
BEAWebLogic
Server™ and
WebLogic
Express®

Programming WebLogic
HTTP Servlets

Version 8.1
Revised: February 21, 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic HTTP Servlets v

Contents

About This Document
Audience . ix

e-docs Web Site . ix

How to Print the Document .x

Related Information .x

Contact Us! .x

Documentation Conventions . xi

1. Overview of HTTP Servlets
What Is a Servlet? . 1-1

What You Can Do with Servlets . 1-2

Overview of Servlet Development. 1-2

Servlets and J2EE. 1-3

HTTP Servlet API Reference. 1-3

2. Introduction to Programming
Writing a Simple HTTP Servlet. 2-1

Advanced Features . 2-3

Complete HelloWorldServlet Example . 2-4

3. Programming Tasks
Initializing a Servlet . 3-2

Initializing a Servlet when WebLogic Server Starts . 3-2

vi Programming WebLogic HTTP Servlets

Overriding the init() Method . 3-3

Providing an HTTP Response . 3-4

Retrieving Client Input . 3-6

Methods for Using the HTTP Request. 3-7

Example: Retrieving Input by Using Query Parameters . 3-8

Securing Client Input in Servlets . 3-10

Using a WebLogic Server Utility Method . 3-11

Session Tracking from a Servlet . 3-11

A History of Session Tracking . 3-12

Tracking a Session with an HttpSession Object . 3-13

Lifetime of a Session . 3-14

How Session Tracking Works . 3-14

Detecting the Start of a Session . 3-15

Setting and Getting Session Name/Value Attributes . 3-15

Logging Out and Ending a Session . 3-16

Using session.invalidate() for a Single Web Application 3-16

Implementing Single Sign-On for Multiple Applications 3-17

Exempting a Web Application for Single Sign-on . 3-17

Configuring Session Tracking . 3-17

Using URL Rewriting Instead of Cookies . 3-18

URL Rewriting and Wireless Access Protocol (WAP) . 3-19

Making Sessions Persistent . 3-19

Scenarios to Avoid When Using Sessions . 3-20

Use Serializable Attribute Values . 3-20

Configuring Session Persistence. 3-21

Using Cookies in a Servlet . 3-21

Setting Cookies in an HTTP Servlet . 3-21

Retrieving Cookies in an HTTP Servlet . 3-22

Programming WebLogic HTTP Servlets vii

Using Cookies That Are Transmitted by Both HTTP and HTTPS 3-23

Application Security and Cookies . 3-23

Response Caching . 3-24

Initialization Parameters . 3-25

Using WebLogic Services from an HTTP Servlet . 3-26

Accessing Databases . 3-26

Connecting to a Database Using a JDBC Connection Pool 3-27

Using a Connection Pool in a Servlet . 3-27

Connecting to a Database Using a DataSource Object . 3-28

Using a DataSource in a Servlet . 3-28

Connecting Directly to a Database Using a JDBC Driver . 3-29

Threading Issues in HTTP Servlets . 3-29

SingleThreadModel . 3-30

Shared Resources . 3-30

Dispatching Requests to Another Resource . 3-31

Forwarding a Request. 3-32

Including a Request . 3-33

Best Practice When Subclassing ServletResponseWrapper . 3-33

Proxying Requests to Another Web Server . 3-33

Overview of Proxying Requests to Another Web Server . 3-33

Setting Up a Proxy to a Secondary Web Server . 3-34

Sample Deployment Descriptor for the Proxy Servlet . 3-34

4. Administration and Configuration
Overview of WebLogic HTTP Servlet Administration. 4-1

Using Deployment Descriptors to Configure and Deploy Servlets 4-2

web.xml (Web Application Deployment Descriptor) . 4-2

weblogic.xml (Weblogic-Specific Deployment Descriptor) 4-2

viii Programming WebLogic HTTP Servlets

WebLogic Server Administration Console . 4-4

Directory Structure for Web Applications . 4-5

Referencing a Servlet in a Web Application. 4-5

URL Pattern Matching . 4-6

Servlet Security . 4-7

Authentication . 4-7

Authorization (Security Constraints) . 4-7

Servlet Development Tips. 4-8

Clustering Servlets . 4-9

Programming WebLogic HTTP Servlets ix

About This Document

This document provides information on programming and deploying WebLogic HTTP Servlets.

The document is organized as follows:

Chapter 1, “Overview of HTTP Servlets,” provides an overview of Hypertext Transfer
Protocol (HTTP) servlet programming and explains how to use HTTP servlets with
WebLogic Server.

Chapter 2, “Introduction to Programming,” introduces basic HTTP servlet programming.

Chapter 3, “Programming Tasks,” provides information about writing HTTP servlets in a
WebLogic Server environment.

Chapter 4, “Administration and Configuration,” provides information about writing HTTP
servlets in a WebLogic Server environment.

Audience
This document is written for application developers who want to build e-commerce applications
using HTTP servlets and the Java 2 Platform, Enterprise Edition (J2EE) from Sun Microsystems.
It is assumed that readers know Web technologies, object-oriented programming techniques, and
the Java programming language.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation.

About Th is Document

x Programming WebLogic HTTP Servlets

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information
Package javax.servlet (http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/package-summary.html)

Package javax.servlet.http (http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/http/package-summary.html)

Servlet 2.3 specification
(http://java.sun.com/products/servlet/download.html#specs)

Deploying and Configuring Applications at
http://e-docs.bea.com/wls/docs81/adminguide/config_web_app.html

Writing Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs81/programming/webappdeployment.html

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

http://www.adobe.com
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/package-summary.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/package-summary.html
http://java.sun.com/products/servlet/download.html#specs
http://e-docs.bea.com/wls/docs81/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs81/programming/webappdeployment.html
mailto:docsupport@bea.com
http://www.bea.com

Programming WebLogic HTTP Servlets xi

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:
String CustomerName;

About Th is Document

xii Programming WebLogic HTTP Servlets

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

Programming WebLogic HTTP Servlets 1-1

C H A P T E R 1

Overview of HTTP Servlets

The following sections provide an overview of Hypertext Transfer Protocol (HTTP) servlet
programming and explain how to use HTTP servlets with WebLogic Server:

What Is a Servlet?

What You Can Do with Servlets

Overview of Servlet Development

Servlets and J2EE

HTTP Servlet API Reference

What Is a Servlet?
A servlet is a Java class that runs in a Java-enabled server. An HTTP servlet is a special type of
servlet that handles an HTTP request and provides an HTTP response, usually in the form of an
HTML page. The most common use of WebLogic HTTP Servlets is to create interactive
applications using standard Web browsers for the client-side presentation while WebLogic
Server handles the business logic as a server-side process. WebLogic HTTP Servlets can access
databases, Enterprise JavaBeans, messaging APIs, HTTP sessions, and other facilities of
WebLogic Server.

WebLogic Server fully supports HTTP servlets as defined in the Servlet 2.3 specification from
Sun Microsystems. HTTP servlets form an integral part of the Java 2 Enterprise Edition (J2EE)
standard.

1-2 Programming WebLogic HTTP Servlets

What You Can Do with Servlets
Create dynamic Web pages that use HTML forms to get end-user input and provide HTML
pages that respond to that input. Examples of this utilization include online shopping carts,
financial services, and personalized content.

Create collaborative systems such as online conferencing.

Servlets running in WebLogic Server have access to a variety of APIs and services. For
example:

– Session tracking—Allows a Web site to track a user’s progress across multiple Web
pages. This functionality supports Web sites such as e-commerce sites that use
shopping carts. WebLogic Server supports session persistence to a database, providing
fail-over between server down time and session sharing between clustered servers. For
more information see “Session Tracking from a Servlet” on page 3-11.

– JDBC drivers (including BEA)—JDBC drivers provide basic database access. With
Weblogic Server’s multitier JDBC implementations, you can take advantage of
connection pools, server-side data caching, and transactions. For more information see
“Accessing Databases” on page 3-26.

– Security—You can apply various types of security to servlets, including using ACLs for
authentication and Secure Sockets Layer (SSL) to provide secure communications.

– Enterprise JavaBeans—Servlets can use Enterprise JavaBeans (EJB) to encapsulate
sessions, data from databases, and other functionality.

– Java Messaging Service (JMS)—JMS allows your servlets to exchange messages with
other servlets and Java programs.

– Java JDK APIs—Servlets can use the standard Java JDK APIs.

– Forwarding requests—Servlets can forward a request to another servlet or other
resource.

Servlets written for any J2EE-compliant servlet engine can be easily deployed on
WebLogic Server.

Servlets and Java Server Pages (JSP) can work together to create an application.

Overview of Servlet Development
Programmers of HTTP servlets utilize a standard API from JavaSoft,
javax.servlet.http, to create interactive applications.

Se rv le ts and J2EE

Programming WebLogic HTTP Servlets 1-3

HTTP servlets can read HTTP headers and write HTML coding to deliver a response to a
browser client.

Servlets are deployed on WebLogic Server as part of a Web Application. A Web
Application is a grouping of application components such as servlet classes, JavaServer
Pages (JSP), static HTML pages, images, and security. For more information see
“Administration and Configuration” on page 4-1.

Servlets and J2EE
The Servlet 2.3 specification (available at
http://java.sun.com/products/servlet/download.html#specs), part of the Java 2
Platform, Enterprise Edition, defines the implementation of the servlet API and the method by
which servlets are deployed in enterprise applications. Deploying servlets on a J2EE-compliant
server, such as WebLogic Server, is accomplished by packaging the servlets and other resources
that make up an enterprise application into a single unit called a Web Application. A Web
Application utilizes a specific directory structure to contain its resources and a deployment
descriptor that defines how these resources interact and how the application is accessed by a
client. A Web Application may also be deployed as an archive file called a .war file.

For more information on creating Web Applications, see Assembling and Configuring Web
Applications at http://e-docs.bea.com/wls/docs81/webapp/index.html. For an
overview of servlet administration and deployment issues, see “Administration and
Configuration” on page 4-1.

HTTP Servlet API Reference
WebLogic Server supports the javax.servlet.http package in the Java Servlet 2.3 API. You
can find additional documentation for the package from Sun Microsystems:

API documentation

– Package javax.servlet (http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/package-summary.html)

– Package javax.servlet.http
(http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/http/package-summary.html)

Servlet 2.3 specification
(http://java.sun.com/products/servlet/download.html#specs)

http://java.sun.com/products/servlet/download.html#specs
http://e-docs.bea.com/wls/docs81/webapp/index.html
http://e-docs.bea.com/wls/docs81/webapp/index.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/package-summary.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/package-summary.html
http://java.sun.com/products/servlet/download.html#specs

1-4 Programming WebLogic HTTP Servlets

Programming WebLogic HTTP Servlets 2-1

C H A P T E R 2

Introduction to Programming

The following sections introduce basic HTTP servlet programming:

Writing a Simple HTTP Servlet

Advanced Features

Complete HelloWorldServlet Example

Writing a Simple HTTP Servlet
The section provides a procedure for writing a simple HTTP servlet, which prints out the message
Hello World. A complete code example (the HelloWorldServlet) illustrating these steps is
included at the end of this section. Additional information about using various J2EE and
Weblogic Server services such as JDBC, RMI, and JMS, in your servlet are discussed later in this
document.

1. Import the appropriate package and classes, including the following:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

2. Extend javax.servlet.http.HttpServlet. For example:

public class HelloWorldServlet extends HttpServlet{

3. Implement a service() method.

2-2 Programming WebLogic HTTP Servlets

The main function of a servlet is to accept an HTTP request from a Web browser, and
return an HTTP response. This work is done by the service() method of your servlet.
Service methods include response objects used to create output and request objects used to
receive data from the client.

You may have seen other servlet examples implement the doPost() and/or doGet()
methods. These methods reply only to POST or GET requests; if you want to handle all
request types from a single method, your servlet can simply implement the service()
method. (However, if you choose to implement the service() method, you cannot
implement the doPost() or doGet() methods, unless you call super.service() at the
beginning of the service() method.) The HTTP servlet specification describes other
methods used to handle other request types, but all of these methods are collectively
referred to as service methods.

All the service methods take the same parameter arguments. An HttpServletRequest
provides information about the request, and your servlet uses an HttpServletResponse
to reply to the HTTP client. The service method looks like the following:

public void service(HttpServletRequest req,
 HttpServletResponse res) throws IOException
{

4. Set the content type, as follows:

res.setContentType("text/html");

5. Get a reference to a java.io.PrintWriter object to use for output, as follows:

PrintWriter out = res.getWriter();

6. Create some HTML using the println() method on the PrintWriter object, as shown in
the following example:

out.println("<html><head><title>Hello World!</title></head>");
out.println("<body><h1>Hello World!</h1></body></html>");
 }
}

7. Compile the servlet, as follows:

a. Set up a development environment shell (see
http://e-docs.bea.com/wls/docs81/programming/environment.html) with the correct
classpath and path settings.

b. From the directory containing the Java source code for your servlet, compile your servlet
into the WEB-INF/classes directory of the Web Application that contains your servlet.
For example:

http://e-docs.bea.com/wls/docs81/programming/environment.html

Advanced Features

Programming WebLogic HTTP Servlets 2-3

javac -d /myWebApplication/WEB-INF/classes myServlet.java

8. Deploy the servlet as part of a Web Application hosted on WebLogic Server. For an
overview of servlet deployment, see “Administration and Configuration” on page 4-1.

9. Call the servlet from a browser.

The URL you use to call a servlet is determined by: (a) the name of the Web Application
containing the servlet and (b) the name of the servlet as mapped in the deployment
descriptor of the Web Application. Request parameters can also be included in the URL
used to call a servlet.

Generally the URL for a servlet conforms to the following:

http://host:port/webApplicationName/mappedServletName?parameter

The components of the URL are defined as follows:

– host is the name of the machine running WebLogic Server.

– port is the port at which the above machine is listening for HTTP requests.

– webApplicationName is the name of the Web Application containing the servlet.

– parameters are one or more name-value pairs containing information sent from the
browser that can be used in your servlet.

For example, to use a Web browser to call the HelloWorldServlet (the example featured
in this document), which is deployed in the examplesWebApp and served from a WebLogic
Server running on your machine, enter the following URL:

http://localhost:7001/examplesWebApp/HelloWorldServlet

The host:port portion of the URL can be replaced by a DNS name that is mapped to
WebLogic Server.

Advanced Features
The preceding steps create a basic servlet. You will probably also use more advanced features of
servlets:

Handling HTML form data—HTTP servlets can receive and process data received from a
browser client in HTML forms.

– “Retrieving Client Input” on page 3-6

Application design—HTTP servlets offer many ways to design your application. The
following sections provide detailed information about writing servlets:

2-4 Programming WebLogic HTTP Servlets

– “Providing an HTTP Response” on page 3-4

– “Threading Issues in HTTP Servlets” on page 3-29

– “Dispatching Requests to Another Resource” on page 3-31

Initializing a servlet—if your servlet needs to initialize data, accept initialization
arguments, or perform other actions when the servlet is initialized, you can override the
init() method.

– “Initializing a Servlet” on page 3-2

Use of sessions and persistence in your servlet—sessions and persistence allow you to
track your users within and between HTTP sessions. Session management includes the use
of cookies. For more information, see the following sections:

– “Session Tracking from a Servlet” on page 3-11

– “Using Cookies in a Servlet” on page 3-21

– “Configuring Session Persistence” on page 3-21

Use of WebLogic services in your servlet—WebLogic Server provides a variety of services
and APIs that you can use in your Web applications. These services include Java Database
Connectivity (JDBC) drivers, JDBC database connection pools, Java Messaging Service
(JMS), Enterprise JavaBeans (EJB), and Remote Method Invocation (RMI). For more
information, see the following sections:

– “Using WebLogic Services from an HTTP Servlet” on page 3-26

– “Servlet Security” on page 4-7

– “Accessing Databases” on page 3-26

Complete HelloWorldServlet Example
This section provides the complete Java source code for the example used in the preceding
procedure. The example is a simple servlet that provides a response to an HTTP request. Later in
this document, this example is expanded to illustrate how to use HTTP parameters, cookies, and
session tracking.

Comple te He l l oWor ldServ le t Example

Programming WebLogic HTTP Servlets 2-5

Listing 2-1 HelloWorldServlet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class HelloWorldServlet extends HttpServlet {

 public void service(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException

 {

 // Must set the content type first

 res.setContentType("text/html");

 // Now obtain a PrintWriter to insert HTML into

 PrintWriter out = res.getWriter();

 out.println("<html><head><title>" +

 "Hello World!</title></head>");

 out.println("<body><h1>Hello World!</h1></body></html>");

 }

}

You can find the source code and instructions for compiling and running all the examples used
in this document in the samples/examples/servlets directory of your WebLogic Server
distribution.

2-6 Programming WebLogic HTTP Servlets

Programming WebLogic HTTP Servlets 3-1

C H A P T E R 3

Programming Tasks

The following sections describe how to write HTTP servlets in a WebLogic Server environment:

Initializing a Servlet

Providing an HTTP Response

Retrieving Client Input

Session Tracking from a Servlet

Using Cookies in a Servlet

Response Caching

Using WebLogic Services from an HTTP Servlet

Accessing Databases

Threading Issues in HTTP Servlets

Dispatching Requests to Another Resource

Best Practice When Subclassing ServletResponseWrapper

“Proxying Requests to Another Web Server” on page 3-33

3-2 Programming WebLogic HTTP Servlets

Initializing a Servlet

Normally, WebLogic Server initializes a servlet when the first request is made for the servlet.
Subsequently, if the servlet is modified, the destroy() method is called on the existing version
of the servlet. Then, after a request is made for the modified servlet, the init() method of the
modified servlet is executed. For more information, see “Servlet Development Tips” on page 4-8.

When a servlet is initialized, WebLogic Server executes the init() method of the servlet. Once
the servlet is initialized, it is not initialized again until you restart WebLogic Server or the servlet
code when the servlet is modified. If you choose to override the init() method, your servlet can
perform certain tasks, such as establishing database connections, when the servlet is initialized.
(See “Overriding the init() Method” on page 3-3)

Initializing a Servlet when WebLogic Server Starts

Rather than having WebLogic Server initialize a servlet when the first request is made for it, you
can first configure WebLogic Server to initialize a servlet when the server starts. You do this by
specifying the servlet class in the <load-on-startup> element in the Web Application
deployment descriptor. For more information see “Servlet Element” at
http://e-docs.bea.com/wls/docs81/webapp/web_xml.html#web_xml_servlet.

You can pass parameters to an HTTP servlet during initialization by defining these parameters in
the Web Application containing the servlet. You can use these parameters to pass values to your
servlet every time the servlet is initialized without having to rewrite the servlet. For more
information, see Deployment Descriptors at
http://e-docs.bea.com/wls/docs81/webapp/deployment.html.

For example, the following entries in the Web Application deployment descriptor define two
initialization parameters: greeting, which has a value of Welcome and person, which has a
value of WebLogic Developer.

<servlet>
 ...
 <init-param>
 <param-name>greeting</param-name>
 <param-value>Welcome</param-value>
 <description>The salutation</description>
 </init-param>
 <init-param>

http://e-docs.bea.com/wls/docs81/webapp/web_xml.html#web_xml_servlet
http://e-docs.bea.com/wls/docs81/webapp/deployment.html

In i t ia l i z ing a Se rv le t

Programming WebLogic HTTP Servlets 3-3

 <param-name>person</param-name>
 <param-value>WebLogic Developer</param-value>
 <description>name</description>
 </init-param>
</servlet>

To retrieve initialization parameters, call the getInitParameter(String name) method from
the parent javax.servlet.GenericServlet class. When passed the name of the parameter,
this method returns the parameter’s value as a String.

Overriding the init() Method

You can have your servlet execute tasks at initialization time by overriding the init() method.
The following code fragment reads the <init-param> tags that define a greeting and a name in
the Web Application deployment descriptor:

String defaultGreeting;
String defaultName;

public void init(ServletConfig config)
 throws ServletException {
 if ((defaultGreeting = getInitParameter("greeting")) == null)
 defaultGreeting = "Hello";

 if ((defaultName = getInitParameter("person")) == null)
 defaultName = "World";
}

The values of each parameter are stored in the class instance variables defaultGreeting and
defaultName. The first code tests whether the parameters have null values, and if null values are
returned, provides appropriate default values.

You can then use the service() method to include these variables in the response. For example:

 out.print("<body><h1>");
 out.println(defaultGreeting + " " + defaultName + "!");
 out.println("</h1></body></html>");

The full source code and instructions for compiling, installing, and trying out an example called
HelloWorld2.java, which illustrates the use of the init() method, can be found in the
samples/examples/servlets directory of your WebLogic Server distribution.

3-4 Programming WebLogic HTTP Servlets

The init() method of a servlet does whatever initialization work is required when WebLogic
Server loads the servlet. The default init() method does all of the initial work that WebLogic
Server requires, so you do not need to override it unless you have special initialization
requirements. If you do override init(), first call super.init() so that the default
initialization actions are done first.

Providing an HTTP Response

This section describes how to provide a response to the client in your HTTP servlet. Deliver all
responses by using the HttpServletResponse object that is passed as a parameter to the
service() method of your servlet.

1. Configure the HttpServletResponse.

Using the HttpServletResponse object, you can set several servlet properties that are
translated into HTTP header information:

At a minimum, set the content type using the setContentType() method before you
obtain the output stream to which you write the page contents. For HTML pages, set
the content type to text/html. For example:

res.setContentType("text/html");

(optional) You can also use the setContentType() method to set the character
encoding. For example:

res.setContentType("text/html;ISO-88859-4");

Set header attributes using the setHeader() method. For dynamic responses, it is
useful to set the “Pragma” attribute to no-cache, which causes the browser to always
reload the page and ensures the data is current. For example:

res.setHeader("Pragma", "no-cache");

2. Compose the HTML page.

The response that your servlet sends back to the client must look like regular HTTP
content, essentially formatted as an HTML page.Your servlet returns an HTTP response
through an output stream that you obtain using the response parameter of the service()
method. To send an HTTP response:

Prov id ing an HTTP Response

Programming WebLogic HTTP Servlets 3-5

a. Obtain an output stream by using the HttpServletResponse object and one of the
methods shown in the following two examples:
PrintWriter out = res.getWriter();

ServletOutputStream out = res.getOutputStream();

You can use both PrintWriter and ServletOutputStream in the same servlet (or in
another servlet that is included in a servlet). The output of both is written to the same
buffer.

b. Write the contents of the response to the output stream using the print() method. You
can use HTML tags in these statements. For example:

out.print(“<html><head><title>My Servlet</title>”);
out.print(“</head><body><h1>”);
out.print(“Welcome”);
out.print(“</h1></body></html>”);

Any time you print data that a user has previously supplied, BEA recommends that you
remove any HTML special characters that a user might have entered. If you do not
remove these characters, your Web site could be exploited by cross-site scripting. For
more information, refer to “Securing Client Input in Servlets” on page 3-10.

Do not close the output stream by using the close() method, and avoid flushing the
contents of the stream. If you do not close or flush the output stream, WebLogic Server
can take advantage of persistent HTTP connections, as described in the next step.

3. Optimize the response.

By default, WebLogic Server attempts to use HTTP persistent connections whenever
possible. A persistent connection attempts to reuse the same HTTP TCP/IP connection for
a series of communications between client and server. Application performance improves
because a new connection need not be opened for each request. Persistent connections are
useful for HTML pages containing many in-line images, where each requested image
would otherwise require a new TCP/IP connection.

Using the WebLogic Server Administration Console, you can configure the amount of time
that WebLogic Server keeps an HTTP connection open.

WebLogic Server must know the length of the HTTP response in order to establish a
persistent connection and automatically adds a Content-Length property to the HTTP
response header. In order to determine the content length, WebLogic Server must buffer the
response. However, if your servlet explicitly flushes the ServletOutputStream,
WebLogic Server cannot determine the length of the response and therefore cannot use
persistent connections. For this reason, you should avoid explicitly flushing the HTTP
response in your servlets.

3-6 Programming WebLogic HTTP Servlets

You may decide that, in some cases, it is better to flush the response early to display
information in the client before the page has completed; for example, to display a banner
advertisement while some time-consuming page content is calculated. Conversely, you may
want to increase the size of the buffer used by the servlet engine to accommodate a larger
response before flushing the response. You can manipulate the size of the response buffer
by using the related methods of the javax.servlet.ServletResponse interface (at
http://java.sun.com/products/servlet/2.3/javadoc/
javax/servlet/ServletResponse.html).

The default value of the WebLogic Server response buffer is 12K and the buffer size is
internally calculated in terms of CHUNK_SIZE where CHUNK_SIZE = 4088 or 4Kb; if the
user sets 5Kb the server rounds the request up to the nearest multiple of CHUNK_SIZE
which is 2. and the buffer is set to 8176 or 8Kb.

Retrieving Client Input

The HTTP servlet API provides a interface for retrieving user input from Web pages.

An HTTP request from a Web browser can contain more than the URL, such as information about
the client, the browser, cookies, and user query parameters. Use query parameters to carry user
input from the browser. Use the GET method appends paramters to the URL address, and the POST
method includes them in the HTTP request body.

HTTP servlets need not deal with these details; information in a request is available through the
HttpServletRequest object and can be accessed using the request.getParameter()
method, regardless of the send method.

Read the following for more detailed information about the ways to send query parameters from
the client:

Encode the parameters directly into the URL of a link on a page. This approach uses the
GET method for sending parameters. The parameters are appended to the URL after a ?
character. Multiple parameters are separated by a & character. Parameters are always
specified in name=value pairs so the order in which they are listed is not important. For
example, you might include the following link in a Web page, which sends the parameter
color with the value purple to an HTTP servlet called ColorServlet:

<a href=
"http://localhost:7001/myWebApp/ColorServlet?color=purple">
Click Here For Purple!

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html

Ret r iev ing C l ient Input

Programming WebLogic HTTP Servlets 3-7

Manually enter the URL, with query parameters, into the browser location field. This is
equivalent to clicking the link shown in the previous example.

Query the user for input with an HTML form. The contents of each user input field on the
form are sent as query parameters when the user clicks the form’s Submit button. Specify
the method used by the form to send the query parameters (POST or GET) in the <FORM> tag
using the METHOD="GET|POST" attribute.

Query parameters are always sent in name=value pairs, and are accessed through the
HttpServletRequest object. You can obtain an Enumeration of all parameter names in a
query, and fetch each parameter value by using its parameter name. A parameter usually has only
one value, but it can also hold an array of values. Parameter values are always interpreted as
Strings, so you may need to cast them to a more appropriate type.

The following sample from a service() method examines query parameter names and their
values from a form. Note that request is the HttpServletRequest object.

 Enumeration params = request.getParameterNames();
 String paramName = null;
 String[] paramValues = null;

 while (params.hasMoreElements()) {
 paramName = (String) params.nextElement();
 paramValues = request.getParameterValues(paramName);
 System.out.println("\nParameter name is " + paramName);
 for (int i = 0; i < paramValues.length; i++) {
 System.out.println(", value " + i + " is " +
 paramValues[i].toString());
 }
 }

Note: Any time you print data that a user has supplied, BEA recommends that you remove any
HTML special characters that a user might have entered. If you do not remove these
characters, your Web site could be exploited by cross-site scripting. For more
information, refer to “Securing Client Input in Servlets” on page 3-10.

Methods for Using the HTTP Request

This section defines the methods of the javax.servlet.HttpServletRequest interface that
you can use to get data from the request object. You should keep the following limitations in
mind:

3-8 Programming WebLogic HTTP Servlets

You cannot read request parameters using any of the getParameter() methods described
in this section and then attempt to read the request with the getInputStream() method.

You cannot read the request with getInputStream() and then attempt to read request
parameters with one of the getParameter() methods.

If you attempt either of the preceding procedures, an illegalStateException is thrown.

You can use the following methods of javax.servlet.HttpServeletRequest to retrieve
data from the request object:

HttpServletRequest.getMethod()
Allows you to determine the request method, such as GET or POST.

HttpServletRequest.getQueryString()
Allows you to access the query string. (The remainder of the requested URL, following
the ? character.)

HttpServletRequest.getParameter()
Returns the value of a parameter.

HttpServletRequest.getParameterNames()
Returns an array of parameter names.

HttpServletRequest.getParameterValues()
Returns an array of values for a parameter.

HttpServletRequest.getInputStream()
Reads the body of the request as binary data. If you call this method after reading the
request parameters with getParameter(), getParameterNames(), or
getParameterValues(), an illegalStateException is thrown.

Example: Retrieving Input by Using Query Parameters

In this example, the HelloWorld2.java servlet example is modified to accept a username as a
query parameter, in order to display a more personal greeting. (For the complete code, see the
HelloWorld3.java servlet example, located in the samples/examples/servlets directory of
your WebLogic Server distribution.) The service() method is shown here.

Ret r iev ing C l ient Input

Programming WebLogic HTTP Servlets 3-9

Listing 3-1 Retrieving Input with the service() Method

public void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
{
 String name, paramName[];
 if ((paramName = req.getParameterValues("name"))
 != null) {
 name = paramName[0];
 }
 else {
 name = defaultName;
 }

 // Set the content type first
 res.setContentType("text/html");
 // Obtain a PrintWriter as an output stream
 PrintWriter out = res.getWriter();

 out.print("<html><head><title>" +
 "Hello World!" + </title></head>");
 out.print("<body><h1>");
 out.print(defaultGreeting + " " + name + "!");
 out.print("</h1></body></html>");
}

The getParameterValues() method retrieves the value of the name parameter from the HTTP
query parameters. You retrieve these values in an array of type String. A single value for this
parameter is returned and is assigned to the first element in the name array. If the parameter is not
present in the query data, null is returned; in this case, name is assigned to the default name that
was read from the <init-param> by the init() method.

Do not base your servlet code on the assumption that parameters are included in an HTTP request.
The getParameter() method has been deprecated; as a result, you might be tempted to
shorthand the getParameterValues() method by tagging an array subscript to the end.
However, this method can return null if the specified parameter is not available, resulting in a
NullPointerException.

For example, the following code triggers a NullPointerException:

String myStr = req.getParameterValues("paramName")[0];

Instead, use the following code:

3-10 Programming WebLogic HTTP Servlets

if ((String myStr[] =
 req.getParameterValues("paramName"))!=null) {
 // Now you can use the myStr[0];
}
else {
 // paramName was not in the query parameters!
}

Securing Client Input in Servlets

This ability to retrieve and return user-supplied data can present a security vulnerability called
cross-site scripting, which can be exploited to steal a user’s security authorization. For a detailed
description of cross-site scripting, refer to “Understanding Malicious Content Mitigation for Web
Developers” (a CERT security advisory) at
http://www.cert.org/tech_tips/malicious_code_mitigation.html.

To remove the security vulnerability, before you return data that a user has supplied, scan the data
for any of the HTML special characters in Table 3-1. If you find any special characters, replace
them with their HTML entity or character reference. Replacing the characters prevents the
browser from executing the user-supplied data as HTML.

Table 3-1 HTML Special Characters that Must Be Replaced

Replace this special character: With this entity/character
reference:

< <

> >

(&40;

) &41;

&35;

& &38;

http://www.cert.org/tech_tips/malicious_code_mitigation.html

Sess ion T rack ing f r om a Se rv le t

Programming WebLogic HTTP Servlets 3-11

Using a WebLogic Server Utility Method

WebLogic Server provides the weblogic.servlet.security.Utils.encodeXSS() method
to replace the special characters in user-supplied data. To use this method, provide the
user-supplied data as input. For example, to secure the user-supplied data in Listing 3-1, replace
the following line:
out.print(defaultGreeting + " " + name + "!");

with the following:
out.print(defaultGreeting + " " +
weblogic.security.servlet.encodeXSS(name) + "!");

To secure an entire application, you must use the encodeXSS() method each time you return
user-supplied data. While the previous example in Listing 3-1 is an obvious location in which to
use the encodeXSS() method, Table 3-2 describes other locations to consider.

Session Tracking from a Servlet

Session tracking enables you to track a user’s progress over multiple servlets or HTML pages,
which, by nature, are stateless. A session is defined as a series of related browser requests that
come from the same client during a certain time period. Session tracking ties together a series of
browser requests—think of these requests as pages—that may have some meaning as a whole,
such as a shopping cart application.

The following sections discuss various aspets of tracking sessions from an HTTP servlet:

A History of Session Tracking

Table 3-2 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid URL,
username

An error page that says “username is not
permitted access.”

Status page Username, summary of input from
previous pages

A summary page that asks a user to confirm
input from previous pages.

Database
display

Data presented from a database A page that displays a list of database entries
that have been previously entered by a user.

3-12 Programming WebLogic HTTP Servlets

Tracking a Session with an HttpSession Object

Lifetime of a Session

How Session Tracking Works

Detecting the Start of a Session

Setting and Getting Session Name/Value Attributes

Logging Out and Ending a Session

Configuring Session Tracking

Using URL Rewriting Instead of Cookies

URL Rewriting and Wireless Access Protocol (WAP)

Making Sessions Persistent

A History of Session Tracking

Before session tracking matured conceptually, developers tried to build state into their pages by
stuffing information into hidden fields on a page or embedding user choices into URLs used in
links with a long string of appended characters. You can see good examples of this at most search
engine sites, many of which still depend on CGI. These sites track user choices with URL
parameter name=value pairs that are appended to the URL, after the reserved HTTP character ?.
This practice can result in a very long URL that the CGI script must carefully parse and manage.
The problem with this approach is that you cannot pass this information from session to session.
Once you lose control over the URL—that is, once the user leaves one of your pages—the user
information is lost forever.

Later, Netscape introduced browser cookies, which enable you to store user-related information
about the client for each server. However, some browsers still do not fully support cookies, and
some users prefer to turn off the cookie option in their browsers. Another factor that should be
considered is that most browsers limit the amount of data that can be stored with a cookie.

Unlike the CGI approach, the HTTP servlet specification defines a solution that allows the server
to store user details on the server bdyond a single session, and protects your code from the
complexities of tracking sessions. Your servlets can use an HttpSession object to track a user’s
input over the span of a single session and to share session details among multiple servlets.
Session data can be persisted using a variety of methods available with WebLogic Service.

Sess ion T rack ing f r om a Se rv le t

Programming WebLogic HTTP Servlets 3-13

Tracking a Session with an HttpSession Object

According to the Java Servlet API, which WebLogic Server implements and supports, each
servlet can access a server-side session by using its HttpSession object. You can access an
HttpSession object in the service() method of the servlet by using the
HttpServletRequest object with the variable request variable, as shown:

HttpSession session = request.getSession(true);

An HttpSession object is created if one does not already exist for that client when the
request.getSession(true)method is called with the argument true. The session object lives
on WebLogic Server for the lifetime of the session, during which the session object accumulates
information related to that client. Your servlet adds or removes information from the session
object as necessary. A session is associated with a particular client. Each time the client visits
your servlet, the same associated HttpSession object is retrieved when the getSession()
method is called.

For more details on the methods supported by the HttpSession, refer to the HttpServlet API at
http://java.sun.com/j2ee/j2sdkee/
techdocs/api/javax/servlet/http/HttpSession.html.

In the following example, the service() method counts the number of times a user requests the
servlet during a session.

public void service(HttpServletRequest request,
 HttpServletResponse, response)
 throws IOException
{
 // Get the session and the counter param attribute
 HttpSession session = request.getSession (true);
 Integer ival = (Integer)
 session.getAttribute("simplesession.counter");
 if (ival == null) // Initialize the counter
 ival = new Integer (1);
 else // Increment the counter
 ival = new Integer (ival.intValue () + 1);
 // Set the new attribute value in the session
 session.setAttribute("simplesession.counter", ival);
 // Output the HTML page
 out.print("<HTML><body>");
 out.print("<center> You have hit this page ");
 out.print(ival + " times!");
 out.print("</body></html>");
}

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/HttpSession.html

3-14 Programming WebLogic HTTP Servlets

Lifetime of a Session

A session tracks the selections of a user over a series of pages in a single transaction. A single
transaction may consist of several tasks, such as searching for an item, adding it to a shopping
cart, and then processing a payment. A session is transient, and its lifetime ends when one of the
following occurs:

A user leaves your site and the user’s browser does not accept cookies.

A user quits the browser.

The session is timed out due to inactivity.

The session is completed and invalidated by the servlet.

The user logs out and is invalidated by the servlet.

For more persistent, long-term storage of data, your servlet should write details to a database
using JDBC or EJB and associate the client with this data using a long-lived cookie and/or
username and password. Although this document states that sessions use cookies and persistence
internally, you should not use sessions as a general mechanism for storing data about a user.

How Session Tracking Works

How does WebLogic Server know which session is associated with each client? When an
HttpSession is created in a servlet, it is associated with a unique ID. The browser must provide
this session ID with its request in order for the server to find the session data again. The server
attempts to store this ID by setting a cookie on the client. Once the cookie is set, each time the
browser sends a request to the server it includes the cookie containing the ID. The server
automatically parses the cookie and supplies the session data when your servlet calls the
getSession() method.

If the client does not accept cookies, the only alternative is to encode the ID into the URL links
in the pages sent back to the client. For this reason, you should always use the encodeURL()
method when you include URLs in your servlet response. WebLogic Server detects whether the
browser accepts cookies and does not unnecessarily encode URLs. WebLogic automatically
parses the session ID from an encoded URL and retrieves the correct session data when you call
the getSession() method. Using the encodeURL() method ensures no disruption to your
servlet code, regardless of the procedure used to track sessions. For more information, see “Using
URL Rewriting Instead of Cookies” on page 3-18.

Sess ion T rack ing f r om a Se rv le t

Programming WebLogic HTTP Servlets 3-15

The format of the session id is specified internally, and may change from one version of
WebLogic Server to another. For this reason, BEA Systems recommends that you do not create
applications which require a specific session id format.

Detecting the Start of a Session

After you obtain a session using the getSession(true) method, you can tell whether the
session has just been created by calling the HttpSession.isNew() method. If this method
returns true, then the client does not already have a valid session, and at this point it is unaware
of the new session. The client does not become aware of the new session until a reply is posted
back from the server.

Design your application to accommodate new or existing sessions in a way that suits your
business logic. For example, your application might redirect the client’s URL to a login/password
page if you determine that the session has not yet started, as shown in the following code
example:

HttpSession session = request.getSession(true);
if (session.isNew()) {
 response.sendRedirect(welcomeURL);
}

On the login page, provide an option to log in to the system or create a new account. You can also
specify a login page in your Web Application. For more information, see login-config at
http://e-docs.bea.com/wls/docs81/webapp/web_xml.html#login-config.

Setting and Getting Session Name/Value Attributes

You can store data in an HttpSession object using name=value pairs. Data stored in a session
is available through the session. To store data in a session, use these methods from the
HttpSession interface:

getAttribute()
getAttributeNames()
setAttribute()
removeAttribute()

The following code fragment shows how to get all the existing name=value pairs:

http://e-docs.bea.com/wls/docs81/webapp/web_xml.html#login-config

3-16 Programming WebLogic HTTP Servlets

Enumeration sessionNames = session.getAttributeNames();
String sessionName = null;
Object sessionValue = null;

while (sessionNames.hasMoreElements()) {
 sessionName = (String)sessionNames.nextElement();
 sessionValue = session.getAttribute(sessionName);
 System.out.println("Session name is " + sessionName +
 ", value is " + sessionValue);
}

To add or overwrite a named attribute, use the setAttribute() method. To remove a named
attribute altogether, use the removeAttribute() method.

Note: You can add any Java descendant of Object as a session attribute and associate it with a
name. However, if you are using session persistence, your attribute value objects must
implement java.io.Serializable.

Logging Out and Ending a Session

If your application deals with sensitive information, consider offering the ability to log out of the
session. This is a common feature when using shopping carts and Internet email accounts. When
the same browser returns to the service, the user must log back in to the system.

Using session.invalidate() for a Single Web Application

User authentication information is stored both in the users’s session data and in the context of a
server or virtual host that is targeted by a Web Application. Using the session.invalidate()
method, which is often used to log out a user, only invalidates the current session for a user—the
user’s authentication information still remains valid and is stored in the context of the server or
virtual host. If the server or virtual host is hosting only one Web Application, the
session.invalidate()method, in effect, logs out the user.

Do not reference an invalidated session after calling session.invalidate(). If you do, an
IllegalStateException is thrown. The next time a user visits your servlet from the same
browser, the session data will be missing, and a new session will be created when you call the
getSession(true) method. At that time you can send the user to the login page again.

Sess ion T rack ing f r om a Se rv le t

Programming WebLogic HTTP Servlets 3-17

Implementing Single Sign-On for Multiple Applications

If the server or virtual host is targeted by many Web Applications, another means is required to
log out a user from all Web Applications. Because the Servlet specification does not provide an
API for logging out a user from all Web Applications, the following methods are provided.

weblogic.servlet.security.ServletAuthentication.logout()
Removes the authentication data from the users’s session data, which logs out a user but
allows the session to remain alive.

weblogic.servlet.security.ServletAuthentication.invalidateAll()
Invalidates all the sessions and removes the authentication data for the current user. The
cookie is also invalidated.

weblogic.servlet.security.ServletAuthentication.killCookie()
Invalidates the current cookie by setting the cookie so that it expires immediately when
the response is sent to the browser. This method depends on a successful response
reaching the user’s browser. The session remains alive until it times out.

Exempting a Web Application for Single Sign-on

If you want to exempt a Web Application from participating in single sign-on, define a different
cookie name for the exempted Web Application. For more information, see Configuring Session
Cookies at
http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-cookie.

Configuring Session Tracking

WebLogic Server provides many configurable attributes that determine how WebLogic Server
handles session tracking. For details about configuring these session tracking attributes, see
“Session descriptor” at
http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#session-descript
or.

http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-cookie
http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-cookie
http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#session-descriptor

3-18 Programming WebLogic HTTP Servlets

Using URL Rewriting Instead of Cookies

In some situations, a browser may not accept cookies, which means that session tracking with
cookies is not possible. URL rewriting is a workaround to this scenario that can be substituted
automatically when WebLogic Server detects that the browser does not accept cookies. URL
rewriting involves encoding the session ID into the hyperlinks on the Web pages that your servlet
sends back to the browser. When the user subsequently clicks these links, WebLogic Server
extracts the ID from the URL and finds the appropriate HttpSession. Then you use the
getSession() method to access session data.

To enable URL rewriting in WebLogic Server, set the UrlRewritingEnabled attribute to true
in the “Session descriptor” element of the WebLogic-specific deployment descriptor (at
http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#session-descript
or).

To make sure your code correctly handles URLs in order to support URL rewriting, consider the
following guidelines:

You should avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method. For example:

out.println("<a href=\""
 + response.encodeURL("myshop/catalog.jsp")
 + "\">catalog");

Calling the encodeURL() method determines if the URL needs to be rewritten and, if
necessary, rewrites the URL by including the session ID in the URL.

Encode URLs that send redirects, as well as URLs that are returned as a response to
WebLogic Server. For example:

if (session.isNew())
response.sendRedirect(response.encodeRedirectUrl(welcomeURL));

WebLogic Server uses URL rewriting when a session is new, even if the browser accepts cookies,
because the server cannot determine, during the first visit of a session, whether the browser
accepts cookies.

Your servlet may determine whether a given session was returned from a cookie by checking the
Boolean returned from the HttpServletRequest.isRequestedSessionIdFromCookie()
method. Your application may respond appropriately, or it may simply rely on URL rewriting by
WebLogic Server.

http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#session-descriptor

Sess ion T rack ing f r om a Se rv le t

Programming WebLogic HTTP Servlets 3-19

Note: The CISCO Local Director load balancer expects a question mark "?" delimiter for URL
rewriting. Because the WLS URL-rewriting mechanism uses a semicolon ";" as the
delimiter, our URL re-writing is incompatible with this load balancer.

URL Rewriting and Wireless Access Protocol (WAP)

If you are writing a WAP application, you must use URL rewriting because the WAP protocol
does not support cookies.

In addition, some WAP devices have a 128-character limit on the length of a URL (including
attributes), which limits the amount of data that can be transmitted using URL rewriting. To allow
more space for attributes, you can limit the size of the session ID that is randomly generated by
WebLogic Server.

In particular, you can use the WAPEnabled parameter of the <session-descriptor> element
of weblogic.xml to restrict the size of the session ID to 52 characters and disallow special
characters, such as ! and #. You can also use the IDLength parameter to further restrict the size
of the session ID. For additional details, see WAPEnabled and IDLength.

Making Sessions Persistent

You can set up WebLogic Server to record session data in a persistent store. If you are using
session persistence, you can expect the following characteristics:

Good failover, because sessions are saved when servers fail.

Better load balancing, because any server can handle requests for any number of sessions,
and use caching to optimize performance. For more information, see the cacheEntries
property, under “Configuring session persistence” at
http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-persisten
ce.

Sessions can be shared across clustered WebLogic Servers. Note that session persistence is
no longer a requirement in a WebLogic Cluster. Instead, you can use in-memory replication
of state. For more information, see Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs81/cluster/index.html.

http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#WAPEnabled
http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#IDLength
http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-persistence
http://e-docs.bea.com/wls/docs81/cluster/index.html

3-20 Programming WebLogic HTTP Servlets

For customers who want the highest in servlet session persistence, JDBC-based persistence
is the best choice. For customers who want to sacrifice some amount of session persistence
in favor of drastically better performance, in-memory replication is the appropriate choice.
JDBC-based persistence is noticeably slower than in-memory replication. In some cases,
in-memory replication has outperformed JDBC-based persistence for servlet sessions by a
factor of eight.

You can put any kind of Java object into a session, but only objects that are
java.io.Serializable can be stored in a session. For more information, see
“Configuring session persistence” at
http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-persisten
ce.

Scenarios to Avoid When Using Sessions

Do not use session persistence for storing long-term data between sessions. In other words, do
not rely on a session still being active when a client returns to a site at some later date. Instead,
your application should record long-term or important information in a database.

Sessions are not a convenience wrapper around cookies. Do not attempt to store long-term or
limited-term client data in a session. Instead, your application should create and set its own
cookies on the browser. Examples include an auto-login feature that allows a cookie to live for a
long period, or an auto-logout feature that allows a cookie to expire after a short period of time.
Here, you should not attempt to use HTTP sessions. Instead, you should write your own
application-specific logic.

Use Serializable Attribute Values

When you use persistent sessions, all attribute value objects that you add to the session must
implement java.io.Serializable. For more details on writing serializable classes, refer to the
online java tutorial about serializable objects at
http://java.sun.com/docs/books/tutorial/essential/io/
providing.html. If you add your own serializable classes to a persistent session, make sure that
each instance variable of your class is also serializable. Otherwise, you can declare it as
transient, and WebLogic Server does not attempt to save that variable to persistent storage.
One common example of an instance variable that must be made transient is the HttpSession
object. (See the notes on using serialized objects in sessions in the section “Making Sessions
Persistent” on page 3-19.)

The HttpServletRequest, ServletContext, and HttpSession attributes will be serialized when a
WebLogic Server instance detects a change in the web application classloader. The classloader

http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-persistence
http://java.sun.com/docs/books/tutorial/essential/io/providing.html

Using Cook i es in a Se rv le t

Programming WebLogic HTTP Servlets 3-21

changes when a webapp is redeployed, when there is a dynamic change in a servlet, or when there
is a cross webapp forward or include.

To avoid having the attribute serialized,during a dynamic change in a servlet, turn off
servlet-relad-check-secs in weblogic.xml. There is no way to avoid serialization of attributes for
cross webapp dispatch or webapp redeployment.

Configuring Session Persistence

For details about setting up persistent sessions, see “Configuring session persistence” at
http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-persistence.

Using Cookies in a Servlet

A cookie is a piece of information that the server asks the client browser to save locally on the
user’s disk. Each time the browser visits the same server, it sends all cookies relevant to that
server with the HTTP request. Cookies are useful for identifying clients as they return to the
server.

Each cookie has a name and a value. A browser that supports cookies generally allows each server
domain to store up to 20 cookies of up to 4k per cookie.

Setting Cookies in an HTTP Servlet

To set a cookie on a browser, create the cookie, give it a value, and add it to the
HttpServletResponse object that is the second parameter in your servlet’s service method. For
example:

Cookie myCookie = new Cookie("ChocolateChip", "100");
myCookie.setMaxAge(Integer.MAX_VALUE);
response.addCookie(myCookie);

This examples shows how to add a cookie called ChocolateChip with a value of 100 to the
browser client when the response is sent. The expiration of the cookie is set to the largest possible
value, which effectively makes the cookie last forever. Because cookies accept only string-type

http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-persistence

3-22 Programming WebLogic HTTP Servlets

values, you should cast to and from the desired type that you want to store in the cookie. When
using EJBs, a common practice is to use the home handle of an EJB instance for the cookie value
and to store the user’s details in the EJB for later reference.

Retrieving Cookies in an HTTP Servlet

You can retrieve a cookie object from the HttpServletRequest that is passed to your servlet as
an argument to the service() method. The cookie itself is presented as a
javax.servlet.http.Cookie object.

In your servlet code, you can retrieve all the cookies sent from the browser by calling the
getCookies() method. For example:

Cookie[] cookies = request.getCookies();

This method returns an array of all cookies sent from the browser, or null if no cookies were sent
by the browser. Your servlet must process the array in order to find the correct named cookie.
You can get the name of a cookie using the Cookie.getName() method. It is possible to have
more that one cookie with the same name, but different path attributes. If your servlets set
multiple cookies with the same names, but different path attributes, you also need to compare the
cookies by using the Cookie.getPath() method. The following code illustrates how to access
the details of a cookie sent from the browser. It assumes that all cookies sent to this server have
unique names, and that you are looking for a cookie called ChocolateChip that may have been
set previously in a browser client.

Cookie[] cookies = request.getCookies();
boolean cookieFound = false;

for(int i=0; i < cookies.length; i++) {
 thisCookie = cookies[i];
 if (thisCookie.getName().equals("ChocolateChip")) {
 cookieFound = true;
 break;
 }
}

if (cookieFound) {
 // We found the cookie! Now get its value
 int cookieOrder = String.parseInt(thisCookie.getValue());
}

For more details on cookies, see:

Using Cook i es in a Se rv le t

Programming WebLogic HTTP Servlets 3-23

The Cookie API at http://java.sun.com/j2ee/j2sdkee/
techdocs/api/javax/servlet/http/Cookie.html

The Java Tutorial: Using Cookies at http://java.sun.com/docs/books/tutorial/
servlets/client-state/cookies.html

Using Cookies That Are Transmitted by Both HTTP and
HTTPS

Because HTTP and HTTPS requests are sent to different ports, some browsers may not include
the cookie sent in an HTTP request with a subsequent HTTPS request (or vice-versa). This may
cause new sessions to be created when servlet requests alternate between HTTP and HTTPS. To
ensure that all cookies set by a specific domain are sent to the server every time a request in a
session is made, set the CookieDomain attribute to the name of the domain. Set the
CookieDomain attribute with the <session-descriptor> element of the WebLogic-specific
deployment descriptor (weblogic.xml) for the Web Application that contains your servlet. For
example:

<session-descriptor>
 <session-param>
 <param-name>CookieDomain</param-name>
 <param-value>mydomain.com</param-value>
 </session-param>
</session-descriptor>

The CookieDomain attribute instructs the browser to include the proper cookie(s) for all requests
to hosts in the domain specified by mydomain.com. For more information about this property or
configuring session cookies, see “Setting Up Session Management” at
http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-management.

Application Security and Cookies

Using cookies that enable automatic account access on a machine is convenient, but can be
undesirable from a security perspective. When designing an application that uses cookies, follow
these guidelines:

Do not assume that a cookie is always correct for a user. Sometimes machines are shared
or the same user may want to access a different account.

http://e-docs.bea.com/wls/docs81/webapp/sessions.html#session-management

3-24 Programming WebLogic HTTP Servlets

Allow your users to make a choice about leaving cookies on the server. On shared
machines, users may not want to leave automatic logins for their account. Do not assume
that users know what a cookie is; instead, ask a question like:
Automatically login from this computer?

Always ask for passwords from users logging on to obtain sensitive data. Unless a user
requests otherwise, you can store this preference and the password in the user’s session
data. Configure the session cookie to expire when the user quits the browser.

Response Caching

The cache filter works similarly to the cache tag with the following exceptions:

It caches on a page level (or included page) instead of a JSP fragment level.

Instead of declaring the caching parameters inside the document you can declare the
parameters in the configuration of the web application.

The cache filter has some default behavior that the cache tag does not for pages that were not
included from another page. The cache filter automatically caches the response headers
Content-Type and Last-Modified. When it receives a request that results in a cached page it
compares the If-Modified-Since request header to the Last-Modified response header to
determine whether it needs to actually serve the content or if it can send an 302
SC_NOT_MODIFED status with an empty content instead.

The following example shows how to register a cache filter to cache all the HTML pages in a web
app:

<filter>
 <filter-name>HTML</filter-name>
 <filter-class>weblogic.cache.filter.CacheFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>HTML</filter-name>
 <url-pattern>*.html</url-pattern>
</filter-mapping>

Response Cach ing

Programming WebLogic HTTP Servlets 3-25

The cache system uses soft references for storing the cache. So the garbage collector might or
might not reclaim the cache depending on how recently the cache was created or accessed. It will
clear the soft references in order to avoid throwing an OutOfMemoryError.

Initialization Parameters

If you wanted to make sure that if the web pages were updated at some point you got the new
copies into the cache, you could add a timeout to the filter. Using the init-params you can set
many of the same parameters that you can set for the cache tag:

The initialization parameters are

Name This is the name of the cache. It defaults to the request URI for compatibility with
*.extension URL patterns.

Timeout This is the amount of time since the last cache update that the filter waits until
trying to update the content in the cache again. The default unit is seconds but you can also
specify it in units of ms (milliseconds), s (seconds), m (minutes), h (hours), or d (days).

Scope The scope of the cache can be any one of request, session, application, or cluster.
Request scope is sometimes useful for looping constructs in the page and not much else.
The scope defaults to application. To use cluster scope you must set up the
ClusterListener.

Key This specifies that the cache is further specified not only by the name but also by
values of various entries in scopes. These are specified just like the keys in the CacheTag
although you do not have page scope available.

Vars These are the variables calculated by the page that you want to cache. Typically this
is used with servlets that pull information out of the database based on input parameters.

Size This limits the number of different unique key values cached. It defaults to infinity.

The following example shows where the init-parameter is located in the filter code.
<filter>
 <filter-name>HTML</filter-name>
 <filter-class>weblogic.cache.filter.CacheFilter</filter-class>
 <init-param>

Max-cache-size This limits the size of an element added to the cache. It defaults to 64k.

3-26 Programming WebLogic HTTP Servlets

Using WebLogic Services from an HTTP
Servlet

When you write an HTTP servlet, you have access to many rich features of WebLogic Server,
such as JNDI, EJB, JDBC, and JMS.

The following documents provide additional information about these features:

Programming WebLogic EJB at
http://e-docs.bea.com/wls/docs81/ejb/index.html

Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs81/jdbc/index.html

Programming WebLogic JNDI at
http://e-docs.bea.com/wls/docs81/jndi/index.html

Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs81/jms/index.html

Accessing Databases

WebLogic Server supports the use of Java Database Connectivity (JDBC) from server-side Java
classes, including servlets. JDBC allows you to execute SQL queries from a Java class and to
process the results of those queries. For more information on JDBC and WebLogic Server, see
Using WebLogic JDBC at http://e-docs.bea.com/wls/docs81/jdbc/index.html.

You can use JDBC in servlets as described in the following sections:

“Connecting to a Database Using a JDBC Connection Pool” on page 3-27.

“Connecting to a Database Using a DataSource Object” on page 3-28.

“Connecting Directly to a Database Using a JDBC Driver” on page 3-29.

http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/jdbc/index.html
http://e-docs.bea.com/wls/docs81/jndi/index.html
http://e-docs.bea.com/wls/docs81/jms/index.html
http://e-docs.bea.com/wls/docs81/jdbc/index.html

Access ing Databases

Programming WebLogic HTTP Servlets 3-27

Connecting to a Database Using a JDBC Connection Pool

A connection pool is a named group of identical JDBC connections to a database that are created
when the connection pool is registered, usually when starting WebLogic Server. Your servlets
“borrow” a connection from the pool, use it, and then return it to the pool by closing it. This
process is far more efficient than creating a new connection for every client each time the client
needs to access the database. Another advantage is that you do not need to include details about
the database in your servlet code.

When connecting to a JDBC connection pool, use one of the following multitier JDBC drivers:

Pool driver, used for most server-side operations:

Driver URL: jdbc:weblogic:pool

Driver package name: weblogic.jdbc.pool.Driver

JTS pool driver, used when database operations require transactional support.

Driver URL: jdbc:weblogic:jts

Driver package name: weblogic.jdbc.jts.Driver

Using a Connection Pool in a Servlet

The following example demonstrates how to use a database connection pool from a servlet.

1. Load the pool driver and cast it to java.sql.Driver. The full pathname of the driver is
weblogic.jdbc.pool.Driver. For example:

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.pool.Driver").newInstance();

2. Create a connection using the URL for the driver, plus (optionally) the name of the
registered connection pool. The URL of the pool driver is jdbc:weblogic:pool.

You can identify the pool in either of two ways:

Specify the name of the connection pool in a java.util.Properties object using the
key connectionPoolID. For example:

Properties props = new Properties();
props.put("connectionPoolID", "myConnectionPool");
Connection conn =
 myDriver.connect("jdbc:weblogic:pool", props);

3-28 Programming WebLogic HTTP Servlets

Add the name of the pool to the end of the URL. In this case you do not need a
Properties object unless you are setting a username and password for using a
connection from the pool. For example:

Connection conn =
 myDriver.connect("jdbc:weblogic:pool:myConnectionPool", null);

Note that the Driver.connect() method is used in these examples instead of the
DriverManger.getConnection() method. Although you may use
DriverManger.getConnection() to obtain a database connection, we recommend that
you use Driver.connect() because this method is not synchronized and provides better
performance.

Note that the Connection returned by connect() is an instance of
weblogic.jdbc.pool.Connection.

3. Call the close() method on the Connection object when you finish with your JDBC calls,
so that the connection is properly returned to the pool. A good coding practice is to create
the connection in a try block and then close the connection in a finally block, to make
sure the connection is closed in all cases.

conn.close();

Connecting to a Database Using a DataSource Object

A DataSource is a server-side object that references a connection pool. The connection pool
registration defines the JDBC driver, database, login, and other parameters associated with a
database connection. You create DataSource objects and connection pools through the
Administration Console. Using a DataSource object is recommended when creating
J2EE-compliant applications.

Using a DataSource in a Servlet

1. Register a connection pool using the Administration Console. For more information, see
“Create a Connection Pool” at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_
config_connections.html.

2. Register a DataSource object that points to the connection pool. For more information, see
“JDBC DataSources” at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcdatasource_conf
ig.html.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_jdbcdatasource_config.html

Thread ing Issues in HTTP Se rv le ts

Programming WebLogic HTTP Servlets 3-29

3. Look up the DataSource object in the JNDI tree. For example:

Context ctx = null;

// Get a context for the JNDI look up
ctx = new InitialContext(ht);

// Look up the DataSource object
javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

4. Use the DataSource to create a JDBC connection. For example:

java.sql.Connection conn = ds.getConnection();

5. Use the connection to execute SQL statements. For example:

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");

. . .

Connecting Directly to a Database Using a JDBC Driver

Connecting directly to a database is the least efficient way of making a database connection
because a new database connection must be established for each request. You can use any JDBC
driver to connect to your database. BEA provides JDBC drivers for Oracle and Microsoft SQL
Server. For more information, see Using WebLogic JDBC at
http://e-docs.bea.com/wls/docs81/jdbc/index.html.

Threading Issues in HTTP Servlets

When you design a servlet, you should consider how the servlet is invoked by WebLogic Server
under high load. It is inevitable that more than one client will hit your servlet simultaneously.
Therefore, write your servlet code to guard against sharing violations on shared resources or
instance variables. The following tips can help you to design around this issue.

http://e-docs.bea.com/wls/docs81/jdbc/index.html

3-30 Programming WebLogic HTTP Servlets

SingleThreadModel

An instance of a class that implements the SingleThreadModel is guaranteed not to be invoked
by multiple threads simultaneously. Multiple instances of a SingleThreadModel servlet are
used to service simultaneous requests, each running in a single thread.

To use the SingleThreadModel efficiently, WebLogic Server creates a pool of servlet instances
for each servlet that implements SingleThreadModel. WebLogic Server creates the pool of
servlet instances when the first request is made to the servlet and increments the number of servlet
instances in the pool as needed.

The attribute SingleThreaded Servlet Pool Size specifies the initial number of servlet
instances that are created when the servlet is first requested. Set this attribute to the average
number of concurrent requests that you expect your SingleThreadModel servlets to handle.

When designing your servlet, consider how you use shared resources outside of the servlet class
such as file and database access. Because multiple instances of identical servlets exist, and may
use exactly the same resources, there are still synchronization and sharing issues that must be
resolved, even if you do implement the SingleThreadModel.

Shared Resources

It is recommended that shared-resource issues be handled on an individual servlet basis. Consider
the following guidelines:

Wherever possible, avoid synchronization, because it causes subsequent servlet requests to
bottleneck until the current thread completes.

Define variables that are specific to each servlet request within the scope of the service
methods. Local scope variables are stored on the stack and, therefore, are not shared by
multiple threads running within the same method, which avoids the need to be
synchronized.

Access to external resources should be synchronized on a Class level, or encapsulated in a
transaction.

Dispatch ing Reques ts to Anothe r Resource

Programming WebLogic HTTP Servlets 3-31

Dispatching Requests to Another Resource

This section provides an overview of commonly used methods for dispatching requests from a
servlet to another resource.

A servlet can pass on a request to another resource, such as a servlet, JSP, or HTML page. This
process is referred to as request dispatching. When you dispatch requests, you use either the
include() or forward() method of the RequestDispatcher interface. There are limitations
regarding when output can be written to the response object using the forward() or include()
methods. These limitations are also discussed in this section.

For a complete discussion of request dispatching, see section 8.1 of the Servlet 2.3 specification
(see http://java.sun.com/products/
servlet/download.html#specs) from Sun Microsystems.

By using the RequestDispatcher, you can avoid sending an HTTP-redirect response back to
the client. The RequestDispatcher passes the HTTP request to the requested resource.

To dispatch a request to a particular resource:

1. Get a reference to a ServletContext:

ServletContext sc = getServletConfig().getServletContext();

2. Look up the RequestDispatcher object using one of the following methods:

RequestDispatcher rd = sc.getRequestDispatcher(String path);

 path should be relative to the root of the Web Application.

RequestDispatcher rd = sc.getNamedDispatcher(String name);

Replace name with the name assigned to the servlet in a Web Application deployment
descriptor with the <servlet-name> element. For details, see “Servlet element” at
http://e-docs.bea.com/wls/docs81/webapp/
web_xml.html#web_xml_servlet.
RequestDispatcher rd = ServletRequest.getRequestDispatcher(String
path);

This method returns a RequestDispatcher object and is similar to the
ServletContext.getRequestDispatcher(String path) method except that it
allows the path specified to be relative to the current servlet. If the path begins with a /
character it is interpreted to be relative to the Web Application.

http://java.sun.com/products/servlet/download.html#specs
http://e-docs.bea.com/wls/docs81/webapp/web_xml.html#web_xml_servlet

3-32 Programming WebLogic HTTP Servlets

You can obtain a RequestDispatcher for any HTTP resource within a Web Application,
including HTTP Servlets, JSP pages, or plain HTML pages by requesting the appropriate
URL for the resource in the getRequestDispatcher() method. Use the returned
RequestDispatcher object to forward the request to another servlet.

3. Forward or include the request using the appropriate method:
rd.forward(request,response);

rd.include(request,response);

These methods are discussed in the next two sections.

Forwarding a Request

Once you have the correct RequestDispatcher, your servlet forwards a request using the
RequestDispatcher.forward() method, passing HTTPServletRequest and
HTTPServletResponse as arguments. If you call this method when output has already been sent
to the client an IllegalStateException is thrown. If the response buffer contains pending
output that has not been committed, the buffer is reset.

The servlet must not attempt to write any previous output to the response. If the servlet retrieves
the ServletOutputStream or the PrintWriter for the response before forwarding the request,
an IllegalStateException is thrown.

All other output from the original servlet is ignored after the request has been forwarded.

If you are using any type of authentication, a forwarded request, by default, does not require the
user to be re-authenticated. You can change this behavior to require authentication of a forwarded
request by adding the <check-auth-on-forward/> element to the <container-descriptor>
element of the WebLogic-specific deployment descriptor, weblogic.xml. For example:

<container-descriptor>
<check-auth-on-forward/>

</container-descriptor>

Note that the default behavior has changed with the release of the Servlet 2.3 specification, which
states that authentication is not required for forwarded requests.

For information on editing the WebLogic-specific deployment descriptor, see Deployment
Descriptors at http://e-docs.bea.com/wls/docs81/webapp/deployment.html.

http://e-docs.bea.com/wls/docs81/webapp/deployment.html
http://e-docs.bea.com/wls/docs81/webapp/deployment.html

Best P ract ice When Subc lass ing Serv le tResponseWrapper

Programming WebLogic HTTP Servlets 3-33

Including a Request

Your servlet can include the output from another resource by using the
RequestDispatcher.include() method, and passing HTTPServletRequest and
HTTPServletResponse as arguments. When you include output from another resource, the
included resource has access to the request object.

The included resource can write data back to the ServletOutputStream or Writer objects of
the response object and then can either add data to the response buffer or call the flush() method
on the response object. Any attempt to set the response status code or to set any HTTP header
information from the included servlet response is ignored.

In effect, you can use the include() method to mimic a “server-side-include” of another HTTP
resource from your servlet code.

Best Practice When Subclassing ServletResponseWrapper
J2EE provides the class javax.servlet.ServletResponseWrapper, which you can subclass
in your Servlet to adapt its response.

BEA recommends that if you create your own response wrapper by subclassing the
ServletResponseWrapper class, you should always override the flushBuffer() and
clearBuffer() methods. Not doing so might result in the response being committed
prematurely.

Proxying Requests to Another Web Server
The following sections discuss how to proxy HTTP requests to another Web server:

“Overview of Proxying Requests to Another Web Server” on page 3-33

“Setting Up a Proxy to a Secondary Web Server” on page 3-34

“Sample Deployment Descriptor for the Proxy Servlet” on page 3-34

Overview of Proxying Requests to Another Web Server
When you use WebLogic Server as your primary Web server, you may also want to configure
WebLogic Server to pass on, or proxy, certain requests to a secondary Web server, such as
Netscape Enterprise Server, Apache, or Microsoft Internet Information Server. Any request that

3-34 Programming WebLogic HTTP Servlets

gets proxied is redirected to a specific URL.You can even proxy to another Web server on a
different machine.You proxy requests based on the URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP request, redirects
it to the proxy URL, and sends the response to the client's browser back through WebLogic
Server. To use the HttpProxyServlet, you must configure it in a Web Application and deploy
that Web Application on the WebLogic Server that is redirecting requests.

Setting Up a Proxy to a Secondary Web Server
To set up a proxy to a secondary HTTP server:

1. Register the proxy servlet in your Web Application deployment descriptor (see “Sample
web.xml for Use with ProxyServlet” on page 3-35). The Web Application must be the default
Web Application of the server instance that is responding to requests. The class name for the
proxy servlet is weblogic.servlet.proxy.HttpProxyServlet. For more information,
see Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs81/webapp/index.html.

2. Define an initialization parameter for the ProxyServlet with a <param-name> of
redirectURL and a <param-value> containing the URL of the server to which proxied
requests should be directed.

3. Map the ProxyServlet to a <url-pattern>. Specifically, map the file extensions you
wish to proxy, for example *.jsp, or *.html. Use the <servlet-mapping> element in the
web.xml Web Application deployment descriptor.

If you set the <url-pattern> to “/”, then any request that cannot be resolved by
WebLogic Server is proxied to the remote server. However, you must also specifically map
the following extensions: *.jsp, *.html, and *.html if you want to proxy files ending
with those extensions.

4. Deploy the Web Application on the WebLogic Server instance that redirects incoming
requests.

Sample Deployment Descriptor for the Proxy Servlet
The following is an sample of a Web Applications deployment descriptor for using the Proxy
Servlet.

http://e-docs.bea.com/wls/docs81/webapp/index.html

Proxy ing Requests t o Anothe r Web Se rve r

Programming WebLogic HTTP Servlets 3-35

Listing 3-2 Sample web.xml for Use with ProxyServlet

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.

 //DTD Web Application 2.3//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>

<servlet>

<servlet-name>ProxyServlet</servlet-name>

<servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet-class>

<init-param>

<param-name>redirectURL</param-name>

<param-value>

http://server:port

</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>

<servlet-name>ProxyServlet</servlet-name>

<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

3-36 Programming WebLogic HTTP Servlets

Programming WebLogic HTTP Servlets 4-1

C H A P T E R 4

Administration and Configuration

The following sections provide an overview of administration and configuration tasks for
WebLogic HTTP servlets. For a complete discussion of servlet administration and configuration
see Configuring Servlets at
http://e-docs.bea.com/wls/docs81/webapp/components.html#configuring-servle

ts.

This section discusses the following topics:

Overview of WebLogic HTTP Servlet Administration

Referencing a Servlet in a Web Application

Directory Structure for Web Applications

Servlet Security

Servlet Development Tips

Clustering Servlets

Overview of WebLogic HTTP Servlet Administration
Consistent with the Java 2 Enterprise Edition standard, HTTP servlets are deployed as part of a
Web Application. A Web Application is a grouping of application components, such as servlet
classes, JavaServer Pages (JSP), static HTML pages, images, and utility classes.

In a Web Application the components are deployed using a standard directory structure. This
directory structure can be archived into a file called a .war file and then deployed on WebLogic

http://e-docs.bea.com/wls/docs81/webapp/components.html#configuring-servlets

4-2 Programming WebLogic HTTP Servlets

Server. Information about the resources and operating parameters of a Web Application are
defined using two deployment descriptors, which are packaged with the Web Application.

Using Deployment Descriptors to Configure and Deploy
Servlets
The first deployment descriptor, web.xml, is defined in the Servlet 2.3 specification from Sun
Microsystems and provides a standardized format that describes the Web Application. The
second deployment descriptor, weblogic.xml, is a WebLogic-specific deployment descriptor
that maps resources defined in the web.xml file to resources available in WebLogic Server,
defines JSP behavior, and defines HTTP session parameters.

web.xml (Web Application Deployment Descriptor)
In the Web Application deployment descriptor you define the following attributes for HTTP
servlets:

Servlet name

Java class of the servlet

Servlet initialization parameters

Whether or not the init() method of the servlet is executed when WebLogic Server starts

URL pattern which, if matched, will call this servlet

Security

MIME type

Error pages

References to EJBs

References to other resources

For a complete discussion of creating the web.xml file, see Deployment Descriptors at
http://e-docs.bea.com/wls/docs81/webapp/deployment.html#weblogic-xml.

weblogic.xml (Weblogic-Specific Deployment Descriptor)
In the WebLogic-specific deployment descriptor you define the following attributes for HTTP
servlets:

http://e-docs.bea.com/wls/docs81/webapp/deployment.html#weblogic-xml

Overv iew o f WebLog ic HTTP Serv le t Admin is t ra t ion

Programming WebLogic HTTP Servlets 4-3

HTTP session configuration

Cookie configuration

URL pattern which, if matched, will call this servlet using a URL matching utility such as
the The SimpleApacheURLMatchMap Utility included with WebLogic Server.

EJB resource mapping

JSP Configuration

For a complete discussion of creating the weblogic.xml file, see “Writing Web Application
Deployment Descriptors at
http://e-docs.bea.com/wls/docs81/webapp/deployment.html#weblogic-xml.

http://e-docs.bea.com/wls/docs81/webapp/deployment.html#weblogic-xml
http://e-docs.bea.com/wls/docs81/webapp/deployment.html#weblogic-xml

4-4 Programming WebLogic HTTP Servlets

WebLogic Server Administration Console
Use the WebLogic Server Administration Console to set the following parameters:

HTTP parameters

Log files

URL rewriting

Keep alive

Default MIME types

Clustering parameters

URL mapping for virtual hosting

For more information see the following resources:

Administration Console: “Web Applications” at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_webappcomponent_con
fig_files.html.

Administration Console: “Virtual Hosts” at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/virtual_hosts.html.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_webappcomponent_config_files.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/virtual_hosts.html

Di rec to r y S t ruc tu re f o r Web App l i cat i ons

Programming WebLogic HTTP Servlets 4-5

Directory Structure for Web Applications
Use the following directory structure for all Web Applications:

Default WebApp/(Publicly available files, such as

 | .jsp, .html, .jpg, .gif)

 |

 +WEB-INF/-+

 |

 + classes/(directory containing

 | Java classes including

 | servlets used by the

 | Web Application)

 |

 + lib/(directory containing

 | jar files used by the

 | Web Application)

 |

 + web.xml

 |

 + weblogic.xml

Referencing a Servlet in a Web Application
The URL used to reference a servlet in a Web Application is constructed as follows:

http://myHostName:port/myContextPath/myRequest/?myRequestParameters

The components of this URL are defined as follows:

myHostName
The DNS name mapped to the Web Server defined in the WebLogic Server
Administration Console.

This portion of the URL can be replaced with host:port, where host is the name of the
machine running WebLogic Server and port is the port at which WebLogic Server is
listening for requests.

4-6 Programming WebLogic HTTP Servlets

port

The port at which WebLogic Server is listening for requests. The Servlet can
communicate with the proxy only through the listenPort on the Server mBean and the SSL
mBean.

myContextPath

The name of the context root which is specified in the weblogic.xml file, or the uri of
the web module which is specified in the config.xml file.

myRequest

The name of the servlet as defined in the web.xml file.

myRequestParameters

Optional HTTP request parameters encoded in the URL, which can be read by an HTTP
servlet.

URL Pattern Matching
WebLogic Server provides the user with the ability to implement a URL matching utility which
does not conform to the J2EE rules for matching. The utility must be configured in the
weblogic.xml deployment descriptor rather than the web.xml deployment descriptor used for the
configuration of the default implementation of URLMatchMap.

To be used with WebLogic Server, the URL matching utility must implement the following
interface:
Package weblogic.servlet.utils;

public interface URLMapping {

 public void put(String pattern, Object value);

 public Object get(String uri);

 public void remove(String pattern)

 public void setDefault(Object defaultObject);

 public Object getDefault();

 public void setCaseInsensitive(boolean ci);

 public boolean isCaseInsensitive();

 public int size();

 public Object[] values();

 public String[] keys();

}

Se rv le t Secur i t y

Programming WebLogic HTTP Servlets 4-7

The SimpleApacheURLMatchMap Utility

The included SimpleApacheURLMatchMap utility is not J2EE specific. It can be configured in
the weblogic.xml deployment descriptor file and allows the user to specify Apache style pattern
matching rather than the default URL pattern matching provided in the web.xml deployment
descriptor.

Servlet Security
Security for servlets is defined in the context of the Web Application containing the servlet.
Security can be handled by WebLogic Server, or it can be incorporated programmatically into
your servlet classes.

For more information see “Securing WebLogic Resources” at
http://e-docs.bea.com/wls/docs81/secwlres/index.html.

Authentication
You can incorporate user authentication into your servlets using any of the following three
techniques:

BASIC—Uses the browser to collect a username and password.

FORM—Uses HTML forms to collect a username and password.

Client Certificate—Uses digital certificates to authenticate the user. For more information,
see “Digital Certificates” at
http://e-docs.bea.com/wls/docs81/security/concepts.html#concepts008.

The BASIC and FORM techniques call into a security role that contains user and password
information. You can use a default role provided with WebLogic Server, or a variety of existing
roles, including roles for Windows NT, UNIX, RDBMS, and user-defined roles. For more
information about security roles, see “Security Fundamentals” at
http://e-docs.bea.com/wls/docs81/security/concepts.html.

Authorization (Security Constraints)
You can restrict access to servlets and other resources in a Web Application by using security
constraints. Security constraints are defined in the Web Application deployment descriptor
(web.xml). There are three basic types of security constraints:

Constraining resources by roles and/or resource

http://e-docs.bea.com/wls/docs81/secwlres/index.html

4-8 Programming WebLogic HTTP Servlets

Secure Sockets Layer (SSL) encryption

Programmatic authorization

Roles can be mapped to a principal. Specific resources can be constrained by matching a URL
pattern to a resource in a Web Application. You can also use Secure Sockets Layer (SSL) as a
security constraint.

You can perform authorization programmatically, using one of the following methods of the
HttpServletRequest interface:

getRemoteUser()

isUserInRole()

getUserPrincipal()

For more information see the javax.servlet API at
http://java.sun.com/products/servlet/2.3/javadoc/index.html.

Servlet Development Tips
Consider the following tips when writing HTTP servlets:

Compile your servlet classes into the WEB-INF/classes directory of your Web
Application.

Make sure your servlet is registered in the Web Applications deployment descriptor
(web.xml).

When responding to a request for a servlet, WebLogic Server checks the time stamp of the
servlet class file prior to applying any filters associated with the servlet, and compares it to
the servlet instance in memory. If a newer version of the servlet class is found, WebLogic
Server re-loads all servlet classes before any filtering takes place. When the servlets are
re-loaded, the init() method of the servlet is called. All servlets are reloaded when a
modified servlet class is discovered due to the possibility that there are interdependencies
among the servlet classes.

You can set the interval (in seconds) at which WebLogic Server checks the time stamp with
the Servlet Reload attribute. This attribute is set on the Descriptor tab of your Web
Application, in the Administration Console. If you set this attribute to zero, WebLogic
Server checks the time stamp on every request, which can be useful while developing and
testing servlets but is needlessly time consuming in a production environment. If this
attribute is set to -1, WebLogic Server does not check for modified servlets.

http://java.sun.com/products/servlet/2.2/javadoc/index.html

Cluste r ing Se rv le ts

Programming WebLogic HTTP Servlets 4-9

Clustering Servlets
Clustering servlets provides failover and load balancing benefits. To deploy a servlet in a
WebLogic Server cluster, deploy the Web Application containing the servlet on all servers in the
cluster. For instructions, see “Deploying Applications to a Cluster” in Using WebLogic Server
Clusters.

For information on requirements for clustering servlets, and to understand the connection and
failover processes for requests that are routed to clustered servlets, see “Replication and Failover
for Servlets and JSPs” in Using WebLogic Server Clusters.

Note: Automatic failover for servlets requires that the servlet session state be replicated in
memory. For instructions, see “Configure In-Memory HTTP Replication” in Using
WebLogic Server Clusters.

For information on the load balancing support that a WebLogic Server cluster provides for
servlets, and for related planning and configuration considerations for architects and
administrators, see “Load Balancing for Servlets and JSPs” in Using WebLogic Server Clusters.

http://e-docs.bea.com/wls/docs81/cluster/setup.html
http://e-docs.bea.com/wls/docs81/cluster/failover.html#1019188
http://e-docs.bea.com/wls/docs81/cluster/failover.html#1019188
http://e-docs.bea.com/wls/docs81/cluster/setup.html#726973
http://e-docs.bea.com/wls/docs81/cluster/load_balancing.html#1026940

4-10 Programming WebLogic HTTP Servlets

Programming WebLogic HTTP Servlets Index-1

Index

A
addCookie() 3-21
administration

console 4-4
administration console 4-4
API 1-3
authentication 4-7

C
classpath 2-2
clustering 3-19, 4-9
compiling 2-2
connection pools 3-26

DataSource 3-28
driver 3-27
JDBC 3-27
using 3-27

contentType 2-2
cookies 3-21

and EJB 3-21
and logging in 3-24
and passwords 3-24
domain 3-23
HTTP and HTTPS 3-23
retreiving 3-22
using in servlets 3-21

customer support contact information x

D
databases 3-26
DataSource 3-26, 3-28

deployment 2-3
deployment descriptor 4-2
Developing 1-2
development

classpath 2-2
compiling 4-8
tips 4-8

development environment 2-2
dispatching 3-31
documentation, where to find it ix

E
EJB 3-26
encodeURL() 3-18
environment, development

environment 2-2

F
forward() 3-31
forwarding 3-31, 3-32

G
getAttribute() 3-15
getAttributeNames() 3-15
getCookies() 3-22
getParameterValues() 3-9
getSession() 3-13, 3-15

H
HelloWorldServlet 2-4

Index-2 Programming WebLogic HTTP Servlets

HTTP
response 3-4

HttpServletRequest 2-1
methods 3-8

HttpServletResponse 2-1, 3-4
HttpSession object 3-13

I
IllegalStateException 3-16
import 2-1
include() 3-31
including 3-31
including a request 3-33
init parameters 3-2
init() method 3-2, 3-3
initialization

init() method 3-2
parameters 3-2

init-param 3-3
in-memory replication 3-19
input

query paramters 3-8

J
J2EE 1-3
javax.servlet 1-3
JDBC 3-26, 3-29
JDBC session persistence 3-20
JMS 3-26
JNDI 3-26
JTS pool driver 3-27

K
keep alive 3-5

L
logging out 3-16

N
name/value pairs 3-15

P
packages 2-1
Pool driver 3-27
printing product documentation x
PrintWriter object 2-2
proxying requests 3-33
ProxyServlet 3-33

sample deployment descriptor 3-34

Q
query parameters 3-6, 3-7, 3-8

R
removeAttribute() 3-15
RequestDispatcher() 3-31
requests

dispatching 3-31
forwarding 3-31, 3-32
including 3-31, 3-33

response 3-4
buffer 3-6
optimizing 3-5

Response Caching 3-24
retreiving input 3-6

S
security 4-7

applying programatically 4-8
authentication 4-7
authorization 4-7
constraints 4-7
realms 4-7

security constraints 4-7
service method 2-1
Servlet 2.2 Specification 1-3

Programming WebLogic HTTP Servlets Index-3

servlets
and clustering 4-9

session persistence
JDBC 3-20

sessions
and clusters 3-19
and persistence 3-19
cookies 3-14, 3-18
detecting start of 3-15
encodeURL() method 3-18
ending 3-16
history of tracking 3-12
lifetime 3-14
logging out 3-16
name/value attributes 3-15
tracking 3-11, 3-14
tracking with HttpSession object 3-13
tracking, configuration 3-17
URL rewriting 3-18
URL rewriting and WAP 3-19

setAttribute() 3-15
SingleThreadModel 3-30
SingleThreadModelPoolSize 3-30
support

technical x

T
The SimpleApacheURLMatchMap Utility 4-7
threading 3-29

SingleThreadModel 3-30

U
URL Pattern Matching 4-6
URL rewriting 3-18
URLs 4-5

W
WAP 3-19
Web Applications

and security 4-7
deployment descriptor 4-2
directory structure 4-5
URLs 4-5

web.xml 4-2
weblogic.xml 4-2

	Contents
	1.
	2.
	3.
	4.

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Overview of HTTP Servlets
	What Is a Servlet?
	What You Can Do with Servlets
	Overview of Servlet Development
	Servlets and J2EE
	HTTP Servlet API Reference

	Introduction to Programming
	Writing a Simple HTTP Servlet
	Advanced Features
	Complete HelloWorldServlet Example

	Programming Tasks
	Initializing a Servlet
	Initializing a Servlet when WebLogic Server Starts
	Overriding the init() Method

	Providing an HTTP Response
	Retrieving Client Input
	Methods for Using the HTTP Request
	Example: Retrieving Input by Using Query Parameters
	Securing Client Input in Servlets
	Using a WebLogic Server Utility Method

	Session Tracking from a Servlet
	A History of Session Tracking
	Tracking a Session with an HttpSession Object
	Lifetime of a Session
	How Session Tracking Works
	Detecting the Start of a Session
	Setting and Getting Session Name/Value Attributes
	Logging Out and Ending a Session
	Using session.invalidate() for a Single Web Application
	Implementing Single Sign-On for Multiple Applications
	Exempting a Web Application for Single Sign-on

	Configuring Session Tracking
	Using URL Rewriting Instead of Cookies
	URL Rewriting and Wireless Access Protocol (WAP)
	Making Sessions Persistent
	Scenarios to Avoid When Using Sessions
	Use Serializable Attribute Values
	Configuring Session Persistence

	Using Cookies in a Servlet
	Setting Cookies in an HTTP Servlet
	Retrieving Cookies in an HTTP Servlet
	Using Cookies That Are Transmitted by Both HTTP and HTTPS
	Application Security and Cookies

	Response Caching
	Initialization Parameters

	Using WebLogic Services from an HTTP Servlet
	Accessing Databases
	Connecting to a Database Using a JDBC Connection Pool
	Using a Connection Pool in a Servlet

	Connecting to a Database Using a DataSource Object
	Using a DataSource in a Servlet

	Connecting Directly to a Database Using a JDBC Driver

	Threading Issues in HTTP Servlets
	SingleThreadModel
	Shared Resources

	Dispatching Requests to Another Resource
	Forwarding a Request
	Including a Request

	Best Practice When Subclassing ServletResponseWrapper
	Proxying Requests to Another Web Server
	Overview of Proxying Requests to Another Web Server
	Setting Up a Proxy to a Secondary Web Server
	Sample Deployment Descriptor for the Proxy Servlet

	Administration and Configuration
	Overview of WebLogic HTTP Servlet Administration
	Using Deployment Descriptors to Configure and Deploy Servlets
	web.xml (Web Application Deployment Descriptor)
	weblogic.xml (Weblogic-Specific Deployment Descriptor)

	WebLogic Server Administration Console

	Directory Structure for Web Applications
	Referencing a Servlet in a Web Application
	URL Pattern Matching

	Servlet Security
	Authentication
	Authorization (Security Constraints)

	Servlet Development Tips
	Clustering Servlets

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

