
BEA
 WebLogic
Server™

Using Web Server
Plug-Ins With WebLogic
Server
Release 7.0
Document Revised: April 4, 2006

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using Web Server Plug-Ins With WebLogic Server

Part Number Document Revised Software Version

N/A April 1, 2004 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience... vii
e-docs Web Site... viii
How to Print the Document... viii
Contact Us!.. viii
Documentation Conventions ... ix

1. Overview of Using Web Server Plug-Ins With WebLogic
Server

What Are Plug-Ins? ... 1-1
Plug-Ins included with WebLogic Server ... 1-2

2. Installing and Configuring the Apache HTTP Server Plug-In
Overview of the Apache HTTP Server Plug-In .. 2-2

Limitations in Apache Version 1.3.x ... 2-2
Keep-Alive Connections Not Supported... 2-2
Inconsistent States... 2-3

Keep-Alive Connections in Apache Version 2.0 2-3
Proxying Requests.. 2-3

Certifications ... 2-4
Installing the Apache HTTP Server Plug-In ... 2-4

Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object 2-4
Installing the Apache HTTP Server Plug-In as a Statically Linked Module ...
2-9

Configuring the Apache HTTP Server Plug-In ... 2-10
Editing the httpd.conf File.. 2-11
Alternative Procedure for Editing the httpd.conf File.............................. 2-12
Using WebLogic Server Clusters iii

Template for the Apache HTTP Server httpd.conf File 2-15
Sample httpd.conf Configuration Files.. 2-16

Example Using WebLogic Clusters ... 2-16
Example Using Multiple WebLogic Clusters... 2-16
Example Without WebLogic Clusters.. 2-17
Example Configuring IP-Based Virtual Hosting...................................... 2-17
Example Configuring Name-Based Virtual Hosting With a Single IP Address

2-17
Example Configuring Multiple Name-Based Virtual Hosts 2-18

Using SSL with the Apache Plug-In.. 2-19
Implementing Two-way SSL between Apache and the HTTP Client: 2-19
Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic

Server .. 2-20
Specifying Trust for the WL-Proxy-Client-Cert Header.......................... 2-20
Issues with SSL-Apache Configuration ... 2-21

Connection Errors and Clustering Failover ... 2-24
Possible Causes of Connection Failures... 2-24
Failover with a Single, Non-Clustered WebLogic Server........................ 2-24
The Dynamic Server List.. 2-25
Failover, Cookies, and HTTP Sessions .. 2-25

3. Installing and Configuring the Microsoft Internet Information
Server (IIS) Plug-In

Overview of the Microsoft Internet Information Server Plug-In....................... 3-2
Connection Pooling and Keep-Alive.. 3-2
Proxying Requests .. 3-3

Certifications ... 3-3
Installing and Configuring the Microsoft Internet Information Server Plug-In 3-3
Proxying Requests from Multiple Virtual Websites to WebLogic Server 3-9
Sample iisproxy.ini File .. 3-10
Creating ACLs Through IIS .. 3-11
Using SSL with the Microsoft Internet Information Server Plug-In 3-12

Configuring SSL... 3-12
Specifying Trust for the WL-Proxy-Client-Cert Header.......................... 3-13

Proxying Servlets from IIS to WebLogic Server... 3-14
iv Using WebLogic Server Clusters

Testing the Installation .. 3-15
Connection Errors and Clustering Failover... 3-16

Possible Causes of Connection Failures... 3-16
Failover with a Single, Non-Clustered WebLogic Server........................ 3-16
The Dynamic Server List ... 3-17
Failover, Cookies, and HTTP Sessions.. 3-17

4. Installing and Configuring the Netscape Enterprise Server
(NES) Plug-In

Overview of the Netscape Enterprise Server Plug-In.. 4-2
Connection Pooling and Keep-Alive.. 4-2
Proxying Requests.. 4-3

Certifications ... 4-3
Installing and Configuring the Netscape Enterprise Server Plug-In 4-3
Guidelines for Modifying the obj.conf File... 4-9
Sample obj.conf File (Not Using a WebLogic Cluster) 4-11
Sample obj.conf File (Using a WebLogic Cluster) ... 4-13
Using SSL with the NES Plug-In .. 4-15

Specifying Trust for the WL-Proxy-Client-Cert Header.......................... 4-16
Connection Errors and Clustering Failover... 4-17

Possible Causes of Connection Failures... 4-17
Failover with a Single, Non-Clustered WebLogic Server........................ 4-17
The Dynamic Server List ... 4-18
Failover, Cookies, and HTTP Sessions.. 4-18

Failover Behavior When Using Firewalls and Load Directors 4-20

5. Parameters for Web Server Plug-Ins
Entering Parameters in Web Server Plug-In Configuration files 5-1
General Parameters for Web Server Plug-Ins ... 5-2
SSL Parameters for Web Server Plug-Ins ... 5-14
Configuring Web Applications and Clusters for the Plug-in 5-18

A. Proxying Requests to Another Web Server
Overview of Proxying Requests to Another Web Server.................................. 6-1
Setting Up a Proxy to a Secondary Web Server.. 6-2
Using WebLogic Server Clusters v

Sample Deployment Descriptor for the Proxy Servlet 6-3
vi Using WebLogic Server Clusters

Using Web Server Plug-Ins With WebLogic Server vii

About This Document

This document explains use of plug-ins provided for proxying requests to third party
administration servers. It is organized as follows:

Chapter 1, “Overview of Using Web Server Plug-Ins With WebLogic Server,”
describes the plug-ins available for use with WebLogic Server.

Chapter 2, “Installing and Configuring the Apache HTTP Server Plug-In,”
explains how to install and configure the WebLogic Server Apache plug-in.

Chapter 3, “Installing and Configuring the Microsoft Internet Information Server
(IIS) Plug-In,” explains how to install and conifgure the WebLogic Server
plug-in for the Microsoft Internet Information Server.

Chapter 4, “Installing and Configuring the Netscape Enterprise Server (NES)
Plug-In,” explains how to to install and configure the Netscape Enterprise Server
proxy plug-in.

Chapter 5, “Parameters for Web Server Plug-Ins,” discusses the parameters for
Web server plug-ins.

Appendix A, “Proxying Requests to Another Web Server,” describes use of
WebLogic Server to serve as a proxy forwarding HTTP requests to other Web
servers.

Audience

This document is intended mainly for system administrators who will be managing the
WebLogic Server application platform and its various subsystems.

viii Using Web Server Plug-Ins With WebLogic Server

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Using Web Server Plug-Ins With WebLogic Server ix

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.
Example:
String CustomerName;

x Using Web Server Plug-Ins With WebLogic Server

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

Using Web Server Plug-Ins With WebLogic Server 1-1

CHAPTER

1 Overview of Using Web
Server Plug-Ins With
WebLogic Server

The following sections describe the plug-ins provided by BEA Systems for use with
the WebLogic Server:

“What Are Plug-Ins?” on page 1-1

“Plug-Ins included with WebLogic Server” on page 1-2

What Are Plug-Ins?

Plug-ins are small software programs that developers use to extend a WebLogic Server
implementation. Plug-ins enableWebLogic Server to communicate with applications
which have been deployed on a different Web Server. WebLogic Server can then
handle those requests that require the dynamic functionality of WebLogic Server.
These are usually the requests that can best be served with dynamic HTML pages or
JSPs (Java Server Pages).

1 Overview of Using Web Server Plug-Ins With WebLogic Server

1-2 Using Web Server Plug-Ins With WebLogic Server

Plug-Ins included with WebLogic Server

As of WebLogic Server 6.1 SP6, 7.0 SP5, and 8.1 SP2, the WebLogic Server plug-ins
are now certified to proxy to any version of WebLogic Server, including 5.1.

WebLogic Server includes plug-ins for the following web servers:

Apache HTTP Server

Microsoft Internet Information Server

Netscape Enterprise Server

Using Web Server Plug-Ins With WebLogic Server 2-1

CHAPTER

2 Installing and
Configuring the
Apache HTTP Server
Plug-In

The following sections describe how to install and configure the Apache HTTP Server
Plug-In:

“Overview of the Apache HTTP Server Plug-In” on page 2-2

“Certifications” on page 2-4

“Installing the Apache HTTP Server Plug-In” on page 2-4

“Configuring the Apache HTTP Server Plug-In” on page 2-10

“Template for the Apache HTTP Server httpd.conf File” on page 2-15

“Sample httpd.conf Configuration Files” on page 2-16

“Using SSL with the Apache Plug-In” on page 2-19

“Issues with SSL-Apache Configuration” on page 2-21

“Connection Errors and Clustering Failover” on page 2-24

2 Installing and Configuring the Apache HTTP Server Plug-In

2-2 Using Web Server Plug-Ins With WebLogic Server

Overview of the Apache HTTP Server Plug-In

The Apache HTTP Server Plug-In allows requests to be proxied from an Apache
HTTP Server to WebLogic Server. The plug-in enhances an Apache installation by
allowing WebLogic Server to handle those requests that require the dynamic
functionality of WebLogic Server.

The plug-in is intended for use in an environment where an Apache Server serves static
pages, and another part of the document tree (dynamic pages best generated by HTTP
Servlets or JavaServer Pages) is delegated to WebLogic Server, which may be
operating in a different process, possibly on a different host. To the end user—the
browser—the HTTP requests delegated to WebLogic Server still appear to be coming
from the same source.

HTTP-tunneling, a technique which allows HTTP requests and responses access
through a company’s firewall, can also operate through the plug-in, providing
non-browser clients access to WebLogic Server services.

The Apache HTTP Server Plug-In operates as an Apache module within an Apache
HTTP Server. An Apache module is loaded by Apache Server at startup, and then
certain HTTP requests are delegated to it. Apache modules are similar to HTTP
servlets, except that an Apache module is written in code native to the platform.

Limitations in Apache Version 1.3.x

Version 1.3x of the Apache HTTP Server has several limitations with the WebLogic
Server plug-in that do not exist in later versions.

Keep-Alive Connections Not Supported

Version 1.3.x of the Apache HTTP Server Plug-In creates a socket for each request and
closes the socket after reading the response. Because Apache HTTP Server is
multiprocessed, connection pooling and keep-alive connections between WebLogic
Server and the Apache HTTP Server Plug-In cannot be supported.

Overview of the Apache HTTP Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-3

Inconsistent States

The Apache HTTP Server has a multi-process architecture, and the state of the plug-in
cannot be synchronized across multiple child processes. The following types of
problems may occur:

In a clustered environment, a plug-in may dispatch requests to an unavailable
WebLogic Server instance because the DynamicServerList is not current in all
plug-in processes.

In non-clustered environment, a plug-in may lose the stickiness of a session
created after restarting WebLogic Server instances, because some plug-in
processes do not have the new JVMID of those restarted servers, and treat them
as unknown JVMIDs.

To temporarily correct inconsistencies of this type, restart or send a HUP signal (kill
-HUP) to the Apache server to refresh all plug-in processes.

To avoid these issues, upgrade to Apache 2.0.x, and configure Apache to use the
multi-threaded and single-process model by setting MaxSpareServers=1 in
httpd.conf. For information about editing httpd.conf, see “Configuring the
Apache HTTP Server Plug-In” on page 2-10.

Keep-Alive Connections in Apache Version 2.0

Version 2.0 of the Apache HTTP Server Plug-In improves performance by using a
reusable pool of connections from the plug-in to WebLogic Server. The plug-in
implements HTTP 1.1 keep-alive connections between the plug-in and WebLogic
Server by reusing the same connection in the pool for subsequent requests from the
same client. If the connection is inactive for more than 30 seconds, (or a user-defined
amount of time) the connection is closed and returned to the pool. You can disable this
feature if desired. For more information, see “KeepAliveEnabled”.

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests based on the URL of the request (or a portion of the
URL). This is called proxying by path. You can also proxy requests based on the

2 Installing and Configuring the Apache HTTP Server Plug-In

2-4 Using Web Server Plug-Ins With WebLogic Server

MIME type of the requested file. Or you can use a combination of both methods. If a
request matches both criteria, the request is proxied by path. You can also specify
additional parameters for each type of request that define additional behavior of the
plug-in. For more information, see “Configuring the Apache HTTP Server Plug-In” on
page 2-10.

Certifications

The Apache HTTP Server Plug-In is supported on Linux, Solaris, AIX, Windows, and
HPUX11 platforms. Plug-ins are not supported on all operating systems for all
releases.For information on platform support for specific versions of Apache, see
Platform Support for WebLogic Server Plug-ins and Web Servers in Supported
Configurations for WebLogic Server 7.0.

Installing the Apache HTTP Server Plug-In

You install the Apache HTTP Server Plug-In as an Apache module in your Apache
HTTP Server installation. The module is installed either as a Dynamic Shared Object
(DSO) or as a statically linked module. (Installation as a statically linked module is
only available for Apache version 1.3.x). There are separate instructions in this section
for DSO and statically linked module installation.

Installing the Apache HTTP Server Plug-In as a Dynamic
Shared Object

To install the Apache HTTP Server Plug-In as a dynamic shared object:

1. Locate the shared object file for your platform.

The Apache plug-in is distributed as a shared object (.so) for use on Solaris,
Linux, Windows, AIX and HPUX11 platforms. Each shared object file is

http://e-docs.bea.com/wls/certifications/certs_700/overview.html#1068392

Installing the Apache HTTP Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-5

distributed as a separate version, depending on the platform, whether or not SSL
is to be used between the client and Apache, and the encryption strength for SSL
(regular or 128 bit— 128 bit versions are only installed if you install the 128 bit
version of WebLogic Server). The shared object files are located in the following
directories of your WebLogic Server installation (where WL_HOME is the
top-level installation directory for the WebLogic platform and the Server
directory contains WebLogic Server installation files):

Warning: If you are running Apache 2.0.x server on HP-UX11, set the
environment variables specified below before you build the Apache
server. Because of a problem with the order in which linked libraries
are loaded on HP-UX, a core dump can result if the load order is not
preset as an environment variable before building. Set the following
environment variables:

export EXTRA_LDFLAGS="-lstd -lstream -lCsup -lm -lcl -ldld
-lpthread"

Proceed with the configure, make, and make install steps:

./configure --prefix=$INSTALLATION_DIRECTORY --enable-so
--with-mpm=worker

make

make install

Table 2-1 Locations of Plug-In Shared Object Files

Operating
System

Shared Object Location

Solaris WL_HOME/server/lib/solaris

Linux WL_HOME/server/lib/linux/i686

WL_HOME/server/lib/linux/s390

Windows WL_HOME\server\bin\mod_wl_20.so (applicable to
Apache versions 2.0.x)
WL_HOME\server\bin

HPUX11 WL_HOME/server/lib/hpux11

AIX WL_HOME/server/lib/aix

2 Installing and Configuring the Apache HTTP Server Plug-In

2-6 Using Web Server Plug-Ins With WebLogic Server

See the Apache HTTP Server documentation for more information
about building and configuring your Apache server.

Choose the appropriate shared object from the following table:

2. Enable the shared object.

The Apache HTTP Server Plug-In will be installed in your Apache HTTP Server
installation as an Apache Dynamic Shared Object (DSO). DSO support in
Apache is based on a module named mod_so.c that must be enabled before
mod_wl.so is loaded. If you installed Apache using the supplied script,
mod_so.c should already be enabled. To verify that mod_so.c is enabled,
execute one of the following commands:

For Apache 1.x, APACHE_HOME\bin\httpd -l

For Apache 2.0.x, APACHE_HOME\bin\Apache -l

Apache
Version

Regular Strength
Encryption

128-bit
Encryption

Standard Apache
Version 1.x

mod_wl.so mod_wl128.so

Apache w/
SSL/EAPI
Version 1.x
(Stronghold,
 modssl etc.)

mod_wl_ssl.so mod_wl128_ssl.so

Apache + Raven
Version 1.x
Required
because Raven
applies frontpage
patches that
makes the
plug-in
incompatible
with the standard
shared object

mod_wl_ssl_raven.so mod_wl128_ssl_raven.so

Standard Apache
Version 2.0.x

mod_wl_20.so mod_wl28_20.so

http://httpd.apache.org/docs-2.1/install.html#configure

Installing the Apache HTTP Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-7

(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

This command lists all of the enabled modules. If mod_so.c is not listed, build
your Apache HTTP Server from the source code, making sure that the following
options are configured:
...
--enable-module=so
--enable-rule=SHARED_CORE
...

3. Install the Apache HTTP Server Plug-In in the Apache 1.x server with a support
program called apxs (APache eXtenSion, see Manual Page: apxs at
http://httpd.apache.org/docs/programs/apxs.html). Issue the following command :

$ apxs mod_so.c

to build Dynamic Shared Object-based modules outside of the Apache source
tree and add the following line to the httpd.conf file:

AddModule mod_so.c

For Apache 2.0.x, copy the mod_wl_20.so file to the APACHE_HOME\modules
directory rather than running apxs. For more information, see the Apache HTTP
Server Version 2.0 documentation at http://httpd.apache.org/docs-2.0/.

4. Activate the weblogic_module, the WebLogic Server extension to the Apache
server:

For Apache 1.x, in your WebLogic Server installation, use a command shell
to navigate to the directory that contains the shared object for your platform
and activate the weblogic_module by issuing this command (note that you
must have Perl installed to run this Perl script):

perl APACHE_HOME\bin\apxs –i –a –n weblogic mod_wl.so

This command copies the mod_wl.so file to the APACHE_HOME\libexec
directory. It also adds two lines of instructions for weblogic_module to the
httpd.conf file and activates the module. Make sure that the following
lines were added to your APACHE_HOME/conf/httpd.conf file in your
Apache 1.x server installation:

LoadModule weblogic_module libexec/mod_wl.so
AddModule mod_weblogic.c

For Apache 2.0.x, add the following line to your
APACHE_HOME/conf/httpd.conf file manually:

http://httpd.apache.org/docs-2.0/
http://httpd.apache.org/docs-2.0/
http://httpd.apache.org/docs/programs/apxs.html

2 Installing and Configuring the Apache HTTP Server Plug-In

2-8 Using Web Server Plug-Ins With WebLogic Server

LoadModule weblogic_module modules/mod_wl_20.so

5. Configure any additional parameters in the Apache httpd.conf configuration
file as described in the section “Configuring the Apache HTTP Server Plug-In”
on page 2-10. The httpd.conf file allows you to customize the behavior of the
Apache HTTP Server Plug-In.

6. Verify the syntax of the APACHE_HOME\conf\httpd.conf file with one of the
following commands:

For Apache 1.x, APACHE_HOME\bin\apachect1 configtest

For Apache 2.0.x, APACHE_HOME\bin\Apache -t

The output of this command indicates any errors in your httpd.conf file.

Note: Apache -t is a valid command for Apache 2.0.x on Windows. However, for
Apache 2.0.x on HP-UX, Apache -t is not a valid command, because Apache
2.0.x on HP-UX has apachectl and not the Apache command file.

7. Restart Weblogic Server.

8. Start (or restart if you have changed the configuration) Apache HTTP Server.

9. Test the Apache plug-in by opening a browser and setting the URL to the Apache
Server + “/weblogic/”, which should bring up the default WebLogic Server
HTML page, welcome file, or default servlet, as defined for the default Web
Application on WebLogic Server. For example:

http://myApacheserver.com/weblogic/

Installing the Apache HTTP Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-9

Installing the Apache HTTP Server Plug-In as a Statically
Linked Module

To install the Apache HTTP Server Plug-In as a statically linked module:

1. Locate the linked library file for your platform.

Each library file is distributed as a separate version, depending on the platform
and the encryption strength for SSL (regular or 128-bit—128-bit versions are
only installed if you install the 128-bit version of WebLogic Server). The library
files are located in the following directories of your WebLogic Server
installation:

Solaris
WL_HOME/Server/lib/solaris

Linux
WL_HOME/Server/lib/linux

HPUX11
WL_HOME/Server/lib/hpux11

Choose the appropriate shared object from the following table.

If you are using the Gnu C Compiler (gcc), gcc 2.95.x is the required version.

2. Unpack the Apache Plug-In distribution using the following command:

tar -xvf apache_1.3.x.tar

3. Within the unpacked distribution switch to the src/modules directory.

Apache
Version

Regular
Strength
Encryption

128-bit
Encryption

Standard Apache
Version 1.3.x

libweblogic.a libweblogic128.a

2 Installing and Configuring the Apache HTTP Server Plug-In

2-10 Using Web Server Plug-Ins With WebLogic Server

4. Create a directory called weblogic.

5. Copy Makefile.libdir, Makefile.tmpl from the lib directory of your
WebLogic Server installation to src\modules\weblogic.

6. Copy libweblogic.a (use libweblogic128.a instead, if you are using 128 bit
security.) from the same directory containing the linked library file (see step 1.)
to src\modules\weblogic.

7. If you are using regular strength encryption, execute the following command
from the Apache 1.3 home directory:

configure --activate-module=src\modules\weblogic\libweblogic.a

8. If you are using 128 bit encryption, execute the following command (on a single
line) from the Apache 1.3 home directory:

configure--activate-module=
src\modules\weblogic\libweblogic128.a

9. Execute the following command:

make

10. Execute the following command:

make install

11. Follow steps 4 through 8, in “Installing the Apache HTTP Server Plug-In as a
Dynamic Shared Object”.

Configuring the Apache HTTP Server Plug-In

After you install the plug-in in the Apache HTTP server, edit the httpd.conf file to
configure the Apache plug-in. Editing the httpd.conf file informs the Apache Web
server that it should load the native library for the plug-in as an Apache module and
also describes which requests should be handled by the module.

Configuring the Apache HTTP Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-11

Editing the httpd.conf File

Edit the httpd.conf file in your Apache HTTP server installation to configure the
Apache HTTP Server Plug-In:

1. Open the httpd.conf file. The file is located at
APACHE_HOME\conf\httpd.conf (where APACHE_HOME is the root directory of
your Apache HTTP server installation).

2. For Apache 1.x, verify that the following two lines were added to the
httpd.conf file when you ran the apxs utility:

LoadModule weblogic_module libexec\mod_wl.so
AddModule mod_weblogic.c

3. For Apache 2.0.x, add the following line to the httpd.conf file:

LoadModule weblogic_module modules\mod_wl_20.so

4. Add an IfModule block that defines one of the following:

For a non-clustered WebLogic Server:

The WebLogicHost and WebLogicPort parameters.

For a cluster of WebLogic Servers:

The WebLogicCluster parameter.

For example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001

</IfModule>

5. If you want to proxy requests by MIME type, also add a MatchExpression line
to the IfModule block. (You can proxy requests by path in addition to or instead
of proxying by MIME type. Proxying by path takes precedence over proxying by
MIME type. To configure proxying requests by path, see step 6.)

For example, the following IfModule block for a non-clustered WebLogic
Server specifies that all files with MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001

2 Installing and Configuring the Apache HTTP Server Plug-In

2-12 Using Web Server Plug-Ins With WebLogic Server

MatchExpression *.jsp
</IfModule>

You can also use multiple MatchExpressions, for example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

If you are proxying requests by MIME type to a cluster of WebLogic Servers,
use the WebLogicCluster parameter instead of the WebLogicHost and
WebLogicPort parameters. For example:

<IfModule mod_weblogic.c>
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

6. If you want to proxy requests by path, use the Location block and the
SetHandler statement. SetHandler specifies the handler for the Apache HTTP
Server Plug-In module. For example the following Location block proxies all
requests containing /weblogic in the URL:

<Location /weblogic>
 SetHandler weblogic-handler
</Location>

7. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in “General
Parameters for Web Server Plug-Ins” on page 5-2. To modify the behavior of
your Apache HTTP Server Plug-In, define these parameters either:

In a Location block, for parameters that apply to proxying by path, or

In an IfModule block, for parameters that apply to proxying by MIME type.

Alternative Procedure for Editing the httpd.conf File

As an alternative to the procedure in “Editing the httpd.conf File” on page 2-11,
you can define parameters in a separate file called weblogic.conf file that is

Configuring the Apache HTTP Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-13

included in the IfModule block. Using this included file may help modularize
your configuration. For example:

<IfModule mod_weblogic.c>
 # Config file for WebLogic Server that defines the parameters
 Include conf/weblogic.conf
</IfModule>

Note: Defining parameters in an included file is not supported when using SSL
between Apache HTTP Server Plug-In and WebLogic Server.

Enter each parameter on a new line. Do not put an ‘=’ between the parameter
and its value. For example:

PARAM_1 value1
PARAM_2 value2
PARAM_3 value3

If a request matches both a MIME type specified in a MatchExpression in an
IfModule block and a path specified in a Location block, the behavior
specified by the Location block takes precedence.

If you define the CookieName parameter, you must define it in an IfModule
block.

If you use the <files> block in addition to the <location> block to match
requests and you are using Stronghold SSL (a commercial Apache-based Web
server) with virtual hosting, MatchExpression is ignored and the rules defined
in the <files> and <location> blocks are applied to the request. If you are not
using Stronghold, rules in the <location> block overrule those in a <files>
block.

If you use the <VirtualHost> block, you must place all the configuration
parameters (MatchExpression, for example) for each virtual host within its
<VirtualHost> block.

If you want to have only one log file for all the virtual hosts configured in your
environment, you can achieve it using global properties. Instead of specifying
the same Debug, WLLogFile and WLTempDir properties in each virtual host
you can specify them just once in the <IfModule> tag

Sample httpd.conf file:

<IfModule mod_weblogic.c>

 WebLogicClusteragarwalp02:8005,agarwalp02:8006

2 Installing and Configuring the Apache HTTP Server Plug-In

2-14 Using Web Server Plug-Ins With WebLogic Server

 Debug ON

 WLLogFile c:/tmp/global_proxy.log

 WLTempDir "c:/myTemp"

 DebugConfigInfo On

 KeepAliveEnabled ON

 KeepAliveSecs 15

</IfModule>

<Location /jurl>

 SetHandler weblogic-handler

 WebLogicCluster agarwalp01:7001

</Location>

<Location /web>

 SetHandler weblogic-handler

 PathTrim /web

 Debug OFF

 WLLogFile c:/tmp/web_log.log

</Location>

<Location /foo>

 SetHandler weblogic-handler

 PathTrim /foo

 Debug ERR

 WLLogFile c:/tmp/foo_proxy.log

</Location>

All the requests which match /jurl/* will have Debug Level set to ALL and log
messages will be logged to c:/tmp/global_proxy.log file. All the requests which match
/web/* will have Debug Level set to OFF and no log messages will be logged. All the
requests which match /foo/* will have Debug Level set to ERR and log messages will
be logged to c:/tmp/foo_proxy.log file

Template for the Apache HTTP Server httpd.conf File

Using Web Server Plug-Ins With WebLogic Server 2-15

BEA recommends that you use the MatchExpression statement instead of the
<files> block.

Template for the Apache HTTP Server
httpd.conf File

This section contains a sample httpd.conf file. You can use this sample as a template
that you can modify to suit your environment and server. Lines beginning with # are
comments. Note that Apache HTTP Server is not case sensitive, and that the
LoadModule and AddModule lines are automatically added by the apxs utility.

##

APACHE-HOME/conf/httpd.conf file
##

LoadModule weblogic_module libexec/mod_wl.so

AddModule mod_weblogic.c

<Location /weblogic>
 SetHandler weblogic-handler
 PathTrim /weblogic
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<Location /servletimages>
 SetHandler weblogic-handler
 PathTrim /something
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<IfModule mod_weblogic.c>
MatchExpression *.jsp
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
ErrorPage http://myerrorpage.mydomain.com

</IfModule>

2 Installing and Configuring the Apache HTTP Server Plug-In

2-16 Using Web Server Plug-Ins With WebLogic Server

Sample httpd.conf Configuration Files

Instead of defining parameters in the location block of your httpd.conf file, if
you prefer, you can use a weblogic.conf file that is loaded by the IfModule in the
httpd.conf file. The following examples may be used as templates that you can
modify to suit your environment and server. Lines beginning with # are comments.

Example Using WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks. (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
ErrorPage http://myerrorpage.mydomain.com
MatchExpression *.jsp

</IfModule>
##

Example Using Multiple WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=7001|Debug=ON
MatchExpression *.html WebLogicCluster=myHost1:7282,myHost2:7283|ErrorPage=
http://www.xyz.com/error.html

</IfModule>

Sample httpd.conf Configuration Files

Using Web Server Plug-Ins With WebLogic Server 2-17

Example Without WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp

</IfModule>

Example Configuring IP-Based Virtual Hosting

NameVirtualHost 172.17.8.1
<VirtualHost goldengate.domain1.com>
WebLogicCluster tehama1:4736,tehama2:4736,tehama:4736
PathTrim /x1
ConnectTimeoutSecs 30
</VirtualHost>
<VirtualHost goldengate.domain2.com>
WeblogicCluster green1:4736,green2:4736,green3:4736
PathTrim /y1
ConnectTimeoutSecs 20
</VirtualHost>

Example Configuring Name-Based Virtual Hosting With a
Single IP Address

<VirtualHost 162.99.55.208>
 ServerName myserver.mydomain.com
 <Location / >
 SetHandler weblogic-handler
 WebLogicCluster 162.99.55.71:7001,162.99.55.72:7001
 Idempotent ON
 Debug ON
 DebugConfigInfo ON

2 Installing and Configuring the Apache HTTP Server Plug-In

2-18 Using Web Server Plug-Ins With WebLogic Server

 </Location>
</VirtualHost>

<VirtualHost 162.99.55.208>
 ServerName myserver.mydomain.com
 <Location / >
 SetHandler weblogic-handler
 WebLogicHost russell
 WebLogicPort 7001
 Debug ON
 DebugConfigInfo ON
 </Location>
</VirtualHost>

Example Configuring Multiple Name-Based Virtual Hosts

VirtualHost1 = localhost:80
<VirtualHost 127.0.0.1:80>

DocumentRoot "C:/test/VirtualHost1"
ServerName localhost:80<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
</IfModule>

</VirtualHost>

VirtualHost2 = 127.0.0.2:80
<VirtualHost 127.0.0.2:80>

DocumentRoot "C:/test/VirtualHost1"
ServerName 127.0.0.2:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
#... WLS parameter ...
</IfModule>

</VirtualHost><IfModule mod_weblogic.c>

You must define a unique value for 'ServerName'or some Plug-In parameters will not
work as expected.

Using SSL with the Apache Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-19

Using SSL with the Apache Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between the Apache HTTP Server Plug-In and WebLogic Server. The SSL protocol
provides confidentiality and integrity to the data passed between the Apache HTTP
Server Plug-In and WebLogic Server.

The Apache HTTP Server Plug-In does not use the transport protocol (http or https)
specified in the HTTP request (usually by the browser) to determine whether or not the
SSL protocol is used to protect the connection between the Apache HTTP Server
Plug-In and WebLogic Server.

Although two-way SSL can be used between the HTTP client and Apache HTTP
server, note that one-way SSL is used between Apache HTTP Server and WebLogic
Server.

Implementing Two-way SSL between Apache and the
HTTP Client:

1. Configure Apache HTTP Server to request a client certificate. The certificate is
stored as one of the following request attributes:

javax.net.ssl.peer_certificates
returns a weblogic.security.X509Certificate certificate
java.security.cert.X509Certificate
returns a java.security.cert.X509 certificate

2. Access the certificate by reading the request attribute, for example:

request.getAttribute("javax.net.ssl.peer_certificates");

3. In WebLogic Server, authenticate the user with the
weblogic.security.acl.certAuthenticator.authenticate() method.

2 Installing and Configuring the Apache HTTP Server Plug-In

2-20 Using Web Server Plug-Ins With WebLogic Server

Configuring SSL Between the Apache HTTP Server
Plug-In and WebLogic Server

To use the SSL protocol between Apache HTTP Server Plug-In and WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring the
SSL Protocol at {DOCROOT}/secmanage/ssl.html.

2. Configure the WebLogic Server SSL listen port. For more information, see
Configuring the SSL Protocol at {DOCROOT}/secmanage/ssl.html.

3. In the Apache Server, set the WebLogicPort parameter in the httpd.conf file to
the listen port configured in step 2.

4. In the Apache Server, set the SecureProxy parameter in the httpd.conf file to
ON.

5. Set any additional parameters in the httpd.conf file that define information
about the SSL connection. For a complete list of parameters, see “SSL
Parameters for Web Server Plug-Ins” on page 5-14.

Specifying Trust for the WL-Proxy-Client-Cert Header

The plug-in can encode users’ identity certifications in the WL-Proxy-Client-Cert
header and pass the header to WebLogic Server instances (see Proxying Requests to
Another Web Server). A WebLogic Server instance uses the certificate information
from that header, trusting that it comes from a secure source (the Plug-In), to
authenticate the user. In previous releases of WebLogic Server, the default behavior
was to always trust the WL-Proxy-Client-Cert header. Beginning with WebLogic
Server 6.1 SP2, you need to explicitly define trust of the WL-Proxy-Client-Cert
header. A new parameter, clientCertProxy, allows WebLogic Server to determine
whether to trust the certificate header. For an additional level of security, use a
connection filter to limit all connections into WebLogic Server (therefore allowing
WebLogic Server to only accept connections from the machine on which the plug-in
is running).

The clientCertProxy parameter has been added to the HTTPClusterServlet and
Web applications.

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/plugins/http_proxy.html
http://e-docs.bea.com/wls/docs70/plugins/http_proxy.html

Using SSL with the Apache Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-21

For the HTTPClusterServlet, add the parameter to the web.xml file as follows:

<context-param>

 <param-name>clientCertProxy</param-name>

 <param-value>true</param-value>

</context-param>

For Web applications, add the parameter to the web.xml file as follows:

ServletRequestImpl context-param

<context-param>

 <param-name>weblogic.httpd.clientCertProxy</param-name>

 <param-value>true</param-value>

</context-param>

You can also use this parameter in a cluster as follows:

<Cluster ClusterAddress="127.0.0.1" Name="MyCluster"

 ClientCertProxyHeader="true"/>

This parameter can be used with a third party proxy server such as a load balancer or
an SSL accelerator to enable 2-way SSL authentication.

Issues with SSL-Apache Configuration

The following known issues may arise when you configure the Apache plug-in to use
SSL:

To prepare the plugin configuration, double click the lock and go to the
certificates path:

 * Select the root CA (at the top)

 * Display it

 * Detail and then copy this certificate to a file using the Coded "Base

64 X509" option

2 Installing and Configuring the Apache HTTP Server Plug-In

2-22 Using Web Server Plug-Ins With WebLogic Server

 * Save the file, for example, to ýMyWeblogicCAToTrust.cerý (which is
also a PEM file)

The PathTrim (see page A-3) parameter must be configured inside the
<Location> tag.

The following configuration is incorrect:

<Location /weblogic>
 SetHandler weblogic-handler
</Location>

<IfModule mod_weblogic.c>
 WebLogicHost localhost
 WebLogicPort 7001
 PathTrim /weblogic
</IfModule>

The following configuration is the correct setup:

<Location /weblogic>
 SetHandler weblogic-handler
 PathTrim /weblogic
</Location>

The Include directive does not work with Apache SSL. You must configure all
parameters directly in the httpd.conf file. Do not use the following
configuration when using SSL:

<IfModule mod_weblogic.c>
 MatchExpression *.jsp
 Include weblogic.conf
</IfModule>

If you use precompiled OpenSSL from Sunfreeware.com, failover may not work
properly when the plug-in tries to connect to a backend instance of WebLogic
Server. If you encounter such a failure, rebuild OpenSSL and modssl and
Apache using the following configuration settings.

– For building OpenSSL:

./Configure solaris-sparcv8-gcc -fexceptions

--prefix=/home/egross/solaris/ssl shared

make

make install

– For building modssl and Apache:

cd ..

Using SSL with the Apache Plug-In

Using Web Server Plug-Ins With WebLogic Server 2-23

cd mod_ssl-2.8.12-1.3.27

export LD_LIBRARY_PATH=/home/egross/solaris/ssl/lib

 ./configure "--with-apache=../apache_1.3.27"

"--with-ssl=/home/egross/solaris/ssl"
"--prefix=/usr/local/apache_so"

"--enable-rule=SHARED_CORE" "--enable-shared=ssl"
"--enable-module=so" "$@"

cd ../apache_1.3.27

make

make install

The current implementation of the WebLogic Server Apache plug-in does not
support the use of multiple certificate files with ApacheSSL.

2 Installing and Configuring the Apache HTTP Server Plug-In

2-24 Using Web Server Plug-Ins With WebLogic Server

Connection Errors and Clustering Failover

When the Apache HTTP Server Plug-In attempts to connect to WebLogic Server, the
plug-in uses several configuration parameters to determine how long to wait for
connections to the WebLogic Server host and, after a connection is established, how
long the plug-in waits for a response. If the plug-in cannot connect or does not receive
a response, the plug-in attempts to connect and send the request to other WebLogic
Server instances in the cluster. If the connection fails or there is no response from any
WebLogic Server in the cluster, an error message is sent.

Figure 2-1 “Connection Failover” on page 2-26 demonstrates how the plug-in handles
failover.

Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate
possible problems with the host machine, networking problems, or other server
failures.

Failure of all WebLogic Server instances to respond, could indicate that WebLogic
Server is not running or is unavailable, a hung server, a database problem, or other
application failure.

Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server instance the plug-in only attempts
to connect to the server defined with the WebLogicHost parameter. If the attempt
fails, an HTTP 503 error message is returned. The plug-in continues trying to connect
to that same WebLogic Server instance until ConnectTimeoutSecs is exceeded.

Connection Errors and Clustering Failover

Using Web Server Plug-Ins With WebLogic Server 2-25

The Dynamic Server List

When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the
plug-in uses that list as a starting point for load balancing among the members of the
cluster. After the first request is routed to one of these servers, a dynamic server list is
returned containing an updated list of servers in the cluster. The updated list adds any
new servers in the cluster and deletes any that are no longer part of the cluster or that
have failed to respond to requests. This list is updated automatically with the HTTP
response when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions

When a request contains a session information stored in a cookie, in the POST data, or
by URL encoding, the session ID contains a reference to the specific server instance in
which the session was originally established (called the primary server) and a
reference to an additional server where the original session is replicated (called the
secondary server). A request containing a cookie attempts to connect to the primary
server. If that attempt fails, the request is routed to the secondary server. If both the
primary and secondary servers fail, the session is lost and the plug-in attempts to make
a fresh connection to another server in the dynamic cluster list. For more information,
see Figure 2-1 “Connection Failover” on page 2-26.

Note: If the POST data is larger than 64K, the plug-in will not parse the POST data
to obtain the session ID. Therefore, if you store the session ID in the POST
data, the plug-in cannot route the request to the correct primary or secondary
server, resulting in possible loss of session data.

2 Installing and Configuring the Apache HTTP Server Plug-In

2-26 Using Web Server Plug-Ins With WebLogic Server

Figure 2-1 Connection Failover

Notes: The HTTP error code thrown by the plug-in depends on the situation. Plug-in
will return the HTTP error code 500 in the following conditions:

Neither WebLogicCluster nor WebLogicPort was specified in the
httpd.conf file.

Unable to resolve the WebLogicHost parameter specified in the
httpd.conf file.

Connection Errors and Clustering Failover

Using Web Server Plug-Ins With WebLogic Server 2-27

Port number specified by WebLogicPort, in the httpd.conf file, exceeds
65535.

Unsuccessful in parsing the request while applying the PathTrim
property.

The request header is of type Unknown Transfer-Encoding.
Failed to read the chunked request.

Encounetered an error reading POST data from client.

Failed to open a temporary(temp) file.

Failed to write POST data to the temp file.

Encounetered an error reading POST data from the temp file.

POST timed out.

SSL was specified without the parameter trustedCAFile.

On the other hand, the HTTP error code 503 is returned when:

The maximum number of retries is exceeded. This value is computed by
dividing ConnectTimeoutSecs by ConnectRetrySecs.

Idempotent is OFF.

2 Installing and Configuring the Apache HTTP Server Plug-In

2-28 Using Web Server Plug-Ins With WebLogic Server

Using Web Server Plug-Ins With WebLogic Server 3-1

CHAPTER

3 Installing and
Configuring the
Microsoft Internet
Information Server
(IIS) Plug-In

The following sections describe how to install and configure the Microsoft Internet
Information Server Plug-In.

“Overview of the Microsoft Internet Information Server Plug-In” on page 3-2

“Certifications” on page 3-3

“Installing and Configuring the Microsoft Internet Information Server Plug-In”
on page 3-3

“Proxying Requests from Multiple Virtual Websites to WebLogic Server” on
page 3-9

“Sample iisproxy.ini File” on page 3-10

“Creating ACLs Through IIS” on page 3-11

“Using SSL with the Microsoft Internet Information Server Plug-In” on page
3-12

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-2 Using Web Server Plug-Ins With WebLogic Server

“Proxying Servlets from IIS to WebLogic Server” on page 3-14

“Testing the Installation” on page 3-15

“Connection Errors and Clustering Failover” on page 3-16

Overview of the Microsoft Internet
Information Server Plug-In

The Microsoft Internet Information Server Plug-In allows requests to be proxied from
a Microsoft Internet Information Server (IIS) to WebLogic Server. The plug-in
enhances an IIS installation by allowing WebLogic Server to handle those requests that
require the dynamic functionality of WebLogic Server.

You use the Microsoft Internet Information Server Plug-In in an environment where
the Internet Information Server (IIS) serves static pages such as HTML pages, while
dynamic pages such as HTTP Servlets or JavaServer Pages are served by WebLogic
Server. WebLogic Server may be operating in a different process, possibly on a
different host. To the end user—the browser—the HTTP requests delegated to
WebLogic Server still appear to be coming from IIS. The HTTP-tunneling facility of
the WebLogic client-server protocol also operates through the plug-in, providing
access to all WebLogic Server services.

Connection Pooling and Keep-Alive

The Microsoft Internet Information Server Plug-In improves performance by using a
re-usable pool of connections from the plug-in to WebLogic Server. The plug-in
implements HTTP 1.1 keep-alive connections between the plug-in and WebLogic
Server by re-using the same connection for subsequent requests from the same client.
If the connection is inactive for more than 30 seconds, (or a user-defined amount of
time) the connection is closed. The connection with the client can be reused to connect
to the same client at a later time if it has not timed out. You can disable this feature if
desired. For more information, see “KeepAliveEnabled” on page 5-8.

Certifications

Using Web Server Plug-Ins With WebLogic Server 3-3

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests either based on the URL of the request or a portion of
the URL. This is called proxying by path. You can also proxy a request based on the
MIME type of the requested file, called proxying by file extension. You can also use a
combination of both methods. If a request matches both criteria, the request is proxied
by path. You can also specify additional parameters for each of these types of requests
that define additional behavior of the plug-in. For more information, see “Installing
and Configuring the Microsoft Internet Information Server Plug-In” on page 3-3.

Certifications

The Microsoft Internet Information Server Plug-In is supported on Windows. Plug-ins
are not supported on all operating systems for all releases. For information on platform
support for specific versions of Microsoft Internet Information Server Plug-In, see
Platform Support for WebLogic Server Plug-ins and Web Servers in Supported
Configurations for WebLogic Server 7.0.

Installing and Configuring the Microsoft
Internet Information Server Plug-In

To install the Microsoft Internet Information Server Plug-In:

1. Copy the iisproxy.dll file from the WL_HOME/server/bin directory of your
WebLogic Server installation (where WL_HOME is the top-level directory for the
WebLogic Platform and Server and contains the WebLogic Server installation
files) into a convenient directory that is accessible by IIS. This directory must also
contain the iisproxy.ini file that you will create in step 7.

http://e-docs.bea.com/wls/certifications/certs_700/overview.html#1068392

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-4 Using Web Server Plug-Ins With WebLogic Server

2. Start the IIS Internet Service Manager by selecting it from the Microsoft IIS Start
menu.

3. In the left panel of the Service Manager, select your website (the default is
“Default Web Site”).

4. Click the “Play” arrow in the toolbar to start.

5. Open the properties for the selected website by holding the right mouse button
down over the website selection in the left panel.

Installing and Configuring the Microsoft Internet Information Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 3-5

6. In the Properties panel, select the Home Directory tab, and click the
Configuration button in the Applications Settings section.

7. If you want to configure proxying by file extension (MIME type) complete this
step. (You can configure proxying by path in addition to or instead of
configuring by MIME type. See step 9. .)

a. On the Mappings tab, click the Add button to add file types and configure them
to be proxied to WebLogic Server.

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-6 Using Web Server Plug-Ins With WebLogic Server

b. In the dialog box, browse to find the “iisproxy.dll” file.

c. Set the Extension to the type of file that you want to proxy to WebLogic Server.

d. Deselect the “Check that file exists” check box.

e. Set the Method exclusions as needed to create a secure installation.

f. When you finish, click the OK button to save the configuration. Repeat this
process for each file type you want to proxy to WebLogic.

g. When you finish configuring file types, click the OK button to close the
Properties panel.

Note: In the URL, any path information you add after the server and port is
passed directly to WebLogic Server. For example, if you request a file
from IIS with the URL:

http://myiis.com/jspfiles/myfile.jsp

it is proxied to WebLogic Server with a URL such as

http://mywebLogic:7001/jspfiles/myfile.jsp

Note: To avoid out-of-process errors, do not deselect the "Cache ISAPI
Applications" check box.

Installing and Configuring the Microsoft Internet Information Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 3-7

8. In WebLogic Server, create the iisproxy.ini file.

The iisproxy.ini file contains name=value pairs that define configuration
parameters for the plug-in. The parameters are listed in “General Parameters for
Web Server Plug-Ins” on page 5-2.

Note: Changes in the parameters will not go into effect until you restart the “IIS
Admin Service” (under services, in the control panel).

BEA recommends that you locate the iisproxy.ini file in the same directory
that contains the iisproxy.dll file. You can also use other locations. If you
place the file elsewhere, note that WebLogic Server searches for iisproxy.ini
in the following directories, in the following order:

a. The same directory where iisproxy.dll is located.

b. The home directory of the most recent version of WebLogic Server that is
referenced in the Windows Registry. If WebLogic Server does not find the
iisproxy.ini file there, it continues looking in the Windows Registry for
older versions of WebLogic Server and looks for the iisproxy.ini file in the
home directories of those installations.

c. The directory c:\weblogic, if it exists.

9. If you want to configure proxying by path complete this step. (In addition to
proxying by file type, you can configure the Microsoft Internet Information
Server Plug-In to serve files based on their path by specifying some additional
parameters in the iisproxy.ini file.) Proxying by path takes precedence over
proxying by MIME type.

You can also proxy multiple websites defined in IIS by path. For more
information, see “Proxying Requests from Multiple Virtual Websites to
WebLogic Server” on page 3-9.

To configure proxying by path:

a. Place the iisforward.dll file in the same directory as the iisproxy.dll file
and add the iisforward.dll file as a filter service in IIS (WebSite Properties
→ ISAPI Filters tab → Add the iisforward dll).

b. Register .wlforward as a special file type to be handled by iisproxy.dll in
IIS.

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-8 Using Web Server Plug-Ins With WebLogic Server

c. Define the property WlForwardPath in iisproxy.ini. WlForwardPath
defines the path that is proxied to WebLogic Server, for example:
WlForwardPath=/weblogic.

d. Set the PathTrim parameter to trim off the WlForwardPath when necessary.
For example, using

WlForwardPath=/weblogic
PathTrim=/weblogic

trims a request from IIS to Weblogic Server. Therefore,
/weblogic/session is changed to /session.

e. If you want requests that do not contain extra path information (in other words,
requests containing only a host name), set the DefaultFileName parameter to
the name of the welcome page of the Web Application to which the request is
being proxied. The value of this parameter is appended to the URL.

f. If you need to debug your application, set the Debug=ON parameter in
iisproxy.ini. A c:\tmp\iisforward.log is generated containing a log of
the plug-in’s activity that you can use for debugging purposes.

10. Define the WebLogic Server host and port number to which the Microsoft
Internet Information Server Plug-In proxies requests. Depending on your
configuration, there are two ways to define the host and port:

If you are proxying requests to a single WebLogic Server, define the
WebLogicHost and WebLogicPort parameters in the iisproxy.ini file.
For example:

WebLogicHost=localhost
WebLogicPort=7001

If you are proxying requests to a cluster of WebLogic Servers, define the
WebLogicCluster parameter in the iisproxy.ini file. For example:

WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001

Where myweblogic.com and yourweblogic.com are instances of Weblogic
Server running in a cluster.

11. Optionally, enable HTTP tunneling by following the instructions for proxying by
path (see step 9 above), substituting the WebLogic Server host name and the
WebLogic Server port number, or the name of a WebLogic Cluster that you wish
to handle HTTP tunneling requests.

WlForwardPath=*/HTTPClnt*

Proxying Requests from Multiple Virtual Websites to WebLogic Server

Using Web Server Plug-Ins With WebLogic Server 3-9

You do not need to use the PathTrim parameter.

Note: The only time you need to use HTTP-tunneling is when you connect
through an applet through IIS/NES to WebLogic Server and and use http
as the protocol instead of t3. (For example, http:// as the protocol in the
provider URL instead of t3://.)

12. Set any additional parameters in the iisproxy.ini file. A complete list of
parameters is available in the appendix “General Parameters for Web Server
Plug-Ins” on page 5-2.

13. If you are proxying servlets from IIS to WebLogic Server and you are not
proxying by path, read the section “Proxying Servlets from IIS to WebLogic
Server” on page 3-14.

Proxying Requests from Multiple Virtual
Websites to WebLogic Server

To proxy requests from multiple Websites (defined as virtual directories in IIS) to
WebLogic Server:

1. Create a new directory for the virtual directories. This directory will contain dll
and ini files used to define the proxy.

2. Copy iisforward.dll to the directory you created in step1.

3. Register the iisforward.dll for each Website with IIS.

4. Create a file called iisforward.ini. Place this file in the same directory that
contains iisforward.dll. This file should contain the following entry for each
virtual website defined in IIS:

vhostN=websiteName:port
websiteName:port=dll_directory/iisproxy.ini

Where:

N is an integer representing the virtual website. The first virtual website you
define should use the integer 1 and each subsequent website should
increment this number by 1.

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-10 Using Web Server Plug-Ins With WebLogic Server

websiteName is the name of the virtual website as registered with IIS.

port is the port number where IIS listens for HTTP requests.

dll_directory is the path to the directory you created in step 1.

For example:

vhost1=strawberry.com:7001
strawberry.com:7001=c:\strawberry\iisproxy.ini
vhost2=blueberry.com:7001
blueberry.com:7001=c:\blueberry\iisproxy.ini
...

5. Create an iisproxy.ini file for the virtual Websites, as described in step 8. in
“Proxying Requests”. Copy this iispoxy.ini file to the directory you created in
step 1.

6. Copy iisproxy.dll to the directory you created in step 1.

7. In IIS, set the value for the Application Protection option to high (isolated). If the
Application Protection option is set to Medium(pooled), the iisproxy.dll that
registered as the first website will always be invoked. In this event, all the
requests will be proxied to the same WLS instances defined in the iisproxy.ini of
the first website.

Sample iisproxy.ini File

Here is a sample iisproxy.ini file for use with a single, non-clustered WebLogic
Server. Comment lines are denoted with the “#” character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.

WebLogicHost=localhost
WebLogicPort=7001
ConnectTimeoutSecs=20
ConnectRetrySecs=2

Here is a sample iisproxy.ini file with clustered WebLogic Servers. Comment lines
are denoted with the “#” character.

Creating ACLs Through IIS

Using Web Server Plug-Ins With WebLogic Server 3-11

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.

WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001
ConnectTimeoutSecs=20
ConnectRetrySecs=2

Note: If you are using SSL between the plug-in and WebLogic Server, the port
number should be defined as the SSL listen port.

Creating ACLs Through IIS

ACLs will not work through the Microsoft Internet Information Server Plug-In if the
Authorization header is not passed by IIS. Use the following information to ensure that
the Authorization header is passed by IIS.

When using Basic Authentication, the user is logged on with local log-on rights. To
enable the use of Basic Authentication, grant each user account the Log On Locally
user right on the IIS server. Two problems may result from Basic Authentication's use
of local logon:

If the user does not have local logon rights, Basic Authentication does not work
even if the FrontPage, IIS, and Windows NT configurations appear to be correct.

A user who has local log-on rights and who can obtain physical access to the
host computer running IIS will be permitted to start an interactive session at the
console.

To enable Basic Authentication, in the Directory Security tab of the console, ensure
that the Allow Anonymous option is “on” and all other options are “off”.

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-12 Using Web Server Plug-Ins With WebLogic Server

Using SSL with the Microsoft Internet
Information Server Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between WebLogic Server and the Microsoft Internet Information Server Plug-In. The
SSL protocol provides confidentiality and integrity to the data passed between the
Microsoft Internet Information Server Plug-In and WebLogic Server.

The Microsoft Internet Information Server Plug-In does not use the transport protocol
(http or https) to determine whether the SSL protocol will be used to protect the
connection between the proxy plug-in and the Microsoft Internet Information Server.
In order to use the SSL protocol with the Microsoft Internet Information Server
Plug-In, configure the WebLogic Server instance receiving the proxied requests to use
the SSL protocol. The port on the WebLogic Server that is configured for secure SSL
communication is used by the Microsoft Internet Information Server Plug-In to
communicate with the Microsoft Internet Information Server.

Configuring SSL

To use the SSL protocol between Microsoft Internet Information Server Plug-In and
WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring the
SSL Protocol at {DOCROOT}/secmanage/ssl.html.

2. Configure the WebLogic Server SSL listen port. For more information, see
Configuring the SSL Protocol at {DOCROOT}/secmanage/ssl.html.

3. Set the WebLogicPort parameter in the iisproxy.ini file to the listen port
configured in step 2.

4. Set the SecureProxy parameter in the iisproxy.ini file to ON.

5. Set additional parameters in the iisproxy.ini file that define the SSL
connection. For a complete list of parameters, see “SSL Parameters for Web
Server Plug-Ins” on page 5-14.

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html

Using SSL with the Microsoft Internet Information Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 3-13

For example:

WebLogicHost=myweblogic.com
WebLogicPort=7002
SecureProxy=ON

Specifying Trust for the WL-Proxy-Client-Cert
Header

The plug-in can encode users’ identity certifications in the WL-Proxy-Client-Cert
header and pass the header to WebLogic Server instances (see Proxying Requests to
Another Web Server). A WebLogic Server instance uses the certificate information
from that header, trusting that it comes from a secure source (the Plug-In), to
authenticate the user. In previous releases of WebLogic Server, the default behavior
was to always trust the WL-Proxy-Client-Cert header. Beginning with WebLogic
Server 6.1 SP2, you need to explicitly define trust of the WL-Proxy-Client-Cert
header. A new parameter, clientCertProxy, allows WebLogic Server to determine
whether to trust the certificate header. For an additional level of security, use a
connection filter to limit all connections into WebLogic Server (therefore allowing
WebLogic Server to only accept connections from the machine on which the plug-in
is running).

The clientCertProxy parameter has been added to the HTTPClusterServlet and
Web applications.

For the HTTPClusterServlet, add the parameter to the web.xml file as follows:

<context-param>

 <param-name>clientCertProxy</param-name>

 <param-value>true</param-value>

</context-param>

For Web applications, add the parameter to the web.xml file as follows:

ServletRequestImpl context-param

<context-param>

 <param-name>weblogic.httpd.clientCertProxy</param-name>

 <param-value>true</param-value>

http://e-docs.bea.com/wls/docs70/plugins/http_proxy.html
http://e-docs.bea.com/wls/docs70/plugins/http_proxy.html

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-14 Using Web Server Plug-Ins With WebLogic Server

</context-param>

You can also use this parameter in a cluster as follows:

<Cluster ClusterAddress="127.0.0.1" Name="MyCluster"

 ClientCertProxyHeader="true"/>

Proxying Servlets from IIS to WebLogic
Server

You can proxy servlets by path if the iisforward.dll is registered as a filter. You
would then invoke your servlet with a URL similar to the following:

http://IISserver/weblogic/myServlet

To proxy servlets if iisforward.dll is not registered as a filter, you must configure
servlet proxying by file type.To proxy servlets by file type:

1. Register an arbitrary file type (extension) with IIS to proxy the request to the
WebLogic Server, as described in step 7. under “Installing and Configuring the
Microsoft Internet Information Server Plug-In” on page 3-3.

2. Register your servlet in the appropriate Web Application. For more information
on registering servlets, see Configuring Servlets at
{DOCROOT}/webapp/components.html#configuring-servlets.

3. Invoke your servlet with a URL formed according to this pattern:
http://www.myserver.com/virtualName/anyfile.ext

where virtualName is the URL pattern defined in the <servlet-mapping>
element of the Web Application deployment descriptor (web.xml) for this
servlet and ext is a file type (extension) registered with IIS for proxying to
WebLogic Server. The anyfile part of the URL is ignored in this context.

Note:

If the image links called from the servlet are part of the Web Application,
you must also proxy the requests for the images to WebLogic Server by

http://e-docs.bea.com/wls/docs70/webapp/components.html#configuring-servlets

Testing the Installation

Using Web Server Plug-Ins With WebLogic Server 3-15

registering the appropriate file types (probably .gif and .jpg) with IIS. You
can, however, choose to serve these images directly from IIS if desired.

If the servlet being proxied has links that call other servlets, then these links
must also be proxied to WebLogic Server, conforming to the pattern
described in step 3.

Testing the Installation

After you install and configure the Microsoft Internet Information Server Plug-In,
follow these steps for deployment and testing:

1. Make sure WebLogic Server and IIS are running.

2. Save a JSP file into the document root of the default Web Application.

3. Open a browser and set the URL to the IIS + filename.jsp as shown in this
example:

http://myii.server.com/filename.jsp

If filename.jsp is displayed in your browser, the plug-in is functioning.

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-16 Using Web Server Plug-Ins With WebLogic Server

Connection Errors and Clustering Failover

When the Microsoft Internet Information Server Plug-In attempts to connect to
WebLogic Server, the plug-in uses several configuration parameters to determine how
long to wait for connections to the WebLogic Server host, and, after a connection is
established, how long the plug-in waits for a response. If the plug-in cannot connect or
does not receive a response, the plug-in attempts to connect and sends the request to
other WebLogic Servers in the cluster. If the connection fails or there is no response
from any WebLogic Server instance in the cluster, an error message is sent.

Figure 3-1 “Connection Failover” on page 3-18 demonstrates how the plug-in handles
failover.

Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate
problems with the host machine, networking problems, or other server failures.

Failure of any WebLogic Server instance in the cluster to respond, could indicate that
WebLogic Server is not running or is unavailable, a hung server, a database problem,
or other application failure.

Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server, the plug-in only attempts to connect
to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP
503 error message is returned. The plug-in continues trying to connect to WebLogic
Server until ConnectTimeoutSecs is exceeded.

Connection Errors and Clustering Failover

Using Web Server Plug-Ins With WebLogic Server 3-17

The Dynamic Server List

When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the
plug-in uses that list as a starting point for load balancing among the members of the
cluster. After the first request is routed to one of these servers, a dynamic server list is
returned containing an updated list of servers in the cluster. The updated list adds any
new servers in the cluster and deletes any that are no longer part of the cluster or that
have failed to respond to requests. This list is updated automatically with the HTTP
response when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions

When a request contains a session information stored in a cookie, in the POST data, or
by URL encoding, the session ID contains a reference to the specific server in which
the session was originally established (called the primary server) and a reference to an
additional server where the original session is replicated (called the secondary server).
A request containing a cookie attempts to connect to the primary server. If that attempt
fails, the request is routed to the secondary server. If both the primary and secondary
servers fail, the session is lost and the plug-in attempts to make a fresh connection to
another server in the dynamic cluster list. For more information see Figure 3-1
“Connection Failover” on page 3-18.

Note: If the POST data is larger than 64K, the plug-in will not parse the POST data
to obtain the session ID. Therefore, if you store the session ID in the POST
data, the plug-in cannot route the request to the correct primary or secondary
server, resulting in possible loss of session data.

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-18 Using Web Server Plug-Ins With WebLogic Server

Figure 3-1 Connection Failover

Notes: The HTTP error code thrown by the plug-in depends on the situation. Plug-in
will return the HTTP error code 500 in the following conditions:

Neither WebLogicCluster nor WebLogicPort was specified in the
httpd.conf file.

Connection Errors and Clustering Failover

Using Web Server Plug-Ins With WebLogic Server 3-19

Unable to resolve the WebLogicHost parameter specified in the
httpd.conf file.

Port number specified by WebLogicPort, in the httpd.conf file, exceeds
65535.

Unsuccessful in parsing the request while applying the PathTrim
property.

The request header is of type Unknown Transfer-Encoding.

Failed to read the chunked request.

Encounetered an error reading POST data from client.

Failed to open a temporary(temp) file.

Failed to write POST data to the temp file.

Encounetered an error reading POST data from the temp file.

POST timed out.

SSL was specified without the parameter trustedCAFile.

On the other hand, the HTTP error code 503 is returned when:

The maximum number of retries is exceeded. This value is computed by
dividing ConnectTimeoutSecs by ConnectRetrySecs.

Idempotent is OFF.

3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3-20 Using Web Server Plug-Ins With WebLogic Server

Using Web Server Plug-Ins With WebLogic Server 4-1

CHAPTER

4 Installing and
Configuring the
Netscape Enterprise
Server (NES) Plug-In

The following sections describe how to install and configure the Netscape Enterprise
Server (NES) proxy plug-in:

Overview of the Netscape Enterprise Server Plug-In

Installing and Configuring the Netscape Enterprise Server Plug-In

Using SSL with the NES Plug-In

Connection Errors and Clustering Failover

Failover Behavior When Using Firewalls and Load Directors

Sample obj.conf File (Not Using a WebLogic Cluster)

Sample obj.conf File (Using a WebLogic Cluster)

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-2 Using Web Server Plug-Ins With WebLogic Server

Overview of the Netscape Enterprise Server
Plug-In

The Netscape Enterprise Server Plug-In enables requests to be proxied from Netscape
Enterprise Server (NES, also called iPlanet) to WebLogic Server. The plug-in
enhances an NES installation by allowing WebLogic Server to handle those requests
that require the dynamic functionality of WebLogic Server.

The Netscape Enterprise Server Plug-In is designed for an environment where
Netscape Enterprise Server serves static pages, and a Weblogic Server instance
(operating in a different process, possibly on a different machine) is delegated to serve
dynamic pages, such as JSPs or pages generated by HTTP Servlets. The connection
between WebLogic Server and the Netscape Enterprise Server Plug-In is made using
clear text or Secure Sockets Layer (SSL). To the end user—the browser—the HTTP
requests delegated to WebLogic Server appear to come from the same source as the
static pages. Additionally, the HTTP-tunneling facility of WebLogic Server can
operate through the Netscape Enterprise Server Plug-In, providing access to all
WebLogic Server services (not just dynamic pages).

The Netscape Enterprise Server Plug-In operates as an NES module (see
http://home.netscape.com/servers/index.html) within a Netscape
Enterprise Server. The NES module is loaded by NES at startup, and then certain
HTTP requests are delegated to it. NES is similar to an HTTP (Java) servlet, except
that an NES module is written in code native to the platform.

For more information on supported versions of Netscape Enterprise Server and iPlanet
servers, see the BEA WebLogic Server Certifications Page.

Connection Pooling and Keep-Alive

The WebLogic Server Netscape Enterprise Server Plug-In provides efficient
performance by using a re-usable pool of connections from the plug-in to WebLogic
Server. The NES plug-in automatically implements “keep-alive” connections between
the plug-in and WebLogic Server. If a connection is inactive for more than 30 seconds
or a user-defined amount of time, the connection is closed. You can disable this feature
if desired. For more information, see KeepAliveEnabled.

http://home.netscape.com/servers/index.html
http://e-docs.bea.com/platform/suppconfigs

Certifications

Using Web Server Plug-Ins With WebLogic Server 4-3

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests based on the URL of the request (or a portion of the
URL). This is called proxying by path. You can also proxy request based on the MIME
type of the requested file. Or you can use a combination of both methods. If a request
matches both criteria, the request is proxied by path. You can also specify additional
parameters for each of these types of requests that define additional behavior of the
plug-in. For more information, see “Installing and Configuring the Netscape
Enterprise Server Plug-In” on page 4-3.

Certifications

The Netscape Enterprise Server Plug-In is supported on Linux, Solaris, AIX, and
Windows platforms. Plug-ins are not supported on all operating systems for all
releases. For information on platform support for specific versions of Netscape
Enterprise Server Plug-In, see Platform Support for WebLogic Server Plug-ins and
Web Servers in Supported Configurations for WebLogic Server 7.0.

Installing and Configuring the Netscape
Enterprise Server Plug-In

To install and configure the Netscape Enterprise Server Plug-In:

1. Copy the library.

The WebLogic Server NES plug-in module is distributed as a shared object
(.so) on UNIX platforms and as a dynamic-link library (.dll) on Windows.
These files are located in the WL_HOME/server/lib or WL_HOME/server/bin
directories of your WebLogic Server distribution. WL_HOME represets the top
level installation directory for your WebLogic platform. The modules are:

http://e-docs.bea.com/wls/certifications/certs_700/overview.html#1068392
http://e-docs.bea.com/wls/certifications/certs_700/overview.html#1068392

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-4 Using Web Server Plug-Ins With WebLogic Server

Linux: lib/linux/i686/libproxy.so

AIX: lib/aix/libproxy4x.so or lib/aix/libproxy4x_128.so

Solaris: lib/solaris/libproxy.so

Windows: server/bin/proxy36.dll

For the Sun One Web Server version 6.1, the modules are as follows:

Solaris: sol_sparc_61/libproxy_61.so or
sol_sparc_61/libproxy128_61.so

 HP-UX: hpux11_61/libproxy_61.sl or
hpux11_61/libproxy128_61.sl

Windows: nt_61/proxy61.dll or nt_61/proxy61128.dll

2. Read “Guidelines for Modifying the obj.conf File” on page 4-9, then modify the
NES obj.conf file as described in the following steps. The obj.conf file
defines which requests are proxied to WebLogic Server and other configuration
information.

3. Locate and open obj.conf.

The obj.conf file for your NES instance is in the following location:
NETSCAPE_HOME/https-INSTANCE_NAME/config/obj.conf

Where NETSCAPE_HOME is the root directory of the NES installation, and
INSTANCE_NAME is the particular “instance” or server configuration that you are
using. For example, on a UNIX machine called myunixmachine, the obj.conf
file would be found here:

/usr/local/netscape/enterprise-351/
 https-myunixmachine/config/obj.conf

4. Instruct NES to load the native library (the .so or .dll file) as an NES module.

To use iPlanet 4.x or earlier, add the following lines to the beginning of the
obj.conf file.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/SHARED_LIBRARY
Init fn="wl_init"

Where SHARED_LIBRARY is the shared object or dll (for example
libproxy.so) that you installed in step 1. under “Installing and Configuring the
Netscape Enterprise Server Plug-In” on page 4-3. The function “load-modules”
tags the shared library for loading when NES starts up. The values “wl_proxy”

Installing and Configuring the Netscape Enterprise Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 4-5

and “wl_init” identify the functions that the Netscape Enterprise Server
Plug-In executes.

To use iPlanet 6.0, add the following lines to the beginning of the magnus.conf
file. These lines instruct NES to load the native library (the .so or .dll file) as
an NES module:

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/SHARED_LIBRARY
Init fn="wl_init"

Where SHARED_LIBRARY is the shared object or dll (for example
libproxy.so) that you installed in step 1. under “Installing and Configuring the
Netscape Enterprise Server Plug-In” on page 4-3. The function “load-modules”
tags the shared library for loading when NES starts up. The values “wl_proxy”
and “wl_init” identify the functions that the Netscape Enterprise Server
Plug-In executes.

5. If you want to proxy requests by URL, (also called proxying by path.) create a
separate <Object> tag for each URL that you want to proxy and define the
PathTrim parameter. (You can proxy requests by MIME type, in addition to or
instead of proxying requests by path. See step 6. Proxying by path supersedes
proxying by MIME type.) The following is an example of an <Object> tag that
proxies a request containing the string */weblogic/*.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"
</Object>

To create an <Object> tag to proxy requests by URL:

a. Specify a name for this object (optional) inside the opening <Object> tag using
the name attribute. The name attribute is informational only and is not used by
the Netscape Enterprise Server Plug-In. For example:

<Object name=myObject ...>

b. Specify the URL to be proxied within the <Object> tag, using the ppath
attribute. For example:

<Object name=myObject ppath="*/weblogic/*>

The value of the ppath attribute can be any string that identifies requests
intended for Weblogic Server. When you use a ppath, every request that
contains that path is redirected. For example, a ppath of “*/weblogic/*”
redirects every request that begins “http://enterprise.com/weblogic”

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-6 Using Web Server Plug-Ins With WebLogic Server

to the Netscape Enterprise Server Plug-In, which sends the request to the
specified Weblogic host or cluster.

c. Add the Service directive within the <Object> and </Object> tags. In the
Service directive you can specify any valid parameters as name=value pairs.
Separate multiple name=value pairs with one and only one space. For example:

Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"

For a complete list of parameters, see “General Parameters for Web Server
Plug-Ins” on page 5-2. You must specify the following parameters:

For a non-clustered WebLogic Server:
The WebLogicHost and WebLogicPort parameters.

For a cluster of WebLogic Server instances:
The WebLogicCluster parameter.

Always begin the Service directive with Service fn=wl_proxy, followed by
valid name=value pairs of parameters.

Here is an example of the object definitions for two separate ppaths that
identify requests to be sent to different instances of WebLogic Server:

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"
</Object>

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy WebLogicHost=otherserver.com\
WebLogicPort=7008
</Object>

Note: Parameters that are not required, such as PathTrim, can be used to further
configure the way the ppath is passed through the Netscape Enterprise Server
Plug-In. For a complete list of plug-in parameters, see “General Parameters for
Web Server Plug-Ins” on page 5-2.

6. If you are proxying requests by MIME type, add any new MIME types
referenced in the obj.conf file to the MIME.types file. You can add MIME
types by using the Netscape server console or by editing the MIME.types file
directly.

To directly edit the MIME.types file, open the file for edit and type the
following line:

Installing and Configuring the Netscape Enterprise Server Plug-In

Using Web Server Plug-Ins With WebLogic Server 4-7

type=text/jsp exts=jsp

Note: For NES 4.0 (iPlanet), instead of adding the MIME type for JSPs,
change the existing MIME type from

magnus-internal/jsp

to

text/jsp.

To use the Netscape console, select Manage Preferences→ Mime Types, and
make the additions or edits.

7. All requests with a designated MIME type extension (for example, .jsp) can be
proxied to the WebLogic Server, regardless of the URL. To proxy all requests of
a certain file type to WebLogic Server:

a. Add a Service directive to the existing default Object definition. (<Object
name=default ...>)

For example, to proxy all JSPs to a WebLogic Server, the following Service
directive should be added after the last line that begins with:

 NameTrans fn=....

and before the line that begins with:

PathCheck.

Service method="(GET|HEAD|POST|PUT)" type=text/jsp
fn=wl_proxy\
WebLogicHost=192.1.1.4 WebLogicPort=7001
PathPrepend=/jspfiles

This Service directive proxies all files with the .jsp extension to the
designated WebLogic Server, where they are served with a URL like this:
http://WebLogic:7001/jspfiles/myfile.jsp

The value of the PathPrepend parameter should correspond to the context
root of a Web Application that is deployed on the WebLogic Server or cluster
to which requests are proxied.

After adding entries for the Netscape Enterprise Server Plug-In, the default
Object definition will be similar to the following example, with the
additions shown in bold:

<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons\

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-8 Using Web Server Plug-Ins With WebLogic Server

dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"
NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp\
fn=wl_proxy WebLogicHost=localhost WebLogicPort=7001\
PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
If a required parameter is missing from the configuration, when the object is
invoked it issues an HTML error that notes the missing parameter from the
configuration.

ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap\
fn=imagemap
Service method=(GET|HEAD) \
type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) \
type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

b. Add a similar Service statement to the default object definition for all other
MIME types that you want to proxy to WebLogic Server.

c. To configure proxy-by-MIME for the JSP,you must add the following entry to
the mime.types file

type=text/jsp exts=jsp

For proxy-by-MIME to work properly you need to disable JAVA from the Sun
One Web Server otherwise SUN One will try to serve all requests that end in
*.jsp and will return a 404 error as it will fail to locate the resource under
$doc_root.

To disable JAVA from the Sun One Web Server, comment out the following in
the obj.conf file under the name="default"#NameTrans fn="ntrans-j2ee"
name="j2ee" and restart the webserver.

8. Optionally, if you are proxying by path, enable HTTP-tunneling:

Guidelines for Modifying the obj.conf File

Using Web Server Plug-Ins With WebLogic Server 4-9

Add the following object definition to the obj.conf file, substituting the
WebLogic Server host name and the WebLogic Server port number, or the name
of a WebLogic Cluster that you wish to handle HTTP tunneling requests.

<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicHost=192.192.1.4\
WebLogicPort=7001
</Object>

9. Deploy and test the Netscape Enterprise Server Plug-In

a. Start WebLogic Server.

b. Start Netscape Enterprise Server. If NES is already running, you must either
restart it or apply the new settings from the console in order for the new settings
to take effect.

c. To test the Netscape Enterprise Server Plug-In, open a browser and set the URL
to the Netscape Enterprise Server + /weblogic/, which should bring up the
default WebLogic Server HTML page, welcome file, or default servlet, as
defined for the default Web Application as shown in this example:
http://myenterprise.server.com/weblogic/

For information on how to create a default Web Application, read
Configuring Web Application Components at
{DOCROOT}/webapp/components.html.

Guidelines for Modifying the obj.conf File

To use the Netscape Enterprise Server Plug-In, you must make several modifications
to the NES obj.conf file. These modifications specify how requests are proxied to
WebLogic Server. You can proxy requests by URL or by MIME type. The procedure
for each is described in “Installing and Configuring the Netscape Enterprise Server
Plug-In” on page 4-3.

The Netscape obj.conf file is very strict about the placement of text. To avoid
problems, note the following regarding the obj.conf file:

Eliminate extraneous leading and trailing white space. Extra white space can
cause your Netscape server to fail.

http://e-docs.bea.com/wls/docs70/webapp/components.html
http://e-docs.bea.com/wls/docs70/webapp/components.html

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-10 Using Web Server Plug-Ins With WebLogic Server

If you must enter more characters than you can fit on one line, place a backslash
(\) at the end of that line and continue typing on the following line. The
backslash directly appends the end of the first line to the beginning of the
following line. If a space is necessary between the words that end the first line
and begin the second line, be certain to use one space, either at the end of the
first line (before the backslash), or at the beginning of the second line.

Do not split attributes across multiple lines. (For example, all servers in a cluster
must be listed in the same line, following WebLogicCluster.)

Sample obj.conf File (Not Using a WebLogic Cluster)

Using Web Server Plug-Ins With WebLogic Server 4-11

Sample obj.conf File (Not Using a WebLogic
Cluster)

Below is an example of lines that should be added to the obj.conf file if you are not
using a cluster. You can use this example as a template that you can modify to suit your
environment and server. Lines beginning with # are comments.

Note: Make sure that you do not include any extraneous white space in the obj.conf
file. Copying and pasting from the samples below sometimes adds extra white
space, which can create problems when reading the file.

You can read the full documentation on Enterprise Server configuration files in the
Netscape Enterprise Server Plug-In documentation.

------------- BEGIN SAMPLE OBJ.CONF CONFIGURATION ---------
(no cluster)

The following line locates the NES library for loading at
startup, and identifies which functions within the library are
NES functions. Verify the path to the library (the value
of the shlib=<...> parameter) and that the file is
readable, or the server fails to start.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/libproxy.so
Init fn="wl_init"

Configure which types of HTTP requests should be handled by the
NES module (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.

Here we configure the NES module to pass requests for
"/weblogic" to a WebLogic Server listening at port 7001 on
the host myweblogic.server.com.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myweblogic.server.com\
WebLogicPort=7001 PathTrim="/weblogic"
</Object>

Here we configure the plug-in so that requests that
match "/servletimages/" is handled by the
plug-in/WebLogic.

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-12 Using Web Server Plug-Ins With WebLogic Server

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy WebLogicHost=192.192.1.4 WebLogicPort=7001
</Object>

This Object directive works by file extension rather than
request path. To use this configuration, you must also add
a line to the mime.types file:
#
type=text/jsp exts=jsp

This configuration means that any file with the extension
".jsp" are proxied to WebLogic. Then you must add the
Service line for this extension to the Object "default",
which should already exist in your obj.conf file:

<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"
NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicHost=localhost WebLogicPort=7001 PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap\
fn=imagemap
Service method=(GET|HEAD) \
type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

The following directive enables HTTP-tunneling of the
WebLogic protocol through the NES plug-in.

<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicHost=192.192.1.4 WebLogicPort=7001
</Object>

#
------------- END SAMPLE OBJ.CONF CONFIGURATION ---------

Sample obj.conf File (Using a WebLogic Cluster)

Using Web Server Plug-Ins With WebLogic Server 4-13

Sample obj.conf File (Using a WebLogic
Cluster)

Below is an example of lines that should be added to obj.conf if you are using a
WebLogic Server cluster. You can use this example as a template that you can modify
to suit your environment and server. Lines beginning with # are comments.

Note: Make sure that you do not include any extraneous white space in the obj.conf
file. Copying and pasting from the samples below sometimes adds extra white
space, which can create problems when reading the file.

Note: If you are proxying to more than one WebLogic Server cluster from a single
Web server, each cluster must have a unique CookieName parameter, and each
value should start with a unique string.

For more information, see the full documentation on Enterprise Server configuration
files from Netscape.

------------- BEGIN SAMPLE OBJ.CONF CONFIGURATION ---------
(using a WebLogic Cluster)

The following line locates the NES library for loading at
startup, and identifies which functions within the library are
NES functions. Verify the path to the library (the value
of the shlib=<...> parameter) and that the file is
readable, or the server fails to start.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/libproxy.so
Init fn="wl_init"

Configure which types of HTTP requests should be handled by the
NES module (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.

Here we configure the NES module to pass requests for
"/weblogic" to a cluster of WebLogic Servers.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy \
WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,\

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-14 Using Web Server Plug-Ins With WebLogic Server

theirweblogic.com:7001" PathTrim="/weblogic"
</Object>

Here we configure the plug-in so that requests that
match "/servletimages/" are handled by the
plug-in/WebLogic.

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy \
WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,\
theirweblogic.com:7001"
</Object>

This Object directive works by file extension rather than
request path. To use this configuration, you must also add
a line to the mime.types file:
#
type=text/jsp exts=jsp

This configuration means that any file with the extension
".jsp" is proxied to WebLogic. Then you must add the
Service line for this extension to the Object "default",
which should already exist in your obj.conf file:

<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"
NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,\
theirweblogic.com:7001",PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap\
fn=imagemap
Service method=(GET|HEAD) \
type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

Using SSL with the NES Plug-In

Using Web Server Plug-Ins With WebLogic Server 4-15

The following directive enables HTTP-tunneling of the
WebLogic protocol through the NES plug-in.

<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicCluster="myweblogic.com:7001,\
yourweblogic.com:7001,theirweblogic.com:7001"
</Object>

#
------------- END SAMPLE OBJ.CONF CONFIGURATION ---------

Using SSL with the NES Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between the Netscape Enterprise Server Plug-In, and WebLogic Server. The SSL
protocol provides confidentiality and integrity to the data passed between the Netscape
Enterprise Server Plug-In and WebLogic Server.

The Netscape Enterprise Server Plug-In does not use the transport protocol (http or
https) specified in the HTTP request (usually by the browser) to determine whether
or not the SSL protocol will be used to protect the connection between the Netscape
Enterprise Server Plug-In and WebLogic Server.

To use the SSL protocol between Netscape Enterprise Server Plug-In and WebLogic
Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring the
SSL Protocol at {DOCROOT}/secmanage/ssl.html.

2. Configure the WebLogic Server SSL listen port. For more information, see
Configuring the SSL Protocol at {DOCROOT}/secmanage/ssl.html.

3. Set the WebLogicPort parameter in the Service directive in the obj.conf file
to the listen port configured in step 2.

4. Set the SecureProxy parameter in the Service directive in the obj.conf file
file to ON.

5. Set additional parameters in the Service directive in the obj.conf file that
define information about the SSL connection. For a complete list of parameters,
see “SSL Parameters for Web Server Plug-Ins” on page 5-14.

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-16 Using Web Server Plug-Ins With WebLogic Server

Specifying Trust for the WL-Proxy-Client-Cert
Header

The plug-in can encode users’ identity certifications in the WL-Proxy-Client-Cert
header and pass the header to WebLogic Server instances (see Proxying Requests to
Another Web Server). A WebLogic Server instance uses the certificate information
from that header, trusting that it comes from a secure source (the Plug-In), to
authenticate the user. In previous releases of WebLogic Server, the default behavior
was to always trust the WL-Proxy-Client-Cert header. Beginning with WebLogic
Server 6.1 SP2, you need to explicitly define trust of the WL-Proxy-Client-Cert
header. A new parameter, clientCertProxy, allows WebLogic Server to determine
whether to trust the certificate header. For an additional level of security, use a
connection filter to limit all connections into WebLogic Server (therefore allowing
WebLogic Server to only accept connections from the machine on which the plug-in
is running).

The clientCertProxy parameter has been added to the HTTPClusterServlet and
Web applications.

For the HTTPClusterServlet, add the parameter to the web.xml file as follows:

<context-param>

 <param-name>clientCertProxy</param-name>

 <param-value>true</param-value>

</context-param>

For Web applications, add the parameter to the web.xml file as follows:

ServletRequestImpl context-param

<context-param>

 <param-name>weblogic.httpd.clientCertProxy</param-name>

 <param-value>true</param-value>

</context-param>

You can also use this parameter in a cluster as follows:

<Cluster ClusterAddress="127.0.0.1" Name="MyCluster"

 ClientCertProxyHeader="true"/>

http://e-docs.bea.com/wls/docs70/plugins/http_proxy.html
http://e-docs.bea.com/wls/docs70/plugins/http_proxy.html

Connection Errors and Clustering Failover

Using Web Server Plug-Ins With WebLogic Server 4-17

Connection Errors and Clustering Failover

When the Netscape Enterprise Server Plug-In attempts to connect to WebLogic Server,
the plug-in uses several configuration parameters to determine how long to wait for
connections to the WebLogic Server host, and, after a connection is established, how
long the plug-in waits for a response. If the plug-in cannot connect or does not receive
a response, the plug-in attempts to connect and send the request to other WebLogic
Servers in the cluster. If the connection fails or there is no response from any
WebLogic Server in the cluster, an error message is sent.

Figure 4-1 “Connection Failover” on page 4-19 demonstrates how the plug-in handles
failover.

Possible Causes of Connection Failures

Failure of the WebLogic Server host to respond to a connection request could indicate
possible problems with the host machine, networking problems, or other server
failures.

Failure of all WebLogic Server instances to respond, could indicate that WebLogic
Server is not running or is unavailable, a hung server, a database problem, or other
application failure.

Failover with a Single, Non-Clustered WebLogic Server

If you are running a single WebLogic Server instance, the plug-in attempts to connect
to that server which is defined with the WebLogicHost parameter. If the attempt fails,
an HTTP 503 error message is returned. The plug-in continues trying to connect to
WebLogic Server until ConnectTimeoutSecs is exceeded.

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-18 Using Web Server Plug-Ins With WebLogic Server

The Dynamic Server List

When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the
plug-in uses that list as a starting point for load balancing among the members of the
cluster. After the first request is routed to one of these servers, a dynamic server list is
returned containing an updated list of servers in the cluster. The updated list adds any
new servers in the cluster and deletes any that are no longer part of the cluster or that
have failed to respond to requests. This list is updated automatically with the HTTP
response when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions

When a request contains session information stored in a cookie, in the POST data, or
by URL encoding, the session ID contains a reference to the specific server in which
the session was originally established (called the primary server) and a reference to an
additional server where the original session is replicated (called the secondary server).
A request containing a cookie attempts to connect to the primary server. If that attempt
fails, the request is routed to the secondary server. If both the primary and secondary
servers fail, the session is lost and the plug-in attempts to make a fresh connection to
another server in the dynamic cluster list. For more information, see Figure 4-1
“Connection Failover” on page 4-19.

Note: If the POST data is larger than 64K, the plug-in will not parse the POST data
to obtain the session ID. Therefore, if you store the session ID in the POST
data, the plug-in cannot route the request to the correct primary or secondary
server, resulting in possible loss of session data.

Connection Errors and Clustering Failover

Using Web Server Plug-Ins With WebLogic Server 4-19

Figure 4-1 Connection Failover

Notes: The HTTP error code thrown by the plug-in depends on the situation. Plug-in
will return the HTTP error code 500 in the following conditions:

Neither WebLogicCluster nor WebLogicPort was specified in the
httpd.conf file.

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-20 Using Web Server Plug-Ins With WebLogic Server

Unable to resolve the WebLogicHost parameter specified in the
httpd.conf file.

Port number specified by WebLogicPort, in the httpd.conf file, exceeds
65535.

Unsuccessful in parsing the request while applying the PathTrim
property.

The request header is of type Unknown Transfer-Encoding.

Failed to read the chunked request.

Encounetered an error reading POST data from client.

Failed to open a temporary(temp) file.

Failed to write POST data to the temp file.

Encounetered an error reading POST data from the temp file.

POST timed out.

SSL was specified without the parameter trustedCAFile.

On the other hand, the HTTP error code 503 is returned when:

The maximum number of retries is exceeded. This value is computed by
dividing ConnectTimeoutSecs by ConnectRetrySecs.

Idempotent is OFF.

Failover Behavior When Using Firewalls and
Load Directors

In most configurations, the Netscape Enterprise Server Plug-In sends a request to the
primary instance of a cluster. When that instance is unavailable, the request fails over
to the secondary instance. However, in some configurations that use combinations of
firewalls and load-directors, any one of the servers (firewall or load-directors) can
accept the request and return a successful connection while the primary instance of

Failover Behavior When Using Firewalls and Load Directors

Using Web Server Plug-Ins With WebLogic Server 4-21

WebLogic Server is unavailable. After attempting to direct the request to the primary
instance of WebLogic Server (which is unavailable), the request is returned to the
plug-in as “connection reset.”

Requests running through combinations of firewalls (with or without load-directors)
are handled by WebLogic Server. In other words, responses of connection reset
fail over to a secondary instance of WebLogic Server. Because responses of
connection reset fail over in these configurations, servlets must be idempotent.
Otherwise duplicate processing of transactions may result.

4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In

4-22 Using Web Server Plug-Ins With WebLogic Server

Using Web Server Plug-Ins With WebLogic Server 5-1

CHAPTER

5 Parameters for Web
Server Plug-Ins

The following sections describe the parameters that you use to configure the Apache,
Netscape, and Microsoft IIS Web server plug-ins:

Entering Parameters in Web Server Plug-In Configuration files

General Parameters for Web Server Plug-Ins

SSL Parameters for Web Server Plug-Ins

Entering Parameters in Web Server Plug-In
Configuration files

You enter the parameters for each Web server plug-in in special configuration files.
Each Web server has a different name for this configuration file and different rules for
formatting the file. For details, see the following sections on each plug-in:

“Installing and Configuring the Apache HTTP Server Plug-In” on page 2-1

“Installing and Configuring the Microsoft Internet Information Server (IIS)
Plug-In” on page 3-1

“Installing and Configuring the Netscape Enterprise Server (NES) Plug-In” on
page 4-1

5 Parameters for Web Server Plug-Ins

5-2 Using Web Server Plug-Ins With WebLogic Server

General Parameters for Web Server Plug-Ins

Note: Parameters are case sensitive.

Parameter Default Description

QueryFromRequest

(Apache HTTP Server only)
OFF When set to ON, specifies that the Apache plug-in use

(request_rec *)r->the request
to pass the query string to WebLogic Server. (For more
information, see your Apache documentation.) This behavior is
desirable in the following situations:

When a Netscape version 4.x browser makes requests that
contain spaces in the query string
If you are using FastStart Apache 1.5.2 on HP

When set to OFF, the Apache plug-in uses
(request_rec *)r->args to pass the query string to
WebLogic Server.

KeepAliveSecs

(Does not apply to Apache
HTTP Server version 1.3.x)

20 The length of time after which an inactive connection between
the plug-in and WebLogic Server is closed. You must set
KeepAliveEnabled to true (ON if using the Apache
plug-in) for this parameter to be effective.
The value of this parameter must be less than or equal to the
value of the Duration field set in the Administration Console on
the Server/HTTP tab, or the value set on the server Mbean
with the KeepAliveSecs attribute.

WlForwardPath

(Microsoft Internet Information
Server only)

null If WlForwardPath is set to "/" all requests are proxied. To
forward any requests starting with a particular string, set
WlForwardPath to the string. For example, setting
WlForwardPath to /weblogic forwards all requests starting
with /weblogic to Weblogic Server.
This parameter is required if you are proxying by path. You can
set multiple strings by separating the strings with commas. For
example: WlForwardPath=/weblogic,/bea.

General Parameters for Web Server Plug-Ins

Using Web Server Plug-Ins With WebLogic Server 5-3

ConnectRetrySecs 2 Interval in seconds that the plug-in should sleep between
attempts to connect to the WebLogic Server host (or all of the
servers in a cluster). Make this number less than the
ConnectTimeoutSecs. The number of times the plug-in tries
to connect before returning an HTTP 503/Service
Unavailable response to the client is calculated by dividing
ConnectTimeoutSecs by ConnectRetrySecs.
To specify no retries, set ConnectRetrySecs equal to
ConnectTimeoutSecs. However, the plug-in attempts to
connect at least twice.
You can customize the error response by using the ErrorPage
parameter.

WLDNSRefreshInterval 0 (Lookup
once,
during
startup)

Only applies to NSAPI and Apache.

If defined in the proxy configuration, specifies number of
seconds interval at which WebLogic Server refreshes DNS
name to IP mapping for a server. This can be used in the event
that a WebLogic Server instance is migrated to a different IP
address, but the DNS name for that server's IP remains the same.
In this case, at the specified refresh interval the DNS<->IP
mapping will be updated.

ConnectTimeoutSecs 10 Maximum time in seconds that the plug-in should attempt to
connect to the WebLogic Server host. Make the value greater
than ConnectRetrySecs. If ConnectTimeoutSecs
expires without a successful connection, even after the
appropriate retries (see ConnectRetrySecs), an HTTP
503/Service Unavailable response is sent to the client.
You can customize the error response by using the ErrorPage
parameter.

CookieName JSESSIO
NID

If you change the name of the WebLogic Server session cookie
in the WebLogic Server Web Application, you need to change
the CookieName parameter in the plug-in to the same value.
The name of the WebLogic session cookie is set in the
WebLogic-specific deployment descriptor, in the
<session-descriptor> (see
{DOCROOT}/webapp/weblogic_xml.html#session
-descriptor) element.

Parameter Default Description

http://e-docs.bea.com/wls/docs70/webapp/weblogic_xml.html#session-descriptor

5 Parameters for Web Server Plug-Ins

5-4 Using Web Server Plug-Ins With WebLogic Server

Debug OFF Sets the type of logging performed for debugging operations.
The debugging information is written to the
/tmp/wlproxy.log file on UNIX systems and to the
c:\TEMP\wlproxy.log file on Windows NT/2000 systems.
Override this location and filename by setting the WLLogFile
parameter to a different directory and file. Ensure that the tmp or
TEMP directory has write permission assigned to the user who
is logged in to the server. Set any of the following logging
options (HFC,HTW,HFW, and HTC options may be set in
combination by entering them separated by commas, for
example “HFC,HTW”):

ON
The plug-in logs informational and error
messages.

OFF
No debugging information is logged.

HFC
The plug-in logs headers from the client,
informational, and error messages.

HTW
The plug-in logs headers sent to WebLogic Server,
and informational and error messages.

HFW
The plug-in logs headers sent from WebLogic
Server, and informational and error messages.

HTC
The plug-in logs headers sent to the client,
informational messages, and error messages.

ERR
Prints only the error messages in the plug-in.

ALL
The plug-in logs headers sent to and from the
client, headers sent to and from WebLogic Server,
information messages, and error messages.

Parameter Default Description

General Parameters for Web Server Plug-Ins

Using Web Server Plug-Ins With WebLogic Server 5-5

DebugConfigInfo OFF Enables the special query parameter
“__WebLogicBridgeConfig”. Use it to get details about
configuration parameters from the plug-in.
For example, if you enable “__WebLogicBridgeConfig”
by setting DebugConfigInfo and then send a request that
includes the query string ?__WebLogicBridgeConfig, then
the plug-in gathers the configuration information and run-time
statistics and returns the information to the browser. The plug-in
does not connect to WebLogic Server in this case.
This parameter is strictly for debugging and the format of the
output message can change with releases. For security purposes,
keep this parameter turned OFF in production systems.

DefaultFileName none If the URI is “/” then the plug-in performs the following steps:
1. Trims the path specified with the PathTrim parameter.
2. Appends the value of DefaultFileName.
3. Prepends the value specified with PathPrepend.
This procedure prevents redirects from WebLogic Server.
Set the DefaultFileName to the default welcome page of the
Web Application in WebLogic Server to which requests are
being proxied. For example, If the DefaultFileName is set to
welcome.html, an HTTP request like
“http://somehost/weblogic” becomes
“http://somehost/weblogic/welcome.html”. For
this parameter to function, the same file must be specified as a
welcome file in all the Web Applications to which requests are
directed. For more information, see “Configuring Welcome
Pages” at {DOCROOT}/webapp/components.
Note for Apache users: If you are using Stronghold or FastStart
versions, define this parameter inside of a Location block, and
not in an IfModule block.

Parameter Default Description

http://e-docs.bea.com/wls/docs70/webapp/components.html#welcome_pages
http://e-docs.bea.com/wls/docs70/webapp/components.html#welcome_pages

5 Parameters for Web Server Plug-Ins

5-6 Using Web Server Plug-Ins With WebLogic Server

DynamicServerList ON When set to OFF, the plug-in ignores the dynamic cluster list
used for load balancing requests proxied from the plug-in and
only uses the static list specified with the WebLogicCluster
parameter. Normally this parameter should remain set to ON.
There are some implications for setting this parameter to OFF:

If one or more servers in the static list fails, the plug-in could
waste time trying to connect to a dead server, resulting in
decreased performance.
If you add a new server to the cluster, the plug-in cannot
proxy requests to the new server unless you redefine this
parameter. WebLogic Server automatically adds new
servers to the dynamic server list when they become part of
the cluster.

ErrorPage none You can create your own error page that is redirected to, when
your Web server is unable to forward requests to WebLogic
Server.
The plug-in redirects to an error page when the back-end server
returns an HTTP 503/Service Unavailable response and there
are no servers for failover.

Parameter Default Description

General Parameters for Web Server Plug-Ins

Using Web Server Plug-Ins With WebLogic Server 5-7

FileCaching ON When set to ON, and the size of the POST data in a request is
greater than 2048 bytes, the POST data is first read into a
temporary file on disk and then forwarded to the WebLogic
Server in chunks of 8192 bytes. This preserves the POST data
during failover, allowing all necessary data to be repeated to the
secondary if the primary goes down.

Note that when FileCaching is ON, any client that tracks the
progress of the POST will see that the transfer has completed
even though the data is still being transferred between the
WebServer and WebLogic. So, if you want the progress bar
displayed by a browser during the upload to reflect when the
data is actually available on the WebLogic Server, you might not
want to have FileCaching ON.

When set to OFF and the size of the POST data in a request is
greater than 2048 bytes, the reading of the POST data is
postponed until a WebLogic Server cluster member is identified
to serve the request. Then the Plugin reads and immediately
sends the POST data to the WebLogic Server in chunks of 8192
bytes.

Note that turning FileCaching OFF limits failover. If the
WebLogic Server primary server goes down while processing
the request, the POST data already sent to the primary cannot be
repeated to the secondary.
Finally, regardless of how FileCaching is set, if the size of the
POST data is 2048 bytes or less the plugin will read the data into
memory and use it if needed during failover to repeat to the
secondary.

FilterPriorityLevel

(Microsoft Internet Information
Server only)

2 The values for this parameter are 0 (low), 1 (medium), and 2
(high). The default value is 2. This priority should be put in
iisforward.ini file.This property is used to set the priority level
for the iisforward.dll filter in IIS. Priority level is used by IIS to
decide which filter will be invoked first, in case multiple filters
match the incoming request.

WLSocketTimeoutSecs 2 (must
be
greater
than 0)

Sets the timeout for the socket while connecting, in seconds.

Parameter Default Description

5 Parameters for Web Server Plug-Ins

5-8 Using Web Server Plug-Ins With WebLogic Server

HungServerRecoverSecs 300 Defines the amount of time the plug-in waits for a response to a
request from WebLogic Server. The plug-in waits for
HungServerRecoverSecs for the server to respond and then
declares that server dead, and fails over to the next server. The
value should be set to a very large value. If the value is less than
the time the servlets take to process, then you may see
unexpected results.
Minimum value: 10
Maximum value: Unlimited

Idempotent ON When set to ON and if the servers do not respond within
HungServerRecoverSecs, the plug-ins fail over.
If set to “OFF” the plug-ins do not fail over. If you are using the
Netscape Enterprise Server Plug-In, or Apache HTTP Server
you can set this parameter differently for different URLs or
MIME types.

KeepAliveEnabled

(Does not apply to Apache
HTTP Server version 1.3.x)

true
(Netscape
and
Microsoft
IIS
plug-ins)
ON
(Apache
plug-in)

Enables pooling of connections between the plug-in and
WebLogic Server.
Valid values for the Netscape and Microsoft IIS plug-ins are
true and false.
Valid values for the Apache plug-in are ON and OFF.

Parameter Default Description

General Parameters for Web Server Plug-Ins

Using Web Server Plug-Ins With WebLogic Server 5-9

MatchExpression

(Apache HTTP Server only)
none When proxying by MIME type, set the filename pattern inside

of an IfModule block using the MatchExpression
parameter.
Example when proxying by MIME type:
<IfModule mod_weblogic.c>
 MatchExpression *.jsp

WebLogicHost=myHost|paramName=value
</IfModule>

Example when proxying by path:
<IfModule mod_weblogic.c>
 MatchExpression /weblogic

WebLogicHost=myHost|paramName=value
</IfModule>

It is possible to define a new parameter for MatchExpression
using the following syntax:
MatchExpression *.jsp PathPrepend=/test
PathTrim=/foo

MaxPostSize -1 Maximum allowable size of POST data, in bytes. If the
content-length exceeds MaxPostSize, the plug-in returns an
error message. If set to -1, the size of POST data is not checked.
This is useful for preventing denial-of-service attacks that
attempt to overload the server with POST data.

MaxSkipTime 10 Valid only if DynamicServerList is set to OFF.
If a WebLogic Server listed in either the WebLogicCluster
parameter or a dynamic cluster list returned from WebLogic
Server fails, the failed server is marked as “bad” and the plug-in
attempts to connect to the next server in the list.
MaxSkipTime sets the amount of time after which the plug-in
will retry the server marked as “bad.” The plug-in attempts to
connect to a new server in the list each time a unique request is
received (that is, a request without a cookie).

Parameter Default Description

5 Parameters for Web Server Plug-Ins

5-10 Using Web Server Plug-Ins With WebLogic Server

PathPrepend null As per the RFC specification, generic syntax for URL is
[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILEN
AME};{PATH_PARAMS}/{QUERY_STRING}....
PathPrepend specifies the path that the plug-in prepends to
the {PATH} portion of the original URL, after PathTrim is
trimmed and before the request is forwarded to WebLogic
Server.
Note that if you need to append File Name, use
DefaultFileName plug-in parameter instead of
PathPrepend.

PathTrim null As per the RFC specification, generic syntax for URL is
[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILEN
AME};{PATH_PARAMS}/{QUERY_STRING}....
PathTrim specifies the string trimmed by the plug-in from the
{PATH}/{FILENAME} portion of the original URL, before the
request is forwarded to WebLogic Server. For example, if the
URL
http://myWeb.server.com/weblogic/foo

is passed to the plug-in for parsing and if PathTrim has been
set to strip off /weblogic before handing the URL to
WebLogic Server, the URL forwarded to WebLogic Server is:
http://myWeb.server.com:7001/foo

Note that if you are newly converting an existing third-party
server to proxy requests to WebLogic Server using the plug-in,
you will need to change application paths to /foo to include
weblogic/foo. You can use PathTrim and PathPrepend
in combination to change this path.

Parameter Default Description

General Parameters for Web Server Plug-Ins

Using Web Server Plug-Ins With WebLogic Server 5-11

StatPath

(Not available for the Microsoft
Internet Information Server
Plug-In)

false If set to true, the plug-in checks the existence and permissions
of the translated path (“Proxy-Path-Translated”) of the request
before forwarding the request to WebLogic Server.
If the file does not exist, an HTTP 404 File Not Found
response is returned to the client. If the file exists but is not
world-readable, an HTTP 403/Forbidden response is
returned to the client. In either case, the default mechanism for
the Web server to handle these responses fulfills the body of the
response. This option is useful if both the WebLogic Server Web
Application and the Web Server have the same document root.
You can customize the error response by using the ErrorPage
parameter.

WebLogicCluster

(Required when proxying to a
cluster of WebLogic Servers.)

none List of WebLogic Servers that can be used for load balancing.
The list is a comma-delimited list of host:port entries. For
example:
WebLogicCluster
myserver1:7736:7737|myserver2:7736:7737|myse
rver:7736:7737
If you are using SSL between the plug-in and WebLogic Server,
set the port number to the SSL listen port (see Configuring the
SSL Protocol at {DOCROOT}/secmanage/ssl.html) and set the
SecureProxy parameter to ON.
Use WebLogicCluster instead of the WebLogicHost and
WebLogicPort parameters. WebLogic Server looks first for
the WebLogicCluster parameter. If not found, it looks for
and uses WebLogicHost and WebLogicPort.
The plug-in does a simple round-robin between all available
servers. The server list specified in this property is a starting
point for the dynamic cluster list that the server and plug-in
maintain. WebLogic Server and the plug-in work together to
update the list automatically with new, failed, and recovered
servers. If a mixed set of clusters and single servers is specified,
the dynamic list returned for this parameter will return only the
clustered servers.
You can disable the use of the dynamic cluster list by setting the
DynamicServerList parameter to OFF
The plug-in directs HTTP requests containing a cookie,
URL-encoded session, or a session stored in the POST data to
the server in the cluster that originally created the cookie.

Parameter Default Description

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html

5 Parameters for Web Server Plug-Ins

5-12 Using Web Server Plug-Ins With WebLogic Server

WebLogicHost

(Required when proxying to a
single WebLogic Server.)

none WebLogic Server host (or virtual host name as defined in
WebLogic Server) to which HTTP requests should be
forwarded.
If you are using a WebLogic cluster, use the
WebLogicCluster parameter instead of WebLogicHost.

WebLogicPort

(Required when proxying to a
single WebLogic Server.)

none Port at which the WebLogic Server host is listening for
connection requests from the plug-in (or from other servers). (If
you are using SSL between the plug-in and WebLogic Server,
set this parameter to the SSL listen port (see Configuring the SSL
Protocol at {DOCROOT}/secmanage/ssl.html) and set the
SecureProxy parameter to ON).
If you are using a WebLogic Cluster, use the
WebLogicCluster parameter instead of WebLogicPort.

WLExcludePathOrMimeTyp
e

none This parameter allows you exclude certain requests from
proxying.
This parameter can be defined locally at the Location tag level
as well as globally. When the property is defined locally, it does
not override the global property but defines a union of the two
parameters.

WLLocalIP none Defines the IP address to bind to when the plug-in connects to a
WebLogic Server instance running on a multihomed machine.
If WLLocalIP is not set, a random IP address on the
multi-homed machine is used.

WLLogFile See the
Debug
parameter

Specifies path and file name for the log file that is generated
when the Debug parameter is set to ON. You must create this
directory before setting this parameter.

WLTempDir See the
Debug
parameter

Specifies the directory where a wlproxy.log will be created.
If the location fails, the Plug-In resorts to creating the log file
under C:/temp in Windows and /tmp in all Unix platforms.

Also specifies the location of the _wl_proxy directory for post
data files.

When both WLTempDir and WLLogFile are set, WLLogFile
will override as to the location of wlproxy.log. WLTempDir
will still determine the location of _wl_proxy directory.

Parameter Default Description

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html

General Parameters for Web Server Plug-Ins

Using Web Server Plug-Ins With WebLogic Server 5-13

WLProxySSL OFF Set this parameter to ON to maintain SSL communication
between the plug-in and WebLogic Server when the following
conditions exist:

 An HTTP client request specifies the HTTPS protocol
 The request is passed through one or more proxy servers
(including the WebLogic Server proxy plug-ins)
The connection between the plug-in and WebLogic Server
uses the HTTP protocol

When WLProxySSL is set to ON, the location header returned
to the client from WebLogic Server specifies the HTTPS
protocol.

Parameter Default Description

5 Parameters for Web Server Plug-Ins

5-14 Using Web Server Plug-Ins With WebLogic Server

SSL Parameters for Web Server Plug-Ins

Server Gated Cryptography certificates are not supported for use with WebLogic
Server Proxy Plug-Ins. Non-SGC certificates work appropriately and allow SSL
communication between WebLogic Server and the plug-in.

Note: Parameters are case sensitive.

SSL Parameters for Web Server Plug-Ins

Using Web Server Plug-Ins With WebLogic Server 5-15

Parameter Default Description

EnforceBasicConstra
ints

Strong This parameter closes a security hole which existed with SSL
certificate validation where certificate chains with invalid V3 CA
certificates would not be properly rejected. This allowed a certificate
chain with an invalid intermediate CA certificate but a valid root CA
certificate to be trusted. X509 V3 CA certificates are required to
contain the BasicConstraints extension, marked as a CA, and marked
as a critical extension. This checking protects against non-CA
certificates masquerading as intermediate CA certificates.
The levels of enforcement are as follows:
OFF
This level disables the enforcement, and is not recommended. If a
customer has bought certificates from a commercial CA, the chain
will not pass the new check. Note that most current commercial CA
certificates will work under the default STRONG setting.
EnforceBasicConstraints=off

or
EnforceBasicConstraints=false

STRONG
This level is the default. The BasicConstraints for V3 CA certificates
are checked and the certificates are verified.
EnforceBasicConstraints=strong

or
EnforceBasicConstraints=true

STRICT
This level does the same checking as the STRONG level, but in
addition it also strictly enforces IETF RFC 2459 which specifies that
the BasicConstraints for CA certificates also must be marked as
"critical". A number of current commercially available CA
certificates do not conform to RFC 2459 and do not mark the
BasicConstraints as critical; set this if only if you require strict
conformance with RFC 2459.
EnforceBasicConstraints=strict

5 Parameters for Web Server Plug-Ins

5-16 Using Web Server Plug-Ins With WebLogic Server

SecureProxy OFF Set this parameter to ON to enable the use of the SSL protocol for all
communication between the plug-in and WebLogic Server.
Remember to configure a port on the corresponding WebLogic Server
for the SSL protocol before defining this parameter.
This parameter may be set at two levels: in the configuration for the
main server and—if you have defined any virtual hosts—in the
configuration for the virtual host. The configuration for the virtual
host inherits the SSL configuration from the configuration of the main
server if the setting is not overridden in the configuration for the
virtual host.

TrustedCAFile none Name of the file that contains the digital certificates for the trusted
certificate authorities for the plug-in. This parameter is required if the
SecureProxy parameter is set to ON.
The filename must include the full directory path of the file.

RequireSSLHostMatch true Determines whether the host name to which the plug-in is connecting
must match the Subject Distinguished Name field in the digital
certificate of the WebLogic Server to which the proxy plug-in is
connecting.

When specifying SecureProxy=ON and RequireSSLHostMatch=true
in the plug-in, then the value specified in the ListenAddress property
should exactly match the hostname value specified in the certificate.

When using the ExternalDNSName property for WebLogic Server
and setting SecureProxy=ON and RequireSSLHostMatch=true in the
plug-in, then the value specified in the ExternalDNSName property
should exactly match the hostname value specified in the certificate.

Parameter Default Description

SSL Parameters for Web Server Plug-Ins

Using Web Server Plug-Ins With WebLogic Server 5-17

SSLHostMatchOID 22 The ASN.1 Object ID (OID) that identifies which field in the Subject
Distinguished Name of the peer digital certificate is to be used to
perform the host match comparison. The default for this parameter
corresponds to the CommonName field of the Subject Distinguished
Name. Common OID values are:

Sur Name—23
Common Name—22
Email—13
Organizational Unit—30
Organization—29
Locality—26

Parameter Default Description

5 Parameters for Web Server Plug-Ins

5-18 Using Web Server Plug-Ins With WebLogic Server

Configuring Web Applications and Clusters
for the Plug-in

Set the following attributes on a cluster or a Web application to configure security for
applications accessed via the plug-in.

WeblogicPluginEnabled—If you set this attribute to true for a cluster or a
Web application that receives requests from the HttpClusterServlet, the
servlet will respond to getRemoteAddr calls with the address of the browser
client from the proprietary WL-Proxy-Client-IP header, instead of returning
the Web server address.

ClientCertProxy Enabled—If you set this attribute to true for a cluster or a
Web application that receives requests from HttpClusterServlet, the plug-in
sends client certs to the cluster in the special WL-Proxy-Client-Cert header,
allowing user authentication to be performed on the proxy server.

Using Web Server Plug-Ins With WebLogic Server A-1

CHAPTER

A Proxying Requests to
Another Web Server

The following sections discuss how to proxy HTTP requests to another Web server:

“Overview of Proxying Requests to Another Web Server” on page A-1

“Setting Up a Proxy to a Secondary Web Server” on page A-2

“Sample Deployment Descriptor for the Proxy Servlet” on page A-3

Overview of Proxying Requests to Another
Web Server

When you use WebLogic Server as your primary Web server, you may also want to
configure WebLogic Server to pass on, or proxy, certain requests to a secondary Web
server, such as Netscape Enterprise Server, Apache, or Microsoft Internet Information
Server. Any request that gets proxied is redirected to a specific URL.You can even
proxy to another Web server on a different machine.You proxy requests based on the
URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP request,
redirects it to the proxy URL, and sends the response to the client's browser back
through WebLogic Server. To use the HttpProxyServlet, you must configure it in a
Web Application and deploy that Web Application on the WebLogic Server that is
redirecting requests.

A Proxying Requests to Another Web Server

A-2 Using Web Server Plug-Ins With WebLogic Server

Setting Up a Proxy to a Secondary Web
Server

To set up a proxy to a secondary HTTP server:

1. Register the ProxyServlet in your Web Application deployment descriptor (see
“Sample web.xml for Use with ProxyServlet” on page A-3). The class name for
the proxy servlet is weblogic.servlet.proxy.HttpProxyServlet. For more
information, see Assembling and Configuring Web Applications at
{DOCROOT}/webapp/index.html.

2. Define an initialization parameter for the ProxyServlet with a <param-name>
of redirectURL and a <param-value> containing the URL of the server to
which proxied requests should be directed.

3. Map the ProxyServlet to a <url-pattern>. Specifically, map the file
extensions you wish to proxy, for example *.jsp, or *.html. Use the
<servlet-mapping> element in the web.xml Web Application deployment
descriptor.

If you set the <url-pattern> to “/”, then any request that cannot be resolved
by WebLogic Server is proxied to the remote server. However, you must also
specifically map the following extensions: *.jsp, *.html, and *.html if you
want to proxy files ending with those extensions.

4. Set other available parameters in HttpProxyServlet in web.xml using
initialization parameters (see “Parameters for Web Server Plug-Ins” on page
5-1). For example:

 <init-param>

 <param-name>WLProxySSL</param-name>

 <param-value>ON</param-value>

</init-param>

5. Deploy the Web Application on the WebLogic Server instance that redirects
incoming requests.

http://e-docs.bea.com/wls/docs70/webapp/index.html

Sample Deployment Descriptor for the Proxy Servlet

Using Web Server Plug-Ins With WebLogic Server A-3

Sample Deployment Descriptor for the
Proxy Servlet

The following is an sample of a Web Applications deployment descriptor for using the
Proxy Servlet.

Listing 5-1 Sample web.xml for Use with ProxyServlet

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.
 //DTD Web Application 2.3//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>

<servlet>
<servlet-name>ProxyServlet</servlet-name>
<servlet-class>weblogic.servlet.proxy.HttpProxyServlet</servlet

-class>

<init-param>
<param-name>redirectURL</param-name>
<param-value>

http://myserver:7001
</param-value>

</init-param>

</servlet>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

A Proxying Requests to Another Web Server

A-4 Using Web Server Plug-Ins With WebLogic Server

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

Index

A
Apache plug-in 2-1

and clusters 2-16
and SSL 2-21
and virtual hosting 2-17
httpd.conf file 2-10
installing 2-4
parameters 2-12
proxying requests 2-12
sample httpd.conf file 2-15

C
Configuration

Apache plug-in 2-12
Microsoft-IIS (proxy) plug-in 3-7

ConnectionRetrySecs 5-3
ConnectionTimeoutSecs 5-3
customer support contact information viii

D
Debug 5-4
DebugConfigInfo 5-5
DefaultFileName 5-5
documentation, where to find it viii
DynamicServerList 5-6

E
ErrorPage 5-6

F
FileCaching 5-7

H
HungServerRecoverSecs 5-8

I
Idempotent 5-8
Implementing two-way SSL between Apache

and the HTTP Client 2-19
Introduction to Plug-Ins 1-1

K
KeepAliveSecs 5-2

M
MatchExpression 5-9
MaxPostSize 5-9
MaxSkips 5-9
Microsoft-IIS (proxy) plug-in

Configuration 3-7
proxying requests 3-3
proxying servlets 3-14
testing 3-15

N
Netscape (proxy) Plug-in 4-2
BEA WebLogic Server 7.0 Installation Guide I-I-1

and clustering 4-20
MIME types 4-6
obj.conf file 4-9
sample obj.conf file 4-11

P
PathPrepend 5-10
PathTrim 5-10
printing product documentation viii
proxying requests 6-1

Apache plug-in 2-12
Microsoft-IIS (proxy) plug-in 3-3

ProxyServlet 6-1
sample deployment descriptor 6-3

Q
QueryFromRequest 5-2

R
RequireSSLHostMatch 5-16

S
SecureProxy 5-16
SSLHostMatchOID 5-17
StatPath 5-11
support

technical viii

T
TrustedCAFile 5-16

V
Virtual Hosting

and Apache plug-in 2-17

W
WebLogicCluster 5-11
WebLogicHost 5-12
WebLogicPort 5-12
What are Plug-Ins 1-1
WLForwardPath 5-2
I-I-2 BEA WebLogic Server 7.0 Installation Guide

	Contents
	About This Document
	1. Overview of Using Web Server Plug-Ins With WebLogic Server
	2. Installing and Configuring the Apache HTTP Server Plug-In
	3. Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In
	4. Installing and Configuring the Netscape Enterprise Server (NES) Plug-In
	5. Parameters for Web Server Plug-Ins
	A. Proxying Requests to Another Web Server

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of Using Web Server Plug-Ins With WebLogic Server
	What Are Plug-Ins?
	Plug-Ins included with WebLogic Server

	2 Installing and Configuring the Apache HTTP Server Plug-In
	Overview of the Apache HTTP Server Plug-In
	Limitations in Apache Version 1.3.x
	Keep-Alive Connections Not Supported
	Inconsistent States

	Keep-Alive Connections in Apache Version 2.0
	Proxying Requests

	Certifications
	Installing the Apache HTTP Server Plug-In
	Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object
	Installing the Apache HTTP Server Plug-In as a Statically Linked Module

	Configuring the Apache HTTP Server Plug-In
	Editing the httpd.conf File
	Alternative Procedure for Editing the httpd.conf File

	Template for the Apache HTTP Server httpd.conf File
	Sample httpd.conf Configuration Files
	Example Using WebLogic Clusters
	Example Using Multiple WebLogic Clusters
	Example Without WebLogic Clusters
	Example Configuring IP-Based Virtual Hosting
	Example Configuring Name-Based Virtual Hosting With a Single IP Address
	Example Configuring Multiple Name-Based Virtual Hosts

	Using SSL with the Apache Plug-In
	Implementing Two-way SSL between Apache and the HTTP Client:
	Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server
	Specifying Trust for the WL-Proxy-Client-Cert Header
	Issues with SSL-Apache Configuration

	Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	3 Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In
	Overview of the Microsoft Internet Information Server Plug-In
	Connection Pooling and Keep-Alive
	Proxying Requests

	Certifications
	Installing and Configuring the Microsoft Internet Information Server Plug-In
	Proxying Requests from Multiple Virtual Websites to WebLogic Server
	Sample iisproxy.ini File
	Creating ACLs Through IIS
	Using SSL with the Microsoft Internet Information Server Plug-In
	Configuring SSL
	Specifying Trust for the WL-Proxy-Client-Cert Header

	Proxying Servlets from IIS to WebLogic Server
	Testing the Installation
	Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	4 Installing and Configuring the Netscape Enterprise Server (NES) Plug-In
	Overview of the Netscape Enterprise Server Plug-In
	Connection Pooling and Keep-Alive
	Proxying Requests

	Certifications
	Installing and Configuring the Netscape Enterprise Server Plug-In
	Guidelines for Modifying the obj.conf File
	Sample obj.conf File (Not Using a WebLogic Cluster)
	Sample obj.conf File (Using a WebLogic Cluster)
	Using SSL with the NES Plug-In
	Specifying Trust for the WL-Proxy-Client-Cert Header

	Connection Errors and Clustering Failover
	Possible Causes of Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	Failover Behavior When Using Firewalls and Load Directors

	5 Parameters for Web Server Plug-Ins
	Entering Parameters in Web Server Plug-In Configuration files
	General Parameters for Web Server Plug-Ins
	SSL Parameters for Web Server Plug-Ins
	Configuring Web Applications and Clusters for the Plug-in

	A Proxying Requests to Another Web Server
	Overview of Proxying Requests to Another Web Server
	Setting Up a Proxy to a Secondary Web Server
	Sample Deployment Descriptor for the Proxy Servlet

	Index

