
BEA
 WebLogic
Server™

Programming WebLogic
RMI over IIOP
Release 7.0
Revised: August 16, 2004

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic RMI over IIOP

Part Number Date Software Version

N/A June 30, 2003 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience..v
e-docs Web Site... vi
How to Print the Document... vi
Related Information... vi
Contact Us!... vii
Documentation Conventions .. vii

1. Overview of RMI over IIOP
What Are RMI and RMI over IIOP?... 1-3
Overview of WebLogic RMI-IIOP ... 1-4

Support for RMI-IIOP with RMI (Java) Clients .. 1-5
Support for RMI-IIOP with Tuxedo Clients .. 1-5
Support for RMI-IIOP with CORBA/IDL Clients..................................... 1-5

Protocol Compatibility .. 1-6
Server-to-Server Interoperability ... 1-6
Client-to-Server Interoperability .. 1-8

2. RMI over IIOP Programming Models
Overview of RMI-IIOP Programming Models ... 2-7

RMI Applications Without IIOP .. 2-9
RMI-IIOP Applications with RMI (Java) Clients ... 2-10

When to Use RMI-IIOP with RMI (Java) Clients.................................... 2-10
Developing an RMI-IIOP Application with RMI Client 2-10
RMI-IIOP Applications with WebLogic’s RMI-IIOP RMI Client 2-15

RMI-IIOP Applications with CORBA/IDL Clients .. 2-16
Working with CORBA/IDL Clients... 2-17
Programming WebLogic RMI over IIOP iii

Java to IDL Mapping.. 2-17
Objects-by-Value.. 2-18
Developing an RMI-IIOP Application with a CORBA/IDL Client......... 2-19

Developing a WebLogic C++ Client for the Tuxedo 8.1 ORB....................... 2-22
When to Use a WebLogic C++ Client.. 2-22
How the WebLogic C++ Client works... 2-23
Developing WebLogic C++ Clients ... 2-23
WebLogic C++ Client Limitations... 2-24
WebLogic C++ Client Code Samples .. 2-24

RMI-IIOP Applications Using WebLogic Tuxedo Connector........................ 2-24
When to Use WebLogic Tuxedo Connector .. 2-25
How the WebLogic Tuxedo Connector Works .. 2-25
WebLogic Tuxedo Connector Code Samples .. 2-25

Using EJBs with RMI-IIOP... 2-26
Code Examples .. 2-27
RMI-IIOP and the RMI Object Lifecycle.. 2-32

3. Configuring WebLogic Server for RMI-IIOP
Configuration Overview .. 3-25
Using RMI over IIOP with SSL .. 3-27

Using RMI-IIOP with SSL and a Java Client .. 3-27
Using the SSL Protocol with a BEA Tuxedo Client 3-28

Accessing Objects from a CORBA Client through Delegation 3-28
Overview of Delegation ... 3-29
Example of Delegation ... 3-30

Using RMI over IIOP with a Hardware LoadBalancer 3-32
Limitations of WebLogic RMI-IIOP... 3-33

Limiations on Using RMI-IIOP on the Server ... 3-33
Limitations Using RMI-IIOP on the Client.. 3-33
Limitations Developing Java IDL Clients.. 3-34
Limitations of Passing Objects by Value ... 3-34

RMI-IIOP Code Examples Package .. 3-35
Additional Resources... 3-35
iv Programming WebLogic RMI over IIOP

About This Document

This document explains Remote Method Invocation (RMI) over Internet Inter-ORB
Protocol (IIOP) and describes how to create RMI over IIOP applications for various
clients types. It describes how RMI-IIOP extends the RMI programming model by
enabling Java clients to access both Java and CORBA remote objects in the BEA
WebLogic Server environment.

This document is organized as follows:

Chapter 1, “Overview of RMI over IIOP,” defines RMI and RMI over IIOP, and
provides general information about the WebLogic Server RMI-IIOP
implementation.

Chapter 2, “RMI over IIOP Programming Models,” describes how to develop
RMI-IIOP applications using various client types.

Chapter 3, “Configuring WebLogic Server for RMI-IIOP,” describes concepts,
issues, and procedures related to using WebLogic Server to support RMI-IIOP
applications.

Audience

This document is written for application developers who want to enable clients to
access Remote Method Invocation (RMI) remote objects using the Internet Inter-ORB
Protocol (IIOP). It assumes a familiarity with the ProductName platform, CORBA,
and Java programming.
Programming WebLogic RMI over IIOP v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.

For more information in general about RMI over IIOP refer to the following sources.

The OMG Web Site at http://www.omg.org/

The Sun Microsystems, Inc. Java site at http://java.sun.com/

For more information about CORBA and distributed object computing, transaction
processing, and Java, refer to the Bibliography at http://edocs.bea.com/.
vi Programming WebLogic RMI over IIOP

http://www.adobe.com

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Programming WebLogic RMI over IIOP vii

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.
Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

Convention Usage
viii Programming WebLogic RMI over IIOP

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic RMI over IIOP ix

x Programming WebLogic RMI over IIOP

CHAPTER
1 Overview of RMI over
IIOP

The following sections provide a high-level view of RMI over IIOP:

What Are RMI and RMI over IIOP?

Overview of WebLogic RMI-IIOP

Protocol Compatibility

What Are RMI and RMI over IIOP?

To understand RMI-IIOP, you should first have a working knowledge of RMI. Remote
Method Invocation (RMI) is the standard for distributed object computing in Java.
RMI enables an application to obtain a reference to an object that exists elsewhere in
the network, and then invoke methods on that object as though it existed locally in the
client's virtual machine. RMI specifies how distributed Java applications should
operate over multiple Java virtual machines. RMI is written in Java and is designed
exclusively for Java programs.

RMI over IIOP extends RMI to work across the IIOP protocol. This has two benefits
that you can leverage. In a Java to Java paradigm this allows you to program against
the standardized Internet Interop-Orb-Protocol (IIOP). If you are not working in a
Java-only environment, it allows your Java programs to interact with Common Object
Request Broker Architecture (CORBA) clients and execute CORBA objects. CORBA
clients can be written in a variety of languages (including C++) and use the
Interface-Definition-Language (IDL) to interact with a remote object.
Programming WebLogic RMI over IIOP 1-3

1 Overview of RMI over IIOP
Overview of WebLogic RMI-IIOP

RMI over IIOP is based on the RMI programming model and, to a lesser extent, the
Java Naming and Directory Interface (JNDI). For detailed information on WebLogic
RMI and JNDI, refer to Using WebLogic RMI at
http://e-docs.bea.com/wls/docs70/rmi/rmi_api.html and Programming with WebLogic
JNDI at http://e-docs.bea.com/wls/docs70/jndi. Both technologies are crucial to
RMI-IIOP and it is highly recommended that you become familiar with their general
concepts before starting to build an RMI-IIOP application.

The WebLogic Server 7.0 implementation of RMI-IIOP allows you to:

Connect Java RMI clients to WebLogic Server using the standardized IIOP
protocol

Connect CORBA/IDL clients, including those written in C++, to WebLogic
Server

Interoperate between WebLogic Server and Tuxedo clients

Connect a variety of clients to EJBs hosted on WebLogic Server

This document describes how to create applications for various clients types that use
RMI and RMI-IIOP. How you develop your RMI-IIOP applications depends on what
services and clients you are trying to integrate.

The following figure shows an RMI Object Relationships that uses IIOP

WebLogic
Server

Client

Stub

ORB
RMI

runtime

RMI
object

IIOP
1-4 Programming WebLogic RMI over IIOP

http://e-docs.bea.com/wls/docs70/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs70/jndi/index.html
http://e-docs.bea.com/wls/docs70/jndi/index.html

Overview of WebLogic RMI-IIOP
Support for RMI-IIOP with RMI (Java) Clients

You can use RMI-IIOP with Java/RMI clients, taking advantage of the standard IIOP
protocol. The release of the 1.3.1 JDK facilitates this capability, and WebLogic Server
7.0 can readily be used with RMI-IIOP in a Java-to-Java environment. There is also a
new “fat” RMI-IIOP RMI Client that can be used to develop fully clusterable
RMI-IIOP applications. To use this new WebLogic RMI-IIOP RMI Client, you need
to have the weblogic.jar (located in WL_HOME/server/lib) on the client side’s
CLASSPATH, and use the -Dweblogic.system.iiop.enableClient=true
command line option when starting the client.

Support for RMI-IIOP with Tuxedo Clients

WebLogic Server 7.0 contains an implementation of the WebLogic Tuxedo
Connector, an underlying technology that enables you to interoperate with Tuxedo
servers. Using WebLogic Tuxedo Connector, you can leverage Tuxedo as an ORB, or
integrate legacy Tuxedo systems with applications you have developed on WebLogic
Server. For more information, see the WebLogic Tuxedo Connector Guide at
http://e-docs.bea.com/wls/docs70/wtc.html.

Support for RMI-IIOP with CORBA/IDL Clients

The developer community requires the ability to access J2EE services from
CORBA/IDL clients. However, Java and CORBA are based on very different object
models. Because of this, sharing data between objects created in the two programming
paradigms was, until recently, limited to Remote and CORBA primitive data types.
Neither CORBA structures nor Java objects could be readily passed between disparate
objects. To address this limitation, the Object Management Group (OMG) created the
Objects-by-Value specification . This specification defines the enabling technology for
exporting the Java object model into the CORBA/IDL programming model--allowing
for the interchange of complex data types between the two models. WebLogic Server
can support Objects-by-Value with any CORBA ORB that correctly implements the
specification.
Programming WebLogic RMI over IIOP 1-5

http://e-docs.bea.com/wls/docs70/wtc.html
http://www.omg.org/
http://www.omg.org/technology/documents/index.htm

1 Overview of RMI over IIOP
Protocol Compatibility

Interoperability between WebLogic Server 7.0 and WebLogic Server 6.x and 8.1 is
supported in the following scenarios:

Server-to-Server Interoperability

Client-to-Server Interoperability

Server-to-Server Interoperability

The following table identifies supported options for achieving interoperability
between two WebLogic Server instances.

Table 1-1 WebLogic Server-to-Server Interoperability

To
Server

From Server

WebLogic
Server 6.0

WebLogic
Server 6.1 SP2
and any
service pack
higher than
SP2

WebLogic
Server 7.0

WebLogic Server
8.1

WebLogic
Server 6.0

RMI/T3
HTTP

HTTP HTTP

Web Services1

HTTP

Web Services2

WebLogic
Server 6.1 SP2
and any service
pack higher than
SP2

HTTP RMI/T3

RMI/IIOP3

HTTP
Web Services

RMI/T3

RMI/IIOP4

HTTP
Web Services

RMI/T35

RMI/IIOP6

HTTP

Web Services7

WebLogic
Server 7.0

HTTP RMI/T3

RMI/IIOP8

HTTP

RMI/T3

RMI/IIOP9

HTTP
Web Services

RMI/T3

RMI/IIOP10

HTTP

Web Services11
1-6 Programming WebLogic RMI over IIOP

Protocol Compatibility
WebLogic
Server 8.1

HTTP RMI/T3

RMI/IIOP12

HTTP

RMI/T3

RMI/IIOP13

HTTP

Web Services14

RMI/T3
RMI/IIOP
HTTP
Web Services

Sun JDK ORB
client15

RMI/IIOP16 RMI/IIOP17 RMI/IIOP18 RMI/IIOP19

1. Must use portable client stubs generated from the “To Server” version
2. Must use portable client stubs generated from the “To Server” version
3. No support for clustered URLs and no transaction propagation
4. No support for clustered URLs and no transaction propagation
5. Known problems with exception marshalling with releases prior to 6.1 SP4
6. No support for clustered URLs and no transaction propagation. Known problems with exception
marshalling.
7. Must use portable client stubs generated from the “To Server” version
8. No support for clustered URLs and no transaction propagation
9. No support for clustered URLs
10. No support for clustered URLs
11. Must use portable client stubs generated from the “To Server” version
12. No support for clustered URLs and no transaction propagation. Known problems with
exception marshalling
13. No support for clustered URLs and no transaction propagation
14. Must use portable client stubs generated from the “To Server” version
15. This option involves calling directly into the JDK ORB from within application hosted on
WebLogic Server.
16. JDK 1.3.x only. No clustering. No transaction propagation
17. JDK 1.3.x only. No clustering. No transaction propagation
18. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation
19. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation

To
Server

From Server

WebLogic
Server 6.0

WebLogic
Server 6.1 SP2
and any
service pack
higher than
SP2

WebLogic
Server 7.0

WebLogic Server
8.1
Programming WebLogic RMI over IIOP 1-7

1 Overview of RMI over IIOP
Client-to-Server Interoperability

The following table identifies supported options for achieving interoperability
between a stand-alone Java client application and a WebLogic Server instance.

Table 1-2 Client-to-Server Interoperability

To
Server

From Client
(stand-alone)

WebLogic
Server 6.0

WebLogic
Server 6.1

WebLogic
Server 7.0

WebLogic Server
8.1

WebLogic
Server 6.0

RMI
HTTP

HTTP HTTP

Web Services1

HTTP

Web Services2

WebLogic
Server 6.1

HTTP RMI/T3
HTTP
Web Services

RMI/T3
HTTP

Web Services3

RMI/T34

HTTP

Web Services5

WebLogic
Server 7.0

HTTP RMI/T3

RMI/IIOP6

HTTP

RMI/T3

RMI/IIOP7

HTTP
Web Services

RMI/T3

RMI/IIOP8

HTTP

Web Services9

WebLogic
Server 8.1

HTTP RMI/T3

RMI/IIOP10

HTTP

RMI/T3

RMI/IIOP11

HTTP

Web Services12

RMI/T3
RMI/IIOP
HTTP
Web Services

Sun JDK ORB
client13

RMI/IIOP14 RMI/IIOP15 RMI/IIOP16 RMI/IIOP17

1. Must use portable client stubs generated from the “To Server” version
2. Must use portable client stubs generated from the “To Server” version
3. Must use portable client stubs generated from the “To Server” version
4. Known problems with exception marshalling with releases prior to 6.1 SP4
5. Must use portable client stubs generated from the “To Server” version
1-8 Programming WebLogic RMI over IIOP

Protocol Compatibility
6. No Cluster or Failover support. No transaction propagation
7. No Cluster or Failover support
8. No Cluster or Failover support
9. Must use portable client stubs generated from the “To Server” version
10. No Cluster or Failover support and no transaction propogation. Known problems with
exception marshalling
11. No Cluster or Failover support and no transaction propogation. Known problems with
exception marshalling
12. Must use portable client stubs generated from the “To Server” version
13. This option involved calling directly into the JDK ORB from within a client application.
14. JDK 1.3.x only. No clustering. No transaction propagation
15. JDK 1.3.x only. No clustering. No transaction propagation
16. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation
17. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation
Programming WebLogic RMI over IIOP 1-9

1 Overview of RMI over IIOP
1-10 Programming WebLogic RMI over IIOP

CHAPTER
2 RMI over IIOP
Programming Models

The following sections describe how to use various programming models to develop
RMI-IIOP applications:

Overview of RMI-IIOP Programming Models

RMI-IIOP Applications with RMI (Java) Clients

RMI-IIOP Applications with CORBA/IDL Clients

Developing a WebLogic C++ Client for the Tuxedo 8.1 ORB

RMI-IIOP Applications Using WebLogic Tuxedo Connector

Using EJBs with RMI-IIOP

Code Examples

RMI-IIOP and the RMI Object Lifecycle

Overview of RMI-IIOP Programming Models

IIOP is a robust protocol that is supported by numerous vendors and is designed to
facilitate interoperation between heterogeneous distributed systems. Two basic
programming models are associated with RMI-IIOP: RMI-IIOP with RMI clients and
RMI-IIOP with IDL clients. Both models share certain features and concepts,
including the use of a Object Request Broker (ORB) and the Internet InterORB
Programming WebLogic RMI over IIOP 2-7

2 RMI over IIOP Programming Models
Protocol (IIOP). However, the two models are distinctly different approaches to
creating a interoperable environment between heterogeneous systems. Simply, IIOP
can be a transport protocol for distributed applications with interfaces written in either
IDL or Java RMI. When you program, you must decide to use either IDL or RMI
interfaces; you cannot mix them.

Several factors determine how you will create a distributed application environment.
Because the different models for employing RMI-IIOP share many features and
standards, it is easy to lose sight of which model you are following. The following table
summarizes the components and benefits of each model, we have included the simple
RMI model which does not use IIOP to further illustrate the differences between the
programming models available.

Table 2-1 RMI Programming Models

Client Client
language

Protocol Definition Benefits

RMI Java t3 Client that follows the JavaSoft RMI
specification. Designed exclusively
for Java programs.

Fast, scalable. Uses
optimized
WebLogic t3
protocol that
improves
performance.

RMI over
IIOP RMI
Client

Java IIOP RMI client that utilizes the CORBA
2.3 specification’s support for
Objects-by-Value. This Java client is
developed using the standard
RMI/JNDI model.

RMI with
Internet-Inter-Orb-
Protocol. Use of
the IIOP standard.
No WebLogic
classes required on
client.

RMI over
IIOP
WebLogic
RMI Client

Java IIOP RMI client that utilizes the CORBA
2.3 specification’s support for
Objects-by-Value. This Java client is
developed using the standard
RMI/JNDI model.

RMI with
Internet-Inter-Orb-
Protocol. Use of
the IIOP standard.
Fully clusterable,
but requires that
weblogic.jar
be referenced by
the client.
2-8 Programming WebLogic RMI over IIOP

Overview of RMI-IIOP Programming Models
RMI Applications Without IIOP

RMI is a Java-to-Java model of distributed computing. RMI enables an application to
obtain a reference to an object that exists elsewhere in the network All RMI-IIOP
models are based on RMI; however, if you follow a plain RMI model without IIOP,
you cannot integrate clients written in languages other than Java. You will also be
using T3, a proprietary protocol, and have WebLogic classes on your client. For
information on developing RMI applications, see Using WebLogic RMI at
http://e-docs.bea.com/wls/docs70/rmi.

RMI-IIOP
CORBA/
IDL client

C++, C,
Smalltalk,
COBOL
(Any language
that OMG IDL
can map to).

IIOP CORBA client that uses a CORBA
2.3 ORB. Note: Due to name-space
conflicts, Java CORBA clients are not
supported by the RMI over IIOP
specification.

Interoperability
between WebLogic
Server and clients
written in C++,
COBOL, etc.

RMI-IIOP
Tuxedo
Client

C++, C,
COBOL, Java
(any language to
which Tuxedo
can map to
OMG IDL)

TGIOP
(Tuxedo-Gener
al-Inter-Orb-Pro
tocol

Tuxedo Client developed with
Tuxedo 8.0 Rolling Patch 15 or
higher.

Interoperability
between WebLogic
Server applications
and Tuxedo
clients/services

Client Client
language

Protocol Definition Benefits
Programming WebLogic RMI over IIOP 2-9

http://e-docs.bea.com/wls/docs70/rmi/rmi_api.html

2 RMI over IIOP Programming Models
RMI-IIOP Applications with RMI (Java)
Clients

RMI over IIOP with RMI clients combines the features of RMI with the standard IIOP
protocol and allows you to work completely in the Java programming language.
RMI-IIOP with RMI Clients is a Java-to-Java model, where the ORB is typically a part
of the JDK running on the client. Objects can be passed both by reference and by value
with RMI-IIOP.

When to Use RMI-IIOP with RMI (Java) Clients

RMI-IIOP with RMI clients is oriented towards the J2EE programming model; it
combines the capabilities of RMI with the IIOP protocol. If your applications are being
developed in Java and you wish to leverage the benefits of IIOP, you should use the
RMI-IIOP with RMI client model. Using RMI-IIOP, Java users can program with the
RMI interfaces and then use IIOP as the underlying transport mechanism. The RMI
client runs an RMI-IIOP-enabled ORB hosted by a J2EE or J2SE container, in most
cases a 1.3 or higher JDK. Note that no WebLogic specific classes are required, or
automatically downloaded in this scenario; this is a good way of having a minimal
client distribution. You also do not have to use the proprietary t3 protocol used in
normal WebLogic RMI, you use IIOP, which based on an industry, not proprietary,
standard.

Developing an RMI-IIOP Application with RMI Client

To develop an application using RMI-IIOP with an RMI client:

1. Define your remote object’s public methods in an interface that extends
java.rmi.Remote.

This remote interface may not require much code. All you need are the method
signatures for methods you want to implement in remote classes. For example,
with the Ping example included in your Weblogic installation
SAMPLES_HOME/server/src/examples/iiop/rmi/server/wls:
2-10 Programming WebLogic RMI over IIOP

RMI-IIOP Applications with RMI (Java) Clients
public interface Pinger extends java.rmi.Remote {
public void ping() throws java.rmi.RemoteException;
public void pingRemote() throws java.rmi.RemoteException;
public void pingCallback(Pinger toPing) throws
java.rmi.RemoteException;
}

2. Implement the interface in a class named interfaceNameImpl and bind it into
the JNDI tree to be made available to clients.

This class should implement the remote interface that you wrote, which means
that you implement the method signatures that are contained in the interface. All
the code generation that will take place is dependent on this class file. Typically,
you configure your implementation class as a WebLogic startup class and
include a main method that binds the object into the JNDI tree. Here is an
excerpt from the implementation class developed from the previous Ping
example:

public static void main(String args[]) throws Exception {
if (args.length > 0)
remoteDomain = args[0];

Pinger obj = new PingImpl();
Context initialNamingContext = new InitialContext();
initialNamingContext.rebind(NAME,obj);
System.out.println("PingImpl created and bound to "+ NAME);

3. Compile the remote interface and implementation class with a java compiler.
Developing these classes in a RMI-IIOP application is no different that doing so
in normal RMI. For more information on developing RMI objects, see Using
WebLogic RMI.

4. Run the WebLogic RMI or EJB compiler against the implementation class to
generate the necessary IIOP stub. Note that it is no longer necessary to use the
-iiop option to generate the IIOP stubs:

$ java weblogic.rmic nameOfImplementationClass

In the case of the Pinger example, the nameOfImplementationClass is
examples.iiop.rmi.server.wls.PingerImpl.

A stub is the client-side proxy for a remote object that forwards each WebLogic
RMI call to its matching server-side skeleton, which in turn forwards the call to
the actual remote object implementation. Note that the IIOP stubs created by the
WebLogic RMI compiler are intended to be used with the JDK 1.3.1_01 or
higher ORB. If you are using another ORB, consult the ORB vendor’s
documentation to determine whether these stubs are appropriate.
Programming WebLogic RMI over IIOP 2-11

http://e-docs.bea.com/wls/docs70/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs70/rmi/rmi_api.html

2 RMI over IIOP Programming Models
5. Make sure that the files you have now created -- the remote interface, the class
that implements it, and the stub -- are in the CLASSPATH of the WebLogic
Server.

6. Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing
a lookup (see next step) on the object. The object is then cast to the appropriate
type.

In obtaining an initial context, you have two choices when defining your JNDI
context factory:

weblogic.jndi.WLInitialContextFactory

com.sun.jndi.cosnaming.CNCtxFactory

Use either of these classes when setting the value for the
"Context.INITIAL_CONTEXT_FACTORY" property that you supply as a
parameter to new InitialContext(). If you use the Sun version, you'll have a
Sun JNDI client, which in turn uses the Sun RMI-IIOP ORB implementation of
J2SE 1.3; this may be important to you if you wish to minimize the use of
WebLogic classes on the client. To take full advantage of WebLogic’s RMI-IIOP
implementation however, it is recommended that you use the
weblogic.jndi.WLInitialContextFactory method.

When using the Sun JNDI client and the Sun ORB, be aware that the Sun JNDI
client supports the capability to read remote object references from the
namespace, but not generic Java serialized objects. This means that you can read
items such as EJBHomes out of the namespace but not DataSource objects.
There is also no support for client-initiated transactions (the JTA API) in this
configuration, and no support for security. In the stateless session bean RMI
Client example, the client obtains an initial context as is done below:

Obtaining an InitialContext:

* Using a Properties object as follows will work on JDK13
* clients.

 */

 private Context getInitialContext() throws NamingException {

try {
// Get an InitialContext
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.cosnaming.CNCtxFactory");
h.put(Context.PROVIDER_URL, url);
2-12 Programming WebLogic RMI over IIOP

RMI-IIOP Applications with RMI (Java) Clients
return new InitialContext(h);
} catch (NamingException ne) {

log("We were unable to get a connection to the WebLogic server
at "+url);

log("Please make sure that the server is running.");
throw ne;
}

/**

* This is another option, using the Java2 version to get an
* InitialContext.
* This version relies on the existence of a jndi.properties file
in
* the application's classpath. See
* http://edocs.bea.com/wls/docs70/jndi/jndi.html for more
* information

private static Context getInitialContext()
throws NamingException

{
return new InitialContext();

}

7. Modify the client code to perform the lookup in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

RMI over IIOP RMI clients differ from regular RMI clients in that IIOP is
defined as the protocol when obtaining an initial context. Because of this,
lookups and casts must be performed in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

For example, in the RMI client stateless session bean example (the
examples.iiop.ejb.stateless.rmiclient package included in your
distribution), an RMI client creates an initial context, performs a lookup on the
EJBean home, obtains a reference to an EJBean, and calls methods on the
EJBean.

You must use the javax.rmi.PortableRemoteObject.narrow() method in
any situation where you would normally cast an object to a specific class type. A
CORBA client may return an object that doesn't implement your remote
interface; the narrow method is provided by your orb to convert the object so
that it implements your remote interface. For example, the client code
responsible for looking up the EJBean home and casting the result to the Home
object must be modified to use the
javax.rmi.PortableRemoteObject.narrow() as shown below:
Programming WebLogic RMI over IIOP 2-13

http://e-docs.bea.com/wls/docs70/jndi/jndi.html

2 RMI over IIOP Programming Models
Performing a lookup:

/**
* RMI/IIOP clients should use this narrow function
*/
private Object narrow(Object ref, Class c) {

return PortableRemoteObject.narrow(ref, c);
}

/**
* Lookup the EJBs home in the JNDI tree
*/
private TraderHome lookupHome()

throws NamingException
{

// Lookup the beans home using JNDI
Context ctx = getInitialContext();

try {
Object home = ctx.lookup(JNDI_NAME);
return (TraderHome) narrow(home, TraderHome.class);
} catch (NamingException ne) {
log("The client was unable to lookup the EJBHome. Please
make sure ");
log("that you have deployed the ejb with the JNDI name
"+JNDI_NAME+" on the WebLogic server at "+url);
throw ne;

}
}

/**
* Using a Properties object will work on JDK130
* clients
*/
private Context getInitialContext() throws NamingException {

try {
// Get an InitialContext
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.cosnaming.CNCtxFactory");
h.put(Context.PROVIDER_URL, url);
return new InitialContext(h);

} catch (NamingException ne) {
log("We were unable to get a connection to the WebLogic
server at "+url);
log("Please make sure that the server is running.");
throw ne;

}
}

2-14 Programming WebLogic RMI over IIOP

RMI-IIOP Applications with RMI (Java) Clients
The url defines the protocol, hostname, and listen port for the WebLogic Server
and is passed in as a command-line argument.

public static void main(String[] args) throws Exception {

log("\nBeginning statelessSession.Client...\n");

String url = "iiop://localhost:7001";

8. Connect the client to the server over IIOP by running the client with a command
like:

$ java
-Djava.security.manager -Djava.security.policy=java.policy

examples.iiop.ejb.stateless.rmiclient.Client
iiop://localhost:7001

9. Set the security manager on the client:

java -Djava.security.manager
-Djava.security.policy==java.policy myclient

To narrow an RMI interface on a client the server needs to serve the appropriate
stub for that interface. The loading of this class is predicated on the use of the
JDK network classloader and this is not enabled by default. To enable it you set
a security manager in the client with an appropriate java policy file. For more
information on Java security, see Sun’s site at
http://java.sun.com/security/index.html. The following is an example
of a java.policy file:
grant {

// Allow everything for now

permission java.security.AllPermission;

RMI-IIOP Applications with WebLogic’s RMI-IIOP RMI
Client

WebLogic Server 7.0 enables the use of a new “fat” RMI-IIOP RMI Client that can be
used to develop fully clusterable RMI-IIOP applications. To use this new WebLogic
RMI-IIOP RMI Client, you need to have the weblogic.jar (located in
WL_HOME/server/lib) on the client side’s CLASSPATH, and use the -D
Programming WebLogic RMI over IIOP 2-15

http://java.sun.com/security/index.html

2 RMI over IIOP Programming Models
weblogic.system.iiop.enableClient=true command line option when starting
WebLogic. Otherwise, your steps in developing this client will be the same as above
in RMI-IIOP Applications with RMI (Java) Clients.

RMI-IIOP Applications with CORBA/IDL
Clients

RMI over IIOP with CORBA/IDL clients involves an Object Request Broker (ORB)
and a compiler that creates an interoperating language called IDL. C, C++, and
COBOL are examples of languages that ORB’s may compile into IDL. A CORBA
programmer can use the interfaces of the CORBA Interface Definition Language
(IDL) to enable CORBA objects to be defined, implemented, and accessed from the
Java programming language.

Using RMI-IIOP with a CORBA/IDL client enables interoperability between non-Java
clients and Java objects. If you have existing CORBA applications, you should
program according to the RMI-IIOP with CORBA/IDL client model. Basically, you
will be generating IDL interfaces from Java. Your client code will communicate with
WebLogic Server through these IDL interfaces. This is basic CORBA programming.

The following sections provide some guidelines for developing RMI-IIOP
applications with CORBA/IDL clients.

For further reference see the following Object Management Group (OMG)
specifications:

Java Language Mapping to OMG IDL Specification at
http://www.omg.org/technology/documents/formal/java_language_mapping_t
o_omg_idl.htm

CORBA/IIOP 2.4.2 Specification at
http://www.omg.org/docs/formal/01-02-01.pdf
2-16 Programming WebLogic RMI over IIOP

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://www.omg.org/docs/formal/01-02-01.pdf

RMI-IIOP Applications with CORBA/IDL Clients
Working with CORBA/IDL Clients

In CORBA, interfaces to remote objects are described in a platform-neutral interface
definition language (IDL). To map the IDL to a specific language, the IDL is compiled
with an IDL compiler. The IDL compiler generates a number of classes such as stubs
and skeletons that the client and server use to obtain references to remote objects,
forward requests, and marshall incoming calls. Even with IDL clients it is strongly
recommended that you begin programming with the Java remote interface and
implementation class, then generate the IDL to allow interoperability with WebLogic
and CORBA clients, as illustrated in the following sections. Writing code in IDL that
can be then reverse-mapped to create Java code is a difficult and bug-filled enterprise
and WebLogic does not recommend doing this.

The following figure shows how IDL takes part in a RMI-IIOP model:

Figure 2-1 IDL Client (Corba object) relationships

Java to IDL Mapping

In WebLogic RMI, interfaces to remote objects are described in a Java remote
interface that extends java.rmi.Remote. The Java-to-IDL mapping specification
defines how an IDL is derived from a Java remote interface. In the WebLogic RMI
over IIOP implementation, you run the implementation class through the WebLogic

IDLClient

Stub

ORB

Server

TieIDL compiler

ORBIIOP
Programming WebLogic RMI over IIOP 2-17

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm

2 RMI over IIOP Programming Models
RMI compiler or WebLogic EJB compiler with the -idl option. This process creates
an IDL equivalent of the remote interface. You then compile the IDL with an IDL
compiler to generate the classes required by the CORBA client.

The client obtains a reference to the remote object and forwards method calls through
the stub. WebLogic Server implements a CosNaming service that parses incoming
IIOP requests and dispatches them directly into the RMI runtime environment.

The following figure shows this process.

Figure 2-2 WebLogic RMI over IIOP object relationships

Objects-by-Value

The Objects-by-Value specification allows complex data types to be passed between
the two programming languages involved. In order for an IDL client to support
Objects-by-Value, you develop the client in conjunction with an Object Request
Broker (ORB) that supports Objects-by-Value. To date, relatively few ORBs support
Objects-by-Value correctly.

When developing an RMI over IIOP application that uses IDL, consider whether your
IDL clients will support Objects-by-Value, and design your RMI interface
accordingly. If your client ORB does not support Objects-by-Value, you must limit

WebLogic
Server

IDL

Client

Stub

ORB

RMI
compiler

IDL
compiler

RMI
runtime

RMI
object

IIOP
2-18 Programming WebLogic RMI over IIOP

http://www.omg.org/technology/documents/index.htm

RMI-IIOP Applications with CORBA/IDL Clients
your RMI interface to pass only other interfaces or CORBA primitive data types. The
following table lists ORBs that BEA Systems has tested with respect to
Objects-by-Value support:

For more information on Objects-by-Value, see “Limitations of Passing Objects by
Value” on page 3-34.

Developing an RMI-IIOP Application with a CORBA/IDL
Client

To develop an RMI over IIOP application with CORBA/IDL:

1. Follow steps 1 through 3 in “Developing an RMI-IIOP Application with RMI
Client” on page 2-10.

2. Generate an IDL file by running the WebLogic RMI compiler or WebLogic EJB
compiler with the -idl option.

The required stub classes will be generated when you compile the IDL file. For
general information on the these compilers, refer to Using WebLogic RMI and
BEA WebLogic Server Enterprise JavaBeans. Also reference the Java IDL
specification at Java Language Mapping to OMG IDL Specification at
http://www.omg.org/cgi-bin/doc?formal/01-06-07.pdf.

The following compiler options are specific to RMI over IIOP:

Table 2-2 ORBs Tested with Respect to Objects-by-Value Support

Vendor Versions Objects-by-Value

BEA Tuxedo 8.1 C++ Client
ORB

supported

Borland VisiBroker 3.3, 3.4 not supported

Borland VisiBroker 4.x, 5.x supported

Iona Orbix 2000 supported (we have
encountered issues with
this implementation)
Programming WebLogic RMI over IIOP 2-19

http://e-docs.bea.com/wls/docs70/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://www.omg.org/cgi-bin/doc?formal/01-06-07.pdf

2 RMI over IIOP Programming Models
The options are applied as shown in this example of running the RMI compiler:

 > java weblogic.rmic -idl -idlDirectory /IDL rmi_iiop.HelloImpl

The compiler generates the IDL file within sub-directories of the idlDirectoy
according to the package of the implementation class. For example, the
preceding command generates a Hello.idl file in the /IDL/rmi_iiop
directory. If the idlDirectory option is not used, the IDL file is generated
relative to the location of the generated stub and skeleton classes.

3. Compile the IDL file to create the stub classes required by your IDL client to
communicate with the remote class. Your ORB vendor will provide an IDL
compiler.

The IDL file generated by the WebLogic compilers contains the directives:
#include orb.idl. This IDL file should be provided by your ORB vendor. An
orb.idl file is shipped in the /lib directory of the WebLogic distribution. This
file is only intended for use with the ORB included in the JDK that comes with
WebLogic Server.

4. Develop the IDL client.

Option Function

-idl Creates an IDL for the remote interface of the
implementation class being compiled

-idlDirectory Target directory where the IDL will be generated

-idlFactories Generate factory methods for value types. This is useful if
your client ORB does not support the factory valuetype.

-idlNoValueTypes Suppresses generation of IDL for value types.

-idlOverwrite Causes the compiler to overwrite an existing idl file of the
same name

-idlStrict Creates an IDL that adheres strictly to the Objects-By-Value
specification. (not available with ejbc)

-idlVerbose Display verbose information for IDL generation

-idlVisibroker Generate IDL somewhat compatible with
Visibroker 4.1 C++
2-20 Programming WebLogic RMI over IIOP

RMI-IIOP Applications with CORBA/IDL Clients
IDL clients are pure CORBA clients and do not require any WebLogic classes.
Depending on your ORB vendor, additional classes may be generated to help
resolve, narrow, and obtain a reference to the remote class. In the following
example of a client developed against a VisiBroker 4.1 ORB, the client
initializes a naming context, obtains a reference to the remote object, and calls a
method on the remote object.

Code segment from C++ client of the RMI-IIOP example

// string to object
CORBA::Object_ptr o;

cout << "Getting name service reference" << endl;
if (argc >= 2 && strncmp (argv[1], "IOR", 3) == 0)

o = orb->string_to_object(argv[1]);
else

o = orb->resolve_initial_references("NameService");

// obtain a naming context
cout << "Narrowing to a naming context" << endl;
CosNaming::NamingContext_var context =
CosNaming::NamingContext::_narrow(o);
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("Pinger_iiop");
name[0].kind = CORBA::string_dup("");

// resolve and narrow to RMI object
cout << "Resolving the naming context" << endl;
CORBA::Object_var object = context->resolve(name);

cout << "Narrowing to the Ping Server" << endl;
::examples::iiop::rmi::server::wls::Pinger_var ping =

::examples::iiop::rmi::server::wls::Pinger::_narrow(object);

// ping it
cout << "Ping (local) ..." << endl;
ping->ping();

}

Notice that before obtaining a naming context, initial references were resolved
using the standard Object URL (CORBA/IIOP 2.4.2 Specification at
http://www.omg.org/docs/formal/01-02-01.pdf, section 13.6.7). Lookups are
resolved on the server by a wrapper around JNDI that implements the COS
Naming Service API.

The Naming Service allows Weblogic Server applications to advertise object
references using logical names. The CORBA Name Service provides:
Programming WebLogic RMI over IIOP 2-21

http://www.omg.org/docs/formal/01-02-01.pdf

2 RMI over IIOP Programming Models
An implementation of the Object Management Group (OMG) Interoperable
Name Service (INS) specification.

Application programming interfaces (APIs) for mapping object references
into an hierarchical naming structure (JNDI in this case).

Commands for displaying bindings and for binding and unbinding naming
context objects and application objects into the namespace.

5. IDL client applications can locate an object by asking the CORBA Name Service
to look up the name in the JNDI tree of WebLogic Server. In the example above,
you run the client by using:

Client.exe -ORBInitRef
NameService=iioploc://localhost:7001/NameService.

Developing a WebLogic C++ Client for the
Tuxedo 8.1 ORB

The WebLogic C++ client uses the Tuxedo 8.1 C++ Client ORB to generate IIOP
request for EJBs running on WebLogic Server. This client supports object-by-value
and the CORBA Interoperable Naming Service (INS).

When to Use a WebLogic C++ Client

You should consider using a WebLogic C++ client in the following situations:

To simplify your development process by avoiding third-party products

To provide a client-side solution that allows you to develop or modify existing
C++ clients

Although the Tuxedo C++ Client ORB is packaged with Tuxedo 8.1 and higher, you
do not need a Tuxedo license to develop WebLogic C++ clients. You can obtain a trial
development copy of Tuxedo from the BEA Download Center.
2-22 Programming WebLogic RMI over IIOP

http://commerce.bea.com/index.jsp

Developing a WebLogic C++ Client for the Tuxedo 8.1 ORB
How the WebLogic C++ Client works

The WebLogic C++ client using the following model to process client requests:

The WebLogic C++ client code requests a WebLogic Server service.

The Tuxedo ORB generates an IIOP request.

The ORB object is initally instantiated and supports Object-by-Value data
types.

The Client uses the CORBA Interoperable Name Service (INS) to look up the
EJB object bound to JNDI naming service. For more information on how to use
the Interoperable Naming Service to get object references to initial objects such
as NameService, see Interoperable Naming Service Bootstrapping Mechanism.

Figure 2-3 WebLogic C++ Client to WebLogic Server Interoperability

Developing WebLogic C++ Clients

Use the following steps to develop a C++ client:

1. Use the ejbc compiler with the -idl option to compile the EJB that your C++
client will interoperate with. This will generate an IDL script for the EJB.

2. Use the C++ IDL compiler to compile the IDL script and generate the CORBA
client stubs, server skeletons, and header files. For information on the use of the
C++ IDL Compiler, see OMG IDL Syntax and the C++ IDL Compiler.

C ++ Runtime

C++
Client
Code

ORB

INS
API

JVM

WebLogic
Server

COS
API

JNDI
J2EE
Container

IIOP

Object Look up
Programming WebLogic RMI over IIOP 2-23

http://e-docs.bea.com/tuxedo/tux80/cref/boot.htm#1076154
http://e-docs.bea.com/tuxedo/tux80/cref/idlchap.htm

2 RMI over IIOP Programming Models
3. Discard the server skeletons as the EJB represents the server side
implementation.

4. Create a C++ client that implements an EJB as a CORBA object. For general
information on how to create Corba client applications, see Creating CORBA
Client Applications.

5. Use the Tuxedo buildobjclient command to build the client.

WebLogic C++ Client Limitations

The WebLogic C++ client has the following limitations:

Provides security through the WebLogic Server Security service.

Provides only server-side transaction demarcation.

WebLogic C++ Client Code Samples

WebLogic C++ client samples are provided with the WebLogic Server product. The
samples are located in the
SAMPLES_HOME\server\examples\src\examples\iiop\ejb directory. A
description of each sample and instructions on how to build, configure, and run a
sample, are provided in the package-summary.html file. You can modify these code
examples and reuse them.

RMI-IIOP Applications Using WebLogic
Tuxedo Connector

WebLogic Tuxedo Connector provides interoperability between WebLogic Server
applications and Tuxedo services.
2-24 Programming WebLogic RMI over IIOP

http://e-docs.bea.com/tuxedo/tux80/creclien/index.htm
http://e-docs.bea.com/tuxedo/tux80/creclien/index.htm

RMI-IIOP Applications Using WebLogic Tuxedo Connector
When to Use WebLogic Tuxedo Connector

You should consider using WebLogic Tuxedo Connector if you have developed
applications on Tuxedo and are moving to WebLogic Server, or if you are seeking to
integrate legacy Tuxedo systems into your newer WebLogic environment. WebLogic
Tuxedo Connector allows you to leverage Tuxedo’s highly scalable and reliable
CORBA environment.

How the WebLogic Tuxedo Connector Works

The connector uses an XML configuration file that allows you to configure the
WebLogic Server to invoke Tuxedo services. It also enables Tuxedo to invoke
WebLogic Server Enterprise Java Beans (EJBs) and other applications in response to
a service request.

The following documentation provides information on the Weblogic Tuxedo
Connector, as well as building CORBA applications on Tuxedo:

The WebLogic Tuxedo Connector Guide at
http://e-docs.bea.com/wls/docs70/wtc.html

For Tuxedo, CORBA topics at
http://e-docs.bea.com/tuxedo/tux80/interm/corba.htm

WebLogic Tuxedo Connector Code Samples

WebLogic Tuxedo Connector IIOP samples are provided with the WebLogic Server
product. The samples are located in the
SAMPLES_HOME\server\examples\src\examples\iiop\ejb directory . A
description of each sample and instructions on how to build, configure, and run a
sample, are provided in the package-summary.html file. You can modify these code
examples and reuse them.
Programming WebLogic RMI over IIOP 2-25

http://e-docs.bea.com/wls/docs70/wtc.html
http://e-docs.bea.com/tuxedo/tux80/interm/corba.htm

2 RMI over IIOP Programming Models
Using EJBs with RMI-IIOP

You can implement Enterprise JavaBeans that use RMI over IIOP to provide EJB
interoperability in heterogeneous server environments:

A Java RMI client using an ORB can access enterprise beans residing on a
WebLogic Server over IIOP.

A non-Java platform CORBA/IDL client can access any enterprise bean object
on WebLogic Server.

When using CORBA/IDL clients the sources of the mapping information are the EJB
classes as defined in the Java source files. WebLogic Server provides the
weblogic.ejbc utility for generating required IDL files. These files represent the
CORBA view into the state and behavior of the target EJB. Use the weblogic.ejbc
utility to:

Place the EJB classes, interfaces, and deployment descriptor files into a JAR file.

Generate WebLogic Server container classes for the EJBs.

Run each EJB container class through the RMI compiler to create stubs and
skeletons.

Generate a directory tree of CORBA IDL files describing the CORBA interface
to these classes.

The weblogic.ejbc utility supports a number of command qualifiers. See
Developing an RMI-IIOP Application with a CORBA/IDL Client.

Resulting files are processed using the compiler, reading source files from the
idlSources directory and generating CORBA C++ stub and skeleton files. These
generated files are sufficient for all CORBA data types with the exception of value
types (see Limitations of WebLogic RMI-IIOP for more information). Generated IDL
files are placed in the idlSources directory. The Java-to-IDL process is full of
pitfalls. Refer to the Java Language Mapping to OMG IDL specification at
http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg
_idl.htm. Also, Sun has an excellent guide, Enterprise JavaBeansTM Components
and CORBA Clients: A Developer Guide at
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html.
2-26 Programming WebLogic RMI over IIOP

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html
http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/interop.html

Code Examples
The following is an example of how to generate the IDL from a bean you have already
created:

> java weblogic.ejbc -compiler javac -keepgenerated
-idl -idlDirectory idlSources
build\std_ejb_iiop.jar
%APPLICATIONS%\ejb_iiop.jar

After this step, compile the EJB interfaces and client application (the example here
uses a CLIENT_CLASSES and APPLICATIONS target variable):

> javac -d %CLIENT_CLASSES% Trader.java TraderHome.java
TradeResult.java Client.java

Then run the IDL compiler against the IDL files built in the step where you used
weblogic.ejbc, creating C++ source files:

>%IDL2CPP% idlSources\examples\rmi_iiop\ejb\Trader.idl
. . .
>%IDL2CPP% idlSources\javax\ejb\RemoveException.idl

Now you can compile your C++ client.

For an in-depth look of how EJB’s can be used with RMI-IIOP see the WebLogic
Server RMI-IIOP examples, located in your installation inside the
SAMPLES_HOME/server/src/examples/iiop directory.

Code Examples

The examples.iiop package is included within the
WL_HOME/samples/examples/iiop directory and demonstrates connectivity
between numerous clients and applications. There are examples that demonstrate using
EJBs with RMI-IIOP, connecting to C++ clients, and setting up interoperability with
a Tuxedo Server. Refer to the example documentation for more details. For examples
pertaining specifically to the Weblogic Tuxedo Connector, see the
/wlserver7.0/samples/examples/wtc directory.

The following table provides information on the RMI-IIOP examples provided for
WebLogic Server 7.0.
Programming WebLogic RMI over IIOP 2-27

2 RMI over IIOP Programming Models
Figure 2-4 WebLogic Server 7.0 IIOP Examples

Example ORB/Protocol Requires

iiop.ejb.entity.cppclient

Example provides a C++ client which calls
an entity session bean in WebLogic Serv-
er.

Borland Visibroker 4.1
Borland Visibroker 5.0

For Borland Visibroker 4.1: Use
GIOP 1.0 protocol. Users must
add the
DefaultGIOPMinorVersion
attribute and set its value to “1” in
the Server MBean of the
config.xml file.
For Borland Visibroker 5.0:
Specify utf-16/iso-8859-1
as the default native codeset in
the Server MBean of the
config.xml file.
For Borland Visibroker 5.0: Use
GIOP 1.2. Use a full corbaloc url
which includes the GIOP version
such as Client -ORBInitRef
NameService=corbaloc:ii
op:1.2@localhost:7001/N
ameService.

iiop.ejb.entity.tuxclient

Example provides a Tuxedo client which
uses complex valuetypes to call an entity
session bean in WebLogic Server.

BEA IIOP Tuxedo 8.x. Does not require a Tuxe-
do license.

iiop.ejb.entity.server.wls

Example demonstrates connectivity be-
tween a C++ client or a Tuxedo client and
an entity bean.

Not Applicable
2-28 Programming WebLogic RMI over IIOP

Code Examples
iiop.ejb.stateless.cppclient

Example provides a C++ CORBA client
which calls a stateless session bean in We-
bLogic Server. The example also demon-
strates how to make an outbound
RMI-IIOP call to a Tuxedo server using
WebLogic Tuxedo Connector.

Borland Visibroker 4.1
Borland Visibroker 5.0

For Borland Visibroker 4.1: Use
GIOP 1.0 protocol. Users must
add the
DefaultGIOPMinorVersion
attribute and set its value to “1” in
the Server MBean of the
config.xml file.
For Borland Visibroker 5.0:
Specify utf-16/iso-8859-1
as the default native codeset in
the Server MBean of the
config.xml file.
For Borland Visibroker 5.0: Use
GIOP 1.2. Use a full corbaloc url
which includes the GIOP version
such as Client -ORBInitRef
NameService=corbaloc:ii
op:1.2@localhost:7001/N
ameService.

iiop.ejb.stateless.rmiclient

Example provides an RMI Java client
which calls a stateless session bean in We-
bLogic Server. The example also demon-
strates how to make an outbound
RMI-IIOP call to a Tuxedo server using
WebLogic Tuxedo Connector.

JDK 1.3.1 JDK 1.3.1 requires a security policy
file to access server.

iiop.ejb.stateless.sectuxcli-
ent

Example illustrates a secure Tuxedo client
which calls a stateless session bean from
WebLogic.

BEA IIOP Tuxedo 8.x. Does not require a Tuxe-
do license.

Example ORB/Protocol Requires
Programming WebLogic RMI over IIOP 2-29

2 RMI over IIOP Programming Models
iiop.ejb.stateless.server.tux

Example illustrates how to call a stateless
session bean from a variety of client appli-
cations through a Tuxedo Server. In con-
junction with the Tuxedo Client, it also
demonstrates server-to-server connectivity
using WebLogic Tuxedo Connector.

Tuxedo TGIOP Tuxedo 8.x
Tuxedo license when used with
WebLogic Tuxedo Connector.
WebLogic Tuxedo Connector to
provide server-to-server
connectivity. See Using
WebLogic Tuxedo Connector for
RMI/IIOP and Corba
Interoperability.

iiop.ejb.stateless.server.wls

Example demonstrates using a variety of
clients to call a stateless EJB directly in
WebLogic Server or indirectly through a
Tuxedo Server.

Not Applicable

iiop.ejb.stateless.tuxclient

Example provides a Tuxedo client which
calls a stateless session bean directly in
WebLogic Server or to call the same state-
less session bean in WebLogic through a
Tuxedo server. The example also demon-
strates how to make an outbound
RMI-IIOP call from a Tuxedo server to
WebLogic Server using WebLogic Tuxe-
do Connector.

BEA IIOP Tuxedo 8.x. Does not require a Tuxe-
do license.

Example ORB/Protocol Requires
2-30 Programming WebLogic RMI over IIOP

http://e-docs.bea.com/wls/docs70/wtc_atmi/CORBA.html
http://e-docs.bea.com/wls/docs70/wtc_atmi/CORBA.html
http://e-docs.bea.com/wls/docs70/wtc_atmi/CORBA.html

Code Examples
iiop.rmi.cppclient

Example contains a C++ client which calls
either a Tuxedo Server or a WebLogic
Server. It also demonstrates serv-
er-to-server connectivity using WebLogic
Tuxedo Connector.

Borland Visibroker 4.1
Borland Visibroker 5.0
Orbix 2000

For Borland Visibroker 4.1: Use
GIOP 1.0 protocol. Users must
add the
DefaultGIOPMinorVersion
attribute and set its value to “1” in
the Server MBean of the
config.xml file.
For Borland Visibroker 5.0:
Specify utf-16/iso-8859-1
as the default native codeset in
the Server MBean of the
config.xml file.
For Borland Visibroker 5.0: Use
GIOP 1.2. Use a full corbaloc url
which includes the GIOP version
such as Client -ORBInitRef
NameService=corbaloc:ii
op:1.2@localhost:7001/N
ameService.

iiop.rmi.rmiclient

Example provides an RMI client which
demonstrates connectivity to a WebLogic
Server. The example also demonstrates
how to make an outbound call from We-
bLogic Server to a Tuxedo server using
WebLogic Tuxedo Connector.

Not Applicable Requires a security policy file to ac-
cess server.

iiop.rmi.server.tux

Example illustrates connectivity from a
variety of client applications through a
Tuxedo Server. In conjunction with the
Tuxedo Client, it also domesticates serv-
er-to-server connectivity using WebLogic
Tuxedo Connector.

Tuxedo TGIOP Tuxedo 8.x
Tuxedo license when used with
WebLogic Tuxedo Connector.
WebLogic Tuxedo Connector to
provide server-to-server
connectivity. See Using
WebLogic Tuxedo Connector for
RMI/IIOP and Corba
Interoperability.

Example ORB/Protocol Requires
Programming WebLogic RMI over IIOP 2-31

http://e-docs.bea.com/wls/docs70/wtc_atmi/CORBA.html
http://e-docs.bea.com/wls/docs70/wtc_atmi/CORBA.html
http://e-docs.bea.com/wls/docs70/wtc_atmi/CORBA.html

2 RMI over IIOP Programming Models
RMI-IIOP and the RMI Object Lifecycle

WebLogic Server's default garbage collection causes unused and unreferenced server
objects to be garbage collected. This reduces the risk running out of memory due to a
large number of unused objects. This policy can lead to NoSuchObjectException
errors in RMI-IIOP if a client holds a reference to a remote object but does not invoke
on that object for a period of approximately six (6) minutes. Such exceptions should
not occur with EJBs, or typically with RMI objects that are referenced by the server
instance, for instance via JNDI.

The J2SE specification for RMI-IIOP calls for the use of the exportObject() and
unexportObject() methods on javax.rmi.PortableRemoteObject to manage
the lifecycle of RMI objects under RMI-IIOP, rather than Distributed Garbage
Collection (DGC). Note however that exportObject() and unexportObject()
have no effect with WebLogic Server's default garbage collection policy. If you wish
to change the default garbage collection policy, please contact BEA technical support.

iiop.rmi.server.wls

Example illustrates connectivity between a
variety of clients, Tuxedo, and WebLogic
Server using a simple Ping application.

Not Applicable

iiop.rmi.tuxclient

Example provides a Tuxedo client which
demonstrates connectivity to a Tuxedo
Server.

BEA IIOP Tuxedo 8.x. Does not require a Tuxe-
do license.

Example ORB/Protocol Requires
2-32 Programming WebLogic RMI over IIOP

Configuration Overview
3 Configuring WebLogic
Server for RMI-IIOP

The following sections describe concepts and procedures relating to configuring
WebLogic Server for RMI-IIOP:

Configuration Overview

Using RMI over IIOP with SSL

Accessing Objects from a CORBA Client through Delegation

Using RMI over IIOP with a Hardware LoadBalancer

Limitations of WebLogic RMI-IIOP

RMI-IIOP Code Examples Package

Additional Resources

Configuration Overview

Because insufficient standards exist for propagating client identity from a CORBA
client, the identity of any client connecting over IIOP to WebLogic Server will default
to "guest.” You can set the user and password in the config.xml file to establish a
single identity for all clients connecting over IIOP to a particular instance of WebLogic
Server, as shown in the example below:

<Server
Name="myserver"
Programming WebLogic RMI over IIOP 3-25

3 Configuring WebLogic Server for RMI-IIOP
NativeIOEnabled="true"
DefaultIIOPUser="Bob"
DefaultIIOPPassword="Gumby1234"
ListenPort="7001">

You can also set the IIOPEnabled attribute in the config.xml. The default value is
"true"; set this to "false" only if you want to disable IIOP support. No additional
server configuration is required to use RMI over IIOP beyond ensuring that all remote
objects are bound to the JNDI tree to be made available to clients. RMI objects are
typically bound to the JNDI tree by a startup class. EJBean homes are bound to the
JNDI tree at the time of deployment. WebLogic Server implements a CosNaming
Service by delegating all lookup calls to the JNDI tree.

WebLogic Server 7.0 supports RMI-IIOP corbaname and corbaloc JNDI references.
Please refer to the CORBA/IIOP 2.4.2 Specification at
http://www.omg.org/docs/formal/01-02-01.pdf. One feature of these references is that
you can make an EJB or other object hosted on one WebLogic Server available over
IIOP to other Application Servers. So, for instance, you could add the following to
your ejb-jar.xml:

<ejb-reference-description>
<ejb-ref-name>WLS</ejb-ref-name>
<jndi-name>corbaname:iiop:1.2@localhost:7001#ejb/j2ee/interop/foo
</jndi-name>
</ejb-reference-description>

The reference-description stanza maps a resource reference defined in ejb-jar.xml
to the JNDI name of an actual resource available in WebLogic Server. The
ejb-ref-name specifies a resource reference name. This is the reference that the EJB
provider places within the ejb-jar.xml deployment file. The jndi-name specifies
the JNDI name of an actual resource factory available in WebLogic Server.

Note the iiop:1.2 contained in the <jndi-name> section. WebLogic Server 7.0
contains an implementation of GIOP (General-Inter-Orb-Protocol) 1.2. The GIOP
specifies formats for messages that are exchanged between inter-operating ORBs. This
allows interoperatability with many other ORBs and application servers. The GIOP
version can be controlled by the version number in a corbaname or corbaloc
reference.
3-26 Programming WebLogic RMI over IIOP

http://www.omg.org/docs/formal/01-02-01.pdf

Using RMI over IIOP with SSL
Using RMI over IIOP with SSL

You can use Secure Sockets Layer (SSL) protocol to protect IIOP connections to RMI
or EJB remote objects. The SSL protocol secures connections through authentication
and encrypts the data exchanged between objects. You can use RMI over IIOP with
SSL in WebLogic Server:

With a CORBA/IDL client Object Request Broker (ORB)

With a Java client

With a BEA Tuxedo client

In either case, you first need to configure WebLogic Server to use the SSL protocol.
For more information, see Configuring the SSL Protocol at
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html.

Using RMI-IIOP with SSL and a Java Client

1. If you want to use callbacks, obtain a private key and digital certificate for the Java
client. See our Configuring the SSL Protocol at
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html for more information.

2. Run the ejbc compiler with the -d option.

3. Use the command options below when starting the RMI client. You must specify
a machine name, your regular port, and the SSL port. Also, you must use the
weblogic.corba.orb.ssl.ORB class which wraps around the Orb’s own class
and fixes problem with the JDK handling secure connections:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true \
-Dweblogic.SSL.ListenPorts=localhost:7701:7702 \
-Dorg.omg.CORBA.ORBClass=weblogic.corba.orb.ssl.ORB \
weblogic.rmiiiop.HelloJDKClient iiop://localhost:7702

*

* or to use cert chains for Server to Client connections:

*
Programming WebLogic RMI over IIOP 3-27

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html

3 Configuring WebLogic Server for RMI-IIOP
*java -Dweblogic.corba.orb.ssl.certs=myserver/democert.pem
-Dweblogic.corba.orb.ssl.key=myserver/demokey.pem
-Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.corba.orb.ssl.ListenPorts=localhost:7701:7702
-Dorg.omg.CORBA.ORBClass=weblogic.corba.orb.ssl.ORB
-Djava.security.manager -Djava.security.policy==java.policy -ms32m
-mx32m weblogic.rmiiop.HelloJDKClient port=7702

-Dssl.certs=directory location of digital certificate for Java
client
-Dssl.key=directory location of private key for Java client

4. Include the classes that WebLogic Server uses for the SSL protocol in the
CLASSPATH of the Java client.

For incoming connections (from WebLogic Server to the Java client for the purpose of
callbacks), specify a digital certificate and private key for the Java client on the
command line. Use the ssl.certs and ssl.key command-line options to provide
this information. See our Configuring the SSL Protocol at
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html for more information.

Using the SSL Protocol with a BEA Tuxedo Client

For detailed information on how SSL protocol can be used to protect communication
between a BEA Tuxedo client and WebLogic Server, see Using the SSL Protocol with
a BEA Tuxedo Client and WebLogic Server.

Accessing Objects from a CORBA Client
through Delegation

WebLogic Server provides services that allow CORBA clients to access RMI remote
objects. As an alternative method, you can also host a CORBA ORB (Object Request
Broker) in WebLogic Server and delegate incoming and outgoing messages to allow
CORBA clients to indirectly invoke any object that can be bound in the server.
3-28 Programming WebLogic RMI over IIOP

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html#ssl_with_tux
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html#ssl_with_tux

Accessing Objects from a CORBA Client through Delegation
Overview of Delegation

Here are the main steps to create the objects that work together to delegate CORBA
calls to an object hosted by WebLogic Server.

1. Create a startup class that creates and initializes an ORB so that the ORB is
co-located with the JVM that is running WebLogic Server.

2. Create an IDL (Interface Definition Language) that will Create an object to
accept incoming messages from the ORB.

3. Compile the IDL. This will generate a number of classes, one of which will be
the Tie class. Tie classes are used on the server side to process incoming calls,
and dispatch the calls to the proper implementation class. The implementation
class is responsible for connecting to the server, looking up the appropriate
object, and invoking methods on the object on behalf of the CORBA client.

The following is a diagram of a CORBA client invoking an EJBean by delegating the
call to an implementation class that connects to the server and operates upon the
EJBean. Using a similar architecture, the reverse situation will also work. You can
have a startup class that brings up an ORB and obtains a reference to the CORBA
implementation object of interest. This class can make itself available to other
WebLogic objects througout the JNDI tree and delegate the appropriate calls to the
CORBA object.
Programming WebLogic RMI over IIOP 3-29

3 Configuring WebLogic Server for RMI-IIOP
Example of Delegation

The following code example creates an implementation class that connects to the
server, looks up the Foo object in the JNDI tree, and calls the bar method. This
object is also a startup class that is responsible for initializing the CORBA environment
by:

Creating the ORB

Creating the Tie object

Associating the implementation class with the Tie object

Registering the Tie object with the ORB

Binding the Tie object within the ORB's naming service

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
3-30 Programming WebLogic RMI over IIOP

Accessing Objects from a CORBA Client through Delegation
import java.rmi.*;
import javax.naming.*;
import weblogic.jndi.Environment;

public class FooImpl implements Foo

{
public FooImpl() throws RemoteException {
super();

}

public void bar() throws RemoteException, NamingException {
// look up and call the instance to delegate the call to...
weblogic.jndi.Environment env = new Environment();
Context ctx = env.getInitialContext();
Foo delegate = (Foo)ctx.lookup("Foo");
delegate.bar();
System.out.println("delegate Foo.bar called!");

}

public static void main(String args[]) {
try {

FooImpl foo = new FooImpl();

// Create and initialize the ORB
ORB orb = ORB.init(args, null);

// Create and register the tie with the ORB
_FooImpl_Tie fooTie = new _FooImpl_Tie();
fooTie.setTarget(foo);
orb.connect(fooTie);

// Get the naming context
org.omg.CORBA.Object o = \
orb.resolve_initial_references("NameService");
NamingContext ncRef = NamingContextHelper.narrow(o);

// Bind the object reference in naming

NameComponent nc = new NameComponent("Foo", "");
NameComponent path[] = {nc};
ncRef.rebind(path, fooTie);

System.out.println("FooImpl created and bound in the ORB
registry.");

}
catch (Exception e) {
Programming WebLogic RMI over IIOP 3-31

3 Configuring WebLogic Server for RMI-IIOP
System.out.println("FooImpl.main: an exception occurred:");
e.printStackTrace();

}

}

}

For more information on how to implement a startup class, see Starting and Stopping
WebLogic Servers at
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html.

Using RMI over IIOP with a Hardware
LoadBalancer

Note: This feature works correctly only when the bootstrap is through a hardware
load-balancer.

An optional enhancement to the WebLogic Server 7.0 BEA ORB for release service
pack 5 and higher, supports hardware loadbalancing by forcing reconnection when
bootstrapping. This allows hardware load-balancers to balance connection attempts

In most situations, once a connection has been established, the next NameService
lookup is performed using the original connection. However, since this feature forces
re-negotiation of the end point to the hardware load balancer, all in-flight requests on
any existing connection are lost.

Use the -Dweblogic.system.iiop.reconnectOnBootstrap system property to
set the connection behavior of the BEA ORB. Valid values are:

true —Forces re-negotiation of the end point.

false—Default value.

Environments requiring a hardware load balancer should set this property to true.
3-32 Programming WebLogic RMI over IIOP

http://e-docs.bea.com/wls/docs70/adminguide/startstop.html
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html

Limitations of WebLogic RMI-IIOP
Limitations of WebLogic RMI-IIOP

The following sections outline various issues relating to WebLogic RMI-IIOP.

Limiations on Using RMI-IIOP on the Server

If you are using RMI-IIOP on the server, note the following limitations:

Clustering support for RMI objects that run over the IIOP protocol is limited to
server-side objects.

Clustered URLs are not supported.

Load balancing and failover is suppported for clustered objects running over
IIOP only if they run within the WebLogic Server runtime environment.

Limitations Using RMI-IIOP on the Client

Use WebLogic Server with JDK 1.3.1_01 or higher. Earlier versions are not RMI-IIOP
compliant. Note the following about these earlier JDKs:

Send GIOP 1.0 messages and GIOP 1.1 profiles in IORs.

Do not support the necessary pieces for EJB 2.0 interoperation (GIOP 1.2,
codeset negotiation, UTF-16).

Have bugs in its treatment of mangled method names.

Do not correctly unmarshal unchecked exceptions.

Have subtle bugs relating to the encoding of valuetypes.

Many of these items are impossible to support both ways. Where there was a choice,
WebLogic supports the spec-compliant option.
Programming WebLogic RMI over IIOP 3-33

3 Configuring WebLogic Server for RMI-IIOP
Limitations Developing Java IDL Clients

BEA Systems strongly recommends developing Java clients with the RMI client
model if you are going to use RMI-IIOP. Developing a Java IDL client can cause
naming conflicts and classpath problems, and you are required to keep the server-side
and client-side classes seaparate. Because the RMI object and the IDL client have
different type systems, the class that defines the interface for the server-side will be
very different from the class that defines the interface on the client-side.

Limitations of Passing Objects by Value

To pass objects by value, you need to use value types (see Chapter 5 of the
CORBA/IIOP 2.4.2 Specification at http://www.omg.org/docs/formal/01-02-01.pdf
for further information) You implement value types on each platform on which they
are defined or referenced. This section describes the difficulties of passing complex
value types, referencing the particular case of a C++ client accessing an Entity bean on
WebLogic Server (see the
SAMPLES_HOME/server/src/examples/iiop/ejb/entity/server/wls and
SAMPLES_HOME/server/src/examples/iiop/ejb/entity/cppclient
directories).

One problem encountered by Java programmers is the use of derived datatypes that are
not usually visible. For example, when accessing an EJB finder the Java programmer
will see a Collection or Enumeration, but does not pay attention to the underlying
implementation because the JDK run-time will classload it over the network.
However, the C++, CORBA programmer must know the type that comes across the
wire so that he can register a value type factory for it and the ORB can unmarshall it.

Examples of this in the sample
SAMPLES_HOME/server/src/examples/iiop/ejb/entity/cppclient are
EJBObjectEnum and Vector. Simply running ejbc on the defined EJB interfaces will
not generate these definitions because they do not appear in the interface. For this
reason ejbc will also accept Java classes that are not remote interfaces--specifically
for the purpose of generating IDL for these interfaces. Review the
/iiop/ejb/entity/cppclient example to see how to register a value type factory.
3-34 Programming WebLogic RMI over IIOP

http://www.omg.org/docs/formal/01-02-01.pdf

RMI-IIOP Code Examples Package
Java types that are serializable but that define writeObject() are mapped to custom
value types in IDL. You must write C++ code to unmarshall the value type manually.
See
SAMPLES_HOME/server/src/examples/iiop/ejb/enity/tuxclient/ArrayLi
st_i.cpp for an example of how to do so.

Note: When using Tuxedo, you can specify the -i qualifier to direct the IDL
compiler to create implementation files named FileName_i.h and
FileName_i.cpp. For example, this syntax creates the
TradeResult_i.h and TradeResult_i.cpp implementation files:

idl -IidlSources -i
idlSources\examples\iiop\ejb\iiop\TradeResult.idl

The resulting source files provide implementations for application-defined operations
on a value type. Implementation files are included in a CORBA client application.

RMI-IIOP Code Examples Package

The examples.iiop package is in the
SAMPLES_HOME/server/src/samples/examples/iiop directory and
demonstrates connectivity between numerous clients and applications. The examples
demonstrate using EJB’s with RMI-IIOP, connecting to C++ clients, and setting up
interoperability with a Tuxedo Server. Refer to the example documentation for more
details. For examples pertaining specifically to WebLogic Tuxedo Connector, see the
/wlserver6.1/samples/examples/wtc directory.

Additional Resources

WebLogic RMI-IIOP is intended to be a complete implementation of RMI.
Please refer to the release notes for any additional considerations that might
apply to your version.

Programming with WebLogic JNDI at http://e-docs.bea.com/wls/docs70/jndi
Programming WebLogic RMI over IIOP 3-35

http://e-docs.bea.com/wls/docs70/notes
http://e-docs.bea.com/wls/docs70/jndi/index.html

3 Configuring WebLogic Server for RMI-IIOP
Using WebLogic RMI at http://e-docs.bea.com/wls/docs70/rmi

Java Remote Method Invocation (RMI) Homepage at
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html

Sun’s RMI Specifications at
http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html

Sun’s RMI Tutorials at
http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html

http://java.sun.com/j2se/1.3/docs/guide/rmi/rmisocketfactory.d
oc.html

http://java.sun.com/j2se/1.3/docs/guide/rmi/activation.html

Sun’s RMI over IIOP documentation at
http://java.sun.com/products/rmi-iiop/index.html

OMG Homepage at http://www.omg.org

CORBA Language Mapping Specifications at
http://www.omg.org/technology/documents/index.htm

CORBA Technology and the Java Platform at http://java.sun.com/j2ee/corba/

Sun’s Java IDL page at http://java.sun.com/j2se/1.3/docs/guide/idl/index.html

Objects-by-Value Specification at ftp://ftp.omg.org/pub/docs/orbos/98-01-18.pdf
3-36 Programming WebLogic RMI over IIOP

http://e-docs.bea.com/wls/docs70/rmi/rmi_api.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/rmisocketfactory.doc.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/activation.html
http://java.sun.com/products/rmi-iiop/index.html
http://www.omg.org
http://www.omg.org/technology/documents/index.htm
http://java.sun.com/j2ee/corba/
http://java.sun.com/j2se/1.3/docs/guide/idl/index.html
ftp://ftp.omg.org/pub/docs/orbos/98-01-18.pdf

	Contents
	About This Document
	1. Overview of RMI over IIOP
	2. RMI over IIOP Programming Models
	3. Configuring WebLogic Server for RMI-IIOP

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of RMI over IIOP
	What Are RMI and RMI over IIOP?
	Overview of WebLogic RMI-IIOP
	Support for RMI-IIOP with RMI (Java) Clients
	Support for RMI-IIOP with Tuxedo Clients
	Support for RMI-IIOP with CORBA/IDL Clients

	Protocol Compatibility
	Server-to-Server Interoperability
	Table 1�1 WebLogic Server-to-Server Interoperability

	Client-to-Server Interoperability
	Table 1�2 Client-to-Server Interoperability

	2 RMI over IIOP Programming Models
	Overview of RMI-IIOP Programming Models
	Table 2�1 RMI Programming Models
	RMI Applications Without IIOP

	RMI-IIOP Applications with RMI (Java) Clients
	When to Use RMI-IIOP with RMI (Java) Clients
	Developing an RMI-IIOP Application with RMI Client
	1. Define your remote object’s public methods in an interface that extends java.rmi.Remote.
	2. Implement the interface in a class named interfaceNameImpl and bind it into the JNDI tree to b...
	3. Compile the remote interface and implementation class with a java compiler. Developing these c...
	4. Run the WebLogic RMI or EJB compiler against the implementation class to generate the necessar...
	5. Make sure that the files you have now created -- the remote interface, the class that implemen...
	6. Obtain an initial context.
	7. Modify the client code to perform the lookup in conjunction with the javax.rmi.PortableRemoteO...
	8. Connect the client to the server over IIOP by running the client with a command like:
	9. Set the security manager on the client:

	RMI-IIOP Applications with WebLogic’s RMI-IIOP RMI Client

	RMI-IIOP Applications with CORBA/IDL Clients
	Working with CORBA/IDL Clients
	Figure 2�1 IDL Client (Corba object) relationships

	Java to IDL Mapping
	Figure 2�2 WebLogic RMI over IIOP object relationships

	Objects-by-Value
	Table 2�2 ORBs Tested with Respect to Objects-by-Value Support

	Developing an RMI-IIOP Application with a CORBA/IDL Client
	1. Follow steps 1 through 3 in “Developing an RMI-IIOP Application with RMI Client” on page 2�10.
	2. Generate an IDL file by running the WebLogic RMI compiler or WebLogic EJB compiler with the -i...
	3. Compile the IDL file to create the stub classes required by your IDL client to communicate wit...
	4. Develop the IDL client.
	5. IDL client applications can locate an object by asking the CORBA Name Service to look up the n...

	Developing a WebLogic C++ Client for the Tuxedo 8.1 ORB
	When to Use a WebLogic C++ Client
	How the WebLogic C++ Client works
	Figure 2�3 WebLogic C++ Client to WebLogic Server Interoperability

	Developing WebLogic C++ Clients
	1. Use the ejbc compiler with the -idl option to compile the EJB that your C++ client will intero...
	2. Use the C++ IDL compiler to compile the IDL script and generate the CORBA client stubs, server...
	3. Discard the server skeletons as the EJB represents the server side implementation.
	4. Create a C++ client that implements an EJB as a CORBA object. For general information on how t...
	5. Use the Tuxedo buildobjclient command to build the client.

	WebLogic C++ Client Limitations
	WebLogic C++ Client Code Samples

	RMI-IIOP Applications Using WebLogic Tuxedo Connector
	When to Use WebLogic Tuxedo Connector
	How the WebLogic Tuxedo Connector Works
	WebLogic Tuxedo Connector Code Samples

	Using EJBs with RMI-IIOP
	Code Examples
	Figure 2�4 WebLogic Server 7.0 IIOP Examples

	RMI-IIOP and the RMI Object Lifecycle

	3 Configuring WebLogic Server for RMI-IIOP
	Configuration Overview
	Using RMI over IIOP with SSL
	Using RMI-IIOP with SSL and a Java Client
	1. If you want to use callbacks, obtain a private key and digital certificate for the Java client...
	2. Run the ejbc compiler with the -d option.
	3. Use the command options below when starting the RMI client. You must specify a machine name, y...

	Using the SSL Protocol with a BEA Tuxedo Client

	Accessing Objects from a CORBA Client through Delegation
	Overview of Delegation
	1. Create a startup class that creates and initializes an ORB so that the ORB is co-located with ...
	2. Create an IDL (Interface Definition Language) that will Create an object to accept incoming me...
	3. Compile the IDL. This will generate a number of classes, one of which will be the Tie class. T...

	Example of Delegation

	Using RMI over IIOP with a Hardware LoadBalancer
	Limitations of WebLogic RMI-IIOP
	Limiations on Using RMI-IIOP on the Server
	Limitations Using RMI-IIOP on the Client
	Limitations Developing Java IDL Clients
	Limitations of Passing Objects by Value

	RMI-IIOP Code Examples Package
	Additional Resources

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

