
BEA
 WebLogic
Server™

Programming WebLogic
JNDI
Release 8.1
Revised: June 28, 2006

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic JNDI

Part Number Document Revised Software Version

N/A March 28, 2003
3

WebLogic Server
Version 8.1

Programming WebLogic JNDI iii

Contents

About This Document
Audience .v

e-docs Web Site .v

How to Print the Document . vi

Contact Us! . vi

Documentation Conventions . vi

1. Introduction to WebLogic JNDI
What is JNDI? . 1-1

WebLogic Server JNDI . 1-1

2. WebLogic JNDI
Using WebLogic JNDI to Connect a Java Client to a Single Server 2-1

Setting Up JNDI Environment Properties for the InitialContext . 2-2

Creating a Context Using a Hashtable . 2-3

Creating a Context Using a WebLogic Environment Object 2-4

Creating a Context from a Server-Side Object . 2-6

Associating a WebLogic User with a Security Context . 2-6

JNDI Contexts and Threads . 2-6

How to Avoid Potential JNDI Context Problems . 2-7

Using the Context to Look Up a Named Object . 2-9

Using a Named Object to Get an Object Reference. 2-10

Closing the Context . 2-10

iv Programming WebLogic JNDI

Using WebLogic JNDI in a Clustered Environment. 2-11

Making RMI Objects Available from a WebLogic Server Cluster 2-11

Making Custom Objects Available to a WebLogic Server Cluster 2-12

Replicating a Custom Data Caching Object Across a Cluster 2-13

Exactly-Once-Per-Cluster Design Pattern . 2-14

Using WebLogic JNDI from a Client in a Clustered Environment 2-15

Using JNDI from Within J2EE Components . 2-17

Viewing the JNDI Tree from Within the WebLogic Server Administration Console . . 2-18

Programming WebLogic JNDI v

About This Document

This document explains how to set up WebLogic JNDI.

This document is organized as follows:

Chapter 1, “Introduction to WebLogic JNDI,” provides an overview of the JNDI
capabilities in WebLogic Server.

Chapter 2, “WebLogic JNDI,” explains how to program and use the WebLogic JNDI
functionality in Java client applications.

Audience
This document is intended for programmers who are developing WebLogic Server™
applications and want to use the JNDI feature.

This document is written for application developers who want to design, develop, configure, and
manage applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems and want to use the JNDI API to provide a unified interface to multiple naming
and directory services in their enterprise. It is assumed that readers know JNDI and the Java
programming language.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation Or you can go directly to the WebLogic Server Product
Documentation page at http://edocs.bea.com/wls/docs81.

http://edocs.bea.com/wls/docs81

About Th is Document

vi Programming WebLogic JNDI

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version
of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Programming WebLogic JNDI vii

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

About Th is Document

viii Programming WebLogic JNDI

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

Programming WebLogic JNDI 1-1

C H A P T E R 1

Introduction to WebLogic JNDI

The following sections present an overview of the Java Naming and Directory Interface (JNDI)
implementation in WebLogic Server including:

“What is JNDI?” on page 1-1

“WebLogic Server JNDI” on page 1-1

What is JNDI?
Applications use naming services to locate objects in data sources, EJBs, JMS, MailSessions, and
so on in the network. A naming service associates names with objects and finds objects based on
their given names. (The RMI registry is a good example of a naming service.)

JNDI provides a common-denominator interface to many existing naming services, such as
LDAP (Lightweight Directory Access Protocol) and DNS (Domain Name System). These
naming services maintain a set of bindings, which relate names to objects and provide the ability
to look up objects by name. JNDI allows the components in distributed applications to locate each
other.

JNDI is defined to be independent of any specific naming or directory service implementation. It
supports the use of a number of methods for accessing various new and existing services. This
support allows any service-provider implementation to be plugged into the JNDI framework
using the standard service provider interface (SPI) conventions.

WebLogic Server JNDI
The WebLogic Server implementation of JNDI supplies methods that:

http://java.sun.com/products/jndi/index.html
http://java.sun.com/products/jndi/index.html

In t roduct ion to WebLog ic JNDI

1-2 Programming WebLogic JNDI

Give clients access to the WebLogic Server naming services

Make objects available in the WebLogic namespace

Retrieve objects from the WebLogic namespace

Each WebLogic Server cluster is supported by a replicated cluster-wide JNDI tree that provides
access to both replicated and pinned RMI and EJB objects. While the JNDI tree representing the
cluster appears to the client as a single global tree, the tree containing the cluster-wide services is
actually replicated across each WebLogic Server in the cluster. For more information, see “Using
WebLogic JNDI in a Clustered Environment” on page 2-11.

Other WebLogic services can use the integrated naming service provided by WebLogic Server
JNDI. For example, WebLogic RMI can bind and access remote objects by both standard RMI
methods and JNDI methods.

In addition to the standard Java interfaces for JNDI, WebLogic Server provides its own
implementation, weblogic.jndi.WLInitialContextFactory, that uses the standard JNDI
interfaces.

You need not instantiate this class directly. Instead, you can use the standard
javax.naming.InitialContext class and set the appropriate hash table properties, as
documented in the section “Setting Up JNDI Environment Properties for the InitialContext” on
page 2-2. All interaction is done through the javax.naming.Context interface, as described in
the JNDI Javadoc.

For instructions on using the WebLogic JNDI API for client connections, see “WebLogic JNDI”
on page 2-1.

Programming WebLogic JNDI 2-1

C H A P T E R 2

WebLogic JNDI

The following sections describe programming with WebLogic JNDI including:

Using WebLogic JNDI to Connect a Java Client to a Single Server

Setting Up JNDI Environment Properties for the InitialContext

Using the Context to Look Up a Named Object

Using a Named Object to Get an Object Reference

Closing the Context

Using WebLogic JNDI in a Clustered Environment

Using JNDI from Within J2EE Components

Viewing the JNDI Tree from Within the WebLogic Server Administration Console

Using WebLogic JNDI to Connect a Java Client to a Single Server
The WebLogic Server JNDI Service Provider Interface (SPI) provides an InitialContext
implementation that allows remote Java clients to connect to WebLogic Server. You can specify
standard JNDI environment properties that identify a particular WebLogic Server deployment
and related connection properties for logging in to WebLogic Server.

Before you can use JNDI to access an object in a WebLogic Server environment, you must load
or bind, the object into the WebLogic Server JNDI tree. To load an object into the JNDI tree, do
the following:

WebLogic JNDI

2-2 Programming WebLogic JNDI

1. Choose a name under which you want the object to appear in the JNDI tree.

2. Enter that name in the JNDI Name attribute field when you create the object. When the
object is loaded, JNDI provides a path to the object.

For instructions on viewing objects in the JNDI tree, see “Viewing the JNDI Tree from Within
the WebLogic Server Administration Console” on page 2-18.

To interact with a WebLogic Server instance, a Java client must be able to get an object reference
for a remote object which may be on the same server as the WebLogic Server instance, on another
server, or in a different location, and invoke operations on the object. To accomplish this, you
must perform the following procedure from within the client application:

1. Set up JNDI environment properties for the InitialContext.

2. Establish an InitialContext with WebLogic Server.

3. Use the Context to look up a named object in the WebLogic Server namespace (domain
structure).

4. Use the named object to get a reference for the remote object and invoke operations on the
remote object.

5. Close the context.

The following sections discuss JNDI client operations for connecting to a specific WebLogic
Server. For information about using JNDI in a cluster of WebLogic Servers, see “Using
WebLogic JNDI from a Client in a Clustered Environment” on page 2-15.

Note: Binding objects built with WebLogic Server 6.1 classes and deploying them to
WebLogic Server 7.0 or higher is not supported and can result in failures during startup.

Setting Up JNDI Environment Properties for the InitialContext
The first task you must perform in your Java client application is to set the environment
properties. The InitialContext factory uses various properties to customize the
InitialContext for a specific environment. You set these properties either by using a hashtable
or the set() method of a WebLogic Environment object. These properties, which are specified
name-to-value pairs, determine how the WLInitialContextFactory creates the Context.

The following properties are used to customize the InitialContext:

Context.PROVIDER_URL— specifies the URL of the WebLogic Server that provides the
name service. The default is t3://localhost:7001.

Set t ing Up JNDI Env i ronment P roper t ies fo r the In i t ia lContex t

Programming WebLogic JNDI 2-3

Note: For initial context requests over T3, using the default channel, Context.PROVIDER_URL
may be the IP address of a load balancer.

Context.SECURITY_PRINCIPAL—specifies the identity of the User (that is, a User
defined in a WebLogic Server security realm) who will be accessing the JNDI tree, for
authentication purposes. The property defaults to the guest User unless the thread has
already been associated with a WebLogic Server User. For more information, see
“Associating a WebLogic User with a Security Context” on page 2-6.

Context.SECURITY_CREDENTIALS—specifies either the password for the User defined in
the Context.SECURITY_PRINCIPAL property or an object that implements the
weblogic.security.acl.UserInfo interface with the
Context.SECURITY_CREDENTIALS property defined. If you pass a UserInfo object in this
property, the Context.PROVIDER_URL property is ignored. The property defaults to the
guest User unless the thread has already been associated with a User. For more
information, see “Associating a WebLogic User with a Security Context” on page 2-6.

You can use the same properties on either a client or a server. If you define the properties on a
server-side object, a local Context is used. If you define the properties on a client or another
WebLogic Server, the Context delegates to a remote Context running on the WebLogic Server
specified by the Context.PROVIDER_URL property. A remote object bound to the server will not
be serviced by peerGone, and will not be reachable if the client should fail.

There are some properties that cannot be changed after the creation of the context. These
properties include provider url, user credentials, and factories. AddToEnvironment can be used
to change other properties after the creation of the context.

Additional WebLogic-specific properties are also available for controlling how objects are bound
into the cluster-wide JNDI tree. Bindings may or may not be replicated across the JNDI tree of
each server within the cluster due to the way these properties are set. Properties such as these are
identified by constants in the weblogic.jndi.WLContext class. For more information about
JNDI-related clustering issues, see “Using WebLogic JNDI from a Client in a Clustered
Environment” on page 2-15.

Creating a Context Using a Hashtable
You can create a Context with a hashtable in which you have specified the properties described
in “Setting Up JNDI Environment Properties for the InitialContext” on page 2-2.

To do so, pass the hashtable to the constructor for InitialContext. The property
java.naming.factory.initial is used to specify how the InitialContext is created. To
use WebLogic JNDI, you must always set the java.naming.factory.initial property to

WebLogic JNDI

2-4 Programming WebLogic JNDI

weblogic.jndi.WLInitialContextFactory. This setting identifies the factory that actually
creates the Context.

Listing 2-1 shows how to obtain a Context using the properties
Context.INITIAL_CONTEXT_FACTORY and Context.PROVIDER_URL.

Listing 2-1 Obtaining a Context

 Context ctx = null;

 Hashtable ht = new Hashtable();

 ht.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 ht.put(Context.PROVIDER_URL,

 "t3://localhost:7001");

 try {

 ctx = new InitialContext(ht);

 // Use the context in your program

 }

 catch (NamingException e) {

 // a failure occurred

 }

 finally {

 try {ctx.close();}

 catch (Exception e) {

 // a failure occurred

 }

 }

Creating a Context Using a WebLogic Environment Object
You can also create a Context by using a WebLogic environment object implemented by
weblogic.jndi.environment. Although the environment object is WebLogic-specific, it
offers the following advantages:

A set of defaults which reduces the amount of code you need to write.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContextFactory.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/Environment.html

Set t ing Up JNDI Env i ronment P roper t ies fo r the In i t ia lContex t

Programming WebLogic JNDI 2-5

Convenience set() methods that provide compile-time type-safety. The type-safety set()
methods can save you time both writing and debugging code by throwing an exception if
you attempt to use an incorrect data type..

The WebLogic Environment object provides the following defaults:

If you do not specify an InitialContext factory, WLInitialContextFactory is used.

If you do not specify a user and password in the Context.SECURITY_PRINCIPAL and
Context.CREDENTIALS properties, the guest User and password are used unless the
thread has already been associated with a user.

If you do not specify a Context.PROVIDER_URL property, t3://localhost:7001 is
used.

If you want to create InitialContext with these defaults, write the following code:

 Environment env = new Environment();

 Context ctx = env.getInitialContext();

If you want to set only a WebLogic Server to a Distributed Name Service (DNS) name for client
cluster access, write the following code:

 Environment env = new Environment();

 env.setProviderURL("t3://myweblogiccluster.com:7001");

 Context ctx = env.getInitialContext();

Note: Every time you create a new JNDI environment object, you are creating a new security
scope. This security scope ends with a context.close() method.

The environment.getInitialContext() method does not work correctly with the
IIOP protocol.

Listing 2-2 illustrates using a JNDI Environment object to create a security context.

Listing 2-2 Creating a Security Context with a JNDI Environment Object

weblogic.jndi.Environment environment = new weblogic.jndi.Environment();

environment.setInitialContextFactory(

 weblogic.jndi.Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);

environment.setProviderURL(“t3://bross:4441”);

environment.setSecurityPrincipal(“guest”);

environment.setSecurityCrendentials(“guest”);

WebLogic JNDI

2-6 Programming WebLogic JNDI

InitialContext ctx = environment.getInitialContext();

Creating a Context from a Server-Side Object
You may also need to create a Context from an object (an Enterprise JavaBean (EJB) or Remote
Method Invocation (RMI) object) that is instantiated in the Java Virtual Machine (JVM) of
WebLogic Server. When using a server-side object, you do not need to specify the
Context.PROVIDER_URL property. Usernames and passwords are required only if you want to
sign in as a specific User.

To create a Context from within a server-side object, you first must create a new
InitialContext, as follows:

 Context ctx = new InitialContext();

You do not need to specify a factory or a provider URL. By default, the context is created as a
Context and is connected to the local naming service.

Associating a WebLogic User with a Security Context
See “JNDI Contexts and Threads” on page 2-6.

JNDI Contexts and Threads
Note: BEA recommends using the Java Authentication and Authorization Service (JAAS)

rather than JNDI to associate a User with a security context. For more information, see
Programming WebLogic Security.

When you create a JNDI Context with a username and password, you associate a user with a
thread. When the Context is created, the user is pushed onto the context stack associated with the
thread. Before starting a new Context on the thread, you must close the first Context so that the
first user is no longer associated with the thread. Otherwise, users are pushed down in the stack
each time a new context created. This is not an efficient use of resources and may result in the
incorrect user being returned by ctx.lookup() calls. This scenario is illustrated by the following
steps:

1. Create a Context (with username and credential) called ctx1 for user1. In the process of
creating the context, user1 is associated with the thread and pushed onto the stack associated
with the thread. The current user is now user1.

http://e-docs.bea.com/wls/docs81/security/index.html

Set t ing Up JNDI Env i ronment P roper t ies fo r the In i t ia lContex t

Programming WebLogic JNDI 2-7

2. Create a second Context (with username and credential) called ctx2 for user2. At this
point, the thread has a stack of users associated with it. User2 is at the top of the stack and
user1 is below it in the stack, so user2 is used is the current user.

3. If you do a ctx1.lookup("abc") call, user2 is used as the identity rather than user1,
because user2 is at the top of the stack. To get the expected result, which is to have
ctx1.lookup("abc") call performed as user1, you need to do a ctx2.close() call. The
ctx2.close() call removes user2 from the stack associated with the thread and so that a
ctx1.lookup("abc") call now uses user1 as expected.

Note: There are two situations where a close() call does not remove the current user from
the stack and this can cause JNDI context problems. For information on how to avoid
JNDI context problems, see “How to Avoid Potential JNDI Context Problems” on
page 2-7.

How to Avoid Potential JNDI Context Problems
While issuing a close() call usually behaves as described in “JNDI Contexts and Threads” on
page 2-6. However, there are two exceptions to expected behavior:

First Login

Last Used

First Login
When using protocols other than IIOP, the first user is “sticky” in the sense that it becomes the
default user when no other user is present. This scenario is described in the following steps:

1. Create a Context (with username and credential) called ctx1 for user1. In the process of
creating the context, user1 is associated with the thread and stored in the stack, that is, the
current identity is set to user1.

2. Do a ctx1.close() call.

3. Do a ctx1.lookup()call. The current identity is user1.

4. Create a Context (with username and credential) called ctx2 for user2. In the process of
creating the context, user2 is associated with the thread and stored in the stack, that is, the
current identity is set to user2.

5. Do a ctx2.close() call.

6. Do a ctx2.lookup()call. The current identity is user1.

WebLogic JNDI

2-8 Programming WebLogic JNDI

Since ctx1 was the first user, the current identity stays set to user1 after step 4. Note that not
only is user1 the current user on this thread, it is the current user on all threads that do not have
another identity defined. Thus, user1 becomes the default user when no other user identity is
present. This is not good practice as any subsequent logins that do not have a username and
credential will be granted the identify of user1 by default.

To work around this problem, implement one of the following options:

Option 1: If the client has control of main(), implement the wrapper code shown in
Listing 2-3 in the client code.

Listing 2-3 JNDI Context and Threads Wrapper Code

import java.security.PrivilegedAction;

import javax.security.auth.Subject;

import weblogic.security.Security;

public class client

{

 public static void main(String[] args)

 {

 Security.runAs(new Subject(),

 new PrivilegedAction() {

 public Object run() {

 //

 //If implementing in client code, main() goes here.

 //

 return null;

 }

 });

 }

}

Option 2: If the client does not have control of main(), implement the wrapper code
shown in Listing 2-3 on each thread's run() method.

Using the Contex t to Look Up a Named Ob jec t

Programming WebLogic JNDI 2-9

Option 3: Create a Context that logs in as a non-privileged user (a non-privileged user is a
user that is not a member of any group). Be sure this is the first logon on the client.
Immediately execute ctx.close() call to remove the non-privileged user from the
thread’s user stack. Because the non-privileged user is the first user to logon, it becomes
the default user. Subsequently, any thread that has an empty user stack will have the
identity of non-privileged user.

Note: If you choose to use Option 3, be advised of how non-privileged users relate to the
users and everyone groups, which are configured by default in the security realm
in this release of WebLogic Server. The users and everyone groups are
convenience groups that allow you to apply global roles and security policies. By
default, all WebLogic Server users, including non-privileged users, are members of
the everyone group, but non-privileged users are not members of the users group.

Last Used
When using IIOP, an exception to expected behavior arises when there is one Context on the stack
and that Context is removed by a close(). The identity of the last context removed from the
stack determines the current identity of the user. This scenario is described in the following steps:

1. Create a Context (with username and credential) called ctx1 for user1. In the process of
creating the context, user1 is associated with the thread and stored in the stack, that is, the
current identity is set to user1.

2. Do a ctx1.close() call.

3. Do a ctx1.lookup()call. The current identity is user1.

4. Create a Context (with username and credential) called ctx2 for user2. In the process of
creating the context, user2 is associated with the thread and stored in the stack, that is, the
current identity is set to user2.

5. Do a ctx2.close() call.

6. Do a ctx2.lookup()call. The current identity is user2.

Using the Context to Look Up a Named Object
The lookup() method on the Context is used to obtain named objects. The argument passed to
the lookup() method is a string that contains the name of the desired object. Listing 2-4 shows
how to retrieve an EJB named ServiceBean.

WebLogic JNDI

2-10 Programming WebLogic JNDI

Listing 2-4 Looking Up a Named Object

 try {

 ServiceBean bean = (ServiceBean)ctx.lookup("ejb.serviceBean");

 }catch (NameNotFoundException e) {

 // binding does not exist

 }catch (NamingException e) {

 // a failure occurred

 }

Using a Named Object to Get an Object Reference
EJB client applications get object references to EJB remote objects from EJB Homes (servers on
which EJBs are hosted). RMI client applications get object references to other RMI objects from
an initial named object. Both EJB and RMI initial named remote objects are known to WebLogic
Server as factories. A factory is any object that can return a reference to another object that is in
the WebLogic namespace.

The client application invokes a method on a factory to obtain a reference to a remote object of a
specific class. The client application then invokes methods on the remote object, passing any
required arguments.

Listing 2-5 contains a code fragment that obtains a remote object and then invokes a method on it.

Listing 2-5 Using a Named Object to Get an Object Reference

ServiceBean bean = ServiceBean.Home.create("ejb.ServiceBean")

Servicebean.additem(66);

Closing the Context
After clients finish working with a Context, BEA Systems recommends that the client close the
Context in order to release resources and avoid memory leaks. BEA recommends that you use a
finally{} block and wrap the close() method in a try{} block. If you attempt to close a

Using WebLog ic JNDI i n a C lus te red Env i ronment

Programming WebLogic JNDI 2-11

context that was never instantiated because of an error, the Java client application throws an
exception.

In Listing 2-6, the client closes the context, releasing the resource being used.

Listing 2-6 Closing the Context

try {

ctx.close();

} catch () {

//a failure occurred

}

Using WebLogic JNDI in a Clustered Environment
The intent of WebLogic JNDI is to provide a naming service for J2EE services, specifically EJB,
RMI, and Java Messaging Service (JMS). Therefore, it is important to understand the
implications of binding an object to the JNDI tree in a clustered environment.

The following sections discuss how WebLogic JNDI is implemented in a clustered environment
and offer some approaches you can take to make your own objects available to JNDI clients.

Making RMI Objects Available from a WebLogic Server Cluster
WebLogic RMI is the enabling technology that allows clients in one JVM to access EJBs and
JMS services from a client in another JVM. RMI stubs marshal incoming calls from the client to
the RMI object. To make J2EE services available to a client, WebLogic binds an RMI stub for a
particular service into its JNDI tree under a particular name. The RMI stub is updated with the
location of other instances of the RMI object as the instances are deployed to other servers in the
cluster. If a server within the cluster fails, the RMI stubs in the other server’s JNDI tree are
updated to reflect the server failure.

When a client connects to a cluster, it is actually connecting to one of the WebLogic Servers in
the cluster. Because the JNDI tree for this WebLogic Server contains the RMI stubs for all
services offered by the other WebLogic Servers in the cluster in addition to its own services, the
cluster appears to the client as one WebLogic Server hosting all of the cluster-wide services.
When a new WebLogic Server joins a cluster, each WebLogic Server already in the cluster is
responsible for sharing information about its own services to the new WebLogic Server. With the

WebLogic JNDI

2-12 Programming WebLogic JNDI

information collected from all the other servers in the cluster, the new server will create its own
copy of the cluster-wide JNDI tree.

RMI stubs significantly affect how WebLogic JNDI is implemented in a clustered environment:

RMI stubs are relatively small. This allows WebLogic JNDI to replicate stubs across all
WebLogic Servers in a cluster with little overhead in terms of server-to-server cross-talk.

RMI stubs serve as the mechanism for replication across a cluster. An instance of a RMI
object is deployed to a single WebLogic Server, however, the stub is replicated across the
cluster.

Making Custom Objects Available to a WebLogic Server
Cluster
When you bind a custom object (a non-RMI object) into a JNDI tree in a WebLogic Server
cluster, the object is replicated across all the servers in the cluster. However, if the host server
goes down, the custom object is removed from the cluster’s JNDI tree. Custom objects are not
replicated unless the custom object is bound again. You need to unbind and rebind a custom
object every time you want to propagate changes made to the custom object. Therefore,
WebLogic JNDI should not be used as a distributed object cache.

Suppose the custom object needs to be accessed only by EJBs that are deployed on only one
WebLogic Server. Obviously it is unnecessary to replicate this custom object throughout all the
WebLogic Servers in the cluster. In fact, you should avoid replicating the custom object in order
to avoid any performance degradation due to unnecessary server-to-server communication. To
create a binding that is not replicated across WebLogic Servers in a cluster, you must specify the
REPLICATE_BINDINGS property when creating the context that binds the custom object to the
namespace. Listing 2-7 illustrates the use of the REPLICATE_BINDINGS property.

Listing 2-7 Using the REPLICATE_BINDINGS Property

 Hashtable ht = new Hashtable();

 //turn off binding replication

 ht.put(WLContext.REPLICATE_BINDINGS, "false");

 try {

 Context ctx = new InitialContext(ht);

 //bind the object

 ctx.bind("my_object", MyObect);

Using WebLog ic JNDI i n a C lus te red Env i ronment

Programming WebLogic JNDI 2-13

 } catch (NamingException ne) {

 //failure occured

 }

When you are using this technique and you need to use the custom object, you must explicitly
obtain an InitialContext for the WebLogic Server. If you connect to any other WebLogic
Server in the cluster, the binding does not appear in the JNDI tree.

If you need a custom object accessible from any WebLogic Server in the cluster, deploy the
custom object on each WebLogic Server in the cluster without replicating the JNDI bindings.

When using WebLogic JNDI to replicate bindings, the bound object will be handled as if it is
owned by the host WebLogic Server. If the host WebLogic Server fails, the custom object is
removed from all the JNDI trees of all WebLogic Servers in the cluster. This behavior can have
an adverse effect on the availability of the custom object.

Replicating a Custom Data Caching Object Across a Cluster
A common task in Web applications is to cache data used by multiple objects for a period of time
to avoid the overhead associated with data computation or connecting to another service.

Suppose you have designed a custom data caching object that performs well on a single
WebLogic Server and you would like to use this same object within a WebLogic cluster. If you
bind the data caching object in the JNDI tree of one of the WebLogic Servers, WebLogic JNDI
will, by default, copy the object to each of the other WebLogic Servers in the cluster. It is
important to note that since this is not an RMI object, what you are binding into the JNDI tree
(and copying to the other WebLogic Servers) is the object itself, not a stub that refers to a single
instance of the object hosted on one of the WebLogic Servers. Do not assume from the fact that
WebLogic Server copies a custom object between servers that custom objects can be used as a
distributed cache. Remember the custom object is removed from the cluster if the WebLogic
Server to which it was bound fails and changes to the customer object are not propagated through
the cluster unless the object is unbound and rebound to the JNDI tree.

For the sake of performance and availability, it is often desirable to avoid using WebLogic
JNDI’s binding replication to copy large custom objects with high availability requirements to all
of the WebLogic Servers in a cluster. As an alternative, you can deploy a separate instance of the
custom object on each of the WebLogic Servers in the cluster. When binding the object to each
WebLogic Server’s JNDI tree, you should make sure to turn off binding replication as described

WebLogic JNDI

2-14 Programming WebLogic JNDI

in the “Making Custom Objects Available to a WebLogic Server Cluster” on page 2-12 section.
In this design pattern, each WebLogic Server has a copy of the custom object but you will avoid
copying large amounts of data from server to server.

Regardless of which approach you use, each instance of the object should maintain its own logic
for when it needs to refresh its cache independently of the other data cache objects in the cluster.
For example, suppose a client accesses the data cache on one WebLogic Server. It is the first time
the caching object has been accessed, so it computes or obtains the information and saves a copy
of the information for future requests. Now suppose another client connects to the cluster to
perform the same task as the first client only this time the connection is made to a different
WebLogic Server in the cluster. If this the first time this particular data caching object has been
accessed, it will need to compute the information regardless of whether other data caching objects
in the cluster already have the information cached. Of course, for any future requests, this
instance of the data cache object will be able to refer to the information it has saved.

Exactly-Once-Per-Cluster Design Pattern
In some cases, it is desirable to have a service that appears only once in the cluster. This is
accomplished by deploying the service on one machine only. For RMI objects, you can use the
default behavior of WebLogic JNDI to replicate the binding (the RMI stub) and the single
instance of your object will be accessible from all WebLogic Servers in the cluster. This is
referred to as a pinned service. For non-RMI objects, make sure that you use the
REPLICATE_BINDINGS property when binding the object to the namespace. In this case, you will
need to explicitly connect to the host WebLogic Server to access the object. Alternatively, you
can create an RMI object that is deployed on the same host WebLogic Server that can act as a
proxy for your non-RMI object. The stub for the proxy can be replicated (using the default
WebLogic JNDI behavior) allowing clients connected to any WebLogic Server in the cluster to
access the non-RMI object via the RMI proxy.

This design pattern for an exactly-once-per-cluster service presents an additional challenge for
services with high availability requirements. Since the failover feature of WebLogic Clusters
relies on having multiple deployments of each clustered service, failover for an
exactly-once-per-cluster service will not be available. For services that require high availability,
it is suggested that you implement a hardware, High-Availability (HA) framework for the host
WebLogic Server. The framework allows WebLogic Server to be restarted in the event of a
failure with a minimal amount of disruption to availability of the service.

Using WebLog ic JNDI i n a C lus te red Env i ronment

Programming WebLogic JNDI 2-15

Using WebLogic JNDI from a Client in a Clustered Environment
The JNDI binding for an object can appear in the JNDI tree for one WebLogic Server in the
cluster, or it can be replicated to all the WebLogic Servers in the cluster. If the object of interest
is bound in only one WebLogic Server, you must explicitly connect to the host WebLogic Server
by setting the Context.PROVIDER_URL property to the host WebLogic Server’s URL when
creating the Initial Context, as described in “Using WebLogic JNDI to Connect a Java Client to
a Single Server” on page 2-1.

In most cases, however, the object of interest is either a clustered service or a pinned service. As
a result, a stub for the service is displayed in the JNDI tree for each WebLogic Server in the
cluster. In this case, the client does not need to name a specific WebLogic Server to provide its
naming service. In fact, it is best for the client to simply request that a WebLogic Cluster provide
a naming service, in which case the context factory in WebLogic Server can choose whichever
WebLogic Server in the cluster seems most appropriate for the client.

Currently, a naming service provider is chosen within WebLogic using a DNS name for the
cluster that can be defined by the ClusterAddress attribute. This attribute defines the address to
be used by clients to connect to a cluster. This address may be either a DNS host name that maps
to multiple IP addresses or a comma separated list of single address host names or IP addresses.
If network channels are configured, it is possible to set the cluster address on a per channel basis.
See WebLogic Server Configuration Reference.

The context that is returned to a client of clustered services is, in general, implemented as a
failover stub that can transparently change the naming service provider if a failure (such as a
communication failure) with the selected WebLogic Server occurs.

Listing 2-8 shows how a client uses the cluster’s naming service.

Listing 2-8 Using the Naming Service in a WebLogic Cluster

 Hashtable ht = new Hashtable();

 ht.put(Context.INITIAL_CONTEXT_FACTORY,

 "weblogic.jndi.WLInitialContextFactory");

 ht.put(Context.PROVIDER_URL, "t3://acmeCluster:7001");

 try {

 Context ctx = new InitialContext(ht);

 // Do the client's work

 }

 catch (NamingException ne) {

http://e-docs.bea.com/wls/docs81/config_xml/Cluster.html

WebLogic JNDI

2-16 Programming WebLogic JNDI

 // A failure occurred

 }

 finally {

 try {ctx.close();}

 catch (Exception e) {

 // a failure occurred

 }

 }

The hostname specified as part of the provider URL is the DNS name for the cluster that can be
defined by the ClusterAddress setting in a Cluster stanza of the config.xml
file. ClusterAddress maps to the list of hosts providing naming service in this cluster. For
more information, see “Understanding Cluster Configuration and Application Deployment” in
Using WebLogic Server Clusters.

In Listing 2-8, the cluster name acmeCluster is used to connect to any of the WebLogic Servers
in the cluster. The resulting Context is replicated so that it can fail over transparently to any
WebLogic Server in the cluster.

An alternative method of specifying the initial point of contact with the WebLogic Cluster is to
supply a comma-delimited list of DNS Server names or IP addresses.

The following example specifies a list of WebLogic Servers using the same port:

ht.put(Context.PROVIDER_URL,"t3://acme1,acme2,acme3:7001");

All the WebLogic Servers listen on the port specified at the end of the URL.

The following example specifies a list of WebLogic Servers using the different ports:

ht.put(Context.PROVIDER_URL,"t3://node1:7001,node2:7002,node3:7003");

When you use a DNS name which maps to multiple servers, WebLogic Server rilies on DNS for
load balancing.

When you use a comma delimited list of DNS names for WebLogic Server nodes, failover is
accomplished using the round-robin method, with the request going to a randomly chosen server
until that server fails to respond, after which the request will go to the next server on the list. This
will continue for each server that fails.

Once the client has gotten a context, no additional load balancing occurs unless there is a failure,
in which case WebLogic Server will fail over to another node in the cluster.

http://e-docs.bea.com/wls/docs81/cluster/config.html

Us ing JNDI f rom Wi th in J2EE Components

Programming WebLogic JNDI 2-17

A remote client will get the context from the first available server. A client that is local to a server
in the cluster will never go to to a remote server for JNDI operations.

When you look up a stub, the first invocation of the stub will ordinarily go to the server from
which you got the context. If the stub is clusterable, subsequent invocations will be load balanced
based on the user defined load balancing policy.For additional information about JNDI and
Clusters see “Introduction to WebLogic Server Clustering.”

Using JNDI from Within J2EE Components
Although it is possible for J2EE components to use the global environment directly, it is
preferable to use the component environment. Each J2EE component within a J2EE application
had its own component environment which is set up based on information contained in the
component’s deployment descriptors.

J2EE components are able to look up their component environments using the following code:

 Context ctx = new InitailContext();

 Context comp_env = (Context)ctx.lookup(“java:comp/env”);

Because you are working within a J2EE component, you do not need to set up the Hashtable or
Environment objects to define the connection information.

This context is used in the same way as the global environment, however, the names you use are
the ones defined in the deployment descriptor for your component. For example, if you have an
ejb-ref in your deployment descriptor that looks like:

 <ejb-ref>

 ...

 <ejb-ref-name>ejb1</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>ejb1.EJB1Home</home>

 <remote>ejb1.EJB1</remote>

 ...

 </ejb-ref>

 you would look up the name defined with the <ejb-ref-name> setting, which in this case is
“ejb1.”

http://e-docs.bea.com/wls/docs81/cluster/overview.html

WebLogic JNDI

2-18 Programming WebLogic JNDI

Using the component environment rather than the global environment to set your JNDI name is
advantageous because the name it refers to is resolved during deployment. This means that
naming conflicts can be resolved without rewriting the code.

For additional information about setting up and using the component environment, see the J2EE
Specification at http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf.

Viewing the JNDI Tree from Within the WebLogic Server
Administration Console

You can monitor your deployments by viewing the JNDI tree from the WebLogic Server
Administration Console. The JNDI tree will open in a separate browser window when you
perform the following steps:

1. Click the Servers node to expand it and expose the names of the servers currently being
administered through the console.

2. Click the name of the server whose JNDI tree you want to view.

3. Scroll down to the bottom of the Configuration pane, and

4. Click the “View JNDI Tree” link.

The JNDI tree will appear in a new browser window. You can click on an individual object name
to view information about its bind name and hash code.

http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	Introduction to WebLogic JNDI
	What is JNDI?
	WebLogic Server JNDI

	WebLogic JNDI
	Using WebLogic JNDI to Connect a Java Client to a Single Server
	Setting Up JNDI Environment Properties for the InitialContext
	Creating a Context Using a Hashtable
	Creating a Context Using a WebLogic Environment Object
	Creating a Context from a Server-Side Object
	Associating a WebLogic User with a Security Context
	JNDI Contexts and Threads
	How to Avoid Potential JNDI Context Problems

	Using the Context to Look Up a Named Object
	Using a Named Object to Get an Object Reference
	Closing the Context
	Using WebLogic JNDI in a Clustered Environment
	Making RMI Objects Available from a WebLogic Server Cluster
	Making Custom Objects Available to a WebLogic Server Cluster
	Replicating a Custom Data Caching Object Across a Cluster
	Exactly-Once-Per-Cluster Design Pattern
	Using WebLogic JNDI from a Client in a Clustered Environment

	Using JNDI from Within J2EE Components
	Viewing the JNDI Tree from Within the WebLogic Server Administration Console

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

