.."‘

%
z hea’
%

BEAWebLogic
Servere

Configuring and
Managing WehLogic
JDBC

Version 9.0
Revised: October 14, 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AqualLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

1.

Introduction and Roadmap

Document Scope and AUdIienCe.ot v it e 1-1
Guide to this Document e 1-2
Related Documentation e 1-2
JDBC Samples and TutorialS.ttt e 1-3
Avitek Medical Records Application (MedRec) and Tutorials 1-3
JDBC Examples in the WebLogic Server Distribution. 1-3
New and Changed JDBC Features in ThisRelease.............................. 1-3
JDBC 3.0 SUPPOTt « o oottt e 1-4
RowSets Enhancements. 1-5
Modular Deployment of System and Stand-Alone JDBC Resources 1-6
Simplified JDBC Resource Configuration 1-8

Support for the J2EE Management Model (JSR-77)...................... 1-9

Support for Logging Last Resource and Other Transaction Options 1-9

Credential Mapping for WebLogic Server User IDs to Database User IDs . . . 1-10

Other Data Source/Connection Pool Enhancements. 1-10
Multi Data Source Enhancements 1-12
New WLST Script Examples for JDBC Administration. 1-13
JDBC Monitoring and Diagnostics Enhancements. 1-13
Updated WebLogic Type 4 IDBC Driversc.coviiiiiao.. .. 1-15

Removed, Deprecated, and Changed JDBC Features, Methods, Interfaces, and
MBeans. 1-15

Configuring and Managing WebLogic JDBC iii

2. Configuring WebLogic JDBC Resources

Understanding JDBC Resources in WebLogic Server 2-1
Ownership of Configured JDBC Resourcesoviiiinininennnnnn .. 2-3
JDBC Configuration Files. 2-3
JDBC System Modules 2-4
JDBC Application Modules. i 2-6
JDBC Module File Naming Requirements 2-7
JDBC Modules in Versioned Applications, 2-7
JDBC Schema 2-8
JMX and WLST Access for JDBC Resourcescoiiiinnnennn... 2-8
JDBC MBeans for System Resourcesovuirninennnnenan .. 2-8
JDBC Management Objects in the J2EE Management Model (JSR-77 Support). .. 2-9
Using WLST to Create JDBC System Resources 2-10
How to Modify and Monitor JDBC Resourcesccovuon.... 2-12
Best Practices when Using WLST to Configure JDBC...................... 2-13
Overview of Clustered JDBC 2-13

3. Configuring JDBC Data Sources

Understanding JDBC Data Sources 3-1
Creating a JDBC Data SOUICE.ttt et 3-2
General Data Source Options.ttt 3-3
Selecting a JDBC DIIVETottt e 3-3
JDBC Data Source Names. i 33
Binding a Data Source to the JNDI Tree with Multiple Names. 3-4
Transaction OPHONSottt ettt e ettt 3-4
Enabling Support for Global Transactions with a Non-XA JDBC Driver. 3-5
Understanding the Logging Last Resource Transaction Option 3-6
Advantages to Using the Logging Last Resource Optimization. 3-7

Configuring and Managing WebLogic JDBC

Enabling the Logging Last Resource Transaction Optimization 3-8

Programming Considerations and Limitations for LLR Data Sources. 3-8
Administrative Considerations and Limitations for LLR Data Sources. 3-10
Understanding the Emulate Two-Phase Commit Transaction Option 3-11

Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA

DIIVeT . . o 3-12
Connection Pool Features i 3-13
Selecting a JDBC DIIVET ... oottt et e e 3-14
Enabling JDBC Driver-Level Features., 3-14
Database Password Handling in a JDBC Data Source Connection Pool. 3-15
Configuring Credential Mapping for a Data Source 3-15
Initializing Database Connections with SQL Code 3-15
Tuning Data Source Connection Pool Options 3-16
Increasing Performance with the Statement Cache 3-17
Statement Cache Algorithms. 3-17
Statement Cache Size 3-18
Usage Restrictions for the Statement Cache 3-18
Connection Testing Options for a Data Source 3-20
Database Connection Testing Semantics.covueunen.... 3-21
Database Connection Testing Configuration Recommendations 3-24
Default Test Table Name. oot 3-24
Enabling Connection Creation Retries. 3-25
Enabling Connection Requests to Wait for a Connection 3-26
Connection Reserve Timeout 3-26
Limiting the Number of Waiting Connection Requests 3-26
Automatically Recovering Leaked Connections 3-27
Avoiding Server Lockup with the Correct Number of Connections 3-27
Limiting Statement Processing Time with Statement Timeout 3-28

Configuring and Managing WebLogic JDBC

v

Using Pinned-To-Thread Property to Increase Performance.................. 3-28

Changes to Connection Pool Administration Operations When PinnedToThread is
Enabled 3-29

Additional Database Resource Costs When PinnedToThread is Enabled 3-29

Deploying Data Sources on Servers and Clusters.ooonon... 3-30
Minimizing Server Startup Hang Caused By an Unresponsive Database 3-30
Securing JDBC Data Sourcesooiit i 3-30
Setting Security Policies for JDBC Resources 3-31
Security Roles for JDBCMBeansovtiiiiniiiineen... 3-31
JDBC Domain Configuration MBeans.c..couiinnen. . 3-31

JDBC System Module MBeansoiiuiininennnn.. 3-31

JDBC Data Source Factories (Deprecated)., 3-32

4. Configuring JDBC Multi Data Sources

Multi Data Source Features. 4-1
Creating and Configuring Multi Data Sources 4-2
Choosing the Multi Data Source Algorithm 4-2
Failover 4-2
Load Balancing i 4-3
Multi Data Source Fail-Over Limitations and Requirements 4-3
Test Connections on Reserve to Enable Fail-Over 4-3

No Fail-Over for In-Use Connectionsouvtenennenenannenen .. 4-3
Multi Data Source Failover Enhancements. 4-4
Connection Request Routing Enhancements When a Data Source Fails 4-4

Automatic Re-enablement on Recovery of a Failed Data Source within a Multi Data

SOUICE . . o et 4-5
Enabling Failover for Busy Data Sources in a Multi Data Source 4-5
Controlling Multi Data Source Failover with a Callback 4-6

vi Configuring and Managing WebLogic JDBC

Callback Handler Requirementst inennnnan .. 4-6

Callback Handler Configuration.oiitiininennnnan .. 4-6

How It Works—Failover. i i, 4-7

Controlling Multi Data Source Failback witha Callback 4-8

How It Works—Failback. i, 4-8

Deploying JDBC Multi Data Sources on Servers and Clusters. 4-10

5. Using Third-Party JDBC Drivers with WebLogic Server

Third-Party JDBC Drivers Installed with WebLogic Server. 5-1

Setting the Environment for a Type-4 Third-Party JDBC Driver................... 5-2
Globalization Support for the Oracle 10g Thin Driver 5-2

Using the Oracle Thin Driverin DebugMode 5-3

6. Monitoring WebLogic JDBC Resources

Viewing Runtime Statistics. 6-2
Data Source StatiStics.o vttt 6-2
Prepared Statement Cache Statistics.t 6-2

Collecting Profile Information. 6-2
Profile TYpes. . . . oot 6-2

Connection Usage (PROFILE_ TYPE CONN USAGE STR)............. 6-3

Connection Reservation Wait (PROFILE TYPE CONN_RESV_WAIT STR) 6-3
Connection Reservation Failed (PROFILE TYPE CONN_RESV_FAIL STR)6-4
Connection Leak (PROFILE TYPE CONN LEAK STR) 6-4
Connection Last Usage (PROFILE_ TYPE CONN_LAST USAGE STR)... 6-4
Connection Multithreaded Usage (PROFILE_ TYPE CONN_MT USAGE _STR)

6-5
Statement Cache Entry (PROFILE_TYPE_STMT CACHE_ENTRY STR).. 6-5
Statements Usage (PROFILE_TYPE STMT USAGE STR).............. 6-5
Accessing Diagnostic Data. i 6-6

Configuring and Managing WebLogic JDBC vii

Callbacks for Monitoring Driver-Level Statistics 6-7

Debugging JDBC Data SOUICES ov vt ettt 6-7
Enabling Debugging i 6-7
Enable Debugging Using the Command Line 6-7

Enable Debugging Using the WebLogic Server Administration Console 6-7

Enable Debugging Using the WebLogic Scripting Tool. 6-8
Changes to the config.xml File............. 6-10

JDBC Debugging SCOPES. . ..o v vttt e et 6-10
Request Dyeing e e 6-11

/. Managing WebLogic JDBC Resources

Testing Data Sources and Database Connections.cooviuvinnen. .. 7-1
Managing the Statement Cache fora DataSource 7-2

Clearing the Statement Cache for a Data Source............. 7-2

Clearing the Statement Cache for a Single Connection. 7-2
Shrinking a Data SOUICEottt e e e et 7-3
Resetting a Data SOUICEottt e e et 7-4
Suspending a Data SOUICE.ttt e 7-4
Resuming a Data Source.t 7-5
Shutting Down a Data Source.ot 7-5
Restartinga Data Source.t 7-5

A. Configuring JDBC Application Modules for Deployment

Packaging a JDBC Module with an Enterprise Application: Main Steps. A-1
Creating Packaged JDBC Modules. i A-2
Creating a JDBC Data Source Module Using the Administration Console A-2
JDBC Packaged Module Requirements. A-3
JDBC Application Module Limitations., . A-3

viii Configuring and Managing WebLogic JDBC

Creating a JDBC Data Source Module., A-4

Creating a JDBC Multi Data Source Module., A-5
Encrypting Database Passwords ina JDBCModule A-6
Application Scoping for a Packaged JDBCModule A-6
Referencing a JDBC Module in J2EE Descriptor Files. A-7
Packaged JDBC Module References in weblogic-application.xml A-8
Packaged JDBC Module References in Other Descriptors A-9
Packaging an Enterprise Application witha JDBCModule...................... A-10
Deploying an Enterprise Application witha JDBC Module. A-10
Getting a Database Connection from a Packaged JDBC Module. A-10
B. Using WebLogic Server with Oracle RAC

Overview of Oracle Real Application Clusters., B-2
Oracle RAC Scalability with WebLogic Server. B-3
Oracle RAC Availability with WebLogic Server. B-3
Oracle RAC Load Balancing with WebLogic Server. B-3
Oracle RAC Failover with WebLogic Server. B-4
Environment e B-4
Hardware Requirements.ottt B-4
WebLogic Server Clusterttt B-4

Oracle RAC CIUSEETo vttt e e e e e e B-4

Shared Storage.ot B-5
Software Requirements ittt B-5
Configuration Considerations for Oracle. i, B-6
Configuring the Listener Process for Each Oracle RAC Instance B-6
Disabling Remote Listenersttt B-7
Configuration Options in WebLogic Server with Oracle RAC B-8
Choosing a WebLogic Server Configuration for Use with Oracle RAC B-8

Configuring and Managing WebLogic JDBC ix

Required JDBC DIIVerSottt et e e e et e B-9

Configuration Considerations for Failover B-9
Multi Data Source-Managed Failover B-9
Connect-Time Failover. i B-10
Delays During Failover. i i B-10
Failure Handling Walkthrough for Global Transactions. B-12

Using Multi Data Sources with Oracle RAC. B-12
Attributes of a Multi Data Source. i B-14

Using Multi Data Sources with Global Transactions. B-14

Rules for Data Sources within a Multi Data Source Using Global TransactionsB-14

Required Attributes of Data Sources within a Multi Data Source Using Global

Transactions.ttt B-15
Sample Configuration Codet B-16
Using Multi Data Sources without Global Transactions B-18

Attributes of Data Sources within a Multi Data Source Not Using Global

Transactions. v it e B-18

Sample Configuration Codettt B-19
Using Connect-Time Failover with Oracle RAC. B-21
Using Connect-Time Failover without Global Transactions B-23

Attributes of a Connect-Time Failover Configuration without Global Transactions

B-23

Sample Configuration Codettt B-23
XA Considerations and Limitations with Oracle RAC. B-25
Required JDBC Driver Configuration for Use with XA B-25
Oracle 91 RAC XA Requirementso, B-25

A Global Transaction Must Be Initiated, Prepared, and Concluded in the Same
Instance of the RACCluster B-25
Transaction IDs Must Be Unique Within the RAC Cluster B-25

Configuring and Managing WebLogic JDBC

Known Limitations When Using Oracle 91 RAC with WebLogic Server........ B-26

Potential for Inconsistent Transaction Completion (Data Loss) in Some Failure

Conditionsttt e B-26

Potential for Data Deadlocks in Some Failure Scenarios B-27
Potential for Transactions Completed Out of Sequence B-27

Known Issue Occurring After Database Server Crash....................... B-28
JDBC Store Recovery with Oracle RAC. B-28
Configuring a JDBC Store for Use with Oracle RAC B-28
Automatic Retry o B-28

Configuring and Managing WebLogic JDBC Xi

Xii Configuring and Managing WebLogic JDBC

Introduction and Roadmap

This section describes the contents and organization of this guide—Configuring and Managing
WebLogic JDBC.

e “Document Scope and Audience” on page 1-1
e “Guide to this Document” on page 1-2

e “Related Documentation” on page 1-2

e “JDBC Samples and Tutorials” on page 1-3

e “New and Changed JDBC Features in This Release” on page 1-3

Document Scope and Audience

This document is a resource for software developers and system administrators who develop and
support applications that use the Java Database Connectivity (JDBC) API. It also contains
information that is useful for business analysts and system architects who are evaluating
WebLogic Server. The topics in this document are relevant during the evaluation, design,
development, pre-production, and production phases of a software project.

This document does not address specific JDBC programming topics. For links to WebLogic
Server documentation and resources for this topic, see “Related Documentation” on page 1-2.

It is assumed that the reader is familiar with J2EE and JDBC concepts. This document
emphasizes the value-added features provided by WebLogic Server JDBC.

Configuring and Managing WebLogic JDBC 1-1

Introduction and Roadmap

Guide to this Document

e This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide and lists new features in the current release.

e Chapter 2, “Configuring WebLogic JDBC Resources,” which explains WebLogic JDBC
configuration.

e Chapter 3, “Configuring JDBC Data Sources,” which describes WebLogic JDBC data
source configuration.

e Chapter 4, “Configuring JDBC Multi Data Sources,” which describes WebLogic JDBC
multi data source configuration.

e Chapter 5, “Using Third-Party JDBC Drivers with WebLogic Server,” which describes how
to use JDBC driver from other sources in your WebLogic JDBC configuration.

e Chapter 6, “Monitoring WebLogic JDBC Resources,” which describes how to monitor
JDBC resources, gather profile information about database connection usage, and enable
JDBC debugging.

e Chapter 7, “Managing WebLogic JDBC Resources,” which describes how to administer
data sources.

e Chapter 8, “Using JIMX and WLST to Manage JDBC Resources,”, provides information on
how to use JIMX and WLST to create and manage JDBC system resources.

e Appendix A, “Configuring JDBC Application Modules for Deployment,” which describes
how to package a WebLogic JDBC module with your enterprise application.

e Appendix B, “Using WebLogic Server with Oracle RAC,” which describes how to
configure WebLogic Server for use with Oracle Real Application Clusters.

Related Documentation

This document contains JDBC-specific configuration and administration information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

e Programming WebLogic JDBC is a guide to JDBC API programming with WebLogic
Server.

e Developing WebLogic Server Applications is a guide to developing WebLogic Server
applications.

1-2 Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/jdbc/index.html
http://e-docs.bea.com/wls/docs90/programming/index.html

JDBC Samples and Tutorials

e Deploying WebLogic Server Applications is the primary source of information about
deploying WebLogic Server applications in development and production environments.

JDBC Samples and Tutorials

In addition to this document, BEA Systems provides a variety of JDBC code samples and
tutorials that show JDBC configuration and API use, and provide practical instructions on how
to perform key JDBC development tasks.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the wL,_HOME\ samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Platform.

JDBC Examples in the WebLogic Server Distribution

WebLogic Server 9.0 optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where WL,_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server 9.0 Start menu.

New and Changed JDBC Features in This Release

The following sections describe new features and changes for JDBC in WebLogic Server 9.0:

e J2EE 1.4 Support:
— “JDBC 3.0 Support” on page 1-4

— “RowSets Enhancements” on page 1-5

e Configuration Enhancements:

— “Modular Deployment of System and Stand-Alone JDBC Resources” on page 1-6

Configuring and Managing WebLogic JDBC 1-3

message URL http://e-docs.bea.com/wls/docs90/deployment/index.html

Introduction and Roadmap

— “Simplified JDBC Resource Configuration” on page 1-8
— “Support for the J2EE Management Model (JSR-77)” on page 1-9
e “Support for Logging Last Resource and Other Transaction Options” on page 1-9
e “Credential Mapping for WebLogic Server User IDs to Database User IDs” on page 1-10
e Other Data Source Enhancements:
— “SQL Statement Timeout Enhancements for Pooled JDBC Connections” on page 1-10
— “Connection Testing Enhancements” on page 1-10
— “Clean Server Shutdown When Database Connections are In Use” on page 1-11
— “PinnedToThread Property” on page 1-11
— “Support for Oracle Virtual Private Databases” on page 1-11
e Other Multi Data Source Enhancements:
— “XA Support in Multi Data Sources” on page 1-12
— “JDBC Multi Data Source Failover Enhancements” on page 1-13
e “JDBC Monitoring and Diagnostics Enhancements” on page 1-13
e “Updated WebLogic Type 4 JDBC Drivers” on page 1-15
e “Removed, Deprecated, and Changed JDBC Features, Methods, Interfaces, and MBeans”
on page 1-15

JDBC 3.0 Support

WebLogic Server 9.0 is compliant with the JDBC 3.0 specification, which includes support for
the following new features:

e Savepoints

e Parameter metadata retrieval for prepared statements

Auto-generated key retrieval

Multiple open ResultSet objects

Passing parameters to CallableStatement objects by name

Holdable cursors

1-4 Configuring and Managing WebLogic JDBC

New and Changed JDBC Features in This Release

BOOLEAN data type

Internal updates to the data in Blob and Clob objects

Retrieving and updating the object referenced by a Ref object

Updating columns containing BLOB, CLOB, ARRAY and REF types

DATALINK/URL data type

Transform groups and type mapping

DatabaseMetadata API enhancements

For more information, see the Java JDBC technology page on the Sun Web site at
http://java.sun.com/products/jdbc/.

RowSets Enhancements

In WebLogic Server 9.0, the RowSets implementation was enhanced to comply with the new
JDBC RowSet Implementations Specification (JSR-114) and to provide extensions to the
specification.

Support for JSR-114

The WebLogic Server RowSets implementation fully complies with the JDBC RowSet
Implementations Specification (JSR-114), which includes support for the following objects:

e CachedRowSets—disconnected rowsets.

FilteredRowSets—cached rowsets in which available rows are determined by a filter.

WebRowSets—cached rowsets that can read and write rowset data in XML format.

JoinRowSets—rowsets built with a SQL JOIN that joins data from any disconnected
rowset.

JdbcRowSets—connected rowsets.

SyncResolver—a cached rowset that implements the
javax.sqgl.rowset.spi.SyncResolver interface and is used to resolve conflicts that
occur when data updates in the database conflict with data updates in the rowset.

For more information about rowsets, see the Java JDBC technology page on the Sun Web site at
http://java.sun.com/products/jdbc/. For more information about using rowsets and the WebLogic

Configuring and Managing WebLogic JDBC 1-5

http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/

Introduction and Roadmap

1-6

Server RowSets implementation, see “Using RowSets with WebLogic Server” in Programming
WebLogic JDBC.

WebLogic RowSet Extensions and Enhancements

WebLogic Server 9.0 includes the following extensions to rowsets:

e WLCachedRowSets—extends CachedRowSets, FilteredRowSets, WebRowSets, and
SortedRowSets. WLCachedRowSets can be interchangeably used as any of the standard
rowset types that it extends. It includes convenience methods that help make using rowsets
easier. WLCachedRowSets also include methods for setting optimistic concurrency options
and data synchronization options.

e SharedRowSets—extends CachedRowSets so that additional CachedRowSets can be
created for use in other threads based on the data in an original CachedRowSet. Each
SharedRowSet is a shallow copy of the original rowset (with references to data in the
original rowset instead of a copy of the data) with its own context (cursor, filter, sorter, and
pending changes). Using SharedRowSets can increase performance by reducing the
number of database round-trips required by an application.

e SortedRowSets—extends CachedRowSets so that rows in a CachedRowSet can be sorted
in memory rather than depending on the database management system for sort processing.
Using SortedRowSets can increase application performance by reducing the number of
database round-trips.

e SQL-style filter—an implementation of the javax.sqgl.rowset.Predicate interface.
that you can use to define a filter for a FilteredRowSet using SQL-like WHERE clause
syntax.

For more information about using JDBC RowSets and the WebLogic Server RowSets
implementation, see “Using RowSets with WebLogic Server” in Programming WebLogic JDBC.

Modular Deployment of System and Stand-Alone JDBC Resources

JDBC configuration in WebLogic Server 9.0 is now stored in XML documents that conform to
the new weblogic-jdbce.xsd schema. You create and manage JDBC resources either as system
modules, similar to the way they were managed prior to version 9.0, or as application modules.
JDBC application modules are a WebLogic-specific extension of J2EE modules and can be
deployed either within a J2EE application or as stand-alone modules.

With modular deployment of JDBC resources, you can migrate your application and the required
JDBC configuration from environment to environment, such as from a testing environment to a

Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/jdbc/rowsets.html
http://e-docs.bea.com/wls/docs90/jdbc/rowsets.html

New and Changed JDBC Features in This Release

production environment, without opening an EAR file and without extensive manual JDBC
reconfiguration.

JDBC System Modules

An Administrator can create JDBC resources directly using the Administration Console or using
WLST, similar to the way resources were created prior to WebLogic Server 9.0. JDBC resources
created this way are stored as system resource modules in the config/jdbc subdirectory of the
domain directory, and are referenced in the domain’s config.xml file. After they are created,
these JDBC resources are also accessible as a JDBCSystemResourceMBean through IMX.

System modules are globally available for targeting to servers and clusters configured in the
domain, and therefore are available to all applications deployed on the same targets and to client
applications. System resource modules are owned by the Administrator, who can delete, modify,
or add similar resources at any time.

Application Modules

JDBC resources can also be managed as application modules, similar to standard J2EE modules.
A JDBC descriptor can be deployed as a standalone resource using the weblogic.Deployer
utility, in which case the resource is available to the server or cluster targeted during the
deployment process. JDBC resources deployed in this manner can be reconfigured using the
Administration Console, but are unavailable through JMX or WLST.

Packaged JDBC Resource Modules

Resource modules can also be included as part of an Enterprise Application as a packaged
module. Packaged modules are bundled with an EAR or exploded EAR directory, and are
referenced in the weblogic-application.xml deployment descriptor. The resource module is
deployed along with the Enterprise Application, and can be configured to be available only to the
enclosing application or to all applications. Using packaged modules ensures that an application
always has access to required resources and simplifies the process of moving the application into
new environments.

In contrast to system resource modules, packaged modules are owned by the developer who
created and packaged the module, rather than the Administrator who deploys the module. This
means that the Administrator has more limited control over packaged modules. When deploying
a resource module, an Administrator can change resource properties that were specified in the
module, but the Administrator cannot add or delete resources. (As with other J2EE modules,
deployment configuration changes for a resource module are stored in a deployment plan for the
module, leaving the original module untouched.)

Configuring and Managing WebLogic JDBC 1-1

Introduction and Roadmap

1-8

JDBC Schema

In support of the new modular deployment model for JDBC resources in WebLogic Server 9.0,
BEA now provides a schema for WebLogic JDBC objects. When you create JDBC resource
modules (descriptors), the modules must conform to the schema. IDEs and other tools can
validate JDBC resource modules based on the schema.

Simplified JDBC Resource Configuration

In WebLogic Server 9.0, the number of JDBC resource types was reduced to simplify JDBC
configuration and to reduce the likelihood of configuration errors. Instead of configuring a JDBC
connection pool and then configuring a data source or tx data source to point to the connection
pool and bind to the JNDI tree, you configure a data source that encompasses a connection pool.

Note: Because of the new configuration design, you can no longer have multiple data sources
that point to a single connection pool. Instead, you can create additional data sources,
each with its own pool of connections, or you can bind a single data source to the JNDI
tree with multiple names. See “Binding a Data Source to the JNDI Tree with Multiple
Names” on page 3-4 for more information.

MultiPool configuration has also been simplified in WebLogic Server 9.0. MultiPools are
replaced by multi data sources. Like MultiPools, multi data sources include a list of other JDBC
resources. However, in this release you do not have to configure a separate data source to point
to a multi data source to bind it to the JNDI tree. Also, if you configure the multi data source
through the Administration Console, you can configure the multi data source and all
encompassed data sources in one step.

As part of the JDBC resource redefinition, some new MBeans have been introduced and others

have been deprecated:

o JDBCSystemResourceMBeanfreplaceS the JDBCConnectionPoolMBean,
JDBCMultiPoolMBean, and JDBCTxDataSourceMBean types, which are now deprecated.

® JDBCDataSourceRuntimeMBean—replaces the JDBCConnectionPoolRuntimeMBean
type, which is now deprecated.

For more information about configuring JDBC resources, see “Configuring WebLogic JDBC
Resources” on page 2-1.

Configuring and Managing WebLogic JDBC

New and Changed JDBC Features in This Release

Support for the J2EE Management Model (JSR-77)

WebLogic Server 9.0 JDBC supports JSR-77, which defines the J2EE Management Model. The
J2EE Management Model is used for monitoring the runtime state of a J2EE Web application
server and its resources. You can access the J2EE Management Model to monitor resources,
including the Weblogic JDBC system as a whole, JDBC drivers loaded into memory, and JDBC
data sources.

For more details, see “JDBC Management Objects in the J2EE Management Model (JSR-77
Support)” on page §-2.

Support for Logging Last Resource and Other Transaction Options

In WebLogic Server 9.0, you can configure a JDBC data source to enable the Logging Last
Resource (LLR) transaction optimization, which enables one non-XA resource to participate in a
global transaction with the same ACID guarantee as XA, and can improve performance compared
to XA.

The LLR optimization can improve performance by:

e Removing the need for an XA JDBC driver to connect to the database. XA JDBC drivers
are typically inefficient compared to non-XA JDBC drivers.

e Reducing the number of processing steps to complete the transaction, which also reduces
network traffic and the number of disk I/Os.

e Removing the need for XA processing at the database level (if the database is the one
non-XA resource).

When a connection from a data source configured for LLR participates in a global transaction,
the WebLogic Server transaction manager calls prepare on all other (XA-compliant) transaction
participants, writes the commit record on the LLR participant in a database table while
committing the transaction on the LLR participant as a one-phase commit, then calls commit on
all other transaction participants.

The Logging Last Resource optimization maintains data integrity by writing the transaction log
on the LLR participant. If the transaction fails during the one-phase commit, the WebLogic
Server transaction manager will roll back the transaction on all other transaction participants.

For more information about the Logging Last Resource option, see“Understanding the Logging
Last Resource Transaction Option” on page 3-6.

Configuring and Managing WebLogic JDBC 1-9

Introduction and Roadmap

1-10

Credential Mapping for WebLogic Server User IDs to Database User IDs

Credential mapping for a JDBC data source is the process in which WebLogic Server user IDs
are mapped to database user IDs. If credential mapping is enabled on the data source, when an
application requests a database connection from the data source, WebLogic Server determines the
current WebLogic Server user ID and then sets the mapped database ID as a light-weight client
ID on the database connection.

This feature relies on features in the JDBC driver and DBMS. It is only supported for use with
Oracle and DB2 databases and with the Oracle Thin and DB2 UDB JDBC drivers, respectively.

For more information, see “Configuring Credential Mapping for a Data Source” on page 3-15.

Other Data Source/Connection Pool Enhancements

SQL Statement Timeout Enhancements for Pooled JDBC Connections

In WebLogic Server 9.0, the following attributes were added to JDBC data source pool of
connections to enable you to limit the amount of time that a statement can execute on a pooled
database connection:

e StatementTimeout—The time in seconds after which a statement executing on a pooled
JDBC connection times out. When set to -1, (the default) statements do not time out.

® TestStatementTimeout—The time in seconds after which a statement executing on a
pooled JDBC connection for connection initialization or testing times out. When set to -1,
(the default) statements do not time out.

For more information, see “Limiting Statement Processing Time with Statement Timeout” on
page 3-28.

Connection Testing Enhancements

In WebLogic Server 9.0, along with some internal connection testing enhancements, the
following feature was added to JDBC data source pool of connections to improve the
functionality of database connection testing for pooled connections and to minimize delays in
connection request handling:

® SecondsToTrustAnIdlePoolConnection—Enables WebLogic Server to skip testing a
database connection if the connection was successfully used within the period of time
specified. This feature can increase performance by minimizing database connection
testing.

See “Connection Testing Options for a Data Source” on page 3-20 for more information.

Configuring and Managing WebLogic JDBC

New and Changed JDBC Features in This Release

Clean Server Shutdown When Database Connections are In Use

In WebLogic Server 9.0, the IgnoreInUseConnections attribute was added to JDBC data
sources to enable WebLogic Server to ignore database connections that are in use when shutting
down a server instance. When this attribute is set to true, WebLogic Server ignores any database
connections in use and shuts down the server without issue. When set to false, WebLogic Server
waits for in-use connections to be returned to the pool of connections.

PinnedToThread Property

To minimize the time it takes for an application to reserve a database connection from a data
source and to eliminate contention between threads for a database connection, you can add the
PinnedToThread property in the connection Properties list for the data source, and set its value
to true. See “Using Pinned-To-Thread Property to Increase Performance” on page 3-28.

Support for Oracle Virtual Private Databases
WebLogic Server 9.0 provides support for Oracle Virtual Private Databases (VPDs). A VPD is

means to control access to data based on the user’s identity. WebLogic Server uses JDBC
extensions in the Oracle thin driver to set the user credentials on a database connection.

See “Programming with Oracle Virtual Private Databases” in Programming WebLogic JDBC for
more information.

Multiple JNDI Names for Data Sources

You can configure a data source so that it binds to the JNDI tree with multiple names. You can
use a data source with multiple JNDI names to replace a configuration from previous WebLogic
Server releases in which more than one data source pointed to a single JDBC connection pool.

For more details, see “Binding a Data Source to the JNDI Tree with Multiple Names” on
page 3-4.

Support for XAResource Transaction Timeout

The WebLogic Server Transaction Manager now supports setting a transaction branch timeout
value on a participating XA resource if the resource manager supports the
javax.transaction.xa.XAResource.setTransactionTimeout () method. You may want
to set a transaction branch timeout if you have long-running transactions that exceed the default
timeout value on the XA resource.

For the WebLogic Server Transaction Manager to set the transaction timeout on a JDBC XA
resource, specify a value for the following properties in the JDBC data source:

Configuring and Managing WebLogic JDBC 1-1

http://e-docs.bea.com/wls/docs90/jdbc/thirdparty.html#vpd

Introduction and Roadmap

1-12

® XASetTransactionTimeout—A boolean property. When set to true, the WebLogic Server
Transaction Manager calls XAResource.setTransactionTimeout () before calling
XAResource.start, and passes either the XxATransactionTimeout or the global
transaction timeout in seconds. When set to false, the Transaction Manager does not call
setTransactionTimeout (). The default value is false.

® XATransactionTimeout—The number of seconds to pass as the transaction timeout value
in the XxAResource.setTransactionTimeout () method. When this property is set to 0,
the WebLogic Server Transaction Manager passes the global WebLogic Server transaction
timeout in seconds in the method. The default value for this parameter is 0. If set, this
value should be greater than or equal to the global Weblogic Server transaction timeout.

These properties apply to data sources that use an XA JDBC driver to create database connections
only. They are ignored if a non-XA JDBC driver is used.

When these values are set, the WebLogic Server Transaction Manager calls
XAResource.setTransactionTimeout () as described above. The implementation of the
method in the XA resource manager (for example, an XA JDBC driver) or the XA resource
determines how the value is used. For example, for Oracle, the setTransactionTimeout ()
method sets the Session Timeout (SesTm), which acts as a maximum idle time for a transaction.
The behavior may be different for other XA Resources.

use-xa-data-source-interface Property for Data Sources

In WebLogic Server 9.0, the use-xa-data-source-interface data source property was introduced to
enable you to specify the use of the XA version of a JDBC driver if the driver uses the same
classname for both XA and non-XA use.

Multi Data Source Enhancements

The following multi data source enhancements were added in WebLogic Server 9.0:
e “XA Support in Multi Data Sources” on page 1-12
e “JDBC Multi Data Source Failover Enhancements” on page 1-13
e “HIGH AVAILABILITY Multi Data Source Algorithm Renamed FAILOVER” on
page 1-13

XA Support in Multi Data Sources

In WebLogic Server 9.0, JDBC multi data sources are supported for use in XA transactions with
Oracle Real Application Clusters (RAC).

Configuring and Managing WebLogic JDBC

New and Changed JDBC Features in This Release

For more information about configuring multi data sources, see “Configuration Options in
WebLogic Server with Oracle RAC” on page B-8 and “XA Considerations and Limitations with
Oracle RAC” on page B-25.

JDBC Multi Data Source Failover Enhancements
In WebLogic Server 9.0, the following enhancements were made to JDBC multi data sources:

e Connection request routing enhancements to avoid requesting a connection from a disabled
data source within a multi data source.

Automatic failback on recovery of a failed data sources within a multi data source.

Failover for busy data sources within a multi data source with the Failover algorithm.

Failover callbacks for multi data sources with the Failover algorithm.

e Failback callbacks for multi data sources with either algorithm.

See “Multi Data Source Failover Enhancements” on page 4-4 for more details.

HIGH AVAILABILITY Multi Data Source Algorithm Renamed FAILOVER

In WebLogic Server 9.0, the multi data source HIGH AVAILABILITY algorithm option was
renamed to FAILOVER. The new name is more indicative of the behavior of the multi data source
with this algorithm selection.

New WLST Script Examples for JDBC Administration

WebLogic Server 9.0 ships with a WLST script example that shows how to perform
administrative tasks previously available in the weblogic.Admin utility. For example, creating a
data source, resetting the pooled database connections in a data source, and so forth.

JDBC Monitoring and Diagnostics Enhancements

The following enhancements for monitoring JDBC activity and diagnosing JDBC issues were
added in WebLogic Server 9.0 to help you easily monitor JDBC resources and diagnose
problems:

e “New Monitoring Statistics and Profile Information for JDBC Data Sources™ on page 1-14
e “Callbacks for Monitoring Driver-Level Statistics” on page 1-14

e “JDBC Debugging Enhancements” on page 1-15

Configuring and Managing WebLogic JDBC 1-13

Introduction and Roadmap

1-14

New Monitoring Statistics and Profile Information for JDBC Data Sources

In WebLogic Server 9.0, new data source usage information was made available through the
Administration Console or through JMX to help you monitor and tune your environment,
including:

e Cumulative number of requests to reserve a database connection

Cumulative number of failed requests to reserve a connection

Average time a connection is in use by an application

Average time an application waits for a connection

Percentage of connections currently in use

e Percentage of time that all connections were in use

Current connection users and how long the application has held the connection

Current applications waiting for a connection and how long each application has been
waiting

In WebLogic Server 9.0, the following new prepared statement cache statistics and usage profile
information is available through the Administration Console or through JMX:

e Cumulative number of times the cache is accessed

Cumulative number of statements added to the cache

Cumulative number of statements discarded from the cache

Current number of statements in the cache

Current statements (actual statement text)

Callbacks for Monitoring Driver-Level Statistics

WebLogic Server 9.0 provides callbacks for methods called on a JDBC driver. You can use these
callbacks to monitor and profile JDBC driver usage, including methods being executed, any
exceptions thrown, and the time spent executing driver methods.

To enable the callback feature, you specify the fully qualified path of the callback handler for the
driver-interceptor element in the JDBC data source descriptor (module). Your callback
handler must implement the weblogic.jdbc.extensions.DriverInterceptor interface.
When JDBC driver callbacks are enabled, WebLogic Server calls the preInvokeCallback (),

Configuring and Managing WebLogic JDBC

New and Changed JDBC Features in This Release

postInvokeExceptionCallback(),andpostInvokeCallback()nkﬂhodsoftheregﬁ&ﬂed
callback handler before and after invoking any method inside the JDBC driver.

JDBC Debugging Enhancements
In Weblogic Server 9.0, the JDBC subsystem uses the new debugging and diagnostics system for
centralized debug access and logging. The following JDBC debugging options are available:

e Debug]DBCSQL (weblogic.jdbc.sql scope)—Logs information about all JDBC methods
invoked, including their arguments, return values, and thrown exceptions.

e Debug]DBCConn (weblogic.jdbe.connection scope)—Logs all connection reserve and
release operations in data sources as well as all application requests to get or close
connections.

e Debug]DBCRMI (weblogic.jdbe.rmi scope)—Similar to JDBCSQL, but at the RMI level.

e DebugJDBClnternal (weblogic.jdbc.internal scope)—Logs low-level debugging
information related to the connection pool, the connection environment, the connection
pool manager, and the data source manager.

e DebugJDBCDriverLogging (weblogic.jdbe.driverlogging scope)—Enables JDBC
driver-level logging (replaces ServerMBean JDBCLoggingEnabled and
getJDBCLogFileName).

e Debug]DBCITA (weblogic.jdbc.transaction scope)—Logs all XA operations.

See Chapter 6, “Monitoring WebLogic JDBC Resources,” for more information.

Updated WebLogic Type 4 JDBC Drivers

WebLogic Server includes updates to the WebLogic Type 4 JDBC drivers. The updated drivers
resolve some important issues and include some notable enhancements. See WebLogic Type 4
JDBC Drivers for more information.

Removed, Deprecated, and Changed JDBC Features, Methods, Interfaces,
and MBeans

In WebLogic Server 9.0, many changes were made to the JDBC subsystem, including the
removal of some drivers and classes and the deprecation of some MBeans.

Removed

The following items were removed in WebLogic Server 9.0:

Configuring and Managing WebLogic JDBC 1-15

http://e-docs.bea.com/wls/docs90/jdbc_drivers/index.html
http://e-docs.bea.com/wls/docs90/jdbc_drivers/index.html

Introduction and Roadmap

1-16

e WebLogic JDriver for Oracle. Replaced by the WebLogic Type 4 JDBC Driver for Oracle.

e WebLogic JDriver for MS SQL Server. Replaced by the WebLogic Type 4 JDBC Driver
for MS SQL Server.

For a complete list of removed APIs, see “Deprecated and Removed APIs” in Upgrading
WebLogic Application Environments.

The following configuration attributes have been removed:

e HighestNumUnavailable - use SecondsToTrustAnldlePoolConnection to tune database
connection testing in place of this option. See “Connection Testing Options for a Data
Source” on page 3-20.

e TestConnectionsOnRelease - removed to simplify data source testing configuration.

Functionality from the following attributes has been moved to other attributes. These attributes
have been removed to help simplify JDBC data source configuration:

e TestStatementTimeout - StatementTimeout now applies to connection test statements. See
“Limiting Statement Processing Time with Statement Timeout” on page 3-28.

e ShrinkingEnabled - ShrinkFrequencySeconds now enables or disables connection pool
shrinking as well as controlling how often the pool shrinks. See “JDBC Data Source:
Configuration: Connection Pool.”

e ConnLeakProfilingEnabled - Replaced with PROFILE TYPE CONN LEAK.
e ConnProfilingEnabled - Replaced with PROFILE TYPE CONN LAST USAGE.
e SqlStmtProfilingEnabled - Replaced with PROFILE TYPE _STMT_USAGE.

e HealthCheckFrequencySeconds - TestFrequencySeconds now controls how often a multi
data source tests a disabled data source. See “Automatic Re-enablement on Recovery of a
Failed Data Source within a Multi Data Source” on page 4-5.

Deprecated Features
The following items were deprecated in WebLogic Server 9.0:

e Legacy application-scoped connection pools. Replaced by JDBC modules. See “Modular
Deployment of System and Stand-Alone JDBC Resources” on page 1-6.

e Legacy driver-level logging. Replaced by Debug/DBCDriverLogging. See “JDBC
Debugging Enhancements™ on page 1-15.

Configuring and Managing WebLogic JDBC

../../../common/docs90/upgrade/compat.html#deprecated_and_removed_apis
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html#ShrinkFrequencySeconds
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html#ShrinkFrequencySeconds

New and Changed JDBC Features in This Release

JDBCXADebugLevel of the JDBCConnectionPoolMBean. Replaced with JTAJDBC on
the ServerDebugMBean.

e Legacy connection leak profiling.

e [egacy rowset XML writing and reading. Replaced with functionality in a WebRowSet.
See “RowSets Enhancements” on page 1-5.

® weblogic.jdbc.pool.driver. The pool driver is obsolete. You should use a data source
to get a database connection.

Deprecated MBeans
The following MBeans were deprecated in WebLogic Server 9.0:

e JDBCConnectionPoolMBean. Functionality from this MBean was added to the
JDBCDataSourceMBean.

JDBCMultiPoolMBean. Functionality from this MBean was added to the
JDBCDataSourceMBean.

e JDBCTxDataSourceMBean. Functionality from this MBean was added to the
JDBCDataSourceMBean.

JDBCDataSourceFactoryMBean. No replacement.

e JDBCConnectionPoolRuntimeMBean. Replaced by JDBCDataSourceRuntimeMBean.

Changed Features and Behavior

The following changes were made to JDBC data source and connection pool features:

e ConnectionCreationRetryFrequencySeconds was simplified to apply to creating new JDBC
connections on server startup, when deploying a data source, and when increasing the
initial capacity of a data source. For all other cases when a database connection is created,
the connection creation retry feature does not apply. See “Enabling Connection Creation
Retries” on page 3-25.

e The following attributes are no longer configurable:
— TestConnectionsOnCreate
— CountOfRefreshFailuresTillDisable
— CountOfTestFailuresTillFlush

Configuring and Managing WebLogic JDBC 1-11

Introduction and Roadmap

WebLogic Server now manages these attributes internally. See “Connection Testing
Options for a Data Source” on page 3-20.

e There is a change in the exception thrown if you set the InitialCapacity for a data source to
an invalid value. In previous releases, if you set the InitialCapacity for a data source to a
value larger than MaxCapacity, WebLogic Server would throw an
InvalidAttributeValueException. In WebLogic Server 9.0, for the same case, WebLogic
Server will throw a RuntimeException.

1-18 Configuring and Managing WebLogic JDBC

CHAPTERa

Configuring WebLogic JDBC Resources

The following sections describe WebLogic JDBC resources, how they are configured, and how
those resources apply to a WebLogic domain:

e “Understanding JDBC Resources in WebLogic Server” on page 2-1
e “Ownership of Configured JDBC Resources” on page 2-3

e “JDBC Configuration Files” on page 2-3

e “JMX and WLST Access for JDBC Resources” on page 2-8

e “Overview of Clustered JDBC” on page 2-13

Understanding JDBC Resources in WebLogic Server

In WebLogic Server, you can configure database connectivity by configuring JDBC data sources
and multi data sources and then targeting or deploying the JDBC resources to servers or clusters
in your WebLogic domain.

Each data source that you configure contains a pool of database connections that are created when
the data source instance is created—when it is deployed or targeted, or at server startup.
Applications lookup a data source on the JNDI tree or in the local application context
(java:comp/env), depending on how you configure and deploy the object, and then request a
database connection. When finished with the connection, the application calls
connection.close (), which returns the connection to the connection pool in the data source.

Figure 2-1 shows a data source and a multi data source targeted to a WebLogic Server instance.

Configuring and Managing WebLogic JDBC 2-1

Configuring WebLogic JDBC Resources

2-2

Figure 2-1 JDBC Data Source Architecture

JHDI Tree

nternal Clients | Loskup

I
(e.q., serviets) Data Source

External
Clients

Lookup

WebLogic Server

Multi Data Source

Data Source

Data Source

Data Source

Connection
Pool

JOBC Driver
C

\ 4

X Database
Connection

Connection

Data Source

Connection
Pool

JOBC Driver
Database

For more information about data sources in WebLogic Server, see “Configuring JDBC Data

Data Source

Sources” on page 3-1.

A multi data source is an abstraction around a data sources that provides load balancing or
failover processing between the data sources associated with the multi data source. Multi data
sources are bound to the JNDI tree or local application context just like data sources are bound to
the JINDI tree. Applications lookup a multi data source on the JNDI tree or in the local application
context (java: comp/env) just like they do for data sources, and then request a database
connection. The multi data source determines which data source to use to satisfy the request
depending on the algorithm selected in the multi data source configuration: load balancing or
failover. For more information about multi data sources, see “Configuring JDBC Multi Data

Sources” on page 4-1.

Y

fu

Sync/Replicate
Data Source *

Connection
Pool

JOBC Driver

Configuring and Managing WebLogic JDBC

Database

Ownership of Configured JDBC Resources

Ownership of Configured JDBC Resources

A key to understanding WebLogic JDBC configuration and management is that who creates a
JDBC resource or how a JDBC resource is created determines how a resource is deployed and
modified. Both WebLogic Administrators and programmers can create JDBC resources:

e WebLogic Administrators typically use the Administration Console or the WebLogic
Scripting Tool (WLST) to create and deploy (target) JDBC modules. These JDBC modules
are considered system modules. See “JDBC System Modules” on page 2-4 for more details.

e Programmers create modules in a development tool that supports creating an XML
descriptor file, then package the JDBC modules with an application and pass the
application to a WebLogic Administrator to deploy. These JDBC modules are considered
application modules. See “JDBC Application Modules” on page 2-6 for more details.

Table 2-1 lists the JDBC module types and how they can be configured and modified.

Table 2-1 JDBC Module Types and Configuration and Management Options
Module Type Created with Add/Remove Modify with Modify with Modify with

Modules with JMX JSR-88 Administration
Administration (remotely) (non-remotely) Console
Console
System Administration Yes Yes No Yes—via IMX
Console or
WLST
Application WebLogic No No Yes—viaa Yes—viaa
Workshop, deployment deployment
another IDE, plan plan
or an XML
editor

JDBC Configuration Files

WebLogic JDBC configuration is stored in XML documents that conform to the
weblogic-jdbc.xsd schema (available at
http://www.bea.com/ns/weblogic/90/weblogic-jdbc. xsd). You create and manage
JDBC resources either as system modules, similar to the way they were managed prior to version
9.0, or as application modules. JDBC application modules are a WebLogic-specific extension of
J2EE modules and can be configured either within a J2EE application or as stand-alone modules.

Configuring and Managing WebLogic JDBC 2-3

http://www.bea.com/ns/weblogic/90/weblogic-jdbc.xsd

Configuring WebLogic JDBC Resources

Regardless of whether you are using JDBC system modules or JDBC application modules, each
JDBC data source or multi data source is represented by an XML file (a module).

JDBC System Modules

When you create a JDBC resource (data source or multi data source) using the Administration
Console or using the WebLogic Scripting Tool (WLST), WebLogic Server creates a JDBC
module in the config/jdbc subdirectory of the domain directory, and adds a reference to the
module in the domain’s config.xml file. The JDBC module conforms to the
weblogic-jdbc.xsd schema (available at
http://www.bea.com/ns/weblogic/90/weblogic-jdbc .xsd).

JDBC resources that you configure this way are considered system modules. System modules are
owned by an Administrator, who can delete, modify, or add similar resources at any time. System
modules are globally available for targeting to servers and clusters configured in the domain, and
therefore are available to all applications deployed on the same targets and to client applications.
System modules are also accessible through JMX as JDBCSystemResourceMBeans.

Data source system modules are included in the domain’s config.xml file as a
JDBCSystemResource element, which includes the name of the JDBC module file and the list
of target servers and clusters on which the module is deployed. Figure 2-2 shows an example of
a data source listing in a config.xml file and the module that it maps to.

Figure 2-2 Reference from config.xml to a Data Source System Module

Domainconfig Directory Domainconfigjdbe Directory

config.xml examples-demo-jdbc.xml

examples-demo=/hame=

r-p

In this illustration, the config.xm1l file lists the examples-demo data source as a
jdbc-system-resource element, which maps to the examples-demo .xml module in the
domain\config\jdbc folder.

2-4 Configuring and Managing WebLogic JDBC

http://www.bea.com/ns/weblogic/90/weblogic-jdbc.xsd

JDBC Configuration Files

Similarly, multi data source system modules are included in the domain’s config.xml file as a
jdbc-system-resource element. The multi data source module includes a
data-source-1list parameter that maps to the data source modules used by the multi data
source. The individual data source modules are also included in the config.xml. Figure 2-3
shows the relationship between elements in the config.xml file and the system modules in the
config/jdbc directory.

Figure 2-3 Reference from config.xml to Multi Data Source and Data Source System Modules

Domainconfig Directory Domainconfigjdbe Directory

PB-MultiDataSource-jdbe.xml

examples-demo-2-jdbe.xml examples-demo-jdbc.xml

In this illustration, the config.xm1l file lists three JDBC modules—one multi data source and the
two data sources used by the multi data source, which are also listed within the multi data source
module. Your application can look up any of these modules on the JNDI tree and request a
database connection. If you look up the multi data source, the multi data source determines which
of the other data sources to use to supply the database connection, depending on the data sources
in the data-source-1ist parameter, the order in which the data sources are listed, and the

Configuring and Managing WebLogic JDBC 2-5

Configuring WebLogic JDBC Resources

2-6

algorithm specified in the algorithm-type parameter. For more information about multi data
sources, see “Configuring JDBC Multi Data Sources” on page 4-1.

JDBC Application Modules

JDBC resources can also be managed as application modules, similar to standard J2EE modules.
A JDBC application module is simply an XML file that conforms to the weblogic-jdbc.xsd
schema and represents a data source or a multi data source.

JDBC modules can be included as part of an Enterprise Application as a packaged module.
Packaged modules are bundled with an EAR or exploded EAR directory, and are referenced in
all appropriate deployment descriptors, such as the weblogic-application.xml and
ejb-jar.xml deployment descriptors. The JDBC module is deployed along with the enterprise
application, and can be configured to be available only to the enclosing application or to all
applications. Using packaged modules ensures that an application always has access to required
resources and simplifies the process of moving the application into new environments. With
packaged JDBC modules, you can migrate your application and the required JDBC configuration
from environment to environment, such as from a testing environment to a production
environment, without opening an EAR file and without extensive manual JDBC reconfiguration.

In contrast to system resource modules, JDBC modules that are packaged with an application are
owned by the developer who created and packaged the module, rather than the Administrator who
deploys the module. This means that the Administrator has more limited control over packaged
modules. When deploying a resource module, an Administrator can change resource properties
that were specified in the module, but the Administrator cannot add or delete modules. (As with
other J2EE modules, deployment configuration changes for a resource module are stored in a
deployment plan for the module, leaving the original module untouched.)

By definition, packaged JDBC modules are included in an enterprise application, and therefore
are deployed when you deploy the enterprise application. For more information about deploying
applications with packaged JDBC modules, see Deploying Applications to WebLogic Server.

A JDBC application module can also be deployed as a stand-alone resource using the
weblogic.Deployer utility or the Administration Console, in which case the resource is
typically available to the server or cluster targeted during the deployment process. JDBC
resources deployed in this manner are called stand-along modules and can be reconfigured using
the Administration Console or a JSR-88 compliant tool, but are unavailable through JMX or
WLST.

Stand-alone JDBC modules promote sharing and portability of JDBC resources. You can create
a data source configuration and distribute it to other developers. Stand-alone JDBC modules can

Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/deployment/index.html

JDBC Configuration Files

also be used to move JDBC configuration between domains, such as between the development
domain and the staging domain.

For more information about JDBC application modules, see “Configuring JDBC Application
Modules for Deployment” on page A-1.

For information about deploying stand-alone JDBC modules, see “Deploying JDBC and JMS
Application Modules.”

JDBC Module File Naming Requirements

All WebLogic JDBC module files must end with the -jdbc.xml suffix, such as
examples-demo-jdbc.xml. WebLogic Server checks the file name when you deploy the
module. If the file does not end in -jdbc.xm1, the deployment will fail and the server will not
boot.

JDBC Modules in Versioned Applications

When you use production redeployment (versioning) to deploy a version of an application that
includes a packaged JDBC module, WebLogic Server identifies the data source defined in the
JDBC module with a name in the following format:

application_id#version_id@module_name@data_source_name

This name is used for data source runtime MBeans and for registering the data source instance
with the WebLogic Server transaction manager.

If transactions in a retiring version of an application time out and the version of the application is
then undeployed, you may have to manually resolve any pending or incomplete transactions on
the data source in the retired version of the application. After a data source is undeployed (in this
case, with the retired version of the application), the WebLogic Server transaction manager
cannot recover pending or incomplete transactions.

For more information about production redeployment, see:

e “Developing Applications for Production Redeployment” in Developing Applications with
WebLogic Server

e “Using Production Redeployment to Update Applications” in Deploying Applications to
WebLogic Server

Configuring and Managing WebLogic JDBC 2-1

http://e-docs.bea.com/wls/docs90/deployment/deploy.html#deploy_resources
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#deploy_resources
http://e-docs.bea.com/wls/docs90/programming/versioning.html
http://e-docs.bea.com/wls/docs90/deployment/redeploy.html#productionredeployment

Configuring WebLogic JDBC Resources

JDBC Schema

In support of the new modular deployment model for JDBC resources in WebLogic Server 9.0,
BEA now provides a schema for WebLogic JDBC objects: weblogic-jdbc.xsd. When you
create JDBC resource modules (descriptors), the modules must conform to the schema. IDEs and

other tools can validate JDBC resource modules based on the schema.

The schema is available at http: //www.bea.com/ns/weblogic/90/weblogic-jdbe.xsd.

JMX and WLST Access for JDBC Resources

2-8

When you create JDBC resources using the Administration Console or WLST, WebLogic Server
creates MBeans (Managed Beans) for each of the resources. You can then access these MBeans
using JMX or the WebLogic Scripting Tool (WLST). See Developing Custom Management

Utilities with JMX and WebLogic Scripting Tool for more information.

“JDBC MBeans for System Resources” on page 2-8

“JDBC Management Objects in the J2EE Management Model (JSR-77 Support)” on
page 2-9

“Using WLST to Create JDBC System Resources” on page 2-10
“How to Modify and Monitor JDBC Resources” on page 2-12

“Best Practices when Using WLST to Configure JDBC” on page 2-13

JDBC MBeans for System Resources

Figure 2-4 shows the hierarchy of the MBeans for JDBC objects in a WebLogic domain.

Configuring and Managing WebLogic JDBC

http://www.bea.com/ns/weblogic/90/weblogic-jdbc.xsd
http://e-docs.bea.com/wls/docs90/jmx/index.html
http://e-docs.bea.com/wls/docs90/jmx/index.html
http://e-docs.bea.com/wls/docs90/config_scripting/index.html

JMX and WLST Access for JDBC Resources

Figure 2-4 JDBC Bean Tree

DomainMBean
JDBCSystemResourceMBean

JDBCDataSourceBean JavaBean representations

of JOBC descriptor elements

JDBCDriverParamsBean
JDBCConnectionPoolParamsBean
JDBCDataSourceParamsBean

JDBCXAParamsBean

The JDBCSystemResourceMBean is a container for the JavaBeans created from a data source
module. However, all IMX access for a JDBC data source is through the
JDBCSystemResourceMBean. You cannot directly access the individual JavaBeans created from
the data source module.

JDBC Management Objects in the J2EE Management Model
(JSR-77 Support)

In this release, WebLogic Server JDBC supports JSR-77, which defines the J2EE Management
Model. The J2EE Management Model is used for monitoring the runtime state of a J2EE Web
application server and its resources. You can access the J2EE Management Model to monitor
resources, including the WebLogic JDBC system as a whole, JDBC drivers loaded into memory,
and JDBC data sources.

To comply with the specification, BEA added the following runtime MBean types for WebLogic
JDBC:

Configuring and Managing WebLogic JDBC 2-9

Configuring WebLogic JDBC Resources

2-10

® JDBCServiceRuntimeMBean— Which represents the JDBC subsystem and provides
methods to access the list of JDBCDriverRuntimeMBeans and
JDBCDataSourceRuntimeMBeans currently available in the system.

e JDBCDriverRuntimeMBean—Which represents a JDBC driver that the server loaded into
memory.

e JDBCDataSourceRuntimeMBeans—Which represents a JDBC data source deployed on a
server or cluster.

Note: WebLogic JDBC runtime MBeans do not implement the optional Statistics Provider
interfaces specified by JSR-77.

For more information about using the J2EE management model with WebLogic Server, see
Monitoring and Managing with the J2EE Management APIs.

Using WLST to Create JDBC System Resources

Basic tasks you need to perform when creating JDBC resources with the WLST are:

e Start an edit session.

e Create a JDBC system module that includes JDBC system resources, such as pools,
datasources, multi datasources, and JDBC drivers.

e Target your JDBC system module.

Listing 2-1 WLST Script to Create JDBC Resources

Create JDBC

The prefix specifies the prefix on property names.

Example: for property "mypool.Name=mypool", the prefix would be
"mypool."

import sys

from java.lang import System
print "@@@ Starting the script "
global props

url = sys.argv([l]

usr = sys.argv([2]
password = sys.argv[3]

Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90//j2eemanage/index.html

JMX and WLST Access for JDBC Resources

connect (usr,password, url)
edit ()
startEdit ()

servermb=getMBean ("Servers/examplesServer")
if servermb is None:
print '@@@ No server MBean found'
else:

def addJDBC (prefix) :

print("")
print ("*** Creating JDBC with property prefix " + prefix)

Create the Connection Pool. The system resource will have
generated name of <PoolName>+"-jdbc"

myResourceName = props.getProperty (prefix+"PoolName")
print ("Here is the Resource Name: " + myResourceName)

jdbcSystemResource = wl.create (myResourceName, "JDBCSystemResource")
myFile = jdbcSystemResource.getDescriptorFileName ()
print ("HERE IS THE JDBC FILE NAME: " + myFile)

jdbcResource = jdbcSystemResource.getIJDBCResource ()
jdbcResource. setName (props.getProperty (prefix+"PoolName"))

Create the DataSource Params
dpBean = jdbcResource.getJDBCDataSourceParams ()
myName=props .getProperty (prefix+"JIJNDIName")
dpBean.setJNDINames ([myName])

Create the Driver Params
drBean = jdbcResource.getJDBCDriverParams ()
drBean.setPassword (props.getProperty (prefix+"Password"))
drBean.setUrl (props.getProperty (prefix+"URLName"))
drBean.setDriverName (props.getProperty (prefix+"DriverName"))

propBean = drBean.getProperties|()
driverProps = Properties|()
driverProps.setProperty ("user", props.getProperty (prefix+"UserName"))

e = driverProps.propertyNames ()

while e.hasMoreElements ()
propName = e.nextElement ()
myBean = propBean.createProperty (propName)
myBean.setValue (driverProps.getProperty (propName))

Configuring and Managing WebLogic JDBC 2-11

Configuring WebLogic JDBC Resources

2-12

Create the ConnectionPool Params
ppBean = jdbcResource.getJDBCConnectionPoolParams ()

ppBean.setInitialCapacity (int (props.getProperty (prefix+"InitialCapac
ity")))
ppBean.setMaxCapacity (int (props.getProperty (prefix+"MaxCapacity")))

ppBean.setCapacityIncrement (int (props.getProperty (prefix+"CapacityIn
crement")))

if not props.getProperty (prefix+"ShrinkPeriodMinutes") == None:
ppBean.setShrinkFrequencySeconds (int (props.getProperty (prefix+"Sh
rinkPeriodMinutes")))
if not props.getProperty (prefix+"TestTableName") == None:

ppBean.setTestTableName (props.getProperty (prefix+"TestTableName")

if not props.getProperty (prefix+"LoginDelaySeconds") == None:
ppBean. setLoginDelaySeconds (int (props.getProperty (prefix+"LoginDe
laySeconds")))

Adding KeepXaConnTillTxComplete to help with in-doubt transactions.
xaParams = jdbcResource.getJDBCXAParams ()
xaParams.setKeepXaConnTillTxComplete (1)

Add Target
jdbcSystemResource.addTarget (wl.getMBean (" /Servers/examplesServer"))

How to Modify and Monitor JDBC Resources

You can modify or monitor JDBC objects and attributes by using the appropriate method
available from the MBean.

e You can modify JDBC objects and attributes using the set, target, untarget, and delete
methods.

e You can monitor JDBC runtime objects using get methods.

For more information, see Navigating and Editing MBeans in the WebLogic Scripting Tool.

Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/config_scripting/nav_edit.html

Overview of Clustered JDBC

Best Practices when Using WLST to Configure JDBC

This section provides best practices information when using WLST to configure JDBC resources:

e Trap for Null MBean objects (such as pools, datasources, drivers) before trying to
manipulate the MBean object.

e BEA provides sample scripts and utilities to configure WebLogic domain resources using
WLST Offline and/or WLST Online. For more information, see the wist Project Home at
https://wlst.projects.dev2dev.bea.com/.

Overview of Clustered JDBC

You can target or deploy JDBC resources to a cluster to improve the availability of cluster-hosted
applications. For information about JDBC objects in a clustered environment, see “JDBC
Connections” in Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs90/cluster/overview.html#JDBC.

Multi data sources are supported for use in clusters. However, note that multi data sources can
only use data sources in the same JVM. Multi data sources cannot use data sources from other
cluster members.

Configuring and Managing WebLogic JDBC 2-13

https://wlst.projects.dev2dev.bea.com/
http://e-docs.bea.com/wls/docs90/cluster/overview.html#JDBC
http://e-docs.bea.com/wls/docs90/cluster/overview.html#JDBC

Configuring WebLogic JDBC Resources

2-14 Configuring and Managing WebLogic JDBC

GHAPTERa

Configuring JDBC Data Sources

This section includes the following information:

“Understanding JDBC Data Sources” on page 3-1

“Creating a JDBC Data Source” on page 3-2

“Transaction Options” on page 3-4

“Connection Pool Features” on page 3-13

“Tuning Data Source Connection Pool Options” on page 3-16

“Deploying Data Sources on Servers and Clusters” on page 3-30

“Minimizing Server Startup Hang Caused By an Unresponsive Database” on page 3-30
“Securing JDBC Data Sources” on page 3-30

“JDBC Data Source Factories (Deprecated)” on page 3-32

Understanding JDBC Data Sources

In WebLogic Server, you configure database connectivity by adding data sources to your
WebLogic domain. WebLogic JDBC data sources provide database access and database
connection management. Each data source contains a pool of database connections that are
created when the data source is created and at server startup. Applications reserve a database
connection from the data source by looking up the data source on the JNDI tree or in the local
application context and then calling getConnection (). When finished with the connection, the

Configuring and Managing WebLogic JDBC 3-1

Configuring JDBC Data Sources

application should call connection.close () as early as possible, which returns the database
connection to the pool for other applications to use.

Data sources and their connection pools provide connection management processes that help

keep your system running and performant.You can set options in the data source to suit your

applications and your environment. The following sections describe these options and how to
enable them.

Creating a JDBC Data Source

To create a JDBC data source in your WebLogic domain, you can use the Administration Console
or the WebLogic Scripting Tool (WLST). See the following for more information:

e “Create JDBC data sources” in the Administration Console Online Help

e “Creating JDBC Resources” in WebLogic Scripting Tool

Note: WLST replaced the weblogic.Admin command line utility. The WebLogic Server
examples that are optionally installed with WebLogic Server contain sample scripts that
can be used in place of the weblogic. Admin JDBC commands. If installed, the example
scripts are available at
WL_HOME\samples\server\examples\src\examples\wlst\online, where
wL_HoME refers to the main WebLogic directory, such as C: \bea\weblogic90.

For more information about JDBC data source attributes, see:

e “JDBCDataSourceBean” and all of its child MBeans in the WebLogic Server MBean
Reference

e JDBC data source reference pages in the Administration Console Online Help:
— JDBC Data Source: Configuration: General
— JDBC Data Source: Configuration: Connection Pool
— JDBC Data Source: Targets
— JDBC Data Source: Security: Roles
— JDBC Data Source: Security: Policies
— JDBC Data Sources: Security: Credential Mapping

Notes: JDBC drivers listed in the Create JDBC Data Source pages in the Administration Console
are not necessarily certified for use with WebLogic Server. In keeping with the goal of

3-2 Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html
http://e-docs.bea.com/wls/docs90/config_scripting/config_WLS.html#create_jdbc_resources
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceBean.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfiggeneraltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourcetargetdeploytitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcessecurityrolestitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcessecuritypoliciestitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourceseditcredentialmappingtitle.html

Creating a JDBC Data Source

the Create JDBC Data Source pages, JDBC drivers are listed as a convenience to help
you create connections to many of the database management systems available.

You must install JDBC drivers in order to use them to create database connections in a
data source on each server on which the data source is deployed. Drivers are listed in the
Create JDBC Data Source pages in the Administration Console with known required
configuration options to help you configure a data source. The JDBC drivers in the list
are not necessarily installed. Driver installation can include setting system Path,
Classpath, and other environment variables. See “Setting the Environment for a Type-4
Third-Party JDBC Driver” on page 5-2.

When a JDBC driver is updated, configuration requirements may change. The Create
JDBC Data Source pages in the Administration Console use known configuration
requirements at the time the WebLogic Server software was released. If configuration
options for your JDBC driver have changed, you may need to manually override the
configuration options when creating the data source or in the property pages for the data
source after it is created.

General Data Source Options

JDBC data sources include options that determine the identity of the data source, way the data is
handled on a database connection, and the way transactions are handled when a connection from
the data source is used in a global transaction. You can view general options for a JDBC data
source on the JDBC Data Source: Configuration: General page in the Administration Console.
You can also access these options from the JDBCDataSourceParamsBean, which is a child of the
JDBCDataSourceBean.

Selecting a JDBC Driver

When deciding which JDBC driver to use to connect to a database, you should try drivers from
various vendors in your environment. In general, JDBC driver performance is dependent on many
factors, especially the SQL code used in applications and the JDBC driver implementation.

For information about supported JDBC drivers, see “Supported Database Configurations” in
Supported Configurations for WebLogic Platform 9.0.

JDBC Data Source Names

JDBC data source names are used to identify the data source within the WebLogic domain. For
system resource data sources, names must be unique among all other JDBC system resources,
including data sources and multi data sources. To avoid naming conflicts, data source names

Configuring and Managing WebLogic JDBC 3-3

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfiggeneraltitle.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCDataSourceParamsBean.html
http://e-docs.bea.com/platform/suppconfigs/configs90/90_over/supported_db.html

Configuring JDBC Data Sources

should also be unique among other configuration object names, such as servers, clusters, and JMS
queues, topics, and servers. For JDBC application modules scoped to an application, data source
names must be unique among JDBC data sources and multi data sources that are similarly scoped.

Binding a Data Source to the JNDI Tree with Multiple Names

In WebLogic Server 9.0 and later releases, you can configure a data source so that it binds to the
JNDI tree with multiple names. You can use a multi-JNDI-named data source in place of legacy
configurations that included multiple data sources that pointed to a single JDBC connection pool.

To add JNDI names to an existing data source using the Administration Console, add names to
the JNDI Name attribute with each JNDI name on a separate line. You must either restart the
system after making your change or undeploy the data source before making the change, and then
redeploy after making the change. Follow the instructions below.

1. On the JDBC Data Source —Configuration —General page in the Administration Console, in
JNDI Name, enter the names you want to use to bind the data source to the JDNI tree with
each name on a separate line. For example:
namel

name?2
name3

2. Click Save.

After you activate your changes, you will need to redeploy the data source or restart your server
before the changes will take effect.

Transaction Options

34

When you configure a JDBC data source using the Administration Console, WebLogic Server
automatically selects specific transaction options based on the type of JDBC driver:

e For XA drivers, the system automatically selects the Two-Phase Commit protocol for
global transaction processing.

e For non-XA drivers, local transactions are supported by definition, and WebLogic Server
offers the following options

Supports Global Transactions: (selected by default) Select this option if you want to use
connections from the data source in global transactions, even though you have not selected
an XA driver. See “Enabling Support for Global Transactions with a Non-XA JDBC
Driver” on page 3-5 for more information.

Configuring and Managing WebLogic JDBC

Transaction Options

When you select Supports Global Transactions, you must also select the protocol for
WebLogic Server to use for the transaction branch when processing a global transaction:

— Logging Last Resource: With this option, the transaction branch in which the
connection is used is processed as the last resource in the transaction and is processed
as a local transaction. Commit records for two-phase commit (2PC) transactions are
inserted in a table on the resource itself, and the result determines the success or failure
of the prepare phase of the global transaction. This option offers some performance
benefits and greater data safety than Emulate Two-Phase Commit, but it has some
limitations. See “Understanding the Logging Last Resource Transaction Option” on
page 3-6.

Note: Logging Last Resource is not supported for data sources used by a multi data
source.

— Emulate Two-Phase Commit: With this option, the transaction branch in which the
connection is used always returns success for the prepare phase of the transaction. It
offers performance benefits, but also has risks to data in some failure conditions. Select
this option only if your application can tolerate heuristic conditions. See
“Understanding the Emulate Two-Phase Commit Transaction Option” on page 3-11.

— One-Phase Commit: (selected by default) With this option, a connection from the data
source can be the only participant in the global transaction and the transaction is
completed using a one-phase commit optimization. If more than one resource
participates in the transaction, an exception is thrown when the transaction manager
calls XxAResource.prepare on the 1PC resource.

Enabling Support for Global Transactions with a Non-XA JDBC
Driver

If you use global transactions in your applications, you should use an XA JDBC driver to create
database connections in the JDBC data source. If an XA driver is unavailable for your database,
or you prefer not to use an XA driver, you should enable support for global transactions in the
data source. You should also enable support for global transaction if your applications meet any
of the following criteria:

e Use the EJB container in WebLogic Server to manage transactions
e Include multiple database updates within a single transaction

e Access multiple resources, such as a database and the Java Messaging Service (JMS),
during a transaction

Configuring and Managing WebLogic JDBC 3-5

Configuring JDBC Data Sources

3-6

e Use the same data source on multiple servers (clustered or non-clustered)

With an EJB architecture, it is common for multiple EJBs that are doing database work to be
invoked as part of a single transaction. Without XA, the only way for this to work is if all
transaction participants use the exact same database connection. When you enable global
transactions and select either Logging Last Resource or Emulate Two-Phase Commit, WebLogic
Server internally uses the JTS driver to make sure all EJBs use the same database connection
within the same transaction context without requiring you to explicitly pass the connection from
EJB to EJB.

If multiple EJBs are participating in a transaction and you do not use an XA JDBC driver for
database connections, configure a Data Source with the following options:

e Supports Global Transactions selected

e Logging Last Resource or Emulate Two-Phase Commit selected

This configuration will force the JTS driver to internally use the same database connection for all
database work within the same transaction.

With XA (requires an XA driver), EJBs can use a different database connection for each part of
the transaction. WebLogic Server coordinates the transaction using the two-phase commit
protocol, which guarantees that all or none of the transaction will be completed.

Understanding the Logging Last Resource Transaction Option

WebLogic Server 9.0 includes support for the Logging Last Resource (LLR) transaction
optimization through JDBC data sources. LLR is a performance enhancement option that enables
one non-XA resource to participate in a global transaction with the same ACID guarantee as XA.
LLR is a refinement of the “Last Agent Optimization.” It differs from Last Agent Optimization
in that it is transactionally safe. The LLR resource uses a local transaction for its transaction work.
The WebLogic Server transaction manager prepares all other resources in the transaction and
then determines the commit decision for the global transaction based on the outcome of the LLR
resource’s local transaction.

The LLR optimization improves performance by:

e Removing the need for an XA JDBC driver to connect to the database. XA JDBC drivers
are typically inefficient compared to non-XA JDBC drivers.

e Reducing the number of processing steps to complete the transaction, which also reduces
network traffic and the number of disk I/Os.

Configuring and Managing WebLogic JDBC

Transaction Options

e Removing the need for XA processing at the database level

When a connection from a data source configured for LLR participates in a two-phase commit
(2PC) global transaction, the WebLogic Server transaction manager completes the transaction
by:

e Calling prepare on all other (XA-compliant) transaction participants.

e Inserting a commit record to a table on the LLR participant (rather than to the file-based
transaction log).

e Committing the LLR participant's local transaction (which includes both the transaction
commit record insert and the application's SQL work).

e Calling commit on all other transaction participants.

For a one-phase commit (1PC) global transaction, LLR eliminates the XA overhead by using a
local transaction to complete the database operations, but no 2PC transaction record is written to
the database.

The Logging Last Resource optimization maintains data integrity by writing the commit record
on the LLR participant. If the transaction fails during the local transaction commit, the WebLogic
Server transaction manager rolls back the transaction on all other transaction participants. For
failure recovery, the WebLogic Server transaction manager reads the transaction log on the LLR
resource along with other transaction log files in the default store and completes any transaction
processing as necessary. Work associated with XA participants is committed if a commit record
exists, otherwise their work is rolled back.

For instructions on how to create an LLR-enabled JDBC data source, see “Create LLR-enabled
JDBC data sources” in the Administration Console Online Help. For more details about the
Logging Last Resource transaction processing, see “Logging Last Resource Transaction
Optimization” in Programming WebLogic JTA.

Advantages to Using the Logging Last Resource Optimization

Depending on your environment, you may want to consider the LLR transaction protocol in place
of the two-phase commit protocol for transaction processing because of its performance benefits.
The LLR transaction protocol offers the following advantages:

e Allows non-XA JDBC drivers and even non-XA—capable databases to safely participate in
two-phase commit transactions.

e Eliminates the database’s use of the XA protocol.

Configuring and Managing WebLogic JDBC 3-1

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateLLRDataSources.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateLLRDataSources.html
http://e-docs.bea.com/wls/docs90/jta/llr.html
http://e-docs.bea.com/wls/docs90/jta/llr.html

Configuring JDBC Data Sources

3-8

Performs better than JDBC XA connections.

Reduces the length of time that database row locks are held.

Always commits database work prior to other XA work. In XA transactions, these
operations are committed in parallel, so, for example, when a JMS send participates in the
transaction, the JMS message may be delivered before database work commits. With LLR,
the database work in the local transaction is completed before all other transaction work.

e Has no increased risk of heuristic hazards, unlike the Emulate Two-Phase Commit option
for a JDBC data source.

Note: The LLR optimization provides a significant increase in performance for insert, update,
and delete operations. However, for read operations with LLR, performance is somewhat
slower than read operations with XA. For best performance, you may want to configure
anon-LLR JDBC data source for read-only operations.

For more information about performance tuning with LLR, see “Optimizing
Performance with LLR” in Programming WebLogic JTA.

Enabling the Logging Last Resource Transaction Optimization

To enable the LLR transaction optimization, you create a JDBC data source with the Logging
Last Resource transaction protocol, then use database connections from the data source in your
applications. WebLogic Server automatically creates the required table on the database.

See “Create LLR-enabled JDBC data sources” in the Administration Console Online Help.

Programming Considerations and Limitations for LLR Data Sources

You use JDBC connections from an LLR-enabled data source in an application as you would use
JDBC connections from any other data source: after beginning a transaction, you look up the data
source on the JNDI tree, then request a connection from the data source. However, with the LLR
optimization, WebLogic Server internally manages the connection request and handles the
transaction processing differently than in an XA transaction. For more information about how
Logging Last Resource works, see “Logging Last Resource Transaction Optimization” in
Programming WebLogic JTA.

Note the following:

e When programming with an LLR data source, you must start the global transaction before
calling getConnection on the LLR data source. If you call getConnection before starting
the global transaction, all operations on the connection will be made outside of the global
transaction.

Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/jta/llr.html#perf
http://e-docs.bea.com/wls/docs90/jta/llr.html#perf
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateLLRDataSources.html
http://e-docs.bea.com/wls/docs90/jta/llr.html

Transaction Options

e Only one internal JDBC LLR connection is reserved per transaction. And that connection
is used throughout the transaction processing.

e The reserved connection is always hosted on the transaction’s coordinator server. Make
sure that the data source is targeted to the coordinating server or to the cluster. Also see
“Optimizing Performance with LLR” in Programming WebLogic JTA.

e For additional JDBC connection requests within the transaction from a same-named data
source, operations are routed to the reserved connection from the original connection
request, even if the subsequent connection request is made on a different instance of the
data source (i.e., a data source deployed on a different server than the original data source
that supplied the connection for the first request). Note the following:

— Routed LLR connections may be less capable and less performant than locally hosted
XA connections. (See “Possible Performance Loss with Non-XA Resources in
Multi-Server Configurations” on page 3-13.)

— Connection request routing limits the number of concurrent transactions. The maximum
number of concurrent LLR transactions is equal to the configured size (MaxCapacity)
of the coordinator's JDBC LLR data source.

— Routed connections have less capability than local connections, and may fail as a result.
Specifically, non-serializable "custom" data types within a query ResultSet may fail.

e Only instances of a single LLR data source may participate in a particular transaction. A
single LLR data source may have instances on multiple WebLogic servers, and two data
sources are considered to be the same if they have the same configured name. If more than
one LLR data source instance is detected and they are not instances of the same data
source, the transaction manager will roll back the transaction.

e Resource adapters (connectors) that implement the
weblogic.transaction.nonxa.NonXAResource interface cannot participate in global
transaction in which an LLR resource also participates because both must be the last
resource in the transaction. If both resource types participate in the same transaction, the
transaction commit () method throws a javax.transaction.RollbackException when
this conflict is detected.

e Because the LLR connection uses a separate local transaction for database processing, any
changes made (and locks held) to the same database using an XA connection are not
visible during the LLR processing even though all of the processing occurs in the same
global transaction. In some cases, this can cause deadlocks in the database. You should not
combine XA and LLR processing in the same database in a single global transaction.

Configuring and Managing WebLogic JDBC 3-9

http://e-docs.bea.com/wls/docs90/jta/llr.html#perf

Configuring JDBC Data Sources

3-10

e Connections from an LLR data source cannot participate in transactions coordinated by
foreign transaction managers, such as a transaction started by a remote object request
broker or by Tuxedo.

e Global transactions cannot span to another legacy domain that includes a data source with
the same name as an LLR data source.

e For JDBC LLR 2PC transactions, if the transaction data is too large to fit in the LLR table,
the transaction will fail with a rollback exception thrown during commit. This can occur if
your application adds many transaction properties during transaction processing. (See
“BEA WebLogic Extensions to JTA.”) Your database administrator can manually create a
table with larger columns if this occurs.

Administrative Considerations and Limitations for LLR Data Sources

Consider the following requirements and limitations when configuring an LLR-enabled JDBC
data source. For more information about how Logging Last Resource works, see “Logging Last
Resource Transaction Optimization” in Programming WebLogic JTA.

e There is one LLR table per server:
— Multiple LLR data sources may share a table.
— WebLogic Server automatically creates the table if it is not found.

— Default name is wL._LLR_SERVERNAME. You can configure the table name in the
Administration Console on the Server > Configuration > General tab under Advanced
options.

e A server will not boot if the database is down or the LLR table is unreachable during boot.

e Multiple servers must not share the same LLR table. Boot checks to ensure domain and
server name match the domain and server name stored in the table when the table is
created. If WebLogic Server detects that more than one server is sharing the same LLR
table, WebLogic Server will shut down one or more of the servers.

Unlike XA, LLR does not support transaction recovery service migration:

— In-doubt transactions may get resolved incorrectly, leading to “silent” heuristic hazards
(mixed outcome transactions).

— For server fail-over, use the “whole-server” migration instead of migrating the
transaction recovery service. See “Recovering Transactions for a Failed Clustered
Server” in Programming WebLogic JTA.

The LLR transaction option is not permitted for use in JDBC application modules.

Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/jta/jtaapi.html#api_ext
http://e-docs.bea.com/wls/docs90/jta/llr.html
http://e-docs.bea.com/wls/docs90/jta/llr.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverserverconfiggeneraltitle.html#JDBCLLRTableName
http://e-docs.bea.com/wls/docs90/jta/trxman.html#jta_recover_cluster
http://e-docs.bea.com/wls/docs90/jta/trxman.html#jta_recover_cluster

Transaction Options

e The LLR transaction option is not supported for use in data sources used by a multi data
source.

e If you use credential mapping on an LLR data source, all mapped users must have write
permissions on the LLR table.

e You cannot use a JDBC XA driver to create database connections in a JDBC LLR data
source. If the JDBC driver used in a JDBC LLR data source supports XA, a warning
message is logged, and the data source participates in transactions as a full XA resource
rather than as an LLR resource.

e Transaction statistics for LLR resources are tracked under “NonXAResource.” See “View
transaction statistics for non-XA resources” in the Administration Console Online Help.

Understanding the Emulate Two-Phase Commit Transaction
Option

If you need to support distributed transactions with a JDBC data source, but there is no available
XA-compliant driver for your DBMS, you can select the Emulate Two-Phase Commit for
non-XA Driver option for a data source to emulate two-phase commit for the transactions in

which connections from the data source participate. This option is an advanced option on the
JDBC Data Source —Configuration —General tab.

When the Emulate Two-Phase Commit for non-XA Driver option is selected
(EnableTwoPhaseCommit is set to true), the non-XA JDBC resource always returns Xa_0OK
during the xAResource.prepare () method call. The resource attempts to commit or roll back
its local transaction in response to subsequent XAResource.commit () Or
XAResource.rollback () calls. Ifthe resource commit or rollback fails, a heuristic error results.
Application data may be left in an inconsistent state as a result of a heuristic failure.

When the Emulate Two-Phase Commit for non-XA Driver option is not selected in the Console
(EnableTwoPhaseCommit is set to false), the non-XA JDBC resource causes
XAResource.prepare () to fail. When there is only one resource participating in a transaction,
the one phase optimization bypasses XxAResource.prepare (), and the transaction commits
successfully in most instances.

Note: There are risks to data integrity when using the Emulate Two-Phase Commit for non-XA
Driver option. BEA recommends that you use an XA-compliant JDBC driver or the
Logging Last Resource option rather than use the Emulate Two-Phase Commit option.
Make sure you consider the risks below before enabling this option.

Configuring and Managing WebLogic JDBC 3-11

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ViewTransactionStatisticsForNonXAResources.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ViewTransactionStatisticsForNonXAResources.html

Configuring JDBC Data Sources

3-12

This non-XA JDBC driver support is often referred to as the "JTS driver" because WebLogic
Server uses the WebLogic JTS Driver internally to support the feature. For more information
about the WebLogic JTS Driver, see "Using the WebLogic JTS Driver" in Programming
WebLogic JDBC.

Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA
Driver

WebLogic Server supports the participation of non-XA JDBC resources in global transactions
with the Emulate Two-Phase Commit data source transaction option, but there are limitations that
you must consider when designing applications to use such resources. Because a non-XA driver
does not adhere to the XA/2PC contracts and only supports one-phase commit and rollback
operations, WebLogic Server (through the JTS driver) has to make compromises to allow the
resource to participate in a transaction controlled by the Transaction Manager.

Consider the following limitations and risks before using the Emulate Two-Phase Commit for
non-XA Driver option.

Heuristic Completions and Data Inconsistency

When Emulate Two-Phase Commit is selected for a non-XA resource,
(enableTwoPhaseCommit = true), the prepare phase of the transaction for the non-XA
resource always succeeds. Therefore, the non-XA resource does not truly participate in the
two-phase commit (2PC) protocol and is susceptible to failures. If a failure occurs in the non-XA
resource after the prepare phase, the non-XA resource is likely to roll back the transaction while
XA transaction participants will commit the transaction, resulting in a heuristic completion and
data inconsistencies.

Because of the data integrity risks, the Emulate Two-Phase Commit option should only be used
in applications that can tolerate heuristic conditions.

Cannot Recover Pending Transactions

Because a non-XA driver manipulates local database transactions only, there is no concept of a
transaction pending state in the database with regard to an external transaction manager. When
XAResource.recover () is called on the non-XA resource, it always returns an empty set of
Xids (transaction IDs), even though there may be transactions that need to be committed or rolled
back. Therefore, applications that use a non-XA resource in a global transaction cannot recover
from a system failure and maintain data integrity.

Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/jdbc/rmidriver.html#jtsdriver

Connection Pool Features

Possible Performance Loss with Non-XA Resources in Multi-Server Configurations

Because WebLogic Server relies on the database local transaction associated with a particular
JDBC connection to support non-XA resource participation in a global transaction, when the
same JDBC data source is accessed by an application with a global transaction context on
multiple WebLogic Server instances, the JTS driver will always route JDBC operations to the
first connection established by the application in the transaction. For example, if an application
starts a transaction on one server, accesses a non-XA JDBC resource, then makes a remote
method invocation (RMI) call to another server and accesses a data source that uses the same
underlying JDBC driver, the JTS driver recognizes that the resource has a connection associated
with the transaction on another server and sets up an RMI redirection to the actual connection on
the first server. All operations on the connection are made on the one connection that was
established on the first server. This behavior can result in a performance loss due to the overhead
associated with setting up these remote connections and making the RMI calls to the one physical
connection.

Only One Non-XA Participant

When a non-XA resource (with Emulate Two-Phase Commit selected) is registered with the
WebLogic Server Transaction Manager, it is registered with the name of the class that
implements the XAResource interface. Since all non-XA resources with Emulate Two-Phase
Commit selected use the JTS driver for the XAResource interface, all non-XA resources (with
Emulate Two-Phase Commit selected) that participate in a global transaction are registered with
the same name. If you use more than one non-XA resource in a global transaction, you will see
naming conflicts or possible heuristic failures.

Connection Pool Features

Each JDBC data source has a pool of JDBC connections that are created when the data source is
deployed or at server startup. Applications use a connection from the pool then return it when
finished using the connection. Connection pooling enhances performance by eliminating the
costly task of creating database connections for the application.

The following sections include information about connection pool options for a JDBC data
source.

e “Selecting a JDBC Driver” on page 3-14
e “Enabling JDBC Driver-Level Features” on page 3-14

e “Database Password Handling in a JDBC Data Source Connection Pool” on page 3-15

Configuring and Managing WebLogic JDBC 3-13

Configuring JDBC Data Sources

3-14

e “Configuring Credential Mapping for a Data Source” on page 3-15

e “Initializing Database Connections with SQL Code” on page 3-15

You can see more information and set these and other related options through the:
e JDBC Data Source: Configuration: Connection Pool page in the Administration Console

e JDBCConnectionPoolParamsBean, which is a child MBean of the JDBCDataSourceBean

Selecting a JDBC Driver

When creating a JDBC data source using the Administration Console, you are prompted to select
a JDBC driver. The Administration Console provides the driver class name and helps you
construct the URL as required by the driver. The driver you select must be in the classpath on all
servers on which you intend to deploy the data source. Some but not all JDBC drivers listed in
the Administration Console are shipped with WebLogic Server:

e Third-party JDBC drivers (see “Using Third-Party JDBC Drivers with WebLogic Server”
on page 5-1):

— Oracle Thin Driver (XA and non-XA)
— Sybase jConnect

— PointBase

e WebLogic Type 4 JDBC Drivers from DataDirect for the following database management
systems (see WebLogic Type 4 JDBC Drivers):

— DB2

— Informix

— Microsoft SQL Server
— Oracle

— Sybase

All of these drivers are referenced by the weblogic.jar manifest file and do not need to be
explicitly defined in a server’s classpath.

Enabling JDBC Driver-Level Features

WebLogic JDBC data sources support the javax.sqgl .ConnectionPoolDataSource interface
implemented by JDBC drivers. You can enable driver-level features adding the property and its

Configuring and Managing WebLogic JDBC

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCConnectionPoolParamsBean.html
http://e-docs.bea.com/wls/docs90/jdbc_drivers/index.html

Connection Pool Features

value to the Properties attribute in a JDBC data source. Driver-level properties in the Properties
attribute are set on the driver's ConnectionPoolDataSource object.

Database Password Handling in a JDBC Data Source
Connection Pool

When you create a JDBC data source, you typically include a password to connect to the
database. You can enter the password as a name-value pair in the Properties field (not
permitted for production environments) or you can enter it in the Password field. The value in the
Password field overrides any password value defined in the Properties passed to the JDBC
Driver when creating physical database connections. BEA recommends that you use the
Password attribute in place of the password property in the properties string because the Password
value is encrypted in the configuration file (stored as the password-encrypted attribute in the
jdbc-driver-params tag in the module file) and is hidden in the administration console.

Configuring Credential Mapping for a Data Source

Credential mapping for a JDBC data source is the process in which WebLogic Server user IDs
are mapped to database user IDs. If credential mapping is enabled on the data source, when an
application requests a database connection from the data source, WebLogic Server determines the
current WebLogic Server user ID and then sets the mapped database ID as a light-weight client
ID on the database connection using a vendor extension method:

® oracle.jdbc.OracleConnection.setClientIdentifier (String id)

® com.ibm.db2.jcc.DB2Connection.setDB2ClientUser (String user)

This feature relies on features in the JDBC driver and DBMS. It is only supported for use with
Oracle and DB2 databases and with the Oracle Thin and DB2 UDB JDBC drivers, respectively.

For configuration instructions, see “Configure credential mapping for a JDBC data source” in the
Administration Console Online Help.

Initializing Database Connections with SQL Code

When WebLogic Server creates database connections in a data source, the server can
automatically run SQL code to initialize the database connection. To enable this feature, enter
soL followed by a space and the SQL code you want to run in the Init SQL attribute on the JDBC
Data Source: Configuration: Connection Pool page in the Administration Console. If you leave

Configuring and Managing WebLogic JDBC 3-15

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/ConfigureCredentialMappingForADataSource.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html

Configuring JDBC Data Sources

this attribute blank (the default), WebLogic Server does not run any code to initialize database
connections.

WebLogic Server runs this code whenever it creates a database connection for the data source,
which includes at server startup, when expanding the connection pool, and when refreshing a
connection.

You can use this feature to set DBMS-specific operational settings that are connection-specific
or to ensure that a connection has memory or permissions to perform required actions.

Start the code with sqQL followed by a space. For example:

SQL alter session set NLS_DATE_FORMAT='YYYY-MM-DD HH24:MI:SS'
or

SQL SET LOCK MODE TO WAIT

Options that you can set using InitSQL vary by DBMS.

Note: Init SQL is not a dynamic attribute. When you change the value for Init SQL, you must
either undeploy and redeploy the data source o