
BEAWebLogic
Server®

Developing Manageable
Applications with JMX

Version 9.0
Revised: September 7, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Developing Manageable Applications with JMX v

Contents

Introduction and Roadmap
Document Scope and Audience . 1-2

Guide to this Document . 1-2

Related Documentation . 1-2

Samples for the JMX Developer . 1-3

Avitek Medical Records Application (MedRec) and Tutorials 1-3

New and Changed JMX Features in This Release . 1-4

JMX 1.2 and JMX Remote API 1.0 (JSR-160) . 1-4

Deprecated MBeanHome and Type-Safe Interfaces. 1-4

Changes to the Model for Distributing Configuration Data in a Domain 1-5

Changes to the MBean Data Model . 1-6

New Functionally Aligned MBean Servers . 1-7

Facilities for Registering Custom MBeans . 1-8

New Reference Document for WebLogic Server MBeans . 1-8

 . 1-8

Understanding JMX
What Management Services Can I Develop with JMX? . 2-1

Advanced JMX-Programming: Creating Management-Aware Applications . . . 2-2

When Is It Appropriate to Use JMX? . 2-2

What Management Services Have BEA Partners Developed? . 2-3

Anatomy of JMX . 2-3

vi Developing Manageable Applications with JMX

JMX Layers . 2-4

Indirection and Introspection . 2-4

Notifications and Monitor MBeans . 2-5

How JMX Notifications are Broadcast and Received . 2-6

Active Polling with Monitor MBeans. 2-7

Designing Manageable Applications
Best Practices . 3-1

Use Standard MBeans . 3-2

Use the Runtime MBean Server. 3-2

Using the JVM Platform MBean Server. 3-3

Use ApplicationLifecycleListener to Register Application MBeans. 3-4

Alternatives That Use Only JDK Classes . 3-4

Unregister Application MBeans When Applications Are Undeployed 3-5

For EJBs and Servlets Place Management Logic in a Delegate Class. 3-5

Use Open MBean Data Types . 3-7

Emit Notifications Only When Necessary . 3-7

Additional Design Considerations . 3-7

Instrumenting and Registering Custom MBeans
Create and Implement a Management Interface . 4-3

Modify Business Methods to Push Data . 4-6

Register the MBean. 4-7

Package Application and MBean Classes . 4-9

Using the WebLogic Server JMX Timer Service
Using the WebLogic Timer Service: Main Steps . 5-2

Configuring a Timer MBean to Emit Notifications . 5-2

Creating Date Objects . 5-4

Developing Manageable Applications with JMX vii

Example: Generating a Notification Every Five Minutes After 9 AM 5-5

Removing Notifications. 5-8

Accessing Custom MBeans
Accessing Custom MBeans from JConsole. 6-1

Accessing Custom MBeans from WebLogic Scripting Tool . 6-2

Accessing Custom MBeans from an Administration Console Extension 6-2

Index

viii Developing Manageable Applications with JMX

Developing Manageable Applications with JMX 1-1

C H A P T E R 1

Introduction and Roadmap

As an application developer, you can greatly reduce the cost of operating and maintaining your
applications by building in management facilities. The simplest facility is message logging,
which reports events within your applications as they occur and writes messages to a file or other
repository. Depending on the criticality of your application, the complexity of the production
environment, and the types of monitoring systems your organization uses in its operations center,
your needs might be better served by building richer management facilities based on Java
Management Extensions (JMX). JMX enables a generic management system to monitor your
application, raise notifications when the application needs attention, and change the configuration
or runtime state of your application to remedy problems.

This document describes using JMX to make your applications manageable.

The following sections describe the contents and organization of this guide—Developing
Manageable Applications with JMX.

“Document Scope and Audience” on page 1-2

“Guide to this Document” on page 1-2

“Related Documentation” on page 1-2

“Samples for the JMX Developer” on page 1-3

“New and Changed JMX Features in This Release” on page 1-4

I n t roduct i on and Roadmap

1-2 Developing Manageable Applications with JMX

Document Scope and Audience
This document is a resource for software developers who develop management services for J2EE
applications. It also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server® or considering the use of JMX for a particular application.

It is assumed that the reader is familiar with J2EE and general application management concepts.

The topics in this document are relevant during the design and development phases of a software
project. This document does not address production phase administration, monitoring, or
performance tuning topics. For links to WebLogic Server documentation and resources for these
topics, see “Related Documentation” on page 1-2.

This document emphasizes a hands-on approach to developing a limited but useful set of JMX
management services. For information on applying JMX to a broader set of management
problems, refer to the JMX specification or other documents listed in “Related Documentation”
on page 1-2.

Guide to this Document
This chapter, Introduction and Roadmap, introduces the organization of this guide.

Chapter 2, “Understanding JMX,” gives an overview of JMX and describes how J2EE
applications can use JMX.

Chapter 3, “Designing Manageable Applications,” recommends design patterns for making
J2EE applications manageable through JMX.

Chapter 4, “Instrumenting and Registering Custom MBeans,” describes how to create your
own MBeans (custom MBeans), which enable you to promote your application to the
status of a managed object within a larger management system.

Chapter 5, “Using the WebLogic Server JMX Timer Service,” describes how to configure
your JMX client to carry out a task at a specified time or a regular time interval by using
WebLogic Server’s implementation of the JMX timer service.

Chapter 6, “Accessing Custom MBeans,” describes options for accessing your MBeans
(other than through JMX).

Related Documentation
The Sun Developer Network includes a Web site that provides links to books, white papers, and
additional information on JMX: http://java.sun.com/products/JavaManagement/.

http://java.sun.com/products/JavaManagement/

Samples fo r the JMX Deve loper

Developing Manageable Applications with JMX 1-3

To view the JMX 1.2 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html.

To view the JMX Remote API 1.0 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html.

You can view the API reference for the javax.management* packages from:
http://java.sun.com/j2se/1.5.0/docs/api/overview-summary.html.

For guidelines on developing other types of management services for WebLogic Server
applications, see the following documents:

Using WebLogic Logging Services for Application Logging describes WebLogic support for
internationalization and localization of log messages and shows you how to use the
templates and tools provided with WebLogic Server to create or edit message catalogs that
are locale-specific.

Configuring and Using the WebLogic Diagnostic Framework describes how system
administrators can collect application monitoring data that has not been exposed through
JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see Developing
Applications with WebLogic Server.

Samples for the JMX Developer
In addition to this document, BEA Systems provides code samples for JMX developers. The
examples illustrate management applications in action and provide practical instructions on how
to perform key JMX development tasks.

BEA recommends that you run some or all of the JMX examples before developing your own
management applications.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed from
the Start menu on Windows machines. For Linux and other platforms, you can start MedRec from

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://java.sun.com/j2se/1.5.0/docs/api/overview-summary.html
http://e-docs.bea.com/wls/docs90/i18n/index.html
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs90/programming/index.html
http://e-docs.bea.com/wls/docs90/programming/index.html

I n t roduct i on and Roadmap

1-4 Developing Manageable Applications with JMX

the WL_HOME/samples/domains/medrec directory, where WL_HOME is the top-level installation
directory for WebLogic Platform.

MedRec has instrumented one of its session EJBs for management through JMX. The EJB keeps
track of how many times it writes to the database, and exposes this counter as an MBean attribute.

New and Changed JMX Features in This Release
Release 9.0 introduces several important changes to the WebLogic Server JMX implementation:

“JMX 1.2 and JMX Remote API 1.0 (JSR-160)” on page 1-4

“Deprecated MBeanHome and Type-Safe Interfaces” on page 1-4

“Changes to the Model for Distributing Configuration Data in a Domain” on page 1-5

“Changes to the MBean Data Model” on page 1-6

“Facilities for Registering Custom MBeans” on page 1-8

“New Functionally Aligned MBean Servers” on page 1-7

“Facilities for Registering Custom MBeans” on page 1-8

“New Reference Document for WebLogic Server MBeans” on page 1-8

JMX 1.2 and JMX Remote API 1.0 (JSR-160)
In 9.0, WebLogic Server uses the Java Management Extensions (JMX) 1.2 implementation that
is included in JDK 1.5. Prior to this release, WebLogic Server used its own JMX implementation
based on the JMX 1.0 specification.

Also in 9.0, remote JMX clients can use the standard JMX remote API 1.0 (JSR-160) to connect
to the JMX agents in WebLogic Server. (See http://jcp.org/en/jsr/detail?id=160.) Prior to 9.0, the
JMX remote API had not been published and remote JMX clients had to use BEA’s proprietary
APIs to connect to WebLogic Server.

Deprecated MBeanHome and Type-Safe Interfaces
Now that the JMX remote APIs (JSR-160) are published, BEA’s proprietary API for remote JMX
access, weblogic.management.MBeanHome, is no longer needed and is therefore deprecated.

The MBeanHome API also made it possible for BEA to provide a typed API layer over its JMX
layer that you could use to interact with WebLogic Server MBeans. Your JMX application

http://jcp.org/en/jsr/detail?id=160

New and Changed JMX Features in Th is Re lease

Developing Manageable Applications with JMX 1-5

classes could import type-safe interfaces for WebLogic Server MBeans, retrieve a reference to
the MBeans through the weblogic.management.MBeanHome interface, and invoke the MBean
methods directly.

As of 9.0, the typed API layer is also deprecated. Instead of using this API-like programming
model, all JMX applications should use the standard JMX programming model, in which clients
use the javax.management.MBeanServerConnection interface to discover MBeans,
attributes, and attribute types at runtime. In this JMX model, clients interact indirectly with
MBeans through the MBeanServerConnection interface.

If any of your classes import the type-safe interfaces (which are under weblogic.management),
BEA recommends that you update to using the standard JMX programming model. See
Accessing WebLogic Server MBeans with JMX in Developing Custom Management Utilities
with JMX. If you do not update your JMX clients, they will use the domain’s compatibility
MBean server, which is enabled by default.

If you were using the MBeanHome API to automate common configuration tasks, consider using
the new WebLogic Scripting Tool (WLST) instead of JMX. WLST is a command-line scripting
interface that manages and monitors active or inactive WebLogic Server domains. The WLST
scripting environment is based on the Java scripting interpreter Jython. In addition to WebLogic
scripting functions, you can use common features of interpreted languages, including local
variables, conditional variables, and flow control statements. You can extend the WebLogic
scripting language by following the Jython language syntax. See http://www.jython.org. For
more information on WLST, see WebLogic Scripting Tool.

Changes to the Model for Distributing Configuration Data in a
Domain
WebLogic Server 9.0 enables you to collect modifications to a domain’s configuration and
distribute them as a group throughout the domain. The 9.0 release also contains APIs that you can
use to monitor the distribution of changes.

In 9.0, the Administration Server hosts a set of pending MBeans which are the in-memory
representation of all pending changes to a domain’s configuration (pending MBean data is backed
up in a pending config.xml file). Changes in pending MBeans do not take effect immediately.
You must explicitly distribute them in a process that resembles a transaction. If any Managed
Server is unable to consume a change, the entire set of changes in a distribution process is rolled
back. This transactional process is the only way to change a domain’s configuration through
JMX. See Managing a Domain’s Configuration with JMX in Developing Custom Management
Utilities with JMX.

http://e-docs.bea.com/wls/docs90/jmx/accessWLS.html
http://e-docs.bea.com/wls/docs90/config_scripting/using_WLST.html
http://e-docs.bea.com/wls/docs90/jmx/editWLS.html

I n t roduct i on and Roadmap

1-6 Developing Manageable Applications with JMX

Prior to 9.0, the Administration Server hosted a set of MBeans (administration MBeans) that rep-
resented the persisted configuration for all servers and server resources in a domain. To enhance
performance, each server instance replicated these MBeans locally and used the replicas, called
local configuration MBeans. When a JMX client changed an administration MBean, the Admin-
istration Server immediately updated the local configuration MBeans on all server instances in
the domain even if the server itself could not integrate the change. In some cases, a local config-
uration MBean could not be updated without restarting a server instance and the replica and its
master administration MBean would contain different values. In addition, JMX clients could di-
rectly access local configuration MBeans and change their values, which also resulted in an in-
consistent state between replica and master MBean.

Changes to the MBean Data Model
TThe JMX specification does not impose a model for organizing MBeans. However, because the
configuration of a WebLogic Server domain is specified in an XML document, WebLogic Server
organizes its MBeans into a hierarchical model that reflects the XML document structure.

For example, the root of a domain’s configuration document is <domain> and below the root are
child elements such as <server> and <cluster>. Each domain maintains a single MBean of
type DomainMBean to represent the <domain> root element. Within DomainMBean, JMX
attributes provide access to the MBeans that represent child elements such as <server> and
<cluster>.

Prior to 9.0:

There were inconsistencies in the data model across WebLogic Server subsystems.

JMX clients could create and access WebLogic Server MBeans by invoking
MBeanServer.createMBean and passing a correctly constructed, hierarchical object
name. However, if a JMX client incorrectly constructed the object name, the MBean would
be created and registered but not recognized within the WebLogic Server data model.

As of 9.0:

The data model is consistent across WebLogic Server subsystems.

To enable JMX clients to control MBean life cycles, WebLogic Server MBeans contain
operations that follow the design pattern for Java bean factory methods: for each child, a
parent MBean contains a createChild and destroyChild operation, where Child is the
short name of the MBean’s type. (The short name is the MBean’s unqualified type name
without the MBean suffix. For example, createServer). The parent also contains a
lookupChild operation and a Children attribute.

New and Changed JMX Features in Th is Re lease

Developing Manageable Applications with JMX 1-7

For example, DomainMBean contains the createServer, destroyServer, and
lookupServer operations and it contains a Servers attribute.

There is no other option for creating child MBeans.

JMX clients no longer need to construct JMX object names when they want to retrieve a
WebLogic Server MBean. Instead, they navigate the MBean hierarchy by successively
invoking code similar to the following:

ObjectName on =
javax.management.MBeanServerConnection.getAttribute

(object-name, attribute);

where:

– object-name is the object name of the current node (MBean) in the MBean hierarchy.

– attribute is the name of an attribute in the current MBean that refers to another
MBean.

The compatibility MBean server (which you must enable if your JMX clients still use the
deprecated MBeanHome interface) will register new instances of WebLogic Server MBeans
only if the JMX client has specified a correctly constructed, hierarchical object name for
the instance.

To access the hierarchy, clients can use a set of new service MBeans which are registered in an
MBean server under object names that are immutable and well defined. A JMX client supplies
this object name to retrieve the service MBean. Then it uses the service MBean’s attributes and
operations to retrieve the root of a WebLogic Server MBean hierarchy.

New Functionally Aligned MBean Servers
An Administration Server maintains three MBean servers, each of which provides access to
different MBean hierarchies. The Edit MBean Server provides access to the domain’s editable
configuration MBeans; the Domain Runtime MBean Server provides federated access to all
runtime MBeans and read-only configuration MBeans in the domain; and the Runtime MBean
Server provides access only to the runtime and read-only configuration MBeans on the
Administration Server.

Each Managed Server maintains a Runtime MBean Server, which provides access only to its
runtime and read-only configuration MBeans.

JMX clients use the standard javax.remote.access (JSR-160) APIs to access and interact with
MBeans registered in the MBean servers.

I n t roduct i on and Roadmap

1-8 Developing Manageable Applications with JMX

See MBean Servers in Developing Custom Management Utilities with JMX.

Facilities for Registering Custom MBeans
Prior to 9.0, if you wanted to register custom MBeans in an MBean server on a WebLogic Server
instance, you could either create your own MBean server or use
weblogic.management.RemoteMBeanServer to register in WebLogic Server’s MBean server.

As of 9.0 and JDK 1.5, you can do any of the following from a JMX client that is running in a
WebLogic Server JVM:

(Recommended) Access the Runtime MBean Server through JNDI and register custom
MBeans in the Runtime MBean Server.

Register custom MBeans in the JVM’s platform MBean server.

Create your own MBean server.

See Use the Runtime MBean Server in Developing Manageable Applications with JMX.

New Reference Document for WebLogic Server MBeans
All public WebLogic Server MBeans are described in a new document, WebLogic Server MBean
Reference. For each MBean, the document describes:

The MBean’s factory methods and other points of access within WebLogic Server MBean
trees

The data type, read-write privileges, and other information for each attribute

The parameters, signature, and other information for each operation

http://e-docs.bea.com/wls/docs90/jmx/understandWLS.html#MBeanServers
http://e-docs.bea.com/wls/docs90/jmxinst/designapp.html#UseRuntimeMBeanServer
http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/index.html

Developing Manageable Applications with JMX 2-1

C H A P T E R 2

Understanding JMX

Java Management Extensions (JMX) is a specification for monitoring and managing Java
applications. It enables a generic management system to monitor your application, raise
notifications when the application needs attention, and change the state of your application to
remedy problems. Like SNMP and other management standards, JMX is a public specification
and many vendors of commonly used monitoring products support it.

WebLogic Server uses the Java Management Extensions (JMX) 1.2 implementation that is
included in JDK 1.5. The following sections describe how Java applications can use JMX to
expose runtime metrics and control points to management systems:

“What Management Services Can I Develop with JMX?” on page 2-1

“When Is It Appropriate to Use JMX?” on page 2-2

“What Management Services Have BEA Partners Developed?” on page 2-3

“Anatomy of JMX” on page 2-3

For information about other APIs and utilities that you can use to manage J2EE applications on
WebLogic Server, refer to “Overview of WebLogic Server System Administration” in
Introduction to WebLogic Server.

What Management Services Can I Develop with JMX?
When used to monitor and manage applications, JMX typically provides management
applications access to properties in your Java classes that collect management data (see
Figure 2-1). Often, these class properties are simple counters that keep track of the resources your

http://e-docs.bea.com/wls/docs90/intro/overview.html

Unders tanding JMX

2-2 Developing Manageable Applications with JMX

application is consuming. JMX can also provide access to methods in your Java classes that start
or stop processes in the application or reset the value of the class properties. Any class that
exposes management data through JMX is called a managed bean (MBean). Class properties that
are exposed through MBeans are called attributes and methods that are exposed through MBeans
are called operations.

Figure 2-1 JMX Provides Access to Management Properties

Once you provide this type of access to JMX-enabled management utilities, system
administrators or the operations staff can integrate the data into their overall view of the system.
They can use a JMX management utility to view the current value of an MBean attribute, or they
can set up JMX monitors to periodically poll the value of your MBean attributes and emit
notifications to the management utility only when the values exceed specific thresholds.

Advanced JMX-Programming: Creating Management-Aware Applications
Instead of placing all management responsibility on system administrators or the operations staff,
you can create management-aware applications that monitor MBeans and then perform some
automated task. For example:

An application that monitors connection pools and grows or shrinks the pools to meet
demand.

A portal application that monitors the set of deployed applications. If a new application is
deployed, the portal application automatically displays it as a new portlet.

An application that listens for deployments of connector modules and then configures itself
to use newly deployed modules.

When Is It Appropriate to Use JMX?
Any critical J2EE application that is a heavy consumer of resources, such as database or JMS
connections or caches, should provide some facility for monitoring the application’s resource
consumption. For these kinds of applications, which might be writing or reading from a database
many times each minute, it isn’t feasible to use logging facilities to output messages with each

MyBean

simpleCounter

JMXManagement
System

resetCounter()

What Management Se rv i ces Have BEA Par tners Deve loped?

Developing Manageable Applications with JMX 2-3

write and read operation. Instead, using JMX for this type of monitoring enables you to write
management (instrumentation) code that is easy to maintain and that optimizes your use of
network resources.

If you want to monitor basic runtime metrics for your application, WebLogic Server already
provides a significant number of its own MBeans that you can use (see Best Practices: Listening
for WebLogic Server Events in Developing Custom Management Utilities with JMX). For
example, you can use existing WebLogic Server MBeans to track the hit rate on your
application’s servlets and the amount of time it takes to process servlet requests.

Although WebLogic Server MBeans can indicate to an operations center the general state of its
resources, it cannot provide detailed information about how a specific application is using the
resources. For example, WebLogic Server MBeans can indicate how many connections are being
used in a connection pool, but they do not indicate which applications are using the connection
pools. If your domain contains several active applications and you notice that some connections
are always in use, consider creating MBeans that monitor when each application session gets and
releases a connection. You could also include a management operation that ends sessions that
appear to be stuck.

In addition, if your application creates and maintains its own cache or writes to a data repository
that is outside the control of the application container, consider creating MBeans to monitor the
size of the cache or the amount of data written to the repository.

What Management Services Have BEA Partners Developed?
BEA Partners have developed an extensive set of management consoles that can monitor and
analyze data from WebLogic Server MBeans and potentially from MBeans that you develop for
your own applications. These consoles can integrate WebLogic Server into an overall
management strategy for your network or data center operations. To see the list of management
software available, visit the Partners page on www.bea.com.

Anatomy of JMX
The following sections describe JMX:

“JMX Layers” on page 2-4

“Indirection and Introspection” on page 2-4

“Notifications and Monitor MBeans” on page 2-5

http://e-docs.bea.com/wls/docs90/jmx/notifications.html#ListenWLSEvents
http://e-docs.bea.com/wls/docs90/jmx/notifications.html#ListenWLSEvents
http://www.bea.com

Unders tanding JMX

2-4 Developing Manageable Applications with JMX

JMX Layers
Like most of J2EE, JMX is a component-based technology in which different types of software
vendors provide different types of components. This division of labor enables each type of vendor
to focus on providing only the software that falls within its area of expertise. JMX organizes its
components into the following layers:

Instrumentation

Applications that you write, resources, and other manageable objects provide this layer. In
this layer, application developers create JMX components called managed beans (MBeans),
which contain the properties (attributes) and methods (operations) that they want to expose
to external management systems.

Agent

The JVM and application servers such as WebLogic Server provide this layer. This layer
includes a registry of MBeans and standard interfaces for creating, destroying, and
accessing MBeans.

The agent layer also provides services for remote clients as well as a monitoring and a
timer service. For more information, see “Using the WebLogic Server JMX Timer Service”
on page 5-1 and Using Notifications and Monitor MBeans in Developing Custom
Management Utilities with JMX.

Distributed Services

Management consoles or other J2EE applications provide this layer. In this layer, a
management application sends or receives requests from the agent. Often, this layer is
available as a plugin or adapter that enables a management console to support a variety of
management protocols, such as JMX and SNMP.

Indirection and Introspection
Two key concepts for understanding JMX are indirection and introspection, which enable a JMX
application to manage proprietary resources without needing access to proprietary class
definitions.

The general model for JMX is that applications in the distributed services layer never interact
directly with classes in the instrumentation layer. Instead, under this model of indirection, the
JMX Agent provides standard interfaces, such as
javax.management.MBeanServerConnection, that:

http://e-docs.bea.com/wls/docs90/jmx/notifications.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html

Anatomy o f JMX

Developing Manageable Applications with JMX 2-5

Expose a class’s management interface to management clients in the distributed services
layer

Receive requests from management clients, such as a request to get the value of a property
that a class is exposing through JMX

Interact with the class to carry out the request and returns the result to the management
client

Each class describes to the MBean server the set of properties and methods that it wants to expose
through JMX. A property that a class exposes through JMX is called an MBean attribute, and a
method that it exposes is called an operation. JMX specifies multiple techniques (design
patterns) that a class can use to describe its attributes and operations, and these design patterns
are formalized as the following MBean types: standard, dynamic, model, and open.

A class that instruments the standard MBean type describes its management interface in way that
is most like Java programming: a developer creates a JMX interface file that contains getter and
setter methods for each class property that is to be exposed through JMX. The interface file also
contains a wrapper method for each class method that is to be exposed. Then the class declares
the name of its JMX interface. When you register a standard MBean with the MBean server, the
MBean server introspects the class and its JMX interface to determine which attributes and
operations it will expose to the distributed services layer. The MBean server also creates an
object, MBeanInfo, that describes the interface. Management clients inspect this MBeanInfo
object to learn about a class’s management interface.

A class that instruments the model MBean type describes its management interface by
constructing its own MBeanInfo object, which is a collection of metadata objects that describe
the properties and methods to expose through JMX. When you register a model MBean with the
MBean server, the MBean server uses the existing MBeanInfo object instead of intropsecting the
class.

Notifications and Monitor MBeans
JMX provides two ways to monitor changes in MBeans: MBeans can emit notifications when
specific events occur (such as a change in an attribute value), or monitor MBeans can poll an
MBean periodically to retrieve the value of an attribute.

The following sections describe JMX notifications and monitor MBeans:

“How JMX Notifications are Broadcast and Received” on page 2-6

“Active Polling with Monitor MBeans” on page 2-7

Unders tanding JMX

2-6 Developing Manageable Applications with JMX

How JMX Notifications are Broadcast and Received
As part of creating an MBean, you can implement the
javax.management.NotificationEmitter interface, which enables the MBean to emit
notifications when different types of events occur. For example, you create an MBean that
manages your application’s use of a connection pool. You can configure the MBean to emit a
notification when the application creates a connection and another notification when the
application drops a connection.

To listen for notifications, you create a listener class that implements the
javax.management.NotificationListener.handleNotification() method. Your
implementation of this method includes the logic that causes the listener to carry out an action
when it receives a notification. After you create the listener class, you create another class that
registers the listener with an MBean.

By default, an MBean broadcasts all of its notifications to all of its registered listeners. However,
you can create and register a filter for a listener. A filter is a class that implements the
javax.management.NotificationFilter.isNotificationEnabled() method. The
implementation of this method specifies one or more notification types. (In this case, type refers
to a unique string within a notification object that identifies an event, such as
vendorA.appB.eventC.) When an event causes an MBean to generate a notification, the MBean
invokes a filter’s isNotificationEnabled() method before it sends the notification to the
listener. If the notification type matches one of the types specified in
isNotificationEnabled(), then the filter returns true and the MBean broadcasts the
message to the associated listener.

Figure 2-2 shows a basic system in which a notification listener receives only a subset of the
notifications that an MBean broadcasts.

Anatomy o f JMX

Developing Manageable Applications with JMX 2-7

Figure 2-2 Receiving Notifications from an MBean

For a complete description of JMX notifications, refer to the JMX 1.2 specification. See “Related
Documentation” on page 1-2.

Active Polling with Monitor MBeans
JMX includes specifications for a type of MBeans called monitor MBeans, which can be
instantiated and configured to periodically observe other MBeans. Monitor MBeans emit JMX
notifications only if a specific MBean attribute has changed beyond a specific threshold. A
monitor MBean can observe the exact value of an attribute in an MBean, or optionally, the
difference between two consecutive values of a numeric attribute. The value that a monitor
MBean observes is called the derived gauge.

When the value of the derived gauge satisfies a set of conditions, the monitor MBean emits a
specific notification type. Monitors can also send notifications when certain error cases are
encountered while monitoring an attribute value.

To use monitor MBeans, you configure a monitor MBean and register it with the MBean you
want to observe. Then you create a listener class and register the class with the monitor MBean.
Because monitor MBeans emit only very specific types of notification, you usually do not use
filters when listening for notifications from monitor MBeans.

MyNotificationListener

handleNotification()

MyFilter

isNotificationEnabled()

Notification

type=vendorA.appB.eventC

MBean

implements NotificationEmitter

If a notifcation satisfies
filter criteria, MBean
passes the notification
to the listener

Filter and listener
registered with MBean

Unders tanding JMX

2-8 Developing Manageable Applications with JMX

Figure 2-3 shows a basic system in which a monitor MBean is registered with an MBean. A
NotificationListener is registered with the monitor MBean, and it receives notifications
when the conditions within the monitor MBean are satisfied.

Figure 2-3 Monitor MBeans

MyNotificationListener

MyMonitor MBean Notification

Observed MBean

Monitor MBean registered
with an observed MBean.
Monitor MBean periodically
polls the observed MBean.

MyFilter

Filter and listener
registered with the
monitor MBean.

If a notification satisfies
filter criteria, MBean
passes the notification
to the listener

Anatomy o f JMX

Developing Manageable Applications with JMX 2-9

Unders tanding JMX

2-10 Developing Manageable Applications with JMX

Developing Manageable Applications with JMX 3-1

C H A P T E R 3

Designing Manageable Applications

Within JMX, there are several viable design patterns and deployment options that you can use to
make your application manageable. BEA’s recommended design patterns assume that the
instrumentation of your Java classes should:

Use as few system resources as possible; management functions must not interfere with
business functions.

Be separate from your business code whenever possible.

Deploy along with the business code and share its life cycle; you should not require the
operations staff to take additional steps to enable the management of your application.

The following sections describe designing manageable applications:

“Best Practices” on page 3-1

“Additional Design Considerations” on page 3-7

Best Practices
The following sections describe BEA’s recommendations for designing manageable
applications:

“Use Standard MBeans” on page 3-2

“Use the Runtime MBean Server” on page 3-2

“Use ApplicationLifecycleListener to Register Application MBeans” on page 3-4

Des ign ing Manageab le App l i cat ions

3-2 Developing Manageable Applications with JMX

“Unregister Application MBeans When Applications Are Undeployed” on page 3-5

“For EJBs and Servlets Place Management Logic in a Delegate Class” on page 3-5

“Use Open MBean Data Types” on page 3-7

“Emit Notifications Only When Necessary” on page 3-7

Use Standard MBeans
Of the many design patterns that JMX defines, BEA recommends that you use standard MBeans,
which are the easiest to code. In the simplest design pattern for standard MBeans, you do the
following:

1. Create an interface for the management properties and operations that you want to expose.

2. Implement the interface in your Java class.

3. Invoke the javax.management.MBeanServerConnection.createMBean() method and
pass your management interface in the method’s parameter.

The MBean server introspects your interface, finds the implementation, and registers the interface
and implementation as an MBean.

In this design pattern, the management interface and its implementation must follow strict naming
conventions so that the MBean server can introspect your interface. You can circumvent the
naming requirements by having your Java class extend javax.management.StandardMBean.
See StandardMBean in the J2SE 5.0 API Specification.

Use the Runtime MBean Server
A JVM can contain multiple MBean servers, and another significant design decision is whether
to register your MBeans in the JVM’s platform MBean server or the WebLogic Server Runtime
MBean Server.

As of JDK 1.5, processes within a JVM (local processes) can instantiate a platform MBean server,
which is provided by the JDK and contains MBeans for monitoring the JVM itself. Local classes
can also register MBeans in this MBean server.

In addition to the platform MBean server, the JVM for any WebLogic Server instance also
contains a Runtime MBean Server. (The Administration Server also contains a Domain Runtime
MBean Server and an Edit MBean Server, but the Runtime MBean Server is the only one that
allows the registration of custom MBeans. See MBean Servers in Developing Custom
Management Utilities with JMX).

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/StandardMBean.html
http://e-docs.bea.com/wls/docs90/jmx/understandWLS.html#MBeanServers

Best P ract ices

Developing Manageable Applications with JMX 3-3

BEA recommends that you register custom MBeans in its Runtime MBean Server. With this
option:

Your MBeans exist in the same MBean server as WebLogic Server MBeans. Remote JMX
clients need to maintain only a single connection to monitor your application’s MBeans
and WebLogic Server MBeans.

JMX clients must authenticate and be authorized through the WebLogic Server security
framework to access your custom MBeans and WebLogic Server MBeans.

The Runtime MBean Server registers its javax.management.MBeanServer interface in the
JNDI tree. See Make Local Connections to the Runtime MBean Server in Developing Custom
Management Utilities with JMX.

Using the JVM Platform MBean Server
If it is essential that JMX clients be able to monitor your custom MBeans, WebLogic Server
MBeans, and the JVM’s platform MBeans through a single MBean server, then you can configure
the Runtime MBean Server to be the platform MBean server. With this option:

Local applications can access all of the MBeans through the MBeanServer interface that
java.lang.management.ManagementFactory.getPlatformMBeanServer() returns.

Warning: With this local access, there are no WebLogic Server security checks to make sure
that only authorized users can access WebLogic Server MBeans. Any application
that is running in the JVM can access any of the WebLogic Server MBeans in the
Runtime MBean Server/JDK platform MBean Server. Do not use this
configuration if you cannot control or cannot trust the applications that are
running within a JVM.

If you want to enable remote JMX clients to access custom MBeans, JMX MBeans, and
WebLogic Server MBeans, consider the following configuration:

– The WebLogic Server Runtime MBean Server is configured to be the platform MBean
server.

– Remote access to the platform MBean server is not enabled.

Remote access to the platform MBean server can be secured only by standard JDK 1.5
security features (see
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote). If you have
configured the WebLogic Server Runtime MBean Server to be the platform MBean
server, enabling remote access to the platform MBean server creates an access path to

http://e-docs.bea.com/wls/docs90/jmx/accessWLS.html#RuntimeMBeanServerJNDIAccess
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote

Des ign ing Manageab le App l i cat ions

3-4 Developing Manageable Applications with JMX

WebLogic Server MBeans that is not secured through the WebLogic Server security
framework.

– Remote JMX clients access JVM MBeans by connecting to the Runtime MBean Server.

To configure the WebLogic Runtime MBean Server to be the JDK platform MBean Server, set
the WebLogic JMXMBean PlatformMBeanServerEnabled attribute to true and restart the
servers in the domain. See JMXMBean in the WebLogic Server MBean Reference.

Use ApplicationLifecycleListener to Register Application
MBeans
If you are creating MBeans for EJBs, servlets within Web Applications, or other modules that are
deployed, and if you want your MBeans to be available as soon as you deploy your application,
listen for notifications from the deployment service. When you deploy an application (and when
you start a server on which you have already deployed an application), the WebLogic Server
deployment service emits notifications at specific stages of the deployment process. When you
receive a notification that the application has been deployed, you can create and register your
MBeans.

There are two steps for listening to deployment notifications with
ApplicationLifecycleListener:

1. Create a class that extends weblogic.application.ApplicationLifecycleListener.
Then implement the ApplicationLifecycleListener.postStart method to create and
register your MBean in the MBean server. The class will invoke your postStart() method
only after it receives a postStart notification from the deployment service. See
Programming Application Lifecycle Events in Developing Applications with WebLogic
Server.

2. In the weblogic-application.xml deployment descriptor, register your class as an
application listener class.

For an example of this technique, see the MedRec example server.

Alternatives That Use Only JDK Classes
Using BEA’s ApplicationLifecycleListener is the easiest technique for making an MBean
share the life cycle of its parent application. If you do not want to use proprietary WebLogic
Server classes and deployment descriptor elements for managing a servlet or an EJB, you can do
the following:

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/JMXMBean.html#PlatformMBeanServerEnabled
http://e-docs.bea.com/wls/docs90/programming/lifecycle.html

Best P ract ices

Developing Manageable Applications with JMX 3-5

For a servlet, configure a javax.servlet.Filter that creates and registers your MBean
when a servlet calls a specific method or when the servlet itself is instantiated. See Filter
in the J2SE 5.0 API Specification.

For an EJB, implement its javax.ejb.EntityBean.ejbActivate() method to create
and register your MBean. For a session EJB whose instances share a single MBean
instance, include logic that creates and registers your MBean only if it does not already
exist. See EntityBean in the J2SE 5.0 API Specification.

Unregister Application MBeans When Applications Are
Undeployed
Regardless of how you create your MBeans, BEA recommends that you unregister your MBeans
whenever you receive a deployment notification that your application has been undeployed.
Failure to do so introduces a potential memory leak.

If you create a class that extends ApplicationLifecycleListener, you can implement the
ApplicationLifecycleListener.preStop method to unregister your MBeans.

For EJBs and Servlets Place Management Logic in a Delegate
Class
If you want to expose management attributes or operations for any type of EJB (session, entity,
message) or servlet, BEA recommends that you implement the management attributes and
operations in a separate, delegate class so that your EJB or servlet implementation classes contain
only business logic, and so that their business interfaces present only business logic. See
Figure 3-1.

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/Filter.html
http://java.sun.com/j2ee/1.4/docs/api/javax/ejb/EntityBean.html

Des ign ing Manageab le App l i cat ions

3-6 Developing Manageable Applications with JMX

Figure 3-1 Place Management Properties and Operations in a Delegate Class

In Figure 3-1, business methods in the EJB push their data to the delegate class. For example,
each time a specific business method is invoked, the method increments a counter in the delegate
class, and the MBean interface exposes the counter value as an attribute. For an example of this
technique, see the MedRec example server.

This separation of business logic from management logic might be less efficient than combining
the logic into the same class, especially if the counter in the delegate class is incremented
frequently. However, in practice, most JVMs can optimize the method calls so that the potential
inefficiency is negligible.

If this negligible difference is not acceptable for your application, your business class in the EJB
can contain the management value and the delegate class can retrieve the value whenever a JMX
client requests it.

MBean server

My standard MBean
interface

My standard MBean
implementation
(delegate class)

Session EJB

Push management
data to MBean

Gets management
data through the
MBean server

JMX client

Addi t i ona l Des ign Cons iderat ions

Developing Manageable Applications with JMX 3-7

Use Open MBean Data Types
If remote JMX client will access your custom MBeans, BEA recommends that you limit the data
types of your MBean attributes and the data types that your operations return to those defined in
javax.management.openmbean.OpenType. All JVMs have access to these basic types. See
OpenType in the J2SE 5.0 API Specification.

If your MBeans expose other data types, the types must be serializable and the remote JMX
clients must include your types on their class paths.

Emit Notifications Only When Necessary
Each time an MBean emits a notification, it uses memory and network resources. For MBean
attributes whose values change frequently, such memory and resource uses might be
unacceptable.

Instead of configuring your MBeans to emit notifications each time its attributes change, BEA
recommends that you use monitor MBeans to periodically poll your custom MBeans to determine
whether attributes have changed. You can configure the monitor MBean to emit a notification
only after an attribute changes in a specific way or reaches a specific threshold.

For more information, see Best Practices: Listening Directly Compared to Monitoring in
Developing Custom Management Utilities with JMX.

Additional Design Considerations
In addition to BEA’s best practices, consider the following:

While you might design one managed object for each business object, there is no
requirement for how your management objects should relate to your business objects. One
management object could aggregate information from multiple business objects or
conversely, you could split information from one business object into multiple managed
objects.

For example, if a servlet uses multiple helper classes and you want one MBean to represent
the servlet, each helper class push its management data into a single MBean
implementation class.

The organization that you choose depends on the number of MBeans you want to provide
to the system administrator or operations staff contrasted with the difficulty of maintaining
a complex management architecture.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/OpenType.html
http://e-docs.bea.com/wls/docs90/jmx/notifications.html#ListenOrMonitor

Des ign ing Manageab le App l i cat ions

3-8 Developing Manageable Applications with JMX

If you package your management classes in an application’s APP-INF directory, all other
classes in the application can access them. If you package the classes in a module’s archive
file, then only the module can access the management classes.

For example, consider an application that contains multiple Web applications, each of
which contains its own copy of a session EJB named EJB1. If you want one MBean to
collect information for all instances of the session EJB across all applications, you must
package the MBean’s classes in the APP-INF directory. If you want each Web application’s
copy of the EJB to maintain its own copy of the MBean, then package the MBean’s classes
in the EJB’s JAR file. (If you package the classes in the EJB’s JAR, then you distribute the
MBean classes to each Web application when you copy the JAR to the Web application.)

Developing Manageable Applications with JMX 4-1

C H A P T E R 4

Instrumenting and Registering Custom
MBeans

This section describes BEA’s recommendation for instrumenting and registering standard
MBeans for application modules. Figure 4-1 illustrates the process. The steps in the process, and
the results of each are described in Table 4-1. Subsequent sections detail each step in the process.

I ns t rument ing and Reg is te r ing Custom MBeans

4-2 Developing Manageable Applications with JMX

Figure 4-1 Standard MBean Development Overview

Modify

.java files Compile
 source

files

.class filesbusiness methods

Application Archive (EAR)

Deploy
application

to push management

Package
classes

data to the
management

Register
listener in
 weblogic-

class

application.xml

Create and
implement a

Create an
Application
Lifecycle

management

Listener that

interface

registers your
MBean

Create and Imp lement a Management In te r face

Developing Manageable Applications with JMX 4-3

Create and Implement a Management Interface
One of the main advantages to the standard MBeans design pattern is that you define and
implement management properties (attributes) as you would any Java property (using getter/is

Table 4-1 Model MBean Development Tasks and Results

Step Description Result

1. “Create and
Implement a
Management
Interface” on
page 4-3

Create a standard Java interface that describes the
properties (management attributes) and operations
you want to expose to JMX clients.

Create a Java class that implements the interface.
Because management logic should be separate from
business logic, the implementation should not be in
the same class that contains your business methods.

Source files that describe and
implement your management
interface.

2. “Modify Business
Methods to Push
Data” on page 4-6

If your management attributes contain data about the
number of times a business method has been
invoked, or if you want management attributes to
contain the same value as a business property,
modify your business methods to push (update) data
into the management implementation class.

For example, if you want to keep track of how
frequently your business class writes to the database,
modify the business method that is responsible for
writing to the database to also increment a counter
property in your management implementation class.
This design pattern enables you to insert a minimal
amount of management code in your business code.

A clean separation between
business logic and management
logic.

3.“Register the
MBean” on
page 4-7

If you want to instantiate your MBeans as part of
application deployment, create a WebLogic Server
ApplicationLifecycleListener class to
register your MBean.

A Java class and added entries in
weblogic-application.x
ml.

4. “Package
Application and
MBean Classes” on
page 4-9

Package your compiled classes into a single archive. A JAR, WAR, EAR file or other
deployable archive file.

I ns t rument ing and Reg is te r ing Custom MBeans

4-4 Developing Manageable Applications with JMX

and setter methods); similarly, you define and implement management methods (operations) as
you would any Java method.

When you register the MBean, the MBean server examines the MBean interface and determines
how to represent the data to JMX clients. Then, JMX clients use the
MBeanServerConnection.getAttribute() and setAttribute() methods to get and set the
values of attributes in your MBean and they use MBeanServerConnection.invoke() to invoke
its operations. See MBeanServerConnection in the J2SE 5.0 API Specification.

To create an interface for your standard MBean:

1. Declare the interface as public.

2. BEA recommends that you name the interface as follows:
Business-objectMBean.java

where Business-object is the object that is being managed.

BEA’s recommended design pattern for standard MBeans enables you to follow whatever
naming convention you prefer. In other standard MBean design patterns (patterns in which
the MBean’s implementation file does not extend javax.management.StandardMBean),
the file name must follow this pattern: Impl-fileMBean.java where Impl-file is the
name of the MBean’s implementation file.

3. For each read-write attribute that you want to make available in your MBean, define a getter
and setter method that follows this naming pattern:

getAttribute-name
setAttribute-name

where Attribute-name is a case-sensitive name that you want to expose to JMX clients.

If your coding conventions prefer that you use an isAttribute-name as the getter method
for attributes of type Boolean, you may do so. However, JMX clients use the
MBeanServerConnection.getAttribute() method to retrieve an attribute’s value
regardless of the attribute’s data type; there is no
MBeanServerConnection.isAttribute() method.

4. For each read-only attribute that you want to make available, define only an is or a getter
method.

For each write-only attribute, define only a setter method.

5. Define each management operation that you want to expose to JMX clients.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanServerConnection.html

Create and Imp lement a Management In te r face

Developing Manageable Applications with JMX 4-5

Listing 4-1 is an MBean interface that defines a read-only attribute of type int and an operation
that JMX clients can use to set the value of the attribute to 0.

Listing 4-1 Management Interface

package com.bea.medrec.controller;

public interface RecordSessionEJBMBean {

public int getTotalRx();

public void resetTotalRx();

}

To implement the interface:

1. Create a public class.

BEA recommends the following pattern as a naming convention for implementation files:
MBean-InterfaceImpl.java.

2. Extend javax.management.StandardMBean to enable this flexibility in the naming
requirements.

See StandardMBean in the J2SE 5.0 API Specification.

3. Implement the StandardMBean(Object implementation, Class mbeanInterface)
constructor.

With BEA’s recommended design pattern in which you separate the management logic into
a delegate class, you must provide a public constructor that implements the
StandardMBean(Object implementation, Class mbeanInterface) constructor.

4. Implement the methods that you defined in the management interface.

Note the following guidelines:

– If you are using BEA’s recommend design pattern in which business objects push
management data into the management object, provide a method in this implementation
class that the business methods use to set the value of the management attribute. In
Listing 4-2, the incrementTotalRx() method is available to business methods but it
is not part of the management interface.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/StandardMBean.html

I ns t rument ing and Reg is te r ing Custom MBeans

4-6 Developing Manageable Applications with JMX

– If multiple instances of an EJB, servlet, or other class can set the value of a
management attribute, make sure to increment the property atomically and do not make
its getter and setter (or increment method) synchronized. While synchronizing
guarantees the accuracy of management data, it blocks business threads until the
management operation has completed.

Listing 4-2 MBean Implementation

package com.bea.medrec.controller;

import javax.management.StandardMBean;

import com.bea.medrec.controller.RecordSessionEJBMBean;

public class RecordSessionEJBMBeanImpl extends StandardMBean

implements RecordSessionEJBMBean {

public RecordSessionEJBMBeanImpl() throws

javax.management.NotCompliantMBeanException {

super(RecordSessionEJBMBean.class);

}

public int TotalRx = 0;

public int getTotalRx() {

return TotalRx;

}

public void incrementTotalRx() {

TotalRx++;

}

public void resetTotalRx() {

TotalRx = 0;

}

}

Modify Business Methods to Push Data
If your management attributes contain data about the number of times a business method has been
invoked, or if you want management attributes to contain the same value as a business property,
modify your business methods to push (update) data into the management implementation class.

Regis te r the MBean

Developing Manageable Applications with JMX 4-7

Listing 4-3 shows a method in an EJB that increments the integer in the TotalRx property each
time the method is invoked.

Listing 4-3 EJB Method That Increments the Management Attribute

private Collection addRxs(Collection rXs, RecordLocal recordLocal)

throws CreateException, Exception {

...

com.bea.medrec.controller.RecordSessionEJBMBeanImpl.incrementTotalRx();

...

}

Register the MBean
If you want to instantiate your MBeans as part of application deployment, create an
ApplicationLifecycleListener that registers your MBean when the application deploys
(see “Use ApplicationLifecycleListener to Register Application MBeans” on page 3-4):

1. Create a class that extends weblogic.application.ApplicationLifecycleListener.

2. In this ApplicationLifecycleListener class, implement the
ApplicationLifecycleListener.postStart(ApplicationLifecycleEvent evt)
method.

In your implementation of this method:

a. Construct an object name for your MBean.

BEA recommends this naming convention:
your.company:Name=Parent-module,Type=MBean-interface-classname

To get the name of the parent module, use ApplicationLifecycleEvent to get an
ApplicationContext object. Then use ApplicationContext to get the module’s
identification.

b. Access the WebLogic Server Runtime MBean Server through JNDI.

If the classes for the JMX client are part of a J2EE module, such as an EJB or Web
application, then the JNDI name for the Runtime MBeanServer is:
java:comp/env/jmx/runtime

I ns t rument ing and Reg is te r ing Custom MBeans

4-8 Developing Manageable Applications with JMX

If the classes for the JMX client are not part of a J2EE module, then the JNDI name for
the Runtime MBean Server is:
java:comp/jmx/runtime

For example:

InitialContext ctx = new InitialContext();
MBeanServer server = (MBeanServer)

ctx.lookup("java:comp/env/jmx/runtime");

See Make Local Connections to the Runtime MBean Server in Developing Custom
Management Utilities with JMX.

c. Register your MBean using MBeanServer.registerMBean(Object object,
ObjectName name) where:

object is an instance of your MBean implementation class.

name is the JMX object name for your MBean.

When your application deploys, the WebLogic deployment service emits
ApplicationLifecycleEvent notifications to all of its registered listeners. When the
listener receives a postStart notification, it invokes its postStart method. See
Programming Application Lifecycle Events in Developing Applications with WebLogic
Server.

3. In the same class, implement the
ApplicationLifecycleListener.preStop(ApplicationLifecycleEvent evt)
method.

In your implementation of this method, invoke the
javax.management.MBeanServer.unregister(ObjectName MBean-name) method to
unregister your MBean.

4. Register your class as an ApplicationLifecycleListener by adding the following
element to your application’s weblogic-application.xml file:

<listener>
<listener-class>

fully-qualified-class-name
</listener-class>

</listener>

For an example of this technique, see the Medrec example server.

http://e-docs.bea.com/wls/docs90/jmx/accessWLS.html#RuntimeMBeanServerJNDIAccess
http://e-docs.bea.com/wls/docs90/programming/lifecycle.html

Package Appl ica t i on and MBean C lasses

Developing Manageable Applications with JMX 4-9

Package Application and MBean Classes
Package your MBean classes in the application’s APP-INF directory or in a module’s JAR, WAR
or other type of archive file depending on the access that you want to enable for the MBean. See
“Additional Design Considerations” on page 3-7.

I ns t rument ing and Reg is te r ing Custom MBeans

4-10 Developing Manageable Applications with JMX

Developing Manageable Applications with JMX 5-1

C H A P T E R 5

Using the WebLogic Server JMX Timer
Service

If you need your JMX client to carry out a task at a specified time or a regular time interval, you
can configure a JMX timer service. The service emits notifications at specific dates and times or
at a constant interval. Then you create a listener that listens for the timer notifications and
responds appropriately.

For example, you want a JMX monitor to run between 9am and 9pm each day. You can use the
JMX timer service to emit a notification each day at 9am, which triggers a JMX listener to start
your monitor. Then the timer service emits another notification at 9pm, which triggers your
listener to stop the monitor MBean.

The JDK includes an implementation of the JMX timer service (see
javax.management.timer.Timer in the J2SE 5.0 API Specification), however listeners for
this timer service run in their own thread in a server’s JVM.

WebLogic Server includes an extension of the standard timer service that causes timer listeners
to run in a thread that Weblogic Server manages and within the security context of a WebLogic
Server user account.

The following sections describe how to use the WebLogic timer service:

“Using the WebLogic Timer Service: Main Steps” on page 5-2

“Example: Generating a Notification Every Five Minutes After 9 AM” on page 5-5

“Removing Notifications” on page 5-8

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/timer/Timer.html

Using the WebLog ic Se rve r JMX T imer Se rv i ce

5-2 Developing Manageable Applications with JMX

Using the WebLogic Timer Service: Main Steps
Each JMX client that wants to use the timer service must construct and manage instances of the
timer service as it requires (WebLogic Server does not provide a centralized timer service that all
JMX clients use). Each time you restart a server instance, each JMX client must re-instantiate any
timer service configurations it needs.

To use the WebLogic Server timer service:

1. Create a JMX listener class in your application.

For general instructions on creating a JMX listener, see Creating a Notification Listener in
Developing Custom Management Utilities in JMX.

2. Create a class that does the following:

a. Configures an instance of weblogic.management.timer.TimerMBean to emit
javax.management.timer.TimerNotification notifications at a specific time or at a
recurring interval. See TimerNotification in the J2SE 5.0 API Specification.

For each notification that you configure, include a String in the notification’s Type
attribute that identifies the event that caused the timer to emit the notification.

See “Configuring a Timer MBean to Emit Notifications” on page 5-2.

b. Registers your listener and an optional filter with the timer MBean that you configured.

c. Starts the timer in the timer MBean that you configured.

For general instructions, see Configuring a Notification Filter and Registering a
Notification Listener and Filter in Developing Custom Management Utilities in JMX.

d. Unregisters the timer MBean and closes it connection to the MBean server when it has
finished using the timer service.

3. Package and deploy the listener and other JMX classes. See Packaging and Deploying
Listeners on WebLogic Server in Developing Custom Management Utilities in JMX.

Configuring a Timer MBean to Emit Notifications
To configure a Timer MBean instance to emit a notification:

1. Initialize a connection to the Domain Runtime MBean Server.

See Connect to an MBean Server in Developing Custom Management Utilities in JMX.

http://e-docs.bea.com/wls/docs90/jmx/notifications.html#CreateNotificationListener
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/timer/TimerNotification.html
http://e-docs.bea.com/wls/docs90/jmx/notifications.html#ConfiguringNotificationFilter
http://e-docs.bea.com/wls/docs90/jmx/notifications.html#RegisteringNotificationListenerFilter
http://e-docs.bea.com/wls/docs90/jmx/notifications.html#RegisteringNotificationListenerFilter
http://e-docs.bea.com/wls/docs90/jmx/notifications.html#PackagingDeployingLIsteners
http://e-docs.bea.com/wls/docs90/jmx/notifications.html#PackagingDeployingLIsteners
http://e-docs.bea.com/wls/docs90/jmx/accessWLS.html#ConnectToMBeanServer

Conf igur ing a T imer MBean to Emi t No t i f i cat ions

Developing Manageable Applications with JMX 5-3

2. Create an ObjectName for your timer MBean instance.

See javax.management.ObjectName in the J2SE 5.0 API Specification.

BEA recommends that your object name starts with the name of your organization and
includes key properties that clearly identifies the purpose of the timer MBean instance.

For example, "mycompany:Name=myDailyTimer,Type=weblogicTimer"

3. Create and register the timer MBean.

Use javax.management.MBeanServerConnection.createMBean(String classname
ObjectName name) method where:

– classname is weblogic.management.timer.Timer

– name is the object name that you created for the timer MBean instance.

Note: The time MBean that you create runs in the Java agent on WebLogic Server (it does
not run in a client JVM even if you create the timer MBean from a remote JMX
client).

4. Configure the timer MBean to emit a notification.

Invoke the MBean’s addNotification operation. Table 5-1 describes each parameter of
the addNotification operation. For more information, see
weblogic.management.timer.Timer in the WebLogic Server API Reference.

The addNotification operation creates a TimerNotification object and returns an
identifier (Integer) for the new TimerNotification object. You can use this identifier
to retrieve information about the TimerNotification object from the timer or to remove
the object from the timer’s list of notifications.

5. Repeat step 4 for each timer notification that your JMX client needs to receive.

6. Start the timers in your timer MBean by invoking the timer MBean’s start() operation.

When the time that you specify arrives, the timer service emits the TimerNotification object
along with a reference to the handback object.

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/management/timer/Timer.html

Using the WebLog ic Se rve r JMX T imer Se rv i ce

5-4 Developing Manageable Applications with JMX

Creating Date Objects
The constructor for the java.util.Date object initializes the object to represent the time at
which you created the Date object measured to the nearest millisecond. To specify a different
time or date:

Table 5-1 Parameters of the addNotification Operation

Parameter Description

java.lang.String type A string that you use to identify the event that triggers this notification
to be broadcast. For example, you can specify midnight for a
notification that you configure to be broadcast each day at midnight.

java.lang.String message Specifies the value of the TimerNotification object’s
message attribute.

java.lang.Object userData Specifies the name of an object that contains whatever data you want
to send to your listeners. Usually, you specify a reference to the class
that registered the notification, which functions as a callback.

java.util.Date startTime Specifies a Date object that contains the time and day at which
the timer emits your notification.
See “Creating Date Objects” on page 5-4.

long period (Optional) Specifies the interval in milliseconds between
notification occurrences. Repeating notifications are not
enabled if this parameter is zero or is not defined (null).

long nbOccurences (Optional) Specifies the total number of times that the
notification will occur. If the value of this parameter is zero or
is not defined (null) and if the period is not zero or null, then
the notification will repeat indefinitely.
If you specify this parameter, each time the Timer MBean
emits the associated notification, it decrements the number of
occurrences by one. You can use the timer MBean’s
getNbOccurrences operation to determine the number of
occurrences that remain. When the number of occurrences
reaches zero, the timer MBean removes the notification from
its list of configured notifications.

Example : Generat ing a Not i f i ca t ion Every F ive Minutes A f te r 9 AM

Developing Manageable Applications with JMX 5-5

1. Create an instance of java.util.Calendar.

2. Configure the fields in the Calendar object to represent the time or date.

3. Invoke the Calendar object’s getTime() method, which returns a Date object that
represents the time in the Calendar object.

For example, the following code configures a Date object that represents midnight:

java.util.Calendar cal = java.util.Calendar.getInstance();

cal.set(java.util.Calendar.HOUR_OF_DAY, 24);

java.util.Date morning = cal.getTime();

See java.util.Calendar in the J2SE 5.0 API Specification.

Example: Generating a Notification Every Five Minutes After 9
AM

The code in Listing 5-1 creates an instance of weblogic.management.timer.Timer that emits
a notification every 5 minutes after 9am.

Note the following about the code:

It creates and registers the timer MBean in the Runtime MBean Server, under the
assumption that the JMX client runs alongside applications that are deployed on multiple
server instances. In this case, your JMX client would register a timer MBean in each
Runtime MBean Server in the domain.

Even though it creates an instance of the WebLogic Server timer MBean, the class does not
import WebLogic Server classes. Only the MBean server needs access to the WebLogic
Server Timer class, not the JMX client.

Any generic JMX listener can be used to listen for timer notifications, because all timer
notifications extend javax.management.Notification.

Listing 5-1 Create, Register, and Configure a Timer MBean

import java.util.Hashtable;
import java.io.IOException;
import java.net.MalformedURLException;

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.MalformedObjectNameException;

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Calendar.html

Using the WebLog ic Se rve r JMX T imer Se rv i ce

5-6 Developing Manageable Applications with JMX

import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

import javax.management.NotificationFilterSupport;

public class RegisterTimer {
private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectName service;

// Initialize the object name for RuntimeServiceMBean
// so it can be used throughout the class.
static {

try {
service = new ObjectName(
"com.bea:Name=RuntimeService,Type=weblogic.management.mbeanservers.ru
ntime.RuntimeServiceMBean");

}catch (MalformedObjectNameException e) {
throw new AssertionError(e.getMessage());

}
}

/*
* Initialize connection to the Runtime MBean Server.
* This MBean is the root of the runtime MBean hierarchy, and
* each server in the domain hosts its own instance.
*/
public static void initConnection(String hostname, String portString,

String username, String password) throws IOException,
MalformedURLException {
String protocol = "t3";
Integer portInteger = Integer.valueOf(portString);
int port = portInteger.intValue();
String jndiroot = "/jndi/";
String mserver = "weblogic.management.mbeanservers.runtime";

JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
jndiroot + mserver);

Hashtable h = new Hashtable();
h.put(Context.SECURITY_PRINCIPAL, username);
h.put(Context.SECURITY_CREDENTIALS, password);
h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");
connector = JMXConnectorFactory.connect(serviceURL, h);
connection = connector.getMBeanServerConnection();

}

Example : Generat ing a Not i f i ca t ion Every F ive Minutes A f te r 9 AM

Developing Manageable Applications with JMX 5-7

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

try {
/* Invokes a custom method that establishes a connection to the
* Runtime MBean Server and uses an instance of
* MBeanServerConnection to represents the connection. The custom
* method assigns the MBeanServerConnection to a class-wide, static
* variable named "connection".

*/
initConnection(hostname, portString, username, password);

//Creates and registers the timer MBean.
ObjectName timerON = new

ObjectName("mycompany:Name=myDailyTimer,Type=weblogicTimer");
String classname = "weblogic.management.timer.Timer";
connection.createMBean(classname, timerON);
System.out.println("===> created timer mbean "+timerON);

// Configures the timer MBean to emit a morning notification.
// Assigns the return value of addNotification to a variable so that
// it will be possible to invoke other operations for this specific
// notification.
java.util.Calendar cal = java.util.Calendar.getInstance();
cal.set(java.util.Calendar.HOUR_OF_DAY, 9);
java.util.Date morning = cal.getTime();
String myData = "Timer notification";
Integer morningTimerID = (Integer) connection.invoke(timerON,

"addNotification",
new Object[] { "mycompany.timer.notification.after9am" ,
"After 9am!", myData, morning, new Long(60000) },
new String[] {"java.lang.String", "java.lang.String",
"java.lang.Object", "java.util.Date", "long" });

//Instantiates your listener class and configures a filter to
// forward only timer messages.
MyListener listener = new MyListener();
NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enableType("mycompany.timer");

//Uses the MBean server's addNotificationListener method to
//register the listener and filter with the timer MBean.
System.out.println("===> ADD NOTIFICATION LISTENER TO "+ timerON);
connection.addNotificationListener(timerON, listener, filter, null);
System.out.println("\n[myListener]: Listener registered ...");

Using the WebLog ic Se rve r JMX T imer Se rv i ce

5-8 Developing Manageable Applications with JMX

//Starts the timer.
connection.invoke(timerON, "start", new Object[] { }, new String[] {});

//Keeps the remote client active.
System.out.println("Pausing. Press Return to end...........");
System.in.read();

} catch(Exception e) {
System.out.println("Exception: " + e);
e.printStackTrace();

}
}

}

Removing Notifications
The timer MBean removes notifications from its list when either of the following occurs:

A non-repeating notification has been emitted.

A repeating notification has exhausted its number of occurrences.

The timer MBean also provides the following operations to remove notifications:

removeAllNotifications(), which removes all notifications that are registered with the
timer MBean instance.

removeNotification(java.lang.Integer id), which removes the notification whose
ID matches the ID you specify. The addNotification method returns this ID when you
invoke it.

removeNotifications(java.lang.String type), which removes all notifications
whose type corresponds to the type that you specify.

For more information, see weblogic.management.timer.Timer in the WebLogic Server API
Reference.

http://e-docs.bea.com/wls/docs90/javadocs/weblogic/management/timer/Timer.html

Developing Manageable Applications with JMX 6-1

C H A P T E R 6

Accessing Custom MBeans

Besides programmatic JMX access to your custom MBeans, you can use any JMX-compliant
management system to access your MBeans. For information, see “What Management Services
Have BEA Partners Developed?” on page 2-3 and the Sun Developer Network Web site, which
provides links to books, white papers, and other information on JMX:
http://java.sun.com/products/JavaManagement/.

The following sections describe additional ways to access your custom MBeans:

“Accessing Custom MBeans from JConsole” on page 6-1

“Accessing Custom MBeans from WebLogic Scripting Tool” on page 6-2

“Accessing Custom MBeans from an Administration Console Extension” on page 6-2

Accessing Custom MBeans from JConsole
The JDK includes JConsole, a Swing-based JMX client that you can use to browse MBeans. You
can browse the MBeans in any WebLogic Server MBean server and in the platform MBean
server. Sun recommends that you use JConsole only in a development environment; it consumes
significant amounts of resources. See Using JConsole to Monitor Applications at
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html.

To access custom MBeans from JConsole:

1. Enable the IIOP protocol for the WebLogic Server instance that hosts your MBeans.
Configure the default IIOP user to be a WebLogic Server user with Administrator privileges.

See Enable and Configure IIOP in Administration Console Online Help.

http://java.sun.com/products/JavaManagement/
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/channels/EnableAndConfigureIIOP.html

Access ing Custom MBeans

6-2 Developing Manageable Applications with JMX

2. From a command prompt, make sure that JDK 1.5 or its equivalent is on the path.

3. In the command prompt, enter the following command: jconsole

4. If your custom MBeans are registered in the platform MBean server (or if you have
configured the WebLogic Server Runtime MBean Server to be the platform MBean server):

a. In the JConsole window, select Connection > New Connection.

b. In the Connect to Agent window, select the Local tab and click Connect.

5. If your custom MBeans are registered in the WebLogic Server Runtime MBean Server, and
if you have not configured the Runtime MBean Server to be the platform MBean server:

a. In the JConsole window, select Connection > New Connection.

b. In the Connect to Agent window, select the Advanced tab.

c. On the Advanced tab, in the JMX URL box, enter:

service:jmx:rmi:///jndi/iiop://host:port/weblogic.management.mbeanse

rvers.runtime

where host:port is the host name and port of the WebLogic Server instance that hosts
your MBeans.

For example:
service:jmx:rmi:///jndi/iiop://localhost:7001/weblogic.management.mb

eanservers.runtime

d. In the User Name and Password boxes, enter the default IIOP user name and password.

e. Click Connect.

Accessing Custom MBeans from WebLogic Scripting Tool
If you register your MBeans in the Runtime MBean Sever, you can use WebLogic Scripting Tool
to access your custom MBeans. See Accessing Custom MBeans in WebLogic Scripting Tool.

Accessing Custom MBeans from an Administration Console
Extension

You can extend the WebLogic Server Administration Console by creating Java Server Pages
(JSPs) that conform to a specific template. Your JSP can include JMX code that connects to the

http://e-docs.bea.com/wls/docs90/config_scripting/nav_edit.html#access_custom_mbeans

Access ing Cus tom MBeans f rom an Admin is t ra t ion Conso le Ex tens ion

Developing Manageable Applications with JMX 6-3

platform MBean server or the WebLogic Server Runtime MBean Server and looks up your
MBeans.

For more information, see Extending the Administration Console.

http://e-docs.bea.com/wls/docs90/console_ext/index.html

Access ing Custom MBeans

6-4 Developing Manageable Applications with JMX

Developing Manageable Applications with JMX Index-1

Index

D
derived gauge, defined 2-7

J
JMX specification 1-2

M
monitor MBeans

defined 2-7

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Samples for the JMX Developer
	Avitek Medical Records Application (MedRec) and Tutorials

	New and Changed JMX Features in This Release
	JMX 1.2 and JMX Remote API 1.0 (JSR-160)
	Deprecated MBeanHome and Type-Safe Interfaces
	Changes to the Model for Distributing Configuration Data in a Domain
	Changes to the MBean Data Model
	New Functionally Aligned MBean Servers
	Facilities for Registering Custom MBeans
	New Reference Document for WebLogic Server MBeans

	Understanding JMX
	What Management Services Can I Develop with JMX?
	Advanced JMX-Programming: Creating Management-Aware Applications

	When Is It Appropriate to Use JMX?
	What Management Services Have BEA Partners Developed?
	Anatomy of JMX
	JMX Layers
	Indirection and Introspection
	Notifications and Monitor MBeans
	How JMX Notifications are Broadcast and Received
	Active Polling with Monitor MBeans

	Designing Manageable Applications
	Best Practices
	Use Standard MBeans
	Use the Runtime MBean Server
	Using the JVM Platform MBean Server

	Use ApplicationLifecycleListener to Register Application MBeans
	Alternatives That Use Only JDK Classes

	Unregister Application MBeans When Applications Are Undeployed
	For EJBs and Servlets Place Management Logic in a Delegate Class
	Use Open MBean Data Types
	Emit Notifications Only When Necessary

	Additional Design Considerations

	Instrumenting and Registering Custom MBeans
	Create and Implement a Management Interface
	Modify Business Methods to Push Data
	Register the MBean
	Package Application and MBean Classes

	Using the WebLogic Server JMX Timer Service
	Using the WebLogic Timer Service: Main Steps
	Configuring a Timer MBean to Emit Notifications
	Creating Date Objects

	Example: Generating a Notification Every Five Minutes After 9 AM
	Removing Notifications

	Accessing Custom MBeans
	Accessing Custom MBeans from JConsole
	Accessing Custom MBeans from WebLogic Scripting Tool
	Accessing Custom MBeans from an Administration Console Extension

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

