
BEAWebLogic
Server® and
WebLogic
Express™

Developing Web
Applications, Servlets,
and JSPs for WebLogic
Server

Version 9.0
Document Revised: July 22, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Developing Web Applications, Servlets, and JSPs for WebLogic Server iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to this Document . 1-2

Related Documentation . 1-3

Examples for the Web Application Developer . 1-4

Avitek Medical Records Application (MedRec). 1-4

Web Application Examples in the WebLogic Server Distribution 1-4

2. Understanding Web Applications, Servlets, and JSPs
The Web Applications Container. 2-1

Servlets. 2-2

What You Can Do with Servlets . 2-3

Servlet Development Key Points . 2-3

Servlets and J2EE . 2-4

Java Server Pages. 2-4

What You Can Do with JSPs . 2-5

Overview of How JSP Requests Are Handled . 2-5

JSPs and J2EE. 2-5

Web Application Developer Tools . 2-6

Ant Tasks to Create Skeleton Deployment Descriptors . 2-6

XML Editors . 2-6

Web Application Security . 2-6

iv Developing Web Applications, Servlets, and JSPs for WebLogic Server

P3P Privacy Protocol. 2-7

3. Creating and Configuring Web Applications
Directory Structure . 3-2

Accessing Information in WEB-INF . 3-3

Directory Structure Example . 3-3

Main Steps to Create and Configure a Web Application . 3-5

Step One: Create the Enterprise Application Wrapper . 3-5

Step Two: Create the Web Application . 3-5

Step Three: Creating the build.xml File. 3-6

Step Four: Execute the Split Development Directory Structure Ant Tasks 3-6

Configuring How a Client Accesses a Web Application . 3-7

Configuring Virtual Hosts for Web Applications . 3-7

Configuring a Channel-based Virtual Host . 3-7

Configuring a Host-based Virtual Host . 3-8

Targeting Web Applications to Virtual Hosts. 3-8

Loading Servlets, Context Listeners, and Filters . 3-8

Shared J2EE Web Application Libraries . 3-9

4. Creating and Configuring Servlets
Configuring Servlets . 4-2

Servlet Mapping. 4-2

Setting Up a Default Servlet . 4-5

Servlet Initialization Attributes . 4-6

Writing a Simple HTTP Servlet . 4-6

Advanced Features . 4-8

Complete HelloWorldServlet Example. 4-9

Developing Web Applications, Servlets, and JSPs for WebLogic Server v

5. Creating and Configuring JSPs
Configuring Java Server Pages (JSPs). 5-2

Registering a JSP as a Servlet . 5-2

Configuring JSP Tag Libraries . 5-3

Configuring Welcome Files. 5-4

Customizing HTTP Error Responses. 5-5

Determining the Encoding of an HTTP Request. 5-5

Mapping IANA Character Sets to Java Character Sets . 5-6

Configuring Implicit Includes at the Beginning and End of JSPs 5-6

Configuring JSP Property Groups . 5-7

JSP Property Group Rules . 5-7

What You Can Do with JSP Property Groups . 5-8

Writing JSP Documents Using XML Syntax . 5-8

How to Use JSP Documents. 5-9

Important Information about JSP Documents . 5-9

6. Configuring Resources in a Web Application
Configuring Resources in a Web Application. 6-2

Configuring Resources . 6-2

Referencing External EJBs . 6-3

More about the ejb-ref* Elements . 6-4

Referencing Application-Scoped EJBs . 6-5

Serving Resources from the CLASSPATH with the ClasspathServlet 6-8

Using CGI with WebLogic Server . 6-8

Configuring WebLogic Server to Use CGI . 6-9

Requesting a CGI Script. 6-10

CGI Best Practices . 6-10

vi Developing Web Applications, Servlets, and JSPs for WebLogic Server

7. Servlet Programming Tasks
Initializing a Servlet . 7-2

Initializing a Servlet when WebLogic Server Starts . 7-2

Overriding the init() Method . 7-3

Providing an HTTP Response . 7-4

Retrieving Client Input . 7-6

Methods for Using the HTTP Request. 7-7

Example: Retrieving Input by Using Query Parameters . 7-8

Securing Client Input in Servlets . 7-9

Using a WebLogic Server Utility Method . 7-10

Using Cookies in a Servlet . 7-11

Setting Cookies in an HTTP Servlet . 7-11

Retrieving Cookies in an HTTP Servlet . 7-12

Using Cookies That Are Transmitted by Both HTTP and HTTPS 7-12

Application Security and Cookies . 7-13

Response Caching . 7-13

Initialization Parameters . 7-14

Using WebLogic Services from an HTTP Servlet . 7-15

Accessing Databases . 7-15

Connecting to a Database Using a DataSource Object . 7-16

Using a DataSource in a Servlet . 7-16

Connecting Directly to a Database Using a JDBC Driver . 7-16

Threading Issues in HTTP Servlets. 7-17

Dispatching Requests to Another Resource . 7-17

Forwarding a Request . 7-18

Including a Request . 7-19

RequestDispatcher and Filters . 7-19

Developing Web Applications, Servlets, and JSPs for WebLogic Server vii

Proxying Requests to Another Web Server . 7-20

Overview of Proxying Requests to Another Web Server . 7-20

Setting Up a Proxy to a Secondary Web Server . 7-20

Sample Deployment Descriptor for the Proxy Servlet . 7-21

Clustering Servlets. 7-22

Referencing a Servlet in a Web Application . 7-23

URL Pattern Matching. 7-23

The SimpleApacheURLMatchMap Utility . 7-24

8. Using Sessions and Session Persistence
Overview of HTTP Sessions . 8-2

Setting Up Session Management . 8-2

HTTP Session Properties . 8-2

Session Timeout . 8-3

Configuring WebLogic Server Session Cookies . 8-3

Configuring Application Cookies That Outlive a Session . 8-3

Logging Out and Ending a Session . 8-4

Enabling Web applications to share the same session . 8-4

Configuring Session Persistence . 8-5

Attributes Shared by Different Types of Session Persistence 8-5

Using Memory-based, Single-server, Non-replicated Persistent Storage 8-6

Using File-based Persistent Storage . 8-6

Using a Database for Persistent Storage (JDBC persistence). 8-7

Configuring JDBC-based Persistent Storage . 8-7

Caching and Database Updates for JDBC Session Persistence 8-10

Using Cookie-Based Session Persistence. 8-10

Using URL Rewriting Instead of Cookies. 8-11

Coding Guidelines for URL Rewriting . 8-11

viii Developing Web Applications, Servlets, and JSPs for WebLogic Server

URL Rewriting and Wireless Access Protocol (WAP) . 8-12

Session Tracking from a Servlet . 8-13

A History of Session Tracking. 8-13

Tracking a Session with an HttpSession Object . 8-14

Lifetime of a Session . 8-15

How Session Tracking Works . 8-15

Detecting the Start of a Session . 8-16

Setting and Getting Session Name/Value Attributes . 8-16

Logging Out and Ending a Session . 8-17

Using session.invalidate() for a Single Web Application 8-17

Implementing Single Sign-On for Multiple Applications 8-17

Exempting a Web Application for Single Sign-on . 8-18

Configuring Session Tracking . 8-18

Using URL Rewriting Instead of Cookies . 8-18

URL Rewriting and Wireless Access Protocol (WAP) . 8-19

Making Sessions Persistent . 8-20

Scenarios to Avoid When Using Sessions . 8-20

Use Serializable Attribute Values . 8-21

Configuring Session Persistence. 8-21

Configuring a Maximum Limit on In-memory Servlet Sessions. 8-21

Enabling Session Memory Overload Protection . 8-22

9. Application Events and Event Listener Classes
Overview of Application Event Listener Classes . 9-2

Servlet Context Events . 9-2

HTTP Session Events . 9-3

Servlet Request Events . 9-4

Configuring an Event Listener Class . 9-5

Developing Web Applications, Servlets, and JSPs for WebLogic Server ix

Writing an Event Listener Class . 9-6

Templates for Event Listener Classes . 9-6

Servlet Context Event Listener Class Example . 9-6

HTTP Session Attribute Event Listener Class Example . 9-7

Additional Resources. 9-8

10.WebLogic JSP Reference
JSP Tags. 10-3

Reserved Words for Implicit Objects . 10-4

Directives for WebLogic JSP . 10-6

Using the page Directive to Set Character Encoding . 10-6

Using the taglib Directive. 10-7

Declarations . 10-7

Scriptlets . 10-7

 Expressions . 10-8

Example of a JSP with HTML and Embedded Java . 10-9

Actions. 10-10

Using JavaBeans in JSP . 10-10

Instantiating the JavaBean Object . 10-11

Doing Setup Work at JavaBean Instantiation . 10-11

Using the JavaBean Object . 10-12

Defining the Scope of a JavaBean Object . 10-12

Forwarding Requests . 10-13

Including Requests . 10-13

JSP Expression Language . 10-13

Expressions and Attribute Values. 10-14

Expressions and Template Text . 10-15

JSP Expression Language Implicit Objects. 10-15

x Developing Web Applications, Servlets, and JSPs for WebLogic Server

JSP Expression Language Literals and Operators. 10-17

Literals . 10-17

Errors, Warnings, Default Values. 10-18

Operators . 10-18

Operator Precedence . 10-18

JSP Expression Language Reserved Words . 10-19

JSP Expression Language Named Variables . 10-20

Securing User-Supplied Data in JSPs . 10-20

Using a WebLogic Server Utility Method . 10-21

Using Sessions with JSP . 10-22

Deploying Applets from JSP. 10-22

Using the WebLogic JSP Compiler . 10-24

JSP Compiler Syntax . 10-24

JSP Compiler Options . 10-25

Precompiling JSPs . 10-27

11.Filters
Overview of Filters . 11-1

How Filters Work. 11-2

Uses for Filters . 11-2

Writing a Filter Class . 11-2

Configuring Filters . 11-3

Configuring a Filter . 11-3

Configuring a Chain of Filters . 11-5

Filtering the Servlet Response Object. 11-5

Additional Resources . 11-6

Developing Web Applications, Servlets, and JSPs for WebLogic Server xi

12.Using WebLogic JSP Form Validation Tags
Overview of WebLogic JSP Form Validation Tags . 12-1

Validation Tag Attribute Reference. 12-2

<wl:summary> . 12-2

<wl:form>. 12-3

<wl:validator> . 12-4

Using WebLogic JSP Form Validation Tags in a JSP. 12-5

Creating HTML Forms Using the <wl:form> Tag . 12-6

Defining a Single Form . 12-6

Defining Multiple Forms . 12-7

Re-Displaying the Values in a Field When Validation Returns Errors. 12-7

Re-Displaying a Value Using the <input> Tag . 12-7

Re-Displaying a Value Using the Apache Jakarta <input:text> Tag. 12-7

Using a Custom Validator Class . 12-8

Extending the CustomizableAdapter Class . 12-9

Sample User-Written Validator Class. 12-9

Sample JSP with Validator Tags . 12-10

13.Using Custom WebLogic JSP Tags (cache, process, repeat)
Overview of WebLogic Custom JSP Tags . 13-1

Using the WebLogic Custom Tags in a Web Application . 13-1

Cache Tag . 13-2

Refreshing a Cache. 13-2

Flushing a Cache . 13-3

Process Tag . 13-9

Repeat Tag . 13-11

xii Developing Web Applications, Servlets, and JSPs for WebLogic Server

14.Using the WebLogic EJB to JSP Integration Tool
Overview of the WebLogic EJB-to-JSP Integration Tool . 14-1

Basic Operation . 14-2

Interface Source Files . 14-3

Build Options Panel . 14-3

Troubleshooting . 14-4

Using EJB Tags on a JSP Page . 14-5

EJB Home Methods . 14-5

Stateful Session and Entity Beans. 14-5

Default Attributes . 14-7

A. web.xml Deployment Descriptor Elements
icon . A-2

display-name . A-2

description . A-3

distributable. A-3

context-param . A-4

filter . A-5

filter-mapping . A-7

listener . A-7

servlet . A-8

icon. A-9

init-param. A-9

security-role-ref . A-10

servlet-mapping. A-10

session-config . A-11

mime-mapping . A-12

welcome-file-list . A-12

Developing Web Applications, Servlets, and JSPs for WebLogic Server xiii

error-page. .A-13

taglib .A-13

resource-env-ref. .A-14

resource-ref .A-15

security-constraint .A-16

web-resource-collection .A-17

auth-constraint .A-17

user-data-constraint .A-18

login-config .A-19

form-login-config .A-19

security-role .A-20

env-entry .A-20

ejb-ref. .A-21

. ejb-local-refA-22

B. weblogic.xml Deployment Descriptor Elements
description . B-2

weblogic-version . B-2

security-role-assignment . B-2

run-as-role-assignment . B-5

reference-descriptorGroup. B-6

resource-description . B-6

resource-env-description . B-7

ejb-reference-description . B-7

service-reference-description . B-7

session-descriptor . B-8

jsp-descriptor . B-15

auth-filter . B-16

xiv Developing Web Applications, Servlets, and JSPs for WebLogic Server

container-descriptor. B-16

check-auth-on-forward. B-17

filter-dispatched-requests-enabled . B-17

redirect-with-absolute-url. B-17

index-directory-enabled . B-17

index-directory-sort-by . B-18

servlet-reload-check-secs . B-18

resource-reload-check-secs . B-18

single-threaded-servlet-pool-size . B-18

session-monitoring-enabled . B-18

save-sessions-enabled . B-19

prefer-web-inf-classes . B-19

default-mime-type . B-19

client-cert-proxy-enabled . B-19

relogin-enabled. B-20

allow-all-roles . B-20

native-io-enabled . B-20

minimum-native-file-size. B-20

disable-implicit-servlet-mapping . B-20

optimistic-serialization. B-21

monitoring-attribute-name . B-21

charset-params. B-21

input-charset. B-22

charset-mapping . B-22

virtual-directory-mapping . B-23

url-match-map . B-24

security-permission . B-24

context-root . B-25

Developing Web Applications, Servlets, and JSPs for WebLogic Server xv

wl-dispatch-policy . B-26

servlet-descriptor . B-26

work-manager . B-27

logging . B-30

library-ref. B-33

Backwards Compatibility Flags. B-34

Web Container Global Configuration . B-34

C. Web Application Best Practices
CGI Best Practices. C-2

Servlet Best Practices . C-2

JSP Best Practices . C-3

Best Practice When Subclassing ServletResponseWrapper . C-3

xvi Developing Web Applications, Servlets, and JSPs for WebLogic Server

Developing Web Applications, Servlets, and JSPs for WebLogic Server 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Developing Web
Applications, Servlets, and JSPs for WebLogic Server

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-3

“Examples for the Web Application Developer” on page 1-4

Document Scope and Audience
This document is a resource for software developers who develop Web applications and
components such as HTTP servlets and JavaServer Pages (JSPs) for deployment on WebLogic

Server®. This document is also a resource for Web application users and deployers. It also
contains information that is useful for business analysts and system architects who are evaluating
WebLogic Server or considering the use of WebLogic Server Web applications for a particular
application.

The topics in this document are relevant during the design and development phases of a software
project. The document also includes topics that are useful in solving application problems that are
discovered during test and pre-production phases of a project.

This document does not address production phase administration, monitoring, or performance
tuning topics. For links to WebLogic Server documentation and resources for these topics, see
“Related Documentation” on page 1-3.

I n t roduc t i on and Roadmap

1-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

It is assumed that the reader is familiar with J2EE and Web application concepts. This document
emphasizes the value-added features provided by WebLogic Server Web applications and key
information about how to use WebLogic Server features and facilities to get a Web application
up and running.

Guide to this Document
This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

Chapter 2, “Understanding Web Applications, Servlets, and JSPs,” provides an overview of
WebLogic Server Web applications servlets, and Java Server Pages (JSPs).

Chapter 3, “Creating and Configuring Web Applications,” describes how to create and
configure Web application resources.

Chapter 4, “Creating and Configuring Servlets,” describes how to create and configure
servlets.

Chapter 5, “Creating and Configuring JSPs,” describes how to create and configure JSPs.

Chapter 6, “Configuring Resources in a Web Application,” describes how to configure
Web application resources.

Chapter 7, “Servlet Programming Tasks,” describes how to write HTTP servlets in a
WebLogic Server environment.

Chapter 8, “Using Sessions and Session Persistence,” describes how to set up sessions and
session persistence.

Chapter 9, “Application Events and Event Listener Classes,” discusses application events
and event listener classes.

Chapter 11, “Filters,” provides information about using filters in a Web application.

Chapter 10, “WebLogic JSP Reference,” provides reference information for writing
JavaServer Pages (JSPs).

Chapter 12, “Using WebLogic JSP Form Validation Tags,” describes how to use WebLogic
JSP form validation tags.

Chapter 13, “Using Custom WebLogic JSP Tags (cache, process, repeat),” describes the
use of three custom JSP tags—cache, repeat, and process—provided with the
WebLogic Server distribution.

Rel at ed Documenta t i on

Developing Web Applications, Servlets, and JSPs for WebLogic Server 1-3

Chapter 14, “Using the WebLogic EJB to JSP Integration Tool,” describes how to use the
WebLogic EJB-to-JSP integration tool to create JSP tag libraries that you can use to invoke
EJBs in a JavaServer Page (JSP). This document assumes at least some familiarity with
both EJB and JSP.

Appendix A, “web.xml Deployment Descriptor Elements,” describes the deployment
descriptor elements defined in the web.xml schema under the root element <web-app>.

Appendix B, “weblogic.xml Deployment Descriptor Elements,” provides a complete
reference for the schema for the WebLogic Server-specific deployment descriptor
weblogic.xml.

Appendix C, “Web Application Best Practices,” contains BEA best practices for designing,
developing, and deploying WebLogic Web applications and application resources.

Related Documentation
This document contains Web application-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

Developing Applications with WebLogic Server is a guide to developing WebLogic Server
applications.

Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications.

Upgrading WebLogic Application Environments contains information about Web
Applications, JSP, and Servlet compatibility with previous WebLogic Server releases.

JavaServer Pages Tutorial from Sun Microsystems at
http://java.sun.com/products/jsp/docs.html

JSP product overview from Sun Microsystems at
http://www.java.sun.com/products/jsp/index.html

JSP 2.0 Specification from Sun Microsystems at
http://java.sun.com/products/jsp/download.html

Servlet 2.4 Specification from Sun Microsystems at
http://java.sun.com/products/servlet/download.html#specs

http://e-docs.bea.com/wls/docs90/programming/index.html
message URL http://e-docs.bea.com/wls/docs90/deployment/index.html
../../../common/docs90/upgrade/compat.html
http://java.sun.com/products/jsp/docs.html
http://www.java.sun.com/products/jsp/index.html
http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs

I n t roduc t i on and Roadmap

1-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/

Examples for the Web Application Developer
In addition to this document, BEA Systems provides examples for software developers within the
context of the Avitek Medical Records Application (MedRec) sample, discussed in the next
section.

Avitek Medical Records Application (MedRec)
MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Platform.

Web Application Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server Start menu.

BEA provides several Web application, servlet, and JSP examples with this release of WebLogic
Server. BEA recommends that you run these Web application examples before developing your
own Web applications.

http://java.sun.com/products/j2ee/
http://java.sun.com/products/j2ee/
http://java.sun.com/products/j2ee/

Developing Web Applications, Servlets, and JSPs for WebLogic Server 2-1

C H A P T E R 2

Understanding Web Applications,
Servlets, and JSPs

The following sections provide an overview of WebLogic Server Web applications, servlets, and
Java Server Pages (JSPs):

“The Web Applications Container” on page 2-1

“Servlets” on page 2-2

“Java Server Pages” on page 2-4

“Web Application Developer Tools” on page 2-6

“Web Application Security” on page 2-6

The Web Applications Container
A Web application contains an application’s resources, such as servlets, JavaServer Pages (JSPs),
JSP tag libraries, and any static resources such as HTML pages and image files. A Web
application adds service-refs (Web services) and message-destination-refs (JMS
destinations/queues) to an application. It can also define links to outside resources such as
Enterprise JavaBeans (EJBs).

Web applications deployed on WebLogic Server use a standard J2EE deployment descriptor file
and a WebLogic-specific deployment descriptor file to define their resources and operating
attributes.

JSPs and HTTP servlets can access all services and APIs available in WebLogic Server. These
services include EJBs, database connections by way of Java Database Connectivity (JDBC),
JavaMessaging Service (JMS), XML, and more.

Unders tandi ng Web App l i ca t i ons, Se rv le ts , and JSPs

2-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

A Web archive (WAR file) contains the files that make up a Web application. A WAR file is
deployed as a unit on one or more WebLogic Server instances. A WAR file deployed to
WebLogic Server always includes the following files:

One servlet or Java Server Page (JSP), along with any helper classes.

A web.xml deployment descriptor, which is a J2EE standard XML document that
describes the contents of a WAR file.

A weblogic.xml deployment descriptor, which is an XML document containing
WebLogic Server-specific elements for Web applications.

A WAR file can also include HTML or XML pages and supporting files such as image and
multimedia files.

The WAR file can be deployed alone or packaged in an Enterprise application archive (EAR file)
with other application components. If deployed alone, the archive must end with a .war
extension. If deployed in an EAR file, the archive must end with an .ear extension.

BEA recommends that you package and deploy your stand-alone Web applications as part of an
Enterprise application. This is a BEA best practice, which allows for easier application migration,
additions, and changes. Also, packaging your applications as part of an Enterprise application
allows you to take advantage of the split development directory structure, which provides a
number of benefits over the traditional single directory structure.

Note: If you are deploying a directory in exploded format (not archived), do not name the
directory .ear, .jar, and so on. For more information on archived format, see “Web
Application Developer Tools” on page 2-6.

Servlets
A servlet is a Java class that runs in a Java-enabled server. An HTTP servlet is a special type of
servlet that handles an HTTP request and provides an HTTP response, usually in the form of an
HTML page. The most common use of WebLogic HTTP Servlets is to create interactive
applications using standard Web browsers for the client-side presentation while WebLogic
Server handles the business logic as a server-side process. WebLogic HTTP servlets can access
databases, Enterprise JavaBeans, messaging APIs, HTTP sessions, and other facilities of
WebLogic Server.

WebLogic Server fully supports HTTP servlets as defined in the Servlet 2.4 specification from
Sun Microsystems. HTTP servlets form an integral part of the Java 2 Enterprise Edition (J2EE)
standard.

http://java.sun.com/products/servlet/download.html#specs

Serv le ts

Developing Web Applications, Servlets, and JSPs for WebLogic Server 2-3

What You Can Do with Servlets
Create dynamic Web pages that use HTML forms to get end-user input and provide HTML
pages that respond to that input. Examples of this utilization include online shopping carts,
financial services, and personalized content.

Create collaborative systems such as online conferencing.

Have access to a variety of APIs and features by using servlets running in WebLogic
Server. For example:

– Session tracking—Allows a Web site to track a user’s progress across multiple Web
pages. This functionality supports Web sites such as e-commerce sites that use
shopping carts. WebLogic Server supports session persistence to a database, providing
fail-over between server down time and session sharing between clustered servers. For
more information see “Session Tracking from a Servlet” on page 8-13.

– JDBC drivers (including BEA)—JDBC drivers provide basic database access. With
Weblogic Server’s multitier JDBC implementations, you can take advantage of
connection pools, server-side data caching, and transactions. For more information see
“Accessing Databases” on page 7-15.

– Enterprise JavaBeans—Servlets can use Enterprise JavaBeans (EJB) to encapsulate
sessions, data from databases, and other functionality. See “Referencing External EJBs”
on page 6-3, “More about the ejb-ref* Elements” on page 6-4, and “Referencing
Application-Scoped EJBs” on page 6-5.

– Java Messaging Service (JMS)—JMS allows your servlets to exchange messages with
other servlets and Java programs. See Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs90/jms/index.html.

– Java JDK APIs—Servlets can use the standard Java JDK APIs.

– Forwarding requests—Servlets can forward a request to another servlet or other
resource. “Forwarding a Request” on page 7-18.

Easily deploy servlets written for any J2EE-compliant servlet engine to WebLogic Server.

Servlet Development Key Points
The following are a few key points relating to servlet development:

Programmers of HTTP servlets utilize a standard API from JavaSoft,
javax.servlet.http, to create interactive applications.

http://e-docs.bea.com/wls/docs90/jms/index.html

Unders tandi ng Web App l i ca t i ons, Se rv le ts , and JSPs

2-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

HTTP servlets can read HTTP headers and write HTML coding to deliver a response to a
browser client.

Servlets are deployed to WebLogic Server as part of a Web application. A Web application
is a grouping of application components such as servlet classes, JavaServer Pages (JSPs),
static HTML pages, images, and security.

Servlets and J2EE
The Servlet 2.4 specification, part of the Java 2 Platform, Enterprise Edition, defines the
implementation of the servlet API and the method by which servlets are deployed in enterprise
applications. Deploying servlets on a J2EE-compliant server, such as WebLogic Server, is
accomplished by packaging the servlets and other resources that make up an enterprise
application into a single unit, the Web application. A Web application utilizes a specific directory
structure to contain its resources and a deployment descriptor that defines how these resources
interact and how the application is accessed by a client. See “The Web Applications Container”
on page 2-1.

Java Server Pages
Java Server Pages (JSPs) are Web pages coded with an extended HTML that makes it possible to
embed Java code in a Web page. JSPs can call custom Java classes, called taglibs, using
HTML-like tags. The WebLogic appc compiler weblogic.appc generates JSPs and validates
descriptors. You can also precompile JSPs into the WEB-INF/classes/ directory or as a JAR
file under WEB-INF/lib/ and package the servlet class in the Web archive to avoid compiling
in the server. Servlets and JSPs may require additional helper classes to be deployed with the Web
application.

JSPs are a Sun Microsystems specification for combining Java with HTML to provide dynamic
content for Web pages. When you create dynamic content, JSPs are more convenient to write than
HTTP servlets because they allow you to embed Java code directly into your HTML pages, in
contrast with HTTP servlets, in which you embed HTML inside Java code. JSP is part of the Java
2 Enterprise Edition (J2EE).

JSPs enable you to separate the dynamic content of a Web page from its presentation. It caters to
two different types of developers: HTML developers, who are responsible for the graphical
design of the page, and Java developers, who handle the development of software to create the
dynamic content.

Because JSPs are part of the J2EE standard, you can deploy JSPs on a variety of platforms,
including WebLogic Server. In addition, third-party vendors and application developers can

http://java.sun.com/products/servlet/download.html#specs

J ava Ser ve r Pages

Developing Web Applications, Servlets, and JSPs for WebLogic Server 2-5

provide JavaBean components and define custom JSP tags that can be referenced from a JSP page
to provide dynamic content.

What You Can Do with JSPs
Combine Java with HTML to provide dynamic content for Web pages.

Call custom Java classes, called taglibs, using HTML-like tags.

Embed Java code directly into your HTML pages, in contrast with HTTP servlets, in which
you embed HTML inside Java code.

Separate the dynamic content of a Web page from its presentation.

Overview of How JSP Requests Are Handled
WebLogic Server handles JSP requests in the following sequence:

1. A browser requests a page with a .jsp file extension from WebLogic Server.

2. WebLogic Server reads the request.

3. Using the JSP compiler, WebLogic Server converts the JSP into a servlet class that
implements the javax.servlet.jsp.JspPage interface. The JSP file is compiled only
when the page is first requested, or when the JSP file has been changed. Otherwise, the
previously compiled JSP servlet class is re-used, making subsequent responses much
quicker.

4. The generated JspPage servlet class is invoked to handle the browser request.

It is also possible to invoke the JSP compiler directly without making a request from a browser.
For details, see “Using the WebLogic JSP Compiler” on page 10-24.

Because the JSP compiler creates a Java servlet as its first step, you can look at the Java files it
produces, or even register the generated JspPage servlet class as an HTTP servlet. See “Servlets”
on page 2-2.

JSPs and J2EE
BEA WebLogic JSP supports the JSP 2.0 specification from Sun Microsystems. JSP 2.0 includes
support for defining custom JSP tag extensions.

http://java.sun.com/products/jsp/download.html

Unders tandi ng Web App l i ca t i ons, Se rv le ts , and JSPs

2-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Web Application Developer Tools
BEA provides several tools to help you create and configure Web applications. These are
discussed in the following sections.

Ant Tasks to Create Skeleton Deployment Descriptors
You can use the WebLogic Ant utilities to create skeleton deployment descriptors. These utilities
are Java classes shipped with your WebLogic Server distribution. The Ant task looks at a
directory containing a Web application and creates deployment descriptors based on the files it
finds in the Web application. Because the Ant utility does not have information about all desired
configurations and mappings for your Web application, the skeleton deployment descriptors the
utility creates are incomplete. After the utility creates the skeleton deployment descriptors, you
can use a text editor, an XML editor, or the Administration Console to edit the deployment
descriptors and complete the configuration of your Web application.

XML Editors
You can use an XML Editor with DTD validation, such as BEA XML Editor on dev2dev. See
BEA dev2dev Online at http://dev2dev.bea.com/index.jsp.

Web Application Security
You can secure a Web application by restricting access to certain URL patterns in the Web
application or programmatically using security calls in your servlet code.

At runtime, your username and password are authenticated using the applicable
security realm for the Web application. Authorization is verified according to the security
constraints configured in web.xml or the external policies that might have been created using
Administration Console for the Web application.

At runtime, the WebLogic Server active security realm applies the Web application security
constraints to the specified Web application resources. Note that a security realm is shared across
multiple virtual hosts.

For detailed instructions and an example on configuring security in Web applications, see
Securing WebLogic Resources. For more information on WebLogic security, refer to
Programming WebLogic Security.

http://dev2dev.bea.com/index.jsp
http://dev2dev.bea.com/index.jsp
http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/security/index.html

P3P P r i vacy P ro toco l

Developing Web Applications, Servlets, and JSPs for WebLogic Server 2-7

P3P Privacy Protocol
The Platform for Privacy Preferences (P3P) provides a way for Web sites to publish their privacy
policies in a machine-readable syntax. The WebLogic Server Web application container can
support P3P.

There are three ways to tell the browser about the location of the p3p.xml file:

Place the a policy reference file in the “well-known location” (at the location /w3c/p3p.xml
on the site).

Add an extra HTTP header to each response from the Web site giving the location of the
policy reference file.

Place a link to the policy reference file in each HTML page on the site.

For more detailed information, see http://www.w3.org/TR/p3pdeployment#Locating_PRF.

http://www.w3.org/TR/p3pdeployment#Locating_PRF

Unders tandi ng Web App l i ca t i ons, Se rv le ts , and JSPs

2-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Developing Web Applications, Servlets, and JSPs for WebLogic Server 3-1

C H A P T E R 3

Creating and Configuring Web
Applications

The following sections describe how to create and configure Web application resources.

“Directory Structure” on page 3-2

“Main Steps to Create and Configure a Web Application” on page 3-5

“Configuring How a Client Accesses a Web Application” on page 3-7

“Configuring Virtual Hosts for Web Applications” on page 3-7

“Targeting Web Applications to Virtual Hosts” on page 3-8

“Loading Servlets, Context Listeners, and Filters” on page 3-8

“Shared J2EE Web Application Libraries” on page 3-9

Creat ing and Conf igur ing Web Appl i ca t ions

3-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Directory Structure
Web applications use a standard directory structure defined in the J2EE specification. You can
deploy a Web application as a collection of files that use this directory structure, known as
exploded directory format, or as an archived file called a WAR file. BEA recommends that you
package and deploy your exploded Web application as part of an Enterprise application. This is
a BEA best practice, which allows for easier application migration, additions, and changes. Also,
packaging your Web application as part of an Enterprise application allows you to take advantage
of the split development directory structure, which provides a number of benefits over the
traditional single directory structure.

The WEB-INF directory contains the deployment descriptors for the Web application (web.xml
and weblogic.xml) and two subdirectories for storing compiled Java classes and library JAR
files. These subdirectories are respectively named classes and lib. JSP taglibs are stored in the
WEB-INF directory at the top level of the staging directory. The Java classes include servlets,
helper classes and, if desired, precompiled JSPs.

All servlets, classes, static files, and other resources belonging to a Web application are organized
under a directory hierarchy.

DefaultWebApp/

Place your static files, such as HTML files and JSP files in the directory that is the
document root of your Web application. In the default installation of WebLogic Server,
this directory is called DefaultWebApp, under
user_domains/mydomain/applications.

(To make your Web application the default Web application, you must set
context-root to "/" in the weblogic.xml deployment descriptor file.)

DefaultWebApp/WEB-INF/web.xml

The Web application deployment descriptor that configures the Web application.

DefaultWebApp/WEB-INF/weblogic.xml

The WebLogic-specific deployment descriptor file that defines how named
resources in the web.xml file are mapped to resources residing elsewhere in
WebLogic Server. This file is also used to define JSP and HTTP session attributes.

DefaultWebApp/WEB-INF/classes

Contains server-side classes such as HTTP servlets and utility classes.

DefaultWebApp/WEB-INF/lib

Contains JAR files used by the Web application, including JSP tag libraries.

The entire directory, once staged, is bundled into a WAR file using the jar command. The WAR
file can be deployed alone or as part of an Enterprise application (recommended) with other

Direct or y S t ruc tu re

Developing Web Applications, Servlets, and JSPs for WebLogic Server 3-3

application components, including other Web applications, EJB components, and WebLogic
Server components.

JSP pages and HTTP servlets can access all services and APIs available in WebLogic Server.
These services include EJBs, database connections through Java Database Connectivity (JDBC),
JavaMessaging Service (JMS), XML, and more.

Accessing Information in WEB-INF
The WEB-INF directory is not part of the public document tree of the application. No file
contained in the WEB-INF directory can be served directly to a client by the container. However,
the contents of the WEB-INF directory are visible to servlet code using the getResource and
getResourceAsStream() method calls on the ServletContext or includes/forwards using
the RequestDispatcher. Hence, if the application developer needs access, from servlet code, to
application specific configuration information that should not be exposed directly to the Web
client, the application developer may place it under this directory.

Since requests are matched to resource mappings in a case-sensitive manner, client requests for
‘/WEB-INF/foo’, ‘/WEb-iNf/foo’, for example, should not result in contents of the Web
application located under /WEB-INF being returned, nor any form of directory listing thereof.

Directory Structure Example
The following is an example of a Web application directory structure, in which myWebApp/ is the
staging directory:

Listing 3-1 Web Application Directory Structure

myWebApp/

WEB-INF/

web.xml

weblogic.xml

lib/

MyLib.jar

classes/

MyPackage/

Creat ing and Conf igur ing Web Appl i ca t ions

3-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

MyServlet.class

index.html

index.jsp

Main St eps to Crea te and Conf igure a Web Appl ica t i on

Developing Web Applications, Servlets, and JSPs for WebLogic Server 3-5

Main Steps to Create and Configure a Web Application
The following steps summarize the procedure for creating a Web application as part of an
Enterprise application using the split development directory structure. See “Creating a Split
Development Directory for an Application," “Building the Applications," and “Deploying the
Application" in Developing Applications with WebLogic Server.

You may want to use developer tools included with WebLogic Server for creating and
configuring Web applications. See “Web Application Developer Tools” on page 2-6.

Step One: Create the Enterprise Application Wrapper
1. Create a directory for your root EAR file:

\src\myEAR\

2. Set your environment as follows:

– On Windows NT, execute the setWLSEnv.cmd command, located in the directory
server\bin\, where server is the top-level directory in which WebLogic Server is
installed.

– On UNIX, execute the setWLSEnv.sh command, located in the directory
server/bin/, where server is the top-level directory in which WebLogic Server is
installed and domain refers to the name of your domain.

3. Package your Enterprise application in the \src\myEAR\ directory as follows:

a. Place the Enterprise applications descriptors (application.xml and
weblogic-application.xml) in the META-INF\ directory. See “Enterprise Application
Deployment Descriptors" in Developing Applications with WebLogic Server.

b. Edit the deployment descriptors as needed to fine-tune the behavior of your Enterprise
application. See “Web Application Developer Tools” on page 2-6.

c. Place the Enterprise application .jar files in:

\src\myEAR\APP-INF\lib\

Step Two: Create the Web Application
1. Create a directory for your Web application in the root of your EAR file:

\src\myEAR\myWebApp

2. Package your Web application in the \src\myEAR\myWebApp\ directory as follows:

http://e-docs.bea.com/wls/docs90/programming/splitcreate.html
http://e-docs.bea.com/wls/docs90/programming/splitcreate.html
http://e-docs.bea.com/wls/docs90/programming/splitbuild.html
http://e-docs.bea.com/wls/docs90/programming/splitdeploy.html
http://e-docs.bea.com/wls/docs90/programming/splitdeploy.html
http://e-docs.bea.com/wls/docs90/programming/index.html
http://e-docs.bea.com/wls/docs90/programming/app_xml.html
http://e-docs.bea.com/wls/docs90/programming/index.html

Creat ing and Conf igur ing Web Appl i ca t ions

3-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

a. Place the Web application descriptors (web.xml and weblogic.xml) in the
\src\myEAR\myWebApp\WEB-INF\ directory. See Appendix B, “weblogic.xml
Deployment Descriptor Elements.”

b. Edit the deployment descriptors as needed to fine-tune the behavior of your Enterprise
application. See “Web Application Developer Tools” on page 2-6.

c. Place all HTML files, JSPs, images and any other files referenced by the Web application
pages in the root of the Web application:

\src\myEAR\myWebApp\images\myimage.jpg

\src\myEAR\myWebApp\login.jsp

\src\myEAR\myWebApp\index.html

d. Place your Web application Java source files (servlets, tag libs, other classes referenced
by servlets or tag libs) in:

\src\myEAR\myWebApp\WEB-INF\src\

Step Three: Creating the build.xml File
Once you have set up your directory structure, you create the build.xml file using the
weblogic.BuildXMLGen utility.

Step Four: Execute the Split Development Directory Structure
Ant Tasks
1. Execute the wlcompile Ant task to invoke the javac compiler. This compiles your Web

application Java components into an output directory: /build/myEAR/WEB-INF/classes.

2. Execute wlappc Ant task to invoke the appc compiler. This compiles any JSPs and
container-specific EJB classes for deployment.

3. Execute the wldeploy Ant task to deploy your Web application as part of an archived or
exploded EAR to WebLogic Server.

4. If this is a production environment (rather than development), execute the wlpackage Ant
task to package your Web application as part of an archived or exploded EAR.

Note: The wlpackage Ant task places compiled versions of your Java source files in the
build directory. For example: /build/myEAR/myWebApp/classes.

Conf igur ing How a C l i en t Accesses a Web Appl ica t i on

Developing Web Applications, Servlets, and JSPs for WebLogic Server 3-7

Configuring How a Client Accesses a Web Application
You construct the URL that a client uses to access a Web application using the following pattern:

http://hoststring/ContextPath/servletPath/pathInfo

Where

hoststring
is either a host name that is mapped to a virtual host or hostname:portNumber.

ContextPath
is the name of your Web application.

servletPath
is a servlet that is mapped to the servletPath.

pathInfo
is the remaining portion of the URL, typically a file name.

If you are using virtual hosting, you can substitute the virtual host name for the hoststring
portion of the URL.

Configuring Virtual Hosts for Web Applications
WebLogic Server supports two methods for configuring virtual hosts for Web applications:

channel based

host based

Configuring a Channel-based Virtual Host
The following is an example of how to configure a channel-based virtual host:

<VirtualHost Name="channel1vh" NetworkAccessPoint="Channel1"

Targets="myserver"/>

<VirtualHost Name="channel2vh" NetworkAccessPoint="Channel2"

Targets="myserver"/>

Where Channel1 and Channel2 are the names of NetworkAccessPoint configured in the
config.xml file. NetworkAccessPoint represents the dedicated server channel name for
which the virtual host serves HTTP requests. If the NetworkAccessPoint for a given HTTP
request does not match the NetworkAccessPoint of any virtual host, the incoming HOST
header is matched with the VirtualHostNames in order to resolve the correct virtual host. If an

Creat ing and Conf igur ing Web Appl i ca t ions

3-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

incoming request does not match a virtual host, the request will be served by the default Web
server.

Configuring a Host-based Virtual Host
The following is an example of how to configure a host-based virtual host:

<VirtualHost Name="cokevh" Targets="myserver" VirtualHostNames="coke"/>

<VirtualHost Name="pepsivh" Targets="myserver" VirtualHostNames="pepsi"/>

Targeting Web Applications to Virtual Hosts
A Web application component can be targeted to servers and virtual hosts using the WebLogic
Administration Console.

If you are migrating from previous versions of WebLogic Server, note that in the config.xml file,
all Web application targets must be specified in the targets attribute. The targets attribute has
replaced the virtual hosts attribute and a virtual host cannot have the same name as a server or
cluster in the same domain. The following is an example of how to target a Web application to a
virtual host:

<AppDeployment name="test-app" Sourcepath="/myapps/test-app.ear">

 <SubDeployment Name="test-webapp1.war" Targets="virutalhost-1"/>

 <SubDeployment Name="test-webapp2.war" Targets="virtualhost-2"/>

 ...

</AppDeployment>

Loading Servlets, Context Listeners, and Filters
Servlets, Context Listeners, and Filters are loaded and destroyed in the following order:

Order of loading:

1. Context Listeners

2. Filters

3. Servlets

Order of destruction:

1. Servlets

Shared J2EE Web App l i ca t i on L ib ra r i es

Developing Web Applications, Servlets, and JSPs for WebLogic Server 3-9

2. Filters

3. Context Listeners

Servlets and filters are loaded in the same order they are defined in the web.xml file and unloaded
in reverse order. Context listeners are loaded in the following order:

1. All context listeners in the web.xml file in the order as specified in the file

2. Packaged JAR files containing tag library descriptors

3. Tag library descriptors in the WEB-INF directory

Shared J2EE Web Application Libraries
A J2EE Web application library is a standalone Web application module registered with the J2EE
application container upon deployment. Using WebLogic Server 9.0, multiple Web applications
can easily share a single Web application module or collection of modules.

A Web application may reference one or more Web application libraries, but cannot reference
other library types (EJBs, EAR files, plain JAR files).

Web application libraries are Web application modules deployed as libraries. They are referenced
from the weblogic.xml file using the same syntax that is used to reference application libraries
in the weblogic-application.xml file, except that the <context-root> element is ignored.

At deployment time, the classpath of each referenced library is appended to the Web application’s
classpath. Therefore, the search for all resources and classes occurs first in the original Web
application and then in the referenced library.

The deployment tools, appc, wlcompile, and BuildXMLGen support libraries at the Web
application level in the same way they support libraries at the application level. For more
information about shared J2EE libraries and their deployment, see Creating Shared J2EE
Libraries and Optional Packages in Developing Applications with WebLogic Server.

http://e-docs.bea.com/wls/docs90/programming/libraries.html
http://e-docs.bea.com/wls/docs90/programming/libraries.html

Creat ing and Conf igur ing Web Appl i ca t ions

3-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Developing Web Applications, Servlets, and JSPs for WebLogic Server 4-1

C H A P T E R 4

Creating and Configuring Servlets

The following sections describe how to create and configure servlets.

“Configuring Servlets” on page 4-2

“Setting Up a Default Servlet” on page 4-5

“Writing a Simple HTTP Servlet” on page 4-6

“Advanced Features” on page 4-8

“Complete HelloWorldServlet Example” on page 4-9

Creat ing and Conf igur ing Se rv let s

4-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Configuring Servlets
You define servlets as a part of a Web application in several entries in the J2EE standard Web
Application deployment descriptor, web.xml. The web.xml file is located in the WEB-INF
directory of your Web application.

The first entry, under the root servlet element in web.xml, defines a name for the servlet and
specifies the compiled class that executes the servlet. (Or, instead of specifying a servlet class,
you can specify a JSP.) The servlet element also contains definitions for initialization attributes
and security roles for the servlet.

The second entry in web.xml, under the servlet-mapping element, defines the URL pattern
that calls this servlet.

Servlet Mapping
Servlet mapping controls how you access a servlet. The following examples demonstrate how
you can use servlet mapping in your Web application. In the examples, a set of servlet
configurations and mappings (from the web.xml deployment descriptor) is followed by a table
(see “url-patterns and Servlet Invocation” on page 4-3) showing the URLs used to invoke these
servlets.

For more information on servlet mappings, such as general servlet mapping rules and
conventions, refer to Section 11 of the Servlet 2.4 specification.

Listing 4-1 Servlet Mapping Example

<servlet>

<servlet-name>watermelon</servlet-name>

<servlet-class>myservlets.watermelon</servlet-class>

</servlet>

<servlet>

<servlet-name>garden</servlet-name>

<servlet-class>myservlets.garden</servlet-class>

</servlet>

<servlet>

<servlet-name>list</servlet-name>

<servlet-class>myservlets.list</servlet-class>

</servlet>

http://java.sun.com/products/servlet/download.html#specs

Conf igur ing Ser v le ts

Developing Web Applications, Servlets, and JSPs for WebLogic Server 4-3

<servlet>

<servlet-name>kiwi</servlet-name>

<servlet-class>myservlets.kiwi</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>watermelon</servlet-name>

<url-pattern>/fruit/summer/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>garden</servlet-name>

<url-pattern>/seeds/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>list</servlet-name>

<url-pattern>/seedlist</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>kiwi</servlet-name>

<url-pattern>*.abc</url-pattern>

</servlet-mapping>

Table 4-1 url-patterns and Servlet Invocation

URL Servlet
Invoked

http://host:port/mywebapp/fruit/summer/index.html watermelon

http://host:port/mywebapp/fruit/summer/index.abc watermelon

http://host:port/mywebapp/seedlist list

Creat ing and Conf igur ing Se rv let s

4-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

ServletServlet can be used to create a default mappings for servlets. For example, to create
a default mapping to map all servlets to /myservlet/*, so the servlets can be called using
http://host:port/web-app-name/myservlet/com/foo/FooServlet, add the following to
your web.xml file. (The web.xml file is located in the WEB-INF directory of your Web
application.)

<servlet>

<servlet-name>ServletServlet</servlet-name>

http://host:port/mywebapp/seedlist/index.html The default
servlet, if
configured, or an
HTTP 404 File
Not Found error
message.

If the mapping
for the list
servlet had been
/seedlist*,
the list servlet
would be
invoked.

http://host:port/mywebapp/seedlist/pear.abc kiwi

If the mapping
for the list
servlet had been
/seedlist*,
the list servlet
would be
invoked.

http://host:port/mywebapp/seeds garden

http://host:port/mywebapp/seeds/index.html garden

http://host:port/mywebapp/index.abc kiwi

Table 4-1 url-patterns and Servlet Invocation

URL Servlet
Invoked

Set t ing Up a De fau l t Se rv le t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 4-5

<servlet-class>weblogic.servlet.ServletServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>ServletServlet</servlet-name>

<url-pattern>/myservlet/*</url-pattern>

</servlet-mapping>

Setting Up a Default Servlet
Each Web application has a default servlet. This default servlet can be a servlet that you specify,
or, if you do not specify a default servlet, WebLogic Server uses an internal servlet called the
FileServlet as the default servlet.

You can register any servlet as the default servlet. Writing your own default servlet allows you
to use your own logic to decide how to handle a request that falls back to the default servlet.

Setting up a default servlet replaces the FileServlet and should be done carefully because the
FileServlet is used to serve most files, such as text files, HTML file, image files, and more. If
you expect your default servlet to serve such files, you will need to write that functionality into
your default servlet.

To set up a user-defined default servlet:

1. Define your servlet as described in “Configuring How a Client Accesses a Web Application”
on page 3-7.

2. Add a servlet-mapping with url-pattern = “/” as follows:

<servlet-mapping>

<servlet-name>MyOwnDefaultServlet</servlet-name>

<url-pattern>/myservlet/*(</url-pattern>

</servlet-mapping>

3. If you still want the FileServlet to serve files with other extensions:

a. Define a servlet and give it a <servlet-name>, for example myFileServlet.

b. Define the <servlet-class> as weblogic.servlet.FileServlet.

a. Using the <servlet-mapping> element, map file extensions to the myFileServlet (in
addition to the mappings for your default servlet). For example, if you want the
myFileServlet to serve.gif files, map *.gif to the myFileServlet.

Creat ing and Conf igur ing Se rv let s

4-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Note: The FileServlet includes the SERVLET_PATH when determining the source
filename if docHome is not specified. As a result, it is possible to explicitly serve only
files from specific directories by mapping the FileServlet to /dir/*, etc.

Servlet Initialization Attributes
You define initialization attributes for servlets in the Web application deployment descriptor,
web.xml, in the init-param element of the servlet element, using param-name and
param-value tags. The web.xml file is located in the WEB-INF directory of your Web
application. For example:

Listing 4-2 Example of Configuring Servlet Initialization Attributes in web.xml

<servlet>

<servlet-name>HelloWorld2</servlet-name>

<servlet-class>examples.servlets.HelloWorld2</servlet-class>

<init-param>

<param-name>greeting</param-name>

<param-value>Welcome</param-value>

</init-param>

<init-param>

<param-name>person</param-name>

<param-value>WebLogic Developer</param-value>

</init-param>

</servlet>
</servlet>

Writing a Simple HTTP Servlet
The section provides a procedure for writing a simple HTTP servlet, which prints out the message
Hello World. A complete code example (the HelloWorldServlet) illustrating these steps is
included at the end of this section. Additional information about using various J2EE and
Weblogic Server services such as JDBC, RMI, and JMS, in your servlet are discussed later in this
document.

1. Import the appropriate package and classes, including the following:

Wri t ing a S impl e HTTP Se rv le t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 4-7

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

2. Extend javax.servlet.http.HttpServlet. For example:

public class HelloWorldServlet extends HttpServlet{

3. Implement a service() method.

The main function of a servlet is to accept an HTTP request from a Web browser, and
return an HTTP response. This work is done by the service() method of your servlet.
Service methods include response objects used to create output and request objects used to
receive data from the client.

You may have seen other servlet examples implement the doPost() and/or doGet()
methods. These methods reply only to POST or GET requests; if you want to handle all
request types from a single method, your servlet can simply implement the service()
method. (However, if you choose to implement the service() method, you cannot
implement the doPost() or doGet() methods, unless you call super.service() at the
beginning of the service() method.) The HTTP servlet specification describes other
methods used to handle other request types, but all of these methods are collectively
referred to as service methods.

All the service methods take the same parameter arguments. An HttpServletRequest
provides information about the request, and your servlet uses an HttpServletResponse
to reply to the HTTP client. The service method looks like the following:

public void service(HttpServletRequest req,
 HttpServletResponse res) throws IOException
{

4. Set the content type, as follows:

res.setContentType("text/html");

5. Get a reference to a java.io.PrintWriter object to use for output, as follows:

PrintWriter out = res.getWriter();

6. Create some HTML using the println() method on the PrintWriter object, as shown in
the following example:

out.println("<html><head><title>Hello World!</title></head>");
out.println("<body><h1>Hello World!</h1></body></html>");
 }
}

7. Compile the servlet, as follows:

Creat ing and Conf igur ing Se rv let s

4-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

a. Set up a development environment shell with the correct classpath and path settings.

b. From the directory containing the Java source code for your servlet, compile your servlet
into the WEB-INF/classes directory of the Web Application that contains your servlet.
For example:

javac -d /myWebApplication/WEB-INF/classes myServlet.java

8. Deploy the servlet as part of a Web Application hosted on WebLogic Server.

9. Call the servlet from a browser.

The URL you use to call a servlet is determined by: (a) the name of the Web Application
containing the servlet and (b) the name of the servlet as mapped in the deployment
descriptor of the Web Application. Request parameters can also be included in the URL
used to call a servlet.

Generally the URL for a servlet conforms to the following:

http://host:port/webApplicationName/mappedServletName?parameter

The components of the URL are defined as follows:

– host is the name of the machine running WebLogic Server.

– port is the port at which the above machine is listening for HTTP requests.

– webApplicationName is the name of the Web Application containing the servlet.

– parameters are one or more name-value pairs containing information sent from the
browser that can be used in your servlet.

For example, to use a Web browser to call the HelloWorldServlet (the example featured
in this document), which is deployed in the examplesWebApp and served from a WebLogic
Server running on your machine, enter the following URL:

http://localhost:7001/examplesWebApp/HelloWorldServlet

The host:port portion of the URL can be replaced by a DNS name that is mapped to
WebLogic Server.

Advanced Features
The preceding steps create a basic servlet. You will probably also use more advanced features of
servlets:

Handling HTML form data—HTTP servlets can receive and process data received from a
browser client in HTML forms.

Comple te Hel loWor ldServ le t Example

Developing Web Applications, Servlets, and JSPs for WebLogic Server 4-9

– “Retrieving Client Input” on page 7-6

Application design—HTTP servlets offer many ways to design your application. The
following sections provide detailed information about writing servlets:

– “Providing an HTTP Response” on page 7-4

– “Threading Issues in HTTP Servlets” on page 7-17

– “Dispatching Requests to Another Resource” on page 7-17

Initializing a servlet—if your servlet needs to initialize data, accept initialization
arguments, or perform other actions when the servlet is initialized, you can override the
init() method.

– “Initializing a Servlet” on page 7-2

Use of sessions and persistence in your servlet—sessions and persistence allow you to
track your users within and between HTTP sessions. Session management includes the use
of cookies. For more information, see the following sections:

– “Session Tracking from a Servlet” on page 8-13

– “Using Cookies in a Servlet” on page 7-11

– “Configuring Session Persistence” on page 8-5

Use of WebLogic services in your servlet—WebLogic Server provides a variety of services
and APIs that you can use in your Web applications. These services include Java Database
Connectivity (JDBC) drivers, JDBC database connection pools, Java Messaging Service
(JMS), Enterprise JavaBeans (EJB), and Remote Method Invocation (RMI). For more
information, see the following sections:

– “Using WebLogic Services from an HTTP Servlet” on page 7-15

– “Accessing Databases” on page 7-15

Complete HelloWorldServlet Example
This section provides the complete Java source code for the example used in the preceding
procedure. The example is a simple servlet that provides a response to an HTTP request. Later in
this document, this example is expanded to illustrate how to use HTTP parameters, cookies, and
session tracking.

Creat ing and Conf igur ing Se rv let s

4-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Listing 4-3 HelloWorldServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloWorldServlet extends HttpServlet {

 public void service(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException

 {

 // Must set the content type first

 res.setContentType("text/html");

 // Now obtain a PrintWriter to insert HTML into

 PrintWriter out = res.getWriter();

 out.println("<html><head><title>" +

 "Hello World!</title></head>");

 out.println("<body><h1>Hello World!</h1></body></html>");

 }

}

You can find the source code and instructions for compiling and running examples in the
samples/examples/servlets directory of your WebLogic Server distribution.

Developing Web Applications, Servlets, and JSPs for WebLogic Server 5-1

C H A P T E R 5

Creating and Configuring JSPs

The following sections describe how to create and configure JSPs.

“Configuring Java Server Pages (JSPs)” on page 5-2

“Configuring JSP Tag Libraries” on page 5-3

“Configuring Welcome Files” on page 5-4

“Customizing HTTP Error Responses” on page 5-5

“Determining the Encoding of an HTTP Request” on page 5-5

“Mapping IANA Character Sets to Java Character Sets” on page 5-6

“Configuring Implicit Includes at the Beginning and End of JSPs” on page 5-6

“Configuring JSP Property Groups” on page 5-7

“Writing JSP Documents Using XML Syntax” on page 5-8

Creat ing and Conf igur ing JSPs

5-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Configuring Java Server Pages (JSPs)
In order to deploy Java Server Pages (JSP) files, you must place them in the root (or in a
subdirectory below the root) of a Web application. You define JSP configuration parameters in
subelements of the jsp-descriptor element in the WebLogic-specific deployment descriptor,
weblogic.xml. These parameters define the following functionality:

Options for the JSP compiler

Debugging

How often WebLogic Server checks for updated JSPs that need to be recompiled

Character encoding

For a complete description of these subelements, see “jsp-descriptor” on page B-15.

Registering a JSP as a Servlet
You can register a JSP as a servlet using the servlet element of the J2EE standard deployment
descriptor web.xml. (The web.xml file is located in the WEB-INF directory of your Web
application.) A servlet container maintains a map of the servlets known to it. This map is used to
resolve requests that are made to the container. Adding entries into this map is known as
"registering" a servlet. You add entries to this map by referencing a servlet element in web.xml
through the servlet-mapping entry.

A JSP is a type of servlet; registering a JSP is a special case of registering a servlet. Normally,
JSPs are implicitly registered the first time you invoke them, based on the name of the JSP file.
Therefore, the myJSPfile.jsp file would be registered as myJSPfile.jsp in the mapping table.
You can implicitly register JSPs, as illustrated in the following example. In this example, you
request the JSP with the name /main instead of the implicit name myJSPfile.jsp.

In this example, a URL containing /main will invoke myJSPfile.jsp:

<servlet>

<servlet-name>myFoo</servlet-name>

<jsp-file>myJSPfile.jsp</jsp-file>

</servlet>

<servlet-mapping>

<servlet-name>myFoo</servlet-name>

Conf igur ing JSP Tag L ib ra r i es

Developing Web Applications, Servlets, and JSPs for WebLogic Server 5-3

<url-pattern>/main</url-pattern>

</servlet-mapping>

Registering a JSP as a servlet allows you to specify the load order, initialization attributes, and
security roles for a JSP, just as you would for a servlet.

Configuring JSP Tag Libraries
Weblogic Server lets you create and use custom JSP tags. Custom JSP tags are Java classes you
can call from within a JSP page. To create custom JSP tags, you place them in a tag library and
define their behavior in a tag library descriptor (TLD) file. You make this TLD available to the
Web application containing the JSP by defining it in the Web Application deployment descriptor.
It is a good idea to place the TLD file in the WEB-INF directory of your Web application, because
that directory is never available publicly.

In the Web Application deployment descriptor, you define a URI pattern for the tag library. This
URI pattern must match the value in the taglib directive in your JSP pages. You also define the
location of the TLD. For example, if the taglib directive in the JSP page is:

<%@ taglib uri="myTaglib" prefix="taglib" %>

and the TLD is located in the WEB-INF directory of your Web application, you would create the
following entry in the Web Application deployment descriptor:

<jsp-config>

<taglib>

<taglib-uri>myTaglib</taglib-uri>

<tablig-location>WEB-INF/myTLD.tld</taglib-location>

</taglib>

</jsp-config>

You can also deploy a tag library as a .jar file.

For more information on creating custom JSP tag libraries, see Programming JSP Tag
Extensions.

WebLogic Server also includes several custom JSP tags that you can use in your applications.
These tags perform caching, facilitate query attribute-based flow control, and facilitate iterations
over sets of objects. For more information, see:

Chapter 13, “Using Custom WebLogic JSP Tags (cache, process, repeat).”

http://e-docs.bea.com/wls/docs90/taglib/index.html
http://e-docs.bea.com/wls/docs90/taglib/index.html

Creat ing and Conf igur ing JSPs

5-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Chapter 12, “Using WebLogic JSP Form Validation Tags.”

Configuring Welcome Files
Web Application developers can define an ordered list of partial URIs called welcome files in the
Web application deployment descriptor. The purpose of this mechanism is to allow the deployer
to specify an ordered list of partial URIs for the container to use for appending to URIs when there
is a request for a URI that corresponds to a directory entry in the WAR not mapped to a Web
component. This feature can make your site easier to use, because the user can type a URL
without giving a specific filename.

Note: Welcome files can be JSPs, static pages, or servlets.

Welcome files are defined at the Web application level. If your server is hosting multiple Web
applications, you need to define welcome files separately for each Web application. You define
Welcome files using the welcome-file-list element in web.xml. (The web.xml file is
located in the WEB-INF directory of your Web application.) The following is an example
Welcome file configuration:

Listing 5-1 Welcome File Example

<servlet>

<servlet-name>WelcomeServlet</servlet-name>

<servlet-class>foo.bar.WelcomeServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>WelcomeServlet</servlet-name>

<url-pattern>*.foo</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>/welcome.foo</welcome-file>

</welcome-file-list>

For more information on this subject, see section 9.10 of the Servlet 2.4 specification.

http://java.sun.com/products/servlet/download.html#specs

Customiz ing HTTP E r r or Responses

Developing Web Applications, Servlets, and JSPs for WebLogic Server 5-5

Customizing HTTP Error Responses
You can configure WebLogic Server to respond with your own custom Web pages or other HTTP
resources when particular HTTP errors or Java exceptions occur, instead of responding with the
standard WebLogic Server error response pages.

You define custom error pages in the error-page element of the J2EE standard Web application
deployment descriptor, web.xml. (The web.xml file is located in the WEB-INF directory of your
Web application.)

Determining the Encoding of an HTTP Request
WebLogic Server converts binary (bytes) data contained in an HTTP request to the correct
encoding expected by the servlet. The incoming post data might be encoded in a particular
encoding that must be converted to the correct encoding on the server side for use in methods such
as request.getParameter(..).

There are two ways you can define the code set:

For a POST operation, you can set the encoding in the HTML <form> tag. For example,
this form tag sets SJIS as the character set for the content:

<form action="http://some.host.com/myWebApp/foo/index.html">
 <input type="application/x-www-form-urlencoded; charset=SJIS">
</form>

When the form is read by WebLogic Server, it processes the data using the SJIS character
set.

Because all Web clients do not transmit the information after the semicolon in the above
example, you can set the code set to be used for requests by using the input-charset
element in the WebLogic-specific deployment descriptor, weblogic.xml.

The java-charset-name subelement defines the encoding used to convert data when the
URL of the request contains the path specified with the resource-path subelement.

This following example ensures that all request parameters that map to the pattern /foo/*
are encoded using the Java character set SJIS.

<input-charset>

<resource-path>/foo/*</resource-path>

<java-charset-name>SJIS</java-charset-name>

</input-charset>

Creat ing and Conf igur ing JSPs

5-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

This method works for both GET and POST operations.

Mapping IANA Character Sets to Java Character Sets
The names assigned by the Internet Assigned Numbers Authority (IANA) to describe character
sets are sometimes different from the names used by Java. Because all HTTP communication
uses the IANA character set names and these names are not always the same, WebLogic Server
internally maps IANA character set names to Java character set names and can usually determine
the correct mapping. However, you can resolve any ambiguities by explicitly mapping an IANA
character set to the name of a Java character set.

To map on IANA character set to a Java character, set the character set names in the
charset-mapping element of the WebLogic-specific deployment descriptor, weblogic.xml.
Define the IANA character set name in the iana-charset-name element and the Java character
set name in the java-charset-name element. See “charset-mapping” on page B-22.

For example:

<charset-mapping>

<iana-charset-name>Shift-JIS</iana-charset-name>

<java-charset-name>SJIS</java-charset-name>

</charset-mapping>

Configuring Implicit Includes at the Beginning and End of JSPs
You can implicitly include preludes (also called headers) and codas (also called footers) for a
group of JSP pages by adding <include-prelude> and <include-coda> elements
respectively within a <jsp-property-group> element in the Web application web.xml
deployment descriptor. Their values are context-relative paths that must correspond to elements
in the Web application. When the elements are present, the given paths are automatically included
(as in an include directive) at the beginning and end of each JSP page in the property group
respectively. When there is more than one include or coda element in a group, they are included
in the order they appear. When more than one JSP property group applies to a JSP page, the
corresponding elements will be processed in the same order as they appear in the JSP
configuration section.

Consider the following files: /template/prelude.jspf and /template/coda.jspf. These
files are used to include code at the beginning and end of each file in the following example:

Conf igu r ing JSP Pr ope r ty G roups

Developing Web Applications, Servlets, and JSPs for WebLogic Server 5-7

Listing 5-2 Implicit Includes

<jsp-config>

 <jsp-property-group>

 <display-name>WebLogicServer</display-name>

 <url-pattern>*.jsp</url-pattern>

 <el-ignored>false</el-ignored>

 <scripting-invalid>false</scripting-invalid>

 <is-xml>false</is-xml>

 <include-prelude>/template/prelude.jspf</include-prelude>

 <include-coda>/template/coda.jspf</include-coda>

 </jsp-property-group>

</jsp-config>

Configuring JSP Property Groups
A JSP property group is a collection of properties that apply to a set of files representing JSP
pages. You define these properties in one or more subelements of the jsp-property-group
element in the web.xml deployment descriptor.

Most properties defined in a JSP property group apply to an entire translation unit, that is, the
requested JSP file that is matched by its URL pattern and all the files it includes by way of the
include directive. The exception is the page-encoding property, which applies separately to
each JSP file matched by its URL pattern. The applicability of a JSP property group is defined
through one or more URL patterns. URL patterns use the same syntax as defined in chapter 11,
“Mapping Requests to Servlets” of the Servlet 2.4 specification, but are bound at translation time.
All the properties in the property group apply to the resources in the Web application that match
any of the URL patterns. There is an implicit property—that of being a JSP file. JSP property
groups do not affect tag files.

JSP Property Group Rules
The following are some rules that apply to JSP property groups:

http://java.sun.com/products/servlet/download.html#specs

Creat ing and Conf igur ing JSPs

5-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

If a resource matches a URL pattern in both a servlet-mapping and a
jsp-property-group, the pattern that is most specific applies (following the same rules
as the servlet specification).

If the URL patterns are identical, the jsp-property-group takes precedence over the
servlet-mapping.

If at least one jsp-property-group contains the most specific matching URL pattern,
the resource is considered to be a JSP file, and the properties in that
jsp-property-group apply.

If a resource is considered to be a JSP file, all include-prelude and include-coda
properties apply from all the jsp-property-group elements with matching URL
patterns. See “Configuring Implicit Includes at the Beginning and End of JSPs” on
page 5-6.

What You Can Do with JSP Property Groups
You can configure the jsp-property-group to do the following:

Indicate that a resource is a JSP file (implicit).

Control disabling of JSP expression language (JSP EL) evaluation.

Control disabling of Scripting elements.

Indicate page Encoding information.

Prelude and Coda automatic includes.

Indicate that a resource is a JSP document.

For more information on JSP property groups, see chapter 3, “JSP Configuration,” of the JSP 2.0
specification.

Writing JSP Documents Using XML Syntax
The JSP 2.0 specification has improved upon the concept of JSP documents by allowing them to
leverage XML syntax. Also, JSP documents have been extended to use property groups. A JSP
document is a JSP page written using XML syntax. JSP documents need to be described as such,
either implicitly or explicitly, to the JSP container, which then processes them as XML
documents, checking for well-formedness and applying requests like entity declarations, if
present. JSP documents are used to generate dynamic content using the standard JSP semantics.

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html

Wri t ing JSP Documents Us ing XML Syntax

Developing Web Applications, Servlets, and JSPs for WebLogic Server 5-9

The following is an example of a simple JSP document that generates, using the JSP standard tag
library, an XML document that has table as the root element. The table element has three row
subelements containing values 1, 2, and 3. For more details and other examples, see section 6.4,
“Examples of JSP Documents,” of the JSP 2.0 specification.

Listing 5-3 Simple JSP Document

<table>

<c:forEach

xmlns:c="http://java.sun.com/jsp/jstl/core"

var="counter" begin="1" end="3">

<row>${counter}</row>

</c:forEach>

</table>

How to Use JSP Documents
You can use JSP documents in a number of ways including the following:

JSP documents can be passed directly to the JSP container. This is becoming more
important as more and more content is authored in XML. The generated content may be
sent directly to a client or it may be part of some XML processing pipeline.

JSP documents can be manipulated by XML-aware tools.

JSP documents can be generated from textual representations by applying an XML
transformation, such as XSLT.

A JSP document can be generated automatically, for example, by serializing some objects.

Important Information about JSP Documents
The following are some important pieces of information pertaining to JSP documents:

By default, files with the filename extension .jspx or .tagx are treated as JSP documents
in the XML syntax.

http://java.sun.com/products/jsp/download.html

Creat ing and Conf igur ing JSPs

5-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

JSP property groups defined in the web.xml deployment descriptor can control which files
in the Web application can be treated as being in the XML syntax. See “Configuring JSP
Property Groups” on page 5-7.

If a JSP file starts with <jsp:root>, then it is used in the XML syntax.

XML namespaces are used instead of <%@taglib%> taglib tags
(xmlns:prefix=”...”).

The <jsp:scriptlet>, <jsp:declaration> and <jsp:expression> tags are used
instead of <%...%>, <%!...%>, and <%=...%>.

The <jsp:directive.page> and <jsp:directive.include> tags are used instead of
<%@page%> and <%@include%>.

Inside of attribute values, instead of using <%=...%> to denote an expression, only
"%...%" is used.

For more information on JSP documents, see chapter 6, “JSP Documents,” of the JSP 2.0
specification.

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html

Developing Web Applications, Servlets, and JSPs for WebLogic Server 6-1

C H A P T E R 6

Configuring Resources in a Web
Application

The following sections describe how to configure Web application resources.

“Configuring Resources in a Web Application” on page 6-2

“Configuring Resources” on page 6-2

“Referencing External EJBs” on page 6-3

“More about the ejb-ref* Elements” on page 6-4

“Referencing Application-Scoped EJBs” on page 6-5

“Serving Resources from the CLASSPATH with the ClasspathServlet” on page 6-8

“Using CGI with WebLogic Server” on page 6-8

Conf i gur i ng Resources in a Web App l i ca t i on

6-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Configuring Resources in a Web Application
The resources that you use in a Web application are generally deployed externally to the Web
application. JDBC DataSources can optionally be deployed within the scope of the Web
application as part of an EAR file.

To use external resources in the Web application, you resolve the JNDI resource name that the
application uses with the global JNDI resource name using the web.xml and weblogic.xml
deployment descriptors. (The web.xml file is located in the WEB-INF directory of your Web
application.) See “Configuring Resources” on page 6-2 for more information.

You can also deploy JDBC DataSources as part of the Web application EAR file by configuring
those resources in the weblogic-application.xml deployment descriptor. Resources deployed as
part of the EAR file with scope defined as application are referred to as application-scoped
resources. These resources remain private to the application, and application components can
access the resource names by adding <resource-ref> as explained in “Configuring Resources”
on page 6-2.

Configuring Resources
When accessing resources such as a DataSource from a Web application through Java Naming
and Directory Interface (JNDI), you can map the JNDI name you look up in your code to the
actual JNDI name as bound in the global JNDI tree. This mapping is made using both the
web.xml and weblogic.xml deployment descriptors and allows you to change these resources
without changing your application code. You provide a name that is used in your Java code, the
name of the resource as bound in the JNDI tree, and the Java type of the resource, and you indicate
whether security for the resource is handled programmatically by the servlet or from the
credentials associated with the HTTP request. You can also access JMS module resources, such
as queues, topics, and connection factories. For more information see, Configuring JMS
Application Modules for Deployment in Configuring and Managing WebLogic JMS.

To configure resources:

1. Enter the resource name in the deployment descriptor as you use it in your code, the Java type,
and the security authorization type.

2. Map the resource name to the JNDI name.

The following example illustrates how to use an external DataSource. It assumes that you have
defined a data source called accountDataSource. For more information, see JDBC Data
Sources Online Help.

http://e-docs.bea.com/wls/docs90/jms_admin/deployjms.html
http://e-docs.bea.com/wls/docs90/jms_admin/deployjms.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html

Refe rencing Ext erna l E JBs

Developing Web Applications, Servlets, and JSPs for WebLogic Server 6-3

Listing 6-1 Using an External DataSource

Servlet code:

javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup

 ("myDataSource");

web.xml entries:

<resource-ref>

. . .

<res-ref-name>myDataSource</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>CONTAINER</res-auth>

. . .

</resource-ref>

weblogic.xml entries:

<resource-description>

<res-ref-name>myDataSource</res-ref-name>

<jndi-name>accountDataSource</jndi-name>

</resource-description>

Referencing External EJBs
Web applications can access EJBs that are deployed as part of a different application (a different
EAR file) by using an external reference. The EJB being referenced exports a name to the global
JNDI tree in its weblogic-ejb-jar.xml deployment descriptor. An EJB reference in the Web
application module can be linked to this global JNDI name by adding an
ejb-reference-description element to its weblogic.xml deployment descriptor.

This procedure provides a level of indirection between the Web application and an EJB and is
useful if you are using third-party EJBs or Web applications and cannot modify the code to
directly call an EJB. In most situations, you can call the EJB directly without using this
indirection. For more information, see Programming WebLogic Enterprise JavaBeans.

To reference an external EJB for use in a Web application:

1. Enter the EJB reference name you use to look up the EJB in your code, the Java class name
and the class name of the home and remote interfaces of the EJB in the ejb-ref element of

http://e-docs.bea.com/wls/docs90/ejb/index.html

Conf i gur i ng Resources in a Web App l i ca t i on

6-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

the J2EE standard deployment descriptor, web.xml. (The web.xml file is located in the
WEB-INF directory of your Web application.)

2. Map the reference name in the ejb-reference-description element of the
WebLogic-specific deployment descriptor, weblogic.xml, to the JNDI name defined in the
weblogic-ejb-jar.xml file.

If the Web application is part of an Enterprise Application Archive (EAR file), you can
reference an EJB by the name used in the EAR with the ejb-link element of the J2EE
standard deployment descriptor, web.xml.

More about the ejb-ref* Elements
The ejb-ref element in the web.xml deployment descriptor declares that either a servlet or JSP
is going to be using a particular EJB. The ejb-reference-description element in the
weblogic.xml deployment descriptor binds that reference to an EJB, which is advertised in the
global JNDI tree.

The ejb-reference-descriptor element indicates which ejb-ref element it is resolving
with the ejb-ref-name element. That is, the ejb-reference-descriptor and ejb-ref
elements with the same ejb-ref-name element go together.

With the addition of the ejb-link syntax, the ejb-reference-descriptor element is no
longer required if the EJB being used is in the same application as the servlet or JSP that is using
the EJB.

The ejb-ref-name element serves two purposes in the web.xml deployment descriptor:

It is the name that the user code (servlet or JSP) uses to look up the EJB. Therefore, if your
ejb-ref-name element is ejb1, you would perform a JNDI name lookup for ejb1
relative to java:comp/env. The ejb-ref-name element is bound into the component
environment (java:comp/env) of the Web application containing the servlet or JSP.

Assuming the ejb-ref-name element is ejb1, the code in your servlet or JSP should
look like:

Context ctx = new InitialContext();

ctx = (Context)ctx.lookup("java:comp/env");

Object o = ctx.lookup("ejb1");

Ejb1Home home = (Ejb1Home) PortableRemoteObject.narrow(o,
Ejb1Home.class);

It links the ejb-ref and ejb-reference-descriptor elements together.

Refe renc ing App l i ca t i on-Scoped E JBs

Developing Web Applications, Servlets, and JSPs for WebLogic Server 6-5

Referencing Application-Scoped EJBs
Within an application, WebLogic Server binds any EJBs referenced by other application
components to the environments associated with those referencing components. These resources
are accessed at runtime through a JNDI name lookup relative to java:comp/env.

The following is an example of an application deployment descriptor (application.xml) for
an application containing an EJB and a Web application, also called an Enterprise Application.
(For the sake of brevity, the XML header is not included in this example.)

Listing 6-2 Example Deployment Descriptor

 <application>

 <display-name>MyApp</display-name>

 <module>

 <web>

 <web-uri>myapp.war</web-uri>

 <context-root>myapp</context-root>

 </web>

 </module>

 <module>

 <ejb>ejb1.jar</ejb>

 </module>

 </application>

To allow the code in the Web application to use an EJB in ejb1.jar, the J2EE standard Web
application deployment descriptor, web.xml, must include an ejb-ref stanza that contains an
ejb-link referencing the JAR file and the name of the EJB that is being called.

The format of the ejb-link entry must be as follows:

filename#ejbname

Conf i gur i ng Resources in a Web App l i ca t i on

6-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

where filename is the name of the JAR file, relative to the Web application, and ejbname is the
EJB within that JAR file. The ejb-link element should look like the following:

<ejb-link>../ejb1.jar#myejb</ejb-link>

Note that since the JAR path is relative to the WAR file, it begins with "../". Also, if the
ejbname is unique across the application, the JAR path may be dropped. As a result, your entry
may look like the following:

<ejb-link>myejb</ejb-link>

The ejb-link element is a sub-element of an ejb-ref element contained in the Web
application's web.xml descriptor. The ejb-ref element should look like the following:

Listing 6-3 <ejb-ref> Element

 <web-app>

 ...

 <ejb-ref>

 <ejb-ref-name>ejb1</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>mypackage.ejb1.MyHome</home>

 <remote>mypackage.ejb1.MyRemote</remote>

 <ejb-link>../ejb1.jar#myejb</ejb-link>

 </ejb-ref>

 ...

 </web-app>

Referring to the syntax for the ejb-link element in the above example,

<ejb-link>../ejb1.jar#ejb1</ejb-link>,

the portion of the syntax to the left of the # is a relative path to the EJB module being referenced.
The syntax to the right of # is the particular EJB being referenced in that module. In the above
example, the EJB JAR and WAR files are at the same level.

Refe renc ing App l i ca t i on-Scoped E JBs

Developing Web Applications, Servlets, and JSPs for WebLogic Server 6-7

The name referenced in the ejb-link (in this example, myejb) corresponds to the ejb-name
element of the referenced EJB's descriptor. As a result, the deployment descriptor
(ejb-jar.xml) of the EJB module that this ejb-ref element is referencing should have an
entry similar to the following:

Listing 6-4 <ejb-jar> Element

 <ejb-jar>

 ...

 <enterprise-beans>

 <session>

 <ejb-name>myejb</ejb-name>

 <home>mypackage.ejb1.MyHome</home>

 <remote>mypackage.ejb1.MyRemote</remote>

 <ejb-class>mypackage.ejb1.MyBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 </session>

 </enterprise-beans>

 ...

 </ejb-jar>

Notice the ejb-name element is set to myejb.

At runtime, the Web application code looks up the EJB's JNDI name relative to
java:/comp/env. The following is an example of the servlet code:

MyHome home = (MyHome)ctx.lookup("java:/comp/env/ejb1");

The name used in this example (ejb1) is the ejb-ref-name defined in the ejb-ref element of

the web.xml segment above.

Conf i gur i ng Resources in a Web App l i ca t i on

6-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Serving Resources from the CLASSPATH with the
ClasspathServlet

If you need to serve classes or other resources from the system CLASSPATH, or from the
WEB-INF/classes directory of a Web application, you can use a special servlet called the
ClasspathServlet. The ClasspathServlet is useful for applications that use applets or RMI
clients and require access to server-side classes. The ClasspathServlet is implicitly registered
and available from any application.

The ClasspathServlet is always enabled by default. To disable it, set the ServerMBean
parameter ClassPathServletDisabled to true (default = false).

The ClasspathServlet returns the classes or resources from the system CLASSPATH in the
following order:

1. WEB-INF/classes

2. jar files under WEB-INF/lib/*

3. system CLASSPATH

To serve a resource from the WEB-INF/classes directory of a Web application, call the resource
with a URL such as:

http://server:port/myWebApp/classes/my/resource/myClass.class

In this case, the resource is located in the following directory, relative to the root of the Web
application:

WEB-INF/classes/my/resource/myClass.class

Warning: Because the ClasspathServlet serves any resource located in the system
CLASSPATH, do not place resources that should not be publicly available in the
system CLASSPATH.

Using CGI with WebLogic Server
Note: WebLogic Server provides functionality to support your legacy Common Gateway

Interface (CGI) scripts. For new projects, we suggest you use HTTP servlets or
JavaServer Pages.

WebLogic Server supports all CGI scripts through an internal WebLogic servlet called the
CGIServlet. To use CGI, register the CGIServlet in the Web application deployment
descriptor. See “Configuring How a Client Accesses a Web Application” on page 3-7.

Us ing CGI w i th WebLog ic Se rve r

Developing Web Applications, Servlets, and JSPs for WebLogic Server 6-9

Configuring WebLogic Server to Use CGI
To configure CGI in WebLogic Server:

1. Declare the CGIServlet in your Web application by using the servlet and
servlet-mapping elements in the J2EE standard Web application deployment descriptor,
web.xml. (The web.xml file is located in the WEB-INF directory of your Web application.)
The class name for the CGIServlet is weblogic.servlet.CGIServlet. You do not need
to package this class in your Web application.

2. Register the following initialization attributes for the CGIServlet by defining the
following init-param elements:

cgiDir

The path to the directory containing your CGI scripts. You can specify multiple
directories, separated by a “;” (Windows) or a “:” (UNIX). If you do not specify
cgiDir, the directory defaults to a directory named cgi-bin under the Web
application root.

useByteStream

By default, character streams are used to read the output of CGI scripts. When
scripts produce binary data, the stream may become corrupted due to character
encoding. Use the useByteStream parameter to keep the stream from becoming
corrupted. Using this parameter for ascii output also improves performance.

extension mapping
Maps a file extension to the interpreter or executable that runs the script. If the
script does not require an executable, this initialization attribute may be omitted.

The param-name for extension mappings must begin with an asterisk followed by
a dot, followed by the file extension, for example, *.pl.

The param-value contains the path to the interpreter or executable that runs the
script. You can create multiple mappings by creating a separate init-param
element for each mapping.

Listing 6-5 Example Web Application Deployment Descriptor Entries for Registering the CGIServlet

<servlet>

<servlet-name>CGIServlet</servlet-name>

<servlet-class>weblogic.servlet.CGIServlet</servlet-class>

<init-param>

<param-name>cgiDir</param-name>

Conf i gur i ng Resources in a Web App l i ca t i on

6-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

<param-value>

/bea/wlserver6.0/config/mydomain/applications/myWebApp/cgi-bin

</param-value>

</init-param>

<init-param>

<param-name>*.pl</param-name>

<param-value>/bin/perl.exe</param-value>

</init-param>

</servlet>

...

<servlet-mapping>

<servlet-name>CGIServlet</servlet-name>

<url-pattern>/cgi-bin/*</url-pattern>

</servlet-mapping>

Requesting a CGI Script
The URL used to request a Perl script must follow the pattern:

http://host:port/myWebApp/cgi-bin/myscript.pl

Where

host:port
Is the host name and port number of WebLogic Server.

myWebApp
is the name of your Web application.

cgi-bin
is the url-pattern name mapped to the CGIServlet.

myscript.pl
is the name of the Perl script that is located in the directory specified by the cgiDir
initialization attribute.

CGI Best Practices
For a list of CGI Best Practices, see “CGI Best Practices” on page C-2.

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-1

C H A P T E R 7

Servlet Programming Tasks

The following sections describe how to write HTTP servlets in a WebLogic Server environment:

“Initializing a Servlet” on page 7-2

“Providing an HTTP Response” on page 7-4

“Retrieving Client Input” on page 7-6

“Using Cookies in a Servlet” on page 7-11

“Response Caching” on page 7-13

“Using WebLogic Services from an HTTP Servlet”

“Accessing Databases” on page 7-15

“Threading Issues in HTTP Servlets” on page 7-17

“Dispatching Requests to Another Resource” on page 7-17

“Proxying Requests to Another Web Server” on page 7-20

“Clustering Servlets” on page 7-22

“Referencing a Servlet in a Web Application” on page 7-23

“URL Pattern Matching” on page 7-23

Serv le t P rog ramming Tasks

7-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Initializing a Servlet
Normally, WebLogic Server initializes a servlet when the first request is made for the servlet.
Subsequently, if the servlet is modified, the destroy() method is called on the existing version
of the servlet. Then, after a request is made for the modified servlet, the init() method of the
modified servlet is executed. For more information, see “Servlet Best Practices” on page C-2.

When a servlet is initialized, WebLogic Server executes the init() method of the servlet. Once
the servlet is initialized, it is not initialized again until you restart WebLogic Server or modify the
servlet code. If you choose to override the init() method, your servlet can perform certain tasks,
such as establishing database connections, when the servlet is initialized. (See “Overriding the
init() Method” on page 7-3.)

Initializing a Servlet when WebLogic Server Starts
Rather than having WebLogic Server initialize a servlet when the first request is made for it, you
can first configure WebLogic Server to initialize a servlet when the server starts. You do this by
specifying the servlet class in the load-on-startup element in the J2EE standard Web
Application deployment descriptor, web.xml. The order in which resources within a Web
application are initialized is as follows:

1. ServletContextListeners—the contextCreated() callback for ServletContextListeners
registered for this Web application.

2. ServletFilters init() method.

3. Servlet init() method, marked as load-on-startup in web.xml.

You can pass parameters to an HTTP servlet during initialization by defining these parameters in
the Web Application containing the servlet. You can use these parameters to pass values to your
servlet every time the servlet is initialized without having to rewrite the servlet.

For example, the following entries in the J2EE standard Web Application deployment descriptor,
web.xml, define two initialization parameters: greeting, which has a value of Welcome and
person, which has a value of WebLogic Developer.

<servlet>
 ...
 <init-param>
 <description>The salutation</description>
 <param-name>greeting</param-name>
 <param-value>Welcome</param-value>
 </init-param>
 <init-param>

In i t ia l i z ing a Se rv le t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-3

 <description>name</description>
 <param-name>person</param-name>
 <param-value>WebLogic Developer</param-value>
 </init-param>
</servlet>

To retrieve initialization parameters, call the getInitParameter(String name) method from
the parent javax.servlet.GenericServlet class. When passed the name of the parameter,
this method returns the parameter’s value as a String.

Overriding the init() Method
You can have your servlet execute tasks at initialization time by overriding the init() method.
The following code fragment reads the <init-param> tags that define a greeting and a name in
the J2EE standard Web Application deployment descriptor, web.xml:

String defaultGreeting;
String defaultName;

public void init(ServletConfig config)
 throws ServletException {
 if ((defaultGreeting = getInitParameter("greeting")) == null)
 defaultGreeting = "Hello";

 if ((defaultName = getInitParameter("person")) == null)
 defaultName = "World";
}

The values of each parameter are stored in the class instance variables defaultGreeting and
defaultName. The first code tests whether the parameters have null values, and if null values are
returned, provides appropriate default values.

You can then use the service() method to include these variables in the response. For example:

 out.print("<body><h1>");
 out.println(defaultGreeting + " " + defaultName + "!");
 out.println("</h1></body></html>");

The init() method of a servlet does whatever initialization work is required when WebLogic
Server loads the servlet. The default init() method does all of the initial work that WebLogic
Server requires, so you do not need to override it unless you have special initialization
requirements. If you do override init(), first call super.init() so that the default
initialization actions are done first.

Serv le t P rog ramming Tasks

7-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Providing an HTTP Response
This section describes how to provide a response to the client in your HTTP servlet. Deliver all
responses by using the HttpServletResponse object that is passed as a parameter to the
service() method of your servlet.

1. Configure the HttpServletResponse.

Using the HttpServletResponse object, you can set several servlet properties that are
translated into HTTP header information:

At a minimum, set the content type using the setContentType() method before you
obtain the output stream to which you write the page contents. For HTML pages, set
the content type to text/html. For example:

res.setContentType("text/html");

(optional) You can also use the setContentType() method to set the character
encoding. For example:

res.setContentType("text/html;ISO-88859-4");

Set header attributes using the setHeader() method. For dynamic responses, it is
useful to set the “Pragma” attribute to no-cache, which causes the browser to always
reload the page and ensures the data is current. For example:

res.setHeader("Pragma", "no-cache");

2. Compose the HTML page.

The response that your servlet sends back to the client must look like regular HTTP
content, essentially formatted as an HTML page.Your servlet returns an HTTP response
through an output stream that you obtain using the response parameter of the service()
method. To send an HTTP response:

a. Obtain an output stream by using the HttpServletResponse object and one of the
methods shown in the following two examples:

PrintWriter out = res.getWriter();

ServletOutputStream out = res.getOutputStream();

You can use both PrintWriter and ServletOutputStream in the same servlet (or in
another servlet that is included in a servlet). The output of both is written to the same
buffer.

b. Write the contents of the response to the output stream using the print() method. You
can use HTML tags in these statements. For example:

Prov id ing an HTTP Response

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-5

out.print(“<html><head><title>My Servlet</title>”);
out.print(“</head><body><h1>”);
out.print(“Welcome”);
out.print(“</h1></body></html>”);

Any time you print data that a user has previously supplied, BEA recommends that you
remove any HTML special characters that a user might have entered. If you do not
remove these characters, your Web site could be exploited by cross-site scripting. For
more information, refer to “Securing Client Input in Servlets” on page 7-9.

Do not close the output stream by using the close() method, and avoid flushing the
contents of the stream. If you do not close or flush the output stream, WebLogic Server
can take advantage of persistent HTTP connections, as described in the next step.

3. Optimize the response.

By default, WebLogic Server attempts to use HTTP persistent connections whenever
possible. A persistent connection attempts to reuse the same HTTP TCP/IP connection for
a series of communications between client and server. Application performance improves
because a new connection need not be opened for each request. Persistent connections are
useful for HTML pages containing many in-line images, where each requested image
would otherwise require a new TCP/IP connection.

Using the WebLogic Server Administration Console, you can configure the amount of time
that WebLogic Server keeps an HTTP connection open.

WebLogic Server must know the length of the HTTP response in order to establish a
persistent connection and automatically adds a Content-Length property to the HTTP
response header. In order to determine the content length, WebLogic Server must buffer the
response. However, if your servlet explicitly flushes the ServletOutputStream,
WebLogic Server cannot determine the length of the response and therefore cannot use
persistent connections. For this reason, you should avoid explicitly flushing the HTTP
response in your servlets.

You may decide that, in some cases, it is better to flush the response early to display
information in the client before the page has completed; for example, to display a banner
advertisement while some time-consuming page content is calculated. Conversely, you may
want to increase the size of the buffer used by the servlet engine to accommodate a larger
response before flushing the response. You can manipulate the size of the response buffer
by using the related methods of the javax.servlet.ServletResponse interface. For
more information, see the Servlet 2.4 specification.

The default value of the WebLogic Server response buffer is 12K and the buffer size is
internally calculated in terms of CHUNK_SIZE where CHUNK_SIZE = 4088 bytes; if the

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html
http://java.sun.com/products/servlet/download.html#specs

Serv le t P rog ramming Tasks

7-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

user sets 5Kb the server rounds the request up to the nearest multiple of CHUNK_SIZE
which is 2. and the buffer is set to 8176 bytes.

Retrieving Client Input
The HTTP servlet API provides a interface for retrieving user input from Web pages.

An HTTP request from a Web browser can contain more than the URL, such as information about
the client, the browser, cookies, and user query parameters. Use query parameters to carry user
input from the browser. Use the GET method appends parameters to the URL address, and the
POST method includes them in the HTTP request body.

HTTP servlets need not deal with these details; information in a request is available through the
HttpServletRequest object and can be accessed using the request.getParameter()
method, regardless of the send method.

Read the following for more detailed information about the ways to send query parameters from
the client:

Encode the parameters directly into the URL of a link on a page. This approach uses the
GET method for sending parameters. The parameters are appended to the URL after a ?
character. Multiple parameters are separated by a & character. Parameters are always
specified in name=value pairs so the order in which they are listed is not important. For
example, you might include the following link in a Web page, which sends the parameter
color with the value purple to an HTTP servlet called ColorServlet:

<a href=
"http://localhost:7001/myWebApp/ColorServlet?color=purple">
Click Here For Purple!

Manually enter the URL, with query parameters, into the browser location field. This is
equivalent to clicking the link shown in the previous example.

Query the user for input with an HTML form. The contents of each user input field on the
form are sent as query parameters when the user clicks the form’s Submit button. Specify
the method used by the form to send the query parameters (POST or GET) in the <FORM> tag
using the METHOD="GET|POST" attribute.

Query parameters are always sent in name=value pairs, and are accessed through the
HttpServletRequest object. You can obtain an Enumeration of all parameter names in a
query, and fetch each parameter value by using its parameter name. A parameter usually has only
one value, but it can also hold an array of values. Parameter values are always interpreted as
Strings, so you may need to cast them to a more appropriate type.

Ret r i ev i ng C l i en t Input

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-7

The following sample from a service() method examines query parameter names and their
values from a form. Note that request is the HttpServletRequest object.

 Enumeration params = request.getParameterNames();
 String paramName = null;
 String[] paramValues = null;

 while (params.hasMoreElements()) {
 paramName = (String) params.nextElement();
 paramValues = request.getParameterValues(paramName);
 System.out.println("\nParameter name is " + paramName);
 for (int i = 0; i < paramValues.length; i++) {
 System.out.println(", value " + i + " is " +
 paramValues[i].toString());
 }
 }

Note: Any time you print data that a user has supplied, BEA recommends that you remove any
HTML special characters that a user might have entered. If you do not remove these
characters, your Web site could be exploited by cross-site scripting. For more
information, refer to “Securing Client Input in Servlets” on page 7-9.

Methods for Using the HTTP Request
This section defines the methods of the javax.servlet.HttpServletRequest interface that
you can use to get data from the request object. You should keep the following limitations in
mind:

You cannot read request parameters using any of the getParameter() methods described
in this section and then attempt to read the request with the getInputStream() method.

You cannot read the request with getInputStream() and then attempt to read request
parameters with one of the getParameter() methods.

If you attempt either of the preceding procedures, an illegalStateException is thrown.

You can use the following methods of javax.servlet.HttpServeletRequest to retrieve
data from the request object:

HttpServletRequest.getMethod()

Allows you to determine the request method, such as GET or POST.

HttpServletRequest.getQueryString()

Allows you to access the query string. (The remainder of the requested URL, following
the ? character.)

Serv le t P rog ramming Tasks

7-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

HttpServletRequest.getParameter()

Returns the value of a parameter.

HttpServletRequest.getParameterNames()

Returns an array of parameter names.

HttpServletRequest.getParameterValues()

Returns an array of values for a parameter.

HttpServletRequest.getInputStream()
Reads the body of the request as binary data. If you call this method after reading the
request parameters with getParameter(), getParameterNames(), or
getParameterValues(), an illegalStateException is thrown.

Example: Retrieving Input by Using Query Parameters
In this example, the HelloWorld2.java servlet example is modified to accept a username as a
query parameter, in order to display a more personal greeting. The service() method is shown
here.

Listing 7-1 Retrieving Input with the service() Method

public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
{
 String name, paramName[];
 if ((paramName = req.getParameterValues("name"))
 != null) {
 name = paramName[0];
 }
 else {
 name = defaultName;
 }

 // Set the content type first
 res.setContentType("text/html");
 // Obtain a PrintWriter as an output stream
 PrintWriter out = res.getWriter();

 out.print("<html><head><title>" +
 "Hello World!" + </title></head>");
 out.print("<body><h1>");
 out.print(defaultGreeting + " " + name + "!");

Ret r i ev i ng C l i en t Input

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-9

 out.print("</h1></body></html>");
}

The getParameterValues() method retrieves the value of the name parameter from the HTTP
query parameters. You retrieve these values in an array of type String. A single value for this
parameter is returned and is assigned to the first element in the name array. If the parameter is not
present in the query data, null is returned; in this case, name is assigned to the default name that
was read from the <init-param> by the init() method.

Do not base your servlet code on the assumption that parameters are included in an HTTP request.
The getParameter() method has been deprecated; as a result, you might be tempted to
shorthand the getParameterValues() method by tagging an array subscript to the end.
However, this method can return null if the specified parameter is not available, resulting in a
NullPointerException.

For example, the following code triggers a NullPointerException:

String myStr = req.getParameterValues("paramName")[0];

Instead, use the following code:

if ((String myStr[] =
 req.getParameterValues("paramName"))!=null) {
 // Now you can use the myStr[0];
}
else {
 // paramName was not in the query parameters!
}

Securing Client Input in Servlets
The ability to retrieve and return user-supplied data can present a security vulnerability called
cross-site scripting, which can be exploited to steal a user’s security authorization. For a detailed
description of cross-site scripting, refer to “Understanding Malicious Content Mitigation for Web
Developers” (a CERT security advisory) at
http://www.cert.org/tech_tips/malicious_code_mitigation.html.

http://www.cert.org/tech_tips/malicious_code_mitigation.html

Serv le t P rog ramming Tasks

7-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

To remove the security vulnerability, before you return data that a user has supplied, scan the data
for any of the HTML special characters in Table 7-1. If you find any special characters, replace
them with their HTML entity or character reference. Replacing the characters prevents the
browser from executing the user-supplied data as HTML.

Using a WebLogic Server Utility Method
WebLogic Server provides the weblogic.servlet.security.Utils.encodeXSS() method
to replace the special characters in user-supplied data. To use this method, provide the
user-supplied data as input. For example, to secure the user-supplied data in Listing 7-1, replace
the following line:
out.print(defaultGreeting + " " + name + "!");

with the following:
out.print(defaultGreeting + " " +

weblogic.security.servlet.encodeXSS(name) + "!");

Table 7-1 HTML Special Characters that Must Be Replaced

Replace this special character: With this entity/character
reference:

< <

> >

(&40;

) &41;

&35;

& &38;

Usi ng Cook ies in a Se rv le t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-11

To secure an entire application, you must use the encodeXSS() method each time you return
user-supplied data. While the previous example in Listing 7-1 is an obvious location in which to
use the encodeXSS() method, Table 7-2 describes other locations to consider.

Using Cookies in a Servlet
A cookie is a piece of information that the server asks the client browser to save locally on the
user’s disk. Each time the browser visits the same server, it sends all cookies relevant to that
server with the HTTP request. Cookies are useful for identifying clients as they return to the
server.

Each cookie has a name and a value. A browser that supports cookies generally allows each server
domain to store up to 20 cookies of up to 4k per cookie.

Setting Cookies in an HTTP Servlet
To set a cookie on a browser, create the cookie, give it a value, and add it to the
HttpServletResponse object that is the second parameter in your servlet’s service method. For
example:

Cookie myCookie = new Cookie("ChocolateChip", "100");
myCookie.setMaxAge(Integer.MAX_VALUE);
response.addCookie(myCookie);

This examples shows how to add a cookie called ChocolateChip with a value of 100 to the
browser client when the response is sent. The expiration of the cookie is set to the largest possible
value, which effectively makes the cookie last forever. Because cookies accept only string-type
values, you should cast to and from the desired type that you want to store in the cookie. When
using EJBs, a common practice is to use the home handle of an EJB instance for the cookie value
and to store the user’s details in the EJB for later reference.

Table 7-2 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid URL,
username

An error page that says “username is not
permitted access.”

Status page Username, summary of input from
previous pages

A summary page that asks a user to confirm
input from previous pages.

Database
display

Data presented from a database A page that displays a list of database entries
that have been previously entered by a user.

Serv le t P rog ramming Tasks

7-12 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Retrieving Cookies in an HTTP Servlet
You can retrieve a cookie object from the HttpServletRequest that is passed to your servlet as
an argument to the service() method. The cookie itself is presented as a
javax.servlet.http.Cookie object.

In your servlet code, you can retrieve all the cookies sent from the browser by calling the
getCookies() method. For example:

Cookie[] cookies = request.getCookies();

This method returns an array of all cookies sent from the browser, or null if no cookies were sent
by the browser. Your servlet must process the array in order to find the correct named cookie.
You can get the name of a cookie using the Cookie.getName() method. It is possible to have
more that one cookie with the same name, but different path attributes. If your servlets set
multiple cookies with the same names, but different path attributes, you also need to compare the
cookies by using the Cookie.getPath() method. The following code illustrates how to access
the details of a cookie sent from the browser. It assumes that all cookies sent to this server have
unique names, and that you are looking for a cookie called ChocolateChip that may have been
set previously in a browser client.

Cookie[] cookies = request.getCookies();
boolean cookieFound = false;

for(int i=0; i < cookies.length; i++) {
 thisCookie = cookies[i];
 if (thisCookie.getName().equals("ChocolateChip")) {
 cookieFound = true;
 break;
 }
}

if (cookieFound) {
 // We found the cookie! Now get its value
 int cookieOrder = String.parseInt(thisCookie.getValue());
}

Using Cookies That Are Transmitted by Both HTTP and HTTPS
Because HTTP and HTTPS requests are sent to different ports, some browsers may not include
the cookie sent in an HTTP request with a subsequent HTTPS request (or vice-versa). This may
cause new sessions to be created when servlet requests alternate between HTTP and HTTPS. To
ensure that all cookies set by a specific domain are sent to the server every time a request in a

Response Caching

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-13

session is made, set the cookie-domain element to the name of the domain. The
cookie-domain element is a subelement of the session-descriptor element in the
WebLogic-specific deployment descriptor weblogic.xml. For example:

<session-descriptor>
 <cookie-domain>mydomain.com</cookie-domain>
</session-descriptor>

The cookie-domain element instructs the browser to include the proper cookie(s) for all
requests to hosts in the domain specified by mydomain.com. For more information about this
property or configuring session cookies, see “Setting Up Session Management” on page 8-2.

Application Security and Cookies
Using cookies that enable automatic account access on a machine is convenient, but can be
undesirable from a security perspective. When designing an application that uses cookies, follow
these guidelines:

Do not assume that a cookie is always correct for a user. Sometimes machines are shared
or the same user may want to access a different account.

Allow your users to make a choice about leaving cookies on the server. On shared
machines, users may not want to leave automatic logins for their account. Do not assume
that users know what a cookie is; instead, ask a question like:

Automatically login from this computer?

Always ask for passwords from users logging on to obtain sensitive data. Unless a user
requests otherwise, you can store this preference and the password in the user’s session
data. Configure the session cookie to expire when the user quits the browser.

Response Caching
The cache filter works similarly to the cache tag with the following exceptions:

It caches on a page level (or included page) instead of a JSP fragment level.

Instead of declaring the caching parameters inside the document you can declare the
parameters in the configuration of the Web application.

The cache filter has some default behavior that the cache tag does not for pages that were not
included from another page. The cache filter automatically caches the response headers
Content-Type and Last-Modified. When it receives a request that results in a cached page it

Serv le t P rog ramming Tasks

7-14 Developing Web Applications, Servlets, and JSPs for WebLogic Server

compares the If-Modified-Since request header to the Last-Modified response header to
determine whether it needs to actually serve the content or if it can send an 302
SC_NOT_MODIFED status with an empty content instead.

The following example shows how to register a cache filter to cache all the HTML pages in a
Web application using the filter element of the J2EE standard deployment descriptor,
web.xml.

<filter>
 <filter-name>HTML</filter-name>
 <filter-class>weblogic.cache.filter.CacheFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>HTML</filter-name>
 <url-pattern>*.html</url-pattern>
</filter-mapping>

The cache system uses soft references for storing the cache. So the garbage collector might or
might not reclaim the cache depending on how recently the cache was created or accessed. It will
clear the soft references in order to avoid throwing an OutOfMemoryError.

Initialization Parameters
To make sure that if the web pages were updated at some point you got the new copies into the
cache, you could add a timeout to the filter. Using the init-params you can set many of the same
parameters that you can set for the cache tag:

The initialization parameters are

Name This is the name of the cache. It defaults to the request URI for compatibility with
*.extension URL patterns.

Timeout This is the amount of time since the last cache update that the filter waits until
trying to update the content in the cache again. The default unit is seconds but you can also
specify it in units of ms (milliseconds), s (seconds), m (minutes), h (hours), or d (days).

Scope The scope of the cache can be any one of request, session, application, or cluster.
Request scope is sometimes useful for looping constructs in the page and not much else.
The scope defaults to application. To use cluster scope you must set up the
ClusterListener.

Key This specifies that the cache is further specified not only by the name but also by
values of various entries in scopes. These are specified just like the keys in the CacheTag
although you do not have page scope available.

Us ing WebLogi c Se rv ices f r om an HTTP Se rv le t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-15

Vars These are the variables calculated by the page that you want to cache. Typically this
is used with servlets that pull information out of the database based on input parameters.

Size This limits the number of different unique key values cached. It defaults to infinity.

The following example shows where the init-parameter is located in the filter code.
<filter>
 <filter-name>HTML</filter-name>
 <filter-class>weblogic.cache.filter.CacheFilter</filter-class>
 <init-param>

Max-cache-size This limits the size of an element added to the cache. It defaults to 64k.

Using WebLogic Services from an HTTP Servlet
When you write an HTTP servlet, you have access to many rich features of WebLogic Server,
such as JNDI, EJB, JDBC, and JMS.

The following documents provide additional information about these features:

Programming WebLogic EJB at
http://e-docs.bea.com/wls/docs90/ejb/index.html

Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs90/jdbc/index.html

Programming WebLogic JNDI at
http://e-docs.bea.com/wls/docs90/jndi/index.html

Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs90/jms/index.html

Accessing Databases
WebLogic Server supports the use of Java Database Connectivity (JDBC) from server-side Java
classes, including servlets. JDBC allows you to execute SQL queries from a Java class and to
process the results of those queries. For more information on JDBC and WebLogic Server, see
Using WebLogic JDBC at http://e-docs.bea.com/wls/docs90/jdbc/index.html.

You can use JDBC in servlets as described in the following sections:

“Connecting to a Database Using a DataSource Object” on page 7-16.

“Connecting Directly to a Database Using a JDBC Driver” on page 7-16.

http://e-docs.bea.com/wls/docs90/ejb/index.html
http://e-docs.bea.com/wls/docs90/jdbc/index.html
http://e-docs.bea.com/wls/docs90/jndi/index.html
http://e-docs.bea.com/wls/docs90/jms/index.html
http://e-docs.bea.com/wls/docs90/jdbc/index.html

Serv le t P rog ramming Tasks

7-16 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Connecting to a Database Using a DataSource Object
A DataSource is a server-side object that references a connection pool. The connection pool
registration defines the JDBC driver, database, login, and other parameters associated with a
database connection. You create DataSource objects and connection pools through the
Administration Console. Using a DataSource object is recommended when creating
J2EE-compliant applications.

Using a DataSource in a Servlet
1. Register a connection pool using the Administration Console. For more information, see

“JDBC Data Source: Configuration: Connection Pool” at
http://e-docs.bea.com/wls/docs90ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbc
datasourceconfigconnectionpooltitle.html.

2. Register a DataSource object that points to the connection pool.

3. Look up the DataSource object in the JNDI tree. For example:

Context ctx = null;

// Get a context for the JNDI look up
ctx = new InitialContext(ht);

// Look up the DataSource object
javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

4. Use the DataSource to create a JDBC connection. For example:

java.sql.Connection conn = ds.getConnection();

5. Use the connection to execute SQL statements. For example:

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");

. . .

Connecting Directly to a Database Using a JDBC Driver
Connecting directly to a database is the least efficient way of making a database connection
because a new database connection must be established for each request. You can use any JDBC
driver to connect to your database. BEA provides JDBC drivers for Oracle and Microsoft SQL
Server. For more information, see Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs90/jdbc/index.html.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html
http://e-docs.bea.com/wls/docs90/jdbc/index.html

Threadi ng Issues in HTTP Serv le ts

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-17

Threading Issues in HTTP Servlets
When you design a servlet, you should consider how the servlet is invoked by WebLogic Server
under high load. It is inevitable that more than one client will hit your servlet simultaneously.
Therefore, write your servlet code to guard against sharing violations on shared resources or
instance variables.

It is recommended that shared-resource issues be handled on an individual servlet basis. Consider
the following guidelines:

Wherever possible, avoid synchronization, because it causes subsequent servlet requests to
bottleneck until the current thread completes.

Define variables that are specific to each servlet request within the scope of the service
methods. Local scope variables are stored on the stack and, therefore, are not shared by
multiple threads running within the same method, which avoids the need to be
synchronized.

Access to external resources should be synchronized on a Class level, or encapsulated in a
transaction.

Dispatching Requests to Another Resource
This section provides an overview of commonly used methods for dispatching requests from a
servlet to another resource.

A servlet can pass on a request to another resource, such as a servlet, JSP, or HTML page. This
process is referred to as request dispatching. When you dispatch requests, you use either the
include() or forward() method of the RequestDispatcher interface.

For a complete discussion of request dispatching, see section 8.2 of the Servlet 2.4 specification
(see http://java.sun.com/products/servlet/download.html#specs) from Sun
Microsystems.

By using the RequestDispatcher, you can avoid sending an HTTP-redirect response back to
the client. The RequestDispatcher passes the HTTP request to the requested resource.

To dispatch a request to a particular resource:

1. Get a reference to a ServletContext:

ServletContext sc = getServletConfig().getServletContext();

2. Look up the RequestDispatcher object using one of the following methods:

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs

Serv le t P rog ramming Tasks

7-18 Developing Web Applications, Servlets, and JSPs for WebLogic Server

RequestDispatcher rd = sc.getRequestDispatcher(String path);

 path should be relative to the root of the Web Application.

RequestDispatcher rd = sc.getNamedDispatcher(String name);

Replace name with the name assigned to the servlet in the J2EE standard Web
Application deployment descriptor, web.xml, with the <servlet-name> element.

RequestDispatcher rd = ServletRequest.getRequestDispatcher(String
path);

This method returns a RequestDispatcher object and is similar to the
ServletContext.getRequestDispatcher(String path) method except that it
allows the path specified to be relative to the current servlet. If the path begins with a /
character it is interpreted to be relative to the Web Application.

You can obtain a RequestDispatcher for any HTTP resource within a Web Application,
including HTTP Servlets, JSP pages, or plain HTML pages by requesting the appropriate
URL for the resource in the getRequestDispatcher() method. Use the returned
RequestDispatcher object to forward the request to another servlet.

3. Forward or include the request using the appropriate method:

rd.forward(request,response);

rd.include(request,response);

These methods are discussed in the next two sections.

Forwarding a Request
Once you have the correct RequestDispatcher, your servlet forwards a request using the
RequestDispatcher.forward() method, passing HTTPServletRequest and
HTTPServletResponse as arguments. If you call this method when output has already been sent
to the client an IllegalStateException is thrown. If the response buffer contains pending
output that has not been committed, the buffer is reset.

The servlet must not attempt to write any previous output to the response. If the servlet retrieves
the ServletOutputStream or the PrintWriter for the response before forwarding the request,
an IllegalStateException is thrown.

All other output from the original servlet is ignored after the request has been forwarded.

Dispatch ing Requests t o Ano ther Resource

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-19

If you are using any type of authentication, a forwarded request, by default, does not require the
user to be re-authenticated. You can change this behavior to require authentication of a forwarded
request by adding the check-auth-on-forward/ element to the container-descriptor
element of the WebLogic-specific deployment descriptor, weblogic.xml. For example:

<container-descriptor>
<check-auth-on-forward/>

</container-descriptor>

Including a Request
Your servlet can include the output from another resource by using the
RequestDispatcher.include() method, and passing HTTPServletRequest and
HTTPServletResponse as arguments. When you include output from another resource, the
included resource has access to the request object.

The included resource can write data back to the ServletOutputStream or Writer objects of
the response object and then can either add data to the response buffer or call the flush() method
on the response object. Any attempt to set the response status code or to set any HTTP header
information from the included servlet response is ignored.

In effect, you can use the include() method to mimic a “server-side-include” of another HTTP
resource from your servlet code.

RequestDispatcher and Filters
The Servlet 2.3 Specification from Sun Microsystems did not specify whether filters should be
applied on forwards and includes. The Servlet 2.4 specification clarifies this by introducing a new
dispatcher element in the web.xml deployment descriptor. Using this dispatcher element,
you can configure a filter-mapping to be applied on REQUEST/FORWARD/INCLUDE/ERROR. In
WebLogic Server 8.1, the default was REQUEST+FORWARD+INCLUDE. For the old DTD-based
deployment descriptors, the default value has not been changed in order to preserve backward
compatibility. For the new descriptors (schema based) the default is REQUEST.

You can change the default behavior of dispatched requests by setting the
filter-dispatched-requests-enabled element in weblogic.xml. This element controls
whether or not filters are applied to dispatched (include/forward) requests. The default value for
old DTD-based deployment descriptors is true. The default for the new schema-based
descriptors is false

Serv le t P rog ramming Tasks

7-20 Developing Web Applications, Servlets, and JSPs for WebLogic Server

For more information about RequestDispatcher and filters, see section 6.2.5 of the Servlet 2.4
specification. For more information about writing and configuring filters for WebLogic Server,
see Chapter 11, “Filters.”

Proxying Requests to Another Web Server
The following sections discuss how to proxy HTTP requests to another Web server:

“Overview of Proxying Requests to Another Web Server” on page 7-20

“Setting Up a Proxy to a Secondary Web Server” on page 7-20

“Sample Deployment Descriptor for the Proxy Servlet” on page 7-21

Overview of Proxying Requests to Another Web Server
When you use WebLogic Server as your primary Web server, you may also want to configure
WebLogic Server to pass on, or proxy, certain requests to a secondary Web server, such as
Netscape Enterprise Server, Apache, or Microsoft Internet Information Server. Any request that
gets proxied is redirected to a specific URL.You can even proxy to another Web server on a
different machine.You proxy requests based on the URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP request, redirects
it to the proxy URL, and sends the response to the client's browser back through WebLogic
Server. To use the HttpProxyServlet, you must configure it in a Web Application and deploy
that Web Application on the WebLogic Server that is redirecting requests.

Setting Up a Proxy to a Secondary Web Server
To set up a proxy to a secondary HTTP server:

1. Register the proxy servlet in your Web Application deployment descriptor (see “Sample
web.xml for Use with ProxyServlet” on page 7-21). The Web Application must be the default
Web Application of the server instance that is responding to requests. The class name for the
proxy servlet is weblogic.servlet.proxy.HttpProxyServlet.

2. Define an initialization parameter for the ProxyServlet with a <param-name> of
redirectURL and a <param-value> containing the URL of the server to which proxied
requests should be directed.

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs

Prox y ing Requests t o Ano ther Web Se rve r

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-21

3. Map the ProxyServlet to a <url-pattern>. Specifically, map the file extensions you
wish to proxy, for example *.jsp, or *.html. Use the <servlet-mapping> element in the
web.xml Web Application deployment descriptor.

If you set the <url-pattern> to “/”, then any request that cannot be resolved by
WebLogic Server is proxied to the remote server. However, you must also specifically map
the following extensions: *.jsp, *.html, and *.html if you want to proxy files ending
with those extensions.

4. Deploy the Web Application on the WebLogic Server instance that redirects incoming
requests.

Sample Deployment Descriptor for the Proxy Servlet
The following is an sample of a Web applications deployment descriptor for using the
ProxyServlet.

Listing 7-2 Sample web.xml for Use with ProxyServlet

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://java.sun.com/xml/ns/j2ee"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="2.4">

<web-app>

<servlet>

<servlet-name>ProxyServlet</servlet-name>

<servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet-class>

<init-param>

<param-name>redirectURL</param-name>

<param-value>

http://server:port

Serv le t P rog ramming Tasks

7-22 Developing Web Applications, Servlets, and JSPs for WebLogic Server

</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

Clustering Servlets
Clustering servlets provides failover and load balancing benefits. To deploy a servlet in a
WebLogic Server cluster, deploy the Web Application containing the servlet on all servers in the
cluster. For instructions, see “Deploying Applications to a Cluster” in Using WebLogic Server
Clusters.

For information on requirements for clustering servlets, and to understand the connection and
failover processes for requests that are routed to clustered servlets, see “Replication and Failover
for Servlets and JSPs” in Using WebLogic Server Clusters.

Note: Automatic failover for servlets requires that the servlet session state be replicated in
memory. For instructions, see “Configure In-Memory HTTP Replication” in Using
WebLogic Server Clusters.

http://e-docs.bea.com/wls/docs90/cluster/setup.html
http://e-docs.bea.com/wls/docs90/cluster/failover.html#1019188
http://e-docs.bea.com/wls/docs90/cluster/failover.html#1019188
http://e-docs.bea.com/wls/docs90/cluster/setup.html#726973

Refe rencing a Ser v l e t i n a Web Appl ica t i on

Developing Web Applications, Servlets, and JSPs for WebLogic Server 7-23

For information on the load balancing support that a WebLogic Server cluster provides for
servlets, and for related planning and configuration considerations for architects and
administrators, see “Load Balancing for Servlets and JSPs” in Using WebLogic Server Clusters.

Referencing a Servlet in a Web Application
The URL used to reference a servlet in a Web Application is constructed as follows:

http://myHostName:port/myContextPath/myRequest/?myRequestParameters

The components of this URL are defined as follows:

myHostName
The DNS name mapped to the Web Server defined in the WebLogic Server
Administration Console.

This portion of the URL can be replaced with host:port, where host is the name of the
machine running WebLogic Server and port is the port at which WebLogic Server is
listening for requests.

port

The port at which WebLogic Server is listening for requests. The Servlet can
communicate with the proxy only through the listenPort on the Server mBean and the SSL
mBean.

myContextPath

The name of the context root which is specified in the weblogic.xml file, or the uri of
the web module which is specified in the config.xml file.

myRequest

The name of the servlet as defined in the web.xml file.

myRequestParameters

Optional HTTP request parameters encoded in the URL, which can be read by an HTTP
servlet.

URL Pattern Matching
WebLogic Server provides the user with the ability to implement a URL matching utility which
does not conform to the J2EE rules for matching. The utility must be configured in the
weblogic.xml deployment descriptor rather than the web.xml deployment descriptor used for
the configuration of the default implementation of URLMatchMap.

To be used with WebLogic Server, the URL matching utility must implement the following
interface:

http://e-docs.bea.com/wls/docs90/cluster/load_balancing.html#1026940

Serv le t P rog ramming Tasks

7-24 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Package weblogic.servlet.utils;

public interface URLMapping {

 public void put(String pattern, Object value);

 public Object get(String uri);

 public void remove(String pattern)

 public void setDefault(Object defaultObject);

 public Object getDefault();

 public void setCaseInsensitive(boolean ci);

 public boolean isCaseInsensitive();

 public int size();

 public Object[] values();

 public String[] keys();

}

The SimpleApacheURLMatchMap Utility
The included SimpleApacheURLMatchMap utility is not J2EE specific. It can be configured in
the weblogic.xml deployment descriptor file and allows the user to specify Apache style
pattern matching rather than the default URL pattern matching provided in the web.xml
deployment descriptor. For more information, see “url-match-map” on page B-24.

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-1

C H A P T E R 8

Using Sessions and Session
Persistence

The following sections describe how to set up and use sessions and session persistence:

“Overview of HTTP Sessions” on page 8-2

“Setting Up Session Management” on page 8-2

“Configuring Session Persistence” on page 8-5

“Using URL Rewriting Instead of Cookies” on page 8-11

“Session Tracking from a Servlet” on page 8-13

Using Sess ions and Sess ion Pe rs is tence

8-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Overview of HTTP Sessions
Session tracking enables you to track a user's progress over multiple servlets or HTML pages,
which, by nature, are stateless. A session is defined as a series of related browser requests that
come from the same client during a certain time period. Session tracking ties together a series of
browser requests—think of these requests as pages—that may have some meaning as a whole,
such as a shopping cart application.

Setting Up Session Management
WebLogic Server is set up to handle session tracking by default. You need not set any of these
properties to use session tracking. However, configuring how WebLogic Server manages
sessions is a key part of tuning your application for best performance. When you set up session
management, you determine factors such as:

How many users you expect to hit the servlet

How long each session lasts

How much data you expect to store for each user

Heap size allocated to the WebLogic Server instance

You can also store data permanently from an HTTP session. See “Configuring Session
Persistence” on page 8-5.

HTTP Session Properties
You configure WebLogic Server session tracking by defining properties in the
WebLogic-specific deployment descriptor, weblogic.xml. For a complete list of session
attributes, see “session-descriptor” on page B-8.

In a previous WebLogic Server release, a change was introduced to the SessionID format that
caused some load balancers to lose the ability to retain session stickiness. A server startup flag,
-Dweblogic.servlet.useExtendedSessionFormat=true, retains the information that the
load-balancing application needs for session stickiness. The extended session ID format will be
part of the URL if URL rewriting is activated, and the startup flag is set to true.

Set t ing Up Session Management

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-3

Session Timeout
You can specify an interval of time after which HTTP sessions expire. When a session expires,
all data stored in the session is discarded. You can set the interval in either web.xml or
weblogic.xml:

Set the timeout-secs parameter value in the session-descriptor element of the
WebLogic-specific deployment descriptor, weblogic.xml. This value is set in seconds.
For more information, see “session-descriptor” on page B-8.

Set the session-timeout element in the J2EE standard Web application deployment
descriptor, web.xml.

Configuring WebLogic Server Session Cookies
WebLogic Server uses cookies for session management when cookies are supported by the client
browser.

The cookies that WebLogic Server uses to track sessions are set as transient by default and do not
outlive the session. When a user quits the browser, the cookies are lost and the session ends. This
behavior is in the spirit of session usage and it is recommended that you use sessions in this way.

You can configure session-tracking parameters of cookies in the WebLogic-specific deployment
descriptor, weblogic.xml. A complete list of session and cookie-related parameters is available
in “session-descriptor” on page B-8.

Configuring Application Cookies That Outlive a Session
For longer-lived client-side user data, you program your application to create and set its own
cookies on the browser via the HTTP servlet API. The application should not attempt to use the
cookies associated with the HTTP session. Your application might use cookies to auto-login a
user from a particular machine, in which case you would set a new cookie to last for a long time.
Remember that the cookie can only be sent from that particular client machine. Your application
should store data on the server if it must be accessed by the user from multiple locations.

You cannot directly connect the age of a browser cookie with the length of a session. If a cookie
expires before its associated session, that session becomes orphaned. If a session expires before
its associated cookie, the servlet is not be able to find a session. At that point, a new session is
automatically assigned when the request.getSession(true) method is called.

Using Sess ions and Sess ion Pe rs is tence

8-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

You can set the maximum life of a cookie with the cookie-max-age-secs element in the
session descriptor of the weblogic.xml deployment descriptor. See
“cookie-max-age-secs” on page B-11.

Logging Out and Ending a Session
User authentication information is stored both in the user's session data and in the context of a
server or virtual host that is targeted by a Web application. The session.invalidate()
method, which is often used to log out a user, only invalidates the current session for a user—the
user's authentication information still remains valid and is stored in the context of the server or
virtual host. If the server or virtual host is hosting only one Web application, the
session.invalidate() method, in effect, logs out the user.

There are several Java methods and strategies you can use when using authentication with
multiple Web applications. For more information see “Logging Out and Ending a Session” on
page 8-17.

Enabling Web applications to share the same session
By default, Web applications do not share the same session. If you would like Web applications
to share the same session, you can configure the session descriptor at the application level in the
weblogic-application.xml deployment descriptor. To enable Web applications to share the
same session, set the sharing-enabled attribute in the session descriptor to true in the
weblogic-application.xml deployment descriptor. See “sharing-enabled” in
“session-descriptor” on page B-8.

The session descriptor configuration that you specify at the application level overrides any
session descriptor configuration that you specify at the Web application level for all of the Web
applications in the application. If you set the sharing-enabled attribute to true at the Web
application level, it will be ignored.

All Web applications in an application are automatically started using the same session instance
if you specify the session descriptor in the weblogic-application.xml deployment descriptor
and set the sharing-enabled attribute to true as in the following example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<weblogic-application xmlns="http://www.bea.com/ns/weblogic/90";;>

 ...

 <session-descriptor>

 <persistent-store-type>memory</persistent-store-type>

Conf igur ing Session Per s is tence

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-5

 <sharing-enabled>true</sharing-enabled>

 ...

 </session-descriptor>

...

</weblogic-application>

Configuring Session Persistence
You use session persistence to permanently store data from an HTTP session object to enable
failover and load balancing across a cluster of WebLogic Servers. When your applications stores
data in an HTTP session object, the data must be serializable.

There are five different implementations of session persistence:

Memory (single-server, non-replicated)

File system persistence

JDBC persistence

Cookie-based session persistence

In-memory replication (across a cluster)

The first four are discussed here; in-memory replication is discussed in “HTTP Session State
Replication,” in Using WebLogic Server Clusters.

File, JDBC, cookie-based, and memory (single-server, non-populated) session persistence have
some common properties. Each persistence method has its own set of configurable parameters,
as discussed in the following sections. These parameters are subelements of the
session-descriptor element in the weblogic.xml deployment descriptor file.

Attributes Shared by Different Types of Session Persistence
This section describes parameters common to file and JDBC-based persistence. You can
configure the number of sessions that are held in memory by defining the following parameters
in the session-descriptor element in the weblogic.xml deployment descriptor file. These
parameters are only applicable if you are using session persistence:

cache-size

Limits the number of cached sessions that can be active in memory at any one time. If you
expect high volumes of simultaneous active sessions, you do not want these sessions to
soak up the RAM of your server because this may cause performance problems swapping

http://e-docs.bea.com/wls/docs90/cluster/failover.html#1022034
http://e-docs.bea.com/wls/docs90/cluster/failover.html#1022034
http://e-docs.bea.com/wls/docs90/cluster/

Using Sess ions and Sess ion Pe rs is tence

8-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

to and from virtual memory. When the cache is full, the least recently used sessions are
stored in the persistent store and recalled automatically when required. If you do not use
persistence, this property is ignored, and there is no soft limit to the number of sessions
allowed in main memory. By default, the number of cached sessions is 1028. To turn off
caching, set this to 0. See “cache-size” on page B-9.

Note: cache-size is used by JDBC and file-based sessions only for maintaining the
in-memory bubbling cache. It is not applicable for other persistence types.

invalidation-interval-secs

Sets the time, in seconds, that WebLogic Server waits between doing house-cleaning checks for
timed-out and invalid sessions, and deleting the old sessions and freeing up memory. Use this
element to tune WebLogic Server for best performance on high traffic sites. See
“invalidation-interval-secs” on page B-8.

The minimum value is every second (1). The maximum value is once a week (604,800
seconds). If not set, the attribute defaults to 60 seconds.

Using Memory-based, Single-server, Non-replicated
Persistent Storage
When you use memory-based storage, all session information is stored in memory and is lost
when you stop and restart WebLogic Server. To use memory-based, single-server, non-replicated
persistent storage, set the persistent-store-type parameter in the session-descriptor
element in the weblogic.xml deployment descriptor file to memory. See
“persistent-store-type” on page B-12.

Note: If you do not allocate sufficient heap size when running WebLogic Server, your server
may run out of memory under heavy load.

Using File-based Persistent Storage
To configure file-based persistent storage for sessions:

1. In the deployment descriptor file weblogic.xml, set the persistent-store-type
parameter in the session-descriptor element in the weblogic.xml deployment
descriptor file to file. See “persistent-store-type” on page B-12.

2. Set the directory where WebLogic Server stores the sessions. See
“persistent-store-dir” on page B-13.

Note: You must create this directory yourself and make sure appropriate access privileges
have been assigned to the directory.

Conf igur ing Session Per s is tence

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-7

Using a Database for Persistent Storage (JDBC persistence)
JDBC persistence stores session data in a database table using a schema provided for this purpose.
You can use any database for which you have a JDBC driver. You configure database access by
using connection pools.

Because WebLogic Server uses the system time to determine the session lifetime when using
JDBC session persistence, you must be sure to synchronize the system clock on all of the
machines on which servers are running in the same cluster.

Configuring JDBC-based Persistent Storage
To configure JDBC-based persistent storage for sessions:

1. Set the persistent-store-type parameter in the session-descriptor element in the
weblogic.xml deployment descriptor file to jdbc. See “persistent-store-type” on
page B-12.

2. Set a JDBC connection pool to be used for persistence storage with the
persistent-store-pool parameter in the session-descriptor element in the
weblogic.xml deployment descriptor file. Use the name of a connection pool that is
defined in the WebLogic Server Administration Console. See
“persistent-store-pool” on page B-13.

3. Set up a database table named wl_servlet_sessions for JDBC-based persistence. The
connection pool that connects to the database needs to have read/write access for this table.

Note: Create indexes on wl_id and wl_context_path, if the database does not create
them automatically. Some databases create indexes automatically for primary keys.

Set up column names and data types as follows.

Using Sess ions and Sess ion Pe rs is tence

8-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Table 8-1 Creating wl_servlet_sessions table

If you are using an Oracle DBMS, use the following SQL statement to create the
wl_servlet_sessions table. Modify the SQL statement for use with your DBMS.

Listing 8-1 Creating wl_servlet_sessions table with Oracle DBMS

create table wl_servlet_sessions

 (wl_id VARCHAR2(100) NOT NULL,

 wl_context_path VARCHAR2(100) NOT NULL,

 wl_is_new CHAR(1),

 wl_create_time NUMBER(20),

 wl_is_valid CHAR(1),

Column Name Data Type

wl_id Variable-width alphanumeric column, up to 100
characters; for example, Oracle VARCHAR2(100).
 The primary key must be set as follows:

wl_id + wl_context_path.

wl_context_path Variable-width alphanumeric column, up to 100
characters; for example, Oracle VARCHAR2(100).
This column is used as part of the primary key. (See the
wl_id column description.)

wl_is_new Single char column; for example, Oracle CHAR(1)

wl_create_time Numeric column, 20 digits; for example, Oracle
NUMBER(20)

wl_is_valid Single char column; for example, Oracle CHAR(1)

wl_session_values Large binary column; for example, Oracle LONG RAW

wl_access_time Numeric column, 20 digits; for example, NUMBER(20)

wl_max_inactive_interval Integer column; for example, Oracle Integer.
Number of seconds between client requests before the
session is invalidated. A negative time value indicates
that the session should never time out.

Conf igur ing Session Per s is tence

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-9

 wl_session_values LONG RAW,

 wl_access_time NUMBER(20),

 wl_max_inactive_interval INTEGER,

 PRIMARY KEY (wl_id, wl_context_path));

Note: You can use the jdbc-connection-timeout-secs parameter to configure a
maximum duration that JDBC session persistence should wait for a JDBC connection
from the connection pool before failing to load the session data. For more information,
see “jdbc-connection-timeout-secs” on page B-13.

If you are using SqlServer2000, use the following SQL statement to create the
wl_servlet_sessions table. Modify the SQL statement for use with your DBMS.

Listing 8-2 Creating wl_servlet_sessions table with SqlServer 2000

create table wl_servlet_sessions

 (wl_id VARCHAR2(100) NOT NULL,

 wl_context_path VARCHAR2(100) NOT NULL,

 wl_is_new VARCHAR(1),

 wl_create_time DECIMAL,

 wl_is_valid VARCHAR(1),

 wl_session_values IMAGE,

 wl_access_time DECIMAL,

 wl_max_inactive_interval INTEGER,

 PRIMARY KEY (wl_id, wl_context_path));

If you are using Pointbase, Pointbase translates the SQL. For example, Pointbase would translate
the SQL provided in Listing 8-1 as follows.

Listing 8-3 Creating wl_servlet_sessions table with Pointbase SQL Translation

SQL> describe wl_servlet_sessions;

WL_SERVLET_SESSIONS

WL_ID VARCHAR(100) NULLABLE: NO

Using Sess ions and Sess ion Pe rs is tence

8-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

WL_CONTEXT_PATH VARCHAR(100) NULLABLE: NO

WL_IS_NEW CHARACTER(1) NULLABLE: YES

WL_CREATE_TIME DECIMAL(20) NULLABLE: YES

WL_IS_VALID CHARACTER(1) NULLABLE: YES

WL_SESSION_VALUES BLOB(65535) NULLABLE: YES

WL_ACCESS_TIME DECIMAL(20) NULLABLE: YES

WL_MAX_INACTIVE_INTERVAL INTEGER(10) NULLABLE: YES

Primary Key: WL_CONTEXT_PATH

Primary Key: WL_ID

Caching and Database Updates for JDBC Session Persistence
WebLogic Server does not write the HTTP session state to disk if the request is read-only,
meaning the request does not modify the HTTP session. Only the wl_access_time column is
updated in the database, if the session is accessed.

For non read-only requests, the Web application container updates the database for the changes
to session state after every HTTP request. This is done so that any server in the cluster can handle
requests upon failovers and retrieve the latest session state from the database.

To prevent multiple database queries, WebLogic Server caches recently used sessions. Recently
used sessions are not refreshed from the database for every request. The number of sessions in
cache is governed by the cache-size parameter in the session-descriptor element of the
WebLogic Server-specific deployment descriptor, weblogic.xml. See “cache-size” on
page B-9.

Using Cookie-Based Session Persistence
Cookie-based session persistence provides a stateless solution for session persistence by storing
all session data in a cookie in the user’s browser. Cookie-based session persistence is most useful
when you do not need to store large amounts of data in the session. Cookie-based session
persistence can make managing your WebLogic Server installation easier because clustering
failover logic is not required. Because the session is stored in the browser, not on the server, you
can start and stop WebLogic Servers without losing sessions.

There are some limitations to cookie-based session persistence:

Us ing URL Rewr i t ing I ns tead of Cook ies

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-11

You can store only string attributes in the session. If you store any other type of object in
the session, an IllegalArgument exception is thrown.

You cannot flush the HTTP response (because the cookie must be written to the header
data before the response is committed).

If the content length of the response exceeds the buffer size, the response is automatically
flushed and the session data cannot be updated in the cookie. (The buffer size is, by
default, 8192 bytes. You can change the buffer size with the
javax.servlet.ServletResponse.setBufferSize() method.

You can only use basic (browser-based) authentication.

Session data is sent to the browser in clear text.

The user’s browser must be configured to accept cookies.

You cannot use commas (,) in a string when using cookie-based session persistence or an
exception occurs.

To set up cookie-based session persistence:

1. Set the persistent-store-type parameter in the session-descriptor element in the
weblogic.xml deployment descriptor file to cookie. See
“persistent-store-type” on page B-12.

2. Optionally, set a name for the cookie using the persistent-store-cookie-name
element. The default is WLCOOKIE. See “persistent-store-cookie-name” on
page B-12.

Using URL Rewriting Instead of Cookies
In some situations, a browser or wireless device may not accept cookies, which makes session
tracking with cookies impossible. URL rewriting is a solution to this situation that can be
substituted automatically when WebLogic Server detects that the browser does not accept
cookies. URL rewriting involves encoding the session ID into the hyper-links on the Web pages
that your servlet sends back to the browser. When the user subsequently clicks these links,
WebLogic Server extracts the ID from the URL address and finds the appropriate HttpSession
when your servlet calls the getSession() method.

Enable URL rewriting in WebLogic Server by setting the url-rewriting-enabled parameter
in the WebLogic-specific deployment descriptor, weblogic.xml, under the
session-descriptor element. The default value for this attribute is true. See
“url-rewriting-enabled” on page B-13.

Using Sess ions and Sess ion Pe rs is tence

8-12 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Coding Guidelines for URL Rewriting
Here are general guidelines for supporting URL rewriting.

Avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method, for example:

out.println("<a href=\"
 + response.encodeURL("myshop/catalog.jsp")
 + "\">catalog");

Calling the encodeURL() method determines whether the URL needs to be rewritten. If it
does need to be rewritten, WebLogic Server rewrites the URL by appending the session ID
to the URL, with the session ID preceded by a semicolon.

In addition to URLs that are returned as a response to WebLogic Server, also encode URLs
that send redirects. For example:

if (session.isNew())
response.sendRedirect (response.encodeRedirectUrl(welcomeURL));

WebLogic Server uses URL rewriting when a session is new, even if the browser does
accept cookies, because the server cannot tell whether a browser accepts cookies in the
first visit of a session.

Your servlet can determine whether a given session ID was received from a cookie by
checking the Boolean returned from the
HttpServletRequest.isRequestedSessionIdFromCookie() method. Your application
may respond appropriately, or simply rely on URL rewriting by WebLogic Server.

Note: The CISCO Local Director load balancer expects a question mark "?" delimiter for URL
rewriting. Because the WLS URL-rewriting mechanism uses a semicolon ";" as the
delimiter, our URL re-writing is incompatible with this load balancer.

URL Rewriting and Wireless Access Protocol (WAP)
If you are writing a WAP application, you must use URL rewriting because the WAP protocol
does not support cookies. In addition, some WAP devices have a 128-character limit on the length
of a URL (including attributes), which limits the amount of data that can be transmitted using
URL rewriting. To allow more space for attributes, you can limit the size of the session ID that
is randomly generated by WebLogic Server.

Session T rack ing f rom a Se rv l e t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-13

In particular, to use the WAPEnabled attribute, use the Administration Console at Server
→Protocols→ HTTP→ Advanced Options. The WAPEnabled attribute restricts the size of the
session ID to 52 characters and disallows special characters, such as ! and #. You can also use the
IDLength parameter of weblogic.xml to further restrict the size of the session ID. For additional
details, see “id-length” on page B-9.

Session Tracking from a Servlet
Session tracking enables you to track a user’s progress over multiple servlets or HTML pages,
which, by nature, are stateless. A session is defined as a series of related browser requests that
come from the same client during a certain time period. Session tracking ties together a series of
browser requests—think of these requests as pages—that may have some meaning as a whole,
such as a shopping cart application.

The following sections discuss various aspects of tracking sessions from an HTTP servlet:

A History of Session Tracking

Tracking a Session with an HttpSession Object

Lifetime of a Session

How Session Tracking Works

Detecting the Start of a Session

Setting and Getting Session Name/Value Attributes

Logging Out and Ending a Session

Configuring Session Tracking

Using URL Rewriting Instead of Cookies

URL Rewriting and Wireless Access Protocol (WAP)

Making Sessions Persistent

A History of Session Tracking
Before session tracking matured conceptually, developers tried to build state into their pages by
stuffing information into hidden fields on a page or embedding user choices into URLs used in
links with a long string of appended characters. You can see good examples of this at most search
engine sites, many of which still depend on CGI. These sites track user choices with URL

Using Sess ions and Sess ion Pe rs is tence

8-14 Developing Web Applications, Servlets, and JSPs for WebLogic Server

parameter name=value pairs that are appended to the URL, after the reserved HTTP character ?.
This practice can result in a very long URL that the CGI script must carefully parse and manage.
The problem with this approach is that you cannot pass this information from session to session.
Once you lose control over the URL—that is, once the user leaves one of your pages—the user
information is lost forever.

Later, Netscape introduced browser cookies, which enable you to store user-related information
about the client for each server. However, some browsers still do not fully support cookies, and
some users prefer to turn off the cookie option in their browsers. Another factor that should be
considered is that most browsers limit the amount of data that can be stored with a cookie.

Unlike the CGI approach, the HTTP servlet specification defines a solution that allows the server
to store user details on the server beyond a single session, and protects your code from the
complexities of tracking sessions. Your servlets can use an HttpSession object to track a user’s
input over the span of a single session and to share session details among multiple servlets.
Session data can be persisted using a variety of methods available with WebLogic Service.

Tracking a Session with an HttpSession Object
According to the Java Servlet API, which WebLogic Server implements and supports, each
servlet can access a server-side session by using its HttpSession object. You can access an
HttpSession object in the service() method of the servlet by using the
HttpServletRequest object with the variable request variable, as shown:

HttpSession session = request.getSession(true);

An HttpSession object is created if one does not already exist for that client when the
request.getSession(true)method is called with the argument true. The session object lives
on WebLogic Server for the lifetime of the session, during which the session object accumulates
information related to that client. Your servlet adds or removes information from the session
object as necessary. A session is associated with a particular client. Each time the client visits
your servlet, the same associated HttpSession object is retrieved when the getSession()
method is called.

For more details on the methods supported by the HttpSession, refer to the HttpServlet API at
http://java.sun.com/j2ee/j2sdkee/

techdocs/api/javax/servlet/http/HttpSession.html.

In the following example, the service() method counts the number of times a user requests the
servlet during a session.

public void service(HttpServletRequest request,
 HttpServletResponse, response)
 throws IOException

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/HttpSession.html

Session T rack ing f rom a Se rv l e t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-15

{
 // Get the session and the counter param attribute
 HttpSession session = request.getSession (true);
 Integer ival = (Integer)
 session.getAttribute("simplesession.counter");
 if (ival == null) // Initialize the counter
 ival = new Integer (1);
 else // Increment the counter
 ival = new Integer (ival.intValue () + 1);
 // Set the new attribute value in the session
 session.setAttribute("simplesession.counter", ival);
 // Output the HTML page
 out.print("<HTML><body>");
 out.print("<center> You have hit this page ");
 out.print(ival + " times!");
 out.print("</body></html>");
}

Lifetime of a Session
A session tracks the selections of a user over a series of pages in a single transaction. A single
transaction may consist of several tasks, such as searching for an item, adding it to a shopping
cart, and then processing a payment. A session is transient, and its lifetime ends when one of the
following occurs:

A user leaves your site and the user’s browser does not accept cookies.

A user quits the browser.

The session is timed out due to inactivity.

The session is completed and invalidated by the servlet.

The user logs out and is invalidated by the servlet.

For more persistent, long-term storage of data, your servlet should write details to a database
using JDBC or EJB and associate the client with this data using a long-lived cookie and/or
username and password. Although this document states that sessions use cookies and persistence
internally, you should not use sessions as a general mechanism for storing data about a user.

How Session Tracking Works
How does WebLogic Server know which session is associated with each client? When an
HttpSession is created in a servlet, it is associated with a unique ID. The browser must provide
this session ID with its request in order for the server to find the session data again. The server

Using Sess ions and Sess ion Pe rs is tence

8-16 Developing Web Applications, Servlets, and JSPs for WebLogic Server

attempts to store this ID by setting a cookie on the client. Once the cookie is set, each time the
browser sends a request to the server it includes the cookie containing the ID. The server
automatically parses the cookie and supplies the session data when your servlet calls the
getSession() method.

If the client does not accept cookies, the only alternative is to encode the ID into the URL links
in the pages sent back to the client. For this reason, you should always use the encodeURL()
method when you include URLs in your servlet response. WebLogic Server detects whether the
browser accepts cookies and does not unnecessarily encode URLs. WebLogic automatically
parses the session ID from an encoded URL and retrieves the correct session data when you call
the getSession() method. Using the encodeURL() method ensures no disruption to your
servlet code, regardless of the procedure used to track sessions. For more information, see “Using
URL Rewriting Instead of Cookies” on page 8-11.

Detecting the Start of a Session
After you obtain a session using the getSession(true) method, you can tell whether the
session has just been created by calling the HttpSession.isNew() method. If this method
returns true, then the client does not already have a valid session, and at this point it is unaware
of the new session. The client does not become aware of the new session until a reply is posted
back from the server.

Design your application to accommodate new or existing sessions in a way that suits your
business logic. For example, your application might redirect the client’s URL to a login/password
page if you determine that the session has not yet started, as shown in the following code
example:

HttpSession session = request.getSession(true);
if (session.isNew()) {
 response.sendRedirect(welcomeURL);
}

On the login page, provide an option to log in to the system or create a new account. You can also
specify a login page in your Web Application using the login-config element of the J2EE
standard Web application deployment descriptor, web.xml.

Setting and Getting Session Name/Value Attributes
You can store data in an HttpSession object using name=value pairs. Data stored in a session
is available through the session. To store data in a session, use these methods from the
HttpSession interface:

Session T rack ing f rom a Se rv l e t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-17

getAttribute()
getAttributeNames()
setAttribute()
removeAttribute()

The following code fragment shows how to get all the existing name=value pairs:

Enumeration sessionNames = session.getAttributeNames();
String sessionName = null;
Object sessionValue = null;

while (sessionNames.hasMoreElements()) {
 sessionName = (String)sessionNames.nextElement();
 sessionValue = session.getAttribute(sessionName);
 System.out.println("Session name is " + sessionName +
 ", value is " + sessionValue);
}

To add or overwrite a named attribute, use the setAttribute() method. To remove a named
attribute altogether, use the removeAttribute() method.

Note: You can add any Java descendant of Object as a session attribute and associate it with a
name. However, if you are using session persistence, your attribute value objects must
implement java.io.Serializable.

Logging Out and Ending a Session
If your application deals with sensitive information, consider offering the ability to log out of the
session. This is a common feature when using shopping carts and Internet email accounts. When
the same browser returns to the service, the user must log back in to the system.

Using session.invalidate() for a Single Web Application
User authentication information is stored both in the users’s session data and in the context of a
server or virtual host that is targeted by a Web Application. Using the session.invalidate()
method, which is often used to log out a user, only invalidates the current session for a user—the
user’s authentication information still remains valid and is stored in the context of the server or
virtual host. If the server or virtual host is hosting only one Web Application, the
session.invalidate()method, in effect, logs out the user.

Do not reference an invalidated session after calling session.invalidate(). If you do, an
IllegalStateException is thrown. The next time a user visits your servlet from the same
browser, the session data will be missing, and a new session will be created when you call the
getSession(true) method. At that time you can send the user to the login page again.

Using Sess ions and Sess ion Pe rs is tence

8-18 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Implementing Single Sign-On for Multiple Applications
If the server or virtual host is targeted by many Web Applications, another means is required to
log out a user from all Web Applications. Because the Servlet specification does not provide an
API for logging out a user from all Web Applications, the following methods are provided.

weblogic.servlet.security.ServletAuthentication.logout()

Removes the authentication data from the users’s session data, which logs out a user but
allows the session to remain alive.

weblogic.servlet.security.ServletAuthentication.invalidateAll()

Invalidates all the sessions and removes the authentication data for the current user. The
cookie is also invalidated.

weblogic.servlet.security.ServletAuthentication.killCookie()

Invalidates the current cookie by setting the cookie so that it expires immediately when
the response is sent to the browser. This method depends on a successful response
reaching the user’s browser. The session remains alive until it times out.

Exempting a Web Application for Single Sign-on
If you want to exempt a Web Application from participating in single sign-on, define a different
cookie name for the exempted Web Application. For more information, see “Configuring
WebLogic Server Session Cookies” on page 8-3.

Configuring Session Tracking
WebLogic Server provides many configurable attributes that determine how WebLogic Server
handles session tracking. For details about configuring these session tracking attributes, see
“session-descriptor” on page B-8.

Using URL Rewriting Instead of Cookies
In some situations, a browser may not accept cookies, which means that session tracking with
cookies is not possible. URL rewriting is a workaround to this scenario that can be substituted
automatically when WebLogic Server detects that the browser does not accept cookies. URL
rewriting involves encoding the session ID into the hyperlinks on the Web pages that your servlet
sends back to the browser. When the user subsequently clicks these links, WebLogic Server
extracts the ID from the URL and finds the appropriate HttpSession. Then you use the
getSession() method to access session data.

Session T rack ing f rom a Se rv l e t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-19

To enable URL rewriting in WebLogic Server, set the URL-rewriting-enabled parameter to
true in the session-descriptor element of the WebLogic Server-specific deployment
descriptor, weblogic.xml. See “url-rewriting-enabled” on page B-13.

To make sure your code correctly handles URLs in order to support URL rewriting, consider the
following guidelines:

You should avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method. For example:

out.println("<a href=\""
 + response.encodeURL("myshop/catalog.jsp")
 + "\">catalog");

Calling the encodeURL() method determines if the URL needs to be rewritten and, if
necessary, rewrites the URL by including the session ID in the URL.

Encode URLs that send redirects, as well as URLs that are returned as a response to
WebLogic Server. For example:

if (session.isNew())
response.sendRedirect(response.encodeRedirectUrl(welcomeURL));

WebLogic Server uses URL rewriting when a session is new, even if the browser accepts cookies,
because the server cannot determine, during the first visit of a session, whether the browser
accepts cookies.

Your servlet may determine whether a given session was returned from a cookie by checking the
Boolean returned from the HttpServletRequest.isRequestedSessionIdFromCookie()
method. Your application may respond appropriately, or it may simply rely on URL rewriting by
WebLogic Server.

Note: The CISCO Local Director load balancer expects a question mark "?" delimiter for URL
rewriting. Because the WLS URL-rewriting mechanism uses a semicolon ";" as the
delimiter, our URL re-writing is incompatible with this load balancer.

URL Rewriting and Wireless Access Protocol (WAP)
If you are writing a WAP application, you must use URL rewriting because the WAP protocol
does not support cookies. In addition, some WAP devices impose a 128-character limit (including
parameters) on the length of a URL, which limits the amount of data that can be transmitted using
URL rewriting. To allow more space for parameters, you can limit the size of the session ID that

Using Sess ions and Sess ion Pe rs is tence

8-20 Developing Web Applications, Servlets, and JSPs for WebLogic Server

is randomly generated by WebLogic Server by specifying the number of bytes with the
id-length parameter in the session-descriptor element of the WebLogic Server-specific
deployment descriptor, weblogic.xml. See “id-length” on page B-9.

The minimum value is 8 bytes; the default value is 52 bytes; the maximum value is
Integer.MAX_VALUE.

Making Sessions Persistent
You can set up WebLogic Server to record session data in a persistent store. If you are using
session persistence, you can expect the following characteristics:

Good failover, because sessions are saved when servers fail.

Better load balancing, because any server can handle requests for any number of sessions,
and use caching to optimize performance. For more information, see the cache-size
property, at “Configuring Session Persistence” on page 8-5.

Sessions can be shared across clustered WebLogic Servers. Note that session persistence is
no longer a requirement in a WebLogic Cluster. Instead, you can use in-memory replication
of state. For more information, see Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs90/cluster/index.html.

For customers who want the highest in servlet session persistence, JDBC-based persistence
is the best choice. For customers who want to sacrifice some amount of session persistence
in favor of drastically better performance, in-memory replication is the appropriate choice.
JDBC-based persistence is noticeably slower than in-memory replication. In some cases,
in-memory replication has outperformed JDBC-based persistence for servlet sessions by a
factor of eight.

You can put any kind of Java object into a session, but for file, JDBC, and in-memory
replication, only objects that are java.io.Serializable can be stored in a session. For
more information, see “Configuring Session Persistence” on page 8-5.

Scenarios to Avoid When Using Sessions
Do not use session persistence for storing long-term data between sessions. In other words, do
not rely on a session still being active when a client returns to a site at some later date. Instead,
your application should record long-term or important information in a database.

Sessions are not a convenience wrapper around cookies. Do not attempt to store long-term or
limited-term client data in a session. Instead, your application should create and set its own
cookies on the browser. Examples include an auto-login feature that allows a cookie to live for a

http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs90/cluster/index.html

Session T rack ing f rom a Se rv l e t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 8-21

long period, or an auto-logout feature that allows a cookie to expire after a short period of time.
Here, you should not attempt to use HTTP sessions. Instead, you should write your own
application-specific logic.

Use Serializable Attribute Values
When you use persistent sessions, all attribute value objects that you add to the session must
implement java.io.Serializable. For more details on writing serializable classes, refer to the
online java tutorial about serializable objects at
http://java.sun.com/docs/books/tutorial/essential/io/

providing.html.

If you add your own serializable classes to a persistent session, make sure that each instance
variable of your class is also serializable. Otherwise, you can declare it as transient, and
WebLogic Server does not attempt to save that variable to persistent storage. One common
example of an instance variable that must be made transient is the HttpSession object. (See
the notes on using serialized objects in sessions in the section “Making Sessions Persistent” on
page 8-20.)

The HttpServletRequest, ServletContext, and HttpSession attributes will be serialized
when a WebLogic Server instance detects a change in the Web application classloader. The
classloader changes when a Web application is redeployed, when there is a dynamic change in a
servlet, or when there is a cross Web application forward or include.

To avoid having the attribute serialized, during a dynamic change in a servlet, turn off
servlet-reload-check-secs in weblogic.xml. There is no way to avoid serialization of
attributes for cross Web application dispatch or redeployment. See “servlet-reload-check-secs”
on page B-18.

Configuring Session Persistence
For details about setting up persistent sessions, see “Configuring Session Persistence” on
page 8-5.

Configuring a Maximum Limit on In-memory Servlet Sessions
Without the ability to configure in-memory servlet session use, as new sessions are continually
created, the server eventually throws out of memory. To protect against this, WebLogic Server
provides a configurable bound on the number of sessions created. When this number is exceeded,
the weblogic.servlet.SessionCreationException occurs for each attempt to create a
new session. This feature applies to both replicated and non-replicated in-memory sessions.

http://java.sun.com/docs/books/tutorial/essential/io/providing.html

Using Sess ions and Sess ion Pe rs is tence

8-22 Developing Web Applications, Servlets, and JSPs for WebLogic Server

To configure bound in-memory servlet session use, you set the limitation in the
max-in-memory-sessions element in the weblogic.xml deployment descriptor. See
“max-in-memory-sessions” on page B-10.

Enabling Session Memory Overload Protection
When memory is overloaded, a weblogic.servlet.SessionCreationException
(RuntimeException) for any getSession(true) attempts occurs. As the person developing
the servlet, you should handle this exception as follows:

Return the appropriate error message to the user when the exception occurs, explaining the
situation.

Map weblogic.servlet.SessionCreationException to an error page in the J2EE
standard Web Application deployment descriptor, web.xml.

By default, memory overload protection is turned off. You can enable it with a domain-level flag:

weblogic.management.configuration.WebAppContainerMBean.OverloadProtectionE

nabled

Developing Web Applications, Servlets, and JSPs for WebLogic Server 9-1

C H A P T E R 9

Application Events and Event Listener
Classes

The following sections discuss application events and event listener classes:

“Overview of Application Event Listener Classes” on page 9-2

“Servlet Context Events” on page 9-2

“HTTP Session Events” on page 9-3

“Configuring an Event Listener Class” on page 9-5

“Writing an Event Listener Class” on page 9-6

“Templates for Event Listener Classes” on page 9-6

“Additional Resources” on page 9-8

App l i ca t i on Events and Event L i s tene r C lasses

9-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Overview of Application Event Listener Classes
Application events provide notifications of a change in state of the servlet context (each Web
application uses its own servlet context) or of an HTTP session object. You write event listener
classes that respond to these changes in state, and you configure and deploy them in a Web
application. The servlet container generates events that cause the event listener classes to do
something. In other words, the servlet container calls the methods on a user’s event listener class.

The following is an overview of this process:

1. The user creates an event listener class that implements one of the listener interfaces.

2. This implementation is registered in the deployment descriptor.

3. At deployment time, the servlet container constructs an instance of the event listener class.
(This is why the public constructor must exist, as discussed in “Writing an Event Listener
Class” on page 9-6.)

4. At runtime, the servlet container invokes on the instance of the listener class.

For servlet context events, the event listener classes can receive notification when the Web
application is deployed or undeployed (or when WebLogic Server shuts down), and when
attributes are added, removed, or replaced.

For HTTP session events, the event listener classes can receive notification when an HTTP
session is activated or is about to be passivated, and when an HTTP session attribute is added,
removed, or replaced.

Use Web application event listener classes to:

Manage database connections when a Web application is deployed or shuts down

Create standard counter utilities

Monitor the state of HTTP sessions and their attributes

Servlet Context Events
The following table lists the types of Servlet context events, the interface your event listener class
must implement to respond to each Servlet context event, and the methods invoked when the
Servlet context event occurs.

HTTP Sess ion Events

Developing Web Applications, Servlets, and JSPs for WebLogic Server 9-3

Table 9-1 Servlet Context Events

HTTP Session Events
The following table lists the types of HTTP session events your event listener class must
implement to respond to the HTTP session events and the methods invoked when the HTTP
session events occur.

Table 9-2 HTTP Session Events

Type of Event Interface Method

Servlet context is
created.

javax.servlet.ServletContextListener contextInitialized()

Servlet context is
about to be shut
down.

javax.servlet.ServletContextListener contextDestroyed()

An attribute is
added.

javax.servlet.
ServletContextAttributesListener

attributeAdded()

An attribute is
removed.

javax.servlet.
ServletContextAttributesListener

attributeRemoved()

An attribute is
replaced.

javax.servlet.
ServletContextAttributesListener

attributeReplaced()

Type of Event Interface Method

An HTTP session is
activated.

javax.servlet.http.
HttpSessionListener

sessionCreated()

An HTTP session is
about to be passivated.

javax.servlet.http.
HttpSessionListener

sessionDestroyed()

An attribute is added. javax.servlet.http.
HttpSessionAttributeListener

attributeAdded()

App l i ca t i on Events and Event L i s tene r C lasses

9-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Note: The Servlet 2.4 specification also contains the
javax.servlet.http.HttpSessionBindingListener and the
javax.servlet.http.HttpSessionActivationListener interfaces. These
interfaces are implemented by objects that are stored as session attributes and do not
require registration of an event listener in web.xml. For more information, see the
Javadocs for these interfaces.

Servlet Request Events
The following table lists the types of Servlet request events, the interface your event listener class
must implement to manage state across the lifecycle of servlet requests and the methods invoked
when the request events occur.

Table 9-3 Servlet Request Events

An attribute is
removed.

javax.servlet.http.
HttpSessionAttributeListener

attributeRemoved()

An attribute is
replaced.

javax.servlet.http.
HttpSessionAttributeListener

attributeReplaced()

Type of Event Interface Method

Type of Event Interface Method

The request is about
to go out of scope of
the Web application.

javax.servlet.ServletRequestListener requestDestroyed()

The request is about
to come into scope of
the Web application.

javax.servlet.ServletRequestListener requestInitialized()

Notification that a
new attribute was
added to the servlet
request. Called after
the attribute is added.

javax.servlet.ServletRequestAttribute
Listener

attributeAdded()

Conf igur ing an Event L is tener C lass

Developing Web Applications, Servlets, and JSPs for WebLogic Server 9-5

Configuring an Event Listener Class
To configure an event listener class:

1. Open the web.xml deployment descriptor of the Web application for which you are creating
an event listener class in a text editor. The web.xml file is located in the WEB-INF directory
of your Web application.

2. Add an event declaration using the listener element of the web.xml deployment
descriptor. The event declaration defines the event listener class that is invoked when the
event occurs. The listener element must directly follow the filter and
filter-mapping elements and directly precede the servlet element. You can specify
more than one event listener class for each type of event. WebLogic Server invokes the
event listener classes in the order that they appear in the deployment descriptor (except for
shutdown events, which are invoked in the reverse order). For example:

<listener>
<listener-class>myApp.MyContextListenerClass</listener-class>

</listener>

<listener>
<listener-class>myApp.MySessionAttributeListenerClass</listener-class

>
</listener>

3. Write and deploy the event listener class. For details, see the section, “Writing an Event
Listener Class” on page 9-6.

Notification that a
new attribute was
removed from the
servlet request. Called
after the attribute is
removed.

javax.servlet.ServletRequestAttribute
Listener

attributeRemoved()

Notification that an
attribute was replaced
on the servlet request.
Called after the
attribute is replaced.

javax.servlet.ServletRequestAttribute
Listener

attributeReplaced()

Type of Event Interface Method

App l i ca t i on Events and Event L i s tene r C lasses

9-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Writing an Event Listener Class
To write an event listener class:

1. Create a new event listener class that implements the appropriate interface for the type of
event to which your class responds. For a list of these interfaces, see “Servlet Context Events”
on page 9-2 or “HTTP Session Events” on page 9-3. See “Templates for Event Listener
Classes” on page 9-6 for sample templates you can use to get started.

2. Create a public constructor that takes no arguments. For example:

public class MyListener {

// public constructor

public MyListener() { /* ... */ }

}

3. Implement the required methods of the interface. See the J2EE API Reference (Javadocs) at
http://java.sun.com/j2ee/tutorial/api/index.html for more information.

4. Copy the compiled event listener classes into the WEB-INF/classes directory of the Web
application, or package them into a JAR file and copy the JAR file into the WEB-INF/lib
directory of the Web application.

The following useful classes are passed into the methods in an event listener class:

javax.servlet.http.HttpSessionEvent

provides access to the HTTP session object

javax.servlet.ServletContextEvent

provides access to the servlet context object.

javax.servlet.ServletContextAttributeEvent

provides access to servlet context and its attributes

javax.servlet.http.HttpSessionBindingEvent

provides access to an HTTP session and its attributes

Templates for Event Listener Classes
The following examples provide some basic templates for event listener classes.

Servlet Context Event Listener Class Example
package myApp;

import javax.servlet.http.*;

http://java.sun.com/j2ee/tutorial/api/index.html

Templa tes fo r Event L is tene r Cl asses

Developing Web Applications, Servlets, and JSPs for WebLogic Server 9-7

public final class MyContextListenerClass implements

 ServletContextListener {

public void contextInitialized(ServletContextEvent event) {

/* This method is called prior to the servlet context being

initialized (when the Web application is deployed).

You can initialize servlet context related data here.

*/

 }

 public void contextDestroyed(ServletContextEvent event) {

/* This method is invoked when the Servlet Context

(the Web application) is undeployed or

WebLogic Server shuts down.

*/

}

}

HTTP Session Attribute Event Listener Class Example
package myApp;

import javax.servlet.*;

public final class MySessionAttributeListenerClass implements

 HttpSessionAttributeListener {

public void attributeAdded(HttpSessionBindingEvent sbe) {

/* This method is called when an attribute

is added to a session.

*/

}

public void attributeRemoved(HttpSessionBindingEvent sbe) {

/* This method is called when an attribute

is removed from a session.

App l i ca t i on Events and Event L i s tene r C lasses

9-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

*/

 }

public void attributeReplaced(HttpSessionBindingEvent sbe) {

/* This method is invoked when an attibute

is replaced in a session.

*/

 }

}

Additional Resources
Servlet 2.4 Specification from Sun Microsystems at
http://java.sun.com/products/servlet/download.html#specs

J2EE API Reference (Javadocs) at
http://java.sun.com/j2ee/tutorial/api/index.html

The J2EE Tutorial from Sun Microsystems: at
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/j2ee/tutorial/api/index.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-1

C H A P T E R 10

WebLogic JSP Reference

The following sections provide reference information for writing JavaServer Pages (JSPs):

“JSP Tags” on page 10-3

“Reserved Words for Implicit Objects” on page 10-4

“Directives for WebLogic JSP” on page 10-6

“Scriptlets” on page 10-7

“Expressions” on page 10-8

“Example of a JSP with HTML and Embedded Java” on page 10-9

“Actions” on page 10-10

“JSP Expression Language” on page 10-13

“JSP Expression Language Implicit Objects” on page 10-15

“JSP Expression Language Literals and Operators” on page 10-17

“JSP Expression Language Reserved Words” on page 10-19

“JSP Expression Language Named Variables” on page 10-20

“Securing User-Supplied Data in JSPs” on page 10-20

“Using Sessions with JSP” on page 10-22

“Deploying Applets from JSP” on page 10-22

WebLogi c JSP Re fe rence

10-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

“Using the WebLogic JSP Compiler” on page 10-24

JSP Tags

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-3

JSP Tags
The following table describes the basic tags that you can use in a JSP page. Each shorthand tag
has an XML equivalent.

Table 10-1 Basic Tags for JSP Pages

JSP Tag Syntax Description

Scriptlet <% java_code %>

 . . . or use the XML equivalent:

<jsp:scriptlet>
 java_code
</jsp:scriptlet>

Embeds Java source code scriptlet
in your HTML page. The Java code
is executed and its output is
inserted in sequence with the rest
of the HTML in the page. For
details, see “Scriptlets” on
page 10-7.

Directive <%@ dir-type dir-attr %>

. . . or use the XML equivalent:

<jsp:directive.dir_type
dir_attr />

Directives contain messages to the
application server.

A directive can also contain
name/value pair attributes in the
form attr=”value”, which
provides additional instructions to
the application server. See
“Directives for WebLogic JSP” on
page 10-6.

Declarations <%! declaration %>

. . . or use XML equivalent...

<jsp:declaration>
 declaration;
</jsp:declaration>

Declares a variable or method that
can be referenced by other
declarations, scriptlets, or
expressions in the page. See
“Declarations” on page 10-7.

Expression <%= expression %>

. . . or use XML equivalent...

<jsp:expression>
expression
</expression>

Defines a Java expression that is
evaluated at page request time,
converted to a String, and sent
inline to the output stream of the
JSP response. See “Expressions”
on page 10-8.

WebLogi c JSP Re fe rence

10-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Reserved Words for Implicit Objects
JSP reserves words for implicit objects in scriptlets and expressions. These implicit objects
represent Java objects that provide useful methods and information for your JSP page. WebLogic
JSP implements all implicit objects defined in the JSP 2.0 specification. The JSP API is described
in the Javadocs available from the Sun Microsystems JSP Home Page at
http://www.java.sun.com/products/jsp/index.html.

Note: Use these implicit objects only within scriptlets or expressions. Using these keywords
from a method defined in a declaration causes a translation-time compilation error
because such usage causes your page to reference an undefined variable.

request

request represents the HttpServletRequest object. It contains information about the
request from the browser and has several useful methods for getting cookie, header, and
session data.

response

response represents the HttpServletResponse object and several useful methods for
setting the response sent back to the browser from your JSP page. Examples of these
responses include cookies and other header information.

Actions <jsp:useBean ... >

JSP body is included if the bean is
instantiated here

</jsp:useBean>
<jsp:setProperty ... >
<jsp:getProperty ... >
<jsp:include ... >
<jsp:forward ... >
<jsp:plugin ... >

Provide access to advanced
features of JSP, and only use XML
syntax. These actions are
supported as defined in the JSP 2.0
specification. See “Actions” on
page 10-10.

Comments <%/* comment */%> Ensure that your comments are
removed from the viewable source
of your HTML files by using only
JSP comment tags. HTML
comments remain visible when the
user selects view source in the
browser.

Table 10-1 Basic Tags for JSP Pages

JSP Tag Syntax Description

http://www.java.sun.com/products/jsp/index.html

Reserved Words fo r Impl ic i t Ob jec ts

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-5

Warning: You cannot use the response.getWriter() method from within a JSP page;
if you do, a run-time exception is thrown. Use the out keyword to send the JSP response
back to the browser from within your scriptlet code whenever possible. The WebLogic
Server implementation of javax.servlet.jsp.JspWriter uses
javax.servlet.ServletOutputStream, which implies that you can use
response.getServletOutputStream(). Keep in mind, however, that this
implementation is specific to WebLogic Server. To keep your code maintainable and
portable, use the out keyword.

out

out is an instance of javax.jsp.JspWriter that has several methods you can use to
send output back to the browser.

If you are using a method that requires an output stream, then JspWriter does not work.
You can work around this limitation by supplying a buffered stream and then writing this
stream to out. For example, the following code shows how to write an exception stack
trace to out:

 ByteArrayOutputStream ostr = new ByteArrayOutputStream();
 exception.printStackTrace(new PrintWriter(ostr));
 out.print(ostr);

pageContext

pageContext represents a javax.servlet.jsp.PageContext object. It is a
convenience API for accessing various scoped namespaces and servlet-related objects,
and provides wrapper methods for common servlet-related functionality.

session

session represents a javax.servlet.http.HttpSession object for the request. The
session directive is set to true by default, so the session is valid by default. The JSP 2.0
specification states that if the session directive is set to false, then using the session
keyword results in a fatal translation time error.

application

application represents a javax.servlet.ServletContext object. Use it to find
information about the servlet engine and the servlet environment.

When forwarding or including requests, you can access the servlet requestDispatcher
using the ServletContext, or you can use the JSP forward directive for forwarding
requests to other servlets, and the JSP include directive for including output from other
servlets.

config

config represents a javax.servlet.ServletConfig object and provides access to the
servlet instance initialization parameters.

WebLogi c JSP Re fe rence

10-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

page

page represents the servlet instance generated from this JSP page. It is synonymous with
the Java keyword this when used in your scriptlet code.

To use page, you must cast it to the class type of the servlet that implements the JSP page,
because it is defined as an instance of java.lang.Object. By default, the servlet class
is named after the JSP filename. For convenience, we recommend that you use the Java
keyword this to reference the servlet instance and get access to initialization parameters,
instead of using page.

Directives for WebLogic JSP
Use directives to instruct WebLogic JSP to perform certain functions or interpret the JSP page in
a particular way. You can insert a directive anywhere in a JSP page. The position is generally
irrelevant (except for the include directive), and you can use multiple directive tags. A
directive consists of a directive type and one or more attributes of that type.

You can use either of two types of syntax: shorthand or XML:

Shorthand:

<%@ dir_type dir_attr %>

XML:

 <jsp:directive.dir_type dir_attr />

Replace dir_type with the directive type, and dir_attr with a list of one or more directive
attributes for that directive type.

There are three types of directives page, taglib, or include.

Using the page Directive to Set Character Encoding
To specify a character encoding set, use the following directive at the top of the page:

<%@ page contentType="text/html; charset=custom-encoding” %>

The character set you specify with a contentType directive specifies the character set used in
the JSP as well as any JSP included in that JSP.

You can specify a default character encoding by specifying it in the WebLogic-specific
deployment descriptor for your Web Application.

Decl arat ions

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-7

Using the taglib Directive
Use a taglib directive to declare that your JSP page uses custom JSP tag extensions that are
defined in a tag library. For details about writing and using custom JSP tags, see “Programming
WebLogic JSP Extensions.”

Declarations
Use declarations to define variables and methods at the class-scope level of the generated JSP
servlet. Declarations made between JSP tags are accessible from other declarations and scriptlets
in your JSP page. For example:

<%!

 int i=0;

 String foo= "Hello";

 private void bar() {

 // ...java code here...

 }

%>

Remember that class-scope objects are shared between multiple threads being executed in the
same instance of a servlet. To guard against sharing violations, synchronize class scope objects.
If you are not confident writing thread-safe code, you can declare your servlet as not-thread-safe
by including the following directive:

<%@ page isThreadSafe="false" %>

By default, this attribute is set to true. Setting isThreadSafe to false consumes additional
memory and can cause performance to degrade.

Scriptlets
JSP scriptlets make up the Java body of your JSP servlet’s HTTP response. To include a scriptlet
in your JSP page, use the shorthand or XML scriptlet tags shown here:

Shorthand:

<%
 // Your Java code goes here
%>

http://e-docs.bea.com/wls/docs90/taglib/index.html
http://e-docs.bea.com/wls/docs90/taglib/index.html

WebLogi c JSP Re fe rence

10-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

XML:

<jsp:scriptlet>
 // Your Java code goes here
</jsp:scriptlet>

Note the following features of scriptlets:

You can have multiple blocks of scriptlet Java code mixed with plain HTML.

You can switch between HTML and Java code anywhere, even within Java constructs and
blocks. In “Example of a JSP with HTML and Embedded Java” on page 9 the example
declares a Java loop, switches to HTML, and then switches back to Java to close the loop.
The HTML within the loop is generated as output multiple times as the loop iterates.

You can use the predefined variable out to print HTML text directly to the servlet output
stream from your Java code. Call the print() method to add a string to the HTTP page
response.

Any time you print data that a user has previously supplied, BEA recommends that you
remove any HTML special characters that a user might have entered. If you do not remove
these characters, your Web site could be exploited by cross-site scripting. For more
information, refer to “JSP Expression Language” on page 10-13.

The Java tag is an inline tag; it does not force a new paragraph.

 Expressions
To include an expression in your JSP file, use the following tag:

<%= expr %>

Replace expr with a Java expression. When the expression is evaluated, its string
representation is placed inline in the HTML response page. It is shorthand for

 <% out.print(expr); %>

This technique enables you to make your HTML more readable in the JSP page. Note the use of
the expression tag in the example in the next section.

Expressions are often used to return data that a user has previously supplied. Any time you print
user-supplied data, BEA recommends that you remove any HTML special characters that a user
might have entered. If you do not remove these characters, your Web site could be exploited by
cross-site scripting. For more information, refer to “JSP Expression Language” on page 10-13.

Example o f a JSP wi th HTML and Embedded Java

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-9

Example of a JSP with HTML and Embedded Java
The following example shows a JSP with HTML and embedded Java:

<html>

 <head><title>Hello World Test</title></head>

<body bgcolor=#ffffff>

<center>

<h1> Hello World Test </h1>

<%

 out.print("Java-generated Hello World");

%>

<p> This is not Java!

<p><i>Middle stuff on page</i>

<p>

<%

for (int i = 1; i<=3; i++) {

%>

<h2>This is HTML in a Java loop! <%= i %> </h2>

<%

}

%>

</center>

</body>

</html>

After the code shown here is compiled, the resulting page is displayed in a browser as follows:

WebLogi c JSP Re fe rence

10-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Actions
You use JSP actions to modify, use, or create objects that are represented by JavaBeans. Actions
use XML syntax exclusively.

Using JavaBeans in JSP
The <jsp:useBean> action tag allows you to instantiate Java objects that comply with the
JavaBean specification, and to refer to them from your JSP pages.

To comply with the JavaBean specification, objects need:

A public constructor that takes no arguments

A setVariable() method for each variable field

A getVariable() method for each variable field

Act ions

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-11

Instantiating the JavaBean Object
The <jsp:useBean> tag attempts to retrieve an existing named Java object from a specific scope
and, if the existing object is not found, may attempt to instantiate a new object and associate it
with the name given by the id attribute. The object is stored in a location given by the scope
attribute, which determines the availability of the object. For example, the following tag attempts
to retrieve a Java object of type examples.jsp.ShoppingCart from the HTTP session under
the name cart.

<jsp:useBean id="cart"

 class="examples.jsp.ShoppingCart" scope="session"/>

If such an object does not currently exist, the JSP attempts to create a new object, and stores it in
the HTTP session under the name cart. The class should be available in the CLASSPATH used to
start WebLogic Server, or in the WEB-INF/classes directory of the Web Application containing
the JSP.

It is good practice to use an errorPage directive with the <jsp:useBean> tag because there are
run-time exceptions that must be caught. If you do not use an errorPage directive, the class
referenced in the JavaBean cannot be created, an InstantiationException is thrown, and an
error message is returned to the browser.

 You can use the type attribute to cast the JavaBean type to another object or interface, provided
that it is a legal type cast operation within Java. If you use the attribute without the class
attribute, your JavaBean object must already exist in the scope specified. If it is not legal, an
InstantiationException is thrown.

Doing Setup Work at JavaBean Instantiation
The <jsp:useBean> tag syntax has another format that allows you to define a body of JSP code
that is executed when the object is instantiated. The body is not executed if the named JavaBean
already exists in the specified scope. This format allows you to set up certain properties when the
object is first created. For example:

<jsp:useBean id="cart" class="examples.jsp.ShoppingCart"

 scope=session>

 Creating the shopping cart now...

 <jsp:setProperty name="cart"

 property="cartName" value="music">

</jsp:useBean>

WebLogi c JSP Re fe rence

10-12 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Note: If you use the type attribute without the class attribute, a JavaBean object is never
instantiated, and you should not attempt to use the tag format to include a body. Instead,
use the single tag format. In this case, the JavaBean must exist in the specified scope, or
an InstantiationException is thrown. Use an errorPage directive to catch the
potential exception.

Using the JavaBean Object
After you instantiate the JavaBean object, you can refer to it by its id name in the JSP file as a
Java object. You can use it within scriptlet tags and expression evaluator tags, and you can invoke
its setXxx() or getXxx() methods using the <jsp:setProperty> and <jsp:getProperty>
tags, respectively.

Defining the Scope of a JavaBean Object
Use the scope attribute to specify the availability and life-span of the JavaBean object. The scope
can be one of the following:

page

This is the default scope for a JavaBean, which stores the object in the
javax.servlet.jsp.PageContext of the current page. It is available only from the
current invocation of this JSP page. It is not available to included JSP pages, and it is
discarded upon completion of this page request.

request

When the request scope is used, the object is stored in the current ServletRequest, and
it is available to other included JSP pages that are passed the same request object. The
object is discarded when the current request is completed.

session

Use the session scope to store the JavaBean object in the HTTP session so that it can be
tracked across several HTTP pages. The reference to the JavaBean is stored in the page’s
HttpSession object. Your JSP pages must be able to participate in a session to use this
scope. That is, you must not have the page directive session set to false.

application

At the application-scope level, your JavaBean object is stored in the Web Application.
Use of this scope implies that the object is available to any other servlet or JSP page
running in the same Web Application in which the object is stored.

For more information about using JavaBeans, see the JSP 2.0 specification at
http://www.java.sun.com/products/jsp/index.html.

http://www.java.sun.com/products/jsp/index.html

J SP Exp ress i on Language

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-13

Forwarding Requests
If you are using any type of authentication, a forwarded request made with the <jsp:forward>
tag, by default, does not require the user to be re-authenticated. You can change this behavior to
require authentication of a forwarded request by adding the <check-auth-on-forward/>
element to the <container-descriptor> element of the WebLogic-specific deployment
descriptor, weblogic.xml. For example:

<container-descriptor>

<check-auth-on-forward/>

</container-descriptor>

Including Requests
You can use the <jsp:include> tag to include another resource in a JSP. This tag takes two
attributes:

page
Use the page attribute to specify the included resource. For example:

<jsp:include page=”somePage.jsp”/>

flush
Setting this boolean attribute to true buffers the page output and then flushes the buffer
before including the resource.

Setting flush=”false” can be useful when the <jsp:include> tag is located within another
tag on the JSP page and you want the included resource to be processed by the tag.

JSP Expression Language
The new JSP expression language (JSP EL) is inspired by both ECMAScript and the XPath
expression languages. The JSP EL is available in attribute values for standard and custom actions
and within template text. In both cases, the JSP EL is invoked consistently by way of the construct
${expr}.

The addition of the JSP EL to the JSP technology better facilitates the writing of scriptlets JSP
pages. These pages can use JSP EL expressions but cannot use Java scriptlets, Java expressions,
or Java declaration elements. You can enforce this usage pattern through the
scripting-invalid JSP configuration element of the web.xml deployment descriptor.

For more information on the JSP expression language, see the JSP 2.0 specification.

http://java.sun.com/products/jsp/download.html

WebLogi c JSP Re fe rence

10-14 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Expressions and Attribute Values
You can use JSP EL expressions in any attribute that can accept a run-time expression, whether
it is a standard action or a custom action. The following are three use cases for expressions in
attribute values:

The attribute value contains a single expression construct <some:tag
value="${expr}"/>. In this case, the expression is evaluated and the result is coerced to
the attribute's expected type according to the type conversion rules described in section 2.8,
“Type Conversion,” of the JSP 2.0 specification.

The attribute value contains one or more expressions separated or surrounded by text:
<some:tag value="some${expr}${expr}text${expr}"/>. In this case, the
expressions are evaluated from left to right, coerced to Strings (according to the type
conversion rules described later), and concatenated with any intervening text. The resulting
String is then coerced to the attributes expected type according to the type conversion rules
described in section 2.8, “Type Conversion,” of the JSP 2.0 specification.

The attribute value contains only text: <some:tag value="sometext"/>. In this case,
the attribute's String value is coerced to the attribute's expected type according to the type
conversion rules described in section 2.8, “Type Conversion,” of the JSP 2.0 specification.

Note: These rules are equivalent to the JSP 2.0 conversions, except that empty strings are
treated differently.

The following shows a conditional action that uses the JSP EL to test whether a property of a bean
is less than 3.

<c:if test="${bean1.a < 3}">

...

</c:if>

Note that the normal JSP coercion mechanism already allows for: <mytags:if test="true"
/>. There may be literal values that include the character sequence ${. If this is the case, a literal
with that value can be used as shown here:

<mytags:example code="an expression is ${'${'}expr}" />

The resulting attribute value would then be the string an expression is ${expr}.

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html

J SP Express i on Language Impl i c i t Ob jec ts

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-15

Expressions and Template Text
You can use the JSP EL directly in template text; this can be inside the body of custom or standard
actions or in template text outside of any action. An exception to this use is if the body of the tag
is tag dependent or if the JSP EL is turned off (usually for compatibility issues) explicitly through
a directive or implicitly.

The semantics of a JSP EL expression are the same as with Java expressions: the value is
computed and inserted into the current output. In cases where escaping is desired (for example,
to help prevent cross-site scripting attacks), you can use the JSTL core tag <c:out>. For
example:

<c:out value=”${anELexpression}” />

The following shows a custom action where two JSP EL expressions are used to access bean
properties:
<c:wombat>

One value is ${bean1.a} and another is ${bean2.a.c}.

</c:wombat>

JSP Expression Language Implicit Objects
There are several implicit objects that are available to JSP EL expressions used in JSP pages.
These objects are always available under these names:

pageContext

pageContext represents the pageContext object.

pageScope

pageContext represents a Map that maps page-scoped attribute names to their values.

requestScope

requestScope represents a Map that maps request-scoped attribute names to their
values.

sessionScope

sessopmScope represents a Map that maps session-scoped attribute names to their
values.

applicationScope

applicationScope represents a Map that maps application-scoped attribute names to
their values.

param

WebLogi c JSP Re fe rence

10-16 Developing Web Applications, Servlets, and JSPs for WebLogic Server

param represents a Map that maps parameter names to a single String parameter value
(obtained by calling ServletRequest.getParameter(String name)).

paramValues

paramValues represents a Map that maps parameter names to a single String[] of all
values for that parameter (obtained by calling
ServletRequest.getParameterValues(String name)).

header

header represents a Map that maps header names to a single String header value
(obtained by calling ServletRequest.getHeader(string name)).

headerValues

headerValues represents a Map that maps header names to a String[]} of all values for
that header (obtained by calling ServletRequest.getHeaders(String name)).

cookie

cookie represents a Map that maps cookie names to a single Cookie object. Cookies are
retrieved according to the semantics of HttpServletRequest.getCookies(). If the
same name is shared by multiple cookies, an implementation must use the first one
encountered in the array of Cookie objects returned by the getCookies() method.
However, users of the cookie implicit objects must be aware that the ordering of cookies
is currently unspecified in the servlet specification.

initParam

initParam represents a Map that maps context initialization parameter names to their
String parameter value (obtained by calling
ServletRequest.getInitParameter(String name)).

Table 10-1 shows some examples of using these implicit objects:

JSP Exp ress ion Language L i t erals and Opera to rs

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-17

Figure 10-1 Example Uses of Implicit Objects

JSP Expression Language Literals and Operators
These sections discuss JSPEL expression literals and operators. The JSP EL syntax is pretty
straightforward. Variables are accessed by name. A generalized [] operator can be used to access
maps, lists, arrays of objects and properties of JavaBean objects; the operator can be nested
arbitrarily. The . operator can be used as a convenient shorthand for property access when the
property name follows the conventions of Java identifies. However the [] operator allows for
more generalized access.

Relational comparisons are allowed using the standard Java relational operators. Comparisons
may be made against other values, or against boolean (for equality comparisons only), String,
integer, or floating point literals. Arithmetic operators can be used to compute integer and floating
point values. Logical operators are available.

Literals
Literals exist for boolean, integer, floating point, string, null.

Boolean - true and false

Integer - As defined by the IntegerLiteral construct in section 2.9, “Collected Syntax,”
of the JSP 2.0 specification.

Floating point - As defined by the FloatingPointLiteral construct in section 2.9,
“Collected Syntax,” of the JSP 2.0 specification.

Expression Result

${pageContext.request.
requestURI}

The request's URI (obtained from HttpServletRequest)

${sessionScope.profile
}

The session-scoped attribute named profile (null if not found)

${param.productId} The String value of the productId parameter (null if not
found).

${paramValues.productI
d}

The String[] containing all values of the productId parameter
(null if not found).

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html

WebLogi c JSP Re fe rence

10-18 Developing Web Applications, Servlets, and JSPs for WebLogic Server

String -With single and double quotes - " is escaped as \", ' is escaped as \', and \ is escaped
as \\. Quotes only need to be escaped in a string value enclosed in the same type of quote.

Null - null

Errors, Warnings, Default Values
JSP pages are mostly used in presentation, and in that usage, experience suggests that it is most
important to be able to provide as good a presentation as possible, even when there are simple
errors in the page. To meet this requirement, the JSP EL does not provide warnings, just default
values and errors. Default values are typecorrect values that are assigned to a subexpression when
there is some problem. An error is an exception thrown (to be handled by the standard JSP
machinery).

Operators
The following is a list of operators provided by the JSP expression language:

. and []

Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)

Logical: and, &&, or, ||, not, !

Relational: ==, eq, !=, ne, <, lt, >, gt, <=, ge, >=, le. Comparisons can be made against
other values, or against boolean, string, integer, or floating point literals.

Empty: The empty operator is a prefix operation that can be used to determine whether a
value is null or empty.

Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation of A.

For more information about the operators and their functions, see the JSP 2.0 specification.

Operator Precedence
The following is operator precedence, from highest to lowest, left-to-right.

[] .

()

- (unary) not ! empty

* / div % mod

J SP Exp ress i on Language Rese rved Words

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-19

+ - (binary)

< > <= >= lt gt le ge

== != eq ne

&& and

|| or

? :

JSP Expression Language Reserved Words
The following words are reserved for the language and should not be used as identifiers.

and

eq

gt

true

instanceof

or

ne

le

false

empty

not

lt

ge

null

div

mod

Note that many of these words are not in the language now, but they may be in the future, so
developers should avoid using these words now.

WebLogi c JSP Re fe rence

10-20 Developing Web Applications, Servlets, and JSPs for WebLogic Server

JSP Expression Language Named Variables
A core concept in the JSP EL is the evaluation of a variable name into an object. The JSP EL API
provides a generalized mechanism, a VariableResolver, that will resolve names into objects. The
default resolver is what is used in the evaluation of JSP EL expressions in template and attributes.
This default resolver provides the implicit objects discussed in “JSP Expression Language
Implicit Objects” on page 10-15.

The default resolver also provides a map for other identifiers by looking up its value as an
attribute, according to the behavior of PageContext.findAttribute(String) on the
pageContext object. For example: ${product}.

This expression looks for the attribute named product, searching the page, request, session, and
application scopes, and returns its value. If the attribute is not found, null is returned. See chapter
14, “Expression Language API,” of the JSP 2.0 specification. for further details on the
VariableResolver and how it fits with the evaluation API.

Securing User-Supplied Data in JSPs
Expressions and scriptlets enable a JSP to receive data from a user and return the user supplied
data. For example, the sample JSP in Listing 10-1 prompts a user to enter a string, assigns the
string to a parameter named userInput, and then uses the <%=
javax.servlet.ServletRequest.getParameter("userInput")%> expression to return
the data to the browser.

Listing 10-1 Using Expressions to Return User-Supplied Content

<html>

<body>

<h1>My Sample JSP</h1>

<form method="GET" action="mysample.jsp">

Enter string here:

<input type="text" name="userInput" size=50>

<input type=submit value="Submit">

</form>

<hr>

Output from last command:

http://java.sun.com/products/jsp/download.html

Secur ing Use r-Supp l i ed Data i n JSPs

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-21

<%= javax.servlet.ServletRequest.getParameter("userInput")%>

</body>

</html>

This ability to return user-supplied data can present a security vulnerability called cross-site
scripting, which can be exploited to steal a user’s security authorization. For a detailed
description of cross-site scripting, refer to “Understanding Malicious Content Mitigation for Web
Developers” (a CERT security advisory) at
http://www.cert.org/tech_tips/malicious_code_mitigation.html.

To remove the security vulnerability, before you return data that a user has supplied, scan the data
for any of the HTML special characters in Table 10-2. If you find any special characters, replace
them with their HTML entity or character reference. Replacing the characters prevents the
browser from executing the user-supplied data as HTML.

Using a WebLogic Server Utility Method
WebLogic Server provides the weblogic.servlet.security.Utils.encodeXSS() method
to replace the special characters in user-supplied data. To use this method, provide the
user-supplied data as input. For example,
<%= weblogic.servlet.security.Utils.encodeXSS(

javax.servlet.ServletRequest.getParameter("userInput"))%>

To secure an entire application, you must use the encodeXSS() method each time you return
user-supplied data. While the previous example is an obvious location in which to use the

Table 10-2 HTML Special Characters that Must Be Replaced

Replace this special character: With this entity/character reference:

< <

> >

(&40;

) &41;

&35;

& &38;

http://www.cert.org/tech_tips/malicious_code_mitigation.html

WebLogi c JSP Re fe rence

10-22 Developing Web Applications, Servlets, and JSPs for WebLogic Server

encodeXSS() method, Table 10-3 describes other locations to consider using the encodeXSS()
method.

Using Sessions with JSP
Sessions in WebLogic JSP perform according to the JSP 2.0 specification. The following
suggestions pertain to using sessions:

Store small objects in sessions. For example, a session should not be used to store an EJB,
but an EJB primary key instead. Store large amounts of data in a database. The session
should hold only a simple string reference to the data.

When you use sessions with dynamic reloading of servlets or JSPs, the objects stored in
the servlet session must be serializable. Serialization is required because the servlet is
reloaded in a new class loader, which results in an incompatibility between any classes
loaded previously (from the old version of the servlet) and any classes loaded in the new
class loader (for the new version of the servlet classes). This incompatibility causes the
servlet to return ClassCastException errors.

If session data must be of a user-defined type, the data class should be serializable.
Furthermore, the session should store the serialized representation of the data object.
Serialization should be compatible across versions of the data class.

Deploying Applets from JSP
Using the JSP provides a convenient way to include the Java Plug-in in a Web page, by generating
HTML that contains the appropriate client browser tag. The Java Plug-in allows you to use a Java
Runtime Environment (JRE) supplied by Sun Microsystems instead of the JVM implemented by
the client Web browser. This feature avoids incompatibility problems between your applets and

Table 10-3 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid URL,
username

An error page that says “username is not
permitted access.”

Status page Username, summary of input from
previous pages

A summary page that asks a user to confirm
input from previous pages.

Database
display

Data presented from a database A page that displays a list of database entries
that have been previously entered by a user.

Dep loy ing Apple ts f rom JSP

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-23

specific types of Web browsers. The Java Plug-in is available from Sun at
http://java.sun.com/products/plugin/.

Because the syntax used by Internet Explorer and Netscape is different, the servlet code generated
from the <jsp:plugin> action dynamically senses the type of browser client and sends the
appropriate <OBJECT> or <EMBED> tags in the HTML page.

The <jsp:plugin> tag uses many attributes similar to those of the <APPLET> tag, and some
other attributes that allow you to configure the version of the Java Plug-in to be used. If the applet
communicates with the server, the JVM running your applet code must be compatible with the
JVM running WebLogic Server.

In the following example, the plug-in action is used to deploy an applet:

<jsp:plugin type="applet" code="examples.applets.PhoneBook1"

codebase="/classes/" height="800" width="500"

jreversion="2.0"

nspluginurl=

"http://java.sun.com/products/plugin/1.1.3/plugin-install.html"

iepluginurl=

"http://java.sun.com/products/plugin/1.1.3/

jinstall-113-win32.cab#Version=1,1,3,0" >

<jsp:params>

<param name="weblogic_url" value="t3://localhost:7001">

<param name="poolname" value="demoPool">

</jsp:params>

<jsp:fallback>

Sorry, cannot run java applet!!

</jsp:fallback>

</jsp:plugin>

The sample JSP syntax shown here instructs the browser to download the Java Plug-in version
1.3.1 (if it has not been downloaded previously), and run the applet identified by the code
attribute from the location specified by codebase.

The jreversion attribute identifies the spec version of the Java Plug-in that the applet requires
to operate. The Web browser attempts to use this version of the Java Plug-in. If the plug-in is not
already installed on the browser, the nspluginurl and iepluginurl attributes specify URLs

http://java.sun.com/products/plugin/

WebLogi c JSP Re fe rence

10-24 Developing Web Applications, Servlets, and JSPs for WebLogic Server

where the Java Plug-in can be downloaded from the Sun Web site. Once the plug-in is installed
on the Web browser, it is not downloaded again.

Because WebLogic Server uses the Java 1.3.x VM, you must specify the Java Plug-in version
1.3.x in the <jsp:plugin> tag. To specify the 1.3 JVM in the previous example code, replace
the corresponding attribute values with the following:

jreversion="1.3"

nspluginurl=

"http://java.sun.com/products/plugin/1.3/plugin-install.html"

iepluginurl=

"http://java.sun.com/products/plugin/1.3/jinstall-131-win32.cab"

The other attributes of the plug-in action correspond with those of the <APPLET> tag. You specify
applet parameters within a pair of <params> tags, nested within the <jsp:plugin> and
</jsp:plugin> tags.

The <jsp:fallback> tags allow you to substitute HTML for browsers that are not supported by
the <jsp:plugin> action. The HTML nested between the <fallback> and </jsp:fallback>
tags is sent instead of the plug-in syntax.

Using the WebLogic JSP Compiler
The WebLogic JSP compiler is deprecated. BEA recommends that you use the WebLogic appc
compiler, weblogic.appc, to compile EAR files, WAR files and EJBs.

For better compilation performance, the WebLogic JSP compiler transforms a JSP directly into
a class file on the disk instead of first creating a java file on the disk and then compiling it into a
class file. The java file only resides in memory.

To see the generated java file, turn on the -keepgenerated flag which dumps the in-memory java
file to the disk.

Note: During JSP compilation, neither the command line flag (compilerclass) nor the descriptor
element is invoked.

JSP Compiler Syntax
The JSP compiler works in much the same way that other WebLogic compilers work (including
the RMI and EJB compilers). To start the JSP compiler, enter the following command.

$ java weblogic.jspc -options fileName

Us ing the WebLog ic JSP Compi le r

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-25

Replace fileName with the name of the JSP file that you want to compile. You can specify any
options before or after the target fileName. The following example uses the -d option to
compile myFile.jsp into the destination directory, weblogic/classes:

$ java weblogic.jspc -d /weblogic/classes myFile.jsp

Note: If you are precompiling JSPs that are part of a Web Application and that reference
resources in the Web Application (such as a JSP tag library), you must use the -webapp
flag to specify the location of the Web Application. The -webapp flag is described in the
following listing of JSP compiler options.

JSP Compiler Options
Use any combination of the following options:

-classpath

Add a list (separated by semi-colons on Windows NT/2000 platforms or colons on UNIX
platforms) of directories that make up the desired CLASSPATH. Include directories
containing any classes required by the JSP. For example (to be entered on one line):

$ java weblogic.jspc
-classpath java/classes.zip;/weblogic/classes.zip
myFile.JSP

-charsetMap

Specifies mapping of IANA or unofficial charset names used in JSP contentType
directives to java charset names. For example:
-charsetMap x-sjis=Shift_JIS,x-big5=Big5

The most common mappings are built into the JSP compiler. Use this option only if a
desired charset mapping is not recognized.

-commentary

Causes the JSP compiler to include comments from the JSP in the generated HTML page.
If this option is omitted, comments do not appear in the generated HTML page.

-compileAll

Recursively compiles all JSPs in the current directory, or in the directory specified with
the -webapp flag. (See the listing for -webapp in this list of options.). JSPs in
subdirectories are also compiled.

-compileFlags

Passes one or more command-line flags to the compiler. Enclose multiple flags in quotes,
separated by a space. For example:
java weblogic.jspc -compileFlags "-g -v" myFile.jsp

WebLogi c JSP Re fe rence

10-26 Developing Web Applications, Servlets, and JSPs for WebLogic Server

-compiler
Specifies the Java compiler to be used to compile the class file from the generated Java
source code. The default compiler used is javac. The Java compiler program should be
in your PATH unless you specify the absolute path to the compiler explicitly.

-compilerclass

Runs a Java compiler as a Java class and not as a native executable.

-d <dir>
Specifies the destination of the compiled output (that is, the class file). Use this option as
a shortcut for placing the compiled classes in a directory that is already in your
CLASSPATH.

-depend

If a previously generated class file for a JSP has a more recent date stamp than the JSP
source file, the JSP is not recompiled.

-debug

Compile with debugging on.

-deprecation

Warn about the use of deprecated methods in the generated Java source file when
compiling the source file into a class file.

-docroot directory
See -webapp.

-encoding default|named character encoding
Valid arguments include (a) default which specifies using the default character
encoding of your JDK, (b) a named character encoding, such as 8859_1. If the -encoding
flag is not specified, an array of bytes is used.

-g

Instructs the Java compiler to include debugging information in the class file.

-help

Displays a list of all the available flags for the JSP compiler.

-J

Takes a list of options that are passed to your compiler.

-k

When compiling multiple JSPs with a single command, the compiler continues compiling
even if one or more of the JSPs failed to compile.

-keepgenerated

Keeps the Java source code files that are created as an intermediary step in the compilation
process. Normally these files are deleted after compilation.

Us ing the WebLog ic JSP Compi le r

Developing Web Applications, Servlets, and JSPs for WebLogic Server 10-27

-noTryBlocks

If a JSP file has numerous or deeply nested custom JSP tags and you receive a
java.lang.VerifyError exception when compiling, use this flag to allow the JSPs to
compile correctly.

-nowarn

Turns off warning messages from the Java compiler.

-noPrintNulls

Shows "null" in jsp expressions as "".

-O

Compiles the generated Java source file with optimization turned on. This option
overrides the -g flag.

-package packageName
Sets the package name that is prepended to the package name of the generated Java HTTP
servlet. Defaults to jsp_servlet.

-superclass classname
Sets the classname of the superclass extended by the generated servlet. The named
superclass must be a derivative of HttpServlet or GenericServlet.

-verbose

Passes the verbose flag to the Java compiler specified with the compiler flag. See the
compiler documentation for more information. The default is off.

-verboseJavac

Prints messages generated by the designated JSP compiler.

-version

Prints the version of the JSP compiler.

-webapp directory
Name of a directory containing a Web Application in exploded directory format. If your
JSP contains references to resources in a Web Application such as a JSP tag library or
other Java classes, the JSP compiler will look for those resources in this directory. If you
omit this flag when compiling a JSP that requires resources from a Web Application, the
compilation will fail.

Precompiling JSPs
You can configure WebLogic Server to precompile your JSPs when a Web Application is
deployed or re-deployed or when WebLogic Server starts up by setting the precompile
parameter to true in the <jsp-descriptor> element of the weblogic.xml deployment
descriptor. To avoid recompiling your JSPs each time the server restarts and when you target

WebLogi c JSP Re fe rence

10-28 Developing Web Applications, Servlets, and JSPs for WebLogic Server

additional servers, precompile them using weblogic.jspc and place them in the

WEB-INF/classes folder and archive them in a .war file. Keeping your source files in a separate
directory from the archived .war file will eliminate the possibility of errors caused by a JSP
having a dependency on one of the class files.

Developing Web Applications, Servlets, and JSPs for WebLogic Server 11-1

C H A P T E R 11

Filters

The following sections provide information about using filters in a Web application:

“Overview of Filters” on page 11-1

“Writing a Filter Class” on page 11-2

“Configuring Filters” on page 11-3

“Filtering the Servlet Response Object” on page 11-5

“Additional Resources” on page 11-6

Overview of Filters
A filter is a Java class that is invoked in response to a request for a resource in a Web application.
Resources include Java Servlets, JavaServer pages (JSP), and static resources such as HTML
pages or images. A filter intercepts the request and can examine and modify the response and
request objects or execute other tasks.

Filters are an advanced J2EE feature primarily intended for situations where the developer cannot
change the coding of an existing resource and needs to modify the behavior of that resource.
Generally, it is more efficient to modify the code to change the behavior of the resource itself
rather than using filters to modify the resource. In some situations, using filters can add
unnecessary complexity to an application and degrade performance.

Fi l te rs

11-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

How Filters Work
You define filters in the context of a Web application. A filter intercepts a request for a specific
named resource or a group of resources (based on a URL pattern) and executes the code in the
filter. For each resource or group of resources, you can specify a single filter or multiple filters
that are invoked in a specific order, called a chain.

When a filter intercepts a request, it has access to the javax.servlet.ServletRequest and
javax.servlet.ServletResponse objects that provide access to the HTTP request and
response, and a javax.servlet.FilterChain object. The FilterChain object contains a list
of filters that can be invoked sequentially. When a filter has completed its work, the filter can
either call the next filter in the chain, block the request, throw an exception, or invoke the
originally requested resource.

After the original resource is invoked, control is passed back to the filter at the bottom of the list
in the chain. This filter can then examine and modify the response headers and data, block the
request, throw an exception, or invoke the next filter up from the bottom of the chain. This
process continues in reverse order up through the chain of filters.

Note: The filter can modify the headers only if the response has not already been committed.

Uses for Filters
Filters can be useful for the following functions:

Implementing a logging function

Implementing user-written security functionality

Debugging

Encryption

Data compression

Modifying the response sent to the client. (However, post processing the response can
degrade the performance of your application.)

Writing a Filter Class
To write a filter class, implement the javax.servlet.Filter interface (see
http://java.sun.com/j2ee/tutorial/api/javax/servlet/Filter.html). You must
implement the following methods of this interface:

http://java.sun.com/j2ee/tutorial/api/javax/servlet/Filter.html

Conf i gur ing F i l te rs

Developing Web Applications, Servlets, and JSPs for WebLogic Server 11-3

init()

destroy()

doFilter()

You use the doFilter() method to examine and modify the request and response objects,
perform other tasks such as logging, invoke the next filter in the chain, or block further
processing.

Several other methods are available on the FilterConfig object for accessing the name of the
filter, the ServletContext and the filter’s initialization attributes. For more information see the
J2EE Javadocs from Sun Microsystems for javax.servlet.FilterConfig. Javadocs are
available at http://java.sun.com/j2ee/tutorial/api/index.html.

To access the next item in the chain (either another filter or the original resource, if that is the next
item in the chain), call the FilterChain.doFilter() method.

Configuring Filters
You configure filters as part of a Web application, using the application’s web.xml deployment
descriptor. In the deployment descriptor, you specify the filter and then map the filter to a URL
pattern or to a specific servlet in the Web application. You can specify any number of filters.

Configuring a Filter
To configure a filter:

1. Open the web.xml deployment descriptor in a text editor or use the Administration Console.
For more information, see “Web Application Developer Tools” on page 2-6. The web.xml
file is located in the WEB-INF directory of your Web application.

2. Add a filter declaration. The filter element declares a filter, defines a name for the filter,
and specifies the Java class that executes the filter. The filter element must directly
follow the context-param element and directly precede the listener and servlet
elements. For example:

<context-param>Param</context-param>

<filter>
<icon>

<small-icon>MySmallIcon.gif</small-icon>
<large-icon>MyLargeIcon.gif</large-icon>

</icon>
<filter-name>myFilter</filter-name>

http://java.sun.com/j2ee/tutorial/api/index.html

Fi l te rs

11-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

<display-name>My Filter</display-name>
<description>This is my filter</description>
<filter-class>examples.myFilterClass</filter-class>

</filter>

<listener>Listener</listener>

<servlet>Servlet</servlet>

The icon, description, and display-name elements are optional.

3. Specify one or more initialization attributes inside a filter element. For example:

<filter>
<icon>

<small-icon>MySmallIcon.gif</small-icon>
<large-icon>MyLargeIcon.gif</large-icon>

</icon>
<filter-name>myFilter</filter-name>
<display-name>My Filter</display-name>
<description>This is my filter</description>
<filter-class>examples.myFilterClass</filter-class>
<init-param>

<param-name>myInitParam</param-name>
<param-value>myInitParamValue</param-value>

</init-param>
</filter>

Your Filter class can read the initialization attributes using the
FilterConfig.getInitParameter() or FilterConfig.getInitParameters()
methods.

4. Add filter mappings. The filter-mapping element specifies which filter to execute based
on a URL pattern or servlet name. The filter-mapping element must immediately follow
the filter element(s).

– To create a filter mapping using a URL pattern, specify the name of the filter and a
URL pattern. URL pattern matching is performed according to the rules specified in the
Servlet 2.4 Specification from Sun Microsystems at
http://java.sun.com/products/servlet/download.html#specs, in section
11.1. For example, the following filter-mapping maps myFilter to requests that
contain /myPattern/.

<filter-mapping>
<filter-name>myFilter</filter-name>
<url-pattern>/myPattern/*</url-pattern>

</filter-mapping>

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs

F i l t er ing the Se rv let Response Ob jec t

Developing Web Applications, Servlets, and JSPs for WebLogic Server 11-5

– To create a filter mapping for a specific servlet, map the filter to the name of a servlet
that is registered in the Web application. For example, the following code maps the
myFilter filter to a servlet called myServlet:

<filter-mapping>
<filter-name>myFilter</filter-name>
<servlet-hame>myServlet</servlet-name>

</filter-mapping>

5. To create a chain of filters, specify multiple filter mappings. For more information, see
“Configuring a Chain of Filters” on page 11-5.

Configuring a Chain of Filters
WebLogic Server creates a chain of filters by creating a list of all the filter mappings that match
an incoming HTTP request. The ordering of the list is determined by the following sequence:

1. Filters where the filter-mapping element contains a url-pattern that matches the
request are added to the chain in the order they appear in the web.xml deployment descriptor.

2. Filters where the filter-mapping element contains a servlet-name that matches the
request are added to the chain after the filters that match a URL pattern.

3. The last item in the chain is always the originally requested resource.

In your filter class, use the FilterChain.doFilter() method to invoke the next item in the
chain.

Filtering the Servlet Response Object
You can use filters to post-process the output of a servlet by appending data to the output
generated by the servlet. However, in order to capture the output of the servlet, you must create
a wrapper for the response. (You cannot use the original response object, because the output
buffer of the servlet is automatically flushed and sent to the client when the servlet completes
executing and before control is returned to the last filter in the chain.) When you create such a
wrapper, WebLogic Server must manipulate an additional copy of the output in memory, which
can degrade performance.

For more information on wrapping the response or request objects, see the J2EE Javadocs from
Sun Microsystems for javax.servlet.http.HttpServletResponseWrapper and
javax.servlet.http.HttpServletRequestWrapper. Javadocs are available at
http://java.sun.com/j2ee/tutorial/api/index.html.

http://java.sun.com/j2ee/tutorial/api/index.html

Fi l te rs

11-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Additional Resources
Servlet 2.4 Specification from Sun Microsystems at
http://java.sun.com/products/servlet/download.html#specs

J2EE API Reference (Javadocs) from Sun Microsystems at
http://java.sun.com/j2ee/tutorial/api/index.html

The J2EE Tutorial from Sun Microsystems at
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/j2ee/tutorial/api/index.html
http://java.sun.com/j2ee/tutorial/api/index.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

Developing Web Applications, Servlets, and JSPs for WebLogic Server 12-1

C H A P T E R 12

Using WebLogic JSP Form Validation
Tags

The following sections describe how to use WebLogic JSP form validation tags:

Overview of WebLogic JSP Form Validation Tags

Validation Tag Attribute Reference

Using WebLogic JSP Form Validation Tags in a JSP

Creating HTML Forms Using the <wl:form> Tag

Using a Custom Validator Class

Sample JSP with Validator Tags

Overview of WebLogic JSP Form Validation Tags
WebLogic JSP form validation tags provide a convenient way to validate the entries an end user
makes to HTML form text fields generated by JSP pages. Using the WebLogic JSP form
validation tags prevents unnecessary and repetitive coding of commonly used validation logic.
The validation is performed by several custom JSP tags that are included with the WebLogic
Server distribution. The tags can

Verify that required fields have been filled in (Required Field Validator class).

Validate the text in the field against a regular expression (Regular Expression
Validator class).

Compare two fields in the form (Compare Validator class).

Using WebLog ic JSP Fo rm Val i da t i on Tags

12-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Perform custom validation by means of a Java class that you write (Custom Validator
class).

WebLogic JSP form validation tags include:

<wl:summary>

<wl:form>

<wl:validator>

When a validation tag determines that data in a field is not been input correctly, the page is
re-displayed and the fields that need to be re-entered are flagged with text or an image to alert the
end user. Once the form is correctly filled out, the end user’s browser displays a new page
specified by the validation tag.

Validation Tag Attribute Reference
This section describes the WebLogic form validation tags and their attributes. Note that the prefix
used to reference the tag can be defined in the taglib directive on your JSP page. For clarity, the
wl prefix is used to refer to the WebLogic form validation tags throughout this document.

<wl:summary>
<wl:summary> is the parent tag for validation. Place the opening <wl:summary> tag before any
other element or HTML code in the JSP. Place the closing </wl:summary> tag anywhere after
the closing </wl:form> tag(s).

name
(Optional) Name of a vector variable that holds all validation error messages generated by
the <wl:validator> tags on the JSP page. If you do not define this attribute, the default
value, errorVector, is used. The text of the error message is defined with the
errorMessage attribute of the <wl:validator> tag.

To display the values in this vector, use the <wl:errors/> tag. To use the <wl:errors/>
tag, place the tag on the page where you want the output to appear. For example:

<wl:errors color="red"/>

Alternately, you can use a scriptlet. For example:

<% if (errorVector.size() > 0) {
for (int i=0; i < errorVector.size(); i++) {
out.println((String)errorVector.elementAt(i));
out.println("
");

Va l idat i on Tag A t t r ibute Re fe rence

Developing Web Applications, Servlets, and JSPs for WebLogic Server 12-3

}
} %>

Where errorVector is the name of the vector assigned using the name attribute of the
<wl:summary> tag.

The name attribute is required when using multiple forms on a page.

headerText

A variable that contains text that can be displayed on the page. If you only want this text
to appear when errors occur on the page, you can use a scriptlet to test for this condition.
For example:

<% if(summary.size() >0) {
 out.println(headerText);

}
%>

Where summary is the name of the vector assigned using the name attribute of the
<wl:summary> tag.

redirectPage

URL for the page that is displayed if the form validation does not return errors. This
attribute is not required if you specify a URL in the action attribute of the <wl:form>
tag.

Note: Do not set the redirectPage attribute to the same page containing the
<wl:summary> tag—you will create an infinite loop causing a StackOverFlow
exception.

<wl:form>
The <wl:form> tag is similar to the HTML <form> tag and defines an HTML form that can be
validated using the WebLogic JSP form validation tags. You can define multiple forms on a
single JSP by uniquely identifying each form using the name attribute.

method

Enter GET or POST. Functions exactly as the method attribute of the HTML <form> tag.

action

URL for the page that is displayed if the form validation does not return errors. The value
of this attribute takes precedence over the value of the redirectPage attribute of the
<wl:summary> tag and is useful if you have multiple forms on a single JSP page.

Note: Do not set the action attribute to the same page containing the <wl:form> tag—
you will create an infinite loop causing a StackOverFlow exception.

Using WebLog ic JSP Fo rm Val i da t i on Tags

12-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

name

Functions exactly as the name attribute of the HTML <form> tag. Identifies the form
when multiple forms are used on the same page. The name attribute is also useful for
JavaScript references to a form.

<wl:validator>
Use one or more <wl:validator> tags for each form field. If, for instance, you want to validate
the input against a regular expression and also require that something be entered into the field you
would use two <wl:validator> tags, one using the RequiredFieldValidator class and
another using the RegExpValidator class. (You need to use both of these validators because
blank values are evaluated by the Regular Expression Field Validator as valid.)

errorMessage

A string that is stored in the vector variable defined by the name attribute of the
<wl:summary> tag.

expression

When using the RegExpValidator class, the regular expression to be evaluated.

If you are not using RegExpValidator, you can omit this attribute.

fieldToValidate

Name of the form field to be validated. The name of the field is defined with the name
attribute of the HTML <input> tag.

validatorClass

The name of the Java class that executes the validation logic. Three classes are provided
for your use. You can also create your own custom validator class. For more information,
see “Using a Custom Validator Class” on page 8.

The available validation classes are:

weblogicx.jsp.tags.validators.RequiredFieldValidator

Validates that some text has been entered in the field.

weblogicx.jsp.tags.validators.RegExpValidator

Validates the text in the field using a standard regular expression.

Note: A blank value is evaluated as valid.

weblogicx.jsp.tags.validators.CompareValidator

Checks to see if two fields contain the same string. When using this class, set the
fieldToValidate attribute to the two fields you want to compare. For example:

fieldToValidate="field_1,field_2"

Note: If both fields are blank, the comparison is evaluated as valid.

Us ing WebLog ic JSP Form Va l idat ion Tags in a JSP

Developing Web Applications, Servlets, and JSPs for WebLogic Server 12-5

myPackage.myValidatorClass
Specifies a custom validator class.

Using WebLogic JSP Form Validation Tags in a JSP
To use a validation tag in a JSP:

1. Write the JSP.

a. Enter a taglib directive to reference the tag library containing the WebLogic JSP Form
Validation Tags. For example:

<%@ taglib uri="tagl" prefix="wl" %>

Note that the prefix attribute defines the prefix used to reference all tags in your JSP
page. Although you may set the prefix to any value you like, the tags referred to in this
document use the wl prefix.

b. Enter the <wl:summary> ... </wl:summary> tags.

Place the opening <wl:summary ...> tag before any HTML code, JSP tag, scriptlet,
or expression on the page.

Place the closing </wl:summary> tag anywhere after the </wl:form> tag(s).

c. Define an HTML form using the <wl:form> JSP tag that is included with the supplied tag
library. For more information, see “<wl:form>” on page 3 and “Creating HTML Forms
Using the <wl:form> Tag” on page 6. Be sure to close the form block with the
</wl:form> tag. You can create multiple forms on a page if you uniquely define the name
attribute of the <wl:form> tag for each form.

d. Create the HTML form fields using the HTML <input> tag.

e. Add <wl:validator> tags. For the syntax of the tags, see “<wl:validator>” on page 4.
Place <wl:validator> tags on the page where you want the error message or image to
appear. If you use multiple forms on the same page, place the <wl:validator> tag inside
the <wl:form> block containing the form fields you want to validate.

The following example shows a validation for a required field:

<wl:form name="FirstForm" method="POST" action="thisJSP.jsp">

<wl:validator
errorMessage="Field_1 is required" expression=""
fieldToValidate="field_1"
validatorClass=
"weblogicx.jsp.tags.validators.RequiredFieldValidator"

Using WebLog ic JSP Fo rm Val i da t i on Tags

12-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

>

Field 1 is a required field

</wl:validator>

<p> <input type="text" name = "field_1"> </p>
<p> <input type="text" name = "field_2"> </p>
<p> <input type="submit" value="Submit FirstForm"> </p>
</wl:form>

If the user fails to enter a value in field_1, the page is redisplayed, showing a
warning.gif image, followed by the text (in red) “Field 1 is a required
field,” followed by the blank field for the user to re-enter the value.

2. Copy the weblogic-vtags.jar file from the ext directory of your WebLogic Server
installation into the WEB-INF/lib directory of your Web Application. You may need to
create this directory.

3. Configure your Web Application to use the tag library by adding a taglib element to the
web.xml deployment descriptor for the Web Application. For example:

<taglib>
<taglib-uri>tagl</taglib-uri>

 <taglib-location>
/WEB-INF/lib/weblogic-vtags.jar

</taglib-location>
</taglib>

Creating HTML Forms Using the <wl:form> Tag
This section contains information on creating HTML forms in your JSP page. You use the
<wl:form> tag to create a single form or multiple forms on a page.

Defining a Single Form
Use the <wl:form> tag that is provided in the weblogic-vtags.jar tag library: For example:

<wl:form method="POST" action="nextPage.jsp">

<p> <input type="text" name ="field_1"> </p>

<p> <input type="text" name ="field_2"> </p>

<p> <input type="submit" value="Submit Form"> </p>

</wl:form>

For information on the syntax of this tag see “<wl:form>” on page 3.

Creat ing HTML Fo rms Us ing the <wl : f o rm> Tag

Developing Web Applications, Servlets, and JSPs for WebLogic Server 12-7

Defining Multiple Forms
When using multiple forms on a page, use the name attribute to identify each form. For example:

<wl:form name="FirstForm" method="POST" action="thisJSP.jsp">

<p> <input type="text" name="field_1"> </p>

<p> <input type="text" name="field_2"> </p>

<p> <input type="submit" value="Submit FirstForm"> </p>

</wl:form>

<wl:form name="SecondForm" method="POST" action="thisJSP.jsp">

<p> <input type="text" name="field_1"> </p>

<p> <input type="text" name="field_2"> </p>

<p> <input type="submit" value="Submit SecondForm"> </p>

</wl:form>

Re-Displaying the Values in a Field When Validation Returns
Errors
When the JSP page is re-displayed after the validator tag has found errors, it is useful to re-display
the values that the user already entered, so that the user does not have to fill out the entire form
again. Use the value attribute of the HTML <input> tag or use a tag library available from the
Apache Jakarta Project. Both procedures are described next.

Re-Displaying a Value Using the <input> Tag
You can use the javax.servlet.ServletRequest.getParameter() method together with
the value attribute of the HTML <input> tag to re-display the user’s input when the page is
re-displayed as a result of failed validation. For example:

<input type="text" name="field_1"
value="<%= request.getParameter("field_1") %>" >

To prevent cross-site scripting security vulnerabilities, replace any HTML special characters in
user-supplied data with HTML entity references. For more information, refer to “JSP Expression
Language” on page 10-13.

Re-Displaying a Value Using the Apache Jakarta <input:text> Tag
You can also use a JSP tag library available free from the Apache Jakarta Project, which provides
the <input:text> tag as a replacement for the HTML <input> tag. For example, the following
HTML tag:

Using WebLog ic JSP Fo rm Val i da t i on Tags

12-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

<input type="text" name="field_1">

could be entered using the Apache tag library as:

<input:text name="field_1">

For more information and documentation, download the Input Tag library, available at
http://jakarta.apache.org/taglibs/doc/input-doc/intro.html.

To use the Apache tag library in your JSP:

1. Copy the input.jar file from the Input Tag Library distribution file into the WEB-INF/lib
directory of your Web Application.

2. Add the following directive to your JSP:

<%@ taglib uri="input" prefix="input" %>

3. Add the following entry to the web.xml deployment descriptor of your Web application:

<taglib>
 <taglib-uri>input</taglib-uri>
 <taglib-location>/WEB-INF/lib/input.jar</taglib-location>
</taglib>

Using a Custom Validator Class
To use your own validator class:

1. Write a Java class that extends the
weblogicx.jsp.tags.validators.CustomizableAdapter abstract class. For more
information, see “Extending the CustomizableAdapter Class” on page 9.

2. Implement the validate() method. In this method:

a. Look up the value of the field you are validating from the ServletRequest object. For
example:

String val = req.getParameter("field_1");

b. Return a value of true if the field meets the validation criteria.

3. Compile the validator class and place the compiled .class file in the WEB-INF/classes
directory of your Web application.

4. Use your validator class in a <wl:validator> tag by specifying the class name in the
validatorClass attribute. For example:

http://jakarta.apache.org/taglibs/doc/input-doc/intro.html

Us ing a Custom Va l idator C lass

Developing Web Applications, Servlets, and JSPs for WebLogic Server 12-9

<wl:validator errorMessage="This field is required"
fieldToValidate="field_1" validatorClass="mypackage.myCustomValidator">

Extending the CustomizableAdapter Class
The CustomizableAdapter class is an abstract class that implements the Customizable
interface and provides the following helper methods:

getFieldToValidate()
Returns the name of the field being validated (defined by the fieldToValidate attribute
in the <wl:validator> tag)

getErrorMessage()

Returns the text of the error message defined with the errorMessage attribute in the
<wl:validator> tag.

getExpression()

Returns the text of the expression attribute defined in the <wl:validator> tag.

Instead of extending the CustomizableAdapter class, you can implement the
Customizable interface. For more information, see the Javadocs for
weblogicx.jsp.tags.validators.Customizable at
http://e-docs.bea.com/wls/docs90/javadocs/weblogicx/jsp/tags/validators/Cu

stomizable.html.

Sample User-Written Validator Class

Listing 12-1 Example of a User-written Validator Class

import weblogicx.jsp.tags.validators.CustomizableAdapter;

public class myCustomValidator extends CustomizableAdapter{

 public myCustomValidator(){

super();

 }

public boolean validate(javax.servlet.ServletRequest req)

throws Exception {

String val = req.getParameter(getFieldToValidate());

// perform some validation logic

http://e-docs.bea.com/wls/docs90/javadocs/weblogicx/jsp/tags/validators/Customizable.html

Using WebLog ic JSP Fo rm Val i da t i on Tags

12-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

// if the validation is successful, return true,

// otherwise return false

if (true) {

 return true;

}

return false;

}

}

Sample JSP with Validator Tags
This sample code shows the basic structure of a JSP that uses the WebLogic JSP form validation
tags. A complete functioning code example is also available if you installed the examples with
your WebLogic Server installation. Instructions for running the example are available at
samples/examples/jsp/tagext/form_validation/package.html, in your WebLogic
Server installation.

Listing 12-2 JSP with WebLogic JSP Form Validation Tags

<%@ taglib uri="tagl" prefix="wl" %>

<%@ taglib uri="input" prefix="input" %>

<wl:summary

name="summary"

headerText="Some fields have not been filled out

correctly."

redirectPage="successPage.jsp"

>

<html>

<head>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

Sample JSP wi th Va l ida to r Tags

Developing Web Applications, Servlets, and JSPs for WebLogic Server 12-11

</head>

<body bgcolor="#FFFFFF">

<% if(summary.size() >0) {

 out.println("<h3>" + headerText + "</h3>");

} %>

<% if (summary.size() > 0) {

out.println("<H2>Error Summary:</h2>");

for (int i=0; i < summary.size(); i++) {

out.println((String)summary.elementAt(i));

out.println("
");

}

} %>

<wl:form method="GET" action="successPage.jsp">

 User Name: <input:text name="username"/>

 <wl:validator

 fieldToValidate="username"

 validatorClass="weblogicx.jsp.tags.validators.RequiredFieldValidator"

 errorMessage="User name is a required field!"

 >

 This is a required field!

 </wl:validator>

<p>

 Password: <input type="password" name="password">

 <wl:validator

 fieldToValidate="password"

 validatorClass="weblogicx.jsp.tags.validators.RequiredFieldValidator"

 errorMessage="Password is a required field!"

 >

Using WebLog ic JSP Fo rm Val i da t i on Tags

12-12 Developing Web Applications, Servlets, and JSPs for WebLogic Server

 This is a required field!

 </wl:validator>

 <p>

 Re-enter Password: <input type="password" name="password2">

 <wl:validator

 fieldToValidate="password,password2"

 validatorClass="weblogicx.jsp.tags.validators.CompareValidator"

 errorMessage="Passwords don't match"

 >

 Passwords don't match.

 </wl:validator>

 <p>

 <input type="submit" value="Submit Form"> </p>

</wl:form>

</wl:summary>

</body>

</html>

Developing Web Applications, Servlets, and JSPs for WebLogic Server 13-1

C H A P T E R 13

Using Custom WebLogic JSP Tags
(cache, process, repeat)

The following sections describe the use of three custom JSP tags—cache, repeat, and
process—provided with the WebLogic Server distribution:

Overview of WebLogic Custom JSP Tags

Using the WebLogic Custom Tags in a Web Application

Cache Tag

Process Tag

Repeat Tag

Overview of WebLogic Custom JSP Tags
BEA provides three specialized JSP tags that you can use in your JSP pages: cache, repeat, and
process. These tags are packaged in a tag library jar file called weblogic-tags.jar. This jar
file contains classes for the tags and a tag library descriptor (TLD). To use these tags, you copy
this jar file to the Web application that contains your JSPs and reference the tag library in your
JSP.

Using the WebLogic Custom Tags in a Web Application
Using the WebLogic custom tags requires that you include them within a Web application.

To use these tags in your JSP:

Using Custom WebLog ic JSP Tags (cache, p rocess , repeat)

13-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

1. Copy the weblogic-tags.jar file from the ext directory of your WebLogic Server
installation to the WEB-INF/lib directory of the Web application containing the JSPs that will
use the WebLogic Custom Tags.

2. Reference this tag library descriptor in the <taglib> element of the J2EE standard Web
application deployment descriptor, web.xml. For example:

<taglib>
<taglib-uri>weblogic-tags.tld</taglib-uri>
<taglib-location>

/WEB-INF/lib/weblogic-tags.jar
</taglib-location>

</taglib>

3. Reference the tag library in your JSP with the taglib directive. For example:

<%@ taglib uri="weblogic-tags.tld" prefix="wl" %>

Cache Tag
The cache tag enables caching the work that is done within the body of the tag. It supports both
output (transform) data and input (calculated) data. Output caching refers to the content generated
by the code within the tag. Input caching refers to the values to which variables are set by the code
within the tag. Output caching is useful when the final form of the content is the important thing
to cache. Input caching is important when the view of the data can vary independently of the data
calculated within the tag.

If one client is already recalculating the contents of a cache and another client requests the same
content it does not wait for the completion of the recalculation, instead it shows whatever
information is already in the cache. This is to make sure that the web site does not come to a halt
for all your users because a cache is being recalculated. Additionally, the async attribute means
that no one, not even the user that initiates the cache recalculation waits.

Two versions of the cache tag are available. Version 2 has additional scopes available.

Caches are stored using soft references to prevent the caching system from using too much
system memory. Unfortunately, due to incompatibilities with the HotSpot VM and the Classic
VM, soft references are not used when WebLogic Server is running within the HotSpot VM.

Refreshing a Cache
You can force the refresh of a cache by setting the _cache_refresh object to true in the scope
that you want affected. For example, to refresh a cache at session scope, specify the following:

<% request.setAttribute("_cache_refresh", "true"); %>

Cache Tag

Developing Web Applications, Servlets, and JSPs for WebLogic Server 13-3

If you want all caches to be refreshed, set the cache to the application scope. If you want all
the caches for a user to be refreshed, set it in the session scope. If you want all the caches in the
current request to be refreshed, set the _cache_refresh object either as a parameter or in the
request.

The <wl:cache> tag specifies content that must be updated each time it is displayed. The
statements between the <wl:cache> and </wl:cache> tags are only executed if the cache has
expired or if any of the values of the key attributes (see the Cache Tag Attributes table) have
changed.

Flushing a Cache
Flushing a cache forces the cached values to be erased; the next time the cache is accessed, the
values are recalculated. To flush a cache, set its flush attribute to true. The cache must be
named using the name attribute. If the cache has the size attribute set, all values are flushed. If
the cache sets the key attribute but not the size attribute, you can flush a specific cache by
specifying its key along with any other attributes required to uniquely identify the cache (such as
scope or vars).

For example:

1. Define the cache.

<wl:cache name="dbtable" key="parameter.tablename"
scope="application">
// read the table and output it to the page
</wl:cache>

2. Update the cached table data.

3. Flush the cache using the flush attribute in an empty tag (an empty tag ends with / and
does not use a closing tag). For example

<wl:cache name="dbtable" key="parameter.tablename" scope="application"
flush="true"/>

Using Custom WebLog ic JSP Tags (cache, p rocess , repeat)

13-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Table 13-1 Cache Tag Attributes

Attribute Required Default Value Description

 timeout no -1 Cache timeout property. The amount of time, in
seconds, after which the statements within the cache tag
are refreshed. This is not proactive; the value is
refreshed only if it is requested. If you prefer to use a
unit of time other than seconds, you can specify an
alternate unit by postfixing the value with desired unit:

ms = milliseconds
s = seconds (default)
m = minutes
h = hours
d = days

 scope no application Specifies the scope in which the data is cached. Valid
scopes include:

• parameter, (versions 1,2)requests
the HTTP servlet request parameters

• page, (versions 1,2)requests the JSP
page context attributes (This scope
does not exist for the cache
filter.)

• request, (versions 1,2)requests the
servlet request attributes. Request
attributes are valid for the entire
request, including any forwarded or
included pages.

• cookie, (version 2)requests the
cookie values found in the request.
If there are multiple cookies with
the same name, this request returns
only the first value.

• requestHeader, (version 2)requests
the values from the request Headers.
If there are multiple Headers with
the same name, only the value of the
first is returned.

Cache Tag

Developing Web Applications, Servlets, and JSPs for WebLogic Server 13-5

 scope
(cont.)

• responseHeader, (version 2)requests
the values from the response
Headers. If there are multiple
Headers with the same name, only the
value of the first is returned. If
you set a response header, all
response headers are replaced with
the value you have set. This scope
should not be used for storing
content.

• session, (versions 1,2)requests the
values from the session attributes
of the current user. If there is no
session then one will not be created
by accessing the scope. The caches
can become very large if you are
caching content.

• application, (versions 1,2)requests
the values found in the servlet context attributes.

• cluster, (versions 1,2)requests the
values from the application scope,
and when written to replicates the
information across the cluster.

Most caches will be either session or
application scope.

Table 13-1 Cache Tag Attributes

Attribute Required Default Value Description

Using Custom WebLog ic JSP Tags (cache, p rocess , repeat)

13-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

 key no -- Specifies additional values to be used when evaluating
whether to cache the values contained within the tags.
Typically a given cache is identified by the cache name
that you configured in web.xml. If that is not specified
the request uri is used as a cache name. Using keys you
can specify additional values to identify a tag. For
example, if you want to separate out the cache for a
given end user, then in addition to the cache name you
can specify the keys as the userid, values for which you
want to pick it up from the request parameter scope
(query param/post params) plus perhaps a client ip. So
you will specify your keys as:
"parameter.userid,parameter.clientip"
Here "parameter" is the scope (request parameter
scope) and "userid"/"clientip" are the
parameters/attributes. This means the primary key for
the cache becomes the cache name (request uri in this
case) + value of userid request param + value of clientip
request param.

 The list of keys is comma-separated. The value of this
attribute is the name of the variable whose value you
wish to use as a key into the cache. You can additionally
specify a scope by prepending the name of the scope to
the name. For example:

parameter.key | page.key | request.key
| application.key | session.key

It defaults to searching through the scopes in the order
shown in the preceding list. Each named key is
available in the cache tag as a scripting variable. A list
of keys is comma-separated.

 async no false If the async parameter is set to true, the cache will
be updated asynchronously, if possible. The user that
initiates the cache hit sees the old data.

Table 13-1 Cache Tag Attributes

Attribute Required Default Value Description

Cache Tag

Developing Web Applications, Servlets, and JSPs for WebLogic Server 13-7

 name no -- A unique name for the cache that allows caches to be
shared across multiple JSP pages. This same buffer is
used to store the data for all pages using the named
cache. This attribute is useful for textually included
pages that need cache sharing. If this attribute is not set,
a unique name is chosen for the cache.

We recommended that you avoid manually calculating
the name of the tag; the key functionality can be used
equivalently in all cases. The name is calculated as
weblogic.jsp.tags.CacheTag. plus the URI
plus a generated number representing the tag in the
page you are caching. If different URIs reach the same
JSP page, the caches are not shared in the default case.
Use named caches in this case.

System named caches can not be flushed and refreshed
automatically.

 size no -1 (unlimited) For caches that use keys, the number of entries allowed.
The default is an unlimited cache of keys. With a
limited number of keys the tag uses a least-used system
to order the cache. Changing the value of the size
attribute of a cache that has already been used does not
change the size of that cache.

Table 13-1 Cache Tag Attributes

Attribute Required Default Value Description

Using Custom WebLog ic JSP Tags (cache, p rocess , repeat)

13-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

Additional properties of the cache system for version 2

Each cache also has additional arbitrary attributes associated with it that the end user can
manipulate and expect to be populated when the cache is retrieved.

Cache listeners can be registered by putting an object that implements
weblogicx.cache.CacheListener in a java.util.List that is present in any scope in the cache
system under the "weblogicx.cache.CacheListener" key. If there is a List present in the
scope, add your listener to the end.

The following examples show how you can use the <wl:cache> tag.

Listing 13-1 Examples of Using the cache Tag

<wl:cache>

<!--the content between these tags will only be

 refreshed on server restart-->

</wl:cache>

 vars no -- In addition to caching the transformed output of the
cache, you can also cache calculated values within the
block. These variables are specified exactly the same
way as the cache keys. This type of caching is called
Input caching.

Variables are used to do input caching. When the cache
is retrieved the variables are restored to the scope you
specified. For example, for retrieving results from a
database you used var1 from request parameter and
var2 from session. When the cache is created the value
of these variables are stored with the cache. The next
time the cache is accessed these values are restored so
you will be able to access them from their respective
scopes. For example, var1 will be available from
request and var2 from session.

flush no none When set to true, the cache is flushed. This attribute
must be set in an empty tag (ends with /).

Table 13-1 Cache Tag Attributes

Attribute Required Default Value Description

Process Tag

Developing Web Applications, Servlets, and JSPs for WebLogic Server 13-9

<wl:cache key="request.ticker" timeout="1m">

<!--get stock quote for whatever is in the request parameter ticker

 and display it, only update it every minute-->

</wl:cache>

<!--incoming parameter value isbn is the number used to lookup the

 book in the database-->

<wl:cache key="parameter.isbn" timeout="1d" size="100">

<!--retrieve the book from the database and display

the information -- the tag will cache the top 100

most accessed book descriptions-->

</wl:cache>

<wl:cache timeout="15m" async="true">

<!--get the new headlines from the database every 15 minutes and

 display them-->

<!--do not let anyone see the pause while they are retrieved-->

</wl:cache>

Process Tag
Use the <wl:process> tag for query parameter-based flow control. By using a combination of
the tag’s four attributes, you can selectively execute the statements between the <wl:process>
and </wl:process> tags. The process tag may also be used to declaratively process the results
of form submissions. By specifying conditions based on the values of request parameters you can
include or not include JSP syntax on your page.

Table 13-2 Process Tag Attributes

Tag Attribute Required Description

name no Name of a query parameter.

notname no Name of a query parameter.

Using Custom WebLog ic JSP Tags (cache, p rocess , repeat)

13-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

The following examples show how you can use the <wl:process> tag:

Listing 13-2 Examples of Using the process tag:

<wl:process notname="update">

<wl:process notname="delete">

<!--Only show this if there is no update or delete parameter-->

<form action="<%= request.getRequestURI() %>">

 <input type="text" name="name"/>

 <input type="submit" name="update" value="Update"/>

 <input type="submit" name="delete" value="Delete"/>

</form>

</wl:process>

</wl:process>

<wl:process name="update">

<!-- do the update -->

</wl:process>

<wl:process name="delete">

<!--do the delete-->

</wl:process>

<wl:process name="lastBookRead" value="A Man in Full">

<!--this section of code will be executed if lastBookRead exists

 and the value of lastBookRead is "A Man in Full"-->

</wl:process>

value no Value of a query parameter.

notvalue no Value of a query parameter.

Table 13-2 Process Tag Attributes

Tag Attribute Required Description

Repeat Tag

Developing Web Applications, Servlets, and JSPs for WebLogic Server 13-11

Repeat Tag
Use the <wl:repeat> tag to iterate over many different types of sets, including Enumerations,
Iterators, Collections, Arrays of Objects, Vectors, ResultSets, ResultSetMetaData, and the keys
of a Hashtable. You can also just loop a certain number of times by using the count attribute. Use
the set attribute to specify the type of Java objects.

The following example shows how you can use the <wl:repeat> tag.

Listing 13-3 Examples of Using the repeat Tag

<wl:repeat id="name" set="<%= new String[] { "sam", "fred", "ed" } %>">

 <%= name %>

</wl:repeat>

<% Vector v = new Vector();%>

Table 13-3 Repeat Tag Attributes

Tag Attribute Required Type Description

set No Object The set of objects that includes:

• Enumerations

• Iterators

• Collections

• Arrays

• Vectors

• Result Sets

• Result Set MetaData

• Hashtable keys

count No Int Iterate over first count entries in the set.

id No String Variable used to store current object being
iterated over.

type No String Type of object that results from iterating over
the set you passed in. Defaults to Object. This
type must be fully qualified.

Using Custom WebLog ic JSP Tags (cache, p rocess , repeat)

13-12 Developing Web Applications, Servlets, and JSPs for WebLogic Server

<!--add to the vector-->

<wl:repeat id="item" set="<%= v.elements() %>">

<!--print each element-->

</wl:repeat>

Developing Web Applications, Servlets, and JSPs for WebLogic Server 14-1

C H A P T E R 14

Using the WebLogic EJB to JSP
Integration Tool

The following sections describe how to use the WebLogic EJB-to-JSP integration tool to create
JSP tag libraries that you can use to invoke EJBs in a JavaServer Page (JSP). This document
assumes at least some familiarity with both EJB and JSP.

Overview of the WebLogic EJB-to-JSP Integration Tool

Basic Operation

Interface Source Files

Build Options Panel

Troubleshooting

Using EJB Tags on a JSP Page

EJB Home Methods

Stateful Session and Entity Beans

Default Attributes

Overview of the WebLogic EJB-to-JSP Integration Tool
Given an EJB jar file, the WebLogic EJB-to-JSP integration tool will generate a JSP tag extension
library whose tags are customized for calling the EJB(s) of that jar file. From the perspective of
a client, an EJB is described by its remote interface. For example:

Using the WebLog ic EJB to JSP In tegrat i on Too l

14-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

public interface Trader extends javax.ejb.EJBObject {

 public TradeResult buy(String stockSymbol, int shares);

 public TradeResult sell(String stockSymbol, int shares);

}

For Web Applications that call EJBs, the typical model is to invoke the EJB using Java code from
within a JSP scriptlet (<% ... %>). The results of the EJB call are then formatted as HTML and
presented to the Web client. This approach is both tedious and error-prone. The Java code
required to invoke an EJB is lengthy, even in the simplest of cases, and is typically not within the
skill set of most Web designers responsible for HTML presentation.

The EJB-to-JSP tool simplifies the EJB invocation process by removing the need for java code.
Instead, you invoke the EJB is invoked using a JSP tag library that is custom generated for that
EJB. For example, the methods of the Trader bean above would be invoked in a JSP like this:

<%@ taglib uri="/WEB-INF/trader-tags.tld" prefix="trade" %>

invoking trade:

<trade:buy stockSymbol="BEAS" shares="100"/>

<trade:sell stockSymbol="MSFT" shares="200"/>

The resulting JSP page is cleaner and more intuitive. A tag is (optionally) generated for each
method on the EJB. The tags take attributes that are translated into the parameters for the
corresponding EJB method call. The tedious machinery of invoking the EJB is hidden,
encapsulated inside the handler code of the generated tag library. The generated tag libraries
support stateless and stateful session beans, and entity beans. The tag usage scenarios for each of
these cases are slightly different, and are described below.

Basic Operation
You can run the WebLogic EJB-to-JSP integration tool in command-line mode using the
following command:

 java weblogic.servlet.ejb2jsp.Main

or graphical mode. For all but the simplest EJBs, the graphical tool is preferable.

Invoke the graphical tool as follows:

 java weblogic.servlet.ejb2jsp.gui.Main

In te r face Sou rce F i l es

Developing Web Applications, Servlets, and JSPs for WebLogic Server 14-3

Initially, no ejb2jsp project is loaded by the Web application. Create a new project by selecting
the File -> New menu item, browsing in the file chooser to an EJB jar file, and selecting it. Once
initialized, you can modify, save, and reload ejb2jsp projects for future modification.

The composition of the generated tag library is simple: for each method, of each EJB, in the jar
file, a JSP tag is generated, with the same name as the method. Each tag expects as many
attributes as the corresponding method has parameters.

Interface Source Files
When a new EJB jar is loaded, the tool also tries to find the Java source files for the home and
remote interfaces of your EJB(s). The reason is that, although the tool can generate tags only by
introspecting the EJB classes, it cannot assign meaningful attribute names to the tags whose
corresponding EJB methods take parameters. In the Trader example in “Overview of the
WebLogic EJB-to-JSP Integration Tool” on page 1, when the EJB jar is loaded, the tool tries to
find a source file called Trader.java. This file is then parsed and detects that the buy() method
takes parameters called stockSymbol and shares. The corresponding JSP tag will then have
appropriately named attributes that correspond to the parameters of the buy() method.

When a new EJB jar is loaded, the tool operates on the premise that the source directory is the
same directory where the EJB jar is located. If that is not the case, the error is not fatal. After the
new project is loaded, under the Project Build Options panel, you can adjust the EJB Source
Path element to reflect the correct directory. You can then select the File -> Resolve Attributes
menu to re-run the resolve process.

When looking for java source files corresponding to an interface class, the tool searches in both
the directory specified, and in a sub-directory implied by the interface's java package. For
example, for my.ejb.Trader, if the directory given is C:/src, the tool will look for both
C:/src/Trader.java and C:/src/my/ejb/Trader.java.

Access to the source files is not strictly necessary. You can always modify attribute names for
each tag in a project by using the tool. However, parsing the source files of the EJB's public
interface was developed as the quickest way to assign meaningful attribute names.

Build Options Panel
Use this panel to set all parameters related to the local file system that are needed to build the
project. Specify the Java compiler, the Java package of the generated JSP tag handlers, and
whether to keep the generated Java code after a project build, which can be useful for debugging.

Using the WebLog ic EJB to JSP In tegrat i on Too l

14-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

You can also use this panel to specify the type of tag library output you want. For use in a J2EE
web application, a tag library should be packaged one of two ways: as separate class files and a
Tag Library Descriptor (.tld) file, or as a single taglib jar file. Either output type is chosen with
the Output Type pull-down. For development and testing purposes, DIRECTORY output is
recommended, because a Web Application in WebLogic Server must be re-deployed before a jar
file can be overwritten.

For either DIRECTORY or JAR, the output locations must be chosen appropriately so that the
tag library will be found by a web application. For example, if you wish to use the tag library in
a web application rooted in directory C:/mywebapp, then the DIRECTORY classes field should
be specified as:

C:/mywebapp/WEB-INF/classes

and the DIRECTORY .tld File field should be something like:

C:/mywebapp/WEB-INF/trader-ejb.tld

The Source Path, described earlier, is edited in the Build Options panel as well. The Extra
Classpath field can be used if your tag library depends on other classes not in the core WebLogic
Server or J2EE API. Typically, nothing will need to be added to this field.

Troubleshooting
Sometimes, a project fails to build because of errors or conflicts. This section describes the
reasons for those errors, and how they may be resolved.

Missing build information One of the necessary fields in the Build Options panel is
unspecified, like the java compiler, the code package name, or a directory where the output
can be saved. The missing field(s) must be filled in before the build can succeed.

Duplicate tag names When an EJB jar is loaded, the tool records a tag for each method on
the EJB, and the tag name is the same as the method name. If the EJB has overloaded
methods (methods with the same name but different signatures), the tag names conflict.
Resolve the conflict by renaming one of the tags or by disabling one of the tags. To rename
a tag, navigate to the tag in question using the tree hierarchy in the left window of the tool.
In the tag panel that appears in the right window, modify the Tag Name field. To disable a
tag, navigate to the tag in question using the tree hierarchy in the left window of the tool.
In the tag panel that appears in the right window, deselect the Generate Tag box. For EJB
jars that contain multiple EJBs, you can disable tags for an entire bean may as well.

Meaningless attribute names arg0, arg1... This error occurs when reasonable attribute
names for a tag could not be inferred from the EJB's interface source files. To fix this error,

Us ing EJB Tags on a JSP Page

Developing Web Applications, Servlets, and JSPs for WebLogic Server 14-5

navigate to the tag in question in the project hierarchy tree. Select each of the attribute tree
leaves below the tag, in order. For each attribute, assign a reasonable name to the
Attribute Name field, in the panel that appears on the right side of the tool.

Duplicate attribute names This occurs when a single tag expecting multiple attributes has
two attributes with the same name. Navigate to the attribute(s) in question, and rename
attributes so that they are all unique for the tag.

Using EJB Tags on a JSP Page
Using the generated EJB tags on a JSP page is simply a matter of declaring the tag library on the
page, and then invoking the tags like any other tag extension:

<% taglib uri="/WEB-INF/trader-ejb.tld"

 prefix="trade" %>

<trade:buy stockSymbol="XYZ" shares="100"/>

For EJB methods that have a non-void return type, a special, optional tag attribute "_return", is
built-in. When present, the value returned from the method is made available on the page for
further processing:

<% taglib uri="/WEB-INF/trader-ejb.tld"

 prefix="trade" %>

<trade:buy stockSymbol="XYZ"

 shares="100" _return="tr"/>

<% out.println("trade result: " + tr.getShares()); %>

For methods that return a primitive numeric type, the return variable is a Java object appropriate
for that type (for example, "int" -> java.lang.Integer, etc).

EJB Home Methods
EJB 2.0 allows for methods on the EJB home interface that are neither create() or find() methods.
Tags are generated for these home methods as well. To avoid confusion, the tool prepends
"home-" to the tags for each method on an EJB's home, when a new project is loaded. These
methods may be renamed, if desired.

Stateful Session and Entity Beans
Typical usage of a “stateful” bean is to acquire an instance of the bean from the bean's Home
interface, and then to invoke multiple methods on a single bean instance. This programming
model is preserved in the generated tag library as well. Method tags for stateful EJB methods are

Using the WebLog ic EJB to JSP In tegrat i on Too l

14-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

required to be inside a tag for the EJB home interface that corresponds to a find() or create() on
the home. All EJB method tags contained within the find/create tag operate on the bean instance
found or created by the enclosing tag. If a method tag for a stateful bean is not enclosed by a
find/create tag for its home, a run-time exception occurs. For example, given the following EJB:

public interface AccountHome extends EJBHome {

 public Account create(String accountId, double initialBalance);

 public Account findByPrimaryKey(String accountID);

 /* find all accounts with balance above some threshold */

 public Collection findBigAccounts(double threshold);

}

public interface Account extends EJBObject {

 public String getAccountID();

 public double deposit(double amount);

 public double withdraw(double amount);

 public double balance();

}

Correct tag usage might be as follows:

<% taglib uri="/WEB-INF/account-ejb.tld" prefix="acct" %>

<acct:home-create accountId="103"

 initialBalance="450.0" _return="newAcct">

 <acct:deposit amount="20"/>

 <acct:balance _return="bal"/>

 Your new account balance is: <%= bal %>

</acct:home-create>

If the "_return" attribute is specified for a find/create tag, a page variable will be created that
refers to the found/created EJB instance. Entity beans finder methods may also return a collection
of EJB instances. Home tags that invoke methods returning a collection of beans will iterate
(repeat) over their tag body, for as many beans as are returned in the collection. If "_return" is
specified, it is set to the current bean in the iteration:

Accounts above $500:

<acct:home-findBigAccounts threshold="500" _return="acct">

Account <%= acct.getAccountID() %>

 has balance $<%= acct.balance() %>

Defaul t A t t r ibutes

Developing Web Applications, Servlets, and JSPs for WebLogic Server 14-7

</acct:home-findBigAccounts>

The preceding example will display an HTML list of all Account beans whose balance is over
$500.

Default Attributes
By default, the tag for each method requires that all of its attributes (method parameters) be set
on each tag instance. However, the tool will also allow "default" method parameters to be
specified, in case they are not given in the JSP tag. You can specify default attributes/parameters
in the Attribute window of the EJB-to-JSP tool. The parameter default can come from an simple
EXPRESSION, or if more complex processing is required, a default METHOD body may be
written. For example, in the Trader example in “Overview of the WebLogic EJB-to-JSP
Integration Tool” on page 1, suppose you want the “buy” tag to operate on stock symbol “XYZ”
if none is specified. In the Attribute panel for the “stockSymbol” attribute of the “buy” tag, you
set the “Default Attribute Value” field to EXPRESSION, and enter “XYZ” (quotes included!)
in the Default Expression field. The buy tag then acts as if the stockSymbol="XYZ" attribute
were present, unless some other value is specified.

Or if you want the shares attribute of the "buy" tag to be a random number between 0-100, we
would set "Default Attribute Value" to METHOD, and in the Default Method Body area, you
write the body of a Java method that returns int (the expected type for the "shares" attribute of the
"buy" method):

long seed = System.currentTimeMillis();

java.util.Random rand = new java.util.Random(seed);

int ret = rand.nextInt();

/* ensure that it is positive...*/

ret = Math.abs(ret);

/* and < 100 */

return ret % 100;

Because your default method bodies appear within a JSP tag handler, your code has access to the
pageContext variable. From the JSP PageContext, you can gain access to the current
HttpServletRequest or HttpSession, and use session data or request parameters to generate default
method parameters. For example, to pull the "shares" parameter for the "buy" method out of a
ServletRequest parameter, you could write the following code:

HttpServletRequest req =

 (HttpServletRequest)pageContext.getRequest();

Using the WebLog ic EJB to JSP In tegrat i on Too l

14-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

String s = req.getParameter("shares");

if (s == null) {

 /* webapp error handler will redirect to error page

 * for this exception

 */

 throw new BadTradeException("no #shares specified");

}

int ret = -1;

try {

 ret = Integer.parseInt(s);

} catch (NumberFormatException e) {

 throw new BadTradeException("bad #shares: " + s);

}

if (ret <= 0)

 throw new BadTradeException("bad #shares: " + ret);

return ret;

The generated default methods are assumed to throw exceptions. Any exceptions raised during
processing will be handled by the JSP's errorPage, or else by the registered exception-handling
pages of the Web Application.

Developing Web Applications and Application Resources for WebLogic Server A-1

A P P E N D I X A

web.xml Deployment Descriptor
Elements

The following sections describe the deployment descriptor elements defined in the web.xml
schema under the root element <web-app>:

“context-param” on page A-4

“description” on page A-3

“display-name” on page A-2

“distributable” on page A-3

“ejb-ref” on page A-21

“ejb-local-ref” on page A-22

“env-entry” on page A-20

“error-page” on page A-13

“filter” on page A-5

“filter-mapping” on page A-7

“icon” on page A-2

“listener” on page A-7

“login-config” on page A-19

“mime-mapping” on page A-12

web.xml Dep loyment Descr ipt or E l ements

A-2 Developing Web Applications and Application Resources for WebLogic Server

“resource-env-ref” on page A-14

“resource-ref” on page A-15

“security-constraint” on page A-16

“security-role” on page A-20

“servlet” on page A-8

“servlet-mapping” on page A-10

“session-config” on page A-11

“taglib” on page A-13

“welcome-file-list” on page A-12

icon
The icon element specifies the location within the Web application for a small and large image
used to represent the Web application in a GUI tool. (The servlet element also has an element
called the icon element, used to supply an icon to represent a servlet in a GUI tool.)

The following table describes the elements you can define within an icon element.

display-name
The optional display-name element specifies the Web application display name, a short name
that can be displayed by GUI tools.

Element Required/
Optional

Description

<small-icon> Optional Location for a small (16x16 pixel) .gif or .jpg image used to
represent the Web application in a GUI tool. Currently, this is not used
by WebLogic Server.

<large-icon> Optional Location for a large (32x32 pixel) .gif or .jpg image used to
represent the Web application in a GUI tool. Currently, this element is
not used by WebLogic Server.

desc r ip t i on

Developing Web Applications and Application Resources for WebLogic Server A-3

description
The optional description element provides descriptive text about the Web application.

distributable
The distributable element is not used by WebLogic Server.

Element Required/
Optional

Description

<display-name> Optional Currently, this element is not used by WebLogic Server.

Element Required/
Optional

Description

<description> Optional Currently, this element is not used by WebLogic Server.

Element Required/
Optional

Description

<distributable> Optional Currently, this element is not used by WebLogic Server.

web.xml Dep loyment Descr ipt or E l ements

A-4 Developing Web Applications and Application Resources for WebLogic Server

context-param
The optional context-param element contains the declaration of a Web application’s servlet
context initialization parameters. The following table describes the reserved context parameters
used by the Web application container, which have been deprecated and have replacements in
weblogic.xml.

The following context-param parameter is still valid.

Deprecated Parameter Description Replacement Element in
weblogic.xml

weblogic.httpd.inputCh
arset

Defines code set behavior for
non-unicode operations.

input-charset (defined
within charset-param) in
weblogic.xml. See
“input-charset” on page B-22.

weblogic.httpd.servlet
.reloadCheckSecs

Define how often WebLogic Server
checks whether a servlet has been
modified, and if so, reloads it. A value of
-1 is never reload, 0 is always reload. The
default is set to 1 second.

servlet-reload-check-

secs (defined within

container-descriptor)
in weblogic.xml.See
“container-descriptor” on
page B-16.

weblogic.httpd.servlet
.classpath

When this values has been set, the
container appends this path to the Web
application classpath. This is not a
recommended method and is supported
only for backward compatibility.

No replacement. Use other
means such as manifest
classpath or WEB-INF/lib or
WEB-INF/classes or
virtual directories.

weblogic.httpd.default
Servlet

Sets the default servlet for the Web
application. This is not a recommended
method and is supported only for
backward compatibility.

No replacement. Instead use the
servlet and
servlet-mapping
elements in web.xml to define
a default servlet. The URL
pattern for
default-servlet should
be “/”. See “servlet-mapping”
on page A-10. For additional
examples of servlet mapping,
see “Servlet Mapping” on
page 4-2.

f i l te r

Developing Web Applications and Application Resources for WebLogic Server A-5

filter
The filter element defines a filter class and its initialization attributes. For more information
on filters, see “Configuring Filters” on page 11-3.

Element Required/
Optional

Description

weblogic.httpd.
clientCertProxy

optional This attribute specifies that certifications from clients of the Web
application are provided in the special WL-Proxy-Client-Cert
header sent by a proxy plug-in or HttpClusterServlet.

This setting is useful if user authentication is performed on a proxy
server—setting clientCertProxy causes the proxy server to pass
on the certs to the cluster in a special header,
WL-Proxy-Client-Cert.

A WL-Proxy-Client-Cert header could be provided by any client
with access to WebLogic Server. WebLogic Server takes the certificate
information from that header, trusting that is came from a secure
source (the plug-in) and uses that information to authenticate the user.

For this reason, if you set clientCertProxy, use a connection filter
to ensure that WebLogic Server accepts connections only from the
machine on which the plug-in is running.

In addition to setting this attribute for an individual Web application,
you can define this attribute:

• For all web applications hosted by a server instance, on the
Server-->Configuration-->General page in the Administration
Console

• For all web applications hosted by server instances in a cluster, on
the Cluster-->Configuration-->General page.

web.xml Dep loyment Descr ipt or E l ements

A-6 Developing Web Applications and Application Resources for WebLogic Server

The following table describes the elements you can define within a filter element.

Element Required/
Optional

Description

<icon> Optional Specifies the location within the Web application for a small and
large image used to represent the filter in a GUI tool. Contains a
small-icon and large-icon element.

Currently, this element is not used by WebLogic Server.

<filter-name> Required Defines the name of the filter, used to reference the filter definition
elsewhere in the deployment descriptor.

<display-name> Optional A short name intended to be displayed by GUI tools.

<description> Optional A text description of the filter.

<filter-class> Required The fully-qualified class name of the filter.

<init-param> Optional Contains a name/value pair as an initialization attribute of the filter.

Use a separate set of <init-param> tags for each attribute.

f i l t e r -mapping

Developing Web Applications and Application Resources for WebLogic Server A-7

filter-mapping
The following table describes the elements you can define within a filter-mapping element.

listener
Define an application listener using the listener element.

For more information, see “Configuring an Event Listener Class” on page 9-5.

Element Required/
Optional

Description

<filter-name> Required The name of the filter to which you are mapping a URL pattern
or servlet. This name corresponds to the name assigned in the
<filter> element with the <filter-name> element.

<url-pattern> Required - or map
by <servlet>

Describes a pattern used to resolve URLs. The portion of the
URL after the http://host:port + ContextPath is
compared to the <url-pattern> by WebLogic Server. If
the patterns match, the filter mapped in this element is called.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in the Servlet 2.3
Specification.

<servlet> Required - or map
by
<url-pattern>

The name of a servlet which, if called, causes this filter to
execute.

Element Required/
Optional

Description

<listener-class> Optional Name of the class that responds to a Web application event.

web.xml Dep loyment Descr ipt or E l ements

A-8 Developing Web Applications and Application Resources for WebLogic Server

servlet
The servlet element contains the declarative data of a servlet.

If a jsp-file is specified and the <load-on-startup> element is present, then the JSP is
precompiled and loaded when WebLogic Server starts.

The following table describes the elements you can define within a servlet element.

Element Required/
Optional

Description

<icon> Optional Location within the Web application for a small and large image used
to represent the servlet in a GUI tool. Contains a small-icon and
large-icon element.

Currently, this element is not used by WebLogic Server.

<servlet-name> Required Defines the canonical name of the servlet, used to reference the
servlet definition elsewhere in the deployment descriptor.

<display-name> Optional A short name intended to be displayed by GUI tools.

<description> Optional A text description of the servlet.

<servlet-class> Required (or
use <jsp-
file>)

The fully-qualified class name of the servlet.

Use only one of either the <servlet-class> tags or
<jsp-file> tags in your servlet body.

<jsp-file> Required (or
use
<servlet-
class>)

The full path to a JSP file within the Web application, relative to the
Web application root directory.

Use only one of either the <servlet-class> tags or
<jsp-file> tags in your servlet body.

<init-param> Optional Contains a name/value pair as an initialization attribute of the servlet.

Use a separate set of <init-param> tags for each attribute.

<load-on-startup> Optional WebLogic Server initializes this servlet when WebLogic Server
starts up. The optional content of this element must be a positive
integer indicating the order in which the servlet should be loaded.
Lower integers are loaded before higher integers. If no value is
specified, or if the value specified is not a positive integer, WebLogic
Server can load the servlet in any order during application startup.

se rv le t

Developing Web Applications and Application Resources for WebLogic Server A-9

icon
This is an element within the “servlet” on page A-8.

The icon element specifies the location within the Web application for small and large images
used to represent the servlet in a GUI tool.

The following table describes the elements you can define within an icon element.

init-param
This is an element within the “servlet” on page A-8.

The optional init-param element contains a name/value pair as an initialization attribute of the
servlet. Use a separate set of init-param tags for each attribute.

You can access these attributes with the
javax.servlet.ServletConfig.getInitParameter() method.

<run-as> Optional Specifies the run-as identity to be used for the execution of the Web
application. It contains an optional description and the name of a
security role.

<security-role-
ref>

Optional Used to link a security role name defined by <security-role> to
an alternative role name that is hard coded in the servlet logic. This
extra layer of abstraction allows the servlet to be configured at
deployment without changing servlet code.

Element Required/
Optional

Description

Element Required/
Optional

Description

<small-icon> Optional Specifies the location within the Web application for a small (16x16
pixel) .gif or .jpg image used to represent the servlet in a GUI tool.

Currently, this element is not used by WebLogic Server.

<large-icon> Optional Specifies the location within the Web application for a small (32x32
pixel) .gif or.jpg image used to represent the servlet in a GUI tool.

Currently, this element is not used by WebLogic Server.

web.xml Dep loyment Descr ipt or E l ements

A-10 Developing Web Applications and Application Resources for WebLogic Server

The following table describes the elements you can define within a init-param element.

security-role-ref
This is an element within the “servlet” on page A-8.

The security-role-ref element links a security role name defined by <security-role> to an
alternative role name that is hard-coded in the servlet logic. This extra layer of abstraction allows the servlet

to be configured at deployment without changing servlet code.

The following table describes the elements you can define within a security-role-ref
element.

servlet-mapping
The servlet-mapping element defines a mapping between a servlet and a URL pattern.

Element Required/
Optional

Description

<param-name> Required Defines the name of this attribute.

<param-value> Required Defines a String value for this attribute.

<description> Optional Text description of the initialization attribute.

Element Required/
Optional

Description

<description> Optional Text description of the role.

<role-name> Required Defines the name of the security role or principal that is used in the
servlet code.

<role-link> Required Defines the name of the security role that is defined in a
<security-role> element later in the deployment descriptor.

sess ion-con f ig

Developing Web Applications and Application Resources for WebLogic Server A-11

The following table describes the elements you can define within a servlet-mapping element.

session-config
The session-config element defines the session attributes for this Web application.

Element Required/
Optional

Description

<servlet-name> Required The name of the servlet to which you are mapping a URL pattern. This
name corresponds to the name you assigned a servlet in a <servlet>
declaration tag.

<url-pattern> Required Describes a pattern used to resolve URLs. The portion of the URL after
the http://host:port + WebAppName is compared to the
<url-pattern> by WebLogic Server. If the patterns match, the
servlet mapped in this element will be called.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in the Servlet 2.3
Specification.

For additional examples of servlet mapping, see “Servlet Mapping” on
page 4-2.

web.xml Dep loyment Descr ipt or E l ements

A-12 Developing Web Applications and Application Resources for WebLogic Server

The following table describes the element you can define within a session-config element.

mime-mapping
The mime-mapping element defines a mapping between an extension and a mime type.

The following table describes the elements you can define within a mime-mapping element.

welcome-file-list
The optional welcome-file-list element contains an ordered list of welcome-file elements.

When the URL request is a directory name, WebLogic Server serves the first file specified in this
element. If that file is not found, the server then tries the next file in the list.

Element Required/
Optional

Description

<session-timeout> Optional The number of minutes after which sessions in this Web application
expire. The value set in this element overrides the value set in the
TimeoutSecs attribute of the <session-descriptor> element
in the WebLogic-specific deployment descriptor weblogic.xml,
unless one of the special values listed here is entered.

Default value: -2

Maximum value: Integer.MAX_VALUE ÷ 60

Special values:

• -2 = Use the value set by TimeoutSecs in
<session-descriptor> element of weblogic.xml

• -1 = Sessions do not timeout. The value set in
<session-descriptor> element of weblogic.xml is
ignored.

For more information, see “session-descriptor” on page B-8.

Element Required/
Optional

Description

<extension> Required A string describing an extension, for example: txt.

<mime-type> Required A string describing the defined mime type, for example:
text/plain.

e r r or -page

Developing Web Applications and Application Resources for WebLogic Server A-13

For more information, see “Configuring Welcome Files” on page 5-4.

The following table describes the element you can define within a welcome-file-list
element.

error-page
The optional error-page element specifies a mapping between an error code or exception type
to the path of a resource in the Web application.

When an error occurs—while WebLogic Server is responding to an HTTP request, or as a result
of a Java exception—WebLogic Server returns an HTML page that displays either the HTTP
error code or a page containing the Java error message. You can define your own HTML page to
be displayed in place of these default error pages or in response to a Java exception.

For more information, see “Customizing HTTP Error Responses” on page 5-5.

The following table describes the elements you can define within an error-page element.

Note: Define either an <error-code> or an <exception-type> but not both.

taglib
The optional taglib element describes a JSP tag library.

This element associates the location of a JSP Tag Library Descriptor (TLD) with a URI pattern.
Although you can specify a TLD in your JSP that is relative to the WEB-INF directory, you can

Element Required/
Optional

Description

<welcome-file> Optional File name to use as a default welcome file, such as index.html

Element Required/
Optional

Description

<error-code> Optional A valid HTTP error code, for example, 404.

<exception-type> Optional A fully-qualified class name of a Java exception type, for example,
java.lang.string

<location> Required The location of the resource to display in response to the error. For
example, /myErrorPg.html.

web.xml Dep loyment Descr ipt or E l ements

A-14 Developing Web Applications and Application Resources for WebLogic Server

also use the <taglib> tag to configure the TLD when deploying your Web application. Use a
separate element for each TLD.

The following table describes the elements you can define within a taglib element.

resource-env-ref
The resource-env-ref element contains a declaration of a Web application's reference to an
administered object associated with a resource in the Web application's environment. It consists
of an optional description, the resource environment reference name, and an indication of the
resource environment reference type expected by the Web application code.

For example:

<resource-env-ref>

 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

Element Required/
Optional

Description

<taglib-location> Required Gives the file name of the tag library descriptor relative to the root of
the Web application. It is a good idea to store the tag library descriptor
file under the WEB-INF directory so it is not publicly available over an
HTTP request.

<taglib-uri> Required Describes a URI, relative to the location of the web.xml document,
identifying a Tag Library used in the Web application.

If the URI matches the URI string used in the taglib directive on the
JSP page, this taglib is used.

resou rce- re f

Developing Web Applications and Application Resources for WebLogic Server A-15

The following table describes the elements you can define within a resource-env-ref
element.

resource-ref
The optional resource-ref element defines a reference lookup name to an external resource.
This allows the servlet code to look up a resource by a “virtual” name that is mapped to the actual
location at deployment time.

Use a separate <resource-ref> element to define each external resource name. The external
resource name is mapped to the actual location name of the resource at deployment time in the
WebLogic-specific deployment descriptor weblogic.xml.

The following table describes the elements you can define within a resource-ref element.

Element Required/
Optional

Description

<description> Optional Provides a description of the resource environment reference.

<resource-env-ref
-name>

Required Specifies the name of a resource environment reference; its value is the
environment entry name used in the Web application code. The name
is a JNDI name relative to the java:comp/env context and must be
unique within a Web application.

<resource-env-ref-type> Required Specifies the type of a resource environment reference. It is the fully
qualified name of a Java language class or interface.

Element Required/
Optional

Description

<description> Optional A text description.

<res-ref-name> Required The name of the resource used in the JNDI tree. Servlets in the Web
application use this name to look up a reference to the resource.

<res-type> Required The Java type of the resource that corresponds to the reference name.
Use the full package name of the Java type.

web.xml Dep loyment Descr ipt or E l ements

A-16 Developing Web Applications and Application Resources for WebLogic Server

security-constraint
The security-constraint element defines the access privileges to a collection of resources
defined by the <web-resource-collection> element.

For detailed instructions and an example on configuring security in Web applications, see
Securing WebLogic Resources. Also, for more information on WebLogic Security, refer to
Programming WebLogic Security.

The following table describes the elements you can define within a security-constraint
element.

<res-auth> Required Used to control the resource sign on for security.

If set to APPLICATION, indicates that the application component
code performs resource sign on programmatically. If set to
CONTAINER, WebLogic Server uses the security context established
with the login-config element. See “login-config” on page A-19.

<res-sharing-scop
e>

Optional Specifies whether connections obtained through the given resource
manager connection factory reference can be shared.

Valid values:

• Shareable

• Unshareable

Element Required/
Optional

Description

Element Required/
Optional

Description

<web-resource-
collection>

Required Defines the components of the Web application to which this security
constraint is applied.

<auth-constraint> Optional Defines which groups or principals have access to the collection of
web resources defined in this security constraint. See also
“auth-constraint” on page A-17.

<user-data-
constraint>

Optional Defines how the client should communicate with the server.

See also “user-data-constraint” on page A-18.

http://e-docs.bea.com/wls/docs90/secwlres/index.html
http://e-docs.bea.com/wls/docs90/security/index.html

secur i t y- const ra in t

Developing Web Applications and Application Resources for WebLogic Server A-17

web-resource-collection
Each <security-constraint> element must have one or more
<web-resource-collection> elements. These define the area of the Web application to which
this security constraint is applied.

This is an element within the “security-constraint” on page A-16.

The following table describes the elements you can define within a web-resource-collection
element.

auth-constraint
This is an element within the “security-constraint” on page A-16.

The optional auth-constraint element defines which groups or principals have access to the
collection of Web resources defined in this security constraint.

Element Required/
Optional

Description

<web-resource-
name>

Required The name of this Web resource collection.

<description> Optional A text description of this security constraint.

<url-pattern> Optional Use one or more of the <url-pattern> elements to declare to which
URL patterns this security constraint applies. If you do not use at least
one of these elements, this <web-resource-collection> is
ignored by WebLogic Server.

<http-method> Optional Use one or more of the <http-method> elements to declare which
HTTP methods (usually, GET or POST) are subject to the authorization
constraint. If you omit the <http-method> element, the default
behavior is to apply the security constraint to all HTTP methods.

web.xml Dep loyment Descr ipt or E l ements

A-18 Developing Web Applications and Application Resources for WebLogic Server

The following table describes the elements you can define within an auth-constraint element.

user-data-constraint
This is an element within the “security-constraint” on page A-16.

The user-data-constraint element defines how the client should communicate with the
server.

The following table describes the elements you may define within a user-data-constraint
element.

Element Required/
Optional

Description

<description> Optional A text description of this security constraint.

<role-name> Optional Defines which security roles can access resources defined in this
security-constraint. Security role names are mapped to principals using
the security-role-ref. See “security-role-ref” on page A-10.

Element Required/
Optional

Description

<description> Optional A text description.

<transport-
guarantee>

Required Specifies that the communication between client and server.

WebLogic Server establishes a Secure Sockets Layer (SSL)
connection when the user is authenticated using the INTEGRAL or
CONFIDENTIAL transport guarantee.

Range of values:

• NONE—The application does not require any transport guarantees.

• INTEGRAL—The application requires that the data be sent between
the client and server in such a way that it cannot be changed in
transit.

• CONFIDENTIAL—The application requires that data be
transmitted so as to prevent other entities from observing the
contents of the transmission.

l ogin-conf ig

Developing Web Applications and Application Resources for WebLogic Server A-19

login-config
Use the optional login-config element to configure how the user is authenticated; the realm
name that should be used for this application; and the attributes that are needed by the form login
mechanism.

If this element is present, the user must be authenticated in order to access any resource that is
constrained by a <security-constraint> defined in the Web application. Once authenticated,
the user can be authorized to access other resources with access privileges.

The following table describes the elements you can define within a login-config element.

form-login-config
This is an element within the “login-config” on page A-19.

Use the <form-login-config> element if you configure the <auth-method> to FORM.

Element Required/
Optional

Description

<auth-method> Optional Specifies the method used to authenticate the user. Possible values:

BASIC—uses browser authentication. (This is the default value.)
FORM—uses a user-written HTML form.
CLIENT-CERT

<realm-name> Optional The name of the realm that is referenced to authenticate the user
credentials. If omitted, the realm defined with the Auth Realm Name
field on the Web application→ Configuration→Other tab of the
Administration Console is used by default.

Note: The <realm-name> element does not refer to system
security realms within WebLogic Server. This element
defines the realm name to use in HTTP Basic authorization.
The system security realm is a collection of security
information that is checked when certain operations are
performed in the server. The servlet security realm is a
different collection of security information that is checked
when a page is accessed and basic authentication is used.

<form-login-
config>

Optional Use this element if you configure the <auth-method> to FORM. See
“form-login-config” on page A-19.

web.xml Dep loyment Descr ipt or E l ements

A-20 Developing Web Applications and Application Resources for WebLogic Server

.

security-role
The following table describes the elements you can define within a security-role element.

env-entry
The optional env-entry element declares an environment entry for an application. Use a
separate element for each environment entry.

The following table describes the elements you can define within an env-entry element.

Element Required/
Optional

Description

<form-login-page> Required The URI of a Web resource relative to the document root, used to
authenticate the user. This can be an HTML page, JSP, or HTTP
servlet, and must return an HTML page containing a FORM-based
authentication that conforms to a specific naming convention.

<form-error-page> Required The URI of a Web resource relative to the document root, sent to the
user in response to a failed authentication login.

Element Required/
Optional

Description

<description> Optional A text description of this security role.

<role-name> Required The role name. The name you use here must have a corresponding
entry in the WebLogic-specific deployment descriptor,
weblogic.xml, which maps roles to principals in the security
realm. For more information, see “security-role-assignment” on
page B-2.

Element Required/
Optional

Description

<description> Optional A textual description.

<env-entry-name> Required The name of the environment entry.

e jb- re f

Developing Web Applications and Application Resources for WebLogic Server A-21

ejb-ref
The optional ejb-ref element defines a reference to an EJB resource. This reference is mapped
to the actual location of the EJB at deployment time by defining the mapping in the
WebLogic-specific deployment descriptor file, weblogic.xml. Use a separate <ejb-ref>
element to define each reference EJB name.

The following table describes the elements you can define within an ejb-ref element.

<env-entry-value> Required The value of the environment entry.

<env-entry-type> Required The type of the environment entry.

Can be set to one of the following Java types:

java.lang.Boolean

java.lang.String

java.lang.Integer

java.lang.Double

java.lang.Float

Element Required/
Optional

Description

Element Required/
Optional

Description

<description> Optional A text description of the reference.

<ejb-ref-name> Required The name of the EJB used in the Web application. This name is
mapped to the JNDI tree in the WebLogic-specific deployment
descriptor weblogic.xml. For more information, see
“ejb-reference-description” on page B-7.

<ejb-ref-type> Required The expected Java class type of the referenced EJB.

<home> Required The fully qualified class name of the EJB home interface.

<remote> Required The fully qualified class name of the EJB remote interface.

web.xml Dep loyment Descr ipt or E l ements

A-22 Developing Web Applications and Application Resources for WebLogic Server

ejb-local-ref
The ejb-local-ref element is used for the declaration of a reference to an enterprise bean's
local home. The declaration consists of:

An optional description

The EJB reference name used in the code of the Web application that references the
enterprise bean. The expected type of the referenced enterprise bean

The expected local home and local interfaces of the referenced enterprise bean

Optional ejb-link information, used to specify the referenced enterprise bean

The following table describes the elements you can define within an ejb-local-ref element.

<ejb-link> Optional The <ejb-name> of an EJB in an encompassing J2EE application
package.

<run-as> Optional A security role whose security context is applied to the referenced EJB.
Must be a security role defined with the <security-role> element.

Element Required/
Optional

Description

Element Required/
Optional

Description

<description> Optional A text description of the reference.

<ejb-ref-name> Required Contains the name of an EJB reference. The EJB reference is an entry
in the Web application's environment and is relative to the
java:comp/env context. The name must be unique within the Web
application. It is recommended that name is prefixed with ejb/.

For example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

<ejb-ref-type> Required The ejb-ref-type element contains the expected type of the
referenced enterprise bean. The ejb-ref-type element must be one
of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

e jb- loca l - re f

Developing Web Applications and Application Resources for WebLogic Server A-23

<local-home> Required Contains the fully-qualified name of the enterprise bean's local home
interface.

<local> Required Contains the fully-qualified name of the enterprise bean's local
interface.

<ejb-link> Optional The ejb-link element is used in the ejb-ref or ejb-local-ref

elements to specify that an EJB reference is linked to an

EJB.

The name in the ejb-link element is composed of a path name. This
path name specifies the ejb-jar containing the referenced EJB with
the ejb-name of the target bean appended and separated from the
path name by #.

The path name is relative to the WAR file containing the Web
application that is referencing the EJB. This allows multiple EJBs with
the same ejb-name to be uniquely identified.

Used in: ejb-local-ref and ejb-ref elements

Examples:

<ejb-link>EmployeeRecord</ejb-link>

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

Element Required/
Optional

Description

web.xml Dep loyment Descr ipt or E l ements

A-24 Developing Web Applications and Application Resources for WebLogic Server

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-1

A P P E N D I X B

weblogic.xml Deployment Descriptor
Elements

This document provides a complete reference for the elements in the WebLogic Server-specific
deployment descriptor weblogic.xml. If your Web application does not contain a
weblogic.xml deployment descriptor, WebLogic Server automatically selects the default
values of the deployment descriptor elements. To see the schema for weblogic.xml, go to
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd.

The following sections describe the complex deployment descriptor elements that can be defined
in the weblogic.xml deployment descriptor under the root element <weblogic-web-app>:

“description” on page B-2

“weblogic-version” on page B-2

“security-role-assignment” on page B-2

“run-as-role-assignment” on page B-5

“reference-descriptorGroup” on page B-6

“session-descriptor” on page B-8

“jsp-descriptor” on page B-15

“auth-filter” on page B-16

“container-descriptor” on page B-16

“charset-params” on page B-21

http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

“virtual-directory-mapping” on page B-23

“url-match-map” on page B-24

“security-permission” on page B-24

“context-root” on page B-25

“wl-dispatch-policy” on page B-26

“servlet-descriptor” on page B-26

“work-manager” on page B-27

“logging” on page B-30

“library-ref” on page B-33

“Backwards Compatibility Flags” on page B-34

“Web Container Global Configuration” on page B-34

description
The description element is a text description of the Web application.

weblogic-version
The weblogic-version element indicates the version of WebLogic Server on which this Web
application (as defined in the root element <weblogic-web-app>) is intended to be deployed.
This element is informational only and is not used by WebLogic Server.

security-role-assignment
The security-role-assignment element declares a mapping between a Web application
security role and one or more principals in WebLogic Server, as shown in the following example.

<security-role-assignment>

<role-name>PayrollAdmin</role-name>

<principal-name>Tanya</principal-name>

<principal-name>Fred</principal-name>

<principal-name>system</principal-name>

secur i t y- ro le -ass ignment

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-3

</security-role-assignment>

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

You can also use it to mark a given role as an externally defined role, as shown in the following
example:

<security-role-assignment>

<role-name>roleadmin</role-name>

<externally-defined/>

</security-role-assignment>

Notes: In the <security-role-assignment> element, either <principal-name> or
<externally-defined> must be defined. Both cannot be omitted.

The following table describes the elements you can define within a
security-role-assignment element.

Note: If you do not define a security-role-assignment element and its subelements, the
Web application container implicitly maps the role name as a principal name and logs a
warning. The EJB container does not deploy the module if mappings are not defined.

Consider the following usage scenarios for the role name is “role_xyz”

If you map“role_xyz to user “joe” in weblogic.xml, role_xyz becomes a local
role.

If you specify role_xyz as an externally defined role, it becomes global (it refers to
the role defined at the realm level).

Element Required
Optional

Description

<role-name> Required Specifies the name of a security role.

<principal-name> Required if
<externally-d
efined> is not
defined.

Specifies the name of a principal that is defined in the security
realm. You can use multiple <principal-name> elements
to map principals to a role. For more information on
security realms, see Managing WebLogic Security.

<externally-defin
ed>

Required if
<principal-na
me> is not defined.

Specifies that a particular security role is defined globally in a
security realm; WebLogic Server uses this security role as the
principal name, rather than looking it up in a global realm.
When the security role and its principal-name mapping are
defined elsewhere, this is used as an indicative placeholder.

http://e-docs.bea.com/wls/docs90/secmanage/index.html

run-as- ro l e -ass ignment

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-5

If you do not define a security-role-assignment element, role_xyz becomes
a local role, and the Web application container creates an implicit mapping to it
and logs a warning.

run-as-role-assignment
The run-as-role-assignment element maps a run-as role name (a subelement of the
servlet element) in web.xml to a valid user name in the system. The value can be overridden
for a given servlet by the run-as-principal-name element in the servlet-descriptor. If
the run-as-role-assignment is absent for a given role name, the Web application container
uses the first principal-name defined in the security-role-assignment. The following
example illustrates how to use the run-as-role-assignment element.

<run-as-role-assignment>

<role-name>RunAsRoleName</role-name>

<run-as-principal-name>joe</run-as-principal-name>

</run-as-role-assignment>

The following table describes the elements you can define within a run-as-role-assignment
element.

Element Required
Optional

Description

<role-name> Required Specifies the name of a security role.

<run-as-principal
-name>

Required Specifies the name of a principal.

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-6 Developing Web Applications, Servlets, and JSPs for WebLogic Server

reference-descriptorGroup
The a weblogic.xml deployment descriptor refers to the reference-descriptorGroup,
which is part of the weblogic-j2ee-xsd file.The following sub-elements of
reference-descriptorGroup are used by the weblogic.xml deployment descriptor.

resource-description
The resource-description element is used to map the JNDI name of a server resource to an
EJB resource reference in WebLogic Server.

The following table describes the elements you can define within a resource-description
element.

Element Name Default Value Value

resource-description The resource-description element is
used to map the JNDI name of a server
resource to an EJB resource reference in
WebLogic Server. See “resource-description”
on page B-6.

resource-env-description The resource-env-description
element maps a resource-env-ref,
declared in the ejb-jar.xml deployment
descriptor, to the JNDI name of the server
resource it represents. See
“resource-env-description” on page B-7.

ejb-reference-description See “ejb-reference-description” on page B-7.

service-reference-descripti
on

See “service-reference-description” on
page B-7.

Element Required/
Optional

Description

<res-ref-name> Required Specifies the name of a resource reference.

<jndi-name> Required Specifies a JNDI name for the resource.

re fe rence-desc r ip t orGroup

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-7

resource-env-description
The resource-env-description element maps a resource-env-ref, declared in the
ejb-jar.xml deployment descriptor, to the JNDI name of the server resource it represents.

The following table describes the elements you can define within a
resource-env-description element.

ejb-reference-description
The following table describes the elements you can define within a
ejb-reference-description element.

service-reference-description
The following table describes the elements you can define within a

service-reference-description element

Element Required/
Optional

Description

<res-env-ref-name
>

Required Specifies the name of a resource environment reference.

<jndi-name> Required Specifies a JNDI name for the resource environment reference.

Element Required/
Optional

Description

<ejb-ref-name> Required Specifies the name of an EJB reference used in your Web application.

<jndi-name> Required Specifies a JNDI name for the reference.

Element Required/
Optional

Description

<service-ref-name
>

<wsdl-url>

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-8 Developing Web Applications, Servlets, and JSPs for WebLogic Server

session-descriptor
The session-descriptor elements that define parameters for servlet sessions.

<call-property> The <call-property> element has the following sub-elements:

• <name>

• <value>

<port-info> The <port-info> element has the following sub-elements:

• <port-name>

• <stub-property>

• <call-property>

Element Required/
Optional

Description

Element Name Default Value Value

timeout-secs 3600 Sets the time, in seconds, that WebLogic Server
waits before timing out a session. The default
value is 3600 seconds.

On busy sites, you can tune your application by
adjusting the timeout of sessions. While you
want to give a browser client every opportunity
to finish a session, you do not want to tie up the
server needlessly if the user has left the site or
otherwise abandoned the session.

This element can be overridden by the
session-timeout element (defined in
minutes) in web.xml.

invalidation-interval-secs 60 Sets the time, in seconds, that WebLogic Server
waits between doing house-cleaning checks for
timed-out and invalid sessions, and deleting the
old sessions and freeing up memory. Use this
element to tune WebLogic Server for best
performance on high traffic sites.

The default value is 60 seconds.

sess ion-descr ip to r

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-9

sharing-enabled false Enables Web applications to share HTTP
sessions when the value is set to true at the
application level.

This element is ignored if turned on at the Web
application level.

debug-enabled false Enables the debugging feature for HTTP
sessions.

The default value is false.

id-length 52 Sets the size of the session ID.

The minimum value is 8 bytes and the
maximum value is Integer.MAX_VALUE.

If you are writing a WAP application, you must
use URL rewriting because the WAP protocol
does not support cookies. Also, some WAP
devices have a 128-character limit on URL
length (including attributes), which limits the
amount of data that can be transmitted using
URL re-writing. To allow more space for
attributes, use this attribute to limit the size of
the session ID that is randomly generated by
WebLogic Server.

You can also limit the length to a fixed 52
characters, and disallow special characters, by
setting the WAPEnabled attribute. For more
information, see URL Rewriting and Wireless
Access Protocol in Developing Web
Applications for WebLogic Server.

tracking-enabled true Enables session tracking between HTTP
requests.

cache-size 1028 Sets the cache size for JDBC and file-persistent
sessions.

Element Name Default Value Value

http://e-docs.bea.com/wls/docs90/webapp/sessions.html#wap
http://e-docs.bea.com/wls/docs90/webapp/sessions.html#wap
http://e-docs.bea.com/wls/docs90/webapp/sessions.html#wap
http://e-docs.bea.com/wls/docs90/webapp/sessions.html#wap

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-10 Developing Web Applications, Servlets, and JSPs for WebLogic Server

max-in-memory-sessions -1 Sets the maximum limit for memory/replicated
sessions.

Without the ability to configure bound
in-memory servlet session use, as new sessions
are continually created, the server eventually
throws out of memory. To protect against this,
WebLogic Server provides a configurable
bound on the number of sessions created. When
this number is exceeded, the
weblogic.servlet.SessionCreatio
nException occurs for each attempt to create
a new session. This feature applies to both
replicated and non-replicated in-memory
sessions.

To configure bound in-memory servlet
session use, you set the limitation in the
max-in-memory-sessions element.

The default is -1 (unlimited).

cookies-enabled true Use of session cookies is enabled by default and
is recommended, but you can disable them by
setting this property to false. You might turn
this option off to test.

cookie-name JSESSIONID Defines the session tracking cookie name.
Defaults to JSESSIONID if not set. You may
set this to a more specific name for your
application.

cookie-path null Defines the session tracking cookie path.

If not set, this attribute defaults to / (slash),
where the browser sends cookies to all URLs
served by WebLogic Server. You may set the
path to a narrower mapping, to limit the request
URLs to which the browser sends cookies.

Element Name Default Value Value

sess ion-descr ip to r

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-11

cookie-domain null Specifies the domain for which the cookie is
valid. For example, setting cookie-domain
to.mydomain.com returns cookies to any
server in the *.mydomain.com domain.

The domain name must have at least two
components. Setting a name to *.com or
*.net is not valid.

If not set, this attribute defaults to the server that
issued the cookie.

For more information, see
Cookie.setDomain() in the Servlet
specification from Sun Microsystems.

cookie-comment null Specifies the comment that identifies the
session tracking cookie in the cookie file.

cookie-secure false Tells the browser to only send the cookie back
over an HTTPS connection. This ensures that
the cookie ID is secure and should only be used
on Websites that use HTTPS. Session Cookies
over HTTP no longer work if this feature is
enabled.

You should disable the
url-rewriting-enabled element if you
intend to use this feature.

cookie-max-age-secs -1 Sets the life span of the session cookie, in
seconds, after which it expires on the client.

The default value is -1 (unlimited)

For more information about cookies, see “Using
Sessions and Session Persistence” on page 8-1.

Element Name Default Value Value

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-12 Developing Web Applications, Servlets, and JSPs for WebLogic Server

persistent-store-type memory Sets the persistent store method to one of the
following options:

• memory—Disables persistent session
storage.

• replicated—Same as memory, but
session data is replicated across the
clustered servers.

• replicated_if_clustered—If the
Web application is deployed on a clustered
server, the in-effect
persistent-store-type will be
replicated. Otherwise, memory is the
default.

• sync-replication-across-cluster
—The replication will occur synchronously
across the cluster.

• async-replication-across-cluste
r—The replication will occur
asynchronously across the cluster.

• file—Uses file-based persistence (See
also PersistentStoreDir, above).

• jdbc—Uses a database to store persistent
sessions. (see also
“persistent-store-pool” on
page B-13, above).

• cookie—All session data is stored in a
cookie in the user’s browser.

persistent-store-cookie-nam
e

WLCOOKIE Sets the name of the cookie used for
cookie-based persistence. The WLCOOKIE
cookie carries the session state, which should
not be shared between Web applications.

For more information, see “Using
Cookie-Based Session Persistence” on
page 8-10.

Element Name Default Value Value

sess ion-descr ip to r

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-13

persistent-store-dir session_db Specifies the storage directory used for
file-based persistence

Ensure that you have enough disk space to store
the number of valid sessions multiplied by the
size of each session. You can find the size of a
session by looking at the files created in the
persistent-store-dir. Note that the size
of each session can vary as the size of serialized
session data changes.

You can make file-persistent sessions
clusterable by making this directory a shared
directory among different servers.

You must create this directory manually.

persistent-store-pool None Specifies the name of a JDBC connection pool
to be used for persistence storage.

persistent-store-table wl_servlet_
sessions

Specifies the database table name used to store
JDBC-based persistent sessions. This applies
only when persistent-store-type is
set to jdbc.

The persistent-store-table element is
used when you choose a database table name
other than the default.

jdbc-column-name-max-inactiv
e-interval

Serves as an alternative name for the
wl_max_inactive_interval column
name. This
jdbc-column-name-max-inactive-in
terval element applies only to JDBC-based
persistence. It is required for certain databases
that do not support long column names.

jdbc-connection-timeout-sec
s

120 Note: This is a deprecated item for this release.

Sets the time, in seconds, that WebLogic Server
waits before timing out a JDBC connection,
where x is the number of seconds between.

url-rewriting-enabled true Enables URL rewriting, which encodes the
session ID into the URL and provides session
tracking if cookies are disabled in the browser.

Element Name Default Value Value

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-14 Developing Web Applications, Servlets, and JSPs for WebLogic Server

http-proxy-caching-of-cookie
s

true When set to false, WebLogic Server adds the
following header with the following response:

“Cache-control:
no-cache=set-cookie”

This indicates that the proxy caches do not
cache the cookies.

encode-session-id-in-query-p
arams

false The latest servlet specification requires
containers to encode the session ID in path
parameters. Certain Web servers do not work
well with path parameters. In such cases, the
encode-session-id-in-query-para
ms element should be set to true. (The default
is false.)

runtime-main-attribute Used in
ServletSessionRuntimeMBean. The
getMainAttribute() of the
ServletSessionRuntimeMBean returns
the session attribute value using this string as a
key.

Example: user-name

This element is useful for tagging session
runtime information for different sessions.

Element Name Default Value Value

j sp-descr ip to r

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-15

jsp-descriptor
The jsp-descriptor element specifies a list of configuration parameters for the JSP compiler.
The following table describes the elements you can define within a jsp-descriptor element..

Element Required/
Optional

Description

page-check-second
s

1 Sets the interval, in seconds, at which WebLogic Server checks to
see if JSP files have changed and need recompiling.
Dependencies are also checked and recursively reloaded if
changed.

If set to 0, pages are checked on every request. This default is
preset for a development environment. If set to -1, page checking
and recompiling is disabled.

In a production environment where changes to a JSP are rare,
change the value of pageCheckSeconds to 60 or greater,
according to your tuning requirements, or to -1 to disable page
checking and recompiling.

precompile false When set to true, WebLogic Server automatically precompiles all
modified JSPs when the Web application is deployed or
re-deployed or when starting WebLogic Server.

precompile-conti
nue

false When set to true, WebLogic Server continues precompiling all
modified JSPs even if some of those JSPs fail during compilation.
Only takes effect when precompile is set to true.

keepgenerated false Saves the Java files that are generated as an intermediary step in
the JSP compilation process. Unless this parameter is set to true,
the intermediate Java files are deleted after they are compiled.

verbose true When set to true, debugging information is printed out to the
browser, the command prompt, and WebLogic Server log file.

working-dir internally
generated
directory

The name of a directory where WebLogic Server saves the
generated Java and compiled class files for a JSP.

print-nulls null When set to false, this parameter ensures that expressions with
“null” results are printed as “ “.

backward-compatib
le

true When set to true, backward compatibility is enabled.

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-16 Developing Web Applications, Servlets, and JSPs for WebLogic Server

auth-filter
The auth-filter element specifies an authentication filter HttpServlet class.

Note: This is a deprecated element for the current release. Instead, use servlet authentication
filters.

container-descriptor
The <container-descriptor> element specifies a list of parameters that affect the behavior of
the Web application.

encoding Default encoding
of your platform

Specifies the default character set used in the JSP page. Use
standard Java character set names (see
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.htm).

If not set, this attribute defaults to the encoding for your platform.

A JSP page directive (included in the JSP code) overrides this
setting. For example:

<%@ page contentType="text/html;
charset=custom-encoding”%>

package-prefix jsp_servlet Specifies the package prefix into which all JSP pages are
compiled.

exact-mapping true When true, upon the first request for a JSP the newly created
JspStub is mapped to the exact request. If exactMapping is set to
false, the Web application container generates non-exact url
mapping for JSPs. exactMapping allows path info for JSP
pages.

default-file-name true The default file name in which WebLogic Server saves the
generated Java and compiled class files for a JSP.

rtexprvalue-jsp-p
aram-name

false Allows runtime expression values in the name attribute of the
jsp:param tag. It is set to false by default.

Element Required/
Optional

Description

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.htm

contai ne r-descr ip to r

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-17

check-auth-on-forward
Add the <check-auth-on-forward/> element when you want to require authentication of
forwarded requests from a servlet or JSP. Omit the tag if you do not want to require
re-authentication. For example:

<container-descriptor>

<check-auth-on-forward/>

</container-descriptor>

Note: As a best practice, BEA does not recommend that you enable the
check-auth-on-forward property.

filter-dispatched-requests-enabled
The <filter-dispatched-requests-enabled> element controls whether or not filters are
applied to dispatched requests. The default value is false.

Note: Because 2.4 servlets are backward compatible with 2.3 servlets (per the 2.4
specification), when 2.3 descriptor elements are detected by WebLogic Server, the
<filter-dispatched-requests-enabled> element defaults to true.

redirect-with-absolute-url
The <redirect-with-absolute-url> element controls whether the
javax.servlet.http.HttpServletResponse.SendRedirect() method redirects using a
relative or absolute URL. Set this element to false if you are using a proxy HTTP server and do

not want the URL converted to a non-relative link.

The default behavior is to convert the URL to a non-relative link.

user readable data used in a redirect.

index-directory-enabled
The <index-directory-enabled> element controls whether or not to automatically generate
an HTML directory listing if no suitable index file is found.

The default value is false (does not generate a directory). Values are true or false.

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-18 Developing Web Applications, Servlets, and JSPs for WebLogic Server

index-directory-sort-by
The <index-directory-sort-by> element defines the order in which the directory listing
generated by weblogic.servlet.FileServlet is sorted. Valid sort-by values are NAME,
LAST_MODIFIED, and SIZE. The default sort-by value is NAME.

servlet-reload-check-secs
The <servlet-reload-check-secs> element defines whether a WebLogic Server will check
to see if a servlet has been modified, and if it has been modified, reloads it. The -1 value tells the
server never to check the servlets, 0 tells the server to always check the servlets, and the default
is to check each 1 second.

A value specified in the console will always take precedence over a manually specified value.

resource-reload-check-secs
The <resource-reload-check-secs> element is used to perform metadata caching for cached
resources that are found in the resource path in the Web application scope. This parameter
identifies how often WebLogic Server checks whether a resource has been modified and if so, it
reloads it.

The value -1 means never reload.

The value 0 means always reload.

The default is 1 second.

Values specified for this parameter using the Admin Console are given precedence.

single-threaded-servlet-pool-size
The <single-threaded-servlet-pool-size> element defines the size of the pool used for
SingleThreadMode instance pools. The default value is 5.

Note: SingleThreadMode instance pools are deprecated in this release.

session-monitoring-enabled
The <session-monitoring-enabled> element, if set to true, allows runtime MBeans to be
created for sessions. When set to false, the default value, runtime MBeans are not created. A value
specified in the console takes precedence over a value set manually.

contai ne r-descr ip to r

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-19

save-sessions-enabled
The <save-sessions-enabled> element controls whether session data is cleaned up during
redeploy or undeploy. It affects memory and replicated sessions. Setting the value to true means
session data is saved. Setting to false means session data will be destroyed when the Web
application is redeployed or undeployed. The default is false.

prefer-web-inf-classes
The <prefer-web-inf-classes> element, if set to true, will cause classes located in the
WEB-INF directory of a Web application to be loaded in preference to classes loaded in the
application or system classloader. The default value is false. A value specified in the console
will take precedence over a value set manually.

default-mime-type
The <default-mime-type> element default value is null. This element allows the user to
specify the default mime type for a content-type for which the extension is not mapped.

client-cert-proxy-enabled
The <client-cert-proxy-enabled> element default value is true. When set to true,
WebLogic Server passes identity certificates from the clients to the backend servers. Also,
WebLogic Server is notified whether to honor or discard the incoming WL-Proxy-Client-Cert
header.

A proxy-server plugin encodes each identity certification in the WL-Proxy-Client-Cert header
and passes it to the backend WebLogic Server instances. Each WebLogic Server instance takes
the certificate information from the header, ensured it came from a secure source, and uses that
information to authenticate the user. For the background WebLogic Server instances, this
parameter must be set to true (either at the cluster/server level or at the Web application level).

If you set this element to true, use a weblogic.security.net.ConnectionFilter to ensure that each
WebLogic Server instance accepts connections only from the machine on which the proxy-server
plugin is running. If you specify true without using a connection filter, a potential security
vulnerability is created because the WL-Proxy-Client-Cert header can be spoofed.

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-20 Developing Web Applications, Servlets, and JSPs for WebLogic Server

relogin-enabled
The <relogin-enabled> element is a backward compatibility parameter. If a user has logged
in already and tries to access a resource for which s/he does not have privileges, a FORBIDDEN
(403) response occurs.

allow-all-roles
In the security-constraints elements defined in web.xml descriptor of a Web application, the
auth-constraint element indicates the user roles that should be permitted access to this
resource collection. Here role-name = "*" is a compact syntax for indicating all roles in the Web
application. In past releases, role-name = "*" was treated as all users/roles defined within the
realm.

This allow-all-roles element is a backward compatibility switch to restore old behavior. The
default behavior is to allow all roles defined in the Web application. The value specified in
weblogic-xml takes precedence over the value defined in the WebAppContainerMBean.

native-io-enabled
To use native I/O while serving static files with weblogic.servlet.FileServlet, which is
implicitly registered as the default servlet, set native-io-enabled to true. (The default value
is false.) native-io-enabled element applies only on Windows.

minimum-native-file-size
The minimum-native-file-size element applies only when native-io-enabled is set to
true. It sets the minimum file size for using native I/O. If the file being served is larger than this
value, native I/O is used. If you do not set this value, the default value used is 4K.

disable-implicit-servlet-mapping
When the disable-implicit-servlet-mappings flag is set to true, the Web application
container does not create implicit mappings for internal servlets (*.jsp, *.class, and so on);
only for the default servlet mapping. A typical use case for turning off implicit servlet mappings
would be when configuring HttpClusterServlet or HttpProxyServlet.

The default value is false.

charset -params

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-21

optimistic-serialization
When optimistic-serialization is turned on, WebLogic Server does not
serialize-deserialize context and request attributes upon getAttribute(name) when the
request is dispatched across servlet contexts.

This means that you must make sure that the attributes common to Web applications are scoped
to a common parent classloader (application scoped) or you must place them in the system
classpath if the two Web applications do not belong to the same application.

When optimistic-serialization is turned off (default value), WebLogic Server
serialize-deserializes context and request attributes upon getAttribute(name) to avoid the
possibility of ClassCastExceptions.

The optimistic-serialization value can also be specified at domain level in the
WebAppContainerMBean, which applies for all Web applications. The value in
weblogic.xml, if specified, overrides the domain level value.

The default value is false.

monitoring-attribute-name
HTTP Sessions are identified with a monitoring ID. By default, the monitoring ID for a given
HTTP session is a random string (not the same as a session ID for security reasons). This
monitoring ID can be configured by setting the monitoring-attribute-name element in
session-descriptor of the weblogic.xml deployment descriptor and then setting a session
attribute the defined monitoring-attribute-name. The toString() of the session attribute
value will then be used as a monitoring ID.

The monitoring-attribute-name element is useful for tagging session runtime information
for different sessions. For example, you can set it to "username", if you have a "username"
attribute that is unique.

The WebAppComponentRuntimeBean.getSessionIds() method returns an array of session
attribute values with this name. If it is not set, it returns an array of randomly generated Strings.

charset-params
The <charset-params> element is used to define code set behavior for non-unicode
operations. For example:

<charset-params>

<input-charset>

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/WebAppContainerMBean.html

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-22 Developing Web Applications, Servlets, and JSPs for WebLogic Server

<resource-path>/*</resource-path>

<java-charset-name>UTF-8</java-charset-name>

</input-charset>

</charset-params>

input-charset
Use the <input-charset> element to define which character set is used to read GET and POST
data. For example:

<input-charset>

<resource-path>/foo</resource-path>

<java-charset-name>SJIS</java-charset-name>

</input-charset>

For more information, see “Determining the Encoding of an HTTP Request” on page 5-5.

The following table describes the elements you can define within a <input-charset> element.

charset-mapping
Use the <charset-mapping> element to map an IANA character set name to a Java character
set name. For example:

<charset-mapping>

<iana-charset-name>Shift-JIS</iana-charset-name>

<java-charset-name>SJIS</java-charset-name>

</charset-mapping>

For more information, see “Mapping IANA Character Sets to Java Character Sets” on page 5-6.

Element Required/
Optional

Description

<resource-path> Required A path which, if included in the URL of a request, signals
WebLogic Server to use the Java character set specified by
<java-charset-name>.

<java-charset-name> Required Specifies the Java characters set to use.

v i r tual -d i rect or y-mapping

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-23

The following table describes the elements you can define within a <charset-mapping>
element.

virtual-directory-mapping
Use the virtual-directory-mapping element to specify document roots other than the
default document root of the Web application for certain kinds of requests, such as image
requests. All images for a set of Web applications can be stored in a single location, and need not
be copied to the document root of each Web application that uses them. For an incoming request,
if a virtual directory has been specified servlet container will search for the requested resource
first in the virtual directory and then in the Web application’s original document root. This
defines the precedence if the same document exists in both places.

Example:

<virtual-directory-mapping>

<local-path>c:/usr/gifs</local-path>

<url-pattern>/images/*</url-pattern>

<url-pattern>*.jpg</url-pattern>

</virtual-directory-mapping>

<virtual-directory-mapping>

<local-path>c:/usr/common_jsps.jar</local-path>

<url-pattern>*.jsp</url-pattern>

</virtual-directory-mapping>

Element Required/
Optional

Description

<iana-charset-name> Required Specifies the IANA character set name that is to be mapped to the
Java character set specified by the <java-charset-name>
element.

<java-charset-name> Required Specifies the Java characters set to use.

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-24 Developing Web Applications, Servlets, and JSPs for WebLogic Server

The following table describes the elements you can define within the
virtual-directory-mapping element.

The WebLogic Server implementation of virtual directory mapping requires that you have a
directory that matches the url-pattern of the mapping. The image example requires that you create
a directory named images at c:/usr/gifs/images. This allows the servlet container to find
images for multiple Web applications in the images directory.

url-match-map
Use this element to specify a class for URL pattern matching. The WebLogic Server default URL
match mapping class is weblogic.servlet.utils.URLMatchMap, which is based on J2EE
standards. Another implementation included in WebLogic Server is
SimpleApacheURLMatchMap, which you can plug in using the url-match-map element.

Rule for SimpleApacheURLMatchMap:

If you map *.jws to JWSServlet then

http://foo.com/bar.jws/baz will be resolved to JWSServlet with pathInfo = baz.

Configure the URLMatchMap to be used in weblogic.xml as in the following example:

 <url-match-map>

 weblogic.servlet.utils.SimpleApacheURLMatchMap

</url-match-map>

security-permission
The security-permission element specifies a single security permission based on the
Security policy file syntax. Refer to the following URL for Sun's implementation of the security
permission specification:

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

Element Required/
Optional

Description

<local-path> Required Specifies a physical location on the disk.

<url-pattern> Required Contains the URL pattern of the mapping. Must follow the rules
specified in Section 11.2 of the Servlet API Specification.

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

con text - roo t

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-25

Disregard the optional codebase and signedBy clauses.

For example:

<security-permission-spec>

grant { permission java.net.SocketPermission "*", "resolve" };

</security-permission-spec>

where:

permission java.net.SocketPermission is the permission class name.

"*" represents the target name.

resolve indicates the action.

context-root
The context-root element defines the context root of this stand-alone Web application. If the
Web application is part of an EAR, not stand-alone, specify the context root in the EAR’s
META-INF/application.xml file. A context-root setting in application.xml takes
precedence over context-root setting in weblogic.xml.

Note that this weblogic.xml element only acts on deployments using the two-phase
deployment model.

The order of precedence for context root determination for a Web application is as follows:

1. Check application.xml for context root; if found, use as Web application’s context root.

2. If context root is not set in application.xml, and the Web application is being deployed
as part of an EAR, check whether context root is defined in weblogic.xml. If found, use
as Web application’s context root. If the Web application is deployed standalone,
application.xml does not come into play and the determination for context-root starts at
weblogic.xml and defaults to URI if it is not defined there.

3. If context root is not defined in weblogic.xml or application.xmll, then infer the
context path from the URI, giving it the name of the value defined in the URI minus the
WAR suffix. For instance, a URI MyWebApp.war would be named MyWebApp.

Note: The context-root element cannot be set for individual Web applications in EAR
libraries. It can only bet set for Web application libraries.

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-26 Developing Web Applications, Servlets, and JSPs for WebLogic Server

wl-dispatch-policy
Use the wl-dispatch-policy element to assign the Web application to a configured execute
queue by identifying the execute queue name. This Web application-level parameter can be
overridden at the individual servlet or jsp level by using the per-servlet-dispatch-policy
element.

servlet-descriptor
Use the servlet-descriptor element to aggregate the servlet-specific elements.

The following table describes the elements you can define within the servlet-descriptor

element.

Element Required/
Optional

Description

<servlet-name> Required Specifies the servlet name as defined in the servlet element of the
web.xml deployment descriptor file.

<run-as-principal-na
me>

Optional Contains the name of a principal against the
run-as-role-name defined in the web.xml deployment
descriptor.

<init-as-principal-n
ame>

Optional Equivalent to run-as-principal-name for the init
method for servlets. The identity specified here should be a valid
user name in the system. If init-as-principal-name is not
specified, the container uses the run-as-principal-name
element.

<destroy-as-principa
l-name>

Optional Equivalent to run-as-principal-name for the destroy
method for servlets. The identity specified here should be a valid
user name in the system. If destroy-as-principal-name is
not specified, the container uses the
run-as-principal-name element.

<dispatch-policy> Optional This is a deprecated element. Used to assign a given servlet to a
configured execute-queue by identifying the execute queue
name. This setting overrides the Web application-level dispatch
policy defined by wl-dispatch-policy.

work-manager

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-27

work-manager
The work-manager element is a sub-element of the <weblogic-web-app> element. You can

define the following elements within the work-manager element.

Element Required
Optional

Description

name Required Specifies the name of the Work Manager.

response-time-request-class
/ fair-share-request-class /
context-request-class /
request-class-name

Optional You can choose between the following four
elements:

response-time-request-class—
Defines the response time request class for
the application. Response time is defined
with attribute goal-ms in milliseconds. The
increment is ((goal − T) Cr)/R, where T is the

average thread use time, R the arrival rate,
and Cr a coefficient to prioritize response

time goals over fair shares.

fair-share-request-class—
Defines the fair share request class. Fair
share is defined with attribute percentage of
default share. Therefore, the default is 100.
The increment is Cf/(P R T), where P is the

percentage, R the arrival rate, T the average
thread use time, and Cf a coefficient for fair

shares to prioritize them lower than response
time goals.

context-request-class—Defines
the context class. Context is defined with
multiple cases mapping contextual
information, like current user or its role,
cookie, or work area fields to named service
classes.

request-class-name—Defines the
request class name.

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-28 Developing Web Applications, Servlets, and JSPs for WebLogic Server

min-threads-constraint,
min-threads-constraint-name

Optional You can choose between the following two
elements:

min-threads-constraint—Used to
guarantee a number of threads the server
allocates to requests of the constrained work
set to avoid deadlocks. The default is zero. A
min-threads value of one is useful, for
example, for a replication update request,
which is called synchronously from a peer.

min-threads-constraint-name—
Defines a name for the
min-threads-constraint element.

Element Required
Optional

Description

work-manager

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-29

max-threads-constraint,
max-threads-constraint-name

Optional You can choose between the following two
elements:

max-threads-constraint—Limits
the number of concurrent threads executing
requests from the constrained work set. The
default is unlimited. For example, consider a
constraint defined with maximum threads of
10 and shared by 3 entry points. The
scheduling logic ensures that not more than
10 threads are executing requests from the
three entry points combined.

max-threads-constraint-name—
Defines a name for the
max-threads-constraint element.

capacity, capacity-name Optional You can choose between the following two
elements:

capacity—Constraints can be defined
and applied to sets of entry points, called
constrained work sets. The server starts
rejecting requests only when the capacity is
reached. The default is zero. Note that the
capacity includes all requests, queued or
executing, from the constrained work set.
This constraint is primarily intended for
subsystems like JMS, which do their own
flow control. This constraint is independent
of the global queue threshold.

capacity-name—Defines a name for the
capacity element.

Element Required
Optional

Description

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-30 Developing Web Applications, Servlets, and JSPs for WebLogic Server

logging
The logging element is a sub-element of the <weblogic-web-app> element. You can define
the following elements within the logging element.

Element Required
Optional

Description

log-filename Required Specifies the name of the log file. The
full address of the filename is required.

logging-enabled Optional Indicates whether or not the log writer is
set for either the
ManagedConnectionFactory or
ManagedConnection. If this element is
set to true, output generated from either
the ManagedConnectionFactory or
ManagedConnection will be sent to the
file specified by the log-filename
element.

Failure to specify this value will result in
WebLogic Server using its defined
default value.

Value Range: true | false

Default Value: false

l ogging

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-31

rotation-type Optional Sets the file rotation type.

Values are bySize, byName, none

• bySize—When the log file reaches the
size that you specify in
file-size-limit, the server
renames the file as FileName.n.

• byName—At each time interval that
you specify in file-time-span, the
server renames the file as
FileName.n. After the server renames
a file, subsequent messages accumulate
in a new file with the name that you
specified in log-filename.

• none—Messages accumulate in a
single file. You must erase the contents
of the file when the size is unwieldy.

Default Value: bySize

Element Required
Optional

Description

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-32 Developing Web Applications, Servlets, and JSPs for WebLogic Server

number-of-files-limited Optional Specifies whether the number of files that
this server instance creates to store old
messages should be limited. (Requires that
you specify a rotation-type of
bySize). After the server reaches this limit,
it overwrites the oldest file. If you do not
enable this option, the server creates new
files indefinitely and you must clean up these
files as you require.

If you enable
number-of-files-limited by
setting it to true, the server refers to your
rotationType variable to determine how
to rotate the log file. Rotate means that you
override your existing file instead of creating
a new file. If you specify false for
number-of-files-limited, the
server creates numerous log files rather than
overriding the same one.

Value Range: true | false

Default Value: false

file-count Optional The maximum number of log files that the
server creates when it rotates the log. This
number does not include the file that the
server uses to store current messages.
(Requires that you enable
number-of-files-limited.)

Default Value: 7

file-size-limit Optional The size that triggers the server to move log
messages to a separate file. (Requires that
you specify a rotation-type of
bySize.) After the log file reaches the
specified minimum size, the next time the
server checks the file size, it will rename the
current log file as FileName.n and create
a new one to store subsequent messages.

Default Value: 500

Element Required
Optional

Description

l i brar y- re f

Developing Web Applications, Servlets, and JSPs for WebLogic Server B-33

library-ref
The library-ref element references a library module, which is intended to be used as a Web
application library in the current Web application.

Example:

<library-ref>

<library-name>WebAppLibraryFoo</library-name>

<specification-version>2.0</specification-version>

rotate-log-on-startup Optional Specifies whether a server rotates its log file
during its startup cycle.

Value Range: true | false

Default Value: true

log-file-rotation-dir Optional Specifies the directory path where the
rotated log files will be stored.

rotation-time Optional The start time for a time-based rotation
sequence of the log file, in the format k:mm,
where k is 1-24. (Requires that you specify a
rotation-type of byTime.) At the
specified time, the server renames the
current log file. Thereafter, the server
renames the log file at an interval that you
specify in file-time-span.

If the specified time has already past, then
the server starts its file rotation immediately.

By default, the rotation cycle begins
immediately.

file-time-span Optional The interval (in hours) at which the server
saves old log messages to another file.
(Requires that you specify a
rotation-type of byTime.)

Default Value: 24

Element Required
Optional

Description

weblog ic . xml Dep lo yment Desc r ip to r E lements

B-34 Developing Web Applications, Servlets, and JSPs for WebLogic Server

<implementation-version>8.1beta</implementation-version>

<exact-match>false</exact-match>

</library-ref>

Only the following sub-elements are relevant to Web applications: library-name,
specification-version, implementation-version, and exact-match.

You can define the following elements within the library-ref element.

Backwards Compatibility Flags
Several backwards compatibility flags have been added to allow you to restore behavior seen in
releases prior to WebLogic Server 9.0. For a complete list and description of these flags and for all
information about Web Application, JSP, and Servlet backwards compatibility, see Compatibility with
Previous Releases in Upgrading WebLogic Application Environments.

Web Container Global Configuration
To configure your Web container at a global level, use the WebAppContainerMBean. For
information on the WebAppContainerMBean attributes and how to use them to specify
domain-wide defaults for all of your Web applications, see the WebAppContainerMBean at
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/WebAppContainerMBean.html.

Element Required
Optional

Description

library-name Required Provides the library name for the library
module reference. The default value is
null.

specification-version Required Provides the specification version for the
library module reference. The default value
is 0. (This is a float.)

implementation-version Required Provides the implementation version for the
library module reference. The default value
is null.

exact-match Required The default value is false.

../../../common/docs90/upgrade/compat.html
../../../common/docs90/upgrade/compat.html
../../../common/docs90/upgrade/index.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/WebAppContainerMBean.html

Developing Web Applications, Servlets, and JSPs for WebLogic Server C-1

A P P E N D I X C

Web Application Best Practices

The following sections contain BEA best practices for designing, developing, and deploying
WebLogic Web applications and application resources:

“CGI Best Practices” on page C-2

“Servlet Best Practices” on page C-2

“JSP Best Practices” on page C-3

Web App l icat ion Bes t P rac t ices

C-2 Developing Web Applications, Servlets, and JSPs for WebLogic Server

CGI Best Practices
The following are CGI best practices with respect to calling a subscript:

You can use sh subscript.sh for both exploded (unarchived) Web applications and
archived Web applications (WAR files).

You can use sh $PWD/subscript.sh for both exploded (unarchived) Web applications
and archived Web applications (WAR files).

You can use sh $DOCUMENT_ROOT/$PATH/subscript.sh for exploded (unarchived)
Web applications. You cannot use it, however, for archived Web applications (WAR files).
This is due to the fact that the document root might point you to the root of your WAR file,
and the scripting language cannot open that WAR file and locate the subscript.sh
needed for execution. This is true not only for sh, but for any scripting language.

Servlet Best Practices
Consider the following best practices when writing HTTP servlets:

Compile your servlet classes into the WEB-INF/classes directory of your Web
Application.

Make sure your servlet is registered in the J2EE standard Web applications deployment
descriptor (web.xml).

When responding to a request for a servlet, WebLogic Server checks the time stamp of the
servlet class file prior to applying any filters associated with the servlet, and compares it to
the servlet instance in memory. If a newer version of the servlet class is found, WebLogic
Server re-loads all servlet classes before any filtering takes place. When the servlets are
re-loaded, the init() method of the servlet is called. All servlets are reloaded when a
modified servlet class is discovered due to the possibility that there are interdependencies
among the servlet classes.

You can set the interval (in seconds) at which WebLogic Server checks the time stamp with
the Servlet Reload attribute. This attribute is set on the Files tab of your Web
Application, in the Administration Console. If you set this attribute to zero, WebLogic
Server checks the time stamp on every request, which can be useful while developing and
testing servlets but is needlessly time consuming in a production environment. If this
attribute is set to -1, WebLogic Server does not check for modified servlets.

JSP Bes t P rac t ices

Developing Web Applications, Servlets, and JSPs for WebLogic Server C-3

JSP Best Practices
For a complete explanation on how to avoid JSP recompilation, see Avoiding Unnecessary JSP
Compilation and specifically the section called Scenarios that Cause Recompilation of JSPs.

Best Practice When Subclassing ServletResponseWrapper
J2EE provides the class javax.servlet.ServletResponseWrapper, which you can subclass
in your Servlet to adapt its response.

BEA recommends that if you create your own response wrapper by subclassing the
ServletResponseWrapper class, you should always override the flushBuffer() and
clearBuffer() methods. Not doing so might result in the response being committed
prematurely.

http://dev2dev.bea.com/products/wlserver81/articles/JSP_reloaded.jsp

Web App l icat ion Bes t P rac t ices

C-4 Developing Web Applications, Servlets, and JSPs for WebLogic Server

	Contents
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	A.
	B.
	C.

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Examples for the Web Application Developer
	Avitek Medical Records Application (MedRec)
	Web Application Examples in the WebLogic Server Distribution

	Understanding Web Applications, Servlets, and JSPs
	The Web Applications Container
	Servlets
	What You Can Do with Servlets
	Servlet Development Key Points
	Servlets and J2EE

	Java Server Pages
	What You Can Do with JSPs
	Overview of How JSP Requests Are Handled
	JSPs and J2EE

	Web Application Developer Tools
	Ant Tasks to Create Skeleton Deployment Descriptors
	XML Editors

	Web Application Security
	P3P Privacy Protocol

	Creating and Configuring Web Applications
	Directory Structure
	Accessing Information in WEB-INF
	Directory Structure Example

	Main Steps to Create and Configure a Web Application
	Step One: Create the Enterprise Application Wrapper
	Step Two: Create the Web Application
	Step Three: Creating the build.xml File
	Step Four: Execute the Split Development Directory Structure Ant Tasks

	Configuring How a Client Accesses a Web Application
	Configuring Virtual Hosts for Web Applications
	Configuring a Channel-based Virtual Host
	Configuring a Host-based Virtual Host

	Targeting Web Applications to Virtual Hosts
	Loading Servlets, Context Listeners, and Filters
	Shared J2EE Web Application Libraries

	Creating and Configuring Servlets
	Configuring Servlets
	Servlet Mapping

	Setting Up a Default Servlet
	Servlet Initialization Attributes
	Writing a Simple HTTP Servlet
	Advanced Features
	Complete HelloWorldServlet Example

	Creating and Configuring JSPs
	Configuring Java Server Pages (JSPs)
	Registering a JSP as a Servlet
	Configuring JSP Tag Libraries
	Configuring Welcome Files
	Customizing HTTP Error Responses
	Determining the Encoding of an HTTP Request
	Mapping IANA Character Sets to Java Character Sets
	Configuring Implicit Includes at the Beginning and End of JSPs
	Configuring JSP Property Groups
	JSP Property Group Rules
	What You Can Do with JSP Property Groups

	Writing JSP Documents Using XML Syntax
	How to Use JSP Documents
	Important Information about JSP Documents

	Configuring Resources in a Web Application
	Configuring Resources in a Web Application
	Configuring Resources
	Referencing External EJBs
	More about the ejb-ref* Elements
	Referencing Application-Scoped EJBs
	Serving Resources from the CLASSPATH with the ClasspathServlet
	Using CGI with WebLogic Server
	Configuring WebLogic Server to Use CGI
	Requesting a CGI Script
	CGI Best Practices

	Servlet Programming Tasks
	Initializing a Servlet
	Initializing a Servlet when WebLogic Server Starts
	Overriding the init() Method

	Providing an HTTP Response
	Retrieving Client Input
	Methods for Using the HTTP Request
	Example: Retrieving Input by Using Query Parameters
	Securing Client Input in Servlets
	Using a WebLogic Server Utility Method

	Using Cookies in a Servlet
	Setting Cookies in an HTTP Servlet
	Retrieving Cookies in an HTTP Servlet
	Using Cookies That Are Transmitted by Both HTTP and HTTPS
	Application Security and Cookies

	Response Caching
	Initialization Parameters

	Using WebLogic Services from an HTTP Servlet
	Accessing Databases
	Connecting to a Database Using a DataSource Object
	Using a DataSource in a Servlet

	Connecting Directly to a Database Using a JDBC Driver

	Threading Issues in HTTP Servlets
	Dispatching Requests to Another Resource
	Forwarding a Request
	Including a Request
	RequestDispatcher and Filters

	Proxying Requests to Another Web Server
	Overview of Proxying Requests to Another Web Server
	Setting Up a Proxy to a Secondary Web Server
	Sample Deployment Descriptor for the Proxy Servlet

	Clustering Servlets
	Referencing a Servlet in a Web Application
	URL Pattern Matching
	The SimpleApacheURLMatchMap Utility

	Using Sessions and Session Persistence
	Overview of HTTP Sessions
	Setting Up Session Management
	HTTP Session Properties
	Session Timeout
	Configuring WebLogic Server Session Cookies
	Configuring Application Cookies That Outlive a Session
	Logging Out and Ending a Session
	Enabling Web applications to share the same session

	Configuring Session Persistence
	Attributes Shared by Different Types of Session Persistence
	Using Memory-based, Single-server, Non-replicated Persistent Storage
	Using File-based Persistent Storage
	Using a Database for Persistent Storage (JDBC persistence)
	Configuring JDBC-based Persistent Storage
	Caching and Database Updates for JDBC Session Persistence

	Using Cookie-Based Session Persistence

	Using URL Rewriting Instead of Cookies
	Coding Guidelines for URL Rewriting
	URL Rewriting and Wireless Access Protocol (WAP)

	Session Tracking from a Servlet
	A History of Session Tracking
	Tracking a Session with an HttpSession Object
	Lifetime of a Session
	How Session Tracking Works
	Detecting the Start of a Session
	Setting and Getting Session Name/Value Attributes
	Logging Out and Ending a Session
	Using session.invalidate() for a Single Web Application
	Implementing Single Sign-On for Multiple Applications
	Exempting a Web Application for Single Sign-on

	Configuring Session Tracking
	Using URL Rewriting Instead of Cookies
	URL Rewriting and Wireless Access Protocol (WAP)
	Making Sessions Persistent
	Scenarios to Avoid When Using Sessions
	Use Serializable Attribute Values
	Configuring Session Persistence

	Configuring a Maximum Limit on In-memory Servlet Sessions
	Enabling Session Memory Overload Protection

	Application Events and Event Listener Classes
	Overview of Application Event Listener Classes
	Servlet Context Events
	HTTP Session Events
	Servlet Request Events
	Configuring an Event Listener Class
	Writing an Event Listener Class
	Templates for Event Listener Classes
	Servlet Context Event Listener Class Example
	HTTP Session Attribute Event Listener Class Example

	Additional Resources

	WebLogic JSP Reference
	JSP Tags
	Reserved Words for Implicit Objects
	Directives for WebLogic JSP
	Using the page Directive to Set Character Encoding
	Using the taglib Directive

	Declarations
	Scriptlets
	Expressions
	Example of a JSP with HTML and Embedded Java
	Actions
	Using JavaBeans in JSP
	Instantiating the JavaBean Object
	Doing Setup Work at JavaBean Instantiation
	Using the JavaBean Object
	Defining the Scope of a JavaBean Object

	Forwarding Requests
	Including Requests

	JSP Expression Language
	Expressions and Attribute Values
	Expressions and Template Text

	JSP Expression Language Implicit Objects
	JSP Expression Language Literals and Operators
	Literals
	Errors, Warnings, Default Values
	Operators
	Operator Precedence

	JSP Expression Language Reserved Words
	JSP Expression Language Named Variables
	Securing User-Supplied Data in JSPs
	Using a WebLogic Server Utility Method

	Using Sessions with JSP
	Deploying Applets from JSP
	Using the WebLogic JSP Compiler
	JSP Compiler Syntax
	JSP Compiler Options
	Precompiling JSPs

	Filters
	Overview of Filters
	How Filters Work
	Uses for Filters

	Writing a Filter Class
	Configuring Filters
	Configuring a Filter
	Configuring a Chain of Filters

	Filtering the Servlet Response Object
	Additional Resources

	Using WebLogic JSP Form Validation Tags
	Overview of WebLogic JSP Form Validation Tags
	Validation Tag Attribute Reference
	<wl:summary>
	<wl:form>
	<wl:validator>

	Using WebLogic JSP Form Validation Tags in a JSP
	Creating HTML Forms Using the <wl:form> Tag
	Defining a Single Form
	Defining Multiple Forms
	Re-Displaying the Values in a Field When Validation Returns Errors
	Re-Displaying a Value Using the <input> Tag
	Re-Displaying a Value Using the Apache Jakarta <input:text> Tag

	Using a Custom Validator Class
	Extending the CustomizableAdapter Class
	Sample User-Written Validator Class

	Sample JSP with Validator Tags

	Using Custom WebLogic JSP Tags (cache, process, repeat)
	Overview of WebLogic Custom JSP Tags
	Using the WebLogic Custom Tags in a Web Application
	Cache Tag
	Refreshing a Cache
	Flushing a Cache

	Process Tag
	Repeat Tag

	Using the WebLogic EJB to JSP Integration Tool
	Overview of the WebLogic EJB-to-JSP Integration Tool
	Basic Operation
	Interface Source Files
	Build Options Panel
	Troubleshooting
	Using EJB Tags on a JSP Page
	EJB Home Methods
	Stateful Session and Entity Beans
	Default Attributes

	web.xml Deployment Descriptor Elements
	icon
	display-name
	description
	distributable
	context-param
	filter
	filter-mapping
	listener
	servlet
	icon
	init-param
	security-role-ref

	servlet-mapping
	session-config
	mime-mapping
	welcome-file-list
	error-page
	taglib
	resource-env-ref
	resource-ref
	security-constraint
	web-resource-collection
	auth-constraint
	user-data-constraint

	login-config
	form-login-config

	security-role
	env-entry
	ejb-ref
	ejb-local-ref

	weblogic.xml Deployment Descriptor Elements
	description
	weblogic-version
	security-role-assignment
	run-as-role-assignment
	reference-descriptorGroup
	resource-description
	resource-env-description
	ejb-reference-description
	service-reference-description

	session-descriptor
	jsp-descriptor
	auth-filter
	container-descriptor
	check-auth-on-forward
	filter-dispatched-requests-enabled
	redirect-with-absolute-url
	index-directory-enabled
	index-directory-sort-by
	servlet-reload-check-secs
	resource-reload-check-secs
	single-threaded-servlet-pool-size
	session-monitoring-enabled
	save-sessions-enabled
	prefer-web-inf-classes
	default-mime-type
	client-cert-proxy-enabled
	relogin-enabled
	allow-all-roles
	native-io-enabled
	minimum-native-file-size
	disable-implicit-servlet-mapping
	optimistic-serialization
	monitoring-attribute-name

	charset-params
	input-charset
	charset-mapping

	virtual-directory-mapping
	url-match-map
	security-permission
	context-root
	wl-dispatch-policy
	servlet-descriptor
	work-manager
	logging
	library-ref
	Backwards Compatibility Flags
	Web Container Global Configuration

	Web Application Best Practices
	CGI Best Practices
	Servlet Best Practices
	JSP Best Practices
	Best Practice When Subclassing ServletResponseWrapper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

