
BEAWebLogic
Server™

BEA WebLogic Server
Performance and Tuning

Version 8.1
Revised: June 28, 2006

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Server Performance and Tuning v

Contents

About This Document
Audience . xiv

eDocs Web Site . xiv

How to Print the Document . xiv

Related Information . xiv

Contact Us! .xv

Documentation Conventions .xv

1. Top Tuning Recommendations for WebLogic Server
Understand Your Performance Objectives . 1-2

Tune the Operating System . 1-2

UNIX Tuning Parameters . 1-2

Solaris TCP Tuning Parameters. 1-2

HP-UX Tuning Parameters . 1-3

AIX Tuning Parameters . 1-3

Linux Tuning Parameters . 1-3

Windows Tuning Parameters . 1-4

Optimize Your Database . 1-4

General Suggestions . 1-4

Database-Specific Tuning . 1-4

Oracle. 1-5

Microsoft SQL Server . 1-6

vi BEA WebLogic Server Performance and Tuning

Sybase . 1-6

Identify the Best JVM Settings . 1-7

Sun JDK . 1-7

JRockit JDK . 1-7

Tune WebLogic Server Performance Parameters . 1-7

Monitor Disk and CPU Utilization . 1-8

Monitor Data Transfers Across the Network . 1-9

Check For Frequent Standard I/O or Logging . 1-10

Locate Bottlenecks in Your Applications . 1-10

Tune Your Application . 1-10

EJBs . 1-10

JSPs and Servlets . 1-11

JMS . 1-11

JDBC . 1-11

2. Tuning Hardware, Operating System, and Network Performance
Hardware Tuning. 2-1

Supported Platforms. 2-2

Operating System Tuning . 2-3

Solaris Tuning Parameters . 2-3

Setting TCP Parameters With the ndd Command. 2-4

Setting Parameters In the /etc/system File . 2-4

CE Gigabit Network Card Settings. 2-5

Linux Tuning Parameters . 2-6

HP-UX Tuning Parameters . 2-7

Other Operating System Tuning Information . 2-7

Network Performance . 2-8

Determining Network Bandwidth . 2-8

BEA WebLogic Server Performance and Tuning vii

LAN Infrastructure . 2-9

3. Tuning Java Virtual Machines (JVMs)
JVM Tuning Considerations . 3-2

Which JVM for Your System? . 3-2

Changing To a Different JVM . 3-3

JVM Heap Size and Garbage Collection . 3-3

Choosing a Garbage Collection Scheme . 3-4

Using Verbose Garbage Collection to Determine Heap Size 3-4

Specifying Heap Size Values. 3-6

Using WebLogic Startup Scripts to Set Heap Size. 3-7

Java Heap Size Options . 3-7

Automatically Logging Low Memory Conditions . 3-9

Manually Requesting Garbage Collection. 3-10

Setting Java HotSpot VM Options . 3-10

Standard HotSpot VM Options for Windows, Solaris, and Linux 3-11

Non-Standard HotSpot VM Options for Windows, Solaris, and Linux 3-12

4. Tuning WebLogic Server
Setting Java Parameters for Starting WebLogic Server . 4-1

Setting Performance-Related Configuration Parameters. 4-2

Development vs. Production Mode Default Tuning Values . 4-4

Using WebLogic Server “Native IO” Performance Packs . 4-5

Which Platforms Have Performance Packs? . 4-5

Enabling Performance Packs . 4-5

Tuning the Default Execute Queue Threads . 4-6

Should You Modify the Default Thread Count? . 4-6

Scenarios for Modifying the Default Thread Count . 4-7

viii BEA WebLogic Server Performance and Tuning

Modifying the Default Thread Count . 4-9

Assigning Applications to Execute Queues . 4-9

Allocating Execute Threads to Act as Socket Readers . 4-9

Setting the Number of Socket Reader Threads For a Server Instance 4-10

Setting the Number of Socket Reader Threads on Client Machines 4-10

Tuning Execute Queues for Overflow Conditions. 4-10

Tuning the Execute Thread Detection Behavior . 4-12

Tuning Connection Backlog Buffering . 4-14

How JDBC Connection Pools Enhance Performance. 4-14

Tuning JDBC Connection Pool Initial Capacity . 4-15

Tuning JDBC Connection Pool Maximum Capacity. 4-15

Caching Prepared and Callable Statements . 4-16

Setting Your Java Compiler . 4-16

Changing Compilers in the Administration Console . 4-16

Setting Your Compiler in weblogic.xml . 4-17

Compiling EJB Container Classes . 4-17

Compiling on UNIX. 4-17

Using WebLogic Server Clusters to Improve Performance . 4-18

Scalability and High Availability . 4-18

How to Ensure Scalability for WebLogic Clusters . 4-19

Database Bottlenecks . 4-19

Session Replication. 4-19

Invalidation of Entity EJBs. 4-20

Invalidation of HTTP sessions . 4-20

JNDI Binding, Unbinding and Rebinding . 4-20

Performance Considerations When Running Multiple Server Instances on Multi-CPU
Machines . 4-20

Monitoring a WebLogic Server Domain. 4-21

BEA WebLogic Server Performance and Tuning ix

5. Tuning WebLogic Server EJBs
Setting Performance-Related weblogic-ejb-jar.xml Parameters . 5-1

Setting EJB Pool Size for Session and Message-Driven Beans 5-2

Using a Free Pool to Improve Stateless Session Bean Performance 5-3

Allocating Pool Size for Entity Beans . 5-4

Tuning Pool Size for Stateless Sessions Beans at Startup . 5-4

Setting Caching Size for Stateful Session and Entity Beans 5-4

Activation and Passivation of Stateful Session EJBs . 5-5

Deferring Database Locking. 5-5

Setting Transaction Isolation Level . 5-5

Setting Performance-Related weblogic-cmp-jar.xml Parameters 5-6

Tuning In Response to Monitoring Statistics . 5-6

Cache Miss Ratio . 5-7

Lock Waiter Ratio. 5-7

Lock Timeout Ratio . 5-8

Pool Miss Ratio . 5-8

Destroyed Bean Ratio. 5-9

Pool Timeout Ratio. 5-9

Transaction Rollback Ratio . 5-10

Transaction Timeout Ratio . 5-10

Other Performance Improvement Strategies . 5-11

Application-Level Caching . 5-11

Batch Operations . 5-11

Distributing Transactions Across EJBs in a WebLogic Server Cluster 5-11

Indexing with a Version Column . 5-12

6. Tuning WebLogic Server Applications
Using Performance Analysis Tools . 6-2

x BEA WebLogic Server Performance and Tuning

Using the JProbe Profiler . 6-2

Using the Optimizeit Profiler . 6-2

JDBC Application Tuning. 6-2

JMS Application Tuning . 6-3

EJB Application Tuning . 6-3

Web Services Tuning . 6-3

Managing Sessions . 6-4

Managing Session Persistence . 6-4

Minimizing Sessions . 6-5

Using Execute Queues to Control Thread Usage . 6-5

Creating Execute Queues . 6-6

Assigning Servlets and JSPs to Execute Queues . 6-8

Assigning EJBs and RMI Objects to Execute Queues. 6-9

A. Related Reading: Performance Tools and Information
BEA Systems, Inc. Information . A-2

Sun Microsystems Information . A-2

Linux OS Information . A-3

Hewlett-Packard Company Information . A-4

Microsoft Information . A-4

Web Performance Tuning Information . A-5

Network Performance Tools . A-6

Load Testing Tools . A-6

Performance Analysis Tools . A-6

Production Performance Management . A-7

Benchmarking Information . A-7

Java Virtual Machine (JVM) Information. A-8

Enterprise JavaBeans Information . A-9

BEA WebLogic Server Performance and Tuning xi

Java Message Service (JMS) Information .A-9

Java Database Connectivity (JDBC) Information .A-10

General Performance Information .A-10

xii BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning xiii

About This Document

To achieve the best performance for your WebLogic Server™ platform, you need to optimize the
performance of the components that constitute the WebLogic Server environment. This
document provides the following performance-related information:

Chapter 1, “Top Tuning Recommendations for WebLogic Server,” discusses the most
frequently recommended steps for achieving optimal performance tuning for applications
running on WebLogic Server.

Chapter 2, “Tuning Hardware, Operating System, and Network Performance,” discusses
hardware, operating system, and network performance issues.

Chapter 3, “Tuning Java Virtual Machines (JVMs),” discusses JVM tuning considerations.

Chapter 4, “Tuning WebLogic Server,” contains information on how to tune WebLogic
Server to match your application needs.

Chapter 5, “Tuning WebLogic Server EJBs,” describes how to tune WebLogic Server
Enterprise Java Beans to match your application needs.

Chapter 6, “Tuning WebLogic Server Applications,” discusses application tuning
considerations.

Appendix A, “Related Reading: Performance Tools and Information,” provides an
extensive performance-related reading list.

The document also contains an index.

About Th is Document

xiv BEA WebLogic Server Performance and Tuning

Audience
This document is written for people who monitor performance and tune the components in a
WebLogic Server platform. It is assumed that readers know server administration and hardware
performance tuning fundamentals, the WebLogic Server platform, XML, and the Java
programming language.

eDocs Web Site
BEA product documentation is available on the BEA corporate Web site at
http://www.bea.com. From the BEA Home page, click on Product Documentation and follow
the link to BEA WebLogic Server Documents. Or you can go directly to the WebLogic Server
Product Documentation page at http://edocs.bea.com/wls/docs81/index.html.

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information
For related information about administering and tuning WebLogic Server, see:

WebLogic Server Capacity Planning Guide at
http://edocs.bea.com/wls/docs81/pdf/cappplanpublic.pdf.

Configuring and Managing WebLogic Server at
http://edocs.bea.com/wls/docs81/adminguide/index.html.

BEA dev2dev Web site.

The WebLogic Server performance “weblogic.developer.interest.performance” newsgroup
available on the BEA Newsgroup server.

BEA WebLogic Server Performance and Tuning xv

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, and the title
and document date of your documentation. If you have questions about this version of BEA
WebLogic Server, or if you have problems installing and running it, contact BEA Customer
Support through BEA WebSupport at http://www.bea.com, or by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

About Th is Document

xvi BEA WebLogic Server Performance and Tuning

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

Convention Usage

BEA WebLogic Server Performance and Tuning xvii

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

About Th is Document

xviii BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 1-1

C H A P T E R 1

Top Tuning Recommendations for
WebLogic Server

Performance tuning WebLogic Server and your WebLogic Server application is a complex and
iterative process. To get you started, we have created a “top ten” list of recommendations to help
you optimize your application’s performance. These tuning techniques are applicable to nearly
all WebLogic applications. Although we highly recommend performing these tasks in the
sequence they are presented, this isn’t a requirement.

“Understand Your Performance Objectives” on page 1-2

“Tune the Operating System” on page 1-2

“Optimize Your Database” on page 1-4

“Identify the Best JVM Settings” on page 1-7

“Tune WebLogic Server Performance Parameters” on page 1-7

“Monitor Disk and CPU Utilization” on page 1-8

“Monitor Data Transfers Across the Network” on page 1-9

“Check For Frequent Standard I/O or Logging” on page 1-10

“Locate Bottlenecks in Your Applications” on page 1-10

“Tune Your Application” on page 1-10

Top Tun ing Recommendat ions fo r WebLog ic Se rve r

1-2 BEA WebLogic Server Performance and Tuning

Understand Your Performance Objectives
Gather information about the level of activity expected on your server, the anticipated number of
users, the number of requests, acceptable response time, and an optimal hardware configuration
(e.g., fast CPU, disk size vs. speed, sufficient memory, and so on.).

There is no single formula for determining your hardware requirements. The process of
determining what type of hardware and software configuration is required to meet application
needs adequately is called capacity planning. Capacity planning requires assessment of your
system performance goals and an understanding of your application. Capacity planning for server
hardware should focus on maximum performance requirements.

For more information about capacity planing for WebLogic Server, see the BEA WebLogic Server
Capacity Planning Guide.

Tune the Operating System
Each operating system sets default tuning parameters differently. For Windows platforms, the
default settings are usually sufficient. However, the UNIX and Linux operating systems usually
need to be tuned appropriately.

UNIX Tuning Parameters
Use the following guidelines when tuning UNIX operating systems supported by WebLogic
Server.

Solaris TCP Tuning Parameters
For better TCP (transmission control protocol) socket performance, set the
tcp_time_wait_interval parameter as follows:

ndd -set /dev/tcp tcp_time_wait_interval 60000

This parameter determines the time interval that a TCP socket is kept alive after issuing a close
call. The default value of this parameter on Solaris is four minutes. When a large number of
clients connect for a short amount of time, holding these socket resources can have a significant
negative impact on performance. Setting this parameter to a value of 60000 (60 seconds) has
shown a significant throughput enhancement when running benchmark JSP tests on Solaris. You
might want to reduce this setting further if the server gets backed up with a queue of half-opened
connections.

Tune the Operat ing System

BEA WebLogic Server Performance and Tuning 1-3

Note: Prior to Solaris 2.7, the tcp_time_wait_interval parameter was called
tcp_close_wait_interval.

For additional recommended Solaris tunable settings, see:

“Setting TCP Parameters With the ndd Command” on page 2-4

“Setting Parameters In the /etc/system File” on page 2-4

“CE Gigabit Network Card Settings” on page 2-5

For more information about Solaris tuning options, see:

Solaris Tunable Parameters Reference Manual (Solaris 8)

Solaris Tunable Parameters Reference Manual (Solaris 9)

HP-UX Tuning Parameters
For HP-UX tuning information, see:

Tunable Kernel Parameters reference documentation.

Java Performance Tuning on HP-UX

AIX Tuning Parameters
See the AIX 5L Version 5.2 Performance Management Guide.

Linux Tuning Parameters
For better packet transfer performance, set the /sbin/ifconfig lo mtu parameter as follows:

/sbin/ifconfig lo mtu 1500

The mtu (maximum transfer unit) parameter refers to largest number of bytes that a packet can
carry over the network. If the packet size is set too low, then your network performance will
decrease due to fragmented data.

For additional recommended Linux tunable settings for WebLogic Server, see “Linux Tuning
Parameters” on page 2-6. For general information about Linux tuning, consult your Linux
vendor’s documentation. Also, the Ipsysctl Tutorial 1.0.4 describes all of the IP options provided
by Linux.

Top Tun ing Recommendat ions fo r WebLog ic Se rve r

1-4 BEA WebLogic Server Performance and Tuning

Windows Tuning Parameters
For Windows platforms, the default settings are usually sufficient. For more information about
Windows 2000 tuning options, see:

The Microsoft Windows 2000 TCP/IP Implementation Details white paper.

The Windows 2000 Performance Tuning white paper.

Optimize Your Database
Your database can be a major enterprise-level bottleneck. Configure your database for optimal
performance by following the tuning guidelines in this section and in the product documentation
for the database you are using.

General Suggestions
Here are some general database tuning suggestions:

Good database design — Distribute the database workload across multiple disks to avoid
or reduce disk overloading. Good design also includes proper sizing and organization of
tables, indexes, logs, and so on.

Disk I/O optimization — Disk I/O optimization is related directly to throughput and
scalability. Access to even the fastest disk is orders of magnitude slower than memory
access. Whenever possible, optimize the number of disk accesses. In general, selecting a
larger block/buffer size for I/O reduces the number of disk accesses and might substantially
increase throughput in a heavily loaded production environment.

Checkpointing — This mechanism periodically flushes all dirty cache data to disk, which
increases the I/O activity and system resource usage for the duration of the checkpoint.
Although frequent checkpointing can increase the consistency of on-disk data, it can also
slow database performance. Most database systems have checkpointing capability, but not
all database systems provide user-level controls. Oracle, for example, allows administrators
to set the frequency of checkpoints while users have no control over SQLServer 7.x
checkpoints. For recommended settings, see the product documentation for the database
you are using.

Database-Specific Tuning
Here are some basic tuning suggestions for Oracle, SQL Server, and Sybase. Again, you should
also check the tuning guidelines in your database-specific vendor documentation.

Opt imize Your Database

BEA WebLogic Server Performance and Tuning 1-5

Oracle
This section describes performance tuning for Oracle 8.1.7.

Number of processes — On most operating systems, each connection to the Oracle server
spawns a shadow process to service the connection. Thus, the maximum number of
processes allowed for the Oracle server must account for the number of simultaneous
users, as well as the number of background processes used by the Oracle server. The
default number is usually not big enough for a system that needs to support a large number
of concurrent operations. For platform-specific issues, see your Oracle administrator’s
guide. The current setting of this parameter can be obtained with the following query:

SELECT name, value FROM v$parameter WHERE name = 'processes';

Shared pool size — The share pool in an important part of the Oracle server system global
area (SGA). The SGA is a group of shared memory structures that contain data and control
information for one Oracle database instance. If multiple users are concurrently connected
to the same instance, the data in the instance’s SGA is shared among the users. The shared
pool portion of the SGA caches data for two major areas: the library cache and the
dictionary cache. The library cache stores SQL-related information and control structures
(for example, parsed SQL statement, locks). The dictionary cache stores operational
metadata for SQL processing.

For most applications, the shared pool size is critical to Oracle performance. If the shared
pool is too small, the server must dedicate resources to managing the limited amount of
available space. This consumes CPU resources and causes contention because Oracle
imposes restrictions on the parallel management of the various caches. The more you use
triggers and stored procedures, the larger the shared pool must be. The
SHARED_POOL_SIZE initialization parameter specifies the size of the shared pool in bytes.

The following query monitors the amount of free memory in the share pool:

SELECT * FROM v$sgastat
WHERE name = 'free memory' AND pool = 'shared pool';

Maximum opened cursor — To prevent any single connection taking all the resources in
the Oracle server, the OPEN_CURSORS initialization parameter allows administrators to limit
the maximum number of opened cursors for each connection. Unfortunately, the default
value for this parameter is too small for systems such as WebLogic Server. Cursor
information can be monitored using the following query:

SELECT name, value FROM v$sysstat
WHERE name LIKE 'opened cursor%';

Database block size — A block is Oracle’s basic unit for storing data and the smallest unit
of I/O. One data block corresponds to a specific number of bytes of physical database

Top Tun ing Recommendat ions fo r WebLog ic Se rve r

1-6 BEA WebLogic Server Performance and Tuning

space on disk. This concept of a block is specific to Oracle RDBMS and should not be
confused with the block size of the underlying operating system. Note that since the block
size affects physical storage, this value can be set only during the creation of the database;
it cannot be changed once the database has been created. The current setting of this
parameter can be obtained with the following query:

SELECT name, value FROM v$parameter WHERE name = 'db_block_size';

Sort area size — Increasing the sort area increases the performance of large sorts because it
allows the sort to be performed in memory during query processing. This can be important,
as there is only one sort area for each connection at any point in time. The default value of
this init.ora parameter is usually the size of 6–8 data blocks. This value is usually
sufficient for OLTP operations but should be increased for decision support operation,
large bulk operations, or large index-related operations (for example, recreating an index).
When performing these types of operations, you should tune the following init.ora
parameters (which are currently set for 8K data blocks):

sort_area_size = 65536
sort_area_retained_size = 65536

Microsoft SQL Server
The following guidelines pertain to performance tuning parameters for Microsoft SQL Server
databases. For more information about these parameters, see your Microsoft SQL Server
documentation.

Store tempdb on a fast I/O device.

Increase the recovery interval if perfmon shows an increase in I/O.

Use an I/O block size larger than 2 KB.

Sybase
The following guidelines pertain to performance tuning parameters for Sybase databases. For
more information about these parameters, see your Sybase documentation.

Lower recovery interval setting results in more frequent checkpoint operations, resulting in
more I/O operations.

Use an I/O block size larger than 2 KB.

Sybase controls the number of engines in a symmetric multiprocessor (SMP) environment.
They recommend configuring this setting to equal the number of CPUs minus 1.

I den t i f y the Bes t JVM Set t ings

BEA WebLogic Server Performance and Tuning 1-7

Identify the Best JVM Settings
Tune your JVM’s heap garbage collection and heap size parameters to get the best performance
out of your JVM. The Sun HotSpot and WebLogic JRockit JVM parameters that most
significantly affect performance are listed below. For more detailed information, consult your
JVM vendor’s tuning documentation, as well as the JVM-related reading material at “Java Virtual
Machine (JVM) Information” on page A-8.

Sun JDK
When using the HotSpot VM option (-server or -client), experiment with the following
garbage collection parameters:

-Xms and -Xmx (use equal settings at start up)

-XX:NewSize and -XX:MaxNewSize

-XX:SurvivorRatio

-XX:+UseISM -XX:+AggressiveHeap

For more information about tuning the HotSpot JVM, see “JVM Heap Size and Garbage
Collection” on page 3-3.

JRockit JDK
When using JRockit’s JVM, experiment with the following garbage collection parameters:

-Xms and -Xmx (use equal settings at startup)

-Xns

-Xgc: parallel

-XXenablefatspin

Also, see WebLogic JRockit Documentation.

Tune WebLogic Server Performance Parameters
The WebLogic Server configuration file (config.xml) contains a number of OOTB
(out-of-the-box) performance-related parameters that can be fine-tuned depending on your
environment and applications. Tuning these parameters based on your system requirements

Top Tun ing Recommendat ions fo r WebLog ic Se rve r

1-8 BEA WebLogic Server Performance and Tuning

(rather than running with default settings) can greatly improve both single-node performance and
the scalability characteristics of an application.

Try experimenting with the following WebLogic Server configuration tuning parameters to
determine your system’s “sweet spot” for optimal performance:

Modify the value of the execute queue’s Thread Count, as described in “Tuning the Default
Execute Queue Threads” on page 4-6.

If possible, use native performance packs (NativeIOEnabled=true), as described in
“Using WebLogic Server “Native IO” Performance Packs” on page 4-5.

Use application-specific execute queues, as described in “Using Execute Queues to Control
Thread Usage” on page 6-5.

When using a JDBC Connection Pool, modify the following attributes:

– DriverName: Use the thin driver or jDriver, as described in “Using JDBC Drivers with
WebLogic Server” in Programming WebLogic JDBC.

– InitialCapacity: Set this to equal the MaxCapacity value, as described in “Tuning JDBC
Connection Pool Initial Capacity” on page 4-15.

– MaxCapacity: Set the MaxCapacity value to at least equal the Thread Count value, and
then, if necessary, increase it again until you find the right number, as described in
“Tuning JDBC Connection Pool Maximum Capacity” on page 4-15.

Set the connection pool size to equal the execute queue’s Thread Count, as described in
“How JDBC Connection Pools Enhance Performance” on page 4-14.

Set the statement cache as described in “Caching Prepared and Callable Statements” on
page 4-16.

Use multiple execute queues for servlets and JSPs, as described in “Assigning Servlets and
JSPs to Execute Queues” on page 6-8, and for EJBs and RMI, as described in “Assigning
EJBs and RMI Objects to Execute Queues” on page 6-9.

Consider switching the default Java compiler for JSP compilation, javac, which is
significantly slower than jikes or sj, as described in “Setting Your Java Compiler” on
page 4-16.

Monitor Disk and CPU Utilization
After following the previous steps, run your application under a high load while monitoring the:

Moni to r Data T rans fe rs Across the Network

BEA WebLogic Server Performance and Tuning 1-9

Application server (disk and CPU utilization)

Database server (disk and CPU utilization)

To check your disk utilization on Solaris or Linux, use the iostat -D <interval> command,
where the interval value determines how many seconds you want to elapse between
monitoring cycles. To check your CPU utilization, simply leave off the -D flag (iostat
<interval>).

For Windows, use the Performance Monitor tool (perfmon), to monitor both your disk and CPU
utilization.

The goal is to get to a point where the application server becomes 100 percent utilized. If you find
that the application server CPU is not close to 100 percent, confirm whether the database is
bottlenecked. If the database CPU is 100 percent utilized, then check your application SQL calls
query plans. For example, are your SQL calls using indexes or doing linear searches? Also,
confirm whether there are too many ORDER BY clauses used in your application that are affecting
the database CPU.

If you discover that the database disk is the bottleneck (for example, if the disk is 100 percent
utilized), try moving to faster disks or to a RAID (redundant array of independent disks)
configuration, assuming the application is not doing more writes then required.

Once you know the database server is not the bottleneck, determine whether the application
server disk is the bottleneck. Some of the disk bottlenecks for application server disks are:

JMS file store writes

Transaction logging (tlogs)

HTTP logging

Server logging

The disk I/O on an application server can be optimized using faster disks or RAID, disabling
synchronous JMS writes, using JTA direct writes for tlogs, or increasing the HTTP log buffer.

Monitor Data Transfers Across the Network
Check the amount of data transferred between the application and the application server, and
between the application server and the database server. This amount should not exceed your
network bandwidth; otherwise, your network becomes the bottleneck. To verify this, monitor the
network statistics for retransmission and duplicate packets. This can be done using the following
command:

Top Tun ing Recommendat ions fo r WebLog ic Se rve r

1-10 BEA WebLogic Server Performance and Tuning

netstat -s -P tcp

For instructions on viewing other TCP parameters using the netstat -s -P command, see
“Setting TCP Parameters With the ndd Command” on page 2-4.

Check For Frequent Standard I/O or Logging
Make sure your application is not doing too much standard I/O or excessive logging. Either
situation could significantly slow system performance. In production environments, remove all
system.out.println statements from your code, as these statements should only be used in
development environments for debugging purposes.

Locate Bottlenecks in Your Applications
If you determine that neither the network nor the database server is the bottleneck, start looking
at your WebLogic Server applications. Most importantly, is the machine running WebLogic
Server able to get 100 percent CPU utilization with a high client load? If the answer is no, then
check if there is any locking taking place in the application. You should profile your application
using a commercially available tool (for example, JProbe or OptimizeIt) to pinpoint bottlenecks
and improve application performance.

Tip: Even if you find that the CPU is 100 percent utilized, you should profile your application
for performance improvements.

For more information about application profiling tools, see “Using Performance Analysis Tools”
on page 6-2.

Tune Your Application
This section contains recommended application-specific tuning suggestions for performance
improvement.

EJBs
Stateless session beans and MDBs (message-driven beans) — For maximum concurrency,
the pool sizes should be at least as large as the thread count of the execute queue that
handles requests to such beans.

Use concurrency strategy.

Experiment with EJB pool settings.

Tune Your Appl i cat i on

BEA WebLogic Server Performance and Tuning 1-11

Use Call-by-reference.

Cache EJBs.

Increase the MDB pool size for asynchronous message consumption.

See Chapter 5, “Tuning WebLogic Server EJBs.”

JSPs and Servlets
Disable checks for JSP page checks and servlet reloading.

Use in-memory session persistence, as described in “Managing Session Persistence” on
page 6-4.

Precompile JSPs, as described in “Precompiling JSPs” in Programming WebLogic JSP

See “Introduction to Programming” in Programming WebLogic HTTP Servlets.

JMS
Avoid JMS message selectors and use multiple queues/topics to do message selection.

Use asynchronous (onMessage) JMS consumers instead of synchronous receivers.

Defer JMS acknowledgments and commits.

See the “WebLogic JMS Performance Guide” white paper on BEA dev2dev. For administrative
tuning guidelines, see “JMS Tuning” in the Administration Console Online Help.

JDBC
Tune your JDBC connection pool’s Initial Capacity and Max Capacity settings to complete
database requests as fast as possible, rather than creating new connections.

Cache prepared and callable statements used in your applications to minimize processing
costs.

Make your transactions single-batch by collecting a set of data operations and submitting
an update transaction in one statement in the form.

See “How JDBC Connection Pools Enhance Performance” on page 4-14 and “Performance
Tuning Your JDBC Application” in Programming WebLogic JDBC.

Top Tun ing Recommendat ions fo r WebLog ic Se rve r

1-12 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 2-1

C H A P T E R 2

Tuning Hardware, Operating System,
and Network Performance

The following sections describe issues related to optimizing hardware, operating system, and
network performance:

“Hardware Tuning” on page 2-1

“Operating System Tuning” on page 2-3

“Network Performance” on page 2-8

Hardware Tuning
When you examine performance, a number of factors influence how much capacity a given
hardware configuration will need in order to support WebLogic Server and a given application.
The hardware capacity required to support your application depends on the specifics of the
application and configuration. You should consider how each factor applies to your configuration
and application. Before continuing with this section, here are some recommended starting points
for planning your hardware configuration:

BEA WebLogic Server Capacity Planning Guide, at {DOCROOT}/capplan/index.html, is
a guide for capacity planning efforts for enterprise-level solutions built with WebLogic
Server, with a focus on server hardware requirements.

The Standard Performance Evaluation Corporation, at www.spec.org, provides a set of
standardized benchmarks and metrics for evaluating computer system performance.

Tuning Hardware , Operat ing Sys tem, and Network Pe r fo rmance

2-2 BEA WebLogic Server Performance and Tuning

Supported Platforms
The following table provides some links to the information on the Supported Configurations pages,
at {PLATFORM}/index.html, which contains the latest certification information on the
hardware/operating system platforms that are supported for each release of WebLogic Server.

Table 2-1 Platform-Specific Tuning Information

Platform For more information

Bull/IBM pSeries with AIX See the Bull/IBM links on the Supported Configurations
pages at {PLATFORM}/index.html.
• Bull/IBM pSeries with AIX 5L v5.1
• Bull/IBM pSeries with AIX 5L v5.2

Hewlett-Packard 9000 with
HP-UX

See Hewlett-Packard HP/9000 with HP-UX 11.0 and 11i on
the Supported Configurations pages at
{PLATFORM}/hpux/index.html.

See also “Hewlett-Packard Company Information” on
page A-4.

Intel Pentium-compatible
with Windows

See the Intel/Windows links on the Supported
Configurations pages at {PLATFORM}/index.html.
• Windows 2000 Server or Windows 2000 Advanced

Server
• Windows 2000 Professional
• Windows XP

See also “Microsoft Information” on page A-4.

Intel 32-bit-compatible with
Red Hat Advanced Server

See the Red Hat links on the Supported Configurations pages
at {PLATFORM}/index.html.
• Red Hat Enterprise Linux AS 2.1 and ES 2.1 for IA-32
• Red Hat Enterprise Linux WS 2.1 for IA-32

See also “Linux OS Information” on page A-3.

Operat ing Sys tem Tun ing

BEA WebLogic Server Performance and Tuning 2-3

Operating System Tuning
Tune your operating system according to your operating system documentation. BEA certifies
WebLogic Server on multiple operating systems on the Supported Configurations pages, at
{PLATFORM}/index.html.

For Windows platforms, the default settings are usually sufficient. However, the Solaris and
Linux platforms usually need to be tuned appropriately.

Solaris Tuning Parameters
The following sections provide information on tuning Solaris operating systems.

Note: The following sections list common parameters that can enhance performance. These
lists are not all inclusive and parameters may be different or have different defaults for
different Solaris operating systems.

Intel 64-bit-compatible with
SuSE Linux

See SuSE Linux (SLES 8) for IA-32 on the Supported
Configurations pages at {PLATFORM}/index.html.

See also “Linux OS Information” on page A-3.

Sun Microsystems SPARC
with Solaris

See the Sun Microsystems SPARC Solaris links on the
Supported Configurations pages at
{PLATFORM}/index.html.
• SPARC with Solaris 8
• SPARC with Solaris 9
• SPARC with Solaris 10

See also “Sun Microsystems Information” on page A-2.

Table 2-1 Platform-Specific Tuning Information

Platform For more information

Tuning Hardware , Operat ing Sys tem, and Network Pe r fo rmance

2-4 BEA WebLogic Server Performance and Tuning

Setting TCP Parameters With the ndd Command
This section lists important TCP tuning parameters that when tuned, can enhance application
performance:

Set the following TCP-related tuning parameters using the ndd command, as demonstrated in the
following example:

ndd -set /dev/tcp tcp_conn_req_max_q 16384

Tip: Use the netstat -s -P tcp command to view all available TCP parameters.

Setting Parameters In the /etc/system File
This section lists important /etc/system file tuning parameters that when tuned, can enhance
application performance. Each socket connection to the server consumes a file descriptor. To

Table 2-2 Suggested TCP-Related Parameters

Parameter

/dev/tcp tcp_time_wait_interval

/dev/tcp tcp_conn_req_max_q

/dev/tcp tcp_conn_req_max_q0

/dev/tcp tcp_ip_abort_interval

/dev/tcp tcp_keepalive_interval

/dev/tcp tcp_rexmit_interval_initial

/dev/tcp tcp_rexmit_interval_max

/dev/tcp tcp_rexmit_interval_min

/dev/tcp tcp_smallest_anon_port

/dev/tcp tcp_xmit_hiwat

/dev/tcp tcp_recv_hiwat

/dev/ce instance

/dev/ce rx_intr_time

Operat ing Sys tem Tun ing

BEA WebLogic Server Performance and Tuning 2-5

optimize socket performance, you need to configure your operating system to have the
appropriate number of file descriptors. Therefore, you should change the default file descriptor
limits, as well as the hash table size and other tuning parameters in the /etc/system file, to the
recommended values in the following table.

Note: You must reboot your machine anytime you modify /etc/system parameters.

CE Gigabit Network Card Settings
This section lists important CE Gigabit Network Card tuning parameters that when tuned, can
enhance application performance:

Table 2-3 Suggested /etc/system Parameters

Parameter

set rlim_fd_cur

set rlim_fd_max

set tcp:tcp_conn_hash_size (Solaris
8,9)

set ip:ipcl_conn_hash_size (Solaris
10)

set shmsys:shminfo_shmmax

Note: This should only be set for machines that have
at least 4 GB RAM or higher.

set autoup

set tune_t_fsflushr

Table 2-4 Suggested CE Gigabit Card Parameters

Parameter

set ce:ce_bcopy_thresh

set ce:ce_dvma_thresh

Tuning Hardware , Operat ing Sys tem, and Network Pe r fo rmance

2-6 BEA WebLogic Server Performance and Tuning

For more information about Solaris tuning options, see:

Solaris Tunable Parameters Reference Manual (Solaris 8), at
http://docs.sun.com/db/doc/816-0607

Solaris Tunable Parameters Reference Manual (Solaris 9), at
http://docs.sun.com/db/doc/806-7009

Solaris Tunable Parameters Reference Manual (Solaris 10), at
http://docs.sun.com/app/docs/doc/817-0404

Linux Tuning Parameters
This section lists important Linux tuning parameters that when adjusted, can enhance application
performance:

set ce:ce_taskq_disable

set ce:ce_ring_size

set ce:ce_comp_ring_size

set ce:ce_tx_ring_size

Table 2-5 Suggested Linux Values

Parameter

/sbin/ifconfig lo mtu

kernel.msgmni

kernel.sem

fs.file-max

kernel.shmmax

net.ipv4.tcp_max_syn_backlog

Table 2-4 Suggested CE Gigabit Card Parameters

Parameter

Operat ing Sys tem Tun ing

BEA WebLogic Server Performance and Tuning 2-7

For more information about Linux tuning, you should consult your Linux vendor’s
documentation. Also, the Ipsysctl Tutorial 1.0.4, at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html, describes all of
the IP options provided by Linux.

HP-UX Tuning Parameters
This section lists important HP-UX operating system tuning parameters that when adjusted, can
enhance application performance:

For more HP-UX tuning information, see the Tunable Kernel Parameters reference
documentation, at http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html.

Other Operating System Tuning Information
For more information about Windows, HP-UX, and AIX tuning options, refer to the following
Web sites:

For Windows tuning information, see the Microsoft Windows 2000 TCP/IP
Implementation Details white paper, at
http://www.microsoft.com/windows2000/techinfo/howitworks/communication
s/networkbasics/tcpip_implement.asp.

For AIX tuning information, see the AIX 5L Version 5.2 Performance Management Guide,
at
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd

.htm.

Table 2-6 Suggested HP-UX TCP Values

Parameter

tcp_conn_req_max

tcp_xmit_hiwater_def

tcp_ip_abort_interval

tcp_rexmit_interval_initial

tcp_keepalive_interval

Tuning Hardware , Operat ing Sys tem, and Network Pe r fo rmance

2-8 BEA WebLogic Server Performance and Tuning

Maximum memory for a user process — Check your operating system documentation for
the maximum memory available for a user process. In some operating systems, this value
is as low as 128 MB. Also, refer to your operating system documentation.For more
information about memory management, see Chapter 3, “Tuning Java Virtual Machines
(JVMs).”

Network Performance
Network performance is affected when the supply of resources is unable to keep up with the
demand for resources. Today’s enterprise-level networks are very fast and are now rarely the
direct cause of performance in well-designed applications. However, if you find that you have a
problem with one or more network components (hardware or software), work with your network
administrator to isolate and eliminate the problem. You should also verify that you have an
appropriate amount of network bandwidth available for WebLogic Server and the connections it
makes to other tiers in your architecture, such as client and database connections. Therefore, it is
important to continually monitor your network performance to troubleshoot potential
performance bottlenecks.

Determining Network Bandwidth
A common definition of bandwidth is “the rate of the data communications transmission, usually
measured in bits-per-second, which is the capacity of the link to send and receive
communications.” A machine running WebLogic Server requires enough network bandwidth to
handle all WebLogic Server client connections. In the case of programmatic clients, each client
JVM has a single socket to the server, and each socket requires dedicated bandwidth. A
WebLogic Server instance handling programmatic clients should have 125–150 percent of the
bandwidth that a similar Web server would handle. If you are handling only HTTP clients, expect
a bandwidth requirement similar to a Web server serving static pages.

To determine whether you have enough bandwidth in a given deployment, you can use the
network monitoring tools provided by your network operating system vendor to see what the load
is on the network system. You can also use common operating system tools, such as the netstat
command for Solaris or the System Monitor (perfmon) for Windows, to monitor your network
utilization. If the load is very high, bandwidth may be a bottleneck for your system.

Also monitor the amount of data being transferred across the your network by checking the data
transferred between the application and the application server, and between the application server
and the database server. This amount should not exceed your network bandwidth; otherwise, your
network becomes the bottleneck. To verify this, monitor the network statistics for retransmission
and duplicate packets, as follows:

Network Per fo rmance

BEA WebLogic Server Performance and Tuning 2-9

netstat -s -P tcp

For instructions on viewing other TCP parameters using the netstat -s -P command, see
“Setting TCP Parameters With the ndd Command” on page 2-4.

LAN Infrastructure
Your local area network must be fast enough to handle your application’s peak capacity. If your
network is fully utilized, in that the amount of traffic consistently exceeds its bandwidth capacity,
yet your WebLogic Server machine is not fully utilized, do one of the following:

Redesign the network and redistribute the load.

Reduce the number of network clients.

Increase the number of systems handling the network load.

Tuning Hardware , Operat ing Sys tem, and Network Pe r fo rmance

2-10 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 3-1

C H A P T E R 3

Tuning Java Virtual Machines (JVMs)

The Java virtual machine (JVM) is a virtual “execution engine” instance that executes the
bytecodes in Java class files on a microprocessor. How you tune your JVM affects the
performance of WebLogic Server and your applications.

The following sections discuss JVM tuning options for WebLogic Server:

“JVM Tuning Considerations” on page 3-2

“Which JVM for Your System?” on page 3-2

“JVM Heap Size and Garbage Collection” on page 3-3

“Specifying Heap Size Values” on page 3-6

“Automatically Logging Low Memory Conditions” on page 3-9

“Manually Requesting Garbage Collection” on page 3-10

“Setting Java HotSpot VM Options” on page 3-10

Tun ing Java V i r tua l Machines (JVMs)

3-2 BEA WebLogic Server Performance and Tuning

JVM Tuning Considerations
Table 3-1 presents general JVM tuning considerations for WebLogic Server.

Which JVM for Your System?
Although this section focuses on Sun Microsystems’ J2SE 1.4 JVM for the Windows, UNIX, and
Linux platforms, the BEA WebLogic JRockit JVM was developed expressly for server-side

Table 3-1 General JVM Tuning Considerations

Tuning Factor Information Reference

JVM vendor and version Use only production JVMs on which WebLogic Server has
been certified. WebLogic Server 8.1 supports only those
JVMs that are J2SE 1.4-compliant.

The Supported Configurations pages at
{PLATFORM}/index.html are frequently updated and
contains the latest certification information on various
platforms.

Tuning heap size and garbage
collection

For WebLogic Server heap size tuning details, see “JVM
Heap Size and Garbage Collection” on page 3-3.

Choosing a GC (garbage
collection) scheme

Depending on your application, there are a number of GC
schemes available for managing your system memory, as
described in “Choosing a Garbage Collection Scheme” on
page 3-4.

Mixed client/server JVMs Deployments using different JVM versions for the client and
server are supported in WebLogic Server. See the support
page for Mixed Client/Server JVMs, at
{PLATFORM}/index.html#mix.

UNIX threading models Choices you make about Solaris threading models can have
a large impact on the performance of your JVM on Solaris.
You can choose from multiple threading models and
different methods of synchronization within the model, but
this varies from JVM to JVM.

See “Performance Documentation For the Java Hotspot
Virtual Machine: Threading” on Sun Microsystems’ Web
site at
http://http://java.sun.com/docs/hotspot/t
hreads/threads.html.

JVM Heap S i ze and Garbage Co l l ec t i on

BEA WebLogic Server Performance and Tuning 3-3

applications and optimized for Intel architectures to ensure reliability, scalability, manageability,
and flexibility for Java applications. For more information about the benefits of using JRockit on
Windows and Linux platforms, see WebLogic JRockit Documentation, at
http://e-docs.bea.com/more_jrockit.html.

For more information on JVMs in general, see the Introduction to the JVM specification, at
http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduction.doc.ht

ml#3057. For links to related reading for JVM tuning, see Appendix A, “Related Reading:
Performance Tools and Information.”

Changing To a Different JVM
When you create a domain, if you choose to customize the configuration, the Configuration
Wizard presents a list of SDKs that WebLogic Server installed. From this list, you choose the
JVM that you want to run your domain and the wizard configures the BEA start scripts based on
your choice. After you create a domain, if you want to use a different JVM, you can modify the
scripts as follows. For more information, see “Changing the JVM That Runs Servers” at
{DOCROOT}/adminguide/startstop.html#ChangingJVM.

JVM Heap Size and Garbage Collection
Garbage collection is the JVM’s process of freeing up unused Java objects in the Java heap.The
Java heap is where the objects of a Java program live. It is a repository for live objects, dead
objects, and free memory. When an object can no longer be reached from any pointer in the
running program, it is considered “garbage” and ready for collection.

The JVM heap size determines how often and how long the VM spends collecting garbage. An
acceptable rate for garbage collection is application-specific and should be adjusted after
analyzing the actual time and frequency of garbage collections. If you set a large heap size, full
garbage collection is slower, but it occurs less frequently. If you set your heap size in accordance
with your memory needs, full garbage collection is faster, but occurs more frequently.

The goal of tuning your heap size is to minimize the time that your JVM spends doing garbage
collection while maximizing the number of clients that WebLogic Server can handle at a given
time. To ensure maximum performance during benchmarking, you might set high heap size
values to ensure that garbage collection does not occur during the entire run of the benchmark.

You might see the following Java error if you are running out of heap space:

Tun ing Java V i r tua l Machines (JVMs)

3-4 BEA WebLogic Server Performance and Tuning

java.lang.OutOfMemoryError <<no stack trace available>>

java.lang.OutOfMemoryError <<no stack trace available>>

Exception in thread "main"

To modify heap space values, see “Specifying Heap Size Values” on page 3-6.

To configure WebLogic Server to detect automatically when you are running out of heap space
and to address low memory conditions in the server, see “Automatically Logging Low Memory
Conditions” on page 3-9.

Choosing a Garbage Collection Scheme
Depending on which JVM you are using, you can choose from several garbage collection
schemes to manage your system memory. For example, some garbage collection schemes are
more appropriate for a given type of application. Once you have an understanding of the
workload of the application and the different garbage collection algorithms utilized by the JVM,
you can optimize the configuration of the garbage collection.

Refer to the following links for in-depth discussions of garbage collection options for your JVM:

For an overview of the garbage collection schemes available with Sun’s HotSpot VM, see
Tuning Garbage Collection with the 1.4.2 Java Virtual Machine, at
http://java.sun.com/docs/hotspot/gc1.4.2.index.htm.

For a comprehensive explanation of the collection schemes available with JDK 1.4.1, see
Improving Java Application Performance and Scalability by Reducing Garbage Collection
Times and Sizing Memory Using JDK 1.4.1, at
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecoll
ection2/index.html

For a discussion of the garbage collection schemes available with the BEA WebLogic
JRockit JVM, see WebLogic JRockit Documentation, at
http://e-docs.bea.com/more_jrockit.html.

For some pointers about garbage collection from an HP perspective, see Tuning Garbage
Collection with the 1.4.2 Java Virtual Machine, at
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1

701,1604,00.html.

Using Verbose Garbage Collection to Determine Heap Size
The HotSpot VM’s verbose garbage collection option (verbosegc) enables you to measure
exactly how much time and resources are put into garbage collection. To determine the most

JVM Heap S i ze and Garbage Co l l ec t i on

BEA WebLogic Server Performance and Tuning 3-5

effective heap size, turn on verbose garbage collection and redirect the output to a log file for
diagnostic purposes.

The following steps outline this procedure:

1. Monitor the performance of WebLogic Server under maximum load while running your
application.

2. Use the -verbosegc option to turn on verbose garbage collection output for your JVM and
redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic Server
informational and error messages, and provides a more useful log for diagnostic purposes.

For example, on Windows and Solaris, enter the following:
% java -ms32m -mx200m -verbosegc -classpath $CLASSPATH
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\bea"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"
weblogic.Server
>> logfile.txt 2>&1

where the logfile.txt 2>&1 command redirects both the standard error and standard
output to a log file.

On HPUX, use the following option to redirect stderr stdout to a single file:
-Xverbosegc:file=/tmp/gc$$.out

where $$ maps to the process ID (PID) of the Java process. Because the output includes
timestamps for when garbage collection ran, you can infer how often garbage collection
occurs.

3. Analyze the following data points:

a. How often is garbage collection taking place? In the weblogic.log file, compare the
time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take longer than
3 to 5 seconds.

c. What is your average memory footprint? In other words, what does the heap settle back
down to after each full garbage collection? If the heap always settles to 85 percent free,
you might set the heap size smaller.

Tun ing Java V i r tua l Machines (JVMs)

3-6 BEA WebLogic Server Performance and Tuning

4. If you are using 1.4 Java HotSpot JVM, set the New generation heap sizes.

See “Specifying Heap Size Values” on page 3-6 and Table 3-2, “Java Heap Size Options,”
on page 3-8.

Note: For information about setting the appropriate heap sizes for the BEA WebLogic
JRockit JVM, see WebLogic JRockit Documentation, at
http://e-docs.bea.com/more_jrockit.html.

5. Make sure that the heap size is not larger than the available free RAM on your system.

Use as large a heap size as possible without causing your system to “swap” pages to disk.
The amount of free RAM on your system depends on your hardware configuration and the
memory requirements of running processes on your machine. See your system
administrator for help in determining the amount of free RAM on your system.

6. If you find that your system is spending too much time collecting garbage (your allocated
“virtual” memory is more than your RAM can handle), lower your heap size.

Typically, you should use 80 percent of the available RAM (not taken by the operating
system or other processes) for your JVM.

7. If you find that you have a large amount of available free RAM remaining, run more
instances of WebLogic Server on your machine.

Remember, the goal of tuning your heap size is to minimize the time that your JVM spends
doing garbage collection while maximizing the number of clients that WebLogic Server
can handle at a given time.

Note: For information about using the BEA WebLogic JRockit JVM -Xgcreport option to
print a comprehensive garbage collection report at program completion, see WebLogic
JRockit Documentation, at http://e-docs.bea.com/more_jrockit.html.

Specifying Heap Size Values
You must specify Java heap size values each time you start an instance of WebLogic Server. This
can be done either from the java command line or by modifying the default values in the sample
startup scripts that are provided with the WebLogic distribution for starting WebLogic Server, as
explained in “Using WebLogic Startup Scripts to Set Heap Size” on page 3-7.

For example, when you start a WebLogic Server instance from a java command line, you could
specify the HotSpot VM heap size values as follows:

$ java -XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8 -Xms512m

-Xmx512m

Spec i f y ing Heap S i ze Va lues

BEA WebLogic Server Performance and Tuning 3-7

The default size for these values is measured in bytes. Append the letter ‘k’ or ‘K’ to the value to
indicate kilobytes, ‘m’ or ‘M’ to indicate megabytes, and ‘g’ or ‘G’ to indicate gigabytes. The
example above allocates 128 megabytes of memory to the New generation and maximum New
generation heap sizes, and 512 megabytes of memory to the minimum and maximum heap sizes for
the WebLogic Server instance running in the JVM. For more information on the heap size
options, see “Java Heap Size Options” on page 3-7.

Using WebLogic Startup Scripts to Set Heap Size
Sample startup scripts are provided with the WebLogic Server distribution for starting the server
and for setting the environment to build and run the server:

startWLS.cmd and setEnv.cmd (Windows).

startWLS.sh and setEnv.sh (UNIX and Windows. On Windows, these scripts support
the MKS and Cygnus BASH UNIX shell emulators.)

If you used the Configuration Wizard to create your domain, the WebLogic startup scripts are
located in the domain-name directory where you specified your domain. By default, this directory
is BEA_HOME\user_projects\domain\domain-name, where BEA_HOME is the directory that
contains the product installation, and domain-name is the name of the domain directory defined
by the selected configuration template. For more information about creating domains using the
Configuration Wizard, see “Creating Domains Using the Configuration Wizard” at
http://edocs.bea.com/platform/docs81/confgwiz/creatdom.html.

The WebLogic startup scripts set environment variables, such as the default memory arguments
passed to Java (that is, heap size) and the location of the JDK, and then start the JVM with
WebLogic Server arguments. Be aware that the WebLogic Server startup scripts specify default
heap size parameters; therefore, you need to modify them to fit your environment and
applications. For instructions on how to modifying the startup scripts to set the Java heap size
options, see “Specifying Java Options for a WebLogic Server Instance” at
{DOCROOT}/adminguide/startstop.html#JavaOptions.

Java Heap Size Options
You achieve best performance by individually tuning each application. However, configuring the
Java HotSpot VM heap size options listed in Table 3-2 when starting WebLogic Server increases
performance for most applications.

Tun ing Java V i r tua l Machines (JVMs)

3-8 BEA WebLogic Server Performance and Tuning

These options may differ depending on your architecture and operating system. See your
vendor’s documentation for platform-specific JVM tuning options.

Note: For information about setting the appropriate heap sizes for WebLogic’s JRockit JVM,
see WebLogic JRockit Documentation, at
http://e-docs.bea.com/more_jrockit.html.

Table 3-2 Java Heap Size Options

Task Option Recommended Value

Setting the New generation
heap size

-XX:NewSize Set this value to a multiple of 1024 that is greater
than 1MB. As a general rule, set -XX:NewSize to
be one-fourth the size of the maximum heap size.
Increase the value of this option for larger numbers
of short-lived objects.

Be sure to increase the New generation as you
increase the number of processors. Memory
allocation can be parallel, but garbage collection is
not parallel.

Setting the maximum New
generation heap size

-XX:MaxNewSize Set this value to a multiple of 1024 that is greater
than 1MB.

Setting New heap size
ratios

-XX:SurvivorRatio The New generation area is divided into three
sub-areas: Eden, and two survivor spaces that are
equal in size.

Configure the ratio of the Eden/survivor space size.
Try setting this value to 8, and then monitor your
garbage collection.

Setting minimum heap size -Xms Set the minimum size of the memory allocation pool.
Set this value to a multiple of 1024 that is greater
than 1MB. As a general rule, set minimum heap size
(-Xms) equal to the maximum heap size (-Xmx) to
minimize garbage collections.

Setting maximum heap size -Xmx Set the maximum size of the memory allocation pool.
Set this value to a multiple of 1024 that is greater
than 1MB.

Automat ica l l y Logg ing Low Memory Cond i t i ons

BEA WebLogic Server Performance and Tuning 3-9

Automatically Logging Low Memory Conditions
WebLogic Server enables you to automatically log low memory conditions observed by the
server. WebLogic Server detects low memory by sampling the available free memory a set
number of times during a time interval. At the end of each interval, an average of the free memory
is recorded and compared to the average obtained at the next interval. If the average drops by a
user-configured amount after any sample interval, the server logs a low memory warning
message in the log file and sets the server health state to “warning.”

If the average free memory ever drops below 5 percent of the initial free memory recorded
immediately after you start the server, WebLogic Server logs a message to the log file.

You configure each aspect of the low memory detection process using the Administration
Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the navigation tree to display the servers configured in your
domain.

4. Click the name of the server instance that you want to configure. Note that you configure
low memory detection on a per-server basis.

5. Select the Configuration → Tuning tab in the right pane.

6. On the Advanced Options bar, click Show to display additional attributes.

7. Modify the following Memory Option attributes as necessary to tune low memory detection
for the selected server instance:

– Low Memory GCThreshold: Enter a percentage value (0–99 percent) to represent the
threshold after which WebLogic Server logs a low memory warning and changes the
health state to “warning.” By default, Memory GCThreshold is set to 5 percent. This
means that by default the server logs a low memory warning after the average free
memory reaches 5 percent of the initial free memory measured at the server’s boot
time.

– Low Memory Sample Size: Enter the number of times the server samples free
memory during a fixed time period. By default, the server samples free memory 10
times each interval to acquire the average free memory. Using a higher sample size can
increase the accuracy of the reading.

Tun ing Java V i r tua l Machines (JVMs)

3-10 BEA WebLogic Server Performance and Tuning

– Low Memory Time Interval: Enter the time, in seconds, that define the interval over
which the server determines average free memory values. By default WebLogic Server
obtains an average free memory value every 3600 seconds.

8. Click Apply to apply your changes.

9. Reboot the server to use the new low memory detection attributes.

Manually Requesting Garbage Collection
Make sure that full garbage collection is necessary before manually selecting it on a server. When
you perform garbage collection, the JVM often examines every living object in the heap.

To use the Administration Console to request garbage collection on a specific server instance:

1. On the Administration Console, expand the server instance node for the server whose memory
usage you want to view. A dialog box in the right pane shows the tabs associated with this
instance.

2. Select the Monitoring → Performance tab.

3. Check the Memory Usage graph for high usage. Note that the Memory Usage graph
displays information only for a server that is currently running.

4. Click the Force garbage collection button to request garbage collection. The Force garbage
collection button calls the JVM’s System.gc() method to perform garbage collection.
Note, however, that the JVM implementation itself decides whether or not the request
actually triggers garbage collection.

Setting Java HotSpot VM Options
You can use standard java command-line options to improve the performance of your JVM.
How you use these options depends on how your application is coded. Although command-line
options are consistent across platforms, some platforms may have different defaults.

Test both your client and server JVMs to see which options perform better for your particular
application. The Sun Microsystems Java HotSpot VM Options document provides information
on the command-line options and environment variables that can affect the performance
characteristics of the Java HotSpot Virtual Machine. See
http://java.sun.com/docs/hotspot/VMOptions.html.

For a brief discussion of additional “non-standard” VM options that can also affect performance,
see “Non-Standard HotSpot VM Options for Windows, Solaris, and Linux” on page 3-12.

Set t ing Java HotSpo t VM Opt ions

BEA WebLogic Server Performance and Tuning 3-11

Note: For information about using the WebLogic JRockit JVM command-line options to
improve performance, see WebLogic JRockit Documentation, at
http://e-docs.bea.com/more_jrockit.html.

Standard HotSpot VM Options for Windows, Solaris, and Linux
You can use standard java options to improve performance on Windows, Solaris, and Linux
platforms. These options are supported on the current Java the run-time environment and will also
be supported in future releases of HotSpot. When specifying one of the standard options listed
Table 3-3 through the java command, WebLogic Server invokes a particular version of the JVM.

For additional examples of the standard HotSpot VM options, see:

Standard Options for Windows (Win32) VMs at
http://java.sun.com/j2se/1.4.1/docs/tooldocs/windows/java.html#standard

.

Standard Options for Solaris VMs at
http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/java.html#standard

.

Standard Options for Linux VMs at
http://java.sun.com/j2se/1.4.1/docs/tooldocs/linux/java.html#standard.

Sun Microsystems’ Java Virtual Machine document provides a detailed discussion of the Client
and Server implementations of the Java virtual machine for J2SE 1.4. See
http://java.sun.com/j2se/1.4.1/docs/guide/vm/index.html.

Table 3-3 Standard Java HotSpot VM Options

Option Platform Description

-client Windows

Solaris

Selects the Java HotSpot Client VM. This is the
default for Windows and Solaris.

-server Windows

Solaris

Linux

Selects the Java HotSpot Server VM.

-hotspot Linux Selects the Java HotSpot Client VM. This is the
default for Linux.

Tun ing Java V i r tua l Machines (JVMs)

3-12 BEA WebLogic Server Performance and Tuning

Non-Standard HotSpot VM Options for Windows, Solaris, and
Linux
You can also use non-standard java options to improve performance. How you use these options
depends on how your application is coded. Although command-line options are consistent across
platforms, some platforms may have different defaults. Note that non-standard command-line
options are subject to change in future releases.

For examples of the non-standard options for improving performance on the Hotspot VM on
Windows, Solaris, and Linux, see:

Non-Standard Options for Windows VMs (Win32) at
http://java.sun.com/j2se/1.4.1/docs/tooldocs/windows/java.html#nonstand

ard.

Non-Standard Options for Solaris VMs at
http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/java.html#nonstand

ard.

Non-Standard Options for Linux VMs at
http://java.sun.com/j2se/1.4.1/docs/tooldocs/linux/java.html#nonstandar

d.

BEA WebLogic Server Performance and Tuning 4-1

C H A P T E R 4

Tuning WebLogic Server

The following sections describe how to tune WebLogic Server to match your application needs.

“Setting Java Parameters for Starting WebLogic Server” on page 4-1

“Setting Performance-Related Configuration Parameters” on page 4-2

“Development vs. Production Mode Default Tuning Values” on page 4-4

“Using WebLogic Server “Native IO” Performance Packs” on page 4-5

“Tuning the Default Execute Queue Threads” on page 4-6

“Tuning Connection Backlog Buffering” on page 4-14

“How JDBC Connection Pools Enhance Performance” on page 4-14

“Setting Your Java Compiler” on page 4-16

“Using WebLogic Server Clusters to Improve Performance” on page 4-18

“Monitoring a WebLogic Server Domain” on page 4-21

Setting Java Parameters for Starting WebLogic Server
Java parameters must be specified whenever you start WebLogic Server. For simple invocations,
this can be done from the command line with the weblogic.Server command. However,
because the arguments needed to start WebLogic Server from the command line can be lengthy
and prone to error, BEA recommends that you incorporate the command into a script. To simply
this process, you can modify the default values in the sample scripts that are provided with the

Tun ing WebLog ic Se rve r

4-2 BEA WebLogic Server Performance and Tuning

WebLogic distribution to start WebLogic Server, as described in “Specifying Java Options for a
WebLogic Server Instance” at {DOCROOT}/adminguide/startstop.html#JavaOptions.

If you used the Configuration Wizard to create your domain, the WebLogic startup scripts are
located in the domain-name directory where you specified your domain. By default, this directory
is BEA_HOME\user_projects\domain\domain-name, where BEA_HOME is the directory that
contains the product installation, and domain-name is the name of the domain directory defined
by the selected configuration template. For more information about creating domains using the
Configuration Wizard, see “Creating Domains Using the Configuration Wizard” at
{DOCROOT}/http://edocs.bea.com/platform/docs81/confgwiz/creatdom.html.

You need to modify some default Java values in these scripts to fit your environment and
applications. The important performance tuning parameters in these files are the JAVA_HOME
parameter and the Java heap size parameters:

Change the value of the variable JAVA_HOME to the location of your JDK. For example:
set JAVA_HOME=C:\bea\jdk141_03

For higher performance throughput, set the minimum java heap size equal to the maximum
heap size. For example:
"%JAVA_HOME%\bin\java" -hotspot –Xms512m –Xmx512m -classpath
%CLASSPATH% -

See “Specifying Heap Size Values” on page 3-6 for details about setting heap size options.

Setting Performance-Related Configuration Parameters
The WebLogic Server configuration file (config.xml) contains a number of
performance-related parameters that can be fine-tuned depending on your environment and
applications. Tuning these parameters based on your system requirements (rather than running
with default settings) can greatly improve both single-node performance and the scalability
characteristics of an application.

Within a WebLogic Server domain, the configuration file is located on the machine that hosts the
Administration Server, and provides persistent storage of WebLogic MBean attribute values. The
Administration Server serves as a central point of contact for server instances and system
administration tools. A domain may also include additional WebLogic Server instances called
Managed Servers, which are used mainly for servicing applications.

When the Administration Server starts, it reads the domain configuration file and overrides the
default attribute values of the administration MBeans with any attribute values found in the
configuration file. Every time you change an attribute using the system administration tools

Set t ing Pe r fo rmance-Re la ted Conf igura t i on Paramete rs

BEA WebLogic Server Performance and Tuning 4-3

(using either the command-line interface or the Administration Console), its value is stored in the
appropriate administration MBean and written to the configuration file.

For more information about system administration infastructure, see “Overview of WebLogic
Server System Administration” in the Administration Guide at
{DOCROOT}/adminguide/overview.html.

Overview of WebLogic Server System Administration

Table 4-1 lists the config.xml file parameters that affect server performance.

Table 4-1 Performance-Related config.xml Elements

Element Attributes Console Field For information

Server NativeIOEnabled Native IO Enabled See “Using WebLogic Server
“Native IO” Performance
Packs” on page 4-5.

ExecuteQueue ThreadCount Thread Count See “Tuning the Default
Execute Queue Threads” on
page 4-6.

ExecuteQueue QueueLength

QueueLengthThresh
oldPercent

ThreadsIncrease

ThreadsMaximum

Thread Priority

Queue Length

Queue Length Threshold
Percent

Threads Increase

Threads Maximum

Thread Priority

See “Tuning Execute Queues
for Overflow Conditions” on
page 4-10.

Server StuckThreadMaxTim
e

StuckThreadTimerI
nterval

Stuck Thread Max Time

Stuck Thread Timer
Interval

See “Tuning the Execute
Thread Detection Behavior”
on page 4-12.

Server ThreadPoolPercent
SocketReaders

Socket Readers See “Allocating Execute
Threads to Act as Socket
Readers” on page 4-9.

Server AcceptBacklog Accept Backlog See “Tuning Connection
Backlog Buffering” on
page 4-14.

Tun ing WebLog ic Se rve r

4-4 BEA WebLogic Server Performance and Tuning

Development vs. Production Mode Default Tuning Values
You can indicate whether a domain is to be used in a development environment or a production
environment. WebLogic Server uses different default values for various services depending on
the type of environment you specify.

Table 4-2 lists the performance-related configuration parameters that differ when switching from
development to production startup mode.

The tuning defaults discussed in throughout WebLogic Performance and Tuning Guide refer to
the “development mode” defaults, which is the default startup mode when WebLogic Server is
installed. For information on switching the startup mode from development to production, see
Changing the Runtime Mode in the Administration Console Online Help at
{DOCROOT}/ConsoleHelp.server.html#ChangingRuntimeMode.

For a complete listing of the differences between development and production startup modes, see
the “Differences Between Configuration Startup Modes” section in Creating WebLogic
Configurations Using the Configuration Wizard, at
http://edocs.bea.com/platform/docs81/confgwiz/newdom.htm#devprod.

JDBCConnectionP
ool

InitialCapacity

MaxCapacity

Initial Capacity

Max Capacity

See “How JDBC Connection
Pools Enhance Performance”
on page 4-14.

JDBCConnectionP
ool

StatementCacheSiz
e

Statement Cache Size See “Caching Prepared and
Callable Statements” on
page 4-16.

Table 4-1 Performance-Related config.xml Elements (Continued)

Element Attributes Console Field For information

Table 4-2 Development and Production Startup Mode Tuning Defaults

Tuning Parameter Development Mode Default Production Mode Default

Execute Queue:
ThreadCount

15 threads 25 threads

JDBC Connection Pool:
MaxCapacity

15 connections 25 connections

Using WebLog ic Se rve r “Nat ive IO” Per fo rmance Packs

BEA WebLogic Server Performance and Tuning 4-5

Using WebLogic Server “Native IO” Performance Packs
Benchmarks show major performance improvements when you use native performance packs on
machines that host WebLogic Server instances. Performance packs use a platform-optimized,
native socket multiplexor to improve server performance. For example, the native socket reader
multiplexor threads have their own execute queue and do not borrow threads from the default
execute queue, which frees up default execute threads to do application work.

However, if you must use the pure-Java socket reader implementation for host machines, you can
still improve the performance of socket communication by configuring the proper number of
socket reader threads for each server instance and client machine.

Which Platforms Have Performance Packs?
To see which supported platforms currently have performance packs available:

1. Go to Supported Configurations for WebLogic Server at {PLATFORM}/index.html.

2. From the list of supported configurations, click on the link for the platform that you need.

The ensuing page contains tables of information for each supported WebLogic Server
releases (including service packs). Within each release table there is a “Performance Pack”
entry that indicates whether a performance pack is “Included” in the release.

3. To verify performance pack information, you can either click on a specific WebLogic
Server release at the top of the page and scan the corresponding table, or use your browser’s
Edit → Find feature to search for all instances of “Performance Pack” on the page.

Enabling Performance Packs
The use of native performance packs are enabled by default in the config.xml shipped with your
distribution. To verify this setting in your configuration file, check that the NativeIOEnabled
attribute of the Server element is set to “true” (NativeIOEnabled=true).

You can also use the Administration Console to verify that performance packs are enabled:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the left pane to display the servers configured in your domain.

4. Click the name of the server instance that you want to configure.

Tun ing WebLog ic Se rve r

4-6 BEA WebLogic Server Performance and Tuning

5. Select the Configuration → Tuning tab.

6. If the Enable Native IO check box is not selected, select the check box.

7. Click Apply.

8. Restart the server.

Tuning the Default Execute Queue Threads
The value of the ThreadCount attribute of an ExecuteQueue element in the config.xml file
equals the number of simultaneous operations that can be performed by applications that use the
execute queue. As work enters an instance of WebLogic Server, it is placed in an execute queue.
This work is then assigned to a thread that does the work on it. Threads consume resources, so
handle this attribute with care—you can degrade performance by increasing the value
unnecessarily.

By default, a new WebLogic Server instance is configured with a development mode execute
queue, weblogic.kernel.default, that contains 15 threads. In addition, WebLogic Server
provides two other pre-configured queues:

weblogic.admin.HTTP—Available only on Administration Servers, this queue is reserved
for communicating with the Administration Console; you cannot reconfigure it.

weblogic.admin.RMI—Both Administration Servers and Managed Servers have this
queue; it is reserved for administrative traffic; you cannot reconfigure it.

Unless you configure additional execute queues, and assign applications to them, Web
applications and RMI objects use weblogic.kernel.default.

Note: If native performance packs are not being used for your platform, you may need to tune
the default number of execute queue threads and the percentage of threads that act as
socket readers to achieve optimal performance. For more information, see “Allocating
Execute Threads to Act as Socket Readers” on page 4-9.

Should You Modify the Default Thread Count?
Adding more threads to the default execute queue does not necessarily imply that you can process
more work. Even if you add more threads, you are still limited by the power of your processor.
Because threads consume memory, you can degrade performance by increasing the value of the
ThreadCount attribute unnecessarily. A high execute thread count causes more memory to be
used and increases context switching, which can degrade performance.

Tun ing the Defau l t Execute Queue Threads

BEA WebLogic Server Performance and Tuning 4-7

The value of the ThreadCount attribute depends very much on the type of work your application
does. For example, if your client application is thin and does a lot of its work through remote
invocation, that client application will spend more time connected — and thus will require a
higher thread count — than a client application that does a lot of client-side processing.

If you do not need to use more than 15 threads (the development default) or 25 threads (the
production default) for your work, do not change the value of this attribute. As a general rule, if
your application makes database calls that take a long time to return, you will need more execute
threads than an application that makes calls that are short and turn over very rapidly. For the latter
case, using a smaller number of execute threads could improve performance.

Scenarios for Modifying the Default Thread Count
To determine the ideal thread count for an execute queue, monitor the queue’s throughput while
all applications in the queue are operating at maximum load. Increase the number of threads in
the queue and repeat the load test until you reach the optimal throughput for the queue. (At some
point, increasing the number of threads will lead to enough context switching that the throughput
for the queue begins to decrease.)

Note: The WebLogic Server Administration Console displays the cumulative throughput for all
of a server’s execute queues. To access this throughput value, follow steps 1-6 in
“Modifying the Default Thread Count” on page 4-9.

Table 4-3 shows default scenarios for adjusting available threads in relation to the number of
CPUs available in the WebLogic Server domain. These scenarios also assume that WebLogic
Server is running under maximum load, and that all thread requests are satisfied by using the
default execute queue. If you configure additional execute queues and assign applications to
specific queues, monitor results on a pool-by-pool basis.

Tun ing WebLog ic Se rve r

4-8 BEA WebLogic Server Performance and Tuning

Table 4-3 Scenarios for Modifying the Default Thread Count

When... Results Do This:

Thread Count < number of CPUs Your thread count is too low if:
• CPU is waiting to do work,

but there is work that
could be done.

• Cannot get 100 percent
CPU utilization rate.

Increase the thread count.

Thread Count = number of CPUs Theoretically ideal, but the
CPUs are still under-utilized.

Increase the thread count.

Thread Count > number of CPUs (by a
moderate number of threads)

Practically ideal, with a
moderate amount of context
switching and a high CPU
utilization rate.

Tune the moderate number of
threads and compare performance
results.

Thread Count > number of CPUs (by a
large number of threads)

Too much context switching,
which can lead to significant
performance degradation.

Your performance may
increase as you decrease the
number of threads.

Reduce the number of threads so
that it equals the number of CPUs,
and then add only the number of
“stuck” threads that you have
determined.

For example, if you have four
processors, then four threads can
be running concurrently with the
number of stuck threads. So, you
want the execute threads to be 4 +
the number of stuck threads.

To determine the amount of stuck
threads, see “Tuning the Execute
Thread Detection Behavior” on
page 4-12.

Note: This recommendation is
highly
application-dependent.
For instance, the length
of time the application
might block threads can
invalidate the formula.

Tun ing the Defau l t Execute Queue Threads

BEA WebLogic Server Performance and Tuning 4-9

Modifying the Default Thread Count
To modify the default execute queue thread count using the Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the left pane to display the servers configured in your domain.

4. Right-click the name of the server instance that contains the execute queue you want to
configure, and then select View Execute Queues on the pop-up menu to display a table of
execute queues that can be modified.

Note: You can only modify the default execute queue for the server or a user-defined
execute queue.

5. In the Name column, click directly on the default execute queue name to display the
Configuration tab for modifying execute queues.

6. Locate the Thread Count value and increase or decrease it, as appropriate.

7. Click Apply to save your changes.

8. Reboot the selected server to enable the new execute queue settings.

Assigning Applications to Execute Queues
Although you can configure the default execute queue to supply the optimal number threads for
all WebLogic Server applications, configuring multiple execute queues can provide additional
control for key applications. By using multiple execute queues, you can guarantee that selected
applications have access to a fixed number of execute threads, regardless of the load on
WebLogic Server. See “Using Execute Queues to Control Thread Usage” on page 6-5 for more
information on assigning applications to configured execute queues.

Allocating Execute Threads to Act as Socket Readers
For best socket performance, BEA recommends that you use the native socket reader
implementation, rather than the pure-Java implementation, on machines that host WebLogic
Server instances (see “Using WebLogic Server “Native IO” Performance Packs” on page 4-5).
However, if you must use the pure-Java socket reader implementation for host machines, you can
still improve the performance of socket communication by configuring the proper number of
execute threads to act as socket reader threads for each server instance and client machine.

Tun ing WebLog ic Se rve r

4-10 BEA WebLogic Server Performance and Tuning

The ThreadPoolPercentSocketReaders attribute sets the maximum percentage of execute
threads that are set to read messages from a socket. The optimal value for this attribute is
application-specific. The default value is 33, and the valid range is 1–99.

Allocating execute threads to act as socket reader threads increases the speed and the ability of
the server to accept client requests. It is essential to balance the number of execute threads that
are devoted to reading messages from a socket and those threads that perform the actual execution
of tasks in the server.

Setting the Number of Socket Reader Threads For a Server Instance
To use the Administration Console to set the maximum percentage of execute threads that read
messages from a socket:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the left pane to display the servers configured in your domain.

4. Click the name of the server that you want to configure.

5. Select the Configuration → Tuning tab.

6. Edit the percentage of Java reader threads in the Socket Readers attribute field. The number
of Java socket readers is computed as a percentage of the number of total execute threads
(as shown in the Thread Count field for the Execute Queue).

7. Apply the changes.

Setting the Number of Socket Reader Threads on Client Machines
On client machines, you can configure the number of available socket reader threads in the JVM
that runs the client. Specify the socket readers by defining the following parameters in the java
command line for the client:

-Dweblogic.ThreadPoolSize=value

-Dweblogic.ThreadPoolPercentSocketReaders=value

Tuning Execute Queues for Overflow Conditions
You can configure WebLogic Server to detect and optionally address potential overflow
conditions in the default execute queue or any user-defined execute queue. WebLogic Server
considers a queue to have a possible overflow condition when its current size reaches a

Tun ing the Defau l t Execute Queue Threads

BEA WebLogic Server Performance and Tuning 4-11

user-defined percentage of its maximum size. When this threshold is reached, the server changes
its health state to “warning” and can optionally allocate additional threads to perform the
outstanding work in the queue, thereby reducing its size.

To automatically detect and address overflow conditions in a queue, you configure the following
items:

The threshold at which the server indicates an overflow condition. This value is set as a
percentage of the configured size of the execute queue (the QueueLength value).

The number of threads to add to the execute queue when an overflow condition is detected.
These additional threads work to reduce the size of the queue to its normal operating size.

The maximum number of threads available to the queue. In particular, setting the
maximum number of threads prevents the server from assigning an overly high thread
count in response to overload conditions.

To tune an execute queue using the WebLogic Server Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the left pane to display the servers configured in your domain.

4. Right-click the name of the server instance that contains the execute queue you want to
configure, and then select View Execute Queues from the pop-up menu to display a table of
execute queues that can be modified.

Note: You can only modify the default execute queue for the server or a user-defined
execute queue.

5. In the Name column, directly click the default execute queue name (or the user-defined
execute queue) that you want to configure.

6. On the execute queue Configuration tab, specify how the server instance should detect an
overflow condition for the selected queue by modifying the following attributes:

– Queue Length: Specifies the maximum number of simultaneous requests that the
server can hold in the queue. The default of 65536 requests represents a very large
number of requests; outstanding requests in the queue should rarely, if ever reach this
maximum value. Always leave the Queue Length at the default value of 65536 entries.

– Queue Length Threshold Percent: The percentage (from 1–99) of the Queue
Length size that can be reached before the server indicates an overflow condition for
the queue. All actual queue length sizes below the threshold percentage are considered

Tun ing WebLog ic Se rve r

4-12 BEA WebLogic Server Performance and Tuning

normal; sizes above the threshold percentage indicate an overflow. By default, the
Queue Length Threshold Percent is set to 90 percent.

– Thread Priority: The priority of the threads associated with the queue. By default,
the Thread Priority is set to 5.

7. To specify how this server should address an overflow condition for the selected queue,
modify the following attribute:

– Threads Increase: The number of threads WebLogic Server should add to this
execute queue when it detects an overflow condition. If you specify zero threads (the
default), the server changes its health state to “warning” in response to an overflow
condition in the execute queue, but it does not allocate additional threads to reduce the
workload.

8. To limit the maximum number of threads that can be added to the selected queue, modify
the following attribute:

– Threads Maximum: The maximum number of threads that this execute queue can have;
this value prevents WebLogic Server from creating an overly high thread count in the
queue in response to continual overflow conditions. By default, Threads Maximum is
set to 400.

9. Click Apply to save your changes.

10. Reboot the selected server to enable the new execute queue settings.

Tuning the Execute Thread Detection Behavior
WebLogic Server automatically detects when a thread in an execute queue becomes “stuck.”
Because a stuck thread cannot complete its current work or accept new work, the server logs a
message each time it diagnoses a stuck thread. If all threads in an execute queue become stuck,
the server changes its health state to either “warning” or “critical” depending on the execute
queue:

If all threads in the default queue become stuck, the server changes its health state to
“critical.” (You can set up the Node Manager application to automatically shut down and
restart servers in the critical health state. For more information, see “Node Manager
Capabilities” in Configuring and Managing WebLogic Server at
{DOCROOT}/adminguide/nodemgr.html#NodeManagerCapabilities.)

If all threads in weblogic.admin.HTTP, weblogic.admin.RMI, or a user-defined
execute queue become stuck, the server changes its health state to “warning.”

Tun ing the Defau l t Execute Queue Threads

BEA WebLogic Server Performance and Tuning 4-13

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for a set period
of time. You can tune a server’s thread detection behavior by changing the length of time before
a thread is diagnosed as stuck, and by changing the frequency with which the server checks for
stuck threads.

Note: Although you can change the criteria WebLogic Server uses to determine whether a
thread is stuck, you cannot change the default behavior of setting the “warning” and
“critical” health states when all threads in a particular execute queue become stuck. For
more information, see Overview of WebLogic Logging Services in Using WebLogic
Logging Services.

To configure WebLogic Server stuck thread detection behavior:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the left pane to display the servers configured in your domain.

4. Click the name of the server instance that you want to modify for improved stuck thread
detection.

Note: You configure stuck thread detection parameters on a per-server basis, rather than on
a per-execute queue basis.

5. Select the Configuration → Tuning tab in the right pane.

6. Modify the following attributes as necessary to tune thread detection behavior for the
server:

– Stuck Thread Max Time: Enter the number of seconds, that a thread must be
continually working before this server diagnoses the thread as being stuck. By default,
WebLogic Server considers a thread to be “stuck” after 600 seconds of continuous use.

– Stuck Thread Timer Interval: Enter the number of seconds, after which
WebLogic Server periodically scans threads to see if they have been continually
working for the length of time specified by Stuck Thread Max Time. By default,
WebLogic Server sets this interval to 600 seconds.

7. Click Apply to save your changes.

8. Reboot the server to use the new settings.

Tun ing WebLog ic Se rve r

4-14 BEA WebLogic Server Performance and Tuning

Tuning Connection Backlog Buffering
Use the AcceptBacklog attribute of the Server element in the config.xml file to set the
number of connection requests the WebLogic Server instance will accept before refusing
additional requests. The AcceptBacklog attribute specifies how many Transmission Control
Protocol (TCP) connections can be buffered in a wait queue. This fixed-size queue is populated
with requests for connections that the TCP stack has received, but the application has not
accepted yet. The default value is 50 and the maximum value is operating system dependent.

To tune the Accept Backlog value from the Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the left pane to display the servers configured in your domain.

4. Click the name of the server instance that you want to configure.

5. Select the Configuration → Tuning tab.

6. Modify the default Accept Backlog value as necessary to tune how many TCP connections
can be buffered in a wait queue:

– During operations, if many connections are dropped or refused at the client, and no
other error messages are on the server, the Accept Backlog value might be set too low.

– If you are getting “connection refused” messages when you try to access WebLogic
Server, raise the Accept Backlog value from the default by 25 percent. Continue
increasing the value by 25 percent until the messages cease to appear.

7. Click Apply to save your changes.

How JDBC Connection Pools Enhance Performance
Establishing a JDBC connection with a DBMS can be very slow. If your application requires
database connections that are repeatedly opened and closed, this can become a significant
performance issue. WebLogic connection pools offer an efficient solution to the problem.

When WebLogic Server starts, connections from the connection pools are opened and are
available to all clients. When a client closes a connection from a connection pool, the connection
is returned to the pool and becomes available for other clients; the connection itself is not closed.
There is little cost to opening and closing pool connections.

How JDBC Connect ion Poo ls Enhance Per fo rmance

BEA WebLogic Server Performance and Tuning 4-15

How many connections should you create in the pool? A connection pool can grow and shrink
according to configured parameters, between a minimum and a maximum number of
connections. The best performance occurs when the connection pool has as many connections as
there are concurrent client sessions.

In addition to the following subsections, see “Performance Tuning Your JDBC Application” in
Programming WebLogic JDBC at {DOCROOT}/jdbc/performance.html.

Tuning JDBC Connection Pool Initial Capacity
The InitialCapacity attribute of the JDBCConnectionPool element enables you to set the
number of physical database connections to create when configuring the pool. If the server cannot
create this number of connections, the creation of this connection pool will fail.

During development, it may be convenient to set the value of the InitialCapacity attribute to
a low number to help the server start up faster. In production systems, consider setting the
InitialCapacity value equal to the MaxCapacity attribute’s default production mode setting
of 25. This way, all database connections are acquired during server start-up. And if you need to
tune the MaxCapacity value, make sure to set the InitialCapacity so that it equals the
MaxCapacity value.

If InitialCapacity is less than MaxCapacity, the server needs to create additional database
connections when its load is increased. When the server is under load, all resources should be
working to complete requests as fast as possible, rather than creating new database connections.

Tuning JDBC Connection Pool Maximum Capacity
The MaxCapacity attribute of the JDBCConnectionPool element allows you to set the
maximum number of physical database connections that a connection pool can contain. Different
JDBC drivers and database servers might limit the number of possible physical connections.

The default settings for development and production mode are equal to the default number of
execute threads: 15 for development mode; 25 for production mode. However, in production, it
is advisable that the number of connections in the pool equal the number of concurrent client
sessions that require JDBC connections. The pool capacity is independent of the number of
execute threads in the server. There may be many more ongoing user sessions than there are
execute threads.

Tun ing WebLog ic Se rve r

4-16 BEA WebLogic Server Performance and Tuning

Caching Prepared and Callable Statements
When you use a prepared statement or callable statement in an application or EJB, there is
considerable processing overhead for the communication between the application server and the
database server and on the database server itself. To minimize the processing costs, WebLogic
Server can cache prepared and callable statements used in your applications. When an application
or EJB calls any of the statements stored in the cache, WebLogic Server reuses the statement
stored in the cache. Reusing prepared and callable statements reduces CPU usage on the database
server, improving performance for the current statement and leaving CPU cycles for other tasks.
For more details, see “Increasing Performance with the Statement Cache” in the Administration
Console Online Help at
{DOCROOT}/ConsoleHelp/jdbc_connection_pools.html#statementcache.

Using the statement cache can dramatically increase performance, but you must consider its
limitations before you decide to use it. For more details, see “Usage Restrictions for the Statement
Cache” in the Administration Console Online Help at
{DOCROOT}/ConsoleHelp/jdbc_connection_pools.html#cache_restrictions.

Setting Your Java Compiler
The standard Java compiler for compiling JSP servlets is javac. You can improve performance
significantly by setting your server’s java compiler to sj or jikes instead of javac. The
following sections discuss this procedure and other compiler considerations.

Changing Compilers in the Administration Console
To change your compiler in the Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the left pane to display the servers configured in your domain.

4. Click the name of the server instance that you want to configure.

5. Select the Configuration → General tab and enter the full path of the compiler in the Java
Compiler field. For example:
c:\visualcafe31\bin\sj.exe

6. Click Show on the Advanced Options bar to display additional attributes.

Set t ing Your Java Compi le r

BEA WebLogic Server Performance and Tuning 4-17

7. Enter the full path to the JRE rt.jar library in the Append to the Classpath field. For
example:
BEA_HOME\jdk141_02\jre\lib\rt.jar

8. Click Apply.

9. Restart your server for the new Java Compiler and Append to Classpath values to take
effect.

Setting Your Compiler in weblogic.xml
In the weblogic.xml file, the jsp-descriptor element defines parameter names and values for
servlet JSPs.

Use the compileCommand parameter to specify the Java compiler for compiling the
generated JSP servlets.

Use the precompile parameter to configure WebLogic Server to precompile your JSPs
when WebLogic Server starts up.

For more information about setting your server’s java compiler in the weblogic.xml file, see the
jsp-descriptor element at {DOCROOT}/webapp/weblogic_xml.html#jsp-descriptor.

Compiling EJB Container Classes
Use the weblogic.appc utility to compile EJB 2.0 and 1.1 container classes. If you compile Jar
files for deployment into the EJB container, you must use weblogic.appc to generate the
container classes. By default, ejbc uses the javac compiler. For faster performance, specify a
different compiler (such as Symantec sj) using the -compiler flag.

For more information, see “Implementing EJBs” in Programming WebLogic Enterpise
JavaBeans.

Compiling on UNIX
If you receive the following error message received when compiling JSP files on a UNIX
machine:
failed: java.io.IOException: Not enough space

Try any or all of the following solutions:

Add more RAM if you have only 256 MB.

Tun ing WebLog ic Se rve r

4-18 BEA WebLogic Server Performance and Tuning

Raise the file descriptor limit, for example:

set rlim_fd_max = 4096

set rlim_fd_cur = 1024

Use the -native flag to use native threads when starting the JVM.

Using WebLogic Server Clusters to Improve Performance
A WebLogic Server cluster is a group of WebLogic Servers instances that together provide
fail-over and replicated services to support scalable high-availability operations for clients within
a domain. A cluster appears to its clients as a single server but is in fact a group of servers acting
as one to provide increased scalability and reliability.

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic Server
instances. Clustered WebLogic Server instances within a domain behave similarly to
non-clustered instances, except that they provide failover and load balancing. The Administration
Server for the domain manages all the configuration parameters for the clustered and
non-clustered instances.

For more information about clusters, see “Introduction to WebLogic Server Clustering” at
{DOCROOT}/cluster/overview.html.

Scalability and High Availability
Scalability is the ability of a system to grow in one or more dimensions as more resources are
added to the system. Typically, these dimensions include (among other things), the number of
concurrent users that can be supported and the number of transactions that can be processed in a
given unit of time.

Given a well-designed application, it is entirely possible to increase performance by simply
adding more resources. To increase the load handling capabilities of WebLogic Server, add
another WebLogic Server instance to your cluster—without changing your application. Clusters
provide two key benefits that are not provided by a single server: scalability and availability.

WebLogic Server clusters bring scalability and high-availability to J2EE applications in a way
that is transparent to application developers. Scalability expands the capacity of the middle tier
beyond that of a single WebLogic Server or a single computer. The only limitation on cluster
membership is that all WebLogic Servers must be able to communicate by IP multicast. New
WebLogic Servers can be added to a cluster dynamically to increase capacity.

Us ing WebLog ic Se rve r C lus te rs to Improve Pe r fo rmance

BEA WebLogic Server Performance and Tuning 4-19

A WebLogic Server cluster guarantees high-availability by using the redundancy of multiple
servers to insulate clients from failures. The same service can be provided on multiple servers in
a cluster. If one server fails, another can take over. The ability to have a functioning server take
over from a failed server increases the availability of the application to clients.

Caution: Provided that you have resolved all application and environment bottleneck issues,
adding additional servers to a cluster should provide linear scalability. When doing
benchmark or initial configuration test runs, isolate issues in a single server
environment before moving to a clustered environment.

How to Ensure Scalability for WebLogic Clusters
In general, any operation that requires communication between the servers in a cluster is a
potential scalability hindrance. The following sections provide information on issues that impact
the ability to linearly scale clustered WebLogic servers:

“Database Bottlenecks” on page 4-19

“Session Replication” on page 4-19

“Invalidation of Entity EJBs” on page 4-20

“Invalidation of HTTP sessions” on page 4-20

“JNDI Binding, Unbinding and Rebinding” on page 4-20

Database Bottlenecks
In many cases where a cluster of WebLogic servers fails to scale, the database is the bottleneck.
In such situations, the only solutions are to tune the database or reduce load on the database by
exploring other options. See “JDBC Application Tuning” on page 6-2.

Session Replication
User session data can be stored in two standard ways in a J2EE application: stateful session EJBs
or HTTP sessions. By themselves, they are rarely a impact cluster scalability. However, when
coupled with a session replication mechanism required to provide high-availability, bottlenecks
are introduced. If a J2EE application has Web and EJB components, you should store user session
data in HTTP sessions rather than stateful session EJBs as HTTP session management provides
more replication options than stateful session EJBs. See “Managing Sessions” on page 6-4.

Tun ing WebLog ic Se rve r

4-20 BEA WebLogic Server Performance and Tuning

Invalidation of Entity EJBs
This applies to entity EJBs that use a concurrency strategy of Optimistic or ReadOnly with a
read-write pattern.

Optimistic—When an Optimistic concurrency bean is updated, the EJB container sends a
multicast message to other cluster members to invalidate their local copies of the bean. This is
done to avoid optimistic concurrency exceptions being thrown by the other servers and hence the
need to retry transactions. If updates to the EJBs are frequent, the work done by the servers to
invalidate each other’s local caches become a serious bottleneck.

ReadOnly with a read-write pattern—In this pattern, persistent data that would otherwise be
represented by a single EJB are actually represented by two EJBs: one read-only and the other
updateable. When the state of the updateable bean changes, the container automatically
invalidates corresponding read-only EJB instance. If updates to the EJBs are frequent, the work
done by the servers to invalidate the read-only EJBs becomes a serious bottleneck.

Invalidation of HTTP sessions
Similar to “Invalidation of Entity EJBs” on page 4-20, HTTP sessions can also be invalidated.
This is not as expensive as entity EJB invalidation, since only the session data stored in the
secondary server needs to be invalidated. BEA advises users to not invalidate sessions unless
absolutely required.

JNDI Binding, Unbinding and Rebinding
In general, JNDI binds, unbinds and rebinds are expensive operations. However, these operations
become a bigger bottleneck in clustered environments because JNDI tree changes have to be
propagated to all members of a cluster. If such operations are performed too frequently, they can
reduce cluster scalability significantly.

Performance Considerations When Running Multiple Server
Instances on Multi-CPU Machines
With multi-processor machines, additional consideration must be given to the ratio of the number
of available CPUs to clustered WebLogic Server instances. Because WebLogic Server has no
built-in limit to the number of server instances that reside in a cluster, large, multi-processor
servers, such as Sun Microsystems’ Sun Enterprise 10000, can potentially host very large clusters
or multiple clusters.

Moni to r ing a WebLogic Se rver Domain

BEA WebLogic Server Performance and Tuning 4-21

In order to determine the optimal ratio of CPUs to WebLogic server instances, you must first
ensure that an application is truly CPU-bound, rather than network or disk I/O-bound. Use the
following steps to determine the optional ratio of CPUs to server instances:

1. Test your application to determine the Network Requirements.

If you discover that an application is primarily network I/O-bound, consider measures to
increase network throughput before increasing the number of available CPUs. For truly
network I/O-bound applications, installing a faster network interface card (NIC) may
increase performance more than additional CPUs, because most CPUs would remain idle
while waiting to read available sockets.

2. Test your application to determine the Disk I/O Requirements.

If you discover that an application is primarily disk I/O-bound, consider upgrading the
number of disk spindles or individual disks and controllers before allocating additional
CPUs.

3. Begin performance tests using a ratio of one WebLogic Server instance for every available
CPU.

4. If CPU utilization is consistently at or near 100 percent, increase the ratio of CPUs to
servers by adding an additional CPU. Add additional CPUs until utilization reaches an
acceptable level. Remember, always reserve some spare CPU cycles on your production
systems to perform any administration tasks that may occur.

Monitoring a WebLogic Server Domain
The tool for monitoring the health and performance of your WebLogic Server domain is the
Administration Console. Using the Administration Console, you can view status and statistics for
WebLogic Server resources such as servers, HTTP, the JTA subsystem, JNDI, security, CORBA
connection pools, EJB, JDBC, and JMS.

For more details, see “Monitoring a WebLogic Server Domain” in Configuring and Managing
WebLogic Server at {DOCROOT}/adminguide/monitoring.html.

For example, there is a Server → Monitoring → Performance tab on the Administration Console
that provides performance metrics related to pending and processed requests for the current
server instance. It includes the following information:

The number of idle threads assigned to the queue.

The oldest pending request in the queue.

Tun ing WebLog ic Se rve r

4-22 BEA WebLogic Server Performance and Tuning

Throughput, as measured by the number of requests already processed by the queue.

Queue Length, as measured by the number waiting requests in the queue.

The amount of memory available in the JVM heap.

For more details, see “Server -> Monitoring -> Performance” in the Administration Console
Online Help at
{DOCROOT}/ConsoleHelp/domain_server_monitoring_performance.html.

BEA WebLogic Server Performance and Tuning 5-1

C H A P T E R 5

Tuning WebLogic Server EJBs

The following sections describe how to tune WebLogic Server EJBs to match your application
needs:

“Setting Performance-Related weblogic-ejb-jar.xml Parameters” on page 5-1

“Setting Performance-Related weblogic-cmp-jar.xml Parameters” on page 5-6

“Tuning In Response to Monitoring Statistics” on page 5-6

“Other Performance Improvement Strategies” on page 5-11

Setting Performance-Related weblogic-ejb-jar.xml Parameters
The weblogic-ejb-jar.xml deployment file contains the WebLogic Server-specific
deployment elements that determine the concurrency, caching, and clustering behaviors of EJBs.
It also contains deployment elements that map available WebLogic Server resources to EJBs.
WebLogic Server resources include JDBC data sources and connection pools, JMS connection
factories, and other deployed EJBs.

For information on how to modify the weblogic-ejb-jar.xml deployment file, see “Editing
Deployment Descriptors” in Programming WebLogic Enterprise JavaBeans at
{DOCROOT}/ejb/implementing.html#EditingDeploymentDescriptors.

Tuning WebLog ic Se rve r E JBs

5-2 BEA WebLogic Server Performance and Tuning

Table 5-1 lists the weblogic-ejb-jar.xml file parameters that affect performance.

The following sections describe these elements.

Setting EJB Pool Size for Session and Message-Driven Beans
WebLogic Server maintains a free pool of EJBs for every stateless session bean class. The
max-beans-in-free-pool element of the weblogic-ejb-jar.xml file defines the size of this
pool.

In addition to this section, see max-beans-in-free-pool in Programming WebLogic Enterprise
JavaBeans at {DOCROOT}/ejb/DDreference-ejb-jar.html#max-beans-in-free-pool.

When EJBs are created, the session bean instance is created and given an identity. When the client
removes a bean, the bean instance is placed in the free pool. When you create a subsequent bean,
you can avoid object allocation by reusing the previous instance that is in the free pool. The
max-beans-in-free-pool element can improve performance if EJBs are frequently created
and removed.

The EJB container creates new instances of message beans as needed for concurrent message
processing. The max-beans-in-pool element puts an absolute limit on how many of these
instances will be created. The container may override this setting according to the runtime
resources that are available.

Table 5-1 Performance-Related weblogic-ejb-jar.xml Elements

Element For more information

max-beans-in-free-pool See “Setting EJB Pool Size for Session and
Message-Driven Beans” on page 5-2.

initial-beans-in-free-pool See “Tuning Pool Size for Stateless Sessions Beans at
Startup” on page 5-4.

max-beans-in-cache See “Setting Caching Size for Stateful Session and
Entity Beans” on page 5-4.

concurrency-strategy See “Deferring Database Locking” on page 5-5.

isolation-level See “Setting Transaction Isolation Level” on page 5-5.

Se t t ing Per fo rmance-Re la ted web log ic-e jb- ja r . xml Pa ramete rs

BEA WebLogic Server Performance and Tuning 5-3

For the best performance for stateless session and message beans, use the default setting
max-beans-in-free-pool element. The default allows you to run beans in parallel, using as
many threads as possible.

Do not change the value of the max-beans-in-free-pool parameter for session beans unless
you frequently create session beans, do a quick operation, and then throw them away. If you do
this, enlarge your free pool by 25 to 50 percent and see if performance improves. If object creation
represents a small fraction of your workload, increasing this parameter will not significantly
improve performance. For applications where EJBs are database intensive, do not change the
value of this parameter.

Caution: Tuning this parameter too high uses extra memory. Tuning it too low causes
unnecessary object creation. If you are in doubt about changing this parameter, leave
it unchanged.

Using a Free Pool to Improve Stateless Session Bean
Performance
WebLogic Server uses a free pool to improve performance and throughput for stateless session
EJBs. The free pool stores unbound stateless session EJBs. Unbound EJB instances are instances
of a stateless session EJB class that are not processing a method call.

The following figure illustrates the WebLogic Server free pool, and the processes by which
stateless EJBs enter and leave the pool. Dotted lines indicate the “state” of the EJB from the
perspective of WebLogic Server.

Figure 5-1 WebLogic Server free pool showing stateless session EJB life cycle

Method complete

Client request

C
lie

nt
R

eq
ue

st

<initial-beans-in-free-pool>

free pool

 EJB busy EJB inactive

EJB does not exist

Tuning WebLog ic Se rve r E JBs

5-4 BEA WebLogic Server Performance and Tuning

Allocating Pool Size for Entity Beans
A pool of anonymous entity beans (that is., beans without a primary key class) used to invoke
finders and home methods, and to create other entity beans. The max-beans-in-free-pool
element also controls the size of this pool.

If you are running many finders or home methods or creating many beans, you may want to tune
the max-beans-in-free-pool element so that there are enough beans available for use in the
pool.

Tuning Pool Size for Stateless Sessions Beans at Startup
Use the initial-beans-in-free-pool element of the weblogic-ejb-jar.xml file to
specify the number of stateless session bean instances in the free pool at startup.

If you specify a value for initial-beans-in-free-pool, WebLogic Server populates the free
pool with the specified number of bean instances at startup. Populating the free pool in this way
improves initial response time for the EJB, because initial requests for the bean can be satisfied
without generating a new instance.

initial-beans-in-free-pool defaults to 0 if the element is not defined.

The initial-beans-in-free-pool element is described in Programming WebLogic
Enterprise JavaBeans at {DOCROOT}/ejb/DDreference-ejb-jar.html#initial-beans-in-free-pool.

Setting Caching Size for Stateful Session and Entity Beans
You can configure the number of active bean instances that are present in the EJB cache (the
in-memory space where beans exist).

Use the max-beans-in-cache element of the weblogic-ejb-jar.xml file to specify the
maximum number of objects of this bean class that are allowed in memory. When
max-beans-in-cache is reached, WebLogic Server passivates some EJBs that have not been
recently used by a client. The max-beans-in-cache element also affects when EJBs are
removed from the WebLogic Server cache.

For more information, see “Choosing a Concurrency Strategy” in Programming WebLogic
Enterprise JavaBeans at {DOCROOT}/ejb/entity.html#ChoosingaConcurrencyStrategy.

The max-beans-in-cache element is described in Programming WebLogic Enterprise
JavaBeans at {DOCROOT}/ejb/DDreference-ejb-jar.html#max-beans-in-cache.

Se t t ing Per fo rmance-Re la ted web log ic-e jb- ja r . xml Pa ramete rs

BEA WebLogic Server Performance and Tuning 5-5

Activation and Passivation of Stateful Session EJBs
Set the appropriate cache size with the max-beans-in-cache element to avoid excessive
passivation and activation. Activation is the transfer of an EJB instance from secondary storage
to memory. Passivation is the transfer of an EJB instance from memory to secondary storage.
Tuning max-beans-in-cache too high consumes memory unnecessarily.

The EJB container performs passivation when the cache becomes full. When the EJB session
object is needed again, the bean is activated by the container.

The container automatically manages this working set of session objects in the EJB cache without
the client’s or server’s direct intervention. Specific callback methods in each EJB describe how
to passivate (store in cache) or activate (retrieve from cache) these objects. Excessive activation
and passivation nullifies the performance benefits of caching the working set of session objects
in the EJB cache—especially when the application has to handle a large number of session
objects.

Deferring Database Locking
WebLogic Server supports database locking, optimistic locking and exclusive locking
mechanisms. The default and recommended mechanism for EJB 1.1 and EJB 2.0 is database
locking.

Database locking improves concurrent access to entity EJBs. The WebLogic Server container
improves concurrent access by deferring locking services to the underlying database. Unlike
exclusive locking, with deferred database locking, the underlying data store can provide finer
granularity for locking EJB data, in most cases, and provide deadlock detection.

For details about database locking, see Choosing a Concurrency Strategy in Enterprise
JavaBeans at {DOCROOT}/ejb/entity.html#ChoosingaConcurrencyStrategy.

You specify the locking mechanism used for an EJB by setting the concurrency-strategy
element in the weblogic-ejb-jar.xml file. See
{DOCROOT}/ejb/DDreference-ejb-jar.html#concurrency-strategy.

Setting Transaction Isolation Level
Data accessibility is controlled through the transaction isolation level mechanism. Transaction
isolation level determines the degree to which multiple interleaved transactions are prevented
from interfering with each other in a multi-user database system. Transaction isolation is
achieved through use of locking protocols that guide the reading and writing of transaction data.

Tuning WebLog ic Se rve r E JBs

5-6 BEA WebLogic Server Performance and Tuning

This transaction data is written to the disk in a process called “serialization.” Lower isolation
levels give you better database concurrency at the cost of less transaction isolation.

For more information, see the description of the isolation-level element of the
weblogic-ejb-jar.xml file in Programming WebLogic Enterprise JavaBeans at
{DOCROOT}/ejb/DDreference-ejb-jar.html#isolation-level.

Refer to your database documentation for more information on the implications and support for
different isolation levels.

Setting Performance-Related weblogic-cmp-jar.xml
Parameters

Table 5-1 lists the weblogic-cmp-jar.xml file parameters that affect performance.

Tuning In Response to Monitoring Statistics
The WebLogic Server Administration Console reports a wide variety of EJB runtime monitoring
statistics, many of which are useful for tuning your EJBs. This section discusses how some of
these statistics can help you tune the performance of EJBs.

Table 5-2 Performance-Related weblogic-cmp-jar.xml Parameters

Element For more information

relationship-caching See Relationship Caching at
{DOCROOT}/ejb/entity.html#RelationshipCach
ing.

order-database-operations See Database Operation Ordering at
{DOCROOT}/ejb/entity.html#OrderingandBatchingO
perations.

enable-batch-operations See Database Operation Ordering at
{DOCROOT}/ejb/entity.html#OrderingandBatchingO
perations.

delay-database-insert-until See Delaying Database Inserts at
{DOCROOT}/ejb/entity.html#DelayingDatabaseInser
ts.

field-group See Field Groups at
{DOCROOT}/ejb/entity.HTML#FieldGroups.

Tun ing In Response to Moni to r ing Stat is t i cs

BEA WebLogic Server Performance and Tuning 5-7

To display the statistics in the Administration Console, see “Monitoring EJBs” at
{DOCROOT}/ConsoleHelp/ejb.html#MonitoringEJBs.

Note: If you prefer to write a custom monitoring application, you can access the monitoring
statistics programmatically by calling the relevant runtime MBeans. See the Javadoc for
the weblogic.management.runtime package.

Cache Miss Ratio
The cache miss ratio is a ratio of the number of times a container cannot find a bean in the cache
(cache miss) to the number of times it attempts to find a bean in the cache (cache access):

Cache Miss Ratio = (Cache Total Miss Count / Cache Total Access Count) * 100

A high cache miss ratio could be indicative of an improperly sized cache. If your application uses
a certain subset of beans (read primary keys) more frequently than others, it would be ideal to size
your cache large enough so that the commonly used beans can remain in the cache as less
commonly used beans are cycled in and out upon demand. If this is the nature of your application,
you may be able to decrease your cache miss ratio significantly by increasing the maximum size
of your cache.

If your application doesn’t necessarily use a subset of beans more frequently than others,
increasing your maximum cache size may not affect your cache miss ratio. We recommend
testing your application with different maximum cache sizes to determine which give the lowest
cache miss ratio. It is also important to keep in mind that your server has a finite amount of
memory and therefore there is always a trade-off to increasing your cache size.

Lock Waiter Ratio
The lock waiter ratio of the number of times a thread had to wait to obtain a lock on a bean to the
total amount of lock requests issued:

Lock Waiter Ratio = (Current Waiter Count / Current Lock Entry Count) * 100

A high lock waiter ratio can indicate a suboptimal concurrency strategy for the bean. If acceptable
for your application, a concurrency strategy of Database or Optimistic will allow for more
parallelism than an Exclusive strategy and remove the need for locking at the EJB container level.

Because locks are generally held for the duration of a transaction, reducing the duration of your
transactions will free up beans more quickly and may help reduce your lock waiter ratio. To
reduce transaction duration, avoid grouping large amounts of work into a single transaction
unless absolutely necessary.

Tuning WebLog ic Se rve r E JBs

5-8 BEA WebLogic Server Performance and Tuning

Lock Timeout Ratio
The lock timeout ratio of timeouts to accesses for the lock manager:

Lock Timeout Ratio =(Lock Manager Timeout Total Count / Lock Manager Total

Access Count) * 100

The lock timeout ratio is closely related to the lock waiter ratio. If you are concerned about the
lock timeout ratio for your bean, first take a look at the lock waiter ratio and our recommendations
for reducing it (including possibly changing your concurrency strategy). If you can reduce or
eliminate the number of times a thread has to wait for a lock on a bean, you will also reduce or
eliminate the amount of timeouts that occur while waiting.

A high lock timeout ratio may also be indicative of an improper transaction timeout value. The
maximum amount of time a thread will wait for a lock is equal to the current transaction timeout
value.

If the transaction timeout value is set too low, threads may not be waiting long enough to obtain
access to a bean and timing out prematurely. If this is the case, increasing the
trans-timeout-seconds value for the bean may help reduce the lock timeout ratio.

Take care when increasing the trans-timeout-seconds, however, because doing so can cause
threads to wait longer for a bean and threads are a valuable server resource. Also, doing so may
increase the request time, as a request ma wait longer before timing out.

Pool Miss Ratio
The pool miss ratio is a ratio of the number of times a request was made to get a bean from the
pool when no beans were available, to the total number of requests for a bean made to the pool:

Pool Miss Ratio = (Pool Total Miss Count / Pool Total Access Count) * 100

If your pool miss ratio is high, you must determine what is happening to your bean instances.
There are three things that can happen to your beans.

They are in use.

They were destroyed.

They were removed.

Follow these steps to diagnose the problem:

1. Check your destroyed bean ratio to verify that bean instances are not being destroyed.

Tun ing In Response to Moni to r ing Stat is t i cs

BEA WebLogic Server Performance and Tuning 5-9

Investigate the cause and try to remedy the situation.

2. Examine the demand for the EJB, perhaps over a period of time.

One way to check this is via the Beans in Use Current Count and Idle Beans Count
displayed in the Administration Console. If demand for your EJB spikes during a certain
period of time, you may see a lot of pool misses as your pool is emptied and unable to fill
additional requests.

As the demand for the EJB drops and beans are returned to the pool, many of the beans
created to satisfy requests may be unable to fit in the pool and are therefore removed. If
this is the case, you may be able to reduce the number of pool misses by increasing the
maximum size of your free pool. This may allow beans that were created to satisfy demand
during peak periods to remain in the pool so they can be used again when demand once
again increases.

Destroyed Bean Ratio
The destroyed bean ratio is a ratio of the number of beans destroyed to the total number of
requests for a bean.

Destroyed Bean Ratio = (Total Destroyed Count / Total Access Count) * 100

To reduce the number of destroyed beans, BEA recommends against throwing non-application
exceptions from your bean code except in cases where you want the bean instance to be
destroyed. A non-application exception is an exception that is either a java.rmi.RemoteException
(including exceptions that inherit from RemoteException) or is not defined in the throws clause
of a method of an EJB’s home or component interface.

In general, you should investigate which exceptions are causing your beans to be destroyed as
they may be hurting performance and may indicate problem with the EJB or a resource used by
the EJB.

Pool Timeout Ratio
The pool timeout ratio is a ratio of requests that have timed out waiting for a bean from the pool
to the total number of requests made:

Pool Timeout Ratio = (Pool Total Timeout Count / Pool Total Access Count) *

100

A high pool timeout ratio could be indicative of an improperly sized free pool. Increasing the
maximum size of your free pool via the max-beans-in-free-pool setting will increase the
number of bean instances available to service requests and may reduce your pool timeout ratio.

Tuning WebLog ic Se rve r E JBs

5-10 BEA WebLogic Server Performance and Tuning

Another factor affecting the number of pool timeouts is the configured transaction timeout for
your bean. The maximum amount of time a thread will wait for a bean from the pool is equal to
the default transaction timeout for the bean. Increasing the trans-timeout-seconds setting in
your weblogic-ejb-jar.xml file will give threads more time to wait for a bean instance to
become available.

Users should exercise caution when increasing this value, however, since doing so may cause
threads to wait longer for a bean and threads are a valuable server resource. Also, request time
might increase because a request will wait longer before timing out.

Transaction Rollback Ratio
The transaction rollback ratio is the ratio of transactions that have rolled back to the number of
total transactions involving the EJB:

Transaction Rollback Ratio = (Transaction Total Rollback Count / Transaction

Total Count) * 100

Begin investigating a high transaction rollback ratio by examining the Transaction Timeout Ratio
reported in the Administration Console. If the transaction timeout ratio is higher than you expect,
try to address the timeout problem first.

An unexpectedly high transaction rollback ratio could be caused by a number of things. We
recommend investigating the cause of transaction rollbacks to find potential problems with your
application or a resource used by your application.

Transaction Timeout Ratio
The transaction timeout ratio is the ratio of transactions that have timed out to the total number
of transactions involving an EJB:

Transaction Timeout Ratio = (Transaction Total Timeout Count / Transaction

Total Count) * 100

A high transaction timeout ratio could be caused by the wrong transaction timeout value. For
example, if your transaction timeout is set too low, you may be timing out transactions before the
thread is able to complete the necessary work. Increasing your transaction timeout value may
reduce the number of transaction timeouts.

You should exercise caution when increasing this value, however, since doing so can cause
threads to wait longer for a resource before timing out. Also, request time might increase because
a request will wait longer before timing out.

Other Pe r fo rmance Improvement S t ra teg ies

BEA WebLogic Server Performance and Tuning 5-11

A high transaction timeout ratio could be caused by a number of things such as a bottleneck for
a server resource. We recommend tracing through your transactions to investigate what is causing
the timeouts so the problem can be addressed.

Other Performance Improvement Strategies
“Application-Level Caching” on page 5-11

“Batch Operations” on page 5-11

“Distributing Transactions Across EJBs in a WebLogic Server Cluster” on page 5-11

“Using a Free Pool to Improve Stateless Session Bean Performance” on page 5-3

“Indexing with a Version Column” on page 5-12

Application-Level Caching
Application-level caching allows you to configure a single cache for use with multiple entity
beans. This will help solve usability and performance problems. Previously, you were required
to configure a separate cache for each entity bean that was part of an application. For more
information on combined caching, see Application-Level Versus Bean-Level Caching at
{DOCROOT}/ejb/entity.html#Application-LevelversusBean-LevelCaching.

Batch Operations
Batch inserts, updates and deletes improve the performance of container-managed persistence
(CMP) bean creation by enabling the EJB container to perform multiple database operations for
CMP beans in one SQL statement, thereby reducing network roundtrips. For more information
on batch operations, see “Ordering and Batching Operations” at
{DOCROOT}/ejb/entity.html#OrderingandBatchingOperations.

Distributing Transactions Across EJBs in a WebLogic Server
Cluster
WebLogic Server provides additional transaction performance benefits for EJBs that reside in a
WebLogic Server cluster. When a single transaction uses multiple EJBs, WebLogic Server
attempts to use EJB instances from a single WebLogic Server instance, rather than using EJBs
from different servers. This approach minimizes network traffic for the transaction.

Tuning WebLog ic Se rve r E JBs

5-12 BEA WebLogic Server Performance and Tuning

In some cases, a transaction can use EJBs that reside on multiple WebLogic Server instances in
a cluster. This can occur in heterogeneous clusters, where all EJBs have not been deployed to all
WebLogic Server instances. In these cases, WebLogic Server uses a multitier connection to
access the datastore, rather than multiple direct connections. This approach uses fewer resources,
and yields better performance for the transaction.

However, for best performance, the cluster should be homogeneous — all EJBs should reside on
all available WebLogic Server instances.

Indexing with a Version Column
When using an Optimistic concurrency strategy with the optimistic column specified as
version, creating an index on the table consisting of the primary key column and the version
column can improve performance.

BEA WebLogic Server Performance and Tuning 6-1

C H A P T E R 6

Tuning WebLogic Server Applications

WebLogic Server only performs as well as the applications running on it. To quote the authors of
Mastering BEA WebLogic Server: Best Practices for Building and Deploying J2EE Applications:
“Good application performance starts with good application design. Overly-complex or
poorly-designed applications will perform poorly regardless of the system-level tuning and best
practices employed to improve performance.” In other words, a poorly designed application can
create unnecessary bottlenecks. For example, resource contention could be a case of bad design,
rather than inherent to the application domain.

This section discusses some methods to determine the bottlenecks that can impede your
application’s performance:

“Using Performance Analysis Tools” on page 6-2

“JDBC Application Tuning” on page 6-2

“JMS Application Tuning” on page 6-3

“EJB Application Tuning” on page 6-3

“Web Services Tuning” on page 6-3

“Managing Sessions” on page 6-4

“Using Execute Queues to Control Thread Usage” on page 6-5

Tuning WebLog ic Se rve r App l i cat ions

6-2 BEA WebLogic Server Performance and Tuning

Using Performance Analysis Tools
This section is a quick reference for using the OptimizeItTM and JProbeTM profilers with
WebLogic Server.

A profiler is a performance analysis tool that allows you to reveal hot spots in the application that
result in either high CPU utilization or high contention for shared resources. For a list of common
profilers, see “Performance Analysis Tools” on page A-6.

Using the JProbe Profiler
The JProbe Suite is a family of products that provide the capability to detect performance
bottlenecks, find and fix memory leaks, perform code coverage, and other metrics. For product
details, see http://www.quest.com/jprobe/

The JProbe website provides a technical white paper, “Using Sitraka JProbe and BEA WebLogic
Server”, which describes how developers can analyze code with any of the JProbe Suite tools
running inside BEA WebLogic Server.

Using the Optimizeit Profiler
The Optimizeit Profiler from Borland is a performance debugging tool for Solaris and Windows
platforms. For product details, see
http://www.borland.com/optimizeit/optimizeit_profiler/index.html.

Borland provides detailed J2EE Integration Tutorials for the supported versions of Optimizeit
Profiler that work with WebLogic Server. For details, see
http://info.borland.com/optimizeit/j2ee_support.html#bea.

JDBC Application Tuning
Most performance gains or losses in a database application are determined by how the application
is designed. The number and location of clients, size and structure of DBMS tables and indexes,
and the number and types of queries all affect application performance.

For more information on optimizing your applications for JDBC and tuning WebLogic JDBC
connection pools, see:

“Performance Tuning Your JDBC Application” in Programming WebLogic JDBC at
{DOCROOT}/jdbc/performance.html

JMS Appl i ca t i on Tun ing

BEA WebLogic Server Performance and Tuning 6-3

“Tuning JDBC Connection Pools” in the WebLogic Server Administration Console Online
Help

See {DOCROOT}/ConsoleHelp/jdbc_connection_pools.html

JMS Application Tuning
There are a number of design choices that impact performance of JMS applications. Some others
include reliability, scalability, manageability, monitoring, user transactions, message driven bean
support, and integration with an application server. In addition, there are WebLogic JMS
extensions and features have a direct impact on performance.

For more information on optimizing your applications for JMS and tuning WebLogic JMS, see:

“WebLogic JMS Performance Guide” white paper on BEA’s dev2dev Web site

See http://dev2dev.bea.com/products/wlserver/resources.jsp

“Tuning JMS” in the WebLogic Server Administration Console Online Help

See {DOCROOT}/ConsoleHelp/jms_tuning.html

EJB Application Tuning
“Tuning WebLogic Server EJBs” describes how to tune WebLogic Server Enterprise Java Beans
to match your application needs.

Web Services Tuning
There are some performance issues you should be aware of when you program your WebLogic
Web services:

Applications that are heavy users of XML functionality (parsers) may encounter
performance issues or run out of file descriptors. This may occur because XML parser
instances are bootstrapped by doing a lookup in the jaxp.properties file (JAXP API).
BEA recommends setting the properties on the command line to avoid unnecessary file
operations at runtime and improve performance and resource usage

“Performance Hints” in Programming WebLogic Web Services

See {DOCROOT}/webserv/trouble.html#perf_hints

“Debugging Performance Problems” in Programming WebLogic Web Services

See {DOCROOT}/webserv/trouble.html#debug_perf

Tuning WebLog ic Se rve r App l i cat ions

6-4 BEA WebLogic Server Performance and Tuning

Managing Sessions
As a general rule, you should optimize your application so that it does as little work as possible
when handling session persistence and sessions. You should also design a session management
strategy that suits your environment and application.

Managing Session Persistence
Weblogic Server offers five session persistence mechanisms that cater to the differing
requirements of your application. The session persistence mechanisms are configurable at the
Web application layer. Which session management strategy you choose for your application
depends on real-world factors like HTTP session size, session life cycle, reliability, and session
failover requirements. For example, a Web application with no failover requirements could be
maintained as a single memory-based session; whereas, a Web application with session fail-over
capability could be maintained as replicated sessions or JDBC-based sessions, based on their life
cycle and object size.

In terms of pure performance, in-memory session persistence is a better overall choice when
compared to JDBC-based persistence for session state. According to the authors of Session
Persistence Performance in BEA WebLogic Server 7.0: “While all session persistence
mechanisms have to deal with the overhead of data serialization and deserialization, the
additional overhead of the database interaction impacts the performance of the JDBC-based
session persistence and causes it to under-perform compared with the in-memory replication.”
However, in-memory-based session persistence requires the use of WebLogic clustering, so it
isn’t an option in a single-server environment.

On the other hand, an environment using JDBC-based persistence does not require the use of
WebLogic clusters and can maintain the session state for longer periods of time in the database.
One way to improve JDBC-based session persistence is to optimize your code so that it has as
high a granularity for session state persistence as possible. Other factors that can improve the
overall performance of JDBC-based session persistence are: the choice of database, proper
database server configuration, JDBC driver, and the JDBC connection pool configuration.

For more information on managing session persistence, see:

“Session Persistence Performance in BEA WebLogic Server 7.0” in the BEA WebLogic
Developers Journal provides in-depth comparisons of the five session persistence
mechanisms supported by WebLogic Server, at
{http://www.sys-con.com/weblogic/article.cfm?id=163

Us ing Execute Queues to Cont ro l Thread Usage

BEA WebLogic Server Performance and Tuning 6-5

“Configuring Session Persistence” in Assembling and Configuring Web Applications, at
{DOCROOT}/webapp/sessions.html#session-persistence

“HTTP Session State Replication” in Using WebLogic Sever Clusters, at
http://{DOCROOT}/cluster/failover.html#httpstaterep

“Using a Database for Persistent Storage (JDBC Persistence)” in Assembling and
Configuring Web Applications, at
{DOCROOT}/webapp/sessions.html#jdbc_persistence

Minimizing Sessions
Configuring how WebLogic Server manages sessions is a key part of tuning your application for
best performance. Consider the following:

Use of sessions involves a scalability trade-off.

Use sessions sparingly. In other words, use sessions only for state that cannot realistically
be kept on the client or if URL rewriting support is required. For example, keep simple bits
of state, such as a user’s name, directly in cookies. You can also write a wrapper class to
“get” and “set” these cookies, in order to simplify the work of servlet developers working
on the same project.

Keep frequently used values in local variables.

Put aggregate objects rather than multiple single objects into the session where possible.

For more information, see “Setting Up Session Management” in Assembling and Configuring
Web Applications, at {DOCROOT}/webapp/sessions.html#session-management.

Using Execute Queues to Control Thread Usage
You can fine-tune an application’s access to execute threads (and thereby optimize or throttle its
performance) by using multiple execute queues in WebLogic Server. However, keep in mind that
unused threads represent significant wasted resources in a Weblogic Server system. You may find
that available threads in configured execute queues go unused, while tasks in other queues sit idle
waiting for threads to become available. In such a situation, the division of threads into multiple
queues may yield poorer overall performance than having a single, default execute queue.

Default WebLogic Server installations are configured with a default execute queue,
weblogic.kernel.Default, which is used by all applications running on the server instance.
You may want to configure additional queues to:

Tuning WebLog ic Se rve r App l i cat ions

6-6 BEA WebLogic Server Performance and Tuning

Optimize the performance of critical applications. For example, you can assign a single,
mission-critical application to a particular execute queue, guaranteeing a fixed number of
execute threads. During peak server loads, nonessential applications may compete for
threads in the default execute queue, but the mission-critical application has access to the
same number of threads at all times.

Throttle the performance of nonessential applications. For an application that can
potentially consume large amounts of memory, assigning it to a dedicated execute queue
effectively limits the amount of memory it can consume. Although the application can
potentially use all threads available in its assigned execute queue, it cannot affect thread
usage in any other queue.

Remedy deadlocked thread usage. With certain application designs, deadlocks can occur
when all execute threads are currently utilized. For example, consider a servlet that reads
messages from a designated JMS queue. If all execute threads in a server are used to
process the servlet requests, then no threads are available to deliver messages from the
JMS queue. A deadlock condition exists, and no work can progress. Assigning the servlet
to a separate execute queue avoids potential deadlocks, because the servlet and JMS queue
do not compete for thread resources.

Be sure to monitor each execute queue to ensure proper thread usage in the system as a whole.
See “Tuning the Default Execute Queue Threads” on page 4-6 for general information about
optimizing the number of threads.

Creating Execute Queues
An execute queue represents a named collection of execute threads that are available to one or
more designated servlets, JSPs, EJBs, or RMI objects. An execute queue is represented in the
domain config.xml file as part of the Server element. For example, an execute queue named
CriticalAppQueue with four execute threads appears in the config.xml file as follows:

...

<Server

Name="examplesServer"

ListenPort="7001"

NativeIOEnabled="true"/>

<ExecuteQueue Name="default"

ThreadCount="15"/>

<ExecuteQueue Name="CriticalAppQueue"

ThreadCount="4"/>

Us ing Execute Queues to Cont ro l Thread Usage

BEA WebLogic Server Performance and Tuning 6-7

...

</Server>

To configure a new execute queue using the Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node in the left pane to display the servers configured in your domain.

4. Right-click the name of the server instance on which you want to add an execute queue, and
then select View Execute Queues from the pop-up menu.

5. On the execute queue Configuration tab, click the Configure a New Execute Queue link.

6. On the execute queue Configuration tab, modify the following attributes or accept the
system defaults:

– Queue Length: Always leave the Queue Length at the default value of 65536 entries.
The Queue Length specifies the maximum number of simultaneous requests that the
server can hold in the queue. The default of 65536 requests represents a very large
number of requests; outstanding requests in the queue should rarely, if ever reach this
maximum value.

If the maximum Queue Length is reached, WebLogic Server automatically doubles the
size of the queue to account for the additional work. Note, however, that exceeding
65536 requests in the queue indicates a problem with the threads in the queue, rather
than the length of the queue itself; check for stuck threads or an insufficient thread
count in the execute queue.

– Queue Length Threshold Percent: The percentage (from 1–99) of the Queue
Length size that can be reached before the server indicates an overflow condition for
the queue. All actual queue length sizes below the threshold percentage are considered
normal; sizes above the threshold percentage indicate an overflow. When an overflow
condition is reached, WebLogic Server logs an error message and increases the number
of threads in the queue by the value of the Threads Increase attribute to help reduce the
workload.

By default, the Queue Length Threshold Percent value is 90 percent. In most situations,
you should leave the value at or near 90 percent, to account for any potential condition
where additional threads may be needed to handle an unexpected spike in work
requests. Keep in mind that Queue Length Threshold Percent must not be used as an
automatic tuning parameter—the threshold should never trigger an increase in thread
count under normal operating conditions.

Tuning WebLog ic Se rve r App l i cat ions

6-8 BEA WebLogic Server Performance and Tuning

– Thread Count: The number of threads assigned to this queue. If you do not need to
use more than 15 threads (the default) for your work, do not change the value of this
attribute. (For more information, see “Should You Modify the Default Thread Count?”
on page 4-6.)

– Threads Increase: The number of threads WebLogic Server should add to this
execute queue when it detects an overflow condition. If you specify zero threads (the
default), the server changes its health state to “warning” in response to an overflow
condition in the thread, but it does not allocate additional threads to reduce the
workload.

Note: If WebLogic Server increases the number of threads in response to an overflow
condition, the additional threads remain in the execute queue until the server is
rebooted. Monitor the error log to determine the cause of overflow conditions, and
reconfigure the thread count as necessary to prevent similar conditions in the
future. Do not use the combination of Threads Increase and Queue Length
Threshold Percent as an automatic tuning tool; doing so generally results in the
execute queue allocating more threads than necessary and suffering from poor
performance due to context switching.

– Threads Maximum: The maximum number of threads that this execute queue can have;
this value prevents WebLogic Server from creating an overly high thread count in the
queue in response to continual overflow conditions. By default, the Threads Maximum
is set to 400.

– Thread Priority: The priority of the threads associated with this queue. By default,
the Thread Priority is set to 5.

7. Click Create to create the new execute queue.

8. Reboot the server to use the new settings.

Assigning Servlets and JSPs to Execute Queues
You can assign a servlet or JSP to a configured execute queue by identifying the execute queue
name in the initialization parameters. Initialization parameters appear within the init-param
element of the servlet’s or JSP’s deployment descriptor file, web.xml. To assign an execute
queue, enter the queue name as the value of the wl-dispatch-policy parameter, as in the
example:

<servlet>

<servlet-name>MainServlet</servlet-name>

<jsp-file>/myapplication/critical.jsp</jsp-file>

Us ing Execute Queues to Cont ro l Thread Usage

BEA WebLogic Server Performance and Tuning 6-9

<init-param>

<param-name>wl-dispatch-policy</param-name>

<param-value>CriticalAppQueue</param-value>

</init-param>

</servlet>

See “Initializing a Servlet” in Programming WebLogic HTTP Servlets for more information
about specifying initialization parameters in web.xml.

Assigning EJBs and RMI Objects to Execute Queues
To assign an EJB object to a configured execute queue, use the new dispatch-policy element
in weblogic-ejb-jar.xml. For more information, see the weblogic-ejb-jar.xml Deployment
Descriptor, at {DOCROOT}/ejb/reference.html#dispatch_policy.

While you can also set the dispatch policy through the appc compiler -dispatchPolicy flag,
BEA strongly recommends you use the deployment descriptor element instead. This way, if the
EJB is recompiled, during deployment for example, the setting will not be lost.

To assign an RMI object to a configured execute queue, use the -dispatchPolicy option to the
rmic compiler. For example:

java weblogic.rmic -dispatchPolicy CriticalAppQueue ...

Tuning WebLog ic Se rve r App l i cat ions

6-10 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning A-1

A P P E N D I X A

Related Reading: Performance Tools
and Information

The following sections provide an extensive performance-related reading list:

“BEA Systems, Inc. Information” on page A-2

“Sun Microsystems Information” on page A-2

“Linux OS Information” on page A-3

“Hewlett-Packard Company Information” on page A-4

“Microsoft Information” on page A-4

“Web Performance Tuning Information” on page A-5

“Network Performance Tools” on page A-6

“Load Testing Tools” on page A-6

“Performance Analysis Tools” on page A-6

“Production Performance Management” on page A-7

“Benchmarking Information” on page A-7

“Java Virtual Machine (JVM) Information” on page A-8

“Enterprise JavaBeans Information” on page A-9

“Java Message Service (JMS) Information” on page A-9

“Java Database Connectivity (JDBC) Information” on page A-10

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-2 BEA WebLogic Server Performance and Tuning

“General Performance Information” on page A-10

BEA Systems, Inc. Information
For general information about BEA Systems, see the BEA Web site

 See http://www.bea.com

BEA WebLogic Server Documentation page

See {DOCROOT}

BEA WebLogic Platform Documentation page

See http://edocs.bea.com/platform/docs81/index.html

BEA’s dev2dev Web site

See http://dev2dev.bea.com/index.jsp

BEA WebLogic Server Evaluation White Papers (for example, “J2EE Design
Considerations for WebLogic Server” and “Distributed Computing with BEA WebLogic
Server”)

See
http://www.bea.com/framework.jsp?CNT=papers.htm&FP=/content/products/se
rver/evaluate/

Professional J2EE Programming with BEA WebLogic Server by Paco Gomez and Peter
Zadrozny, 2000

BEA WebLogic Server Bible by Joe Zuffoletto, et al, 2002

J2EE Performance Testing with BEA WebLogic Server by Peter Zadrozny, Philip Aston,
and Ted Osborne, 2002

Mastering BEA WebLogic Server: Best Practices for Building and Deploying J2EE
Applications by Gregory Nyberg, Robert Patrick, Paul Bauerschmidt, Jeff McDaniel, and
Raja Mukherjee, 2003

Sun Microsystems Information
For general information about Sun Microsystems, see Sun’s Web site at
http://www.sun.com

Sun Microsystems Performance Information

L inux OS In fo rmat ion

BEA WebLogic Server Performance and Tuning A-3

See http://www.sun.com/sun-on-net/performance.html

Java Standard Edition Platform Documentation

See http://java.sun.com/docs/index.html

Java 2 SDK, Standard Edition Documentation

See http://java.sun.com/j2se/1.4.1/docs

Solaris Tunable Parameters Reference Manual (Solaris 8)

See http://docs.sun.com/?p=/doc/816-0607

Solaris 9 Tunable Parameters Reference Manual (Solaris 9)

See http://docs.sun.com/?p=/doc/806-7009

For BEA WebLogic Server and Solaris-specific details, see the SPARC Solaris links on the
Supported Configurations pages at {PLATFORM}/index.html.

– SPARC with Solaris 8

– SPARC with Solaris 9

For more about Solaris configuration, check the Solaris FAQ

See http://www.science.uva.nl/pub/solaris/solaris2/index.html

Sun Performance and Tuning: Java and the Internet by Adrian Cockcroft, et al, 1998

Solaris 7 Performance Administration Tools by Frank Cervone, 2000

Linux OS Information
For general information about the Linux operating system, see Linux Online at
http://www.linux.org/

For information about the Linux Documentation Project, see LDP at
http://www.tldp.org/

For information about Redhat Enterprise Linux, see Redhat at
http://www.redhat.com/software/rehel/

For information about SuSE Linux Enterprise Server, see SuSE Linux at
http://www.suse.com/us/business/products/server/sles/index.html

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-4 BEA WebLogic Server Performance and Tuning

Linux Performance Tuning and Capacity Planning, by Jason R. Find, et al, 1997, Sams
2001

Ipsysctl Tutorial 1.0.4, at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html, describes
the IP options provided by Linux

The Linux Cookbook: Tips and Techniques for Everyday Use, by Michael Stutz at
http://www.dsl.org/cookbook/

Hewlett-Packard Company Information
General Hewlett-Packard information

See http://www.thenewhp.com.

For BEA WebLogic Server and HP-UX-specific details, see Hewlett-Packard HP/9000
with HP-UX 11.0 and 11i on the BEA Certifications Pages

See {PLATFORM}/hp9000.html

Java Performance Tuning on HP-UX

See
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1
701,1602,00.html

Hewlett Packard JMeter, a tool for analyzing profiling information

See http://www.hp.com/products1/unix/java/hpjmeter/

GlancePlus system performance diagnostic tool

See http://www.openview.hp.com/products/gplus/index.html

HPjconfig Java system configuration tool

See http://www.hp.com/products1/unix/java/java2/hpjconfig/index.html

Microsoft Information
General Microsoft information

See http://www.microsoft.com

Windows 2000 Performance Tuning White Paper

Web Pe r fo rmance Tuning In fo rmat ion

BEA WebLogic Server Performance and Tuning A-5

See
http://www.microsoft.com/technet/win2000/win2ksrv/technote/perftune.asp

Windows 2000 Performance Guide, by Mark Friedman and Odysseas Pentakalos, 2002,
O’Reilly

See
http://www.amazon.com/exec/obidos/ASIN/1565924665/qid%3D1055443647/sr%3
D11-1/ref%3Dsr%5F11%5F1/104-9412286-0155141

SQL-Server-Performance.Com, Microsoft SQL Server Performance Tuning and
Optimization

See http://www.sql-server-performance.com/

Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook, by Ken
England, 2001, Digital Press

See
http://www.sql-server-performance.com/sql_server_2000_perform_optimizat
ion_review.asp

Web Performance Tuning Information
Apache Performance Notes

See http://httpd.apache.org/docs/misc/perf-tuning.html

iPlanet Web Server 4.0 Performance Tuning, Sizing, and Scaling
See http://docs.sun.com/db/doc/816-5663-10

The Art and Science of Web Server Tuning with Internet Information Services 5.0

See
http://www.microsoft.com/windows2000/techinfo/administration/web/tuning
.asp

Web Performance Tuning: Speeding Up the Web, by Patrick Killelea, Linda Mui (Editor),
O'Reilly Nutshell, 1998

Capacity Planning for Web Performance: Metrics, Models, and Methods, by Daniel A.
Menasce, Virgilio A. F. Almeida, Prentice Hall PTR, 1998

Scaling for E-Business: Technologies, Models, Performance, and Capacity Planning, by
Daniel A. Menasce, Virgilio A. F. Almeida, Prentice Hall PTR, 2000

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-6 BEA WebLogic Server Performance and Tuning

Network Performance Tools
TracePlus/Ethernet, a network packet analysis tool for Windows 95/98/ME, NT 4.x,
Windows 2000/XP

See http://www.sstinc.com/home.html

Load Testing Tools
LoadRunner, a tool that predicts enterprise-level system behavior and performance by
emulating thousands of users and employs performance monitors to identify and isolate
problems.

See http://www-heva.mercuryinteractive.com/products/loadrunner/

e-Load, a fast and accurate way to perform load testing, scalability testing, stress testing of
enterprise Web applications.

See
http://www.empirix.com/Empirix/Web+Test+Monitoring/testing+solutions/we
b+application+load+testing.html

The Grinder, a pure Java load-testing framework.

See http://sourceforge.net/projects/grinder/

Performance Analysis Tools
A profiler is a performance analysis tool that allows you to reveal hot spots in the application that
result in either high CPU utilization or high contention for shared resources. Some common
profilers are:

OptimizeIt Java Performance Profiler from Borland, a performance debugging tool for
Solaris and Windows

See http://borland.com/optimizeit/optimizeit_profiler/index.html

JProbe Profiler with Memory Debugger, a family of products that provide the capability to
detect performance bottlenecks, perform code coverage and other metrics

See http://www.sitraka.com/software/jprobe

Product Review: OptimizeIt vs. JProbe, Journal of Object-Oriented Programming, April
2004

See http://www.adtmag.com/joop/article.asp?id=3668

Product ion Per fo rmance Management

BEA WebLogic Server Performance and Tuning A-7

Hewlett Packard JMeter, a tool for analyzing profiling information

See http://www.hp.com/products1/unix/java/hpjmeter/

Topaz, Mercury Interactive’s application performance management solution

See http://www-svca.mercuryinteractive.com/products/topaz/

VTune Performance Analyzer a tool to identify and locate performance bottlenecks in your
code

See http://www.intel.com/software/products/vtune/

PerformaSure a tool to detect, diagnose, and resolve performance problems in multi-tier
J2EE applications

See http://http:java.quest.com/performasure/performasure.shtml

Production Performance Management
Veritas i3 for Web-J2EE is a monitoring, analysis, and tuning tool for Web-based J2EE
Applications.

See http://www.veritas.com/Products/www?c=product&refId=316)

Wily Technology, Inc. provides management solutions for large-scale, real-time production
Web applications, applications servers, portal solutions and integration middleware.

See http://partners.bea.com/search.portal?partnerId=192

Benchmarking Information
SPECjbb2000, a software benchmark product developed by the Standard Performance
Evaluation Corporation (SPEC). SPECjbb2000 is designed to measure a system’s ability to
run Java server applications.

See http://www.spec.org/osg/jbb2000/docs/whitepaper.html

ECPerf Benchmark Kit, a software benchmark product developed under the Java
Community ProcessSM Program that is designed to measure performance and scalability
and assist the J2EE user in understanding J2EE scalability and tuning.

See http://developer.java.sun.com/developer/releases/j2ee/ecperf

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-8 BEA WebLogic Server Performance and Tuning

SPECjAppServer2001 (Java Application Server), a client/server benchmark for measuring
the performance of Java Enterprise Application Servers using a subset of J2EE API's in a
complete end-to-end web application.

See http://www.spec.org/osg/jAppServer2001

Java Virtual Machine (JVM) Information
WebLogic JRockit Documentation, at http://e-docs.bea.com/more_jrockit.html

JVM Corner at artima.com

See http://www.artima.com/java/index.html

Sun Microsystems FAQ about Java HotSpot technology and about performance in general

See http://java.sun.com/docs/hotspot/PerformanceFAQ.html

Performance Documentation for the Java HotSpot Virtual Machine

See http://java.sun.com/docs/hotspot/index.html

Java HotSpot VM Options, a Sun Microsystems document provides information on the
command-line options and environment variables that can affect the performance
characteristics of the HotSpot JVM.

See http://java.sun.com/docs/hotspot/VMOptions.html

Improving Java Application Performance and Scalability by Reducing Garbage Collection
Times and Sizing Memory Using JDK 1.4.1, a Sun Microsystem document on how to
reduce garbage collection times with JDK 1.4.1.

See http://wireless.java.sun.com/midp/articles/garbagecolletion2/

The Java Virtual Machines for J2SE 1.4

See http://java.sun.com/j2se/1.4.1/docs/guide/vm/index.html

Which Java VM scales best? From JavaWorld, results of a VolanoMark 2.0 server
benchmark show how 12 virtual machines stack up.

See http://www.javaworld.com/jw-08-1998/jw-08-volanomark.html

Garbage Collection: Algorithms for Automatic Dynamic Memory Management by Richard
Jones, Rafael D Lins, John Wiley & Sons, 1999

Ente rpr i se JavaBeans In fo rmat ion

BEA WebLogic Server Performance and Tuning A-9

See
http://www.amazon.com/exec/obidos/ASIN/0471941484/richardjones/002-1748
120-9756040

Enterprise JavaBeans Information
Programming WebLogic Enterprise JavaBeans

See {DOCROOT}/ejb/index.html

Enterprise JavaBeans, Second Edition, by Richard Monson-Haefel, Mike Loukides
(Editor), 2000

Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition, by Ed
Roman, 1999

TheServerSide.com, a free online community dedicated to Enterprise JavaBeans (EJBs)
and J2EE.

See http://www.theserverside.com/home/index.jsp

Seven Rules for Optimizing Entity Beans, by Akara Sucharitakul, Java Developer
Connection, 2001

See
http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenr
ules/

Java Message Service (JMS) Information
Programming WebLogic JMS

See {DOCROOT}/jms/index.html

“Tuning JMS” in the WebLogic Server Administration Console Online Help

See {DOCROOT}/ConsoleHelp/jms_tuning.html

“WebLogic Messaging Bridge” in the WebLogic Server Administration Console Online
Help

See {DOCROOT}/ConsoleHelp/messaging_bridge.html

WebLogic JMS Performance Guide white paper on the BEA dev2dev Web site

See http://dev2dev.bea.com/products/wlserver/resources.jsp

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-10 BEA WebLogic Server Performance and Tuning

JMS Specification

See http://java.sun.com/products/jms/docs.html

Java Database Connectivity (JDBC) Information
Performance Tuning Your JDBC Application

See {DOCROOT}/jdbc/performance.html

“Increasing Performance with the Statement Cache” in the WebLogic Server
Administration Console Online Help

See {DOCROOT}/ConsoleHelp/jdbc_connection_pools.html#statementcache

General Performance Information
Jack Shirazi’s Java Performance Tuning Web site

See http://www.javaperformancetuning.com

“Avoiding Scalability Shock” by Bill Shea, May/June 2000

See http://www.stickyminds.com and search for “Avoiding Scalability Shock” or “Bill
Shea”.

Performance and Idiom Guide by Craig Larman and Rhett Guthrie, 1999

BEA WebLogic Server Performance and Tuning Index-1

Index

A
AcceptBacklog attribute 4-14
Activation, stateful session EJBs 5-5

B
Bandwidth, network 2-8
Benchmarking, related reading A-7
bulk insert support 5-11
Bull IBM

hardware tuning 2-2

C
-client option, Solaris HotSpot VM 3-11
-client option, Windows HotSpot VM 3-11
cluster

distributing transactions across EJBS 5-11
Clusters, scalability 4-18
Command-line options, Java

Linux 3-11, 3-12
Solaris 3-11, 3-12
Windows 3-11, 3-12
Windows, non-standard 3-12

compileCommand parameter, jsp-descriptor
element 4-17
Compilers

changing in Console 4-16
changing in weblogic.xml 4-17
setting a 4-16

config.xml parameters, tuning 4-2
Connection backlog buffering 4-14
Connection pool size, JDBC 4-15

Connection pools, database 4-15
Container classes, compiling EJB 4-17
Customer support contact information xv

D
Database connection pools 4-15
database insert

bulk insert 5-11
Documentation, where to find it xiv
Domain, WebLogic Server 4-21

E
Eden/survivor space, setting heap ratios 3-8
EJB

activation 5-4
caching size 5-4
container classes, compiling 4-17
lifecycle of stateless session EJBs 5-3
parameters, tuning 5-1, 5-6
passivation 5-4
pool size, setting 5-2
related reading A-9

EJB support
bulk insert 5-11

F
Forcing garbage collection 3-10

G
Garbage collection

Index-2 BEA WebLogic Server Performance and Tuning

forcing on a server 3-10
tuning 3-3
tuning, 1.3.1 JVM A-8

General performance, related reading A-10
Green threads vs. native threads 3-2

H
Hardware tuning 2-1

Bull IBM 2-2
Hewlett-Packard 2-2, 2-3
Intel Pentium 2-2
network 2-8
platform-specific 2-1
Solaris 2-3

Heap size
setting maximum 3-8
setting minimum 3-8
specifying values 3-6
tuning 3-3

Heap size ratios 3-8
Hewlett-Packard

hardware tuning 2-2, 2-3
related reading A-4

-hotspot option
Linux HotSpot Client VM 3-11
Linux HotSpot Server VM 3-11
Solaris HotSpot Client VM 3-11
Solaris HotSpot Server VM 3-11
Windows HotSpot Client VM 3-11
Windows HotSpot Server VM 3-11

-hotspot option, Linux HotSpot Client VM 3-11

I
In-memory replication 6-4
Intel Pentium

hardware tuning 2-2
Isolation level, setting transaction 5-5
isolation-level element 5-6

J
Java command-line options

Linux 3-11, 3-12
Solaris 3-11, 3-12
Windows 3-11, 3-12
Windows, non-standard 3-12

Java compiler, setting 4-16
JDBC application tuning 6-2
JDBC connection pool size 4-15
JDBC-based persistence 6-4
JMeter, Hewlett Packard profiler A-4, A-7
JMS application tuning 6-3
JMS, related reading A-9, A-10
JProbe profiler 6-2, A-6

related reading A-6
jsp-descriptor element, weblogic.xml 4-17
JSPs, precompiling 4-17
JVMs

mixed client/server 3-2
related reading A-8
-verbosegc option 3-5

L
LAN infrastructure 2-9
Linux

java command-line options 3-11, 3-12

M
max-beans-in-cache element 5-4
max-beans-in-free-pool element 5-2
Maximum heap size, setting 3-8
Maximum memory, operating system tuning 2-8
Maximum New generation heap size, setting 3-8
MaxNewSize option 3-8
Microsoft, related reading A-4
Minimizing sessions 6-5
Minimum heap size, setting 3-8
Mixed client/server JVMs 3-2

BEA WebLogic Server Performance and Tuning Index-3

N
Native threads vs. green threads 3-2
NativeIOEnabled attribute 4-5
Network tuning

bandwidth 2-8
hardware and software 2-8
LAN infrastructure 2-9
performance tools A-6

New generation heap size, setting 3-8
NewSize option 3-8

O
Operating system tuning

max memory for user process 2-8
OptimizeIt Profiler

related reading A-6
using 6-2

P
Passivation, stateful session EJBs 5-5
Performance analysis tools

related reading A-6
using JProbe and OptimizeIt 6-2

Performance packs
enabling via Console 4-5
using 4-5
which platforms? 4-5

Persistence
JDBC-based 6-4
session, managing 6-4

Platform-specific
hardware tuning 2-1
JVM tuning 3-2

Pool size, database connection 4-15
Precompiling JSPs 4-17
Printing product documentation xiv
Profilers

related reading A-6
using 6-2

R
Ratios, setting heap size 3-8
Related reading A-1

BEA Systems A-2
benchmarking A-7
EJBs A-9
general performance A-10
Hewlett Packard A-4
JMS A-9, A-10
JVMs A-8
Microsoft A-4
network performance tools A-6
performance analysis tools A-6
profilers A-6
Sun Microsystems A-2

Replication, in-memory 6-4

S
Scalability, clusters 4-18
-server option, Linux HotSpot VM 3-11
-server option, Solaris HotSpot VM 3-11
-server option, Windows HotSpot VM 3-11
Session management 6-5
Session persistence

in-memory replication 6-4
managing 6-4

Setting Java HotSpot VM options 3-10
Socket readers, allocating threads 4-9
Solaris

hardware tuning 2-3
java command-line options 3-11, 3-12

SPECjbb2000 A-7
Standardized benchmarks and metrics 2-1
Start-up scripts for Administration Server 3-7,
4-1
startWebLogic.cmd

heap size values 3-7
startWebLogic.sh

heap size values 3-7
Stateful session EJBs

Index-4 BEA WebLogic Server Performance and Tuning

activation and passivation 5-5
stateless session

lifecycle of these EJBs 5-3
Sun Microsystems, related reading A-2
Support, technical xv
SurvivorRatio option 3-8

T
TCP connections 4-14
Thread count

modifying 4-6
scenarios 4-8
setting 4-6
too high 4-8
too low 4-8

ThreadCount attribute 4-6
Threading models, UNIX 3-2
ThreadPoolPercentSocketReaders attribute 4-9
Threads, socket reader 4-9
TracePlus/Ethernet A-6
Transaction isolation level, setting 5-5
transactions

distributing across EJBS in a cluster 5-11
Tuning

config.xml parameters 4-2
Tuning weblogic-ejb-jar.xml parameters 5-1, 5-6

U
UNIX threading models 3-2
Using profilers 6-2

V
-verbosegc option

JVM 3-5

W
WebLogic Server

clusters 4-18

free pool 5-3
monitoring a domain 4-21
performance packs 4-5
tuning 4-1, 5-1

weblogic.ejbc utility 4-17
weblogic-ejb-jar.xml parameters, tuning 5-1, 5-6
Windows

java command-line options 3-11, 3-12
java command-line options non-standard

3-12

X
-Xms option 3-8
-XX

MaxNewSize option 3-8
NewSize option 3-8
SurvivorRatio option 3-8

