
BEA
 WebLogic
Server™

BEA WebLogic Server
Performance and Tuning
Release 7.0
Document Revised: August 30, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Server Performance and Tuning

Part Number Document Revised Software Version

N/A August 30, 2002 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience.. viii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... ix
Contact Us!.. ix
Documentation Conventions ...x

1. Tuning Hardware, Operating System, and Network
Performance

Hardware Tuning... 1-1
Supported Platforms... 1-2

Operating System Tuning.. 1-3
Setting TCP Parameters With the ndd Command............................... 1-3
Setting Parameters In the /etc/system File .. 1-5
CE Gigabit Network Card Settings... 1-5

Linux Tuning Parameters ... 1-6
Other Operating System Tuning Information .. 1-7

Network Performance.. 1-7
Determining Network Bandwidth .. 1-8
LAN Infrastructure... 1-9

2. Tuning Java Virtual Machines (JVMs)
JVM Tuning Considerations.. 2-2
JVM Heap Size and Garbage Collection... 2-3

Generational Garbage Collection ... 2-4
Using Verbose Garbage Collection to Determine Heap Size 2-5
BEA WebLogic Server Performance and Tuning iii

Specifying Heap Size Values .. 2-7
Using WebLogic Startup Scripts to Set Heap Size 2-7
Java Heap Size Options .. 2-8

Automatically Logging Low Memory Conditions .. 2-9
Manually Requesting Garbage Collection... 2-11
Setting Java HotSpot VM Options .. 2-11

Standard Java Options for Windows and UNIX 2-12
Non-Standard Java Options for Windows and UNIX 2-13

3. Tuning WebLogic Server
Setting Performance-Related config.xml Parameters.. 3-1

Using WebLogic Server Performance Packs ... 3-3
Which Platforms Have Performance Packs?....................................... 3-3
Enabling Performance Packs... 3-4

Setting Thread Count.. 3-4
Should You Modify the Default Thread Count?................................. 3-5
Default Thread Count Scenarios ... 3-5
Modifying the Thread Count in the Default Execute Queue 3-7
Assigning Applications to Execute Queues .. 3-8

Allocating Threads to Act as Socket Readers .. 3-8
Set the Number of Socket Reader Threads on a WebLogic Server 3-9
Set the Number of Socket Reader Threads on Client Machines 3-9

Tuning Execute Queues for Overflow Conditions 3-9
Detecting “Stuck” Threads ... 3-12
Tuning Connection Backlog Buffering .. 3-13
How JDBC Connection Pools Enhance Performance 3-14

Tuning JDBC Connection Pool Initial Capacity 3-14
Tuning JDBC Connection Pool Maximum Capacity........................ 3-15
Caching Prepared Statements.. 3-15

Setting Performance-Related weblogic-ejb-jar.xml Parameters...................... 3-16
Setting EJB Pool Size... 3-17

Allocating Pool Size for Session and Message Beans 3-17
Allocating Pool Size for Entity Beans... 3-18

Tuning Initial Beans in Free Pool... 3-18
Setting EJB Caching Size... 3-18
iv BEA WebLogic Server Performance and Tuning

Activation and Passivation of Stateful Session EJBs............................... 3-19
Deferring Database Locking .. 3-19
Setting Transaction Isolation Level.. 3-20

Setting Java Parameters for Starting WebLogic Server 3-21
Setting Your Java Compiler .. 3-22

Changing Compilers in the Administration Console 3-22
Setting Your Compiler in weblogic.xml .. 3-23
Compiling EJB Container Classes ... 3-23
Compiling on UNIX... 3-23

Using WebLogic Server Clusters .. 3-24
Scalability and High Availability... 3-24
Performance Considerations for Multi-CPU Machines 3-25

Monitoring a WebLogic Server Domain... 3-26

4. Tuning WebLogic Server Applications
Using Performance Analysis Tools ... 4-1

Using the JProbe Profiler ... 4-2
Using the OptimizeIt Profiler ... 4-2

JDBC Application Tuning... 4-2
JDBC Optimization for Type-4 MS SQL Driver 4-3

Managing Sessions .. 4-3
Managing Session Persistence ... 4-3
Minimizing Sessions .. 4-4

Using Execute Queues to Control Thread Usage .. 4-5
Creating Execute Queues ... 4-6
Assigning Servlets and JSPs to Execute Queues 4-8
Assigning EJBs and RMI Objects to Execute Queues............................... 4-9

A. Related Reading: Performance Tools and Information
BEA Systems, Inc. Information.. A-2
Sun Microsystems Information .. A-2
Linux OS Information .. A-3
Hewlett-Packard Company Information... A-4
Microsoft Information .. A-5
Web Performance Tuning Information .. A-5
BEA WebLogic Server Performance and Tuning v

Network Performance Tools... A-6
Performance Analysis Tools... A-6
Benchmarking Information... A-7
Java Virtual Machine (JVM) Information .. A-8
Enterprise JavaBeans Information.. A-9
Java Message Service (JMS) Information .. A-9
General Performance Information .. A-10

B. Benchmark Tuning Examples for WebLogic Server 7.0 SP1
Tuning an Intel Xeon System ... B-1

JVM Tuning Tips .. B-2
WebLogic Server Tuning Tips .. B-2

Tuning a Sun UltraSparc III System... B-3
JVM Tuning Tips .. B-3
WebLogic Server Tuning Tips .. B-3
vi BEA WebLogic Server Performance and Tuning

About This Document

To achieve the best performance for your WebLogic Server™ platform, you need to
optimize the performance of the components that constitute the WebLogic Server
environment. This document provides the following performance-related information:

Chapter 1, “Tuning Hardware, Operating System, and Network Performance,”
discusses hardware, operating system, and network performance issues.

Chapter 2, “Tuning Java Virtual Machines (JVMs),” discusses JVM tuning
considerations.

Chapter 3, “Tuning WebLogic Server,” contains information on how to tune
WebLogic Server to match your application needs.

Chapter 4, “Tuning WebLogic Server Applications,” discusses application tuning
considerations.

Appendix A, “Related Reading: Performance Tools and Information,” provides
an extensive performance-related reading list.

Appendix B, “Benchmark Tuning Examples for WebLogic Server 7.0 SP1,”
provides tuning tips for running the ECPerf or SPECjAppServer 2001/2002
benchmarks.

The document also contains an index.
BEA WebLogic Server Performance and Tuning vii

Audience

This document is written for people who monitor performance and tune the
components in a WebLogic Server platform. It is assumed that readers know server
administration and hardware performance tuning fundamentals, the WebLogic Server
platform, XML, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site at
http://www.bea.com. From the BEA Home page, click on Product Documentation.
Or you can go directly to the WebLogic Server Product Documentation page at
http://edocs.bea.com/wls/docs70.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii BEA WebLogic Server Performance and Tuning

http://www.bea.com
http://edocs.bea.com/wls/docs70
http://www.adobe.com
http://www.adobe.com

Related Information

For related information about administering and tuning WebLogic Server, see:

The WebLogic Server Administration Guide at
http://edocs.bea.com/wls/docs70/adminguide/index.html.

BEA dev2dev Web site.

The WebLogic Server performance “weblogic.developer.interest.performance”
newsgroup available on the BEA Newsgroup server.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
and the title and document date of your documentation. If you have questions about
this version of BEA WebLogic Server, or if you have problems installing and running
it, contact BEA Customer Support through BEA WebSupport at http://www.bea.com,
or by using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages
BEA WebLogic Server Performance and Tuning ix

http://e-docs.bea.com/wls/docs70/adminguide/index.html
http://dev2dev.bea.com/index.jsp
http://www.bea.com/support/newsgroup.shtml
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.
Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
x BEA WebLogic Server Performance and Tuning

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
BEA WebLogic Server Performance and Tuning xi

xii BEA WebLogic Server Performance and Tuning

CHAPTER
1 Tuning Hardware,
Operating System, and
Network Performance

The following sections describe issues related to optimizing hardware, operating
system, and network performance:

“Hardware Tuning” on page 1-1

“Operating System Tuning” on page 1-3

“Network Performance” on page 1-7

Hardware Tuning

When you examine performance, a number of factors influence how much capacity a
given hardware configuration will need in order to support WebLogic Server and a
given application. The hardware capacity required to support your application depends
on the specifics of the application and configuration. You should consider how each
factor applies to your configuration and application.

Before continuing with this section, you may want to review the Standard Performance
Evaluation Corporation, at www.spec.org, which provides a set of standardized
benchmarks and metrics for evaluating computer system performance.
BEA WebLogic Server Performance and Tuning 1-1

http://www.spec.org
http://www.spec.org

1 Tuning Hardware, Operating System, and Network Performance
Supported Platforms

The following table provides selected links to the information on the Supported
Configurations pages, at
http://e-docs.bea.com/platform/suppconfigs/index.html, which contains
a complete listing of the latest certification information on the hardware/operating
system platforms that are supported for each release of WebLogic Server.

Table 1-1 Platform-Specific Tuning Information

Platform For more information

Bull/IBM pSeries with AIX See the Bull/IBM links on the Supported Configurations
pages at
http://e-docs.bea.com/platform/suppconfig
s/index.html.

Bull/IBM pSeries with AIX 4.3.3
Bull/IBM pSeries with AIX 5L v5.1
Bull/IBM pSeries with AIX 5L v5.2

Hewlett-Packard with HP-UX See Hewlett-Packard HP/9000 with HP-UX 11.0 and 11i on
the Supported Configurations pages at
http://e-docs.bea.com/platform/suppconfig
s/index.html.

See also “Hewlett-Packard Company Information” on page
A-4.

Intel Pentium-compatible
with Windows

See the Intel/Windows links on the Supported
Configurations pages at
http://e-docs.bea.com/platform/suppconfig
s/index.html.

Windows 2000 Server or Windows 2000 Advanced
Server
Windows 2000 Professional
Windows NT
Windows XP

See also “Microsoft Information” on page A-5.
1-2 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html

Operating System Tuning
Operating System Tuning

Tune your operating system according to your operating system documentation. BEA
certifies WebLogic Server on multiple operating systems on the Supported
Configurations pages, at
http://e-docs.bea.com/platform/suppconfigs/index.html.

For Windows platforms, the default settings are usually sufficient. However, the
Solaris and Linux platforms usually need to be tuned appropriately.

Setting TCP Parameters With the ndd Command

Set the following TCP-related tuning parameters using the ndd command, as
demonstrated in the following example:

ndd -set /dev/tcp tcp_conn_req_max_q 16384

Intel 32-bit-compatible with
Red Hat Advanced Server

See the Red Hat links on the Supported Configurations pages
at
http://e-docs.bea.com/platform/suppconfig
s/index.html.

Red Hat Enterprise Linux AS 2.1 and ES 2.1 for IA-32
Red Hat Enterprise Linux WS 2.1 for IA-32

See also “Linux OS Information” on page A-3.

Sun Microsystems SPARC
with Solaris

See the Sun Microsystems SPARC Solaris links on the
Supported Configurations pages at
http://e-docs.bea.com/platform/suppconfig
s/index.html.

SPARC with Solaris 2.7
SPARC with Solaris 8
SPARC with Solaris 9

See also “Sun Microsystems Information” on page A-2.

Table 1-1 Platform-Specific Tuning Information

Platform For more information
BEA WebLogic Server Performance and Tuning 1-3

http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html

1 Tuning Hardware, Operating System, and Network Performance
Note: Prior to Solaris 2.7, the tcp_time_wait_interval parameter was called
tcp_close_wait_interval. This parameter determines the time interval
that a TCP socket is kept alive after issuing a close call. The default value of
this parameter on Solaris is four minutes. When many clients connect for a
short period of time, holding these socket resources can have a significant
negative impact on performance. Setting this parameter to a value of 60000
(60 seconds) has shown a significant throughput enhancement when running
benchmark JSP tests on Solaris. You might want to reduce this setting further
if the server gets backed up with a queue of half-opened connections.

Tip: Use the netstat -s -P tcp command to view all available TCP parameters.

Table 1-2 Suggested TCP-Related Parameter Values

Parameter Suggested Value

/dev/tcp tcp_time_wait_interval 60000

/dev/tcp tcp_conn_req_max_q 16384

/dev/tcp tcp_conn_req_max_q0 16384

/dev/tcp tcp_ip_abort_interval 60000

/dev/tcp tcp_keepalive_interval 7200000

/dev/tcp tcp_rexmit_interval_initial 4000

/dev/tcp tcp_rexmit_interval_max 10000

/dev/tcp tcp_rexmit_interval_min 3000

/dev/tcp tcp_smallest_anon_port 32768

/dev/tcp tcp_xmit_hiwat 131072

/dev/tcp tcp_recv_hiwat 131072

/dev/tcp tcp_naglim_def 1

/dev/ce instance 0

/dev/ce rx_intr_time 32
1-4 BEA WebLogic Server Performance and Tuning

Operating System Tuning
Setting Parameters In the /etc/system File

Each socket connection to the server consumes a file descriptor. To optimize socket
performance, you need to configure your operating system to have the appropriate
number of file descriptors. Therefore, you should change the default file descriptor
limits, as well as the hash table size and other tuning parameters in the /etc/system
file, to the recommended values in the following table.

Note: You must reboot your machine anytime you modify /etc/system
parameters.

CE Gigabit Network Card Settings

If you are using CE gigabit cards, we recommend using the following settings.

Table 1-3 Suggested /etc/system Values

Parameter Suggested Value

set rlim_fd_cur 8192

set rlim_fd_max 8192

set tcp:tcp_conn_hash_size 32768

set shmsys:shminfo_shmmax

Note: This should only be set for machines that have
at least 4 GB RAM or higher.

4294967295

set autoup 900

set tune_t_fsflushr 1

Table 1-4 Suggested CE Gigabit Card Values

Parameter Suggested Value

set ce:ce_bcopy_thresh 256

set ce:ce_dvma_thresh 256
BEA WebLogic Server Performance and Tuning 1-5

1 Tuning Hardware, Operating System, and Network Performance
For more information about Solaris tuning options, see:

Solaris Tunable Parameters Reference Manual (Solaris 8), at
http://docs.sun.com/db/doc/816-0607

Solaris Tunable Parameters Reference Manual (Solaris 9), at
http://docs.sun.com/db/doc/806-7009

Linux Tuning Parameters

For Linux operating systems, the following settings are recommended for optimal
performance.

set ce:ce_taskq_disable 1

set ce:ce_ring_size 256

set ce:ce_comp_ring_size 1024

set ce:ce_tx_ring_size 4096

Table 1-4 Suggested CE Gigabit Card Values

Parameter Suggested Value

Table 1-5 Suggested Linux Values

Parameter Suggested Value

/sbin/ifconfig lo mtu 1500

kernel.msgmni 1024

kernel.sem 1000 32000 32 512

fs.file-max 65535

kernel.shmmax 2147483648

net.ipv4.tcp_max_syn_backlog 8192
1-6 BEA WebLogic Server Performance and Tuning

http://docs.sun.com/db/doc/816-0607
http://docs.sun.com/db/doc/806-7009

Network Performance
For more information about Linux tuning, you should consult your Linux vendor’s
documentation. Also, the Ipsysctl Tutorial 1.0.4, at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html,
describes all of the IP options provided by Linux.

Other Operating System Tuning Information

For more information about Windows, HP-UX, and AIX tuning options, refer to the
following Web sites:

For Windows tuning information, see the Microsoft Windows 2000 TCP/IP
Implementation Details white paper, at
http://www.microsoft.com/windows2000/techinfo/howitworks/commu
nications/networkbasics/tcpip_implement.asp.

For HP-UX tuning information, see the Tunable Kernel Parameters reference
documentation, at
http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html.

For AIX tuning information, see the AIX 5L Version 5.2 Performance
Management Guide, at
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/

prftungd.htm.

Maximum memory for a user process — Check your operating system
documentation for the maximum memory available for a user process. In some
operating systems, this value is as low as 128 MB. Also, refer to your operating
system documentation.For more information about memory management, see
Chapter 2, “Tuning Java Virtual Machines (JVMs).”

Network Performance

Network performance is affected when the supply of resources is unable to keep up
with the demand for resources. Today’s enterprise-level networks are very fast and are
now rarely the direct cause of performance in well-designed applications. However, if
you find that you have a problem with one or more network components (hardware or
BEA WebLogic Server Performance and Tuning 1-7

http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html
http://www.microsoft.com/windows2000/techinfo/howitworks/communications/networkbasics/tcpip_implement.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/communications/networkbasics/tcpip_implement.asp
http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd.htm
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd.htm

1 Tuning Hardware, Operating System, and Network Performance
software), work with your network administrator to isolate and eliminate the problem.
You should also verify that you have an appropriate amount of network bandwidth
available for WebLogic Server and the connections it makes to other tiers in your
architecture, such as client and database connections. Therefore, it is important to
continually monitor your network performance to troubleshoot potential performance
bottlenecks.

Determining Network Bandwidth

A common definition of bandwidth is “the rate of the data communications
transmission, usually measured in bits-per-second, which is the capacity of the link to
send and receive communications.” A machine running WebLogic Server requires
enough network bandwidth to handle all WebLogic Server client connections. In the
case of programmatic clients, each client JVM has a single socket to the server, and
each socket requires dedicated bandwidth. A WebLogic Server instance handling
programmatic clients should have 125–150 percent of the bandwidth that a similar
Web server would handle. If you are handling only HTTP clients, expect a bandwidth
requirement similar to a Web server serving static pages.

To determine whether you have enough bandwidth in a given deployment, you can use
the network monitoring tools provided by your network operating system vendor to see
what the load is on the network system. You can also use common operating system
tools, such as the netstat command for Solaris or the System Monitor (perfmon) for
Windows, to monitor your network utilization. If the load is very high, bandwidth may
be a bottleneck for your system.

Also monitor the amount of data being transferred across the your network by checking
the data transferred between the application and the application server, and between
the application server and the database server. This amount should not exceed your
network bandwidth; otherwise, your network becomes the bottleneck. To verify this,
monitor the network statistics for retransmission and duplicate packets, as follows:

netstat -s -P tcp

For instructions on viewing other TCP parameters using the netstat -s -P
command, see “Setting TCP Parameters With the ndd Command” on page 1-3.
1-8 BEA WebLogic Server Performance and Tuning

Network Performance
LAN Infrastructure

Your local area network must be fast enough to handle your application’s peak
capacity. If your network is fully utilized, in that the amount of traffic consistently
exceeds its bandwidth capacity, yet your WebLogic Server machine is not fully
utilized, do one of the following:

Redesign the network and redistribute the load.

Reduce the number of network clients.

Increase the number of systems handling the network load.
BEA WebLogic Server Performance and Tuning 1-9

1 Tuning Hardware, Operating System, and Network Performance
1-10 BEA WebLogic Server Performance and Tuning

CHAPTER
2 Tuning Java Virtual
Machines (JVMs)

The Java virtual machine (JVM) is a virtual “execution engine” instance that executes
the bytecodes in Java class files on a microprocessor. How you tune your JVM affects
the performance of WebLogic Server and your applications.

The following sections discuss JVM tuning options for WebLogic Server:

“JVM Tuning Considerations” on page 2-2

“JVM Heap Size and Garbage Collection” on page 2-3

“Specifying Heap Size Values” on page 2-7

“Automatically Logging Low Memory Conditions” on page 2-9

“Manually Requesting Garbage Collection” on page 2-11

“Setting Java HotSpot VM Options” on page 2-11

For links to related reading for JVM tuning, see Appendix A, “Related Reading:
Performance Tools and Information.”
BEA WebLogic Server Performance and Tuning 2-1

2 Tuning Java Virtual Machines (JVMs)
JVM Tuning Considerations

Table 2-1 presents general JVM tuning considerations.

Table 2-1 General JVM Tuning Considerations

Issue Description

JVM vendor and version Use only production JVMs on which WebLogic Server has
been certified. WebLogic Server 7.0 supports only those
JVMs that are Java 1.3-compliant.
The Certifications Pages at
http://e-docs.bea.com/platform/suppconfig
s/index.html are frequently updated and contains the
latest certification information on various platforms.

Tuning heap size and garbage
collection

For WebLogic Server heap size tuning details, see “JVM
Heap Size and Garbage Collection” on page 2-3.
For a good overview of garbage collection on
java.sun.com, see Tuning Garbage Collection with the
1.3.1 Java Virtual Machine, at
http://java.sun.com/docs/hotspot/gc/.

Generational garbage
collection

See “Generational Garbage Collection” on page 2-4.

Mixed client/server JVMs Deployments using different JVM versions for the client and
server are supported in WebLogic Server. For more
information, see the support page for Mixed Client/Server
JVMs, at
http://e-docs.bea.com/platform/suppconfig
s/index.html#mix.

UNIX threading models There are two UNIX threading models: green threads and
native threads. To get the best performance and scalability
with WebLogic Server, choose a JVM that uses native
threads.
For Solaris, see “Threading Models and Solaris Versions
Supported” on Sun Microsystems’ Web site at
http://www.java.sun.com/products/jdk/1.1/
solaris-product-comparison.html#threading.
2-2 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/platform/suppconfigs/index.html
http://java.sun.com/docs/hotspot/gc/
http://java.sun.com/docs/hotspot/gc/
http://e-docs.bea.com/platform/suppconfigs/index.html#mix
http://e-docs.bea.com/platform/suppconfigs/index.html#mix
http://www.java.sun.com/products/jdk/1.1/solaris-product-comparison.html#threading
http://www.java.sun.com/products/jdk/1.1/solaris-product-comparison.html#threading

JVM Heap Size and Garbage Collection
JVM Heap Size and Garbage Collection

Garbage collection is the JVM’s process of freeing up unused Java objects in the Java
heap.The Java heap is where the objects of a Java program live. It is a repository for
live objects, dead objects, and free memory. When an object can no longer be reached
from any pointer in the running program, it is considered “garbage” and ready for
collection.

The JVM heap size determines how often and how long the VM spends collecting
garbage. An acceptable rate for garbage collection is application-specific and should
be adjusted after analyzing the actual time and frequency of garbage collections. If you
set a large heap size, full garbage collection is slower, but it occurs less frequently. If
you set your heap size in accordance with your memory needs, full garbage collection
is faster, but occurs more frequently.

The goal of tuning your heap size is to minimize the time that your JVM spends doing
garbage collection while maximizing the number of clients that WebLogic Server can
handle at a given time. To ensure maximum performance during benchmarking, you
might set high heap size values to ensure that garbage collection does not occur during
the entire run of the benchmark.

You might see the following Java error if you are running out of heap space:

java.lang.OutOfMemoryError <<no stack trace available>>
java.lang.OutOfMemoryError <<no stack trace available>>
Exception in thread "main"

Just-in-Time (JIT) JVMs Use a JIT compiler when you run WebLogic Server. Most
JVMs use a JIT compiler, including those from Sun
Microsystems and Symantec.
See your JVM supplier documentation for more information.

Note: The Sun Microsystems’ JVM 1.3.x, JIT options are
no longer valid. See “Java Virtual Machine (JVM)
Information” on page A-8.

Table 2-1 General JVM Tuning Considerations (Continued)

Issue Description
BEA WebLogic Server Performance and Tuning 2-3

2 Tuning Java Virtual Machines (JVMs)
To modify heap space values, see “Specifying Heap Size Values” on page 2-7.

To configure WebLogic Server to automatically detect when you are running out of
heap space and to address low memory conditions in the server, see “Automatically
Logging Low Memory Conditions” on page 2-9.

Generational Garbage Collection

The 1.3 Java HotSpot JVM uses a generational collector that provides significant
increases in allocation speed and overall garbage collection efficiency. While naive
garbage collection examines every reachable object in the heap, generational garbage
collection considers the lifetime of an object to avoid extra collection work. The
Hotspot JVM operates on the assumption that a majority of objects die young, and do
not need to be considered for collection, which makes for efficient garbage collection.

With generational garbage collection, the Java heap is divided into two general areas:
Young and Old. The Young generation area is subdivided further into Eden and two
survivor spaces. Eden is the area where new objects are allocated. When garbage
collection occurs, live objects in Eden are copied into the next survivor space. Objects
are copied between survivor spaces in this way until they exceed a maximum heap size
threshold, and then they are moved out of the Young area and into the Old. For
information about specifying the size and ratios of the Young and Old generation
areas, see “Specifying Heap Size Values” on page 2-7.

Many objects become garbage shortly after being allocated. These objects are said to
have “infant mortality.” The longer an object survives, the more garbage collection it
goes through, and the slower garbage collection becomes. The rate at which your
application creates and releases objects affects the heap size, which in turn determines
how often garbage collection occurs. Therefore, attempt to cache objects for re-use,
whenever possible, rather than creating new objects.

Knowing that a majority of objects die young allows you to tune for efficient garbage
collection. When you manage memory in generations, you create memory pools to
hold objects of different ages. Garbage collection can occur in each generation when
it fills up. If you can arrange for most of your objects to survive less than one
collection, garbage collection is very efficient. Poorly sized generations cause frequent
garbage collection, which can affect performance.
2-4 BEA WebLogic Server Performance and Tuning

JVM Heap Size and Garbage Collection
For a good overview of generational garbage collection, see Tuning Garbage
Collection with the 1.3.1 Java Virtual Machine, at
http://java.sun.com/docs/hotspot/gc/.

Using Verbose Garbage Collection to Determine Heap
Size

Verbose garbage collection (verbosegc) enables you to measure exactly how much
time and resources are put into garbage collection. To determine the most effective
heap size, turn on verbose garbage collection and redirect the output to a log file for
diagnostic purposes.

The following steps outline this procedure:

1. Monitor the performance of WebLogic Server under maximum load while running
your application.

2. Use the -verbosegc option to turn on verbose garbage collection output for your
JVM and redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic
Server informational and error messages, and provides a more useful log for
diagnostic purposes.

For example, on Windows and Solaris, enter the following:
% java -ms32m -mx200m -verbosegc -classpath $CLASSPATH
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\bea"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"
weblogic.Server
>> logfile.txt 2>&1

where the logfile.txt 2>&1 command redirects both the standard error and
standard output to a log file.

On HPUX, use the following option to redirect stderr stdout to a single file:

-Xverbosegc:file=/tmp/gc$$.out
BEA WebLogic Server Performance and Tuning 2-5

http://java.sun.com/docs/hotspot/gc/
http://java.sun.com/docs/hotspot/gc/

2 Tuning Java Virtual Machines (JVMs)
where $$ maps to the process ID (PID) of the Java process. Because the output
includes timestamps for when garbage collection ran, you can infer how often
garbage collection occurs.

3. Analyze the following data points:

a. How often is garbage collection taking place? In the weblogic.log file,
compare the time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take
longer than 3 to 5 seconds.

c. What is your average memory footprint? In other words, what does the heap
settle back down to after each full garbage collection? If the heap always settles
to 85 percent free, you might set the heap size smaller.

4. If you are using 1.3 Java HotSpot JVM, set the New generation heap sizes.

See “Specifying Heap Size Values” on page 2-7 and Table 2-2, “Java Heap Size
Options,” on page 2-8.

5. Make sure that the heap size is not larger than the available free RAM on your
system.

Use as large a heap size as possible without causing your system to “swap”
pages to disk. The amount of free RAM on your system depends on your
hardware configuration and the memory requirements of running processes on
your machine. See your system administrator for help in determining the amount
of free RAM on your system.

6. If you find that your system is spending too much time collecting garbage (your
allocated “virtual” memory is more than your RAM can handle), lower your heap
size.

Typically, you should use 80 percent of the available RAM (not taken by the
operating system or other processes) for your JVM.

7. If you find that you have a large amount of available free RAM remaining, run
more instances of WebLogic Servers on your machine.

Remember, the goal of tuning your heap size is to minimize the time that your
JVM spends doing garbage collection while maximizing the number of clients
that WebLogic Server can handle at a given time.
2-6 BEA WebLogic Server Performance and Tuning

Specifying Heap Size Values
Specifying Heap Size Values

Java heap size values must be specified whenever you start WebLogic Server. This can
be done either from the Java command line or by modifying the default values in the
sample startup scripts that are provided with the WebLogic distribution for starting
WebLogic Server.

For example, when starting WebLogic Server from a Java command line, the heap size
values could be specified as follows:

$ java -XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8
-Xms512m -Xmx512m
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\bea"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"
 weblogic.Server

The default size for these values is measured in bytes. Append the letter ‘k’ or ‘K’ to
the value to indicate kilobytes, ‘m’ or ‘M’ to indicate megabytes, and ‘g’ or ‘G’ to
indicate gigabytes. For more information on the heap size options, see “Java Heap Size
Options” on page 2-8.

Using WebLogic Startup Scripts to Set Heap Size

Sample startup scripts are provided with the WebLogic Server distribution for starting
the server and for setting the environment to build and run the server:

startWLS.cmd and setEnv.cmd for Windows systems.

startWLS.sh and setEnv.sh for UNIX systems.

These scripts are located in WL_HOME\server\bin, where WL_HOME is the location in
which you installed WebLogic Server. The startup scripts set environment variables,
such as the default memory arguments passed to Java (that is, heap size) and the location of
the JDK, and then starts the JVM with WebLogic Server arguments.
BEA WebLogic Server Performance and Tuning 2-7

2 Tuning Java Virtual Machines (JVMs)
Be aware that the WebLogic Server startup scripts specify default heap size
parameters; therefore, you will need to modify them to fit your environment and
applications. See “Starting an Administration Server Using a Script” at
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#UsingD
omainStartScripts.

Java Heap Size Options

You achieve best performance by individually tuning each of your applications.
However, configuring the JVM heap size options listed in Table 2-2 when starting
WebLogic Server increases performance for most applications.

These options may differ depending on your architecture and operating system. See
your vendor’s documentation for platform-specific JVM tuning options.

Table 2-2 Java Heap Size Options

Task Option Description

Setting the New generation
heap size

-XX:NewSize Use this option to set the New generation Java heap
size. Set this value to a multiple of 1024 that is
greater than 1MB. As a general rule, set
-XX:NewSize to be one-fourth the size of the
maximum heap size. Increase the value of this option
for larger numbers of short-lived objects.
Be sure to increase the New generation as you
increase the number of processors. Memory
allocation can be parallel, but garbage collection is
not parallel.

Setting the maximum New
generation heap size

-XX:MaxNewSize Use this option to set the maximum New generation
Java heap size. Set this value to a multiple of 1024
that is greater than 1MB.

Setting New heap size
ratios

-XX:SurvivorRatio The New generation area is divided into three
sub-areas: Eden, and two survivor spaces that are
equal in size.
Use the -XX:SurvivorRatio=X option to
configure the ratio of the Eden/survivor space size.
Try setting this value to 8, and then monitor your
garbage collection.
2-8 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#UsingDomainStartScripts

Automatically Logging Low Memory Conditions
Automatically Logging Low Memory
Conditions

WebLogic Server enables you to automatically log low memory conditions observed
by the server. WebLogic Server detects low memory by sampling the available free
memory a set number of times during a time interval. At the end of each interval, an
average of the free memory is recorded and compared to the average obtained at the
next interval. If the average drops by a user-configured amount after any sample
interval, the server logs a low memory warning message in the log file and sets the
server health state to “warning.”

If the average free memory ever drops below 5 percent of the initial free memory
recorded immediately after you start the server, WebLogic Server logs a message to
the log file.

You configure each aspect of the low memory detection process using the
Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

Setting minimum heap size -Xms Use this option to set the minimum size of the
memory allocation pool. Set this value to a multiple
of 1024 that is greater than 1MB. As a general rule,
set minimum heap size (-Xms) equal to the
maximum heap size (-Xmx) to minimize garbage
collections.

Setting maximum heap size -Xmx Use this option to set the maximum Java heap size.
Set this value to a multiple of 1024 that is greater
than 1MB.

Table 2-2 Java Heap Size Options (Continued)

Task Option Description
BEA WebLogic Server Performance and Tuning 2-9

2 Tuning Java Virtual Machines (JVMs)
3. Click the Servers node in the navigation tree to display the servers configured in
your domain.

4. Click the name of the server instance that you want to configure. Note that you
configure low memory detection on a per-server basis.

5. Select the Configuration → Memory tab in the right pane.

6. Modify the following attributes as necessary to tune low memory detection for
the selected server instance:

Low Memory GCThreshold: Enter a percentage value (0–99 percent) to
represent the threshold after which WebLogic Server logs a low memory
warning and changes the health state to “warning.” By default, Memory
GCThreshold is set to 5 percent. This means that by default the server logs a
low memory warning after the average free memory reaches 5 percent of the
initial free memory measured at the server’s boot time.

Low Memory Granularity Level: Enter a percentage value (1–99 percent)
to use for logging low memory conditions and changing the server health
state to “warning.” By default this value is set to 5 percent. This means that
if the average free memory drops by 5 percent or more over two measured
intervals, the server logs a low memory warning in the log file and changes
the server health state to “warning.”

Low Memory Sample Size: Enter the number of times the server samples
free memory during a fixed time period. By default, the server samples free
memory 10 times each interval to acquire the average free memory. Using a
higher sample size can increase the accuracy of the reading.

Low Memory Time Interval: Enter the time, in seconds, that define the
interval over which the server determines average free memory values. By
default WebLogic Server obtains an average free memory value every 3600
seconds.

7. Click Apply to apply your changes.

8. Reboot the server to use the new low memory detection attributes.
2-10 BEA WebLogic Server Performance and Tuning

Manually Requesting Garbage Collection
Manually Requesting Garbage Collection

Make sure that full garbage collection is necessary before forcing it on a server. When
you perform garbage collection, the JVM often examines every living object in the
heap.

To use the Administration Console to request garbage collection on a specific server
instance:

1. On the Administration Console, click the server instance node in the navigation
tree for the server whose memory usage you want to view. A dialog box in the right
pane shows the tabs associated with this instance.

2. Select the Monitoring → Performance tab.

3. Check the Memory Usage graph for high usage. Note that the Memory Usage
graph displays information only for a server that is currently running.

4. Click the Force garbage collection button to request garbage collection. The
Force garbage collection button calls the JVM’s System.gc() method to
perform garbage collection. Note, however, that the JVM implementation itself
decides whether or not the request actually triggers garbage collection.

Setting Java HotSpot VM Options

You can use standard java command-line options to improve the performance of your
JVM. How you use these options depends on how your application is coded. Although
command-line options are consistent across platforms, some platforms may have
different defaults.

Test both your client and server JVMs to see which options perform better for your
particular application. The Sun Microsystems Java HotSpot VM Options document
provides information on the command-line options and environment variables that can
affect the performance characteristics of the Java HotSpot Virtual Machine. See
http://java.sun.com/docs/hotspot/VMOptions.html.
BEA WebLogic Server Performance and Tuning 2-11

http://java.sun.com/docs/hotspot/VMOptions.html

2 Tuning Java Virtual Machines (JVMs)
See “Non-Standard Java Options for Windows and UNIX” on page 2-13 for more VM
options that affect performance.

Standard Java Options for Windows and UNIX

In Windows, WebLogic Server invokes a particular version of the JVM through the
java command and by specifying one of the options listed in Table 2-3.

In UNIX, the WebLogic Server invokes a particular version of the JVM through the
java command and by specifying one of the options listed in Table 2-4.

The Sun Microsystems The Java HotSpot Client and Server Virtual Machines
document discusses the two implementations of the Java virtual machine that are
available for J2SE 1.3. See
http://java.sun.com/j2se/1.3/docs/guide/performance/hotspot.html.

Table 2-3 Standard Options for HotSpot VM on Windows

Option Description

-hotspot Selects the HotSpot Client VM, which according to
Sun Microsystems, “provides superior performance
to that of the Classic VM.”

-classic Selects the Classic VM, which is essentially the same
virtual machine implementation as in version 1.2 of
the Java 2 SDK.

Note: The Java 2 Classic VM is included only in
the Java 2 SDK. It is not included in the
Java 2 Runtime Environment. The
-classic option will not work with the
Java 2 Runtime Environment.

Table 2-4 Standard Options for HotSpot VM on UNIX

Option Description

-client or -hotspot Selects the HotSpot Client VM.

-server Selects the HotSpot Server VM.
2-12 BEA WebLogic Server Performance and Tuning

http://java.sun.com/j2se/1.3/docs/guide/performance/hotspot.html

Setting Java HotSpot VM Options
Non-Standard Java Options for Windows and UNIX

You can also use non-standard java options to improve performance. How you use
these options depends on how your application is coded. Although command-line
options are consistent across platforms, some platforms may have different defaults.
Note that non-standard command-line options are subject to change in future releases.

Two examples of non-standard options for improving performance on the Hotspot VM
on Windows are listed in Table 2-5.

For additional examples of non-standard Windows options, see Non-Standard Options
(for Windows VMs) at
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/java.html#nonsta
ndard.

Two examples of non-standard options for improving performance on the Hotspot VM
on UNIX Solaris are listed in Table 2-6.

Table 2-5 Non-standard Options for HotSpot VM on Windows

Option Description

-Xnoclassgc This option disables garbage collection for the
specified class. It prevents reloading of the class
when the class is referenced after all references to it
have been lost. This option requires an increased
heap size.

-Xrs Reduces usage of operating-system signals by the
JVM.

Table 2-6 Non-standard Options for HotSpot VM on Solaris

Option Description

-Xnoclassgc This option disables garbage collection for the
specified class. It prevents reloading of the class
when the class is referenced after all references to it
have been lost. This option requires an increased
heap size.
BEA WebLogic Server Performance and Tuning 2-13

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/java.html#nonstandard
http://java.sun.com/j2se/1.3/docs/tooldocs/win32/java.html#nonstandard

2 Tuning Java Virtual Machines (JVMs)
For more examples of non-standard options for Solaris, see Non-Standard Options (for
Solaris VMs) at
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html#nons
tandard.

-ss This option controls the native thread stack size.
Setting it too high (>2MB) severely degrades
performance.

Table 2-6 Non-standard Options for HotSpot VM on Solaris

Option Description
2-14 BEA WebLogic Server Performance and Tuning

http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html#nonstandard
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html#nonstandard

CHAPTER
3 Tuning WebLogic
Server

The following sections describe how to tune WebLogic Server to match your
application needs.

“Setting Performance-Related config.xml Parameters” on page 3-1

“Setting Performance-Related weblogic-ejb-jar.xml Parameters” on page 3-16

“Setting Java Parameters for Starting WebLogic Server” on page 3-21

“Setting Your Java Compiler” on page 3-22

“Using WebLogic Server Clusters” on page 3-24

“Monitoring a WebLogic Server Domain” on page 3-26

Setting Performance-Related config.xml
Parameters

The WebLogic Server configuration file (config.xml) contains a number of
performance-related parameters that can be fine-tuned depending on your environment
and applications. The config.xml file, located on the machine that hosts the
Administration Server, provides persistent storage of Mbean attribute values. Every
time you change an attribute using the system administration tools (using either the
BEA WebLogic Server Performance and Tuning 3-1

3 Tuning WebLogic Server
command-line interface or the Administration Console), its value is stored in the
appropriate administration MBean and written to the config.xml file. Each
WebLogic Server domain has its own config.xml file.

For more information about using WebLogic Server system administration tools, see
the “System Administration Tools” section in the Administration Guide at
http://e-docs.bea.com/wls/docs70/adminguide/overview.html#sysadmi
ntools.

Table 3-1 lists the config.xml file parameters that affect server performance.

Table 3-1 Performance-Related config.xml Elements

Element Attributes For information

Server NativeIOEnabled See “Using WebLogic
Server Performance Packs”
on page 3-3.

ExecuteQueue ThreadCount See “Setting Thread Count”
on page 3-4.

ExecuteQueue QueueLength

QueueLengthThreshold
Percent

ThreadsIncrease

ThreadsMaximum

ThreadsMinimum

See “Tuning Execute Queues
for Overflow Conditions” on
page 3-9.

Server StuckThreadMaxTime

StuckThreadTimerInte
rval

See “Detecting “Stuck”
Threads” on page 3-12.

Server ThreadPoolPercentSoc
ketReaders

See “Allocating Threads to
Act as Socket Readers” on
page 3-8.

Server AcceptBacklog See “Tuning Connection
Backlog Buffering” on page
3-13.

JDBCConnectionPool InitialCapacity

MaxCapacity
See “How JDBC Connection
Pools Enhance Performance”
on page 3-14.
3-2 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/adminguide/overview.html#sysadmintools

Setting Performance-Related config.xml Parameters
Using WebLogic Server Performance Packs

Benchmarks show major performance improvements when you use native
performance packs on machines that host WebLogic Server instances. Performance
packs use a platform-optimized, native socket multiplexor to improve server
performance. However, if you must use the pure-Java socket reader implementation
for host machines, you can still improve the performance of socket communication by
configuring the proper number of socket reader threads for each server instance and
client machine.

Which Platforms Have Performance Packs?

To see which supported platforms currently have performance packs available:

1. Go to Supported Configurations for WebLogic Server at
http://e-docs.bea.com/platform/suppconfigs/index.html.

2. From the list of supported configurations, click the link for the platform that you
need.

The ensuing page contains tables of information for each supported WebLogic
Server release (including service packs). Within each release table there is a
“Performance Pack” entry that indicates whether a performance pack is
“Included” in the release.

3. To verify performance pack information, you can either click on a specific
WebLogic Server release at the top of the page and scan the corresponding table,
or use your browser’s Edit → Find feature to search for all instances of
“Performance Pack” on the page.

JDBCConnectionPool PreparedStatementCac
heSize

See “Caching Prepared
Statements” on page 3-15.

Table 3-1 Performance-Related config.xml Elements (Continued)

Element Attributes For information
BEA WebLogic Server Performance and Tuning 3-3

http://e-docs.bea.com/platform/suppconfigs/index.html

3 Tuning WebLogic Server
Enabling Performance Packs

Make sure the NativeIOEnabled attribute of the Server element is defined in your
config.xml file. The default config.xml file shipped with your distribution enables
this attribute by default: NativeIOEnabled=true.

To use the Administration Console to make sure performance packs are enabled:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Click the Servers node in the left pane to display the servers configured in your
domain.

4. Click the name of the server instance that you want to configure.

5. Select the Configuration → Tuning tab.

6. If the Native IO Enabled check box is not selected, select the check box.

7. Click Apply.

8. Restart your server.

Setting Thread Count

The value of the ThreadCount attribute of an ExecuteQueue element in the
config.xml file equals the number of simultaneous operations that can be performed
by applications that use the execute queue. As work enters an instance of WebLogic
Server, it is placed in an execute queue. This work is then assigned to a thread that does
the work on it. Threads consume resources, so handle this attribute with care—you can
degrade performance by increasing the value unnecessarily.

By default, a new WebLogic Server instance is configured with a default execute
queue (named “default”) that contains 15 threads, which are used by all applications
running on the server instance. A WebLogic Server instances also contains two built-in
execute queues named __weblogic_admin_html_queue and
__weblogic_admin_rmi_queue, but these queues are reserved for communicating
with the Administration Console. If you configure no additional execute queues, all
Web applications and RMI objects use the default queue.
3-4 BEA WebLogic Server Performance and Tuning

Setting Performance-Related config.xml Parameters
Note: If native performance packs are not being used for your platform, you may
need to tune the default number of execute queue threads and the percentage
of threads that act as socket readers to achieve optimal performance. For more
information, see “Allocating Threads to Act as Socket Readers” on page 3-8.

Should You Modify the Default Thread Count?

Adding more threads to the default execute queue does not necessarily imply that you
can process more work. Even if you add more threads, you are still limited by the
power of your processor. Because threads consume memory, you can degrade
performance by increasing the value of the ThreadCount attribute unnecessarily. A
high execute thread count causes more memory to be used and increases context
switching, which can degrade performance.

The value of the ThreadCount attribute depends very much on the type of work your
application does. For example, if your client application is thin and does a lot of its
work through remote invocation, that client application will spend more time
connected — and thus will require a higher thread count — than a client application
that does a lot of client-side processing.

If you do not need to use more than 15 threads (the default) for your work, do not
change the value of this attribute. As a general rule, if your application makes database
calls that take a long time to return, you will need more execute threads than an
application that makes calls that are short and turn over very rapidly. For the latter case,
using a smaller number of execute threads could improve performance.

Default Thread Count Scenarios

To determine the ideal thread count for an execute queue, monitor the queue’s
throughput while all applications in the queue are operating at maximum load. Increase
the number of threads in the queue and repeat the load test until you reach the optimal
throughput for the queue. (At some point, increasing the number of threads will lead
to enough context switching that the throughput for the queue begins to decrease.)

Note: The WebLogic Server Administration Console displays the cumulative
throughput for all of a server’s execute queues. To access this throughput
value, follow steps 1-6 in “Modifying the Thread Count in the Default Execute
Queue” on page 3-7.
BEA WebLogic Server Performance and Tuning 3-5

3 Tuning WebLogic Server
Table 3-2 shows default scenarios for adjusting available threads in relation to the
number of CPUs on the WebLogic Server system. These scenarios also assume that the
WebLogic Server is running under maximum load, and that all thread requests are
satisfied by using the default execute queue. If you configure additional execute
queues and assign applications to specific queues, monitor results on a pool-by-pool
basis.

Table 3-2 Default Thread Count Scenarios

When... Results Do This:

Thread Count < number of CPUs Your thread count is too low if:

CPU is waiting to do work,
but there is work that
could be done.
Cannot get 100 percent
CPU utilization rate.

Increase the thread count.

Thread Count = number of CPUs Theoretically ideal, but the
CPUs are still under-utilized.

Increase the thread count.

Thread Count > number of CPUs (by a
moderate number of threads)

Practically ideal, with a
moderate amount of context
switching and a high CPU
utilization rate.

Tune the moderate number of
threads and compare performance
results.
3-6 BEA WebLogic Server Performance and Tuning

Setting Performance-Related config.xml Parameters
Modifying the Thread Count in the Default Execute Queue

To modify the default execute queue thread count using the Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Click the Servers node in the left pane to display the servers configured in your
domain.

4. Click the name of the server instance that contains the execute queue you want to
configure. Note that you can only modify the default execute queue for the
server, or a user-defined execute queue.

5. Select the Monitoring → General tab in the right pane.

Thread Count > number of CPUs (by a
large number of threads)

Too much context switching,
which can lead to significant
performance degradation.
Your performance may
increase as you decrease the
number of threads

Reduce the number of threads so
that it equals the number of CPUs,
and then add only the number of
“stuck” threads that you have
determined.
For example, if you have four
processors, then four threads can
be running concurrently with the
number of stuck threads. So, you
want the execute threads to be 4 +
the number of stuck threads.
To determine the amount of stuck
threads, see “Detecting “Stuck”
Threads” on page 3-12.

Note: This recommendation is
highly
application-dependent.
For instance, the length
of time the application
might block threads can
invalidate the formula.

Table 3-2 Default Thread Count Scenarios (Continued)

When... Results Do This:
BEA WebLogic Server Performance and Tuning 3-7

3 Tuning WebLogic Server
6. Click the Monitor All Active Queues text link to display the execute queues that
the selected server uses.

7. Click the Configure Execute Queue text link to display the execute queues that
you can modify.

8. In the table of configured execute queues, click the name of the default execute
queue to display the Execute Queue Configuration tab.

9. Increase or decrease, as appropriate, the default Thread Count value.

10. Click Apply to apply your changes.

11. Reboot the selected server to enable the new execute queue settings.

Assigning Applications to Execute Queues

Although you can configure the default execute queue to supply the optimal number
threads for all WebLogic Server applications, configuring multiple execute queues can
provide additional control for key applications. By using multiple execute queues, you
can guarantee that selected applications have access to a fixed number of execute
threads, regardless of the load on WebLogic Server. See “Using Execute Queues to
Control Thread Usage” on page 4-5 for more information on assigning applications to
configured execute queues.

Allocating Threads to Act as Socket Readers

For best socket performance, BEA recommends that you use the native socket reader
implementation, rather than the pure-Java implementation, on machines that host
WebLogic Server instances (see “Using WebLogic Server Performance Packs” on
page 3-3). However, if you must use the pure-Java socket reader implementation for
host machines, you can still improve the performance of socket communication by
configuring the proper number of execute threads to act as socket reader threads for
each server instance and client machine.

The ThreadPoolPercentSocketReaders attribute sets the maximum percentage of
execute threads that are set to read messages from a socket. The optimal value for this
attribute is application-specific. The default value is 33, and the valid range is 1–99.
3-8 BEA WebLogic Server Performance and Tuning

Setting Performance-Related config.xml Parameters
Allocating execute threads to act as socket reader threads increases the speed and the
ability of the server to accept client requests. It is essential to balance the number of
execute threads that are devoted to reading messages from a socket and those threads
that perform the actual execution of tasks in the server.

Set the Number of Socket Reader Threads on a WebLogic Server

To use the Administration Console to set the maximum percentage of execute threads
that read messages from a socket:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Click the Servers node in the left pane to display the servers configured in your
domain.

4. Click the name of the server that you want to configure.

5. Select the Configuration → Tuning tab.

6. Edit the percentage of Java reader threads in the Socket Readers attribute field.
The number of Java socket readers is computed as a percentage of the number of
total execute threads (as shown in the Execute Threads attribute field).

7. Apply the changes.

Set the Number of Socket Reader Threads on Client Machines

On client machines, you can configure the number socket reader threads in the Java
Virtual Machine (JVM) that runs the client. Specify the socket readers by defining the
-Dweblogic.ThreadPoolSize=value and
-Dweblogic.ThreadPoolPercentSocketReaders=value options in the java
command line for the client.

Tuning Execute Queues for Overflow Conditions

You can configure a server to detect and optionally address potential overflow
conditions in the default execute queue or any user-defined execute queue. WebLogic
Server considers a queue to have a possible overflow condition when its current size
BEA WebLogic Server Performance and Tuning 3-9

3 Tuning WebLogic Server
reaches a user-defined percentage of its maximum size. When this threshold is
reached, the server changes its health state to “warning” and can optionally allocate
additional threads to perform the outstanding work in the queue, thereby reducing its
size.

To automatically detect and address overflow conditions in a queue, you configure the
following items:

The threshold at which the server indicates an overflow condition. This value is
set as a percentage of the configured size of the execute queue (the
QueueLength value).

The number of threads to add to the execute queue when an overflow condition
is detected. These additional threads work to reduce the size of the queue and
reduce the size of the queue to its normal operating size.

The minimum and maximum number of threads available to the queue. In
particular, setting the maximum number of threads prevents the server from
assigning an overly high thread count in response to overload conditions.

To tune an execute queue using the WebLogic Server Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Click the Servers node in the left pane to display the servers configured in your
domain.

4. Click the name of the server instance that contains the execute queue you want to
configure. Note that you can only modify the default execute queue for the
server, or a user-defined execute queue.

5. Select the Monitoring → General tab in the right pane.

6. Click the Monitor All Active Queues text link to display the execute queues that
the selected server uses.

7. Click the Configure Execute Queue text link to display the execute queues that
you can modify.

8. Click the name of the default execute queue or the user-defined execute queue
that you want to configure to display the Execute Queue Configuration tab.
3-10 BEA WebLogic Server Performance and Tuning

Setting Performance-Related config.xml Parameters
9. To specify how this server should detect an overflow condition for the selected
queue, modify the following attributes:

Queue Length: Make sure that the Queue Length attribute indicates the
maximum possible length that the execute queue can reach. This value
should be higher than the normal operating length of the queue. By default,
the Queue Length is set to 65536 entries.

Queue Length Threshold Percent: Enter the percentage (from 1–99) of
the Queue Length size that can be reached before the server indicates an
overflow condition for the queue. All actual queue length sizes below the
threshold percentage are considered normal; sizes above the threshold
percentage indicate an overflow. By default, WebLogic Server sets Queue
Length Threshold Percent to 90 percent.

10. To specify how this server should address an overflow condition for the selected
queue, modify the following attribute:

Threads Increase: Enter the number of threads WebLogic Server should
add to this execute queue when it detects an overflow condition. If you
specify zero threads (the default), the server changes its health state to
“warning” in response to an overflow condition in the thread, but it does not
allocate additional threads to reduce the workload.

11. To fine-tune the variable thread count of this execute queue, modify the
following attributes:

Threads Minimum: Specify the minimum number of threads that WebLogic
Server should maintain in this execute queue to prevent unnecessary
overflow conditions. By default, WebLogic Server sets Threads Minimum
to 5.

Threads Maximum: Specify the maximum number of threads that this
execute queue can have; this value prevents WebLogic Server from creating
an overly high thread count in the queue in response to continual overflow
conditions. By default, WebLogic Server sets Threads Maximum to 400.

12. Click Apply to apply your changes.

13. Reboot the selected server to enable the new execute queue settings.
BEA WebLogic Server Performance and Tuning 3-11

3 Tuning WebLogic Server
Detecting “Stuck” Threads

WebLogic Server automatically detects when a thread in the default execute queue
becomes “stuck.” Because a stuck thread cannot complete its current work or accept
new work, the server logs a message each time it diagnoses a stuck thread. If all threads
in an execute queue become stuck, the server changes its health state to either
“warning” or “critical” depending on the execute queue:

If all threads in the default queue become stuck, the server changes its health
state to “critical.” (You can set up the Node Manager application to
automatically shut down and restart servers in the critical health state. See
“Managing Server Availability with Node Manager” in Creating and
Configuring WebLogic Server Domains for more information.)

If all threads in __weblogic_admin_html_queue or
__weblogic_admin_rmi_queue, the server changes its health state to
“warning.”

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for
a set period of time. You can tune a server’s thread detection behavior by changing the
length of time before a thread is diagnosed as stuck, and by changing the frequency
with which the server checks for stuck threads.

Note: Although you can change the criteria WebLogic Server uses to determine
whether a thread is stuck, you cannot change the default behavior of setting the
“warning” and “critical” health states when all threads in the default execute
queue become stuck. For more information, see Overview of WebLogic
Logging Services in Using WebLogic Logging Services.

To configure WebLogic Server thread detection behavior:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Expand the Servers node to display the servers configured in your domain.

4. Click the name of the server instance whose thread detection behavior that you
want to configure. Note that you configure stuck thread detection parameters on a
per-server basis, rather than on a per-execute queue basis.

5. Select the Configuration → Tuning tab.
3-12 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/logging/use_log.html
http://e-docs.bea.com/wls/docs70/logging/use_log.html

Setting Performance-Related config.xml Parameters
6. Modify the following attributes as necessary to tune thread detection behavior for
the server:

Stuck Thread Max Time: Enter the length of time, in seconds, that a
thread must be continually working before this server diagnoses the thread as
being stuck. By default, WebLogic Server considers a thread to be “stuck”
after 600 seconds of continuous use.

Stuck Thread Timer Interval: Enter the length of time, in seconds,
after which WebLogic Server periodically scans threads to see if they have
been continually working for the length of time specified by Stuck Thread
Max Time. By default, WebLogic Server sets this interval to 600 seconds.

7. Click Apply to apply your changes.

8. Reboot the server to use the new settings.

Tuning Connection Backlog Buffering

Use the AcceptBacklog attribute of the Server element in the config.xml file to set
the number of connection requests the WebLogic Server instance will accept before
refusing additional requests. The AcceptBacklog attribute specifies how many
Transmission Control Protocol (TCP) connections can be buffered in a wait queue.
This fixed-size queue is populated with requests for connections that the TCP stack has
received, but the application has not accepted yet. The default value is 50 and the
maximum value is operating system dependent.

To tune the Accept Backlog value from the Administration Console.

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Click the Servers node in the left pane to display the servers configured in your
domain.

4. Click the name of the server instance that you want to configure.

5. Select the Connection → Tuning tab.

6. Modify the default Accept Backlog value as necessary to tune how many TCP
connections can be buffered in a wait queue:
BEA WebLogic Server Performance and Tuning 3-13

3 Tuning WebLogic Server
During operations, if many connections are dropped or refused at the client,
and no other error messages are on the server, the Accept Backlog value
might be set too low.

If you are getting “connection refused” messages when you try to access
WebLogic Server, raise the Accept Backlog value from the default by 25
percent. Continue increasing the value by 25 percent until the messages cease
to appear.

7. Apply the changes.

How JDBC Connection Pools Enhance Performance

Establishing a JDBC connection with a DBMS can be very slow. If your application
requires database connections that are repeatedly opened and closed, this can become
a significant performance issue. WebLogic connection pools offer an efficient solution
to the problem.

When WebLogic Server starts, connections from the connection pools are opened and
are available to all clients. When a client closes a connection from a connection pool,
the connection is returned to the pool and becomes available for other clients; the
connection itself is not closed. There is little cost to opening and closing pool
connections.

How many connections should you create in the pool? A connection pool can grow and
shrink according to configured parameters, between a minimum and a maximum
number of connections. The best performance occurs when the connection pool has as
many connections as there are concurrent client sessions.

In addition to the following subsections, see “Performance Tuning Your JDBC
Application” in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/performance.html.

Tuning JDBC Connection Pool Initial Capacity

The InitialCapacity attribute of the JDBCConnectionPool element enables you to
set the number of physical database connections to create when configuring the pool.
If the server cannot create this number of connections, the creation of this connection
pool will fail.
3-14 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/jdbc/performance.html
http://e-docs.bea.com/wls/docs70/jdbc/performance.html

Setting Performance-Related config.xml Parameters
During development, it is convenient to set the value of the InitialCapacity
attribute to a low number. This helps the server start up faster.

In production systems, consider setting InitialCapacity equal to the MaxCapacity
so that all database connections are acquired during server start-up. If
InitialCapacity is less than MaxCapacity, the server needs to create additional
database connections when its load is increased. When the server is under load, all
resources should be working to complete requests as fast as possible, rather than
creating new database connections.

Tuning JDBC Connection Pool Maximum Capacity

The MaxCapacity attribute of the JDBCConnectionPool element allows you to set
the maximum number of physical database connections that a connection pool can
contain. Different JDBC drivers and database servers might limit the number of
possible physical connections.

In production, it is advisable that the number of connections in the pool equal the
number of concurrent client sessions that require JDBC connections. The pool capacity
is independent of the number of execute threads in the server. There may be many
more ongoing user sessions than there are execute threads.

Caching Prepared Statements

For each connection pool that you create on a WebLogic Server, you can specify a
prepared statement cache size. When you set the prepared statement cache size,
WebLogic Server stores each prepared statement used in applications and EJBs until
it reaches the number of prepared statements that you specify. For example, if you set
the prepared statement cache size to 10, WebLogic Server will store the first 10
prepared statements called by applications or EJBs.

Using the prepared statement cache can dramatically increase performance, but you
must consider its limitations before you decide to use it. For more details, see
Increasing Performance with the Prepared Statement Cache in the Administration
Guide at
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#preparedsta
tementcache.
BEA WebLogic Server Performance and Tuning 3-15

http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#preparedstatementcache

3 Tuning WebLogic Server
Setting Performance-Related
weblogic-ejb-jar.xml Parameters

The weblogic-ejb-jar.xml deployment file contains the WebLogic Server-specific
EJB DTD that defines the concurrency, caching, clustering, and behavior of EJBs. It
also contains descriptors that map available WebLogic Server resources to EJBs.
WebLogic Server resources include security role names and data sources such as
JDBC pools, JMS connection factories, and other deployed EJBs.

For information on how to modify the weblogic-ejb-jar.xml deployment file, see
“Specifying and Editing the EJB Deployment Descriptors” in Programming WebLogic
Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html#editing_d
eployment_descriptors.

Table 3-3 lists the weblogic-ejb-jar.xml file parameters that affect performance.

The following sections describe these elements.

Table 3-3 Performance-Related weblogic-ejb-jar.xml Parameters

Element For information

max-beans-in-free-pool See “Setting EJB Pool Size” on page 3-17.

initial-beans-in-free-po
ol

See “Tuning Initial Beans in Free Pool” on page 3-18.

max-beans-in-cache See “Setting EJB Caching Size” on page 3-18.

concurrency-strategy See “Deferring Database Locking” on page 3-19.

isolation-level See “Setting Transaction Isolation Level” on page 3-20.
3-16 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html#editing_deployment_descriptors

Setting Performance-Related weblogic-ejb-jar.xml Parameters
Setting EJB Pool Size

WebLogic Server maintains a free pool of EJBs for every stateless session bean class.
The max-beans-in-free-pool element of the weblogic-ejb-jar.xml file defines
the size of this pool. By default, max-beans-in-free-pool has no limit; the
maximum number of beans in the free pool is limited only by the available memory.

Do not change the value of the max-beans-in-free-pool parameter unless you
frequently create session beans, do a quick operation, and then throw them away. If
you do this, enlarge your free pool by 25 to 50 percent and see if performance
improves. If object creation represents a small fraction of your workload, increasing
this parameter will not significantly improve performance. For applications where
EJBs are database intensive, do not change the value of this parameter.

Caution: Tuning this parameter too high uses extra memory. Tuning it too low
causes unnecessary object creation. If you are in doubt about changing this
parameter, leave it unchanged.

In addition to the following subsections, see max-beans-in-free-pool in Programming
WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/reference.html#max_beans_in_
free_pool_60

Allocating Pool Size for Session and Message Beans

When EJBs are created, the session bean instance is created and given an identity.
When the client removes a bean, the bean instance is placed in the free pool. When you
create a subsequent bean, you can avoid object allocation by reusing the previous
instance that is in the free pool. The max-beans-in-free-pool element can improve
performance if EJBs are frequently created and removed.

The EJB container creates new instances of message beans as needed for concurrent
message processing. The max-beans-in-pool element puts an absolute limit on how
many of these instances will be created. The container may override this setting
according to the runtime resources that are available.

For the best performance for stateless session and message beans, use the default
setting max-beans-in-free-pool element. The default allows you to run beans in
parallel, using as many threads as possible. The only reason to change the setting is to
limit the number of beans running in parallel.
BEA WebLogic Server Performance and Tuning 3-17

http://e-docs.bea.com/wls/docs70/ejb/reference.html#max_beans_in_free_pool_60

3 Tuning WebLogic Server
Allocating Pool Size for Entity Beans

There is a pool of anonymous entity beans (that is, beans without a primary key
assigned to them) that is used to invoke finders and home methods, and to create entity
beans. The max-beans-in-free-pool element also controls the size of this pool.

If you are running lots of finders or home methods or creating lots of beans, you may
want to tune the max-beans-in-free-pool element so that there are enough beans
available for use in the pool.

Tuning Initial Beans in Free Pool

Use the initial-beans-in-free-pool element of the weblogic-ejb-jar.xml
file to specify the number of stateless session bean instances in the free pool at startup.

If you specify a value for initial-beans-in-free-pool, WebLogic Server
populates the free pool with the specified number of bean instances at startup.
Populating the free pool in this way improves initial response time for the EJB, because
initial requests for the bean can be satisfied without generating a new instance.

initial-beans-in-free-pool defaults to 0 if the element is not defined.

The initial-beans-in-free-pool element is described in Programming
WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/reference.html#initial-beans
-in-free-pool_60.

Setting EJB Caching Size

WebLogic Server enables you to configure the number of active beans that are present
in the EJB cache (the in-memory space where beans exist).

The max-beans-in-cache element of the weblogic-ejb-jar.xml file specifies the
maximum number of objects of this class that are allowed in memory. When
max-beans-in-cache is reached, WebLogic Server passivates some EJBs that have
not been recently used by a client. The max-beans-in-cache element also affects
when EJBs are removed from the WebLogic Server cache.

The value of this element sets the cache size for both stateful session and entity beans.
3-18 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/ejb/reference.html#initial-beans-in-free-pool_60

Setting Performance-Related weblogic-ejb-jar.xml Parameters
For more information, see “EJB Concurrency Strategy” in Programming WebLogic
Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html.

The max-beans-in-cache element is described in Programming WebLogic
Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/reference.html#max-beans-in-
cache_60.

Activation and Passivation of Stateful Session EJBs

Set the appropriate cache size with the max-beans-in-cache element to avoid
excessive passivation and activation. Activation is the transfer of an EJB instance from
secondary storage to memory. Passivation is the transfer of an EJB instance from
memory to secondary storage. Tuning max-beans-in-cache too high consumes
memory unnecessarily.

The EJB container performs passivation when it invokes the ejbPassivate()
method. When the EJB session object is needed again, it is recalled with the
ejbActivate() method. When the ejbPassivate() call is made, the EJB object is
serialized using the Java serialization API or other similar methods and stored in
secondary memory (disk). The ejbActivate() method causes the opposite.

The container automatically manages this working set of session objects in the EJB
cache without the client’s or server’s direct intervention. Specific callback methods in
each EJB describe how to passivate (store in cache) or activate (retrieve from cache)
these objects. Excessive activation and passivation nullifies the performance benefits
of caching the working set of session objects in the EJB cache—especially when the
application has to handle a large number of session objects.

Deferring Database Locking

WebLogic Server supports database locking and exclusive locking mechanisms. The
default and recommended locking mechanism for EJB 1.1 and EJB 2.0 is deferred
database locking.
BEA WebLogic Server Performance and Tuning 3-19

http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs70/ejb/reference.html#max-beans-in-cache_60

3 Tuning WebLogic Server
Database locking improves concurrent access to entity EJBs. The WebLogic Server
container improves concurrent access by deferring locking services to the underlying
database. Unlike exclusive locking, with deferred database locking, the underlying
data store can provide finer granularity for locking EJB data, in most cases, and
provide deadlock detection.

You specify the locking mechanism used for an EJB by setting the
concurrency-strategy deployment parameter in the weblogic-ejb-jar.xml file.
See
http://e-docs.bea.com/wls/docs70/ejb/reference.html#concurrency_s
trategy_60.

For details about database locking, see Database Concurrency Strategy in
Programming WebLogic Enterprise JavaBeans, at
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#Databas
eLock.

Setting Transaction Isolation Level

Data accessibility is controlled through the transaction isolation level mechanism.
Transaction isolation level determines the degree to which multiple interleaved
transactions are prevented from interfering with each other in a multi-user database
system. Transaction isolation is achieved through use of locking protocols that guide
the reading and writing of transaction data. This transaction data is written to the disk
in a process called “serialization.” Lower isolation levels give you better database
concurrency at the cost of less transaction isolation.

For more information, see the description of the isolation-level element of the
weblogic-ejb-jar.xml file in Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/reference.html#ref_ejbc.

Refer to your database documentation for more information on the implications and
support for different isolation levels.
3-20 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/ejb/reference.html#concurrency_strategy_60
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#DatabaseLock
http://e-docs.bea.com/wls/docs70/ejb/reference.html#ref_ejbc

Setting Java Parameters for Starting WebLogic Server
Setting Java Parameters for Starting
WebLogic Server

Java parameters must be specified whenever you start WebLogic Server. For simple
invocations, this can be done from the command line with the weblogic.Server
command. However, because the arguments needed to start a WebLogic Server from
the command line can be lengthy and prone to error, we recommend that you
incorporate the command into a script. To simply this process, you can modify the
default values in the sample scripts that are provided with the WebLogic distribution
to start WebLogic Server, as described in “Starting an Administration Server Using a
Script” at
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html##Using
DomainStartScripts.

The scripts for starting the Administration Server are called startWLS.sh (UNIX) and
startWLS.cmd (Windows). These scripts are located in the WL_HOME\server\bin
directory, where WL_HOME is the location in which you installed WebLogic Server.

You need to modify some default Java values in these scripts to fit your environment
and applications. The important performance tuning parameters in these files are the
JAVA_HOME parameter and the Java heap size parameters:

Change the value of the variable JAVA_HOME to the location of your JDK. For
example:
set JAVA_HOME=C:\bea\jdk131_03

For higher performance throughput, set the minimum java heap size equal to the
maximum heap size. For example:
"%JAVA_HOME%\bin\java" -hotspot –Xms512m –Xmx512m -classpath
%CLASSPATH% -

See “Specifying Heap Size Values” on page 2-7 for details about setting heap
size options.
BEA WebLogic Server Performance and Tuning 3-21

http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#UsingDomainStartScripts
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#UsingDomainStartScripts

3 Tuning WebLogic Server
Setting Your Java Compiler

The standard Java compiler for compiling JSP servlets is javac. You can improve
performance significantly by setting your server’s java compiler to sj or jikes
instead of javac. The following sections discuss this procedure and other compiler
considerations.

Changing Compilers in the Administration Console

To change your compiler in the Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Click the Servers node in the left pane to display the servers configured in your
domain.

4. Click the name of the server instance that you want to configure.

5. Select the Configuration → Compilers tab and enter the full path of the compiler
in the Java Compiler field. For example:
c:\visualcafe31\bin\sj.exe

6. Enter the full path to the JRE rt.jar library in the Append to the Classpath
field. For example:
BEA_HOME\jdk131_03\jre\lib\rt.jar

7. Click Apply.

8. Restart your server for the new Java Compiler and Append to Classpath values to
take effect.
3-22 BEA WebLogic Server Performance and Tuning

Setting Your Java Compiler
Setting Your Compiler in weblogic.xml

In the weblogic.xml file, the jsp-descriptor element defines parameter names
and values for servlet JSPs.

Use the compileCommand parameter to specify the Java compiler for compiling
the generated JSP servlets.

Use the precompile parameter to configure WebLogic Server to precompile
your JSPs when WebLogic Server starts up.

For more information about setting your server’s java compiler in the weblogic.xml
file, see the jsp-descriptor element at
http://e-docs.bea.com/wls/docs70/webapp/weblogic_xml.html#jsp-des
criptor.

Compiling EJB Container Classes

Use the weblogic.ejbc utility to compile EJB 2.0 and 1.1 container classes. If you
compile .jar files for deployment into the EJB container, you must use
weblogic.ejbc to generate the container classes. By default, ejbc uses the javac
compiler. For faster performance, specify a different compiler (such as Symantec sj)
using the -compiler flag.

For more information, see “WebLogic Server EJB Utilities” at
http://e-docs.bea.com/wls/docs70/ejb/EJB_utilities.html.

Compiling on UNIX

If you receive the following error message received when compiling JSP files on a
UNIX machine:

failed: java.io.IOException: Not enough space

Try any or all of the following solutions:

Add more RAM if you have only 256 MB.

Raise the file descriptor limit, for example:
BEA WebLogic Server Performance and Tuning 3-23

http://e-docs.bea.com/wls/docs70/webapp/weblogic_xml.html#jsp-descriptor
http://e-docs.bea.com/wls/docs70/ejb/EJB_utilities.html

3 Tuning WebLogic Server
set rlim_fd_max = 4096

set rlim_fd_cur = 1024

Use the -native flag to use native threads when starting the JVM.

Using WebLogic Server Clusters

A WebLogic Server cluster is a group of WebLogic Servers instances that together
provide fail-over and replicated services to support scalable high-availability
operations for clients. A cluster appears to its clients as a single server but is in fact a
group of servers acting as one.

Scalability and High Availability

Scalability is the ability of a system to grow in one or more dimensions as more
resources are added to the system. Typically, these dimensions include (among other
things), the number of concurrent users that can be supported and the number of
transactions that can be processed in a given unit of time.

Given a well-designed application, it is entirely possible to increase performance by
simply adding more resources. To increase the load handling capabilities of WebLogic
Server, add another WebLogic Server instance to your cluster—without changing your
application. Clusters provide two key benefits that are not provided by a single server:
scalability and availability.

WebLogic Server clusters bring scalability and high-availability to J2EE applications
in a way that is transparent to application developers. Scalability expands the capacity
of the middle tier beyond that of a single WebLogic Server or a single computer. The
only limitation on cluster membership is that all WebLogic Servers must be able to
communicate by IP multicast. New WebLogic Servers can be added to a cluster
dynamically to increase capacity.
3-24 BEA WebLogic Server Performance and Tuning

Using WebLogic Server Clusters
A WebLogic Server cluster guarantees high-availability by using the redundancy of
multiple servers to insulate clients from failures. The same service can be provided on
multiple servers in a cluster. If one server fails, another can take over. The ability to
have a functioning server take over from a failed server increases the availability of the
application to clients.

For complete information about clusters, see “Using WebLogic Server Clusters” at
http://e-docs.bea.com/wls/docs70/cluster/index.html.

Caution: Provided that you have resolved all application and environment
bottleneck issues, adding additional servers to a cluster should provide
linear scalability. When doing benchmark or initial configuration test runs,
isolate issues in a single server environment before moving to a clustered
environment.

Performance Considerations for Multi-CPU Machines

With multi-processor machines, additional consideration must be given to the ratio of
the number of available CPUs to clustered WebLogic Server instances. Because
WebLogic Server has no built-in limit to the number of server instances that reside in
a cluster, large, multi-processor servers, such as Sun Microsystems’ Sun Enterprise
10000, can potentially host very large clusters or multiple clusters.

In order to determine the optimal ratio of CPUs to WebLogic server instances, you
must first ensure that an application is truly CPU-bound, rather than network or disk
I/O-bound. Use the following steps to determine the optional ratio of CPUs to server
instances:

1. Test your application to determine the Network Requirements.

If you discover that an application is primarily network I/O-bound, consider
measures to increase network throughput before increasing the number of
available CPUs. For truly network I/O-bound applications, installing a faster
network interface card (NIC) may increase performance more than additional
CPUs, because most CPUs would remain idle while waiting to read available
sockets.

2. Test your application to determine the Disk I/O Requirements.
BEA WebLogic Server Performance and Tuning 3-25

http://e-docs.bea.com/wls/docs70/cluster/index.html

3 Tuning WebLogic Server
If you discover that an application is primarily disk I/O-bound, consider
upgrading the number of disk spindles or individual disks and controllers before
allocating additional CPUs.

3. Begin performance tests using a ratio of one WebLogic Server instance for every
available CPU.

4. If CPU utilization is consistently at or near 100 percent, increase the ratio of
CPUs to servers by adding an additional CPU. Add additional CPUs until
utilization reaches an acceptable level. Remember, always reserve some spare
CPU cycles on your production systems to perform any administration tasks that
may occur.

Monitoring a WebLogic Server Domain

The tool for monitoring the health and performance of your WebLogic Server domain
is the Administration Console. Using the Administration Console, you can view status
and statistics for WebLogic Server resources such as servers, HTTP, the JTA
subsystem, JNDI, security, CORBA connection pools, EJB, JDBC, and JMS.

For details, see “Monitoring a WebLogic Server Domain” at
http://e-docs.bea.com/wls/docs70/admin_domain/monitoring.html.
3-26 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/admin_domain/monitoring.html

CHAPTER
4 Tuning WebLogic
Server Applications

WebLogic Server only performs as well as the applications running on it. It is
important to determine the bottlenecks that impede performance, as described in the
following sections:

“Using Performance Analysis Tools” on page 4-1

“JDBC Application Tuning” on page 4-2

“Managing Sessions” on page 4-3

“Using Execute Queues to Control Thread Usage” on page 4-5

Using Performance Analysis Tools

This section is a quick reference for using the OptimizeItTM and JProbeTM profilers
with WebLogic Server.

A profiler is a performance analysis tool that allows you to reveal hot spots in the
application that result in either high CPU utilization or high contention for shared
resources. For a list of common profilers, see “Performance Analysis Tools” on page
A-6.
BEA WebLogic Server Performance and Tuning 4-1

4 Tuning WebLogic Server Applications
Using the JProbe Profiler

The JProbe Suite is a family of products that provide the capability to detect
performance bottlenecks, find and fix memory leaks, perform code coverage, and other
metrics. For product details, see http://www.quest.com/jprobe/

The JProbe website provides a technical white paper, “Using Sitraka JProbe and BEA
WebLogic Server”, which describes how developers can analyze code with any of the
JProbe Suite tools running inside BEA WebLogic Server.

Using the OptimizeIt Profiler

The Optimizeit Profiler from Borland is a performance debugging tool for Solaris and
Windows platforms. For product details, see
http://www.borland.com/optimizeit/optimizeit_profiler/index.html.

Borland provides detailed J2EE Integration Tutorials for the supported versions of
Optimizeit Profiler that work with WebLogic Server. For details, see
http://info.borland.com/optimizeit/j2ee_support.html#bea.

JDBC Application Tuning

Most performance gains or losses in a database application are determined by how the
application is designed. The number and location of clients, size and structure of
DBMS tables and indexes, and the number and types of queries all affect application
performance.

For more information on optimizing your applications for JDBC, see “Performance
Tuning Your JDBC Application” in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/performance.html.
4-2 BEA WebLogic Server Performance and Tuning

http://www.quest.com/jprobe/profiler.asp
http://www.quest.com/jprobe/pdfs/jprobe_weblogic.pdf
http://www.quest.com/jprobe/pdfs/jprobe_weblogic.pdf
http://www.borland.com/optimizeit/optimizeit_profiler/index.html
http://info.borland.com/optimizeit/j2ee_support.html#bea
http://e-docs.bea.com/wls/docs70/jdbc/performance.html
http://e-docs.bea.com/wls/docs70/jdbc/performance.html

Managing Sessions
JDBC Optimization for Type-4 MS SQL Driver

When using the type-4 MS SQL driver, it may be much faster to create and execute an
SQL statement either without parameters or with parameter values converted to their
string counterparts and added as appropriate to the string, rather than declaring a long
series of setXXX() calls, followed by execute().

For more information, see “Configuring and Using WebLogic jDriver for Microsoft
SQL Server” at
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html.

Managing Sessions

Optimize your application so that it does as little work as possible when handling
session persistence and sessions.

Managing Session Persistence

In-memory replication is up to 10 times faster than JDBC-based persistence for session
state. Use in-memory replication, if possible.

If you are using JDBC-based persistence, optimize your code so that it has as high a
granularity for session state persistence as possible. In the case of JDBC-based
persistence, every session “put” operation that you use in your code results in a
database write of the entire object.

Keep the number of “puts” that you use during your HTTP session to a minimum.To
minimize how often information is persisted during a given session, examine your
“puts” and, if possible, combine them into a single, large “put”.

For more information, see:

“Configuring Session Persistence” in Assembling and Configuring Web
Applications, at
http://e-docs.bea.com/wls/docs70/webapp/sessions.html#session-p
ersistence.
BEA WebLogic Server Performance and Tuning 4-3

http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs70/webapp/sessions.html#session-persistence

4 Tuning WebLogic Server Applications
“HTTP Session State Replication” in Using WebLogic Sever Clusters, at
http://http://e-docs.bea.com/wls/docs70/cluster/failover.html.

“In-Memory Replication for Stateful Session EJBs” in Programming WebLogic
EJB, at
http://http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html.

“Using a Database for Persistent Storage (JDBC Persistence)” in Assembling and
Configuring Web Applications, at
http://e-docs.bea.com/wls/docs70/webapp/sessions.html#jdbc_pers
istence.

Minimizing Sessions

Configuring how WebLogic Server manages sessions is a key part of tuning your
application for best performance. Consider the following:

Use of sessions involves a scalability trade-off.

Use sessions sparingly.

Use sessions only for state that cannot realistically be kept on the client or if
URL rewriting support is required. Keep simple bits of state, such as a user’s
name, directly in cookies. You might also write a wrapper class to “get” and
“set” these cookies, in order to simplify the work of servlet developers working
on the same project.

Keep frequently used values in local variables.

Put aggregate objects rather than multiple single objects into the session where
possible.

See “Setting Up Session Management” in Assembling and Configuring Web
Applications, at
http://e-docs.bea.com/wls/docs70/webapp/sessions.html#session-man
agement.
4-4 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs70/cluster/failover.html#httpstaterep
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#ejbinmemrep
http://e-docs.bea.com/wls/docs70/webapp/sessions.html#jdbc_persistence
http://e-docs.bea.com/wls/docs70/webapp/sessions.html#session-management

Using Execute Queues to Control Thread Usage
Using Execute Queues to Control Thread
Usage

You can fine-tune an application’s access to execute threads (and thereby optimize or
throttle its performance) by using multiple execute queues in WebLogic Server.
However, keep in mind that unused threads represent significant wasted resources in a
Weblogic Server system. You may find that available threads in configured execute
queues go unused, while applications in other queues sit idle waiting for threads to
become available. In such a situation, the division of threads into multiple queues may
yield poorer overall performance than having a single, default execute queue.

Default WebLogic Server installations are configured with a default execute queue,
which is used by all applications running on the server instance. You may want to
configure additional queues to:

Optimize the performance of critical applications. For example, you can
assign a single, mission-critical application to a particular execute queue,
guaranteeing a fixed number of execute threads. During peak server loads,
nonessential applications may compete for threads in the default execute queue,
but the mission-critical application has access to the same number of threads at
all times.

Throttle the performance of nonessential applications. For an application that
can potentially consume large amounts of memory, assigning it to a dedicated
execute queue effectively limits the amount of memory it can consume.
Although the application can potentially use all threads available in its assigned
execute queue, it cannot affect thread usage in any other queue.

Remedy deadlocked thread usage. With certain application designs, deadlocks
can occur when all execute threads are currently utilized. For example, consider
a servlet that reads messages from a designated JMS queue. If all execute
threads in a server are used to process the servlet requests, then no threads are
available to deliver messages from the JMS queue. A deadlock condition exists,
and no work can progress. Assigning the servlet to a separate execute queue
avoids potential deadlocks, because the servlet and JMS queue do not compete
for thread resources.
BEA WebLogic Server Performance and Tuning 4-5

4 Tuning WebLogic Server Applications
Be sure to monitor each execute queue to ensure proper thread usage in the system as
a whole. See “Setting Thread Count” on page 3-4 for general information about
optimizing the number of threads.

Creating Execute Queues

An execute queue represents a named collection of execute threads that are available
to one or more designated servlets, JSPs, EJBs, or RMI objects. An execute queue is
represented in the domain config.xml file as part of the Server element. For
example, an execute queue named CriticalAppQueue with four execute threads
appears in the config.xml file as follows:

...
<Server
Name="examplesServer"
ListenPort="7001"
NativeIOEnabled="true"/>
<ExecuteQueue Name="default"
ThreadCount="15"/>

<ExecuteQueue Name="CriticalAppQueue"
ThreadCount="4"/>

...
</Server>

To configure a new execute queue using the Administration Console:

1. Start the Administration Server if it is not already running.

2. Access the Administration Console for the domain.

3. Click the Servers node in the left pane to display the servers configured in your
domain.

4. Click the name of the server instance where you will add the execute queue.

5. Select the Monitoring → General tab.

6. Click the Monitor All Active Queues text link to display the execute queues that
the selected server uses.

7. Click the Configure Execute Queue text link to display the execute queues that
you can modify.

8. Click the Configure a New Execute Queue link.
4-6 BEA WebLogic Server Performance and Tuning

Using Execute Queues to Control Thread Usage
9. On the Execute Queue Configuration tab modify the following attributes or
accept the system defaults:

Queue Length: Always leave the Queue Length at the default value of
65536 entries. The Queue Length specifies the maximum number of
simultaneous requests that the server can hold in the queue. The default of
65536 requests represents a very large number of requests; outstanding
requests in the queue should rarely, if ever reach this maximum value.

If the maximum Queue Length is reached, WebLogic Server automatically
doubles the size of the queue to account for the additional work. Note,
however, that exceeding 65536 requests in the queue indicates a problem
with the threads in the queue, rather than the length of the queue itself; check
for stuck threads or an insufficient thread count in the execute queue.

Queue Length Threshold Percent: Enter the percentage (from 1–99) of
the Queue Length size that can be reached before the server indicates an
overflow condition for the queue. All actual queue length sizes below the
threshold percentage are considered normal; sizes above the threshold
percentage indicate an overflow. When an overflow condition is reached,
WebLogic Server logs an error message and increases the number of threads
in the queue by the value of the Threads Increase attribute to help reduce the
workload.

By default, the Queue Length Threshold Percent value is 90 percent. In most
situations, you should leave the value at or near 90 percent, to account for
any potential condition where additional threads may be needed to handle an
unexpected spike in work requests. Keep in mind that Queue Length
Threshold Percent must not be used as an automatic tuning parameter—the
threshold should never trigger an increase in thread count under normal
operating conditions.

Thread Count: Specify the number of threads assigned to this queue. If you
do not need to use more than 15 threads (the default) for your work, do not
change the value of this attribute. (For more information, see “Should You
Modify the Default Thread Count?” on page 3-5.)

Threads Increase: Enter the number of threads WebLogic Server should
add to this execute queue when it detects an overflow condition. If you
specify zero threads (the default), the server changes its health state to
“warning” in response to an overflow condition in the thread, but it does not
allocate additional threads to reduce the workload.
BEA WebLogic Server Performance and Tuning 4-7

4 Tuning WebLogic Server Applications
Note that if WebLogic Server increases the number of threads in response to
an overflow condition, the additional threads remain in the execute queue
until the server is rebooted. In general, you should monitor the error log to
determine the cause of overflow conditions, and reconfigure the thread count
as necessary to prevent similar conditions in the future. Do not use the
combination of Threads Increase and Queue Length Threshold Percent as an
automatic tuning tool; doing so generally results in the execute queue
allocating more threads than necessary and suffering from poor performance
due to context switching.

Threads Minimum: Specify the minimum number of threads that WebLogic
Server should maintain in this execute queue to prevent unnecessary
overflow conditions. By default, the Threads Minimum is set to 5.

Threads Maximum: Specify the maximum number of threads that this
execute queue can have; this value prevents WebLogic Server from creating
an overly high thread count in the queue in response to continual overflow
conditions. By default, the Threads Maximum is set to 400.

Thread Priority: Specify the priority of the threads associated with this
queue. By default, the Thread Priority is set to 5.

10. Click Create to create the new execute queue.

11. Reboot the server to use the new settings.

Assigning Servlets and JSPs to Execute Queues

You can assign a servlet or JSP to a configured execute queue by identifying the
execute queue name in the initialization parameters. Initialization parameters appear
within the init-param element of the servlet’s or JSP’s deployment descriptor file,
web.xml. To assign an execute queue, enter the queue name as the value of the
wl-dispatch-policy parameter, as in the example:

<servlet>
<servlet-name>MainServlet</servlet-name>
<jsp-file>/myapplication/critical.jsp</jsp-file>
<init-param>

<param-name>wl-dispatch-policy</param-name>
<param-value>CriticalAppQueue</param-value>

</init-param>
</servlet>
4-8 BEA WebLogic Server Performance and Tuning

Using Execute Queues to Control Thread Usage
See “Initializing a Servlet” in Programming WebLogic HTTP Servlets for more
information about specifying initialization parameters in web.xml.

Assigning EJBs and RMI Objects to Execute Queues

To assign an RMI object to a configured execute queue, use the -dispatchPolicy
option to the rmic compiler. For example:

java weblogic.rmic -dispatchPolicy CriticalAppQueue ...

To assign an EJB object to a configured execute queue, use the -dispatchPolicy
option with the ejbc utility. ejbc passes this option and its argument to rmic when
compiling the EJB.
BEA WebLogic Server Performance and Tuning 4-9

http://e-docs.bea.com/wls/docs70/servlet/progtasks.html#initservlet

4 Tuning WebLogic Server Applications
4-10 BEA WebLogic Server Performance and Tuning

CHAPTER
A Related Reading:
Performance Tools and
Information

The following sections provide an extensive performance-related reading list:

BEA Systems, Inc. Information

Sun Microsystems Information

Linux OS Information

Hewlett-Packard Company Information

Microsoft Information

Web Performance Tuning Information

Network Performance Tools

Performance Analysis Tools

Benchmarking Information

Java Virtual Machine (JVM) Information

Enterprise JavaBeans Information

Java Message Service (JMS) Information

General Performance Information
BEA WebLogic Server Performance and Tuning A-1

A Related Reading: Performance Tools and Information
BEA Systems, Inc. Information

For general information about BEA Systems, see the BEA Web site

 See http://www.bea.com

BEA WebLogic Server Documentation page

See http://e-docs.bea.com/wls/docs70

BEA WebLogic Platform Documentation page

See http://edocs.bea.com/platform/docs70/index.html

BEA’s dev2dev Web site

See http://dev2dev.bea.com/index.jsp

BEA WebLogic Server Evaluation White Papers

See http://dev2dev.bea.com/products/wlserver/resources.jsp

Large-Scale Financial Applications & Service-Oriented Architectures by Anwar
Ludin, 2002

See
http://www.dev2dev.bea.com/products/wlserver/articles/Ludin.jsp

Professional J2EE Programming with BEA WebLogic Server by Paco Gomez,
Peter Zadrozny, 2000

BEA WebLogic Server Bible by Joe Zuffoletto, et al, 2002

J2EE Performance Testing with BEA WebLogic Server by Peter Zadrozny,
Philip Aston, and Ted Osborne 2002

Sun Microsystems Information

For general information about Sun Microsystems, see Sun’s Web site at
http://www.sun.com
A-2 BEA WebLogic Server Performance and Tuning

http://www.BEA.com
http://e-docs.bea.com/wls/docs70
http://edocs.bea.com/platform/docs70/index.html
http://dev2dev.bea.com/index.jsp
http://dev2dev.bea.com/products/wlserver/resources.jsp
http://dev2dev.bea.com/products/wlserver/articles/Ludin.jsp
http://www.amazon.com/exec/obidos/ASIN/1861002998/qid%3D990130139/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/0764548549/ref=ase_zeeware-20/002-9563870-3452011
http://www.amazon.com/exec/obidos/ASIN/1904284000/qid=1024655766/sr=8-3/ref=sr_8_3/102-8494684-1874510
http://www.sun.com

Linux OS Information
Sun Microsystems Performance Information

See http://www.sun.com/sun-on-net/performance.html

Java Standard Edition Platform Documentation

See http://java.sun.com/docs/index.html

Java 2 SDK, Standard Edition Documentation

See http://java.sun.com/j2se/1.3/docs

Solaris Tunable Parameters Reference Manual

See http://docs.sun.com/?p=/doc/806-7009

For BEA WebLogic Server and Solaris-specific details, see the Fujitsu SPARC
Solaris links on the Supported Configurations pages at
http://e-docs.bea.com/platform/suppconfigs/index.html.

Fujtsu SPARC with Solaris 2.7

FujtsuSPARC with Solaris 8

Fujtsu SPARC with Solaris 9

For more about Solaris configuration, check the Solaris FAQ

See http://www.science.uva.nl/pub/solaris/solaris2/index.html

Sun Performance and Tuning Java and the Internet by Adrian Cockcroft, et al,
1997

Solaris 7 Performance Administration Tools by Frank Cervone, 2000

Linux OS Information

For general information about the Linux operating system, see Linux Online at
http://www.linux.org/

For information about the Linux Documentation Project, see LDP at
http://www.tldp.org/
BEA WebLogic Server Performance and Tuning A-3

http://www.sun.com/sun-on-net/performance.html
http://java.sun.com/docs/index.html
http://java.sun.com/j2se/1.3/docs
http://docs.sun.com/?p=/doc/806-7009
http://e-docs.bea.com/platform/suppconfigs/configs70/70_over/overview.html
http://www.science.uva.nl/pub/solaris/solaris2/index.html
http://www.amazon.com/exec/obidos/ASIN/0130952494/o/qid=990130340/sr=8-1/ref=aps_sr_b_1_1/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/0072122110/qid%3D990130401/107-7659827-5248549
http://www.linux.org/
http://www.tldp.org/

A Related Reading: Performance Tools and Information
For information about Redhat Enterprise Linux, see Redhat at
http://www.redhat.com/software/rehel/

For information about SuSE Linux Enterprise Server, see SuSE Linux at
http://www.suse.com/us/business/products/server/sles/index.html

Linux Performance Tuning and Capacity Planning, by Jason R. Find, et al, 1997,
Sams 2001

Ipsysctl Tutorial 1.0.4, at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html,
describes the IP options provided by Linux

The Linux Cookbook: Tips and Techniques for Everyday Use, by Michael Stutz
at http://www.dsl.org/cookbook/

Hewlett-Packard Company Information

General Hewlett-Packard information

See http://www.thenewhp.com.

For BEA WebLogic Server and HP-UX-specific details, see Hewlett-Packard
HP/9000 with HP-UX 11.0 and 11i on the BEA Certifications Pages

See
http://e-docs.bea.com/platform/suppconfigs/configs70/70_over/ov
erview.html

Java Performance Tuning on HP-UX

See
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage
_IDX/1,1701,1602,00.html

Hewlett Packard JMeter, a tool for analyzing profiling information

See http://www.hp.com/products1/unix/java/hpjmeter/

GlancePlus system performance diagnostic tool
A-4 BEA WebLogic Server Performance and Tuning

http://www.redhat.com/software/rhel/
http://www.suse.com/us/business/products/server/sles/index.html
http://www.amazon.com/exec/obidos/tg/detail/-/0672320819/104-9412286-0155141?vi=glance
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html
http://www.dsl.org/cookbook/
http://thenew.hp.com/
http://e-docs.bea.com/platform/suppconfigs/configs70/70_over/overview.html
http://e-docs.bea.com/platform/suppconfigs/configs70/70_over/overview.html
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,1602,00.html
http://www.hp.com/products1/unix/java/hpjmeter/
http://managementsoftware.hp.com/products/glanceplus/index.asp

Microsoft Information
See
http://http://managementsoftware.hp.com/products/glanceplus/ind
ex.asp

HPjconfig Java system configuration tool

See
http://www.hp.com/products1/unix/java/java2/hpjconfig/index.htm
l

Microsoft Information

General Microsoft information

See http://www.microsoft.com

Windows 2000 Performance Tuning White Paper

See
http://www.microsoft.com/technet/win2000/win2ksrv/technote/perf
tune.asp

SQL-Server-Performance.Com, Microsoft SQL Server Performance Tuning and
Optimization

See http://www.sql-server-performance.com/

Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook,
by Ken England, 2001, Digital Press

See
http://www.sql-server-performance.com/sql_server_2000_perform_o
ptimization_review.asp

Web Performance Tuning Information

Apache Performance Notes
BEA WebLogic Server Performance and Tuning A-5

http://www.hp.com/products1/unix/java/java2/hpjconfig/index.html
http://www.microsoft.com
http://www.microsoft.com/technet/win2000/win2ksrv/technote/perftune.asp
http://www.sql-server-performance.com/
http://www.sql-server-performance.com/sql_server_2000_perform_optimization_review.asp
http://httpd.apache.org/docs/misc/perf-tuning.html

A Related Reading: Performance Tools and Information
See http://httpd.apache.org/docs/misc/perf-tuning.html

iPlanet Web Server 4.0 Performance Tuning, Sizing, and Scaling
See http://docs.sun.com/db/doc/816-5663-10

The Art and Science of Web Server Tuning with Internet Information Services 5.0

See
http://www.microsoft.com/windows2000/techinfo/administration/we
b/tuning.asp

Web Performance Tuning: Speeding Up the Web, by Patrick Killelea, Linda Mui
(Editor), O'Reilly Nutshell, 1998

Capacity Planning for Web Performance: Metrics, Models, and Methods, by
Daniel A. Menasce, Virgilio A. F. Almeida, Prentice Hall PTR, 1998

Network Performance Tools

TracePlus/Ethernet, a network packet analysis tool for Windows 95/98/ME, NT
4.x, Windows 2000/XP

See http://www.sstinc.com/home.html

Performance Analysis Tools

A profiler is a performance analysis tool that allows you to reveal hot spots in the
application that result in either high CPU utilization or high contention for shared
resources. Some common profilers are:

OptimizeIt Java Performance Profiler from Borland, a performance debugging
tool for Solaris and Windows

See
http://borland.com/optimizeit/optimizeit_profiler/index.html
A-6 BEA WebLogic Server Performance and Tuning

http://docs.sun.com/db/doc/816-5663-10
http://www.microsoft.com/windows2000/techinfo/administration/web/tuning.asp
http://www.amazon.com/exec/obidos/ASIN/1565923790/qid=995320796/sr=1-1/ref=sc_b_1/002-2021652-9667227
http://www.amazon.com/exec/obidos/ASIN/0130659037/qid=1019850167/sr=1-1/ref=sr_1_1/002-9563870-3452011
http://www.sstinc.com/home.html
http://www.borland.com/optimizeit/optimizeit_profiler/index.html

Benchmarking Information
JProbe Profiler with Memory Debugger, a family of products that provide the
capability to detect performance bottlenecks, perform code coverage and other
metrics

See http://www.sitraka.com/software/jprobe

Product Review: OptimizeIt vs. JProbe, Journal of Object-Oriented
Programming, April 2004

See http://www.adtmag.com/joop/article.asp?id=3668

Hewlett Packard JMeter, a tool for analyzing profiling information

See http://www.hp.com/products1/unix/java/hpjmeter/

Topaz, Mercury Interactive’s application performance management solution

See http://www-svca.mercuryinteractive.com/products/topaz/

SE Toolkit, a performance analysis tool kit

See http://www.setoolkit.com/

Benchmarking Information

SPECjbb2000, a software benchmark product developed by the Standard
Performance Evaluation Corporation (SPEC). SPECjbb2000 is designed to
measure a system’s ability to run Java server applications.

See http://www.spec.org/osg/jbb2000/docs/whitepaper.html

ECPerf Benchmark Kit, a software benchmark product developed under the Java
Community ProcessSM Program that is designed to measure performance and
scalability and assist the J2EE user in understanding J2EE scalability and tuning.

See
http://developer.java.sun.com/developer/releases/j2ee/ecperf
BEA WebLogic Server Performance and Tuning A-7

http://www.sitraka.com/software/jprobe
http://www.adtmag.com/joop/article.asp?id=3668
http://www.hp.com/products1/unix/java/hpjmeter/
http://www-svca.mercuryinteractive.com/products/topaz/
http://www.setoolkit.com/
http://www.spec.org/osg/jbb2000/docs/whitepaper.html
http://developer.java.sun.com/developer/releases/j2ee/ecperf/

A Related Reading: Performance Tools and Information
Java Virtual Machine (JVM) Information

JVM Corner at artima.com

See http://www.artima.com/jvm

Sun Microsystems FAQ about Java HotSpot technology and about performance
in general

See http://java.sun.com/docs/hotspot/PerformanceFAQ.html

Tuning Garbage Collection with the 1.3.1 Java Virtual Machine

See http://java.sun.com/docs/hotspot/gc/

Java HotSpot VM Options, a Sun Microsystems document provides information
on the command-line options and environment variables that can affect the
performance characteristics of the HotSpot JVM.

See http://java.sun.com/docs/hotspot/VMOptions.html

The Java HotSpot Client and Server Virtual Machines for J2SE 1.3

See
http://java.sun.com/j2se/1.3/docs/guide/performance/hotspot.htm
l

Which Java VM scales best? From JavaWorld, results of a VolanoMark 2.0
server benchmark show how 12 virtual machines stack up.

See http://www.javaworld.com/jw-08-1998/jw-08-volanomark.html

Garbage Collection: Algorithms for Automatic Dynamic Memory Management
by Richard Jones, Rafael D Lins, John Wiley & Sons, 1999

See
http://www.amazon.com/exec/obidos/ASIN/0471941484/richardjones/
002-1748120-9756040
A-8 BEA WebLogic Server Performance and Tuning

http://www.artima.com/java/index.html
http://java.sun.com/docs/hotspot/PerformanceFAQ.html
http://java.sun.com/docs/hotspot/gc/
http://java.sun.com/docs/hotspot/VMOptions.html
http://java.sun.com/j2se/1.3/docs/guide/performance/hotspot.html
http://www.javaworld.com/jw-08-1998/jw-08-volanomark.html
http://www.amazon.com/exec/obidos/ASIN/0471941484/richardjones/002-1748120-9756040

Enterprise JavaBeans Information
Enterprise JavaBeans Information

Programming WebLogic Enterprise JavaBeans

See http://e-docs.bea.com/wls/docs70/ejb/index.html

Enterprise JavaBeans, Second Edition, by Richard Monson-Haefel, Mike
Loukides (Editor), 2000

Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition, by
Ed Roman, 1999

TheServerSide.com, a free online community dedicated to Enterprise JavaBeans
(EJBs) and J2EE.

See http://www.theserverside.com/home/index.jsp

Seven Rules for Optimizing Entity Beans, by Akara Sucharitakul, Java Developer
Connection, 2001

See
http://developer.java.sun.com/developer/technicalArticles/ebean
s/sevenrules/

Java Message Service (JMS) Information

Programming WebLogic JMS

See http://e-docs.bea.com/wls/docs70/jms/index.html

“Managing JMS” in the WebLogic Server Administration Guide

See http://e-docs.bea.com/wls/docs70/adminguide/jms/index.html

“WebLogic Messaging Bridge” in the WebLogic Server Administration Guide

See http://e-docs.bea.com/wls/docs70/adminguide/msgbridge.html

WebLogic JMS Performance Guide white paper on the BEA dev2dev Web site

See http://dev2dev.bea.com/technologies/jms/index.jsp
BEA WebLogic Server Performance and Tuning A-9

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://www.amazon.com/exec/obidos/ASIN/0471417114/o/qid=990129064/sr=2-1/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=990128989/sr=1-1/ref=sc_b_1/107-7659827-5248549
http://www.theserverside.com/home/index.jsp
http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://e-docs.bea.com/wls/docs70/jms/index.html
http://e-docs.bea.com/wls/docs70/adminguide/jms.html
http://e-docs.bea.com/wls/docs70/adminguide/msgbridge.html
http://dev2dev.bea.com/technologies/jms/index.jsp

A Related Reading: Performance Tools and Information
Sun Microsystems’ JMS Specification

See http://java.sun.com/products/jms/docs.html

General Performance Information

Jack Shirazi’s Java Performance Tuning Web site

See http://www.javaperformancetuning.com

The Software Testing and Quality Engineering Magazine, Web Application
Scalability, “Avoiding Scalability Shock” by Bill Shea, May/June 2000

See
http://www.stqemagazine.com/index.asp?frame=CORE&content=BACKIS
SUE&stamp=417165320)

Java 2 Performance and Idiom Guide by Craig Larman and Rhett Guthrie, 1999
A-10 BEA WebLogic Server Performance and Tuning

http://java.sun.com/products/jms/docs.html
http://www.javaperformancetuning.com
http://www.stqemagazine.com/index.asp?frame=CORE&content=BACKISSUE&stamp=417165320)
http://www.amazon.com/exec/obidos/ASIN/0130142603/qid%3D990129234/107-7659827-5248549

APPENDIX
B Benchmark Tuning
Examples for WebLogic
Server 7.0 SP1

The following sections provide recommendations for improving the out-of-the-box
performance of WebLogic Server when running the ECPerf or SPECjAppServer
2001/2002 benchmarks. Optimal WebLogic Server production tuning values vary
according to your environment and applications.

“Tuning an Intel Xeon System” on page B-1

“Tuning a Sun UltraSparc III System” on page B-3

Tuning an Intel Xeon System

On a system using Intel’s Xeon (Pentium 4) processor, the following tuning
recommendations may provide up to a 700% performance improvement over
WebLogic Server’s default out-of-the-box tuning configuration. These
recommendations are based on the following hardware and operating system
configuration:

4-processor, 1.6 GHz Intel Xeon (Pentium 4)

Hyper-threading technology enabled

4GB of memory
BEA WebLogic Server Performance and Tuning B-1

B Benchmark Tuning Examples for WebLogic Server 7.0 SP1
Windows 2000 Advanced Server

JVM Tuning Tips

Use the BEA JRockit JVM instead of the Sun JVM that comes bundled with WebLogic
Server. For more information on tuning JRockit, see the BEA JRockit Performance
Tuning Guide at http://edocs.bea.com/wljrockit/docs70/index.html.

Use the following JRockit garbage collection and memory management options:

-Xnativethreads (JRockit native thread system)

-Xgc:parallel (parallel garbage collector)

-Xallocationtype:local (local thread allocation)

Increase the minimum and maximum heap sizes to 1536MB (-Xms1536m
-Xmx1536m).

Specify the young generation (nursery) heap size as 512MB (-Xns512m).

WebLogic Server Tuning Tips

Implement the following tuning recommendations on your WebLogic Server instance.
For more information on tuning WebLogic Server parameters, see Chapter 3, “Tuning
WebLogic Server.”

Run one instance of WebLogic Server on the Intel Pentium machine.

Increase the default ExecuteQueue parameter to 27 threads.

Increase the JDBC connection pool InitialCapacity and MaxCapacity
database connection parameters to 40.

Increase the JDBC connection pool PreparedStatementCacheSize parameter
to 300.
B-2 BEA WebLogic Server Performance and Tuning

http://edocs.bea.com/wljrockit/docs70/tuning/index.html
http://edocs.bea.com/wljrockit/docs70/tuning/index.html

Tuning a Sun UltraSparc III System
Tuning a Sun UltraSparc III System

On a system using Sun Microsystems’ UltraSparc III processor, the following tuning
recommendations may provide up to a 560% performance improvement over
WebLogic Server’s default out-of-box tuning configuration. These recommendations
are based on the following hardware and operating system configuration:

4-processor, 900 MHz Sun UltraSparc III

4GB of memory

Solaris 8

JVM Tuning Tips

The following tuning recommendations apply to the Sun Hotspot JVM that comes
bundled with WebLogic Server. For more information on tuning the Hotspot JVM, see
Chapter 2, “Tuning Java Virtual Machines (JVMs).”

Use the HotSpot Server VM option (-server) instead of the HotSpot Client VM
(-client).

Increase the minimum and maximum heap sizes to 1536MB (-Xms1536m
-Xmx1536m).

Specify the New generation minimum and maximum heap sizes as 350MB
(-XX:NewSize=350m -XX:MaxNewSize=350m).

Specify the New generation survivor ratio as 10 (-XX:SurvivorRatio=10).

WebLogic Server Tuning Tips

Implement the following tuning recommendations on your WebLogic Server
instances. For more information on tuning WebLogic Server parameters, see
Chapter 3, “Tuning WebLogic Server.”

Run two instances of WebLogic Server on the UltraSparc III machine.
BEA WebLogic Server Performance and Tuning B-3

B Benchmark Tuning Examples for WebLogic Server 7.0 SP1
Specify -Dweblogic.PosixSocketReaders=1 on the command line when you
start the WebLogic Server instances.

Increase the JDBC connection pool InitialCapacity and MaxCapacity
database connection parameters to 25.

Increase the JDBC connection pool PreparedStatementCacheSize parameter
to 300.
B-4 BEA WebLogic Server Performance and Tuning

Index

A
AcceptBacklog attribute 3-13
Activation, stateful session EJBs 3-19

B
Bandwidth, network 1-8
Benchmarking, related reading A-7
Bull IBM

hardware tuning 1-2

C
-classic option, Windows HotSpot VM 2-12
-client option, UNIX HotSpot VM 2-12
Clusters, scalability 3-24
Command-line options, Java

Solaris 2-13
UNIX 2-12
Windows 2-12
Windows, non-standard 2-13

compileCommand parameter, jsp-descriptor
element 3-23

Compilers
changing in Console 3-22
changing in weblogic.xml 3-23
setting a 3-22

config.xml parameters, tuning 3-1
Connection backlog buffering 3-13
Connection pool size, JDBC 3-14
Connection pools, database 3-14

Container classes, compiling EJB 3-23
Customer support contact information ix

D
Database connection pools 3-14
Disable garbage collection 2-13
Documentation, where to find it viii
Domain, WebLogic Server 3-26

E
Eden/survivor space, setting heap ratios 2-8
EJB

activation 3-18
caching size 3-18
container classes, compiling 3-23
parameters, tuning 3-16
passivation 3-18
pool size, setting 3-17
related reading A-9

F
Forcing garbage collection 2-11

G
Garbage collection

disabling, noclassgc 2-13
forcing on a server 2-11
generational 2-4
BEA WebLogic Server Performance and Tuning I-i

infant mortality 2-4
tuning 2-3
tuning, 1.3.1 JVM A-8

General performance, related reading A-10
Generational garbage collection 2-4
Green threads vs. native threads 2-2

H
Hardware tuning 1-1

Bull IBM 1-2
Hewlett-Packard 1-2, 1-3
Intel Pentium 1-2
network 1-7
platform-specific 1-1
Solaris 1-3

Heap size
setting maximum 2-9
setting minimum 2-9
specifying values 2-7
tuning 2-3

Heap size ratios 2-8
Hewlett-Packard

hardware tuning 1-2, 1-3
related reading A-4

-hotspot option
UNIX Client HotSpot VM 2-12
UNIX HotSpot VM 2-12
Windows HotSpot Client VM 2-12

I
Infant mortality, garbage collection 2-4
In-memory replication 4-3
Intel Pentium

hardware tuning 1-2
Isolation level, setting transaction 3-20
isolation-level element 3-20

J
Java command-line options

Solaris 2-13
UNIX 2-12
Windows 2-12
Windows, non-standard 2-13

Java compiler, setting 3-22
JDBC application tuning 4-2
JDBC connection pool size 3-14
JDBC-based persistence 4-3
JMeter, Hewlett Packard profiler A-4, A-7
JMS, related reading A-9
JProbe profiler 4-2, A-7

related reading A-7
jsp-descriptor element, weblogic.xml 3-23
JSPs, precompiling 3-23
Just-in-Time (JIT) JVMs 2-3
JVMs

Just-in-Time (JIT) 2-3
mixed client/server 2-2
related reading A-8
-verbosegc option 2-5

L
LAN infrastructure 1-9

M
max-beans-in-cache element 3-18
max-beans-in-free-pool element 3-17
Maximum heap size, setting 2-9
Maximum memory, operating system tuning

1-7
Maximum New generation heap size, setting

2-8
MaxNewSize option 2-8
Memory allocation pool, minimum size 2-9
Microsoft, related reading A-5
Minimizing sessions 4-4
Minimum heap size, setting 2-9
I-ii BEA WebLogic Server Performance and Tuning

Minimum size, memory allocation pool 2-9
Mixed client/server JVMs 2-2

N
Native threads vs. green threads 2-2
NativeIOEnabled attribute 3-3
Network tuning

bandwidth 1-8
hardware and software 1-7
LAN infrastructure 1-9
performance tools A-6

New generation heap size, setting 2-8
NewSize option 2-8
-noclassgc option 2-13

O
Operating system tuning

max memory for user process 1-7
OptimizeIt Profiler

related reading A-6
using 4-2

P
Passivation, stateful session EJBs 3-19
Performance analysis tools

related reading A-6
using JProbe and OptimizeIt 4-1

Performance packs
enabling via Console 3-3
using 3-3
which platforms? 3-3

Persistence
JDBC-based 4-3
session, managing 4-3

Platform-specific
hardware tuning 1-1
JVM tuning 2-2

Pool size, database connection 3-14

Precompiling JSPs 3-23
Printing product documentation viii
Profilers

related reading A-6
using 4-1

R
Ratios, setting heap size 2-8
Related reading A-1

BEA Systems A-2
benchmarking A-7
EJBs A-9
general performance A-10
Hewlett Packard A-4
JMS A-9
JVMs A-8
Microsoft A-5
network performance tools A-6
performance analysis tools A-6
profilers A-6
Sun Microsystems A-2

Replication, in-memory 4-3

S
Scalability, clusters 3-24
SE Toolkit A-7
-server option

UNIX HotSpot VM 2-12
Session management 4-4
Session persistence

in-memory replication 4-3
managing 4-3

Setting Java HotSpot VM options 2-11
Socket readers, allocating threads 3-8
Solaris

hardware tuning 1-3
java command-line options 2-13

SPECjbb2000 A-7
Standardized benchmarks and metrics 1-1
BEA WebLogic Server Performance and Tuning I-iii

Start-up scripts for Administration Server
2-7, 3-21

startWebLogic.cmd
heap size values 2-7

startWebLogic.sh
heap size values 2-7

Stateful session EJBs
activation and passivation 3-19

Sun Microsystems, related reading A-2
Support, technical ix
SurvivorRatio option 2-8

T
TCP connections 3-13
Thread count

modifying 3-5
scenarios 3-5
setting 3-4
too high 3-7
too low 3-6

ThreadCount attribute 3-4
Threading models, UNIX 2-2
ThreadPoolPercentSocketReaders attribute

3-8
Threads, socket reader 3-8
TracePlus/Ethernet A-6
Transaction isolation level, setting 3-20
Tuning

config.xml parameters 3-1
Tuning weblogic-ejb-jar.xml parameters

3-16
Type-4 MS SQL Driver 4-3

U
UNIX

java command-line options 2-12
UNIX threading models 2-2
Using profilers 4-1

V
-verbosegc option

JVM 2-5

W
WebLogic Server

clusters 3-24
monitoring a domain 3-26
performance packs 3-3
tuning 3-1

weblogic.ejbc utility 3-23
weblogic-ejb-jar.xml parameters, tuning 3-16
Windows

java command-line options 2-12
java command-line options non-standard

2-13

X
-Xms option 2-9
-XX

MaxNewSize option 2-8
NewSize option 2-8
SurvivorRatio option 2-8
I-iv BEA WebLogic Server Performance and Tuning

	Contents
	About This Document
	1. Tuning Hardware, Operating System, and Network Performance
	2. Tuning Java Virtual Machines (JVMs)
	3. Tuning WebLogic Server
	4. Tuning WebLogic Server Applications
	A. Related Reading: Performance Tools and Information
	B. Benchmark Tuning Examples for WebLogic Server 7.0 SP1

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Tuning Hardware, Operating System, and Network Performance
	Hardware Tuning
	Supported Platforms
	Table 1�1 Platform-Specific Tuning Information

	Operating System Tuning
	Setting TCP Parameters With the ndd Command
	Table 1�2 Suggested TCP-Related Parameter Values

	Setting Parameters In the /etc/system File
	Table 1�3 Suggested /etc/system Values

	CE Gigabit Network Card Settings
	Table 1�4 Suggested CE Gigabit Card Values

	Linux Tuning Parameters
	Table 1�5 Suggested Linux Values

	Other Operating System Tuning Information

	Network Performance
	Determining Network Bandwidth
	LAN Infrastructure

	2 Tuning Java Virtual Machines (JVMs)
	JVM Tuning Considerations
	Table 2�1 General JVM Tuning Considerations�

	JVM Heap Size and Garbage Collection
	Generational Garbage Collection
	Using Verbose Garbage Collection to Determine Heap Size
	1. Monitor the performance of WebLogic Server under maximum load while running your application.
	2. Use the -verbosegc option to turn on verbose garbage collection output for your JVM and redire...
	3. Analyze the following data points:
	a. How often is garbage collection taking place? In the weblogic.log file, compare the time stamp...
	b. How long is garbage collection taking? Full garbage collection should not take longer than 3 t...
	c. What is your average memory footprint? In other words, what does the heap settle back down to ...
	4. If you are using 1.3 Java HotSpot JVM, set the New generation heap sizes.
	5. Make sure that the heap size is not larger than the available free RAM on your system.
	6. If you find that your system is spending too much time collecting garbage (your allocated “vir...
	7. If you find that you have a large amount of available free RAM remaining, run more instances o...

	Specifying Heap Size Values
	Using WebLogic Startup Scripts to Set Heap Size
	Java Heap Size Options
	Table 2�2 Java Heap Size Options�

	Automatically Logging Low Memory Conditions
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Click the Servers node in the navigation tree to display the servers configured in your domain.
	4. Click the name of the server instance that you want to configure. Note that you configure low ...
	5. Select the Configuration Æ Memory tab in the right pane.
	6. Modify the following attributes as necessary to tune low memory detection for the selected ser...
	7. Click Apply to apply your changes.
	8. Reboot the server to use the new low memory detection attributes.

	Manually Requesting Garbage Collection
	1. On the Administration Console, click the server instance node in the navigation tree for the s...
	2. Select the Monitoring Æ Performance tab.
	3. Check the Memory Usage graph for high usage. Note that the Memory Usage graph displays informa...
	4. Click the Force garbage collection button to request garbage collection. The Force garbage col...

	Setting Java HotSpot VM Options
	Standard Java Options for Windows and UNIX
	Table 2�3 Standard Options for HotSpot VM on Windows
	Table 2�4 Standard Options for HotSpot VM on UNIX�

	Non-Standard Java Options for Windows and UNIX
	Table 2�5 Non-standard Options for HotSpot VM on Windows
	Table 2�6 Non-standard Options for HotSpot VM on Solaris

	3 Tuning WebLogic Server
	Setting Performance-Related config.xml Parameters
	Table 3�1 Performance-Related config.xml Elements�
	Using WebLogic Server Performance Packs
	Which Platforms Have Performance Packs?
	1. Go to Supported Configurations for WebLogic Server at http://e-docs.bea.com/platform/suppconfi...
	2. From the list of supported configurations, click the link for the platform that you need.
	3. To verify performance pack information, you can either click on a specific WebLogic Server rel...

	Enabling Performance Packs
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Click the Servers node in the left pane to display the servers configured in your domain.
	4. Click the name of the server instance that you want to configure.
	5. Select the Configuration Æ Tuning tab.
	6. If the Native IO Enabled check box is not selected, select the check box.
	7. Click Apply.
	8. Restart your server.

	Setting Thread Count
	Should You Modify the Default Thread Count?
	Default Thread Count Scenarios
	Table 3�2 Default Thread Count Scenarios�

	Modifying the Thread Count in the Default Execute Queue
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Click the Servers node in the left pane to display the servers configured in your domain.
	4. Click the name of the server instance that contains the execute queue you want to configure. N...
	5. Select the Monitoring Æ General tab in the right pane.
	6. Click the Monitor All Active Queues text link to display the execute queues that the selected ...
	7. Click the Configure Execute Queue text link to display the execute queues that you can modify.
	8. In the table of configured execute queues, click the name of the default execute queue to disp...
	9. Increase or decrease, as appropriate, the default Thread Count value.
	10. Click Apply to apply your changes.
	11. Reboot the selected server to enable the new execute queue settings.

	Assigning Applications to Execute Queues

	Allocating Threads to Act as Socket Readers
	Set the Number of Socket Reader Threads on a WebLogic Server
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Click the Servers node in the left pane to display the servers configured in your domain.
	4. Click the name of the server that you want to configure.
	5. Select the Configuration Æ Tuning tab.
	6. Edit the percentage of Java reader threads in the Socket Readers attribute field. The number o...
	7. Apply the changes.

	Set the Number of Socket Reader Threads on Client Machines

	Tuning Execute Queues for Overflow Conditions
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Click the Servers node in the left pane to display the servers configured in your domain.
	4. Click the name of the server instance that contains the execute queue you want to configure. N...
	5. Select the Monitoring Æ General tab in the right pane.
	6. Click the Monitor All Active Queues text link to display the execute queues that the selected ...
	7. Click the Configure Execute Queue text link to display the execute queues that you can modify.
	8. Click the name of the default execute queue or the user-defined execute queue that you want to...
	9. To specify how this server should detect an overflow condition for the selected queue, modify ...
	10. To specify how this server should address an overflow condition for the selected queue, modif...
	11. To fine-tune the variable thread count of this execute queue, modify the following attributes:
	12. Click Apply to apply your changes.
	13. Reboot the selected server to enable the new execute queue settings.

	Detecting “Stuck” Threads
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Expand the Servers node to display the servers configured in your domain.
	4. Click the name of the server instance whose thread detection behavior that you want to configu...
	5. Select the Configuration Æ Tuning tab.
	6. Modify the following attributes as necessary to tune thread detection behavior for the server:
	7. Click Apply to apply your changes.
	8. Reboot the server to use the new settings.

	Tuning Connection Backlog Buffering
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Click the Servers node in the left pane to display the servers configured in your domain.
	4. Click the name of the server instance that you want to configure.
	5. Select the Connection Æ Tuning tab.
	6. Modify the default Accept Backlog value as necessary to tune how many TCP connections can be b...
	7. Apply the changes.

	How JDBC Connection Pools Enhance Performance
	Tuning JDBC Connection Pool Initial Capacity
	Tuning JDBC Connection Pool Maximum Capacity
	Caching Prepared Statements

	Setting Performance-Related weblogic-ejb-jar.xml Parameters
	Table 3�3 Performance-Related weblogic-ejb-jar.xml Parameters�
	Setting EJB Pool Size
	Allocating Pool Size for Session and Message Beans
	Allocating Pool Size for Entity Beans

	Tuning Initial Beans in Free Pool
	Setting EJB Caching Size
	Activation and Passivation of Stateful Session EJBs
	Deferring Database Locking
	Setting Transaction Isolation Level

	Setting Java Parameters for Starting WebLogic Server
	Setting Your Java Compiler
	Changing Compilers in the Administration Console
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Click the Servers node in the left pane to display the servers configured in your domain.
	4. Click the name of the server instance that you want to configure.
	5. Select the Configuration Æ Compilers tab and enter the full path of the compiler in the Java C...
	6. Enter the full path to the JRE rt.jar library in the Append to the Classpath field. For example:
	7. Click Apply.
	8. Restart your server for the new Java Compiler and Append to Classpath values to take effect.

	Setting Your Compiler in weblogic.xml
	Compiling EJB Container Classes
	Compiling on UNIX

	Using WebLogic Server Clusters
	Scalability and High Availability
	Performance Considerations for Multi-CPU Machines
	1. Test your application to determine the Network Requirements.
	2. Test your application to determine the Disk I/O Requirements.
	3. Begin performance tests using a ratio of one WebLogic Server instance for every available CPU.
	4. If CPU utilization is consistently at or near 100 percent, increase the ratio of CPUs to serve...

	Monitoring a WebLogic Server Domain

	4 Tuning WebLogic Server Applications
	Using Performance Analysis Tools
	Using the JProbe Profiler
	Using the OptimizeIt Profiler

	JDBC Application Tuning
	JDBC Optimization for Type-4 MS SQL Driver

	Managing Sessions
	Managing Session Persistence
	Minimizing Sessions

	Using Execute Queues to Control Thread Usage
	Creating Execute Queues
	1. Start the Administration Server if it is not already running.
	2. Access the Administration Console for the domain.
	3. Click the Servers node in the left pane to display the servers configured in your domain.
	4. Click the name of the server instance where you will add the execute queue.
	5. Select the Monitoring Æ General tab.
	6. Click the Monitor All Active Queues text link to display the execute queues that the selected ...
	7. Click the Configure Execute Queue text link to display the execute queues that you can modify.
	8. Click the Configure a New Execute Queue link.
	9. On the Execute Queue Configuration tab modify the following attributes or accept the system de...
	10. Click Create to create the new execute queue.
	11. Reboot the server to use the new settings.

	Assigning Servlets and JSPs to Execute Queues
	Assigning EJBs and RMI Objects to Execute Queues

	A Related Reading: Performance Tools and Information
	BEA Systems, Inc. Information
	Sun Microsystems Information
	Linux OS Information
	Hewlett-Packard Company Information
	Microsoft Information
	Web Performance Tuning Information
	Network Performance Tools
	Performance Analysis Tools
	Benchmarking Information
	Java Virtual Machine (JVM) Information
	Enterprise JavaBeans Information
	Java Message Service (JMS) Information
	General Performance Information

	B Benchmark Tuning Examples for WebLogic Server 7.0 SP1
	Tuning an Intel Xeon System
	JVM Tuning Tips
	WebLogic Server Tuning Tips

	Tuning a Sun UltraSparc III System
	JVM Tuning Tips
	WebLogic Server Tuning Tips
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

