0?7,

r
S’ 7
L/

BEAWebLogic
Server-

Programming WebLogic
RMI

Version 8.1
Revised: June 28, 2006

Copyright

Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

Introduction and Roadmap

Document Scope and AUdIienCe.ot v it e 1-1
Guide to this Document e 1-1
Related Documentation e 1-2
Samples and Tutorialsot 1-2
Avitek Medical Records Application (MedRec) and Tutorials 1-3
Examples in the WebLogic Server Distribution. 1-3
Additional Examples Available for Download. 1-3
New and Changed Features in ThisRelease 1-3
Understanding WebLogic RMI

What is WebLogic RMI? e 2-5
Features of WebLogic RMI i 2-5

WebLogic RMI Features and Guidelines
WebLogic RMIOVEIVIEWottt ettt e e ettt et 3-7
WebLogic RMI Security SUPPOIt oottt e et 3-8
WebLogic RMI Transaction SUPPOIt. oo vttt et e e i e e 3-8
Failover and Load Balancing RMIObjects, 3-8
Clustered RMI Applications.ttt 3-8
Load Balancing RMI Objects oov i e e 3-9
Parameter-Based Routing for Clustered Objects 3-9
Custom Call Routing and Collocation Optimization. 3-11
Programming WebLogic RMI v

Creating Pinned Servicesttt 3-11

Dynamic Proxies InRML. 3-11
Using the RMITIMEOULottt et e 3-12
Guidelines on Using the RMI Timeoutoviiiiininan ... 3-12
4. Using the WebLogic RMI Compiler
Overview of the WebLogic RMI Compiler 4-15
WebLogic RMI Compiler Features. 4-15
Hot Code Generationttt 4-16
Proxy Generationuutu ittt e e e 4-16
Additional WebLogic RMI Compiler Features 4-17
WebLogic RMI Compiler Optionsoutinn e 4-17
Non-Replicated Stub Generation, 4-20
Using Persistent Compiler Options i, 4-20
Migrating from Stubs and Skeletons to Dynamic Proxies and Bytecode............ 4-21

5. RMI Communication within WebLogic Server

Overview of RMI Communication in WebLogic Server 5-23

Determining Connection Availability. 5-23

6. How to Implement WebLogic RMI

Procedures for Implementing WebLogic RMI 6-25
Creating Classes That Can Be Invoked Remotely.......................... 6-26
Step 1. Write a Remote Interface 6-26

Step 2. Implement the Remote Interface. 6-27

Step 3. Compile theJava Class., 6-29

Step 4. Compile the Implementation Class with RMI Compiler 6-29

Step 5: Write Code That Invokes Remote Methods 6-29

Hello Code Sample e 6-30

vi Programming WebLogic RMI

Introduction and Roadmap

This section describes the contents and organization of this guide—Programming WebLogic
RMI.

“Document Scope and Audience” on page 1-1
“Guide to this Document” on page 1-1
“Related Documentation” on page 1-2
“Samples and Tutorials” on page 1-2

“New and Changed Features in This Release” on page 1-3

Document Scope and Audience

This document is written for application developers who want to build e-commerce applications
using Remote Method Invocation (RMI) features. It is assumed that readers know Web
technologies, object-oriented programming techniques, and the Java programming language.
This document emphasizes the value-added features provided by WebLogic Server and key
information about how to use WebLogic Server features when developing applications with RMI.

Guide to this Document

This document describes the BEA WebLogic Server RMI implementation of the JavaSo

ftTM

Remote Method Invocation (RMI) specification from Sun Microsystems. The BEA
implementation is known as WebLogic RMI.

Programming WebLogic RMI 1-1

Introduction and Roadmap

This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

e Chapter 2, “Understanding WebLogic RMI,” is an overview of WebLogic RMI features
and its architecture.

e Chapter 3, “WebLogic RMI Features and Guidelines,” describes the features that you use
to program RMI for WebLogic Server.

e Chapter 4, “Using the WebLogic RMI Compiler,” provides information on the WebLogic
RMI compiler.

e Chapter 5, “RMI Communication within WebLogic Server,” provides information RMI
communications between WebLogic Server and other Java programs, including clients and
other WebLogic Servers. .

e Chapter 6, “How to Implement WebLogic RMI,” provides a simple step by step example of
how to implement WebLogic RMI.

Related Documentation

For information on topics related to WebLogic RMI, see the following documents:

e Java(TM) Remote Method Invocation (RM]I) is a link to basic Sun MicroSystems tutorials
on Remote Method Invocation.

e Developing WebLogic Server Applications is a guide to developing WebLogic Server
applications.

e Programming WebLogic JNDI is a guide using the WebLogic Java Naming and Directory
Interface.

e Programming WebLogic RMI over IIOP is a guide to developing applications using RMI
over Internet Interop-Orb-Protocol (IIOP).

Samples and Tutorials

1-2

In addition to this document, BEA Systems provides a variety of code samples and tutorials for
developers. The examples and tutorials illustrate WebLogic Server in action, and provide
practical instructions on how to perform key development tasks.

BEA recommends that you run some or all of the RMI examples before developing your own
applications.

Programming WebLogic RMI

http://java.sun.com/j2se/1.5.0/docs/guide/rmi/
http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/jndi/index.html
http://e-docs.bea.com/wls/docs81/rmi_iiop/index.html

New and Changed Features in This Release

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that simulates
an independent, centralized medical record management system. The MedRec application
provides a framework for patients, doctors, and administrators to manage patient data using a
variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights BEA-recommended
best practices. MedRec is included in the WebLogic Server distribution, and can be accessed
from the Start menu on Windows machines. For Linux and other platforms, you can start MedRec
from the wL_HOME\samples\domains\medrec directory, where wL_HOME is the top-level
installation directory for WebLogic Platform.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs) that work
together to process requests from web applications, web services, and workflow applications, and
future client applications. The application includes message-driven, stateless session, stateful
session, and entity EJBs.

Examples in the WebLogic Server Distribution

WebLogic Server 8.1 optionally installs API code examples in

WL_HOME\ samples\server\examples\src\examples, where WL_HOME is the top—level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server 8.1 Start menu.

Additional Examples Available for Download

Additional API examples for download at http://dev2dev.bea.com/code/certwls81.jsp. These
examples are distributed as . zip files that you can unzip into an existing WebLogic Server
samples directory structure. You build and run the downloadable examples in the same manner
as you would an installed WebLogic Server example. See the download pages of individual
examples for more information.

New and Changed Features in This Release

The following sections provides information on new and changed features for release of
WebLogic RMI:

e Compliance with the Java™ 2 Platform Standard Edition 1.4 API Specification

Programming WebLogic RMI 1-3

http://dev2dev.bea.com/

Introduction and Roadmap

e WebLogic Server 8.1 releases SP4 and higher allow you to specify a timeout for a
synchronous remote call. This allows an RMI client making a remote call to return before
the remote method that it invoked has returned from the server instance it called. This can
be useful in legacy applications where a client wants to be able to return quickly if there is
no response from the remote system. For more information, see “Using the RMI Timeout”
on page 3-12.

For more release-specific information on new and changed features, see these sections in
WebLogic Server 8.1 Release Notes:

e “WebLogic Server 8.1 Features and Changes” lists new, changed, and deprecate features.

e “WebLogic Server 8.1 Known Issues” lists known problems by service pack, for all
WebLogic Server APIs.

e “WebLogic Server Resolved Problems” lists problems solved by service pack, for all for all
WebLogic Server APIs, including JMS.

1-4 Programming WebLogic RMI

http://e-docs.bea.com/wls/docs81/notes/new.html
http://e-docs.bea.com/wls/docs81/notes/issues.html
http://e-docs.bea.com/wls/docs81/notes/index.html

CHAPTERa

Understanding WebLogic RMI

The following sections introduce and describe the features of WebLogic RMI.
e What is WebLogic RMI?

e Features of WebLogic RMI

What is WebLogic RMI?

Remote Method Invocation (RMI) is the standard for distributed object computing in Java. RMI
enables an application to obtain a reference to an object that exists elsewhere in the network, and
then invoke methods on that object as though it existed locally in the client’s virtual machine.
RMI specifies how distributed Java applications should operate over multiple Java virtual
machines.

This document contains information about using WebLogic RMI, but it is not a beginner's tutorial
on remote objects or writing distributed applications. If you are just beginning to learn about
RMLI, visit the JavaSoft Web site and take the RMI tutorial.

Features of WebLogic RMI

The following tables highlight important features of WebLogic implementation of RMI:

Programming WebLogic RMI 2-5

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/

Table 1-1 WebLogic RMI Features

Features of WebLogic RMI

Feature

WebLogic RMI

Overall performance

Enhanced by WebLogic RMI integration into the
WebLogic Server framework, which provides
underlying support for communications, scalability,
management of threads and sockets, efficient
garbage collection, and server-related support.

Standards compliant

Compliance with the Java™ 2 Platform Standard
Edition 1.4 API Specification

WebLogic RMI compiler

Stubs and skeletons dynamically generated by
WebLogic RMI at run time, which obviates need to
explicitly run weblogic. rmic, except for
clusterable or Internet Inter-ORB Protocol
(IIOP) clients.

Failover and Loadbalancing

WebLogic Server support for failover and
loadbalancing of RMI objects.

Security Support

No Security Manager required. WebLogic Server
implements authentication, authorization, and
J2EE security services.

Transaction Support

WebLogic Server supports transactions in the Sun

Microsystems, Inc., Java™ 2, Enterprise Edition
(J2EE) programming model.

Dynamic Proxies

A class used by the clients of a remote object. In the
case of RMI, skeleton and a stub classes are used.
The stub class is the instance that is invoked upon in
the client's Java Virtual Machine (JVM). The
skeleton class, which exists in the remote JVM,
unmarshals the invoked method and arguments on
the remote JVM, invokes the method on the instance
of the remote object, and then marshals the results
for return to the client.

Programming WebLogic RMI

2-6

http://e-docs.bea.com/wls/docs81/rmi/rmi_rmic.html
http://e-docs.bea.com/wls/docs81/rmi/rmi_api.html#cluster
http://e-docs.bea.com/wls/docs81/rmi/rmi_api.html#security
http://e-docs.bea.com/wls/docs81/rmi/rmi_api.html#tx
http://e-docs.bea.com/wls/docs81/rmi/rmi_api.html#proxy

CHAPTERa

WebLogic RMI Features and Guidelines

The following sections describe the WebLogic RMI features and guidelines required to program
RMI for use with WebLogic Server:

e WebLogic RMI Overview

WebLogic RMI Security Support

WebLogic RMI Transaction Support

Failover and Load Balancing RMI Objects

Creating Pinned Services

Dynamic Proxies in RMI

Using the RMI Timeout

WebLogic RMI Overview

WebLogic RMI is divided between a client and server framework. The client run time does not
have server sockets and therefore does not listen for connections. It obtains its connections
through the server. Only the server knows about the client socket. Therefore if you plan to host a
remote object on the client, you must connect the client to WebLogic Server. WebLogic Server
processes requests for and passes information to the client. In other words, client-side RMI
objects can only be reached through a single WebLogic Server, even in a cluster. If a client-side
RMI object is bound into the INDI naming service, it only be reachable as long as the server that
carried out the bind is reachable.

Programming WebLogic RMI 3-7

WebLogic RMI Features and Guidelines

WebLogic RMI Security Support

WebLogic Server implements authentication, authorization, and J2EE security services. For
more information see Introduction to Programing WebLogic Security at Programming WebLogic
Security.

WebLogic RMI Transaction Support

WebLogic Server supports transactions in the Sun Microsystems, Inc., Java™ 2, Enterprise
Edition (J2EE) programming model. For detailed information on using transactions in WebLogic
RMI applications, see the following:

e Transactions in WebLogic Server RMI Applications in Programing WebLogic JTA
provides an overview on how transactions are implemented in WebLogic RMI applications.

e Transactions in RMI Applications in Programing WebLogic JTA provides general
guidelines when implementing transactions in RMI applications for WebLogic Server.

Failover and Load Balancing RMI Objects

3-8

The following sections contain information on WebLogic Server support for failover and
loadbalancing of RMI objects:

e Clustered RMI Applications
e [oad Balancing RMI Objects

e Parameter-Based Routing for Clustered Objects

Clustered RMI Applications

For clustered RMI applications, failover is accomplished using the object’s replica-aware stub.
When a client makes a call through a replica-aware stub to a service that fails, the stub detects the
failure and retries the call on another replica.

To make J2EE services available to a client, WebLogic binds an RMI stub for a particular service
into its JNDI tree under a particular name. The RMI stub is updated with the location of other
instances of the RMI object as the instances are deployed to other servers in the cluster. If a server
within the cluster fails, the RMI stubs in the other server’s JNDI tree are updated to reflect the
server failure.

Programming WebLogic RMI

http://e-docs.bea.com/wls/docs81/security/intro.html
http://e-docs.bea.com/wls/docs81/jta/gstrx.html#tx_rmi
http://e-docs.bea.com/wls/docs81/jta/trxrmi.html

Failover and Load Balancing RMI Objects

You specify the generation of replica-aware stubs for a specific RMI object using the
-clusterable option of the WebLogic RMI compiler. For example:

$ java weblogic.rmic -clusterable classes

For more information, see Replication and Failover for EJBs and RMIs in Using WebLogic
Clusters.

Load Balancing RMI Objects

The load balancing algorithm for an RMI object is maintained in the replica-aware stub obtained
for a clustered object. You specify the load balancing algorithm for a specific RMI object using
the -1loadAlgorithm <algorithm> option of the WebLogic RMI compiler. A load
balancing algorithm that you configure for an object overrides the default load balancing
algorithm for the cluster. The WebLogic Server RMI compiler supports the following load
balancing algorithms:

e Round Robin Load Balancing

Weight-Based Load Balancing

Random Load Balancing

Server Affinity Load Balancing Algorithms

For example:

To set load balancing on an RMI object to round robin, use the following rmic options:
S java weblogic.rmic -clusterable -loadAlgorithm round-robin classes
To set load balancing on an RMI object to weight-based server affinity, use rmic options:

$ java weblogic.rmic -clusterable -loadAlgorithm weight-based -stickToF
irstServer classes
For more information, see Load Balancing for EJBs and RMI Objects in Using WebLogic Server
Clusters.

Parameter-Based Routing for Clustered Objects

Parameter-based routing allows you to control load balancing behavior at a lower level. Any
clustered object can be assigned a CallRouter using the weblogic.rmi.cluster.CallRouter
interface. This is a class that is called before each invocation with the parameters of the call. The
CallRouter is free to examine the parameters and return the name server to which the call should
be routed.

Programming WebLogic RMI 3-9

http://e-docs.bea.com/wls/docs81/cluster/failover.html#ReplicationandFailoverforEJBsandRMIs
http://e-docs.bea.com/wls/docs81/cluster/load_balancing.html#round_robin_lb
http://e-docs.bea.com/wls/docs81/cluster/load_balancing.html#Weight-based round-robin
http://e-docs.bea.com/wls/docs81/cluster/load_balancing.html#random_lb
http://e-docs.bea.com/wls/docs81/cluster/load_balancing.html#server_affinity_lb
http://e-docs.bea.com/wls/docs81/cluster/load_balancing.html#LoadBalancingforEJBsandRMIObjects

WebLogic RMI Features and Guidelines

3-10

weblogic.rmi.cluster.CallRouter

Class java.lang.Object
Interface weblogic.rmi.cluster.CallRouter

(extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to enable
parameter-based routing. Run rmic on the service implementation using these options (to be
entered on one line):

$ java weblogic.rmic -clusterable -callRouter <callRouterClass> <remoteObj

ectClass>

The call router is called by the clusterable stub each time a remote method is invoked. The router
is responsible for returning the name of the server to which the call should be routed.

Each server in the cluster is uniquely identified by its name as defined with the WebLogic Server
Console. These are the names that the method router must use for identifying servers.

Example: Consider the ExampleImpl class which implements a remote interface Example, with
one method foo:

public class ExampleImpl implements Example {

public void foo(String arg) { return arg; }

€99

This callRouter implementation ExampleRouter ensures that all foo calls with ‘arg’ <“n” go
to serverl (or server3 if serverl is unreachable) and that all calls with ‘arg’ >= “n” go to server2
(or server3 if server2 is unreachable).

public class ExampleRouter implements CallRouter {
private static final String[] aToM = { "serverl", "server3" };

private static final String[] nToZ = { "server2", "server3" };

public String[] getServerList (Method m, Object[] params) {
if (m.GetName () .equals("foo")) {
if (((String)params[0]).charAt(0) < 'n') {
return aToM;
} else {

return nToZ;

Programming WebLogic RMI

Creating Pinned Services

}
} else {

return null;

This rmic call associates the ExampleRouter with ExampleImpl to enable parameter-based
routing:

$ rmic -clusterable -callRouter ExampleRouter ExampleImpl

Custom Call Routing and Collocation Optimization

If a replica is available on the same server instance as the object calling it, the call will not be
load-balanced, because it is more efficient to use the local replica. For more information, see
Optimization for Collocated Objects in Using WebLogic Server Clusters.

Creating Pinned Services

You can also use weblogic.rmic to generate stubs that are not replicated in the cluster. These
stubs are known as “pinned” services, because after they are registered they are available only
from the host with which they are registered and will not provide transparent failover or load
balancing. Pinned services are available cluster-wide, because they are bound into the replicated
cluster-wide JNDI tree. However, if the individual server that hosts the pinned services fails, the
client cannot failover to another server.

You specify the generation of non-replicated stubs for a specific RMI object not using the
-clusterable option of the WebLogic RMI compiler. For example:

$ java weblogic.rmic classes

Dynamic Proxies in RMI

A dynamic proxy or proxy is a class used by the clients of a remote object. This class implements
a list of interfaces specified at runtime when the class is created. In the case of RMI, dynamically
generated bytecode and proxy classes are used. The proxy class is the instance that is invoked
upon in the client's Java Virtual Machine (JVM). The proxy class marshals the invoked method
name and its arguments; forwards these to the remote JVM. After the remote invocation is
completed and returns, the proxy class unmarshals the results on the client. The generated

Programming WebLogic RMI 3-11

http://e-docs.bea.com/wls/docs81/cluster/load_balancing.html#Collocated_objs

WebLogic RMI Features and Guidelines

bytecode—which exists in the remote JVM—unmarhsals the invoked method and arguments on
the remote JVM, invokes the method on the instance of the remote object, and then marshals the
results for return to the client.

Using the RMI Timeout

WebLogic Server allows you to specify a timeout for synchronous remote call. This allows an
RMI client making a remote call to return before the remote method that it invoked has returned
from the server instance it called. This can be useful in legacy applications where a client wants
to be able to return quickly if there is no response from the remote system.

To implement a synchronous RMI timeout, use the remote-client-timeout deployment
descriptor element found in the weblogic-ejb-jar.xml. For more information, see the
weblogic-ejb-jar.xml Deployment Descriptor Reference in Programming WebLogic Enterprise
JavaBeans.

Guidelines on Using the RMI Timeout

This section provides implementation guidelines for appropriate use of the RMI client timeout:

e This feature provides a work around for legacy systems where the behavior of
asynchronous calls is desired but not yet implemented. BEA recommends legacy systems
implement more appropriate technologies if possible, such as:

— Asynchronous RMI invokations
— JMS and Message Driven Beans (MDBs)
— HTTP servlett applications
e The RMI timeout should be used only when the following three conditions are met:
— The method call is idempotent or does not introduce any state change
— The method call is non-transactional

— No JMS resources are involved in the call

e The client is required to handle the RequestTimeOutException and the management of
state.

e The server continues to process requests that have timed out. The client is required check
the state of the request on the server before reattempting the call.

3-12 Programming WebLogic RMI

http://e-docs.bea.com/wls/docs81/ejb/DDreference-ejb-jar.html

Using the RMI Timeout

e There is no transparent failover to another cluster node when a request times out.
RequestTimeOutException is always propogated to the caller.

e Users may see server warning messages similar to:

<Warning> <RJVM> <BEA-000510> <Unsolicited response: 4,690>

Programming WebLogic RMI 3-13

WebLogic RMI Features and Guidelines

3-14 Programming WebLogic RMI

CHAPTERo

Using the WebLogic RMI Compiler

The following sections describe the WebLogic RMI compiler:

e Overview of the WebLogic RMI Compiler

WebLogic RMI Compiler Features

WebLogic RMI Compiler Options

e Migrating from Stubs and Skeletons to Dynamic Proxies and Bytecode

Overview of the WebLogic RMI Compiler

The WebLogic RMI compiler (weblogic.rmic) is a command-line utility for generating and
compiling remote objects. Use weblogic.rmic to generate dynamic proxies on the client-side
for custom remote object interfaces in your application and provide hot code generation for
server-side objects.

You only need to explicitly run weblogic. rmic for clusterable or IIOP clients. WebLogic RMI
over I[IOP extends the RMI programming model by providing the ability for clients to access RMI
remote objects using the Internet Inter-ORB Protocol (IIOP).

See Programming WebLogic RMI over IIOP for more information on using RMI over I1OP.

WebLogic RMI Compiler Features

The following sections provide information on WebLogic RMI Compiler features for this
release:

Programming WebLogic RMI 4-15

Using the WebLogic RMI Compiler

4-16

e Hot Code Generation
e Proxy Generation

e Additional WebLogic RMI Compiler Features

Hot Code Generation

When you run rmic, you use WebLogic Server’s hot code generation feature to automatically
generate bytecode in memory for server classes. This bytecode is generated on the fly as needed
for the remote object. WebLogic Server no longer generates the skeleton class for the object when
weblogic.rmic is run.

Hot code generation produces the bytecode for a server-side class that processes requests from
the dynamic proxy on the client. The dynamically created bytecode de-serializes client requests
and executes them against the implementation classes, serializing results and sending them back
to the proxy on the client. The implementation for the class is bound to a name in the WebLogic
RMI registry in WebLogic Server.

Proxy Generation

The default behavior of the WebLogic RMI compiler is to produce proxies for the remote
interface and for the remote classes to share the proxies. A proxy is a class used by the clients of
a remote object. In the case of RMI, dynamically generated bytecode and proxy classes are used.

For example, example.hello.HelloImpl and counter.example.CiaoImpl are
represented by a single proxy class and bytecode—the proxy that matches the remote interface
implemented by the remote object, in this case, example.hello.Hello.

When a remote object implements more than one interface, the proxy names and packages are
determined by encoding the set of interfaces. You can override this default behavior with the
WebLogic RMI compiler option -nomanglednames, which causes the compiler to produce
proxies specific to the remote class. When a class-specific proxy is found, it takes precedence
over the interface-specific proxy.

In addition, with WebLogic RMI proxy classes, the proxies are not final. References to collocated
remote objects are references to the objects themselves, not to the proxies.

The dynamic proxy class is the serializable class that is passed to the client. A client acquires the
proxy for the class by looking up the class in the WebLogic RMI registry. The client calls
methods on the proxy just as if it were a local class and the proxy serializes the requests and sends
them to WebLogic Server.

Programming WebLogic RMI

WebLogic RMI Compiler Options

Additional WebLogic RMI Compiler Features

Other features of the WebLogic RMI compiler include the following:
e Signatures of remote methods do not need to throw RemoteException.
e Remote exceptions can be mapped to RuntimeException.

e Remote classes can also implement non-remote interfaces.

WebLogic RMI Compiler Options

The WebLogic RMI compiler accepts any option supported by the Java compiler; for example,
you could add -d \classes examples.hello.HelloImpl to the compiler option at the
command line. All other options supported by the Java compiler can be used and are passed
directly to the Java compiler.

The following table lists java weblogic.rmic options. Enter these options after java
weblogic.rmic and before the name of the remote class.

$java weblogic.rmic [options] <classes>...

Table 4-1 WebLogic RMI Compiler Options

Option Description

-help Prints a description of the options.

-version Prints version information.

-d <dir> Specifies the target (top level) directory for compilation.
-dispatchPolicy Specifies a configured execute queue that the service
<queueName> should use to obtain execute threads in WebLogic Server.

See Using Execute Queues to Control Thread Usage for
more information.

-oneway Specifies all calls are one-way calls.

-idl Generates IDLs for remote interfaces.
-idloverwrite Overwrites existing IDL files.

-idlverbose Displays verbose information for IDL information.

Programming WebLogic RMI 4-17

Using the WebLogic RMI Compiler

Table 4-1 WebLogic RMI Compiler Options

Option Description

-idlDirectory Specifies the directory where IDL files will be created
<idlDirectory> (Default = current directory).

-idlFactories Generates factory methods for valuetypes.
-idlNoValueTypes Prevents the generation of valuetypes and the

methods/attributes that contain them.

-idlNoAbstractInterfac
es

Prevents the generation of abstract interfaces and the
methods/attributes that contain them.

-idlstrict Generates IDL according to OMG standard.
-idlvisibroker Generate IDL compatible with Visibroker 4.5 C++.
-idlorbix Generate IDL compatible with Orbix 2000 2.0 C++.
-iiopTie Generate CORBA skeletons using Sun's version of rmic.
-iiopSun Generate CORBA stubs using Sun's version of rmic.

-nontransactional

Suspends the transaction before making the RMI call and
resumes after the call completes.

-compiler <javac>

Specifies the Java compiler. If not specified, the
-compilerclass option will be used.

-compilerclass
<com.sun.tools.javac.M
ain>

Compiler class to invoke.

-clusterable

This cluster-specific options marks the service as
clusterable (can be hosted by multiple servers in a
WebLogic Server cluster). Each hosting object, or replica,
is bound into the naming service under a common name.
When the service stub is retrieved from the naming
service, it contains a replica-aware reference that
maintains the list of replicas and performs load-balancing
and fail-over between them.

Programming WebLogic RMI

WebLogic RMI Compiler Options

Table 4-1 WebLogic RMI Compiler Options

Option Description

-loadAlgorithm Only for use in conjunction with —~clusterable.

<algorithm> Specifies a service-specific algorithm to use for
load-balancing and fail-over (Default =
weblogic.cluster.loadAlgorithm). Must be one
of the following: round-robin, random, or weight-based.

-callRouter This cluster-specific option used in conjunction with

<callRouterClass>

-clusterable specifies the class to be used for routing
method calls. This class must implement
weblogic.rmi.cluster.CallRouter. If
specified, an instance of the class is called before each
method call and can designate a server to route to based on
the method parameters. This option either returns a server
name or null. Null means that you use the current load
algorithm.

-stickToFirstServer

This cluster-specific option used in conjunction with
-clusterable enables “sticky” load balancing. The
server chosen for servicing the first request is used for all
subsequent requests.

-methodsAreIdempotent

This cluster-specific option used in conjunction with
-clusterable indicates that the methods on this class
are idempotent. This allows the stub to attempt recovery
from any communication failure, even if it can not ensure
that failure occurred before the remote method was
invoked. By default (if this option is not used), the stub
only retries on failures that are guaranteed to have
occurred before the remote method was invoked.

-timeout Used in conjunction with remote-client-timeout.

-iiop Generates IIOP stubs from servers.

-iiopDirectory Specifies the directory where IIOP proxy classes are
written.

-commentary Emits commentary.

-nomanglednames Causes the compiler to produce proxies specific to the

remote class.

Programming WebLogic RMI 4-19

http://e-docs.bea.com/wls/docs81/ejb/DDreference-ejb-jar.html#rmi_timeout

Using the WebLogic RMI Compiler

4-20

Table 4-1 WebLogic RMI Compiler Options

Option Description

-g Compile debugging information into the class.

-0 Compile with optimization.

-nowarn Compile without warnings.

-verbose Compile with verbose output.

-verboseJavac Enable Java compiler verbose output.

-nowrite Prevent the generation of . class files.

-deprecation Provides warnings for deprecated calls.

-classpath <path> Specifies the classpath to use.

-J<option> Use to pass flags through to the Java runtime.

-keepgenerated Allows you to keep the source of generated stub and
skeleton class files when you run the WebLogic RMI
compiler.

-disableHotCodeGen Causes the compiler to create stubs at skeleton classes

when compiled.

Non-Replicated Stub Generation

You can also use weblogic.rmic to generate stubs that are not replicated in the cluster. These
stubs are known as “pinned” services, because after they are registered they are available only
from the host with which they are registered and will not provide transparent failover or load
balancing. Pinned services are available cluster-wide, because they are bound into the replicated
cluster-wide JNDI tree. However, if the individual server that hosts the pinned services fails, the
client cannot failover to another server.

Using Persistent Compiler Options

During deployment, appc and ejbe run each EJB container class through the RMI compiler to
create RMI descriptors necessary to dynamically generate stubs and skeletons. Use the
weblogic-ejb-jar.xml file to persist iiop-security-descriptor elements. For more

Programming WebLogic RMI

Migrating from Stubs and Skeletons to Dynamic Proxies and Bytecode

information, see 2.0 weblogic-ejb-jar.xml Elements in Programming WebLogic Enterprise
JavaBeans.

Migrating from Stubs and Skeletons to Dynamic Proxies and
Bytecode

In previous versions of WebLogic Server, pre 6.1, running weblogic.rmic generated stubs on
the client and skeleton code on the server-side. Now, dynamic proxies have replace generated
stubs on the client-side and bytecode has replaced skeletons on the server-side. So, you no longer
need to generate classes.

To enable pre-6.1 WebLogic RMI objects to run under later versions of WebLogic Server, rerun
weblogic.rmic on those objects. This will generate the necessary proxies and bytecode that
enable the deployed RMI object. See “Proxy Generation” on page 4-16, for more information on
dynamic proxies.

If your remote objects are EJBs, rerun weblogic . ejbc again to enable pre-WebLogic Server 6.1
objects to work in the post-6.1 version. See “ejbc” in Programming WebLogic Enterprise
JavaBeans for instructions on using weblogic.ejbc.

Rerunning either weblogic.rmic with one or more of the following parameters,-oneway,
-clusterable, -stickToFirstServer Or weblogic.ejbc on the remote object produces a
deployment descriptor file for that object.

Programming WebLogic RMI 41

http://e-docs.bea.com/wls/docs81/ejb/DDreference-ejb-jar.html#elements
http://e-docs.bea.com/wls/docs81/ejb/appc_ejbc.html#ejbc

Using the WebLogic RMI Compiler

4-22 Programming WebLogic RMI

CHAPTERa

RMI Communication within WebLogic
Server

The following sections provide information on how WebLogic RMI using T3 protocol.
e Overview of RMI Communication in WebLogic Server

e Determining Connection Availability

Overview of RMI Communication in WebLogic Server

RMI communications in WebLogic Server use the T3 protocol, an optimized protocol used to
transport data between WebLogic Server and other Java programs, including clients and other
WebLogic Servers. A server instance keeps track of each Java Virtual Machine (JVM) with
which it connects, and creates a single T3 connection to carry all traffic for a JVM.

For example, if a Java client accesses an enterprise bean and a JDBC connection pool on
WebLogic Server, a single network connection is established between the WebLogic Server JVM
and the client JVM. The EJB and JDBC services can be written as if they had sole use of a
dedicated network connection because the T3 protocol invisibly multiplexes packets on the single
connection.

Determining Connection Availability

Any two Java programs with a valid T3 connection—such as two server instances, or a server

instance and a Java client—use periodic point-to-point “heartbeats” to announce and determine
continued availability. Each end point periodically issues a heartbeat to the peer, and similarly,
determines that the peer is still available based on continued receipt of heartbeats from the peer.

Programming WebLogic RMI 5-23

RMI Communication within WebLogic Server

5-24

The frequency with which a server instance issues heartbeats is determined by the heartbeat
interval, which by default is 60 seconds.

The number of missed heartbeats from a peer that a server instance waits before deciding the peer
is unavailable is determined by the heartbeat period, which by default, is 4.

Hence, each server instance waits up to 240 seconds, or 4 minutes, with no messages—either
heartbeats or other communication—from a peer before deciding that the peer is unreachable.

Note: It is recommended you do not change the timeout value as it is configured internally.

Programming WebLogic RMI

CHAPTERa

How to Implement WebLogic RMI

The basic building block for all remote objects is the interface java.rmi.Remote, which
contains no methods. You extend this "tagging" interface—that is, it functions as a tag to identify
remote classes—to create your own remote interface, with method stubs that create a structure
for your remote object. Then you implement your own remote interface with a remote class. This
implementation is bound to a name in the registry, where a client or server can look up the object
and use it remotely.

If you have written RMI classes, you can drop them in WebLogic RMI by changing the import
statement on a remote interface and the classes that extend it. To add remote invocation to your
client applications, look up the object by name in the registry. WebLogic RMI exceptions are
identical to and extend java. rmi exceptions so that existing interfaces and implementations do
not have to change exception handling.

Procedures for Implementing WebLogic RMI

The following sections describe how to implement WebLogic Server RMI:

e Creating Classes That Can Be Invoked Remotely
Step 1. Write a Remote Interface
Step 2. Implement the Remote Interface
Step 3. Compile the Java Class
Step 4. Compile the Implementation Class with RMI Compiler
Step 5: Write Code That Invokes Remote Methods

Programming WebLogic RMI 6-25

How to Implement WebLogic RMI

6-26

e Hello Code Sample

Creating Classes That Can Be Invoked Remotely

You can write your own WebLogic RMI classes in just a few steps. Here is a simple example.

Step 1. Write a Remote Interface

Every class that can be remotely invoked implements a remote interface. Using a Java code text
editor, write the remote interface in adherence with the following guidelines.

e A remote interface must extend the interface java.rmi.Remote, which contains no
method signatures. Include method signatures that will be implemented in every remote
class that implements the interface. For detailed information on how to write an interface,
see the Sun Microsystems JavaSoft tutorial Creating Interfaces.

e The remote interface must be public. Otherwise a client gets an error when attempting to
load a remote object that implements it.

e Unlike the JavaSoft RMI, it is not necessary for each method in the interface to declare
java.rmi.RemoteException inits throws block. The exceptions that your application
throws can be specific to your application, and can extend Runt imeException. WebLogic
RMI subclasses java.rmi.RemoteException, so if you already have existing RMI
classes, you will not have to change your exception handling.

e Your Remote interface may not contain much code. All you need are the method signatures
for methods you want to implement in remote classes.
Here is an example of a remote interface with the method signature sayHello ().
package examples.rmi.multihello;
import java.rmi.*;
public interface Hello extends java.rmi.Remote {
String sayHello() throws RemoteException;
}

With JavaSoft's RMI, every class that implements a remote interface must have accompanying,
precompiled proxies. WebLogic RMI supports more flexible runtime code generation; WebLogic
RMI supports dynamic proxies and dynamically created bytecode that are type-correct but are
otherwise independent of the class that implements the interface. If a class implements a single
remote interface, the proxy and bytecode that is generated by the compiler will have the same
name as the remote interface. If a class implements more than one remote interface, the name of

Programming WebLogic RMI

Procedures for Implementing WebLogic RMI

the proxy and bytecode that result from the compilation depend on the name mangling used by
the compiler.

Step 2. Implement the Remote Interface

Still using a Java code text editor, write the class be invoked remotely. The class should
implement the remote interface that you wrote in Step 1, which means that you implement the
method signatures that are contained in the interface. Currently, all the code generation that takes
place in WebLogic RMI is dependent on this class file.

With WebLogic RMI, your class does not need to extend UnicastRemoteObject, which is
required by JavaSoft RMI. (You can extend UnicastRemoteObject, but it isn't necessary.)
This allows you to retain a class hierarchy that makes sense for your application.

Note: With Weblogic server, you can use both Weblogic RMI and standard JDK RMI. If you
use Weblogic RMI, then you must use "java weblogic.rmic ..." asthe rmic
compiler and you must not create your RMI implementation as a subclass of
"java.rmi.server.UnicastRemoteObject". If you use standard JDK RMI, then you
must use "$JAVA_HOME%\bin\rmic" as the rmic compiler and you must create your RMI
implementation class as a subclass of "java.rmi.server.UnicastRemoteObject".

Your class can implement more than one remote interface. Your class can also define methods
that are not in the remote interface, but you cannot invoke those methods remotely.

This example implements a class that creates multiple HelloImpls and binds each to a unique
name in the registry. The method sayHel1lo () greets the user and identifies the object which was
remotely invoked.

package examples.rmi.multihello;
import java.rmi.*;
public class HelloImpl implements Hello {
private String name;
public HelloImpl (String s) throws RemoteException {
name = s;
}
public String sayHello() throws RemoteException {

return "Hello! From " + name;

Programming WebLogic RMI 6-27

How to Implement WebLogic RMI

Next, write a main () method that creates an instance of the remote object and registers it in the
WebLogic RMI registry, by binding it to a name (a URL that points to the implementation of the
object). A client that needs to obtain a proxy to use the object remotely will be able to look up the
object by name.

Below is an example of a main () method for the HelloImp1l class. This registers the
HelloImpl object under the name HelloRemoteWorld in a WebLogic Server registry.

public static void main(Stringl[] argv) {
// Not needed with WebLogic RMI
// System.setSecurityManager (new RmiSecurityManager());
// But if you include this line of code, you should make

// it conditional, as shown here:

// if (System.getSecurityManager () == null)
// System.setSecurityManager (new RmiSecurityManager());
int 1 = 0;
try {
for (i = 0; i < 10; i++) {

HelloImpl obj = new HelloImpl ("MultiHelloServer" + 1);
Context.rebind("//localhost/MultiHelloServer" + 1, obj);
System.out.println("MultiHelloServer" + i + " created.");
}
System.out.println("Created and registered " + 1 +
" MultiHelloImpls.");
}
catch (Exception e) {
System.out.println("HelloImpl error: " + e.getMessage());

e.printStackTrace() ;

6-28 Programming WebLogic RMI

Procedures for Implementing WebLogic RMI

WebLogic RMI does not require that you set a Security Manager in order to integrate security
into your application. Security is handled by WebLogic Server support for SSL and ACLs. If you
must, you may use your own security manager, but do not install it in WebLogic Server.

Step 3. Compile the Java Class

Use javac or some other Java compiler to compile the . java files to produce . class files for
the remote interface and the class that implements it.

Step 4. Compile the Implementation Class with RMI Compiler

Run the WebLogic RMI compiler (weblogic.rmic) against the remote class to generate the
dynamic proxy and bytecode, on the fly. A proxy is the client-side proxy for a remote object that
forwards each WebLogic RMI call to its matching server-side bytecode, which in turn forwards
the call to the actual remote object implementation. To run the weblogic.rmic, use the
command pattern:

$ java weblogic.rmic nameOfRemoteClass

where nameOfRemoteClass is the full package name of the class that implements your Remote
interface. With the examples we have used previously, the command would be:

$ java weblogic.rmic examples.rmi.hello.HelloImpl

Set the flag -keepgenerated when you run weblogic. rmic if you want to keep the generated
source when creating stub or skeleton classes. For a listing of the available command-line
options, see “WebLogic RMI Compiler Options” on page 4-17.

Step 5: Write Code That Invokes Remote Methods

Using a Java code text editor, once you compile and install the remote class, the interface it
implements, and its proxy and the bytecode on the WebLogic Server, you can add code to a
WebLogic client application to invoke methods in the remote class.

In general, it takes just a single line of code: get a reference to the remote object. Do this with the
Naming.lookup () method. Here is a short WebLogic client application that uses an object
created in a previous example.

package mypackage.myclient;

import java.rmi.*;

public class HelloWorld throws Exception {

Programming WebLogic RMI 6-29

How to Implement WebLogic RMI

6-30

// Look up the remote object in the
// WebLogic's registry
Hello hi = (Hello)Naming.lookup ("HelloRemoteWorld") ;
// Invoke a method remotely
String message = hi.sayHello();
System.out.println (message) ;

}

This example demonstrates using a Java application as the client.

Hello Code Sample
Here is the full code for the Hello interface.
package examples.rmi.hello;

import java.rmi.*;
public interface Hello extends java.rmi.Remote {
String sayHello() throws RemoteException;

}
Here is the full code for the Hel1loImpl class that implements it.

package examples.rmi.hello;
import java.rmi.*;

public class HelloImpl
// Don't need this in WebLogic RMI:

// extends UnicastRemoteObject

Programming WebLogic RMI

Procedures for Implementing WebLogic RMI

implements Hello {

public HelloImpl () throws RemoteException {

super () ;

public String sayHello() throws RemoteException {

return "Hello Remote World!!";

public static void main(String[] argv) {
try {
HelloImpl obj = new HelloImpl () ;
Naming.bind("HelloRemoteWorld", obj) ;
}
catch (Exception e) {
System.out.println("HelloImpl error: " + e.getMessage());

e.printStackTrace() ;

Programming WebLogic RMI 6-31

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	Samples and Tutorials
	Avitek Medical Records Application (MedRec) and Tutorials
	Examples in the WebLogic Server Distribution
	Additional Examples Available for Download

	New and Changed Features in This Release

	Understanding WebLogic RMI
	What is WebLogic RMI?
	Features of WebLogic RMI

	WebLogic RMI Features and Guidelines
	WebLogic RMI Overview
	WebLogic RMI Security Support
	WebLogic RMI Transaction Support
	Failover and Load Balancing RMI Objects
	Clustered RMI Applications
	Load Balancing RMI Objects
	Parameter-Based Routing for Clustered Objects
	Custom Call Routing and Collocation Optimization

	Creating Pinned Services
	Dynamic Proxies in RMI
	Using the RMI Timeout
	Guidelines on Using the RMI Timeout

	Using the WebLogic RMI Compiler
	Overview of the WebLogic RMI Compiler
	WebLogic RMI Compiler Features
	Hot Code Generation
	Proxy Generation
	Additional WebLogic RMI Compiler Features

	WebLogic RMI Compiler Options
	Non-Replicated Stub Generation
	Using Persistent Compiler Options

	Migrating from Stubs and Skeletons to Dynamic Proxies and Bytecode

	RMI Communication within WebLogic Server
	Overview of RMI Communication in WebLogic Server
	Determining Connection Availability

	How to Implement WebLogic RMI
	Procedures for Implementing WebLogic RMI
	Creating Classes That Can Be Invoked Remotely
	Step 1. Write a Remote Interface
	Step 2. Implement the Remote Interface
	Step 3. Compile the Java Class
	Step 4. Compile the Implementation Class with RMI Compiler
	Step 5: Write Code That Invokes Remote Methods

	Hello Code Sample

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

