the time you perform the
migration, see “Migrating a Service When Currently Active Host is Unavailable” in
Using WebLogic Server Clusters.

Table 13-2 Migration Task Guide

If Your JMS Application Uses. . . Perform the Following Task. . .

Persistent messaging—JDBC Store e Ifthe JDBC database store physically exists on the failed server,

migrate the database to a new server and ensure that the JDBC
connection pool URL attribute reflects the appropriate location
reference.

* Ifthe JDBC database does not physically exist on the failed server,
access to the database has not been impacted, and no changes are

required.

Persistent messaging—File Store Migrate the file to the new server, ensuring that the pathname within the
WebLogic Server home directory is the same as it was on the original
server.

Transactions To facilitate recovery after a crash, WebLogic Server provides the

Transaction Recovery Service, which automatically attempts to recover
transactions on system startup. The Transaction Recovery Service
owns the transaction log for a server.

For detailed instructions on recovering transactions from a failed
server, see ‘“Transaction Recovery After a Server Fails” in
Programming WebLogic JTA.

13-2

Note: JMS persistent stores can increase the amount of memory required during initialization
of WebLogic Server as the number of stored messages increases. When rebooting
WebLogic Server, if initialization fails due to insufficient memory, increase the heap size
of the Java Virtual Machine (JVM) proportionally to the number of messages that are
currently stored in the JMS persistent store and try the reboot again.

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/jta/trxman.html#jtatrb013
http://e-docs.bea.com/wls/docs90/cluster/failover.html#SpecialMigrationProcedure

Migrating JMS Data to a New Server

For information about starting a new WebLogic Server, see the “Starting and Stopping Servers:
Quick Reference”. For information about recovering a failed server, refer to Avoiding and
Recovering From Server Failure in Managing Server Startup and Shutdown.

For more information about defining migratable services, see “Service Migration” in Using
WebLogic Server Clusters.

Programming WebLogic JMS 13-3

http://e-docs.bea.com/wls/docs90/server_start/startquickref.html
http://e-docs.bea.com/wls/docs90/server_start/startquickref.html
http://e-docs.bea.com/wls/docs90/server_start/failures.html
http://e-docs.bea.com/wls/docs90/server_start/failures.html
http://e-docs.bea.com/wls/docs90/cluster/failover.html#service_migration

Recovering from a WebLogic Server Failure

13-4 Programming WebLogic JMS

APPENDlxa

Deprecated WebLogic JMS Features

The following sections describe features that have been deprecated for this release of WebLogic
Server :

e “Defining Server Session Pools” on page A-2

Programming WebLogic JMS A-1

Deprecated WebLogic JMS Features

Defining Server Session Pools

Note: Session pools are now used rarely, as they are not a required part of the J2EE
specification, do not support JTA user transactions, and are largely superseded by
message-driven beans (MDBs), which are simpler, easier to manage, and more capable.
For more information on designing MDBs, see “Designing and Developing
Message-Driven Beans” in Programming WebLogic Enterprise JavaBeans.

WebLogic JMS implements an optional JMS facility for defining a server-managed pool of
server sessions. This facility enables an application to process messages concurrently.

The server session pool:
e Receives messages from a destination and passes them to a server-side message listener

that you provide to process messages. The message listener class provides an
onMessage () method that processes a message.

e Processes messages in parallel by managing a pool of JMS sessions, each of which
executes a single-threaded onMessage () method.

The following figure illustrates the server session pool facility, and the relationship between the
application and the application server components.

A-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ejb/message_beans.html
http://e-docs.bea.com/wls/docs90/ejb/message_beans.html

Defining Server Session Pools

Figure 13-1 Server Session Pool Facility

[e e i 1 e o 1 i e 0 5]
As illustrated in the figure, the application provides a single-threaded message listener. The

Application
Message
Producer
k -
) E
Connection Connection_ Session Destination
Factory > >
I__ 1__|_ s R i . . . T~ ==
Application Server ¥ .
i Connection |
P Consumer !
! ¥ Y i
| Server M
; Gass; Message :
: Session » Dessyn ¥ Listener :
1

| T |

i Server Session Server Session |
Pool Factory > Poal -

connection consumer, implemented by JMS on the application server, performs the following
tasks to process one or more messages:

1.
2.
3.
4.
5.

Gets a server session from the server session pool.
Gets the server session’s session.

Loads the session with one or more messages.
Starts the server session to consume messages.

Releases the server session back to pool when finished processing messages.

The following figure illustrates the steps required to prepare for concurrent message processing.

Programming WebLogic JMS

A-3

Deprecated WebLogic JMS Features

A-4

Figure 13-2 Preparing for Concurrent Message Processing

' ™
Step 1: Look Up Server Session Pool

Factory in JNDI
A vy

v

(™)
Step 2: Create a Server Session Pool
Using the Server Session Pool Factory

A S

v

' | ™)
Step 3: Create a Connection Consumer

Using the Connection
. "y

Applications can use other application server providers’ session pool implementations
within this flow. Server session pools can also be implemented using message-driven
beans. For information on using message driven beans to implement server session pools,
see “Designing Message-Driven Beans” in Programming WebLogic Enterprise
JavaBeans.

If the session pool and connection consumer were defined during configuration, you can
skip this section. For more information on configuring server session pools and
connection consumers, see “Configuring JMS System Resources” in Configuring and
Managing WebLogic JMS.

Currently, WebLogic JMS does not support the optional
TopicConnection.createDurableConnectionConsumer () operation. For more
information on this advanced JMS operation, refer to Sun Microsystems’ JMS
Specification.

Step 1: Look Up Server Session Pool Factory in JNDI

You use a server session pool factory to create a server session pool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory: <name>, where <name>

specifies the name of the JMS server to which the session pool is created.

Once it has been configured, you can look up a server session pool factory by first establishing a
JNDI context (context) using the NamingManager.InitialContext () method. For any
application other than a servlet application, you must pass an environment used to create the
initial context. For more information, see the NamingManager.InitialContext () Javadoc.

Once the context is defined, to look up a server session pool factory in JNDI use the following

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/ejb/message_beans.html
http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html#jms_sessionpool_config
http://www.javasoft.com/products/jms/docs.html
http://www.javasoft.com/products/jms/docs.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/InitialContext.html#InitialContext()

Defining Server Session Pools

factory = (ServerSessionPoolFactory) context.lookup (<ssp_name>) ;
The <ssp_name> specifies a qualified or non-qualified server session pool factory name.

For more information about server session pool factories, see “ServerSessionPoolFactory” on
page 2-28 or the weblogic.jms.extensions.ServerSessionPoolFactory Javadoc.

Step 2: Create a Server Session Pool Using the Server Session
Pool Factory

You can create a server session pool for use by queue (PTP) or topic (Pub/Sub) connection
consumers, using the ServerSessionPoolFactory methods described in the following
sections.

For more information about server session pools, see “ServerSessionPool” on page 2-29 or the

javax.jms.ServerSessionPool Javadoc.

Create a Server Session Pool for Queue Connection Consumers

The ServerSessionPoolFactory provides the following method for creating a server session
pool for queue connection consumers:

public ServerSessionPool getServerSessionPool (
QueueConnection connection,

int maxSessions,

boolean transacted,

int ackMode,

String listenerClassName

) throws JMSException

You must specify the queue connection associated with the server session pool, the maximum
number of concurrent sessions that can be retrieved by the connection consumer (to be created in
step 3), whether or not the sessions are transacted, the acknowledge mode (applicable for
non-transacted sessions only), and the message listener class that is instantiated and used to
receive and process messages concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.extensions.ServerSessionPoolFactory Javadoc. For more information
about the ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Programming WebLogic JMS A-5

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ServerSessionPool.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Deprecated WebLogic JMS Features

A-6

Create a Server Session Pool for Topic Connection Consumers

The serverSessionPoolFactory provides the following method for creating a server session
pool for topic connection consumers:

public ServerSessionPool getServerSessionPool (
TopicConnection connection,

int maxSessions,

boolean transacted,

int ackMode,

String listenerClassName

) throws JMSException

You must specify the topic connection associated with the server session pool, the maximum
number of concurrent sessions that can be retrieved by the connection (to be created in step 3),
whether or not the sessions are transacted, the acknowledge mode (applicable for non-transacted
sessions only), and the message listener class that is instantiated and used to receive and process
messages concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.extensions.ServerSessionPoolFactory Javadoc. For more information
about the ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Step 3: Create a Connection Consumer

You can create a connection consumer for retrieving server sessions and processing messages
concurrently using one of the following methods:

e Configuring the server session pool and connection consumer during the configuration, as
described in “Configuring JMS System Resources” in Configuring and Managing
WebLogic JMS

e Including in your application the Connection methods described in the following sections

For more information about the ConnectionConsumer class, see “ConnectionConsumer’” on
page 2-29 or the javax. jms.ConnectionConsumer Javadoc.

Create a Connection Consumer for Queues

The QueueConnection provides the following method for creating connection consumers for
queues:

Programming WebLogic JMS

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/ServerSessionPoolFactory.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html
http://e-docs.bea.com/wls/docs90/jms_admin/basic_config.html#jms_sessionpool_config
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Defining Server Session Pools

public ConnectionConsumer createConnectionConsumer (
Queue queue,
String messageSelector,
ServerSessionPool sessionPool,
int maxMessages

) throws JMSException

You must specify the name of the associated queue, the message selector for filtering messages,
the associated server session pool for accessing server sessions, and the maximum number of
messages that can be assigned to the server session simultaneously. For information about
message selectors, see ‘“Filtering Messages™ on page 5-33.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc. For more information about the

ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Create a Connection Consumer for Topics

The TopicConnection provides the following two methods for creating

ConnectionConsumers for topics:

public ConnectionConsumer createConnectionConsumer (
Topic topic,
String messageSelector,
ServerSessionPool sessionPool,
int maxMessages

) throws JMSException

public ConnectionConsumer createDurableConnectionConsumer (
Topic topic,
String messageSelector,
ServerSessionPool sessionPool,
int maxMessages

) throws JMSException

For each method, you must specify the name of the associated topic, the message selector for
filtering messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session simultaneously. For
information about message selectors, see “Filtering Messages” on page 5-33.

Programming WebLogic JMS A-7

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/QueueConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Deprecated WebLogic JMS Features

Each method creates a connection consumer; but, the second method also creates a durable
connection consumer for use with durable subscribers. For more information about durable
subscribers, see “Setting Up Durable Subscriptions” on page 5-21.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc. For more information about the

ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.

Example: Setting Up a PTP Client Server Session Pool

The following example illustrates how to set up a server session pool for a JMS client. The
startup () method is similar to the init () method in the examples.jms.queue.QueueSend
example, as described in “Example: Setting Up a PTP Application” on page 4-13. This method
also sets up the server session pool.

The following illustrates the startup () method, with comments highlighting each setup step.
Include the following package on the import list to implement a server session pool application:

import weblogic.jms.extensions.ServerSessionPoolFactory

Define the session pool factory static variable required for the creation of the session pool.

private final static String SESSION_POOL_FACTORY=
"weblogic.jms.extensions.ServerSessionPoolFactory:examplesdJMSServer";

private QueueConnectionFactory gconFactory;

private QueueConnection gcon;

private QueueSession gsession;

private QueueSender gsender;

private Queue queue;

private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;

private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup (
String name,
Hashtable args

) throws Exception

A-8 Programming WebLogic JMS

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/TopicConnection.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/ConnectionConsumer.html

Defining Server Session Pools

{

String connectionFactory = (String)args.get("connectionFactory");
String queueName = (String)args.get("queue");
if (connectionFactory == null || gueueName == null) {

throw new

IllegalArgumentException ("connectionFactory="+connectionFactory+

", queueName="+gueueName) ;
}

Context ctx = new InitialContext();

gconFactory = (QueueConnectionFactory)
ctx.lookup (connectionFactory) ;

gcon =gconFactory.createQueueConnection() ;

gsession = gcon.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE) ;

queue = (Queue) ctx.lookup (queueName) ;

gcon.start () ;

Step 1

Look up the server session pool factory in INDI.

sessionPoolFactory = (ServerSessionPoolFactory)
ctx.lookup (SESSION_POOL_FACTORY) ;

Step 2
Create a server session pool using the server session pool factory, as follows:

sessionPool = sessionPoolFactory.getServerSessionPool (gcon, 5,
false, Session.AUTO_ACKNOWLEDGE,

examples.jms.startup.MsgListener) ;
The code defines the following:
e gcon as the queue connection associated with the server session pool

e 5 as the maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3)

e Sessions will be non-transacted (false)

e AUTO_ACKNOWLEDGE as the acknowledge mode

Programming WebLogic JMS A-9

Deprecated WebLogic JMS Features

Step 3

Create a connection consumer, as follows:

A-10

The examples.jms.startup.MsgListener will be used as the message listener that is
instantiated and used to receive and process messages concurrently.

consumer = gcon.createConnectionConsumer (queue, “TRUE”,

sessionPool, 10);

The code defines the following:

For more information about the JMS classes used in this example, see “Understanding the JMS

queue as the associated queue
TRUE as the message selector for filtering messages
sessionPool as the associated server session pool for accessing server sessions

10 as the maximum number of messages that can be assigned to the server session
simultaneously

API” on page 2-10 or the javax.jms Javadoc.

Example: Setting Up a Pub/Sub Client Server Session Pool

The following example illustrates how to set up a server session pool for a JMS client. The

startup () method is similar to the init () method in the examples.jms.topic.TopicSend
example, as described in “Example: Setting Up a Pub/Sub Application” on page 4-17. It also sets

up the server session pool.

The following illustrates startup () method, with comments highlighting each setup step.

Include the following package on the import list to implement a server session pool application:

import weblogic.jms.extensions.ServerSessionPoolFactory

Define the session pool factory static variable required for the creation of the session pool.

private final static String SESSION_POOL_FACTORY=

"weblogic.jms.extensions.ServerSessionPoolFactory:examplesJMSServer";

private TopicConnectionFactory tconFactory;

private TopicConnection tcon;

private TopicSession tsession;

Programming WebLogic JMS

http://www.java.sun.com/products/jms/docs.html

Defining Server Session Pools

private TopicSender tsender;

private Topic topic;

private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;

private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup (
String name,
Hashtable args

) throws Exception

{

String connectionFactory = (String)args.get("connectionFactory");
String topicName = (String)args.get("topic");
if (connectionFactory == null || topicName == null) {

throw new

IllegalArgumentException ("connectionFactory="+connectionFactory+

", topicName="+topicName) ;
}

Context ctx = new InitialContext();

tconFactory = (TopicConnectionFactory)
ctx.lookup (connectionFactory) ;

tcon = tconFactory.createTopicConnection() ;

tsession = tcon.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE) ;

topic = (Topic) ctx.lookup (topicName) ;

tcon.start () ;

Step 1
Look up the server session pool factory in INDI.

sessionPoolFactory = (ServerSessionPoolFactory)
ctx.lookup (SESSION_POOL_FACTORY) ;

Step 2

Create a server session pool using the server session pool factory, as follows:

Programming WebLogic JMS A-11

Deprecated WebLogic JMS Features

sessionPool = sessionPoolFactory.getServerSessionPool (tcon, 5,
false, Session.AUTO_ACKNOWLEDGE,

examples.jms.startup.MsgListener) ;
The code defines the following:
e tcon as the topic connection associated with the server session pool

e 5 as the maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3)

Sessions will be non-transacted (false)

AUTO_ACKNOWLEDGE as the acknowledge mode

e The examples.jms.startup.MsglListener will be used as the message listener that is
instantiated and used to receive and process messages concurrently.

Step 3
Create a connection consumer, as follows:

consumer = tcon.createConnectionConsumer (topic, “TRUE”,

sessionPool, 10);
The code defines the following:
e topic as the associated topic
e TRUE as the message selector for filtering messages
® sessionPool as the associated server session pool for accessing server sessions

e 10 as the maximum number of messages that can be assigned to the server session
simultaneously

For more information about the JMS classes used in this example, see “Understanding the JMS
API” on page 2-10 or the javax. jms Javadoc.

A-12 Programming WebLogic JMS

http://www.java.sun.com/products/jms/docs.html

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Samples and Tutorials for the JMS Developer
	Avitek Medical Records Application (MedRec) and Tutorials
	JMS Examples in the WebLogic Server Distribution

	New and Changed JMS Features In This Release

	Understanding WebLogic JMS
	Overview of the Java Message Service and WebLogic JMS
	What Is the Java Message Service?
	Implementation of Java Specifications
	J2EE Specification
	JMS Specification

	WebLogic JMS Architecture
	Major Components

	Understanding the Messaging Models
	Point-to-Point Messaging
	Publish/Subscribe Messaging
	Message Persistence

	Value-Added Public JMS API Extensions
	Understanding the JMS API
	ConnectionFactory
	Using the Default Connection Factories
	Configuring and Deploying Connection Factories
	The ConnectionFactory Class

	Connection
	Session
	Non-Transacted Session
	Transacted Session

	Destination
	Distributed Destinations

	MessageProducer and MessageConsumer
	Message
	Message Header Fields
	Message Property Fields
	Message Body

	ServerSessionPoolFactory
	ServerSessionPool
	ServerSession
	ConnectionConsumer

	Best Practices for Application Design
	Message Design
	Serializing Application Objects
	Serializing strings
	Server-side serialization
	Selection

	Message Compression
	Message Properties and Message Header Fields
	Message Ordering
	Topics vs. Queues
	Asynchronous vs. Synchronous Consumers
	Persistent vs. Non-Persistent Messages
	Deferring Acknowledges and Commits
	Using AUTO_ACK for Non-Durable Subscribers
	Alternative Qualities of Service, Multicast and No-Acknowledge
	Using MULTICAST_NO_ACKNOWLEDGE
	Using NO_ACKNOWLEDGE

	Avoid Multi-threading

	Developing a Basic JMS Application
	Importing Required Packages
	Setting Up a JMS Application
	Step 1: Look Up a Connection Factory in JNDI
	Step 2: Create a Connection Using the Connection Factory
	Create a Queue Connection
	Create a Topic Connection

	Step 3: Create a Session Using the Connection
	Create a Queue Session
	Create a Topic Session

	Step 4: Look Up a Destination (Queue or Topic)
	Server Affinity When Looking Up Destinations

	Step 5: Create Message Producers and Message Consumers Using the Session and Destinations
	Create QueueSenders and QueueReceivers
	Create TopicPublishers and TopicSubscribers

	Step 6a: Create the Message Object (Message Producers)
	Step 6b: Optionally Register an Asynchronous Message Listener (Message Consumers)
	Step 7: Start the Connection
	Example: Setting Up a PTP Application
	Example: Setting Up a Pub/Sub Application

	Sending Messages
	Create a Message Object
	Define a Message
	Send the Message to a Destination
	Send a Message Using Queue Sender
	Send a Message Using TopicPublisher

	Setting Message Producer Attributes
	Example: Sending Messages Within a PTP Application
	Example: Sending Messages Within a Pub/Sub Application

	Receiving Messages
	Receiving Messages Asynchronously
	Asynchronous Message Pipeline

	Receiving Messages Synchronously
	Example: Receiving Messages Synchronously Within a PTP Application
	Example: Receiving Messages Synchronously Within a Pub/Sub Application

	Recovering Received Messages

	Acknowledging Received Messages
	Releasing Object Resources

	Managing Your Applications
	Managing Rolled Back, Recovered, Redelivered, or Expired Messages
	Setting a Redelivery Delay for Messages
	Setting a Redelivery Delay
	Overriding the Redelivery Delay on a Destination

	Setting a Redelivery Limit for Messages
	Configuring a Message Redelivery Limit On a Destination
	Configuring an Error Destination for Undelivered Messages

	Ordered Redelivery of Messages
	Required Message Pipeline Setting for the Messaging Bridge and MDBs
	Performance Limitations

	Handling Expired Messages

	Setting Message Delivery Times
	Setting a Delivery Time on Producers
	Setting a Delivery Time on Messages
	Overriding a Delivery Time
	Interaction With the Time-to-Live Value
	Setting a Relative Time-to-Deliver Override
	Setting a Scheduled Time-to-Deliver Override
	JMS Schedule Interface

	Managing Connections
	Defining a Connection Exception Listener
	Accessing Connection Metadata
	Starting, Stopping, and Closing a Connection

	Managing Sessions
	Defining a Session Exception Listener
	Closing a Session

	Managing Destinations
	Dynamically Creating Destinations
	Dynamically Deleting Destinations
	Preconditions for Deleting Destinations
	What Happens when a Destination is Deleted
	Message Timestamps for Troubleshooting Deleted Destinations
	Deleted Destination Statistics

	Using Temporary Destinations
	Creating a Temporary Queue
	Creating a Temporary Topic
	Deleting a Temporary Destination

	Setting Up Durable Subscriptions
	Defining the Persistent Store
	Defining the Client ID
	Creating Subscribers for a Durable Subscription
	Deleting Durable Subscriptions
	Modifying Durable Subscriptions
	Managing Durable Subscriptions

	Setting and Browsing Message Header and Property Fields
	Setting Message Header Fields
	Setting Message Property Fields
	Browsing Header and Property Fields

	Filtering Messages
	Defining Message Selectors Using SQL Statements
	Defining XML Message Selectors Using XML Selector Method
	Displaying Message Selectors
	Indexing Topic Subscriber Message Selectors To Optimize Performance

	Sending XML Messages
	WebLogic XML APIs
	Using a String Representation
	Using a DOM Representation

	Using JMS Module Helper to Manage Applications
	Configuring JMS System Resources Using JMSModuleHelper
	Configuring JMS Servers and Store-and-Forward Agents
	JMSModuleHelper Sample Code
	Creating a JMS System Resource
	Deleting a JMS System Resource

	Best Practices when Using JMSModuleHelper

	Using Multicasting with WebLogic Server
	Benefits of using Multicasting
	Limitations of using Multicasting
	Configuring Multicasting for WebLogic Server
	Prerequesites for Multicasting
	Step 1: Set Up the JMS Application, Creating Multicast Session and Topic Subscriber
	Step 2: Set Up the Message Listener
	Dynamically Configuring Multicasting Configuration Attributes
	Example: Multicast TTL

	Using Distributed Destinations
	What is a Distributed Destination?
	Why Use a Distributed Destination
	Creating a Distributed Destination
	Types of Distributed Destinations
	Uniform Distributed Destinations
	Weighted Distributed Destinations

	Using Distributed Destinations
	Using Distributed Queues
	Queue Forwarding
	QueueSenders
	QueueReceivers
	QueueBrowsers

	Using Distributed Topics
	TopicPublishers
	TopicSubscribers
	Deploying Message-Driven Beans on a Distributed Topic

	Accessing Distributed Destination Members
	Accessing Uniform Destination Members
	Accessing Weighted Destination Members

	Distributed Destination Failover

	Using Message-Driven Beans with Distributed Destinations
	Common Use Cases for Distributed Destinations
	Maximizing Production
	Maximizing Availability
	Using Queues
	Using Topics

	Stuck Messages

	Enhanced J2EE Support for Using WebLogic JMS With EJBs and Servlets
	Enabling WebLogic JMS Wrappers
	Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors
	Declaring a Wrapped JMS Connection Factory
	Declaring JMS Destinations
	Sending a JMS Message In a J2EE Container

	What’s Happening Under the JMS Wrapper Covers
	Automatically Enlisting Transactions
	Container-Managed Security
	Connection Testing
	J2EE Compliance
	Pooled JMS Connection Objects

	Improving Performance Through Pooling
	Speeding Up JNDI Lookups by Pooling Session Objects
	Speeding Up Object Creation Through Caching
	Enlisting the Proper Transaction Mode

	Examples of JMS Wrapper Functions
	ejb-jar.xml
	weblogic-ejb-jar.xml
	PoolTest.java
	PoolTestHome.java
	PoolTestBean.java

	Simplified Access to Remote or Foreign JMS Providers

	Using Message Unit-of-Order
	What Is Message Unit-Of-Order?
	Understanding Message Processing with Unit-of-Order
	Message Processing According to the JMS Specification
	Message Processing with Unit-of-Order
	Message Delivery with Unit-of-Order

	Message Unit-of-Order Case Study
	Joe Orders a book
	What Happened to Joe’s Order
	How Message Unit-of-Order Solves the Problem

	How to Create a Unit-of-Order
	Creating a Unit-of-Order Programmatically
	Creating a Unit-of-Order Administratively
	Configuring Unit-of-Order for a Connection Factory

	Unit-of-Order Naming Rules

	Message Unit-of-Order Advanced Topics
	What Happens When a Message Is Delayed During Processing?
	What Happens When a Filter Makes a Message Undeliverable
	What Happens When Destination Sort Keys are Used
	Using Unit-of-Order with Distributed Destinations
	Using the Path Service
	Using Hash-based Routing

	Using Unit-of-Order with Topics
	Using Unit-of-Order with JMS Message Management
	Using Unit-of-Order with WebLogic Store-and-Forward
	Using Unit-of-Order with WebLogic Messaging Bridge

	Limitations to Message Unit-of-Order

	Using Transactions with WebLogic JMS
	Overview of Transactions
	Using JMS Transacted Sessions
	Step 1: Set Up JMS Application, Creating Transacted Session
	Step 2: Perform Desired Operations
	Step 3: Commit or Roll Back the JMS Transacted Session

	Using JTA User Transactions
	Step 1: Set Up JMS Application, Creating Non-Transacted Session
	Step 2: Look Up User Transaction in JNDI
	Step 3: Start the JTA User Transaction
	Step 4: Perform Desired Operations
	Step 5: Commit or Roll Back the JTA User Transaction

	Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans
	Example: JMS and EJB in a JTA User Transaction

	WebLogic JMS C API
	What Is the WebLogic JMS C API?
	System Requirements
	WebLogic JMS C API Code Examples
	Design Principles
	Java Objects Map to Handles
	Thread Utilization
	Exception Handling
	Type Conversions
	Integer (int)
	Long (long)
	Character (char)
	String

	Memory Allocation and Garbage Collection
	Closing Connections
	Helper Functions

	Security Considerations
	Implementation Guidelines

	Recovering from a WebLogic Server Failure
	Programming Considerations
	Migrating JMS Data to a New Server

	Deprecated WebLogic JMS Features
	Defining Server Session Pools
	Step 1: Look Up Server Session Pool Factory in JNDI
	Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	Create a Server Session Pool for Queue Connection Consumers
	Create a Server Session Pool for Topic Connection Consumers

	Step 3: Create a Connection Consumer
	Create a Connection Consumer for Queues
	Create a Connection Consumer for Topics

	Example: Setting Up a PTP Client Server Session Pool
	Example: Setting Up a Pub/Sub Client Server Session Pool

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

