
BEAWebLogic
Server®

Programming WebLogic
RMI

Version 9.0
Document Revised: July 22, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Programming WebLogic RMI v

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to this Document . 1-2

Related Documentation . 1-2

Samples and Tutorials . 1-3

Avitek Medical Records Application (MedRec) and Tutorials 1-3

Examples in the WebLogic Server Distribution . 1-4

Additional Examples Available for Download . 1-4

New and Changed Features in This Release . 1-4

2. Understanding WebLogic RMI
What is WebLogic RMI? . 2-7

Features of WebLogic RMI . 2-7

3. WebLogic RMI Features
WebLogic RMI Overview . 3-11

WebLogic RMI Security Support . 3-12

WebLogic RMI Transaction Support. 3-12

Failover and Load Balancing RMI Objects . 3-12

Clustered RMI Applications . 3-12

Load Balancing RMI Objects . 3-13

Parameter-Based Routing for Clustered Objects . 3-13

Custom Call Routing and Collocation Optimization. 3-15

vi Programming WebLogic RMI

Creating Pinned Services . 3-15

Dynamic Proxies in RMI. 3-15

Using the RMI Timeout . 3-16

4. Using the WebLogic RMI Compiler
Overview of the WebLogic RMI Compiler . 4-17

WebLogic RMI Compiler Features. 4-17

Hot Code Generation . 4-18

Proxy Generation . 4-18

Additional WebLogic RMI Compiler Features . 4-19

WebLogic RMI Compiler Options . 4-19

Non-Replicated Stub Generation . 4-22

Using Persistent Compiler Options . 4-22

Migrating from Stubs and Skeletons to Dynamic Proxies and Bytecode 4-23

5. How to Implement WebLogic RMI
Procedures for Implementing WebLogic RMI . 5-25

Creating Classes That Can Be Invoked Remotely . 5-26

Step 1. Write a Remote Interface . 5-26

Step 2. Implement the Remote Interface. 5-27

Step 3. Compile the Java Class . 5-29

Step 4. Compile the Implementation Class with RMI Compiler 5-29

Step 5: Write Code That Invokes Remote Methods . 5-29

Hello Code Sample . 5-30

6. Using RMI over IIOP
What is RMI over IIOP? . 6-33

Overview of WebLogic RMI-IIOP . 6-33

 . 6-34

Programming WebLogic RMI vii

Support for RMI-IIOP with RMI (Java) Clients . 6-34

Support for RMI-IIOP with Tuxedo Client . 6-35

Support for RMI-IIOP with CORBA/IDL Clients . 6-35

Protocol Compatibility . 6-35

Server-to-Server Interoperability . 6-35

Client-to-Server Interoperability . 6-37

ORB Implementation. 6-39

Using a Foreign ORB . 6-39

Using a Foreign RMI-IIOP Implementation . 6-39

7. Configuring WebLogic Server for RMI-IIOP
Set the Listening Address . 7-42

Setting Network Channel Addresses . 7-42

Considerations for Proxys and Firewalls . 7-42

Considerations for Clients with Multiple Connections . 7-42

Using a IIOPS Thin Client Proxy . 7-43

Using RMI-IIOP with SSL and a Java Client . 7-43

Accessing WebLogic Server Objects from a CORBA Client through Delegation 7-44

Overview of Delegation . 7-44

Example of Delegation . 7-45

Configuring CSIv2 authentication. 7-47

Using RMI over IIOP with a Hardware LoadBalancer . 7-47

Limitations of WebLogic RMI-IIOP. 7-48

Limitations Using RMI-IIOP on the Client . 7-48

Limitations Developing Java IDL Clients . 7-48

Limitations of Passing Objects by Value . 7-49

Propagating Client Identity . 7-49

RMI-IIOP Applications Using WebLogic Tuxedo Connector . 7-51

viii Programming WebLogic RMI

When to Use WebLogic Tuxedo Connector . 7-51

How the WebLogic Tuxedo Connector Works . 7-51

WebLogic Tuxedo Connector Code Samples . 7-51

Using the CORBA API . 7-51

Supporting Outbound CORBA Calls . 7-52

Using the WebLogic ORB Hosted in JNDI . 7-52

ORB from JNDI . 7-52

Direct ORB creation . 7-53

Using JNDI . 7-53

Supporting Inbound CORBA Calls . 7-54

Limitation When Using the CORBA API . 7-54

Using EJBs with RMI-IIOP . 7-55

RMI-IIOP and the RMI Object Lifecycle . 7-56

8. Best Practices for Application Design
Use java.rmi . 8-59

Use PortableRemoteObject . 8-59

Use WebLogic Work Areas . 8-60

Guidelines on Using the RMI Timeout . 8-60

A. CORBA Support for WebLogic Server 9.0
Specification References . A-1

Supported Specification Details . A-2

Tools . A-2

. A-3

Programming WebLogic RMI 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming WebLogic
RMI.

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-2

“Samples and Tutorials” on page 1-3

“New and Changed Features in This Release” on page 1-4

Document Scope and Audience
This document is written for application developers who want to build e-commerce applications
using Remote Method Invocation (RMI) and Internet Interop-Orb-Protocol (IIOP) features. It is
assumed that readers know Web technologies, object-oriented programming techniques, and the
Java programming language. This document emphasizes the value-added features provided by

WebLogic Server® and key information about how to use WebLogic Server features when
developing applications with RMI.

I n t roduc t i on and Roadmap

1-2 Programming WebLogic RMI

Guide to this Document
This document describes the BEA WebLogic Server RMI implementation of the JavaSoftTM
Remote Method Invocation (RMI) specification from Sun Microsystems. The BEA
implementation is known as WebLogic RMI.

This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

Chapter 2, “Understanding WebLogic RMI,” is an overview of WebLogic RMI features
and its architecture.

Chapter 3, “WebLogic RMI Features,” describes the features that you use to program RMI
for WebLogic Server.

Chapter 4, “Using the WebLogic RMI Compiler,” provides information on the WebLogic
RMI compiler.

Chapter 5, “How to Implement WebLogic RMI,” provides a simple step by step example of
how to implement WebLogic RMI.

Chapter 6, “Using RMI over IIOP,” defines RMI over IIOP and provides general
information about the WebLogic Server RMI-IIOP implementation.

Chapter 7, “Configuring WebLogic Server for RMI-IIOP,” describes concepts, issues, and
procedures related to using WebLogic Server to support RMI-IIOP applications.

Chapter 8, “Best Practices for Application Design,” describes recommended design
patterns when developing RMI and RMI over IIOP applications.

Appendix A, “CORBA Support for WebLogic Server 9.0,” provides information on
CORBA support for WebLogic Server 9.0.

Related Documentation
For information on topics related to WebLogic RMI, see the following documents:

Java(TM) Remote Method Invocation (RMI) is a link to basic Sun MicroSystems tutorials
on Remote Method Invocation.

Developing Applications with WebLogic Server is a guide to developing WebLogic Server
applications.

http://java.sun.com/j2se/1.5.0/docs/guide/rmi/
http://e-docs.bea.com/wls/docs90/programming/index.html

Samples and Tu to r ia l s

Programming WebLogic RMI 1-3

Programming WebLogic JNDI is a guide using the WebLogic Java Naming and Directory
Interface.

Programming Stand-alone Clients is a guide to developing common stand alone clients that
interoperate with WebLogic Server.

CORBA Technology and the Java Platform provides an overview of CORBA and Java
platform.

Java IDL Technology contains information using standard IDL (Object Management Group
Interface Definition Language) and IIOP.

omg.org is the Object Management Group homepage.

CORBA Language Mapping Specifications at
http://www.omg.org/technology/documents/index.htm

Objects-by-Value Specification at ftp://ftp.omg.org/pub/docs/orbos/98-01-18.pdf

Samples and Tutorials
In addition to this document, BEA Systems provides a variety of code samples and tutorials for
developers. The examples and tutorials illustrate WebLogic Server in action, and provide
practical instructions on how to perform key development tasks.

BEA recommends that you run some or all of the RMI examples before developing your own
applications.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the WL_HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Platform.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs) that work
together to process requests from web applications, web services, and workflow applications, and

http://e-docs.bea.com/wls/docs90/jndi/index.html
http://e-docs.bea.com/wls/docs90/client/index.html
http://java.sun.com/j2ee/corba/
http://java.sun.com/j2se/1.5.0/docs/guide/idl/index.html
http://www.omg.org
http://www.omg.org/technology/documents/index.htm
ftp://ftp.omg.org/pub/docs/orbos/98-01-18.pdf

I n t roduc t i on and Roadmap

1-4 Programming WebLogic RMI

future client applications. The application includes message-driven, stateless session, stateful
session, and entity EJBs.

Examples in the WebLogic Server Distribution
WebLogic Server 9.0 optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server 9.0 Start menu.

Additional Examples Available for Download
Additional API examples for download at http://dev2dev.bea.com/wlserver90/. These examples
are distributed as .zip files that you can unzip into an existing WebLogic Server samples
directory structure. You build and run the downloadable examples in the same manner as you
would an installed WebLogic Server example. See the download pages of individual examples
for more information.

New and Changed Features in This Release
The following section provides information on new and changed features for release of
WebLogic RMI:

Reorganization of RMI, IIOP, and stand alone client information. RMI and IIOP
documentation is now located this document— Programming WebLogic RMI. Information
pertaining to developing common stand alone clients that interoperate with WebLogic
Server has been moved to a new document, Programming Stand Alone Clients.

Compliance with the JavaTM 2 Platform Specification, see Standards compliant in
“Features of WebLogic RMI” on page 2-7.

WebLogic Server allows you to specify a timeout for a synchronous remote call. This
allows an RMI client making a remote call to return before the remote method that it
invoked has returned from the server instance it called. This can be useful in legacy
applications where a client wants to be able to return quickly if there is no response from
the remote system. For more information, see “Using the RMI Timeout” on page 3-16.

Support for Internet Protocol version 6 (IPv6), 128 bit addressing space.

Previous versions of WebLogic Server included a proprietary API called the WebLogic
RMI API. This API is very similar to java.rmi. Although the WebLogic RMI API is still

http://dev2dev.bea.com/wlserver90/
http://e-docs.bea.com/wls/docs90/client/index.html
http://www.ixiacom.com/library/white_papers/wp_display.php?skey=ipv6#A1

New and Changed Featu res in Th is Re lease

Programming WebLogic RMI 1-5

accessible in this release of WebLogic Server, its functionality has been deprecated.
Programmers should use java.rmi instead. See “Best Practices for Application Design”
on page 8-59.

Parameter-based routing allows you to control load balancing behavior at a lower level.
Any clustered object can be assigned a CallRouter using the
weblogic.rmi.cluster.CallRouter interface. See “Parameter-Based Routing for
Clustered Objects” on page 3-13.

WebLogic Server provides several load balancing algorithms, including Round Robin,
Random, and Weight-based, for clustered RMI objects. See “Load Balancing RMI
Objects” on page 3-13.

WebLogic Server supports the Common Secure Interoperability Specification, Version 2
(CSIv2) that addresses Common Object Request Broker Architecture (CORBA) security
for interoperable authentication, delegation, and privileges. See “Configuring CSIv2
authentication” on page 7-47.

For more release-specific information on new and changed features, see these sections in
WebLogic Server 9.0 Release Notes:

“WebLogic Server 9.0 Features and Changes” lists new, changed, and deprecate features.

“WebLogic Server 9.0 Known and Resolved Issues” lists known problems by service pack,
for all WebLogic Server APIs.

For more release-specific information about the hardware and software configurations supported
by BEA for this release of WebLogic Server, see WebLogic Platform Supported Configurations.

http://e-docs.bea.com/wls/docs90/notes/new.html
http://e-docs.bea.com/wls/docs90/issues/known_resolved.html
http://e-docs.bea.com/platform/suppconfigs/index.html

I n t roduc t i on and Roadmap

1-6 Programming WebLogic RMI

Programming WebLogic RMI 2-7

C H A P T E R 2

Understanding WebLogic RMI

The following sections introduce and describe the features of WebLogic RMI.

“What is WebLogic RMI?” on page 2-7

“Features of WebLogic RMI” on page 2-7

What is WebLogic RMI?
Remote Method Invocation (RMI) is the standard for distributed object computing in Java. RMI
enables an application to obtain a reference to an object that exists elsewhere in the network, and
then invoke methods on that object as though it existed locally in the client’s virtual machine.
RMI specifies how distributed Java applications should operate over multiple Java virtual
machines.

This document contains information about using WebLogic RMI, but it is not a beginner's tutorial
on remote objects or writing distributed applications. If you are just beginning to learn about
RMI, visit the JavaSoft Web site and take the RMI tutorial.

Features of WebLogic RMI
The following table highlights important features of WebLogic implementation of RMI:

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/

Featu res o f WebLog ic RMI

Programming WebLogic RMI 2-8

Table 1-1 WebLogic RMI Features

Feature WebLogic RMI

Overall performance Enhanced by WebLogic RMI integration into the
WebLogic Server framework, which provides
underlying support for communications, scalability,
management of threads and sockets, efficient
garbage collection, and server-related support.

Standards compliant Compliance with the JavaTM 2 Platform Standard
Edition 5.0 API Specification

Failover and Loadbalancing WebLogic Server support for failover and
loadbalancing of RMI objects.

WebLogic RMI compiler Stubs and skeletons dynamically generated by
WebLogic RMI at run time, which obviates need to
explicitly run weblogic.rmic, except for
clusterable or Internet Inter-ORB Protocol
(IIOP) clients.

Dynamic Proxies A class used by the clients of a remote object. In the
case of RMI, skeleton and a stub classes are used.
The stub class is the instance that is invoked upon in
the client's Java Virtual Machine (JVM). The
skeleton class, which exists in the remote JVM,
unmarshals the invoked method and arguments on
the remote JVM, invokes the method on the instance
of the remote object, and then marshals the results
for return to the client.

Security Support No Security Manager required. WebLogic Server
implements authentication, authorization, and
J2EE security services.

Transaction Support WebLogic Server supports transactions in the Sun

Microsystems, Inc., JavaTM 2, Enterprise Edition
(J2EE) programming model.

Internet Protocol version 6
(IPv6) Support

Support for 128 bit addressing space.

http://e-docs.bea.com/wls/docs90/rmi/rmi_api.html#cluster
http://e-docs.bea.com/wls/docs90/rmi/rmi_rmic.html
http://e-docs.bea.com/wls/docs90/rmi/rmi_api.html#proxy
http://e-docs.bea.com/wls/docs90/rmi/rmi_api.html#security
http://e-docs.bea.com/wls/docs90/rmi/rmi_api.html#tx
http://www.ixiacom.com/library/white_papers/wp_display.php?skey=ipv6#A1

Featu res o f WebLog ic RMI

Programming WebLogic RMI 2-9

Featu res o f WebLog ic RMI

Programming WebLogic RMI 2-10

Programming WebLogic RMI 3-11

C H A P T E R 3

WebLogic RMI Features

The following sections describe the WebLogic RMI features and guidelines required to program
RMI for use with WebLogic Server:

“WebLogic RMI Overview” on page 3-11

“WebLogic RMI Security Support” on page 3-12

“WebLogic RMI Transaction Support” on page 3-12

“Failover and Load Balancing RMI Objects” on page 3-12

“Creating Pinned Services” on page 3-15

“Dynamic Proxies in RMI” on page 3-15

“Using the RMI Timeout” on page 3-16

WebLogic RMI Overview
WebLogic RMI is divided between a client and server framework. The client run time does not
have server sockets and therefore does not listen for connections. It obtains its connections
through the server. Only the server knows about the client socket. Therefore if you plan to host a
remote object on the client, you must connect the client to WebLogic Server. WebLogic Server
processes requests for and passes information to the client. In other words, client-side RMI
objects can only be reached through a single WebLogic Server, even in a cluster. If a client-side
RMI object is bound into the JNDI naming service, it only be reachable as long as the server that
carried out the bind is reachable.

WebLogi c RMI Fea tu res

3-12 Programming WebLogic RMI

WebLogic RMI Security Support
WebLogic Server implements authentication, authorization, and J2EE security services. For
more information see Introduction to Programing WebLogic Security at Programming WebLogic
Security.

WebLogic RMI Transaction Support
WebLogic Server supports transactions in the Sun Microsystems, Inc., Java™ 2, Enterprise
Edition (J2EE) programming model. For detailed information on using transactions in WebLogic
RMI applications, see the following:

Transactions in WebLogic Server RMI Applications in Programing WebLogic JTA
provides an overview on how transactions are implemented in WebLogic RMI applications.

Transactions in RMI Applications in Programing WebLogic JTA provides general
guidelines when implementing transactions in RMI applications for WebLogic Server.

Failover and Load Balancing RMI Objects
The following sections contain information on WebLogic Server support for failover and
loadbalancing of RMI objects:

Clustered RMI Applications

Load Balancing RMI Objects

Parameter-Based Routing for Clustered Objects

Clustered RMI Applications
For clustered RMI applications, failover is accomplished using the object’s replica-aware stub.
When a client makes a call through a replica-aware stub to a service that fails, the stub detects the
failure and retries the call on another replica.

To make J2EE services available to a client, WebLogic binds an RMI stub for a particular service
into its JNDI tree under a particular name. The RMI stub is updated with the location of other
instances of the RMI object as the instances are deployed to other servers in the cluster. If a server
within the cluster fails, the RMI stubs in the other server’s JNDI tree are updated to reflect the
server failure.

http://e-docs.bea.com/wls/docs90/security/intro.html
http://e-docs.bea.com/wls/docs90/jta/gstrx.html#tx_rmi
http://e-docs.bea.com/wls/docs90/jta/trxrmi.html

Fa i l ove r and Load Balanc ing RMI Ob jec ts

Programming WebLogic RMI 3-13

You specify the generation of replica-aware stubs for a specific RMI object using the
-clusterable option of the WebLogic RMI compiler. For example:

$ java weblogic.rmic -clusterable classes

For more information, see Replication and Failover for EJBs and RMIs in Using WebLogic
Clusters.

Load Balancing RMI Objects
The load balancing algorithm for an RMI object is maintained in the replica-aware stub obtained
for a clustered object. You specify the load balancing algorithm for a specific RMI object using
the -loadAlgorithm <algorithm> option of the WebLogic RMI compiler. A load
balancing algorithm that you configure for an object overrides the default load balancing
algorithm for the cluster. The WebLogic Server RMI compiler supports the following load
balancing algorithms:

Round Robin Load Balancing

Weight-Based Load Balancing

Random Load Balancing

Server Affinity Load Balancing Algorithms

For example:

To set load balancing on an RMI object to round robin, use the following rmic options:

$ java weblogic.rmic -clusterable -loadAlgorithm round-robin classes

To set load balancing on an RMI object to weight-based server affinity, use rmic options:

$ java weblogic.rmic -clusterable -loadAlgorithm weight-based -stickToF
irstServer classes

For more information, see Load Balancing for EJBs and RMI Objects in Using WebLogic Server
Clusters.

Parameter-Based Routing for Clustered Objects
Parameter-based routing allows you to control load balancing behavior at a lower level. Any
clustered object can be assigned a CallRouter using the weblogic.rmi.cluster.CallRouter
interface. This is a class that is called before each invocation with the parameters of the call. The
CallRouter is free to examine the parameters and return the name server to which the call should
be routed.

http://e-docs.bea.com/wls/docs90/cluster/failover.html#ReplicationandFailoverforEJBsandRMIs
http://e-docs.bea.com/wls/docs90/cluster/load_balancing.html#round_robin_lb
http://e-docs.bea.com/wls/docs90/cluster/load_balancing.html#Weight-based round-robin
http://e-docs.bea.com/wls/docs90/cluster/load_balancing.html#random_lb
http://e-docs.bea.com/wls/docs90/cluster/load_balancing.html#server_affinity_lb
http://e-docs.bea.com/wls/docs90/cluster/load_balancing.html#LoadBalancingforEJBsandRMIObjects

WebLogi c RMI Fea tu res

3-14 Programming WebLogic RMI

weblogic.rmi.cluster.CallRouter.

Class java.lang.Object

 Interface weblogic.rmi.cluster.CallRouter

 (extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to enable
parameter-based routing. Run rmic on the service implementation using these options (to be
entered on one line):

$ java weblogic.rmic -clusterable -callRouter <callRouterClass> <remoteObj

ectClass>

The call router is called by the clusterable stub each time a remote method is invoked. The router
is responsible for returning the name of the server to which the call should be routed.

Each server in the cluster is uniquely identified by its name as defined with the WebLogic Server
Console. These are the names that the method router must use for identifying servers.

Example: Consider the ExampleImpl class which implements a remote interface Example, with
one method foo:

public class ExampleImpl implements Example {

 public void foo(String arg) { return arg; }

}

This CallRouter implementation ExampleRouter ensures that all foo calls with ‘arg’ < “n” go
to server1 (or server3 if server1 is unreachable) and that all calls with ‘arg’ >= “n” go to server2
(or server3 if server2 is unreachable).

public class ExampleRouter implements CallRouter {

 private static final String[] aToM = { "server1", "server3" };

 private static final String[] nToZ = { "server2", "server3" };

 public String[] getServerList(Method m, Object[] params) {

 if (m.GetName().equals("foo")) {

 if (((String)params[0]).charAt(0) < 'n') {

 return aToM;

 } else {

 return nToZ;

Creat ing Pi nned Se rv ices

Programming WebLogic RMI 3-15

 }

 } else {

 return null;

 }

 }

}

This rmic call associates the ExampleRouter with ExampleImpl to enable parameter-based
routing:

$ rmic -clusterable -callRouter ExampleRouter ExampleImpl

Custom Call Routing and Collocation Optimization
If a replica is available on the same server instance as the object calling it, the call is not
load-balanced as it is more efficient to use the local replica. For more information, see
Optimization for Collocated Objects in Using WebLogic Server Clusters.

Creating Pinned Services
You can also use weblogic.rmic to generate stubs that are not replicated in the cluster. These
stubs are known as “pinned” services, because after they are registered they are available only
from the host with which they are registered and will not provide transparent failover or load
balancing. Pinned services are available cluster-wide, because they are bound into the replicated
cluster-wide JNDI tree. However, if the individual server that hosts the pinned services fails, the
client cannot failover to another server.

You specify the generation of non-replicated stubs for a specific RMI object by not using the
-clusterable option of the WebLogic RMI compiler. For example:

$ java weblogic.rmic classes

Dynamic Proxies in RMI
A dynamic proxy or proxy is a class used by the clients of a remote object. This class implements
a list of interfaces specified at runtime when the class is created. In the case of RMI, dynamically
generated bytecode and proxy classes are used. The proxy class is the instance that is invoked
upon in the client's Java Virtual Machine (JVM). The proxy class marshals the invoked method
name and its arguments; forwards these to the remote JVM. After the remote invocation is
completed and returns, the proxy class unmarshals the results on the client. The generated

http://e-docs.bea.com/wls/docs90/cluster/load_balancing.html#Collocated_objs

WebLogi c RMI Fea tu res

3-16 Programming WebLogic RMI

bytecode—which exists in the remote JVM—unmarhsals the invoked method and arguments on
the remote JVM, invokes the method on the instance of the remote object, and then marshals the
results for return to the client.

Using the RMI Timeout
WebLogic Server allows you to specify a timeout for synchronous remote call. This allows an
RMI client making a remote call to return before the remote method that it invoked has returned
from the server instance it called. This can be useful in legacy applications where a client wants
to be able to return quickly if there is no response from the remote system. See “Guidelines on
Using the RMI Timeout” on page 8-60.

To implement a synchronous RMI timeout, use the remote-client-timeout deployment
descriptor element found in the weblogic-ejb-jar.xml. For more information, see the
weblogic-ejb-jar.xml Deployment Descriptor Reference in Programming WebLogic Enterprise
JavaBeans.

http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html

Programming WebLogic RMI 4-17

C H A P T E R 4

Using the WebLogic RMI Compiler

The following sections describe the WebLogic RMI compiler:

Overview of the WebLogic RMI Compiler

WebLogic RMI Compiler Features

WebLogic RMI Compiler Options

Migrating from Stubs and Skeletons to Dynamic Proxies and Bytecode

Overview of the WebLogic RMI Compiler
The WebLogic RMI compiler (weblogic.rmic) is a command-line utility for generating and
compiling remote objects. Use weblogic.rmic to generate dynamic proxies on the client-side
for custom remote object interfaces in your application and provide hot code generation for
server-side objects.

You only need to explicitly run weblogic.rmic for clusterable or IIOP clients. WebLogic RMI
over IIOP extends the RMI programming model by providing the ability for clients to access RMI
remote objects using the Internet Inter-ORB Protocol (IIOP). See Chapter 6, “Using RMI over
IIOP.”

WebLogic RMI Compiler Features
The following sections provide information on WebLogic RMI Compiler features for this
release:

Using the WebLog ic RM I Compi le r

4-18 Programming WebLogic RMI

Hot Code Generation

Proxy Generation

Additional WebLogic RMI Compiler Features

Hot Code Generation
When you run rmic, you use WebLogic Server’s hot code generation feature to automatically
generate bytecode in memory for server classes. This bytecode is generated on the fly as needed
for the remote object. WebLogic Server no longer generates the skeleton class for the object when
weblogic.rmic is run.

Hot code generation produces the bytecode for a server-side class that processes requests from
the dynamic proxy on the client. The dynamically created bytecode de-serializes client requests
and executes them against the implementation classes, serializing results and sending them back
to the proxy on the client. The implementation for the class is bound to a name in the WebLogic
RMI registry in WebLogic Server.

Proxy Generation
The default behavior of the WebLogic RMI compiler is to produce proxies for the remote
interface and for the remote classes to share the proxies. A proxy is a class used by the clients of
a remote object. In the case of RMI, dynamically generated bytecode and proxy classes are used.

For example, example.hello.HelloImpl and counter.example.CiaoImpl are
represented by a single proxy class and bytecode—the proxy that matches the remote interface
implemented by the remote object, in this case, example.hello.Hello.

When a remote object implements more than one interface, the proxy names and packages are
determined by encoding the set of interfaces. You can override this default behavior with the
WebLogic RMI compiler option -nomanglednames, which causes the compiler to produce
proxies specific to the remote class. When a class-specific proxy is found, it takes precedence
over the interface-specific proxy.

In addition, with WebLogic RMI proxy classes, the proxies are not final. References to collocated
remote objects are references to the objects themselves, not to the proxies.

The dynamic proxy class is the serializable class that is passed to the client. A client acquires the
proxy for the class by looking up the class in the WebLogic RMI registry. The client calls
methods on the proxy just as if it were a local class and the proxy serializes the requests and sends
them to WebLogic Server.

WebLog ic RMI Compi ler Opt ions

Programming WebLogic RMI 4-19

Additional WebLogic RMI Compiler Features
Other features of the WebLogic RMI compiler include the following:

Signatures of remote methods do not need to throw RemoteException.

Remote exceptions can be mapped to RuntimeException.

Remote classes can also implement non-remote interfaces.

WebLogic RMI Compiler Options
The WebLogic RMI compiler accepts any option supported by the Java compiler; for example,
you could add -d \classes examples.hello.HelloImpl to the compiler option at the
command line. All other options supported by the Java compiler can be used and are passed
directly to the Java compiler.

The following table lists java weblogic.rmic options. Enter these options after java
weblogic.rmic and before the name of the remote class.

$java weblogic.rmic [options] <classes>...

Table 4-1 WebLogic RMI Compiler Options

Option Description

-help Prints a description of the options.

-version Prints version information.

-d <dir> Specifies the target (top level) directory for compilation.

-dispatchPolicy
<queueName>

Specifies a configured execute queue that the service
should use to obtain execute threads in WebLogic Server.

-oneway Specifies all calls are one-way calls.

-idl Generates IDLs for remote interfaces.

-idlOverwrite Overwrites existing IDL files.

-idlVerbose Displays verbose information for IDL information.

-idlDirectory
<idlDirectory>

Specifies the directory where IDL files will be created
(Default = current directory).

Using the WebLog ic RM I Compi le r

4-20 Programming WebLogic RMI

-idlFactories Generates factory methods for valuetypes.

-idlNoValueTypes Prevents the generation of valuetypes and the
methods/attributes that contain them.

-idlNoAbstractInterfac
es

Prevents the generation of abstract interfaces and the
methods/attributes that contain them.

-idlStrict Generates IDL according to OMG standard.

-idlVisibroker Generate IDL compatible with Visibroker 4.5 C++.

-idlOrbix Generate IDL compatible with Orbix 2000 2.0 C++.

-iiopTie Generate CORBA skeletons using Sun's version of rmic.

-iiopSun Generate CORBA stubs using Sun's version of rmic.

-nontransactional Suspends the transaction before making the RMI call and
resumes after the call completes.

-compiler <javac> Specifies the Java compiler. If not specified, the
-compilerclass option will be used.

-compilerclass
<com.sun.tools.javac.M
ain>

Compiler class to invoke.

-clusterable This cluster-specific options marks the service as
clusterable (can be hosted by multiple servers in a
WebLogic Server cluster). Each hosting object, or replica,
is bound into the naming service under a common name.
When the service stub is retrieved from the naming
service, it contains a replica-aware reference that
maintains the list of replicas and performs load-balancing
and fail-over between them.

-loadAlgorithm
<algorithm>

Only for use in conjunction with -clusterable.
Specifies a service-specific algorithm to use for
load-balancing and fail-over (Default =
weblogic.cluster.loadAlgorithm). Must be one
of the following: round-robin, random, or weight-based.

Table 4-1 WebLogic RMI Compiler Options

Option Description

WebLog ic RMI Compi ler Opt ions

Programming WebLogic RMI 4-21

-callRouter
<callRouterClass>

This cluster-specific option used in conjunction with
-clusterable specifies the class to be used for routing
method calls. This class must implement
weblogic.rmi.cluster.CallRouter. If
specified, an instance of the class is called before each
method call and can designate a server to route to based on
the method parameters. This option either returns a server
name or null. Null means that you use the current load
algorithm.

-stickToFirstServer This cluster-specific option used in conjunction with
-clusterable enables “sticky” load balancing. The
server chosen for servicing the first request is used for all
subsequent requests.

-methodsAreIdempotent This cluster-specific option used in conjunction with
-clusterable indicates that the methods on this class
are idempotent. This allows the stub to attempt recovery
from any communication failure, even if it can not ensure
that failure occurred before the remote method was
invoked. By default (if this option is not used), the stub
only retries on failures that are guaranteed to have
occurred before the remote method was invoked.

-iiop Generates IIOP stubs from servers.

-iiopDirectory Specifies the directory where IIOP proxy classes are
written.

-timeout Used in conjunction with remote-client-timeout.

-commentary Emits commentary.

-nomanglednames Causes the compiler to produce proxies specific to the
remote class.

-g Compile debugging information into the class.

-O Compile with optimization.

-nowarn Compile without warnings.

-verbose Compile with verbose output.

Table 4-1 WebLogic RMI Compiler Options

Option Description

http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html#rmi_timeout

Using the WebLog ic RM I Compi le r

4-22 Programming WebLogic RMI

Non-Replicated Stub Generation
You can also use weblogic.rmic to generate stubs that are not replicated in the cluster. These
stubs are known as “pinned” services, because after they are registered they are available only
from the host with which they are registered and will not provide transparent failover or load
balancing. Pinned services are available cluster-wide, because they are bound into the replicated
cluster-wide JNDI tree. However, if the individual server that hosts the pinned services fails, the
client cannot failover to another server.

Using Persistent Compiler Options
During deployment, appc and ejbc run each EJB container class through the RMI compiler to
create RMI descriptors necessary to dynamically generate stubs and skeletons. Use the
weblogic-ejb-jar.xml file to persist iiop-security-descriptor elements. For more
information, see 2.1 weblogic-ejb-jar.xml Elements in Programming WebLogic Enterprise
JavaBeans.

-verboseJavac Enable Java compiler verbose output.

-nowrite Prevent the generation of .class files.

-deprecation Provides warnings for deprecated calls.

-classpath <path> Specifies the classpath to use.

-J<option> Use to pass flags through to the Java runtime.

-keepgenerated Allows you to keep the source of generated stub and
skeleton class files when you run the WebLogic RMI
compiler.

-disableHotCodeGen Causes the compiler to create stubs at skeleton classes
when compiled.

Table 4-1 WebLogic RMI Compiler Options

Option Description

http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html#elements

Migra t ing f rom Stubs and Skele tons to Dynamic P rox i es and Byt ecode

Programming WebLogic RMI 4-23

Migrating from Stubs and Skeletons to Dynamic Proxies and
Bytecode

In releases prior to WebLogic Server 6.1, running weblogic.rmic generated stubs on the client
and skeleton code on the server-side. WebLogic Server releases 6.1 and higher have dynamic
proxies that replace generated stubs on the client-side and bytecode has replaced skeletons on the
server-side.

To enable WebLogic RMI objects from releases prior to WebLogic Server 6.1 to operate
with versions of WebLogic Server that use dynamic proxies, you must run
weblogic.rmic on the objects from releases prior to WebLogic Server 6.1. This generates
the necessary proxies and bytecode that enable the deployed RMI object. See “Proxy
Generation” on page 4-18. To produce a deployment descriptor file for an RMI object, use
weblogic.rmic with one or more of the following parameters:

– -oneway

– -clusterable

– -stickToFirstServer

To enable remote EJB objects from releases prior to WebLogic Server 6.1 to operate with
versions of WebLogic Server that use dynamic proxies, you must run weblogic.rmic on
the objects from releases prior to WebLogic Server 6.1.

Using the WebLog ic RM I Compi le r

4-24 Programming WebLogic RMI

Programming WebLogic RMI 5-25

C H A P T E R 5

How to Implement WebLogic RMI

The basic building block for all remote objects is the interface java.rmi.Remote, which
contains no methods. You extend this "tagging" interface—that is, it functions as a tag to identify
remote classes—to create your own remote interface, with method stubs that create a structure
for your remote object. Then you implement your own remote interface with a remote class. This
implementation is bound to a name in the registry, where a client or server can look up the object
and use it remotely.

If you have written RMI classes, you can drop them in WebLogic RMI by changing the import
statement on a remote interface and the classes that extend it. To add remote invocation to your
client applications, look up the object by name in the registry. WebLogic RMI exceptions are
identical to and extend java.rmi exceptions so that existing interfaces and implementations do
not have to change exception handling.

Procedures for Implementing WebLogic RMI
The following sections describe how to implement WebLogic Server RMI:

Creating Classes That Can Be Invoked Remotely

Step 1. Write a Remote Interface

Step 2. Implement the Remote Interface

Step 3. Compile the Java Class

Step 4. Compile the Implementation Class with RMI Compiler

Step 5: Write Code That Invokes Remote Methods

How to Imp lement WebLog ic RMI

5-26 Programming WebLogic RMI

Hello Code Sample

Creating Classes That Can Be Invoked Remotely
You can write your own WebLogic RMI classes in just a few steps. Here is a simple example.

Step 1. Write a Remote Interface
Every class that can be remotely invoked implements a remote interface. Using a Java code text
editor, write the remote interface in adherence with the following guidelines.

A remote interface must extend the interface java.rmi.Remote, which contains no
method signatures. Include method signatures that will be implemented in every remote
class that implements the interface. For detailed information on how to write an interface,
see the Sun Microsystems JavaSoft tutorial Creating Interfaces.

The remote interface must be public. Otherwise a client gets an error when attempting to
load a remote object that implements it.

Unlike the JavaSoft RMI, it is not necessary for each method in the interface to declare
java.rmi.RemoteException in its throws block. The exceptions that your application
throws can be specific to your application, and can extend RuntimeException. WebLogic
RMI subclasses java.rmi.RemoteException, so if you already have existing RMI
classes, you will not have to change your exception handling.

Your Remote interface may not contain much code. All you need are the method signatures
for methods you want to implement in remote classes.

Here is an example of a remote interface with the method signature sayHello().

package examples.rmi.multihello;

import java.rmi.*;

public interface Hello extends java.rmi.Remote {

 String sayHello() throws RemoteException;

}

With JavaSoft's RMI, every class that implements a remote interface must have accompanying,
precompiled proxies. WebLogic RMI supports more flexible runtime code generation; WebLogic
RMI supports dynamic proxies and dynamically created bytecode that are type-correct but are
otherwise independent of the class that implements the interface. If a class implements a single
remote interface, the proxy and bytecode that is generated by the compiler will have the same
name as the remote interface. If a class implements more than one remote interface, the name of

Procedures fo r Implement ing WebLog ic RMI

Programming WebLogic RMI 5-27

the proxy and bytecode that result from the compilation depend on the name mangling used by
the compiler.

Step 2. Implement the Remote Interface
Still using a Java code text editor, write the class be invoked remotely. The class should
implement the remote interface that you wrote in Step 1, which means that you implement the
method signatures that are contained in the interface. Currently, all the code generation that takes
place in WebLogic RMI is dependent on this class file.

With WebLogic RMI, your class does not need to extend UnicastRemoteObject, which is
required by JavaSoft RMI. (You can extend UnicastRemoteObject, but it isn't necessary.)
This allows you to retain a class hierarchy that makes sense for your application.

Note: With Weblogic server, you can use both Weblogic RMI and standard JDK RMI. If you
use Weblogic RMI, then you must use "java weblogic.rmic ..." as the rmic
compiler and you must not create your RMI implementation as a subclass of
"java.rmi.server.UnicastRemoteObject". If you use standard JDK RMI, then you
must use "%JAVA_HOME%\bin\rmic" as the rmic compiler and you must create your RMI
implementation class as a subclass of "java.rmi.server.UnicastRemoteObject".

Your class can implement more than one remote interface. Your class can also define methods
that are not in the remote interface, but you cannot invoke those methods remotely.

This example implements a class that creates multiple HelloImpls and binds each to a unique
name in the registry. The method sayHello() greets the user and identifies the object which was
remotely invoked.

package examples.rmi.multihello;

import java.rmi.*;

public class HelloImpl implements Hello {

 private String name;

 public HelloImpl(String s) throws RemoteException {

 name = s;

 }

 public String sayHello() throws RemoteException {

 return "Hello! From " + name;

 }

How to Imp lement WebLog ic RMI

5-28 Programming WebLogic RMI

Next, write a main() method that creates an instance of the remote object and registers it in the
WebLogic RMI registry, by binding it to a name (a URL that points to the implementation of the
object). A client that needs to obtain a proxy to use the object remotely will be able to look up the
object by name.

Below is an example of a main() method for the HelloImpl class. This registers the
HelloImpl object under the name HelloRemoteWorld in a WebLogic Server registry.

 public static void main(String[] argv) {

 // Not needed with WebLogic RMI

 // System.setSecurityManager(new RmiSecurityManager());

 // But if you include this line of code, you should make

 // it conditional, as shown here:

 // if (System.getSecurityManager() == null)

 // System.setSecurityManager(new RmiSecurityManager());

 int i = 0;

 try {

 for (i = 0; i < 10; i++) {

 HelloImpl obj = new HelloImpl("MultiHelloServer" + i);

 Context.rebind("//localhost/MultiHelloServer" + i, obj);

System.out.println("MultiHelloServer" + i + " created.");

 }

 System.out.println("Created and registered " + i +

 " MultiHelloImpls.");

 }

 catch (Exception e) {

 System.out.println("HelloImpl error: " + e.getMessage());

 e.printStackTrace();

 }

 }

Procedures fo r Implement ing WebLog ic RMI

Programming WebLogic RMI 5-29

WebLogic RMI does not require that you set a Security Manager in order to integrate security
into your application. Security is handled by WebLogic Server support for SSL and ACLs. If you
must, you may use your own security manager, but do not install it in WebLogic Server.

Step 3. Compile the Java Class
Use javac or some other Java compiler to compile the .java files to produce .class files for
the remote interface and the class that implements it.

Step 4. Compile the Implementation Class with RMI Compiler
Run the WebLogic RMI compiler (weblogic.rmic) against the remote class to generate the
dynamic proxy and bytecode, on the fly. A proxy is the client-side proxy for a remote object that
forwards each WebLogic RMI call to its matching server-side bytecode, which in turn forwards
the call to the actual remote object implementation. To run the weblogic.rmic, use the
command pattern:

 $ java weblogic.rmic nameOfRemoteClass

where nameOfRemoteClass is the full package name of the class that implements your Remote
interface. With the examples we have used previously, the command would be:

 $ java weblogic.rmic examples.rmi.hello.HelloImpl

Set the flag -keepgenerated when you run weblogic.rmic if you want to keep the generated
source when creating stub or skeleton classes. For a listing of the available command-line
options, see “WebLogic RMI Compiler Options” on page 4-19.

Step 5: Write Code That Invokes Remote Methods
Using a Java code text editor, once you compile and install the remote class, the interface it
implements, and its proxy and the bytecode on the WebLogic Server, you can add code to a
WebLogic client application to invoke methods in the remote class.

In general, it takes just a single line of code: get a reference to the remote object. Do this with the
Naming.lookup() method. Here is a short WebLogic client application that uses an object
created in a previous example.

package mypackage.myclient;

import java.rmi.*;

public class HelloWorld throws Exception {

How to Imp lement WebLog ic RMI

5-30 Programming WebLogic RMI

 // Look up the remote object in the

 // WebLogic's registry

 Hello hi = (Hello)Naming.lookup("HelloRemoteWorld");

 // Invoke a method remotely

 String message = hi.sayHello();

 System.out.println(message);

}

This example demonstrates using a Java application as the client.

Hello Code Sample
Here is the full code for the Hello interface.

package examples.rmi.hello;

import java.rmi.*;

public interface Hello extends java.rmi.Remote {

 String sayHello() throws RemoteException;

}

Here is the full code for the HelloImpl class that implements it.

package examples.rmi.hello;

import java.rmi.*;

public class HelloImpl

 // Don't need this in WebLogic RMI:

 // extends UnicastRemoteObject

Procedures fo r Implement ing WebLog ic RMI

Programming WebLogic RMI 5-31

 implements Hello {

 public HelloImpl() throws RemoteException {

 super();

 }

 public String sayHello() throws RemoteException {

 return "Hello Remote World!!";

 }

 public static void main(String[] argv) {

 try {

 HelloImpl obj = new HelloImpl();

 Naming.bind("HelloRemoteWorld", obj);

 }

 catch (Exception e) {

 System.out.println("HelloImpl error: " + e.getMessage());

 e.printStackTrace();

 }

 }

}

How to Imp lement WebLog ic RMI

5-32 Programming WebLogic RMI

Programming WebLogic RMI 6-33

C H A P T E R 6i

mi

Using RMI over IIOP

The following sections provide a high-level view of RMI over IIOP:

What is RMI over IIOP?

Overview of WebLogic RMI-IIOP

Protocol Compatibility

“ORB Implementation” on page 6-39

What is RMI over IIOP?
RMI over IIOP extends RMI to work across the IIOP protocol. This has two benefits that you can
leverage. In a Java to Java paradigm, this allows you to program against the standardized Internet
Interop-Orb-Protocol (IIOP). If you are not working in a Java-only environment, it allows your
Java programs to interact with Common Object Request Broker Architecture (CORBA) clients
and execute CORBA objects. CORBA clients can be written in a variety of languages (including
C++) and use the Interface-Definition-Language (IDL) to interact with a remote object.

Overview of WebLogic RMI-IIOP
WebLogic Server 9.0 provides its own ORB implementation which is instantiated by default
when programs call ORB.init(), or when "java:comp/ORB" is looked up in JNDI. See
“CORBA Support for WebLogic Server 9.0” on page A-1 for information how WebLogic Server
complies with specifications for CORBA support in J2SE 1.4 .

The WebLogic Server implementation of RMI-IIOP allows you to:

Using RMI over I IOP

6-34 Programming WebLogic RMI

Connect Java RMI clients to WebLogic Server using the standardized IIOP protocol

Connect CORBA/IDL clients, including those written in C++, to WebLogic Server

Interoperate between WebLogic Server and Tuxedo clients

Connect a variety of clients to EJBs hosted on WebLogic Server

How you develop your RMI-IIOP applications depends on what services and clients you are
trying to integrate. See Programming Stand-alone Clients for more information on how to create
applications for various clients types that use RMI and RMI-IIOP.

Figure 6-1 shows RMI Object Relationships for objects that use IIOP.

Figure 6-1 RMI Object Relationships

Support for RMI-IIOP with RMI (Java) Clients
You can use RMI-IIOP with Java/RMI clients, taking advantage of the standard IIOP protocol.
WebLogic Server 9.0 provides multiple options for using RMI-IIOP in a Java-to-Java
environment, including the new J2EE Application Client (thin client), which is based on the new
small footprint client jar. To use the new thin client, you need to have the wlclient.jar (located
in WL_HOME/server/lib) on the client side’s CLASSPATH. For more information on
RMI-IIOP client options, see Programming Stand Alone Clients.

WebLogic
Server

Client

Stub

ORB

RMI
runtime

RMI
object

IIOP

http://e-docs.bea.com/wls/docs90/client/index.html
http://e-docs.bea.com/wls/docs90/client/index.html

Pro toco l Compat ib i l i t y

Programming WebLogic RMI 6-35

Support for RMI-IIOP with Tuxedo Client
WebLogic Server 9.0 contains an implementation of the WebLogic Tuxedo Connector, an
underlying technology that enables you to interoperate with Tuxedo servers. Using WebLogic
Tuxedo Connector, you can leverage Tuxedo as an ORB, or integrate legacy Tuxedo systems
with applications you have developed on WebLogic Server. For more information, see the
WebLogic Tuxedo Connector Programmer’s Guide at
http://e-docs.bea.com/wls/docs90/wtc.html.

Support for RMI-IIOP with CORBA/IDL Clients
The developer community requires the ability to access J2EE services from CORBA/IDL clients.
However, Java and CORBA are based on very different object models. Because of this, sharing
data between objects created in the two programming paradigms was, until recently, limited to
Remote and CORBA primitive data types. Neither CORBA structures nor Java objects could be
readily passed between disparate objects. To address this limitation, the Object Management
Group (OMG) created the Objects-by-Value specification . This specification defines the
enabling technology for exporting the Java object model into the CORBA/IDL programming
model--allowing for the interchange of complex data types between the two models. WebLogic
Server can support Objects-by-Value with any CORBA ORB that correctly implements the
specification.

Protocol Compatibility
Interoperability between WebLogic Server 9.0 and WebLogic Server 6.1, 7.0, and 8.1 is
supported in the following scenarios:

Server-to-Server Interoperability

Client-to-Server Interoperability

Server-to-Server Interoperability
The following table identifies supported options for achieving interoperability between two
WebLogic Server instances.

Table 6-1 WebLogic Server-to-Server Interoperability

http://e-docs.bea.com/wls/docs90/wtc.html
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/technology/documents/index.htm

Using RMI over I IOP

6-36 Programming WebLogic RMI

To
Server

From Server

WebLogic Server
6.1 SP2 and any
service pack
higher than SP2

WebLogic Server
7.0

WebLogic Server
8.1

WebLogic Server
9.0

WebLogic
Server 6.1 SP2
and any service
pack higher than
SP2

RMI/T3

RMI/IIOP1

HTTP

Web Services

RMI/T3

RMI/IIOP2

HTTP

Web Services

RMI/T33

RMI/IIOP4

HTTP

Web Services5

RMI/T36

RMI/IIOP7

HTTP

Web Services8

WebLogic
Server 7.0

RMI/T3

RMI/IIOP9

HTTP

RMI/T3

RMI/IIOP10

HTTP

Web Services

RMI/T3

RMI/IIOP11

HTTP

Web Services12

RMI/T3

RMI/IIOP13

HTTP

Web Services14

WebLogic
Server 8.1

RMI/T3

RMI/IIOP15

HTTP

RMI/T3

RMI/IIOP16

HTTP

Web Services17

RMI/T3

RMI/IIOP

HTTP

Web Services

RMI/T3

RMI/IIOP

HTTP

Web Services

WebLogic
Server 9.0

RMI/T3

RMI/IIOP18

HTTP

RMI/T3

RMI/IIOP19

HTTP

Web Services20

RMI/T3

RMI/IIOP

HTTP

Web Services

RMI/T3

RMI/IIOP

HTTP

Web Services

Sun JDK ORB
client21

RMI/IIOP22 RMI/IIOP23 RMI/IIOP24 RMI/IIOP25

1. No support for clustered URLs and no transaction propagation
2. No support for clustered URLs and no transaction propagation
3. Known problems with exception marshalling with releases prior to 6.1 SP4
4. No support for clustered URLs and no transaction propagation. Known problems with exception
marshalling.
5. Must use portable client stubs generated from the “To Server” version
6. Known problems with exception marshalling with releases prior to 6.1 SP4
7. No support for clustered URLs and no transaction propagation. Known problems with exception
marshalling.
8. Must use portable client stubs generated from the “To Server” version

Pro toco l Compat ib i l i t y

Programming WebLogic RMI 6-37

Client-to-Server Interoperability
The following table identifies supported options for achieving interoperability between a
stand-alone Java client application and a WebLogic Server instance.

Table 6-2 Client-to-Server Interoperability

9. No support for clustered URLs and no transaction propagation
10. No support for clustered URLs
11. No support for clustered URLs
12. Must use portable client stubs generated from the “To Server” version
13. No support for clustered URLs
14. Must use portable client stubs generated from the “To Server” version
15. No support for clustered URLs and no transaction propagation. Known problems with exception
marshalling
16. No support for clustered URLs and no transaction propagation
17. Must use portable client stubs generated from the “To Server” version
18. No support for clustered URLs and no transaction propagation. Known problems with exception
marshalling
19. No support for clustered URLs and no transaction propagation
20. Must use portable client stubs generated from the “To Server” version
21. This option involves calling directly into the JDK ORB from within application hosted on
WebLogic Server.
22. JDK 1.3.x only. No clustering. No transaction propagation
23. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation
24. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation
25. JDK 5.0. No clustering. No transaction propagation

Using RMI over I IOP

6-38 Programming WebLogic RMI

To
Server

From Client
(stand-alone)

WebLogic Server
6.1

WebLogic Server
7.0

WebLogic Server
8.1

WebLogic Server
9.0

WebLogic Server
6.1

RMI/T3

HTTP

Web Services

RMI/T3

HTTP

Web Services1

RMI/T32

HTTP

Web Services3

RMI/T34

HTTP

Web Services5

WebLogic
Server 7.0

RMI/T3

RMI/IIOP6

HTTP

RMI/T3

RMI/IIOP7

HTTP

Web Services

RMI/T3

RMI/IIOP8

HTTP

Web Services9

RMI/T3

RMI/IIOP10

HTTP

Web Services11

WebLogic
Server 8.1

RMI/T3

RMI/IIOP12

HTTP

RMI/T3

RMI/IIOP13

HTTP

Web Services14

RMI/T3

RMI/IIOP

HTTP

Web Services

RMI/T3

RMI/IIOP

HTTP

Web Services

WebLogic
Server 9.0

RMI/T3

RMI/IIOP15

HTTP

RMI/T3

RMI/IIOP16

HTTP

Web Services17

RMI/T3

RMI/IIOP

HTTP

Web Services

RMI/T3

RMI/IIOP

HTTP

Web Services

Sun JDK ORB
client18

RMI/IIOP19 RMI/IIOP20 RMI/IIOP21 RMI/IIOP22

1. Must use portable client stubs generated from the “To Server” version
2. Known problems with exception marshalling with releases prior to 6.1 SP4
3. Must use portable client stubs generated from the “To Server” version
4. Known problems with exception marshalling with releases prior to 6.1 SP4
5. Must use portable client stubs generated from the “To Server” version
6. No Cluster or Failover support. No transaction propagation
7. No Cluster or Failover support
8. No Cluster or Failover support
9. Must use portable client stubs generated from the “To Server” version
10. No Cluster or Failover support

ORB Impl ementat i on

Programming WebLogic RMI 6-39

ORB Implementation
WebLogic Server provides its own ORB implementation that is instantiated by default when
programs call ORB.init(), or when "java:comp/ORB" is looked up in JNDI.

Using a Foreign ORB
To use an ORB other than the default WebLogic Server implementation, set the following
properties:

org.omg.CORBA.ORBSingletonClass=<classname>
org.omg.CORBA.ORBClass=<classname>

The ORBSingletonClass must be set on the server command-line. The ORBClass can be set as
a property argument to ORB.init().

Using a Foreign RMI-IIOP Implementation
To use a different RMI-IIOP implementation, you must set the following two properties:

javax.rmi.CORBA.UtilClass=<classname>
javax.rmi.CORBA.PortableRemoteObjectClass=<classname>

You will get the following errors at server startup:

<Sep 19, 2003 9:12:03 AM CDT> <Error> <IIOP> <BEA-002015> <Using
javax.rmi.CORBA.UtilClass <classname>; The IIOP subsystem requires a
WebLogic Server-compatible UtilClass.>

11. Must use portable client stubs generated from the “To Server” version
12. No Cluster or Failover support and no transaction propogation. Known problems with exception
marshalling
13. No Cluster or Failover support and no transaction propogation. Known problems with exception
marshalling
14. Must use portable client stubs generated from the “To Server” version
15. No Cluster or Failover support and no transaction propogation. Known problems with exception
marshalling
16. No Cluster or Failover support and no transaction propogation. Known problems with exception
marshalling
17. Must use portable client stubs generated from the “To Server” version
18. This option involved calling directly into the JDK ORB from within a client application.
19. JDK 1.3.x only. No clustering. No transaction propagation
20. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation
21. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation
22. JDK 5.0. No clustering. No transaction propagation

Using RMI over I IOP

6-40 Programming WebLogic RMI

<Sep 19, 2003 9:12:03 AM CDT> <Error> <IIOP> <BEA-002016> <Using
javax.rmi.CORBA.PortableRemoteObjectClass <classname>, the IIOP
subsystem requires a WebLogic Server-compatible
PortableRemoteObjectClass.>

indicating that the WebLogic RMI-IIOP runtime will not work.

The J2SE defaults for these properties are:

org.omg.CORBA.ORBSingletonClass=com.sun.corba.se.internal.corba.ORBSing
leton
org.omg.CORBA.ORBClass=com.sun.corba.se.internal.Interceptors.PIORB
javax.rmi.CORBA.UtilClass=com.sun.corba.se.internal.POA.ShutdownUtilDel
egate
javax.rmi.CORBA.PortableRemoteObjectClass=com.sun.corba.se.internal.jav
ax.rmi.PortableRemoteObject

Programming WebLogic RMI 7-41

C H A P T E R 7

Configuring WebLogic Server for
RMI-IIOP

The following sections describe concepts and procedures relating to configuring WebLogic
Server for RMI-IIOP:

Set the Listening Address

Setting Network Channel Addresses

Using a IIOPS Thin Client Proxy

Using RMI-IIOP with SSL and a Java Client

Accessing WebLogic Server Objects from a CORBA Client through Delegation

“Configuring CSIv2 authentication” on page 7-47

Using RMI over IIOP with a Hardware LoadBalancer

Limitations of WebLogic RMI-IIOP

Propagating Client Identity

RMI-IIOP Applications Using WebLogic Tuxedo Connector

Using the CORBA API

Using EJBs with RMI-IIOP

RMI-IIOP and the RMI Object Lifecycle

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-42 Programming WebLogic RMI

Set the Listening Address
To facilitate the use of IIOP, always specify a valid IP address or DNS name for the Listen
Address attribute in the configuration file (config.xml) to listen for connections.

The Listen Address default value of null allows it to “listen on all configured network
interfaces”. However, this feature only works with the T3 protocol. If you need to configure
multiple listen addresses for use with the IIOP protocol, then use the Network Channel feature,
as described in “Configuring Network Resources” in Configuring WebLogic Server
Environments.

Setting Network Channel Addresses
The following sections provide information to consider when implementing IIOP network
channel addresses for thin clients.

Considerations for Proxys and Firewalls
Many typical environments use firewalls, proxys, or other devices that hide the application
server’s true IP address. Because IIOP relies on a per-object addressing scheme where every
object contains a host and port, anything that masks the true IP address of the server will prevent
the external client from maintaining a connection. To prevent this situation, set the PublicAddress
on the server IIOP network channel to the virtual IP that the client sees.

Considerations for Clients with Multiple Connections
IIOP clients publish addressing information that is used by the application server to establish a
connection. In some situations, such as running a VPN where clients have more than one
connection, the server cannot see the IP address published by the client. In this situation, you have
two options:

Use a bi-directional form of IIOP. Use the following WebLogic flag:

-Dweblogic.corba.client.bidir=true

In this instance, the server does not need the IP address published by the client because the
server uses the inbound connection for outbound requests.

Use the following JDK property to set the address the server uses for outbound connectons:

-Dcom.sun.CORBA.ORBServerHost=client_ipaddress

where client_ipaddress is an address published by the client.

http://e-docs.bea.com/wls/docs90/config_wls/network.html

Usi ng a I IOPS Thin C l i en t P roxy

Programming WebLogic RMI 7-43

Using a IIOPS Thin Client Proxy
The IIOPs Thin Client Proxy provides a WebLogic thin client the ability to proxy outbound
requests to a server. In this situation, each user routes all outbound requests through their proxy.
The user’s proxy then directs the request to the WebLogic Server. You should use this method
when it is not practical to implement a Network Channel. To enable a proxy, set the following
properties:

-Diiops.proxyHost=<host>

-Diiops.proxyPort=<port>

where:

hostname is the network address of the user’s proxy server.

port is the port number. If not explicitly set, the value of the port number is set to 80.

hostname and port support symbolic names, such as:

-Diiops.proxyHost=https.proxyHost

-Diiops.proxyPort=https.proxyPort

You should consider the following security implications:

This feature does not change the behavior of WebLogic Server. However, using this feature
does expose IP addresses though the client’s firewall. As both ends of the connection are
trusted and the linking information is encrypted, this is an acceptable security level for
many environments.

Some production environments do not allow enabling the CONNECT attribute on the proxy
server. These environments should use HTTPS tunneling. For more information, see
Setting Up WebLogic Server for HTTP Tunneling in Configuring and Managing WebLogic
Server.

Using RMI-IIOP with SSL and a Java Client
The Java clients that support SSL are the thin client and the WLS-IIOP client. To use SSL with
these clients, simply specify an ssl url.

http://e-docs.bea.com/wls/docs90/config_wls/web_server.html#HTTP_tunneling

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-44 Programming WebLogic RMI

Accessing WebLogic Server Objects from a CORBA Client
through Delegation

WebLogic Server provides services that allow CORBA clients to access RMI remote objects. As
an alternative method, you can also host a CORBA ORB (Object Request Broker) in WebLogic
Server and delegate incoming and outgoing messages to allow CORBA clients to indirectly
invoke any object that can be bound in the server.

Overview of Delegation
Here are the main steps to create the objects that work together to delegate CORBA calls to an
object hosted by WebLogic Server.

1. Create a startup class that creates and initializes an ORB so that the ORB is co-located with
the JVM that is running WebLogic Server.

2. Create an IDL (Interface Definition Language) that will create an object to accept incoming
messages from the ORB.

3. Compile the IDL. This will generate a number of classes, one of which will be the Tie class.
Tie classes are used on the server side to process incoming calls, and dispatch the calls to
the proper implementation class. The implementation class is responsible for connecting to
the server, looking up the appropriate object, and invoking methods on the object on behalf
of the CORBA client.

Figure 7-1 is a diagram of a CORBA client invoking an EJB by delegating the call to an
implementation class that connects to the server and operates upon the EJB. Using a similar
architecture, the reverse situation will also work. You can have a startup class that brings up an
ORB and obtains a reference to the CORBA implementation object of interest. This class can
make itself available to other WebLogic objects throughout the JNDI tree and delegate the
appropriate calls to the CORBA object.

Accessi ng WebLog ic Se rve r Ob ject s f rom a CORBA C l i ent th rough De legat i on

Programming WebLogic RMI 7-45

Figure 7-1 CORBA Client Invoking an EJB with a Delegated Call

Example of Delegation
The following code example creates an implementation class that connects to the server, looks up
the Foo object in the JNDI tree, and calls the bar method. This object is also a startup class that
is responsible for initializing the CORBA environment by:

Creating the ORB

Creating the Tie object

Associating the implementation class with the Tie object

Registering the Tie object with the ORB

Binding the Tie object within the ORB's naming service

import org.omg.CosNaming.*;

import org.omg.CosNaming.NamingContextPackage.*;

import org.omg.CORBA.*;

import java.rmi.*;

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-46 Programming WebLogic RMI

import javax.naming.*;

import weblogic.jndi.Environment;

public class FooImpl implements Foo

{

public FooImpl() throws RemoteException {

super();

}

public void bar() throws RemoteException, NamingException {

// look up and call the instance to delegate the call to...

weblogic.jndi.Environment env = new Environment();

Context ctx = env.getInitialContext();

Foo delegate = (Foo)ctx.lookup("Foo");

delegate.bar();

System.out.println("delegate Foo.bar called!");

}

public static void main(String args[]) {

try {

FooImpl foo = new FooImpl();

// Create and initialize the ORB

ORB orb = ORB.init(args, null);

// Create and register the tie with the ORB

_FooImpl_Tie fooTie = new _FooImpl_Tie();

fooTie.setTarget(foo);

orb.connect(fooTie);

// Get the naming context

org.omg.CORBA.Object o = \

orb.resolve_initial_references("NameService");

NamingContext ncRef = NamingContextHelper.narrow(o);

// Bind the object reference in naming

NameComponent nc = new NameComponent("Foo", "");

NameComponent path[] = {nc};

ncRef.rebind(path, fooTie);

Conf igur ing CS Iv2 authent i ca t i on

Programming WebLogic RMI 7-47

System.out.println("FooImpl created and bound in the ORB

registry.");

}

catch (Exception e) {

System.out.println("FooImpl.main: an exception occurred:");

e.printStackTrace();

}

}

}

Configuring CSIv2 authentication
The Common Secure Interoperability Specification, Version 2 (CSIv2) is an Open Management
Group (OMG) specification that addresses the requirements of Common Object Request Broker
Architecture (CORBA) security for interoperable authentication, delegation, and privileges. See
Common Secure Interoperability Version 2 (CSIv2) in Understanding WebLogic Security.

Use the following steps to use CSIv2 to authenticate an inbound call from a remote domain:

1. Update the Identity Asserter. See “Configuring Identity Assertion Providers” in Securing
WebLogic Server.

2. Update the User Name Mapper. See “Configuring a User Name Mapper” in in Securing
WebLogic Server.

3. Add all users required by the application in the remote domain to the WebLogic
AuthenticationProvider. See “Create User” in Administration Console Online Help.

Using RMI over IIOP with a Hardware LoadBalancer
Note: This feature works correctly only when the bootstrap is through a hardware

load-balancer.

An optional enhancement for WebLogic Server 9.0 BEA ORB and higher, supports hardware
loadbalancing by forcing reconnection when bootstrapping. This allows hardware load-balancers
to balance connection attempts

In most situations, once a connection has been established, the next NameService lookup is
performed using the original connection. However, since this feature forces re-negotiation of the
end point to the hardware load balancer, all in-flight requests on any existing connection are lost.

http://e-docs.bea.com/wls/docs90/secintro/concepts.html#CSIv2
http://e-docs.bea.com/wls/docs90/secmanage/atn.html#weblogic_identity_asserter
http://e-docs.bea.com/wls/docs90/secmanage/atn.html#user_name_mapper
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Securitysecurityuserscreateuserpagetitle.html

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-48 Programming WebLogic RMI

Use the -Dweblogic.system.iiop.reconnectOnBootstrap system property to set the
connection behavior of the BEA ORB. Valid values are:

true —Forces re-negotiation of the end point.

false—Default value.

Environments requiring a hardware loadbalancer should set this property to true.

Limitations of WebLogic RMI-IIOP
The following sections outline various issues relating to WebLogic RMI-IIOP.

Limitations Using RMI-IIOP on the Client
Use WebLogic Server with JDK 1.3.1_01 or higher. Earlier versions are not RMI-IIOP
compliant. Note the following about these earlier JDKs:

Send GIOP 1.0 messages and GIOP 1.1 profiles in IORs.

Do not support the necessary pieces for EJB 2.0 interoperation (GIOP 1.2, codeset
negotiation, UTF-16).

Have bugs in its treatment of mangled method names.

Do not correctly unmarshal unchecked exceptions.

Have subtle bugs relating to the encoding of valuetypes.

Many of these items are impossible to support both ways. Where there was a choice, WebLogic
supports the spec-compliant option.

Limitations Developing Java IDL Clients
BEA Systems strongly recommends developing Java clients with the RMI client model if you are
going to use RMI-IIOP. Developing a Java IDL client can cause naming conflicts and classpath
problems, and you are required to keep the server-side and client-side classes separate. Because
the RMI object and the IDL client have different type systems, the class that defines the interface
for the server-side will be very different from the class that defines the interface on the client-side.

Propagat ing C l i en t I dent i t y

Programming WebLogic RMI 7-49

Limitations of Passing Objects by Value
To pass objects by value, you need to use value types (see Chapter 5 of the CORBA/IIOP 2.4.2
Specification for further information) You implement value types on each platform on which they
are defined or referenced. This section describes the difficulties of passing complex value types,
referencing the particular case of a C++ client accessing an Entity bean on WebLogic Server.

One problem encountered by Java programmers is the use of derived datatypes that are not
usually visible. For example, when accessing an EJB finder the Java programmer will see a
Collection or Enumeration, but does not pay attention to the underlying implementation because
the JDK run-time will classload it over the network. However, the C++, CORBA programmer
must know the type that comes across the wire so that he can register a value type factory for it
and the ORB can unmarshal it.

Simply running ejbc on the defined EJB interfaces will not generate these definitions because
they do not appear in the interface. For this reason ejbc will also accept Java classes that are not
remote interfaces—specifically for the purpose of generating IDL for these interfaces. Review
the /iiop/ejb/entity/cppclient example to see how to register a value type factory.

Java types that are serializable but that define writeObject() are mapped to custom value types
in IDL. You must write C++ code to unmarshal the value type manually. See example code from
the iiop/ejb/entity/tuxclient/ArrayList_i.cpp file at http://dev2dev.bea.com/.

Note: When using Tuxedo, you can specify the -i qualifier to direct the IDL compiler to create
implementation files named FileName_i.h and FileName_i.cpp. For example,
this syntax creates the TradeResult_i.h and TradeResult_i.cpp
implementation files:

idl -IidlSources -i idlSources\examples\iiop\ejb\iiop\TradeResult.idl

The resulting source files provide implementations for application-defined operations on a value
type. Implementation files are included in a CORBA client application.

Propagating Client Identity
Until recently insufficient standards existed for propagating client identity from a CORBA client.
If you have problems with client identity from foreign ORBs, you may need to implement one of
the following methods:

The identity of any client connecting over IIOP to WebLogic Server will default to
<anonymous>. You can set the user and password in the config.xml file to establish a
single identity for all clients connecting over IIOP to a particular instance of WebLogic
Server, as shown in the example below:

http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://dev2dev.bea.com/

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-50 Programming WebLogic RMI

<Server
Name="myserver"
NativeIOEnabled="true"
DefaultIIOPUser="Bob"
DefaultIIOPPassword="Gumby1234"
ListenPort="7001">

You can also set the IIOPEnabled attribute in the config.xml. The default value is
"true"; set this to "false" only if you want to disable IIOP support. No additional
server configuration is required to use RMI over IIOP beyond ensuring that all remote
objects are bound to the JNDI tree to be made available to clients. RMI objects are
typically bound to the JNDI tree by a startup class. EJB homes are bound to the JNDI tree
at the time of deployment. WebLogic Server implements a CosNaming Service by
delegating all lookup calls to the JNDI tree.

This release supports RMI-IIOP corbaname and corbaloc JNDI references. See the
CORBA/IIOP 2.4.2 Specification. One feature of these references is that you can make an
EJB or other object hosted on one WebLogic Server available over IIOP to other
Application Servers. So, for instance, you could add the following to your ejb-jar.xml:

<ejb-reference-description>
<ejb-ref-name>WLS</ejb-ref-name>
<jndi-name>corbaname:iiop:1.2@localhost:7001#ejb/j2ee/interop/foo</jndi
-name>
</ejb-reference-description>

The reference-description stanza maps a resource reference defined in ejb-jar.xml to the
JNDI name of an actual resource available in WebLogic Server. The ejb-ref-name
specifies a resource reference name. This is the reference that the EJB provider places
within the ejb-jar.xml deployment file. The jndi-name specifies the JNDI name of an
actual resource factory available in WebLogic Server.

Note: The iiop:1.2 contained in the <jndi-name> section. This release contains an
implementation of GIOP (General-Inter-Orb-Protocol) 1.2. The GIOP specifies
formats for messages that are exchanged between inter-operating ORBs. This allows
interoperability with many other ORBs and application servers. The GIOP version
can be controlled by the version number in a corbaname or corbaloc reference.

These methods are not required when using WLInitialContextFactory in RMI clients or can
be avoided by using the WebLogic C++ client. See example code from the
iiop/ejb/stateless/sectuxclient example at http://dev2dev.bea.com/.

http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://dev2dev.bea.com/

RMI- I IOP App l i ca t i ons Us ing WebLogi c Tuxedo Connec to r

Programming WebLogic RMI 7-51

RMI-IIOP Applications Using WebLogic Tuxedo Connector
WebLogic Tuxedo Connector provides interoperability between WebLogic Server applications
and Tuxedo services.

When to Use WebLogic Tuxedo Connector
You should consider using WebLogic Tuxedo Connector if you have developed applications on
Tuxedo and are moving to WebLogic Server, or if you are seeking to integrate legacy Tuxedo
systems into your newer WebLogic environment. WebLogic Tuxedo Connector allows you to
leverage Tuxedo’s highly scalable and reliable CORBA environment.

How the WebLogic Tuxedo Connector Works
The connector uses an XML configuration file that allows you to configure the WebLogic Server
to invoke Tuxedo services. It also enables Tuxedo to invoke WebLogic Server Enterprise Java
Beans (EJBs) and other applications in response to a service request.

The following documentation provides information on the Weblogic Tuxedo Connector, as well
as building CORBA applications on Tuxedo:

The WebLogic Tuxedo Connector Guide at http://e-docs.bea.com/wls/docs90/wtc.html

For Tuxedo, CORBA topics at http://e-docs.bea.com/tuxedo/tux80/interm/corba.htm

WebLogic Tuxedo Connector Code Samples
WebLogic Tuxedo Connector IIOP samples are provided with the WebLogic Server product. The
samples are located in the SAMPLES_HOME\server\examples\src\examples\iiop\ejb
directory . A description of each sample and instructions on how to build, configure, and run a
sample, are provided in the package-summary.html file. You can modify these code examples
and reuse them.

Using the CORBA API
In WebLogic Server releases 8.1 and higher, the RMI-IIOP runtime has been extended to support
all CORBA object types (as opposed to RMI valuetypes) and CORBA stubs. This enhancement
provides the following features:

Support of out and inout parameters

http://e-docs.bea.com/wls/docs90/wtc.html
http://e-docs.bea.com/tuxedo/tux80/interm/corba.htm

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-52 Programming WebLogic RMI

Support for a call to a CORBA service from WebLogic Server using transactions and
security.

Support for a WebLogic ORB hosted in JNDI rather than an instance of the JDK ORB
used in previous releases.

The following sections provide information on how to use the CORBA API:

“Supporting Outbound CORBA Calls” on page 7-52

“Using the WebLogic ORB Hosted in JNDI” on page 7-52

“Supporting Inbound CORBA Calls” on page 7-54

“Limitation When Using the CORBA API” on page 7-54

Supporting Outbound CORBA Calls
This section provides information on how to implement a typical development model for
customers wanting to use the CORAB API for outbound calls.

1. Generate CORBA stubs from IDL using idlj, the JDKs IDL compiler.

2. Compile the stubs using javac.

3. Build EJB(s) including the generated stubs in the jar.

4. Use the WebLogic ORB hosted in JNDI to reference the external service.

Using the WebLogic ORB Hosted in JNDI
This section provides examples of several mechanisms to access the WebLogic ORB. Each of
these mechanisms achieve the same effect and their constituent components can be mixed to
some degree. The object returned by narrow() will be a CORBA stub representing the external
ORB service and can be invoked on as a normal CORBA reference. Each of the following code
examples assumes that the CORBA interface is call MySvc and the service is hosted at “where”
in a foreign ORB's CosNaming service located at exthost:extport:

ORB from JNDI
.

.

.ORB orb = (ORB)new InitialContext().lookup("java:comp/ORB");

Us ing the CORBA AP I

Programming WebLogic RMI 7-53

NamingContext nc = NamingContextHelper.narrow(orb.string_to_object("
corbaloc:iiop:exthost:extport/NameService"));

MySvc svc = MySvcHelper.narrow(nc.resolve(new NameComponent[] { new
NameComponent("where", "")}));

.

.

.

Direct ORB creation
.

.

.

ORB orb = ORB.init();

MySvc svc = MySvcHelper.narrow(orb.string_to_object("corbaname:iiop:
exthost:extport#where"));

.

.

.

Using JNDI
.

.

.

MySvc svc = MySvcHelper.narrow(new InitialContext().lookup("corbanam
e:iiop:exthost:extport#where"));

.

.

.

The WebLogic ORB supports most client ORB functions, including DII (Dynamic Invocation
Interface). To use this support, you must not instantiate a foreign ORB inside the server. This
will not yield any of the integration benefits of using the WebLogic ORB.

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-54 Programming WebLogic RMI

Supporting Inbound CORBA Calls
WebLogic Server also provides basic support for inbound CORBA calls as an alternative to
hosting an ORB inside the server. This can be achieved by using ORB.connect() to publish a
CORBA server inside WebLogic Server. The easiest way to achieve this is to write an
RMI-object which implements a CORBA interface. Given the MySVC examples above:

.

.

.

class MySvcImpl implements MvSvcOperations, Remote

{

 public void do_something_remote() {}

 public static main() {

 MySvc svc = new MySvcTie(this);

 InitialContext ic = new InitialContext();

 ((ORB)ic.lookup("java:comp/ORB")).connect(svc);

 ic.bind("where", svc);

 }

}

.

.

.

When registered as a startup class, the CORBA service will be available inside WebLogic
Server‘s CosNaming service at the location "where".

Limitation When Using the CORBA API
CORBA Object Type support has the following limitations:

It should not be used to make calls from one WebLogic Server instance to another
WebLogic Server instance.

Using E JBs w i th RMI - I IOP

Programming WebLogic RMI 7-55

It does not support clustering. If a clustered object reference is detected, WebLogic Server
will use internal RMI-IIOP support to make the call. Any out or inout parameters will not
be supported.

CORBA services created by ORB.connect() result in a second object hosted inside the
server. It is important that you use ORB.disconnect()to remove the object when it is no
longer needed.

Using EJBs with RMI-IIOP
You can implement Enterprise JavaBeans that use RMI over IIOP to provide EJB interoperability
in heterogeneous server environments:

A Java RMI client using an ORB can access enterprise beans residing on a WebLogic
Server over IIOP.

A non-Java platform CORBA/IDL client can access any enterprise bean object on
WebLogic Server.

When using CORBA/IDL clients the sources of the mapping information are the EJB classes as
defined in the Java source files. WebLogic Server provides the weblogic.appc utility for
generating required IDL files. These files represent the CORBA view into the state and behavior
of the target EJB. Use the weblogic.appc utility to:

Place the EJB classes, interfaces, and deployment descriptor files into a JAR file.

Generate WebLogic Server container classes for the EJBs.

Run each EJB container class through the RMI compiler to create stubs and skeletons.

Generate a directory tree of CORBA IDL files describing the CORBA interface to these
classes.

The weblogic.appc utility supports a number of command qualifiers. See “Procedure for
Developing a CORBA/IDL Client” in Programming Stand-alone Clients.

Resulting files are processed using the compiler, reading source files from the idlSources
directory and generating CORBA C++ stub and skeleton files. These generated files are sufficient
for all CORBA data types with the exception of value types (see see “Limitations of WebLogic
RMI over IIOP” in Programming WebLogic RMI for more information). Generated IDL files are
placed in the idlSources directory. The Java-to-IDL process is full of pitfalls. Refer to the Java
Language Mapping to OMG IDL specification at
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm.

http://e-docs.bea.com/wls/docs90/client/corba_idl.html
http://e-docs.bea.com/wls/docs90/client/corba_idl.html
http://e-docs.bea.com/wls/docs90/rmi/iiop_config.html#limitations
http://e-docs.bea.com/wls/docs90/rmi/iiop_config.html#limitations
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-56 Programming WebLogic RMI

Also, Sun has an excellent guide, “Enterprise JavaBeansTM Components and CORBA Clients:
A Developer Guide” at http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html.

The following is an example of how to generate the IDL from a bean you have already created:

> java weblogic.appc -compiler javac -keepgenerated

-idl -idlDirectory idlSources

build\std_ejb_iiop.jar

%APPLICATIONS%\ejb_iiop.jar

After this step, compile the EJB interfaces and client application (the example here uses a
CLIENT_CLASSES and APPLICATIONS target variable):

> javac -d %CLIENT_CLASSES% Trader.java TraderHome.java

TradeResult.java Client.java

Then run the IDL compiler against the IDL files built in the step where you used
weblogic.appc, creating C++ source files:

>%IDL2CPP% idlSources\examples\rmi_iiop\ejb\Trader.idl

. . .

>%IDL2CPP% idlSources\javax\ejb\RemoveException.idl

Now you can compile your C++ client.

For an in-depth look of how EJB’s can be used with RMI-IIOP see the WebLogic Server
RMI-IIOP examples, located in your installation inside the
SAMPLES_HOME/server/examples/src/examples/iiop directory.

RMI-IIOP and the RMI Object Lifecycle
WebLogic Server's default garbage collection causes unused and unreferenced server objects to
be garbage collected. This reduces the risk running out of memory due to a large number of
unused objects. This policy can lead to NoSuchObjectException errors in RMI-IIOP if a client
holds a reference to a remote object but does not invoke on that object for a period of
approximately six (6) minutes. Such exceptions should not occur with EJBs, or typically with
RMI objects that are referenced by the server instance, for instance via JNDI.

The J2SE specification for RMI-IIOP calls for the use of the exportObject() and
unexportObject() methods on javax.rmi.PortableRemoteObject to manage the lifecycle
of RMI objects under RMI-IIOP, rather than Distributed Garbage Collection (DGC). Note
however that exportObject() and unexportObject() have no effect with WebLogic Server's
default garbage collection policy. If you wish to change the default garbage collection policy,
please contact BEA technical support.

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html

RMI- I IOP and the RMI Ob ject L i f ecyc le

Programming WebLogic RMI 7-57

Conf i gur i ng WebLog ic Se rve r fo r RM I- I I OP

7-58 Programming WebLogic RMI

Programming WebLogic RMI 8-59

C H A P T E R 8

Best Practices for Application Design

The following sections discuss recommended design patterns when programming with RMI and
RMI over IIOP:

“Use java.rmi” on page 8-59

“Use PortableRemoteObject” on page 8-59

“Use WebLogic Work Areas” on page 8-60

“Guidelines on Using the RMI Timeout” on page 8-60

Use java.rmi
BEA recommends RMI users use java.rmi. Although the WebLogic 9.0 API contains the
weblogic.rmi API, it is deprecated and is only provided as a compatibility API. Other
WebLogic 9.0 APIs provided for compatibility are :

weblogic.rmi.registry

weblogic.rmi.server

weblogic.rmi.extensions

Use PortableRemoteObject
To maintain code portability, always use PortableRemoteObject when casting the home
interfaces. For example:

Propshome home = (PropsHome)

http://java.sun.com/j2se/1.5.0/docs/api/java/rmi/package-summary.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/rmi/package-summary.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/rmi/registry/package-summary.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/rmi/server/package-summary.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/rmi/extensions/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/javax/rmi/PortableRemoteObject.html

Best P rac t ices f or App l i ca t i on Des ign

8-60 Programming WebLogic RMI

PortableRemoteObject.narrow(

 ctx.lookup("Props"),

 PropsHome.class);

To guarantee a that a WebLogic class is used, implement
weblogic.rmi.extensions.PortableRemoteObject.

Use WebLogic Work Areas
Work Contexts allow J2EE developers to define properties as application context which
implicitly flow across remote requests and allow downstream components to work in the context
of the invoking client. Work Contexts allow developers to pass properties without including them
in a remote call. A Work Context is propagated with each remote call-allowing the called
component to add or modify properties defined in the Work Context; similarly, the calling
component can access the Work Context to obtain new or updated properties.

Work Contexts ease the processing of implementing and maintaining functionality that requires
that information to be passed to remote components, such as diagnostics monitoring, application
transactions, and application load-balancing. Work Contexts are also a useful mechanism for
providing information to third-party components.

Work Conexts can propagate user-defined properties across all request scopes supported by
WebLogic Server-a Work Context is available to all of the objects that can exist within the
request scope, including RMI calls. For more information, see Developing Applications with
WebLogic Server.

Guidelines on Using the RMI Timeout
This feature provides a work around for legacy systems where the behavior of asynchronous calls
is desired but not yet implemented. BEA recommends legacy systems implement more
appropriate technologies if possible, such as:

Asynchronous RMI invokations

JMS and Message Driven Beans (MDBs)

HTTP servlett applications

If you need to use the RMI timeout for a legacy sytem, review the following guidelines:

The RMI timeout should be used only when the following three conditions are met:

– The method call is idempotent or does not introduce any state change

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/rmi/extensions/PortableRemoteObject.html
http://e-docs.bea.com/wls/docs90/programming/index.html
http://e-docs.bea.com/wls/docs90/programming/index.html

Guide l ines on Using the RMI T imeout

Programming WebLogic RMI 8-61

– The method call is non-transactional

– No JMS resources are involved in the call

There is no transparent failover to another cluster node when a request times out.
RequestTimeOutException is always propogated to the caller.

The server continues to process requests that have timed out. The client is required check
the state of the request on the server before reattempting the call.

If a server times out, the client has the ability to mark the server as unreachable in the
client side cluster reference. This prevents calls from being directed to the marked server
for a specified time.

Best P rac t ices f or App l i ca t i on Des ign

8-62 Programming WebLogic RMI

Programming WebLogic JMS A-1

A P P E N D I X A

CORBA Support for WebLogic Server 9.0

The following sections provide the official specifications for CORBA support for this release of
WebLogic Server:

“Specification References” on page A-1

“Supported Specification Details” on page A-2

“Tools” on page A-2

Specification References
In general, this release of WebLogic Server adheres to the OMG specifications required by J2EE
1.4. For this release, the WebLogic ORB is compliant with following specification references:

CORBA 2.6: formal/01-12-01 at http://www.omg.org/cgi-bin/doc?formal/01-12-01

CORBA 2.3.1: formal/99-10-07 at http://www.omg.org/cgi-bin/doc?formal/99-10-07

IDL to Java language mapping: ptc/03-09-04 at
http://www.omg.org/cgi-bin/doc?ptc/03-09-04

Revised IDL to Java language mapping 1.3: formal/00-11-03 at
http://www.omg.org/cgi-bin/doc?formal/00-11-03

Java to IDL language mapping: ptc/00-01-06 at
http://www.omg.org/cgi-bin/doc?ptc/00-01-06

http://www.omg.org/cgi-bin/doc?formal/01-12-01
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?ptc/03-09-04
http://www.omg.org/cgi-bin/doc?formal/00-11-03
http://www.omg.org/cgi-bin/doc?ptc/00-01-06

CORBA Suppor t fo r WebLog ic Ser ve r 9 .0

A-2 Programming WebLogic JMS

Interoperable Naming Service: ptc/00-08-07 at
http://www.omg.org/cgi-bin/doc?ptc/00-08-07

Transaction Service 1.2.1: formal/2001-11-03 at
http://www.omg.org/cgi-bin/doc?formal/2001-11-03

Note: If the above links do not take you to the referenced specification, the OMG may have
changed the URL. You can search the Object Management Group website at
http://www.omg.org for the correct specification.

Supported Specification Details
Not all of the above specifications are implemented in the WebLogic ORB in this release. The
following section provides a precise list of the supported specifications by chapter or section:

CORBA 2.6, chapters 1-3, 6-7, 13 and 15.

Revised IDL to Java language mapping, section 1.21.8.2, the orb.properties file.

CORBA 2.6, chapter 4 and 5, excepting details relevant to excluded features from other
chapters, such as PortableInterceptors.

CORBA 2.6, sections 10.6.1 and 10.6.2 are supported for repository IDs.

CORBA 2.6, section 10.7 for TypeCode APIs.

CORBA 2.6, chapter 11, Portable Object Adapter (POA) excepting details relevant to
excluded features from other chapters, such as PortableInterceptors.

CORBA 2.6, chapter 26, conformance level 0 plus stateful.

The Interoperable Naming Service.

Section 1.21.8 of the Revised IDL to Java Language Mapping Specification (ptc/00-11-03)
has been changed from the version in the IDL to Java Language Mapping Specification
(ptc/00-01-08).

Transaction Service 1.2.1, as defined by the EJB 2.1 specification.

Tools
For this release, the WebLogic ORB is compliant with the following tools:

The IDL to Java compiler (idlj) is the one that comes bundled with J2SE 5.0 and is
compliant with following specification references:

http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?formal/2001-11-03
http://www.omg.org

Programming WebLogic JMS A-3

– CORBA 2.3.1, chapter 3 (IDL definition).

– CORBA 2.3.1, chapters 5 and 6 (semantics of Value types).

– CORBA 2.3.1, section 10.6.5 (pragmas).

– The IDL to Java mapping specification.

– The Revised IDL to Java language mapping specification section 1.12.1 (local
interfaces).

The Java to IDL compiler (the IIOP backend for rmic) complies with:

– CORBA 2.6, chapters 5 and 6 (value types).

– The Java to IDL language mapping. Note that this implicitly references section 1.21 of
the IDL to Java language mapping.

– IDL generated by the -idl flag complies with CORBA 2.6 chapter 3.

CORBA Suppor t fo r WebLog ic Ser ve r 9 .0

A-4 Programming WebLogic JMS

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	Examples in the WebLogic Server Distribution
	Additional Examples Available for Download

	New and Changed Features in This Release

	Understanding WebLogic RMI
	What is WebLogic RMI?
	Features of WebLogic RMI

	WebLogic RMI Features
	WebLogic RMI Overview
	WebLogic RMI Security Support
	WebLogic RMI Transaction Support
	Failover and Load Balancing RMI Objects
	Clustered RMI Applications
	Load Balancing RMI Objects
	Parameter-Based Routing for Clustered Objects
	Custom Call Routing and Collocation Optimization

	Creating Pinned Services
	Dynamic Proxies in RMI
	Using the RMI Timeout

	Using the WebLogic RMI Compiler
	Overview of the WebLogic RMI Compiler
	WebLogic RMI Compiler Features
	Hot Code Generation
	Proxy Generation
	Additional WebLogic RMI Compiler Features

	WebLogic RMI Compiler Options
	Non-Replicated Stub Generation
	Using Persistent Compiler Options

	Migrating from Stubs and Skeletons to Dynamic Proxies and Bytecode

	How to Implement WebLogic RMI
	Procedures for Implementing WebLogic RMI
	Creating Classes That Can Be Invoked Remotely
	Step 1. Write a Remote Interface
	Step 2. Implement the Remote Interface
	Step 3. Compile the Java Class
	Step 4. Compile the Implementation Class with RMI Compiler
	Step 5: Write Code That Invokes Remote Methods

	Hello Code Sample

	Using RMI over IIOP
	What is RMI over IIOP?
	Overview of WebLogic RMI-IIOP
	Support for RMI-IIOP with RMI (Java) Clients
	Support for RMI-IIOP with Tuxedo Client
	Support for RMI-IIOP with CORBA/IDL Clients

	Protocol Compatibility
	Server-to-Server Interoperability
	Client-to-Server Interoperability

	ORB Implementation
	Using a Foreign ORB
	Using a Foreign RMI-IIOP Implementation

	Configuring WebLogic Server for RMI-IIOP
	Set the Listening Address
	Setting Network Channel Addresses
	Considerations for Proxys and Firewalls
	Considerations for Clients with Multiple Connections

	Using a IIOPS Thin Client Proxy
	Using RMI-IIOP with SSL and a Java Client
	Accessing WebLogic Server Objects from a CORBA Client through Delegation
	Overview of Delegation
	Example of Delegation

	Configuring CSIv2 authentication
	Using RMI over IIOP with a Hardware LoadBalancer
	Limitations of WebLogic RMI-IIOP
	Limitations Using RMI-IIOP on the Client
	Limitations Developing Java IDL Clients
	Limitations of Passing Objects by Value

	Propagating Client Identity
	RMI-IIOP Applications Using WebLogic Tuxedo Connector
	When to Use WebLogic Tuxedo Connector
	How the WebLogic Tuxedo Connector Works
	WebLogic Tuxedo Connector Code Samples

	Using the CORBA API
	Supporting Outbound CORBA Calls
	Using the WebLogic ORB Hosted in JNDI
	ORB from JNDI
	Direct ORB creation
	Using JNDI

	Supporting Inbound CORBA Calls
	Limitation When Using the CORBA API

	Using EJBs with RMI-IIOP
	RMI-IIOP and the RMI Object Lifecycle

	Best Practices for Application Design
	Use java.rmi
	Use PortableRemoteObject
	Use WebLogic Work Areas
	Guidelines on Using the RMI Timeout

	CORBA Support for WebLogic Server 9.0
	Specification References
	Supported Specification Details
	Tools

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

