0?7,

r
S’ 7
L/

BEAWebLogic
Server

WebLogic Scripting Tool

Version 9.0
Revised: July 22, 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AqualLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

Introduction and Roadmap

Document Scope and AUdIienCe.ot v it e 1-1
Guide to This Document 1-1
Related Documentationttt 1-2
WLST Sample SCripts . . oot vttt et e e e e et et 1-3
WLST Online Sample SCripts.ottt 1-3
WLST Offline Sample Scriptst i 1-4
2. Using the WebLogic Scripting Tool

What is the WebLogic Scripting Tool? i 2-1
What Does WLST Do?.o e 2-2
How Does WLST Work? o e 2-3
Modes Of Operationou ittt e e e 2-4
Interactive Mode.t 2-4
Script Mode. . ..ot 2-4
Embedded Mode. 2-6
Main Steps for Using WLST e 2-8
Setting Up Your Environment.o i, 2-8
Invoking WL ST 2-8
Requirements for Entering WLST Commands. 2-9
RUNNING SCIIPLS. « ottt e e e e e 2-10
Importing WLST asaJythonModule 2-11
WebLogic Scripting Tool iii

Exiting WLST 2-12

Getting Helpo 2-12
Recording User INteractionsottt ittt 2-13
Redirecting WLST OutputtoaFile 2-13
Converting an Existing Configuration into a WLST Script 2-13
Customizing WLST. o e 2-14

3. Creating and Configuring WebLogic Domains Using WLST

Offline

Creating a Domain (Offline). i e 3-2
Updating an Existing Domain (Offline) 3-3
Browsing and Accessing Information About the Configuration Bean Hierarchy (Offline)
3-4
Editing a Domain (Offline) i 3-5
Creating a Domain Template (Offline). 3-6
Exporting Diagnostic Data (Offline). 3-7
Stepping Through a Sample Script: Creating a Domain Using WLST Offline 3-8

4. Navigating and Editing MBeans

Navigating and Interrogating MBeans 4-1
Changing the Current Management Object 4-3
Navigating and Displaying Configuration MBeans Example 4-4

Browsing Runtime MBeans 4-6
Navigating and Displaying Runtime MBeans Example 4-7

Navigating Among MBean Hierarchies 4-9

Finding MBeans i 4-10

Accessing Custom MBeans. 4-11

Editing Configuration MBeans i 4-12

WebLogic Scripting Tool

Making Configuration Changes: Main Steps. . ..o . 4-12
Managing Configuration Changes i, 4-15
Tracking Configuration Changes« . 4-15

5. Managing Servers and Server Life Cycle

Managing the Server Life Cycle i 5-1
Starting and StOPPING SEIVETS ot v ettt et e e e 5-2

Starting an Administration Server Without Node Manager. 5-2

Starting Managed Servers and Clusters With Node Manager 5-3
Using WLST and Node Manager to Manage Servers.ovuvunennn.. 5-4
Monitoring Server State.ottt 5-6
Managing Server State.ttt 5-7

6. Automating WebLogic Server Administration Tasks

Creating a Sample Domain: Main Steps i 6-2
Setting Up the Environment. i 6-2
Creating a Domainttt e 6-3
Creating JDBC RESOUICESottt e e e et e e 6-3
Creating JMS ReSOUICES. oottt e e e et e e 6-4
Creating Mail Resources i 6-5
Deploying Applicationso ottt e 6-6
Script to Create and Configure a Sample Domain. 6-7

Monitoring Domain Runtime Information 6-10
Accessing Domain Runtime Information: Main Steps. 6-10
Script for Monitoring Server State 6-11
Script for Monitoring the JVM. 6-12

Managing SeCUIILY.ottt et e e e 6-13
Creating a USer.ottt e e e e 6-14

WebLogic Scripting Tool

vi

Adding aUserto aGroupoov ettt et 6-14

Verifying Whether a User Is a Member of aGroup. 6-15
Listing Groups to Whicha User Belongs 6-16
Listing Users and Groups in a Security Realm 6-16
Changing a Password. i e 6-18
Protecting User Accounts in a Security Realm 6-18
Configuring Logging.oo ittt e e 6-20

WLST Command and Variable Reference

Overview of WSLT Command Categories.vvvter e, A-1
Browse Commandsou it A-2
C o A-3
currentTreeo A-4
PrOMIPE ottt e e e A-5
PWA. o A-6
Control Commandsttt A-7
addTemplate. o A-8
CloseDOMAIN.ot A-9
closeTemplate.ot A-10
COMNECL . . .ottt ettt e et e e e e e e e e e e e A-10
diSCONNECT. . . . oottt A-13
BXIE L ettt A-14
readDomain A-15
readTemplate A-16
updateDomain A-17
writeDomain. A-18
writeTemplate. A-19
Deployment Commandso ittt A-20

WebLogic Scripting Tool

distribute Applicationttt A-25
CEtW L D M. . . A-26
loadApplication it A-27
TedePlOY . ot A-28
StartApPliCation A-29
StOPAPPLICALION. . . o\ttt e A-30
UNAEPIOY . o vttt A-31
update ApPLICAtioN.o\ v i e A-33
Diagnostics Commandsttt e A-34
exportDiagnosticData.t A-34
exportDiagnosticDataFromServer i A-36
Editing Commands ittt A-37
ACTIVALE « . o v ettt ettt e e e e e A-39
TS0 4o A-40
aSSIgNALL. . . o A-43
cancelEdit. A-44
02 11 A-45
delete. . ..o A-47
3107 7 o1 O A-48
LS O A-49
getActivationTask. oo A-50
IVOKE . o .ot A-50
isRestartRequired A-51
loadDB . ..o A-52
10adPIOPEItieS. . o\ vt A-53
SAVE . ¢ . vttt e e e e A-54
] P A-55

WebLogic Scripting Tool vii

viii

SCLOPLION .« o ettt A-56

SHOWCANGES oo A-58
startEdit A-59
StOPEQIt ... A-60
UNASSIZI © o v vt et ettt e e e e e e e e A-61
unassignALL A-63
UNAO .« ot A-64
validate.o A-65
Information Commands.ttt A-66
addLiStener.ot A-68
configToSCrIPt . ..o A-69
dumpStack . ..o A-71
dumpVariables A-71
fInd . . A-T72
getConfigManagerot A-74
getMBeaN. e A-74
GetMBI . . e A-75
getPath . .. A-76
LStChIldTYPeS .« .\ oottt e e e e e e A-76
LOOKUD. oot A-77
IS . e A-78
1T PP A-81
TEAITECE . . o ottt A-82
remoOVeLIStener.o A-83
SHOWLISENETS. . . . o\ttt A-83
startRecording e A-84
SEALE . o A-85
StOPRECOrdingt A-86

WebLogic Scripting Tool

StOPREAITECt . ..ot A-86

storeUserConfigt A-87
threadDump A-88
VIEWMBeAN. A-89
writeIniFile.o A-90
Life Cycle Commands.ttt et et A-91
IIZEALE . . ot ettt et e e e e e e e e e A-92
TESUITIC. . . ottt et et et e e et e e e e e e e e e e e e e A-93
ShUtdOWIL. . . . e A-94
] 0 P A-96
STAIESEIVET. . . oot A-98
SUSPENA . .« o\t A-99
Node Manager Commandsurininernne e, A-100
0734 A-101
NMOCONNECT .« . ottt et e e e e e e e A-102
NMDISCONNECE. . . o o\ vttt ettt e e et A-104
nmEnroll. A-104
nmKill. L A-106
NN 0. oot e A-107
NMSETVEILOZ . . ot A-107
NMSEIVErStatUS. . . ottt A-108
NMSTATT . . oo A-109
NMVEISION. .« . ottt ettt e e e e e e e e e e e A-110
StartNOdeManager vt e A-111
Tree Commands.ottt A-112
CONTIg . ot A-113
CUSTOML. & . o ettt ettt e e et et e e e e e e A-115
domainConfig.t A-116

WebLogic Scripting Tool ix

it . o A-118
N0 . e A-119
TUNTITIC . & o ottt ettt et e A-120
ServerContig.o A-121
serverRuntime A-121
WLST Variable Reference i A-122
WLST Online and Offline Command Summary
WLST Command Summary, Alphabetically By Command. B-1
WLST Online Command SUmmaryuuininernnnnnennnnn. B-8
WLST Offline Command Summaryttt B-13
WLST Deployment Objects
WLSTPIan Object.ot e e e e e e C-1
WLSTProgress ObjJect. . ..o oottt e e ettt C-4
FAQs: WLST

WebLogic Scripting Tool

Introduction and Roadmap

This section describes the contents and organization of this guide—WebLogic Scripting Tool.
e “Document Scope and Audience” on page 1-1

e “Guide to This Document” on page 1-1

“Related Documentation” on page 1-2

e “WLST Sample Scripts” on page 1-3

Document Scope and Audience

This document describes the BEA WebLogic Scripting Tool (WLST). It explains how you use
the WLST command-line scripting interface to configure, manage, and persist changes to

WebLogic Server® instances and domains, and monitor and manage server runtime events.

This document is written for WebLogic Server administrators and operators who deploy J2EE
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun Microsystems. It is
assumed that readers are familiar with Web technologies and the operating system and platform
where WebLogic Server is installed.

Guide to This Document

This document is organized as follows:

e This chapter, “Introduction and Roadmap,” introduces the organization of this guide and
lists related documentation.

WebLogic Scripting Tool 1-1

Introduction and Roadmap

Chapter 2, “Using the WebLogic Scripting Tool,” describes how the scripting tool works,
its modes of operation, and the basic steps for invoking it.

Chapter 3, “Creating and Configuring WebLogic Domains Using WLST Offline,”
describes how to create a new domain or update an existing domain without connecting to
a running WebLogic Server (that is, using WLST offline)—supporting the same
functionality as the Configuration Wizard.

Chapter 4, “Navigating and Editing MBeans,” describes how to retrieve domain
configuration and runtime information, and edit configuration or custom MBeans.

Chapter 5, “Managing Servers and Server Life Cycle,” describes using WLST to start and
stop WebLogic Server instances and to monitor and manage the server life cycle.

Chapter 6, “Automating WebLogic Server Administration Tasks,” describes using scripts
to automate the creation and management of domains, servers, and resources.

Appendix A, “WLST Command and Variable Reference,” provides detailed descriptions
for each of the WLST commands and variables.

Appendix B, “WLST Online and Offline Command Summary,” summarizes WLST
commands alphabetically and by online/offline usage.

Appendix C, “WLST Deployment Objects,” describes WLST deployment objects that you
can use to update a deployment plan or access information about the current deployment
activity.

Appendix D, “FAQs: WLST,” provides a list of common questions and answers.

Related Documentation

1-2

“Using Ant Tasks to Configure and Use a WebLogic Server Domain” in Developing
Applications With WebLogic Server

Administration Console Online Help
Creating WebLogic Domains Using the Configuration Wizard
Developing Custom Management Utilities with JMX

WebLogic SNMP Agent Command-Line Reference

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/programming/ant_tasks.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/core/index.html
http://e-docs.bea.com/wls/docs90/../../common/docs90/confgwiz/index.html
http://e-docs.bea.com/wls/docs90/jmx/index.html
http://e-docs.bea.com/wls/docs90/admin_ref/snmpcli.html

WLST Sample Scripts

WLST Sample Scripts

The following sections describe the WLST online and offline sample scripts that you can run or
use as templates for creating additional scripts. For information about running scripts, see

“Running Scripts” on page 2-10.

WLST Online Sample Scripts

The WLST online sample scripts demonstrate how to perform administrative tasks and initiate
WebLogic Server configuration changes while connected to a running server. WLST online
scripts are located in the following directory:
SAMPLES_HOME\server\examples\src\examples\wlst\online, where SAMPLES HOME
refers to the main examples directory of your WebLogic Server installation, such as

c:\beahome\weblogic90\samples.

Table 1-1 summarizes WLST online sample scripts.

Table 1-1 WLST Online Sample Scripts

WLST Sample Script

Description

cluster_creation.py

Connects WLST to an Administration Server, starts an edit session,
and creates 10 Managed Servers. It then creates two clusters, assigns
servers to each cluster, and disconnects WLST from the server.

cluster_deletion.py

Removes the clusters and servers created in
cluster_creation.py.

jdbc_data_source_creation.py

Connects WLST to an Administration Server, starts an edit session,
and creates a JDBC data source called myJDBCDataSource.

jdbc_data_source_deletion.py

Removes the JDBC data source created by
jdbc_data_source_creation.py.

configdJMSSystemResource.py

Connects WLST to an Administration Server, starts an edit session,
creates two JMS Servers, and targets them to the Administration
Server. Then creates JMS topics, IMS queues, and JMS templates in
aJMS System module. The JIMS queues and topics are targeted using
sub-deployments.

deletedMSSystemResource.py

Removes the IMS System module created by
configdMSSystemResource.py.

WebLogic Scripting Tool 1-3

Introduction and Roadmap

WLST Offline Sample Scripts

The WLST offline sample scripts demonstrate how to create domains using the domain templates
that are installed with the software. The WLST offline scripts are located in the following
directory: WL, HOME\common\templates\scripts\wlst, where wr, HOME refers to the
top-level installation directory for WebLogic Server.

Table 1-2 summarizes WLST offline sample scripts.

Table 1-2 WLST Offline Sample Script

WLST Sample Script

Description

basicWLSDomain.py

Creates a simple WebLogic domain demonstrating how to open a domain
template, create and edit configuration objects, and write the domain
configuration information to the specified directory.

The sample consists of a single server, representing a typical development
environment. This type of configuration is not recommended for production
environments.

The script uses the Basic WebLogic Server Domain template.

clusterMedRecDomain.py

Creates a single-cluster domain, creating three Managed Servers and assigning
them to a cluster.

The script uses the Basic WebLogic Server Domain template and extends it
using the Avitek Medical Records Sample extension template.

distributedQueues.py

Demonstrates two methods for creating distributed queues.

The script uses the Basic WebLogic Server Domain template and extends it
using the Avitek Medical Records Sample.

sampleMedRecDomain.py

Creates a domain that defines resources similar to those used in the Avitek
MedRec sample. This example does not recreate the MedRec example in its
entirety, nor does it deploy any sample applications.

This example demonstrates steps similar to those shown in the WLST online
script described in “Creating a Sample Domain: Main Steps” on page 6-2, but
uses WLST offline.

The script uses the Basic WebLogic Server Domain template.

In addition, BEA provides sample scripts to configure WebLogic domain resources using WLST
offline and online on the dev2dev Web site. For more information, see the wist Project Home at

https://wlst.projects.dev2dev.bea.comn.

1-4 WebLogic Scripting Tool

https://wlst.projects.dev2dev.bea.com/
https://wlst.projects.dev2dev.bea.com/

GHAPTERa

Using the WebLogic Scripting Tool

The following sections describe the WebLogic Scripting Tool:

“What is the WebLogic Scripting Tool?” on page 2-1

“Modes of Operation” on page 2-4

“Main Steps for Using WLST” on page 2-8

“Getting Help” on page 2-12

“Recording User Interactions” on page 2-13

“Redirecting WLST Output to a File” on page 2-13

“Converting an Existing Configuration into a WLST Script” on page 2-13

“Customizing WLST” on page 2-14

What is the WebLogic Scripting Tool?

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that system
administrators and operators use to monitor and manage WebLogic Server instances and

domains. The WLST scripting environment is based on the Java scripting interpreter, Jython. In
addition to WebLogic scripting functions, you can use common features of interpreted languages,
including local variables, conditional variables, and flow control statements. WebLogic Server
developers and administrators can extend the WebLogic scripting language to suit their
environmental needs by following the Jython language syntax. See http://www.jython.org.

WebLogic Scripting Tool 2-1

http://www.jython.org

Using the WebLogic Scripting Tool

What Does WLST Do?

WLST lets you perform the following tasks:

e Propagate a WebLogic Server domain to multiple destinations using predefined
configuration and extension templates. See “Creating and Configuring WebLogic Domains
Using WLST Oftline” on page 3-1.

Retrieve domain configuration and runtime information. See “Navigating and Interrogating
MBeans” on page 4-1.

Edit the domain configuration and persist the changes in the domain’s configuration files.
See “Editing Configuration MBeans” on page 4-12.

Edit custom, user-created MBeans and non-WebLogic Server MBeans, such as WebLogic
Integration Server and WebLogic Portal Server MBeans. See “Accessing Custom MBeans”
on page 4-11.

Automate domain configuration tasks and application deployment. See “Automating
WebLogic Server Administration Tasks” on page 6-1.

Control and manage the server life cycle. See “Managing Servers and Server Life Cycle”
on page 5-1.

Access the Node Manager and start, stop, and suspend server instances remotely or locally,
without requiring the presence of a running Administration Server. See “Using WLST and
Node Manager to Manage Servers” on page 5-4.

WLST functionality includes the capabilities of these WebLogic Server command-line utilities:
the weblogic.Admin utility that you use to interrogate MBeans and configure a WebLogic
Server instance (deprecated in this release of WebLogic Server), the wlconfig Ant task tool for
making WebLogic Server configuration changes, and the weblogic.Deployer utility for
deploying applications. For more information about these command-line utilities, see:

e “Using Ant Tasks to Configure and Use a WebLogic Server Domain” in Developing
Applications with WebLogic Server, describes using WebLogic Ant tasks for starting and
stopping WebLogic Server instances and configuring WebLogic Server domains.

e “Overview of Deployment Tools” in Deploying Applications to WebLogic Server, describes
several tools that WebLogic Server provides for deploying applications and stand-alone
modules.

You can create, configure, and manage domains using WLST, command-line utilities, and the
Administration Console interchangeably. The method that you choose depends on whether you

2-2 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/programming/ant_tasks.html
http://e-docs.bea.com/wls/docs90/deployment/understanding.html#DeploymentTools

What is the WebLogic Scripting Tool?

prefer using a graphical or command-line interface, and whether you can automate your tasks by
using a script. See “Script Mode” on page 2-4.

How Does WLST Work?

You can use the scripting tool online (connected to a running Administration Server or Managed
Server instance) and offline (not connected to a running server). For information on WLST online
and offline commands, see “WLST Online and Offline Command Summary” on page B-1.

Using WLST Online

Online, WLST provides simplified access to Managed Beans (MBeans), Java objects that provide
a management interface for an underlying resource that you can manage through JMX. WLST is
a JMX client; all the tasks you can do using WLST online, can also be done programmatically
using IMX.

For information on using JMX to manage WebLogic Server resources, see Developing Custom
Management Utilities with JMX.

When WLST is connected to an Administration Server instance, the scripting tool lets you
navigate and interrogate MBeans, and supply configuration data to the server. When WLST is
connected to a Managed Server instance, its functionality is limited to browsing the MBean
hierarchy.

While you cannot use WLST to change the values of MBeans on Managed Servers, it is possible
to use the Management APIs to do so. BEA Systems recommends that you change only the values
of configuration MBeans on the Administration Server. Changing the values of MBeans on
Managed Servers can lead to an inconsistent domain configuration.

Using WLST Offline

Using WLST offline, you can create a new domain or update an existing domain without
connecting to a running WebLogic Server—supporting the same functionality as the
Configuration Wizard.

Offline, WLST only provides access to persisted configuration information. You can create new
configuration information, and retrieve and change existing configuration information that is
persisted in the domain configuration files (located in the config directory, for example,
config.xml) or in a domain template JAR created using Template Builder.

Note: Because WLST offline enables you to access and update the configuration objects that
appear in the configuration files only, if you wish to view and/or change attribute values

WebLogic Scripting Tool 2-3

http://e-docs.bea.com/wls/docs90/jmx/index.html
http://e-docs.bea.com/wls/docs90/jmx/index.html

Using the WebLogic Scripting Tool

for a configuration object that is not already persisted in the configuration files as an
XML element, you must first create the configuration object.

Modes of Operation

2-4

WLST is a command-line interpreter that interprets commands either interactively, supplied
one-at-a-time from a command prompt, or in batches, supplied in a file (script), or embedded in
your Java code. The modes of operation represent methods for issuing WLST commands:

e Interactively, on the command line—“Interactive Mode”
e In a text file—"“Script Mode”

e Embedded in Java code—“Embedded Mode”

Interactive Mode

Interactive mode, in which you enter a command and view the response at a command-line
prompt, is useful for learning the tool, prototyping command syntax, and verifying configuration
options before building a script. Using WLST interactively is particularly useful for getting
immediate feedback after making a critical configuration change. The WLST scripting shell
maintains a persistent connection with an instance of WebLogic Server. Because a persistent
connection is maintained throughout the user session, you can capture multiple steps that are
performed against the server. See “Recording User Interactions” on page 2-13.

In addition, each command that you enter for a WebLogic Server instance uses the same
connection that has already been established, eliminating the need for user re-authentication and
a separate JVM to execute the command.

Script Mode

Scripts invoke a sequence of WLST commands without requiring your input, much like a shell
script. Scripts contain WLST commands in a text file with a .py file extension, for example,
filename.py. You use script files with the Jython commands for running scripts. See “Running
Scripts” on page 2-10.

Using WLST scripts, you can:
e Automate WebLogic Server configuration and application deployment

e Apply the same configuration settings, iteratively, across multiple nodes of a topology

WebLogic Scripting Tool

e Take advantage of scripting language features, such as loops, flow control constructs,
conditional statements, and variable evaluations that are limited in interactive mode

e Schedule scripts to run at various times
e Automate repetitive tasks and complex procedures

e Configure an application in a hands-free data center

Modes of Operation

In Listing 2-1, WLST connects to a running Administration Server instance, creates 10 Managed

Servers and two clusters, and assigns the servers to a cluster.

Edit the script to contain the username, password, and URL of the Administration Server and start
the server before running this script. See “Running Scripts” on page 2-10.

Listing 2-1 Creating a Clustered Domain

from java.util import *
from javax.management import *
import javax.management.Attribute

print 'starting the script !

connect ('username', 'password', 't3://localhost:7001")
clusters = "clusterl", "cluster2"

msl = {'managedl':7701, 'managed2':7702, 'managed3':7703,
'managed5':7705}

ms2 = {'managed6':7706, 'managed7':7707, 'managed8':7708,
'managedl0':7710}

clustHM = HashMap ()
edit ()
startEdit ()

for ¢ in clusters:
print 'creating cluster '+c
clu = create(c, 'Cluster')
clustHM.put (c,clu)

cd('..\..")

clusl clustHM.get (clusters[0])
clus2 = clustHM.get (clusters[1l])

for m, lp in msl.items():
managedServer = create(m, 'Server')
print 'creating managed server '+m

'managed4':7704,

'managed9':7709,

WebLogic Scripting Tool

2-5

Using the WebLogic Scripting Tool

managedServer.setListenPort (1p)
managedServer.setCluster (clusl)

for ml, 1lpl in ms2.items():
managedServer = create(ml, 'Server')
print 'creating managed server '+ml
managedServer.setListenPort (1pl)
managedServer.setCluster (clus2)

save ()

activate (block="true")
disconnect ()

print 'End of script ...'
exit ()

Embedded Mode

In embedded mode, you instantiate an instance of the WLST interpreter in your Java code and
use it to run WLST commands and scripts. All WLST commands and variables that you use in
interactive and script mode can be run in embedded mode.

Listing 2-2 illustrates how to instantiate an instance of the WLST interpreter and use it to connect
to a running server, create two servers, and assign them to clusters.

Listing 2-2 Running WLST From a Java Class

package wlst;

import java.util.*;

import weblogic.management.scripting.utils.WLSTInterpreter;
import org.python.util.InteractiveInterpreter;

*

/
Simple embedded WLST example that will connect WLST to a running server,
create two servers, and assign them to a newly created cluster and exit.
<p>Title: EmbeddedWLST.java</p>

<p>Copyright: Copyright (c) 2004</p>

<p>Company: BEA Systems</p>

@author Satya Ghattu (sghattu@bea.com)

* % % X X X X F

~

public class EmbeddedWLST
{

static InteractiveInterpreter interpreter = null;

2-6 WebLogic Scripting Tool

Modes of Operation

EmbeddedWLST () {
interpreter = new WLSTInterpreter () ;

}

private static void connect () {
StringBuffer buffer = new StringBuffer();
buffer.append("connect ('weblogic', 'weblogic')");
interpreter.exec (buffer.toString());

}
private static void createServers() {

StringBuffer buf = new StringBuffer();
buf.append(startTransaction()) ;
buf.append("manl=create ('msEmbeddedl', 'Server')\n") ;
buf.append("man2=create ('msEmbedded2', 'Server')\n") ;
buf.append("clus=create('clusterEmbedded', 'Cluster')\n");
buf.append("manl.setListenPort (8001)\n");
buf.append("man2.setListenPort (9001)\n") ;
buf.append("manl.setCluster (clus)\n");
buf.append("man2.setCluster (clus)\n") ;
buf.append (endTransaction()) ;
buf.append("print ‘Script ran successfully ...’ \n");
interpreter.exec (buf.toString());

}

private static String startTransaction() {

StringBuffer buf = new StringBuffer();
buf.append("edit () \n") ;
buf.append("startEdit () \n");
return buf.toString() ;

}

private static String endTransaction() {
StringBuffer buf = new StringBuffer();
buf.append("save()\n") ;
buf.append("activate (block="true')\n");
return buf.toString();

}

public static void main(String[] args) {
new EmbeddedWLST () ;
connect () ;
createServers () ;

WebLogic Scripting Tool

2-1

Using the WebLogic Scripting Tool

Main Steps for Using WLST

The following sections summarize the steps for setting up and using WLST:

2-8

“Setting Up Your Environment” on page 2-8

“Invoking WLST” on page 2-8

“Requirements for Entering WLST Commands” on page 2-9
“Running Scripts” on page 2-10

“Importing WLST as a Jython Module” on page 2-11

“Exiting WLST” on page 2-12

Setting Up Your Environment

To set up your environment for WLST:

1.

Install and configure the WebLogic Server software, as described in the WebLogic Server
Installation Guide.

Add WebLogic Server classes to the CLASSPATH environment variable and
WL_HOME\server\bin to the PATH environment variable, where wr,_HOME refers to the
top-level installation directory for WebLogic Server.

You can use a WL_HOME\server\bin\setWLSEnv script to set both variables.

On Windows, a shortcut on the Start menu sets the environment variables and invokes
WLST (Tools—WebLogic Scripting Tool).

Invoking WLST

Note: When invoking WLST from an Ant script, it is recommended that you fork a new JVM

by specifying fork="true". This will ensure a clean environment and prevent the
WLST exit command, which calls System.exit (0), from exiting the Ant script.

To invoke WLST:

1.

If you will be connecting to a WebLogic Server instance through an SSL listen port on a server
that is using the demonstration SSL keys and certificates, invoke WLST using the following
command:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST

WebLogic Scripting Tool

http://e-docs.bea.com/common/docs90/install

Main Steps for Using WLST

Otherwise, at a command prompt, enter the following command:
java weblogic.WLST
A welcome message and the WLST prompt appears:

wls:/ (offline)>

2. Touse WLST offline, enter commands, set variables, or run a script at the WLST prompt.

For more information, see “Creating and Configuring WebLogic Domains Using WLST
Offline” on page 3-1.

To use WLST online, start a WebLogic Server instance (see Starting and Stopping Servers)
and connect WLST to the server using the connect command.

wls:/ (offline)> connect ('username', 'password', 't3s://localhost:7002")
Connecting to weblogic server instance running at t3s://localhost:7002
as username weblogic

Successfully connected to Admin Server 'myserver' that belongs to
domain 'mydomain’'.

wls:/mydomain/serverConfig>

Note: BEA Systems strongly recommends that you connect WLST to the server through an
SSL port or the administration port. If you do not, the following warning message is
displayed:

Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be
used instead.

For detailed information about the connect command, see “connect” on page A-10.

Requirements for Entering WLST Commands

Follow these rules when entering WLST commands. Also see “WLST Command and Variable
Reference” on page A-1 and “WLST Online and Offline Command Summary” on page B-1.

e Command names and arguments are case sensitive.

e Enclose arguments in single or double quotes. For example, 'newServer' or
"newServer".

e If you specify a backslash character (\) in a string, for example when specifying a file
pathname, you should precede the quoted string by r to instruct WLST to interpret the
string in its raw form and ensure that the backslash is taken literally. This format represents
standard Jython syntax. For example:

WebLogic Scripting Tool 2-9

http://e-docs.bea.com/wls/docs90/server_start/overview.html

Using the WebLogic Scripting Tool

2-10

readTemplate (r'c:\mytemplate.jar")

e When using WLST offline, the following characters are not valid in object names: period
(.), forward slash (/), or backward slash (\).

If you need to cd to an object name that includes a forward slash (/) in its name, include
the configuration object name in parentheses. For example:

cd (' JMSQueue/ (jms/REGISTRATION_MDB_QUEUE) ')
e Using WLST and a domain template, you can only create and access security information

when you are creating a new domain. When you are updating a domain, you cannot access
security information through WLST.

e Display help information for WLST commands by entering the help command. See
“Getting Help” on page 2-12.

Running Scripts

WLST incorporates two Jython functions that support running scripts: java weblogic.WLST
filePath.py, which invokes WLST and executes a script file in a single command, and
execfile(filePath.py) Which executes a script file after you invoke WLST.

To run the script examples in this guide, copy and save the commands in a text file with a .py file
extension, for example, £ilename.py. Use the text file with the commands for running scripts
that are listed below. There are sample scripts that you can use as a template when creating a
script.py file from scratch. For more information, see “WLST Sample Scripts” on page 1-3.

If the script will connect WLST to a running server instance, start WebLogic Server before
running the script.

Invoke WLST and Run a Script

The following command invokes WLST, executes the specified script, and exits the WLST
scripting shell. To prevent exiting WLST, use the -i flag.

java weblogic.WLST filePath.py
java weblogic.WLST -i filePath.py

For example:

c:\>java weblogic.WLST c:/temp/example.py
Initializing WebLogic Scripting Tool (WLST)
starting the script ...

WebLogic Scripting Tool

Main Steps for Using WLST

Run a Script From WLST

Use the following command to execute the specified script after invoking WLST.
execfile(filePath)

For example:

c:\>java weblogic.WLST
Initializing WebLogic Scripting Tool (WLST)

wls:/ (offline)>execfile('c:/temp/example.py’')
starting the script ...

Importing WLST as a Jython Module

Advanced users can import WLST from WebLogic Server as a Jython module. After importing
WLST, you can use it with your other Jython modules and invoke Jython commands directly
using Jython syntax.

The main steps include converting WLST definitions and method declarations to a . py file,
importing the WLST file into your Jython modules, and referencing WLST from the imported
file.

To import WLST as a Jython module:

1. Invoke WLST.

c:\>java weblogic.WLST
wls:/offline>

2. Use the writeIniFile command to convert WLST definitions and method declarations to
a .py file.

wls:/offline> writeIniFile("wl.py")
The Ini file is successfully written to wl.py
wls:/offline>

3. Open a new command shell and invoke Jython directly by entering the following command:
c:\>java org.python.util.jython

The Jython package manager processes the JAR files in your classpath. The Jython prompt
appears:

>>>

WebLogic Scripting Tool 2-11

Using the WebLogic Scripting Tool

4. Import the WLST module into your Jython module using the Jython import command.

>>>import wl

5. Now you can use WLST methods in the module. For example, to connect WLST to a server
instance:

wl.connect ('username', 'password’')

Note: When using WLST as a Jython module, in all WLST commands that have a block
argument, block is always set to true, specifying that WLST will block user
interaction until the command completes. See “WLST Command and Variable
Reference” on page A-1.

Exiting WLST
To exit WLST:

wls:/mydomain/serverConfig> exit()
Exiting WebLogic Scripting Tool

c:\>

Getting Help

2-12

To display information about WLST commands and variables, enter the help command.

If you specify the help command without arguments, WLST summarizes the command
categories. To display information about a particular command, variable, or command category,
specify its name as an argument to the help command. To list a summary of all online or offline
commands from the command line using the following commands, respectively:

help('online"')
help('offline')

The help command will support a query; for example, help ('get* ') displays the syntax and
usage information for all commands that begin with get.

For example, to display information about the disconnect command, enter the following
command:

wls:/mydomain/serverConfig> help('disconnect')
The command returns the following:

Description:
Disconnect from a weblogic server instance.

WebLogic Scripting Tool

Recording User Interactions

Syntax:
disconnect ()

Example:
wls:/mydomain/serverConfig> disconnect ()

Recording User Interactions

To start and stop the recording of all WLST command input, enter:

startRecording (recordFilePath, [recordAll])
stopRecording ()

You must specify the file pathname for storing WLST commands when you enter the
startRecording command. You can also optionally specify whether or not you want to capture
all user interactions, or just the WLST commands; the recordall argument defaults to false.

For example, to record WLST commands in the record. py file, enter the following command:
wls:/mydomain/serverConfig> startRecording('c:/myScripts/record.py"')

For more information, see “startRecording” on page A-84 and “stopRecording” on page A-86.

Redirecting WLST Output to a File

To start and stop redirecting WLST output to a file, enter:

redirect (outputFile, [toStdOut])
stopRedirect ()

You must specify the pathname of the file to which you want to redirect WLST output. You can
also optionally specify whether you want WLST output to be sent to stdout; the tostdout
argument defaults to true.

For example, to redirect WLST output to the logs/wlst. log file in the current directory and
disable output from being sent to stdout, enter the following command:

wls:/mydomain/serverConfig> redirect('./logs/wlst.log', 'false')

For more information, see “redirect” on page A-82 and “stopRedirect” on page A-86.

Converting an Existing Configuration into a WLST Script

To convert an existing server configuration (config directory) to an executable WLST script,

enter:
configToScript ([domainDir], [scriptPath], [overwrite], [propertiesFile]l,
[deploymentScript])

WebLogic Scripting Tool 2-13

Using the WebLogic Scripting Tool

You can optionally specify:

e The domain directory that contains the configuration that you want to convert (defaults to
./config)

e The path to the directory in which you want to write the converted WLST script (defaults
to . /config/config.py)

e Whether to overwrite the script if it already exists (defaults to true)

e The path to the directory in which you want to store the properties file (defaults to
pathname specified for scriptPath)

e Whether to create a script that performs deployments only (defaults to false)

Note: configToScript () creates ancillary user-config and user-key files to hold encrypted
attributes.

You can use the resulting script to re-create the resources on other servers. Before running the
generated script, you should update the properties file to specify values that are appropriate for
your environments. When you run the generated script:

e Ifa server is currently running, WLST will try to connect using the values in the properties
file and then run the script commands to create the server resources.

e Ifno server is currently running, WLST will start a server with the values in the properties
file, run the script commands to create the server resources, and shutdown the server. This
may cause WLST to exit from the command shell.

For example, the following command creates a WLST script from the domain located at
c:/bea/user_projects/domains/mydomain, and saves it to c: /bea/myscripts.

wls:/offline> configToScript('c:/bea/user_projects/domains/mydomain’,
'c:/bea/myscripts’')

For more information, see “configToScript” on page A-69.

Customizing WLST

2-14

You can customize WLST using the WLST home directory, which is located at

WIL_HOME/ common/wlst, by default, where wz_HomE refers to the top-level installation directory
for WebLogic Server. All Python scripts that are defined within the WLST home directory are
imported at WLST startup.

WebLogic Scripting Tool

Note:

on the command line:
-Dweblogic.wlstHome=< >

Customizing WLST

You can customize the default WLST home directory by passing the following argument

The following table describes ways to customize WLST.

Table 2-1 Customizing WLST

To define custom... Do the following... For a sample script, see...
WLST commands Create a Python script defining the WL_HOME/common/wlst/sample.py
new commands and copy that file to vy this script, the wlstHomeSample ()
WL_HOME/common/wlst. command is defined, which prints a String, as
follows:
wls:/offline> wlstHomeSample ()
Sample wlst home command
WLST commands Create a Python script defining the WL_HOME/common/wlst/lib/wlstLibSamp

within a library

new commands and copy that file to
WIL_HOME/common/wlst/1lib.

The scripts located within this
directory are imported as Jython
libraries.

le.py

Within this script, the wlstHomeSample ()
command is defined, which prints a String, as
follows:

wls:/offline>

wlstLibSample.wlstExampleCommand ()
Example command

WLST commands
as a Jython module

Create a Python script defining the
new commands and copy that file to
WL_HOME/common/wlst /modul
es.

This script can be imported into
other Jython modules, as described
in “Importing WLST as a Jython
Module” on page 2-11.

WL_HOME/common/wlst/modules/wlstMod
ule.py

A JAR file, jython. jar, containing all of the
Jython modules that are available in Jython 2.1 is
also available within this directory.

WebLogic Scripting Tool 2-15

Using the WebLogic Scripting Tool

2-16 WebLogic Scripting Tool

CHAPTERa

Creating and Configuring WebLogic
Domains Using WLST Offline

WLST enables you to create a new domain or update an existing domain without connecting to
arunning WebLogic Server (that is, using WLST offline)—supporting the same functionality as
the Configuration Wizard.

You can create new configuration information, and retrieve and change existing configuration
information that is persisted in the domain configuration files (located in the config directory,
for example, config.xml) or in a domain template JAR created using Template Builder.

The following sections describe how to create and configure WebLogic domains using WLST
offline. Topics include:

e “Creating a Domain (Offline)” on page 3-2

e “Updating an Existing Domain (Offline)” on page 3-3
e “Creating a Domain Template (Offline)” on page 3-6
e “Exporting Diagnostic Data (Offline)” on page 3-7

e “Stepping Through a Sample Script: Creating a Domain Using WLST Offline” on page 3-8

For more information about the Configuration Wizard, see Creating WebLogic Domains Using
the Configuration Wizard.

WebLogic Scripting Tool 3-1

http://e-docs.bea.com/wls/docs90/../../common/docs90/confgwiz/index.html
http://e-docs.bea.com/wls/docs90/../../common/docs90/confgwiz/index.html

Creating and Configuring WebLogic Domains Using WLST Offline

Notes: Before creating or updating a domain, you must set up your environment and invoke
WLST, as described in “Main Steps for Using WLST” on page 2-8. You can exit WLST
at anytime using the exit command, as follows: exit ()

When using the Configuration Wizard or WLST Offline to create or extend a clustered
domain with a template that has applications containing application-scoped JDBC and/or
JMS resources, you may need to perform additional steps (after the domain is created or
extended) to make sure that the application and its application-scoped resources are
targeted and deployed properly in a clustered environment. For more information on the
targeting and deployment of application-scoped modules, see "Deploying Applications
and Modules" in Deploying Applications to WebLogic Server at
http://e-docs.bea.com/wls/docs90/deployment/deploy.html.

Creating a Domain (0ffline)

To create a domain using WLST offline, perform the steps defined in the following table.

Table 3-1 Steps for Creating a Domain (0ffline)

Step To... Use the following command(s)... For more
information, see...

1 Open an existing domaintemplate readTemplate (templateFileName) “readTemplate” on
for domain creation page A-16
2 Modify the domain (optional) Various commands “Browsing and
Accessing

Note: Because WLST offline enables you
to access a-nd uante the . the Configuration
configuration objects that appearin can Hierarchy
the configuration files only, if you (Offline)” on
wish to view and/or change attribute
values for a configuration object that
is not already persisted in the
configuration files as an XML (Offline)” on
element, you must first create the page 3-5.
configuration object. For more
information, see “create” on
page A-45.

Information About

page 3-4

“Editing a Domain

3-2 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/deployment/deploy.html

Updating an Existing Domain (Offline)

Table 3-1 Steps for Creating a Domain (0ffline) (Continued)

Step To... Use the following command(s)... For more
information, see...

3 Set the password for the default cd('/Security/domainname/User/u “Stepping Through a

user, if it is not already set sername') Sample Script:
cmo . setPassword (' password') Creating a Domain
Note: Thedefaultusername and Using WLST

password must be set

; Offline” on page 3-8
before you can write the

domain.

4 Write the domain configuration writeDomain (domainDir) “writeDomain” on
information to the specified page A-18
directory

5 Close the current domain closeTemplate () “closeTemplate” on
template page A-10

Updating an Existing Domain (0ffline)

To update an existing domain using WLST offline, you perform the steps defined in the following
table.

Table 3-2 Steps for Updating an Existing Domain (0ffline)

Step To... Use this command... For more
information, see...

1 Open an existing domain for readDomain (domainDirName) “readDomain” on
update page A-15

2 Extend the current domain addTemplate (templateFileName) “addTemplate” on
(optional) page A-8

WebLogic Scripting Tool 3-3

Creating and Configuring WebLogic Domains Using WLST Offline

Table 3-2 Steps for Updating an Existing Domain (0ffline) (Continued)

Step To... Use this command...

For more
information, see...

3 Modify the domain (optional) ~ Various commands

Note: Because WLST offline enables you
to access and update the
configuration objects that appear in
the configuration files only, if you
wish to view and/or change attribute
values for a configuration object that
is not already persisted in the
configuration files as an XML
element, you must first create the
configuration object. For more
information, see “create” on

“Browsing and
Accessing
Information About
the Configuration
Bean Hierarchy
(Oftline)” on

page 3-4

“Editing a Domain
(Oftline)” on
page 3-5.

page A-45.
4 Save the domain updateDomain () “updateDomain” on
page A-17
5 Close the domain closeDomain () “closeDomain” on

page A-9

Browsing and Accessing Information About the Configuration

Bean Hierarchy (Offline)

To browse and access information about the configuration bean hierarchy using WLST offline,

you can perform any of the tasks defined in the following table.

Note:

Because WLST offline enables you to access and update the configuration objects that

appear in the configuration files only, if you wish to view and/or change attribute values
for a configuration object that is not already persisted in the configuration files as an

XML element, you must first create the configuration object.

3-4 WebLogic Scripting Tool

Updating an Existing Domain (Offline)

Table 3-3 Displaying Domain Gonfiguration Information (Offline)

To... Use this command... For more information, see...
Navigate the hierarchy of configuration beans cd(path) “cd” on page A-3
List child attributes or configuration beans for 1s(['a' | 'c']) “Is” on page A-78

the current configuration bean

Toggle the display of the configuration bean prompt (['off'|'on']) “prompt” on page A-5
navigation path information at the prompt

Display the current location in the pwd () “pwd” on page A-6
configuration bean hierarchy

Display all variables used by WLST dumpVariables () “dumpVariables” on
page A-71
Display the stack trace from the last exception ~dumpStack () “dumpStack” on page A-71

that occurred while performing a WLST action

Editing a Domain (Offline)

To edit a domain using WLST offline, you can perform any of the tasks defined in the following
table.

Note: Because WLST offline enables you to access and update the configuration objects that
appear in the configuration files only, if you wish to view and/or change attribute values
for a configuration object that is not already persisted in the configuration files as an
XML element, you must first create the configuration object.

For more information about:
e Creating MBeans, see “Understanding WebLogic Server MBeans” in Developing Custom

Management Utilities with JMX at
http://e-docs.bea.com/wls/docs90/jmx/understandWLS.html.

e Examples of creating specific types of MBean resources, for example, a JMS or JDBC
system resource, refer to the WLST sample scripts installed with your product, as
described in “WLST Sample Scripts” on page 1-3.

e MBeans, their child types, attributes, and operations, see WebLogic Server MBean
Reference at http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html.

WebLogic Scripting Tool 3-5

http://e-docs.bea.com/wls/docs90/jmx/understandWLS.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html

Creating and Configuring WebLogic Domains Using WLST Offline

Table 3-4 Editing a Domain

To... Use this command... For more
information, see...

Assign configuration assign(sourceType, sourceName, “assign” on
beans destinationType, destinationName) page A-40
Unassign unassign (sourceType, sourceName, “unassign” on
configuration beans destinationType, destinationName) page A-61
Create and delete create (name, childMBeanType) “create” on
configuration beans gelete (name, childMBeanType) page A-45
“delete” on
page A-47
Get and set attribute ~ get (attrName) “get” on page A-49
values set (attrName, value) “set” on page A-55
Set configuration setOption (optionName, value) “setOption” on
options page A-56
Load SQL filesintoa loadDB (dbVersion, connectionPoolName) “loadDB” on
database page A-52

Creating a Domain Template (0ffline)

To create a domain template using WLST offline, perform the steps described in the following
table.

3-6 WebLogic Scripting Tool

Exporting Diagnostic Data (Offline)

Table 3-5 Steps for Creating a Domain Template (0ffline)

Step To... Use this command... For more
information, see...
1 Open an existing domain or readDomain (domainDirName) “readDomain” on
template readTemplate (templateFileName) page A-15
“readTemplate” on
page A-16
2 Set the password for the cd('/Security/domainname/User/u “Stepping Through a

default user, if it is not already
set

Note: The default username
and password must be
set before you can
write the domain
template.

sername')
cmo .setPassword (' password')

Sample Script:
Creating a Domain
Using WLST
Offline” on page 3-8

3 Write the domain
configuration information to a
domain template

writeTemplate (templateName)

“writeTemplate” on
page A-19

Exporting Diagnostic Data (0ffline)

To export diagnostic information using WLST offline, use the exportDiagnosticData
command defined in the following table.

The results are saved to an XML file. For more information about the WebLogic Server
Diagnostic Service, see Understanding the WebLogic Diagnostic Service at

http://e-docs.bea.com/wls/docs90/wldf_understanding/index.html.

Table 3-6 Exporting Diagnostic Data

To... Use this command... For more information, see...
Execute a query against the exportDiagnosticData([options]) “exportDiagnosticData” on
specified log file page A-34

WebLogic Scripting Tool

3-1

http://e-docs.bea.com/wls/docs90/wldf_understanding/index.html

Creating and Configuring WebLogic Domains Using WLST Offline

Stepping Through a Sample Script: Creating a Domain Using
WLST Offline

The following example steps through a sample script that creates a WebLogic domain using the
Basic WebLogic Server Domain template. The sample script demonstrates how to open a domain
template; create and edit configuration objects; write the domain configuration information to the
specified directory; and close the domain template.

3-8

The script shown is installed with your product at

WL_HOME\ common\templates\scripts\wlst\basicWLSDomain.py, where wr,_HOME refers
to the top-level installation directory for WebLogic Server. See also “WLST Offline Sample
Scripts” on page 1-4 for a description of the full set of sample scripts that are installed with your
product.

To create a WebLogic domain using the Basic WebLogic Server Domain template:

1.

2.

Open an existing domain template (assuming WebLogic Server is installed at
c:/bea/weblogic90). In this example, we open the Basic WebLogic Server Domain
template.

readTemplate('c: /bea/weblogic90/common/templates/domains/wls.jar")

Note:

When you open a template or domain, WLST is placed into the configuration bean
hierarchy for that domain, and the prompt is updated to reflect the current location in
the configuration hierarchy. For example:

wls:/offline/base_domain>

WebLogic Server configuration beans exist within a hierarchical structure. Similar to
a file system, the hierarchies correspond to drives; types and instances are directories;
attributes and operations are files. WLST traverses the hierarchical structure of
configuration beans using commands such as cd, 1s, and pwd in a similar way that
you would navigate a file system in a UNIX or Windows command shell. After
navigating to an configuration bean instance, you interact with the bean using WLST
commands. For more information, see “Navigating and Interrogating MBeans” on
page 4-1.

Configure the domain.

a. Configure the Administration Server and SSL port.

cd('Servers/AdminServer')
set ('ListenAddress','"')
set ('ListenPort', 7001)

WebLogic Scripting Tool

Stepping Through a Sample Script: Creating a Domain Using WLST Offline

create('AdminServer', 'SSL')
cd('SSL/AdminServer')

set ('Enabled', 'True')

set ('ListenPort', 7002)

b. Define the default user password.

cd('/")
cd('Security/base_domain/User/weblogic')
cmo.setPassword('weblogic!')

c. Create a JMS Server.

cd('/")
create('myJdMSServer', 'JUMSServer')

d. Create a JMS system resource.

cd('/")
create ('mydmsSystemResource', 'JOMSSystemResource')
cd ('JMSSystemResource/mydmsSystemResource/JIJmsResource/NO_NAME_0"')

e. Create a JMS queue and its subdeployment.

myg=create ('myQueue', 'Queue')
myq.setJNDIName (' jms/myqueue')
myq.setSubDeploymentName ('myQueueSubDeployment ')

cd('/")
cd ('JMSSystemResource/myJmsSystemResource')
create ('myQueueSubDeployment', 'SubDeployment')

f. Create a JDBC data source, configure the JDBC driver, and create a new JDBC user.

cd('/")

create('myDataSource', 'JUDBCSystemResource')

cd ('JIDBCSystemResource/myDataSource/JdbcResource/myDataSource')
create('myJdbcDriverParams', 'JDBCDriverParams')

cd ('JIDBCDriverParams/NO_NAME _0')
set ('DriverName', 'com.pointbase.jdbc.jdbcUniversalDriver')
set ('URL', 'jdbc:pointbase:server://localhost/demo')

set (' PasswordEncrypted', 'PBPUBLIC')

set ('UseXADataSourceInterface', 'false')
create('myProps', 'Properties"')
cd('Properties/NO_NAME_O0')
create('user', 'Property')

cd('Property/user')
cmo.setValue (' PBPUBLIC')

cd (' /JDBCSystemResource/myDataSource/JdbcResource/myDataSource"')
create ('myJddbcDataSourceParams', 'JDBCDataSourceParams ')

WebLogic Scripting Tool 3-9

Creating and Configuring WebLogic Domains Using WLST Offline

cd ('JDBCDataSourceParams/NO_NAME_O0')
set ('JNDIName', java.lang.String("myDataSource_jndi"))

cd (' /JDBCSystemResource/myDataSource/JdbcResource/myDataSource')
create ('myJdbcConnectionPoolParams', 'JDBCConnectionPoolParams')
cd ('JDBCConnectionPoolParams/NO_NAME 0')

set ('TestTableName', 'SYSTABLES')

g. Target the resources.

cd('/")

assign('JMSServer', 'myJMSServer',6 'Target', 'AdminServer')
assign('JMSSystemResource.SubDeployment',
'myJmsSystemResource.myQueueSubDeployment', 'Target', 'myJdMSServer')
assign('JDBCSystemResource', 'myDataSource', 'Target', 'AdminServer')

3. Save the domain.

setOption('OverwriteDomain', 'true')
writeDomain('c:/bea/user_projects/domains/wls_testscript')

4. Close the current domain template.

closeTemplate ()

5. Exit WLST.

exit()

3-10 WebLogic Scripting Tool

CHAPTERo

Navigating and Editing MBeans

The following sections describe how to navigate, interrogate, and edit MBeans using WLST:

“Navigating and Interrogating MBeans” on page 4-1
“Browsing Runtime MBeans” on page 4-6
“Navigating Among MBean Hierarchies” on page 4-9
“Finding MBeans” on page 4-10

“Accessing Custom MBeans” on page 4-11

“Editing Configuration MBeans” on page 4-12

Navigating and Interrogating MBeans

WLST provides simplified access to MBeans. While the weblogic.Admin utility (deprecated in
this release of WebLogic Server) and WLST provide an interface for interacting with MBeans,
the manner in which you retrieve MBeans is different.

The MBean-related commands that the weblogic.Admin utility provides require you to
determine the object name of the MBean with which you want to interact. While the object name
is generated based on documented conventions, it can be difficult to accurately determine the

object names of child MBeans several layers within a hierarchy.

WLST offers a different style of retrieving MBeans: instead of providing object names, you
navigate a hierarchy of MBeans in a similar fashion to navigating a hierarchy of files in a file
system.

WebLogic Scripting Tool 4-1

Navigating and Editing MBeans

42

WebLogic Server organizes its MBeans in a hierarchical data model. In the WLST file system,
MBean hierarchies correspond to drives; MBean types and instances are directories; MBean
attributes and operations are files. WLST traverses the hierarchical structure of MBeans using
commands such as cd, 1s, and pwd in a similar way that you would navigate a file system in a
UNIX or Windows command shell. After navigating to an MBean instance, you interact with the
MBean using WLST commands.

Note: Because WLST offline enables you to access and update the configuration objects that
appear in the configuration files only, if you wish to view and/or change attribute values
for a configuration object that is not already persisted in the configuration files as an
XML element, you must first create the configuration object.

In the configuration hierarchy, the root directory is DomainMBean (see DomainMBean in the
WebLogic Server MBean Reference); the MBean type is a subdirectory under the root directory;
the name of the MBean (the MBean instance) is a subdirectory under the MBean type directory;
and MBean attributes and operations are nodes (like files) under the MBean directory. Each
MBean instance is a subdirectory of an MBean type. In most cases, there can be multiple
instances of a type.

Figure 4-1 Configuration MBean Hierarchy

Domain MBean (root)
|- - - MBean type (LogMBean)
|- - - MBean instance (medrec)

|- - - MBean attributes & operations (FileName)

|- - - MBean type (SecurityConfigurationMBean)
|- - - MBean type (ServerMBean)

|- - - MBean instance (MedRecServer)
|- - - MBean attributes & operations (StartupMode)

|- - - MBean instance (ManagedServer1)
|- - - MBean attributes & operations (AutoRestart)

WLST first connects to a WebLogic Server instance at the root of the server’s configuration
MBeans, a single hierarchy whose root is DomainMBean. WLST commands provide access to all
the WebLogic Server MBean hierarchies within a domain, such as a server’s runtime MBeans,
runtime MBeans for domain-wide services, and an editable copy of all the configuration MBeans
in the domain. For more information, see “Tree Commands” on page A-112.

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DomainMBean.html

Navigating and Interrogating MBeans

For more information about MBean hierarchies, see “WebLogic Server MBean Data Model” in
Developing Custom Management Utilities with JMX.

Changing the Current Management Object

When WLST first connects to an instance of WebLogic Server, the variable, cmo (Current
Management Object), is initialized to the root of all configuration management objects,
DomainMBean. When you navigate to an MBean type, the value of cmo reflects the parent MBean.
When you navigate to an MBean instance, WLST changes the value of cmo to be the current
MBean instance, as shown in Listing 4-1.

For more information on WLST variables, see “WLST Variable Reference” on page A-122.

Listing 4-1 Changing the Current Management Object

C:\> java weblogic.WLST
Initializing WebLogic Scripting Tool (WLST)
Welcome to Weblogic Server Administration Scripting Shell

wls:/ (offline)> connect ('username', 'password')

Connecting to weblogic server instance running at t3://localhost:7001 as
username weblogic

Successfully connected to Admin Server 'myserver' that belongs to domain
'mydomain' .

Warning: An insecure protocol was used to connect to the server.

To ensure on-the-wire security, the SSL port or Admin port should be used
instead.

wls:/mydomain/serverConfig> cmo
[MBeanServerInvocationHandler]mydomain:Name=mydomain, Type=Domain
wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> cmo
[MBeanServerInvocationHandler]mydomain:Name=mydomain, Type=Domain
wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> cmo
[MBeanServerInvocationHandler]mydomain:Name=myserver, Type=Server

After navigating to an instance of ServerMBean, WLST changes the value of cmo from

DomainMBean tO0 ServerMBean.

WebLogic Scripting Tool 4-3

http://e-docs.bea.com/wls/docs90/jmx/understandWLS.html#MBean_trees

Navigating and Editing MBeans

Navigating and Displaying Configuration MBeans Example

The commands in Listing 4-2 instruct WLST to connect to an Administration Server instance,
navigate, and display MBeans in DomainMBean. If no argument is specified, the 1s command

lists all the child MBeans and attributes.

Listing 4-2 Navigating and Displaying Configuration MBeans

C:\> java weblogic.WLST
wls:/offline> connect ('username', 'password’')
wls:/mydomain/serverConfig> 1s()

dr-- AppDeployments

dr-- BridgeDestinations

dr-- Clusters

dr-- DeploymentConfiguration
dr-- Deployments

dr-- EmbeddedLDAP

-r—- AdminServerName

-r-—- AdministrationMBeanAuditingEnabled
-r-- AdministrationPort

-r—- AdministrationPortEnabled
-r-—- AdministrationProtocol
-r-- ArchiveConfigurationCount

wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> 1ls()
dr-- managedl
dr-- myserver

wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> 1ls()

dr-- CcOoM

dr-- CandidateMachines
dr-- Cluster

dr-- DefaultFileStore
dr-- ExecutiveQueues

dr-- IIOP

dr-- JTAMigrateableTarget
dr-- Log

dr-- Machine

dr-- NetworkAccessPoints
dr-- OverloadProtection
dr-- SSL

-r-- AcceptBacklog

-r-- AdminReconnectIntervalSeconds

4-4 WebLogic Scripting Tool

myserver
false
9002
false
t3s

5

50
10

Navigating and Interrogating MBeans

-r-- AdministrationPort 0
-r-- AdministrationPortAfterOverride 9002
-r—- AdministrationPortEnabled false
-r-—- AdministrationProtocol t3s
-r-- AutoKillIfFailed false
-r-- AutoRestart true

wls:/mydomain/serverConfig/Servers/myserver> cd('Log/myserver')
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> 1ls()

dr-- DomainLogBroadcastFilter

dr-- LogFileFilter

dr-- MemoryBufferFilter

dr-- StdoutFilter

-r—- DomainLogBroadcastFilter null
-r-- DomainLogBroadcastSeverity Warning
-r—-— DomainLogBroadcasterBufferSize 0

-r--— FileCount 7

-r-- FileMinSize 500

-r—- FileName myserver.log
-r—- FileTimeSpan 24

-r-- Log4jLoggingEnabled false
-r-- LogFileFilter null
-r—- LogFileRotationDir null
-r-- LogFileSeverity Debug
-r-- MemoryBufferFilter null
-r—-— MemoryBufferSeverity Debug
-r-- MemoryBufferSize 500

-r-- Name myserver
-r-- Notes null
-r-- NumberOfFilesLimited false
-r-- RedirectStderrToServerLogEnabled false
-r-- RedirectStdoutToServerLogEnabled false
-r-- RotateLogOnStartup true
-r—- RotationTime 00:00
-r-- RotationType bySize
-r-- StdoutFilter null
-r-- StdoutSeverity Warning
-r-- Type Log

-r-x isSet Boolean : String (propertyName)
-r-x unSet Void : String (propertyName)

In the 1s command output information, d designates an MBean with which you can use the cd
command (analogous to a directory in a file system), r indicates a readable property, w indicates
a writeable property, and x an executable operation.

WebLogic Scripting Tool 4-5

Navigating and Editing MBeans

Note: The 1s command property information is based on MBeanInfo; it does not reflect user
permissions.

To navigate back to a parent MBean, enter the cd (. .’) command:

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cmo
[MBeanServerInvocationHandler] mydomain:Name=myserver, Server=myserver, Type=
Log

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cd('..")
wls:/mydomain/serverConfig/Servers/myserver/Log>
wls:/mydomain/serverConfig/Servers/myserver/Log> cmo

[MBeanServerInvocationHandler]mydomain:Name=myserver, Type=Server

After navigating back to the parent MBean type, WLST changes the cmo from LogMBean to

ServerMBean.

To get back to the root MBean after navigating to an MBean that is deep in the hierarchy, enter
the cd (' /') command.

Browsing Runtime MBeans

4-

Similar to the configuration information, WebLogic Server runtime MBeans are arranged in a
hierarchical data structure. When connected to an Administration Server, you access the runtime
MBean hierarchy by entering the serverRuntime or the domainRuntime command. The
serverRuntime command places WLST at the root of the server runtime management objects,
ServerRuntimeMBean; the domainRuntime command, at the root of the domain-wide runtime
management objects, DomainRuntimeMBean. When connected to a Managed Server, the root of
the runtime MBeans is ServerRuntimeMBean. The domain runtime MBean hierarchy exists on
the Administration Server only; you cannot use the domainRuntime command when connected
to a Managed Server.

For more information, see ServerRuntimeMBean and DomainRuntimeMBean in the WebLogic
Server MBean Reference.

Using the cd command, WLST can navigate to any of the runtime child MBeans. The navigation
model for runtime MBeans is the same as the navigation model for configuration MBeans.
However, runtime MBeans exist only on the same server instance as their underlying managed
resources (except for the domain-wide runtime MBeans on the Administration Server) and they
are all un-editable.

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerRuntimeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/DomainRuntimeMBean.html

Browsing Runtime MBeans

Navigating and Displaying Runtime MBeans Example

The commands in Listing 4-3 instruct WLST to connect to an Administration Server instance,
navigate, and display server and domain runtime MBeans.

Listing 4-3 Navigating and Displaying Runtime MBeans

wls:/ (offline) > connect ('username', 'password')
wls:/mydomain/serverConfig> serverRuntime ()

Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.

For more help, use help('serverRuntime')

wls:/mydomain/serverRuntime> 1s()

dr-- ApplicationRuntimes

dr-- ClusterRuntime

dr-- ConnectorServiceRuntime

dr-- JDBCServiceRuntime

dr-- JMSRuntime

dr-- JTARuntime

dr-- JVMRuntime

dr-- LibraryRuntimes

dr-- MailSessionRuntimes

dr-- RequestClassRuntimes

dr-- ServerChannelRuntimes

dr-- ServerSecurityRuntime

dr-- ServerServices

dr-- ThreadPoolRuntime

dr-- WLDFAccessRuntime

dr-- WLDFRuntime

dr-- WTCRuntime

dr-- WorkManagerRuntimes

-r-- ActivationTime 1093958848908
-r—- AdminServer true
-r—-- AdminServerHost

-r-- AdminServerListenPort 7001
-r—- AdminServerListenPortSecure false
-r—- AdministrationPort 9002
-r-- AdministrationPortEnabled false

wls:/mydomain/serverRuntime> domainRuntime ()

Location changed to domainRuntime tree. This is a read-only tree with
DomainRuntimeMBean as the root.

For more help, use help('domainRuntime')

wls:/mydomain/domainRuntime> 1s()

WebLogic Scripting Tool 4-1

Navigating and Editing MBeans

dr-- DeployerRuntime

dr-- ServerLifecycleRuntimes

dr-- ServerRuntimes

-r-- ActivationTime Tue Aug 31 09:27:22 EDT 2004
-r-—- Clusters null

-TwW- CurrentClusterDeploymentTarget null

-rw- CurrentClusterDeploymentTimeout 0

-rw- Name mydomain

-rw- Parent null

-r-- Type DomainRuntime

-r-x lookupServerLifecycleRuntime javax.management .ObjectName

java.lang.String
wls:/mydomain/domainRuntime>

The commands in Listing 4-4 instruct WLST to navigate and display runtime MBeans on a
Managed Server instance.

Listing 4-4 Navigating and Displaying Runtime MBeans on a Managed Server

wls:/offline> connect ('username', 'password',‘t3://localhost:7701’)
Connecting to weblogic server instance running at t3://localhost:7701 as
username weblogic

Successfully connected to managed Server 'managedl' that belongs to domain
'mydomain' .

Warning: An insecure protocol was used to connect to the server.

To ensure on-the-wire security, the SSL port or Admin port should be used
instead.

wls:/mydomain/serverConfig> serverRuntime ()

wls:/mydomain/serverRuntime> 1s()

dr-- ApplicationRuntimes
dr-- ClusterRuntime

dr-- JMSRuntime

dr-- JTARuntime

dr-- JVMRuntime

dr-- LibraryRuntimes

dr-- MailSessionRuntimes
dr-- RequestClassRuntimes
dr-- ServerChannelRuntimes
dr-- ServerSecurityRuntime

4-8 WebLogic Scripting Tool

ThreadPoolRuntime
WLDFAccessRuntime
WLDFRuntime
WTCRuntime
WorkManagerRuntimes

Navigating Among MBean Hierarchies

ActivationTime 1093980388931
AdminServer false
AdminServerHost localhost
AdminServerListenPort 7001
AdminServerListenPortSecure false
AdministrationPort 9002
AdministrationPortEnabled false

wls:/mydomain/serverRuntime>

Navigating Among MBean Hierarchies

To navigate to a configuration MBean from the runtime hierarchy, enter the serverConfig or
domainConfig (if connected to an Administration Server only) command. This places WLST at
the configuration MBean to which you last navigated before entering the serverRuntime or
domainRuntime command.

The commands in the following example instruct WLST to navigate from the runtime MBean
hierarchy to the configuration MBean hierarchy and back:

wls:/mydomain/serverRuntime/JVMRuntime/managedl> serverConfig()

Location changed to serverConfig tree. This is a read-only tree with
DomainMBean as the root.

For more help, use help('serverConfig')

wls:/mydomain/serverConfig> c¢d ('Servers/managedl’')
wls:/mydomain/serverConfig/Servers/managedl> cd('Log/managedl’')
wls:/mydomain/serverConfig/Servers/managedl/Log/managedl> serverRuntime ()

wls:/mydomain/serverRuntime/JVMRuntime/managedl>

Entering the serverConfig command from the runtime MBean hierarchy again places WLST
at the configuration MBean to which you last navigated.

wls:/mydomain/serverRuntime/JVMRuntime/managedl> serverConfig()

wls:/mydomain/serverConfig/Servers/managedl/Log/managedl>

For more information, see “Tree Commands” on page A-112.

WebLogic Scripting Tool 4-9

Navigating and Editing MBeans

Alternatively, you can use the currentTree command to store your current MBean hierarchy
location and to return to that location after navigating away from it. See “currentTree” on
page A-4.

For example:

wls:/mydomain/serverConfig/Servers/managedl/Log/managedl> myLocation =
currentTree ()

wls:/mydomain/serverConfig/Servers/managedl/Log/managedl> serverRuntime ()
wls:/mydomain/serverRuntime> cd(‘JVMRuntime/managedl’)
wls:/mydomain/serverRuntime/JVMRuntime/managedl>myLocation()

wls:/mydomain/serverConfig/Servers/managedl /Log/managedl>

Finding MBeans

4-10

To locate a particular MBean and attribute, you use the £ind command. WLST returns the
pathname to the MBean that stores the attribute and its value. You can use the getMBean
command to return the MBean specified by the path. For more information, see “find” on
page A-72 and “getMBean” on page A-74.

For example:

wls:/mydomain/edit !> £ind('logfilename’')
searching

/ApplicationRuntimes/myserver_wlnav.war/WebAppComponentRuntime/myserver_my

server_wlnav.war_wlnav_/wlnavLogFilename null
/Servers/myserver JDBCLogFileName jdbc.log
/Servers/myserver/WebServer/myserver LogFileName access.log

wls:/mydomain/edit !> bean=getMBean ('Servers/myserver/WebServer/myserver')
wls:/mydomain/edit !> print bean
[MBeanServerInvocationHandler]mydomain:Name=myserver, Type=WebServer, Server
=myserver

wls:/mydomain/edit !>

Note: getMBean does not throw an exception when an instance is not found.

Alternatively, the get Path command returns the MBean path for a specified MBean instance or
ObjectName for the MBean in the current MBean hierarchy. See “getPath” on page A-76.
wls:/mydomain/serverConfig>path=getPath('com.bea:Name=myserver, Type=Server
")

wls:/mydomain/serverConfig> print path

Servers/myserver

WebLogic Scripting Tool

Accessing Custom MBeans

Accessing Custom MBeans

WebLogic Server provides hundreds of MBeans, many of which you use to configure and
monitor EJBs, Web applications, and other deployable J2EE modules. If you want to use
additional MBeans to configure your applications or resources, you can create and register your
own MBeans within the MBean Server subsystem on the Administration Server.

For more information on custom MBeans, see “Instrumenting and Registering Custom MBeans”
in Developing Manageable Applications with JMX.

To navigate custom MBeans, enter the custom command when WLST is connected to an
Administration Server or a Managed Server instance. When connected to a WebLogic Integration
or WebLogic Portal server, WLST can interact with all the WebLogic Integration or WebLogic
Portal Server MBeans; non-WebLogic Server MBeans appear as custom MBeans.

WLST navigates, interrogates, and edits custom MBeans as it does configuration MBeans;
however, custom MBeans cannot use the cmo variable because a stub is not available.

Custom MBeans are editable, but not subjected to the WebLogic Server change management
process. You can use MBean get and set methods, invoke, and create and delete methods on them
without first entering the startEdit command. See “Editing Configuration MBeans” on

page 4-12.

Custom MBeans are listed by domain, as shown in the following example.
wls:/mydomain/serverConfig> custom()

Location changed to custom tree. This is a writable tree with No root. For

more help, use help('custom')

wls:/mydomain/custom> 1s()

drw- domainl
drw- domain?2
drw- domain3
drw- domaind

wls:/mydomain/custom> cd("domain2")
wls:/mydomain/custom/domain2> 1s()

drw- domain2:yl=x

drw- domain2:y2=x
wls:/mydomain/custom/domain2> cd("domain2:yl=x")
wls:/mydomain/custom/domain2/domain2:yl=x> 1ls()
-rw- MyAttribute 10

wls:/mydomain/custom/domain2/domain2:yl=x>

WebLogic Scripting Tool 4-1

http://e-docs.bea.com/wls/docs90/jmxinst/instmbeans.html

Navigating and Editing MBeans

Editing Configuration MBeans

4-12

Within the Administration Server, there is a set of configuration MBeans in a single, editable
hierarchy whose root is DomainMBean. This hierarchy contains an editable copy of all
configuration MBeans in the domain and it is used only as part of the change management
process. The change management process is a controlled procedure for distributing
configuration changes in a domain; a change process that loosely resembles a database
transaction.

You start the editing process by obtaining a lock on the editable configuration hierarchy to
prevent other people from making changes. When you finish making changes, you save and
distribute them to all server instances in the domain. When you distribute changes, each server
determines whether it can accept the change. If all servers are able to accept the change, they
update their working hierarchy of configuration MBeans and the change is completed.

Note: The configuration lock does not prevent two processes from starting an edit session under
the same user identity. BEA Systems recommends against this because when one of the
sessions activates their changes, it releases the lock and the other session will not be able
to save or activate their changes.

For example, if you start an edit session from WLST and start another concurrent edit
session from the Administration Console under the same user name, when you save and
activate your changes using WLST, you will lose the edits you are making with the
Administration Console.

For more information on making and managing configuration changes, see “Configuration
Change Management Process” in Understanding Domain Configuration and “Managing a
Domain’s Configuration with JIMX” in Developing Custom Management Utilities with JMX.

Making Configuration Changes: Main Steps
The following basic steps describe the configuration editing process using WLST online:

1. To start the change process, enter the edit command. See “edit” on page A-118.

This places WLST at the root of the editable configuration hierarchy and obtains an
exclusive configuration lock.

2. Enter the startEdit command.

The startEdit command initiates modifications that are treated as a part of a batch
change that is not committed to the repository until you enter the save command.

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/domain_config/changes.html#config_management_process
http://e-docs.bea.com/wls/docs90/domain_config/changes.html#config_management_process
http://e-docs.bea.com/wls/docs90/jmx/editWLS.html
http://e-docs.bea.com/wls/docs90/jmx/editWLS.html

Editing Configuration MBeans

The startEdit command must be called prior to invoking any command to modify the
domain configuration. However, if WLST detects that there is an edit session that is
already in progress by the same user, which might have been started via the Administration
Console or another WLST session, it continues your edit session and you need not enter
the startEdit command. For detailed information about startEdit command
arguments, see “startEdit” on page A-59.

To avoid the possibility that the configuration is locked indefinitely, you can specify a
time-out period. Alternatively, an administrator can enter the cancelEdit command to
cancel an edit session and release the lock. See “cancelEdit” on page A-44.

To indicate that configuration changes are in process, an exclamation point (!) appears at
the end of the WLST command prompt.

Use WLST edit commands to create, get and set values for, invoke operations on, and
delete instances of configuration MBeans. See “Editing Commands” on page A-37.

Use the validate command to ensure that changes you make are valid before saving
them. See “validate” on page A-65.

When you finish making changes, enter the save command.

The save command saves your changes to a pending version of the config.xml file; it
does not release the lock. See “save” on page A-54.

You can make additional changes, without re-entering the startEdit command, or undo
changes you have made by entering the undo command.

The undo command reverts all changes that have not been saved. See “undo” on
page A-64.

When you are ready to distribute your changes to the working configuration MBeans, enter
the activate command.

The activate command initiates the distribution of the changes and releases the lock; the
exclamation point is removed from the command prompt. See “activate” on page A-39.

Alternatively, you can abandon your changes by entering the stopEdit or the cancelEdit
command.

The stopEdit command stops the current editing session and releases the edit lock. This
command lets you discard any changes you made since last entering the save command.
See “stopEdit” on page A-60.

The cancelkdit command also stops the editing session and releases the configuration
lock, discarding changes made since the last save command. However, the user entering

WebLogic Scripting Tool 4-13

Navigating and Editing MBeans

this command does not have to be the current editor; this allows an administrator to cancel
an edit session. See “cancelEdit” on page A-44.

The WLST online script in Listing 4-5 connects WLST to an Administration Server, initiates an
edit session that creates a Managed Server, saves and activates the change, initiates another edit
session, creates a startup class, and targets it to the newly created server.

Start WebLogic Server before running this script. See “Running Scripts” on page 2-10.

Listing 4-5 Creating a Managed Server

connect ("username", "password")

edit ()
startEdit ()
SVr = cmo.createServer ("managedServer")

svr.setListenPort (8001)
svr.setListenAddress ("my-address")
save ()

activate (block="true")

startEdit ()

sc = cmo.createStartupClass ("my-startupClass")
sc.setClassName ("com.bea.foo.bar")
sc.setArguments ("foo bar")

get the server mbean to target it

tBean = getMBean ("Servers/managedServer")
if tBean != None:
print "Found our target"
sc.addTarget (tBean)
save ()
activate (block="true")
disconnect ()
exit ()

If you attempt to make changes without first entering the edit command, WLST displays a
message stating that you have not locked the configuration for changes and gives you the
opportunity to do so. If you forget to call save after entering the startEdit command and
attempt to exit the scripting shell, you are warned about the outstanding, non-committed changes.
At that point you can commit or abandon all changes that you made to the configuration.

4-14 WebLogic Scripting Tool

Editing Configuration MBeans

To determine if a change you made to an MBean attribute requires you to re-start the server, enter
the isRestartRequired command. If you enter the command during an edit session, before
activating your changes, it will show the attribute changes in progress that will require you to
re-start the server. If you enter the command after activating your changes, it displays the attribute
changes that occurred that require you to re-start the server. See “isRestartRequired” on

page A-51.

Managing Configuration Changes

WebLogic Server provides a Configuration Manager service to manage the change process. The
getConfigManager function returns the ConfigurationManagerMBean (see
“getConfigManager” on page A-74). ConfigurationManagerMBean provides methods to start
and stop edit sessions, and save, undo, and activate configuration changes. You use
ConfigurationManagerMBean methods to manage configuration changes across a domain. For
detailed information, see ConfigurationManagerMBean in the WebLogic Server MBean
Reference.

The WLST online script in Listing 4-6 connects WLST to a server instance as an administrator,
checks if the current editor making changes is a particular operator, then cancels the configuration
edits. The script also purges all the completed activation tasks.

Start WebLogic Server before running this script. See “Running Scripts” on page 2-10.

Listing 4-6 Using the Configuration Manager

connect ("theAdministrator", "weblogic")
cmgr = getConfigManager ()
user = cmgr.getCurrentEditor ()
if user == "operatorSam":
cmgr .undo ()
cmgr . cancelEdit ()
cmgr .purgeCompletedActivationTasks ()

Tracking Configuration Changes

For all changes that are initiated by WLST, you can use the showChanges command which
displays all the changes that you made to the current configuration from the start of the edit
session, including any MBean operations that were implicitly performed by the server. See

Listing 4-7.

WebLogic Scripting Tool

4-15

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ConfigurationManagerMBean.html

Navigating and Editing MBeans

Start WebLogic Server before running this script. See “Running Scripts” on page 2-10.

Listing 4-7 Displaying Changes

wls:/offline> connect ('username', 'password')
wls:/mydomain/serverConfig> edit ()

wls:/mydomain/edit> startEdit()

Starting an edit session

wls:/mydomain/edit !> cmo.createServer ('managed2')
[MBeanServerInvocationHandler]mydomain:Name=managed2, Type=Server
wls:/mydomain/edit !> cd('Servers/managed2')
wls:/mydomain/edit/Servers/managed2 !> cmo.setListenPort(7702)
wls:/mydomain/edit/Servers/managed2 !> showChanges ()

Changes that are in memory and saved to disc but not yet activated are:

MBean Changed : mydomain:Name=mydomain, Type=Domain
Operation Invoked : add

Attribute Modified : Servers

Attributes 01ld Value : null

Attributes New Value : managed?2

Server Restart Required : false

MBean Changed : mydomain:Name=managed?2, Type=Server
Operation Invoked : modify

Attribute Modified : StagingDirectoryName

Attributes 0ld Value : null

Attributes New Value : .\managed2\stage

Server Restart Required : true

MBean Changed : mydomain:Name=managed?2, Type=Server
Operation Invoked : modify

Attribute Modified : Name

Attributes 01ld Value : null

Attributes New Value : managed?2

Server Restart Required : true

MBean Changed : mydomain:Name=managed?2, Type=Server
Operation Invoked : modify

Attribute Modified : ListenPort

Attributes 01ld Value : null

4-16 WebLogic Scripting Tool

Editing Configuration MBeans

Attributes New Value : 7702

Server Restart Required : false

wls:/mydomain/edit/Servers/managed2 !> save()

wls:/mydomain/edit !> activate()

Started the activation of all your changes.

The edit lock associated with this edit session is released once the activation
is successful.

The Activation task for your changes is assigned to the variable 'activationTask'

You can call the getUser () or getStatusByServer () methods on this variable to
determine the status of your activation

[MBeanServerInvocationHandler]mydomain:Type=ActivationTask
wls:/mydomain/edit/Servers/managed2>

The getActivationTask function provides information about the activation request and returns
the latest ActivationTaskMBean which reflects the state of changes that a user is currently
making or made recently. You invoke the methods that this interface provides to get information
about the latest activation task in progress or just completed. For detailed information, see
ActivationTaskMBean in the WebLogic Server MBean Reference.

The WLST online script in Listing 4-8 connects WLST to a server instance as an administrator,
gets the activation task, and prints the user and the status of the task. It also prints all the changes
that took place.

Start WebLogic Server before running this script. See “Running Scripts” on page 2-10.

Listing 4-8 Checking the Activation Task

connect ("theAdministrator", "weblogic")
at = getActivationTask()
print "The user for this Task "+at.getUser()+" and the state is "+at.getState()
changes = at.getChanges|()
for i in changes:
i.toString()

WebLogic Scripting Tool 4-17

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ActivationTaskMBean.html

Navigating and Editing MBeans

4-18 WebLogic Scripting Tool

GHAPTERa

Managing Servers and Server Life Cycle

The following sections describe how to start and stop WebLogic Server instances and monitor
and manage the server life cycle using WebLogic Scripting Tool (WLST):

e “Managing the Server Life Cycle” on page 5-1

e “Starting and Stopping Servers” on page 5-2

e “Using WLST and Node Manager to Manage Servers” on page 5-4
e “Monitoring Server State” on page 5-6

e “Managing Server State” on page 5-7

Managing the Server Life Cycle

During its lifetime, a server can transition through a number of operational states, such as
shutdown, starting, standby, admin, resuming, and running. WLST commands such as start,
suspend, resume, and shutdown cause specific changes to the state of a server instance.

Using WLST, you can:

e Start an Administration Server, with or without Node Manager. See ““Starting and Stopping
Servers” on page 5-2.

e Use WLST as a Node Manager client for starting, suspending, and stopping servers
remotely. See “Using WLST and Node Manager to Manage Servers” on page 5-4.

e Retrieve information about the runtime state of WebLogic Server instances. See
“Monitoring Server State” on page 5-6.

WebLogic Scripting Tool 5-1

Managing Servers and Server Life Cycle

e Manage the life cycle of a server instance; for example, control the states through which a
server instance transitions. See “Managing Server State” on page 5-7.

For more information about the server life cycle and managing servers, see “Understanding
Server Life Cycle” and “Using Node Manager to Control Servers” in Managing Server Startup
and Shutdown.

Starting and Stopping Servers

5-2

WebLogic Server provides several ways to start and stop server instances. The method that you
choose depends on whether you prefer using a graphical or command-line interface, and on
whether you are using the Node Manager to manage a server’s life cycle.

For an overview of methods for starting and stopping server instances, see “Starting and Stopping
Servers” in Managing Server Startup and Shutdown.

Starting an Administration Server Without Node Manager

To start an Administration Server without using Node Manager:

1. If you have not already done so, use WLST to create a domain.

For more information, see “Creating and Configuring WebLogic Domains Using WLST
Offline” on page 3-1.

2. Open a shell (command prompt) on the computer on which you created the domain.

3. Change to the directory in which you located the domain.

By default, this directory is BEA_HOME\user projects\domains\domain_name, where
BEA_HOME is the top-level installation directory of BEA products.

4. Set up your environment by running one of the following scripts:
— bin\setDomainEnv.cmd (Windows)
— bin/setDomainEnv.sh (UNIX)

On Windows, you can use a shortcut on the Start menu to set your environment variables
and invoke WLST (Tools—WebLogic Scripting Tool).

5. Invoke WLST by entering: java weblogic.WLST

The WLST prompt appears.
wls:/ (offline)>

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/server_start/server_life.html
http://e-docs.bea.com/wls/docs90/server_start/server_life.html
http://e-docs.bea.com/wls/docs90/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs90/server_start/overview.html
http://e-docs.bea.com/wls/docs90/server_start/overview.html

Starting and Stopping Servers

6. Use the WLST startServer command to start the Administration Server.

startServer ([adminServerName], [domainName], [url], [username]l,
[password], [domainDir], [block], [timeout], [useNM], [serverLog],
[systemProperties], [jvmArgs])

For detailed information about startServer command arguments, see “startServer” on
page A-98.

For example,

wls:offline/>startServer (‘AdminServer', 'mydomain', 't3://localhost:7001"
, '"weblogic', 'weblogic', 'c:/bea/user_projects/domains/mydomain', 'true’,’
6000', 'false')

The optional useNM argument specifies whether to use Node Manager to start the server; this
argument defaults to true, indicating that Node Manager will be used. By specifying false, this
command starts the Administration Server without using Node Manager. However, if you use
Node Manager to start the Administration Server, Node Manager supports starting, stopping, and
restarting it if it fails. See “Using WLST and Node Manager to Manage Servers” on page 5-4.

After WLST starts a server instance, the server runs in a separate process from WLST; exiting
WLST does not shut down the server.

Starting Managed Servers and Clusters With Node Manager

To start Managed Servers and clusters using Node Manager:

1.

Invoke WLST and start an Administration Server, as described in “Starting an Administration
Server Without Node Manager” on page 5-2.

Start Node Manager.

The WebLogic Server custom installation process optionally installs and starts Node
Manager as a Windows service on Windows systems. See “About Node Manager
Installation as a Windows Service” in the Installation Guide. For detailed instructions, see
“Starting and Running Node Manager” in Managing Server Startup and Shutdown.

On Windows you can use a shortcut on the Start menu to start the Node Manager (Tools —
Node Manager).

If it’s not already running, you can start Node Manager manually at a command prompt by
invoking WLST and entering the startNodeManager command:

c:\>java weblogic.WLST
wls:/offline> startNodeManager ()

For more information about startNodeManager, see “startNodeManager” on page A-111.

WebLogic Scripting Tool 5-3

http://e-docs.bea.com/common/docs90/install/prepare.html#node_manager
http://e-docs.bea.com/common/docs90/install/prepare.html#node_manager
http://e-docs.bea.com/wls/docs90/server_start/nodemgr.html#StartingRunningNM

Managing Servers and Server Life Cycle

Invoke and connect WLST to a running WebLogic Administration Server instance using the
connect command

c:\>java weblogic.WLST

wls:/ (offline)> connect('username', 'password’')

Connecting to weblogic server instance running at t3://localhost:7001
as username weblogic

Successfully connected to Admin Server 'myserver' that belongs to
domain 'mydomain'.

Warning: An insecure protocol was used to connect to the server.

To ensure on-the-wire security, the SSL port or Admin port should be
used instead.

wls:/mydomain/serverConfig>

For detailed information about connect command arguments, see “connect” on page A-10.

Start a Managed Server instance by entering the start command.

wls:/mydomain/serverConfig>
start ('managedServerName', 'Server', 'managedServerURL’)

For example,

start ('managedl', 'Server', 't3://localhost:7701")

For each Managed Server in the Administration Server’s domain that you want to start,
repeat step 4.

The start command starts Managed Servers or clusters in a domain using Node Manager.
To use the start command, WLST must be connected to a running Administration Server.
To start Managed Servers without requiring a running Administration Server, use the
nmStart command with WLST connected to Node Manager. See “Using WLST and Node
Manager to Manage Servers” on page 5-4.

To start clusters,

wls:/mydomain/serverConfig> start('mycluster', 'Cluster’')

Starting the following servers in Cluster, mycluster: MS1, MS2, MS3...
All servers in the cluster mycluster are started successfully.
wls:/mydomain/serverConfig>

For more information, see “start” on page A-96.

Using WLST and Node Manager to Manage Servers

5-4

Node Manager is a utility for the remote control of WebLogic Server instances that lets you
monitor, start, and stop server instances—both Administration Servers and Managed Servers—

WebLogic Scripting Tool

Using WLST and Node Manager to Manage Servers

and automatically restart them after a failure. For more information about Node Manager, see
“Using Node Manager to Control Servers” in Managing Server Startup and Shutdown.

You can start, stop, and restart server instances remotely or locally, using WLST as a Node
Manager client. In addition, WLST can obtain server status and retrieve the contents of the server
output log.

You connect WLST to a running Node Manager instance in order to invoke Node Manager
supported commands. Node Manager commands issued via WLST are processed by the Node
Manager on the system hosting the target server instances. After being authenticated by Node
Manager, you need not re-authenticate each time you enter a Node Manager command.

In addition, you can enroll the machine on which WLST is running to be monitored by Node
Manager by entering the nmEnrol1 command. You must run this command once per domain per
machine unless that domain shares the root directory of the Administration Server. WLST must
be connected to an Administration Server to run this command; WLST does not need to be
connected to the Node Manager. See “nmEnroll” on page A-104.

Communications from WLST to the Node Manager process on a machine include:

e Life cycle commands

e Commands to determine the availability of the Node Manager process and the health state
of the server instances under Node Manager control

e Requests for log files
The following example uses WLST Node Manager commands to start, monitor, and stop an
Administration Server.
1. Invoke WLST.

java weblogic.WLST

2. Start Node Manager. (See step 2. in “Starting Managed Servers and Clusters With Node
Manager™)

3. Connect WLST to Node Manager by entering the nmConnect command.

wls:/offline>nmConnect ('username', 'password', 'nmHost', 'nmPort', 'domainN
ame', 'domainDir', 'nmType')

For example,

nmConnect ('weblogic', 'weblogic', 'localhost', '5556',
'mydomain', 'c:/bea/user_projects/domains/mydomain', 'ssl')

WebLogic Scripting Tool 5-5

http://e-docs.bea.com/wls/docs90/server_start/nodemgr.html

Managing Servers and Server Life Cycle

For more information about WLST Node Manager commands, see “Node Manager Commands

Connecting to Node Manager
Successfully connected.
wls:/nm/mydomain>

For detailed information about nmConnect command arguments, see “nmConnect” on
page A-102.

After successfully connecting WLST to Node Manager, you can start, monitor, and stop
Administration and Managed Server instances.

When connected to Node Manager, the nmStart command starts Managed Servers without
requiring a running Administration Server.

Use the nmStart command to start an Administration Server.

wls:/nm/mydomain>nmStart ('serverName')
starting server AdminServer

Server AdminServer started successfully
wls:/nm/mydomain>

Monitor the status of the server you started by entering the nmServerStatus command.

wls:/nm/mydomain>nmServerStatus ('serverName')
RUNNING
wls:/nm/mydomain>

Stop the server by entering the nmkill command.

wls:/nm/mydomain>nmKill (' serverName"')
Killing server AdminServer

Server AdminServer killed successfully
wls:/nm/mydomain>

EE)

on page A-100.

Monitoring Server State

WebLogic Server displays and stores information about the current operational state of a server
instance and state transitions that have occurred since the server instance started up. This
information is useful to administrators who:

e Monitor the availability of server instances and the applications they host.

e Perform day-to-day operations tasks, including startup and shutdown procedures.

WebLogic Scripting Tool

Managing Server State

e Plan correction actions, such as migration of services, when a server instance fails or
crashes.

Using WLST, you can obtain the state of a server instance in the following ways:

e Use the state command—returns the state of a server or cluster.

wls:/mydomain/serverConfig> state('serverName', 'Server')
Current state of 'managedl' : RUNNING
wls:/mydomain/serverConfig>

See “state” on page A-85.

e Navigate to the ServerRuntimeMBean and display the State attribute.

wls:/mydomain/serverConfig> serverRuntime/()
wls:/mydomain/serverRuntime> 1ls()
-r—- State RUNNING

To tailor WLST server monitoring, shutdown, and restart behaviors, see “Script for Monitoring
Server State” on page 6-11.

Managing Server State

WLST life cycle commands let you control the states through which a server instance transitions.
See “Life Cycle Commands” on page A-91.

The commands in Listing 5-1 explicitly move WebLogic Server through the following server
states: RUNNING->ADMIN->RUNNING->SHUTDOWN.

Start WebLogic Server before running this script. See “Running Scripts” on page 2-10.

Listing 5-1 WLST Life Cycle Commands

connect ("username", "password","t3://localhost:8001")

First enable the Administration Port. This is Not a requirement.
edit()

startEdit ()

cmo.setAdministrationPortEnabled (1)

activate (block="true")

check the state of the server
state ("myserver")

now move the server from RUNNING state to ADMIN
suspend ("myserver", block="true")

WebLogic Scripting Tool 5-7

Managing Servers and Server Life Cycle

check the state
state ("myserver")

now resume the server to RUNNING state
resume ("myserver",block="true")

check the state
state ("myserver")

now take a thread dump of the server
threadDump (" . /dumps/threadDumpAdminServer.txt")

finally shutdown the server
shutdown (block="true")

5-8 WebLogic Scripting Tool

GHAPTERa

Automating WebLogic Server
Administration Tasks

You can use the WebLogic Scripting Tool (WLST) to automate the creation and management of
WebLogic Server domains, servers, and resources. WLST provides commands that create, get
and set values for, invoke operations on, and delete instances of configuration MBeans and
commands to get values and invoke operations on runtime MBeans. The following sections
describe using WLST commands online to automate typical domain and server configuration
tasks:

e “Creating a Sample Domain: Main Steps” on page 6-2
e “Monitoring Domain Runtime Information” on page 6-10
e “Managing Security” on page 6-13
e “Configuring Logging” on page 6-20
Alternatively, you can use one of the following techniques to automate the configuration of a

WebLogic Server domain:

e Use WLST offline to create a new domain or update an existing domain without
connecting to a running WebLogic Server. WLST offline supports the same functionality
as the Configuration Wizard. See “Creating and Configuring WebLogic Domains Using
WLST Offline” on page 3-1.

e Use the WebLogic Server Ant tasks. For almost all configuration needs, the Ant tasks and
the weblogic.Server, weblogic.Admin (deprecated in this release of WebLogic Server),
and weblogic.Deployer commands are functionally equivalent. See “Using Ant Tasks to
Configure and Use a WebLogic Server Domain” in Developing Applications with
WebLogic Server.

WebLogic Scripting Tool 6-1

http://e-docs.bea.com/wls/docs90/programming/ant_tasks.html
http://e-docs.bea.com/wls/docs90/programming/ant_tasks.html

Automating WebLogic Server Administration Tasks

Creating a Sample Domain: Main Steps

6-2

The section “Script to Create and Configure a Sample Domain” on page 6-7 provides a sample
script for creating a modified MedRec domain. The script creates a new directory MedRecDomain
under the current directory, and creates and starts an Administration Server. WLST connects to
the server and builds a modified version of the MedRec domain.

The sample script does the following:
1. Creates a new directory, MedRecDomain, under the current directory.
2. Creates and starts an Administration Server. See “Creating a Domain” on page 6-3.

3. After the domain’s Administration Server has completed its startup cycle, connects WLST
to the server and configures resources for the domain. See:

— “Creating JDBC Resources” on page 6-3
— “Creating JMS Resources” on page 6-4

— “Creating Mail Resources” on page 6-5

4. Invokes multiple WLST deploy commands to deploy J2EE modules such as EJBs and
Enterprise applications. See “Deploying Applications” on page 6-6.

Setting Up the Environment

All WebLogic Server commands require an SDK to be specified in the environment’s PATH
variable and a set of WebLogic Server classes to be specified in the CLASSPATH variable.

Use the following script to add an SDK to the PATH variable and the WebLogic Server classes to
the CLASSPATH variable:

WL_HOME\server\bin\setWLSEnv.cmd (on Windows)
WL_HOME/server /bin/setWLSEnv. sh (on UNIX)

where wr_HOME refers to the top-level installation directory for WebLogic Server.

If you want to use JDBC resources to connect to a database, modify the environment as the
database vendor requires. Usually this entails adding driver classes to the CLASSPATH variable
and vendor-specific directories to the PATH variable. To set the environment that the sample
PointBase database requires as well as add an SDK to pATH variable and the WebLogic Server
classes to the CLASSPATH variable, invoke the following script:

WL_HOME\ samples\domains\wl_server\setExamplesEnv.cmd (on WindOWS)
WL_HOME/samples/domains/wl_server/setExamplesEnv.sh (on UNIX)

WebLogic Scripting Tool

Creating a Sample Domain: Main Steps

Creating a Domain

The commands in Listing 6-1 create a domain named MedRecDomain with an Administration
Server named medrec-adminServer that listens on port 8001, and connect WLST to the server
instance.

Listing 6-1 Creating a Domain

from java.io import File
domainDir = File("MedRecDomain")
bool = domainDir.mkdir ()

if bool==1:

print 'Successfully created a new Directory'
else:

if domainDir.delete()==1:

domainDir.mkdir ()
print 'Successfully created a new Directory'
else:
print 'Could not create new directory, dir already exists'
stopExecution ("cannot create a new directory")

debug ()

dsname="myJDBCDataSource"
adminServerName="medrec-adminServer"
domainName="MedRecDomain"
_url="t3://localhost:8001"
uname="weblogic"

pwd="weblogic"

startNewServer (adminServerName, domainName, _url,domainDir=domainDir.getPath(),
block="true")

connect (uname, pwd, _url)

edit ()

startEdit ()

Note: The command specifies a listen port of 8001 because the sample MedRec domain that
WebLogic Server installs listens on the default port 7001. If the sample MedRec domain
is running, the 7001 listen port cannot be used by another server instance.

Creating JDBC Resources

The commands in Listing 6-2 create and configure a JDBC system resource for MedRecDomain.

WebLogic Scripting Tool 6-3

Automating WebLogic Server Administration Tasks

Listing 6-2 Creating a JDBC System Resource

dsname="myJDBCDataSource"

Creating and Configuring a JDBC System Resource
print 'Creating JDBCSystemResource with name '+dsname
jdbcSR = create (dsname, "JDBCSystemResource")
theJDBCResource = jdbcSR.getJDBCResource ()
thedJDBCResource. setName ("myJDBCDataSource")

connectionPoolParams = theJDBCResource.getJDBCConnectionPoolParams ()
connectionPoolParams.setConnectionReserveTimeoutSeconds (25)
connectionPoolParams.setMaxCapacity (100)
connectionPoolParams.setTestTableName ("SYSTABLES")

dsParams = theJDBCResource.getJDBCDataSourceParams ()
dsParams .addJNDIName ("ds .myJDBCDataSource")

driverParams = theJDBCResource.getJDBCDriverParams ()

driverParams.setUrl ("jdbc:pointbase:server://localhost/demo")
driverParams.setDriverName ("com.pointbase.xa.xaDataSource")
#driverParams.setUrl ("jdbc:oracle:thin:@my-oracle-server:my-oracle-server-port
:my-oracle-sid")

#driverParams.setDriverName ("oracle.jdbc.driver.OracleDriver")

driverParams.setPassword ("examples")
#driverParams.setLoginDelaySeconds (60)
driverProperties = driverParams.getProperties|()

proper = driverProperties.createProperty ("user")
#proper.setName ("user")
proper.setValue ("examples")

properl = driverProperties.createProperty ("DatabaseName")
#properl.setName ("DatabaseName")
properl.setValue("jdbc:pointbase:server://localhost/demo")

Creating JMS Resources

The commands in Listing 6-3 create a JMS system resource in MedRecDomain.

6-4 WebLogic Scripting Tool

Creating a Sample Domain: Main Steps

Listing 6-3 Creating a JMS System Resource

Creating a JMS System Resource
jmsSystemResource = create("medrec-jms-resource", "JMSSystemResource")
theJMSResource = jmsSystemResource.getJMSResource ()

Creating a JMS Connection Factory
mrgFactory = thedJMSResource.createConnectionFactory ("MedRecQueueFactory")
mrgFactory.setIJNDIName (" jms/MedRecQueueConnectionFactory")

Creating and Configuring a JMS JDBC Store
mrjStore = create("MedRecJMSJDBCStore", "JDBCStore")
mrjStore.setDataSource (jdbcSR)
mrjStore.setPrefixName ("MedRec")

Creating and Configuring a JMS Server
mrJMSServer = create("MedRecJMSServer", "JMSServer")
mrJMSServer.setStore (mrjStore)

Creating and Configuring a Queue
regQueue = theJMSResource.createQueue ("RegistrationQueue")
regQueue.setIJNDIName ("jms/REGISTRATION_MDB_QUEUE")

Creating and Configuring an Additional Queue
mailQueue = theJMSResource.createQueue ("MailQueue")
mailQueue.setIJNDIName (" jms/MAIL_MDB_QUEUE")

See “Using the WebLogic Scripting Tool to Manage JMS Servers and JMS System Resources”
in Configuring and Managing WebLogic JMS.

Creating Mail Resources

The commands in Listing 6-4 add E-mail capabilities to the sample applications in
MedRecDomain by creating and configuring a MailSessionMBean.

Listing 6-4 Creating Mail Resources

Creating Mail Resources

mrMailSession = create("MedicalRecordsMailSession", "MailSession")
mrMailSession.setJNDIName ("mail/MedRecMailSession")
mrMailSession.setProperties (makePropertiesObject ("mail.user=joe;mail.host=mail
.mycompany .com"))

WebLogic Scripting Tool 6-5

http://e-docs.bea.com/wls/docs90/jms_admin/wlst.html

Automating WebLogic Server Administration Tasks

To see all attributes and legal values of the MailSessionMBean, see MailSessionMBean in the
WebLogic Server MBean Reference. For more information about the WebLogic Server mail
service, see "Configure Access to JavaMail" in the Administration Console Online Help.

Deploying Applications

The commands in Listing 6-5 deploy sample applications in MedRecDomain.

Listing 6-5 Deploying Applications

Deploying Applications

deploy ("PhysicianEAR", "C:/bea/weblogic90/samples/server/medrec/src/physicianEa
r", "medrec-adminServer", securityModel="Advanced", block="true")

deploy ("StartupEAR", "C: /bea/weblogic90/samples/server/medrec/src/startupkEar", "
medrec-adminServer", securityModel="Advanced",block="true")

deploy ("MedRecEAR", "C: /bea/weblogic90/samples/server/medrec/src/medrecEAR", "me
drec-adminServer", securityModel="Advanced",block="true")

Notes:

e You must invoke these commands on the computer that hosts the Administration Server for
MedRecDomain.

e Because the sample applications use JDBC connection pools, you must specify the JDBC
driver in the CLASSPATH environment variable. See “Setting Up the Environment” on
page 6-2.

e To use JDBC resources in MedRecDomain, you must start the database before running the
script.

e In the sample commands, the application files are located in the
WL_HOME\samples\server\medrec\src directory.

For more information using WLST for deploying applications, see “Overview of Deployment
Tools” in Deploying Applications to WebLogic Server.

6-6 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MailSessionMBean.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/mail/CreateMailSessions.html
http://e-docs.bea.com/wls/docs90/deployment/understanding.html#DeploymentTools
http://e-docs.bea.com/wls/docs90/deployment/understanding.html#DeploymentTools

Creating a Sample Domain: Main Steps

Script to Create and Configure a Sample Domain

Listing 6-6 provides a sample script for creating a modified MedRec domain. You can use the
script as a template for creating and configuring a typical WebLogic Server domain.

Note: This sample script uses the demonstration PointBase Server that is installed with
WebLogic Server. Before running the script, you should start the PointBase Server by
issuing one of the following commands:

Windows: wI_HOME\common\eval\pointbase\tools\startPointBase.cmd
UNIX: wI_HOME/common/eval/pointbase/tools/startPointBase.sh

To create and configure a domain such as the MedRec sample domain:

1. Copy and save the commands in Listing 6-6 in a text file with a .py file extension; for
example, cloneDomain.py

2. Set the required environment variables. See “Setting Up the Environment” on page 6-2.

Use wI_HOME\samples\domains\wl_server\setExamplesEnv.cmd to set the variables
required for running this script.

3. Invoke WLST and run the sample script by entering the following command:
java weblogic.WLST <filepath>/cloneDomain.py

For more information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-6 cloneDomain.py

from java.io import File
domainDir = File("MedRecDomain")
bool = domainDir.mkdir ()

if bool==1:

print 'Successfully created a new Directory'
else:

if domainDir.delete()==1:

domainDir.mkdir ()
print 'Successfully created a new Directory'
else:
print 'Could not create new directory, dir already exists'
stopExecution ("cannot create a new directory")

debug ()
dsname="myJDBCDataSource"
adminServerName="medrec-adminServer"

WebLogic Scripting Tool 6-7

Automating WebLogic Server Administration Tasks

domainName="MedRecDomain"

_url="t3://localhost:8001"

uname="weblogic"

pwd="weblogic"

startNewServer (adminServerName, domainName, _url,domainDir=domainDir.getPath(),
block="true")

connect (uname, pwd, _url)

edit ()

startEdit ()

Creating and Configuring a JDBC System Resource
print 'Creating JDBCSystemResource with name '+dsname
jdbcSR = create (dsname, "JDBCSystemResource")
theJDBCResource = jdbcSR.getJDBCResource ()
theJDBCResource. setName ("myJDBCDataSource")

connectionPoolParams = theJDBCResource.getIJDBCConnectionPoolParams ()
connectionPoolParams.setConnectionReserveTimeoutSeconds (25)
connectionPoolParams.setMaxCapacity (100)
connectionPoolParams.setTestTableName ("SYSTABLES")

dsParams = theJDBCResource.getJDBCDataSourceParams ()
dsParams .addJNDIName ("ds .myJDBCDataSource")

driverParams = theJDBCResource.getJDBCDriverParams ()

driverParams.setUrl ("jdbc:pointbase:server://localhost/demo")
driverParams.setDriverName ("com.pointbase.xa.xaDataSource")
#driverParams.setUrl ("jdbc:oracle:thin:@my-oracle-server:my-oracle-server-port
:my-oracle-sid")

#driverParams.setDriverName ("oracle.jdbc.driver.OracleDriver")

driverParams.setPassword ("examples")
#driverParams.setLoginDelaySeconds (60)
driverProperties = driverParams.getProperties()

proper = driverProperties.createProperty("user")
#proper.setName ("user")
proper.setValue ("examples")

properl = driverProperties.createProperty ("DatabaseName")
#properl.setName ("DatabaseName")
properl.setValue("jdbc:pointbase:server://localhost/demo")

Creating a JMS System Resource
jmsSystemResource = create("medrec-jms-resource", "JMSSystemResource")
theJMSResource = jmsSystemResource.getJMSResource ()

Creating a JMS Connection Factory
mrgFactory = theJMSResource.createConnectionFactory ("MedRecQueueFactory")
mrgFactory.setIJNDIName (" jms/MedRecQueueConnectionFactory")

6-8 WebLogic Scripting Tool

Creating a Sample Domain: Main Steps

Creating and Configuring a JMS JDBC Store
mrjStore = create("MedRecJMSJDBCStore", "JDBCStore")
mrjStore.setDataSource (jdbcSR)
mrjStore.setPrefixName ("MedRec")

Creating and Configuring a JMS Server
mrJMSServer = create("MedRecJMSServer", "JMSServer")
mrJMSServer.setPersistentStore (mrjStore)

Creating and Configuring a Queue
regQueue = theJMSResource.createQueue ("RegistrationQueue")
regQueue.setJNDIName ("jms/REGISTRATION_MDB_QUEUE")

Creating and Configuring an Additional Queue
mailQueue = thedJMSResource.createQueue ("MailQueue")
mailQueue.setJNDIName ("jms/MAIL_MDB_QUEUE")

Creating Mail Resources

mrMailSession = create("MedicalRecordsMailSession", "MailSession")
mrMailSession.setJNDIName ("mail/MedRecMailSession")
mrMailSession.setProperties (makePropertiesObject ("mail.user=joe;mail.host=mail
.mycompany .com"))

Getting and configuring the server target
tgt = getMBean("/Servers/medrec-adminServer")
tgt.setJavaCompiler ("javac")
tgt.setListenAddress ("localhost")
tgt.setListenPort (8001)
#tgt.setITIOPEnabled(0)
tgt.setInstrumentStackTraceEnabled (1)

ssl = tgt.getSSL()

ssl.setEnabled (1)
ssl.setIdentityAndTrustLocations ("KeyStores")
ssl.setListenPort (9992)

Targeting Resources to the medrec admin server
jdbcSR.addTarget (tgt)
jmsSystemResource.addTarget (tgt)
mrjStore.addTarget (tgt)

mrJMSServer .addTarget (tgt)
mrMailSession.addTarget (tgt)

save ()

activate (block="true")

shutdown (force="true",block="true")
print 'end of the script ...

WebLogic Scripting Tool 6-9

Automating WebLogic Server Administration Tasks

Monitoring Domain Runtime Information

WebLogic Server includes a large number of MBeans which provide information about the
runtime state of its resources. Each server instance in a domain hosts only the MBeans that
configure and monitor its own set of resources. However, within the Administration Server,
MBeans for domain-wide services are in a single hierarchy whose root is DomainRunt imeMBean.
The domain runtime MBean hierarchy provides access to any runtime MBean on any server in
the domain as well as MBeans for domain-wide services such as application deployment, JIMS
servers, and JDBC connection pools.

6-10

Accessing Domain Runtime Information: Main Steps

Accessing the runtime information for a domain includes the following main steps:

1.

Invoke WLST and connect to a running Administration Server instance. See “Invoking
WLST” on page 2-8.

Navigate to the domain runtime MBean hierarchy by entering the domainRuntime
command.
wls:/mydomain/serverConfig>domainRuntime ()
The domainRuntime command places WLST at the root of the domain-wide runtime
management objects, DomainRuntimeMBean.
Navigate to ServerRuntimes and then to the server instance which you are interested in
monitoring.
wls:/mydomain/domainRuntime>cd('ServerRuntimes/myserver"')
At the server instance, navigate to and interrogate runtime MBeans.
wls:/mydomain/domainRuntime/ServerRuntimes/myserver>cd('JVMRuntime/myse
rver')>
wls:/mydomain/domainRuntime/ServerRuntimes/myserver/JVMRuntime/myserver
>1s()

-r—-— AllProcessorsAveragelLoad 0.0

-r-- Concurrent true

-r—- FreeHeap 15050064

-r-- FreePhysicalMemory 900702208

-r-- GCHandlesCompaction true

-r-- GcAlgorithm Dynamic GC currently running

strategy: Nursery, parallel mark, parallel sweep

-r-- Generational true

WebLogic Scripting Tool

Monitoring Domain Runtime Information

-r-- HeapFreeCurrent 14742864

-r-- HeapFreePercent 5

-r—-— HeapSizeCurrent 268435456

-r-- HeapSizeMax 268435456

-r-- Incremental false

-r-- JVMDescription BEA JRockit Java Virtual
Machine

-r-—- JavaVMVendor BEA Systems, Inc.
-r-—- JavaVendor BEA Systems, Inc.
-r-- JavaVersion 1.5.0

The following sections provide example scripts for retrieving runtime information about
WebLogic Server server instances and domain resources.

Script for Monitoring Server State

The WLST online script in Listing 6-7 checks the status of a Managed Server every 5 seconds
and restarts the server if the server state changes from RUNNING to any other status.

For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-7 Monitoring Server State

Node Manager needs to be running to run this script.

import thread
import time

def

checkHealth (serverName) :

while 1:

def

slBean = getSLCRT (serverName)
status = slBean.getState()
print 'Status of Managed Server is '+status
if status != "RUNNING":

print 'Starting server '+serverName

start (serverName, block="true")
time.sleep(5)

getSLCRT (svrName) :

domainRuntime ()

slrBean = cmo.lookupServerLifecycleRuntime (svrName)
return slcBean

WebLogic Scripting Tool 6-11

Automating WebLogic Server Administration Tasks

Script for Monitoring the JVM

The WLST online script in Listing 6-8 monitors the HJvMHeapsSize for all running servers in a
domain; it checks the heap size every 3 minutes and prints a warning if the heap size is greater
than a specified threshold.

For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-8 Monitoring the JVM Heap Size

waitTime=300000
THRESHOLD=100000000
uname = "weblogic"
pwd = "weblogic"
url = "t3://localhost:7001"
def monitorJVMHeapSize():
connect (uname, pwd, url)
while 1:
serverNames = getRunningServerNames ()
domainRuntime ()
for name in serverNames:
print 'Now checking '+name.getName ()
try:
cd("/ServerRuntimes/"+name.getName () +" /JVMRuntime/" +name.getName ())
except WLSTException,e:
this typically means the server is not active, just ignore
pass
heapSize = cmo.getHeapSizeCurrent ()
if heapSize > THRESHOLD:
do whatever is neccessary, send alerts, send email etc
print 'WARNING: The HEAPSIZE is Greater than the Threshold'
else:
print heapSize
java.lang.Thread.sleep(1800000)

def getRunningServerNames () :
domainConfig()
return cmo.getServers()

if _ name_ == "main":
monitorJVMHeapSize ()

6-12 WebLogic Scripting Tool

Managing Security

Managing Security

In the WebLogic Security Service, an Authentication provider is the software component that
proves the identity of users or system processes. An Authentication provider also remembers,
transports, and makes that identity information available to various components of a system when
needed. A security realm can use different types of Authentication providers to manage different
sets of users and groups. See "Authentication Providers" in Developing Security Providers for
WebLogic Server.

You can use WLST to invoke operations on the following types of Authentication providers:

e The default WebLogic Server Authentication provider,
weblogic.management.security.authentication.AuthenticatorMBean. By
default, all security realms use this Authentication provider to manage users and groups.

e Custom Authentication providers that extend
weblogic.security.spi.AuthenticationProvider and extend the optional
Authentication SSPI MBeans. See "SSPI MBean Quick Reference" in Developing Security
Providers for WebLogic Server.

The following sections describe basic tasks for managing users and groups using WLST:
e “Creating a User” on page 6-14
e “Adding a User to a Group” on page 6-14
e “Verifying Whether a User Is a Member of a Group” on page 6-15
e “Listing Groups to Which a User Belongs” on page 6-16
e “Listing Users and Groups in a Security Realm” on page 6-16
e “Changing a Password” on page 6-18

e “Protecting User Accounts in a Security Realm” on page 6-18

For information about additional tasks that the AuthenticationProvider and the optional
MBeans support, refer to weblogic.management . security.authentication package in the
WebLogic Server MBean Reference.

Note: WebLogic Server 6.0 style security MBeans are accessible using WLST but are not
displayed using the 1s command. For example, if you enter the following commands,
WLST lists the domain MBeans, but not excluded attributes, such as FileRealms:

WebLogic Scripting Tool 6-13

http://e-docs.bea.com/wls/docs90/dvspisec/atn.html
http://e-docs.bea.com/wls/docs90/dvspisec/design.html#design360
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/AuthenticationProviderMBean.html

Automating WebLogic Server Administration Tasks

java weblogic.WLST
connect ()
1s()

However, if you enter the following commands, WLST displays the DomainMBean’s file
realms:

java weblogic.WLST
connect ()
cmo.getFileRealms ()

Creating a User

To create a user, invoke the UserEditorMBean. createUser method, which is extended by the
security realm’s AuthenticationProvider MBean. For more information, see the
createUser method in the WebLogic Server MBean Reference.

The method requires three input parameters:
username password user-description

The following WLST online script invokes createUser on the default Authentication Provider.
For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-9 Creating a User

from weblogic.management.security.authentication import UserEditorMBean

print "Creating a user ..."
atnr=cmo.getSecurityConfiguration() .getDefaultRealm() .lookupAuthenticationProv
ider ("DefaultAuthenticator")
atnr.createUser ('my_user', 'my_password', 'new_admin')

print "Created user successfully"

Adding a User to a Group

To add a user to a group, invoke the GroupEdi torMBean . addMemberToGroup method, which
is extended by the security realm’s AuthenticationProvider MBean. For more information,
see the addMemberToGroup method in the WebLogic Server MBean Reference.

The method requires two input parameters:

groupname username

6-14 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserEditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/GroupEditorMBean.html

Managing Security

The following WLST online script invokes addMemberToGroup on the default Authentication
Provider. For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-10 Adding a User to a Group

from weblogic.management.security.authentication import GroupEditorMBean

print "Adding a user ..."
atnr=cmo.getSecurityConfiguration() .getDefaultRealm() .lookupAuthenticationProv
ider ("DefaultAuthenticator")

atnr.addMemberToGroup ('Administrators', 'my_user')

print "Done adding a user"

Verifying Whether a User Is a Member of a Group

To verify whether a user is a member of a group, invoke the GroupEditorMBean . i sMember
method, which is extended by the security realm’s AuthenticationProvider MBean. For
more information, see the i sMember method in the WebLogic Server MBean Reference.

The method requires three input parameters:
groupname username boolean

where boolean specifies whether the command searches within child groups. If you specify
true, the command returns true if the member belongs to the group that you specify or to any
of the groups contained within that group.

The following WLST online script invokes isMember on the default Authentication Provider.
For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-11 Verifying Whether a User is a Member of a Group

from weblogic.management.security.authentication import GroupEditorMBean

print "Checking if isMember of a group ... "
atnr=cmo.getSecurityConfiguration() .getDefaultRealm() .lookupAuthenticationProv
ider ("DefaultAuthenticator")

if atnr.isMember ('Administrators', 'my_user',6 true) == 0:
print "my_user is not member of Administrators"
else:

print "my_user is a member of Administrators"

WebLogic Scripting Tool 6-15

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/GroupEditorMBean.html

Automating WebLogic Server Administration Tasks

Listing Groups to Which a User Belongs

To see a list of groups that contain a user or a group, invoke the
MemberGroupListerMBean.listMemberGroups method, which is extended by the security
realm’s AuthenticationProvider MBean. For more information, see the 1istMemberGroups
method in the WebLogic Server MBean Reference.

The method requires one input parameter:
memberUserOrGroupName
where memberUserOrGroupName specifies the name of an existing user or a group.

The following WLST online script invokes 1istMemberGroups on the default Authentication
provider. For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-12 Listing Groups to Which a User Belongs

from weblogic.management.security.authentication import MemberGroupListerMBean

print "Listing the member groups ..."
atnr=cmo.getSecurityConfiguration() .getDefaultRealm() .lookupAuthenticationProv
ider ("DefaultAuthenticator")

X = atnr.listMemberGroups ('my_user')

print x

6-16

The method returns a cursor, which refers to a list of names. The

weblogic.management .utils.NameLister.haveCurrent, getCurrentName, and advance
methods iterate through the returned list and retrieve the name to which the current cursor
position refers. See the weblogic.management .utils.NameLister interface in the WebLogic
Server MBean Reference.

Listing Users and Groups in a Security Realm

To see a list of user or group names, you invoke a series of methods, all of which are available
through the AuthenticationProvider interface:

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MemberGroupListerMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/NameListerMBean.html

Managing Security

e The GroupReaderMBean.listGroups and UserReaderMBean. listUsers methods take
two input parameters: a pattern of user or group names to search for, and the maximum
number of names that you want to retrieve.

Because a security realm can contain thousands (or more) of user and group names that
match the pattern, the methods return a cursor, which refers to a list of names.

For more information, see the 1istGroups and 1istUsers methods in the WebLogic
Server MBean Reference.

e The NameListerhaveCurrent, getCurrentName, and advance methods iterate through
the returned list and retrieve the name to which the current cursor position refers. For more
information, see the NameListerMBean interface in the WebLogic Server MBean
Reference.

e The NameLister.close method releases any server-side resources that are held on behalf
of the list.

The WLST online script in Listing 6-13 lists all the users in a realm and the groups to which they
belong. For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-13 Listing Users and Groups

from weblogic.management.security.authentication import UserReaderMBean
from weblogic.management.security.authentication import GroupReaderMBean

realm=cmo.getSecurityConfiguration() .getDefaultRealm/()
atns = realm.getAuthenticationProviders ()
for 1 in atns:
if isinstance(i,UserReaderMBean) :
userReader = i
cursor = i.listUsers("*",0)
print 'Users in realm '+realm.getName()+' are: '
while userReader.haveCurrent (cursor) :
print userReader.getCurrentName (cursor)
userReader.advance (cursor)
userReader.close (cursor)

for 1 in atns:
if isinstance (i, GroupReaderMBean) :
groupReader = i
cursor = i.listGroups("*",0)
print 'Groups in realm are: '
while groupReader.haveCurrent (cursor) :
print groupReader.getCurrentName (cursor)

WebLogic Scripting Tool 6-17

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/GroupReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserReaderMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/NameListerMBean.html

Automating WebLogic Server Administration Tasks

groupReader.advance (cursor)
groupReader.close (cursor)

Changing a Password

To change a user’s password, invoke the UserPasswordEditorMBean.changeUserPassword
method, which is extended by the security realm’s AuthenticationProvider MBean. For
more information, see the changeUserPassword method in the WebLogic Server MBean
Reference.

The following WLST online script invokes changeUserPassword on the default Authentication
Provider: For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-14 Changing a Password

from weblogic.management.security.authentication import UserPasswordEditorMBean

print "Changing password ..."

atnr=cmo.getSecurityConfiguration() .getDefaultRealm() .lookupAuthenticationProv

ider ("DefaultAuthenticator")
atnr.changeUserPassword('my_user', 'my_password',6 'new_password')

print "Changed password successfully"

Protecting User Accounts in a Security Realm

WebLogic Server provides a set of attributes to protect user accounts from intruders. By default,
these attributes are set for maximum protection. You can decrease the level of protection for user
accounts. For example, you can increase the number of login attempts before a user account is
locked, increase the time period in which invalid login attempts are made before locking the user
account, or change the amount of time a user account is locked.

The AuthenticationProvider MBean does not extend methods that you use to protect user
accounts. Instead, retrieve the UserLockoutManagerMBean and invoke its methods. For more
information, see the UserLockoutManagerMBean interface in the WebLogic Server MBean
Reference.

The following tasks provide examples for invoking UserLockoutManagerMBean methods:

e “Set Consecutive Invalid Login Attempts” on page 6-19

6-18 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserPasswordEditorMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/UserLockoutManagerMBean.html

Managing Security

e “Unlock a User Account” on page 6-19

Set Consecutive Invalid Login Attempts

The following WLST online script sets the number of consecutive invalid login attempts before
auser account is locked out. For information on how to run this script, see “Running Scripts” on
page 2-10.

Listing 6-15 Setting Consecutive Invalid Login Attempts

from weblogic.management.security.authentication import UserLockoutManagerMBean

edit ()
startEdit ()

#You have two choices for getting a user lockout manager to configure
1 - to configure the default realm's UserLockoutManager:

ulm=cmo.getSecurityConfiguration () .getDefaultRealm() .getUserLockoutManager ()

2 - to configure another realm's UserLockoutManager:
#ulm=cmo.getSecurityConfiguration () .lookupRealm("anotherRealm") .getUserLockout
Manager ()

ulm.setLockoutThreshold(3)
save ()
activate ()

Unlock a User Account

The following WLST online script unlocks a user account. For information on how to run this
script, see “Running Scripts” on page 2-10.

Listing 6-16 Unlocking a User Account

from weblogic.management.security.authentication import UserLockoutManagerMBean

serverRuntime ()
ulm=cmo.getServerSecurityRuntime () .getDefaultRealmRuntime () .getUserLockoutMana
gerRuntime ()

#notel : You can only manage user lockouts for the default realm starting from
when the server was booted (versus other non-active realms) .

WebLogic Scripting Tool 6-19

Automating WebLogic Server Administration Tasks

#note2 : If the default realm's user lockout manager's LockoutEnabled attribute
is false, then the user lockout manager’s runtime MBean will be null.

#That is, you can only manage user lockouts in the default realm if its user
lockout manager is enabled.

if ulm != None:
ulm.clearLockout ("myuser")

Configuring Logging
Using WLST, you can configure a server instance’s logging and message output.

To determine which log attributes can be configured, see LogMBean and LogFileMBean in the
WebLogic Server MBean Reference. The reference also indicates valid values for each attribute.

The WLST online script in Listing 6-17 get and set several LogMBean and LogFileMBean
attributes. For information on how to run this script, see “Running Scripts” on page 2-10.

Listing 6-17 Configuring Logging

from java.lang import Boolean
from java.lang import System
from java.lang import Integer

username = System.getProperty("user", "weblogic")
password = System.getProperty ("password", "weblogic")
adminHost = System.getProperty("adminHost", "localhost")
adminPort = System.getProperty ("adminPort","7001")
protocol = System.getProperty ("protocol","t3")

url = protocol+"://"+adminHost+":"+adminPort

fileCount = Integer.getInteger("fileCount", 5)

fileMinSize = Integer.getInteger("fileMinSize", 400)

fileName =

System.getProperty ("fileName", "config\\mydomain\\myserver\\myserver.log")
fileTimeSpan = Integer.getInteger ("fileTimeSpan", 12)

log4jEnabled = System.getProperty("log4jEnabled", "true")
stdoutSeverity = System.getProperty ("stdoutSeverity", "Info")
logBRSeverity = System.getProperty("logBRSeverity", "Info")
logFileSeverity = System.getProperty("logFileSeverity", "Info")
memBufferSeverity = System.getProperty ("memBufferSeverity", "Info")
memBufferSize = Integer.getInteger ("memBufferSize", 400)
numOfFilesLimited = System.getProperty ("numOfFilesLimited", "true")
redirectStdout = System.getProperty("redirectStdout", "true")

6-20 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/LogMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/LogFileMBean.html

Configuring Logging

redirectStdErr = System.getProperty ("redirectStdErr", "true")
rotateOnStartup = System.getProperty("rotateOnStartup", "false")
rotateTime = System.getProperty("rotateTime", "00:10")
rotateType = System.getProperty ("rotateType", "byTime")
print "Connecting to " + url + " as [" + \

username + "," + password + "]"

Connect to the server
connect (username, password, url)
edit ()

startEdit ()

set CMO to the server log config
cd("Servers/myserver/Log/myserver")
1s ()

change the LogFileMBean and LogMBean attributes
print "Original FileCount is " + 'get("FileCount")'
print "Setting FileCount to be " + “fileCount’

set ("FileCount", fileCount)

print "Original FileMinSize is " + 'get("FileMinSize")'
print "Setting FileMinSize to be " + 'fileMinSize'
set ("FileMinSize", fileMinSize)

print "Original FileName is " + 'get("FileName")'
print "Setting FileName to be " + 'fileName'
set ("FileName", fileName)

print "Original FileTimeSpan is " + 'get("FileTimeSpan")'
print "Setting FileTimeSpan to be " + 'fileTimeSpan'
set ("FileTimeSpan", fileTimeSpan)

print "Original Log4jEnabled is " + 'get("Log4jLoggingEnabled")'
print "Setting Log4jLoggingEnabled to be " + 'log4jEnabled'
set ("Log4jLoggingEnabled", log4jEnabled)

print "Original StdoutSeverity is " + 'get("StdoutSeverity")'
print "Setting StdoutSeverity to be " + 'stdoutSeverity'
set ("StdoutSeverity", stdoutSeverity)

print "Original DomainLogBroadcastSeverity is " +

“get ("DomainLogBroadcastSeverity") "

print "Setting DomainLogBroadcastSeverity to be " + 'logBRSeverity'
set ("DomainLogBroadcastSeverity", logBRSeverity)

print "Original LogFileSeverity is " + 'get("LogFileSeverity")'

print "Setting LogFileSeverity to be " + 'logFileSeverity'
set ("LogFileSeverity", logFileSeverity)

WebLogic Scripting Tool

6-21

Automating WebLogic Server Administration Tasks

print "Original MemoryBufferSeverity is " + 'get ("MemoryBufferSeverity")'
print "Setting MemoryBufferSeverity to be " + 'memBufferSeverity'
set ("MemoryBufferSeverity", memBufferSeverity)

print "Original MemoryBufferSize is " + 'get("MemoryBufferSize")'
print "Setting MemoryBufferSize to be " + 'memBufferSize'
set ("MemoryBufferSize", memBufferSize)

print "Original NumberOfFilesLimited is " + 'get ("NumberOfFilesLimited")'
print "Setting NumberOfFilesLimited to be " + 'numOfFilesLimited’
set ("NumberOfFilesLimited", numOfFilesLimited)

print "Original RedirectStdoutToServerLogEnabled is " +

'get ("RedirectStdoutToServerLogEnabled") '

print "Setting RedirectStdoutToServerLogEnabled to be " + 'redirectStdout'
set ("RedirectStdoutToServerLogEnabled", redirectStdout)

print "Original RedirectStderrToServerLogEnabled is " +

'get ("RedirectStderrToServerLogEnabled") '

print "Setting RedirectStderrToServerLogEnabled to be " + 'redirectStdErr'
set ("RedirectStderrToServerLogEnabled", redirectStdErr)

print "Original RotateLogOnStartup is " + 'get ("RotateLogOnStartup")'
print "Setting RotateLogOnStartup to be " + 'rotateOnStartup'
set ("RotateLogOnStartup", rotateOnStartup)

print "Original RotationTime is " + 'get("RotationTime")'
print "Setting RotationTime to be " + 'rotateTime'
set ("RotationTime", rotateTime)

print "Original RotationType is " + 'get("RotationType")'
print "Setting RotationType to be " + 'rotateType'
set ("RotationType", rotateType)

save ()
activate ()

print
1s ()

all done...
exit()

For example scripts that demonstrate using WLST to configure the WebLogic Diagnostic
Framework, see “WebLogic Scripting Tool Examples” in Configuring and Using the WebLogic
Diagnostics Framework.

6-22 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wldf_configuring/appendix_wlst_ex.html

APPENDIXO

WLST Command and Variable
Reference

The following sections describe the WLST commands and variables in detail. Topics include:

“Overview of WSLT Command Categories” on page A-1
“Browse Commands” on page A-2

“Control Commands” on page A-7

“Deployment Commands” on page A-20

“Diagnostics Commands” on page A-34

“Editing Commands” on page A-37

“Information Commands” on page A-66

“Life Cycle Commands” on page A-91

“Node Manager Commands” on page A-100

“Tree Commands” on page A-112

“WLST Variable Reference” on page A-122

Overview of WSLT Command Categories

Note: It is recommended that you review “Requirements for Entering WLST Commands” on

page 2-9 for command syntax requirements.

WLST commands are divided into the following categories.

WebLogic Scripting Tool A-1

WLST Command and Variable Reference

Table A-1 WLST Command Categories

Command Category Description

Browse Commands Navigate the hierarchy of configuration or runtime beans and control the
prompt display.

Control Commands » Connect to or disconnect from a server.

* Create and configure a WebLogic domain or domain template.
» Exit WLST.

Deployment Commands * Deploy, undeploy, and redeploy applications and standalone modules to a
WebLogic Server instance.

+ Update an existing deployment plan.
* Interrogate the WebLogic Deployment Manager object.
» Start and stop a deployed application.

Diagnostics Commands Export diagnostic data.
Editing Commands Interrogate and edit configuration beans.
Information Commands Interrogate domains, servers, and variables, and provide configuration bean,

runtime bean, and WLST-related information.

Life Cycle Commands Manage the life cycle of a server instance.

Node Manager Commands Start, shut down, restart, and monitor WebLogic Server instances using Node
Manager.

Tree Commands Navigate among MBean hierarchies.

Browse Commands

Use the WLST browse commands, listed in Table A-2, to navigate the hierarchy of configuration
or runtime beans and control the prompt display.

A-2 WebLogic Scripting Tool

Table A-2 Browse Commands for WLST Configuration

Browse Commands

Use this command... To... Use with
WLST...

“cd” on page A-3 Navigate the hierarchy of configuration or runtime beans. Online or
Offline

“currentTree” on Return the current location in the hierarchy. Online

page A-4

“prompt” on page A-5 Toggle the display of path information at the prompt. Online or
Offline

“pwd” on page A-6 Display the current location in the hierarchy. Online or
Offline

cd

Command Category: Browse Commands
Use with WLST: Online or Offline

Description

Navigates the hierarchy of configuration or runtime beans. This command uses a model that is
similar to navigating a file system in a Windows or UNIX command shell. For example, to
navigate back to a parent configuration or runtime bean, enter cd (' . . '). The character string. .

(dot-dot), refers to the directory immediately above the current directory. To get back to the root

bean after navigating to a bean that is deep in the hierarchy, enter ca (' /).

You can navigate to beans in the current hierarchy and to any child or instance.

The cd command returns a stub of the configuration or runtime bean instance, if one exists. If you
navigate to a type, this command returns a stub of the configuration or runtime bean instance from
which you navigated. In the event of an error, the command returns a WLSTException.

Note: The cmo variable is initialized to the root of all domain configuration beans when you
first connect WLST to a server instance. It reflects the parent configuration bean type
until you navigate to an instance. For more information about the cmo variable, see
“Changing the Current Management Object” on page 4-3.

WebLogic Scripting Tool A-3

WLST Command and Variable Reference

Syntax

cd (mbeanName)

Argument Definition
mbeanName Path to the bean in the namespace.
Examples

A4

The following example navigates the hierarchy of configuration beans. The first command
navigates to the servers configuration bean type, the second, to the myserver configuration
bean instance, and the last back up two levels to the original directory location.

wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> cd('../..")

wls:/mydomain/serverConfig>

currentTree

Command Category: Browse Commands
Use with WLST: Online

Description

Returns the current location in the hierarchy. This command enables you to store the current
location in the hierarchy and easily return to it after browsing. In the event of an error, the
command returns a WLSTException.

Syntax

currentTree ()

Example

The following example stores the current location in the hierarchy in myTree and uses it to
navigate back to the Edit MBean hierarchy from the runtime MBean hierarchy on an
Administration Server instance.

WebLogic Scripting Tool

Browse Commands

wls:/mydomain/edit> myTree=currentTree ()

wls:/mydomain/edit> serverRuntime ()

Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.

For more help, use help('serverRuntime')

wls:/mydomain/serverRuntime> myTree()

wls:/mydomain/edit>

prompt

Command Category: Browse Commands
Use with WLST: Online or Offline

Description

Toggles the display of path information at the prompt, when entered without an argument. This
command is useful when the prompt becomes too long due to the length of the path.

You can also explicitly specify on or of £ as an argument to the command. When you specify o£ £,
WLST hides the WLST prompt and defaults to the Jython prompt. By default, the WLST prompt
displays the configuration or runtime navigation path information.

When you disable the prompt details, to determine your current location in the hierarchy, you can
use the pwd command, as described in “pwd” on page A-6.

In the event of an error, the command returns a WLSTException.

Syntax

prompt (myPrompt)

WebLogic Scripting Tool A-5

WLST Command and Variable Reference

Argument Definition

myPrompt Optional. Hides or displays WLST prompt. Valid values include of £ or on.
* The off argument hides the WLST prompt.

Ifyourun prompt ('off '), whenusing WLST online, the prompt defaults to the
Jython prompt. You can create a new prompt using Jython syntax. For more
information about programming using Jython, see http: //www. jython.org.
In this case, if you subsequently enter the prompt command without arguments,
WLST displays the WLST command prompt without the path information. To
redisplay the path information, enter prompt () again, or enter prompt ('on').

* The on argument displays the default WLST prompt, including the path
information.

Examples
The following example hides and then redisplays the path information at the prompt.

wls:/mydomain/serverConfig/Servers/myserver> prompt ()
wls:/> prompt ()

wls:/mydomain/serverConfig/Servers/myserver>

The following example hides the prompt and defaults to the Jython prompt (since the command
is run using WLST online), changes the Jython prompt, and then redisplays the WLST prompt.
This example also demonstrates the use of the pwd command.

Note: For more information about programming using Jython, see http: //www.jython.org.

wls:/mydomain/serverConfig/Servers/myserver> prompt ('off')
>>>gys.psl="myprompt>"

myprompt> prompt ()

wls:> pwd()

‘serverConfig:Servers/myserver’

wls:> prompt ()

wls:/mydomain/serverConfig/Servers/myserver>

pwd

Command Category: Browse Commands
Use with WLST: Online or Offline

A-6 WebLogic Scripting Tool

http://www.jython.org target="new"
http://www.jython.org target="new"

Description

Control Commands

Displays the current location in the configuration or runtime bean hierarchy.

This command is useful when you have turned off the prompt display of the path information
using the prompt command, as described in “prompt” on page A-5.

In the event of an error, the command returns a WLSTException.

Syntax

pwd ()

Example

The following example displays the current location in the configuration bean hierarchy.

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> pwd()

'serverConfig:/Servers/myserver/Log/myserver'

Control Commands

Use the WLST control commands, listed in Table A-3, to perform the following tasks:

e Connect to or disconnect from a server

e Create and configure a WebLogic domain or domain template, similar to the Configuration

Wizard
e Exit WLST

Table A-3 lists the control commands for WLST configuration.

Table A-3 Control Commands for WLST Configuration

In order to... Use this command... To... Use with
WLST...
Connect to and “connect” on page A-10 Connect WLST to a WebLogic Online or
disconnect from a Server instance. Offline
WebLogic Server
“disconnect” on page A-13 Disconnect WLST from a Online

instance

WebLogic Server instance.

WebLogic Scripting Tool A-1

WLST Command and Variable Reference

Tahle A-3 Control Commands for WLST Configuration (Continued)

In order to... Use this command... To... Use with
WLST...
Create a new domain “readTemplate” on page A-16 Open an existing domain Offline
from a domain template template for domain creation.
“writeDomain” on page A-18 Write the domain configuration ~ Offline
information to the specified
directory.
“closeTemplate” on page A-10 Close the current domain Offline
template.
Update an existing “readDomain” on page A-15 Open an existing domain for Offline
domain (offline) updating.
“addTemplate” on page A-8 Extend the current domain Offline
using an application or service
extension template.
“updateDomain” on page A-17 Update and save the current Offline
domain.
“closeDomain” on page A-9 Close the current domain. Offline
Write a domain “writeTemplate” on page A-19 Writes the configuration Offline
template information to the specified
domain template file.
Exit WLST “exit” on page A-14 Exit WLST from the interactive ~ Online or
session and close the scripting ~ Offline

shell.

addTemplate

Command Category: Control Commands
Use with WLST: Offline

Description

Extends the current domain using an application or service extension template. In the event of an

error, the command returns a WLSTException.

A-8 WebLogic Scripting Tool

Control Commands

Syntax

addTemplate (templateFileName)

Argument Definition
templateFileName Name of the application or service extension template.
Example

The following example opens a domain and extends it using the specified extension template,
DefaultWebApp.jar
wls:/offline> readDomain('c:/bea/user projects/domains/wlw')
wls:/offline/wlw> addTemplate('c:/bea/weblogic90/common/templates/

applications/DefaultWebApp.jar')
wls:/offline/wlw>

closeDomain

Command Category: Control Commands
Use with WLST: Offline

Description

Closes the current domain. The domain is no longer available for editing once it is closed. In the
event of an error, the command returns a WLSTException.

Syntax

closeDomain ()

Example
The following example closes the current domain:

wls:/offline> readDomain('c:/bea/user_projects/domains/medrec')
wls:/offline/medrec> updateDomain/()

wls:/offline/medrec> closeDomain()

wls:/offline>

WebLogic Scripting Tool A-9

WLST Command and Variable Reference

A-10

closeTemplate

Command Category: Control Commands
Use with WLST: Offline

Description

Closes the current domain template. The domain template is no longer available once it is closed.
In the event of an error, the command returns a WLSTException.

Syntax

closeTemplate ()

Example

The following example opens an existing domain template, performs some operations, and then
closes the current domain template.

wls:/offline> readTemplate('c:/bea/weblogic8l/common/templates/domains/

wls.jar')

wls:/offline/wls> closeTemplate()

wls:/offline>

connect

Command Category: Control Commands
Use with WLST: Online or Offline

Description

Connects WLST to a WebLogic Server instance.
You can specify the username and password on the command line, or you can specify an
encrypted password that is stored locally by specifying the locations of the user configuration and

key files as arguments to the connect command. For information about creating the user
configuration and key files, see “storeUserConfig” on page A-87.

If you run the connect command without specifying the username and password, WLST
attempts to process the command using one of the methods listed below (in order of precedence):

WebLogic Scripting Tool

Control Commands

1. WLST searches for the default user configuration and key files that contain an encrypted
username and password. This information must be valid for your current domain.

2. Ifthe connect command was run from the domain directory in which the server was
started, WLST attempts to load the username and password from the boot .properties
file.

3. WLST prompts for a username, password, and URL.
If you do not specify the Administration Server name, the argument defaults to AdminServer.
Please note:
e BEA Systems strongly recommends that you connect WLST to the server through the SSL
port or administration port. If you do not, the following warning message is displayed:

Warning: An insecure protocol was used to connect to the server. To ensure
on-the-wire security, the SSL port or Admin port should be used instead.

e Ifyou are connecting to a WebLogic Server instance through an SSL listen port on a server
that is using the demonstration SSL keys and certificates, you should invoke WLST using
the following command:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST

For more information about invoking WLST, see “Main Steps for Using WLST” on
page 2-8.

e If you are connecting to a WebLogic Server instance via HTTP, ensure that the
TunnelingEnabled attribute is set to true for the WebLogic Server instance. For more
information, see “TunnelingEnabled” in WebLogic Server Configuration Reference at
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html?sk
ipReload=true#TunnelingEnabled

After successfully connecting to a WebLogic Server instance, all the local variables are
initialized.

In the event of an error, the command returns a WLSTException.

Syntax
connect ([username, password], [url], [adminServerName])
connect ([userConfigFile, userKeyFilel, [adminServerName])

WebLogic Scripting Tool A-11

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html?skipReload=true#TunnelingEnabled
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html?skipReload=true#TunnelingEnabled

WLST Command and Variable Reference

Argument Definition

username Optional. Username of the operator who is connecting WLST to the server. If
not specified, WLST processes the command as described above.

password Optional. Password of the operator who is connecting WLST to the server. If not
specified, WLST processes the command as described above.

url Optional. Listen address and listen port of the server instance, specified using
the following format: [protocol://]listen-address:listen-port.
If not specified, this argument defaults to £3://localhost:7001.

userConfigFile Optional. Name and location of a user configuration file which contains an
encrypted username and password.

When you create a user configuration file, the storeUserConfig command
uses a key file to encrypt the username and password. Only the key file that
encrypts a user configuration file can decrypt the username and password. (See
“storeUserConfig” on page A-87.)

userKeyFile Optional. Name and location of the key file that is associated with the specified
user configuration file and is used to decrypt it. (See “storeUserConfig” on
page A-87.)

adminServerName Optional. Name of the Administration Server. This value is used when WLST

is invoked from a domain directory. This argument defaults to AdminServer.

Examples

The following example connects WLST to a WebLogic Server instance. In this example, the
Administration Server name defaults to AdminServer. Note that a warning is displayed if the
SSL or administration port is not used to connect to the server.

wls:/offline> connect ('weblogic', 'weblogic','t3://localhost:8001')
Connecting to weblogic server instance running at t3://localhost:8001 as

username weblogic...

Successfully connected to Admin Server 'AdminServer' that belongs to domain

'mydomain’ .

Warning: An insecure protocol was used to connect to the server. To ensure

on-the-wire security, the SSL port or Admin port should be used instead.

A-12 WebLogic Scripting Tool

Control Commands

wls:/mydomain/serverConfig>

The following example connects WLST to a WebLogic Server instance at the specified URL. In
this example, the username and password are passed as variables. This example uses a secure
protocol.

wls:/offline> username = 'weblogic'

wls:/offline> password = 'weblogic'

wls:/offline> connect (username,password, 't3s://myhost:8001"')
Connecting to weblogic server instance running at t3://myhost:8001 as

username weblogic...

Successfully connected to Admin Server 'AdminServer' that belongs to domain
'mydomain' .

wls:/mydomain/serverConfig>

The following example connects WLST to a WebLogic Server instance using a user
configuration and key file to provide user credentials. The Administration Server name defaults
t0 AdminServer.

wls:/offline> connect (userConfigFile='c:/myfiles/myuserconfigfile.secure’',
userKeyFile='c:/myfiles/myuserkeyfile.secure')
Connecting to weblogic server instance running at t3://localhost:7001 as

username

Successfully connected to Admin Server 'AdminServer' that belongs to domain
'mydomain’.

wls:/mydomain/serverConfig>

disconnect

Command Category: Control Commands
Use with WLST: Online

Description

Disconnects WLST from a WebLogic Server instance. The disconnect command does not
cause WLST to exit the interactive scripting shell; it closes the current WebLogic Server instance
connection and resets all the variables while keeping the interactive shell alive.

In the event of an error, the command returns a WLSTException.

WebLogic Scripting Tool A-13

WLST Command and Variable Reference

You can connect to another WebLogic Server instance using the connect command, as
described in “connect” on page A-10.

Syntax

disconnect (force)

Argument Definition

force Optional. Boolean value specifying whether WLST should disconnect without

waiting for the active sessions to complete. This argument defaults to false,
indicating that all active sessions must complete before disconnect.

A-14

Example
The following example disconnects from a running server:

wls:/mydomain/serverConfig> disconnect ()
Disconnected from weblogic server: myserver

wls:/offline>

exit
Command Category: Control Commands
Use with WLST: Online or Offline

Description

Exits WLST from the user session and closes the scripting shell.

If there is an edit session in progress, WLST prompts you for confirmation. To skip the prompt,
set the defaultAnswer argument to y.

By default, WLST calls System.exit (0) for the current WLST JVM when exiting WLST. If
you would like the JVM to exit with a different exit code, you can specify a value using the
exitCode argument.

Note: When the WLST exit command is issued within an Ant script, it may also exit the
execution of the Ant script. It is recommended that when invoking WLST within an Ant
script, you fork a new JVM by specifying fork="true".

In the event of an error, the command returns a WLSTException.

WebLogic Scripting Tool

Control Commands

Syntax
exit ([defaultAnswer], [exitcodel)
Argument Definition
defaultAnswer Optional. Default response, if you would prefer not to be prompted at the
command line. Valid values are y and n. This argument defaults to null, and
WLST prompts you for a response.
exitcode Optional. Exit code to set when exiting WLST.
Example

The following example disconnects from the user session and closes the scripting shell.

wls:/mydomain/serverConfig> exit ()

Exiting WebLogic Scripting Tool

c:\>

The following example disconnects from the user session, closes the scripting shell, and sets the

error code to 101.

wls:/mydomain/serverConfig> exit (exitcode=101)
Exiting WebLogic Scripting Tool

c:\>

readDomain

Command Category: Control Commands
Use with WLST: Offline

Description

Opens an existing domain for updating.

When you open a template or domain, WLST is placed into the configuration bean hierarchy for
that domain, and the prompt is updated to reflect the current location in the configuration
hierarchy. For example:

wls:/offline/base_domain>

WebLogic Server configuration beans exist within a hierarchical structure. In the WLST file
system, the hierarchies correspond to drives; types and instances are directories; attributes and

WebLogic Scripting Tool A-15

WLST Command and Variable Reference

operations are files. WLST traverses the hierarchical structure of configuration beans using
commands such as cd, 1s, and pwd in a similar way that you would navigate a file system in a
UNIX or Windows command shell. After navigating to an configuration bean instance, you
interact with the bean using WLST commands. For more information, see “Navigating and
Interrogating MBeans” on page 4-1.

In the event of an error, the command returns a WLSTException.

Syntax

readDomain (domainDirName)

Argument Definition
domainDirName Name of the domain directory that you wish to open.
Example

A-16

The following example opens the medrec domain for editing.

wls:/offline> readDomain('c:/bea/user projects/domains/medrec')

wls:/offline/medrec>

readTemplate

Command Category: Control Commands
Use with WLST: Offline

Description

Opens an existing domain template for domain creation.

When you open a domain template, WLST is placed into the configuration bean hierarchy for that
domain template, and the prompt is updated to reflect the current location in the configuration
hierarchy. For example:

wls:/offline/base_domain>

WebLogic Server configuration beans exist within a hierarchical structure. In the WLST file
system, the hierarchies correspond to drives; types and instances are directories; attributes and
operations are files. WLST traverses the hierarchical structure of configuration beans using
commands such as cd, 1s, and pwd in a similar way that you would navigate a file system in a

WebLogic Scripting Tool

Control Commands

UNIX or Windows command shell. After navigating to a configuration bean instance, you
interact with the bean using WLST commands. For more information, see “Navigating and
Interrogating MBeans” on page 4-1.

Note: Using WLST and a domain template, you can only create and access security information
when you are creating a new domain. When you are updating a domain, you cannot
access security information through WLST.

In the event of an error, the command returns a WLSTException.

Syntax

readTemplate (templateFileName)

Argument Definition
templateFileName Name of the JAR file corresponding to the domain template.
Example

The following example opens the medrec . jar domain template for domain creation.

wls:/offline> readTemplate('c:/bea/weblogic90/common/templates/domains
/wls_medrec.jar')

wls:/offline/wls_medrec>

updateDomain

Command Category: Control Commands
Use with WLST: Offline

Description

Updates and saves the current domain. The domain continues to be editable after you update and
save it.

In the event of an error, the command returns a WLSTException.

Syntax

updateDomain ()

WebLogic Scripting Tool A-17

WLST Command and Variable Reference

A-18

Example

The following examples opens the medrec domain, performs some operations, and updates and
saves the current domain:

wls:/offline> readDomain('c:/bea/user projects/domains/medrec')

wls:/offline/medrec> updateDomain()

writeDomain

Command Category: Control Commands
Use with WLST: Offline

Description

Writes the domain configuration information to the specified directory.

Once you write the domain to file system, you can continue to update the domain template object
that exists in memory, and reissue the writeDomain command to store the domain configuration
to a new or existing file.

By default, when you write a domain, the associated applications are written to
BEAHOME/user_projects/applications/domainname, where BEAHOME specifies the BEA
home directory and doma i nname specifies the name of the domain. This directory must be empty;
otherwise, WLST displays an error.

When you have finished using the domain template object in memory, close it using the
closeTemplate command. If you want to edit the domain that has been saved to disk, you can
open it using the readDomain command.

Note: The name of the domain is derived from the name of the domain directory. For example,
for a domain saved to c: /bea/user_projects/domains/myMedrec, the domain name
is myMedrec.

Before writing the domain, you must define a password for the default user, if it is not already
defined. For example:

cd('/Security/base_domain/User/weblogic"')

cmo.setPassword ('weblogic!')

In the event of an error, the command returns a WLSTException.

WebLogic Scripting Tool

Control Commands

Syntax

writeDomain (domainDir)

Argument Definition
domainDir Name of the directory to which you want to write the domain configuration
information.
Example

The following example reads the medrec.jar domain templates, performs some operations, and
writes the domain configuration information to the c: /bea/user_projects/domains/medrec
directory.

wls:/offline> readTemplate('c:/bea/weblogic8l/common/templates/domains
/wls.jar"')

wls:/offline/base_domain>
writeDomain('c:/bea/user projects/domains/base_domain')

writeTemplate

Command Category: Control Commands
Use with WLST: Offline

Description

Writes the domain configuration information to the specified domain template. You can use the
domain configuration template to recreate the domain.

Once your write the configuration information to the domain configuration template, you can
continue to update the domain or domain template object that exists in memory, and reissue the
writeDomain Or writeTemplate command to store the domain configuration to a new or
existing domain or domain template file. For more information, see “writeDomain” on page A-18
or “writeTemplate” on page A-19, respectively.

In the event of an error, the command returns a WLSTException.

Syntax

writeTemplate (templateName)

WebLogic Scripting Tool A-19

WLST Command and Variable Reference

Argument Definition
templateName Name of the domain template to store the domain configuration information.
Example

The following example writes the current domain configuration to the domain template named

c:/bea/user_projects/templates/myTemplate.jar.
wls:/offline> readDomain('c:/bea/user projects/domains/mydomain’')

wls:/offline/base_domain>
writeTemplate('c:/bea/user projects/templates/myTemplate.jar')

Deployment Commands

Use the WLST deployment commands, listed in Table A-4, to:

e Deploy, undeploy, and redeploy applications and standalone modules to a WebLogic Server
instance.

e Update an existing deployment plan.
e Interrogate the WebLogic Deployment Manager object.

e Start and stop a deployed application.

For more information about deploying applications, see Deploying Applications to WebLogic
Server at http://e-docs.bea.com/wls/docs90/deployment/index.html.

Table A-4 Deployment Commands for WLST Configuration

This command... Enables you to... Use with
WLST...

“deploy” on page A-21 Deploy an application to a WebLogic Server Online
instance.

“distribute Application” on Copy the deployment bundle to the specified Online

page A-25 targets.

“getWLDM?” on page A-26 Return the WebLogic DeploymentManager Online
object.

A-20 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/deployment/index.html

Deployment Commands

Table A-4 Deployment Commands for WLST Configuration (Continued)

This command... Enables you to... Use with
WLST...

“loadApplication” on page A-27 Load an application and deployment plan into Online
memory.

“redeploy” on page A-28 Redeploy a previously deployed application Online

“startApplication” on page A-29 Start an application, making it available to users. ~ Online

“stopApplication” on page A-30 Stop an application, making it unavailable to Online
users.

“undeploy” on page A-31 Undeploy an application from the specified Online
servers.

“updateApplication” on page A-33 Updates an application configuration usinga Online
new deployment plan.

deploy

Command Category: Deployment Commands
Use with WLST: Online

Description

Deploys an application to a WebLogic Server instance.

The deploy command returns a WLSTProgress object that you can access to check the status of
the command. For more information about the WLSTProgress object, see “WLSTProgress
Object” on page C-4. In the event of an error, the command returns a WLSTException.

Note: If there is an edit session in progress, the deploy command does not block user
interaction.

Syntax

deploy (appName, path, [targets], [stageMode]l, [planPath], [options])

WebLogic Scripting Tool A-21

WLST Command and Variable Reference

Argument

Definition

appName

Name of the application or standalone J2EE module to be deployed.

path

Name of the application directory, archive file, or root of the exploded archive
directory to be deployed.

targets

Optional. Comma-separated list of the target. Each target may be qualified with
a J2EE module name (for example, modulel@serverl) enabling you to
deploy different modules of the application archive on different servers. This
argument defaults to the server to which WLST is currently connected.

stageMode

Optional. Staging mode for the application you are deploying. Valid values are
stage, nostage, and external_stage. For information about the staging
modes, see “Staging Modes” in “Overview of WebLogic Server Deployment”
in Deploying Applications to WebLogic Server at
http://e-docs.bea.com/wls/docs90/deployment/deploy.htm
l#stage. This argument defaults to null.

planPath

Optional. Name of the deployment plan file. The filename can be absolute or
relative to the application directory. This argument defaults to the
plan/plan.xml file in the application directory, if one exists.

options

Optional. Comma-separated list of deployment options, specified as
name-value pairs. Valid options include:

« altDD—Location of the alternate application deployment descriptor on the
Administration Server.

* altWilsDD—Location of the alternate WebLogic application deployment
descriptor on the Administration Server.

¢ archiveVersion—Archive version number.

* block—Boolean value specifying whether WLST should block user
interaction until the command completes. This option defaults to true. If
setto false, WLST returns control to the user after issuing the command,
you can query the WLSTProgress object to determine the status of the
command. If you are importing WLST as a Jython module, as described in
“Importing WLST as a Jython Module” on page 2-11, b1ockis always set
to true.

¢ clusterDeploymentTimeout—Time, in milliseconds, granted for a cluster
deployment task on this application.

* createPlan—Boolean value indicating that user would like to create a
default plan. This option defaults to false.

A-22 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/deployment/deploy.html#stage
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#stage

Deployment Commands

Argument

Definition (Continued)

options (Continued)

* defaultSubmoduleTargets—Boolean value indicating that targeting for
any JMS submodules should be derived by the system.

+ forceUndeployTimeout—Force undeployment timeout value.

+ gracefullgnoreSessions—Boolean value specifying whether the graceful
production to admin mode operation should ignore pending HT TP sessions.
This option defaults to false and only applies if
gracefulProductionToAdmin is set to true.

+ gracefulProductionToAdmin—Boolean value specifying whether the
production to Admin mode operation should be graceful. This option
defaults to false.

+ libImplVersion—Implementation version of the library, if it is not present
in the manifest.

* libraryModule—Boolean value specifying whether the module is a library
module. This option defaults to false.

* libSpecVersion—Specification version of the library, if it is not present in
the manifest.

* planVersion—Plan version number.

+ retireGracefully—Retirement policy to gracefully retire an application
only after it has completed all in-flight work. This policy is only meaningful
for stop and redeploy operations and is mutually exclusive to the retire
timeout policy.

* retireTimeout—Time (in seconds) WLST waits before retiring an
application that has been replaced with a newer version. This option default
to -1, which specifies graceful timeout.

* securityModel—Security model. Valid values include: DDOnly,
CustomRoles, CustomRolesAndPolicy, and Advanced.

* securityValidationEnabled—Boolean value specifying whether security
validation is enabled.

* subModuleTargets—Submodule level targets for JMS modules. For
example, submod@mod-jms.xml@target |
submoduleName@target.

+ testMode—Boolean value specifying whether to start the Web application
with restricted access. This option defaults to false.

* timeout—Time (in milliseconds) that WLST waits for the deployment
process to complete before canceling the operation. A value of 0 indicates
that the operation will not time out. This argument defaults to 300,000 ms
(or 5 minutes).

» versionldentifier—Version identifier.

WebLogic Scripting Tool A-23

WLST Command and Variable Reference

Example

The following example deploys the businessapp application located at ¢ : /myapps/business,
A default deployment plan is created.

The deploy command returns a WLSTProgress object that you can access to check the status of
the command. The WLSTProgress object is captured in a user-defined variable, in this case,

progress.

wls:/mydomain/serverConfig/Servers> progress=

deploy (appName='businessApp',path="'c:/myapps/business',createplan='true')

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to print the status of the deploy
command. For example:

wls:/mydomain/serverConfig/Servers> progress.printStatus()
Current Status of your Deployment:

Deployment command type: deploy

Deployment State : completed

Deployment Message : null

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

The following example deploys the demoapp application in the archive file located at

c: /myapps/demos/app/demoApp . ear, targeting the application modules to myserver, and
using the deployment plan file located in c: /myapps/demos/app/plan/plan.xml. WLST
waits 120,000 ms for the process to complete.

wls:/mydomain/serverConfig/Servers> deploy('demoApp’,
'c:/myapps/demos/app/demoApp.ear', targets='myserver',

planPath='c:/myapps/demos/app/plan/plan.xml', timeout=120000)

The following example deploys the jmsApp application located at
c: /myapps/demos/jmsApp/demo-jms . xml, targeting the application module to a specific
target.

wls:/mydomain/serverConfig/Servers>deploy('jmsApp',path="'c:/myapps/demos/j

msApps/demo-jms.xml', subModuleTargets='jmsApp@managedl')

A-24 WebLogic Scripting Tool

Deployment Commands

distributeApplication

Command Category: Deployment Commands
Use with WLST: Online

Description

Copies the deployment bundle to the specified targets. The deployment bundle includes module,
configuration data, and any additional generated code. The distributeaApplication command
does not start deployment.

The distributeApplication command returns a WLSTProgress object that you can access to
check the status of the command. For more information about the WLSTProgress object, see
“WLSTProgress Object” on page C-4. In the event of an error, the command returns a
WLSTException.

Syntax

distributeApplication(appPath, [planPath], [targets], [options])
Argument Definition
appPath Name of the archive file or root of the exploded archive directory to be deployed.
planPath Optional. Name of the deployment plan file. The filename can be absolute or relative to

the application directory. This argument defaults to the plan/plan.xml file in the
application directory, if one exists.

targets Optional. Comma-separated list of targets. Each target may be qualified with a J2EE
module name (for example, modulel@serverl) enabling you to deploy different
modules of the application archive on different servers. This argument defaults to the
server to which WLST is currently connected.

options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see the options argument description in
“deploy” on page A-21.

Example

The following example loads the Bigapp application located in the c: /myapps directory, and
stores the WLSTProgress object in a user-defined variable, in this case, progress.

WebLogic Scripting Tool A-25

WLST Command and Variable Reference

A-26

The following example distributes the c: /myapps/BigaApp application to the myserver,
oamserverl, and oamcluster servers, using the deployment plan defined at
c:/deployment/BigApp/plan.xml.

wls:/offline> progress=distributeApplication('c:/myapps/BigApp’,
'c:/deployment/BigApp/plan.xml’', 'myserver,oamserverl,oamcluster')
Distributing Application and Plan

Successfully distributed the application.

The previous example stores the WLSTProgress object in a user-defined variable, in this case,
progress. You can then use the progress variable to determine if the
distributeApplication command has completed. For example:

wls:/mydomain/serverConfig/Servers> progress.isCompleted()
1

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

getWLDM

Command Category: Deployment Commands
Use with WLST: Online

Description

Returns the WebLogic DeploymentManager object. You can use the object methods to
configure and deploy applications. WLST must be connected to an Administration Server to run
this command. In the event of an error, the command returns a WLSTException.

Syntax

getWLDM ()

Example

The following example gets the WebLogicDeploymentManager object and stores it in the wldm
variable.

wls:/mydomain/serverConfig> wldm=getWLDM()

wls:/mydomain/serverConfig> wldm.isConnected()

1
wls:/mydomain/serverConfig>

WebLogic Scripting Tool

Deployment Commands

loadApplication

Command Category: Deployment Commands
Use with WLST: Online

Description
Loads an application and deployment plan into memory.

The loadapplication command returns a WLSTPlan object that you can access to make
changes to the deployment plan. For more information about the wLSTP1an object, see
“WLSTPIlan Object” on page C-1. In the event of an error, the command returns a

WLSTException.
Syntax
loadApplication (appPath, [planPath], [createPlan])
Argument Definition
appPath Name of the top-level parent application directory, archive file, or root of the exploded

archive directory containing the application to be loaded.

planPath Optional. Name of the deployment plan file. The filename can be absolute or relative to
the application directory. This argument defaults to the plan/plan.xml file in the
application directory, if one exists.

createPlan Optional. Boolean value specifying whether WLST should create a plan in the
application directory if the specified plan does not exist. This argument defaults to true.

Example

The following example loads the c: /myapps/mye3jb. jar application using the plan file at
c:/myplans/myejb/plan.xml.

wls:/myserver/serverConfig> myPlan=loadApplication('c:/myapps/myejb.jar"',
'c:/myplans/myejb/plan.xml"')

Loading application from c:/myapps/myejb.jar and deployment plan from
c:/myplans/myejb/plan.xml

Successfully loaded the application.

wls:/myserver/serverConfig>

WebLogic Scripting Tool A-27

WLST Command and Variable Reference

The previous example stores the WLSTP1lan object returned in the myPlan variable. You can then
use myPlan variable to display information about the plan, such as the variables. For example:

wls:/myserver/serverConfig> myPlan.showVariables ()
MyEJB jndi.ejb
MyWAR app.foo

wls:/myserver/serverConfig>

For more information about the WwLSTP1an object, see “WLSTPlan Object” on page C-1.

redeploy

Command Category: Deployment Commands
Use with WLST: Online

Description
Reloads classes and redeploys a previously deployed application.

The redeploy command returns a WLSTProgress object that you can access to check the status
of the command. For more information about the wLSTProgress object, see “WLSTProgress
Object” on page C-4.

In the event of an error, the command returns a WLSTException.

For more information about redeploying applications, see “Overview of Common Deployment
Scenarios” in Deploying Application to WebLogic Server at
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#overview.

Syntax

redeploy (appName, [planPath], [options])

Argument Definition
appName Name of the application to be redeployed.
planPath Optional. Name of the deployment plan file. The filename can be absolute or relative to

the application directory. This argument defaults to the plan/plan.xml file in the
application directory, if one exists.

A-28

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/deployment/deploy.html#overview

Deployment Commands

Argument Definition (Continued)
options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see opt ions argument description in “deploy”
on page A-21.
Example

The following example redeploys myapp application using the plan.xml file located in the

c: /myapps directory.

wls:/mydomain/serverConfig> progress=redeploy('myApp’

'c:/myapps/plan.xml')

Redeploying application 'myApp'

Redeployment of 'myApp' is successful

wls:/mydomain/serverConfig>

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to access the state of the redeploy
command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()
‘completed’

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

startApplication

Command Category: Deployment Commands
Use with WLST: Online

Description

Starts an application, making it available to users. The application must be fully configured and
available in the domain.

The startaApplication command returns a WLSTProgress object that you can access to check
the status of the command. For more information about the WLSTProgress object, see
“WLSTProgress Object” on page C-4. In the event of an error, the command returns a
WLSTException.

WebLogic Scripting Tool A-29

WLST Command and Variable Reference

Syntax

startApplication (appName, [options])

Argument Definition
appName Name of the application to start, as specified in the plan.xml file.
options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see opt ions argument description in “deploy”
on page A-21.
Example

The following example starts the BigaApp application with the specified deployment options.

wls:/offline> progress=startApplication('BigApp', stageMode='NOSTAGE',
testMode="'false')

Starting the application...

Successfully started the application.

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to access the state of the
startApplication command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()
‘completed’

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

stopApplication

Command Category: Deployment Commands
Use with WLST: Online

Description

Stops an application, making it unavailable to users. The application must be fully configured and
available in the domain.

A-30 WebLogic Scripting Tool

Deployment Commands

The stopaApplication command returns a WLSTProgress object that you can access to check
the status of the command. For more information about the WLSTProgress object, see
“WLSTProgress Object” on page C-4.

In the event of an error, the command returns a WLSTException.

Syntax

stopApplication (appName, [options])

Argument Definition
appName Name of the application to stop, as specified in the plan.xml file.
options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see options argument description in “deploy”
on page A-21.
Example

The following example stops the Bigapp application.

wls:/offline> progress=stopApplication('BigApp')

Stopping the application...

Successfully stopped the application.

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to check whether stopApplication
command is running. For example:

wls:/mydomain/serverConfig/Servers> progress.isRunning()
0

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

undeploy

Command Category: Deployment Commands
Use with WLST: Online

WebLogic Scripting Tool A-31

WLST Command and Variable Reference

Description

Undeploys an application from the specified servers.

The undeploy command returns a WLSTProgress object that you can access to check the status
of the command. For more information about the wLSTProgress object, see “WLSTProgress
Object” on page C-4. In the event of an error, the command returns a WLSTException.

For more information about deploying and undeploying applications, see “Common Deployment
Operations” in Deploying Applications to WebLogic Server at
http://e-docs.bea.com/wls/docs90/deployment/intro.html.

Syntax

undeploy (appName, [targets], [options])

Argument Definition
appName Deployment name for the deployed application.
targets Optional. List of the target servers from which the application will be removed. If

not specified, defaults to all current targets.

options Optional. Comma-separated list of deployment options, specified as name-value

pairs. For a list of valid deployment options, see opt ions argument description
in “deploy” on page A-21.

A-32

Example

The following example removes the businessapp application from all target servers. WLST
waits 60,000 ms for the process to complete.

wls:/mydomain/serverConfig> undeploy('businessApp', timeout=60000)
Undeploying application businessApp

<Jul 20, 2005 9:34:15 AM EDT> <Info> <J2EE Deployment SPI> <BEA-260121>
<Initiating undeploy operation for application, businessApp [archive:
nulll],

to AdminServer .>

Completed the undeployment of Application with status
Current Status of your Deployment:
Deployment command type: undeploy
Deployment State : completed

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/deployment/intro.html

Deployment Commands

Deployment Message : no message

wls:/mydomain/serverConfig>

updateApplication

Command Category: Deployment Commands
Use with WLST: Online

Description

Updates an application configuration using a new deployment plan. The application must be fully
configured and available in the domain.

The updateapplication command returns a WLSTProgress object that you can access to
check the status of the command. For more information about the WLSTProgress object, see
“WLSTProgress Object” on page C-4. In the event of an error, the command returns a

WLSTException.
Syntax
updateApplication (appName, [planPath], [options])
Argument Definition
appName Name of the application, as specified in the current plan.xml file.
planPath Optional. Name of the new deployment plan file. The filename can be absolute or relative

to the application directory.

options Optional. Comma-separated list of deployment options, specified as name-value pairs.
For a list of valid deployment options, see options argument description in “deploy”
on page A-21.
Example

The following example updates the application configuration for Bigapp using the plan.xml file
located in ¢ : /myapps/BigApp/newPlan.

wls:/offline> progress=updateApplication('BigApp’',
'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE', testMode='false')

Updating the application...
Successfully updated the application.

WebLogic Scripting Tool A-33

WLST Command and Variable Reference

The previous example stores the WLSTProgress object returned in a user-defined variable, in this
case, progress. You can then use the progress variable to access the state of the
updateapplication command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()
‘completed’

wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see “WLSTProgress Object” on
page C-4.

Diagnostics Commands

A-34

Use the WLST diagnostics commands, listed in Table A-5, to execute queries against the
diagnostic data. For more information about the WebLogic Server Diagnostic Service, see
Configuring and Using the WebLogic Diagnostic Framework at
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html.

Table A-5 Diagnostic Command for WLST Configuration

This command... Enables you to... Use with
WLST...
“exportDiagnosticData” on Execute a query against the specified log file. Offline
page A-34
“exportDiagnosticDataFromSe ~ Executes a query on the server side and retrieves the Online
rver” on page A-36 exported WebLogic Diagnostic Framework (WLDF)
data.

exportDiagnosticData

Command Category: Diagnostics Commands
Use with WLST: Offline

Description
Executes a query against the specified log file. The results are saved to an XML file.

For more information about the WebLogic Server Diagnostic Service, see Configuring and Using
the WebLogic Diagnostic Framework at
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html.

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html

Diagnostics Commands

In the event of an error, the command returns a WLSTException.

Syntax

exportDiagnosticData([options])

Argument

Definition

options

Optional. Comma-separated list of export diagnostic options, specified as name-value
pairs. Valid options include:

beginTimestamp—Timestamp (inclusive) of the earliest record to be added to the
result set. This option defaults to 0.

endTimestamp—Timestamp (exclusive) of the latest record to be added to the result
set. This option defaults to Long . MAX_VALUE.

exportFileName—Name of the file to which the data is exported. This option
defaults to export .xml.

logicalName—Logical name of the log file being read. Valid values include:
HarvestedDataArchive, EventsDataArchive, ServerLog, DomainLog,
HTTPAccessLog, WebAppLog, ConnectorLog, and JMSMessageLog. This
option defaults to ServerLog.

logName—Base log filename containing the log data to be exported. This option
defaults to myserver. log.

logRotationDir—Directory containing the rotated log files. This option defaults to

[T3EL)

.” (current directory).

query—Expression specifying the filter condition for the data records to be included
in the result set. This option defaults to “”” (empty string), which returns all data. For
more information, see “WLDF Query Language” in Configuring and Using the
Weblogic Diagnostic Framework at
http://e-docs.bea.com/wls/docs90/wldf_configuring/appendix
_query.html.

storeDir—Location of the diagnostic store for the server. This option defaults to
../data/store/diagnostics.

Example

The following example executes a query against the ServerLog named myserver. log and

stores the results in the file named myExport . xml.

wls:/offline/mydomain>exportDiagnosticData(logicalName="'ServerLog',

logName='"myserver.log', exportFileName='myExport.xml')

WebLogic Scripting Tool A-35

../../../wls/docs90/wldf_configuring/appendix_query.html
../../../wls/docs90/wldf_configuring/appendix_query.html

WLST Command and Variable Reference

A-36

{'elfFields': '', 'logName': 'myserver.log', 'logRotationDir': '.',
'endTimestamp': 9223372036854775807L, 'exportFileName': 'export.xml',
'storeDir': '../data/store/diagnostics', 'logicalName': 'ServerLog',
'query': '', 'beginTimestamp': 0}

Exporting diagnostic data to export.xml

<Aug 2, 2005 6:58:21 PM EDT> <Info> <Store> <BEA-280050> <Persistent store
"WLS_DIAGNOSTICS" opened:
directory="c:\bea\weblogic90b\server\data\store\diagnostics"

writePolicy="Disabled" blockSize=512 directIO=false driver="wlfileio2">

wls:/mydomain/serverRuntime>

exportDiagnosticDataFromServer

Command Category: Diagnostics Commands
Use with WLST: Online

Description

Executes a query on the server side and retrieves the exported WebLogic Diagnostic Framework
(WLDF) data. The results are saved to an XML file.

For more information about the WebLogic Server Diagnostic Service, see Understanding the
WebLogic Diagnostic Service at
http://e-docs.bea.com/wls/docs90/wldf_understanding/index.html.

In the event of an error, the command returns a WLSTException.

Syntax

exportDiagnosticDataFromServer ([options])

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html

Editing Commands

Argument

Definition

options

Optional. Comma-separated list of export diagnostic options, specified as name-value
pairs. Valid options include:

beginTimestamp—Timestamp (inclusive) of the earliest record to be added to the
result set. This option defaults to 0.

endTimestamp—Timestamp (exclusive) of the latest record to be added to the result
set. This option defaults to Long . MAX_VALUE.

exportFileName—Name of the file to which the data is exported. This option
defaults to export .xml.

logicalName—Logical name of the log file being read. Valid values include:
HarvestedDataArchive, EventsDataArchive, ServerLog, DomainLog,
HTTPAccessLog, WebAppLog, ConnectorLog, and JMSMessageLog. This
option defaults to ServerLog.

query—Expression specifying the filter condition for the data records to be included
in the result set. This option defaults to “”’ (empty string), which returns all data.

Example

The following example executes a query against the HTTPAccessLog and stores the results in the
file named myExport . xml.

wls:/mydomain/serverRuntime>

exportDiagnosticDataFromServer (logicalName="HTTPAccessLog",

exportFileName="myExport.xml")

Editing Commands

Use the WLST editing commands, listed in Table A-6, to interrogate and edit configuration

beans.

Note:

To edit configuration beans, you must be connected to an Administration Server, and you
must navigate to the edit tree and start an edit session, as described in “edit” on
page A-118 and “startEdit” on page A-59, respectively.

If you connect to a Managed Server, WLST functionality is limited to browsing the
configuration bean hierarchy. While you cannot use WLST to change the values of
MBeans on Managed Servers, it is possible to use the Management APIs to do so. BEA
Systems recommends that you change only the values of configuration MBeans on the

WebLogic Scripting Tool A-37

WLST Command and Variable Reference

Administration Server. Changing the values of MBeans on Managed Servers can lead to
an inconsistent domain configuration.

For more information about editing configuration beans, see “Editing Configuration
MBeans” on page 4-12.

Table A-6 Editing Commands for WLST Configuration

This command... Enables you to... Use with
WLST...

“activate” on page A-39 Activate changes saved during the current editing session ~ Online or
but not yet deployed. Offline

“assign” on page A-40 Assign resources to one or more destinations. Offline

“assignAll” on page A-43 Assign all applications or services to one or more Offline
destinations.

“cancelEdit” on page A-44 Cancel an edit session, release the edit lock, and discard all ~ Online

unsaved changes. This operation can be called by any user
with administrator privileges, even if the user did not start
the edit session.

“create” on page A-45 Create a configuration bean of the specified type for the Online or
current bean. Offline
“delete” on page A-47 Delete an instance of a configuration for the current Online or
configuration bean. Offline
“encrypt” on page A-48 Encrypt the specified string. Online
“get” on page A-49 Return the value of the specified attribute. Online or
Offline
“getActivationTask” on Return the latest ActivationTask MBean on which a Online
page A-50 user can get status.

“invoke” on page A-50 Invokes a management operation on the current Online

configuration bean.

“isRestartRequired” on page A-51 Determine whether a server restart is required. Online
“loadDB” on page A-52 Load SQL files into a database. Offline
A-38 WebLogic Scripting Tool

Editing Commands

Table A-6 Editing Commands for WLST Configuration (Continued)

This command... Enables you to... Use with
WLST...
“loadProperties” on page A-53 Load property values from a file. Online or
Offline

“save” on page A-54 Save the edits that have been made but have not yet been Online
saved.

“set” on page A-55 Set the specified attribute value for the current Online or
configuration bean. Offline

“setOption” on page A-56 Set options related to a domain creation or update. Offline

“showChanges” on page A-58 Show the changes made to the configuration by the current ~ Online
user during the current edit session.

“startEdit” on page A-59 Starts a configuration edit session on behalf of the currently ~ Online
connected user.

“stopEdit” on page A-60 Stop the current edit session, release the edit lock, and Online
discard unsaved changes.

“unassign” on page A-61 Unassign applications or resources from one or more Offline
destinations.

“unassignAll” on page A-63 Unassign applications or resources from one or more Offline
destinations.

“undo” on page A-64 Revert all unsaved or unactivated edits. Online

“validate” on page A-65 Validate the changes that have been made but have not yet ~ Online

been saved.

activate

Command Category: Editing Commands

Use with WLST: Online

Description

Activates changes saved during the current editing session but not yet deployed. This command
prints a message if a server restart is required for the changes that are being activated.

WebLogic Scripting Tool A-39

WLST Command and Variable Reference

The activate command returns the latest ActivationTask MBean which reflects the state of
changes that a user is currently making or has made recently. You can then invoke methods to get
information about the latest Configuration Manager activate task in progress or just completed.

In the event of an error, the command returns a WLSTException.

Syntax

activate ([timeout], [block])

Argument Definition

timeout Optional. Time (in milliseconds) that WLST waits for the activation of configuration

changes to complete before canceling the operation. A value of -1 indicates that the
operation will not time out. This argument defaults to 300,000 ms (or 5 minutes).

block Optional. Boolean value specifying whether WLST should block user interaction until

the command completes. This argument defaults to false, indicating that user
interaction is not blocked. In this case, WLST returns control to the user after issuing
the command and assigns the task MBean associated with the current task to a variable
that you can use to check its status.If you are importing WLST as a Jython module, as
described in “Importing WLST as a Jython Module” on page 2-11, bI1ock is always
setto true.

A-40

Example

The following example activates the changes made during the current edit session that have been
saved to disk, but that have not yet been activated. WLST waits for 100,000 ms for the activation
to complete, and 200,000 ms before the activation is stopped.

wls:/mydomain/edit !> activate (200000, block='true')

Activating all your changes, this may take a while

The edit lock associated with this edit session is released once the
activation is completed.

Action completed.

wls:/mydomain/edit>

assign

Command Category: Editing Commands
Use with WLST: Offline

WebLogic Scripting Tool

Description

Editing Commands

Assigns resources to one or more destinations.

In the event of an error, the command returns a WLSTException.

Syntax

assign(sourceType, sourceName, destinationType, destinationName)

Argument Definition
sourceType Type of configuration bean to be assigned. This value can be set to one of the
following values:

¢ AppDeployment

e Library

* securityType (such as User)

* Server

* service (such as JDBCSystemResource)

* service.SubDeployment, Where service specifies the service type of
the SubDeployment (such as IMSSystemResource.SubDeployment);
you can also specify nested subdeployments (such as
AppDeployment . SubDeployment . SubDeployment)

Guidelines for setting this value are provided below.

sourceName Name of the resource to be assigned. Multiple names can be specified, separated by
commas.

Specify subdeployments using the following format: service. subDeployment,

where service specifies the parent service and subDeployment specifies the

name of the subdeployment. For example,
myJMSResource.myQueueSubDeployment. You can also specify nested
subdeployments, such as

MedRecEAR.MedRecAppScopeddMS . MedRecIMSServer.

destinationType Type of destination. Guidelines for setting this value are provided below.
destinationName Name of the destination. Multiple names can be specified, separated by commas.

Use the following guidelines for setting the sourceType and destinationType:

e When assigning application deployments, set the values as follows:

WebLogic Scripting Tool A-41

WLST Command and Variable Reference

— sourceType:. AppDeployment

— destinationType. Target

When assigning libraries, set the values as follows:
— sourceType:. Library

— destinationType:. Target

When assigning services, set the values as follows:
— sourceType: Name of the Speciﬁc server, such as JDBCSystemResource
— destinationType. Target

e When assigning servers to clusters, set the values as follows:

— sourceType. Server

— destinationType. Cluster

When assigning subdeployments, set the values as follows:

— sourceType: service.SubDeployment, where service specifies the parent of the
SubDeployment, such as JMSSystemResource . SubDeployment; you can also specify
nested subdeployments (such as AppDeployment . SubDeployment . SubDeployment)

— destinationType:. Target

When assigning security types, set the values as follows:
— sourceType: Name of the security type, such as User

— destinationType: Name of the destination security type, such as Group

Example

The following examples:

e Assign the servers myServer and myServer?2 to the cluster myCluster.

wls:/offline/mydomain> assign("Server", "myServer,myServer2", "Cluster",
"myCluster")

e Assign the application deployment myAppDeployment to the target server newServer.

wls:/offline/mydomain> assign("AppDeployment", "myAppDeployment",
"Target", "newServer")

e Assign the user newUser to the group Monitors.

A-42 WebLogic Scripting Tool

Editing Commands

wls:/offline/mydomain> assign("User", "newUser", "Group", "Monitors")

e Assign the SubDeployment myQueueSubDeployment, which is a child of the IMS
resource myJMSResource, to the target server newServer.

wls:/offline/mydomain> assign('JMSSystemResource.SubDeployment',
'myJMSResource.myQueueSubDeployment', 'Target', 'newServer')

e Assign the nested SubDeployment MedRecAppScopedJMS . MedRecIMSServer, which is a
child of the AppDeployment AppDeployment, to the target server AdminServer.

wls:/offline/mydomain>assign('AppDeployment .SubDeployment .SubDeployment
', '"MedRecEAR.MedRecAppScopedJMS .MedRecJMSServer', 'Target', 'AdminServer'
)

assignAll

Command Category: Editing Commands
Use with WLST: Offline

Description

Note: This command is deprecated for WebLogic Server 9.0. You should update your script to use
the assign command as described in “assign” on page A-40. This command will still
operate on any resources that exist for the specified sourceType.

Assigns all applications or services to one or more destinations.

Note: Note that you must assign JMS server and JMS distributed destinations using the assign
command, as described in “assign” on page A-40.

In the event of an error, the command returns a WLSTException.

Syntax

assignAll (sourceType, destinationType, destinationName)

Argument Definition

sourceType Type of applications or services to be assigned. This value can be set to
Applications or Services.

destinationType Type of destination. This value must be set to Target.

destinationName Name(s) of the destination. Multiple names can be specified, separated by commas.

WebLogic Scripting Tool A-43

WLST Command and Variable Reference

Example
The following example assigns all services to the servers adminServer and clusterl.

wls:/offline/mydomain> assignAll ("Services", "Target",

"adminServer,clusterl")

The following services, if present, are assigned to the specified targets:
MigratableRMIService, Shutdownclass, Startupclass, FileT3, RMCFactory,
MailSession, MessagingBridge, JMSConnectionFactory, JDBCConnectionPool,
JDBCMultipool, JDBCTxDatasource, JDBCDataSource, JDBCPoolComp,
JoltConnectionPool, WLECConnectionPool, and WICServer.

cancelEdit

Command Category: Editing Commands
Use with WLST: Online

Description

Cancels an edit session, releases the edit lock, and discards all unsaved changes.

The user issuing this command does not have to be the current editor; this allows an administrator
to cancel an edit session, if necessary, to enable other users to start an edit session.

In the event of an error, the command returns a WLSTException.

Syntax

cancelEdit ([defaultAnswer])

Argument Definition

defaultAnswer Optional. Default response, if you would prefer not to be prompted at the command

line. Valid values are y and n. This argument defaults to null, and WLST prompts you
for a response.

A-44

Example

The following example cancels the current editing session. WLST prompts for verification before
canceling.

WebLogic Scripting Tool

Editing Commands

wls:/mydomain/edit !> cancelEdit ()
Sure you would like to cancel the edit session? (y/n)y
Edit session is cancelled successfully

wls:/mydomain/edit>

create

Command Category: Editing Commands
Use with WLST: Online or Offline

Description

Creates a configuration bean of the specified type for the current bean.

The create command returns a stub for the newly created configuration bean. In the event of an
error, the command returns a WLSTException.

Notes: Child types must be created under an instance of their parent type. You can only create
configuration beans that are children of the current Configuration Management Object
(cmo) type. For more information about the cmo variable, see “Changing the Current
Management Object” on page 4-3.

Because WLST offline enables you to access and update the configuration objects that
appear in the configuration files only, if you wish to view and/or change attribute values
for a configuration object that is not already persisted in the configuration files as an
XML element, you must first create the configuration object.

Please note the following when using the create command with WLST online:

e You must be connected to an Administration Server. You cannot use the create command
for runtime MBeans or when WLST is connected to a Managed Server instance.

e You must navigate to the edit configuration MBean hierarchy using the edit command
before issuing this command. See “edit” on page A-118.

e You can use the create command to create a WebLogic Server configuration MBean that is
a child of the current MBean type.

Please note the following when using the create command with WLST offline:

e When using WLST offline, the following characters are not valid in object names: period
(.), forward slash (/), or backward slash (\).

For more information about:

WebLogic Scripting Tool A-45

WLST Command and Variable Reference

e Creating MBeans, see “Understanding WebLogic Server MBeans” in Developing Custom
Management Utilities with JMX at
http://e-docs.bea.com/wls/docs90/jmx/understandWLS.html.

e Examples of creating specific types of MBean resources, for example, a JMS or JDBC
system resource, refer to the WLST sample scripts installed with your product, as
described in “WLST Sample Scripts” on page 1-3.

e MBeans, their child types, attributes, and operations, see WebLogic Server MBean
Reference at http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html.

Syntax

create (name, childMBeanType, [baseProviderTypel)

Argument Definition
name Name of the configuration bean that you are creating.
childMBeanType Type of configuration bean that you are creating. You can create instances of any type

defined in the config.xml file except custom security types. For more information
about valid configuration beans, see WebLogic Server Configuration Reference at
http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html.

baseProviderType When creating a security provider, specifies the base security provider type, for
example, AuthenticationProvider. This argument defaults to None.

Example

The following example creates a child configuration bean of type Server named newServer for
the current configuration bean, storing the stub as serveri:

wls:/mydomain/edit !> serverl=create('newServer', 'Server')
Server with name ‘newServer’ has been created successfully.
wls:/mydomain/edit !> serverl.getName/()

‘newServer’

wls:/mydomain/edit !>
The following example creates an authentication provider security provider called myProvider:

wls:/mydomain/edit !> cd('SecurityConfiguration/mydomain/Realms/myrealm')

wls:/mydomain/edit !>

A-46 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html
http://e-docs.bea.com/wls/docs90/jmx/understandWLS.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html

Editing Commands

create('myProvider', 'weblogic.security.providers.authentication.SQLAuthent

icator', 'AuthenticationProvider')
The following example creates a machine named highsec_nm and sets attributes for the
associated Node Manager.

wls:/mydomain/edit !> create('highsec_nm', 'Machine')
wls:/mydomain/edit !> cd('Machine/highsec_nm/NodeManager/highsec_nm')
wls:/mydomain/edit !> set('DebugEnabled', 'true')

wls:/mydomain/edit !> set('ListenAddress', 'innes')
wls:/mydomain/edit !> set('NMType', 'SSL')

wls:/mydomain/edit !> set('ShellCommand', '')

delete

Command Category: Editing Commands
Use with WLST: Online or Offline

Description

Deletes an instance of a configuration bean of the specified type for the current configuration
bean.

In the event of an error, the command returns a WLSTException.

Note: You can only delete configuration beans that are children of current Configuration
Management Object (cmo) type. For more information about the cmo variable, see
“Changing the Current Management Object” on page 4-3.

Syntax

delete(name, childMBeanType)

Argument Definition
name Name of the child configuration bean to delete.
childMBeanType Type of the configuration bean to be deleted. You can delete instances of any type

defined in the config.xml file. For more information about valid configuration
beans, see WebLogic Server Configuration Reference at
http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html.

WebLogic Scripting Tool A-47

http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html

WLST Command and Variable Reference

Example
The following example deletes the configuration bean of type server named newServer:

wls:/mydomain/edit !> delete('newServer', 'Server')
Server with name 'newServer' has been deleted successfully.
wls:/mydomain/edit !>

encrypt

Command Category: Editing Commands
Use with WLST: Online

Description

Encrypts the specified string. You can then use the encrypted string in your configuration file or
as an argument to a command.

The weblogic.security.Encrypt utility encrypts cleartext strings for use with WebLogic
Server. The utility uses the encryption service of the current directory, or the encryption service
for a specified WebLogic Server domain root directory.

Note: An encrypted string must have been encrypted by the encryption service in the WebLogic
Server domain where it will be used. If not, the server will not be able to decrypt the
string.

In the event of an error, the command returns a WLSTException.

Syntax

encrypt (obj, [domainDir])

Argument Definition

obj

String that you want to encrypt.

domainDir Optional. Name of the domain directory containing the

security/SerializedSystemIni.dat file to use to encrypt the file. This
argument defaults to the directory from which WLST was invoked.

A-48

WebLogic Scripting Tool

Editing Commands

Example

The following example encrypts the specified string using the
security/SerializedSystemIni.dat file in the specified domain directory.

wls:/mydomain/serverConfig>
es=encrypt ('myPassword', 'c: /bea/domains/mydomain’')

get

Command Category: Editing Commands
Use with WLST: Online or Offline

Description

Returns the value of the specified attribute. For more information about the MBean attributes that
can be viewed, see WebLogic Server MBean Reference at
http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html. Inthe event of an
error, the command returns a WLSTException.

Note: You can list all attributes and their current values by entering 1s ('a'). For more
information, see “Is” on page A-78.

Alternatively, you can use the cmo variable to perform any get method on the current
configuration bean. For example:

cmo.getListenPort ()

For more information about the cmo variable, see “Changing the Current Management Object”
on page 4-3.

Syntax

get (attrName)

Argument Definition

attrName Name of the attribute to be displayed. You can specify the full pathname of the
attribute. If no pathname is specified, the attribute is displayed for the current
configuration object.

WebLogic Scripting Tool A-49

http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html

WLST Command and Variable Reference

A-50

Example

The following example returns the value of the AdministrationPort for the current
configuration bean.

wls:/mydomain/serverConfig> get ('AdministrationPort')
9002

Alternatively, you can use the cmo variable:

cmo.getAdministrationPort ()

getActivationTask

Command Category: Editing Commands
Use with WLST: Online

Description

Return the latest ActivationTask MBean on which a user can get status. The ActivationTask
MBean reflects the state of changes that a user is currently making or has made recently. You can
then invoke methods to get information about the latest Configuration Manager activate task in
progress or just completed. In the event of an error, the command returns a WLSTException.

Syntax

getActivationTask ()

Example

The following example returns the latest ActivationTask MBean on which a user can get status
and stores it within the task variable.

wls:/mydomain/serverConfig> task=getActivationTask()
wls:/mydomain/serverConfig> task.getState()
STATE_COMMITTED

Invoke

Command Category: Editing Commands
Use with WLST: Online

WebLogic Scripting Tool

Editing Commands

Description

Invokes a management operation on the current configuration bean. Typically, you use this
command to invoke operations other than the get and set operations that most WebLogic Server
configuration beans provide. The class objects are loaded through the same class loader that is
used for loading the configuration bean on which the action is invoked.

You cannot use the invoke command when WLST is connected to a Managed Server instance.

If successful, the invoke command returns the object that is returned by the operation invoked.
In the event of an error, the command returns a WLSTException.

Syntax

invoke (methodName, parameters, signatures)

Argument Definition

methodName Name of the method to be invoked.

parameters An array of parameters to be passed to the method call.

signatures An array containing the signature of the action.
Example

The following example invokes the 1ookupServer method on the current configuration bean.

wls:/mydomain/config> objs =
jarray.array([java.lang.String("oamserver")],java.lang.Object)
wls:/mydomain/edit> strs = jarray.array(["java.lang.String"],java.lang.String)
wls:/mydomain/edit> invoke('lookupServer',objs,strs)

true

wls:/mydomain/edit>

IsRestartRequired

Command Category: Editing Commands
Use with WLST: Online

Description

Determines whether a server restart is required.

WebLogic Scripting Tool A-51

WLST Command and Variable Reference

If you invoke this command while an edit session is in progress, the response is based on the edits
that are currently in progress. If you specify the name of an attribute, WLST indicates whether a
server restart is required for that attribute only.

In the event of an error, the command returns a WLSTException.

Syntax

isRestartRequired([attributeName])

Argument Definition

attributeName Optional. Name of a specific attribute for which you want to check if a server
restart is required.

Example
The following example specifies whether a server restart is required for all changes made during

the current WLST session.

wls:/mydomain/edit !> isRestartRequired()
Server re-start is REQUIRED for the set of changes in progress.

The following attribute(s) have been changed on MBeans that require server
re-start.

MBean Changed : mydomain:Name=mydomain, Type=Domain

Attributes changed : AutoConfigurationSaveEnabled

The following example specifies whether a server restart is required if you edit the
ConsoleEnabled attribute.

wls:/mydomain/edit !> isRestartRequired("ConsoleEnabled")

Server re-start is REQUIRED if you change the attribute ConsoleEnabled
wls:/mydomain/edit !>

loadDB

Command Category: Editing Commands
Use with WLST: Offline

Description
Loads SQL files into a database.

A-52 WebLogic Scripting Tool

Editing Commands

The 10adpB command loads the SQL files from a template file. This command can only be issued
after a domain template or extension template has been loaded into memory using the
readTemplate or addTemplate command, respectively.

Before executing this command, ensure that the following conditions are true:

e The appropriate database is running.

e SQL files exist for the specified database and version.

To verify that the appropriate SQL files exist, open the domain template and locate the
relevant SQL file list, jdbc. index, in the _jdbc_ directory. For example, for PointBase
version 4.4, the SQL file list is located at _jdbc_\Pointbase\44\jdbc.index.

The command fails if the above conditions are not met.

In the event of an error, the command returns a WLSTException.

Syntax

loadDB (dbVersion, connectionPoolName)

Argument Definition

dbVersion Version of the database for which the SQL files are intended to be used.

connectionPoolName Name of the JDBC connection pool to be used to load SQL files.

Example

The following example loads SQL files, intended for version 4.4 of the database, using the
myPool-PointBase JDBC connection pool:

wls:/offline/mydomain> loadDB('4.4', 'myPool-PointBase')

loadProperties

Command Category: Information Commands
Use with WLST: Online and Offline

Description

Loads property values from a file and makes them available in the WLST session.

WebLogic Scripting Tool A-53

WLST Command and Variable Reference

This command cannot be used when you are importing WLST as a Jython module, as described
in “Importing WLST as a Jython Module” on page 2-11.

In the event of an error, the command returns a WLSTException.

Syntax

loadProperties (fileName)

Argument Definition
fileName Properties file pathname.
Example

A-54

This example gets and sets the properties file values.

wls:/mydomain/serverConfig> loadProperties('c:/temp/myLoad.properties’')

Save

Command Category: Editing Commands
Use with WLST: Online

Description

Saves the edits that have been made but have not yet been saved. This command is only valid
when an edit session is in progress. For information about starting an edit session, see “startEdit”
on page A-59.

In the event of an error, the command returns a WLSTException.

Syntax

save ()

Example
The following example saves the edits that have not yet been saved to disk.

wls:/mydomain/edit !> save()

Saving all your changes

WebLogic Scripting Tool

Editing Commands

Saved all your changes successfully.

wls:/mydomain/edit !>

set

Command Category: Editing Commands
Use with WLST: Online or Offline

Description

Sets the specified attribute value for the current configuration bean. For more information about
the MBean attributes that can be set, see WebLogic Server MBean Reference at

http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html.
In the event of an error, the command returns a WLSTException.

Note: You can list all attributes and their current values by entering 1s ('a'). For more
information, see “Is” on page A-78.

When you use this command for a domain configuration MBean, the new values are saved in the
config.xml file.

Please note the following when using WLST online:
e You cannot use the set command when WLST is connected to a Managed Server instance.

e While you cannot use WLST to change the values of MBeans on Managed Servers, it is
possible to use the Management APIs to do so. BEA Systems recommends that you change
only the values of configuration MBeans on the Administration Server. Changing the
values of MBeans on Managed Servers can lead to an inconsistent domain configuration.

Alternatively, you can use the cmo variable to perform any set method on the current
configuration bean. For example:

cmo.setPassword (attributeValue)

For more information about the cmo variable, see “Changing the Current Management Object”
on page 4-3.

Syntax

set (attrName, value)

WebLogic Scripting Tool A-55

http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html

WLST Command and Variable Reference

Argument Definition
attrName Name of the attribute to be set.
value Value of the attribute to be set.

Note: This value should not be enclosed in single or double quotes.

Example

The following example sets the ArchiveConfigurationCount attribute of DomainMBean to 10:

wls:/mydomain/serverConfig> set ('ArchiveConfigurationCount',10)

setOption

Command Category: Editing Commands
Use with WLST: Offline

Description

Sets options related to a domain creation or update. In the event of an error, the command returns
a WLSTException.

Syntax

setOption (optionName, optionValue)

A-56 WebLogic Scripting Tool

Editing Commands

Argument

Definition

optionName

Name of the option to set.

Available options for domain creation include:

CreateStartMenu—Boolean (string) value specifying whether to create a Start Menu
shortcut on a Windows platform. This option defaults to true.

Note: Ifauser with Administrator privileges installed the software and chose to create the Start

menu entries in the All Users folder, only users with Administrator privileges can create
Start menu entries in the same folder when creating a domain using the Configuration
Wizard or WLST. That is, if a user without Administrator privileges uses the
Configuration Wizard or WLST from this installation to create domains, Start menu
shortcuts to the domains are not created. In this case, the users can manually create
shortcuts in their local Start menu folder, if desired.

JavaHome—Home directory for the JVM to be used when starting the server. This option
defaults to the Sun JDK installed with the product.

OverwriteDomain—Boolean (string) value specifying whether to allow an existing
domain to be overwritten. This option defaults to false.

ServerStartMode—Mode to use when starting the server for the newly created domain.
This value can be dev (development) or prod (production). This option defaults to dev.

Available options for domain updates include:

AllowCasualUpdate—Boolean (string) value specifying whether to allow a domain to be
updated without adding an extension template. This option defaults to true.

ReplaceDuplicates—Boolean (string) value specifying whether to keep original
configuration elements in the domain or replace the elements with corresponding ones from
an extension template when there is a conflict. This option defaults to true.

Available options for both domain creation and domain updates include:

AppDir—Application directory to be used when a separate directory is desired for
applications, as specified by the template. This option defaults to
BEAHOME/user_projects/applications/domainname, where BEAHOME specifies
the BEA home directory and doma inname specifies the name of the domain.

AutoAdjustSubDeploymentTarget—Boolean (string) value specifying whether
WLST automatically adjusts targets for the subdeployments of AppDeployments. This
option defaults to true. To deactivate this feature, set the option to £alse and explicitly set
the targeting for AppDeployment subdeployments before writing or updating the domain or
domain template.

AutoDeploy—Boolean (string) value specifying whether to activate auto deployment when
a cluster or multiple Managed Servers are created. This option defaults to true. To
deactivate this feature, set the option to false on the first line of your script.

WebLogic Scripting Tool A-57

WLST Command and Variable Reference

Argument Definition (Continued)

optionValue Value for the option.

Example
The following example sets the CreateStartMenu option to false:

wls:/offline> setOption('CreateStartMenu', 'false')

showChanges

Command Category: Editing Commands
Use with WLST: Online

Description

Shows the changes made to the configuration by the current user during the current edit session.
In the event of an error, the command returns a WLSTException.

Syntax

showChanges ([onlyInMemory])

Argument Definition

onlyInMemory Optional. Boolean value specifying whether to display only the changes that have not

yet been saved. This argument defaults to false, indicating that all changes that have
been made from the start of the session are displayed.

A-58

Example

The following example shows all of the changes made by the current user to the configuration
since the start of the current edit session.

wls:/mydomain/edit !> showChanges()
Changes that are in memory and saved to disc but not yet activated are:

MBean Changed : com.bea:Name=basicWLSDomain, Type=Domain

Operation Invoked : add

WebLogic Scripting Tool

Editing Commands

Attribute Modified : Machines
Attributes 01d Value : null
Attributes New Value : Machl

Server Restart Required : false

MBean Changed : com.bea:Name=basicWLSDomain, Type=Domain
Operation Invoked : add

Attribute Modified : Servers

Attributes 01ld Value : null

Attributes New Value : myserver

Server Restart Required : false

startEdit

Command Category: Editing Commands
Use with WLST: Online

Description

Starts a configuration edit session on behalf of the currently connected user. You must navigate
to the edit configuration MBean hierarchy using the edit command before issuing this
command. For more information, see “edit” on page A-118.

This command must be called prior to invoking any command to modify the domain
configuration.

In the event of an error, the command returns a WLSTException.

Note: WLST automatically starts an edit session if it detects that there is an edit session that is
already in progress by the same user, which may have been started via the Administration
Console or another WLST session.

Syntax
startEdit ([waitTimeInMillis], [timeoutInMillis], [exclusive])
Argument Definition

waitTimeInMillis Optional. Time (in milliseconds) that WLST waits until it gets a lock, in the event that
another user has a lock. This argument defaults to 0 ms.

WebLogic Scripting Tool A-59

WLST Command and Variable Reference

Argument Definition (Continued)

timeoutInMillis Optional. Timeout (in milliseconds) that WLST waits to release the edit lock. This

argument defaults to -1 ms, indicating that this edit session never expires.

exclusive Optional. Specifies whether the edit session should be an exclusive session. If set to

true, if the same owner enters the startEdit command, WLST waits until the
current edit session lock is released before starting the new edit session. The exclusive
lock times out according to the time specified in timeoutInMillis. This argument
defaults to false.

Example
The following example saves the edits that have not yet been saved to disk.

wls:/mydomain/edit> startEdit (60000, 120000)

Starting an edit session

Started edit session, please be sure to save and activate your changes once
you are done.

wls:/mydomain/edit !>

stopEdit

Command Category: Editing Commands
Use with WLST: Online

Description

Stops the current edit session, releases the edit lock, and discards unsaved changes.

In the event of an error, the command returns a WLSTException.

Syntax

stopEdit ([defaultAnswer])

Argument Definition

defaul tAnswer Optional. Default response, if you would prefer not to be prompted at the command

line. Valid values are y and n. This argument defaults to null, and WLST prompts you
for a response.

A-60

WebLogic Scripting Tool

Editing Commands

Example

The following example stops the current editing session. WLST prompts for verification before
canceling.

wls:/mydomain/edit !> stopEdit ()
Sure you would like to stop your edit session? (y/n)

Y
Edit session has been stopped successfully.

wls:/mydomain/edit>

unassign

Command Category: Editing Commands
Use with WLST: Offline

Description

Unassign applications or resources from one or more destinations.

In the event of an error, the command returns a WLSTException.

Syntax

unassign (sourceType, sourceName, destinationType, destinationName)

Argument Definition

sourceType Type of configuration bean to be unassigned. This value can be set to one of the
following values:

¢ AppDeployment

e Library

* securityType (such as User)

* Server

* service (such as JDBCSystemResource)

* service.SubDeployment, where service specifies the service type of
the subDeployment (such as IMSSystemResource.SubDeployment);
you can also specify nested subdeployments (such as
AppDeployment . SubDeployment . SubDeployment)

WebLogic Scripting Tool A-61

WLST Command and Variable Reference

Argument Definition (Continued)

sourceName Name of the application or resource to be unassigned. Multiple names can be
specified, separated by commas.

Specify subdeployments using the following format: service. subDeployment,
where service specifies the parent service and subDeployment specifies the
name of the subdeployment. For example,

myJMSResource .myQueueSubDeployment . You can also specify nested
subdeployments, such as

MedRecEAR .MedRecAppScopeddMS . MedRecdMSServer

destinationType Type of destination. Guidelines for setting this value are provided below.

destinationName Name of the destination. Multiple names can be specified, separated by commas.

Use the following guidelines for setting the sourceType and destinationType:
e When unassigning application deployments, set the values as follows:
— sourceType:. AppDeployment
— destinationType:. Target
o When unassigning libraries, set the values as follows:
— sourceType:. Library
— destinationType. Target
e When unassigning security types, set the values as follows:
— sourceType: Name of the security type, such as User
— destinationType: Name of the destination security type, such as Group
e When unassigning servers from clusters, set the values as follows:
— sourceType. Server
— destinationType:. Cluster
e When unassigning services, set the values as follows:
— sourceType: Name of the Speciﬁc server, such as JDBCSystemResource

— destinationType. Target

e When unassigning subdeployments, set the values as follows:

A-62 WebLogic Scripting Tool

Editing Commands

— sourceType. service.SubDeployment, where service Speciﬁes the parent of the
SubDeployment, such as JMSSystemResource . SubDeployment; you can also specify
nested subdeployments (such as AppDeployment . SubDeployment . SubDeployment)

— destinationType. Target

Example

The following examples:

e Unassign the servers myServer and myServer?2 from the cluster myCluster.

wls:/offline/medrec> unassign("Server", "myServer,myServer2", "Cluster",
"myCluster")

e Unassign the user newUser from the group Monitors.
wls:/offline/medrec> unassign("User", "newUser", "Group", "Monitors")

e Unassign the application deployment myAppDeployment from the target server

newserver.

wls:/offline/mydomain> unassign("AppDeployment", "myAppDeployment",
"Target", "newServer")

e Unassign the nested SubDeployment MedRecAppScopeddMS . MedRecIMSServer, which is
a child of the AppDeployment AppDeployment, from the target server AdminServer.

wls:/offline/mydomain>
assign('AppDeployment .SubDeployment .SubDeployment',
'MedRecEAR .MedRecAppScopedJMS . MedRecJMSServer', 'Target', 'AdminServer')

unassignAll

Command Category: Editing Commands
Use with WLST: Offline

Description

Note: This command is deprecated for WebLogic Server 9.0. You should update your script to use
the unassign command as described in “unassign” on page A-61. This command will
still operate on any resources that exist for the specified sourceType.

Unassigns all applications or services from one or more destinations.

In the event of an error, the command returns a WLSTException.

WebLogic Scripting Tool A-63

WLST Command and Variable Reference

Syntax

unassignAll (sourceType, destinationType, destinationName)

Argument Definition

sourceType Type of applications or services to be unassigned. This value can be set to
Applications or Services.

destinationType Type of destination. This value must be set to Target.

destinationName Name(s) of the destination. Multiple names can be specified, separated by commas.

Example
The following example unassigns all services from the servers adminServer and clusterl.

wls:/offline/medrec> unassignAll ("Services", "Target",

"adminServer,clusterl")

The following services, if present, are unassigned from the specified targets:
MigratableRMIService, Shutdownclass, Startupclass, FileT3, RMCFactory,
MailSession, MessagingBridge, JMSConnectionFactory, JDBCConnectionPool,
JDBCMultipool, JDBCTxDatasource, JDBCDataSource, JDBCPoolComp,
JoltConnectionPool, WLECConnectionPool, and WICServer.

undo

Command Category: Editing Commands
Use with WLST: Online

Description

Reverts all unsaved or unactivated edits.

You specify whether to revert all unactivated edits (including those that have been saved to disk),
or all edits made since the last save operation. This command does not release the edit session.

In the event of an error, the command returns a WLSTException.

Syntax

undo ([unactivateChanges], [defaultAnswer])

A-64 WebLogic Scripting Tool

Editing Commands

Argument Definition

unactivateChanges Optional. Boolean value specifying whether to undo all unactivated changes,
including edits that have been saved to disk. This argument defaults to false,
indicating that all edits since the last save operation are reverted.

defaultAnswer Optional. Default response, if you would prefer not to be prompted at the command
line. Valid values are y and n. This argument defaults to null, and WLST prompts
you for a response.

Example

The following example reverts all changes since the last save operation. WLST prompts for
verification before reverting.

wls:/mydomain/edit !> undo()
Sure you would like to undo your changes? (y/n)

Y
Discarded your in-memory changes successfully.

wls:/mydomain/edit>

The following example reverts all unactivated changes. WLST prompts for verification before
reverting.

wls:/mydomain/edit !> undo('true')
Sure you would like to undo your changes? (y/n)

Y
Discarded all your changes successfully.

wls:/mydomain/edit>

validate

Command Category: Editing Commands
Use with WLST: Online

Description

Validates the changes that have been made but have not yet been saved. This command enables
you to verify that all changes are valid before saving them.

In the event of an error, the command returns a WLSTException.

WebLogic Scripting Tool A-65

WLST Command and Variable Reference

Syntax

validate ()

Example
The following example validates all changes that have been made but have not yet been saved.

wls:/mydomain/edit !> wvalidate()
Validating changes
Validated the changes successfully

Information Commands

Use the WLST information commands, listed in Table A-7, to interrogate domains, servers, and
variables, and provide configuration bean, runtime bean, and WLST-related information.

Table A-7 Information Commands for WLST Configuration

This command... Enables you to... Use with
WLST...
“addListener” on page A-68 Add a JMX listener to the specified MBean. Online
“configToScript” on page A-69 Convert an existing server configuration (config Online or
directory) to an executable WLST script Offline
“dumpStack” on page A-71 Display stack trace from the last exception that Online or
occurred while performing a WLST action, and Offline

reset the stack trace.

“dumpVariables” on page A-71 Display all variables used by WLST, including Online or
their name and value. Offline

“find” on page A-72 Find MBeans and attributes in the current Online
hierarchy.

“getConfigManager” on page A-74 Return the latest Online

ConfigurationManagerBean MBean which
manages the change process.

“getMBean” on page A-74 Return the MBean by browsing to the specified Online
path.

A-66 WebLogic Scripting Tool

Information Commands

Table A-7 Information Commands for WLST Configuration (Continued)

This command... Enables you to... Use with
WLST...
“getMBI” on page A-75 Return the MBeanInfo for the specified Online
MBeanType or the cmo variable.
“getPath” on page A-76 Return the MBean path for the specified MBean Online
instance.
“listChildTypes” on page A-76 List all the children MBeans that can be created or ~ Online
deleted for the cmo type.
“lookup” on page A-77 Look up the specified MBean. Online
“Is” on page A-78 List all child beans and/or attributes for the current ~ Online or
configuration or runtime bean. Offline
“man” on page A-81 Display help from MBeanInfo for the current Online
MBean or its specified attribute.
“redirect” on page A-82 Redirect WLST output to the specified filename. Online or
Offline
“removeListener” on page A-83 Remove a listener that was previously defined. Online
“showListeners” on page A-83 Show all listeners that are currently defined. Online
“startRecording” on page A-84 Record all user interactions with WLST; useful for ~ Online or
capturing commands to replay. Offline
“state” on page A-85 Returns a map of servers or clusters and their state Online
using Node Manager.
“stopRecording” on page A-86 Stop recording WLST commands. Online or
Offline
“stopRedirect” on page A-86 Stop redirection of WLST output to a file. Online or
Offline
“storeUserConfig” on page A-87 Create a user configuration file and an associated ~ Online
key file.
“threadDump” on page A-88 Display a thread dump for the specified server. Online or
Offline

WebLogic Scripting Tool A-67

WLST Command and Variable Reference

Table A-7 Information Commands for WLST Configuration (Continued)

This command... Enables you to... Use with
WLST...
“viewMBean” on page A-89 Display information about an MBean, such as the ~ Online
attribute names and values, and operations.
“writelniFile” on page A-90 Convert WLST definitions and method Online or
declarations to a Python (. py) file. Offline

addListener

Command Category: Information Commands
Use with WLST: Online

Description

Adds a JMX listener to the specified MBean. Any changes made to the MBean are reported to

standard out and/or are saved to the specified configuration file.

In the event of an error, the command returns a WLSTException.

Syntax
addListener (mbean, [attributeNames], [logFilel, [listenerName])
Argument Definition
mbean Name of the MBean or MBean object to listen on.
attributeNames Optional. Comma-separated list of all attribute names on which you would like to add
a JMX listener. This argument defaults to null, and adds a JMX listener for all attributes.
logFile Optional. Name and location of the log file to which you want to write listener
information.This argument defaults to standard out.
listenerName Optional. Name of the JMX listener. This argument defaults to a WLST-generated

name.

A-68

WebLogic Scripting Tool

Information Commands

Example

The following example defines a JMX listener on the cmo MBean for the Notes and
ArchiveConfigurationCount attributes. The listener is named domain-1listener and is
stored in . /listeners/domain. log.

wls:/mydomain/serverConfig> addListener (cmo,
"Notes,ArchiveConfigurationCount","./listeners/domain.log", "domain-listene

r")

configToScript

Command Category: Information Commands
Use with WLST: Online or Offline

Converts an existing server configuration (config directory) to an executable WLST script. You
can use the resulting script to re-create the resources on other servers.

Before running the generated script, you should update the properties file to specify values that
are appropriate for your environments. When you run the generated script:

e Ifa server is currently running, WLST will try to connect using the values in the properties
file and then run the script commands to create the server resources.

e If no server is currently running, WLST will start a server with the values in the properties
file, run the script commands to create the server resources, and shutdown the server. This
may cause you to exit from the WLST shell.

The configToScript command creates a user configuration file and an associated key file to
store encrypted attributes. The user configuration file contains the encrypted information. The
key file contains a secret key that is used to encrypt and decrypt the encrypted information.

In the event of an error, the command returns a WLSTException.

Syntax

configToScript ([configPath], [pyPath], [overwrite]l, [propertiesFilel,
[createDeploymentScript])

Argument Definition

configPath Optional. Path to the config directory that contains the configuration that you
want to convert. This argument defaults to. /config.

WebLogic Scripting Tool A-69

WLST Command and Variable Reference

Argument Definition (Continued)

pyPath Optional. Path and filename to which you want to write the converted WLST
script. This argument defaults to . /config/config.py.

overwrite Optional. Boolean value specifying whether the script file should be overwritten
if it already exists. This argument defaults to true, indicating that the script file
is overwritten.

propertiesFile Optional. Path to the directory in which you want WLST to write the properties
files. This argument defaults to the pathname specified for the scriptPath
argument.

createDeploymentSc Optional. Boolean value specifying whether WLST creates a script that performs
ript deployments only. This argument defaults to false, indicating that a deployment
script is not created.

Example

The following example converts the configuration to a WLST script config.py. By default, the
configuration file is loaded from . /config, the script file is saved to .config/config.py, and
the properties files is saved to .config/config.py.properties.

wls:/offline> configToScript ()

configToScript is loading configuration from
c:\bea\user_projects\domains\wls\config\config.xml

Completed configuration load, now converting resources to wlst script...
configToScript completed successfully

The WLST script is written to c:\bealuser_projects\domains\wls\config\config.py
and the properties file associated with this script is written to
c:\bea\user_projects\domains\wls\config\config.py.properties

wls:/offline>

The following example converts server resources configured in the file
c:\bea\user_projects\domains\mydomain\config directory to a WLST script
c:\bea\myscripts\config.py.

wls:/offline> configToScript('c:/bea/user_projects/domains/mydomain’,
'c:/bea/myscripts’')

configToScript is loading configuration from
c:\bea\user_projects\domains\mydomain\config\config.xml

Completed configuration load, now converting resources to wlst script...
configToScript completed successfully

The WLST script is written to c:\bea\myscripts\config.py

and the properties file associated with this script is written to

A-70 WebLogic Scripting Tool

Information Commands

c:\bea\mydomain\config.py.properties
wls:/offline>

dumpStack

Command Category: Information Commands
Use with WLST: Online or Offline

Description

Displays the stack trace from the last exception that occurred while performing a WLST action,
and resets the stack trace.

If successful, the dumpstack command returns the Throwable object. In the event of an error, the
command returns a WLSTException.

Syntax

dumpStack ()

Example
This example displays the stack trace.

wls:/myserver/serverConfig> dumpStack()
com.bea.plateng.domain.script.jython.WLSTException:

java.lang.reflect.Invocation TargetException

dumpVariables

Command Category: Information Commands
Use with WLST: Online or Offline

Description

Displays all the variables used by WLST, including their name and value. In the event of an error,
the command returns a WLSTException.

Syntax

dumpVariables ()

WebLogic Scripting Tool A-T1

WLST Command and Variable Reference

Example
This example displays all the current variables and their values.

wls:/mydomain/serverConfig> dumpVariables()

adminHome weblogic.rmi.internal .BasicRemoteRef - hostID: '-1
108080150904263937S:1ocalhost:[7001,8001,-1,-1,-1,-1,-1] :mydomain:AdminSer
ver', oid: '259', channel: 'null'

cmgr

[MBeanServerInvocationHandler]com.bea:Name=ConfigurationManager, Type=weblo

gic.management .mbeanservers.edit.ConfigurationManagerMBean

cmo
[MBeanServerInvocationHandler]com.bea:Name=mydomain, Type=Domain
connected true

domainName mydomain

wls:/mydomain/serverConfig>

find
Command Category: Information Commands
Use with WLST: Online

Description

Finds MBeans and attributes in the current hierarchy.

WLST returns the pathname to the MBean that stores the attribute and/or attribute type, and its
value. If searchInstancesOnly is set to false, this command also searches the MBeanType
paths that are not instantiated in the server, but that can be created. In the event of an error, the
command returns a WLSTException.

Syntax

find([name], [typel, [searchInstancesOnly])
Argument Definition
name Optional. Name of the attribute to find.

A-72 WebLogic Scripting Tool

Information Commands

Argument Definition (Continued)

type Optional. Type of the attribute to find.

searchInstancesOnly Optional. Boolean value specifying whether to search registered instances only
or to also search MBeanTypes paths that are not instantiated in the server, but
that can be created. This argument defaults to true, indicating only the
registered instances will be searched.

Example

The following example searches for an attribute named javaCompiler in the current
configuration hierarchy.

wls:/mydomain/serverConfig> find(name = 'JavaCompiler')

Finding 'JavaCompiler' in all registered MBean instances

/Servers/AdminServer JavaCompilerPreClassPath null
/Servers/AdminServer JavaCompiler java
/Servers/AdminServer JavaCompilerPostClassPath null

wls:/mydomain/serverConfig>

The following example searches for an attribute of type JMSRunt ime in the current configuration
hierarchy.

wls:/mydomain/serverRuntime> f£ind(type='JMSRuntime')
Finding MBean of type 'JMSRuntime' in all the instances
/IMSRuntime/AdminServer. jms

wls:/mydomain/serverRuntime>

The following example searches for an attribute named execute in the current configuration
hierarchy. The searchInstancesOnly argument is set to false, indicating to also search
MBeanTypes that are not instantiated in the server.

wls:/mydomain/serverConfig> f£ind(name='execute’,
searchInstancesOnly="'false')

Finding 'execute' in all registered MBean instances
/Servers/AdminServer ExecuteQueues
[Ljavax.management .0ObjectName; @laa7dbc
/Servers/AdminSever Use8lStyleExecuteQueues

false

WebLogic Scripting Tool A-73

WLST Command and Variable Reference

Now finding 'execute' in all MBean Types that can be instantiated ...
/Servers ExecuteQueues
/Servers Use8lStyleExecuteQueues

wls:/mydomain/serverConfig>

getConfigManager

Command Category: Editing Commands
Use with WLST: Online

Description

Returns the latest ConfigurationManager MBean which manages the change process. You can
then invoke methods to manage configuration changes across a domain. In the event of an error,
the command returns a WLSTException.

Syntax

getConfigManager ()

Example

The following example returns the latest ConfigurationManagerBean MBean and stores it
within the task variable.

wls:/mydomain/serverConfig> cm=getConfigManager ()
wls:/mydomain/serverConfig> cm=getType ()

'weblogic.management .mbeanservers.edit.ConfigurationManagerMBean'

getMBean

Command Category: Information Commands
Use with WLST: Online

Description

Returns the MBean by browsing to the specified path. In the event of an error, the command
returns a WLSTException.

Note: No exception is thrown if the MBean is not found.

A-74 WebLogic Scripting Tool

Information Commands

Syntax

getMBean (mbeanPath)

Argument Definition
mbeanPath Path name to the MBean in the current hierarchy.
Example

The following example returns the MBean specified by the path.

wls:/mydomain/edit !> com=getMBean('Servers/myserver/COM/myserver')
wls:/mydomain/edit !> com.getType()
‘Server’

getMBI

Command Category: Information Commands
Use with WLST: Online

Description

Returns the MBeanInfo for the specified MBeanType or the cmo variable. In the event of an error,
the command returns a WLSTException.

Syntax

getMBI ([mbeanType])

Argument Definition
mbeanType Optional. MBeanType for which the MBeanInfo is displayed.
Example

The following example gets the MBeanInfo for the specified MBeanType and stores it in the
variable svrMbi.

wls:/mydomain/serverConfig>
svrMbi=getMBI ('weblogic.management.configuration.ServerMBean')

WebLogic Scripting Tool A-75

WLST Command and Variable Reference

getPath

Command Category: Information Commands
Use with WLST: Online

Description

Returns the MBean path for the specified MBean instance or ObjectName for the MBean in the
current tree. In the event of an error, the command returns a WLSTException.

Syntax

getPath (mbean)

Argument Definition

mbean MBean instance or ObjectName for the MBean in the current tree for which you want

to return the MBean path.

Example
The following example returns the MBean specified by the path.

wls:/mydomain/edit !> path=getPath('com.bea:Name=myserver, Type=Server')

wls:

/mydomain/edit !> print path

'Servers/myserver'

A-76

listChildTypes

Command Category: Information Commands
Use with WLST: Online

Description

Lists all the child MBeans that can be created or deleted for the cmo. The cmo variable specifies
the configuration bean instance to which you last navigated using WLST. For more information about
the cmo variable, see “Changing the Current Management Object” on page 4-3.

In the event of an error, the command returns a WLSTException.

WebLogic Scripting Tool

Information Commands

Syntax

listChildTypes ([parent])

Argument Definition
parent Optional. Parent type for which you want the children types listed.
Example

The following example lists the children MBeans that can be created or deleted for the cmo type.

wls:/mydomain/serverConfig> listChildTypes()
AppDeployments

BridgeDestinations

CachingRealms

Clusters

wls:/mydomain/serverConfig>

lookup

Command Category: Information Commands
Use with WLST: Online

Description

Looks up the specified MBean. The MBean must be a child of the current MBean. In the event
of an error, the command returns a WLSTException.

Syntax

lookup (name, [childMBeanType])

Argument Definition

name Name of the MBean that you want to lookup.

childMBeanType Optional. The type of the MBean that you want to lookup.

WebLogic Scripting Tool A-71

WLST Command and Variable Reference

Example

The following example looks up the specified server, myserver, and stores the returned stub in
the sbean variable.

wls:/mydomain/serverConfig> sbean=lookup ('myserver', 'Server')
wls:/mydomain/serverConfig> sbean.getType ()
‘Server’

wls:/mydomain/serverConfig>

IS

Command Category: Information Commands
Use with WLST: Online or Offline

Description

Lists all the child beans and/or attributes for the current configuration or runtime bean.

You can optionally control the output by specifying an argument. If no argument is specified, the
command lists all child beans and attributes in the domain. The output is returned as a string.

Note: Because WLST offline enables you to access and update the configuration objects that
appear in the configuration files only, if you wish to view and/or change attribute values
for a configuration object that is not already persisted in the configuration files as an
XML element, you must first create the configuration object.

In the event of an error, the command returns a WLSTException.

Table A-8 describes the property information that appears in the left-hand column of the 1s
command output.

Note: The property information is based on the MBeanInfo; it does not reflect user permissions.

Table A-8 Is Command Output Information

Output Definition

d

Configuration or runtime bean with which you can use the cd command; analogous to
a directory in a UNIX or Windows file system.

Readable property.

A-78

WebLogic Scripting Tool

Information Commands

Table A-8 Is Command Output Information (Continued)

Output Definition (Continued)
w Writeable property.
x Executable operation.

Syntax

1s(['a"’

| '¢' | 'o' | mbeanPathl, [returnMap] [returnTypel)

Argument

Definition

a

Optional. Displays all the attribute names and values for the current configuration or
runtime bean. If the attribute is encrypted, WLST displays six asterisks (* * * x x *),

Optional. Displays all the child beans that are contained in the current configuration or
runtime bean. This argument is the default.

Optional. This argument is only applicable when you are online (that is, WLST is
connected to a running server). Displays all operations that can be invoked on the
current runtime MBean. Operations are not shown for configuration MBeans.

mbeanPath

Optional. Path name to the MBean in the current hierarchy for which you want to list
all child beans and attributes.

returnMap

Optional. Boolean value specifying whether to return a map containing the return
values. If specified with the ¢ argument, WLST returns a list of objects that contain all
the children and referral MBean names. If specified with the a argument, WLST returns
a HashMap of attribute name-value pairs. This argument defaults to false, indicating
that no map is returned; in this case, WLST returns a String.

returnType

Optional. Controls the output returned in the map. This argument can be set to a, ¢, or
o, and is only valid if returnMap is set to true. This argument defaults to c.

Example

The following example displays all the child configuration beans, and attribute names and values
for the examples domain, which has been loaded into memory, in WLST offline mode:

wls:/offline/mydomain > 1s()

dr-- AppDeployments

WebLogic Scripting Tool A-719

WLST Command and Variable Reference

A-80

dr-- BridgeDestinations

dr-- Clusters

dr-- DeploymentConfiguration
dr-- Deployments

dr-- EmbeddedLDAP

dr-- ErrorHandlings

dr-- FileStores

dr-- JDBCDataSourceFactories
dr-- JDBCStores

dr-- JDBCSystemResources
dr-- JMSBridgeDestinations
dr-- JMSInteropModules

dr-- JMSServers

dr-- JMSSystemResources

dr-- JMX

wls:/offline/examples>

The following example displays all the attribute names and values in DomainMBean:

wls:/mydomain/serverConfig> 1ls('a')

-r-- AdminServerName

-r-- AdministrationMBeanAuditingEnabled
-r-—- AdministrationPort

-r-- AdministrationPortEnabled
-r-- AdministrationProtocol
-r-- ArchiveConfigurationCount
-r-- ClusterConstraintsEnabled
-r-- ConfigBackupEnabled

-r-- ConfigurationAuditType
-r-- ConfigurationVersion

-r-- ConsoleEnabled

-r-- LastModificationTime

-r-- Name

-r-- Notes

-r-- Parent

-r-- ProductionModeEnabled
-r-- RootDirectory

WebLogic Scripting Tool

AdminServer
false

9002

false

t3s

0

false

false

none
9.0.0.0
true

0
basicWLSDomain
null

null

false

Information Commands

-r—- Type Domain

wls:/mydomain/serverConfig>

The following example displays all the child beans and attribute names and values in Servers
MBean:

wls:/mydomain/serverConfig> ls('Servers')

dr-- AdminServer

The following example displays the attribute names and values for the specified MBean path and
returns the information in a map:

wls:/mydomain/serverConfig> svrAttrList = ls('edit:/Servers/myserver',

returnMap='true', returnType='a')

man

Command Category: Information Commands
Use with WLST: Online

Description

Displays help from MBeanInfo for the current MBean or its specified attribute. In the event of an
error, the command returns a WLSTException.

Syntax

man ([attrName])

Argument Definition

attrName Optional. MBean attribute name for which you would like to display help. If not
specified, WLST displays helps for the current MBean.

Example

The following example displays help from MBeanInfo for the ServerMBean bean.

wls:/mydomain/serverConfig> man('Servers')
dynamic : true
creator : createServer

destroyer : destroyServer

WebLogic Scripting Tool A-81

WLST Command and Variable Reference

description : <p>Returns the ServerMBeans representing the servers that have
been configured to be part of this domain.</p>

descriptorType : Attribute

Name : Servers

interfaceClassName : [Lweblogic.management.configuration.ServerMBean;
displayName : Servers

relationship : containment

redirect

Command Category: Information Commands
Use with WLST: Online or Offline

Description
Redirects WLST output to the specified filename.

In the event of an error, the command returns a WLSTException.

Syntax

redirect (outputFile, [toStdOut])

Argument Definition

outputFile Name of the file to which you want to record the WLST commands. The filename can
be absolute or relative to the directory from which you enter the command.

tosStdout Optional. Boolean value specifying whether the output should be sent to stdout. This
argument defaults to true, indicating that the output will be sent to stdout.

Example

The following example begins redirects WLST output to the 1ogs/wlst.log file in the current
directory:

wls:/mydomain/serverConfig> redirect('./logs/wlst.log')

A-82 WebLogic Scripting Tool

Information Commands

removelListener

Command Category: Information Commands
Use with WLST: Online

Description

Removes a listener that was previously defined. If you do not specify an argument, WLST
removes all listeners defined for all MBeans. For information about setting a listener, see
“addListener” on page A-68.

In the event of an error, the command returns a WLSTException.

Syntax
removeListener ([mbean], [listenerName])
Argument Definition
mbean Optional. Name of the MBean or MBean object for which you want to remove the
previously defined listeners.
listenerName Optional. Name of the listener to be removed.
Example

The following example removes the listener named mylistener.

wls:/mydomain/serverConfig> removeListener (listenerName="mylistener")

showListeners

Command Category: Information Commands
Use with WLST: Online

Description

Shows all listeners that are currently defined. For information about setting a listener, see
“addListener” on page A-68.

In the event of an error, the command returns a WLSTException.

WebLogic Scripting Tool A-83

WLST Command and Variable Reference

Syntax

showListeners ()

Example
The following example shows all listeners that are currently defined.

wls:/mydomain/serverConfig> showListeners/()

startRecording

Command Category: Information Commands
Use with WLST: Online or Offline

Description

Records all user interactions with WLST. This command is useful for capturing commands for
replay.

In the event of an error, the command returns a WLSTException.

This command cannot be used when you are importing WLST as a Jython module, as described
in “Importing WLST as a Jython Module” on page 2-11.

Syntax

startRecording (recordFile, [recordAll])

Argument Definition

recordFile Name of the file to which you want to record the WLST commands. The filename can
be absolute or relative to the directory from which you invoked WLST.

recordAll Optional. Boolean value specifying whether to capture all user interactions in the file.
This argument defaults to false, indicating that only WLST commands are captured,
and not WLST command output.

Example

The following example begins recording WLST commands in the record. py file:

A-84 WebLogic Scripting Tool

Information Commands

wls:/mydomain/serverConfig> startRecording('c:/myScripts/record.py')
Starting recording to c:/myScripts/record.py

wls:/mydomain/serverConfig>

state

Command Category: Information Commands
Use with WLST: Online

Description
Using Node Manager, returns a map of servers or clusters and their state. Node Manager must be
running.

For more information about server states, see “Understanding Server Life Cycle” in Managing
Server Startup and Shutdown at

http://e-docs.bea.com/wls/docs90/server_start/server_life.html.

In the event of an error, the command returns a WLSTException.

Syntax
state (name, [typel)
Argument Definition
name Name of the server or cluster for which you want to retrieve the current state.
type Optional. Type, Server or Cluster. This argument defaults to Server. When
returning the state of a cluster, you must set this argument explicitly to Cluster, or
the command will fail.
Example

The following example returns the state of the Managed Server, managed1.

wls:/mydomain/serverConfig> state('managedl', 'Server')
Current state of "managedl": SUSPENDED

wls:/mydomain/serverConfig>

The following example returns the state of the cluster, mycluster.

WebLogic Scripting Tool A-85

http://e-docs.bea.com/wls/docs90/server_start/server_life.html

WLST Command and Variable Reference

wls:/mydomain/serverConfig> state('mycluster', 'Cluster')

There are 3 server(s) in cluster: mycluster

States of the servers are
MServerl---SHUTDOWN
MServer2---SHUTDOWN
MServer3---SHUTDOWN

wls:/mydomain/serverConfig>

stopRecording

Command Category: Information Commands
Use with WLST: Online or Offline

Description

Stops recording WLST commands. For information about starting a recording, see
“startRecording” on page A-84.

In the event of an error, the command returns a WLSTException.

Syntax

stopRecording ()

Example
The following example stops recording WLST commands.

wls:/mydomain/serverConfig> stopRecording/()
Stopping recording to c:\myScripts\record.py

wls:/mydomain/serverConfig>

stopRedirect

Command Category: Information Commands
Use with WLST: Online or Offline

Description

Stops the redirection of WLST output to a file, if redirection is in progress.

In the event of an error, the command returns a WLSTException.

A-86 WebLogic Scripting Tool

Information Commands

Syntax

stopRedirect ()

Example
The following example stops the redirection of WLST output to a file:

wls:/mydomain/serverConfig> stopRedirect ()

WLST output will not be redirected to myfile.txt any more

storeUserConfig

Command Category: Information Commands
Use with WLST: Online

Description

Creates a user configuration file and an associated key file. The user configuration file contains
an encrypted username and password. The key file contains a secret key that is used to encrypt
and decrypt the username and password.

Only the key file that originally encrypted the username and password can be used to decrypt the
values. If you lose the key file, you must create a new user configuration and key file pair.

In the event of an error, the command returns a WLSTException.

Syntax

storeUserConfig(userConfigFile, userKeyFile, [nm])

Argument Definition

userConfigFile Name of the file to store the user configuration. The filename can be absolute or
relative to the directory from which you enter the command.

userKeyFile Name of the file to store the key information that is associated with the user
configuration file that you specify. The pathname can be absolute or relative to the
directory from which you enter the command.

nm Optional. Boolean value specifying whether to store the username and password for
Node Manager or WebLogic Server. If set to true, the Node Manager username and
password is stored. This argument default to false.

WebLogic Scripting Tool A-87

WLST Command and Variable Reference

Example

The following example creates and stores a user configuration file and key file in the specified
locations.

wls:/mydomain/serverConfig>
storeUserConfig('c:/myFiles/myuserconfigfile.secure’',
'c:/myFiles/myuserkeyfile.secure')

Creating the key file can reduce the security of your system if it is not
kept in a secured location after it is created. Do you want to create the
key file? y or n

Y

The username and password that were used for this current WLS connection are
stored in c:/myFiles/mysuserconfigfile.secure and
c:/myFiles/myuserkeyfile.secure

wls:/mydomain/serverConfig>

threadDump

Command Category: Information Commands
Use with WLST: Online or Offline

Description

Displays a thread dump for the specified server. In the event of an error, the command returns a
WLSTException.

Syntax

threadDump ([writeToFile], [fileName], [serverName])
Argument Definition
writeToFile Optional. Boolean value specifying whether to save the output to a file. This argument

defaults to true, indicating that output is saved to a file.

fileName Optional. Name of the file to which the output is written. The filename can be absolute

or relative to the directory where WLST is running. This argument defaults to
Thread_Dump_serverName file, where serverName indicates the name of the
server. This argument is valid only if writeToFileis setto true.

A-88

WebLogic Scripting Tool

Information Commands

Argument Definition (Continued)

serverName Optional. Server name for which the thread dump is requested. This argument defaults
to the server to which WLST is connected.

If you are connected to an Administration Server, you can display a thread dump for the
Administration Server and any Managed Server that is running in the domain. If you are
connected to a Managed Server, you can only display a thread dump for that Managed
Server.

Example

The following example displays the thread dump for the current server and saves the output to
the Thread_Dump_serverName file.

wls:/mydomain/serverConfig> threadDump ()

The following example displays the thread dump for the server managedserver. The
information is not saved to a file.

wls:/mydomain/serverConfig> threadDump (writeToFile='false',

serverName='managedServer"')

viewMBean

Command Category: Information Commands
Use with WLST: Online

Description

Displays information about an MBean, such as the attribute names and values, and operations. In
the event of an error, the command returns a WLSTException.

Syntax

viewMBean (mbean)

Argument Definition

mbean MBean for which you want to display information.

WebLogic Scripting Tool A-89

WLST Command and Variable Reference

Example

The following example displays information about the current MBean, cmo.

wls:/mydomain/serverConfig> cmo.getType ()

‘Domain’

wls:/mydomain/serverConfig> viewMBean (cmo)

Attribute Names and Values

XMLEntityCaches null

Targets javax.management .ObjectName [com.bea
:Name=MedRecJMSServer, Type=JMSServer,
com.bea:Name=WSStoreForwardInternalJMSServerMedRecServer, Type=JMSServer,
com.bea:Name=MedRecWseedJMSServer, Type=JMSServer,
com.bea:Name=PhysWSEEJMSServer, Type=JMSServer,
com.bea:Name=MedRecSAFAgent , Type=SAFAgent,

com.bea:Name=AdminServer, Type=Server]

RootDirectory

EmbeddedLDAP

com.bea:Name=00TB_medrec, Type=EmbeddedLDAP

RemoteSAFContexts null

Libraries javax.management .ObjectName [com.bea

wls: /mydomain/serverConfig>

writelniFile

Command Category: Editing Commands
Use with WLST: Online

Description

Converts WLST definitions and method declarations to a Python (.py) file to enable advanced
users to import them as a Jython module. After importing, the definitions and method declarations
are available to other Jython modules and can be accessed directly using Jython syntax. For more
information, see “Importing WLST as a Jython Module” on page 2-11.

In the event of an error, the command returns a WLSTException.

Syntax

writeIniFile(filePath)

A-90 WebLogic Scripting Tool

Life Cycle Commands

Argument Definition
filePath Full pathname to the file that you want to save the converted information.
Example

The following example converts WLST to a Python file named wl.py.

wls:/offline> writeIniFile("wl.py")

The Ini file is successfully written to wl.py

wls:/offline>

Life Cycle Commands

Use the WLST life cycle commands, listed in Table A-9, to manage the life cycle of a server

instance.

For more information about the life cycle of a server instance, see “Understanding Server Life
Cycle” in Managing Server Startup and Shutdown at

http://e-docs.bea.com/wls/docs90/server_start/server_life.html.

Table A-9 Life Cycle Commands for WLST Configuration

This command... Enables you to... Use with
WLST...
“migrate” on page A-92 Migrate services to a target server within a cluster. Online
“resume” on page A-93 Resume a server instance that is suspended or in ADMIN state. ~ Online
“shutdown” on page A-94 Gracefully shut down a running server instance or cluster. Online
“start” on page A-96 Start a Managed Server instance or a cluster using Node Online
Manager.
“startServer” on page A-98 Start the Administration Server. Online or
Offline
“suspend” on page A-99 Suspend a running server. Online

WebLogic Scripting Tool A-91

http://e-docs.bea.com/wls/docs90/server_start/server_life.html

WLST Command and Variable Reference

migrate

Command Category: Life Cycle Commands
Use with WLST: Online

Description

Migrates the specified services (JTA, JIMS, or Server) to a targeted server within a cluster. In the
event of an error, the command returns a WLSTException.

Syntax

migrate (sname, destinationName, [sourceDown], [destinationDown],
[migrationType])

Argument Definition

sname Name of the server from which the services should be migrated.

destinationName Name of the machine or server to which you want to migrate the services.

sourceDown Optional. Boolean value specifying whether the source server is down. This argument
defaults to true, indicating that the source server is not running.

When migrating JTA services, the sourceDown argument is ignored, if specified, and
defaults to true. The source server must be down in order for the migration of JTA
services to succeed.

destinationDown Optional. Boolean value specifying whether the destination server is down. This
argument defaults to false, indicating that the destination server is running.

If the destination is not running, and you do not set this argument to true, WLST
returns a MigrationException.

When migrating a JMS service to a non-running server instance, the server instance
will activate the JMS service upon the next startup. When migrating the JTA
Transaction Recovery Service to a non-running server instance, the target server
instance will assume recovery services when it is started.

migrationType Optional. Type of service(s) that you want to migrate. Valid values include:
* jta—Migrate JTA services only.
* server—Migrate Server services only.
e all—Migrate all JTA and JMS services.

This argument defaults to all.

A-92 WebLogic Scripting Tool

Life Cycle Commands

Example

The following example migrates all JMS and JTA services on serverl to the server server2.
The boolean arguments specify that the source server is down and the destination server is
running.

wls:/mydomain/edit !> migrate('serverl', 'server2', 'true', 'false', 'all')

Migrating all JMS and JTA services from 'serverl' to destination ‘server2’

wls:/mydomain/edit !>

The following example migrates all Server services on serverl to the server server2. The
boolean arguments specify that the source server is down and the destination server is running.

wls:/mydomain/edit !> migrate('serverl', 'server2', 'true', 'false’',
'Server')
Migrating singleton server services from 'serverl' to machine 'server2'...

wls:/mydomain/edit !>

resume

Command Category: Life Cycle Commands
Use with WLST: Online

Description

Resumes a server instance that is suspended or in ADMIN state. This command moves a server to
the RUNNING state. For more information about server states, see “Understanding Server Life
Cycle” in Managing Server Startup and Shutdown at

http://e-docs.bea.com/wls/docs90/server_start/server_life.html.

In the event of an error, the command returns a WLSTException.

Syntax
resume ([sname], [block])
Argument Definition
sname Name of the server to resume. This argument defaults to the server to which WLST is

currently connected.

WebLogic Scripting Tool A-93

http://e-docs.bea.com/wls/docs90/server_start/server_life.html

WLST Command and Variable Reference

Argument Definition (Continued)

block Optional. Boolean value specifying whether WLST should block user interaction until

the server is resumed. This argument defaults to false, indicating that user interaction
is not blocked. In this case, WLST returns control to the user after issuing the command
and assigns the task MBean associated with the current task to a variable that you can
use to check its status. If you are importing WLST as a Jython module, as described in
“Importing WLST as a Jython Module” on page 2-11, bIock is always set to true.

A-94

Example
The following example resumes a Managed Server instance.

wls:/mydomain/serverConfig> resume ('managedl', block='true')
Server 'managedl' resumed successfully.

wls:/mydomain/serverConfig>

shutdown

Command Category: Life Cycle Commands
Use with WLST: Online

Description

Gracefully shuts down a running server instance or a cluster. The shutdown command waits for
all the in-process work to be completed before shutting down the server or cluster.

You shut down a server to which WLST is connected by entering the shutdown command
without any arguments.

When connected to a Managed Server instance, you only use the shutdown command to shut
down the Managed Server instance to which WLST is connected; you cannot shut down another
server while connected to a Managed Server instance.

WLST uses Node Manager to shut down a Managed Server. When shutting down a Managed
Server, Node Manager must be running.

In the event of an error, the command returns a WLSTException.

Syntax

shutdown ([name], [entityType], [ignoreSessions], [timeOut], [force],
[block])

WebLogic Scripting Tool

Life Cycle Commands

Argument

Definition

name

Optional. Name of the server or cluster to shutdown. This argument defaults to the
server to which WLST is currently connected.

entityType

Optional. Type, Server or Cluster. This argument defaults to Server. When
shutting down a cluster, you must set this argument explicitly to Cluster, or the
command will fail.

ignoreSessions

Optional. Boolean value specifying whether WLST should drop all HTTP sessions
immediately or wait for HTTP sessions to complete or timeout while shutting down.
This argument defaults to false, indicating that all HTTP sessions must complete
or timeout.

timeOut

Optional. Time (in milliseconds) that WLST waits for subsystems to complete
in-process work and suspend themselves before shutting down the server. This
argument defaults to 0 seconds, indicating that there is no timeout.

force

Optional. Boolean value specifying whether WLST should terminate a server
instance or a cluster without waiting for the active sessions to complete. This
argument defaults to false, indicating that all active sessions must complete before
shutdown.

block

Optional. Boolean value specifying whether WLST should block user interaction
until the server is shutdown. This argument defaults to false, indicating that user
interaction is not blocked. In this case, WLST returns control to the user after issuing
the command and assigns the task MBean associated with the current task to a
variable that you can use to check its status. If you are importing WLST as a Jython
module, as described in “Importing WLST as a Jython Module” on page 2-11,
blockis always set to true.

Example

The following example instructs WLST to shutdown the server to which you are connected:

wls:/mydomain/serverConfig> shutdown()

Shutting down the admin server that you are currently connected to

Disconnected from weblogic server: AdminServer

The following example instructs WLST to wait 1000 seconds for HTTP sessions to complete or
timeout (at 1000 ms) before shutting down myserver:

WebLogic Scripting Tool A-95

WLST Command and Variable Reference

wls:/mydomain/serverConfig> shutdown('myserver', 'Server', 'false',1000,
block="'false')

The following example instructs WLST to drop all HTTP sessions immediately while connected
to a Managed Server instance:

wls:/mydomain/serverConfig> shutdown('MServerl', 'Server', 'true',1200)
Shutting down a managed server that you are connected to

Disconnected from weblogic server: MServerl

The following example instructs WLST to shutdown the cluster mycluster:

wls:/mydomain/serverConfig> shutdown('mycluster', 'Cluster’')
Shutting down the cluster with name mycluster

Shutdown of cluster mycluster has been issued, please

refer to the logs to check if the cluster shutdown is successful.
Use the state(<server-name>) or state(<cluster-name>, "Cluster")
to check the status of the server or cluster
wls:/mydomain/serverConfig> state('mycluster', 'Cluster’')

There are 3 server(s) in cluster: mycluster

States of the servers are
MServerl---SHUTDOWN
MServer2---SHUTDOWN
MServer3---SHUTDOWN

wls:/mydomain/serverConfig>

start

Command Category: Life Cycle Commands
Use with WLST: Online

Description

Starts a Managed Server instance or a cluster using Node Manager. WLST must be connected to
the Administration Server and Node Manager must be running.

For more information about WLST commands used to connect to and use Node Manager, see
“Node Manager Commands” on page A-100.

In the event of an error, the command returns a WLSTException.

A-96 WebLogic Scripting Tool

Life Cycle Commands

Syntax

start (name, [type], [url], [block])
Argument Definition
name Name of the Managed Server or cluster to start.
type Optional. Type, Server or Cluster. This argument defaults to Server. When

starting a cluster, you must set this argument explicitly to Cluster, or the
command will fail.

url Optional. Listen address and listen port of the server instance, specified using the
following format: [protocol://]1listen-address:listen-port.Ifnot
specified, this argument defaults to £3: //localhost:7001.

block Optional. Boolean value specifying whether WLST should block user interaction

until the server or cluster is started. This argument defaults to false, indicating
that user interaction is not blocked. In this case, WLST returns control to the user
after issuing the command and assigns the task MBean associated with the current
task to a variable that you can use to check its status. If you are importing WLST
as a Jython module, as described in “Importing WLST as a Jython Module” on
page 2-11, block is always set to true.

Example

The following example instructs Node Manager to start a Managed Server instance; the listen
address is 1ocalhost and listen port is 8801. WLST returns control to the user after issuing this
command, as block is set to false.

wls:/mydomain/serverConfig> start('myserver', 'Server', block='false')
Starting server myserver
Server with name myserver started successfully.

wls:/mydomain/serverConfig>

The following example instructs Node Manager to start a cluster. WLST block user interaction
until the cluster is started, as block defaults to true.

wls:/mydomain/serverConfig> start('mycluster', 'Cluster’')
Starting the following servers in Cluster, mycluster: MS1, MS2, MS3...
All servers in the cluster mycluster are started successfully.

wls:/mydomain/serverConfig>

WebLogic Scripting Tool A-97

WLST Command and Variable Reference

startServer

Command Category: Life Cycle Commands
Use with WLST: Online or Offline

Description

Starts the Administration Server. In the event of an error, the command returns a
WLSTException.

Syntax

startServer ([adminServerName] , [domainName], [url], [username], [password],
[domainDir], [block], [timeout], [serverLog], [systemProperties],
[jvmArgs])

Argument Definition

adminServerName Optional. Name of the Administration Server to start. This argument defaults to

myserver.

domainName Optional. Name of the domain to which the Administration Server belongs. This

argument defaults to mydomain.

url

Optional. URL of the Administration Server. This argument defaults to
t3://localhost:7001.

username Optional. Username use to connect WLST to the server. This argument defaults to

weblogic.

password Optional. Password used to connect WLST to the server. This argument defaults to

weblogic.

domainDir Optional. Domain directory in which the Administration Server is being started. This

argument defaults to the current directory in which WLST is running.

block Optional. Boolean value specifying whether WLST blocks user interaction until the

server is started. When blockis setto false, WLST returns control to the user after
issuing the command and assigns the task MBean associated with the current task to
a variable that you can use to check its status. This argument defaults to true,
indicating that user interaction is blocked. If you are importing WLST as a Jython
module, as described in “Importing WLST as a Jython Module” on page 2-11, block
is always set to true.

A-98

WebLogic Scripting Tool

Life Cycle Commands

Argument Definition (Continued)

timeout Optional. Time (in milliseconds) that WLST waits for the server to start before
canceling the operation. The default value is 60000 milliseconds. This argument is
only applicable when bIock is set to true.

serverLog Optional. Location of the server log file. This argument defaults to stdout.

systemProperties Optional. System properties to pass to the server process. System properties should be
specified as comma-seperated name-value pairs, and the name-value pairs should be
separated by equals sign (=).

JvmArgs Optional. JVM arguments to pass to the server process. Multiple arguments can be
specified, separated by commas.

Example

The following example starts the Administration Server named demoServer in the demoDomain.
By default, usenu is set to true, and, therefore, Node Manager must be running.

wls:/offline> startServer('demoServer', 'demoDomain','t3://localhost:8001"',
'myweblogic', 'wlstdomain', 'c:/mydomains/wlst', 'false', 60000,
jvmArgs="'-XX:MaxPermSize=75m, -Xmx512m, -XX:+UseParallelGC')

wls:/offline>

suspend

Command Category: Life Cycle Commands
Use with WLST: Online

Description

Suspends a running server. This command moves a server from the RUNNING state to the ADMIN
state. For more information about server states, see “Understanding Server Life Cycle” in
Managing Server Startup and Shutdown at

http://e-docs.bea.com/wls/docs90/server_start/server_life.html.

In the event of an error, the command returns a WLSTException.

Syntax

suspend ([sname], [ignoreSessions], [timeOut], [forcel, [blockl])

WebLogic Scripting Tool A-99

http://e-docs.bea.com/wls/docs90/server_start/server_life.html

WLST Command and Variable Reference

Argument Definition

sname Optional. Name of the server to suspend. The argument defaults to the server to which

WLST is currently connected.

ignoreSessions Optional. Boolean value specifying whether WLST should drop all HTTP sessions

immediately or wait for HTTP sessions to complete or time out while suspending. This
argument defaults to false, indicating that HTTP sessions must complete or time out.

timeOut Optional. Time (in seconds) the WLST waits for the server to complete in-process work

before suspending the server. This argument defaults to 0 seconds, indicating that there
is no timeout.

force Optional. Boolean value specifying whether WLST should suspend the server without

waiting for active sessions to complete. This argument defaults to false, indicating
that all active sessions must complete before suspending the server.

block Optional. Boolean value specifying whether WLST blocks user interaction until the

server is started. This argument defaults to £alse, indicating that user interaction is not
blocked. In this case, WLST returns control to the user after issuing the command and
assigns the task MBean associated with the current task to a variable that you can use to
check its status. If you are importing WLST as a Jython module, as described in
“Importing WLST as a Jython Module” on page 2-11, block is always set to true.

Example
The following example suspends a Managed Server instance:

wls:/mydomain/serverConfig> suspend('managedl')
Server 'managedl' suspended successfully.
wls:/mydomain/serverConfig>

Node Manager Commands

A-100

Use the WLST Node Managers commands, listed in Table A-10, to start, shut down, restart, and
monitor WebLogic Server instances. For more information about Node Manager, see “Using
Node Manager to Control Servers” in Managing Server Startup and Shutdown at

http://e-docs.bea.com/wls/docs90/server_start/nodemgr.html.

Note: Node Manager must be running before you can execute the commands within this
category. For all commands except for nm and nmconnect, WLST must be connected to
a running Node Manager.

WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/server_start/nodemgr.html

Node Manager Commands

Table A-10 Node Manager Commands for WLST Configuration

This command... Enables you to... Use with
WLST...
“nm” on page A-101 Determine whether WLST is connected to Node Manager. Online
“nmConnect” on page A-102 Connect WLST to Node Manager to establish a session. Online or
Offline
“nmDisconnect” on page A-104 Disconnect WLST from a Node Manager session. Online
“nmEnroll” on page A-104 Enroll the machine on which WLST is currently running. ~ Online
“nmKill” on page A-106 Kill the specified server instance that was started with Online
Node Manager.
“nmLog” on page A-107 Return the Node Manager log. Online
“nmServerLog” on page A-107 Return the server output log of the server that was started ~ Online
with Node Manager.
“nmServerStatus” on page A-108 Return the status of the server that was started with Node Online
Manager.
“nmStart” on page A-109 Start a server in the current domain using Node Manager. Online
“nmVersion” on page A-110 Return the Node Manager server version. Online
“startNodeManager” on Start Node Manager at default port (5556). Online or
page A-111 Offline

nm

Command Category: Node Manager Commands

Use with WLST: Online

Description

Determines whether WLST is connected to Node Manager. Returns true or false and prints a
descriptive message. Node Manager must be running before you can execute this command.

In the event of an error, the command returns a WLSTException.

WebLogic Scripting Tool A-101

WLST Command and Variable Reference

A-102

Syntax

nm ()

Example

The following example indicates that WLST is currently connected to Node Manager that is
monitoring mydomain.

wls:/mydomain/serverConfig> nm()
Currently connected to Node Manager that is monitoring the domain "mydomain"

wls:/mydomain/serverConfig>
The following example indicates that WLST is not currently connected to Node Manager.

wls:/mydomain/serverConfig> nm()
Not connected to any Node Manager

wls:/mydomain/serverConfig>

nmConnect

Command Category: Node Manager Commands
Use with WLST: Online or Offline

Description

Connects WLST to Node Manager to establish a session. After connecting to Node Manager, you
can invoke any Node Manager commands via WLST. Node Manager must be running before you
can execute this command.

Once connected, the WLST prompt displays as follows, where domainName indicates the name
of the domain that is being managed: wls: /nm/domainName>. If you then connect WLST to a
WebLogic Server instance, the prompt is changed to reflect the WebLogic Server instance. You
can use the nm command to determine whether WLST is connected to Node Manager, as
described in “nm” on page A-101.

In the event of an error, the command returns a WLSTException.

Syntax

nmConnect ([username], [password], [host], [port], [domainName], [domainDir]

[nmType])

WebLogic Scripting Tool

Node Manager Commands

Argument

Definition

username

Username of the operator who is connecting WLST to Node Manager. The username
defaults to weblogic.

Note: When running a server in production mode, you must specify the username and
password explicitly on the command line to ensure that the appropriate
username and password are used when connecting to Node Manager.

password

Password of the operator who is connecting WLST to Node Manager. The password
defaults to weblogic.

Note: When running a server in production mode, you must specify the username and
password explicitly on the command line to ensure that the appropriate
username and password are used when connecting to Node Manager.

host

Optional. Host name of Node Manager. This argument defaults to localhost.

port

Optional. Port number of Node Manager. This argument defaults to a value that is
based on the Node Manager server type, as follows:

* Forplain type, defaults to 5556
* For rsh type, defaults to 514

* For ssh type, defaults to 22

* For ss1 type, defaults to 5556

domainName

Optional. Name of the domain that you want to manage. This argument defaults to
mydomain.

domainDir

Optional. Path of the domain directory to which you want to save the Node Manager
secret file (nm_password.properties)and SerializedSystemIni .dat file.
This argument defaults to the directory in which WLST was started.

nmType

Type of the Node Manager server. Valid values include:
* plain for plain socket Java-based implementation
* rsh for RSH implementation

» ssh for script-based SSH implementation

* ssl for Java-based SSL implementation

This argument defaults to ss1.

WebLogic Scripting Tool A-103

WLST Command and Variable Reference

A-104

Example

The following example connects WLST to Node Manager to monitor the oamdomain domain
using the default host and port numbers and plain Node Manager type.

wls:/myserver/serverConfig> nmConnect ('weblogic', 'weblogic', 'localhost’',
'5555', 'oamdomain', 'c:/bea/user projects/domains/oamdomain’', 'plain’')
Connecting to Node Manager Server ...

Successfully connected to Node Manager.

wls:/nm/oamdomain>

nmDisconnect

Command Category: Node Manager Commands
Use with WLST: Online

Description

Disconnects WLST from a Node Manager session. WLST must be connected to Node Manager
to run this command.

In the event of an error, the command returns a WLSTException.

Syntax

nmDisconnect ()

Example
The following example disconnects WLST from a Node Manager session.

wls:/nm/oamdomain> nmDisconnect ()
Successfully disconnected from Node Manager

wls:/myserver/serverConfig>

nmEnroll

Command Category: Node Manager Commands
Use with WLST: Online

WebLogic Scripting Tool

Node Manager Commands

Description

Enrolls the machine on which WLST is currently running. WLST must be connected to an
Administration Server to run this command; WLST does not need to be connected to Node
Manager.

This command downloads the following files from the Administration Server:

e Node Manager secret file (nm_password.properties), which contains the encrypted
username and password that is used for server authentication

® SerializedSystemIni.dat file

This command also updates the nodemanager . domains file under the
WL_HOME/ common /nodemanager directory with the domain information, where wr,_ HOME refers
to the top-level installation directory for WebLogic Server.

You must run this command once per domain per machine unless that domain shares the root
directory of the Administration Server.

If the machine is already enrolled when you run this command, the Node Manager secret file
(nm_password.properties) is refreshed with the latest information from the Administration
Server.

In the event of an error, the command returns a WLSTException.

Syntax

nmEnroll ([domainDir], [nmHomel)
Argument Definition
domainDir Optional. Path of the domain directory to which you want to save the Node Manager

secret file (nm_password.properties)and SerializedSystemIni .dat file.
This argument defaults to the directory in which WLST was started.

nmHome Optional. Path to the Node Manager home. The nodemanager . domains file,
containing the domain information, is written to this directory. This argument defaults
to WL_HOME/common /nodemanager, where WL_ HOME refers to the top-level
installation directory for WebLogic Server.

WebLogic Scripting Tool A-105

WLST Command and Variable Reference

Example

The following example enrolls the current machine with Node Manager and saves the Node
Manager secret file (nm_password properties)and SerializedSystemIni.dat fileto

c: /bea/mydomain/common/nodemanager/nm_password.properties. The
nodemanager .domains file is written to wWL,_HOME/common /nodemanager by default.
wls:/mydomain/serverConfig> nmEnroll('c:/bea/mydomain/common/nodemanager’')
Enrolling this machine with the domain directory at
c:\bea\mydomain\common\nodemanager. ...

Successfully enrolled this machine with the domain directory at
C:\bea\mydomain\common\nodemanager

wls:/mydomain/serverConfig>

nmKill

Command Category: Node Manager Commands
Use with WLST: Online

Description

Kills the specified server instance that was started with Node Manager.

If you do not specify a server name using the serverName argument, the argument defaults to
myServer, which must match your server name or the command will fail.

If you attempt to kill a server instance that was not started using Node Manager, the command
displays an error. WLST must be connected to Node Manager to run this command.

In the event of an error, the command returns a WLSTException.

Syntax

nmKill ([serverName])

Argument Definition
serverName Optional. Name of the server to be killed. This argument defaults to myserver.
Example

The following example kills the server named oamserver.

A-106 WebLogic Scripting Tool

Node Manager Commands

wls:/nm/oamdomain> nmKill ('oamserver')
Killing server ‘oamserver’
Server oamServer killed successfully.

wls:/nm/oamdomain>

nmLog

Command Category: Node Manager Commands
Use with WLST: Online

Description

Returns the Node Manager log. WLST must be connected to Node Manager to run this command.

In the event of an error, the command returns a WLSTException.

Syntax

nmLog ([writer])

Argument Definition

writer Optional. java.io.Writer object to which you want to stream the log output.
This argument defaults to the WLST writer stream.

Example
The following example displays the Node Manager log.

wls:/nm/oamdomain> nmLog ()
Successfully retrieved the Node Manager log and written.

wls:/nm/oamdomain>

nmServerLog

Command Category: Node Manager Commands
Use with WLST: Online

WebLogic Scripting Tool A-107

WLST Command and Variable Reference

Description

Returns the server output log of the server that was started with Node Manager. WLST must be
connected to Node Manager to run this command.

In the event of an error, the command returns a WLSTException.

Syntax
nmServerLog ([serverName], [writer])
Argument Definition
serverName Optional. Name of the server for which you want to display the server output log. This
argument defaults to myserver.
writer Optional. java.io.Writer object to which you want to stream the log output.
This argument defaults to the WLSTInterpreter standard out, if not specified.
Example

The following example displays the server output log for the camserver server and writes the
log output to mywriter.

wls:/nm/ocamdomain> nmServerLog ('oamserver', myWriter)
Successfully retrieved the server log and written.

wls:/nm/ocamdomain>

nmServerStatus

Command Category: Node Manager Commands
Use with WLST: Online

Description

Returns the status of the server that was started with Node Manager. WLST must be connected
to Node Manager to run this command.

In the event of an error, the command returns a WLSTException.

A-108 WebLogic Scripting Tool

Node Manager Commands

Syntax

nmServerStatus ([serverName])

Argument Definition

serverName Optional. Name of the server for which you want to display the status. This argument
defaults to myserver.

Example
The following example kills the server named oamserver.

wls:/nm/ocamdomain> nmServerStatus('oamserver')
RUNNING

wls:/nm/oamdomain>

nmStart

Command Category: Node Manager Commands
Use with WLST: Online

Description

Starts a server in the current domain using Node Manager. WLST must be connected to Node
Manager to run this command.

In the event of an error, the command returns a WLSTException.

Syntax
nmStart ([serverName], [domainDir], [props], [writer])
Argument Definition
serverName Optional. Name of the server to be started.
domainDir Optional. Domain directory of the server to be started. This argument defaults to the
current directory in which WLST is running.
props Optional. System properties to apply to the new server.

WebLogic Scripting Tool A-109

WLST Command and Variable Reference

Argument Definition (Continued)

writer Optional. java.io.Writer object to which the server output is written. This

argument defaults to the WLST writer.

A-110

Example
The following example starts the managed1 server in the current domain using Node Manager.

wls:/nm/mydomain> nmStart ("managedl")
Starting server managedl
Server managedl started successfully

wls:/nm/mydomain>

The following example starts the Administration Server in the specified domain using Node
Manager. In this example, the prps variable stores the system property settings and is passed to
the command using the props argument.

wls:/nm/mydomain> prps = makePropertiesObject ("weblogic.ListenPort=8001")
wls:/nm/mydomain> nmStart ("AdminServer",props=prps)

Starting server AdminServer...

Server AdminServer started successfully

wls:/nm/mydomain>

nmVersion

Command Category: Node Manager Commands
Use with WLST: Online

Description

Returns the Node Manager server version. WLST must be connected to Node Manager to run this
command.

In the event of an error, the command returns a WLSTException.

Syntax

nmVersion ()

WebLogic Scripting Tool

Node Manager Commands

Example
The following example displays the Node Manager server version.

wls:/nm/oamdomain> nmVersion/()
The Node Manager version that you are currently connected to is 9.0.0.0

wls:/nm/oamdomain>

startNodeManager

Command Category: Node Manager Commands
Use with WLST: Online or Offline

Description
Starts Node Manager at the default port (5556).

Note: The WebLogic Server custom installation process optionally installs and starts Node
Manager as a Windows service on Windows systems. For more information, see “About
Node Manager Installation as a Windows Service” in BEA Products Installation Guide
at
http://e-docs.bea.com/common/docs90/install/prepare.html#node_manag
er. In this case, you do not need to start the Node Manager manually.

If Node Manager is already running when you invoke the startNodeManager command, the
following message is displayed:

A Node Manager has already been started.

Cannot start another Node Manager process via WLST

In the event of an error, the command returns a WLSTException.

Syntax
startNodeManager ([verbose], [nmProperties])
Example
Argument Definition
verbose Optional. Boolean value specifying whether WLST starts Node Manager in verbose

mode. This argument defaults to false, disabling verbose mode.

WebLogic Scripting Tool A-111

http://e-docs.bea.com/common/docs90/install/prepare.html#node_manager
http://e-docs.bea.com/common/docs90/install/prepare.html#node_manager

WLST Command and Variable Reference

Argument Definition (Continued)

nmProperties Optional. Comma-separated list of Node Manager properties, specified as name-value
pairs. Node Manager properties include, but are not limited to, the following:
NodeManagerHome, ListenAddress, ListenPort, and PropertiesFile

The following example displays the Node Manager server version.

wls:/mydomain/serverConfig> startNodeManager (verbose='true',
NodemanagerHome="'c: /bea/weblogic90/common/nodemanager', ListenPort='6666",
ListenAddress="myhost'))

Launching Node Manager

Successfully launched the Node Manager.

The Node Manager process i1s running independent of the WLST process
Exiting WLST will not stop the Node Manager process. Please refer

to the Node Manager logs for more information.

The Node Manager logs will be under c:\bea\weblogic90\common\nodemanager.

wls:/mydomain/serverConfig>

Tree Commands

Use the WLST tree commands, listed in Table A-11, to navigate among MBean hierarchies.

Table A-11 Tree Commands for WLST Configuration

Use this command... To... Use with
WLST...
“config” on page A-113 Navigate to the last MBean to which you navigated in the Online

configuration MBean hierarchy or to the root of the
hierarchy, DomainMBean.

Note: This command is deprecated for WebLogic Server
9.0. You should update your script to use the
serverConfig command as described in
“serverConfig” on page A-121.

“custom” on page A-115 Navigate to the root of custom MBeans that are registered in ~ Online
the server.

A-112 WebLogic Scripting Tool

Tree Commands

Table A-11 Tree Commands for WLST Configuration (Continued)

Use this command... To... Use with
WLST...

“domainConfig” on page A-116 Navigate to the last MBean to which you navigated in the Online
domain configuration hierarchy or to the root of the
hierarchy, DomainMBean.

“domainRuntime” on Navigate to the last MBean to which you navigated in the Online
page A-117 domain runtime hierarchy or to the root of the hierarchy,
DomainRuntimeMBean.

“edit” on page A-118 Navigate to the last MBean to which you navigated in the edit ~ Online
configuration MBean hierarchy or to the root of the
hierarchy, DomainMBean.

“indi” on page A-119 Navigates to the JNDI tree for the server to which WLST is Online
currently connected.

“runtime” on page A-120 Navigate to the last MBean to which you navigated in the Online
runtime hierarchy or the root of all runtime objects,
DomainRuntimeMBean.

Note: This command is deprecated for WebLogic Server
9.0. You should update your scripts to use the
serverRuntime command, as described in
“serverRuntime” on page A-121.

“serverConfig” on page A-121 Navigate to the last MBean to which you navigated in the Online
configuration MBean hierarchy or to the root of the
hierarchy, DomainMBean.

“serverRuntime” on page A-121 Navigate to the last MBean to which you navigated in the Online
runtime MBean hierarchy or to the root of the hierarchy,
ServerRuntimeMBean.

config

Command Category: Tree Commands
Use with WLST: Online

WebLogic Scripting Tool A-113

WLST Command and Variable Reference

A-114

Description

Note: This command is deprecated for WebLogic Server 9.0. You should update your scripts
to use the serverConfig command, as described in “serverConfig” on page A-121.

Navigates to the last MBean to which you navigated in the configuration MBean hierarchy or to
the root of the hierarchy, DomainMBean. For more information, see “Navigating Among MBean
Hierarchies” on page 4-9.

In the event of an error, the command returns a WLSTException.

Syntax

config()

Example

The following example illustrates how to navigate from the runtime MBean hierarchy to the
configuration MBean hierarchy on an Administration Server instance:

wls:/mydomain/runtime> config()

Location changed to config tree (deprecated). This is a writeable tree with
DomainMBean as the root.

For more help, use help('config')

wls:/mydomain/config> 1s()

dr-- Applications

dr-- BridgeDestinations

dr-- Clusters

dr-- DeploymentConfiguration
dr-- Deployments

dr-- DomainLogFilters

dr-- EmbeddedLDAP

dr-- JDBCConnectionPools
dr-- JDBCDataSourceFactories
dr-- JDBCDataSources

dr-- JDBCMultiPools

dr-- JDBCTxDataSources

dr-- JMSBridgeDestinations
dr-- JMSConnectionFactories
dr-- JMSDestinationKeys

dr-- JMSDestinations

WebLogic Scripting Tool

Tree Commands

dr-- JMSDistributedQueueMembers
dr-- JMSDistributedQueues

dr-- JMSDistributedTopicMembers
dr-- JMSDistributedTopics

dr-- JMSFileStores

dr-- JMSJDBCStores

wls:/mydomain/config>

custom

Command Category: Tree Commands
Use with WLST: Online

Description

Navigates to the root of custom MBeans that are registered in the server. WLST navigates,
interrogates, and edits custom MBeans as it does domain MBeans; however, custom MBeans
cannot use the cmo variable because a stub is not available.

Note: When navigating to the custom tree, WLST queries all MBeans in the compatibility
MBean server, the runtime MBean server, and potentially the JVM platform MBean
server to locate the custom MBeans. Depending on the number of MBeans in the current
domain, this process make take a few minutes, and WLST may not return a prompt right
away.

The custom command is available when WLST is connected to an Administration Server
instance or a Managed Server instance. When connected to a WebLogic Integration or WebLogic
Portal server, WLST can interact with all the WebLogic Integration or WebLogic Portal server
MBeans.

For more information about custom MBeans, see “Non-WebLogic Server MBeans” in
Programming WebLogic Management Services with JMX at
http://e-docs.bea.com/wls/docs81/jmx/overview.html#non_weblogic_server_mbe

ans.

In the event of an error, the command returns a WLSTException.

Syntax

custom ()

WebLogic Scripting Tool A-115

http://e-docs.bea.com/wls/docs81/jmx/overview.html
http://e-docs.bea.com/wls/docs81/jmx/overview.html

WLST Command and Variable Reference

Example

The following example navigates from the configuration MBean hierarchy to the custom MBean
hierarchy on a Administration Server instance.

wls:/mydomain/serverConfig> custom()
Location changed to custom tree. This is a writeable tree with No root. For
more help, use help('custom')

wls:/mydomain/custom>

domainConfig

Command Category: Tree Commands
Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the domain Configuration hierarchy or to
the root of the hierarchy, bomainMBean. This read-only hierarchy stores the configuration
MBeans that represent your current domain.

In the event of an error, the command returns a WLSTException.

Syntax

domainConfig ()

Example

The following example navigates from the configuration MBean hierarchy to the domain
Configuration hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> domainConfig()

Location changed to domainConfig tree. This is a read-only tree with
DomainMBean as the root.

For more help, use help('domainConfig')

wls:/mydomain/domainConfig> 1s()

dr-- AppDeployments

dr-- BridgeDestinations

dr-- Clusters

dr-- DeploymentConfiguration
dr-- Deployments

A-116 WebLogic Scripting Tool

Tree Commands

dr-- EmbeddedLDAP

dr-- ErrorHandlings

dr-- FileStores

dr-- JDBCDataSourceFactories
dr-- JDBCStores

dr-- JDBCSystemResources
dr-- JMSBridgeDestinations
dr-- JMSInteropModules

dr-- JMSServers

dr-- JMSSystemResources

wls:/mydomain/domainConfig>

domainRuntime

Command Category: Tree Commands
Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the domain Runtime hierarchy or to the
root of the hierarchy, DomainRuntimeMBean. This read-only hierarchy stores the runtime
MBeans that represent your current domain.

In the event of an error, the command returns a WLSTException.

Syntax

domainRuntime ()

Example

The following example navigates from the configuration MBean hierarchy to the domain
Runtime hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> domainRuntime ()

wls:/mydomain/domainRuntime> 1s()

dr-- AppRuntimeStateRuntime
dr-- DeployerRuntime

dr-- DomainServices

dr-- LogRuntime

WebLogic Scripting Tool A-117

WLST Command and Variable Reference

dr-- MessageDrivenControlEJBRuntime

dr-- MigratableServiceCoordinatorRuntime

dr-- SNMPAgentRuntime

dr-- ServerLifeCycleRuntimes

dr-- ServerRuntimes

dr-- ServerServices

-r-- ActivationTime Mon Aug 01 11:41:25 EDT 2005
-r-- Clusters null

-rw- CurrentClusterDeploymentTarget null

-Tw- CurrentClusterDeploymentTimeout 0

-r-- Name sampleMedRecDomain
-rw- Parent null

-r-- SNMPAgentRuntime null

-r-- Type DomainRuntime

wls:/mydomain/domainRuntime>

edit
Command Category: Tree Commands
Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the edit configuration MBean hierarchy
or to the root of the hierarchy, DomainMBean. This writeable hierarchy stores all of the
configuration MBeans that represent your current domain.

Note: To edit configuration beans, you must be connected to an Administration Server. If you
connect to a Managed Server, WLST functionality is limited to browsing the
configuration bean hierarchy. While you cannot use WLST to change the values of
MBeans on Managed Servers, it is possible to use the Management APIs to do so. BEA
Systems recommends that you change only the values of configuration MBeans on the
Administration Server. Changing the values of MBeans on Managed Servers can lead to
an inconsistent domain configuration.

For more information about editing configuration beans, see “Editing Configuration
MBeans” on page 4-12.

In the event of an error, the command returns a WLSTException.

A-118 WebLogic Scripting Tool

Tree Commands

Syntax

edit ()

Example

The following example illustrates how to navigate from the server configuration MBean
hierarchy to the editable copy of the domain configuration MBean hierarchy, in an
Administration Server instance.

wls:/myserver/serverConfig> edit ()

Location changed to edit tree. This is a writeable tree with DomainMBean as
the root.

For more help, use help('edit')

wls:/myserver/edit !> 1s()

dr-- AppDeployments

dr-- BridgeDestinations

dr-- Clusters

dr-- DeploymentConfiguration
dr-- Deployments

dr-- EmbeddedLDAP

wls:/myserver/edit !>

ndi
Command Category: Tree Commands
Use with WLST: Online

Description

Navigates to the JNDI tree for the server to which WLST is currently connected. This read-only
tree holds all the elements that are currently bound in JNDI.

In the event of an error, the command returns a WLSTException.

Syntax

Jndi ()

WebLogic Scripting Tool A-119

WLST Command and Variable Reference

A-120

Example

The following example navigates from the runtime MBean hierarchy to the Domain JNDI tree on
an Administration Server instance.

wls:/myserver/runtime> jndi ()
Location changed to jndi tree. This is a read-only tree with No root. For
more help, use help('jndi')

wls:/myserver/jndi> 1s()

dr-- ejb

dr-- javax
dr-- jms

dr-- weblogic

runtime

Command Category: Tree Commands
Use with WLST: Online

Description

Note: This command is deprecated for WebLogic Server 9.0. You should update your scripts
to use the serverRuntime command, as described in “serverRuntime” on page A-121.

Navigates to the last MBean to which you navigated in the runtime hierarchy or the root of all
runtime objects, DomainRuntimeMBean. When connected to a Managed Server instance, the root
of runtime MBeans is ServerRuntimeMBean.

In the event of an error, the command returns a WLSTException.

For more information, see “Browsing Runtime MBeans” on page 4-6.

Syntax

runtime ()

Example

The following example navigates from the configuration MBean hierarchy to the runtime MBean
hierarchy on a Managed Server instance.

wls:/mydomain/serverConfig> runtime ()
Location changed to runtime tree (deprecated). This is a read-only tree with

WebLogic Scripting Tool

Tree Commands

DomainRuntimeMBean as the root.
For more help, use help('runtime')
wls:/mydomain/runtime>

serverConfig

Command Category: Tree Commands
Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the configuration MBean hierarchy or to
the root of the hierarchy, DomainMBean.

This read-only hierarchy stores the configuration MBeans that represent the server to which
WLST is currently connected. The MBean attribute values include any command-line overrides
that a user specified while starting the server.

In the event of an error, the command returns a WLSTException.

For more information, see “Navigating Among MBean Hierarchies” on page 4-9.

Syntax

serverConfig()

Example

The following example navigates from the domain runtime MBean hierarchy to the configuration
MBean hierarchy on an Administration Server instance.

wls:/mydomain/domainRuntime> serverConfig()

wls:/mydomain/serverConfig>

serverRuntime

Command Category: Tree Commands
Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the runtime MBean hierarchy or to the
root of the hierarchy, ServerRuntimeMBean. This read-only hierarchy stores the runtime
MBeans that represent the server to which WLST is currently connected.

WebLogic Scripting Tool A-121

WLST Command and Variable Reference

In the event of an error, the command returns a WLSTException.

Syntax

serverRuntime ()

Example

The following example navigates from the configuration MBean hierarchy to the runtime MBean
hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> serverRuntime ()

Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.

For more help, use help('serverRuntime')

wls:/mydomain/serverRuntime>

WLST Variahle Reference

Table A-12 describes WLST variables and their common usage. All variables are initialized to
default values at the start of a user session and are changed according to the user interaction with
WLST.

Table A-12 WLST Variables

Variahle Description Example
adminHome Administration MBean. This wls:/mydomain/edit> bean =
variable is available only when WLST is adminHome .getMBean (ObjectName (
connected to the Administration Server. 'mydomain:Name=mydomain, Type=D
omain'))

Note: This variable is deprecated for
WebLogic Server 9.0.

cmo Current Management Object. The cmo wls:/mydomain/edit>
variable is set to the configuration bean cmo.getAdministrationPort ()
instance to which you navigate using 9002

WLST. You use this variable to perform
any create, get, set, or invoke
method on the current configuration bean
instance. By default, this variable is
initialized to the root of all configuration
management objects, DomainMBean.

A-122 WebLogic Scripting Tool

Table A-12 WLST Variables (Continued)

WLST Variable Reference

Variahle Description Example
connected Boolean value specifying whether WLST wls:/mydomain/serverConfig>
is connected to a running server. WLST print connected
sets this variable to true when false
connected to a running server; otherwise,
WLST sets it to false.
domainName Name of the domain to which WLST is wls:/mydomain/serverConfig>
connected. print domainName
mydomain
domainRuntimeS DomainRuntimeServiceMBean wls:/mydomain/serverConfig>
ervice MBean. This variable is available only domainService.getServerName ()
when WLST is connected to the ‘myserver’
Administration Server.
editService EditServiceMBean MBean. This wls:/mydomain/edit> de =
variable is available only when WLST is editService.getDomainConfigura
connected to the Administration Server. tion()
exitonerror Boolean value specifying whether WLST wls:/mydomain/serverConfig>
terminates script execution when it print exitonerror
encounters an exception. This variable true
defaults to true, indicating that script
execution is terminated when WLST
encounters an error. This variable is not
applicable when running WLST in
interactive mode.
home Local MBean. wls:/mydomain/serverConfig>
bean =
Note: This variable is deprecated for home . getMBean (ObjectName ('mydo
WebLogic Server 9.0. main:Name=mydomain, Type=Domain
"))
isAdminServer Boolean value specifying whether WLST wls:/mydomain/serverConfig>

is connected to a WebLogic
Administration Server instance. WLST
sets this variable to true if WLST is
connected to a WebLogic Administration
Server; otherwise, WLST sets it to
false.

print isAdminServer
true

WebLogic Scripting Tool A-123

WLST Command and Variable Reference

Tahle A-12 WLST Variables (Continued)

Variahle Description Example
mbs MBeanServerConnectionobjectthat wls:/mydomain/serverConfig>
corresponds to the current location in the mbs.isRegistered(ObjectName('m
hierarchy. ydomain:Name=mydomain, Type=Dom
ain'))
recording Boolean value specifying whether WLST wls:/mydomain/serverConfig>
is recording commands. WLST sets this print recording
variable to true when the true
startRecording command is entered;
otherwise, WLST sets this variable to
false.
runtimeService RuntimeServiceMBean MBean. wls:/mydomain/serverConfig>
sr=runtimeService.getServerRun
time()
serverName Name of the server to which WLST is wls:/mydomain/serverConfig>
connected. print serverName
myserver
typeService TypeServiceMBean MBean. wls:/mydomain/serverConfig>
mi=typeService.getMBeanInfo('w
eblogic.management.configurati
on.ServerMBean')
username Name of user currently connected to wls:/mydomain/serverConfig>
WLST. print username
weblogic
version Current version of the running server to wls:/mydomain/serverConfig>
which WLST is connected. print version
WebLogic Server 9.0 Thu Aug 31
12:15:50 PST 2005 778899
A-124 WebLogic Scripting Tool

APPENDIXG

WLST Online and Offline Command
Summary

The following sections summarize the WLST commands, as follows:
e “WLST Command Summary, Alphabetically By Command” on page B-1
e “WLST Online Command Summary” on page B-8

e “WLST Offline Command Summary” on page B-13

Note: You can list a summary of all online and offline commands from the command-line using
the following commands, respectively:

help("online")
help("offline")

WLST Command Summary, Alphabetically By Command

The following tables summarizes each of the WLST commands, alphabetically by command.

Table B-1 WLST Command Summary

This command... Enables you to... Use with
WLST...
“activate” on page A-39 Activate changes saved during the current editing session ~ Online
but not yet deployed.
“addListener” on page A-68 Add a JMX listener to the specified MBean. Online

WebLogic Scripting Tool B-1

WLST Online and Offline Command Summary

Table B-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...
“addTemplate” on page A-8 Extend the current domain using an application or service Offline
extension template.
“assign” on page A-40 Assign resources to one or more destinations. Offline
“assignAll” on page A-43 Assign all applications or services to one or more Offline
destinations.
Note: This command is deprecated for WebLogic Server
9.0. You should update your scripts to use the
assign command, as described in “assign” on
page A-40.
“cancelEdit” on page A-44 Cancel an edit session, release the edit lock, and discardall ~ Online
unsaved changes. This operation can be called by any user
with administrator privileges, even if the user did not start
the edit session.
“cd” on page A-3 Navigate the hierarchy of configuration or runtime beans. Online or
Offline
“closeDomain” on page A-9 Close the current domain. Offline
“closeTemplate” on page A-10 Close the current domain template. Offline
“config” on page A-113 Navigate to the last MBean to which you navigated in the Online
Administration or local configuration MBean hierarchy or
to the root of the hierarchy, DomainMBean.
Note: This command is deprecated for WebLogic Server
9.0. You should update your script to use the
serverConfig command as described in
“serverConfig” on page A-121.
“configToScript” on page A-69 Convert an existing server configuration (config Online or
directory) to an executable WLST script. Offline
“connect” on page A-10 Connect WLST to a WebLogic Server instance. Online or
Offline
“create” on page A-45 Create a configuration bean of the specified type for the Online or
current bean. Offline

B-2

WebLogic Scripting Tool

WLST Command Summary, Alphabetically By Command

Table B-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...
“currentTree” on page A-4 Return the current location in the hierarchy. Online
“custom” on page A-115 Navigate to the root of custom MBeans that are registered ~ Online
in the server.
“delete” on page A-47 Delete an instance of a configuration bean of the specified Online or
type for the current configuration bean. Offline
“deploy” on page A-21 Deploy an application to a WebLogic Server instance. Online
“disconnect” on page A-13 Disconnect WLST from a WebLogic Server instance. Online
“distribute Application” on Copy the deployment bundle to the specified targets. Online
page A-25
“domainConfig” on page A-116 Navigate to the last MBean to which you navigated in the ~ Online
domain configuration hierarchy or to the root of the
hierarchy, DomainMBean.
“domainRuntime” on page A-117 Navigate to the last MBean to which you navigated in the ~ Online
domain runtime hierarchy or to the root of the hierarchy,
DomainRuntimeMBean.
“dumpStack” on page A-71 Display stack trace from the last exception that occurred ~ Online or
while performing a WLST action, and reset the stack trace. Offline
“dumpVariables” on page A-71 Display all variables used by WLST, including their name Online or
and value. Offline
“edit” on page A-118 Navigate to the last MBean to which you navigated in the ~ Online
configuration edit MBean hierarchy or to the root of the
hierarchy, DomainMBean.
“encrypt” on page A-48 Encrypt the specified string. Online
“exit” on page A-14 Exit WLST from the user session and close the scripting ~ Online or
shell. Offline
“exportDiagnosticData” on Execute a query against the specified log file. Offline

page A-34

WebLogic Scripting Tool B-3

WLST Online and Offline Command Summary

Table B-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...
“exportDiagnosticDataFromServer ~ Executes a query on the server side and retrieves the Online
” on page A-36 exported WebLogic Diagnostic Framework (WLDF) data.
“find” on page A-72 Find MBeans and attributes in the current hierarchy. Online
“get” on page A-49 Return the value of the specified attribute. Online or
Offline
“getActivationTask” on page A-50 Return the latest ActivationTask MBean on whicha Online
user can get status.
“getConfigManager” on page A-74 Return the latest ConfigurationManagerBean Online
MBean which manages the change process.
“getMBean” on page A-74 Return the MBean by browsing to the specified path. Online
“getMBI” on page A-75 Return the MBeanInfo for the specified MBeanType or Online
the cmo variable.
“getPath” on page A-76 Return the MBean path for the specified MBean instance. Online
“getWLDM?” on page A-26 Return the WebLogic DeploymentManager object. Online
“invoke” on page A-50 Invoke a management operation on the current Online
configuration bean.
“isRestartRequired” on page A-51 Determine whether a server restart is required. Online
“jndi” on page A-119 Navigates to the JNDI tree for the server to which WLST Online
is currently connected.
“listChildTypes” on page A-76 List all the children MBeans that can be created or deleted Online
for the cmo.
“loadApplication” on page A-27 Load an application and deployment plan into memory. Online or
Offline
“loadDB” on page A-52 Load SQL files into a database. Offline
“loadProperties” on page A-53 Load property values from a file. Online and
Offline

B-4 WebLogic Scripting Tool

WLST Command Summary, Alphabetically By Command

Table B-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...
“lookup” on page A-77 Look up the specified MBean. Online
“Is” on page A-78 List all child beans and/or attributes for the current Online or
configuration or runtime bean. Offline
“man” on page A-81 Display help from MBeanInfo for the current MBean or Online
its specified attribute.
“migrate” on page A-92 Migrate services to a target server within a cluster. Online
“nm” on page A-101 Determine whether WLST is connected to Node Manager. Online
“nmConnect” on page A-102 Connect WLST to Node Manager to establish a session. Online
“nmDisconnect” on page A-104 Disconnect WLST from a Node Manager session. Online
“nmEnroll” on page A-104 Enroll the machine on which WLST is currently running. ~ Online
“nmKill” on page A-106 Kill the specified server instance that was started with Online
Node Manager.
“nmLog” on page A-107 Return the Node Manager log. Online
“nmServerLog” on page A-107 Return the server output log of the server that was started ~ Online
with Node Manager.
“nmServerStatus” on page A-108 Return the status of the server that was started with Node Online
Manager.
“nmStart” on page A-109 Start a server in the current domain using Node Manager. Online
“nmVersion” on page A-110 Return the Node Manager server version. Online
“prompt” on page A-5 Toggle the display of path information at the prompt. Online or
Offline
“pwd” on page A-6 Display the current location in the configuration or runtime ~ Online or
bean hierarchy. Offline
“readDomain” on page A-15 Open an existing domain for updating. Offline
“readTemplate” on page A-16 Open an existing domain template for domain creation. Offline

WebLogic Scripting Tool B-5

WLST Online and Offline Command Summary

Table B-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...
“redeploy” on page A-28 Reload classes and redeploy a previously deployed Online
application.
“redirect” on page A-82 Redirect WLST output to the specified filename. Online or
Offline
“removeListener” on page A-83 Remove a listener that was previously defined. Online
“resume” on page A-93 Resume a server instance that is suspended or in ADMIN Online
state.
“runtime” on page A-120 Navigate to the last MBean to which you navigated in the ~ Online
Runtime hierarchy or the root of all runtime objects,
DomainRuntimeMBean.
Note: This command is deprecated for WebLogic Server
9.0. You should update your scripts to use the
serverRuntime command, as described in
“serverRuntime” on page A-121.
“save” on page A-54 Save the edits that have been made but have not yet been ~ Online
saved.
“serverConfig” on page A-121 Navigate to the last MBean to which you navigated in the Online
configuration MBean hierarchy or to the root of the
hierarchy, DomainMBean.
“serverRuntime” on page A-121 Navigate to the last MBean to which you navigated in the Online
runtime MBean hierarchy or to the root of the hierarchy,
ServerRuntimeMBean.
“set” on page A-55 Set the specified attribute value for the current Online or
configuration bean. Offline
“setOption” on page A-56 Set options related to a domain creation or update Offline
“showChanges” on page A-58 Show the changes made by the current user during the Online
current edit session.
“showListeners” on page A-83 Show all listeners that are currently defined. Online
“shutdown” on page A-94 Gracefully shut down a running server instance or cluster. Online

B-6

WebLogic Scripting Tool

WLST Command Summary, Alphabetically By Command

Table B-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...
“start” on page A-96 Start a Managed Server instance or a cluster using Node Online
Manager.
“startApplication” on page A-29 Start an application, making it available to users. Online
“startEdit” on page A-59 Start a configuration edit session on behalf of the currently ~ Online
connected user.
“startNodeManager” on Start Node Manager at default port (5556). Online or
page A-111 Offline
“startRecording” on page A-84 Record all user interactions with WLST; useful for Online or
capturing commands to replay. Offline
“startServer” on page A-98 Start the Administration Server. Online or
Offline
“state” on page A-85 Returns a map of servers or clusters and their state using ~ Online
Node Manager.
“stopApplication” on page A-30 Stop an application, making it un available to users. Online
“stopEdit” on page A-60 Stop the current edit session, release the edit lock, and Online
discard unsaved changes.
“stopRecording” on page A-86 Stop recording WLST commands. Online or
Offline
“stopRedirect” on page A-86 Stop the redirection of WLST output to a file. Online or
Offline
“storeUserConfig” on page A-87 Create a user configuration file and an associated key file. Online
“suspend” on page A-99 Suspend a running server. Online
“threadDump” on page A-88 Display a thread dump for the specified server. Online or
Offline
“undeploy” on page A-31 Undeploy an application from the specified servers. Online
“updateApplication” on page A-33 Update an application configuration using a new Online

deployment plan.

WebLogic Scripting Tool B-7

WLST Online and Offline Command Summary

Table B-1 WLST Command Summary (Continued)

This command... Enables you to... Use with
WLST...
“updateDomain” on page A-17 Update and save the current domain. Offline
“unassign” on page A-61 Unassign applications or services from one or more Offline
destinations.
“unassignAll” on page A-63 Unassign all applications or services from one or more Offline
destinations.
Note: This command is deprecated for WebLogic Server
9.0. You should update your scripts to use the
unassign command, as described in “unassign”
on page A-61.
“undo” on page A-64 Revert all unsaved or unactivated edits. Online
“validate” on page A-65 Validate the changes that have been made but have not yet Online
been saved.
“viewMBean” on page A-89 Display information about an MBean, such as the attribute ~ Online
names and values, and operations.
“writeDomain” on page A-18 Write the domain configuration information to the Offline
specified directory.
“writeIniFile” on page A-90 Convert WLST definitions and method declarationstoa Online or
Python (. py) file. Offline
“writeTemplate” on page A-19 Writes the domain configuration information to the Offline

specified domain template.

WLST Online Command Summary

The following table summarizes the WLST online commands, alphabetically by command.

B-8

WebLogic Scripting Tool

WLST Online Command Summary

Table B-2 WLST Online Command Summary

This command...

Enables you to...

“activate” on page A-39

Activate changes saved during the current editing session but not yet
deployed.

“addListener” on page A-68

Add a JMX listener to the specified MBean.

“cancelEdit” on page A-44

Cancel an edit session, release the edit lock, and discard all unsaved
changes. This operation can be called by any user with administrator
privileges, even if the user did not start the edit session.

“cd” on page A-3

Navigate the hierarchy of configuration or runtime beans.

“config” on page A-113

Navigate to the last MBean to which you navigated in the configuration
MBean hierarchy or to the root of all configuration beans,
DomainMBean.

Note: This command is deprecated for WebLogic Server 9.0. You
should update your script to use the serverConfig command
as described in “serverConfig” on page A-121.

“configToScript” on page A-69

Convert an existing server configuration (config directory) to an
executable WLST script.

“connect” on page A-10

Connect WLST to a WebLogic Server instance.

“create” on page A-45

Create a configuration bean of the specified type for the current bean.

“currentTree” on page A-4

Return the current tree location.

“custom” on page A-115

Navigate to the root of custom MBeans that are registered in the server.

“delete” on page A-47

Delete an instance of a configuration bean of the specified type for the
current configuration bean.

“deploy” on page A-21

Deploy an application to a WebLogic Server instance.

“disconnect” on page A-13

Disconnect WLST from a WebLogic Server instance.

“distributeApplication” on
page A-25

Copy the deployment bundle to the specified targets.

“domainConfig” on page A-116

Navigate to the last MBean to which you navigated in the domain
configuration hierarchy or to the root of the hierarchy, DomainMBean.

WebLogic Scripting Tool B-9

WLST Online and Offline Command Summary

Tahle B-2 WLST Online Command Summary (Continued)

This command...

Enables you to...

“domainRuntime” on page A-117

Navigate to the last MBean to which you navigated in the domain runtime
hierarchy or to the root of the hierarchy, DomainRuntimeMBean.

“dumpStack” on page A-71

Display stack trace from the last exception that occurred, and reset the
trace.

“dumpVariables” on page A-71

Display all variables used by WLST, including their name and value.

“edit” on page A-118

Navigate to the last MBean to which you navigated in the configuration
edit MBean hierarchy or to the root of the hierarchy, DomainMBean.

“encrypt” on page A-48

Encrypt the specified string.

“exit” on page A-14

Exit WLST from the interactive session and close the scripting shell.

“exportDiagnosticDataFromServer

” on page A-36

Execute a query on the server side and retrieves the exported WebLogic
Diagnostic Framework (WLDF) data.

“find” on page A-72

Find MBeans and attributes in the current hierarchy.

“get” on page A-49

Return the value of the specified attribute.

“getActivationTask” on page A-50

Return the latest ActivationTask MBean on which a user can get
status.

“getConfigManager” on page A-74

Return the latest ConfigurationManagerBean MBean which
manages the change process.

“getMBean” on page A-74

Return the MBean by browsing to the specified path.

“getMBI” on page A-75

Return the MBeanInfo for the specified MBeanType or the cmo
variable.

“getPath” on page A-76

Return the MBean path for the specified MBean instance.

“getWLDM?” on page A-26

Return the WebLogic DeploymentManager object.

“invoke” on page A-50

Invoke a management operation on the current configuration bean.

“isRestartRequired” on page A-51

Determine whether a server restart is required.

“jndi” on page A-119

Navigates to the JNDI tree for the server to which WLST is currently
connected.

B-10

WebLogic Scripting Tool

WLST Online Command Summary

Table B-2 WLST Online Command Summary (Continued)

This command...

Enables you to...

“listChildTypes” on page A-76

List all the children MBeans that can be created or deleted for the cmo.

“loadApplication” on page A-27

Load an application and deployment plan into memory.

“loadProperties” on page A-53

Load property values from a file.

“lookup” on page A-77

Look up the specified MBean.

“Is” on page A-78

List all child beans and/or attributes for the current configuration or
runtime bean.

“man” on page A-81

Display help from MBeanInfo for the current MBean or its specified
attribute.

“migrate” on page A-92

Migrate services to a target server within a cluster.

“nm” on page A-101

Determine whether WLST is connected to Node Manager.

“nmConnect” on page A-102

Connect WLST to Node Manager to establish a session.

“nmDisconnect” on page A-104

Disconnect WLST from a Node Manager session.

“nmEnroll” on page A-104

Enroll the machine on which WLST is currently running.

“nmKill” on page A-106

Kill the specified server instance that was started with Node Manager.

“nmlog” on page A-107

Return the Node Manager log.

“nmServerLog” on page A-107

Return the server output log of the server that was started with Node
Manager.

“nmServerStatus” on page A-108

Return the status of the server that was started with Node Manager.

“nmStart” on page A-109

Start a server in the current domain using Node Manager.

“nmVersion” on page A-110

Return the Node Manager server version.

“prompt” on page A-5

Toggle the display of path information at the prompt.

“pwd” on page A-6

Display the current location in the configuration or runtime bean
hierarchy.

“redeploy” on page A-28

Reload classes and redeploy a previously deployed application.

WebLogic Scripting Tool B-11

WLST Online and Offline Command Summary

Tahle B-2 WLST Online Command Summary (Continued)

This command...

Enables you to...

“redirect” on page A-82

Redirect WLST output to the specified filename.

“removeListener” on page A-83

Remove a listener that was previously defined.

“resume” on page A-93

Resume a server instance that is suspended or in ADMIN state.

“runtime” on page A-120

Navigate to the last MBean to which you navigated in the Runtime
hierarchy or the root of all runtime objects, DomainRuntimeMBean.

Note: This command is deprecated for WebLogic Server 9.0. You
should update your scripts to use the serverRuntime
command, as described in “serverRuntime” on page A-121.

“save” on page A-54

Save the edits that have been made but have not yet been saved.

“serverConfig” on page A-121

Navigate to the last MBean to which you navigated in the configuration
MBean hierarchy or to the root of the hierarchy, DomainMBean.

“serverRuntime” on page A-121

Navigate to the last MBean to which you navigated in the runtime MBean
hierarchy or to the root of the hierarchy, ServerRuntimeMBean.

“set” on page A-55

Set the specified attribute value for the current configuration bean.

“showChanges” on page A-58

Show the changes made by the current user during the current edit
session.

“showListeners” on page A-83

Show all listeners that are currently defined.

“shutdown” on page A-94

Gracefully shut down a running server instance or cluster.

“start” on page A-96

Start a Managed Server instance or a cluster using Node Manager.

“startApplication” on page A-29

Start an application, making it available to users.

“startEdit” on page A-59

Start a configuration edit session on behalf of the currently connected
user.

“startNodeManager” on
page A-111

Start Node Manager at default port (5556).

“startRecording” on page A-84

Record all user interactions with WLST; useful for capturing commands
to replay.

“startServer” on page A-98

Start the Administration Server.

B-12

WebLogic Scripting Tool

WLST Offline Command Summary

Table B-2 WLST Online Command Summary (Continued)

This command...

Enables you to...

“state” on page A-85

Returns a map of servers or clusters and their state using Node Manager

“stopApplication” on page A-30

Stop an application, making it un available to users.

“stopEdit” on page A-60

Stop the current edit session, release the edit lock, and discard unsaved
changes.

“stopRecording” on page A-86

Stop recording WLST commands.

“stopRedirect” on page A-86

Stop the redirection of WLST output to a file.

“storeUserConfig” on page A-87

Create a user configuration file and an associated key file.

“suspend” on page A-99

Suspend a running server.

“threadDump” on page A-88

Display a thread dump for the specified server.

“undeploy” on page A-31

Undeploy an application from the specified servers.

“undo” on page A-64

Revert all unsaved or unactivated edits.

“updateApplication” on page A-33

Update an application configuration using a new deployment plan.

“validate” on page A-65

Validate the changes that have been made but have not yet been saved.

“viewMBean” on page A-89

Display information about an MBean, such as the attribute names and
values, and operations.

“writelniFile” on page A-90

Convert WLST definitions and method declarations to a Python (. py)
file.

WLST 0ffline Command Summary

The following table summarizes the WLST offline commands, alphabetically by command.

WebLogic Scripting Tool B-13

WLST Online and Offline Command Summary

Table B-3 WLST Offline Command Summary

This command...

Enables you to...

“addTemplate” on page A-8

Extend the current domain using an application or service extension
template.

“assign” on page A-40

Assign resources to one or more destinations.

“assignAll” on page A-43

Assign all applications or services to one or more destinations.

Note: This command is deprecated for WebLogic Server 9.0. You
should update your scripts to use the assign command, as
described in “assign” on page A-40.

“cd” on page A-3

Navigate the hierarchy of configuration or runtime beans.

“closeDomain” on page A-9

Close the current domain.

“closeTemplate” on page A-10

Close the current domain template.

“configToScript” on page A-69

Convert an existing server configuration (config directory) to an
executable WLST script.

“connect” on page A-10

Connect WLST to a WebLogic Server instance.

“create” on page A-45

Create a configuration bean of the specified type for the current bean.

“delete” on page A-47

Delete an instance of a configuration bean of the specified type for the
current configuration bean.

“dumpStack” on page A-71

Display stack trace from the last exception that occurred while
performing a WLST action, and reset the stack trace.

“dumpVariables” on page A-71

Display all variables used by WLST, including their name and value.

“exit” on page A-14

Exit WLST from the interactive session and close the scripting shell.

“exportDiagnosticData” on
page A-34

Execute a query against the specified log file.

“get” on page A-49

Return the value of the specified attribute.

“loadDB” on page A-52

Load SQL files into a database.

“loadProperties” on page A-53

Load property values from a file.

B-14 WebLogic Scripting Tool

WLST Offline Command Summary

Table B-3 WLST 0ffline Command Summary (Continued)

This command...

Enables you to...

“Is” on page A-78

List all child beans and/or attributes for the current configuration or
runtime bean.

“nmConnect” on page A-102

Connect WLST to Node Manager to establish a session.

“prompt” on page A-5

Toggle the display of path information at the prompt.

“pwd” on page A-6

Display the current location in the configuration or runtime bean
hierarchy.

“readDomain” on page A-15

Open an existing domain for updating.

“readTemplate” on page A-16

Open an existing domain template for domain creation.

“redirect” on page A-82

Redirect WLST output to the specified filename.

“set” on page A-55

Set the specified attribute value for the current configuration bean.

“setOption” on page A-56

Set options related to a domain creation or update.

“startNodeManager” on
page A-111

Start Node Manager at default port (5556).

“startRecording” on page A-84

Record all user interactions with WLST; useful for capturing commands
to replay.

“startServer” on page A-98

Start the Administration Server.

“stopRecording” on page A-86

Stop recording WLST commands.

“stopRedirect” on page A-86

Stop the redirection of WLST output to a file.

“threadDump” on page A-88

Display a thread dump for the specified server.

“unassign” on page A-61

Unassign applications or services from one or more destinations.

“unassignAll” on page A-63

Unassign all applications or services from one or more destinations.

Note: This command is deprecated for WebLogic Server 9.0. You
should update your scripts to use the unassign command, as
described in “unassign” on page A-61.

“updateDomain” on page A-17

Update and save the current domain.

WebLogic Scripting Tool B-15

WLST Online and Offline Command Summary

Tahle B-3 WLST 0ffline Command Summary (Continued)

This command... Enables you to...

“writeDomain” on page A-18 Write the domain configuration information to the specified directory.

“writelniFile” on page A-90 Convert WLST definitions and method declarations to a Python (. py)
file.

“writeTemplate” on page A-19 Writes the domain configuration information to the specified domain
template.

B-16 WebLogic Scripting Tool

WLST Deployment Objects

The following sections describe the WLST deployment objects:
e “WLSTPIlan Object” on page C-1

e “WLSTProgress Object” on page C-4

WLSTPIan Object

The wLsTP1an object enables you to make changes to an application deployment plan after
loading an application using the 1oadapplication command, as described in “load Application”
on page A-27.

The following table describes the WLSTP1an object methods that you can use to operate on the
deployment plan.

Table C-1 WLSTPlan Object Methods

To operate Use this method... To...

on the...

Deployment DeploymentPlanBean getDeploymentPlan () Return the

Plan DeploymentPlanBean for the

current application.

void save() throws Saves the deployment plan to a file
FileNotFoundException, from which it was read.
ConfigurationException

WebLogic Scripting Tool C-1

WLST Deployment Objects

Tahle C-1 WLSTPIan Object Methods (Continued)

To operate Use this method... To...
on the...
Module ModuleOverrideBean Create a
Overrides createModuleDescriptor (String name, ModuleDescriptorBean with
String uri, String moduleOverrideName) the specified name and uri for the
ModuleOverrideBean
moduleOverrideName
ModuleOverrideBean Create a ModuleOverrideBean
createModuleOverride (String name, with the specified name and type
String type) for the current deployment plan.
void destroyModuleOverride (String name) Destroy the
ModuleOverrideBean name in
the deployment plan.
ModuleOverrideBean|] Return the
getModuleOverride (String name) ModuleOverrideBean name.
ModuleOverrideBean]|] Return allModuleOverrideBean
getModuleOverrides () objects that are available in the
deployment plan.
VariableBean]] Set the ModuleOverrideBean
setModuleOverride (ModuleOverrideBean moduleOverride for the current
moduleOverride) deployment plan.
void showModuleOverrides () Prints all of the
ModuleOverrideBean objects
that are available in the deployment
plan as name/type pairs.
C-2 WebLogic Scripting Tool

Table C-1 WLSTPIlan Object Methods (Continued)

WLSTPlan Object

To operate Use this method... To...
on the...
Variables VariableBean createVariable(String Create aVariableBean name that

name)

can override values in the
deployment plan.

void destroyVariable (String name)

Destroy the VvariableBean name.

VariableBean getVariable(String name)

Return the VariableBean name.

VariableBean[] getVariables()

Return all variableBean objects
that are available in the deployment
plan.

void setVariable(String name, String
value)

Set the variable name to the
specified value.

void setVariableBean (VariableBean bean)

Set the VariableBean bean.

void showVariables()

Print all of the VariableBean
objects in the deployment plan as
name/value pairs.

WebLogic Scripting Tool C-3

WLST Deployment Objects

Tahle C-1 WLSTPIan Object Methods (Continued)

To operate Use this method... To...

on the...

Variable VariableAssignmentBean Create a

Assignment createVariableAssignment (String name, VariableAssignmentBean for

String moduleOverrideName, String
moduleDescriptorName)

the ModuleDescriptorBean
moduleDescriptorName for the

ModuleOverrideBean
moduelOverrideName.

void destroyVariableAssignment (String
name, String moduleDescriptorName)

Destroy the
VariableAssignmentBean
name for the
ModuleDescriptorBean
moduleDescriptorName.

VariableAssignmentBean
getVariableAssignment (String name,
String moduleDescriptorName)

Return the
VariableAssignmentBean
name for the

ModuleDescriptorBean
moduleDescriptorName.

Prints all of the VariableBean
objects in the deployment plan as
name/value pairs.

void showVariables ()

WLSTProgress Object

The wLSTProgress object enables you to check the status of an executed deployment command.
The WLSTProgress object is returned by the following commands:

e “deploy” on page A-21

e “distributeApplication” on page A-25
e “redeploy” on page A-28

e “startApplication” on page A-29

e “stopApplication” on page A-30

e “updateApplication” on page A-33

C-4 WebLogic Scripting Tool

WLSTProgress Object

The following table describes the WLSTProgress object methods that you can use to check the

status of the current deployment action.

Table C-2 WLSTProgress Object Methods

Use this method...

To...

String getCommandType ()

Return the deployment CommandType of this
event.This command returns one of the following
values: distribute, redeploy, start, stop,
or undeploy.

String getMessage()

Return information about the status of this event.

ProgressObject getProgressObject ()

Return the ProgressObiject that is associated
with the current deployment action.

String getState()

Retrieve the state of the current deployment action.
CommandType of this event. This command returns
one of the following values: running,
completed, failed, or released.

boolean isCompleted()

Determine if the current deployment action has been
completed.

boolean isFailed()

Determine if the current deployment action has
failed.

boolean isRunning/()

Determine if the current deployment action is
running.

void printStatus()

Print the current status of the deployment action,
including the command type, the state, additional
messages, and so on.

WebLogic Scripting Tool C-5

WLST Deployment Objects

C-6 WebLogic Scripting Tool

FAQs: WLST

General WLST

On which versions of WebLogic Server is WLST supported?

What is the relationship between WLST and the existing WebLogic Server command-line
utilities, such as wlconfig and weblogic.Deployer?

e When would I choose to use WLST over the other command-line utilities or the
Administration Console?

What is the distinction between WLST online and offline?

Is there a GUI that displays the MBeans in a Swing format, similar to wlshell?
Jython Support

e What version of Jython is used by WLST?

e Can I run regular Jython scripts from within WLST?
Using WLST

e If I have SSL or the administration port enabled for my server, how do I connect using
WLST?

e In the event of an error, can you control whether WLST continues or exits?

e Why do I have to specify (and) after each command, and enclose arguments in single- or
double-quotes?

WebLogic Scripting Tool D-1

FAQs: WLST

e Can [start a server, deploy applications, and then shutdown the server using WLST?
e Can WLST connect to a Managed Server?

e Parameterization enables you to easily move configuration files between environments. For
example, you may want to parameterize the log file locations. Does WLST support this
type of parameterization?

e Does the configToScript command convert security MBeans in config.xml?
e How can [access custom MBeans that are registered in the WebLogic MBeanServer?
e Why am I not seeing all MBeans that are registered in the MBeanServer?

e When browsing custom MBeans, why do I get the following error message: No stub
Available?

e Can I connect to a WebLogic Server instance via HTTP?
e Can I invoke WLST via Ant?
e Can WLST scripts execute on the server side?

e Can I customize WLST?

Q. On which versions of WebLogic Server is WLST supported?

A. WLST online is supported on WebLogic Server 9.0, 8.1, and 7.0. WLST offline is supported
on WebLogic Server 9.0 and 8.1.

Q. What is the relationship between WLST and the existing WebLogic Server command-line
utilities, such as wlconfig and weblogic.Deployer?

A. WLST functionality includes the capabilities of the following WebLogic Server
command-line utilities:

® weblogic.Admin utility that you use to interrogate MBeans and configure a WebLogic
Server instance (deprecated in this release of WebLogic Server)

e wlconfig Ant task tool for making WebLogic Server configuration changes (see “Using
Ant Tasks to Configure and Use a WebLogic Server Domain” in Developing Applications
with WebLogic Server)

e weblogic.Deployer utility for deploying applications. (see “Overview of Deployment
Tools” in Deploying Applications to WebLogic Server)

D-2 WebLogic Scripting Tool

http://e-docs.bea.com/wls/docs90/programming/ant_tasks.html
http://e-docs.bea.com/wls/docs90/programming/ant_tasks.html
http://e-docs.bea.com/wls/docs90/deployment/understanding.html#DeploymentTools
http://e-docs.bea.com/wls/docs90/deployment/understanding.html#DeploymentTools

Q. When would I choose to use WLST over the other command-line utilities or the
Administration Console?

A. You can create, configure, and manage domains using WLST, command-line utilities, and the
Administration Console interchangeably. The method that you choose depends on whether you
prefer using a graphical or command-line interface, and whether you can automate your tasks by
using a script.

Q. What is the distinction between WLST online and offline?

A. You can use WLST online (connected to a running Administration Server or Managed Server
instance) and offline (not connected to a running server).

WLST online is used when you are connected to a running server and provides simplified access
to Managed Beans (MBeans), WebLogic Server Java objects that you manage through JMX.
Online, WLST provides access to information that is persisted as part of the internal
representation of the configuration.

WLST offline enables you to create a new domain or update an existing domain without
connecting to a running WebLogic Server—supporting the same functionality as the
Configuration Wizard. Offline, WLST only provides access to information that is persisted in the
config directory.

Q. Is there a GUI that displays the MBeans in a Swing format, similar to wishell?
A. No. This type of GUI interface in not available.

Q. What version of Jython is used by WLST?
A. The WLST scripting environment is based on the Java scripting interpreter, Jython 2.1.

Q. Can I run regular Jython scripts from within WLST?

A. Yes. WebLogic Server developers and administrators can extend the WebLogic scripting
language to suit their environmental needs by following the Jython language syntax. For more
information, see http://www.jython.org.

Q. IfThave SSL or the administration port enabled for my server, how do I connect using WLST?

A. If you will be connecting to a WebLogic Server instance through an SSL listen port on a server
that is using the demonstration SSL keys and certificates, invoke WLST using the following
command:

WebLogic Scripting Tool D-3

http://www.jython.org

FAQs: WLST

D-4

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST

Otherwise, at a command prompt, enter the following command:

java weblogic.WLST

Q. In the event of an error, can you control whether WLST continues or exits?

A. Yes, using the exitonerror variable. Set this variable to true to specify that execution
should exit when WLST encounters an error, or false to continue execution. This variable
defaults to true. For more information, see “WLST Variable Reference” on page A-122.

Q. Why do I have to specify (and) after each command, and enclose arguments in single- or
double-quotes?

A. This is the proper Jython syntax. For more information, see http: //www.jython.org.

Q. Can I start a server, deploy applications, and then shutdown the server using WLST?

A. Yes. For information about:
e Starting and shutting down servers, see “Life Cycle Commands” on page A-91.

e Deploying applications, see “Deployment Commands” on page A-20

Q. Can WLST connect to a Managed Server?

A. Yes. You can start and connect to a Managed Server using the start command and connect
command, respectively. For more information, see “start” on page A-96 and “connect” on
page A-10, respectively.

Q. Parameterization enables you to easily move configuration files between environments. For
example, you may want to parameterize the log file locations. Does WLST support this type of
parameterization?

A. Yes. You can use the loadProperties command to load your variables and values from a
properties file. When you use the variables in your script, during execution, the variables are
replaced with the actual values from the properties file.

Q. Does the configToScript command convert security MBeans in config.xml?

A. Yes, the security MBeans are converted. However, the information within the Embedded
LDAP is not converted.

WebLogic Scripting Tool

http://www.jython.org

Q. How can I access custom MBeans that are registered in the WebLogic MBeanServer?

A. Navigate to the custom tree using the custom command. For more information, see “Tree
Commands” on page A-112.

Q. Why am I not seeing all MBeans that are registered in the MBeanServer?

A. There are internal and undocumented MBeans that are not shown by WLST.

Also, because WLST offline enables you to access and update the configuration objects that
appear in the configuration files only, if you wish to view and/or change attribute values for a
configuration object that is not already persisted in the configuration files as an XML element,
you must first create the configuration object.

Q. When browsing custom MBeans, why do I get the following error message: No stub
Available?

A. When browsing the custom MBeans, the cmo variable is not available.

Q. Can I connect to a WebLogic Server instance via HTTP?

A. If you are connecting to a WebLogic Server instance via HTTP, ensure that the
TunnelingEnabled attribute is set to true for the WebLogic Server instance. For more
information, see “TunnelingEnabled” in WebLogic Server MBean Reference at
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html?skipR
eload=true#TunnelingEnabled.

Q. Can I invoke WLST via Ant?

A. Yes, one could fork a new weblogic. WLST process inside an Ant script and pass your script
file as an argument.

Q. Can WLST scripts execute on the server side?

A. Yes. You can instantiate an instance of the WLST interpreter in your Java code and use it to
run WLST commands and scripts. You can then call the WLST scripts as a startup class or as part
of ejbCreate so that they execute on the server side. For more information, see “Embedded
Mode” on page 2-6.

Q. Can I customize WLST?

WebLogic Scripting Tool D-5

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html?skipReload=true#TunnelingEnabled
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/ServerMBean.html?skipReload=true#TunnelingEnabled

FAQs: WLST

A. Yes. You can update the WLST home directory to define custom WLST commands, WLST
commands within a library, and WLST commands as a Jython module. For more information, see
“Customizing WLST” on page 2-14.

D-6 WebLogic Scripting Tool

	Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	WLST Sample Scripts
	WLST Online Sample Scripts
	WLST Offline Sample Scripts

	Using the WebLogic Scripting Tool
	What is the WebLogic Scripting Tool?
	What Does WLST Do?
	How Does WLST Work?
	Using WLST Online
	Using WLST Offline

	Modes of Operation
	Interactive Mode
	Script Mode
	Embedded Mode

	Main Steps for Using WLST
	Setting Up Your Environment
	Invoking WLST
	Requirements for Entering WLST Commands
	Running Scripts
	Invoke WLST and Run a Script
	Run a Script From WLST

	Importing WLST as a Jython Module
	Exiting WLST

	Getting Help
	Recording User Interactions
	Redirecting WLST Output to a File
	Converting an Existing Configuration into a WLST Script
	Customizing WLST

	Creating and Configuring WebLogic Domains Using WLST Offline
	Creating a Domain (Offline)
	Updating an Existing Domain (Offline)
	Browsing and Accessing Information About the Configuration Bean Hierarchy (Offline)
	Editing a Domain (Offline)

	Creating a Domain Template (Offline)
	Exporting Diagnostic Data (Offline)
	Stepping Through a Sample Script: Creating a Domain Using WLST Offline

	Navigating and Editing MBeans
	Navigating and Interrogating MBeans
	Changing the Current Management Object
	Navigating and Displaying Configuration MBeans Example

	Browsing Runtime MBeans
	Navigating and Displaying Runtime MBeans Example

	Navigating Among MBean Hierarchies
	Finding MBeans
	Accessing Custom MBeans
	Editing Configuration MBeans
	Making Configuration Changes: Main Steps
	Managing Configuration Changes
	Tracking Configuration Changes

	Managing Servers and Server Life Cycle
	Managing the Server Life Cycle
	Starting and Stopping Servers
	Starting an Administration Server Without Node Manager
	Starting Managed Servers and Clusters With Node Manager

	Using WLST and Node Manager to Manage Servers
	Monitoring Server State
	Managing Server State

	Automating WebLogic Server Administration Tasks
	Creating a Sample Domain: Main Steps
	Setting Up the Environment
	Creating a Domain
	Creating JDBC Resources
	Creating JMS Resources
	Creating Mail Resources
	Deploying Applications
	Script to Create and Configure a Sample Domain

	Monitoring Domain Runtime Information
	Accessing Domain Runtime Information: Main Steps
	Script for Monitoring Server State
	Script for Monitoring the JVM

	Managing Security
	Creating a User
	Adding a User to a Group
	Verifying Whether a User Is a Member of a Group
	Listing Groups to Which a User Belongs
	Listing Users and Groups in a Security Realm
	Changing a Password
	Protecting User Accounts in a Security Realm
	Set Consecutive Invalid Login Attempts
	Unlock a User Account

	Configuring Logging

	WLST Command and Variable Reference
	Overview of WSLT Command Categories
	Browse Commands
	cd
	Description
	Syntax
	Examples

	currentTree
	Description
	Syntax
	Example

	prompt
	Description
	Examples

	pwd
	Description
	Syntax
	Example

	Control Commands
	addTemplate
	Description
	Syntax
	Example

	closeDomain
	Description
	Syntax
	Example

	closeTemplate
	Description
	Syntax
	Example

	connect
	Description
	Syntax
	Examples

	disconnect
	Description
	Syntax
	Example

	exit
	Description
	Syntax
	Example

	readDomain
	Description
	Syntax
	Example

	readTemplate
	Description
	Syntax
	Example

	updateDomain
	Description
	Syntax
	Example

	writeDomain
	Description
	Syntax
	Example

	writeTemplate
	Description
	Syntax
	Example

	Deployment Commands
	deploy
	Description
	Syntax
	Example

	distributeApplication
	Description
	Syntax
	Example

	getWLDM
	Description
	Syntax
	Example

	loadApplication
	Description
	Syntax
	Example

	redeploy
	Description
	Syntax
	Example

	startApplication
	Description
	Syntax
	Example

	stopApplication
	Description
	Syntax
	Example

	undeploy
	Description
	Syntax
	Example

	updateApplication
	Description
	Syntax
	Example

	Diagnostics Commands
	exportDiagnosticData
	Description
	Syntax
	Example

	exportDiagnosticDataFromServer
	Description
	Syntax
	Example

	Editing Commands
	activate
	Description
	Syntax
	Example

	assign
	Description
	Syntax
	Example

	assignAll
	Description
	Syntax
	Example

	cancelEdit
	Description
	Syntax
	Example

	create
	Description
	Syntax
	Example

	delete
	Description
	Syntax
	Example

	encrypt
	Description
	Syntax
	Example

	get
	Description
	Syntax
	Example

	getActivationTask
	Description
	Syntax
	Example

	invoke
	Description
	Syntax
	Example

	isRestartRequired
	Description
	Syntax
	Example

	loadDB
	Description
	Syntax
	Example

	loadProperties
	Description
	Syntax
	Example

	save
	Description
	Syntax
	Example

	set
	Description
	Syntax
	Example

	setOption
	Description
	Syntax
	Example

	showChanges
	Description
	Syntax
	Example

	startEdit
	Description
	Syntax
	Example

	stopEdit
	Description
	Syntax
	Example

	unassign
	Description
	Syntax
	Example

	unassignAll
	Description
	Syntax
	Example

	undo
	Description
	Syntax
	Example

	validate
	Description
	Syntax
	Example

	Information Commands
	addListener
	Description
	Syntax
	Example

	configToScript
	Syntax
	Example

	dumpStack
	Description
	Syntax
	Example

	dumpVariables
	Description
	Syntax
	Example

	find
	Description
	Syntax
	Example

	getConfigManager
	Description
	Syntax
	Example

	getMBean
	Description
	Syntax
	Example

	getMBI
	Description
	Syntax
	Example

	getPath
	Description
	Syntax
	Example

	listChildTypes
	Description
	Syntax
	Example

	lookup
	Description
	Syntax
	Example

	ls
	Description
	Syntax
	Example

	man
	Description
	Syntax
	Example

	redirect
	Description
	Syntax
	Example

	removeListener
	Description
	Syntax
	Example

	showListeners
	Description
	Syntax
	Example

	startRecording
	Description
	Syntax
	Example

	state
	Description
	Syntax
	Example

	stopRecording
	Description
	Syntax
	Example

	stopRedirect
	Description
	Syntax
	Example

	storeUserConfig
	Description
	Syntax
	Example

	threadDump
	Description
	Syntax
	Example

	viewMBean
	Description
	Syntax
	Example

	writeIniFile
	Description
	Syntax
	Example

	Life Cycle Commands
	migrate
	Description
	Syntax
	Example

	resume
	Description
	Syntax
	Example

	shutdown
	Description
	Syntax
	Example

	start
	Description
	Syntax
	Example

	startServer
	Description
	Syntax
	Example

	suspend
	Description
	Syntax
	Example

	Node Manager Commands
	nm
	Description
	Syntax
	Example

	nmConnect
	Description
	Syntax
	Example

	nmDisconnect
	Description
	Syntax
	Example

	nmEnroll
	Description
	Syntax
	Example

	nmKill
	Description
	Syntax
	Example

	nmLog
	Description
	Syntax
	Example

	nmServerLog
	Description
	Syntax
	Example

	nmServerStatus
	Description
	Syntax
	Example

	nmStart
	Description
	Syntax
	Example

	nmVersion
	Description
	Syntax
	Example

	startNodeManager
	Description
	Syntax
	Example

	Tree Commands
	config
	Description
	Example

	custom
	Description
	Example

	domainConfig
	Description
	Example

	domainRuntime
	Description
	Example

	edit
	Description
	Example

	jndi
	Description
	Example

	runtime
	Description
	Example

	serverConfig
	Description
	Example

	serverRuntime
	Description
	Example

	WLST Variable Reference

	WLST Online and Offline Command Summary
	WLST Command Summary, Alphabetically By Command
	WLST Online Command Summary
	WLST Offline Command Summary

	WLST Deployment Objects
	WLSTPlan Object
	WLSTProgress Object

	FAQs: WLST

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

