
BEAWebLogic
Server™

Programming WebLogic
JTA

Version 8.1
Revised: September 23, 2005

Copyright
Copyright © 2004-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Programming WebLogic JTA iii

Contents

About This Document
Audience .x

e-docs Web Site .x

How to Print the Document .x

Contact Us! . xi

Documentation Conventions . xi

1. Introducing Transactions
Overview of Transactions in WebLogic Server Applications . 1-1

ACID Properties of Transactions . 1-2

Supported Programming Model . 1-2

Supported API Models . 1-2

Distributed Transactions and the Two-Phase Commit Protocol 1-3

Support for Business Transactions . 1-4

When to Use Transactions . 1-4

When Not to Use Transactions . 1-5

What Happens During a Transaction . 1-6

Transactions in WebLogic Server EJB Applications . 1-6

Container-managed Transactions. 1-7

Bean-managed Transactions . 1-8

 Transactions in WebLogic Server RMI Applications . 1-8

Transactions Sample Code. 1-10

iv Programming WebLogic JTA

Transactions Sample EJB Code . 1-10

Importing Packages. 1-10

Using JNDI to Return an Object Reference . 1-11

Starting a Transaction . 1-12

Completing a Transaction . 1-12

Transactions Sample RMI Code . 1-13

Importing Packages. 1-13

Using JNDI to Return an Object Reference to the UserTransaction Object. . . 1-14

Starting a Transaction . 1-15

Completing a Transaction . 1-15

2. Configuring and Managing Transactions
Configuring Transactions . 2-1

Monitoring Transactions . 2-2

Logging . 2-2

Monitoring . 2-2

3. Transaction Service
About the Transaction Service . 3-1

Capabilities and Limitations . 3-2

Lightweight Clients with Delegated Commit . 3-2

Client-initiated Transactions . 3-2

Transaction Integrity . 3-3

Transaction Termination . 3-3

Flat Transactions . 3-3

Relationship of the Transaction Service to Transaction Processing 3-3

Multithreaded Transaction Client Support . 3-4

General Constraints . 3-4

Programming WebLogic JTA v

Transaction Scope . 3-4

Transaction Service in EJB Applications . 3-4

Transaction Service in RMI Applications . 3-5

Transaction Service Interoperating with OTS . 3-5

Server-Server 2PC . 3-5

Client demarcated transactions. 3-6

4. Java Transaction API and BEA WebLogic Extensions
JTA API Overview . 4-1

BEA WebLogic Extensions to JTA. 4-2

5. Transactions in EJB Applications
Before You Begin . 5-2

General Guidelines . 5-2

Transaction Attributes . 5-3

About Transaction Attributes for EJBs . 5-3

Transaction Attributes for Container-Managed Transactions 5-3

Transaction Attributes for Bean-Managed Transactions . 5-4

Participating in a Transaction . 5-5

Transaction Semantics . 5-5

Transaction Semantics for Container-Managed Transactions 5-5

Transaction Semantics for Stateful Session Beans . 5-6

Transaction Semantics for Stateless Session Beans . 5-6

Transaction Semantics for Entity Beans . 5-7

Transaction Semantics for Bean-Managed Transactions . 5-8

Transaction Semantics for Stateful Session Beans . 5-8

Transaction Semantics for Stateless Session Beans . 5-9

Session Synchronization . 5-9

vi Programming WebLogic JTA

Synchronization During Transactions. 5-10

Setting Transaction Timeouts . 5-10

Handling Exceptions in EJB Transactions . 5-11

6. Transactions in RMI Applications
Before You Begin . 6-1

General Guidelines . 6-1

7. Using Third-Party JDBC XA Drivers with WebLogic Server
Overview of Third-Party XA Drivers . 7-1

Table of Third-Party XA Drivers . 7-1

Third-Party Driver Configuration and Performance Requirements 7-2

Using Oracle Thin/XA Driver . 7-2

Software Requirements for the Oracle Thin/XA Driver. 7-2

Known Oracle Thin Driver Issues . 7-3

Set the Environment for the Oracle Thin/XA Driver . 7-5

Oracle Thin/XA Driver Configuration Properties . 7-6

Using the IBM DB2 Type 2 XA JDBC Driver . 7-7

Set the Environment for the DB2 7.2/XA Driver . 7-7

Limitation and Restrictions using DB2 as an XAResource 7-7

Using Sybase jConnect 5.5/XA Driver . 7-8

Known Sybase jConnect 5.5/XA Issues . 7-8

Set Up the Sybase Server for XA Support . 7-8

Notes About XA and Sybase Adaptive Server . 7-9

Connection Pools for the Sybase jConnect 5.5/XA Driver 7-11

Configuration Properties for Java Client . 7-12

Other Third-Party XA Drivers . 7-12

Programming WebLogic JTA vii

8. Coordinating XAResources with the WebLogic Server
Transaction Manager

Overview of Coordinating Distributed Transactions with Foreign XAResources 8-2

Registering an XAResource to Participate in Transactions. 8-3

Enlisting and Delisting an XAResource in a Transaction . 8-6

Standard Enlistment . 8-7

Dynamic Enlistment . 8-8

Static Enlistment. 8-9

Commit processing . 8-9

Recovery . 8-10

Resource Health Monitoring . 8-11

J2EE Connector Architecture Resource Adapter . 8-12

Implementation Tips . 8-12

Sharing the WebLogic Server Transaction Log . 8-12

Transaction global properties . 8-13

TxHelper.createXid . 8-14

FAQs . 8-14

Additional Documentation about JTA. 8-14

9. Participating in Transactions Managed by a Third-Party
Transaction Manager

Overview of Participating in Foreign-Managed Transactions. 9-1

Importing Transactions with the Client Interposed Transaction Manager 9-2

Get the Client Interposed Transaction Manager. 9-4

Get the XAResource from the Interposed Transaction Manager 9-5

Limitations of the Client Interposed Transaction Manager . 9-5

Importing Transactions with the Server Interposed Transaction Manager 9-5

viii Programming WebLogic JTA

Get the Server Interposed Transaction Manager . 9-6

Limitations of the Server Interposed Transaction Manager. 9-7

Transaction Processing for Imported Transactions . 9-7

Transaction Processing Limitations for Imported Transactions. 9-8

Commit Processing for Imported Transactions. 9-8

Recovery for Imported Transactions. 9-9

JCA Resource Adapter . 9-9

10.Troubleshooting Transactions
Overview . 10-1

Troubleshooting Tools . 10-1

Exceptions . 10-2

Transaction Identifier . 10-2

Transaction Name and Properties . 10-2

Transaction Status . 10-3

Transaction Statistics . 10-3

Transaction Monitoring and Logging . 10-3

A. Glossary of Terms

Programming WebLogic JTA ix

About This Document

This document explains how to use transactions in EJB and RMI applications that run in the BEA
WebLogic Server™ environment.

This document is organized as follows:

Chapter 1, “Introducing Transactions,” introduces transactions in EJB and RMI
applications running in the WebLogic Server environment. This chapter also describes
distributed transactions and the two-phase commit protocol for enterprise applications.

Chapter 2, “Configuring and Managing Transactions,” describes how to administer
transactions in the WebLogic Server environment.

Chapter 3, “Transaction Service,” describes the WebLogic Server Transaction Service.

Chapter 4, “Java Transaction API and BEA WebLogic Extensions,” provides a brief
overview of the Java Transaction API (JTA).

Chapter 5, “Transactions in EJB Applications,” describes how to implement transactions in
EJB applications.

Chapter 6, “Transactions in RMI Applications,” describes how to implement transactions in
RMI applications.

Chapter 7, “Using Third-Party JDBC XA Drivers with WebLogic Server,” describes how
to configure and use third-party XA drivers in transactions.

Chapter 8, “Coordinating XAResources with the WebLogic Server Transaction Manager,”
describes the requirements for XA resources to participate in distributed transactions

About Th is Document

x Programming WebLogic JTA

managed by WebLogic Server. This chapter is targeted at third-party application
integrators.

Chapter 9, “Participating in Transactions Managed by a Third-Party Transaction Manager,”
describes the requirements for WebLogic Server to participate in distributed transactions
managed by an external transaction manager. This chapter is targeted at third-party
application integrators.

Chapter 10, “Troubleshooting Transactions,” describes how to perform troubleshooting
tasks for applications using JTA.

Audience
This document is written for application developers who are interested in building transactional
Java applications that run in the WebLogic Server environment. It is assumed that readers are
familiar with the WebLogic Server platform, Java™ 2, Enterprise Edition (J2EE) programming,
and transaction processing concepts.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the WebLogic Server Product
Documentation page at http://e-docs.bea.com/wls/docs81.

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

http://e-docs.bea.com/wls/docs81
http://www.adobe.com

Programming WebLogic JTA xi

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

mailto:docsupport@bea.com
http://www.bea.com

About Th is Document

xii Programming WebLogic JTA

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

Convention Usage

Programming WebLogic JTA xiii

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

About Th is Document

xiv Programming WebLogic JTA

Programming WebLogic JTA 1-1

C H A P T E R 1

Introducing Transactions

This section discusses the following topics:

Overview of Transactions in WebLogic Server Applications

When to Use Transactions

What Happens During a Transaction

Transactions Sample Code

Overview of Transactions in WebLogic Server Applications
This section includes the following sections:

ACID Properties of Transactions

Supported Programming Model

Supported API Models

Distributed Transactions and the Two-Phase Commit Protocol

Support for Business Transactions

In t roduc ing T ransact ions

1-2 Programming WebLogic JTA

ACID Properties of Transactions
One of the most fundamental features of WebLogic Server is transaction management.
Transactions are a means to guarantee that database changes are completed accurately and that
they take on all the ACID properties of a high-performance transaction, including:

Atomicity—all changes that a transaction makes to a database are made as one unit;
otherwise, all changes are rolled back.

Consistency—a successful transaction transforms a database from a previous valid state to
a new valid state.

Isolation—changes that a transaction makes to a database are not visible to other
operations until the transaction completes its work.

Durability—changes that a transaction makes to a database survive future system or media
failures.

WebLogic Server protects the integrity of your transactions by providing a complete
infrastructure for ensuring that database updates are done accurately, even across a variety of
resource managers. If any one of the operations fails, the entire set of operations is rolled back.

Supported Programming Model
WebLogic Server supports transactions in the Sun Microsystems, Inc., Java™ 2, Enterprise
Edition (J2EE) programming model. WebLogic Server provides full support for transactions in
Java applications that use Enterprise JavaBeans, in compliance with the Enterprise JavaBeans
Specification 2.0, published by Sun Microsystems, Inc. WebLogic Server also supports the Java
Transaction API (JTA) Specification 1.0.1a, also published by Sun Microsystems, Inc.

Supported API Models
WebLogic Server supports the Sun Microsystems, Inc. Java Transaction API (JTA), which is
used by:

Enterprise JavaBean (EJB) applications within the WebLogic Server EJB container.

Remote Method Invocation (RMI) applications within the WebLogic Server infrastructure.

For information about JTA, see the following sources:

The javax.transaction and javax.transaction.xa package APIs.

The Java Transaction API specification, published by Sun Microsystems, Inc.

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/jta/index.html
http://java.sun.com/products/jta/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://www.javasoft.com/products/jta/index.html

Overv iew o f T ransact ions in WebLog ic Se rve r App l i cat ions

Programming WebLogic JTA 1-3

Distributed Transactions and the Two-Phase Commit Protocol
WebLogic Server supports distributed transactions and the two-phase commit protocol for
enterprise applications. A distributed transaction is a transaction that updates multiple resource
managers (such as databases) in a coordinated manner. In contrast, a local transaction begins and
commits the transaction to a single resource manager that internally coordinates API calls; there
is no transaction manager. The two-phase commit protocol is a method of coordinating a single
transaction across two or more resource managers. It guarantees data integrity by ensuring that
transactional updates are committed in all of the participating databases, or are fully rolled back
out of all the databases, reverting to the state prior to the start of the transaction. In other words,
either all the participating databases are updated, or none of them are updated.

Distributed transactions involve the following participants:

Transaction originator—initiates the transaction. The transaction originator can be a user
application, an Enterprise JavaBean, or a JMS client.

Transaction manager—manages transactions on behalf of application programs. A
transaction manager coordinates commands from application programs to start and
complete transactions by communicating with all resource managers that are participating
in those transactions. When resource managers fail during transactions, transaction
managers help resource managers decide whether to commit or roll back pending
transactions.

Recoverable resource—provides persistent storage for data. The resource is most often a
database.

Resource manager—provides access to a collection of information and processes.
Transaction-aware JDBC drivers are common resource managers. Resource managers
provide transaction capabilities and permanence of actions; they are entities accessed and
controlled within a distributed transaction. The communication between a resource
manager and a specific resource is called a transaction branch.

The first phase of the two-phase commit protocol is called the prepare phase. The required
updates are recorded in a transaction log file, and the resource must indicate, through a resource
manager, that it is ready to make the changes. Resources can either vote to commit the updates
or to roll back to the previous state. What happens in the second phase depends on how the
resources vote. If all resources vote to commit, all the resources participating in the transaction
are updated. If one or more of the resources vote to roll back, then all the resources participating
in the transaction are rolled back to their previous state.

In t roduc ing T ransact ions

1-4 Programming WebLogic JTA

Support for Business Transactions
WebLogic JTA provides the following support for your business transactions:

Creates a unique transaction identifier when a client application initiates a transaction.

Supports an optional transaction name describing the business process that the transaction
represents. The transaction name makes statistics and error messages more meaningful.

Works with the WebLogic Server infrastructure to track objects that are involved in a
transaction and, therefore, need to be coordinated when the transaction is ready to commit.

Notifies the resource managers—which are, most often, databases—when they are
accessed on behalf of a transaction. Resource managers then lock the accessed records
until the end of the transaction.

Orchestrates the two-phase commit when the transaction completes, which ensures that all
the participants in the transaction commit their updates simultaneously. It coordinates the
commit with any databases that are being updated using Open Group’s XA protocol. Many
popular relational databases support this standard.

Executes the rollback procedure when the transaction must be stopped.

Executes a recovery procedure when failures occur. It determines which transactions were
active in the machine at the time of the crash, and then determines whether the transaction
should be rolled back or committed.

Manages transaction timeouts. If a business operation takes too much time or is only
partially completed due to failures, the system takes action to automatically issue a timeout
for the transaction and free resources, such as database locks.

When to Use Transactions
Transactions are appropriate in the situations described in the following list. Each situation
describes a transaction model supported by the WebLogic Server system. Keep in mind that
distributed transactions should not span more than a single user input screen; more complex,
higher level transactions are best implemented with a series of distributed transactions.

Within the scope of a single client invocation on an object, the object performs multiple
edits to data in a database. If one of the edits fails, the object needs a mechanism to roll
back all the edits. (In this situation, the individual database edits are not necessarily EJB or
RMI invocations. A client, such as an applet, can obtain a reference to the Transaction
and TransactionManager objects, using JNDI, and start a transaction.)

When Not to Use T ransact ions

Programming WebLogic JTA 1-5

For example, consider a banking application. The client invokes the transfer operation on a
teller object. The transfer operation requires the teller object to make the following
invocations on the bank database:

– Invoking the debit method on one account.

– Invoking the credit method on another account.

If the credit invocation on the bank database fails, the banking application needs a way to
roll back the previous debit invocation.

The client application needs a conversation with an object managed by the server
application, and the client application needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the following:

– Data is cached in memory or written to a database during or after each successive
invocation.

– Data is written to a database at the end of the conversation.

– The client application needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the data that is being maintained in
memory across the conversation.

– At the end of the conversation, the client application needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

When Not to Use Transactions
Transactions are not always appropriate. For example, if a series of transactions take a long time,
implement them with a series of distributed transactions. Here is an example of an incorrect use
of transactions.

The client application needs to make invocations on several objects, which may involve
write operations to one or more databases. If any one invocation is unsuccessful, any state
that is written (either in memory or, more typically, to a database) must be rolled back.

For example, consider a travel agent application. The client application needs to arrange
for a journey to a distant location; for example, from Strasbourg, France, to Alice Springs,
Australia. Such a journey would inevitably require multiple individual flight reservations.
The client application works by reserving each individual segment of the journey in
sequential order; for example, Strasbourg to Paris, Paris to New York, New York to Los
Angeles. However, if any individual flight reservation cannot be made, the client
application needs a way to cancel all the flight reservations made up to that point.

In t roduc ing T ransact ions

1-6 Programming WebLogic JTA

What Happens During a Transaction
This topic includes the following sections:

Transactions in WebLogic Server EJB Applications

Transactions in WebLogic Server RMI Applications

Transactions in WebLogic Server EJB Applications
Figure 1-1 illustrates how transactions work in a WebLogic Server EJB application.

Figure 1-1 How Transactions Work in a WebLogic Server EJB Application

WebLogic Server supports two types of transactions in WebLogic Server EJB applications:

In container-managed transactions, the WebLogic Server EJB container manages the
transaction demarcation. Transaction attributes in the EJB deployment descriptor determine
how the WebLogic Server EJB container handles transactions with each method
invocation. For more information about the deployment descriptor, see Programming
WebLogic EJB.

In bean-managed transactions, the EJB manages the transaction demarcation. The EJB
makes explicit method invocations on the UserTransaction object to begin, commit, and
roll back transactions. For more information about the UserTransaction object, see the
WebLogic Server Javadoc at
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/UserTran

saction.html.

T EJB

T Part of a Transaction

 Server Application

T

EJB Client
Application

BusinessMethod1

BusinessMethod2

Database

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/UserTransaction.html

What Happens Dur ing a T ransact ion

Programming WebLogic JTA 1-7

The sequence of transaction events differs between container-managed and bean-managed
transactions.

Container-managed Transactions
For EJB applications with container-managed transactions, a basic transaction works in the
following way:

1. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler specifies the
transaction type (transaction-type element) for container-managed demarcation
(Container).

2. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler specifies
the default transaction attribute (trans-attribute element) for the EJB, which is one of
the following settings: NotSupported, Required, Supports, RequiresNew, Mandatory,
or Never. For a detailed description of these settings, see Section 17.6.2 in the Enterprise
JavaBeans Specification 2.0, published by Sun Microsystems, Inc.

3. Optionally, in the EJB’s deployment descriptor, the Bean Provider or Application
Assembler specifies the trans-attribute for one or more methods.

4. When a client application invokes a method in the EJB, the EJB container checks the
trans-attribute setting in the deployment descriptor for that method. If no setting is
specified for the method, the EJB uses the default trans-attribute setting for that EJB.

5. The EJB container takes the appropriate action depending on the applicable
trans-attribute setting.

– For example, if the trans-attribute setting is Required, the EJB container invokes
the method within the existing transaction context or, if the client called without a
transaction context, the EJB container begins a new transaction before executing the
method.

– In another example, if the trans-attribute setting is Mandatory, the EJB container
invokes the method within the existing transaction context. If the client called without a
transaction context, the EJB container throws the
javax.transaction.TransactionRequiredException exception.

6. During invocation of the business method, if it is determined that a rollback is required, the
business method calls the EJBContext.setRollbackOnly method, which notifies the EJB
container that the transaction is to be rolled back at the end of the method invocation.

Note: Calling the EJBContext.setRollbackOnly method is allowed only for methods
that have a meaningful transaction context.

In t roduc ing T ransact ions

1-8 Programming WebLogic JTA

7. At the end of the method execution and before the result is sent to the client, the EJB
container completes the transaction, either by committing the transaction or rolling it back
(if the EJBContext.setRollbackOnly method was called).

You can control transaction timeouts by setting the Timeout Seconds attribute using the
Administration Console. See the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#jta_configure.

Bean-managed Transactions
For EJB applications with bean-managed transaction demarcations, a basic transaction works in
the following way:

1. In the EJB’s deployment descriptor, the Bean Provider or Application Assembler specifies the
transaction type (transaction-type element) for container-managed demarcation (Bean).

2. The client application uses JNDI to obtain an object reference to the UserTransaction
object for the WebLogic Server domain.

3. The client application begins a transaction using the UserTransaction.begin method,
and issues a request to the EJB through the EJB container. All operations on the EJB
execute within the scope of a transaction.

– If a call to any of these operations raises an exception (either explicitly or as a result of
a communication failure), the exception can be caught and the transaction can be rolled
back using the UserTransaction.rollback method.

– If no exceptions occur, the client application commits the current transaction using the
UserTransaction.commit method. This method ends the transaction and starts the
processing of the operation. The transaction is committed only if all of the participants
in the transaction agree to commit.

4. The UserTransaction.commit method causes the EJB container to call the transaction
manager to complete the transaction.

5. The transaction manager is responsible for coordinating with the resource managers to
update any databases.

 Transactions in WebLogic Server RMI Applications
Figure 1-2 illustrates how transactions work in a WebLogic Server RMI application.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#jta_configure

What Happens Dur ing a T ransact ion

Programming WebLogic JTA 1-9

Figure 1-2 How Transactions Work in a WebLogic Server RMI Application

For RMI client and server applications, a basic transaction works in the following way:

1. The application uses JNDI to return an object reference to the UserTransaction object for
the WebLogic Server domain.

Obtaining the object reference begins a conversational state between the application and
that object. The conversational state continues until the transaction is completed
(committed or rolled back). Once instantiated, RMI objects remain active in memory until
they are released (typically during server shutdown). For the duration of the transaction,
the WebLogic Server infrastructure does not perform any deactivation or activation.

2. The client application begins a transaction using the UserTransaction.begin method,
and issues a request to the server application. All operations on the server application
execute within the scope of a transaction.

– If a call to any of these operations raises an exception (either explicitly or as a result of
a communication failure), the exception can be caught and the transaction can be rolled
back using the UserTransaction.rollback method.

– If no exceptions occur, the client application commits the current transaction using the
UserTransaction.commit method. This method ends the transaction and starts the
processing of the operation. The transaction is committed only if all of the participants
in the transaction agree to commit.

3. The UserTransaction.commit method causes WebLogic Server to call the transaction
manager to complete the transaction.

T RMI

T Part of a Transaction

 Server Application

T

RMI Client
Application

BusinessMethod1

BusinessMethod2

Database

In t roduc ing T ransact ions

1-10 Programming WebLogic JTA

4. The transaction manager is responsible for coordinating with the resource managers to
update any databases.

For more information, see Chapter 6, “Transactions in RMI Applications.”

Transactions Sample Code
This section includes the following sections:

Transactions Sample EJB Code

Transactions Sample RMI Code

Transactions Sample EJB Code
This section provides a walkthrough of sample code fragments from a class in an EJB application.
This topic includes the following sections:

Importing Packages

Using JNDI to Return an Object Reference

Starting a Transaction

Completing a Transaction

The code fragments demonstrate using the UserTransaction object for bean-managed
transaction demarcation. The deployment descriptor for this bean specifies the transaction type
(transaction-type element) for transaction demarcation (Bean).

Notes: In a global transaction, use a database connection from a local TxDataSource—on the
WebLogic Server instance on which the EJB is running. Do not use a connection from a
TxDataSource on a remote WebLogic Server instance.

These code fragments do not derive from any of the sample applications that ship with
WebLogic Server. They merely illustrate the use of the UserTransaction object within
an EJB application.

Importing Packages
Listing 1-1 shows importing the necessary packages for transactions, including:

javax.transaction.UserTransaction. For a list of methods associated with this
object, see the online Javadoc.

Transac t i ons Sample Code

Programming WebLogic JTA 1-11

System exceptions. For a list of exceptions, see the online Javadoc.

Listing 1-1 Importing Packages

import javax.naming.*;

import javax.transaction.UserTransaction;

import javax.transaction.SystemException;

import javax.transaction.HeuristicMixedException

import javax.transaction.HeuristicRollbackException

import javax.transaction.NotSupportedException

import javax.transaction.RollbackException

import javax.transaction.IllegalStateException

import javax.transaction.SecurityException

import java.sql.*;

import java.util.*;

Using JNDI to Return an Object Reference
Listing 1-2 shows how look up an object on the JNDI tree.

Listing 1-2 Performing a JNDI Lookup

Context ctx = null;

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.

// Substitute the correct hostname, port number

// user name, and password for your environment:

env.put(Context.PROVIDER_URL, "t3://localhost:7001");

env.put(Context.SECURITY_PRINCIPAL, "Fred");

env.put(Context.SECURITY_CREDENTIALS, "secret");

ctx = new InitialContext(env);

In t roduc ing T ransact ions

1-12 Programming WebLogic JTA

UserTransaction tx = (UserTransaction)

 ctx.lookup("javax.transaction.UserTransaction");

Starting a Transaction
Listing 1-3 shows starting a transaction by getting a UserTransaction object and calling the
javax.transaction.UserTransaction.begin() method. Database operations that occur
after this method invocation and prior to completing the transaction exist within the scope of this
transaction.

Listing 1-3 Starting a Transaction

UserTransaction tx = (UserTransaction)

 ctx.lookup("javax.transaction.UserTransaction");

tx.begin();

Completing a Transaction
Listing 1-4 shows completing the transaction depending on whether an exception was thrown
during any of the database operations that were attempted within the scope of this transaction:

If an exception was thrown during any of the database operations, the application calls the
javax.transaction.UserTransaction.rollback() method.

If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit() method to attempt to commit the
transaction after all database operations completed successfully. Calling this method ends
the transaction and starts the processing of the operation, causing the WebLogic Server
EJB container to call the transaction manager to complete the transaction. The transaction
is committed only if all of the participants in the transaction agree to commit.

Listing 1-4 Completing a Transaction

tx.commit();

Transac t i ons Sample Code

Programming WebLogic JTA 1-13

// or:

tx.rollback();

Transactions Sample RMI Code
This topic provides a walkthrough of sample code fragments from a class in an RMI application.
This topic includes the following sections:

Importing Packages

Using JNDI to Return an Object Reference to the UserTransaction Object

Starting a Transaction

Completing a Transaction

The code fragments demonstrate using the UserTransaction object for RMI transactions. For
guidelines on using transactions in RMI applications, see Chapter 6, “Transactions in RMI
Applications.”

Note: These code fragments do not derive from any of the sample applications that ship with
WebLogic Server. They merely illustrate the use of the UserTransaction object within
an RMI application.

Importing Packages
Listing 1-5 shows importing the necessary packages, including the following packages used to
handle transactions:

javax.transaction.UserTransaction. For a list of methods associated with this
object, see the online Javadoc.

System exceptions. For a list of exceptions, see the online Javadoc.

Listing 1-5 Importing Packages

import javax.naming.*;

import java.rmi.*;

import javax.transaction.UserTransaction;

import javax.transaction.SystemException;

In t roduc ing T ransact ions

1-14 Programming WebLogic JTA

import javax.transaction.HeuristicMixedException

import javax.transaction.HeuristicRollbackException

import javax.transaction.NotSupportedException

import javax.transaction.RollbackException

import javax.transaction.IllegalStateException

import javax.transaction.SecurityException

import java.sql.*;

import java.util.*;
\

After importing these classes, initialize an instance of the UserTransaction object to null.

Using JNDI to Return an Object Reference to the UserTransaction Object
Listing 1-6 shows searching the JNDI tree to return an object reference to the UserTransaction
object for the appropriate WebLogic Server domain.

Note: Obtaining the object reference begins a conversational state between the application and
that object. The conversational state continues until the transaction is completed
(committed or rolled back). Once instantiated, RMI objects remain active in memory
until they are released (typically during server shutdown). For the duration of the
transaction, the WebLogic Server infrastructure does not perform any deactivation or
activation.

Listing 1-6 Performing a JNDI Lookup

Context ctx = null;

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.

// Substitute the correct hostname, port number

// user name, and password for your environment:

env.put(Context.PROVIDER_URL, "t3://localhost:7001");

env.put(Context.SECURITY_PRINCIPAL, "Fred");

env.put(Context.SECURITY_CREDENTIALS, "secret");

Transac t i ons Sample Code

Programming WebLogic JTA 1-15

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)

 ctx.lookup("javax.transaction.UserTransaction");

Starting a Transaction
Listing 1-7 shows starting a transaction by calling the
javax.transaction.UserTransaction.begin() method. Database operations that occur
after this method invocation and prior to completing the transaction exist within the scope of this
transaction.

Listing 1-7 Starting a Transaction

UserTransaction tx = (UserTransaction)

 ctx.lookup("javax.transaction.UserTransaction");

tx.begin();

Completing a Transaction
Listing 1-8 shows completing the transaction depending on whether an exception was thrown
during any of the database operations that were attempted within the scope of this transaction:

If an exception was thrown, the application calls the
javax.transaction.UserTransaction.rollback() method if an exception was
thrown during any of the database operations.

If no exception was thrown, the application calls the
javax.transaction.UserTransaction.commit() method to attempt to commit the
transaction after all database operations completed successfully. Calling this method ends
the transaction and starts the processing of the operation, causing WebLogic Server to call
the transaction manager to complete the transaction. The transaction is committed only if
all of the participants in the transaction agree to commit.

In t roduc ing T ransact ions

1-16 Programming WebLogic JTA

Listing 1-8 Completing a Transaction

tx.commit();

// or:

tx.rollback();

Programming WebLogic JTA 2-1

C H A P T E R 2

Configuring and Managing
Transactions

This section provides an overview of commonly performed administration tasks related to
transactions. For general information on JTA configuration tasks, see JTA in the Administration
Console Online Help.

This section discusses the following topics:

Configuring Transactions

Monitoring Transactions

Configuring Transactions
The Administration Console provides the interface used to configure features of WebLogic
Server, including WebLogic JTA. To invoke the Administration Console, refer to the procedures
described in Starting and Using the Administration Console in the Administration Guide at
http://e-docs.bea.com/wls/docs81/adminguide/overview.html#start_admin_cons

ole. The configuration process involves specifying values for attributes. These attributes define
the transaction environment, including the following:

Transaction timeouts and limits

Transaction manager behavior

You should also be familiar with the administration of J2EE components that can participate in
transactions, such as EJBs, JDBC, and JMS.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html
http://e-docs.bea.com/wls/docs81/adminguide/overview.html#start_admin_console

Conf igur ing and Manag ing T ransact ions

2-2 Programming WebLogic JTA

Monitoring Transactions
You can monitor transactions on a server using the logging, statistics, and monitoring facilities.
Use the Administration Console to configure these features and to display the resulting output.

Logging
The transaction log consists of multiple files. Each file is named using a prefix indicating the
location in the file system, as defined by the TransactionLogFilePrefix attribute, the server
name, a unique numeric suffix, and a file extension. The TransactionLogFilePrefix attribute
is set for each server in a domain. The overall amount of space consumed by the transaction log
is limited only by the file system’s available disk space. For more information on setting server
logging attributes, see Server → Logging → JTA in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_server_logging_jta.htm

l. Also see Monitoring Transactions in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#monitortx.

Note: The transaction log buffer is limited to 250 KB. If your application includes very large
transactions that require transaction log writes that exceed this value, WebLogic Server
will throw an exception. In that case, you must reconfigure your application to work
around the buffer size.

WebLogic Server keeps statistics on transactions organized by server, resource, and transaction
name. For more information on viewing statistics, see the JTA topic in the Administration
Console Online Help. For information on using statistics in troubleshooting and debugging, see
“Transaction Statistics” in Chapter 10, “Troubleshooting Transactions.”

Monitoring
You can monitor transactions in progress using the Administration Console. You can display
information for transactions by name, transactions by resource, or all active transactions. For
more information on monitoring transactions, see Server → Logging → JTA in the Administration
Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_serverlogging_logging_

jta.html. For more information on using monitoring data in troubleshooting, see Monitoring
Transactions in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#monitortx.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_server_logging_jta.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_server_logging_jta.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_server_logging_jta.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#monitortx
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_server_logging_jta.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_server_logging_jta.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_server_logging_jta.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#monitortx
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#monitortx

Programming WebLogic JTA 3-1

C H A P T E R 3

Transaction Service

This section provides information that programmers need to write transactional applications for
the WebLogic Server system.

This section discusses the following topics:

About the Transaction Service

Capabilities and Limitations

Transaction Scope

Transaction Service in EJB Applications

Transaction Service in RMI Applications

About the Transaction Service
WebLogic Server provides a Transaction Service that supports transactions in EJB and RMI
applications. In the WebLogic Server EJB container, the Transaction Service provides an
implementation of the transaction services described in the Enterprise JavaBeans Specification
2.0, published by Sun Microsystems, Inc.

For EJB and RMI applications, WebLogic Server also provides the javax.transaction and
javax.transaction.xa packages, from Sun Microsystems, Inc., which implements the Java
Transaction API (JTA) for Java applications. For more information about JTA, see the Java
Transaction API (JTA) Specification 1.0.1a, published by Sun Microsystems, Inc. For more
information about the UserTransaction object that applications use to demarcate transaction
boundaries, see the WebLogic Server Javadoc.

Transac t i on Serv i ce

3-2 Programming WebLogic JTA

Capabilities and Limitations
This section includes the following sections:

Lightweight Clients with Delegated Commit

Client-initiated Transactions

Transaction Integrity

Transaction Termination

Flat Transactions

Relationship of the Transaction Service to Transaction Processing

Multithreaded Transaction Client Support

General Constraints

These sections describe the capabilities and limitations of the Transaction Service that supports
EJB and RMI applications:

Lightweight Clients with Delegated Commit
A lightweight client runs on a single-user, unmanaged desktop system that has irregular
availability. Owners may turn their desktop systems off when they are not in use. These
single-user, unmanaged desktop systems should not be required to perform network functions
such as transaction coordination. In particular, unmanaged systems should not be responsible for
ensuring atomicity, consistency, isolation, and durability (ACID) properties across failures for
transactions involving server resources. WebLogic Server remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do a delegated commit, which means that
the Transaction Service allows lightweight clients to begin and terminate transactions while the
responsibility for transaction coordination is delegated to a transaction manager running on a
server machine. Client applications do not require a local transaction server. The remote
implementation of UserTransaction that EJB or RMI clients use delegates the actual
responsibility of transaction coordination to the transaction manager on the server.

Client-initiated Transactions
A client, such as an applet, can obtain a reference to the UserTransaction and
TransactionManager objects using JNDI. A client can begin a transaction using either object

Capabi l i t i es and L imi ta t ions

Programming WebLogic JTA 3-3

reference. To get the Transaction object for the current thread, the client program must invoke
the ((TransactionManager)tm).getTransaction() method.

Transaction Integrity
Checked transaction behavior provides transaction integrity by guaranteeing that a commit will
not succeed unless all transactional objects involved in the transaction have completed the
processing of their transactional requests. The Transaction Service provides checked transaction
behavior that is equivalent to that provided by the request/response interprocess communication
models defined by The Open Group.

Transaction Termination
WebLogic Server allows transactions to be terminated only by the client that created the
transaction.

Note: The client may be a server object that requests the services of another object.

Flat Transactions
WebLogic Server implements the flat transaction model. Nested transactions are not supported.

Relationship of the Transaction Service to Transaction
Processing
The Transaction Service relates to various transaction processing servers, interfaces, protocols,
and standards in the following ways:

Support for The Open Group XA interface.The Open Group Resource Managers are
resource managers that can be involved in a distributed transaction by allowing their
two-phase commit protocol to be controlled via The Open Group XA interface. WebLogic
Server supports interaction with The Open Group Resource Managers.

Support for the OSI TP protocol. Open Systems Interconnect Transaction Processing
(OSI TP) is the transactional protocol defined by the International Organization for
Standardization (ISO). WebLogic Server does not support interactions with OSI TP
transactions.

Support for the LU 6.2 protocol. Systems Network Architecture (SNA) LU 6.2 is a
transactional protocol defined by IBM. WebLogic Server does not support interactions with
LU 6.2 transactions.

Transac t i on Serv i ce

3-4 Programming WebLogic JTA

Support for the ODMG standard. ODMG-93 is a standard defined by the Object
Database Management Group (ODMG) that describes a portable interface to access Object
Database Management Systems. WebLogic Server does not support interactions with
ODMG transactions.

Multithreaded Transaction Client Support
WebLogic Server supports multithreaded transactional clients. Clients can make transaction
requests concurrently in multiple threads.

General Constraints
The following constraints apply to the Transaction Service:

In WebLogic Server, a client or a server object cannot invoke methods on an object that is
infected with (or participating in) another transaction. The method invocation issued by the
client or the server will return an exception.

In WebLogic Server, clients using third-party implementations of the Java Transaction API
(for Java applications) are not supported.

The transaction log buffer is limited to 250 KB. If your application includes very large
transactions that require transaction log writes that exceed this value, WebLogic Server will
throw an exception. In that case, you must reconfigure your application to work around the
buffer size.

Transaction Scope
The scope of a transaction refers to the environment in which the transaction is performed.
WebLogic Server supports transactions on standalone servers, between non-clustered servers,
between clustered servers within a domain, and between domains. To enable inter-domain
transaction support, you must configure a common credential for all participating domains. See
Configuring Domains for Inter-Domain Transactions in the Administration Console Online Help
at http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#interop.

Transaction Service in EJB Applications
The WebLogic Server EJB container provides a Transaction Service that supports the two types
of transactions in WebLogic Server EJB applications:

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#interop

Transac t i on Serv i ce in RMI App l icat ions

Programming WebLogic JTA 3-5

Container-managed transactions. In container-managed transactions, the WebLogic
Server EJB container manages the transaction demarcation. Transaction attributes in the
EJB deployment descriptor determine how the WebLogic Server EJB container handles
transactions with each method invocation.

Bean-managed transactions. In bean-managed transactions, the EJB manages the
transaction demarcation. The EJB makes explicit method invocations on the
UserTransaction object to begin, commit, and roll back transactions. For more
information about UserTransaction methods, see the online Javadoc.

For an introduction to transaction management in EJB applications, see “Transactions in
WebLogic Server EJB Applications,” and “Transactions Sample EJB Code” in the “Introducing
Transactions” section.

Transaction Service in RMI Applications
WebLogic Server provides a Transaction Service that supports transactions in WebLogic Server
RMI applications. In RMI applications, the client or server application makes explicit method
invocations on the UserTransaction object to begin, commit, and roll back transactions.

For more information about UserTransaction methods, see the online javadoc. For an
introduction to transaction management in RMI applications, see “Transactions in WebLogic
Server RMI Applications,” and “Transactions Sample RMI Code” in the “Introducing
Transactions” section.

Transaction Service Interoperating with OTS
WebLogic Server provides a Transaction Service that supports interoperation with the Object
Transaction Service (OTS). See the Java Transaction Service (JTS) Specification at
http://java.sun.com/j2ee/transactions/downloads/. For this release, WebLogic
Server interoperates with OTS in the following scenarios:

“Server-Server 2PC” on page 3-5

“Client demarcated transactions” on page 3-6

Server-Server 2PC
In this situation, a server-to-server 2PC transactin is completed using interposition. The
originating server creates an xid and propagates the transaction to the target server. The target
server registers itself as a resource with the originating server. The originating server drives the
completion of the transaction. (no last resource optimization).

http://java.sun.com/j2ee/transactions/downloads/

Transac t i on Serv i ce

3-6 Programming WebLogic JTA

Client demarcated transactions
The client starts a transaction on the server via the OTS client APIs. The client then retrieves the
xid from this transaction and then propagates this per-request until the transaction is commited.
Although the client initiates the transaction, all the commit processing is done on the server.

Programming WebLogic JTA 4-1

C H A P T E R 4

Java Transaction API and BEA
WebLogic Extensions

This section provides a brief overview of the Java Transaction API (JTA) and extensions to the
API provided by BEA Systems.

This section discusses the following topics:

JTA API Overview

BEA WebLogic Extensions to JTA

JTA API Overview
WebLogic Server supports the javax.transaction package and the javax.transaction.xa
package, from Sun Microsystems, Inc., which implement the Java Transaction API (JTA) for
Java applications. For more information about JTA, see the Java Transaction API (JTA)
Specification (version 1.0.1a) published by Sun Microsystems, Inc. For a detailed description of
the javax.transaction and javax.transaction.xa interfaces, see the JTA Javadoc.

JTA includes the following components:

An interface for demarcating and controlling transactions from an application,
javax.transaction.UserTransaction. You use this interface as part of a Java client
program or within an EJB as part of a bean-managed transaction.

An interface for allowing a transaction manager to demarcate and control transactions for
an application, javax.transaction.TransactionManager. This interface is used by an
EJB container as part of a container-managed transaction and uses the
javax.transaction.Transaction interface to perform operations on a specific
transaction.

Java T ransact ion AP I and BEA WebLog ic Ex tens ions

4-2 Programming WebLogic JTA

Interfaces that allow the transaction manager to provide status and synchronization
information to an applications server, javax.transaction.Status and
javax.transaction.Synchronization. These interfaces are accessed only by the
transaction manager and cannot be used as part of an applications program.

Interfaces for allowing a transaction manager to work with resource managers for
XA-compliant resources (javax.transaction.xa.XAResource) and to retrieve
transaction identifiers (javax.transaction.xa.Xid). These interfaces are accessed only
by the transaction manager and cannot be used as part of an applications program.

BEA WebLogic Extensions to JTA
Extensions to the Java Transactions API are provided where the JTA specification does not cover
implementation details and where additional capabilities are required.

BEA WebLogic provides the following capabilities based on interpretations of the JTA
specification:

Client-initiated transactions—the JTA transaction manager interface
(javax.transaction.TransactionManager) is made available to clients and bean
providers through JNDI. This allows clients and EJBs using bean-managed transactions to
suspend and resume transactions.

Note: A suspended transaction must be resumed in the same server process in which it was
suspended.

Scope of transactions—transactions can operate within and between clusters and domains.

BEA WebLogic provides the following classes and interfaces as extensions to JTA:

weblogic.transaction.RollbackException (extends
javax.transaction.RollbackException)

This class preserves the original reason for a rollback for use in more comprehensive
exception information.

weblogic.transaction.TransactionManager (extends
javax.transaction.TransactionManager)

The WebLogic JTA transaction manager object supports this interface, which allows XA
resources to register and unregister themselves with the transaction manager on startup. It
also allows a transaction to be resumed after suspension.

This interface includes the following methods:

– registerStaticResource, registerDynamicResource, and unregisterResource

BEA WebLogic Ex tens ions to JTA

Programming WebLogic JTA 4-3

– registerResource— (new in WebLogic Server 8.1) This method includes support for
properties that determine how the resource is controlled by the transaction manager.

– getTransaction

– forceResume and forceSuspend

– begin

weblogic.transaction.Transaction (extends javax.transaction.Transaction)

The WebLogic JTA transaction object supports this interface, which allows users to get and
set transaction properties.

This interface includes the following methods:

– setName and getName

– addProperties, setProperty, getProperty, and getProperties

– setRollbackReason and getRollbackReason

– getHeuristicErrorMessage

– getXID and getXid

– getStatusAsString

– getMillisSinceBegin

– getTimeToLiveMillis

– isTimedOut

weblogic.transaction.TransactionHelper

This class allows you to obtain the current transaction manager and transaction. It replaces
TxHelper.

This interface includes the following static methods:

– getTransaction

– getUserTransaction

– getTransactionManager

weblogic.transaction.TxHelper (Deprecated, use TransactionHelper instead)

This class allows you to obtain the current transaction manager and transaction.

This interface includes the following static methods:

Java T ransact ion AP I and BEA WebLog ic Ex tens ions

4-4 Programming WebLogic JTA

– getTransaction, getUserTransaction, getTransactionManager

– status2String

weblogic.transaction.XAResource (extends javax.transaction.xa.XAResource)

This class provides delistment capabilities for XA resources.

This interface includes the following method:

– getDelistFlag

weblogic.transaction.nonxa.NonXAResource

This interface enables resources that do not support the
javax.transaction.xa.XAResource interface to easily integrate with the WebLogic
Server transaction manager. The transaction manager supports a variation of the Last
Agent two-phase commit optimization that allows a non-XA resource to participate in a
distributed transaction. The protocol issues a one-phase commit to the non-XA resource
and uses the result of the operation to base the commit decision for the transaction.

For a detailed description of the WebLogic extensions to the javax.transaction and
javax.transaction.xa interfaces, see the weblogic.transaction package description.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/package-summary.html

Programming WebLogic JTA 5-1

C H A P T E R 5

Transactions in EJB Applications

This section includes the following topics:

Before You Begin

General Guidelines

Transaction Attributes

Participating in a Transaction

Transaction Semantics

Session Synchronization

Synchronization During Transactions

Setting Transaction Timeouts

Handling Exceptions in EJB Transactions

This section describes how to integrate transactions in Enterprise JavaBeans (EJBs) applications
that run under BEA WebLogic Server.

Transac t i ons in E JB App l i cat ions

5-2 Programming WebLogic JTA

Before You Begin
Before you begin, you should read Chapter 1, “Introducing Transactions,” particularly the
following topics:

Transactions in WebLogic Server EJB Applications

Transactions Sample EJB Code

This document describes the BEA WebLogic Server implementation of transactions in Enterprise
JavaBeans. The information in this document supplements the Enterprise JavaBeans
Specification 2.0, published by Sun Microsystems, Inc.

Note: Before proceeding with the rest of this chapter, you should be familiar with the contents
of the EJB Specification 2.0 document, particularly the concepts and material presented
in Chapter 16, “Support for Transactions.”

For information about implementing Enterprise JavaBeans in WebLogic Server applications, see
Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81/ejb/index.html.

General Guidelines
The following general guidelines apply when implementing transactions in EJB applications for
WebLogic Server:

The EJB specification allows for flat transactions only. Transactions cannot be nested.

The EJB specification allows for distributed transactions that span multiple resources (such
as databases) and supports the two-phase commit protocol for both EJB CMP 2.0 and EJB
CMP 1.1.

WebLogic Server supports any JTA-compliant XA resource. For information on the XA
resource driver supplied with WebLogic Server, see “Transactions and the WebLogic
jDriver for Oracle” in Configuring and Using WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs81/oracle/trxjdbcx.html.

Use standard programming techniques to optimize transaction processing. For example,
properly demarcate transaction boundaries and complete transactions quickly.

Use a database connection from a local TxDataSource—on the WebLogic Server instance
on which the EJB is running. Do not use a connection from a TxDataSource on a remote
WebLogic Server instance.

http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/oracle/trxjdbcx.html
http://e-docs.bea.com/wls/docs81/oracle/trxjdbcx.html

T ransact i on A t t r ibu tes

Programming WebLogic JTA 5-3

Be sure to tune the EJB cache to ensure maximum performance in transactional EJB
applications. For more information, see Programming WebLogic Server Enterprise Java
Beans at http://e-docs.bea.com/wls/docs81/ejb/index.html.

For general guidelines about the WebLogic Server Transaction Service, see “Capabilities and
Limitations.”

Transaction Attributes
This section includes the following sections:

About Transaction Attributes for EJBs

Transaction Attributes for Container-Managed Transactions

Transaction Attributes for Bean-Managed Transactions

About Transaction Attributes for EJBs
Transaction attributes determine how transactions are managed in EJB applications. For each
EJB, the transaction attribute specifies whether transactions are demarcated by the WebLogic
Server EJB container (container-managed transactions) or by the EJB itself (bean-managed
transactions). The setting of the transaction-type element in the deployment descriptor
determines whether an EJB is container-managed or bean-managed. See Chapter 16, “Support for
Transactions,” and Chapter 21, “Deployment Descriptor,” in the EJB Specification 2.0, for more
information about the transaction-type element.

In general, the use of container-managed transactions is preferred over bean-managed
transactions because application coding is simpler. For example, in container-managed
transactions, transactions do not need to be started explicitly.

WebLogic Server fully supports method-level transaction attributes as defined in Section 16.4 in
the EJB Specification 2.0.

Transaction Attributes for Container-Managed Transactions
For container-managed transactions, the transaction attribute is specified in the
container-transaction element in the deployment descriptor. Container-managed
transactions include all entity beans and any stateful or stateless session beans with a
transaction-type set to Container. For more information about these elements, see
Programming WebLogic Server Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs81/ejb/index.html.

http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html

Transac t i ons in E JB App l i cat ions

5-4 Programming WebLogic JTA

The Application Assembler can specify the following transaction attributes for EJBs and their
business methods:

NotSupported

Supports

Required

RequiresNew

Mandatory

Never

For a detailed explanation about how the WebLogic Server EJB container responds to the
trans-attribute setting, see section 17.6.2 in the EJB Specification 2.0.

The WebLogic Server EJB container automatically sets the transaction timeout if a timeout value
is not defined in the deployment descriptor. The container uses the value of the Timeout
Seconds configuration parameter. The default timeout value is 30 seconds.

For more information on transaction configuration parameters, see Chapter 2, “Configuring and
Managing Transactions,” in this guide and in the Administration Console Online Help.

For EJBs with container-managed transactions, the EJBs have no access to the
javax.transaction.UserTransaction interface, and the entering and exiting transaction
contexts must match. In addition, EJBs with container-managed transactions have limited support
for the setRollbackOnly and getRollbackOnly methods of the javax.ejb.EJBContext
interface, where invocations are restricted by rules specified in Sections 16.4.4.2 and 16.4.4.3 of
the EJB Specification 2.0.

Transaction Attributes for Bean-Managed Transactions
For bean-managed transactions, the bean specifies transaction demarcations using methods in the
javax.transaction.UserTransaction interface. Bean-managed transactions include any
stateful or stateless session beans with a transaction-type set to Bean. Entity beans cannot
use bean-managed transactions.

For stateless session beans, the entering and exiting transaction contexts must match. For stateful
session beans, the entering and exiting transaction contexts may or may not match. If they do not
match, the WebLogic Server EJB container maintains associations between the bean and the
nonterminated transaction.

Session beans with bean-managed transactions cannot use the setRollbackOnly and
getRollbackOnly methods of the javax.ejb.EJBContext interface.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_domain_config_jta.html

Par t i c ipat ing in a T ransact i on

Programming WebLogic JTA 5-5

Participating in a Transaction
When the EJB Specification 2.0 uses the phrase “participating in a transaction,” BEA interprets
this to mean that the bean meets either of the following conditions:

The bean is invoked in a transactional context (container-managed transaction).

The bean begins a transaction using the UserTransaction API in a bean method invoked by
the client (bean-managed transaction), and it does not suspend or terminate that transaction
upon completion of the corresponding bean method invoked by the client.

Transaction Semantics
This topic contains the following sections:

Transaction Semantics for Container-Managed Transactions

Transaction Semantics for Bean-Managed Transactions

The EJB Specification 2.0 describes semantics that govern transaction processing behavior based
on the EJB type (entity bean, stateless session bean, or stateful session bean) and the transaction
type (container-managed or bean-managed). These semantics describe the transaction context at
the time a method is invoked and define whether the EJB can access methods in the
javax.transaction.UserTransaction interface. EJB applications must be designed with
these semantics in mind.

Transaction Semantics for Container-Managed Transactions
For container-managed transactions, transaction semantics vary for each bean type.

Transac t i ons in E JB App l i cat ions

5-6 Programming WebLogic JTA

Transaction Semantics for Stateful Session Beans
Table 5-1 describes the transaction semantics for stateful session beans in container-managed
transactions.

Transaction Semantics for Stateless Session Beans
Table 5-2 describes the transaction semantics for stateless session beans in container-managed
transactions.

Table 5-1 Transaction Semantics for Stateful Session Beans in Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
 Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified No

ejbRemove() Unspecified No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

Business method Yes or No based on transaction
attribute

No

afterBegin() Yes No

beforeCompletion() Yes No

afterCompletion() No No

Table 5-2 Transaction Semantics for Stateless Session Beans in Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

Transact ion Semant i cs

Programming WebLogic JTA 5-7

Transaction Semantics for Entity Beans
Table 5-3 describes the transaction semantics for entity beans in container-managed transactions.

ejbCreate() Unspecified No

ejbRemove() Unspecified No

Business method Yes or No based on transaction
attribute

No

Table 5-3 Transaction Semantics for Entity Beans in Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setEntityContext() Unspecified No

unsetEntityContext() Unspecified No

ejbCreate() Determined by transaction
attribute of matching create

No

ejbPostCreate() Determined by transaction
attribute of matching create

No

ejbRemove() Determined by transaction
attribute of matching remove

No

ejbFind() Determined by transaction
attribute of matching find

No

ejbActivate() Unspecified No

ejbPassivate() Unspecified No

Table 5-2 Transaction Semantics for Stateless Session Beans in Container-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Transac t i ons in E JB App l i cat ions

5-8 Programming WebLogic JTA

Transaction Semantics for Bean-Managed Transactions
For bean-managed transactions, the transaction semantics differ between stateful and stateless
session beans. For entity beans, transactions are never bean-managed.

Transaction Semantics for Stateful Session Beans
Table 5-4 describes the transaction semantics for stateful session beans in bean-managed
transactions.

ejbLoad() Determined by transaction
attribute of business method that
invoked ejbLoad()

No

ejbStore() Determined by transaction
attribute of business method that
invoked ejbStore()

No

Business method Yes or No based on transaction
attribute

No

Table 5-4 Transaction Semantics for Stateful Session Beans in Bean-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

ejbActivate() Unspecified Yes

ejbPassivate() Unspecified Yes

Table 5-3 Transaction Semantics for Entity Beans in Container-Managed Transactions (Continued)

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Sess i on Synchron i zat ion

Programming WebLogic JTA 5-9

Transaction Semantics for Stateless Session Beans
Table 5-5 describes the transaction semantics for stateless session beans in bean-managed
transactions.

Session Synchronization
A stateful session bean using container-managed transactions can implement the
javax.ejb.SessionSynchronization interface to provide transaction synchronization
notifications. In addition, all methods on the stateful session bean must support one of the
following transaction attributes: REQUIRES_NEW, MANDATORY or REQUIRED. For more

Business method Typically, no unless a previous
method execution on the bean
had completed while in a
transaction context

Yes

afterBegin() Not applicable Not applicable

beforeCompletion() Not applicable Not applicable

afterCompletion() Not applicable Not applicable

Table 5-5 Transaction Semantics for Stateless Session Beans in Bean-Managed Transactions

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Constructor Unspecified No

setSessionContext() Unspecified No

ejbCreate() Unspecified Yes

ejbRemove() Unspecified Yes

Business method No Yes

Table 5-4 Transaction Semantics for Stateful Session Beans in Bean-Managed Transactions (Continued)

Method Transaction Context at the
Time the Method Was
Invoked

Can Access
UserTransaction
Methods?

Transac t i ons in E JB App l i cat ions

5-10 Programming WebLogic JTA

information about the javax.ejb.SessionSynchronization interface, see Section 6.5.3 in
the EJB Specification 2.0.

Synchronization During Transactions
If a bean implements SessionSynchronization, the WebLogic Server EJB container will
typically make the following callbacks to the bean during transaction commit time:

afterBegin()

beforeCompletion()

afterCompletion()

The EJB container can call other beans or involve additional XA resources in the
beforeCompletion method. The number of calls is limited by the
beforeCompletionIterationLimit attribute. This attribute specifies how many cycles of
callbacks are processed before the transaction is rolled back. A synchronization cycle can occur
when a registered object receives a beforeCompletion callback and then enlists additional
resources or causes a previously synchronized object to be reregistered. The iteration limit
ensures that synchronization cycles do not run indefinitely.

Setting Transaction Timeouts
Bean providers can specify the timeout period for transactions in EJB applications. If the duration
of a transaction exceeds the specified timeout setting, then the Transaction Service rolls back the
transaction automatically.

Note: You must set the timeout before you begin() the transaction. Setting a timeout does not
affect transaction transactions that have already begun.

Timeouts are specified according to the transaction type:

Container-managed transactions. The Bean Provider configures the
trans-timeout-seconds attribute in the weblogic-ejb-jar.xml deployment
descriptor. For more information, see the Administration Guide.

The Bean Provider should configure the trans-timeout-seconds attribute in the
weblogic-ejb-jar.xml deployment descriptor.

Bean-managed transactions. An application calls the
UserTransaction.setTransactionTimeout method.

Handl ing Except i ons in E JB T ransact ions

Programming WebLogic JTA 5-11

Handling Exceptions in EJB Transactions
WebLogic Server EJB applications need to catch and handle specific exceptions thrown during
transactions. For detailed information about handling exceptions, see Chapter 17, “Exception
Handling,” in the EJB Specification 2.0 published by Sun Microsystems, Inc.

For more information about how exceptions are thrown by business methods in EJB transactions,
see the following tables in Section 17.3: Table 12 (for container-managed transactions) and
Table 13 (for bean-managed transactions).

For a client’s view of exceptions, see Section 17.4, particularly Section 12.4.1 (application
exceptions), Section 17.4.2 (java.rmi.RemoteException), Section 17.4.2.1
(javax.transaction.TransactionRolledBackException), and Section 17.4.2.2
(javax.transaction.TransactionRequiredException).

Transac t i ons in E JB App l i cat ions

5-12 Programming WebLogic JTA

Programming WebLogic JTA 6-1

C H A P T E R 6

Transactions in RMI Applications

The following sections provide guidelines and additional references for using transactions in
RMI applications that run under BEA WebLogic Server:

Before You Begin

General Guidelines

Before You Begin
Before you begin, read Chapter 1, “Introducing Transactions,” particularly the following topics:

“Transactions in WebLogic Server RMI Applications” on page 1-8

“Transactions Sample RMI Code” on page 1-13

For more information about RMI applications, see Programming WebLogic RMI at
http://e-docs.bea.com/wls/docs81/rmi/index.html.

General Guidelines
The following general guidelines apply when implementing transactions in RMI applications for
WebLogic Server:

WebLogic Server allows for flat transactions only. Transactions cannot be nested.

Use standard programming techniques to optimize transaction processing. For example,
properly demarcate transaction boundaries and complete transactions quickly.

http://e-docs.bea.com/wls/docs81/rmi/index.html

Transac t i ons in RMI Appl ica t i ons

6-2 Programming WebLogic JTA

For RMI applications, callback objects are not recommended for use in transactions
because they are not subject to WebLogic Server administration.

By default, all method invocations on the remote objects are transactional. If a callback
object is required, you must compile these classes using the WebLogic RMI compiler
(weblogic.rmic) using the -nontransactional flag.

In RMI applications, an RMI client can initiate a transaction, but all transaction processing
must occur on server objects or remote objects hosted by WebLogic Server. Remote objects
hosted on a client JVM cannot participate in the transaction processing.

As a work-around, you can suspend the transaction before making a call to a remote object
on a client JVM, and then resume the transaction after the remote operation returns.

For general guidelines about the WebLogic Server Transaction Service, see “Capabilities and
Limitations.”

http://e-docs.bea.com/wls/docs81//rmi/rmi_rmic.html
http://e-docs.bea.com/wls/docs81//rmi/rmi_rmic.html#rmic_options

Programming WebLogic JTA 7-1

C H A P T E R 7

Using Third-Party JDBC XA Drivers with
WebLogic Server

This section discusses the following topics:

“Overview of Third-Party XA Drivers” on page 7-1

“Third-Party Driver Configuration and Performance Requirements” on page 7-2

Overview of Third-Party XA Drivers
This section provides an overview of using third-party JDBC two-tier drivers with WebLogic
Server in distributed transactions. These drivers provide connectivity between WebLogic Server
connection pools and the DBMS. Drivers used in distributed transactions are designated by the
driver name followed by /XA; for example, Oracle Thin/XA Driver.

Table of Third-Party XA Drivers
The following table summarizes known functionality of these third-party JDBC/XA drivers when
used with WebLogic Server:

Table 7-1 Two-Tier JDBC/XA Drivers

Driver/Database Version Comments

Oracle Thin Driver XA See “Using Oracle Thin/XA Driver” on
page 7-2.

Using Th i rd-Par t y JDBC XA Dr i ve rs w i th WebLog ic Se rve r

7-2 Programming WebLogic JTA

Third-Party Driver Configuration and Performance
Requirements

Here are requirements and guidelines for using specific third-party XA drivers with WebLogic
Server.

Using Oracle Thin/XA Driver
WebLogic Server ships with the Oracle Thin Driver version 10g (10.1.0.2.0) preconfigured and
ready to use. If you want to update the driver or use a different version, see Using the Oracle Thin
Driver in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs81/jdbc/thirdparty.html#update_thin.

The following sections provide information for using the Oracle Thin/XA Driver with WebLogic
Server.

Software Requirements for the Oracle Thin/XA Driver
The Oracle Thin/XA Driver requires the following:

Java 2 SDK 1.4.x or later. WebLogic Server requires a Java 2 SDK 1.4.X (and ships with
SDK 1.4.1_XX).

Note: The Oracle 10g and 9.2 Thin driver (ojdbc14.jar) is the only versions of the driver
supported for use with a Java 2 SDK 1.4.X.

Oracle server configured for XA functionality (limitation does not apply for non-XA
usage).

IBM DB2 Type 2 See “Using the IBM DB2 Type 2 XA JDBC
Driver” on page 7-7.

Sybase jConnect/XA
• Version 5.5
• Adaptive Server

Enterprise 12.0

See “Using Sybase jConnect 5.5/XA Driver”
on page 7-8.

Table 7-1 Two-Tier JDBC/XA Drivers

Driver/Database Version Comments

http://e-docs.bea.com/wls/docs81/jdbc/thirdparty.html#update_thin
http://e-docs.bea.com/wls/docs81/jdbc/thirdparty.html#update_thin

Th i rd-Par t y D r i ve r Conf igura t i on and Pe r fo rmance Requi rements

Programming WebLogic JTA 7-3

Known Oracle Thin Driver Issues
Table 7-2 lists known issues and workarounds for the Oracle Thin driver. See the Oracle Web site
for the most up-to-date information about these issues.

Table 7-2 Oracle Thin Driver Known Issues and Workarounds

Description Oracle
Bug

Comments/Workarounds for WebLogic
Server

When using the 9.2.0.3 or earlier version of the
Oracle Thin driver, after restarting WebLogic
Server, you may see an XAER_PROTO error or an
intermittent hang.

2717235 This situation occurs because on server
restart, WebLogic Server calls
XA.recover() to recover any pending
transactions. With the 9.2.0.3 or earlier
version of the Oracle Thin driver, the
Oracle DBMS opens a local transaction to
complete the transaction recovery work, but
the local transaction is never closed. When
the connection used to recover transactions
is returned to the connection pool and is
then reused by an application, the local
transaction is still present. With the first
operation on the connection, an
XAER_PROTO error is thrown. (If
TestConnsOnReserve is set to true,
the connection test is the first operation on
the connection.) WebLogic Server then
attempts to unregister the connection with
the resource and waits a fixed amount of
time for all transaction work on the
resource to complete. This may appear as a
hang.

Oracle has provided a patch for this bug.
You can download the patch from the
Oracle Metalink Web site at
http://metalink.oracle.com. Refer to the
Oracle bug number 2717235.

This issue is fixed in version 9.2.0.4 and
10G.

http://metalink.oracle.com

Using Th i rd-Par t y JDBC XA Dr i ve rs w i th WebLog ic Se rve r

7-4 Programming WebLogic JTA

The 9.2.0.1 and 9.2.0.2 versions of the Oracle Thin
driver do not allow you to work with a BLOB in
tables that also contain a long raw. When you
retrieve a BLOB from the table and call
blob.length(), you will get a SQL protocol
violation.

2696397 This issue is fixed in version 9.2.0.3 and
10G.

When using the Oracle 9.2.0.1 or 9.2.0.2 Thin
driver, you will get a null pointer exception when
you run addBatch with setNull with a data
conversion. For example, the following will fail
with the Oracle 9.2.0 Thin driver:
1. pstmt.setNull(1,

java.sql.Types.REAL)

2. pstmt.addBatch()

3. pstmt.setNull(1,
java.sql.Types.VARCHAR)

This issue is fixed in version 9.2.0.3 and
10G.

The 9.2.0.1 and 9.2.0.2 versions of the Oracle Thin
driver do not allow you to work with a CLOB in
tables that also contain a long. When you retrieve a
CLOB from the table and call clob.length(),
you will get a SQL protocol violation.

Workaround: In this scenario, you can read
the LONG column before calling
clob.length().

This issue is fixed in version 9.2.0.3 and
10G.

The 9.2.0.1 and 9.2.0.2.0 versions of the Oracle
Thin driver do not allow you to use "alter
session set
NLS_DATE_FORMAT='YYYY-MM-DD
HH24:MI:SS'" to change the default Oracle
timestamp format. Previous versions did allow this.

2632931 TAR number 2677656.995.

Fixed in 9.2.0.2.1.

Oracle has provided a patch for this bug.
You can download the patch from the
Oracle Metalink Web site at
http://metalink.oracle.com. Refer to the
Oracle bug number 2632931.

ORA-01453 - SET TRANSACTION must be first
statement of transaction

When using the Oracle Thin/XA driver,
you cannot change the transaction isolation
level for a transaction. Transactions use the
default transaction isolation as set for the
database.

Table 7-2 Oracle Thin Driver Known Issues and Workarounds

Description Oracle
Bug

Comments/Workarounds for WebLogic
Server

http://metalink.oracle.com

Th i rd-Par t y D r i ve r Conf igura t i on and Pe r fo rmance Requi rements

Programming WebLogic JTA 7-5

Set the Environment for the Oracle Thin/XA Driver

Configure WebLogic Server
See "Using the Oracle Thin Driver" in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs81/jdbc/thirdparty.html#oracle_thin.

Enable XA on the Database Server
To prepare the database for XA, perform these steps:

1. Log on to sqlplus as system user, e.g. sqlplus sys/CHANGE_ON_INSTALL@<DATABASE
ALIAS NAME>

2. Execute the following command: @xaview.sql

ORA-01002 - Fetch out of sequence exception.
Iterating result set after
XAResource.end(TMSUSPEND) and
XAResource.start(TMRESUME) results in
ORA-01002

This also occurs when an external client gets a result
set using a pooled connection in WebLogic Server
that uses the Oracle Thin driver. When the result set
is sent to the client, the current transaction is
suspended.

— As a workaround, set the statement fetch
size to be at least the result set size. This
implies that the Oracle Thin Driver cannot
be used on the client side or that the bean
cannot keep result sets open across method
invocations, unless this workaround is
used.

This is an Oracle limitation that Oracle does
not intend to fix.

Does not support update with no global transaction.
If there is no global transaction when an update is
attempted, Oracle will start a local transaction
implicitly to perform the update, and subsequent
reuse of the same XA connection for global
transaction will result in XAER_RMERR.

Moreover, if application attempts to commit the
local transaction via either setting auto commit to
true or calling Connection.commit() explicitly,
Oracle XA driver returns “SQLException: Use
explicit XA call.”

— Applications should always ensure that
there is a valid global transaction context
when using the XA driver for update. That
is, ensure that bean methods have
transaction attributes Required,
RequiresNew, or Mandatory.

Table 7-2 Oracle Thin Driver Known Issues and Workarounds

Description Oracle
Bug

Comments/Workarounds for WebLogic
Server

http://e-docs.bea.com/wls/docs81/jdbc/thirdparty.html#oracle_thin

Using Th i rd-Par t y JDBC XA Dr i ve rs w i th WebLog ic Se rve r

7-6 Programming WebLogic JTA

3. Grant the following permissions:

– grant select on v$xatrans$ to public (or <user>);

– grant select on pending_trans$ to public;

– grant select on dba_2pc_pending to public;

– grant select on dba_pending_transactions to public;

– (when using the Oracle Thin driver 10.1.0.3 or later)
grant execute on dbms_system to <user>;

If the above steps are not performed on the database server, normal XA database queries and
updates may work fine. However, when the Weblogic Server Transaction Manager performs
recovery on a re-boot after a crash, recover for the Oracle resource will fail with XAER_RMERR.
Crash recovery is a standard operation for an XA resource.

Oracle Thin/XA Driver Configuration Properties
The following table contains sample code for configuring a Connection Pool:

The following table contains sample attributes for configuring a TxDataSource. To create a
TxDataSource from the Administration Console, select Honor Global Transactions when
creating a data source.

Oracle Thin/XA Driver: Connection Pool Configuration

Property Name Property Value

Name jtaXAPool

Targets myserver,server1

URL jdbc:oracle:thin:@serverName:port(typically 1521 on
Windows):sid

DriverClassname oracle.jdbc.xa.client.OracleXADataSource

Initial Capacity 1

MaxCapacity 20

CapacityIncrement 2

Properties user=scott;password=tiger

Th i rd-Par t y D r i ve r Conf igura t i on and Pe r fo rmance Requi rements

Programming WebLogic JTA 7-7

Using the IBM DB2 Type 2 XA JDBC Driver
The following sections describe how to set your environment to use the Type2 DB2 7.2/XA
Driver with WebLogic Server.

For installation instructions and connection pool configuration instructions, see "Installing and
Using the IBM DB2 Type 2 JDBC Driver" in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs81/jdbc/thirdparty.html#db2.

Set the Environment for the DB2 7.2/XA Driver
Set your environment as follows:

Execute the batch file usejdbc2.bat located in the <db2>/java12 directory to extract
the correct version of the db2java.zip file and move it to the proper location. This
enables the JDBC2.0 features of the driver. Make sure that no DB2 processes are running
before executing this batch file.

Include <db2>/java/db2java.zip in the CLASSPATH environment variable.

Include <db2>/bin in PATH environment variable.

Where <db2> represents the directory in which the DB2 server is installed.

Limitation and Restrictions using DB2 as an XAResource
1. In case of multiple connection-pooled configurations, each connection pool should have

separate database instance.

Table 7-3 Oracle Thin/XA Driver: TxDataSource Configuration

Property Name Property Value

Name jtaXADS

Targets myserver,server1

JNDIName jtaXADS

PoolName jtaXAPool

http://e-docs.bea.com/wls/docs81/jdbc/thirdparty.html#db2
http://e-docs.bea.com/wls/docs81/jdbc/thirdparty.html#db2

Using Th i rd-Par t y JDBC XA Dr i ve rs w i th WebLog ic Se rve r

7-8 Programming WebLogic JTA

2. A transaction cannot be initiated with a resource that is already associated with a suspended
transaction. In this case, a javax.transaction.InvalidTransactionException
(attempt to resume an inactive transaction) is thrown. If in between suspend and resume,
an intermediate transaction enlists the same resource as used in the suspended transaction, a
javax.transaction.invalidtransation exception is thrown. If a different resource is
used inside the intermediate transaction, it works fine.

Using Sybase jConnect 5.5/XA Driver
The following sections provide important configuration information and performance issues
when using the Sybase jConnect Driver 5.5/XA Driver.

Known Sybase jConnect 5.5/XA Issues
These are the known issues and BEA workarounds:

Set Up the Sybase Server for XA Support
Follow these instructions to set up the environment on your database server:

Table 7-4 Sybase jConnect 5.5 Known Issues and Workarounds

Description Sybase Bug Comments/Workarounds for WebLogic
Server

When calling setAutoCommit(true) the
following exception is thrown:

java.sql.SQLException: JZ0S3:

The inherited method

setAutoCommit(true) cannot be

used in this subclass.

10726192 No workaround. Vendor fix required.

When driver used in distributed
transactions, calling
XAResource.end(TMSUSPEND)

followed by
XAResource.end(TMSUCCESS)
results in XAER_RMERR.

10727617 WebLogic Server has provided an internal
workaround for this bug:

Set the connection pool property
XAEndOnlyOnce="true".

Vendor fix has been requested.

An OutOfMemoryError is encountered
as a result of a detached Sybase
transaction.

Upgrade to the latest Sybase jConnect
Driver

Th i rd-Par t y D r i ve r Conf igura t i on and Pe r fo rmance Requi rements

Programming WebLogic JTA 7-9

Install license for Distributed Transaction Management.

Run sp_configure "enable DTM",1 to enable transactions.

Run sp_configure "enable xact coordination",1.

Run grant role dtm_tm_role to <USER_NAME>.

Copy the sample xa_config file from the SYBASE_INSTALL\OCS-12_0\sample\xa-dtm
subdirectory up three levels to SYBASE_INSTALL,where SYBASE_INSTALL is the directory
of your Sybase server installation. For example:

 $ SYBASE_INSTALL\xa_config

Edit the xa_config file. In the first [xa] section, modify the sample server name to
reflect the correct server name.

To prevent deadlocks when running transactions, enable row level lock by default:

Run sp_configure "lock scheme",0,datarows

Note: Both the jConnect.jar and jconn2.jar files are included in the
WL_HOME\server\lib folder and are referenced in the weblogic.jar manifest file.
When you start WebLogic Server, the drivers are loaded automatically and are ready to
use with WebLogic Server. To use these drivers with the WebLogic utilities or with other
applications, you must include the path to these files in your CLASSPATH.

Notes About XA and Sybase Adaptive Server
Correct support for XA connections is available in the Sybase Adaptive Server Enterprise 12.0
and later versions only. XA connections with WebLogic Server are not supported on Sybase
Adaptive Server 11.5 and 11.9.

Execution Threads and Transactions in Sybase Adaptive Server
Prior to Adaptive Server version 12.0, all resources of a transaction were privately owned by a
single task on the server. The server could not share a transaction with any task other than the one
that initiated the transaction. Adaptive Server version 12.x includes support for the suspend and
join semantics used by XA-compliant transaction managers (such as WebLogic Server).
Transactions can be shared among different execution threads, or may not be associated with an
execution thread (detached).

Using Th i rd-Par t y JDBC XA Dr i ve rs w i th WebLog ic Se rve r

7-10 Programming WebLogic JTA

Setting the Timeout for Detached Transactions
On the Sybase server, you can set the dtm detach timeout period, which sets the amount of
time (in minutes) that a distributed transaction branch can remain in the detached state (without
an associated execution thread). After this period, the DBMS automatically rolls back the
transaction. The dtm detach timeout period applies to all transactions on the database server.
It cannot be set for each transaction.

For example, to automatically rollback transactions after being detached for 10 minutes, use the
following command:

sp_configure 'dtm detach timeout period', 10

You should set the dtm detach timeout period higher than the transaction timeout to prevent
the database server from rolling back the transaction before the transaction times out in
WebLogic Server. For information about setting the transaction timeout, see "JTA" in the
Administration Console Online Help.

For more information about the dtm detach timeout period, see the Sybase documentation.

Transaction Behavior on Sybase Adaptive Server
If a global transaction is started on the Sybase server, but is not completed, the outcome of the
transaction varies depending on the transaction state before the transaction is abandoned:

If the client is terminated before the xa.end call, the transaction is rolled back.

If the client is terminated after the xa.end call, the transaction remains on the database
server (and holds all relevant locks).

If an application calls xa.start but has not called xa.end and the application terminates
unexpectedly, the database server immediately rolls back the transaction and frees locks
held by the transaction.

If an application calls xa.start and xa.end and the application terminates unexpectedly,
the database server rolls back the transaction and frees locks held by the transaction after
the dtm detach timeout period has elapsed. See “Setting the Timeout for Detached
Transactions” on page 7-10.

If an application calls xa.start and xa.end, and then the transaction is prepared, if the
application terminates unexpectedly, the transaction will persist so that it can be properly
recovered. The Transaction Manager must call rollback or commit to complete the
transaction.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html

Th i rd-Par t y D r i ve r Conf igura t i on and Pe r fo rmance Requi rements

Programming WebLogic JTA 7-11

Connection Pools for the Sybase jConnect 5.5/XA Driver
The following table contains sample code for configuring a Connection Pool:

Where Lrm_name refers to the Logical Resource Manager name.

The following table contains sample code for configuring a TxDataSource:

Table 7-5 Sybase jConnect 5.5/XA Driver: Sample Connection Pool Configuration

Property Name Property Value

Name jtaXAPool

Targets myserver,server1

DriverClassname com.sybase.jdbc2.jdbc.SybXADataSource

Properties User=dbuser;

DatabaseName=dbname;

ServerName=server_name_or_IP_address;

PortNumber=serverPortNumber;

NetworkProtocol=Tds;

resourceManagerName=Lrm_name_in_xa_config;

resourceManagerType=2

Initial Capacity 1

MaxCapacity 10

CapacityIncrement 1

Supports Local
Transaction

True

Table 7-6 Sybase jConnect 5.5/XA Driver: TxDataSource Configuration

Property Name Property Value

Name jtaXADS

Targets server1

Using Th i rd-Par t y JDBC XA Dr i ve rs w i th WebLog ic Se rve r

7-12 Programming WebLogic JTA

Configuration Properties for Java Client
Set the following configuration properties when running a Java client.

Other Third-Party XA Drivers
To use other third-party XA-compliant JDBC drivers, you must include the path to the driver
class libraries in your CLASSPATH and follow the configuration instructions provided by the
vendor.

JNDIName jtaXADS

PoolName jtaXAPool

Table 7-7 Sybase jConnect 5.5/XA Driver: Java Client Connection Properties

Property Name Property Value

ds.setPassword <password>

ds.setUser <username>

ds.setNetworkProtocol Tds

ds.setDatabaseName <database-name>

ds.setResourceManagerName <Lrm name in xa_config file>

ds.setResourceManagerType 2

ds.setServerName <machine host name>

ds.setPortNumber port (Typically 4100)

Table 7-6 Sybase jConnect 5.5/XA Driver: TxDataSource Configuration

Property Name Property Value

Programming WebLogic JTA 8-1

C H A P T E R 8

Coordinating XAResources with the
WebLogic Server Transaction Manager

External, third-party systems can participate in distributed transactions coordinated by the
WebLogic Server transaction manager by registering a javax.transaction.xa.XAResource
implementation with the WebLogic Server transaction manager. The WebLogic Server
transaction manager then drives the XAResource as part of its Two-Phase Commit (2PC)
protocol. This is referred to as “exporting transactions.”

By exporting transactions, you can integrate third-party transaction managers with the WebLogic
Server transaction manager if the third-party transaction manager implements the XAResource
interface. With an exported transaction, the third-party transaction manager would act as a
subordinate transaction manager to the WebLogic Server transaction manager.

WebLogic Server can also participate in distributed transactions coordinated by third-party
systems (sometimes referred to as foreign transaction managers). The WebLogic Server
processing is done as part of the work of the external transaction. The third-party transaction
manager then drives the WebLogic Server transaction manager as part of its commit processing.
This is referred to as “importing transactions.”

Details about coordinating third-party systems within a transaction (exporting transactions) are
described in this section. Details about participating in transactions coordinated by third-party
systems (importing transactions) are described in Chapter 9, “Participating in Transactions
Managed by a Third-Party Transaction Manager.” Note that WebLogic Server IIOP, WebLogic
Tuxedo Connector (WTC) gateway, and BEA Java Adapter for Mainframe (JAM) gateway
internally use the same mechanism described in these chapters to import and export transactions
in WebLogic Server.

Coord inat ing XAResources w i th the WebLog ic Se rve r T ransact ion Manager

8-2 Programming WebLogic JTA

The following sections describe how to configure third-party systems to participate in
transactions coordinated by the WebLogic Server transaction manager:

“Overview of Coordinating Distributed Transactions with Foreign XAResources” on
page 8-2

“Registering an XAResource to Participate in Transactions” on page 8-3

“Enlisting and Delisting an XAResource in a Transaction” on page 8-6

“Commit processing” on page 8-9

“Recovery” on page 8-10

“Resource Health Monitoring” on page 8-11

“J2EE Connector Architecture Resource Adapter” on page 8-12

“Implementation Tips” on page 8-12

“FAQs” on page 8-14

“Additional Documentation about JTA” on page 8-14

Overview of Coordinating Distributed Transactions with Foreign
XAResources

In order to participate in distributed transactions coordinated by the WebLogic Server transaction
manager, third-party systems must implement the javax.transaction.xa.XAResource
interface and then register its XAResource object with the WebLogic Server transaction manager.
For details about implementing the javax.transaction.xa.XAResource interface, refer to the
J2EE Javadocs at http://java.sun.com/j2ee/sdk_1.3/techdocs/api/index.html.

During transaction processing, you must enlist the XAResource object of the third-party system
with each applicable transaction object.

Figure 8-1 shows the process for third-party systems to participate in transactions coordinated by
the WebLogic Server transaction manager.

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/transaction/xa/XAResource.html

Regis te r ing an XAResource to Par t i c ipate in T ransact ions

Programming WebLogic JTA 8-3

Figure 8-1 Distributed Transactions with Third-Party Participants

Depending on the enlistment mode that you use when you enlist an XAResource object with a
transaction, WebLogic Server may automatically delist the XAResource object at the appropriate
time. For more information about enlistment and delistment, see “Enlisting and Delisting an
XAResource in a Transaction” on page 8-6. For more information about registering XAResource
objects with the WebLogic Server transaction manager, see “Registering an XAResource to
Participate in Transactions” on page 8-3.

Registering an XAResource to Participate in Transactions
In order to participate in distributed transactions coordinated by the WebLogic Server transaction
manager, third-party systems must implement the javax.transaction.xa.XAResource
interface and then register its XAResource object with the WebLogic Server transaction manager.
Registration is required to:

Specify the transaction branch qualifier for the XAResource. The branch qualifier
identifies the transaction branch of the resource manager instance and is used for all
distributed transactions that the resource manager (RM) instance participates in. Each
transaction branch represents a unit of work in the distributed transaction and is isolated
from other branches. Each transaction branch receives exactly one set of prepare-commit

Coord inat ing XAResources w i th the WebLog ic Se rve r T ransact ion Manager

8-4 Programming WebLogic JTA

calls during Two-Phase Commit (2PC) processing. The WebLogic Server transaction
manager uses the resource name as the transaction branch qualifier.

A resource manager instance is defined by the XAResource.isSameRM method.
XAResource instances that belong to the same resource manager instance should return
true for isSameRM. Note that you should avoid registering the same resource manager
instance under different resource names (i.e., different resource branches) to avoid
confusion of transaction branches.

Specify the enlistment mode. For a resource manager instance to participate in a specific
distributed transaction, it needs to enlist an XAResource instance with the JTA
javax.transaction.Transaction object. The WebLogic Server transaction manager
provides three enlistment modes: static, dynamic, and object-oriented. Enlistment modes
are discussed in greater detail in “Enlisting and Delisting an XAResource in a Transaction”
on page 8-6.

Bootstrap the XAResource in the event that the WebLogic Server transaction manager
must perform crash recovery. (The JTA Specification does not define a standard API to do
so; refer to JTA 1.0.1 Specification Section 3.4.8 for details).

The JTA 1.0.1 specification section 3.4.9 suggests that the transaction manager is
responsible for assigning the branch qualifiers. However, for recovery to work properly, the
same transaction branch qualifier needs to be supplied both at normal processing and upon
crash recovery. As the transaction branch qualifier is specified during registration,
registration with the WebLogic Server transaction manager is required to support crash
recovery and normal transaction processing.

During recovery, the WebLogic Server transaction manager performs the following tasks:

– It reads its transaction log and for those XA resources that participated in the
distributed transactions that were logged, it continues the second phase of the 2PC
protocol to commit the XA resources with the specified branch qualifier.

– It resolves any other in-doubt transactions of the XA resources by calling
XAResource.recover. It then commits or rolls back the returned transactions (Xids)
that belonged to it. (Note that the returned Xids would already have the specified
branch qualifier.)

Note: Registration is a per-process action (compared with enlistment and delistment which is
per-transaction).

Failure to register the XAResource implementation with the WebLogic Server transaction
manager may result in unexpected transaction branching behavior. If registration is not
performed before the XA resource is enlisted with a WebLogic Server distributed transaction, the
WebLogic Server transaction manager will use the class name of the XAResource instance as the

Regis te r ing an XAResource to Par t i c ipate in T ransact ions

Programming WebLogic JTA 8-5

resource name (and thus the branch qualifier), which may cause undesirable resource name and
transaction branch conflicts.

Each resource manager instance should register itself only once with the WebLogic Server
transaction manager. Each resource manager instance, as identified by the resource name during
registration, adds significant overhead to the system during recovery and commit processing and
health monitoring, increases memory used by associated internal data structures, reduces
efficiency in searching through internal maps, and so forth. Therefore, for scalability and
performance reasons, you should not indiscriminately register XAResource instances under
different transaction branches.

Note that the JTA XAResource adopts an explicit transaction model, where the Xid is always
explicitly passed in the XAResource methods and a single resource manager instance handles all
of the transactions. This is in contrast to the CORBA OTS Resource, which adopts an implicit
transaction model, where there is a different OTS Resource instance for each transaction that it
participates in. You should use the JTA model when designing an XAResource.

Each foreign resource manager instance should register an XAResource instance with the
WebLogic Server transaction manager upon server startup. In WebLogic Server, you can use
startup classes to register foreign transaction managers. For information about configuring
startup classes, see the Administration Console Online Help.

Follow these steps to register the resource manager with the WebLogic Server transaction
manager:

1. Obtain the WebLogic Server transaction manager using JNDI or the TxHelper interface:

import javax.transaction.xa.XAResource;
import weblogic.transaction.TransactionManager;
import weblogic.transaction.TxHelper;

InitialContext initCtx = ... ; // initialized to the initial context

TransactionManager tm = TxHelper.getTransactionManager();

or

TransactionManager tm =
(TransactionManager)initCtx.lookup("weblogic.transaction.TransactionMan
ager");

or

TransactionManager tm =
(TransactionManager)initCtx.lookup("javax.transaction.TransactionManage
r");

http://e-docs.bea.com/wls/docs81/ConsoleHelp/startup_shutdown.html

Coord inat ing XAResources w i th the WebLog ic Se rve r T ransact ion Manager

8-6 Programming WebLogic JTA

2. Register the XA resource instance with the WebLogic Server transaction manager:

String name = ... ; // name of the RM instance

XAResource res = ... ; // an XAResource instance of the RM instance

tm.registerResource(name, res); // register a resource with the standard
enlistment mode

or

tm.registerDynamicResource(name, res); // register a resource with the
dynamic enlistment mode

or

tm.registerStaticResource(name, res); // register a resource with the
static enlistment mode

Refer to “Enlisting and Delisting an XAResource in a Transaction” on page 8-6 for a detailed
discussion of the different enlistment modes. Note that when you register the XAResource, you
specify the enlistment mode that will be used subsequently, but you are not actually enlisting the
resource during the registration process. Actual enlistment should be done with the transaction
(not at server startup) using a different API, which is also discussed in detail in “Enlisting and
Delisting an XAResource in a Transaction.”

Each XAResource instance that you register is used for recovery and commit processing of
multiple transactions in parallel. Make sure that the XAResource instance supports resource
sharing as defined in JTA Specification Version 1.0.1B Section 3.4.6.

Note: Duplicate registration of the same XAResource is ignored.

You should unregister the XAResource from the WebLogic Server transaction manager when the
resource no longer accept new requests. Use the following method to unregister the XAResource:

tm.unregisterResource(name, res);

Enlisting and Delisting an XAResource in a Transaction
For an XAResource to participate in a distributed transaction, the XAResource instance must be
enlisted with the Transaction object. Depending on the enlistment mode, you may need to
perform different actions. The WebLogic Server transaction manager supports the following
enlistment modes:

Standard Enlistment

Dynamic Enlistment

En l is t ing and De l is t ing an XAResource in a T ransact ion

Programming WebLogic JTA 8-7

Static Enlistment

Even though you enlist the XAResource with the Transaction object, the enlistment mode is
determined when you register the XAResource with the WebLogic Server transaction manger,
not when you enlist the resource in the Transaction. See “Registering an XAResource to
Participate in Transactions” on page 8-3.

XAResource.start and end calls can be expensive. The WebLogic Server transaction manager
provides the following optimizations to minimize the number of these calls:

Delayed delistment:

Whether or not your XAResource implementation performs any explicit delistment or not,
the WebLogic Server transaction manager always delays delisting of any XAResource
instances that are enlisted in the current transaction until immediately before the following
events, at which time the XAResource is delisted:

– Returning the call to the caller, whether it is returned normally or with an exception

– Making a call to another server

Ignored duplicate enlistment:

The WebLogic Server transaction manager ignores any explicit enlistment of an
XAResource that is already enlisted. This may happen if the XAResource is explicitly
delisted (which is delayed or ignored by the WebLogic Server transaction manager as
mentioned above) and is subsequently re-enlisted within the duration of the same call.

By default, the WebLogic Server transaction manager delists the XAResource by calling
XAResource.end with the TMSUSPEND flag. Some database management systems may keep
cursors open if XAResource.end is called with TMSUSPEND, so you may prefer to delist an
XAResource by calling XAResource.end with TMSUCCESS wherever possible. To do so, you can
implement the weblogic.transaction.XAResource interface (instead of the
javax.transaction.xa.XAResource), which includes the getDelistFlag method. See the
WebLogic Server Javadocs for more details.

Standard Enlistment
With standard enlistment mode, you need to enlist the XAResource instance only once with the
Transaction object. Also, it is possible to enlist more than one XAResource instance of the same
branch with the same transaction. The WebLogic Server transaction manager ensures that
XAResource.end is called on all XAResource instances when appropriate (as discussed below).
The WebLogic Server transaction manager ensures that each branch receives only one set of

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/XAResource.html

Coord inat ing XAResources w i th the WebLog ic Se rve r T ransact ion Manager

8-8 Programming WebLogic JTA

prepare-commit calls during transaction commit time. However, attempting to enlist a particular
XAResource instance when it is already enlisted will be ignored.

Standard enlistment simplifies enlistment, but it may also cause unnecessary enlistment and
delistment of an XAResource if the resource is not accessed at all within the duration of a
particular method call.

To enlist an XAResource with the Transaction object, follow these steps:

1. Obtain the current Transaction object using the TransactionHelper interface:

import weblogic.transaction.Transaction; // extends
javax.transaction.Transaction
import weblogic.transaction.TransactionHelper;

Transaction tx = TransactionHelper.getTransaction();

2. Enlist the XAResource instance with the Transaction object:

tx.enlistResource(res);

After the XAResource is enlisted with the Transaction, the WebLogic Server transaction manager
manages any subsequent delistment (as described in “Enlisting and Delisting an XAResource in
a Transaction”) and re-enlistment. For standard enlistment mode, the WebLogic Server
transaction manager re-enlists the XAResource in the same Transaction upon the following
occasions:

Before a request is executed

After a reply is received from another server. (The WebLogic Server transaction manager
delists the XAResource before sending the request to another server.)

Dynamic Enlistment
With the dynamic enlistment mode, you must enlist the XAResource instance with the
Transaction object before every access of the resource. With this enlistment mode, only one
XAResource instance from each transaction branch is allowed to be enlisted for each transaction
at a time. The WebLogic Server transaction manager ignores attempts to enlist additional
XAResource instances (of the same transaction branch) after the first instance is enlisted, but
before it is delisted.

With dynamic enlistment, enlistments and delistments of XAResource instances are minimized.

The steps for enlisting the XAResource is the same as described in “Standard Enlistment.”

Commit p rocess ing

Programming WebLogic JTA 8-9

Static Enlistment
With static enlistment mode, you do not need to enlist the XAResource instance with any
Transaction object. The WebLogic Server transaction manager implicitly enlists the XAResource
for all transactions with the following events:

Before a request is executed

After a reply is received from another server

Note: Consider the following before using the static enlistment mode:

Static enlistment mode eliminates the need to enlist XAResources. However,
unnecessary enlistment and delistment may result, if the resource is not used in a
particular transaction.

A faulty XAResource may adversely affect all transactions even if the resource is
not used in the transaction.

A single XAResource instance is used to associate different transactions with
different threads at the same time. That is, XAResource.start and
XAResource.end can be called on the same XAResource instance in an
interleaved manner for different Xids in different threads. You must ensure that the
XAResource supports such an association pattern, which is not required by the JTA
specification.

Due to the performance overhead, poor fault isolation, and demanding transaction
association requirement, static enlistment should only be used with discretion and after
careful consideration.

Commit processing
During commit processing, the WebLogic Server transaction manager will either use the
XAResource instances currently enlisted with the transaction, or the XAResource instances that
are registered with the transaction manager to perform the two-phase commit. The WebLogic
Server transaction manager ensures that each transaction branch will receive only one set of
prepare-commit calls. You must ensure that any XAResource instance can be used for commit
processing for multiple transactions simultaneously from different threads, as defined in JTA
Specification Version 1.0.1B Section 3.4.6.

Coord inat ing XAResources w i th the WebLog ic Se rve r T ransact ion Manager

8-10 Programming WebLogic JTA

Recovery
When a WebLogic Server server is restarted, the WebLogic Server transaction manager reads its
own transaction logs (with log records of transactions that are successfully prepared, but may not
have completed the second commit phase of 2PC processing). The WebLogic Server transaction
manager then continues to retry commit of the XAResources for these transactions. As discussed
in “Registering an XAResource to Participate in Transactions,” one purpose of the WebLogic
Server transaction manager resource registration API is for bootstrapping XAResource instances
for recovery. You must make sure that an XAResource instance is registered with the WebLogic
Server transaction manager upon server restart. The WebLogic Server transaction manager
retries the commit call every minute, until a valid XAResource instance is registered with the
WebLogic Server transaction manager.

When a transaction manager that is acting as a transaction coordinator crashes, it is possible that
the coordinator may not have logged some in-doubt transactions in the coordinator’s transaction
log. Thus, upon server restart, the coordinator needs to call XAResource.recover on the
resource managers, and roll back the in-doubt transactions that were not logged. As with commit
retries, the WebLogic Server transaction manager retries XAResource.recover every 5
minutes, until a valid XAResource instance is registered with the WebLogic Server transaction
manager.

The WebLogic Server transaction manager checkpoints a new XAResource in its transaction log
when it is first enlisted with the WebLogic Server transaction manager. Upon server restart, the
WebLogic Server transaction manager then calls XAResource.recover on all the resources
previously checkpointed (removed from the transaction log after the transaction completed). A
resource is only removed from a checkpoint record if it has not been accessed for the last
PurgeResourceFromCheckpointIntervalSeconds interval (default is 24 hours). Therefore,
to reduce the resource recovery overhead, you should make sure that only a small number of
resource manager instances are registered with the WebLogic Server transaction manager.

When implementing XAResource.recover, you should use the flags as described in the X/Open
XA specification as follows:

When the WebLogic Server transaction manager calls XAResource.recover with
TMSTARTRSCAN, the resource returns the first batch of in-doubt Xids.

The WebLogic Server transaction manager then calls XAResource.recover with
TMNOFLAGS repeatedly, until the resource returns either null or a zero-length array to signal
that there are no more Xids to recover. If the resource has already returned all the Xids in
the previous XAResource.recover(TMSTARTRSCAN) call, then it can either return null or
a zero-length array here, or it may also throw XAER_PROTO, to indicate that it has already

Resource Hea l th Mon i to r ing

Programming WebLogic JTA 8-11

finished and forgotten the previous recovery scan. A common XAResource.recover
implementation problem is ignoring the flags or always returning the same set of Xids on
XAResource.recover(TMNOFLAGS). This will cause the WebLogic Server transaction
manager recovery to loop infinitely, and subsequently fail.

The WebLogic Server transaction manager XAResource.recover with TMENDRSCAN flag
to end the recovery scan. The resource may return additional Xids.

Note: It is possible that transactions that have already been completed successfully are
re-committed upon server restart. This happens because of a WebLogic Server
transaction log optimization: the WebLogic Server transaction manager never deletes
individual log records from the transaction log file, but waits until all the transactions of
a particular log file are completed successfully and deletes the whole file. As a result,
upon server restart, some of the transactions read from a particular log file may have
already completed successfully.

Resource Health Monitoring
To prevent losing server threads to faulty XAResources, WebLogic Server JTA has an internal
resource health monitoring mechanism. A resource is considered active if either there are no
pending requests or the result from any of the XAResource pending requests is not XAER_RMFAIL.
If an XAResource is not active within two minutes, the WebLogic Server transaction manager
will declare it dead. Any further requests to the XAResource are shunned, and an XAER_RMFAIL
XAException is thrown.

The two minute interval can be configured via the maxXACallMillis JTAMBean attribute. It is
not exposed through the Administration Console. You can configure maxXACallMillis in the
config.xml file. For example:

<Domain>

....

<JTA

MaxXACallMillis="240000"

/>

....

</Domain>

To receive notification from the WebLogic Server transaction manager and to inform the
WebLogic Server transaction manager whether it is indeed dead when the resource is about to be
declared dead, you can implement weblogic.transaction.XAResource (which extends

Coord inat ing XAResources w i th the WebLog ic Se rve r T ransact ion Manager

8-12 Programming WebLogic JTA

javax.transaction.xa.XAResource) and register it with the transaction manager. The
transaction manager will call the detectUnavailable method of the XAResource when it is
about to declare it unavailable. If the XAResource returns true, then it will not be declared
unavailable. If the XAResource is indeed unavailable, it can use this opportunity to perform
cleanup and re-registration with the transaction manager. See the WebLogic Server Javadocs for
weblogic.transaction.XAResource for more information.

J2EE Connector Architecture Resource Adapter
Besides registering with the WebLogic Server transaction manager directly, you can also
implement the J2EE Connector Architecture resource adapter interfaces. When you deploy the
resource adapter, the WebLogic Server J2EE container will register the resource manager's
XAResource with the WebLogic Server transaction manager automatically.

For more information, see Programming WebLogic J2EE Connectors.

Implementation Tips
The following sections provide tips for exporting and importing transactions with the WebLogic
Server transaction manager:

“Sharing the WebLogic Server Transaction Log” on page 8-12

“Transaction global properties” on page 8-13

“TxHelper.createXid” on page 8-14

Sharing the WebLogic Server Transaction Log
The WebLogic Server transaction manager exposes the transaction log to be shared with system
applications such as gateways. This provides a way for system applications to take advantage of
the box-carring (batching) transaction log optimization of the WebLogic Server transaction
manager for fast logging. Note that it is important to release the transaction log records in a timely
fashion. (The WebLogic Server transaction manager will only remove a transaction log file if all
the records in it are released). Failure to do so may result in a large number of transaction log files,
and could lead to re-commit of a large number of already committed transactions, or in an
extreme case, circular collision and overwriting of transaction log files.

The WebLogic Server transaction manager exposes a transaction logger interface:
weblogic.transaction.TransactionLogger. It is only available on the server, and it can be
obtained with the following steps:

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/XAResource.html
http://e-docs.bea.com/wls/docs81/jconnector/index.html

Implementat i on T ips

Programming WebLogic JTA 8-13

1. Get the server transaction manager:
import weblogic.transaction.ServerTransactionManager;

import weblogic.transaction.TxHelper;

ServerTransactionManager stm =

(ServerTransactionManager)TxHelper.getTransactionManager();

2. Get the TransactionLogger:
TransactionLogger tlog = stm.getTransactionLogger();

The XAResource’s log records must implement the
weblogic.transaction.TransactionLoggable interface in order to be written to the
transaction log. See the WebLogic Server Javadocs for the
weblogic.transaction.TransactionLogger interface for more details and the usage of the
TransactionLogger interface.

Transaction global properties
A WebLogic Server JTA transaction object is associated with both local and global properties.
Global properties are propagated with the transaction propagation context among servers, and are
also saved as part of the log record in the transaction log. You can access the transaction global
properties as follows:

1. Obtain the transaction object:

import weblogic.transaction.Transaction;
import weblogic.transaction.TransactionHelper;

Transaction tx = TransactionHelper.getTransaction(); // Get the
transaction associated with the thread

or

Transaction tx = TxHelper.getTransaction(xid); // Get the transaction
with the given Xid

2. Get or set the properties on the transaction object:

tx.setProperty("foo", "fooValue");

tx.getProperty("bar");

See the WebLogic Server Javadocs for the weblogic.transaction.TxHelper class for more
information.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/TransactionLoggable.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/TxHelper.html

Coord inat ing XAResources w i th the WebLog ic Se rve r T ransact ion Manager

8-14 Programming WebLogic JTA

TxHelper.createXid
You can use the TxHelper.createXid(int formatId, byte[] gtrid, byte[] bqual)
method to create Xids, for example, to return to the WebLogic Server transaction manager on
recovery.

See the WebLogic Server Javadocs for the weblogic.transaction.TxHelper class for more
information.

FAQs
XAResource's Xid has a branch qualifier, but not the transaction manager's transaction.

WebLogic Server JTA transaction objects do not have branch qualifiers (i.e.,
TxHelper.getTransaction().getXid().getBranchQualifier() would be null). Since
the branch qualifiers are specific to individual resource managers, the WebLogic Server
transaction manager only sets the branch qualifiers in the Xids that are passed into XAResource
methods.

What is the TxHelper.getTransaction() method used for?

The WebLogic Server JTA provides the TxHelper.getTransaction() API to return the
transaction associated with the current thread. However, note that WebLogic Server JTA
suspends the transaction context before calling the XAResource methods, so you should only rely
on the Xid input parameter to identify the transaction, but not the transaction associated with the
current thread.

Additional Documentation about JTA
Refer to the JTA specification 1.0.1B Section 4.1 for a connection-based Resource Usage
scenario, which illustrates the JTA interaction between the transaction manager and resource
manager. The JTA specification is available at http://java.sun.com/products/jta/.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/TxHelper.html
http://java.sun.com/products/jta/

Programming WebLogic JTA 9-1

C H A P T E R 9

Participating in Transactions Managed
by a Third-Party Transaction Manager

WebLogic Server can participate in distributed transactions coordinated by third-party systems
(referred to as foreign transaction managers). The WebLogic Server processing is done as part of
the work of the external transaction. The foreign transaction manager then drives the WebLogic
Server transaction manager as part of its commit processing. This is referred to as “importing”
transactions into WebLogic Server.

The following sections describe the process for configuring and participating in foreign-managed
transactions:

“Overview of Participating in Foreign-Managed Transactions” on page 9-1

“Importing Transactions with the Client Interposed Transaction Manager” on page 9-2

“Importing Transactions with the Server Interposed Transaction Manager” on page 9-5

“Transaction Processing for Imported Transactions” on page 9-7

“Commit Processing for Imported Transactions” on page 9-8

“Recovery for Imported Transactions” on page 9-9

“JCA Resource Adapter” on page 9-9

Overview of Participating in Foreign-Managed Transactions
The WebLogic Server transaction manager exposes a javax.transaction.xa.XAResource
implementation via the weblogic.transaction.InterposedTransactionManager
interface. A foreign transaction manager can access the InterposedTransactionManager

Part i c ipat ing in T ransact i ons Managed by a Th i rd-Par t y T ransact i on Manager

9-2 Programming WebLogic JTA

interface to coordinate the WebLogic Server transaction manager XAResource during its commit
processing.

When importing a transaction from a foreign transaction manager into the WebLogic Server
transaction manager, you must register the WebLogic Server interposed transaction manager as
a subordinate with the foreign transaction manager. The WebLogic Server transaction manager
then acts as the coordinator for the imported transaction within WebLogic Server.

WebLogic Server supports two configuration schemes for importing transactions:

Using a client-side gateway (implemented externally to WebLogic Server) that uses the
client interposed transaction manager

Using a server-side gateway implemented on a WebLogic Server instance that uses the
server interposed transaction manager

Although there are some differences in limitations and in implementation details, the basic
behavior is the same for importing transactions in both configurations:

1. Lookup the WebLogic Server transaction manager and register it as an XAResource as
necessary in the third-party system.

2. Enlist and delist applicable transaction participants during transaction processing.

3. Send the prepare message to the WebLogic Server transaction manager, which then acts as a
subordinate transaction manager and coordinates the prepare phase for transaction
participants within WebLogic Server.

4. Send the commit or roll back message to the WebLogic Server transaction manager, which
then acts as a subordinate transaction manager and coordinates the second phase of the
two-phase commit process for transaction participants within WebLogic Server.

5. Unregister, as necessary.

Importing Transactions with the Client Interposed Transaction
Manager

You can use the client interposed transaction manager in WebLogic Server to drive the two-phase
commit process for transactions that are coordinated by a third-party transaction manager and
include transaction participants within WebLogic Server, such as JMS resources and JDBC
resources. The client interposed transaction manager is an implementation of the
javax.transaction.xa.XAResource interface. You access the client interposed transaction
manager directly from the third-party application, typically from a gateway in the third-party

Impo r t ing T ransact ions wi th the C l i ent I n te rposed T ransac t i on Manager

Programming WebLogic JTA 9-3

application. The transaction manager in the third-party system then sends the prepare and commit
messages to the gateway, which propagates the message to the WebLogic Server transaction
manger. The WebLogic Server transaction manager then acts as a subordinate transaction
manager and coordinates the transaction participants within WebLogic Server. Figure 9-1 shows
the interaction between the two transaction managers and the client-side gateway.

Figure 9-1 Importing Transactions into WebLogic Server Using a Client-Side Gateway

Figure 9-2 shows the flow of interactions between a foreign transaction manager, WebLogic
Server client-side JTA objects, and the WebLogic Server transaction manager.

Part i c ipat ing in T ransact i ons Managed by a Th i rd-Par t y T ransact i on Manager

9-4 Programming WebLogic JTA

Figure 9-2 State Diagram Illustrating Steps to Import a Transaction Using the Client Interposed Transaction
Manager

To access the interposed transaction manager in WebLogic Server using a client-side gateway,
you must perform the following steps:

Get the Client Interposed Transaction Manager

Get the XAResource from the Interposed Transaction Manager

Get the Client Interposed Transaction Manager
In a client-side gateway, the you can get the WebLogic server interposed transaction manager's
XAResource with the getClientInterposedTransactionManager method. For example:

import javax.naming.Context;

import weblogic.transaction.InterposedTransactionManager;

import weblogic.transaction.TxHelper;

Context initialCtx;

String serverName;

Impor t ing T ransac t ions w i th the Se rve r In te rposed T ransac t i on Manager

Programming WebLogic JTA 9-5

InterposedTransactionManager itm =

TxHelper.getClientInterposedTransactionManager(initialCtx, serverName);

The server name parameter is the name of the server that acts as the interposed transaction
manager for the foreign transaction. When the foreign transaction manager performs crash
recovery, it needs to contact the same WebLogic Server server to obtain the list of in-doubt
transactions that were previously imported into WebLogic Server.

See the WebLogic Server Javadocs for the weblogic.transaction.TxHelper class for more
information.

Get the XAResource from the Interposed Transaction Manager
After you get the interposed transaction manager, you must get the XAResource object associated
with the interposed transaction manager:

import javax.transaction.xa.XAResource;

XAResource xar = itm.getXAResource();

Limitations of the Client Interposed Transaction Manager
Note the following limitations when importing transactions using a client-side gateway:

You cannot use the TxHelper.getServerInterposedTransactionManager() method
in client-side gateways.

You can only use one WebLogic Server client interposed transaction manager at a time. Do
not use more than one client interposed transaction manager (connecting to different
WebLogic Server servers) to import transactions at the same time. (See “Transaction
Processing for Imported Transactions” on page 9-7 for more information about this
limitation and how transactions are processed with the WebLogic Server interposed
transaction manager.)

Importing Transactions with the Server Interposed Transaction
Manager

You can use the server interposed transaction manager in WebLogic Server to drive the
two-phase commit process for transactions that are coordinated by a third-party transaction
manager and include transaction participants within WebLogic Server, such as JMS resources
and JDBC resources. The server interposed transaction manager is an implementation of the
javax.transaction.xa.XAResource interface. You access the server interposed transaction

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/TxHelper.html

Part i c ipat ing in T ransact i ons Managed by a Th i rd-Par t y T ransact i on Manager

9-6 Programming WebLogic JTA

manager by creating a server-side gateway on WebLogic Server and then accessing the gateway
from a third-party system. The transaction manager in the third-party system then sends the
prepare and commit messages to the server-side gateway, which propagates the message to the
WebLogic Server transaction manger. The WebLogic Server transaction manager then acts as a
subordinate transaction manager and coordinates the transaction participants within WebLogic
Server. Figure 9-3 shows the interaction between the two transaction managers and the
server-side gateway.

Figure 9-3 Importing Transactions into WebLogic Server Using a Server-Side Gateway

To access the interposed transaction manager in WebLogic Server using a server-side gateway,
you must perform the following steps:

Get the Server Interposed Transaction Manager

Get the XAResource from the Interposed Transaction Manager

Get the Server Interposed Transaction Manager
In a server-side gateway, you can get the interposed transaction manager's XAResource as
follows:

import javax.naming.Context;

import weblogic.transaction.InterposedTransactionManager;

import weblogic.transaction.TxHelper;

Transact ion P rocess ing for Impor ted T ransact ions

Programming WebLogic JTA 9-7

InterposedTransactionManager itm =

TxHelper.getServerInterposedTransactionManager();

See the WebLogic Server Javadocs for the weblogic.transaction.TxHelper class for more
information.

After you get the interposed transaction manager, you must get the XAResource. See “Get the
XAResource from the Interposed Transaction Manager” on page 9-5.

Limitations of the Server Interposed Transaction Manager
Note the following limitations when importing transactions using a server-side gateway:

Do not use the TxHelper.getClientInterposedTransactionManager() method in a
server-side gateway on a WebLogic Server server. Doing so will cause performance issues.

You can only use one WebLogic Server server interposed transaction manager at a time.
Do not use more than one server interposed transaction manager (on the same thread) to
import transactions at the same time. (See “Transaction Processing for Imported
Transactions” for more information about this limitation and how transactions are
processed with the WebLogic Server interposed transaction manager.)

Transaction Processing for Imported Transactions
To import a foreign transaction into WebLogic Server, the foreign transaction manager or
gateway can do the following:

xar.start(foreignXid, TMNOFLAGS);

This operation associates the current thread with the imported transaction. All subsequent calls
made to other servers will propagate the imported WebLogic Server transaction, until the
transaction is disassociated from the thread.

Note: The flag is ignored by the WebLogic Server transaction manager. If the foreign Xid has
already been imported previously on the same WebLogic Server server, WebLogic
Server will associate the current thread with the previously imported WebLogic Server
transaction.

To disassociate the imported transaction from the current thread, the foreign transaction manager
or gateway should do the following:

xar.end(foreignXid, TMSUCCESS);

Note that the WebLogic Server transaction manager ignores the flag.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/transaction/TxHelper.html

Part i c ipat ing in T ransact i ons Managed by a Th i rd-Par t y T ransact i on Manager

9-8 Programming WebLogic JTA

Transaction Processing Limitations for Imported Transactions
Note the following processing limitations and behavior for imported transactions:

After a WebLogic Server transaction is started, the gateway cannot call start again on the
same thread. With a client-side gateway, you can only call xar.start on one client
interposed transaction manager at a time. Attempting to call xar.start on another client
interposed transaction manager (before xar.end was called on the first one) will throw an
XAException with XAER_RMERR. With a server-side gateway, attempting to call
xar.start on a client or server interposed transaction manager will also throw a
XAException with XAER_RMERR if there is already an active transaction associated with
the current thread.

The WebLogic Server interposed transaction manager's XAResource exhibits
loosely-coupled transaction branching behavior on different WebLogic Server servers. That
is, if the same foreign Xid is imported on different WebLogic Server servers, they will be
imported to different WebLogic Server transactions.

The WebLogic Server transaction manager does not flatten the transaction tree, for
example, the imported transaction of a previously exported WebLogic Server transaction
will be in a separate branch from the original WebLogic Server transaction.

A foreign transaction manager should make sure that all foreign Xids that are imported into
WebLogic Server are unique and are not reused within the sum of the transaction abandon
timeout period (see “Abandon Timeout Seconds” in the Administration Console Help) and
the transaction timeout period (see “Timeout Seconds” in the Administration Console
Help). Failure to do so may result in log records that are never released in the WebLogic
Server transaction manager. This could lead to inefficient crash recovery and overwriting
of TLOG files.

Commit Processing for Imported Transactions
The foreign transaction manager should drive the interposed transaction manager in the 2PC
protocol as it does the other XAResources. Note that the beforeCompletion callbacks
registered with the WebLogic Server JTA (e.g., the EJB container) are called when the foreign
transaction manager prepares the interposed transaction manager's XAResource. The
afterCompletion callbacks are called during XAResource.commit or
XAResource.rollback.

The WebLogic Server interposed transaction manager honors the XAResource contract as
described in section 3.4 of the JTA 1.0.1b specification:

http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_domain_config_jta.html#AbandonTimeoutSeconds
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_domain_config_jta.html#TimeoutSeconds

Recovery fo r Impor ted T ransact ions

Programming WebLogic JTA 9-9

Once prepared by a foreign transaction manager, the WebLogic Server interposed
transaction manager waits persistently for a commit or rollback outcome from the foreign
transaction manager until the transaction abandon timeout expires.

The WebLogic Server interposed transaction manager remembers heuristic outcomes
persistently until being told to forget about the transaction by the foreign transaction
manager or until transaction abandon timeout.

The WebLogic Server transaction manager logs a prepare record for the imported transaction
after all the WebLogic Server participants are successfully prepared. If there are more than one
WebLogic Server participants for the imported transaction, the transaction manager logs a
prepare record even if the XAResource.commit is a one-phase commit.

The WebLogic Server transaction manager logs a heuristic record for the imported transaction if
there is heuristic outcome for XAResource.commit or rollback. The heuristic log records are
stored in heuristic log files (separate from the transaction log files). The heuristic log files have
extensions heur.tlog. For complete details about heuristic log files, see Heuristic Log Files in
the Administration Console Help.

Recovery for Imported Transactions
During the crash recovery of the foreign transaction manager, the foreign transaction manager
must get the XAResource of the WebLogic Server interposed transaction manager again, and call
recover on it. The WebLogic Server interposed transaction manager then returns the list of
prepared or heuristically completed transactions. The foreign transaction manager should then
resolve those in-doubt transactions: either commit or rollback the prepared transactions, and call
forget on the heuristically completed transactions.

JCA Resource Adapter
The current JCA specification version does not have provisions for importing transactions. The
JCA 1.5 specification will have APIs for importing transactions into the J2EE container. When
the WebLogic Server JCA container supports the JCA 1.5 specification, resource providers can
then also import transactions via JCA APIs.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#hlog

Part i c ipat ing in T ransact i ons Managed by a Th i rd-Par t y T ransact i on Manager

9-10 Programming WebLogic JTA

Programming WebLogic JTA 10-1

C H A P T E R 10

Troubleshooting Transactions

This section describes troubleshooting tools and tasks for use in determining why transactions fail
and deciding what actions to take to correct the problem.

This section discusses the following topics:

Overview

Troubleshooting Tools

Overview
WebLogic Server includes the ability to monitor currently running transactions and ensure that
adequate information is captured in the case of heuristic completion. It also provides the ability
to monitor performance of database queries, transactional requests, and bean methods.

Troubleshooting Tools
WebLogic Server provides the following aids to transaction troubleshooting:

“Exceptions” on page 10-2

“Transaction Identifier” on page 10-2

“Transaction Name and Properties” on page 10-2

“Transaction Status” on page 10-3

“Transaction Statistics” on page 10-3

Troub leshoot ing T ransact ions

10-2 Programming WebLogic JTA

“Transaction Monitoring and Logging” on page 10-3

Exceptions
WebLogic JTA supports all standard JTA exceptions. For more information about standard JTA
exceptions, see the Javadoc for the javax.transaction and javax.transaction.xa package
APIs.

In addition to the standard JTA exceptions, WebLogic Server provides the class
weblogic.transaction.RollbackException. This class extends
javax.transaction.RollbackException and preserves the original reason for a rollback.
Before rolling a transaction back, or before setting it to rollbackonly, an application can supply
a reason for the rollback. All rollbacks triggered inside the transaction service set the reason (for
example, timeouts, XA errors, unchecked exceptions in beforeCompletion, or inability to
contact the transaction manager). Once set, the reason cannot be overwritten.

Transaction Identifier
The Transaction Service assigns a transaction identifier (Xid) to each transaction. This ID can be
used to isolate information about a specific transaction in a log file. You can retrieve the
transaction identifier using the getXID method in the weblogic.transaction.Transaction
interface. For detailed information on methods for getting the transaction identifier, see the
weblogic.transaction.Transaction Javadoc.

Transaction Name and Properties
WebLogic JTA provides extensions to javax.transaction.Transaction that support
transaction naming and user-defined properties. These extensions are included in the
weblogic.transaction.Transaction interface.

The transaction name indicates a type of transaction (for example, funds transfer or ticket
purchase) and should not be confused with the transaction ID, which identifies a unique
transaction on a server. The transaction name makes it easier to identify a transaction type in the
context of an exception or a log file.

User-defined properties are key/value pairs, where the key is a string identifying the property and
the value is the current value assigned to the property. Transaction property values must be
objects that implement the Serializable interface. You manage properties in your application
using the set and get methods defined in the weblogic.transaction.Transaction interface.
Once set, properties stay with a transaction during its entire lifetime and are passed between

http://java.sun.com/products/jta/javadocs-1.0.1/index.html
http://java.sun.com/products/jta/javadocs-1.0.1/index.html

Troub leshoo t ing Too ls

Programming WebLogic JTA 10-3

machines as the transaction travels through the system. Properties are saved in the transaction log,
and are restored during crash recovery processing. If a transaction property is set more than once,
the latest value is retained.

For detailed information on methods for setting and getting the transaction name and transaction
properties, see the weblogic.transaction.Transaction Javadoc.

Transaction Status
The Java Transaction API provides transaction status codes using the
javax.transaction.Status class. Use the getStatusAsString method in
weblogic.transaction.Transaction to return the status of the transaction as a string. The
string contains the major state as specified in javax.transaction.Status with an additional
minor state (such as logging or pre-preparing).

Transaction Statistics
Transaction statistics are provided for all transactions handled by the transaction manager on a
server. These statistics include the number of total transactions, transactions with a specific
outcome (such as committed, rolled back, or heuristic completion), rolled back transactions by
reason, and the total time that transactions were active. For detailed information on transaction
statistics, see the Administration Console Online Help.

Transaction Monitoring and Logging
The Administration Console allows you to monitor transactions and to specify the transaction log
file prefix. Monitoring and logging tasks are performed at the server level. Transaction statistics
are displayed for a specific server and each server has a transaction log file.

For details, see Monitoring Transactions in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#monitortx.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/jta.html#monitortx

Troub leshoot ing T ransact ions

10-4 Programming WebLogic JTA

Programming WebLogic JTA A-5

A P P E N D I X A

Glossary of Terms

local transaction
Transactions that are local to a single resource manager only; for example a transaction that
relates to only one database.

distributed transaction
Global transaction involving multiple servers and one or more resources. In a distributed
transaction environment, a client application may send requests to several servers resulting in
resource updates at multiple resource managers. To complete a transaction, the transaction
manager for each participant (client, servers, and resource managers) must be polled to
coordinate the commit process for each participant within its domain.

global transactions
Transaction managed by an external transaction manager (such as WebLogic Server) that can
include multiple servers or multiple resources as participants. The transaction is coordinated as
an atomic unit of work: All participants either commit or rollback the entire transaction.

transaction branches
Each resource manager’s internal unit of work in support of a global transaction is part of exactly
one transaction branch. Each Global Transaction Identifier (GTRID or XID) that the transaction
manager gives to the resource manager identifies both a distributed transaction and a specific
branch.

Glossary o f Te rms

A-6 Programming WebLogic JTA

heuristic decision
An heuristic decision (or heuristic completion) occurs when a resource makes a unilateral
decision during the completion stage of a distributed transaction to commit or rollback updates.
This can leave distributed data in an indeterminate state. Network failures or transaction timeouts
are possible causes for a heuristic decision.

HeuristicRollback
One resource participating in a transaction decided to autonomously rollback its work, even
though it agreed to prepare itself and wait for a commit decision. If the Transaction Manager
decided to commit the transaction, the resource's heuristic rollback decision was incorrect, and
might lead to an inconsistent outcome since other branches of the transaction were committed.

HeuristicCommit
One resource participating in a transaction decided to autonomously commit its work, even
though it agreed to prepare itself and wait for a commit decision. If the Transaction Manager
decided to rollback the transaction, the resource's heuristic commit decision was incorrect, and
might lead to an inconsistent outcome since other branches of the transaction were rolled back.

HeuristicMixed
The Transaction Manager is aware that a transaction resulted in a mixed outcome, where some
participating resources committed and some rolled back. The underlying cause was most likely
heuristic rollback or heuristic commit decisions made by one or more of the participating
resources.

HeuristicHazard
The Transaction Manager is aware that a transaction might have resulted in a mixed outcome,
where some participating resources committed and some rolled back. But system or resource
failures make it impossible to know for sure whether a Heuristic Mixed outcome definitely
occurred. The underlying cause was most likely heuristic rollback or heuristic commit decisions
made by one or more of the participating resources.

Programming WebLogic JTA Index-1

Index

A
ACID properties 1-2, 3-2
API models, supported 1-2
atomicity (ACID properties) 1-2

B
bean-managed transactions 1-8

transaction attributes 5-4
transaction semantics

stateful session beans 5-8
stateless session beans 5-9

branch qualifier 8-14
business transactions, support 1-4

C
client applications

multithreading 3-4
code example

EJB applications 1-10
RMI applications 1-13

committing transactions
EJB applications 1-12
RMI applications 1-15

configuration 2-1
connector 8-12
consistency (ACID properties) 1-2
container-managed transactions 1-7

transaction attributes 5-3
transaction semantics 5-5

entity beans 5-7
stateful session beans 5-6

stateless session beans 5-6
customer support contact information xi

D
DB2 7-7
delegated commit 3-2
distributed transactions

about distributed transactions 1-3
documentation, where to find it x
durability (ACID properties) 1-2
dynamic enlistment 8-6, 8-8

E
EJB applications

bean-managed transactions 1-8
committing transactions 1-12
container-managed transactions 1-7
exceptions 5-11
general guidelines 5-2
importing packages 1-10
JNDI lookup 1-11
participating in a transaction 5-5
rolling back transactions 1-12
sample code 1-10
session synchronization 5-9
starting transactions 1-12
timeouts 5-10
transaction attributes 5-3
transaction semantics 5-5
transactions overview 1-6

enlist
XAResource 8-6, 8-7, 8-8, 8-9

Index-2 Programming WebLogic JTA

enlistment mode 8-3, 8-6, 8-7, 8-8, 8-9
entity beans

container-managed transactions
transaction semantics

 5-7
exceptions

EJB applications 5-11
exporting transactions 8-1

F
flat transactions 3-3

H
handling exceptions

EJB applications 5-11

I
IBM DB2 7-7
importing packages

EJB applications 1-10
importing transactions 8-1
isolation (ACID properties) 1-2

J
Java Naming Directory Interface (JNDI)

EJB applications 1-11
RMI applications 1-14

Java Transaction API (JTA) 1-2, 3-1
JCA 8-12

L
lightweight clients

about lightweight clients 3-2
logging 2-2, 8-12

M
Mandatory transaction attribute 5-4

MaxXACallMillis 8-11
monitoring 2-2
multithreading

clients 3-4

N
nested transactions 3-3
Never transaction attribute 5-4
NotSupported transaction attribute 5-4

O
Open Group XA interface

support for 3-3
Oracle 7-2

P
participating in a transaction 5-5
printing product documentation x
programming models, supported 1-2

R
recovery 8-3, 8-10
register

XAResource 8-3
Required transaction attribute 5-4
RequiresNew transaction attribute 5-4
resource health monitoring 8-11
RMI applications

committing transactions 1-15
general guidelines 6-1
JNDI lookup 1-14
rolling back transactions 1-15
sample code 1-13
starting transactions 1-15
transactions overview 1-8

rolling back transactions
EJB applications 1-12
RMI applications 1-15

Programming WebLogic JTA Index-3

S
session synchronization 5-9
setTransactionTimeout method 5-10
standard enlistment 8-6, 8-7
starting transactions

EJB applications 1-12
RMI applications 1-15

stateful session beans
bean-managed transactions

transaction semantics
 5-8

container-managed transactions
transaction semantics

 5-6
stateless session beans

bean-managed transactions
transaction semantics

 5-9
container-managed transactions

transaction semantics
 5-6

static enlistment 8-6, 8-9
statistics 2-2
support

technical xi
Supported transaction attribute 5-4

T
terminating transactions 3-3
tlog 8-12
transaction attributes

bean-managed transactions 5-4
container-managed transactions 5-3
described 5-3

transaction log 8-12
transaction semantics 5-5
Transaction Service

about the Transaction Service 3-1
capabilities 3-2
clients supported 3-4

features 1-4
general constraints 3-4
limitations 3-2

transactions 8-14
branch qualifier 8-3
EJB applications 1-6
exporting 8-1
flat transactions 3-3
functional overview 1-6
importing 8-1
integrity 3-3
nested transactions 3-3
participating in a transaction 5-5
RMI applications 1-8
termination 3-3
timeouts 5-10
transaction processing 3-3
transaction semantics 5-5
when to use transactions 1-4

trans-timeout-seconds element 5-10
two-phase commit protocol (2PC) 1-3

EJB CMP 1.1 5-3
EJB CMP 2.0 5-3

TxHelper 8-3, 8-7, 8-14

U
unmanaged desktops 3-2
UserTransaction

committing transactions
EJB applications 1-12
RMI applications 1-15

rolling back transactions
EJB applications 1-12
RMI applications 1-15

sample code 1-10, 1-13
starting transactions

EJB applications 1-12
RMI applications 1-15

Index-4 Programming WebLogic JTA

X
XAER_RMFAIL 8-11
XAResource

enlist 8-2, 8-6, 8-7, 8-8, 8-9
enlistment mode 8-3
foreign 8-2, 8-3
recovery 8-3
register 8-3
registering 8-1

Xid 8-14

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	Introducing Transactions
	Overview of Transactions in WebLogic Server Applications
	ACID Properties of Transactions
	Supported Programming Model
	Supported API Models
	Distributed Transactions and the Two-Phase Commit Protocol
	Support for Business Transactions

	When to Use Transactions
	When Not to Use Transactions
	What Happens During a Transaction
	Transactions in WebLogic Server EJB Applications
	Container-managed Transactions
	Bean-managed Transactions

	Transactions in WebLogic Server RMI Applications

	Transactions Sample Code
	Transactions Sample EJB Code
	Importing Packages
	Using JNDI to Return an Object Reference
	Starting a Transaction
	Completing a Transaction

	Transactions Sample RMI Code
	Importing Packages
	Using JNDI to Return an Object Reference to the UserTransaction Object
	Starting a Transaction
	Completing a Transaction

	Configuring and Managing Transactions
	Configuring Transactions
	Monitoring Transactions
	Logging
	Monitoring

	Transaction Service
	About the Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Client-initiated Transactions
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Relationship of the Transaction Service to Transaction Processing
	Multithreaded Transaction Client Support
	General Constraints

	Transaction Scope
	Transaction Service in EJB Applications
	Transaction Service in RMI Applications
	Transaction Service Interoperating with OTS
	Server-Server 2PC
	Client demarcated transactions

	Java Transaction API and BEA WebLogic Extensions
	JTA API Overview
	BEA WebLogic Extensions to JTA

	Transactions in EJB Applications
	Before You Begin
	General Guidelines
	Transaction Attributes
	About Transaction Attributes for EJBs
	Transaction Attributes for Container-Managed Transactions
	Transaction Attributes for Bean-Managed Transactions

	Participating in a Transaction
	Transaction Semantics
	Transaction Semantics for Container-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans
	Transaction Semantics for Entity Beans

	Transaction Semantics for Bean-Managed Transactions
	Transaction Semantics for Stateful Session Beans
	Transaction Semantics for Stateless Session Beans

	Session Synchronization
	Synchronization During Transactions
	Setting Transaction Timeouts
	Handling Exceptions in EJB Transactions

	Transactions in RMI Applications
	Before You Begin
	General Guidelines

	Using Third-Party JDBC XA Drivers with WebLogic Server
	Overview of Third-Party XA Drivers
	Table of Third-Party XA Drivers

	Third-Party Driver Configuration and Performance Requirements
	Using Oracle Thin/XA Driver
	Software Requirements for the Oracle Thin/XA Driver
	Known Oracle Thin Driver Issues
	Set the Environment for the Oracle Thin/XA Driver
	Oracle Thin/XA Driver Configuration Properties

	Using the IBM DB2 Type 2 XA JDBC Driver
	Set the Environment for the DB2 7.2/XA Driver
	Limitation and Restrictions using DB2 as an XAResource

	Using Sybase jConnect 5.5/XA Driver
	Known Sybase jConnect 5.5/XA Issues
	Set Up the Sybase Server for XA Support
	Notes About XA and Sybase Adaptive Server
	Connection Pools for the Sybase jConnect 5.5/XA Driver
	Configuration Properties for Java Client

	Other Third-Party XA Drivers

	Coordinating XAResources with the WebLogic Server Transaction Manager
	Overview of Coordinating Distributed Transactions with Foreign XAResources
	Registering an XAResource to Participate in Transactions
	Enlisting and Delisting an XAResource in a Transaction
	Standard Enlistment
	Dynamic Enlistment
	Static Enlistment

	Commit processing
	Recovery
	Resource Health Monitoring
	J2EE Connector Architecture Resource Adapter
	Implementation Tips
	Sharing the WebLogic Server Transaction Log
	Transaction global properties
	TxHelper.createXid

	FAQs
	Additional Documentation about JTA

	Participating in Transactions Managed by a Third-Party Transaction Manager
	Overview of Participating in Foreign-Managed Transactions
	Importing Transactions with the Client Interposed Transaction Manager
	Get the Client Interposed Transaction Manager
	Get the XAResource from the Interposed Transaction Manager
	Limitations of the Client Interposed Transaction Manager

	Importing Transactions with the Server Interposed Transaction Manager
	Get the Server Interposed Transaction Manager
	Limitations of the Server Interposed Transaction Manager

	Transaction Processing for Imported Transactions
	Transaction Processing Limitations for Imported Transactions

	Commit Processing for Imported Transactions
	Recovery for Imported Transactions
	JCA Resource Adapter

	Troubleshooting Transactions
	Overview
	Troubleshooting Tools
	Exceptions
	Transaction Identifier
	Transaction Name and Properties
	Transaction Status
	Transaction Statistics
	Transaction Monitoring and Logging

	Glossary of Terms
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

