
BEAWebLogic
Server®

Programming WebLogic
JTA

Version 9.0
Revised: July 22, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Programming WebLogic JTA iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to this Document . 1-1

Related Documentation . 1-2

Samples and Tutorials . 1-3

Avitek Medical Records Application (MedRec) and Tutorials 1-3

New and Changed Features in This Release . 1-3

2. Introducing Transactions
Overview of Transactions in WebLogic Server Applications . 2-1

ACID Properties of Transactions . 2-2

Supported Programming Model . 2-2

Supported API Models . 2-2

Distributed Transactions and the Two-Phase Commit Protocol 2-3

Support for Business Transactions . 2-4

When to Use Transactions . 2-4

What Happens During a Transaction . 2-5

Transactions in WebLogic Server EJB Applications . 2-5

Container-managed Transactions. 2-6

Bean-managed Transactions . 2-7

 Transactions in WebLogic Server RMI Applications . 2-8

Transactions Sample Code. 2-9

iv Programming WebLogic JTA

Transactions Sample EJB Code . 2-9

Importing Packages. 2-10

Using JNDI to Return an Object Reference . 2-11

Starting a Transaction . 2-11

Completing a Transaction . 2-12

Transactions Sample RMI Code . 2-12

Importing Packages. 2-13

Using JNDI to Return an Object Reference to the UserTransaction Object. . . 2-14

Starting a Transaction . 2-14

Completing a Transaction . 2-15

3. Configuring Transactions
Overview of Transaction Configuration . 3-1

Configuring JTA . 3-2

Unregister Resource Grace Period. 3-2

Additional Attributes for Managing Transactions . 3-2

Configuring Domains for Inter-Domain Transactions . 3-4

Limitations for Inter-Domain Transactions . 3-5

Inter-Domain Transactions for WebLogic Server Domains. 3-5

Setting Security Interoperability Mode . 3-6

Configuring Security Interoperability Mode . 3-6

Determining the Security Interoperability Mode Setting 3-7

Transaction Log Files . 3-8

Setting the Path for the Default Persistent Store . 3-8

Setting the Default Persistent Store Synchronous Write Policy 3-9

4. Managing Transactions
Monitoring Transactions . 4-1

Programming WebLogic JTA v

Handling Heuristic Completions . 4-2

Moving a Server . 4-3

Abandoning Transactions . 4-3

Transaction Recovery After a Server Fails . 4-4

Transaction Recovery Service Actions After a Crash . 4-5

Recovering Transactions for a Failed Non-Clustered Server 4-6

Recovering Transactions for a Failed Clustered Server . 4-7

Server Migration . 4-7

Transaction Recovery Service Migration . 4-7

Limitations of Migrating the Transaction Recovery Service 4-8

Preparing to Migrate the Transaction Recovery Service. 4-9

Constraining the Servers to Which the Transaction Recovery Service can Migrate

4-9

Viewing Current Owner of the Transaction Recovery Service. 4-10

Manually Migrating the Transaction Recovery Service Back to the Original Server

4-10

5. Transaction Service
About the Transaction Service. 5-1

Capabilities and Limitations . 5-2

Lightweight Clients with Delegated Commit . 5-2

Client-initiated Transactions. 5-3

Transaction Integrity. 5-3

Transaction Termination . 5-3

Flat Transactions . 5-3

Relationship of the Transaction Service to Transaction Processing 5-3

Multithreaded Transaction Client Support . 5-4

Transaction Id . 5-4

vi Programming WebLogic JTA

Transaction Name and Properties . 5-4

Transaction Status . 5-5

Transaction Statistics . 5-5

General Constraints . 5-5

Transaction Scope . 5-5

Transaction Service in EJB Applications . 5-6

Transaction Service in RMI Applications. 5-6

Transaction Service Interoperating with OTS. 5-6

Server-Server 2PC . 5-7

Client Demarcated Transactions. 5-7

6. Java Transaction API and BEA WebLogic Extensions
JTA API Overview . 6-1

BEA WebLogic Extensions to JTA . 6-2

7. Logging Last Resource Transaction Optimization
About the LLR Optimization Transaction Optimization . 7-2

Logging Last Resource Processing Details . 7-2

LLR Database Table Details . 7-3

LLR Table Transaction Log Records . 7-4

Failure and Recovery Processing for LLR . 7-5

Coordinating Server Crash. 7-5

JDBC Connection Failure . 7-5

LLR Transaction Recover During Server Startup . 7-6

Failover Considerations for LLR . 7-6

Optimizing Performance with LLR. 7-6

Optimizing Transaction Coordinator Location . 7-7

Varied Performance for Read-Only Operations through an LLR Data Source 7-7

Programming WebLogic JTA vii

8. Transactions in EJB Applications
Before You Begin . 8-2

General Guidelines . 8-2

Transaction Attributes . 8-3

About Transaction Attributes for EJBs . 8-3

Transaction Attributes for Container-Managed Transactions 8-3

Transaction Attributes for Bean-Managed Transactions . 8-4

Participating in a Transaction . 8-4

Transaction Semantics . 8-5

Transaction Semantics for Container-Managed Transactions 8-5

Transaction Semantics for Stateful Session Beans . 8-5

Transaction Semantics for Stateless Session Beans . 8-6

Transaction Semantics for Entity Beans . 8-7

Transaction Semantics for Bean-Managed Transactions . 8-8

Transaction Semantics for Stateful Session Beans . 8-8

Transaction Semantics for Stateless Session Beans . 8-9

Session Synchronization . 8-9

Synchronization During Transactions . 8-9

Setting Transaction Timeouts . 8-10

Handling Exceptions in EJB Transactions . 8-10

9. Transactions in RMI Applications
Before You Begin . 9-1

General Guidelines . 9-1

10.Using Third-Party JDBC XA Drivers with WebLogic Server
Overview of Third-Party XA Drivers . 10-1

Table of Third-Party XA Drivers . 10-1

viii Programming WebLogic JTA

Third-Party Driver Configuration and Performance Requirements 10-2

Using Oracle Thin/XA Driver . 10-2

Software Requirements for the Oracle Thin/XA Driver. 10-2

Set the Environment for the Oracle Thin/XA Driver . 10-3

Oracle Thin/XA Driver Configuration Properties . 10-3

Using Sybase jConnect 5.5/XA Driver . 10-4

Known Sybase jConnect 5.5/XA Issues . 10-4

Set Up the Sybase Server for XA Support . 10-5

Notes About XA and Sybase Adaptive Server . 10-6

Configuration Properties for Java Client . 10-7

Other Third-Party XA Drivers . 10-8

11.Coordinating XAResources with the WebLogic Server
Transaction Manager

Overview of Coordinating Distributed Transactions with Foreign XAResources 11-2

Registering an XAResource to Participate in Transactions . 11-3

Enlisting and Delisting an XAResource in a Transaction. 11-6

Standard Enlistment . 11-7

Dynamic Enlistment. 11-8

Static Enlistment . 11-9

Commit processing . 11-9

Recovery . 11-10

Resource Health Monitoring . 11-11

J2EE Connector Architecture Resource Adapter . 11-12

Implementation Tips . 11-12

Sharing the WebLogic Server Transaction Log . 11-12

Transaction global properties . 11-13

TxHelper.createXid . 11-13

Programming WebLogic JTA ix

FAQs . 11-14

Additional Documentation about JTA. 11-14

12.Participating in Transactions Managed by a Third-Party
Transaction Manager

Overview of Participating in Foreign-Managed Transactions. 12-1

Importing Transactions with the Client Interposed Transaction Manager 12-2

Get the Client Interposed Transaction Manager. 12-4

Get the XAResource from the Interposed Transaction Manager 12-5

Limitations of the Client Interposed Transaction Manager 12-5

Importing Transactions with the Server Interposed Transaction Manager 12-5

Get the Server Interposed Transaction Manager . 12-6

Limitations of the Server Interposed Transaction Manager 12-7

Transaction Processing for Imported Transactions . 12-7

Transaction Processing Limitations for Imported Transactions. 12-8

Commit Processing for Imported Transactions . 12-8

Recovery for Imported Transactions . 12-9

13.Troubleshooting Transactions
Overview . 13-1

Troubleshooting Tools. 13-1

Exceptions . 13-2

Transaction Identifier . 13-2

Transaction Name and Properties. 13-2

Transaction Status. 13-3

Transaction Statistics . 13-3

Transaction Monitoring . 13-3

Debugging JTA Resources . 13-3

x Programming WebLogic JTA

Enabling Debugging . 13-3

Enable Debugging Using the Command Line . 13-4

Enable Debugging Using the WebLogic Server Administration Console 13-4

Enable Debugging Using the WebLogic Scripting Tool. 13-4

Changes to the config.xml File . 13-6

JTA Debugging Scopes. 13-7

Programming WebLogic JTA 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming WebLogic
JTA.

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-1

“Related Documentation” on page 1-2

“Samples and Tutorials” on page 1-3

“New and Changed Features in This Release” on page 1-3

Document Scope and Audience
This document is written for application developers who are interested in building transactional
Java applications that run in the WebLogic Server environment. It is assumed that readers are
familiar with the WebLogic Server platform, Java™ 2, Enterprise Edition (J2EE) programming,
and transaction processing concepts.

Guide to this Document
This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

I n t roduc t i on and Roadmap

1-2 Programming WebLogic JTA

Chapter 2, “Introducing Transactions,” introduces transactions in EJB and RMI
applications running in the WebLogic Server environment. This chapter also describes
distributed transactions and the two-phase commit protocol for enterprise applications.

Chapter 3, “Configuring Transactions,” describes how to administer transactions in the
WebLogic Server environment.

Chapter 4, “Managing Transactions,” provides information on administration tasks used to
manage transactions.

Chapter 5, “Transaction Service,” describes the WebLogic Server Transaction Service.

Chapter 6, “Java Transaction API and BEA WebLogic Extensions,” provides a brief
overview of the Java Transaction API (JTA).

Chapter 8, “Transactions in EJB Applications,” describes how to implement transactions in
EJB applications.

Chapter 9, “Transactions in RMI Applications,” describes how to implement transactions in
RMI applications.

Chapter 10, “Using Third-Party JDBC XA Drivers with WebLogic Server,” describes how
to configure and use third-party XA drivers in transactions.

Chapter 11, “Coordinating XAResources with the WebLogic Server Transaction Manager,”
describes how to configure third-party systems to participate in transactions coordinated by
the WebLogic Server transaction manager.

Chapter 12, “Participating in Transactions Managed by a Third-Party Transaction
Manager,” describes the process for configuring and participating in foreign-managed
transactions.

Chapter 13, “Troubleshooting Transactions,” describes how to perform troubleshooting
tasks for applications using JTA.

Related Documentation
This document contains JTA-specific design and development information. For comprehensive
guidelines for developing, deploying, and monitoring WebLogic Server applications, see the
following documents:

Developing Applications with WebLogic Server is a guide to developing WebLogic Server
applications.

http://e-docs.bea.com/wls/docs90/programming/index.html

Samples and Tu to r ia l s

Programming WebLogic JTA 1-3

Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications.

Samples and Tutorials
In addition to this document, BEA Systems provides a variety of code samples and tutorials for
developing transactional applications. The examples and tutorials illustrate WebLogic Server in
action, and provide practical instructions on how to perform key application development tasks.
You can start the Examples server from the Start menu on Windows machines. For Linux and
other platforms, you can start the Examples server from the
WL_HOME\samples\domains\wl_server directory, where WL_HOME is the top-level installation
directory for WebLogic Platform.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Platform.

New and Changed Features in This Release
For release-specific information, see these sections in WebLogic Server 9.0 Release Notes:

“WebLogic Server 9.0 Features and Changes” lists new, changed, and deprecated features.

“WebLogic Server 9.0 Known and Resolved Issues” lists known problems and resolved
issues by service pack, for all WebLogic Server APIs, including JTA.

message URL http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/notes/new.html
http://e-docs.bea.com/wls/docs90/issues/index.html

I n t roduc t i on and Roadmap

1-4 Programming WebLogic JTA

Programming WebLogic JTA 2-1

C H A P T E R 2

Introducing Transactions

This section discusses the following topics:

Overview of Transactions in WebLogic Server Applications

When to Use Transactions

What Happens During a Transaction

Transactions Sample Code

Overview of Transactions in WebLogic Server Applications
This section includes the following sections:

ACID Properties of Transactions

Supported Programming Model

Supported API Models

Distributed Transactions and the Two-Phase Commit Protocol

Support for Business Transactions

I n t roduc ing Transact i ons

2-2 Programming WebLogic JTA

ACID Properties of Transactions
One of the most fundamental features of WebLogic Server is transaction management.
Transactions are a means to guarantee that database changes are completed accurately and that
they take on all the ACID properties of a high-performance transaction, including:

Atomicity—all changes that a transaction makes to a database are made as one unit;
otherwise, all changes are rolled back.

Consistency—a successful transaction transforms a database from a previous valid state to
a new valid state.

Isolation—changes that a transaction makes to a database are not visible to other
operations until the transaction completes its work.

Durability—changes that a transaction makes to a database survive future system or media
failures.

WebLogic Server protects the integrity of your transactions by providing a complete
infrastructure for ensuring that database updates are done accurately, even across a variety of
resource managers. If any one of the operations fails, the entire set of operations is rolled back.

Supported Programming Model
WebLogic Server supports transactions in the Sun Microsystems, Inc., Java™ 2, Enterprise
Edition (J2EE) programming model. WebLogic Server provides full support for transactions in
Java applications that use Enterprise JavaBeans, in compliance with the Enterprise JavaBeans
Specification 2.1, published by Sun Microsystems, Inc. WebLogic Server also supports the Java
Transaction API (JTA) Specification 1.0.1B, also published by Sun Microsystems, Inc.

Supported API Models
WebLogic Server supports the Sun Microsystems, Inc. Java Transaction API (JTA), which is
used by:

Enterprise JavaBean (EJB) applications within the WebLogic Server EJB container.

Remote Method Invocation (RMI) applications within the WebLogic Server infrastructure.

For information about JTA, see the following sources:

The javax.transaction and javax.transaction.xa package APIs.

The Java Transaction API specification, published by Sun Microsystems, Inc.

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/jta/index.html
http://java.sun.com/products/jta/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://www.javasoft.com/products/jta/index.html

Overv iew o f T ransac t ions in WebLog ic Ser ve r App l i cat ions

Programming WebLogic JTA 2-3

Distributed Transactions and the Two-Phase Commit Protocol
WebLogic Server supports distributed transactions and the two-phase commit protocol for
enterprise applications. A distributed transaction is a transaction that updates multiple resource
managers (such as databases) in a coordinated manner. In contrast, a local transaction begins and
commits the transaction to a single resource manager that internally coordinates API calls; there
is no transaction manager. The two-phase commit protocol is a method of coordinating a single
transaction across two or more resource managers. It guarantees data integrity by ensuring that
transactional updates are committed in all of the participating databases, or are fully rolled back
out of all the databases, reverting to the state prior to the start of the transaction. In other words,
either all the participating databases are updated, or none of them are updated.

Distributed transactions involve the following participants:

Transaction originator—initiates the transaction. The transaction originator can be a user
application, an Enterprise JavaBean, or a JMS client.

Transaction manager—manages transactions on behalf of application programs. A
transaction manager coordinates commands from application programs to start and
complete transactions by communicating with all resource managers that are participating
in those transactions. When resource managers fail during transactions, transaction
managers help resource managers decide whether to commit or roll back pending
transactions.

Recoverable resource—provides persistent storage for data. The resource is most often a
database.

Resource manager—provides access to a collection of information and processes.
Transaction-aware JDBC drivers are common resource managers. Resource managers
provide transaction capabilities and permanence of actions; they are entities accessed and
controlled within a distributed transaction. The communication between a resource
manager and a specific resource is called a transaction branch.

The first phase of the two-phase commit protocol is called the prepare phase. The required
updates are recorded in a transaction log file, and the resource must indicate, through a resource
manager, that it is ready to make the changes. Resources can either vote to commit the updates
or to roll back to the previous state. What happens in the second phase depends on how the
resources vote. If all resources vote to commit, all the resources participating in the transaction
are updated. If one or more of the resources vote to roll back, then all the resources participating
in the transaction are rolled back to their previous state.

I n t roduc ing Transact i ons

2-4 Programming WebLogic JTA

Support for Business Transactions
WebLogic JTA provides the following support for your business transactions:

Creates a unique transaction identifier when a client application initiates a transaction.

Supports an optional transaction name describing the business process that the transaction
represents. The transaction name makes statistics and error messages more meaningful.

Works with the WebLogic Server infrastructure to track objects that are involved in a
transaction and, therefore, need to be coordinated when the transaction is ready to commit.

Notifies the resource managers—which are, most often, databases—when they are
accessed on behalf of a transaction. Resource managers then lock the accessed records
until the end of the transaction.

Orchestrates the two-phase commit when the transaction completes, which ensures that all
the participants in the transaction commit their updates simultaneously. It coordinates the
commit with any databases that are being updated using Open Group’s XA protocol. Many
popular relational databases support this standard.

Executes the rollback procedure when the transaction must be stopped.

Executes a recovery procedure when failures occur. It determines which transactions were
active in the machine at the time of the crash, and then determines whether the transaction
should be rolled back or committed.

Manages transaction timeouts. If a business operation takes too much time or is only
partially completed due to failures, the system takes action to automatically issue a timeout
for the transaction and free resources, such as database locks.

When to Use Transactions
Transactions are appropriate in the situations described in the following list. Each situation
describes a transaction model supported by the WebLogic Server system. Keep in mind that
distributed transactions should not span more than a single user input screen; more complex,
higher level transactions are best implemented with a series of distributed transactions.

Within the scope of a single client invocation on an object, the object performs multiple
edits to data in a database. If one of the edits fails, the object needs a mechanism to roll
back all the edits. (In this situation, the individual database edits are not necessarily EJB or
RMI invocations. A client, such as an applet, can obtain a reference to the Transaction
and TransactionManager objects, using JNDI, and start a transaction.)

What Happens Dur ing a Transac t i on

Programming WebLogic JTA 2-5

For example, consider a banking application. The client invokes the transfer operation on a
teller object. The transfer operation requires the teller object to make the following
invocations on the bank database:

– Invoking the debit method on one account.

– Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs a way to
roll back the previous debit invocation.

The client application needs a conversation with an object managed by the server
application, and the client application needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the following:

– Data is cached in memory or written to a database during or after each successive
invocation.

– Data is written to a database at the end of the conversation.

– The client application needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the data that is being maintained in
memory across the conversation.

– At the end of the conversation, the client application needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

What Happens During a Transaction
This topic includes the following sections:

Transactions in WebLogic Server EJB Applications

Transactions in WebLogic Server RMI Applications

Transactions in WebLogic Server EJB Applications
Figure 2-1 illustrates how transactions work in a WebLogic Server EJB application.

I n t roduc ing Transact i ons

2-6 Programming WebLogic JTA

Figure 2-1 How Transactions Work in a WebLogic Server EJB Application

WebLogic Server supports two types of transactions in WebLogic Server EJB applications:

In container-managed transactions, the WebLogic Server EJB container manages the
transaction demarcation. Transaction attributes in the EJB deployment descriptor determine
how the WebLogic Server EJB container handles transactions with each method
invocation. For more information about the deployment descriptor, see “Implementing
Enterprise Java Beans” in Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs90/ejb/implementing.html.

In bean-managed transactions, the EJB manages the transaction demarcation. The EJB
makes explicit method invocations on the UserTransaction object to begin, commit, and
roll back transactions. For more information about the UserTransaction object, see the
WebLogic Server Javadoc at
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/UserTran

saction.html.

The sequence of transaction events differs between container-managed and bean-managed
transactions.

Container-managed Transactions
For EJB applications with container-managed transactions, a basic transaction works in the
following way:

1. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler specifies the
transaction type (transaction-type element) for container-managed demarcation
(Container).

T EJB

T Part of a Transaction

 Server Application

T

EJB Client
Application

BusinessMethod1

BusinessMethod2

Database

http://e-docs.bea.com/wls/docs90/ejb/implementing.html
http://e-docs.bea.com/wls/docs90/ejb/implementing.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/UserTransaction.html

What Happens Dur ing a Transac t i on

Programming WebLogic JTA 2-7

2. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler specifies
the default transaction attribute (trans-attribute element) for the EJB, which is one of
the following settings: NotSupported, Required, Supports, RequiresNew, Mandatory,
or Never. For a detailed description of these settings, see Section 17.6.2 in the Enterprise
JavaBeans Specification 2.0, published by Sun Microsystems, Inc.

3. Optionally, in the EJB’s deployment descriptor, the Bean Provider or Application
Assembler specifies the trans-attribute for one or more methods.

4. When a client application invokes a method in the EJB, the EJB container checks the
trans-attribute setting in the deployment descriptor for that method. If no setting is
specified for the method, the EJB uses the default trans-attribute setting for that EJB.

5. The EJB container takes the appropriate action depending on the applicable
trans-attribute setting.

– For example, if the trans-attribute setting is Required, the EJB container invokes
the method within the existing transaction context or, if the client called without a
transaction context, the EJB container begins a new transaction before executing the
method.

– In another example, if the trans-attribute setting is Mandatory, the EJB container
invokes the method within the existing transaction context. If the client called without a
transaction context, the EJB container throws the
javax.transaction.TransactionRequiredException exception.

6. During invocation of the business method, if it is determined that a rollback is required, the
business method calls the EJBContext.setRollbackOnly method, which notifies the EJB
container that the transaction is to be rolled back at the end of the method invocation.

Note: Calling the EJBContext.setRollbackOnly method is allowed only for methods
that have a meaningful transaction context.

7. At the end of the method execution and before the result is sent to the client, the EJB
container completes the transaction, either by committing the transaction or rolling it back
(if the EJBContext.setRollbackOnly method was called).

Bean-managed Transactions
For EJB applications with bean-managed transaction demarcations, a basic transaction works in
the following way:

1. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler specifies the
transaction type (transaction-type element) for container-managed demarcation (Bean).

I n t roduc ing Transact i ons

2-8 Programming WebLogic JTA

2. The client application uses JNDI to obtain an object reference to the UserTransaction
object for the WebLogic Server domain.

3. The client application begins a transaction using the UserTransaction.begin method,
and issues a request to the EJB through the EJB container. All operations on the EJB
execute within the scope of a transaction.

– If a call to any of these operations raises an exception (either explicitly or as a result of
a communication failure), the exception can be caught and the transaction can be rolled
back using the UserTransaction.rollback method.

– If no exceptions occur, the client application commits the current transaction using the
UserTransaction.commit method. This method ends the transaction and starts the
processing of the operation. The transaction is committed only if all of the participants
in the transaction agree to commit.

4. The UserTransaction.commit method causes the EJB container to call the transaction
manager to complete the transaction.

5. The transaction manager is responsible for coordinating with the resource managers to
update any databases.

 Transactions in WebLogic Server RMI Applications
Figure 2-2 illustrates how transactions work in a WebLogic Server RMI application.

Figure 2-2 How Transactions Work in a WebLogic Server RMI Application

For RMI client and server applications, a basic transaction works in the following way:

T RMI

T Part of a Transaction

 Server Application

T

RMI Client
Application

BusinessMethod1

BusinessMethod2

Database

T ransac t ions Sample Code

Programming WebLogic JTA 2-9

1. The application uses JNDI to return an object reference to the UserTransaction object for
the WebLogic Server domain.

Obtaining the object reference begins a conversational state between the application and
that object. The conversational state continues until the transaction is completed
(committed or rolled back). Once instantiated, RMI objects remain active in memory until
they are released (typically during server shutdown). For the duration of the transaction,
the WebLogic Server infrastructure does not perform any deactivation or activation.

2. The client application begins a transaction using the UserTransaction.begin method,
and issues a request to the server application. All operations on the server application
execute within the scope of a transaction.

– If a call to any of these operations raises an exception (either explicitly or as a result of
a communication failure), the exception can be caught and the transaction can be rolled
back using the UserTransaction.rollback method.

– If no exceptions occur, the client application commits the current transaction using the
UserTransaction.commit method. This method ends the transaction and starts the
processing of the operation. The transaction is committed only if all of the participants
in the transaction agree to commit.

3. The UserTransaction.commit method causes WebLogic Server to call the transaction
manager to complete the transaction.

4. The transaction manager is responsible for coordinating with the resource managers to
update any databases.

For more information, see Chapter 9, “Transactions in RMI Applications.”

Transactions Sample Code
This section includes the following sections:

Transactions Sample EJB Code

Transactions Sample RMI Code

Transactions Sample EJB Code
This section provides a walkthrough of sample code fragments from a class in an EJB application.
This topic includes the following sections:

Importing Packages

I n t roduc ing Transact i ons

2-10 Programming WebLogic JTA

Using JNDI to Return an Object Reference

Starting a Transaction

Completing a Transaction

The code fragments demonstrate using the UserTransaction object for bean-managed
transaction demarcation. The deployment descriptor for this bean specifies the transaction type
(transaction-type element) for transaction demarcation (Bean).

Notes: In a global transaction, use a database connection from a local JDBC data source—on the
WebLogic Server instance on which the EJB is running. Do not use a connection from a
JDBC data source on a remote WebLogic Server instance.

These code fragments do not derive from any of the sample applications that ship with
WebLogic Server. They merely illustrate the use of the UserTransaction object within
an EJB application.

Importing Packages
Listing 2-1 shows importing the necessary packages for transactions, including:

javax.transaction.UserTransaction. For a list of methods associated with this
object, see the online Javadoc.

System exceptions. For a list of exceptions, see the online Javadoc.

Listing 2-1 Importing Packages

import javax.naming.*;

import javax.transaction.UserTransaction;

import javax.transaction.SystemException;

import javax.transaction.HeuristicMixedException

import javax.transaction.HeuristicRollbackException

import javax.transaction.NotSupportedException

import javax.transaction.RollbackException

import javax.transaction.IllegalStateException

import javax.transaction.SecurityException

import java.sql.*;

import java.util.*;

T ransac t ions Sample Code

Programming WebLogic JTA 2-11

Using JNDI to Return an Object Reference
Listing 2-2 shows how look up an object on the JNDI tree.

Listing 2-2 Performing a JNDI Lookup

Context ctx = null;

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.

// Substitute the correct hostname, port number

// user name, and password for your environment:

env.put(Context.PROVIDER_URL, "t3://localhost:7001");

env.put(Context.SECURITY_PRINCIPAL, "Fred");

env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)

 ctx.lookup("javax.transaction.UserTransaction");

Starting a Transaction
Listing 2-3 shows starting a transaction by getting a UserTransaction object and calling the
javax.transaction.UserTransaction.begin() method. Database operations that occur
after this method invocation and prior to completing the transaction exist within the scope of this
transaction.

Listing 2-3 Starting a Transaction

UserTransaction tx = (UserTransaction)

 ctx.lookup("javax.transaction.UserTransaction");

tx.begin();

I n t roduc ing Transact i ons

2-12 Programming WebLogic JTA

Completing a Transaction
Listing 2-4 shows completing the transaction depending on whether an exception was thrown
during any of the database operations that were attempted within the scope of this transaction:

If an exception was thrown during any of the database operations, the application calls the
javax.transaction.UserTransaction.rollback() method.

If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit() method to attempt to commit the
transaction after all database operations completed successfully. Calling this method ends
the transaction and starts the processing of the operation, causing the WebLogic Server
EJB container to call the transaction manager to complete the transaction. The transaction
is committed only if all of the participants in the transaction agree to commit.

Listing 2-4 Completing a Transaction

tx.commit();

// or:

tx.rollback();

Transactions Sample RMI Code
This topic provides a walkthrough of sample code fragments from a class in an RMI application.
This topic includes the following sections:

Importing Packages

Using JNDI to Return an Object Reference to the UserTransaction Object

Starting a Transaction

Completing a Transaction

T ransac t ions Sample Code

Programming WebLogic JTA 2-13

The code fragments demonstrate using the UserTransaction object for RMI transactions. For
guidelines on using transactions in RMI applications, see Chapter 9, “Transactions in RMI
Applications.”

Note: These code fragments do not derive from any of the sample applications that ship with
WebLogic Server. They merely illustrate the use of the UserTransaction object within
an RMI application.

Importing Packages
Listing 2-5 shows importing the necessary packages, including the following packages used to
handle transactions:

javax.transaction.UserTransaction. For a list of methods associated with this
object, see the online Javadoc.

System exceptions. For a list of exceptions, see the online Javadoc.

Listing 2-5 Importing Packages

import javax.naming.*;

import java.rmi.*;

import javax.transaction.UserTransaction;

import javax.transaction.SystemException;

import javax.transaction.HeuristicMixedException

import javax.transaction.HeuristicRollbackException

import javax.transaction.NotSupportedException

import javax.transaction.RollbackException

import javax.transaction.IllegalStateException

import javax.transaction.SecurityException

import java.sql.*;

import java.util.*;
\

After importing these classes, initialize an instance of the UserTransaction object to null.

I n t roduc ing Transact i ons

2-14 Programming WebLogic JTA

Using JNDI to Return an Object Reference to the UserTransaction Object
Listing 2-6 shows searching the JNDI tree to return an object reference to the UserTransaction
object for the appropriate WebLogic Server domain.

Note: Obtaining the object reference begins a conversational state between the application and
that object. The conversational state continues until the transaction is completed
(committed or rolled back). Once instantiated, RMI objects remain active in memory
until they are released (typically during server shutdown). For the duration of the
transaction, the WebLogic Server infrastructure does not perform any deactivation or
activation.

Listing 2-6 Performing a JNDI Lookup

Context ctx = null;

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.

// Substitute the correct hostname, port number

// user name, and password for your environment:

env.put(Context.PROVIDER_URL, "t3://localhost:7001");

env.put(Context.SECURITY_PRINCIPAL, "Fred");

env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)

 ctx.lookup("javax.transaction.UserTransaction");

Starting a Transaction
Listing 2-7 shows starting a transaction by calling the
javax.transaction.UserTransaction.begin() method. Database operations that occur

T ransac t ions Sample Code

Programming WebLogic JTA 2-15

after this method invocation and prior to completing the transaction exist within the scope of this
transaction.

Listing 2-7 Starting a Transaction

UserTransaction tx = (UserTransaction)

 ctx.lookup("javax.transaction.UserTransaction");

tx.begin();

Completing a Transaction
Listing 2-8 shows completing the transaction depending on whether an exception was thrown
during any of the database operations that were attempted within the scope of this transaction:

If an exception was thrown, the application calls the
javax.transaction.UserTransaction.rollback() method if an exception was
thrown during any of the database operations.

If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit() method to attempt to commit the
transaction after all database operations completed successfully. Calling this method ends
the transaction and starts the processing of the operation, causing WebLogic Server to call
the transaction manager to complete the transaction. The transaction is committed only if
all of the participants in the transaction agree to commit.

Listing 2-8 Completing a Transaction

tx.commit();

// or:

tx.rollback();

I n t roduc ing Transact i ons

2-16 Programming WebLogic JTA

Programming WebLogic JTA 3-1

C H A P T E R 3

Configuring Transactions

The following sections provide configuration tasks related to transactions:

Overview of Transaction Configuration

Configuring JTA

Configuring Domains for Inter-Domain Transactions

“Transaction Log Files” on page 3-8

Overview of Transaction Configuration
The Administration Console provides the interface used to configure features of WebLogic
Server, including WebLogic JTA. The configuration process involves specifying values for
attributes. These attributes define the transaction environment, including the following:

Transaction timeouts and limits

Transaction manager behavior

You should also be familiar with the administration of J2EE components that can participate in
transactions, such as EJBs, JDBC data sources, and JMS.

Note: You can also use the WebLogic Scripting Tool (WLST; see WebLogic Scripting Tool) or
JMX (see Developing Custom Management Utilities with JMX) to configure
transaction-related settings.

http://e-docs.bea.com/wls/docs90/config_scripting/index.html
http://e-docs.bea.com/wls/docs90/jmx/index.html

Conf i gu r i ng T ransac t ions

3-2 Programming WebLogic JTA

Configuring JTA
Once you configure WebLogic JTA and any transaction participants, the system can manage
transactions using the JTA API and the WebLogic JTA extensions. Note the following:

Configuration settings for JTA (transactions) are applicable at the domain level. This
means that configuration attribute settings apply to all servers within a domain. See
“Configure JTA” in the Administration Console Online Help.

Monitoring tasks for JTA are performed at the server level. See “Monitor JTA” in the
Administration Console Online Help.

Configuration settings for participating resources (such as JDBC data sources) are per
configured object. The settings apply to all instances of a particular object. See
“Transaction Options” in Configuring and Managing WebLogic JDBC and “Configure
global transaction options for a JDBC data source” in the Administration Console Online
Help.

Unregister Resource Grace Period
If you have resources that you may occasionally undeploy and redeploy such as a JDBC data
source module packaged with an application, you can minimize the risk of abandoned
transactions because of an unregistered resource by setting the Unregistered Resource Grace
Period for the domain. The grace period is the number of seconds that the transaction manager
waits for transactions to complete before unregistering a resource.

During the specified grace period, the unregisterResource call will block until the call can return,
and no new transactions are started for the associated resource. If the number of outstanding
transactions for the resource goes to 0, the unregisterResource call returns immediately.

At the end of the grace period, if there are still outstanding transactions associated with the
resource, the unregisterResource call returns and a log message is written on the server on which
the resource was previously registered.

Additional Attributes for Managing Transactions
By default, if an XA resource that is participating in a global transaction fails to respond to an XA
call from the WebLogic Server transaction manager, WebLogic Server flags the resource as
unhealthy and unavailable, and blocks any further calls to the resource in an effort to preserve
resource threads. The failure can be caused by either an unhealthy transaction or an unhealthy
resource—there is no distinction between the two causes. In both cases, the resource is marked
as unhealthy.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ConfigureJTA.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/MonitorJTA.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/ConfigureTransactionOptionsForADataSource.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/ConfigureTransactionOptionsForADataSource.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/ConfigureTransactionOptionsForADataSource.html

Conf i gur i ng J TA

Programming WebLogic JTA 3-3

To mitigate this limitation, WebLogic Server provides the configuration attributes listed in
Table 3-1:

Table 3-1 XA Resource Health Monitoring Configuration Attributes

Attribute MBean Definition

ResourceHealthMo
nitoring

weblogic.managment.co
nfiguration.JDBCXAPar
amsBean

ResourcehealthMonitoring attribute in
JDBCXAParamsBean MBean

Enables or disables resource health monitoring for
the JDBC data source. This attribute only applies to
data sources that use an XA JDBC driver for
database connections. It is ignored if a non-XA
JDBC driver is used.

If set to true, resource health monitoring is enabled.
If an XA resource fails to respond to an XA call
within the period specified in the
MaxXACallMillis attribute, WebLogic Server
marks the data source as unhealthy and blocks any
further calls to the resource.

If set to false, the feature is disabled.

Default: true

You can set the Resource Health Monitoring
attribute for a JDBC data source on the JDBC Data
Source: Configuration: Connection Pool tab in the
Administration Console.

MaxXACallMillis weblogic.management.c
onfiguration.JTAMBean

Sets the maximum allowed duration (in
milliseconds) of XA calls to XA resources. This
setting applies to the entire domain.

Default: 120000

MaxResourceUnava
ilableMillis

weblogic.management.c
onfiguration.JTAMBean

The maximum duration (in milliseconds) that an XA
resource is marked as unhealthy. After this duration,
the XA resource is declared available again, even if
the resource is not explicitly re-registered with the
transaction manager. This setting applies to the entire
domain.

Default: 1800000

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JDBCXAParamsBean.html#ResourceHealthMonitoring
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JTAMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JTAMBean.html

Conf i gu r i ng T ransac t ions

3-4 Programming WebLogic JTA

Except for Resource Health Monitoring for a JDBC data source, you set these attributes directly
in the config.xml file when the domain is inactive. These attributes are not available in the
Administration Console. The following example shows an excerpt of a configuration file with
these attributes:

...

 <JTA

 MaxUniqueNameStatistics="5"

 TimeoutSeconds="300"

 RecoveryThresholdMillis="150000"

 MaxResourceUnavailableMillis="900000"

 MaxResourceRequestOnServer="60"

 MaxXACallMillis="180000"

 />

Configuring Domains for Inter-Domain Transactions
For a transaction manager to manage distributed transactions, the transaction manager must be
able to communicate with all participating resources to prepare and then commit or rollback the
transactions. This applies to cases when your WebLogic domain acts as the transaction manager
or a transaction participant (resource) in a distributed transaction. The following sections describe
how to configure your domain to enable inter-domain transactions.

The following sections provide information on how to configure domains for inter-domain
transactions:

“Limitations for Inter-Domain Transactions” on page 3-5

MaxResourceReque
stOnServer

weblogic.management.c
onfiguration.JTAMBean

Maximum number of concurrent requests to
resources allowed for each server in the domain.

Default: 50

Minimum: 10

Maximum: java.lang.Integer.MAX_VALUE

Table 3-1 XA Resource Health Monitoring Configuration Attributes

Attribute MBean Definition

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JTAMBean.html

Conf igur ing Domai ns fo r Int er -Domain T ransact i ons

Programming WebLogic JTA 3-5

“Inter-Domain Transactions for WebLogic Server Domains” on page 3-5

“Setting Security Interoperability Mode” on page 3-6

Limitations for Inter-Domain Transactions
Please note the following limitations for inter-domain transactions:

You cannot manually resolve incomplete transactions on resources from a WebLogic
Server domain from WebLogic Server version 7.0 or earlier.

The domains and all participating resources must have unique names. That is, you cannot
have a JDBC data source, a server, or a domain with the same name as an object in another
domain or the domain itself.

Only one data source with both of the following attribute conditions can participate in a
global transaction, regardless of the domain in which the data source is configured:

– Logging Last Resource or Emulate Two-Phase Commit is selected.

– The data source uses a non-XA driver to create database connections.

Note: BEA recommends that you use an XA driver instead of a non-XA driver (with Emulate
Two-Phase Commit) in global transactions. There are risks involved with using a
non-XA driver in a global transaction. See Limitations and Risks When Emulating
Two-Phase Commit Using a Non-XA Driver in Configuring and Managing WebLogic
JDBC.

Inter-Domain Transactions for WebLogic Server Domains
To manage or participate in transactions that span multiple WebLogic Server domains (that is, all
participating domains run on WebLogic Server 9.x, 8.x, 7.x, and 6.x domains or a combination
of 9.x, 8.x, 7.x and 6.x), you must enable inter-domain transactions by establishing domain trust
and setting the Security Interoperability Mode. For all participating domains:

1. In all participating WebLogic Server 6.x domains, change the password for the system user
to the same value in all participating domains on the Security→Users tab in the
Administration Console. See Changing the System Password at
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec003.

2. Establish domain trust by setting a security credential for all domains to the same value in
all participating domains. If you have participating 6.x domains, set the security credential
for all domains to the same value as the system password in all participating WebLogic
Server 6.x domains.

http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#NonXADriverLimitations
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#NonXADriverLimitations
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec003

Conf i gu r i ng T ransac t ions

3-6 Programming WebLogic JTA

– For 7.x domains, see Enabling Trust Between WebLogic Domains in Managing
WebLogic Security.

– For 8.x domains, see Enabling Trust Between WebLogic Domains in Managing
WebLogic Security.

– For 9.x domains, see Enable trust between domains in Administration Console Online
Help.

3. For each server participating in the transaction, set the Security Interoperability
Mode flag according to Table 3-2 before rebooting. See “Setting Security Interoperability
Mode” on page 3-6.

Setting Security Interoperability Mode
Security Interoperability Mode enables you to configure compatible communication
channels between servers in global transactions.

“Configuring Security Interoperability Mode” on page 3-6

“Determining the Security Interoperability Mode Setting” on page 3-7

Configuring Security Interoperability Mode
Every participating server must set the Security Interoperability Mode parameter to the
same value:

Valid values are:

default—The transaction coordinator makes calls using the kernel identity over an admin
channel if it is enabled, and anonymous otherwise. Man-in-the-middle attacks are possible
if the admin channel is not enabled.

performance—The transaction coordinator makes calls using anonymous at all times. This
implies a security risk since a malicious third party could then try to affect the outcome of
transactions using a man-in-the-middle attack.

compatibility—The transaction coordinator makes calls as the kernel identity over an
unsecure channel. This is a high security risk because a successful man-in-the-middle
attack would allow the attacker to gain administrative control over both domains. This
setting should only be used when strong network security is in place.

To configure Security Interoperability Mode for participating servers, see:

http://e-docs.bea.com/wls/docs70/secmanage/domain.html#domain_interop
http://e-docs.bea.com/wls/docs81/secmanage/domain.html#domain_interop
http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/security/EnableTrustBetweenDomains.html

Conf igur ing Domai ns fo r Int er -Domain T ransact i ons

Programming WebLogic JTA 3-7

For Weblogic Server 9.x domains, see Configure the security mode for XA transactions in
Administration Console Online Help.

For WebLogic Server 8.x domains, see Using Security Interoperability Mode in
Administration Console Online Help.

For WebLogic Server 7.x domains, see Using Security Interoperability Mode in
Administration Console Online Help.

Determining the Security Interoperability Mode Setting
Use the following table to determine the Security Interoperability Mode settings required
when configuring communication channels for inter-domain transactions.

Table 3-2 Security Interoperability Settings for Inter-Domain Transactions

Domain 9.x 8.1 SP5 and
higher

7.0 SP7 and
higher

8.1 SP4 and
lower

7.0 SP6 and
lower

6.x

9.x Set both do-
mains to ei-
ther
default
or per-
formance

Set both do-
mains to
perfor-
mance

Set both do-
mains to
perfor-
mance

Set the 9.x
domain to
compati-
bility

Set the 9.x
domain to
compati-
bility

Set the 9.x
domain to
compati-
bility

8.1 SP5 and
higher

Set both do-
mains to
perfor-
mance

Set both do-
mains to
perfor-
mance

Set both do-
mains to
perfor-
mance

Set the 8.1
SP5 and high-
er domain to
compati-
bility

Set the 8.1
SP5 and high-
er domain to
compati-
bility

Set the 8.1
SP5 and high-
er domain to
compati-
bility

7.0 SP7 and
higher

Set both do-
mains to
perfor-
mance

Set both do-
mains to
perfor-
mance

Set both do-
mains to
perfor-
mance

Set the 7.0
SP7 and high-
er domain to
compati-
bility

Set the 7.0
SP7 and high-
er domain to
compati-
bility

Set the 7.0
SP7 and high-
er domain to
compati-
bility

8.1 SP4 and
lower

Set the 9.x
domain to
compati-
bility

Set the 8.1
SP5 and high-
er domain to
compati-
bility

Set the 7.0
SP7 and high-
er domain to
compati-
bility

N/A N/A N/A

http://e-docs.bea.com/wls/docs92/ConsoleHelp/taskhelp/jta/ConfigureInteropMode.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#CR241279
http://e-docs.bea.com/wls/docs70/adminguide/managetx.html#CR241279

Conf i gu r i ng T ransac t ions

3-8 Programming WebLogic JTA

Note: When Security Interoperability Mode is set to performance, you are not required to set
domain trust between the domains.

Transaction Log Files
Each server has a transaction log which stores information about committed transactions
coordinated by the server that may not have been completed. WebLogic Server uses the
transaction log when recovering from system crashes or network failures. You cannot directly
view the transaction log—the records are in a binary format and are stored in the default persistent
store for the server.

To take advantage of the migration capability of the Transaction Recovery Service for servers in
a cluster, you must store the transaction log in a location that is available to a server and its backup
servers, preferably on a dual-ported SCSI disk or on a Storage Area Network (SAN). See “Setting
the Path for the Default Persistent Store” on page 3-8 for more information.

If the file system on which the default store saves transaction log records runs out of space or is
inaccessible, commit() throws SystemException, and the transaction manager places a
message in the system error log. No transactions are committed until more space is available.

Setting the Path for the Default Persistent Store
Each server instance, including the administration server, has a default persistent store, which is
a file-based store that is available to subsystems that do not require explicit selection of a
particular store and function best by using the system's default storage mechanism. The

7.0 SP6 and
lower

Set the 9.x
domain to
compati-
bility

Set the 8.1
SP5 and high-
er domain to
compati-
bility

Set the 7.0
SP7 and high-
er domain to
compati-
bility

N/A N/A N/A

6.x Set the 9.x
domain to
compati-
bility

Set the 8.1
SP5 and high-
er domain to
compati-
bility

Set the 7.0
SP7 and high-
er domain to
compati-
bility

N/A N/A N/A

Table 3-2 Security Interoperability Settings for Inter-Domain Transactions

Domain 9.x 8.1 SP5 and
higher

7.0 SP7 and
higher

8.1 SP4 and
lower

7.0 SP6 and
lower

6.x

T ransact ion Log F i l es

Programming WebLogic JTA 3-9

transaction manager uses the default persistent store to store transaction log records. In many
cases, the default persistent store requires no configuration. However, to enable migration of the
Transaction Recovery Service, you must configure the default persistent store so that it stores its
data files on a persistent storage solution that is available to other servers in the cluster if the
original server fails.

See “Configure the default persistent store for Transaction Recovery Service migration” in the
Administration Console Online Help for instructions.

Setting the Default Persistent Store Synchronous Write Policy
WebLogic Server uses the default persistent store to store transaction log records. You can select
a write policy for the default store to change the way WebLogic Server writes records to disk.
You can select one of the following options:

Cache-Flush - Flushes operating system and on-disk caches after each entry to the store.
Transactions cannot commit until the commit record is written to stable storage.

Disabled - Transactions are complete as soon as their writes are cached in memory, instead
of waiting for the writes to successfully reach the disk. This policy is the fastest, but is not
transactionally safe. Power outages or operating system failures can cause lost or duplicate
entries.

Warning: The Disabled synchronous write policy is not transactionally safe. Do not select
this option if your applications use global transactions.

Direct-Write - Forces the operating system to write directly to disk with each write. This
option is available on Windows, Solaris and HP-UX platforms.

On Windows, the Direct-Write transaction log file write policy may leave transaction data in the
on-disk cache without immediately writing it to disk. This is not transactionally safe because a
power failure can cause loss of on-disk cache data. To prevent cache data loss when using the
Direct-Write transaction log file write policy on Windows, disable all write caching for the disk
(which is enabled by default) or use a battery backup for the system.

See “Configure the default persistent store for Transaction Recovery Service migration” in the
Administration Console Online Help for instructions.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ConfigureTheDefaultStore.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ConfigureTheDefaultStore.html

Conf i gu r i ng T ransac t ions

3-10 Programming WebLogic JTA

Programming WebLogic JTA 4-1

C H A P T E R 4

Managing Transactions

The following sections provide information on administration tasks used to manage transactions:

“Monitoring Transactions” on page 4-1

“Handling Heuristic Completions” on page 4-2

“Moving a Server” on page 4-3

“Abandoning Transactions” on page 4-3

“Transaction Recovery After a Server Fails” on page 4-4

You can monitor transactions on a server using statistics and monitoring facilities. Use the
Administration Console to configure these features and to display the resulting output.

Monitoring Transactions
In the Administration Console, you can monitor transactions for each server in the domain.
Transaction statistics are displayed for a specific server, not the entire domain.

For instructions, see the following pages in the Administration Console Online Help:

“View transaction statistics” (and Servers: Monitoring: JTA: Summary)

“View statistics for named transactions” (and Servers: Monitoring: JTA: Transactions By
Name)

“View transaction statistics for XA resources” (and Servers: Monitoring: JTA XA
Resources)

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ViewTransactionStatistics.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtasummarytitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ViewStatisticsForNamedTransactions.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtatransactionnamestitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtatransactionnamestitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ViewTransactionStatisticsForXAResources.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtaxaresourcestitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtaxaresourcestitle.html

Manag ing Transact i ons

4-2 Programming WebLogic JTA

“View transaction statistics for non-XA resources” (and Servers: Monitoring: JTA:
Non-XA Resources)

“View current transactions” (and Servers: Monitoring: JTA: Transactions)

“View transaction recovery statistics” (and Servers: Monitoring: JTA: Recovery Services)

Handling Heuristic Completions
A heuristic completion (or heuristic decision) occurs when a resource makes a unilateral
decision during the completion stage of a distributed transaction to commit or rollback updates.
This can leave distributed data in an indeterminate state. Network failures or resource timeouts
are possible causes for heuristic completion. In the event of an heuristic completion, one of the
following heuristic outcome exceptions may be thrown:

HeuristicRollback—one resource participating in a transaction decided to
autonomously rollback its work, even though it agreed to prepare itself and wait for a
commit decision. If the Transaction Manager decided to commit the transaction, the
resource's heuristic rollback decision was incorrect, and might lead to an inconsistent
outcome since other branches of the transaction were committed.

HeuristicCommit—one resource participating in a transaction decided to autonomously
commit its work, even though it agreed to prepare itself and wait for a commit decision. If
the Transaction Manager decided to rollback the transaction, the resource's heuristic
commit decision was incorrect, and might lead to an inconsistent outcome since other
branches of the transaction were rolled back.

HeuristicMixed—the Transaction Manager is aware that a transaction resulted in a
mixed outcome, where some participating resources committed and some rolled back. The
underlying cause was most likely heuristic rollback or heuristic commit decisions made by
one or more of the participating resources.

HeuristicHazard—the Transaction Manager is aware that a transaction might have
resulted in a mixed outcome, where some participating resources committed and some
rolled back. But system or resource failures make it impossible to know for sure whether a
Heuristic Mixed outcome definitely occurred. The underlying cause was most likely
heuristic rollback or heuristic commit decisions made by one or more of the participating
resources.

When an heuristic completion occurs, a message is written to the server log. Refer to your
database vendor documentation for instructions on resolving heuristic completions.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ViewTransactionStatisticsForNonXAResources.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtanonxaresourcestitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtanonxaresourcestitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ViewCurrentTransactions.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtatransactionstitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ViewTransactionRecoveryStatistics.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservermonitoringjtarecoverytitle.html

Mov ing a Se rve r

Programming WebLogic JTA 4-3

Some resource managers save context information for heuristic completions. This information
can be helpful in resolving resource manager data inconsistencies. If the ForgetHeuristics
attribute is selected (set to true) on the JTA panel of the WebLogic Console, this information is
removed after an heuristic completion. When using a resource manager that saves context
information, you may want to set the ForgetHeuristics attribute to false.

Moving a Server
A server instance is identified by its URL (IP address or DNS name plus the listening port
number). Changing the URL by moving the server to a new machine or changing the Listening
Port of a server on the same machine effectively moves the server so the server identity may no
longer match the information stored in the transaction logs.

If the new server has the same URL as the old server, the Transaction Recovery Service
searches all transaction log files for incomplete transactions and completes them as
described in “Transaction Recovery Service Actions After a Crash” on page 4-5.

If the new server does not have the same URL, any pending transactions stored in the
transaction log files are unrecoverable. If you wish, you can delete the transaction log files.
This step prevents the Transaction Recovery Service from attempting to resolve these
transactions until the value of the AbandonTimeoutSeconds parameter is exceeded. See
“Abandoning Transactions” on page 4-3 for more information.

If a server acting as a remote transaction sub-coordinator fails and its URL changes, any
ongoing transactions will not complete (commit or rolledback) because the coordinator is
unable to communicate with the remote sub-coordinator. The coordinator will attempt the
commit or rollback request until AbandonTimeoutSeconds is exceeded. See “Abandoning
Transactions” on page 4-3 for more information.

BEA recommends configuring server instances using DNS names rather than IP addresses to
promote portability.

If you need to move a server to a new machine, follow the instructions for “Recovering
Transactions for a Failed Non-Clustered Server” on page 4-6.

Abandoning Transactions
You can choose to abandon incomplete transactions after a specified amount of time. In the
two-phase commit process for distributed transactions, the transaction manager coordinates all
resource managers involved in a transaction. After all resource managers vote to commit or
rollback, the transaction manager notifies the resource managers to act—to either commit or
rollback changes. During this second phase of the two-phase commit process, the transaction

Manag ing Transact i ons

4-4 Programming WebLogic JTA

manager will continue to try to complete the transaction until all resource managers indicate that
the transaction is completed. Using the AbandonTimeoutSeconds attribute, you can set the
maximum time, in seconds, that a transaction manager will persist in attempting to complete a
transaction during the second phase of the commit protocol. The default value is 86400 seconds,
or 24 hours. After the abandon transaction timer expires, no further attempt is made to resolve the
transaction with any resources that are unavailable or unable to acknowledge the transaction
outcome. If the transaction is in a prepared state before being abandoned, the transaction manager
will roll back the transaction to release any locks held on behalf of the abandoned transaction and
will write an heuristic error to the server log.

You may want to review the following related information:

For instructions on how to set the AbandonTimeoutSeconds attribute, see “Configure
JTA” in the Administration Console Online Help.

For more information about the two-phase commit process, see “Distributed Transactions
and the Two-Phase Commit Protocol” on page 2-3.

Transaction Recovery After a Server Fails
The WebLogic Server transaction manager is designed to recover from system crashes with
minimal user intervention. The transaction manager makes every effort to resolve transaction
branches that are prepared by resource managers with a commit or roll back, even after multiple
crashes or crashes during recovery.

To facilitate recovery after a crash, WebLogic Server provides the Transaction Recovery Service,
which automatically attempts to recover transactions on system startup. On startup, the
Transaction Recovery Service parses all transaction log records for incomplete transactions and
completes them as described in “Transaction Recovery Service Actions After a Crash” on
page 4-5.

Because the Transaction Recovery Service is designed to gracefully handle transaction recovery
after a crash, BEA recommends that you attempt to restart a crashed server and allow the
Transaction Recovery Service to handle incomplete transactions.

If a server crashes and you do not expect to be able to restart it within a reasonable period of time,
you may need to take action. Procedures for recovering transactions after a server failure differ
based on your WebLogic Server environment. For a non-clustered server, you can manually
move the server (with the default persistent store DAT file) to another system (machine) to
recover transactions. See “Recovering Transactions for a Failed Non-Clustered Server” on
page 4-6 for more information. For a server in a cluster, you can manually migrate the whole

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ConfigureJTA.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/ConfigureJTA.html

T ransact ion Recove ry A f te r a Se rver Fa i l s

Programming WebLogic JTA 4-5

server or the Transaction Recovery Service to another server in the same cluster. Migrating the
Transaction Recovery Service involves selecting a server with access to the transaction logs to
recover transactions, and then migrating the service using the Administration Console or the
WebLogic command line interface.

Note: For non-clustered servers, you can only move the entire server to a new system. For
clustered servers, you can migrate the entire server or temporarily migrate the
Transaction Recovery Service.

For more information about migrating the Transaction Recovery Service, see “Recovering
Transactions for a Failed Clustered Server” on page 4-7. For more information about clusters, see
Using WebLogic Server Clusters at http://e-docs.bea.com/wls/docs90/cluster/index.html.

The following sections provide information on how to recover transactions after a failure:

“Transaction Recovery Service Actions After a Crash” on page 4-5

“Recovering Transactions for a Failed Non-Clustered Server” on page 4-6

“Recovering Transactions for a Failed Clustered Server” on page 4-7

Transaction Recovery Service Actions After a Crash
When you restart a server after a crash or when you migrate the Transaction Recovery Service to
another (backup) server, the Transaction Recovery Service does the following:

Complete transactions ready for second phase of two-phase commit

For transactions for which a commit decision has been made but the second phase of the
two-phase commit process has not completed (transactions recorded in the transaction log),
the Transaction Recovery Service completes the commit process.

Resolve prepared transactions

For transactions that the transaction manager has prepared with a resource manager
(transactions in phase one of the two-phase commit process), the Transaction Recovery
Service must call XAResource.recover() during crash recovery for each resource
manager and eventually resolve (by calling the commit(), rollback(), or forget()
method) all transaction IDs returned by recover().

Report heuristic completions

If a resource manager reports a heuristic exception, the Transaction Recovery Service
records the heuristic exception in the server log and calls forget() if the Forget
Heuristics configuration attribute is enabled. If the Forget Heuristics configuration

http://e-docs.bea.com/wls/docs90/cluster/index.html

Manag ing Transact i ons

4-6 Programming WebLogic JTA

attribute is not enabled, refer to your database vendor’s documentation for information
about resolving heuristic completions. See “Handling Heuristic Completions” on page 4-2
for more information.

The Transaction Recovery Service provides the following benefits:

Maintains consistency across resources

The Transaction Recovery Service handles transaction recovery in a consistent, predictable
manner: For a transaction for which a commit decision has been made but is not yet
committed before a crash, and XAResource.recover() returns the transaction ID, the
Transaction Recovery Service consistently calls XAResource.commit(); for a transaction
for which a commit decision has not been made before a crash, and
XAResource.recover() returns its transaction ID, the Transaction Recovery Service
consistently calls XAResource.rollback(). With consistent, predictable transaction
recovery, a transaction manager crash by itself cannot cause a mixed heuristic completion
where some branches are committed and some are rolled back.

Persists in achieving transaction resolution

If a resource manager crashes, the Transaction Recovery Service must eventually call
commit() or rollback() for each prepared transaction until it gets a successful return
from commit() or rollback(). The attempts to resolve the transaction can be limited by
setting the AbandonTimeoutSeconds configuration attribute. See “Abandoning
Transactions” on page 4-3 for more information.

Recovering Transactions for a Failed Non-Clustered Server
To recover transactions for a failed server, follow these steps:

1. Move (or make available) the persistent store DAT file (which contains all transaction log
records) from the failed server to a new server.

2. Set the path for the default persistent store with the path to the data file. See “Setting the
Path for the Default Persistent Store” on page 3-8.

3. Start the new server. The Transaction Recovery Service searches all transaction log files for
incomplete transactions and completes them as described in “Transaction Recovery Service
Actions After a Crash” on page 4-5.

When moving transaction log records after a server failure, make all transaction log records
available on the new machine before starting the server there. Otherwise, transactions in the
process of being committed at the time of a crash might not be resolved correctly, resulting in
application data inconsistencies.You can accomplish this by storing persistent store data files on

T ransact ion Recove ry A f te r a Se rver Fa i l s

Programming WebLogic JTA 4-7

a dual-ported disk available to both machines. As in the case of a planned migration, update the
default file store directory attribute with the new path before starting the server if the pathname
is different on the new machine.

Note: The Transaction Recovery Service is designed to gracefully handle transaction recovery
after a crash. BEA recommends that you attempt to restart a crashed server and allow the
Transaction Recovery Service to handle incomplete transactions, rather than move the
server to a new machine.

Recovering Transactions for a Failed Clustered Server
When a clustered server fails, you have the following options for recovering transactions:

“Server Migration” on page 4-7

“Transaction Recovery Service Migration” on page 4-7

Server Migration
For clustered servers, WebLogic Server enables you to migrate a failing server to a new machine,
including the Transaction Recovery Service. When the server migrates to another machine, it
must be able to locate the transaction log records to complete or recover transactions. Transaction
log records are stored in the default persistent store for the server. If you plan to migrate clustered
servers in the event of a failure, you must set up the default persistent store so that it stores records
in a shared storage system that is accessible to any potential machine to which a failed migratable
server might be migrated. For highest reliability, use a shared storage solution that is itself highly
available—for example, a storage area network (SAN).

For information about server migration, see “Server Migration” in Using WebLogic Server
Clusters.

For more information about setting default persistent store options, see:

“Setting the Path for the Default Persistent Store” on page 3-8

“Setting the Default Persistent Store Synchronous Write Policy” on page 3-9

Transaction Recovery Service Migration
When a clustered server crashes, you can manually migrate the Transaction Recovery Service
from the crashed server to another server in the same cluster using the Administration Console or
the command line interface. The following events occur:

http://e-docs.bea.com/wls/docs90/cluster/failover.html#server_migration

Manag ing Transact i ons

4-8 Programming WebLogic JTA

1. The Transaction Recovery Service on the backup server takes ownership of the transaction
log from the crashed server.

2. The Transaction Recovery Service searches all transaction log records from the failed server
for incomplete transactions and completes them as described in “Transaction Recovery
Service Actions After a Crash” on page 4-5.

3. If the Transaction Recovery Service on the backup server successfully completes all
incomplete transactions from the failed server, the server releases ownership of the
Transaction Recovery Service for the failed server so the failed server can reclaim it upon
restart.

For instructions to migrate the Transaction Recovery Service using the Administration Console,
see “Migrate the Transaction Recovery Service” in the Administration Console Online Help.

A server can perform transaction recovery for more than one failed server. While recovering
transactions for other servers, the backup server continues to process and recover its own
transactions. If the backup server fails during recovery, you can migrate the Transaction
Recovery Service to yet another server, which will continue the transaction recovery. You can
also manually migrate the Transaction Recovery Service back to the original failed server using
the Administration Console or the command line interface. See “Manually Migrating the
Transaction Recovery Service Back to the Original Server” on page 4-10 for more information.

When a backup server completes transaction recovery for a server, it releases ownership of the
Transaction Recovery Service for the failed server. When you restart a failed server, it attempts
to reclaim ownership of its Transaction Recovery Service. If a backup server is in the process of
recovering transactions when you restart the failed server, the backup server stops recovering
transactions, performs some internal cleanup, and releases ownership of the Transaction
Recovery service so the failed server can reclaim it and start properly. The failed server will then
complete its own transaction recovery.

If a backup server still owns the Transaction Recovery Service for a failed server and the backup
server is inactive when you attempt to restart the failed server, the failed server will not start
because the backup server cannot release ownership of the Transaction Recovery Service. This
is also true if the fail back mechanism fails or if the backup server cannot communicate with the
Administration Server. You can manually migrate the Transaction Recovery using the
Administration Console or the command line interface.

Limitations of Migrating the Transaction Recovery Service
When migrating the Transaction Recovery Service, the following limitations apply:

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/MigrateTheTransactionRecoveryService.html

T ransact ion Recove ry A f te r a Se rver Fa i l s

Programming WebLogic JTA 4-9

You cannot migrate the Transaction Recovery Service to a backup server from a server that
is running. You must stop the server before migrating the Transactions Recovery Service.

The backup server does not accept new transaction work for the failed server. It only
processes incomplete transactions.

The backup server does not process heuristic log files.

The backup server only processes log records written by WebLogic Server. It does not
process log records written by gateway implementations, including WebLogic Tuxedo
Connector.

Preparing to Migrate the Transaction Recovery Service
To migrate the Transaction Recovery Service from a failed server in a cluster to another server
(backup server) in the same cluster, the backup server must have access to the transaction log
records from the failed server. Therefore, you must store default persistent store data files on
persistent storage available to all potential backup servers in the cluster. BEA recommends that
you store transaction log records on a Storage Area Network (SAN) device or a dual-ported disk.
Do not use an NFS file system to store transaction log records. Because of the caching scheme in
NFS, files on disk may not always be current. Using transaction log records stored on an NFS
device for recovery may cause data corruption.

When migrating the Transaction Recovery Service from a server, you must stop the failing or
failed server before actually migrating the Transaction Recovery Service. If the original server is
still running, you cannot migrate the Transaction Recovery Service from it.

All servers that participate in the migration must have a listen address specified in their
configuration. See “Configure listen addresses” in the Administration Console Help.

Constraining the Servers to Which the Transaction Recovery Service can
Migrate
You may want to limit the choices of the servers to use as a Transaction Recovery Service backup
for a server in a cluster. For example, all servers in your cluster may not have access to the
transaction log records for a server. You can limit the list of destination servers available on the
Servers: Configuration: Migration page in the Administration Console. See “Configure candidate
servers for Transaction Recovery Service migration” for instructions.

Note: You must include the original server in the list of chosen servers so that you can manually
migrate the Transaction Recovery Service back to the original server, if need be. The
Administration Console enforces this rule.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/channels/ConfigureListenAddresses.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverserverconfigmigrationtitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/LimitServersForTransactionRecoveryMigration.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jta/LimitServersForTransactionRecoveryMigration.html

Manag ing Transact i ons

4-10 Programming WebLogic JTA

Viewing Current Owner of the Transaction Recovery Service
When you migrate the Transaction Recovery Service to another server in the cluster, the backup
server takes ownership of the Transaction Recovery Service until it completes all incomplete
transactions. After which, it releases ownership of the Transaction Recovery Service and the
original server can reclaim it. You can see the current owner on the Servers: Control: Migration
page in the Administration Console. Follow these instructions:

1. In the Domain Structure tree in the Administration console, expand Environment and click
Servers.

2. Select the original server from which the Transaction Recovery Service was migrated, then
select the Control > Migration tab.

3. Click Advanced. Under JTA Migration Options, Hosting Server indicates the current owner
of the Transaction Recovery Service.

Manually Migrating the Transaction Recovery Service Back to the Original
Server
After completing transaction recovery for a failed server, a backup server releases ownership of
the Transaction Recovery Service so that the original server can reclaim it when the server is
restarted. If the backup server stops (crashes) for any reason before it completes transaction
recovery, the original server cannot reclaim ownership of the Transaction Recovery Service and
will not start. You can manually migrate the Transaction Recovery Service back to the original
server by selecting the original server as the Destination Server. The backup server must not be
running when you migrate the service back to the original server. Follow the instructions below.

Note: Please note the following:

A backup server will continue to recover incomplete transactions after you restart
it. You will not need to manually migrate the Transaction Recovery Service back to
the original server if the backup server completes the transaction recovery.

If you restart the original server while the backup server is recovering transactions,
the backup server will gracefully release ownership of the Transaction Recovery
Service. You do not need to stop the backup server. See “Recovering Transactions
for a Failed Clustered Server” on page 4-7.

1. Make sure the backup server is not running.

2. In the Domain Structure tree in the Administration console, expand Environment and click
Servers.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverservercontrolmigrationtitle.html

T ransact ion Recove ry A f te r a Se rver Fa i l s

Programming WebLogic JTA 4-11

3. Select the original server from which the Transaction Recovery Service was migrated, then
select the Control > Migration tab.

4. Click Advanced.

5. Under JTA Migration Options, in Migrate to Server, select the server from which the
Transaction Recovery Service was migrated (should be the same as the Preferred Server).

6. Click Save.

Manag ing Transact i ons

4-12 Programming WebLogic JTA

Programming WebLogic JTA 5-1

C H A P T E R 5

Transaction Service

This section provides information that programmers need to write transactional applications for
the WebLogic Server system.

This section discusses the following topics:

About the Transaction Service

Capabilities and Limitations

Transaction Scope

Transaction Service in EJB Applications

Transaction Service in RMI Applications

“Transaction Service Interoperating with OTS” on page 5-6

About the Transaction Service
WebLogic Server provides a Transaction Service that supports transactions in EJB and RMI
applications. In the WebLogic Server EJB container, the Transaction Service provides an
implementation of the transaction services described in the Enterprise JavaBeans Specification
2.0, published by Sun Microsystems, Inc.

For EJB and RMI applications, WebLogic Server also provides the javax.transaction and
javax.transaction.xa packages, from Sun Microsystems, Inc., which implements the Java
Transaction API (JTA) for Java applications. For more information about JTA, see the Java
Transaction API (JTA) Specification 1.0.1B, published by Sun Microsystems, Inc. For more

Transact ion Se rv ice

5-2 Programming WebLogic JTA

information about the UserTransaction object that applications use to demarcate transaction
boundaries, see the WebLogic Server Javadoc.

Capabilities and Limitations
This section includes the following sections:

Lightweight Clients with Delegated Commit

Client-initiated Transactions

Transaction Integrity

Transaction Termination

Flat Transactions

Relationship of the Transaction Service to Transaction Processing

Multithreaded Transaction Client Support

General Constraints

These sections describe the capabilities and limitations of the Transaction Service that supports
EJB and RMI applications:

Lightweight Clients with Delegated Commit
A lightweight client runs on a single-user, unmanaged desktop system that has irregular
availability. Owners may turn their desktop systems off when they are not in use. These
single-user, unmanaged desktop systems should not be required to perform network functions
such as transaction coordination. In particular, unmanaged systems should not be responsible for
ensuring atomicity, consistency, isolation, and durability (ACID) properties across failures for
transactions involving server resources. WebLogic Server remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do a delegated commit, which means that
the Transaction Service allows lightweight clients to begin and terminate transactions while the
responsibility for transaction coordination is delegated to a transaction manager running on a
server machine. Client applications do not require a local transaction server. The remote
implementation of UserTransaction that EJB or RMI clients use delegates the actual
responsibility of transaction coordination to the transaction manager on the server.

Capabi l i t i es and L imi tat ions

Programming WebLogic JTA 5-3

Client-initiated Transactions
A client, such as an applet, can obtain a reference to the UserTransaction and
TransactionManager objects using JNDI. A client can begin a transaction using either object
reference. To get the Transaction object for the current thread, the client program must invoke
the ((TransactionManager)tm).getTransaction() method.

Transaction Integrity
Checked transaction behavior provides transaction integrity by guaranteeing that a commit will
not succeed unless all transactional objects involved in the transaction have completed the
processing of their transactional requests. The Transaction Service provides checked transaction
behavior that is equivalent to that provided by the request/response interprocess communication
models defined by The Open Group.

Transaction Termination
WebLogic Server allows transactions to be terminated only by the client that created the
transaction.

Note: The client may be a server object that requests the services of another object.

Flat Transactions
WebLogic Server implements the flat transaction model. Nested transactions are not supported.

Relationship of the Transaction Service to Transaction
Processing
The Transaction Service relates to various transaction processing servers, interfaces, protocols,
and standards in the following ways:

Support for The Open Group XA interface.The Open Group Resource Managers are
resource managers that can be involved in a distributed transaction by allowing their
two-phase commit protocol to be controlled via The Open Group XA interface. WebLogic
Server supports interaction with The Open Group Resource Managers.

Support for the OSI TP protocol. Open Systems Interconnect Transaction Processing
(OSI TP) is the transactional protocol defined by the International Organization for
Standardization (ISO). WebLogic Server does not support interactions with OSI TP
transactions.

Transact ion Se rv ice

5-4 Programming WebLogic JTA

Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2 is a
transactional protocol defined by IBM. WebLogic Server does not support interactions with
LU 6.2 transactions.

Support for the ODMG standard. ODMG-93 is a standard defined by the Object
Database Management Group (ODMG) that describes a portable interface to access Object
Database Management Systems. WebLogic Server does not support interactions with
ODMG transactions.

Multithreaded Transaction Client Support
WebLogic Server supports multithreaded transactional clients. Clients can make transaction
requests concurrently in multiple threads.

Transaction Id
The Transaction Service assigns a transaction identifier (XID) to each transaction. This ID can be
used to isolate information about a specific transaction in a log file. You can retrieve the
transaction identifier using the getXID method in the weblogic.transaction.Transaction
interface. For detailed information on methods for getting the transaction identifier, see the
weblogic.transaction.Transaction Javadoc.

Transaction Name and Properties
WebLogic JTA provides extensions to javax.transaction.Transaction that support
transaction naming and user-defined properties. These extensions are included in the
weblogic.transaction.Transaction interface.

The transaction name indicates a type of transaction (for example, funds transfer or ticket
purchase) and should not be confused with the transaction ID, which identifies a unique
transaction on a server. The transaction name makes it easier to identify a transaction type in the
context of an exception or a log file.

User-defined properties are key/value pairs, where the key is a string identifying the property and
the value is the current value assigned to the property. Transaction property values must be
objects that implement the Serializable interface. You manage properties in your application
using the set and get methods defined in the weblogic.transaction.Transaction interface.
Once set, properties stay with a transaction during its entire lifetime and are passed between
machines as the transaction travels through the system. Properties are saved in the transaction log,
and are restored during crash recovery processing. If a transaction property is set more than once,
the latest value is retained.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/Transaction.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/Transaction.html

T ransac t ion Scope

Programming WebLogic JTA 5-5

For detailed information on methods for setting and getting the transaction name and transaction
properties, see the weblogic.transaction.Transaction Javadoc.

Transaction Status
The Java Transaction API provides transaction status codes using the
javax.transaction.Status class. Use the getStatusAsString method in
weblogic.transaction.Transaction to return the status of the transaction as a string. The
string contains the major state as specified in javax.transaction.Status with an additional
minor state (such as logging or pre-preparing).

Transaction Statistics
Transaction statistics are provided for all transactions handled by the transaction manager on a
server. These statistics include the number of total transactions, transactions with a specific
outcome (such as committed, rolled back, or heuristic completion), rolled back transactions by
reason, and the total time that transactions were active. For detailed information on transaction
statistics, see “Monitoring Transactions” on page 4-1.

General Constraints
The following constraints apply to the Transaction Service:

In WebLogic Server, a client or a server object cannot invoke methods on an object that is
infected with (or participating in) another transaction. The method invocation issued by the
client or the server will return an exception.

In WebLogic Server, clients using third-party implementations of the Java Transaction API
(for Java applications) are not supported.

The transaction log buffer is limited to 250 KB. If your application includes very large
transactions that require transaction log writes that exceed this value, WebLogic Server will
throw an exception. In that case, you must reconfigure your application to work around the
buffer size.

Transaction Scope
The scope of a transaction refers to the environment in which the transaction is performed.
WebLogic Server supports transactions on standalone servers, between non-clustered servers,
between clustered servers within a domain, and between domains. To enable inter-domain
transaction support, see “Configuring Domains for Inter-Domain Transactions” on page 3-4.

Transact ion Se rv ice

5-6 Programming WebLogic JTA

Transaction Service in EJB Applications
The WebLogic Server EJB container provides a Transaction Service that supports the two types
of transactions in WebLogic Server EJB applications:

Container-managed transactions. In container-managed transactions, the WebLogic
Server EJB container manages the transaction demarcation. Transaction attributes in the
EJB deployment descriptor determine how the WebLogic Server EJB container handles
transactions with each method invocation.

Bean-managed transactions. In bean-managed transactions, the EJB manages the
transaction demarcation. The EJB makes explicit method invocations on the
UserTransaction object to begin, commit, and roll back transactions. For more
information about UserTransaction methods, see the online Javadoc.

For an introduction to transaction management in EJB applications, see “Transactions in
WebLogic Server EJB Applications,” and “Transactions Sample EJB Code” in the “Introducing
Transactions” section.

Transaction Service in RMI Applications
WebLogic Server provides a Transaction Service that supports transactions in WebLogic Server
RMI applications. In RMI applications, the client or server application makes explicit method
invocations on the UserTransaction object to begin, commit, and roll back transactions.

For more information about UserTransaction methods, see the online javadoc. For an
introduction to transaction management in RMI applications, see “Transactions in WebLogic
Server RMI Applications,” and “Transactions Sample RMI Code” in the “Introducing
Transactions” section.

Transaction Service Interoperating with OTS
WebLogic Server provides a Transaction Service that supports interoperation with the Object
Transaction Service (OTS). See the Java Transaction Service (JTS) Specification at
http://java.sun.com/j2ee/transactions/downloads/. For this release, WebLogic
Server interoperates with OTS in the following scenarios:

“Server-Server 2PC” on page 5-7

“Client Demarcated Transactions” on page 5-7

http://java.sun.com/j2ee/transactions/downloads/

T ransac t ion Ser v ice In te rope ra t ing wi th OTS

Programming WebLogic JTA 5-7

Server-Server 2PC
In this situation, a server-to-server 2PC transaction is completed using interposition. The
originating server creates an Xid and propagates the transaction to the target server. The target
server registers itself as a resource with the originating server. The originating server drives the
completion of the transaction. Logging Last Resource Transaction Optimization is not supported.

Client Demarcated Transactions
The client starts a transaction on the server via the OTS client APIs. The client then retrieves the
Xid from this transaction and then propagates this per-request until the transaction is commited.
Although the client initiates the transaction, all the commit processing is done on the server.

Transact ion Se rv ice

5-8 Programming WebLogic JTA

Programming WebLogic JTA 6-1

C H A P T E R 6

Java Transaction API and BEA
WebLogic Extensions

This section provides a brief overview of the Java Transaction API (JTA) and extensions to the
API provided by BEA Systems.

This section discusses the following topics:

JTA API Overview

BEA WebLogic Extensions to JTA

JTA API Overview
WebLogic Server supports the javax.transaction package and the javax.transaction.xa
package, from Sun Microsystems, Inc., which implement the Java Transaction API (JTA) for
Java applications. For more information about JTA, see the Java Transaction API (JTA)
Specification (version 1.0.1B) published by Sun Microsystems, Inc. For a detailed description of
the javax.transaction and javax.transaction.xa interfaces, see the JTA Javadoc.

JTA includes the following components:

An interface for demarcating and controlling transactions from an application,
javax.transaction.UserTransaction. You use this interface as part of a Java client
program or within an EJB as part of a bean-managed transaction.

An interface for allowing a transaction manager to demarcate and control transactions for
an application, javax.transaction.TransactionManager. This interface is used by an
EJB container as part of a container-managed transaction and uses the
javax.transaction.Transaction interface to perform operations on a specific
transaction.

Java T ransact ion API and BEA WebLog ic Ext ens ions

6-2 Programming WebLogic JTA

Interfaces that allow the transaction manager to provide status and synchronization
information to an applications server, javax.transaction.Status and
javax.transaction.Synchronization. These interfaces are accessed only by the
transaction manager and cannot be used as part of an applications program.

Interfaces for allowing a transaction manager to work with resource managers for
XA-compliant resources (javax.transaction.xa.XAResource) and to retrieve
transaction identifiers (javax.transaction.xa.Xid). These interfaces are accessed only
by the transaction manager and cannot be used as part of an applications program.

BEA WebLogic Extensions to JTA
Extensions to the Java Transactions API are provided where the JTA specification does not cover
implementation details and where additional capabilities are required.

BEA WebLogic provides the following capabilities based on interpretations of the JTA
specification:

Client-initiated transactions—the JTA transaction manager interface
(javax.transaction.TransactionManager) is made available to clients and bean
providers through JNDI. This allows clients and EJBs using bean-managed transactions to
suspend and resume transactions.

Note: A suspended transaction must be resumed in the same server process in which it was
suspended.

Scope of transactions—transactions can operate within and between clusters and domains.

BEA WebLogic provides the following classes and interfaces as extensions to JTA:

weblogic.transaction.RollbackException (extends
javax.transaction.RollbackException)

This class preserves the original reason for a rollback for use in more comprehensive
exception information.

weblogic.transaction.TransactionManager (extends
javax.transaction.TransactionManager)

The WebLogic JTA transaction manager object supports this interface, which allows XA
resources to register and unregister themselves with the transaction manager on startup. It
also allows a transaction to be resumed after suspension.

This interface includes the following methods:

– registerStaticResource, registerDynamicResource, and unregisterResource

BEA WebLogi c Ext ens ions to J TA

Programming WebLogic JTA 6-3

– registerResource— (new in WebLogic Server 8.1) This method includes support for
properties that determine how the resource is controlled by the transaction manager.

– getTransaction

– forceResume and forceSuspend

– begin

weblogic.transaction.Transaction (extends javax.transaction.Transaction)

The WebLogic JTA transaction object supports this interface, which allows users to get and
set transaction properties.

This interface includes the following methods:

– setName and getName

– addProperties, setProperty, getProperty, and getProperties

– setRollbackReason and getRollbackReason

– getHeuristicErrorMessage

– getXID and getXid

– getStatusAsString

– getMillisSinceBegin

– getTimeToLiveMillis

– isTimedOut

weblogic.transaction.TransactionHelper

This class allows you to obtain the current transaction manager and transaction. It replaces
TxHelper.

This interface includes the following static methods:

– getTransaction

– getUserTransaction

– getTransactionManager

weblogic.transaction.TxHelper (Deprecated, use TransactionHelper instead)

This class allows you to obtain the current transaction manager and transaction.

This interface includes the following static methods:

Java T ransact ion API and BEA WebLog ic Ext ens ions

6-4 Programming WebLogic JTA

– getTransaction, getUserTransaction, getTransactionManager

– status2String

weblogic.transaction.XAResource (extends javax.transaction.xa.XAResource)

This class provides delistment capabilities for XA resources.

This interface includes the following method:

– getDelistFlag

weblogic.transaction.nonxa.NonXAResource

This interface enables resources that do not support the
javax.transaction.xa.XAResource interface to easily integrate with the WebLogic
Server transaction manager. The transaction manager supports a variation of the Last
Agent two-phase commit optimization that allows a non-XA resource to participate in a
distributed transaction. The protocol issues a one-phase commit to the non-XA resource
and uses the result of the operation to base the commit decision for the transaction.

For a detailed description of the WebLogic extensions to the javax.transaction and
javax.transaction.xa interfaces, see the weblogic.transaction package description.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/package-summary.html

Programming WebLogic JTA 7-1

C H A P T E R 7

Logging Last Resource Transaction
Optimization

WebLogic Server 9.0 includes support for the Logging Last Resource (LLR) transaction
optimization through JDBC data sources. LLR is a performance enhancement option that enables
one non-XA resource to participate in a global transaction with the same ACID guarantee as XA.
LLR is a refinement of the “Last Agent Optimization.” It differs from Last Agent Optimization
in that it is transactionally safe. The LLR resource uses a local transaction for its transaction work.
The WebLogic Server transaction manager prepares all other resources in the transaction and
then determines the commit decision for the global transaction based on the outcome of the LLR
resource’s local transaction.

In a global two-phase commit (2PC) transaction with an LLR participant, the WebLogic Server
transaction manager follows these basic steps:

Calls prepare on all other (XA-compliant) transaction participants.

Inserts a commit record to a table on the LLR participant (rather than to the file-based
transaction log).

Commits the LLR participant's local transaction (which includes both the transaction
commit record insert and the application's SQL work).

Calls commit on all other transaction participants.

After the transaction completes successfully, lazily deletes the database transaction log
entry as part of a future transaction.

The following sections provide more information about LLR transaction processing in WebLogic
Server:

Logg ing Last Resource T ransac t ion Opt imizat ion

7-2 Programming WebLogic JTA

“About the LLR Optimization Transaction Optimization” on page 7-2

“Logging Last Resource Processing Details” on page 7-2

“LLR Database Table Details” on page 7-3

“Failure and Recovery Processing for LLR” on page 7-5

“Optimizing Performance with LLR” on page 7-6

For more information about the advantages of LLR, see “Understanding the Logging Last
Resource Transaction Option” in Configuring and Managing WebLogic JDBC.

About the LLR Optimization Transaction Optimization
In many cases a global transaction becomes a two-phase commit (2PC) transaction because it
involves a database operation (using JDBC) and another non-database operation, such as a
message queueing operation (using JMS). In cases such as this where there is one database
participant in a 2PC transaction, the Logging Last Resource (LLR) Optimization transaction
option can significantly improve transaction performance by eliminating some of the XA
overhead for database processing and by avoiding the use of JDBC XA drivers, which typically
are less efficient than non-XA drivers. The LLR transaction option does not incur the same data
risks as borne by the Emulate Two-Phase Commit JDBC data source option and the
NonXAResource resource adapter (Connector) option.

Logging Last Resource Processing Details
At server boot or data source deployment, LLR data sources load or create a table on the database
from which the data source pools database connections. The table is created in the schema
determined by the user specified to create database connections. If the database table cannot be
created or loaded, then server boot will fail.

Within a global transaction, the first connection obtained from an LLR data source reserves an
internal JDBC connection that is dedicated to the transaction. The internal JDBC connection is
reserved on the specific server that is also the transactions' coordinator. All subsequent
transaction operations on any connections obtained from a same-named data source on any server
are routed to this same single internal JDBC connection.

When an LLR transaction is committed, the WebLogic Server transaction manager handles the
processing transparently. From an application perspective, the transaction semantics remain the
same, but from an internal perspective, the transaction is handled differently than standard XA
transactions. When the application commits the global transaction, the WebLogic Server

http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#llr
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#llr

LLR Database Tabl e De ta i l s

Programming WebLogic JTA 7-3

transaction manager atomically commits the local transaction on the LLR connection before
committing transaction work on any other transaction participants. For a two-phase commit
transaction, the transaction manager also writes a 2PC record on the database as part of the same
local transaction. After the local transaction completes successfully, the transaction manager calls
commit on all other global transaction participants. After all other transaction participants
complete the commit phase, the related LLR 2PC transaction record is freed for deletion. The
transaction manager will lazily delete the transaction record after a short interval or with another
local transaction.

If the application rolls back the global transaction or the transaction times out, the transaction
manager rolls back the work in the local transaction and does not store a 2PC record in the
database.

To enable the LLR transaction optimization, you create a JDBC data source with the Logging
Last Resource transaction protocol, then use database connections from the data source in your
applications. WebLogic Server automatically creates the required table on the database.

See “Create LLR-enabled JDBC data sources” in the Administration Console Online Help. Also
see “Understanding the Logging Last Resource Transaction Option” in Configuring and
Managing WebLogic JDBC.

For a list of data source configuration and usage requirements and limitations, see:

“Programming Considerations and Limitations for LLR Data Sources” in Configuring and
Managing WebLogic JDBC

“Administrative Considerations and Limitations for LLR Data Sources” in Configuring
and Managing WebLogic JDBC

LLR Database Table Details
Each WebLogic server instance maintains a database "LLR" table on the database to which a
JDBC LLR data source pools database connections. These tables are used for storing transaction
log records, and are automatically created. If multiple LLR data sources are deployed on the same
WebLogic server instance and connect to the same database instance and database schema, they
will also share the same LLR table.

LLR table names are automatically generated unless administrators choose to configure them.
The default table name is WL_LLR_SERVERNAME. For some DBMSs, the maximum length for a
table name is 18 characters. You should consider maximum table name length when configuring
your environment.

Note the following restrictions with regard to LLR database tables:

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateLLRDataSources.html
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#llr
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#llr_prog_limits
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#llr_admin_limits

Logg ing Last Resource T ransac t ion Opt imizat ion

7-4 Programming WebLogic JTA

The server will not boot if an LLR table is unreachable during boot. LLR transaction
records must be available to correctly resolve in-doubt transactions during recovery, which
runs automatically at server startup.

Multiple servers must not share the same LLR table. On server startup, WebLogic Server
checks to make sure that the domain and server name of the JDBC data source match the
domain and server name stored in the table when the table is created. If WebLogic Server
detects that more than one server is sharing the same LLR table, WebLogic Server will
shut down one or more of the servers.

To change the table name used to store transaction log records for the resource, follow these steps:

1. In the Change Center in the upper-left corner of the Administration Console window, click
Lock & Edit to start a configuration editing session.

2. On the Server: Configuration: General page, click to Advanced to show the advanced
configuration options. See

3. In JDBC LLR Table Name, enter the name of the table to use to store transaction records
for the resource, then click Save. See Server: Configuration: General.

4. Repeat steps 2 and 3 for each server on which the LLR-enabled data source is deployed.

5. Click Activate Changes in the Change Center.

Note: You must restart all servers for the change to take effect.

LLR Table Transaction Log Records
For each committed 2PC LLR transaction, the transaction manager automatically inserts a
transaction record into an LLR database table. Once LLR transactions complete, the transaction
manager lazily deletes their transaction records. If an LLR table transaction log record delete
fails, the server will log a warning message and retry the delete again later.

If you need to move a database that contains LLR transaction records, make sure you move the
LLR table contents to the new database so that transactions can be completed properly.

Caution: Do not manually delete the LLR transaction records or the LLR table in a production
system. Doing so can lead to silent heuristic transaction failures which will be not
logged.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverserverconfiggeneraltitle.html#JDBCLLRTableName

Fa i lu re and Recover y P rocess ing f or LLR

Programming WebLogic JTA 7-5

Failure and Recovery Processing for LLR
In general, the WebLogic transaction manager processes transaction failures in the following
way:

For two-phase commit errors that occur before the local transaction commit is attempted,
the transaction manager immediately throws a transaction rolled back exception.

For two-phase commit errors that occur during the local transaction commit, the behavior
depends on whether the transaction record is written to the database:

– If the record is written, the transaction manager commits the transaction.

– If the record is not written, the transaction manager rolls back the transaction.

– If it is unknown whether the record is written, the transaction manager throws an
ambiguous commit failure exception and attempts to complete the transaction every 5
seconds until the transaction abandon timeout. If the transaction is still incomplete, the
transaction manager logs an abandoned transaction message.

Coordinating Server Crash
If a transaction's coordinating server crashes before an LLR resource stores its transaction log
record or before an LLR resource commits, the transaction rolls back. If the server crashes after
the LLR resource is committed, the transaction will eventually fully commit. During server boot,
the transaction coordinator will use the LLR resource to read the transaction log record from the
database and then use the recovered information to commit any unfinished work on any
participating non-LLR XA resources.

JDBC Connection Failure
If the JDBC connection in an LLR resource fails during a 2PC transaction record insert, the
transaction manager rolls back the transaction.

If the JDBC connection in an LLR resource fails during the commit of the local transaction, the
result depends on whether the transaction is a one-phase commit (1PC, where the LLR resource
is the only participant) or 2PC:

For a 1PC transaction, the transaction will be fully committed, fully rolled back, or block
waiting for the resolution of the local transaction. The outcome of the transaction is fully
ACID because it will eventually be fully committed or fully rolled back.

Logg ing Last Resource T ransac t ion Opt imizat ion

7-6 Programming WebLogic JTA

For a 2PC transaction, the outcome is as described in “Failure and Recovery Processing for
LLR” on page 7-5.

LLR Transaction Recover During Server Startup
During server startup, the transaction manager for each WebLogic server must recover
incomplete transactions coordinated by the server, including LLR transactions. To do so, each
server will attempt to read the transaction records from the LLR database tables for each LLR
data source. If the server cannot access the LLR database tables or if the recovery fails, the server
will not start and the transaction manager will mark the server with a bad health state:
HealthState.HEALTH_FAILED.

If a timeout occurs during recovery, it may be due to unresolved local transactions that have
locked rows within the LLR log tables. Such local transactions must be resolved so that the
transaction manager can determine the state of the global transaction whose record is stored in
the locked row. Local database transactions can only be diagnosed and resolved using each
database's specific tools (the commands differ from database to database).

Failover Considerations for LLR
Consider the following notes and limitations with regard to failover with LLR:

The file-based transaction log (TLog) is still required for LLR transactions:

– TLog still stores transaction manager “checkpoint” records

– TLog must still be reachable or copied on failover

Unlike XA, LLR does not support transaction recovery service migration:

– In-doubt transactions may get resolved incorrectly, leading to “silent” heuristic hazards
(mixed outcome transactions).

– For server fail-over, use the “whole-server” migration instead of migrating the
transaction recovery service. See “Recovering Transactions for a Failed Clustered
Server” on page 4-7.

Optimizing Performance with LLR
This section includes the following information:

“Optimizing Transaction Coordinator Location” on page 7-7

“Varied Performance for Read-Only Operations through an LLR Data Source” on page 7-7

Opt imiz ing Per fo rmance wi th LLR

Programming WebLogic JTA 7-7

Optimizing Transaction Coordinator Location
Within a global transaction with an LLR participant, WebLogic Server automatically routes all
connection operations to the transaction's coordinating server. This routing can be expensive.
You may see better performance if you optimize your applications to run directly on the
coordinating server if possible, and optimize your applications to use connection instances that
are directly hosted on the coordinator.

For client applications that begin a transaction, the coordinator of transaction is the first
WebLogic server the client calls under the transaction (any RMI, EJB, JDBC, or JMS call). In the
JMS case, this is the server that hosts the client's JMS connection, which is not necessarily the
same as the server that hosts the JMS destination.

For server side applications, the coordinator of the transaction is the local server if a local
resource is invoked first (including JMS destinations and JDBC connections) unless a remote
server is called first (any remotely hosted JDBC connection, EJB, RMI call, or JMS connection).
This includes remote servers in other clusters or domains.

Varied Performance for Read-Only Operations through an LLR
Data Source
The LLR optimization provides a significant increase in performance for insert, update, and
delete operations. However, for read operations with LLR, performance is somewhat slower than
read operations with XA. For best performance, you may want to configure a non-LLR JDBC
data source for read-only operations.

Logg ing Last Resource T ransac t ion Opt imizat ion

7-8 Programming WebLogic JTA

Programming WebLogic JTA 8-1

C H A P T E R 8

Transactions in EJB Applications

This section includes the following topics:

Before You Begin

General Guidelines

Transaction Attributes

Participating in a Transaction

Transaction Semantics

Session Synchronization

Synchronization During Transactions

Setting Transaction Timeouts

Handling Exceptions in EJB Transactions

This section describes how to integrate transactions in Enterprise JavaBeans (EJBs) applications
that run under BEA WebLogic Server.

Transact ions in E JB Appl i ca t ions

8-2 Programming WebLogic JTA

Before You Begin
Before you begin, you should read Chapter 2, “Introducing Transactions,” particularly the
following topics:

Transactions in WebLogic Server EJB Applications

Transactions Sample EJB Code

This document describes the BEA WebLogic Server implementation of transactions in Enterprise
JavaBeans. The information in this document supplements the Enterprise JavaBeans
Specification 2.1, published by Sun Microsystems, Inc.

Note: Before proceeding with the rest of this chapter, you should be familiar with the contents
of the EJB Specification 2.1 document, particularly the concepts and material presented
in Chapter 16, “Support for Transactions.”

For information about implementing Enterprise JavaBeans in WebLogic Server applications, see
Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs90/ejb/index.html.

General Guidelines
The following general guidelines apply when implementing transactions in EJB applications for
WebLogic Server:

The EJB specification allows for flat transactions only. Transactions cannot be nested.

The EJB specification allows for distributed transactions that span multiple resources (such
as databases) and supports the two-phase commit protocol for both EJB CMP 2.1 and EJB
CMP 1.1.

Use standard programming techniques to optimize transaction processing. For example,
properly demarcate transaction boundaries and complete transactions quickly.

Use a database connection from a local TxDataSource—on the WebLogic Server instance
on which the EJB is running. Do not use a connection from a TxDataSource on a remote
WebLogic Server instance.

Be sure to tune the EJB cache to ensure maximum performance in transactional EJB
applications. For more information, see Programming WebLogic Server Enterprise Java
Beans at http://e-docs.bea.com/wls/docs90/ejb/index.html.

For general guidelines about the WebLogic Server Transaction Service, see “Capabilities and
Limitations.”

http://e-docs.bea.com/wls/docs90/ejb/index.html
http://e-docs.bea.com/wls/docs90/ejb/index.html
http://e-docs.bea.com/wls/docs90/ejb/index.html

Transac t ion A t t r ibutes

Programming WebLogic JTA 8-3

Transaction Attributes
This section includes the following sections:

About Transaction Attributes for EJBs

Transaction Attributes for Container-Managed Transactions

Transaction Attributes for Bean-Managed Transactions

About Transaction Attributes for EJBs
Transaction attributes determine how transactions are managed in EJB applications. For each
EJB, the transaction attribute specifies whether transactions are demarcated by the WebLogic
Server EJB container (container-managed transactions) or by the EJB itself (bean-managed
transactions). The setting of the transaction-type element in the deployment descriptor
determines whether an EJB is container-managed or bean-managed. See Chapter 16, “Support for
Transactions,” and Chapter 21, “Deployment Descriptor,” in the EJB Specification 2.1, for more
information about the transaction-type element.

In general, the use of container-managed transactions is preferred over bean-managed
transactions because application coding is simpler. For example, in container-managed
transactions, transactions do not need to be started explicitly.

WebLogic Server fully supports method-level transaction attributes as defined in Section 16.4 in
the EJB Specification 2.1.

Transaction Attributes for Container-Managed Transactions
For container-managed transactions, the transaction attribute is specified in the
container-transaction element in the deployment descriptor. Container-managed
transactions include all entity beans and any stateful or stateless session beans with a
transaction-type set to Container. For more information about these elements, see
Programming WebLogic Server Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs90/ejb/index.html.

The Application Assembler can specify the following transaction attributes for EJBs and their
business methods:

NotSupported

Supports

Required

http://e-docs.bea.com/wls/docs90/ejb/index.html

Transact ions in E JB Appl i ca t ions

8-4 Programming WebLogic JTA

RequiresNew

Mandatory

Never

For a detailed explanation about how the WebLogic Server EJB container responds to the
trans-attribute setting, see section 17.6.2 in the EJB Specification 2.1.

The WebLogic Server EJB container automatically sets the transaction timeout if a timeout value
is not defined in the deployment descriptor. The container uses the value of the Timeout
Seconds configuration parameter. The default timeout value is 30 seconds.

For EJBs with container-managed transactions, the EJBs have no access to the
javax.transaction.UserTransaction interface, and the entering and exiting transaction
contexts must match. In addition, EJBs with container-managed transactions have limited support
for the setRollbackOnly and getRollbackOnly methods of the javax.ejb.EJBContext
interface, where invocations are restricted by rules specified in Sections 16.4.4.2 and 16.4.4.3 of
the EJB Specification 2.1.

Transaction Attributes for Bean-Managed Transactions
For bean-managed transactions, the bean specifies transaction demarcations using methods in the
javax.transaction.UserTransaction interface. Bean-managed transactions include any
stateful or stateless session beans with a transaction-type set to Bean. Entity beans cannot
use bean-managed transactions.

For stateless session beans, the entering and exiting transaction contexts must match. For stateful
session beans, the entering and exiting transaction contexts may or may not match. If they do not
match, the WebLogic Server EJB container maintains associations between the bean and the
nonterminated transaction.

Session beans with bean-managed transactions cannot use the setRollbackOnly and
getRollbackOnly methods of the javax.ejb.EJBContext interface.

Participating in a Transaction
When the EJB Specification 2.1 uses the phrase “participating in a transaction,” BEA interprets
this to mean that the bean meets either of the following conditions:

The bean is invoked in a transactional context (container-managed transaction).

T ransac t ion Semant ics

Programming WebLogic JTA 8-5

The bean begins a transaction using the UserTransaction API in a bean method invoked by
the client (bean-managed transaction), and it does not suspend or terminate that transaction
upon completion of the corresponding bean method invoked by the client.

Transaction Semantics
This topic contains the following sections:

Transaction Semantics for Container-Managed Transactions

Transaction Semantics for Bean-Managed Transactions

The EJB Specification 2.1 describes semantics that govern transaction processing behavior based
on the EJB type (entity bean, stateless session bean, or stateful session bean) and the transaction
type (container-managed or bean-managed). These semantics describe the transaction context at
the time a method is invoked and define whether the EJB can access methods in the
javax.transaction.UserTransaction interface. EJB applications must be designed with
these semantics in mind.

Transaction Semantics for Container-Managed Transactions
For container-managed transactions, transaction semantics vary for each bean type.

Transaction Semantics for Stateful Session Beans
Table 8-1 describes the transaction semantics for stateful session beans in container-managed
transactions.

Table 8-1 Transaction Semantics for Stateful Session Beans in Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
 Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

ejbActivate() Unspecified No

Transact ions in E JB Appl i ca t ions

8-6 Programming WebLogic JTA

Transaction Semantics for Stateless Session Beans
Table 8-2 describes the transaction semantics for stateless session beans in container-managed
transactions.

ejbPassivate() Unspecified No

Business method Yes or No based on transaction
attribute

No

afterBegin() Yes No

beforeCompletion() Yes No

afterCompletion() No No

Table 8-2 Transaction Semantics for Stateless Session Beans in Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

Business method Yes or No based on transaction
attribute

No

Table 8-1 Transaction Semantics for Stateful Session Beans in Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
 Invoked

Can Access
UserTransaction
Methods?

T ransac t ion Semant ics

Programming WebLogic JTA 8-7

Transaction Semantics for Entity Beans
Table 8-3 describes the transaction semantics for entity beans in container-managed transactions.

Table 8-3 Transaction Semantics for Entity Beans in Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setEntityContext() Unspecified No

unsetEntityContext() Unspecified No

ejbCreate() Determined by transaction
attribute of matching create

No

ejbPostCreate() Determined by transaction
attribute of matching create

No

ejbRemove() Determined by transaction
attribute of matching remove

No

ejbFind() Determined by transaction
attribute of matching find

No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

ejbLoad() Determined by transaction
attribute of business method that
invoked ejbLoad()

No

ejbStore() Determined by transaction
attribute of business method that
invoked ejbStore()

No

Business method Yes or No based on transaction
attribute

No

Transact ions in E JB Appl i ca t ions

8-8 Programming WebLogic JTA

Transaction Semantics for Bean-Managed Transactions
For bean-managed transactions, the transaction semantics differ between stateful and stateless
session beans. For entity beans, transactions are never bean-managed.

Transaction Semantics for Stateful Session Beans
Table 8-4 describes the transaction semantics for stateful session beans in bean-managed
transactions.

Table 8-4 Transaction Semantics for Stateful Session Beans in Bean-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

ejbActivate() Unspecified Yes

ejbPassivate() Unspecified Yes

Business method Typically, no unless a previous
method execution on the bean
had completed while in a
transaction context

Yes

afterBegin() Not applicable Not applicable

beforeCompletion() Not applicable Not applicable

afterCompletion() Not applicable Not applicable

Sess ion Synchron i za t i on

Programming WebLogic JTA 8-9

Transaction Semantics for Stateless Session Beans
Table 8-5 describes the transaction semantics for stateless session beans in bean-managed
transactions.

Session Synchronization
A stateful session bean using container-managed transactions can implement the
javax.ejb.SessionSynchronization interface to provide transaction synchronization
notifications. In addition, all methods on the stateful session bean must support one of the
following transaction attributes: REQUIRES_NEW, MANDATORY or REQUIRED. For more
information about the javax.ejb.SessionSynchronization interface, see Section 6.5.3 in
the EJB Specification 2.1.

Synchronization During Transactions
If a bean implements SessionSynchronization, the WebLogic Server EJB container will
typically make the following callbacks to the bean during transaction commit time:

afterBegin()

beforeCompletion()

afterCompletion()

The EJB container can call other beans or involve additional XA resources in the
beforeCompletion method. The number of calls is limited by the
beforeCompletionIterationLimit attribute. This attribute specifies how many cycles of

Table 8-5 Transaction Semantics for Stateless Session Beans in Bean-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

Business method No Yes

Transact ions in E JB Appl i ca t ions

8-10 Programming WebLogic JTA

callbacks are processed before the transaction is rolled back. A synchronization cycle can occur
when a registered object receives a beforeCompletion callback and then enlists additional
resources or causes a previously synchronized object to be reregistered. The iteration limit
ensures that synchronization cycles do not run indefinitely.

Setting Transaction Timeouts
Bean providers can specify the timeout period for transactions in EJB applications. If the duration
of a transaction exceeds the specified timeout setting, then the Transaction Service rolls back the
transaction automatically.

Note: You must set the timeout before you begin() the transaction. Setting a timeout does not
affect transaction transactions that have already begun.

Timeouts are specified according to the transaction type:

Container-managed transactions. The Bean Provider configures the
trans-timeout-seconds attribute in the weblogic-ejb-jar.xml deployment
descriptor. For more information, see the Administration Guide.

The Bean Provider should configure the trans-timeout-seconds attribute in the
weblogic-ejb-jar.xml deployment descriptor.

Bean-managed transactions. An application calls the
UserTransaction.setTransactionTimeout method.

Handling Exceptions in EJB Transactions
WebLogic Server EJB applications need to catch and handle specific exceptions thrown during
transactions. For detailed information about handling exceptions, see Chapter 17, “Exception
Handling,” in the EJB Specification 2.1 published by Sun Microsystems, Inc.

For more information about how exceptions are thrown by business methods in EJB transactions,
see the following tables in Section 17.3: Table 12 (for container-managed transactions) and
Table 13 (for bean-managed transactions).

For a client’s view of exceptions, see Section 17.4, particularly Section 12.4.1 (application
exceptions), Section 17.4.2 (java.rmi.RemoteException), Section 17.4.2.1
(javax.transaction.TransactionRolledBackException), and Section 17.4.2.2
(javax.transaction.TransactionRequiredException).

Programming WebLogic JTA 9-1

C H A P T E R 9

Transactions in RMI Applications

The following sections provide guidelines and additional references for using transactions in
RMI applications that run under BEA WebLogic Server:

Before You Begin

General Guidelines

Before You Begin
Before you begin, read Chapter 2, “Introducing Transactions,” particularly the following topics:

“Transactions in WebLogic Server RMI Applications” on page 2-8

“Transactions Sample RMI Code” on page 2-12

For more information about RMI applications, see Programming Stand-alone Clients.

General Guidelines
The following general guidelines apply when implementing transactions in RMI applications for
WebLogic Server:

WebLogic Server allows for flat transactions only. Transactions cannot be nested.

Use standard programming techniques to optimize transaction processing. For example,
properly demarcate transaction boundaries and complete transactions quickly.

http://e-docs.bea.com/wls/docs90/client/index.html

Transact ions in RMI App l i ca t ions

9-2 Programming WebLogic JTA

For RMI applications, callback objects are not recommended for use in transactions
because they are not subject to WebLogic Server administration.

By default, all method invocations on the remote objects are transactional. If a callback
object is required, you must compile these classes using the WebLogic RMI compiler
(weblogic.rmic) using the -nontransactional flag.

In RMI applications, an RMI client can initiate a transaction, but all transaction processing
must occur on server objects or remote objects hosted by WebLogic Server. Remote objects
hosted on a client JVM cannot participate in the transaction processing.

As a work-around, you can suspend the transaction before making a call to a remote object
on a client JVM, and then resume the transaction after the remote operation returns.

For general guidelines about the WebLogic Server Transaction Service, see “Capabilities and
Limitations.”

http://e-docs.bea.com/wls/docs90//rmi/rmi_rmic.html
http://e-docs.bea.com/wls/docs90//rmi/rmi_rmic.html#rmic_options

Programming WebLogic JTA 10-1

C H A P T E R 10

Using Third-Party JDBC XA Drivers with
WebLogic Server

This section discusses the following topics:

“Overview of Third-Party XA Drivers” on page 10-1

“Third-Party Driver Configuration and Performance Requirements” on page 10-2

Overview of Third-Party XA Drivers
This section provides an overview of using third-party JDBC drivers with WebLogic Server in
distributed transactions. These drivers provide connectivity between WebLogic Server
connection pools and the DBMS. Drivers used in distributed transactions are designated by the
driver name followed by /XA; for example, Oracle Thin/XA Driver.

Table of Third-Party XA Drivers
The following table summarizes known functionality of these third-party JDBC/XA drivers when
used with WebLogic Server:

Using Th i rd-Par t y JDBC XA Dr iver s w i th WebLog ic Se rve r

10-2 Programming WebLogic JTA

Third-Party Driver Configuration and Performance
Requirements

Here are requirements and guidelines for using specific third-party XA drivers with WebLogic
Server.

Using Oracle Thin/XA Driver
WebLogic Server ships with the Oracle Thin Driver version 10g preconfigured and ready to use.
If you want to update the driver or use a different version, see Using the Oracle Thin Driver in
Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs90/jdbc/thirdparty.html#update_thin.

The following sections provide information for using the Oracle Thin/XA Driver with WebLogic
Server.

Software Requirements for the Oracle Thin/XA Driver
The Oracle Thin/XA Driver requires the following:

Java 2 SDK 1.4.x or later.

Note: The Oracle 10g and 9.2 Thin driver (ojdbc14.jar) are the only versions of the driver
supported for use with a Java 2 SDK 1.4.X.

Oracle server configured for XA functionality (limitation does not apply for non-XA
usage).

Table 10-1 Two-Tier JDBC/XA Drivers

Driver/Database Version Comments

Oracle Thin Driver XA See “Using Oracle Thin/XA Driver” on
page 10-2.

Sybase jConnect/XA

• Version 5.5

• Adaptive Server
Enterprise 12.0

See “Using Sybase jConnect 5.5/XA Driver”
on page 10-4.

http://e-docs.bea.com/wls/docs90/jdbc/thirdparty.html#update_thin

Thi rd-Par ty D r i ver Conf igura t i on and Pe r f ormance Requ i rements

Programming WebLogic JTA 10-3

Set the Environment for the Oracle Thin/XA Driver

Configure WebLogic Server
See "Using the Oracle Thin Driver" in Configuring and Managing WebLogic JDBC at
http://e-docs.bea.com/wls/docs90/jdbc_admin/third_party_drivers.html#oracl

e_thin.

Enable XA on the Database Server
To prepare the database for XA, perform these steps:

1. Log on to sqlplus as system user, e.g. sqlplus sys/CHANGE_ON_INSTALL@<DATABASE
ALIAS NAME>

2. Execute the following command: @xaview.sql

The xaview.sql script resides in the $ORACLE_HOME/rdbms/admin directory

3. Grant the following permissions:

– grant select on v$xatrans$ to public (or <user>);

– grant select on pending_trans$ to public;

– grant select on dba_2pc_pending to public;

– grant select on dba_pending_transactions to public;

– (when using the Oracle Thin driver 10.1.0.3 or later)
grant execute on dbms_system to <user>;

If the above steps are not performed on the database server, normal XA database queries and
updates may work fine. However, when the Weblogic Server Transaction Manager performs
recovery on a re-boot after a crash, recover for the Oracle resource will fail with XAER_RMERR.
Crash recovery is a standard operation for an XA resource.

Oracle Thin/XA Driver Configuration Properties
The following table contains sample code for configuring a JDBC data source:

http://e-docs.bea.com/wls/docs90/jdbc/thirdparty.html#oracle_thin

Using Th i rd-Par t y JDBC XA Dr iver s w i th WebLog ic Se rve r

10-4 Programming WebLogic JTA

Using Sybase jConnect 5.5/XA Driver
The following sections provide important configuration information and performance issues
when using the Sybase jConnect Driver 5.5/XA Driver.

Known Sybase jConnect 5.5/XA Issues
These are the known issues and BEA workarounds:

Oracle Thin/XA Driver: Connection Pool Configuration

Property Name Property Value

Name oracleXAPool

URL jdbc:oracle:thin:@serverName:port(typically 1521 on
Windows):sid

DriverClassname oracle.jdbc.xa.client.OracleXADataSource

Database Username Scott

Properties user=scott

Test Table Name DUAL

Thi rd-Par ty D r i ver Conf igura t i on and Pe r f ormance Requ i rements

Programming WebLogic JTA 10-5

Set Up the Sybase Server for XA Support
Follow these instructions to set up the environment on your database server:

Install license for Distributed Transaction Management.

Run sp_configure "enable DTM",1 to enable transactions.

Run sp_configure "enable xact coordination",1.

Run grant role dtm_tm_role to <USER_NAME>.

Copy the sample xa_config file from the SYBASE_INSTALL\OCS-12_0\sample\xa-dtm
subdirectory up three levels to SYBASE_INSTALL,where SYBASE_INSTALL is the directory
of your Sybase server installation. For example:

 $ SYBASE_INSTALL\xa_config

Edit the xa_config file. In the first [xa] section, modify the sample server name to
reflect the correct server name.

To prevent deadlocks when running transactions, enable row level lock by default:

Run sp_configure "lock scheme",0,datarows

Table 10-2 Sybase jConnect 5.5 Known Issues and Workarounds

Description Sybase Bug Comments/Workarounds for WebLogic
Server

When calling setAutoCommit(true) the
following exception is thrown:

java.sql.SQLException: JZ0S3:

The inherited method

setAutoCommit(true) cannot be

used in this subclass.

10726192 No workaround. Vendor fix required.

When driver used in distributed
transactions, calling
XAResource.end(TMSUSPEND)

followed by
XAResource.end(TMSUCCESS)
results in XAER_RMERR.

10727617 WebLogic Server has provided an internal
workaround for this bug:

Set the data source connection pool
property XAEndOnlyOnce="true".

Vendor fix has been requested.

Using Th i rd-Par t y JDBC XA Dr iver s w i th WebLog ic Se rve r

10-6 Programming WebLogic JTA

Note: Both the jConnect.jar and jconn2.jar files are included in the
WL_HOME\server\lib folder and are referenced in the weblogic.jar manifest file.
When you start WebLogic Server, the drivers are loaded automatically and are ready to
use with WebLogic Server. To use these drivers with the WebLogic utilities or with other
applications, you must include the path to these files in your CLASSPATH.

Notes About XA and Sybase Adaptive Server
Correct support for XA connections is available in the Sybase Adaptive Server Enterprise 12.0
and later versions only. XA connections with WebLogic Server are not supported on Sybase
Adaptive Server 11.5 and 11.9.

Execution Threads and Transactions in Sybase Adaptive Server
Prior to Adaptive Server version 12.0, all resources of a transaction were privately owned by a
single task on the server. The server could not share a transaction with any task other than the one
that initiated the transaction. Adaptive Server version 12.x includes support for the suspend and
join semantics used by XA-compliant transaction managers (such as WebLogic Server).
Transactions can be shared among different execution threads, or may not be associated with an
execution thread (detached).

Setting the Timeout for Detached Transactions
On the Sybase server, you can set the dtm detach timeout period, which sets the amount of
time (in minutes) that a distributed transaction branch can remain in the detached state (without
an associated execution thread). After this period, the DBMS automatically rolls back the
transaction. The dtm detach timeout period applies to all transactions on the database server.
It cannot be set for each transaction.

For example, to automatically rollback transactions after being detached for 10 minutes, use the
following command:

sp_configure 'dtm detach timeout period', 10

You should set the dtm detach timeout period higher than the transaction timeout to prevent
the database server from rolling back the transaction before the transaction times out in
WebLogic Server.

For more information about the dtm detach timeout period, see the Sybase documentation.

Thi rd-Par ty D r i ver Conf igura t i on and Pe r f ormance Requ i rements

Programming WebLogic JTA 10-7

Transaction Behavior on Sybase Adaptive Server
If a global transaction is started on the Sybase server, but is not completed, the outcome of the
transaction varies depending on the transaction state before the transaction is abandoned:

If the client is terminated before the xa.end call, the transaction is rolled back.

If the client is terminated after the xa.end call, the transaction remains on the database
server (and holds all relevant locks).

If an application calls xa.start but has not called xa.end and the application terminates
unexpectedly, the database server immediately rolls back the transaction and frees locks
held by the transaction.

If an application calls xa.start and xa.end and the application terminates unexpectedly,
the database server rolls back the transaction and frees locks held by the transaction after
the dtm detach timeout period has elapsed. See “Setting the Timeout for Detached
Transactions” on page 10-6.

If an application calls xa.start and xa.end, and then the transaction is prepared, if the
application terminates unexpectedly, the transaction will persist so that it can be properly
recovered. The Transaction Manager must call rollback or commit to complete the
transaction.

Configuration Properties for Java Client
Set the following configuration properties when running a Java client.

Table 10-3 Sybase jConnect 5.5/XA Driver: Java Client Connection Properties

Property Name Property Value

ds.setPassword <password>

ds.setUser <username>

ds.setNetworkProtocol Tds

ds.setDatabaseName <database-name>

ds.setResourceManagerName <Lrm name in xa_config file>

ds.setResourceManagerType 2

Using Th i rd-Par t y JDBC XA Dr iver s w i th WebLog ic Se rve r

10-8 Programming WebLogic JTA

Other Third-Party XA Drivers
To use other third-party XA-compliant JDBC drivers, you must include the path to the driver
class libraries in your CLASSPATH and follow the configuration instructions provided by the
vendor.

ds.setServerName <machine host name>

ds.setPortNumber port (Typically 4100)

Table 10-3 Sybase jConnect 5.5/XA Driver: Java Client Connection Properties

Property Name Property Value

Programming WebLogic JTA 11-1

C H A P T E R 11

Coordinating XAResources with the
WebLogic Server Transaction Manager

External, third-party systems can participate in distributed transactions coordinated by the
WebLogic Server transaction manager by registering a javax.transaction.xa.XAResource
implementation with the WebLogic Server transaction manager. The WebLogic Server
transaction manager then drives the XAResource as part of its Two-Phase Commit (2PC)
protocol. This is referred to as “exporting transactions.”

By exporting transactions, you can integrate third-party transaction managers with the WebLogic
Server transaction manager if the third-party transaction manager implements the XAResource
interface. With an exported transaction, the third-party transaction manager would act as a
subordinate transaction manager to the WebLogic Server transaction manager.

WebLogic Server can also participate in distributed transactions coordinated by third-party
systems (sometimes referred to as foreign transaction managers). The WebLogic Server
processing is done as part of the work of the external transaction. The third-party transaction
manager then drives the WebLogic Server transaction manager as part of its commit processing.
This is referred to as “importing transactions.”

Details about coordinating third-party systems within a transaction (exporting transactions) are
described in this section. Details about participating in transactions coordinated by third-party
systems (importing transactions) are described in Chapter 12, “Participating in Transactions
Managed by a Third-Party Transaction Manager.” Note that WebLogic Server IIOP, WebLogic
Tuxedo Connector (WTC) gateway, and BEA Java Adapter for Mainframe (JAM) gateway
internally use the same mechanism described in these chapters to import and export transactions
in WebLogic Server.

Coord inat ing XAResources wi th the WebLog ic Se rve r Transac t i on Manager

11-2 Programming WebLogic JTA

The following sections describe how to configure third-party systems to participate in
transactions coordinated by the WebLogic Server transaction manager:

“Overview of Coordinating Distributed Transactions with Foreign XAResources” on
page 11-2

“Registering an XAResource to Participate in Transactions” on page 11-3

“Enlisting and Delisting an XAResource in a Transaction” on page 11-6

“Commit processing” on page 11-9

“Recovery” on page 11-10

“Resource Health Monitoring” on page 11-11

“J2EE Connector Architecture Resource Adapter” on page 11-12

“Implementation Tips” on page 11-12

“FAQs” on page 11-14

“Additional Documentation about JTA” on page 11-14

Overview of Coordinating Distributed Transactions with Foreign
XAResources

In order to participate in distributed transactions coordinated by the WebLogic Server transaction
manager, third-party systems must implement the javax.transaction.xa.XAResource
interface and then register its XAResource object with the WebLogic Server transaction manager.
For details about implementing the javax.transaction.xa.XAResource interface, refer to the
J2EE Javadocs at http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html.

During transaction processing, you must enlist the XAResource object of the third-party system
with each applicable transaction object.

Figure 11-1 shows the process for third-party systems to participate in transactions coordinated
by the WebLogic Server transaction manager.

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/transaction/xa/XAResource.html

Reg is te r ing an XAResource t o Pa r t i c ipa te in T ransact i ons

Programming WebLogic JTA 11-3

Figure 11-1 Distributed Transactions with Third-Party Participants

Depending on the enlistment mode that you use when you enlist an XAResource object with a
transaction, WebLogic Server may automatically delist the XAResource object at the appropriate
time. For more information about enlistment and delistment, see “Enlisting and Delisting an
XAResource in a Transaction” on page 11-6. For more information about registering
XAResource objects with the WebLogic Server transaction manager, see “Registering an
XAResource to Participate in Transactions” on page 11-3.

Registering an XAResource to Participate in Transactions
In order to participate in distributed transactions coordinated by the WebLogic Server transaction
manager, third-party systems must implement the javax.transaction.xa.XAResource
interface and then register its XAResource object with the WebLogic Server transaction manager.
Registration is required to:

Specify the transaction branch qualifier for the XAResource. The branch qualifier
identifies the transaction branch of the resource manager instance and is used for all
distributed transactions that the resource manager (RM) instance participates in. Each
transaction branch represents a unit of work in the distributed transaction and is isolated
from other branches. Each transaction branch receives exactly one set of prepare-commit

Coord inat ing XAResources wi th the WebLog ic Se rve r Transac t i on Manager

11-4 Programming WebLogic JTA

calls during Two-Phase Commit (2PC) processing. The WebLogic Server transaction
manager uses the resource name as the transaction branch qualifier.

A resource manager instance is defined by the XAResource.isSameRM method.
XAResource instances that belong to the same resource manager instance should return
true for isSameRM. Note that you should avoid registering the same resource manager
instance under different resource names (i.e., different resource branches) to avoid
confusion of transaction branches.

Specify the enlistment mode. For a resource manager instance to participate in a specific
distributed transaction, it needs to enlist an XAResource instance with the JTA
javax.transaction.Transaction object. The WebLogic Server transaction manager
provides three enlistment modes: static, dynamic, and object-oriented. Enlistment modes
are discussed in greater detail in “Enlisting and Delisting an XAResource in a Transaction”
on page 11-6.

Bootstrap the XAResource in the event that the WebLogic Server transaction manager
must perform crash recovery. (The JTA Specification does not define a standard API to do
so; refer to JTA 1.0.1 Specification Section 3.4.8 for details).

The JTA 1.0.1 specification section 3.4.9 suggests that the transaction manager is
responsible for assigning the branch qualifiers. However, for recovery to work properly, the
same transaction branch qualifier needs to be supplied both at normal processing and upon
crash recovery. Therefore, registration with the WebLogic Server transaction manager is
required to support crash recovery because the transaction branch qualifier is specified
during registration.

During recovery, the WebLogic Server transaction manager performs the following tasks:

– It reads its transaction log records and for those XA resources that participated in the
distributed transactions that were logged, it continues the second phase of the 2PC
protocol to commit the XA resources with the specified branch qualifier.

– It resolves any other in-doubt transactions of the XA resources by calling
XAResource.recover. It then commits or rolls back the returned transactions (Xids)
that belonged to it. (Note that the returned Xids would already have the specified
branch qualifier.)

Note: Registration is a per-process action (compared with enlistment and delistment which is
per-transaction).

Failure to register the XAResource implementation with the WebLogic Server transaction
manager may result in unexpected transaction branching behavior. If registration is not
performed before the XA resource is enlisted with a WebLogic Server distributed transaction, the
WebLogic Server transaction manager will use the class name of the XAResource instance as the

Reg is te r ing an XAResource t o Pa r t i c ipa te in T ransact i ons

Programming WebLogic JTA 11-5

resource name (and thus the branch qualifier), which may cause undesirable resource name and
transaction branch conflicts.

Each resource manager instance should register itself only once with the WebLogic Server
transaction manager. Each resource manager instance, as identified by the resource name during
registration, adds significant overhead to the system during recovery and commit processing and
health monitoring, increases memory used by associated internal data structures, reduces
efficiency in searching through internal maps, and so forth. Therefore, for scalability and
performance reasons, you should not indiscriminately register XAResource instances under
different transaction branches.

Note that the JTA XAResource adopts an explicit transaction model, where the Xid is always
explicitly passed in the XAResource methods and a single resource manager instance handles all
of the transactions. This is in contrast to the CORBA OTS Resource, which adopts an implicit
transaction model, where there is a different OTS Resource instance for each transaction that it
participates in. You should use the JTA model when designing an XAResource.

Each foreign resource manager instance should register an XAResource instance with the
WebLogic Server transaction manager upon server startup. In WebLogic Server, you can use
startup classes to register foreign transaction managers.Follow these steps to register the resource
manager with the WebLogic Server transaction manager:

1. Obtain the WebLogic Server transaction manager using JNDI or the TxHelper interface:

import javax.transaction.xa.XAResource;
import weblogic.transaction.TransactionManager;
import weblogic.transaction.TxHelper;

InitialContext initCtx = ... ; // initialized to the initial context

TransactionManager tm = TxHelper.getTransactionManager();

or

TransactionManager tm =
(TransactionManager)initCtx.lookup("weblogic.transaction.TransactionMan
ager");

or

TransactionManager tm =
(TransactionManager)initCtx.lookup("javax.transaction.TransactionManage
r");

2. Register the XA resource instance with the WebLogic Server transaction manager:

String name = ... ; // name of the RM instance

Coord inat ing XAResources wi th the WebLog ic Se rve r Transac t i on Manager

11-6 Programming WebLogic JTA

XAResource res = ... ; // an XAResource instance of the RM instance

tm.registerResource(name, res); // register a resource with the standard
enlistment mode

or

tm.registerDynamicResource(name, res); // register a resource with the
dynamic enlistment mode

or

tm.registerStaticResource(name, res); // register a resource with the
static enlistment mode

Refer to “Enlisting and Delisting an XAResource in a Transaction” on page 11-6 for a detailed
discussion of the different enlistment modes. Note that when you register the XAResource, you
specify the enlistment mode that will be used subsequently, but you are not actually enlisting the
resource during the registration process. Actual enlistment should be done with the transaction
(not at server startup) using a different API, which is also discussed in detail in “Enlisting and
Delisting an XAResource in a Transaction.”

Each XAResource instance that you register is used for recovery and commit processing of
multiple transactions in parallel. Make sure that the XAResource instance supports resource
sharing as defined in JTA Specification Version 1.0.1B Section 3.4.6.

Note: Duplicate registration of the same XAResource is ignored.

You should unregister the XAResource from the WebLogic Server transaction manager when the
resource no longer accept new requests. Use the following method to unregister the XAResource:

tm.unregisterResource(name, res);

Enlisting and Delisting an XAResource in a Transaction
For an XAResource to participate in a distributed transaction, the XAResource instance must be
enlisted with the Transaction object. Depending on the enlistment mode, you may need to
perform different actions. The WebLogic Server transaction manager supports the following
enlistment modes:

Standard Enlistment

Dynamic Enlistment

Static Enlistment

Enl i st ing and Del i s t i ng an XAResource in a Transact i on

Programming WebLogic JTA 11-7

Even though you enlist the XAResource with the Transaction object, the enlistment mode is
determined when you register the XAResource with the WebLogic Server transaction manger,
not when you enlist the resource in the Transaction. See “Registering an XAResource to
Participate in Transactions” on page 11-3.

XAResource.start and end calls can be expensive. The WebLogic Server transaction manager
provides the following optimizations to minimize the number of these calls:

Delayed delistment:

Whether or not your XAResource implementation performs any explicit delistment or not,
the WebLogic Server transaction manager always delays delisting of any XAResource
instances that are enlisted in the current transaction until immediately before the following
events, at which time the XAResource is delisted:

– Returning the call to the caller, whether it is returned normally or with an exception

– Making a call to another server

Ignored duplicate enlistment:

The WebLogic Server transaction manager ignores any explicit enlistment of an
XAResource that is already enlisted. This may happen if the XAResource is explicitly
delisted (which is delayed or ignored by the WebLogic Server transaction manager as
mentioned above) and is subsequently re-enlisted within the duration of the same call.

By default, the WebLogic Server transaction manager delists the XAResource by calling
XAResource.end with the TMSUSPEND flag. Some database management systems may keep
cursors open if XAResource.end is called with TMSUSPEND, so you may prefer to delist an
XAResource by calling XAResource.end with TMSUCCESS wherever possible. To do so, you can
implement the weblogic.transaction.XAResource interface (instead of the
javax.transaction.xa.XAResource), which includes the getDelistFlag method. See the
WebLogic Server Javadocs for more details.

Standard Enlistment
With standard enlistment mode, you need to enlist the XAResource instance only once with the
Transaction object. Also, it is possible to enlist more than one XAResource instance of the same
branch with the same transaction. The WebLogic Server transaction manager ensures that
XAResource.end is called on all XAResource instances when appropriate (as discussed below).
The WebLogic Server transaction manager ensures that each branch receives only one set of
prepare-commit calls during transaction commit time. However, attempting to enlist a particular
XAResource instance when it is already enlisted will be ignored.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/XAResource.html

Coord inat ing XAResources wi th the WebLog ic Se rve r Transac t i on Manager

11-8 Programming WebLogic JTA

Standard enlistment simplifies enlistment, but it may also cause unnecessary enlistment and
delistment of an XAResource if the resource is not accessed at all within the duration of a
particular method call.

To enlist an XAResource with the Transaction object, follow these steps:

1. Obtain the current Transaction object using the TransactionHelper interface:

import weblogic.transaction.Transaction; // extends
javax.transaction.Transaction
import weblogic.transaction.TransactionHelper;

Transaction tx = TransactionHelper.getTransaction();

2. Enlist the XAResource instance with the Transaction object:

tx.enlistResource(res);

After the XAResource is enlisted with the Transaction, the WebLogic Server transaction manager
manages any subsequent delistment (as described in “Enlisting and Delisting an XAResource in
a Transaction”) and re-enlistment. For standard enlistment mode, the WebLogic Server
transaction manager re-enlists the XAResource in the same Transaction upon the following
occasions:

Before a request is executed

After a reply is received from another server. (The WebLogic Server transaction manager
delists the XAResource before sending the request to another server.)

Dynamic Enlistment
With the dynamic enlistment mode, you must enlist the XAResource instance with the
Transaction object before every access of the resource. With this enlistment mode, only one
XAResource instance from each transaction branch is allowed to be enlisted for each transaction
at a time. The WebLogic Server transaction manager ignores attempts to enlist additional
XAResource instances (of the same transaction branch) after the first instance is enlisted, but
before it is delisted.

With dynamic enlistment, enlistments and delistments of XAResource instances are minimized.

The steps for enlisting the XAResource is the same as described in “Standard Enlistment.”

Commi t p rocessing

Programming WebLogic JTA 11-9

Static Enlistment
With static enlistment mode, you do not need to enlist the XAResource instance with any
Transaction object. The WebLogic Server transaction manager implicitly enlists the XAResource
for all transactions with the following events:

Before a request is executed

After a reply is received from another server

Note: Consider the following before using the static enlistment mode:

Static enlistment mode eliminates the need to enlist XAResources. However,
unnecessary enlistment and delistment may result, if the resource is not used in a
particular transaction.

A faulty XAResource may adversely affect all transactions even if the resource is
not used in the transaction.

A single XAResource instance is used to associate different transactions with
different threads at the same time. That is, XAResource.start and
XAResource.end can be called on the same XAResource instance in an
interleaved manner for different Xids in different threads. You must ensure that the
XAResource supports such an association pattern, which is not required by the JTA
specification.

Due to the performance overhead, poor fault isolation, and demanding transaction
association requirement, static enlistment should only be used with discretion and after
careful consideration.

Commit processing
During commit processing, the WebLogic Server transaction manager will either use the
XAResource instances currently enlisted with the transaction, or the XAResource instances that
are registered with the transaction manager to perform the two-phase commit. The WebLogic
Server transaction manager ensures that each transaction branch will receive only one set of
prepare-commit calls. You must ensure that any XAResource instance can be used for commit
processing for multiple transactions simultaneously from different threads, as defined in JTA
Specification Version 1.0.1B Section 3.4.6.

Coord inat ing XAResources wi th the WebLog ic Se rve r Transac t i on Manager

11-10 Programming WebLogic JTA

Recovery
When a WebLogic Server server is restarted, the WebLogic Server transaction manager reads its
own transaction logs (with log records of transactions that are successfully prepared, but may not
have completed the second commit phase of 2PC processing). The WebLogic Server transaction
manager then continues to retry commit of the XAResources for these transactions. As discussed
in “Registering an XAResource to Participate in Transactions,” one purpose of the WebLogic
Server transaction manager resource registration API is for bootstrapping XAResource instances
for recovery. You must make sure that an XAResource instance is registered with the WebLogic
Server transaction manager upon server restart. The WebLogic Server transaction manager
retries the commit call every minute, until a valid XAResource instance is registered with the
WebLogic Server transaction manager.

When a transaction manager that is acting as a transaction coordinator crashes, it is possible that
the coordinator may not have logged some in-doubt transactions in the coordinator’s transaction
log. Thus, upon server restart, the coordinator needs to call XAResource.recover on the
resource managers, and roll back the in-doubt transactions that were not logged. As with commit
retries, the WebLogic Server transaction manager retries XAResource.recover every 5
minutes, until a valid XAResource instance is registered with the WebLogic Server transaction
manager.

The WebLogic Server transaction manager checkpoints a new XAResource in its transaction log
records when the XAResource is first enlisted with the WebLogic Server transaction manager.
Upon server restart, the WebLogic Server transaction manager then calls XAResource.recover
on all the resources previously checkpointed (removed from the transaction log records after the
transaction completed). A resource is only removed from a checkpoint record if it has not been
accessed for the last PurgeResourceFromCheckpointIntervalSeconds interval (default is 24
hours). Therefore, to reduce the resource recovery overhead, you should make sure that only a
small number of resource manager instances are registered with the WebLogic Server transaction
manager.

When implementing XAResource.recover, you should use the flags as described in the X/Open
XA specification as follows:

When the WebLogic Server transaction manager calls XAResource.recover with
TMSTARTRSCAN, the resource returns the first batch of in-doubt Xids.

The WebLogic Server transaction manager then calls XAResource.recover with
TMNOFLAGS repeatedly, until the resource returns either null or a zero-length array to signal
that there are no more Xids to recover. If the resource has already returned all the Xids in
the previous XAResource.recover(TMSTARTRSCAN) call, then it can either return null or

Resource Hea l th Mon i to r ing

Programming WebLogic JTA 11-11

a zero-length array here, or it may also throw XAER_PROTO, to indicate that it has already
finished and forgotten the previous recovery scan. A common XAResource.recover
implementation problem is ignoring the flags or always returning the same set of Xids on
XAResource.recover(TMNOFLAGS). This will cause the WebLogic Server transaction
manager recovery to loop infinitely, and subsequently fail.

The WebLogic Server transaction manager XAResource.recover with TMENDRSCAN flag
to end the recovery scan. The resource may return additional Xids.

Resource Health Monitoring
To prevent losing server threads to faulty XAResources, WebLogic Server JTA has an internal
resource health monitoring mechanism. A resource is considered active if either there are no
pending requests or the result from any of the XAResource pending requests is not XAER_RMFAIL.
If an XAResource is not active within two minutes, the WebLogic Server transaction manager
will declare it dead. Any further requests to the XAResource are shunned, and an XAER_RMFAIL
XAException is thrown.

The two minute interval can be configured via the maxXACallMillis JTAMBean attribute. It is
not exposed through the Administration Console. You can configure maxXACallMillis in the
config.xml file. For example:

<Domain>

....

<JTA

MaxXACallMillis="240000"

/>

....

</Domain>

To receive notification from the WebLogic Server transaction manager and to inform the
WebLogic Server transaction manager whether it is indeed dead when the resource is about to be
declared dead, you can implement weblogic.transaction.XAResource (which extends
javax.transaction.xa.XAResource) and register it with the transaction manager. The
transaction manager will call the detectUnavailable method of the XAResource when it is
about to declare it unavailable. If the XAResource returns true, then it will not be declared
unavailable. If the XAResource is indeed unavailable, it can use this opportunity to perform
cleanup and re-registration with the transaction manager. See the WebLogic Server Javadocs for
weblogic.transaction.XAResource for more information.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/XAResource.html

Coord inat ing XAResources wi th the WebLog ic Se rve r Transac t i on Manager

11-12 Programming WebLogic JTA

J2EE Connector Architecture Resource Adapter
Besides registering with the WebLogic Server transaction manager directly, you can also
implement the J2EE Connector Architecture resource adapter interfaces. When you deploy the
resource adapter, the WebLogic Server J2EE container will register the resource manager's
XAResource with the WebLogic Server transaction manager automatically.

For more information, see Programming WebLogic Resource Adapters.

Implementation Tips
The following sections provide tips for exporting and importing transactions with the WebLogic
Server transaction manager:

“Sharing the WebLogic Server Transaction Log” on page 11-12

“Transaction global properties” on page 11-13

“TxHelper.createXid” on page 11-13

Sharing the WebLogic Server Transaction Log
The WebLogic Server transaction manager exposes the transaction log to be shared with system
applications such as gateways. This provides a way for system applications to take advantage of
the box-carring (batching) transaction log optimization of the WebLogic Server transaction
manager for fast logging. Note that it is important to release the transaction log records in a timely
fashion. (The WebLogic Server transaction manager will only remove a transaction log file if all
the records in it are released). Failure to do so may result in a large number of transaction log files,
and could lead to re-commit of a large number of already committed transactions, or in an
extreme case, circular collision and overwriting of transaction log files.

The WebLogic Server transaction manager exposes a transaction logger interface:
weblogic.transaction.TransactionLogger. It is only available on the server, and it can be
obtained with the following steps:

1. Get the server transaction manager:

import weblogic.transaction.ServerTransactionManager;

import weblogic.transaction.TxHelper;

ServerTransactionManager stm =

(ServerTransactionManager)TxHelper.getTransactionManager();

http://e-docs.bea.com/wls/docs90/resadapter/index.html

Imp lementa t ion T i ps

Programming WebLogic JTA 11-13

2. Get the TransactionLogger:

TransactionLogger tlog = stm.getTransactionLogger();

The XAResource’s log records must implement the
weblogic.transaction.TransactionLoggable interface in order to be written to the
transaction log. See the WebLogic Server Javadocs for the
weblogic.transaction.TransactionLogger interface for more details and the usage of the
TransactionLogger interface.

Transaction global properties
A WebLogic Server JTA transaction object is associated with both local and global properties.
Global properties are propagated with the transaction propagation context among servers, and are
also saved as part of the log record in the transaction log. You can access the transaction global
properties as follows:

1. Obtain the transaction object:

import weblogic.transaction.Transaction;
import weblogic.transaction.TransactionHelper;

Transaction tx = TransactionHelper.getTransaction(); // Get the
transaction associated with the thread

or

Transaction tx = TxHelper.getTransaction(xid); // Get the transaction
with the given Xid

2. Get or set the properties on the transaction object:

tx.setProperty("foo", "fooValue");

tx.getProperty("bar");

See the WebLogic Server Javadocs for the weblogic.transaction.TxHelper class for more
information.

TxHelper.createXid
You can use the TxHelper.createXid(int formatId, byte[] gtrid, byte[] bqual)
method to create Xids, for example, to return to the WebLogic Server transaction manager on
recovery.

See the WebLogic Server Javadocs for the weblogic.transaction.TxHelper class for more
information.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/TransactionLoggable.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/TxHelper.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/TxHelper.html

Coord inat ing XAResources wi th the WebLog ic Se rve r Transac t i on Manager

11-14 Programming WebLogic JTA

FAQs
XAResource's Xid has a branch qualifier, but not the transaction manager's transaction.

WebLogic Server JTA transaction objects do not have branch qualifiers (i.e.,
TxHelper.getTransaction().getXid().getBranchQualifier() would be null). Since
the branch qualifiers are specific to individual resource managers, the WebLogic Server
transaction manager only sets the branch qualifiers in the Xids that are passed into XAResource
methods.

What is the TxHelper.getTransaction() method used for?

The WebLogic Server JTA provides the TxHelper.getTransaction() API to return the
transaction associated with the current thread. However, note that WebLogic Server JTA
suspends the transaction context before calling the XAResource methods, so you should only rely
on the Xid input parameter to identify the transaction, but not the transaction associated with the
current thread.

Additional Documentation about JTA
Refer to the JTA specification 1.0.1B Section 4.1 for a connection-based Resource Usage
scenario, which illustrates the JTA interaction between the transaction manager and resource
manager. The JTA specification is available at http://java.sun.com/products/jta/.

http://java.sun.com/products/jta/

Programming WebLogic JTA 12-1

C H A P T E R 12

Participating in Transactions Managed
by a Third-Party Transaction Manager

WebLogic Server can participate in distributed transactions coordinated by third-party systems
(referred to as foreign transaction managers). The WebLogic Server processing is done as part of
the work of the external transaction. The foreign transaction manager then drives the WebLogic
Server transaction manager as part of its commit processing. This is referred to as “importing”
transactions into WebLogic Server.

The following sections describe the process for configuring and participating in foreign-managed
transactions:

“Overview of Participating in Foreign-Managed Transactions” on page 12-1

“Importing Transactions with the Client Interposed Transaction Manager” on page 12-2

“Importing Transactions with the Server Interposed Transaction Manager” on page 12-5

“Transaction Processing for Imported Transactions” on page 12-7

“Commit Processing for Imported Transactions” on page 12-8

“Recovery for Imported Transactions” on page 12-9

Overview of Participating in Foreign-Managed Transactions
The WebLogic Server transaction manager exposes a javax.transaction.xa.XAResource
implementation via the weblogic.transaction.InterposedTransactionManager
interface. A foreign transaction manager can access the InterposedTransactionManager

Par t i c ipat ing i n T ransac t ions Managed by a Th i rd-Par t y T ransact ion Manager

12-2 Programming WebLogic JTA

interface to coordinate the WebLogic Server transaction manager XAResource during its commit
processing.

When importing a transaction from a foreign transaction manager into the WebLogic Server
transaction manager, you must register the WebLogic Server interposed transaction manager as
a subordinate with the foreign transaction manager. The WebLogic Server transaction manager
then acts as the coordinator for the imported transaction within WebLogic Server.

WebLogic Server supports two configuration schemes for importing transactions:

Using a client-side gateway (implemented externally to WebLogic Server) that uses the
client interposed transaction manager

Using a server-side gateway implemented on a WebLogic Server instance that uses the
server interposed transaction manager

Although there are some differences in limitations and in implementation details, the basic
behavior is the same for importing transactions in both configurations:

1. Lookup the WebLogic Server transaction manager and register it as an XAResource as
necessary in the third-party system.

2. Enlist and delist applicable transaction participants during transaction processing.

3. Send the prepare message to the WebLogic Server transaction manager, which then acts as a
subordinate transaction manager and coordinates the prepare phase for transaction
participants within WebLogic Server.

4. Send the commit or roll back message to the WebLogic Server transaction manager, which
then acts as a subordinate transaction manager and coordinates the second phase of the
two-phase commit process for transaction participants within WebLogic Server.

5. Unregister, as necessary.

Importing Transactions with the Client Interposed Transaction
Manager

You can use the client interposed transaction manager in WebLogic Server to drive the two-phase
commit process for transactions that are coordinated by a third-party transaction manager and
include transaction participants within WebLogic Server, such as JMS resources and JDBC
resources. The client interposed transaction manager is an implementation of the
javax.transaction.xa.XAResource interface. You access the client interposed transaction
manager directly from the third-party application, typically from a gateway in the third-party

Impor t ing T ransact ions wi th the C l i en t Int erposed T ransact ion Manager

Programming WebLogic JTA 12-3

application. The transaction manager in the third-party system then sends the prepare and commit
messages to the gateway, which propagates the message to the WebLogic Server transaction
manger. The WebLogic Server transaction manager then acts as a subordinate transaction
manager and coordinates the transaction participants within WebLogic Server. Figure 12-1
shows the interaction between the two transaction managers and the client-side gateway.

Figure 12-1 Importing Transactions into WebLogic Server Using a Client-Side Gateway

Figure 12-2 shows the flow of interactions between a foreign transaction manager, WebLogic
Server client-side JTA objects, and the WebLogic Server transaction manager.

Par t i c ipat ing i n T ransac t ions Managed by a Th i rd-Par t y T ransact ion Manager

12-4 Programming WebLogic JTA

Figure 12-2 State Diagram Illustrating Steps to Import a Transaction Using the Client Interposed Transaction
Manager

To access the interposed transaction manager in WebLogic Server using a client-side gateway,
you must perform the following steps:

Get the Client Interposed Transaction Manager

Get the XAResource from the Interposed Transaction Manager

Get the Client Interposed Transaction Manager
In a client-side gateway, the you can get the WebLogic server interposed transaction manager's
XAResource with the getClientInterposedTransactionManager method. For example:

import javax.naming.Context;

import weblogic.transaction.InterposedTransactionManager;

import weblogic.transaction.TxHelper;

Context initialCtx;

String serverName;

Impor t ing Transact i ons wi th the Ser ve r Int erposed T ransact ion Manager

Programming WebLogic JTA 12-5

InterposedTransactionManager itm =

TxHelper.getClientInterposedTransactionManager(initialCtx, serverName);

The server name parameter is the name of the server that acts as the interposed transaction
manager for the foreign transaction. When the foreign transaction manager performs crash
recovery, it needs to contact the same WebLogic Server server to obtain the list of in-doubt
transactions that were previously imported into WebLogic Server.

See the WebLogic Server Javadocs for the weblogic.transaction.TxHelper class for more
information.

Get the XAResource from the Interposed Transaction Manager
After you get the interposed transaction manager, you must get the XAResource object associated
with the interposed transaction manager:

import javax.transaction.xa.XAResource;

XAResource xar = itm.getXAResource();

Limitations of the Client Interposed Transaction Manager
Note the following limitations when importing transactions using a client-side gateway:

You cannot use the TxHelper.getServerInterposedTransactionManager() method
in client-side gateways.

You can only use one WebLogic Server client interposed transaction manager at a time. Do
not use more than one client interposed transaction manager (connecting to different
WebLogic Server servers) to import transactions at the same time. (See “Transaction
Processing for Imported Transactions” on page 12-7 for more information about this
limitation and how transactions are processed with the WebLogic Server interposed
transaction manager.)

Importing Transactions with the Server Interposed Transaction
Manager

You can use the server interposed transaction manager in WebLogic Server to drive the
two-phase commit process for transactions that are coordinated by a third-party transaction
manager and include transaction participants within WebLogic Server, such as JMS resources
and JDBC resources. The server interposed transaction manager is an implementation of the
javax.transaction.xa.XAResource interface. You access the server interposed transaction

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/TxHelper.html

Par t i c ipat ing i n T ransac t ions Managed by a Th i rd-Par t y T ransact ion Manager

12-6 Programming WebLogic JTA

manager by creating a server-side gateway on WebLogic Server and then accessing the gateway
from a third-party system. The transaction manager in the third-party system then sends the
prepare and commit messages to the server-side gateway, which propagates the message to the
WebLogic Server transaction manger. The WebLogic Server transaction manager then acts as a
subordinate transaction manager and coordinates the transaction participants within WebLogic
Server. Figure 12-3 shows the interaction between the two transaction managers and the
server-side gateway.

Figure 12-3 Importing Transactions into WebLogic Server Using a Server-Side Gateway

To access the interposed transaction manager in WebLogic Server using a server-side gateway,
you must perform the following steps:

Get the Server Interposed Transaction Manager

Get the XAResource from the Interposed Transaction Manager

Get the Server Interposed Transaction Manager
In a server-side gateway, you can get the interposed transaction manager's XAResource as
follows:

import javax.naming.Context;

import weblogic.transaction.InterposedTransactionManager;

import weblogic.transaction.TxHelper;

T ransact ion P rocess ing f or Impor ted T ransact ions

Programming WebLogic JTA 12-7

InterposedTransactionManager itm =

TxHelper.getServerInterposedTransactionManager();

See the WebLogic Server Javadocs for the weblogic.transaction.TxHelper class for more
information.

After you get the interposed transaction manager, you must get the XAResource. See “Get the
XAResource from the Interposed Transaction Manager” on page 12-5.

Limitations of the Server Interposed Transaction Manager
Note the following limitations when importing transactions using a server-side gateway:

Do not use the TxHelper.getClientInterposedTransactionManager() method in a
server-side gateway on a WebLogic Server server. Doing so will cause performance issues.

You can only use one WebLogic Server server interposed transaction manager at a time.
Do not use more than one server interposed transaction manager (on the same thread) to
import transactions at the same time. (See “Transaction Processing for Imported
Transactions” for more information about this limitation and how transactions are
processed with the WebLogic Server interposed transaction manager.)

Transaction Processing for Imported Transactions
To import a foreign transaction into WebLogic Server, the foreign transaction manager or
gateway can do the following:

xar.start(foreignXid, TMNOFLAGS);

This operation associates the current thread with the imported transaction. All subsequent calls
made to other servers will propagate the imported WebLogic Server transaction, until the
transaction is disassociated from the thread.

Note: The flag is ignored by the WebLogic Server transaction manager. If the foreign Xid has
already been imported previously on the same WebLogic Server server, WebLogic
Server will associate the current thread with the previously imported WebLogic Server
transaction.

To disassociate the imported transaction from the current thread, the foreign transaction manager
or gateway should do the following:

xar.end(foreignXid, TMSUCCESS);

Note that the WebLogic Server transaction manager ignores the flag.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/transaction/TxHelper.html

Par t i c ipat ing i n T ransac t ions Managed by a Th i rd-Par t y T ransact ion Manager

12-8 Programming WebLogic JTA

Transaction Processing Limitations for Imported Transactions
Note the following processing limitations and behavior for imported transactions:

After a WebLogic Server transaction is started, the gateway cannot call start again on the
same thread. With a client-side gateway, you can only call xar.start on one client
interposed transaction manager at a time. Attempting to call xar.start on another client
interposed transaction manager (before xar.end was called on the first one) will throw an
XAException with XAER_RMERR. With a server-side gateway, attempting to call
xar.start on a client or server interposed transaction manager will also throw a
XAException with XAER_RMERR if there is already an active transaction associated with
the current thread.

The WebLogic Server interposed transaction manager's XAResource exhibits
loosely-coupled transaction branching behavior on different WebLogic Server servers. That
is, if the same foreign Xid is imported on different WebLogic Server servers, they will be
imported to different WebLogic Server transactions.

The WebLogic Server transaction manager does not flatten the transaction tree, for
example, the imported transaction of a previously exported WebLogic Server transaction
will be in a separate branch from the original WebLogic Server transaction.

A foreign transaction manager should make sure that all foreign Xids that are imported into
WebLogic Server are unique and are not reused within the sum of the transaction abandon
timeout period and the transaction timeout period. Failure to do so may result in log
records that are never released in the WebLogic Server transaction manager. This could
lead to inefficient crash recovery.

Commit Processing for Imported Transactions
The foreign transaction manager should drive the interposed transaction manager in the 2PC
protocol as it does the other XAResources. Note that the beforeCompletion callbacks
registered with the WebLogic Server JTA (e.g., the EJB container) are called when the foreign
transaction manager prepares the interposed transaction manager's XAResource. The
afterCompletion callbacks are called during XAResource.commit or
XAResource.rollback.

The WebLogic Server interposed transaction manager honors the XAResource contract as
described in section 3.4 of the JTA 1.0.1B specification:

Recove ry f or Impor ted T ransact ions

Programming WebLogic JTA 12-9

Once prepared by a foreign transaction manager, the WebLogic Server interposed
transaction manager waits persistently for a commit or rollback outcome from the foreign
transaction manager until the transaction abandon timeout expires.

The WebLogic Server interposed transaction manager remembers heuristic outcomes
persistently until being told to forget about the transaction by the foreign transaction
manager or until transaction abandon timeout.

The WebLogic Server transaction manager logs a prepare record for the imported transaction
after all the WebLogic Server participants are successfully prepared. If there are more than one
WebLogic Server participants for the imported transaction, the transaction manager logs a
prepare record even if the XAResource.commit is a one-phase commit.

Recovery for Imported Transactions
During the crash recovery of the foreign transaction manager, the foreign transaction manager
must get the XAResource of the WebLogic Server interposed transaction manager again, and call
recover on it. The WebLogic Server interposed transaction manager then returns the list of
prepared or heuristically completed transactions. The foreign transaction manager should then
resolve those in-doubt transactions: either commit or rollback the prepared transactions, and call
forget on the heuristically completed transactions.

Par t i c ipat ing i n T ransac t ions Managed by a Th i rd-Par t y T ransact ion Manager

12-10 Programming WebLogic JTA

Programming WebLogic JTA 13-1

C H A P T E R 13

Troubleshooting Transactions

This section describes troubleshooting tools and tasks for use in determining why transactions fail
and deciding what actions to take to correct the problem.

This section discusses the following topics:

Overview

Troubleshooting Tools

Overview
WebLogic Server includes the ability to monitor currently running transactions and ensure that
adequate information is captured in the case of heuristic completion. It also provides the ability
to monitor performance of database queries, transactional requests, and bean methods.

Troubleshooting Tools
WebLogic Server provides the following aids to transaction troubleshooting:

“Exceptions” on page 13-2

“Transaction Identifier” on page 13-2

“Transaction Name and Properties” on page 13-2

“Transaction Status” on page 13-3

“Transaction Statistics” on page 13-3

Tr oub leshoot ing T ransac t ions

13-2 Programming WebLogic JTA

“Transaction Monitoring” on page 13-3

“Debugging JTA Resources” on page 13-3

Exceptions
WebLogic JTA supports all standard JTA exceptions. For more information about standard JTA
exceptions, see the Javadoc for the javax.transaction and javax.transaction.xa package
APIs.

In addition to the standard JTA exceptions, WebLogic Server provides the class
weblogic.transaction.RollbackException. This class extends
javax.transaction.RollbackException and preserves the original reason for a rollback.
Before rolling a transaction back, or before setting it to rollbackonly, an application can supply
a reason for the rollback. All rollbacks triggered inside the transaction service set the reason (for
example, timeouts, XA errors, unchecked exceptions in beforeCompletion, or inability to
contact the transaction manager). Once set, the reason cannot be overwritten.

Transaction Identifier
The Transaction Service assigns a transaction identifier (Xid) to each transaction. This ID can be
used to isolate information about a specific transaction in a log file. You can retrieve the
transaction identifier using the getXID method in the weblogic.transaction.Transaction
interface. For detailed information on methods for getting the transaction identifier, see the
weblogic.transaction.Transaction Javadoc.

Transaction Name and Properties
WebLogic JTA provides extensions to javax.transaction.Transaction that support
transaction naming and user-defined properties. These extensions are included in the
weblogic.transaction.Transaction interface.

The transaction name indicates a type of transaction (for example, funds transfer or ticket
purchase) and should not be confused with the transaction ID, which identifies a unique
transaction on a server. The transaction name makes it easier to identify a transaction type in the
context of an exception or a log file.

User-defined properties are key/value pairs, where the key is a string identifying the property and
the value is the current value assigned to the property. Transaction property values must be
objects that implement the Serializable interface. You manage properties in your application
using the set and get methods defined in the weblogic.transaction.Transaction interface.

http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html

Tr oub leshoot i ng Too ls

Programming WebLogic JTA 13-3

Once set, properties stay with a transaction during its entire lifetime and are passed between
machines as the transaction travels through the system. Properties are saved in the transaction log,
and are restored during crash recovery processing. If a transaction property is set more than once,
the latest value is retained.

For detailed information on methods for setting and getting the transaction name and transaction
properties, see the weblogic.transaction.Transaction Javadoc.

Transaction Status
The Java Transaction API provides transaction status codes using the
javax.transaction.Status class. Use the getStatusAsString method in
weblogic.transaction.Transaction to return the status of the transaction as a string. The
string contains the major state as specified in javax.transaction.Status with an additional
minor state (such as logging or pre-preparing).

Transaction Statistics
Transaction statistics are provided for all transactions handled by the transaction manager on a
server. These statistics include the number of total transactions, transactions with a specific
outcome (such as committed, rolled back, or heuristic completion), rolled back transactions by
reason, and the total time that transactions were active. For detailed information on transaction
statistics, see the Administration Console Online Help.

Transaction Monitoring
The Administration Console allows you to monitor transactions. Monitoring tasks are performed
at the server level. Transaction statistics are displayed for a specific server.

For details, see Monitoring Transactions in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs90/ConsoleHelp/jta.html#monitortx

Debugging JTA Resources
Once you have narrowed the problem down to a specific application, you can activate WebLogic
Server’s debugging features to track down the specific problem within the application.

Enabling Debugging
You can enable debugging by setting the appropriate ServerDebug configuration attribute to
"true." Optionally, you can also set the server StdoutSeverity to "Debug".

http://e-docs.bea.com/wls/docs90/ConsoleHelp/jta.html#monitortx

Tr oub leshoot ing T ransac t ions

13-4 Programming WebLogic JTA

You can modify the configuration attribute in any of the following ways.

Enable Debugging Using the Command Line
Set the appropriate properties on the command line. For example,

-Dweblogic.debug.DebugJDBCJTA=true

-Dweblogic.log.StdoutSeverity="Debug"

This method is static and can only be used at server startup.

Enable Debugging Using the WebLogic Server Administration Console
Use the WebLogic Server Administration Console to set the debugging values:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit (see Use the Change Center).

2. In the left pane of the console, expand Environment and select Servers.

3. On the Summary of Servers page, click the server on which you want to enable or disable
debugging to open the settings page for that server.

4. Click Debug.

5. Expand default.

6. Select the check box for the debug scopes or attributes you want to modify.

7. Select Enable to enable (or Disable to disable) the debug scopes or attributes you have
checked.

8. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes.
Not all changes take effect immediately—some require a restart (see Use the Change
Center).

This method is dynamic and can be used to enable debugging while the server is running.

Enable Debugging Using the WebLogic Scripting Tool
Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example, the
following command runs a program for setting debugging values called debug.py:

java weblogic.WLST debug.py

The debug.py program contains the following code:

http://e-docs.bea.com/wls/docs90/intro/console.html#change_center
http://e-docs.bea.com/wls/docs90/intro/console.html#change_center
http://e-docs.bea.com/wls/docs90/intro/console.html#change_center

Tr oub leshoot i ng Too ls

Programming WebLogic JTA 13-5

user='user1'

password='password'

url='t3://localhost:7001'

connect(user, password, url)

edit()

cd('Servers/myserver/ServerDebug/myserver')

startEdit()

set('DebugJDBCJTA','true')

save()

activate()

Note that you can also use WLST from Java. The following example shows a Java file used to set
debugging values:

import weblogic.management.scripting.utils.WLSTInterpreter;

import java.io.*;

import weblogic.jndi.Environment;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

public class test {

 public static void main(String args[]) {

try {

WLSTInterpreter interpreter = null;

String user="user1";

String pass="pw12ab";

String url ="t3://localhost:7001";

Environment env = new Environment();

env.setProviderUrl(url);

env.setSecurityPrincipal(user);

env.setSecurityCredentials(pass);

Context ctx = env.getInitialContext();

interpreter = new WLSTInterpreter();

interpreter.exec

("connect('"+user+"','"+pass+"','"+url+"')");

interpreter.exec("edit()");

interpreter.exec("startEdit()");

Tr oub leshoot ing T ransac t ions

13-6 Programming WebLogic JTA

interpreter.exec

("cd('Servers/myserver/ServerDebug/myserver')");

interpreter.exec("set('DebugJDBCJTA','true')");

interpreter.exec("save()");

interpreter.exec("activate()");

} catch (Exception e) {

System.out.println("Exception "+e);

}

}

}

Using the WLST is a dynamic method and can be used to enable debugging while the server is
running.

Changes to the config.xml File
Changes in debugging characteristics, through console, or WLST, or command line are persisted
in the config.xml file. See Figure 13-1, “Example Debugging Stanza for JTA,” on page 13-6:

Listing 13-1 Example Debugging Stanza for JTA

.

.

.

<server>

<name>myserver</name>

<server-debug>

<debug-scope>

<name>weblogic.transaction</name>

<enabled>true</enabled>

</debug-scope>

<debug-jdbcjta>true</debug-jdbcjta>

</server-debug>

</server>

.

Tr oub leshoot i ng Too ls

Programming WebLogic JTA 13-7

.

.

This sample config.xml fragment shows a transaction debug scope (set of debug attributes) and
a single JTA attribute.

JTA Debugging Scopes
It is possible to see the tree view of the DebugScope definitions using java
weblogic.diagnostics.debug.DebugScopeViewer.

You can enable the following registered debugging scopes for JTA:

DebugJDBCJTA (scope weblogic.jdbc.transaction) - not currently used.

DebugJTAXA (scope weblogic.transaction.xa) - traces for XA resources.

DebugJTANonXA (scope weblogic.transaction.nonxa) - traces for non-XA resources.

DebugJTAXAStackTrace (scope weblogic.transaction.stacktrace) - detailed tracing that
prints stack traces at various critical locations.

DebugJTARMI (scope weblogic.transaction.rmi) - not currently used.

DebugJTA2PC (scope weblogic.transaction.twopc) - traces all 2-phase commit operations.

DebugJTA2PCStackTrace (scope weblogic.transaction.twopcstacktrace) - detailed
two-phase commit tracing that prints stack traces.

DebugJTATLOG (scope weblogic.transaction.tlog) - traces transaction logging information.

DebugJTAJDBC (scope weblogic.transaction.jdbc, weblogic.jdbc.transaction) - traces
information about reading/writing JTA records.

DebugJTARecovery (scope weblogic.transaction.recovery) - traces recovery information.

DebugJTARecoveryStackTrace (scope weblogic.transaction.recoverystacktrace) - traces
not currently used.

DebugJTAAPI (scope weblogic.transaction.api) - not currently used.

DebugJTAGateway (scope weblogic.transaction.gateway) - traces information about
imported transactions.

Tr oub leshoot ing T ransac t ions

13-8 Programming WebLogic JTA

DebugJTAGatewayStackTrace (scope weblogic.transaction.gatewaystacktrace) - stack
traces related to imported transactions.

DebugJTANaming (scope weblogic.transaction.naming) - traces transaction naming
information.

DebugJTANamingStackTrace (scope weblogic.transaction.namingstacktrace) - traces
transaction naming information.

DebugJTAResourceHealth (scope weblogic.transaction.resourcehealth) - traces
information about XA transaction resource health.

DebugJTAMigration (scope weblogic.transaction.migration) - traces information about
Transaction Log migration.

DebugJTALifecycle (scope weblogic.transaction.lifecycle) - traces information about the
transaction server lifecycle (initialization, suspension, resuming, and shutdown).

DebugJTALLR (scope weblogic.transaction.llr) - traces all Logging Last Resource
operations.

DebugJTAHealth (scope weblogic.transaction.health) - traces information about
transaction subsystem health.

DebugJTATransactionName (scope weblogic.transaction.name) - traces transaction
names.

DebugJTAResourceName (scope weblogic.transaction.resourcename) - traces transaction
resource names.

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials

	New and Changed Features in This Release

	Introducing Transactions
	Overview of Transactions in WebLogic Server Applications
	ACID Properties of Transactions
	Supported Programming Model
	Supported API Models
	Distributed Transactions and the Two-Phase Commit Protocol
	Support for Business Transactions

	When to Use Transactions
	What Happens During a Transaction
	Transactions in WebLogic Server EJB Applications
	Container-managed Transactions
	Bean-managed Transactions

	Transactions in WebLogic Server RMI Applications

	Transactions Sample Code
	Transactions Sample EJB Code
	Importing Packages
	Using JNDI to Return an Object Reference
	Starting a Transaction
	Completing a Transaction

	Transactions Sample RMI Code
	Importing Packages
	Using JNDI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction

	Configuring Transactions
	Overview of Transaction Configuration
	Configuring JTA
	Unregister Resource Grace Period
	Additional Attributes for Managing Transactions

	Configuring Domains for Inter-Domain Transactions
	Limitations for Inter-Domain Transactions
	Inter-Domain Transactions for WebLogic Server Domains
	Setting Security Interoperability Mode
	Configuring Security Interoperability Mode
	Determining the Security Interoperability Mode Setting

	Transaction Log Files
	Setting the Path for the Default Persistent Store
	Setting the Default Persistent Store Synchronous Write Policy

	Managing Transactions
	Monitoring Transactions
	Handling Heuristic Completions
	Moving a Server
	Abandoning Transactions
	Transaction Recovery After a Server Fails
	Transaction Recovery Service Actions After a Crash
	Recovering Transactions for a Failed Non-Clustered Server
	Recovering Transactions for a Failed Clustered Server
	Server Migration
	Transaction Recovery Service Migration
	Limitations of Migrating the Transaction Recovery Service
	Preparing to Migrate the Transaction Recovery Service
	Constraining the Servers to Which the Transaction Recovery Service can Migrate
	Viewing Current Owner of the Transaction Recovery Service
	Manually Migrating the Transaction Recovery Service Back to the Original Server

	Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Client-initiated Transactions
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Relationship of the Transaction Service to Transaction Processing
	Multithreaded Transaction Client Support
	Transaction Id
	Transaction Name and Properties
	Transaction Status
	Transaction Statistics
	General Constraints

	Transaction Scope
	Transaction Service in EJB Applications
	Transaction Service in RMI Applications
	Transaction Service Interoperating with OTS
	Server-Server 2PC
	Client Demarcated Transactions

	Java Transaction API and BEA WebLogic Extensions
	JTA API Overview
	BEA WebLogic Extensions to JTA

	Logging Last Resource Transaction Optimization
	About the LLR Optimization Transaction Optimization
	Logging Last Resource Processing Details
	LLR Database Table Details
	LLR Table Transaction Log Records

	Failure and Recovery Processing for LLR
	Coordinating Server Crash
	JDBC Connection Failure
	LLR Transaction Recover During Server Startup
	Failover Considerations for LLR

	Optimizing Performance with LLR
	Optimizing Transaction Coordinator Location
	Varied Performance for Read-Only Operations through an LLR Data Source

	Transactions in EJB Applications
	Before You Begin
	General Guidelines
	Transaction Attributes
	About Transaction Attributes for EJBs
	Transaction Attributes for Container-Managed Transactions
	Transaction Attributes for Bean-Managed Transactions

	Participating in a Transaction
	Transaction Semantics
	Transaction Semantics for Container-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans
	Transaction Semantics for Entity Beans

	Transaction Semantics for Bean-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans

	Session Synchronization
	Synchronization During Transactions
	Setting Transaction Timeouts
	Handling Exceptions in EJB Transactions

	Transactions in RMI Applications
	Before You Begin
	General Guidelines

	Using Third-Party JDBC XA Drivers with WebLogic Server
	Overview of Third-Party XA Drivers
	Table of Third-Party XA Drivers

	Third-Party Driver Configuration and Performance Requirements
	Using Oracle Thin/XA Driver
	Software Requirements for the Oracle Thin/XA Driver
	Set the Environment for the Oracle Thin/XA Driver
	Oracle Thin/XA Driver Configuration Properties

	Using Sybase jConnect 5.5/XA Driver
	Known Sybase jConnect 5.5/XA Issues
	Set Up the Sybase Server for XA Support
	Notes About XA and Sybase Adaptive Server
	Configuration Properties for Java Client

	Other Third-Party XA Drivers

	Coordinating XAResources with the WebLogic Server Transaction Manager
	Overview of Coordinating Distributed Transactions with Foreign XAResources
	Registering an XAResource to Participate in Transactions
	Enlisting and Delisting an XAResource in a Transaction
	Standard Enlistment
	Dynamic Enlistment
	Static Enlistment

	Commit processing
	Recovery
	Resource Health Monitoring
	J2EE Connector Architecture Resource Adapter
	Implementation Tips
	Sharing the WebLogic Server Transaction Log
	Transaction global properties
	TxHelper.createXid

	FAQs
	Additional Documentation about JTA

	Participating in Transactions Managed by a Third-Party Transaction Manager
	Overview of Participating in Foreign-Managed Transactions
	Importing Transactions with the Client Interposed Transaction Manager
	Get the Client Interposed Transaction Manager
	Get the XAResource from the Interposed Transaction Manager
	Limitations of the Client Interposed Transaction Manager

	Importing Transactions with the Server Interposed Transaction Manager
	Get the Server Interposed Transaction Manager
	Limitations of the Server Interposed Transaction Manager

	Transaction Processing for Imported Transactions
	Transaction Processing Limitations for Imported Transactions

	Commit Processing for Imported Transactions
	Recovery for Imported Transactions

	Troubleshooting Transactions
	Overview
	Troubleshooting Tools
	Exceptions
	Transaction Identifier
	Transaction Name and Properties
	Transaction Status
	Transaction Statistics
	Transaction Monitoring
	Debugging JTA Resources
	Enabling Debugging
	Enable Debugging Using the Command Line
	Enable Debugging Using the WebLogic Server Administration Console
	Enable Debugging Using the WebLogic Scripting Tool
	Changes to the config.xml File
	JTA Debugging Scopes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

