
BEA
 WebLogic
Server™ and
WebLogic
Express®

Programming WebLogic
JDBC
Release 7.0
Document Revised: March 1, 2006

Copyright

Copyright © 2002 - 2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic JDBC

Part Number Date Software Version

N/A April 8, 2004 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience... xii
e-docs Web Site.. xii
How to Print the Document.. xii
Related Information... xiii
Contact Us!.. xiii
Documentation Conventions ... xiv

1. Introduction to WebLogic JDBC
Overview of JDBC .. 1-1
Using JDBC Drivers with WebLogic Server .. 1-2

Types of JDBC Drivers .. 1-2
Table of WebLogic Server JDBC Drivers ... 1-2
WebLogic Server JDBC Two-Tier Drivers ... 1-3

WebLogic jDriver for Oracle .. 1-4
WebLogic jDriver for Microsoft SQL Server..................................... 1-4

WebLogic Server JDBC Multitier Drivers... 1-4
WebLogic RMI Driver.. 1-4
WebLogic Pool Driver .. 1-5
WebLogic JTS Driver ... 1-5

Third-Party Drivers .. 1-5
Sybase jConnect Driver .. 1-6
Oracle Thin Driver .. 1-6

Overview of Connection Pools.. 1-6
Using Connection Pools with Server-side Applications 1-8
Using Connection Pools with Client-side Applications............................. 1-9

Overview of MultiPools .. 1-9
Programming WebLogic JDBC iii

Overview of Clustered JDBC .. 1-10
Overview of DataSources .. 1-10
JDBC API .. 1-10
JDBC 2.0 ... 1-11
Platforms.. 1-11

2. Configuring and Administering WebLogic JDBC
Configuring and Using Connection Pools ... 2-2

Advantages to Using Connection Pools ... 2-2
Creating a Connection Pool at Startup ... 2-3

Avoiding Server Lockup with the Correct Number of Connections... 2-3
Database Passwords in Connection Pool Configuration 2-3
Connection Pool Limitation .. 2-5
Notes About Refreshing Connections in a JDBC Connection Pool.... 2-5

JDBC Connection Pool Testing Enhancements ... 2-6
Minimizing Connection Test Delay After Database Connectivity Loss..

2-6
Minimizing Connection Request Delay After Connection Test Failures

2-7
Minimizing Connection Request Delay with

SecondsToTrustAnIdlePoolConnection....................................... 2-9
Creating a Connection Pool Dynamically ... 2-10
Dynamic Connection Pool Sample Code ... 2-11

Import Packages .. 2-11
Look Up the Administration MBeanHome....................................... 2-11
Get the Server MBean ... 2-12
Create the Connection Pool MBean .. 2-12
Set the Connection Pool Properties... 2-12
Add the Target... 2-13
Create a DataSource .. 2-13
Removing a Dynamic Connection Pool and DataSource.................. 2-13

Managing Connection Pools .. 2-14
Retrieving Information About a Pool.. 2-15
Disabling a Connection Pool... 2-15
Shrinking a Connection Pool... 2-16
Shutting Down a Connection Pool .. 2-16
iv Programming WebLogic JDBC

Resetting a Pool .. 2-17
Using weblogic.jdbc.common.JdbcServices and

weblogic.jdbc.common.Pool Classes (Deprecated) 2-18
Application-Scoped JDBC Connection Pools ... 2-19
Configuring and Using MultiPools ... 2-20

MultiPool Features ... 2-20
Choosing the MultiPool Algorithm.. 2-20

High Availability .. 2-21
Load Balancing ... 2-21

MultiPool Failover Enhancements ... 2-21
Connection Request Routing Enhancements When a Connection Pool

Fails.. 2-22
Automatic Re-enablement on Recovery of a Failed Connection Pool

within a MultiPool ... 2-22
Enabling Failover for Busy Connection Pools in a MultiPool.......... 2-23
Controlling MultiPool Failover with a Callback............................... 2-24
Controlling MultiPool Failback with a Callback 2-27

MultiPool Fail-Over Limitations and Requirements................................ 2-29
Test Connections on Reserve to Enable Fail-Over 2-29
No Fail-Over for In-Use Connections... 2-30

Configuring and Using DataSources ... 2-30
Importing Packages to Access DataSource Objects................................. 2-31
Obtaining a Client Connection Using a DataSource................................ 2-31

Code Examples ... 2-32
JDBC Data Source Factories.. 2-32

3. Performance Tuning Your JDBC Application
Overview of JDBC Performance... 3-1
WebLogic Performance-Enhancing Features.. 3-1

How Connection Pools Enhance Performance... 3-2
Caching Prepared Statements and Data ... 3-2

Designing Your Application for Best Performance .. 3-3
1. Process as Much Data as Possible Inside the Database 3-3
2. Use Built-in DBMS Set-based Processing ... 3-4
3. Make Your Queries Smart.. 3-4
4. Make Transactions Single-batch .. 3-6
Programming WebLogic JDBC v

5. Never Have a DBMS Transaction Span User Input............................... 3-7
6. Use In-place Updates.. 3-7
7. Keep Operational Data Sets Small ... 3-8
8. Use Pipelining and Parallelism... 3-8

4. Using WebLogic Multitier JDBC Drivers
Using the WebLogic RMI Driver .. 4-1

Setting Up WebLogic Server to Use the WebLogic RMI Driver 4-2
Sample Client Code for Using the RMI Driver.. 4-2

Import the Required Packages... 4-2
Get the Database Connection .. 4-3
Using a JNDI Lookup to Obtain the Connection 4-3
Using Only the WebLogic RMI Driver to Obtain a Database Connection

4-4
Row Caching with the WebLogic RMI Driver .. 4-5

Important Limitations for Row Caching with the WebLogic RMI Driver
4-6

Using the WebLogic JTS Driver ... 4-7
Sample Client Code for Using the JTS Driver ... 4-7

 Using the WebLogic Pool Driver ... 4-9

5. Using Third-Party Drivers with WebLogic Server
Overview of Third-Party JDBC Drivers.. 5-1
Setting the Environment for Your Third-Party JDBC Driver 5-4

CLASSPATH for Third-Party JDBC Driver on Windows 5-4
CLASSPATH for Third-Party JDBC Driver on UNIX.............................. 5-4
Changing or Updating the Oracle Thin Driver... 5-5

Package Change for Oracle Thin Driver 9.x and 10g 5-6
Character Set Support with nls_charset12.zip..................................... 5-6

Updating Sybase jConnect Driver .. 5-7
Installing and Using the IBM Informix JDBC Driver................................ 5-7

Connection Pool Attributes when using the IBM Informix JDBC Driver
5-8

Programming Notes for the IBM Informix JDBC Driver 5-10
Installing and Using the SQL Server 2000 Driver for JDBC from Microsoft

5-10
vi Programming WebLogic JDBC

Installing the MS SQL Server JDBC Driver on a Windows System 5-11
Installing the MS SQL Server JDBC Driver on a Unix System 5-11
Connection Pool Attributes when using the Microsoft SQL Server Driver

for JDBC .. 5-12
Getting a Connection with Your Third-Party Driver 5-13

Using Connection Pools with a Third-Party Driver 5-13
Creating the Connection Pool and DataSource................................. 5-14
Using a JNDI Lookup to Obtain the Connection.............................. 5-14

Getting a Physical Connection from a Connection Pool.......................... 5-15
Code Sample for Getting a Physical Connection.............................. 5-16
Limitations for Using a Physical Connection 5-18

Using Oracle Extensions with the Oracle Thin Driver.................................... 5-18
Limitations When Using Oracle JDBC Extensions 5-19
Sample Code for Accessing Oracle Extensions to JDBC Interfaces 5-19

Import Packages to Access Oracle Extensions 5-20
Establish the Connection... 5-20
Retrieve the Default Row Prefetch Value... 5-21

Programming with ARRAYs ... 5-21
Getting an ARRAY... 5-22
Updating ARRAYs in the Database.. 5-23
Using Oracle Array Extension Methods ... 5-23

Programming with STRUCTs.. 5-24
Getting a STRUCT.. 5-25
Using OracleStruct Extension Methods.. 5-25
Getting STRUCT Attributes ... 5-26
Using STRUCTs to Update Objects in the Database........................ 5-27
Creating Objects in the Database .. 5-27
Automatic Buffering for STRUCT Attributes 5-28

Programming with REFs.. 5-29
Getting a REF.. 5-29
Using OracleRef Extension Methods.. 5-30
Getting a Value ... 5-30
Updating REF Values ... 5-31
Creating a REF in the Database .. 5-33

Programming with BLOBs and CLOBs .. 5-34
Programming WebLogic JDBC vii

Query to Select BLOB Locator from the DBMS.............................. 5-34
Declare the WebLogic Server java.sql Objects................................. 5-34
Begin SQL Exception Block ... 5-34
Updating a CLOB Value Using a Prepared Statement 5-35

Programming with Oracle Virtual Private Databases...................................... 5-35
Tables of Oracle Extension Interfaces and Supported Methods...................... 5-36

6. Using dbKona (Deprecated)
Overview of dbKona ... 6-1

dbKona in a Multitier Configuration.. 6-2
How dbKona and a JDBC Driver Interact.. 6-2
How dbKona and WebLogic Events Can interact...................................... 6-3
The dbKona Architecture ... 6-3

The dbKona API .. 6-4
The dbKona API Reference.. 6-4
The dbKona Objects and Their Classes.. 6-5

Data Container Objects in dbKona.. 6-5
DataSet .. 6-5
QueryDataSet .. 6-6
TableDataSet ... 6-7
EventfulTableDataSet (Deprecated) ... 6-9
Record ... 6-10
Value ... 6-11
Data Description Objects in dbKona... 6-12
Schema .. 6-12
Column.. 6-13
KeyDef .. 6-13
SelectStmt.. 6-14
Miscellaneous Objects in dbKona... 6-14
Exceptions ... 6-15
Constants ... 6-15

Entity Relationships... 6-15
Inheritance Relationships .. 6-15
Possession Relationships... 6-16

Implementing dbKona ... 6-16
viii Programming WebLogic JDBC

Accessing a DBMS with dbKona... 6-16
Step 1. Import packages .. 6-17
Step 2. Set Properties for Making a Connection............................... 6-17
Step 3. Make a Connection to the DBMS... 6-17

Preparing a Query, Retrieving, and Displaying Data............................... 6-18
Step 1. Set Parameters for Data Retrieval... 6-18
Step 2. Create a DataSet for the Query Results 6-19
Step 3. Fetch the Results ... 6-20
Step 4. Examine a TableDataSet’s Schema 6-21
Step 5. Examine the Data with htmlKona... 6-21
Step 6. Display the Results with htmlKona 6-22
Step 7. Close the DataSet and the Connection.................................. 6-22

Using a SelectStmt Object to Form a Query .. 6-25
Step 1. Setting SelectStmt Parameters .. 6-25
Step 2. Using QBE to Refine the Parameters.................................... 6-26

Modifying DBMS Data with a SQL Statement 6-26
Step 1. Writing SQL Statements ... 6-26
Step 1. Writing SQL statements.. 6-27
Step 2. Executing Each SQL Statement.. 6-27
Step 3. Displaying the Results with htmlKona 6-27

Modifying DBMS Data with a KeyDef ... 6-31
Step 1. Creating a KeyDef and Building Its Attributes..................... 6-31
Step 2. Creating a TableDataSet with a KeyDef............................... 6-31
Step 3. Inserting a Record into the TableDataSet 6-32
Step 4. Updating a Record in the TableDataSet................................ 6-32
Step 5. Deleting a Record from the TableDataSet 6-33
Step 6. More on Saving the TableDataSet .. 6-33
Checking Record Status Before Saving .. 6-33
Step 7. Verifying the changes ... 6-34
Code Summary.. 6-35

Using a JDBC PreparedStatement with dbKona...................................... 6-36
Using Stored Procedures with dbKona .. 6-37

Step 1. Creating a Stored Procedure ... 6-38
Step 2. Setting parameters... 6-38
Step 3. Examining the Results .. 6-38
Programming WebLogic JDBC ix

Using Byte Arrays for Images and Audio .. 6-39
Step 1. Retrieving and Displaying Image Data 6-39
Step 2. Inserting an Image into a Database 6-40

Using dbKona for Oracle Sequences.. 6-40
Constructing a dbKona Sequence Object.. 6-40
Creating and Destroying Sequences on an Oracle Server from dbKona .

6-41
Using a Sequence .. 6-41
Code Summary.. 6-41

7. Testing JDBC Connections and Troubleshooting
Monitoring JDBC Connectivity... 7-1
Validating a DBMS Connection from the Command Line 7-2

Syntax.. 7-2
Arguments ... 7-3
Examples ... 7-3

Troubleshooting JDBC .. 7-4
JDBC Connections ... 7-4

Windows.. 7-4
UNIX... 7-5

Codeset Support.. 7-5
Other Problems with Oracle on UNIX .. 7-5
Thread-related Problems on UNIX ... 7-5
Closing JDBC Objects.. 7-6

Abandoning JDBC Objects ... 7-7
Troubleshooting Problems with Shared Libraries on UNIX 7-8

WebLogic jDriver for Oracle ... 7-8
Solaris .. 7-8
HP-UX.. 7-9

Incorrectly Set File Permissions.. 7-9
Incorrect SHLIB_PATH ... 7-10

Using Mircrosoft SQL with Nested Triggers .. 7-10
Exceeding the Nesting Level.. 7-10
Using Triggers and EJBs .. 7-11
x Programming WebLogic JDBC

About This Document

This document describes how to use JDBC with WebLogic Server™.

The document is organized as follows:

Chapter 1, “Introduction to WebLogic JDBC,” introduces the JDBC components
and JDBC API.

Chapter 2, “Configuring and Administering WebLogic JDBC,” describes how to
configure JDBC components for use with WebLogic Server Java applications.

Chapter 3, “Performance Tuning Your JDBC Application,” describes how to
obtain the best performance from JDBC applications.

Chapter 4, “Using WebLogic Multitier JDBC Drivers,” describes how to set up
your WebLogic RMI driver and JDBC clients to use with WebLogic Server.

Chapter 5, “Using Third-Party Drivers with WebLogic Server,” describes how to
set up and use third-party drivers with WebLogic Server.

Chapter 6, “Using dbKona (Deprecated),” describes how to use dbKona classes
in your applications.

Chapter 7, “Testing JDBC Connections and Troubleshooting,” describes
troubleshooting tips when using JDBC with WebLogic Server.
Programming WebLogic JDBC xi

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems, Inc. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
xii Programming WebLogic JDBC

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. For
more information about JDBC, see the JDBC section on the Sun Microsystems
JavaSoft Web site at http://java.sun.com/products/jdbc/index.html.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages
Programming WebLogic JDBC xiii

http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/jdbc/index.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.
Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
xiv Programming WebLogic JDBC

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic JDBC xv

xvi Programming WebLogic JDBC

CHAPTER
1 Introduction to
WebLogic JDBC

The following sections provide an overview of the JDBC components and JDBC API:

“Overview of JDBC” on page 1-1

“Using JDBC Drivers with WebLogic Server” on page 1-2

“Overview of Connection Pools” on page 1-6

“Overview of MultiPools” on page 1-9

“Overview of Clustered JDBC” on page 1-10

“Overview of DataSources” on page 1-10

“JDBC API” on page 1-10

“JDBC 2.0” on page 1-11

“Platforms” on page 1-11

Overview of JDBC

Java Database Connectivity (JDBC) is a standard Java API that consists of a set of
classes and interfaces written in the Java programming language. Application, tool,
and database developers use JDBC to write database applications and execute SQL
statements.
Programming WebLogic JDBC 1-1

1 Introduction to WebLogic JDBC
JDBC is a low-level interface, which means that you use it to invoke (or call) SQL
commands directly. In addition, JDBC is a base upon which to build higher-level
interfaces and tools, such as Java Message Service (JMS) and Enterprise Java Beans
(EJBs).

Using JDBC Drivers with WebLogic Server

JDBC drivers implement the interfaces and classes of the JDBC API. The following
sections describe the JDBC driver options that you can use with WebLogic Server.

Types of JDBC Drivers

WebLogic Server uses the following types of JDBC drivers that work in conjunction
with each other to provide database access:

Two-tier drivers that provide database access directly between a connection pool
and the database. WebLogic Server uses a DBMS vendor-specific JDBC driver,
such as the WebLogic jDrivers for Oracle and Microsoft SQL Server, to connect
to a back-end database.

Multitier drivers that provide vendor-neutral database access. A Java client
application can use a multitier driver to access any database configured in
WebLogic server. BEA offers three multitier drivers—RMI, Pool, and JTS. The
WebLogic Server system uses these drivers behind the scenes when you use a
JNDI look-up to get a connection from a connection pool through a data source.

The middle tier architecture of WebLogic Server, including data sources and
connection pools, allows you to manage database resources centrally in WebLogic
Server. The vendor-neutral multitier JDBC drivers makes it easier to adapt purchased
components to your DBMS environment and to write more portable code.

Table of WebLogic Server JDBC Drivers

The following table summarizes the drivers that WebLogic Server uses.
1-2 Programming WebLogic JDBC

Using JDBC Drivers with WebLogic Server
WebLogic Server JDBC Two-Tier Drivers

The following sections describe Type 2 and Type 4 BEA two-tier drivers used with
WebLogic Server to connect to the vendor-specific DBMS.

Table 1-1 JDBC Drivers

Driver
Tier

Type and
Name of Driver

Database
Connectivity

Documentation Sources

Two-tier
without
support for
distributed
transactions
(non-XA)

Type 2 (requires native libraries):
WebLogic jDriver for Oracle
Third-party drivers

Type 4 (pure Java)
WebLogic jDrivers for
Microsoft SQL Server
Third-party drivers,
including:
Oracle Thin
Sybase jConnect

Between WebLogic
Server and DBMS in
local transactions.

Programming WebLogic JDBC
(this document)
Administration Guide, “Managing
JDBC Connectivity”
Using WebLogic jDriver for
Oracle
Using WebLogic jDriver for
Microsoft SQL Server

Two-tier
with
support for
distributed
transactions
(XA)

Type 2 (requires native libraries)
WebLogic jDriver for Oracle
XA

Between WebLogic
Server and DBMS in
distributed transactions.

Programming WebLogic JTA
Administration Guide, “Managing
JDBC Connectivity”
Using WebLogic jDriver for
Oracle

Multitier Type 3
WebLogic RMI Driver
WebLogic Pool Driver
WebLogic JTS (not Type 3)

Between client and
WebLogic Server
(connection pool). The
RMI driver replaces the
deprecated t3 driver.
The JTS driver is used
in distributed
transactions. The Pool
and JTS drivers are
server-side only.

Programming WebLogic JDBC
(this document)
Programming WebLogic JDBC 1-3

http://e-docs.bea.com/wls/docs70/jdbc/index.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/oracle/index.html
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs70/jta/index.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/oracle/index.html
http://e-docs.bea.com/wls/docs70/jdbc/index.html

1 Introduction to WebLogic JDBC
WebLogic jDriver for Oracle

BEA’s WebLogic jDriver for Oracle is included with the WebLogic Server
distribution. This driver requires an Oracle client installation. The WebLogic jDriver
for Oracle XA driver extends the WebLogic jDriver for Oracle for distributed
transactions. For additional information, see Using WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs70oracle/index.html.

WebLogic jDriver for Microsoft SQL Server

BEA’s WebLogic jDriver for Microsoft SQL Server, included in the WebLogic Server
distribution, is a pure-Java, Type 4 JDBC driver that provides connectivity to
Microsoft SQL Server. For more information, see Configuring and Using WebLogic
jDriver for MS SQL Server at
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html.

WebLogic Server JDBC Multitier Drivers

The following sections briefly describe the WebLogic multitier JDBC drivers that
provide database access to applications. You can use these drivers in server-side
applications (also in client applications for the RMI driver), however BEA
recommends that you look up a data source from the JNDI tree to get a database
connection.

For more details about using these drivers, see Chapter 4, “Using WebLogic Multitier
JDBC Drivers.”

WebLogic RMI Driver

The WebLogic RMI driver is a multitier, Type 3, Java Database Connectivity (JDBC)
driver that runs in WebLogic Server. You can use the WebLogic RMI driver to connect
to a database through a connection pool, however, this is not the recommended
method. BEA recommends that you look up a data source on the JNDI tree to get a
database connection from a connection pool. The data source then internally uses the
RMI driver. With either method, the WebLogic RMI driver uses the WebLogic Pool
and WebLogic JTS drivers internally to get a connection from a connection pool.
1-4 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/oracle/index.html
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html

Using JDBC Drivers with WebLogic Server
Additionally, when configured in a cluster of WebLogic Servers, the WebLogic RMI
driver can be used for clustered JDBC, allowing JDBC clients the benefits of load
balancing and failover provided by WebLogic Clusters.

You can use the WebLogic RMI driver with server-side or client applications.

For more details about using the WebLogic RMI driver, see “Using the WebLogic
RMI Driver” on page 4-1.

WebLogic Pool Driver

The WebLogic Pool driver enables utilization of connection pools from server-side
applications such as HTTP servlets or EJBs. You can use it directly in server-side
applications, but BEA recommends that you use a data source through a JNDI look-up
to get a connection from a connection pool. Data sources in WebLogic Server use the
WebLogic Pool driver internally to get connections from a connection pool.

For information about using the Pool driver, see Accessing Databases in Programming
Tasks in Programming WebLogic HTTP Servlets.

WebLogic JTS Driver

The WebLogic JTS driver is a multitier JDBC driver that is similar to the WebLogic
Pool Driver, but is used in distributed transactions across multiple servers with one
database instance. The JTS driver is more efficient than the WebLogic jDriver for
Oracle XA driver when working with only one database instance because it avoids
two-phase commit. This driver is for use with server-side applications only.

For more details about using the WebLogic JTS driver, see “Using the WebLogic JTS
Driver” on page 4-7.

Third-Party Drivers

WebLogic Server works with third-party JDBC drivers that meet the following
requirements:

Are thread-safe.

Support the JDBC API. Drivers can support extensions to the API, but they must
support the JDBC API as a minimum.
Programming WebLogic JDBC 1-5

http://e-docs.bea.com/wls/docs70/servlet/progtasks.html
http://e-docs.bea.com/wls/docs70/servlet/progtasks.html

1 Introduction to WebLogic JDBC
Implement EJB transaction calls in JDBC.

You typically use these drivers when configuring WebLogic Server to create physical
database connections in a connection pool.

Sybase jConnect Driver

The two-tier Sybase jConnect Type 4 driver is shipped with your WebLogic Server
distribution. You may want to use the latest version of this driver, which is available
from the Sybase Web site. For information on using this driver with WebLogic Server,
see “Using Third-Party Drivers with WebLogic Server” on page 5-1.

Oracle Thin Driver

The two-tier Oracle Thin Type 4 driver bundled with WebLogic Server provides
connectivity from WebLogic Server to an Oracle DBMS. You may want to use the
latest version of the Oracle Thin driver, which is available from the Oracle Web site.
For information on using this driver with WebLogic Server, see “Using Third-Party
Drivers with WebLogic Server” on page 5-1.

Overview of Connection Pools

In WebLogic Server, you can configure connection pools that provide ready-to-use
pools of connections to your DBMS. Client and server-side applications can utilize
connections from a connection pool through a DataSource on the JNDI tree (the
preferred method) or by using a multitier WebLogic driver. When finished with a
connection, applications return the connection to the connection pool.
1-6 Programming WebLogic JDBC

Overview of Connection Pools
Figure 1-1 WebLogic Server Connection Pool Architecture

When the connection pool starts up, it creates a specified number of physical database
connections. By establishing connections at start-up, the connection pool eliminates
the overhead of creating a database connection for each application.

Connection pools require a two-tier JDBC driver to make the physical database
connections from WebLogic Server to the DBMS. The two-tier driver can be one of
the WebLogic jDrivers or a third-party JDBC driver, such as the Sybase jConnect
driver or the Oracle Thin Driver. The following table summarizes the advantages to
using connection pools.
Programming WebLogic JDBC 1-7

1 Introduction to WebLogic JDBC
This section is an overview of connection pools. For more detailed information, see
“Configuring and Using Connection Pools” on page 2-2.

Using Connection Pools with Server-side Applications

For database access from server-side applications, such as HTTP servlets, use a
DataSource from the Java Naming and Directory Interface (JNDI) tree or use the
WebLogic Pool driver. For two-phase commit transactions, use a TxDataSource from
the JNDI tree or use the WebLogic Server JDBC/XA driver, WebLogic jDriver for
Oracle/XA. For transactions distributed across multiple servers with one database

Table 1-2 Advantages to Using Connection Pools

Connection Pools Provide
These Advantages. . .

With This Functionality . . .

Save time, low overhead Making a DBMS connection is very slow. With
connection pools, connections are already
established and available to users. The alternative is
for applications to make their own JDBC
connections as needed. A DBMS runs faster with
dedicated connections than if it has to handle
incoming connection attempts at run time.

Manage DBMS users Allows you to manage the number of concurrent
DBMS connections on your system. This is
important if you have a licensing limitation for
DBMS connections, or a resource concern.
Your application does not need to know of or
transmit the DBMS username, password, and DBMS
location.

Allow use of the DBMS
persistence option

If you use the DBMS persistence option with some
APIs, such as EJBs, pools are mandatory so that
WebLogic Server can control the JDBC connection.
This ensures your EJB transactions are committed or
rolled back correctly and completely.
1-8 Programming WebLogic JDBC

Overview of MultiPools
instance, use a TxDataSource from the JNDI tree or use the JTS driver. BEA
recommends that you access connection pools using the JNDI tree and a DataSource
object rather than using WebLogic multitier drivers.

Using Connection Pools with Client-side Applications

BEA offers the RMI driver for client-side, multitier JDBC. The RMI driver provides a
standards-based approach using the Java 2 Enterprise Edition (J2EE) specifications.
For new deployments, BEA recommends that you use a DataSource from the JNDI
tree to access database connections rather than the RMI driver.

The WebLogic RMI driver is a Type 3, multitier JDBC driver that uses RMI and a
DataSource object to create database connections. This driver also provides for
clustered JDBC, leveraging the load balancing and failover features of WebLogic
Server clusters. You can define DataSource objects to enable transactional support or
not.

Overview of MultiPools

JDBC MultiPools are “pools of connection pools” that you can set up according to
either a high availability or load balancing algorithm. You use a MultiPool in the same
manner that you use a connection pool. When an application requests a connection, the
MultiPool determines which connection pool will provide a connection, according to
the selected algorithm. MultiPools are not supported multiple-server configurations or
with distributed transactions.

You can choose one of the following algorithm options for each MultiPool in your
WebLogic Server configuration:

High availability, in which the connection pools are set up as an ordered list and
used sequentially.

Load balancing, in which all listed pools are accessed using a round-robin
scheme.

For more information, see “Configuring and Using MultiPools” on page 2-20.
Programming WebLogic JDBC 1-9

1 Introduction to WebLogic JDBC
Overview of Clustered JDBC

WebLogic Server allows you to cluster JDBC objects, including data sources,
connection pools and MultiPools, to improve the availability of cluster-hosted
applications. Each JDBC object you configure for your cluster must exist on each
managed server in the cluster—when you configure the JDBC objects, target them to
the cluster.

For information about JDBC objects in a clustered environment, see “JDBC
Connections” in Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs70/cluster/overview.html#jdbc_conne
ctions.

Overview of DataSources

Client and server-side JDBC applications can obtain a DBMS connection using a
DataSource. A DataSource is an interface between an application and the connection
pool. Each data source (such as a DBMS instance) requires a separate DataSource
object, which may be implemented as a DataSource class that supports distributed
transactions. For more information, see “Configuring and Using DataSources” on page
2-30.

JDBC API

To create a JDBC application, use the java.sql API to create the class objects necessary
to establish a connection with a data source, to send queries and update statements to
the data source, and to process the results. For a complete description of all JDBC
interfaces, see the standard JDBC interfaces at java.sql Javadoc. Also see the
following WebLogic Javadocs:

weblogic.jdbc.pool
1-10 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/cluster/overview.html#jdbc_connections
http://e-docs.bea.com/wls/docs70/cluster/overview.html#jdbc_connections
http://java.sun.com/products//jdk/1.2/docs/api/java/sql/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/jdbc/pool/package-summary.html

JDBC 2.0
weblogic.management.configuration (MBeans for creating DataSources,
connection pools, and MultiPools)

JDBC 2.0

WebLogic Server supports JDBC 2.0.

Platforms

Supported platforms vary by vendor-specific DBMSs and drivers. For current
information, see BEA WebLogic Server Platform Support at
http://e-docs.bea.com/platform/suppconfigs/index.html.
Programming WebLogic JDBC 1-11

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/configuration/package-summary.html
http://e-docs.bea.com/platform/suppconfigs/index.html

1 Introduction to WebLogic JDBC
1-12 Programming WebLogic JDBC

CHAPTER
2 Configuring and
Administering
WebLogic JDBC

You use WebLogic Server Administration Console to enable, configure, and monitor
features of the WebLogic Server, including JDBC.

The following sections describe how to program the JDBC connectivity components:

“Configuring and Using Connection Pools” on page 2-2

“Application-Scoped JDBC Connection Pools” on page 2-19

“Configuring and Using MultiPools” on page 2-20

“Configuring and Using DataSources” on page 2-30

For additional information, see

Managing JDBC Connectivity in the Administration Guide at
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html. Describes
how to use the Administration Console and command-line interface to configure
and manage connectivity.

Administration Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html.
Describes how to use the Administration Console to set specific configuration
tasks.
Programming WebLogic JDBC 2-1

http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html

2 Configuring and Administering WebLogic JDBC
Configuring and Using Connection Pools

A connection pool is a named group of identical JDBC connections to a database that
are created when the connection pool is registered, either at WebLogic Server startup
or dynamically during run time. Your application “borrows” a connection from the
pool, uses it, then returns it to the pool by closing it. Also see “Overview of Connection
Pools” on page 1-6.

Advantages to Using Connection Pools

Connection pools provide numerous performance and application design advantages:

Using connection pools is far more efficient than creating a new connection for
each client each time they need to access the database.

You do not need to hard-code details such as the DBMS password in your
application.

You can limit the number of connections to your DBMS. This can be useful for
managing licensing restrictions on the number of connections to your DBMS.

You can change the DBMS you are using without changing your application
code.

The attributes for a configuring a connection pool are defined in the Administration
Console Online Help. There is also an API that you can use to programmatically create
connection pools in a running WebLogic Server; see “Creating a Connection Pool
Dynamically” on page 2-10. You can also use the command line; see the Web Logic
Server Command-Line Interface Reference in the Administration Guide at
http://e-docs.bea.com/wls/docs70/adminguide/cli.html.
2-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/cli.html
http://e-docs.bea.com/wls/docs70/adminguide/cli.html

Configuring and Using Connection Pools
Creating a Connection Pool at Startup

To create a startup (static) connection pool, you define attributes and permissions in
the Administration Console before starting WebLogic Server. WebLogic Server opens
JDBC connections to the database during the startup process and adds the connections
to the pool.

To configure a connection pool in the Administration Console, in the navigation tree
in the left pane, expand the Services and JDBC nodes, then select Connection Pool.
The right pane displays a list of existing connection pools. Click the Configure a new
JDBC Connection Pool text link to create a connection pool.

For step-by-step instructions and a description of connection pool attributes, see the
Administration Console Online Help, available when you click the question mark in
the upper-right corner of the Administration Console or at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html. For more
information about creating and configuring connection pools with the Administration
Console, see “Managing JDBC Connectivity” in the Administration Guide at
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html.

Avoiding Server Lockup with the Correct Number of Connections

When your applications attempt to get a connection from a connection pool in which
there are no available connections, the connection pool throws an exception stating that
a connection is not available in the connection pool. Connection pools do not queue
requests for a connection. To avoid this error, make sure your connection pool can
expand to the size required to accommodate your peak load of connection requests.

To set the maximum number of connections for a connection pool in the
Administration Console, expand the navigation tree in the left pane to show the
Services→JDBC→Connection Pools nodes and select a connection pool. Then, in the
right pane, select the Configuration→Connections tab and specify a value for Maximum
Capacity.

Database Passwords in Connection Pool Configuration

When you create a connection pool, you typically include at least one password to
connect to the database. If you use an open string to enable XA, you may use two
passwords. You can enter the passwords as a name-value pair in the Properties field
or you can enter them in their respective fields:
Programming WebLogic JDBC 2-3

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html

2 Configuring and Administering WebLogic JDBC
Password. Use this field to set the database password. This value overrides any
password value defined in the Properties passed to the tier-2 JDBC Driver
when creating physical database connections. The value is encrypted in the
config.xml file (stored as the Password attribute in the JDBCConnectionPool
tag) and is hidden on the administration console.

Open String Password. Use this field to set the password in the open string
that the transaction manager in WebLogic Server uses to open a database
connection. This value overrides any password defined as part of the open string
in the Properties field. The value is encrypted in the config.xml file (stored
as the XAPassword attribute in the JDBCConnectionPool tag) and is hidden on
the Administration Console. At runtime, WebLogic Server reconstructs the open
string with the password you specify in this field. The open string in the
Properties field should follow this format:

openString=Oracle_XA+Acc=P/userName/+SesTm=177+DB=demoPool+Thre
ads=true=Sqlnet=dvi0+logDir=.

Note that after the userName there is no password.

If you specify a password in the Properties field when you first configure the
connection pool, WebLogic Server removes the password from the Properties string
and sets the value as the Password value in an encrypted form the next time you start
WebLogic Server. If there is already a value for the Password attribute for the
connection pool, WebLogic Server does not change any values. However, the value for
the Password attribute overrides the password value in the Properties string. The
same behavior applies to any password that you define as part of an open string. For
example, if you include the following properties when you first configure a connection
pool:

user=scott;
password=tiger;
openString=Oracle_XA+Acc=p/scott/tiger+SesTm=177+db=jtaXaPool+Thr
eads=true+Sqlnet=lcs817+logDir=.+dbgFl=0x15;server=lcs817

The next time you start WebLogic Server, it moves the database password and the
password included in the open string to the Password and Open String Password
attributes, respectively, and the following value remains for the Properties field:

user=scott;
openString=Oracle_XA+Acc=p/scott/+SesTm=177+db=jtaXaPool+Threads=
true+Sqlnet=lcs817+logDir=.+dbgFl=0x15;server=lcs817
2-4 Programming WebLogic JDBC

Configuring and Using Connection Pools
After a value is established for the Password or Open String Password attributes,
the values in these attributes override the respective values in the Properties
attribute. That is, continuing with the previous example, if you specify tiger2 as the
database password in the Properties attribute, WebLogic Server ignores the value
and continues to use tiger as the database password, which is the current encrypted
value of the Password attribute. To change the database password, you must change
the Password attribute.

Note: The value for Password and Open String Password do not need to be the
same.

Connection Pool Limitation

When using connection pools, it is possible to execute DBMS-specific SQL code that
will alter the database connection properties and that WebLogic Server and the JDBC
driver will not be unaware of. When the connection is returned to the connection pool,
the characteristics of the connection may not be set back to a valid state. For example,
with a Sybase DBMS, if you use a statement such as set rowcount 3 select *
from y, the connection will only ever return a maximum of 3 rows. When the
connection is returned to the connection pool and then reused, the client will still only
get 3 rows returned, even if the table they are selecting against has 500 rows. In most
cases, there is standard (non-DBMS–specific) SQL code that can accomplish the same
result and for which WebLogic Server or the JDBC driver will reset the connection. In
this example, you could use setMaxRows() instead of set rowcount.

If you use DBMS-specific SQL code that alters the connection, you must set the
connection back to an acceptable state before returning it to the connection pool.

Notes About Refreshing Connections in a JDBC Connection Pool

When the refresh process finds a bad database connection that it cannot replace, the
process stops its current cycle. It does not delete remaining broken connections from
the connection pool. They remain in the connection pool until they can be replaced by
new connections. This behavior was designed to avoid degrading performance by
using system cycles to refresh database connections when the DBMS is inaccessible.

The refresh process cannot test or refresh connections currently being used by
application code. It will only test connections that are not currently reserved. Thus a
refresh cycle, even if it is able to replace any bad connections it finds, may never test
all connections in the connection pool if applications are requesting connections.
Programming WebLogic JDBC 2-5

2 Configuring and Administering WebLogic JDBC
Because the refresh process can only test connections not in use, it’s possible that some
connections will never be tested. A client will always run the risk of getting a broken
connection unless testConnsOnReserve is enabled. In fact, even if the connection is
tested before being given to an application, the connection could go bad immediately
after the successful test.

JDBC Connection Pool Testing Enhancements

In WebLogic Server 7.0SP5, the following attributes were added to JDBC connection
pools to improve the functionality of database connection testing for pooled
connections:

CountOfTestFailuresTillFlush—Closes all connections in the connection
pool after the number of test failures that you specify to minimize the delay
caused by further database testing. See “Minimizing Connection Test Delay
After Database Connectivity Loss.”

CountOfRefreshFailuresTillDisable—Disables the connection pool after
the number of test failures that you specify to minimize the delay in handling
connection requests after a database failure. See “Minimizing Connection
Request Delay After Connection Test Failures.”

Minimizing Connection Test Delay After Database Connectivity Loss

When connectivity to the DBMS is lost, even if only momentarily, some or all of the
JDBC connections in the connection pool typically become defunct. If the connection
pool is configured to test connections on reserve (recommended), when an application
requests a database connection, WebLogic Server tests the connection, discovers that
the connection is dead, and tries to replace it with a new connection to satisfy the
request. Ordinarily, when the DBMS comes back online, the refresh process succeeds.
However, in some cases and for some modes of failure, testing a dead connection can
impose a long delay. This delay occurs for each dead connection in the connection pool
until all connections are replaced.
2-6 Programming WebLogic JDBC

Configuring and Using Connection Pools
To minimize the delay that occurs during the test of dead database connections, you
can set the CountOfTestFailuresTillFlush attribute on the connection pool. With
this attribute set, WebLogic Server considers all connections in the connection pool as
dead after the number of consecutive test failures that you specify, and closes all
connections in the connection pool.

When an application requests a connection, the connection pool creates a connection
without first having to test a dead connection. This behavior minimizes the delay for
connection requests following the connection pool flush.

You specify the CountOfTestFailuresTillFlush attribute in the
JDBCConnectionPool entry in the config.xml file. TestConnectionsOnReserve
must also be set to true. For example:

<JDBCConnectionPool
 CapacityIncrement="1"
 DriverName="com.pointbase.xa.xaDataSource"
 InitialCapacity="2" MaxCapacity="10"
 Name="demoXAPool" Password="password"
 Properties="user=examples;
 DatabaseName=jdbc:pointbase:server://localhost/demo"
 Targets="examplesServer"
 TestConnectionsOnReserve="true"
 CountOfTestFailuresTillFlush="1"
 URL="jdbc:pointbase:server://localhost/demo"
/>

Note: The CountOfTestFailuresTillFlush attribute is not available in the
Administration Console.

If you tend to see small network glitches or have a firewall that may occasionally kill
only one socket or connection, you may want to set the number of test failures to 2 or
3, but a value of 1 will provide the best performance after database availability issues
have been resolved.

Minimizing Connection Request Delay After Connection Test Failures

If your DBMS becomes and remains unavailable, the connection pool will persistently
test and try to replace dead connections while trying to satisfy connection requests.
This behavior is beneficial because it enables the connection pool to react immediately
when the database becomes available. However, testing a dead database connection
can take as long as the network timeout, and can cause a long delay for clients.
Programming WebLogic JDBC 2-7

2 Configuring and Administering WebLogic JDBC
To minimize the delay that occurs for client applications while a database is
unavailable, you can set the CountOfRefreshFailuresTillDisable attribute on
the connection pool. With this attribute set, WebLogic Server disables the connection
pool after the number of consecutive failures to replace a dead connection. When an
application requests a connection from a disabled connection pool, WebLogic Server
throws a ConnectDisabledException immediately to notify the client that a
connection is not available.

For connection pools that are disabled in this manner, WebLogic Server periodically
run the refersh process. When the refresh process succeeds in creating a new database
connection, WebLogic Server re-enables the connection pool. You can also manually
re-enable the connection pool using the weblogic.Admin ENABLE_POOL command.

You specify the CountOfRefreshFailuresTillDisable attribute in the
JDBCConnectionPool entry in the config.xml file. TestConnectionsOnReserve
must also be set to true. For example:

<JDBCConnectionPool
 CapacityIncrement="1"
 DriverName="com.pointbase.xa.xaDataSource"
 InitialCapacity="2" MaxCapacity="10"
 Name="demoXAPool" Password="password"
 Properties="user=examples;
 DatabaseName=jdbc:pointbase:server://localhost/demo"
 Targets="examplesServer"
 TestConnectionsOnReserve="true"
 CountOfRefreshFailuresTillDisable="1"
 URL="jdbc:pointbase:server://localhost/demo"
/>

Note: The CountOfRefreshFailuresTillDisable attribute is not available in the
Administration Console.

If you tend to see small network glitches or have a firewall that may occasionally kill
only one socket or connection, you may want to set the number of refresh failures to 2
or 3, but a value of 1 will usually provide the best performance.
2-8 Programming WebLogic JDBC

Configuring and Using Connection Pools
Minimizing Connection Request Delay with
SecondsToTrustAnIdlePoolConnection

Database connection testing during heavy traffic can reduce application performance.
To minimize the impact of connection testing, you can set the
secondsToTrustAnIdlePoolConnection connection property in the JDBC
connection pool configuration to trust recently-used or recently-tested database
connections as viable and skip the connection test.

If your connection pool is configured to test connections on reserve (recommended),
when an application requests a database connection, WebLogic Server tests the
database connection before giving it to the application. If the request is made within
the time specified for secondsToTrustAnIdlePoolConnection since the connection was
tested or successfully used and returned to the connection pool, WebLogic Server skips
the connection test before delivering it to the application.

If your connection pool is configured to periodically test available connections in the
connection pool (RefreshMinutes is specified), WebLogic Server also skips the
connection test if the connection was successfully used and returned to the connection
pool within the time specified for SecondsToTrustAnIdlePoolConnection.

To set secondsToTrustAnIdlePoolConnection, you add it to the list of Properties on the
JDBC Connection Pool → Configuration → General tab in the Administration Console.
See "JDBC Connection Pool --> Configuration --> General" in the Administration
Console Online Help. You can also set it directly in the config.xml file. For example:

<JDBCConnectionPool
 CapacityIncrement="1"
 DriverName="com.pointbase.xa.xaDataSource"
 InitialCapacity="2" MaxCapacity="10"
 Name="demoXAPool" Password="password"
 Properties="user=examples;
 secondsToTrustAnIdlePoolConnection=15;
 DatabaseName=jdbc:pointbase:server://localhost/demo"
 Targets="examplesServer"
 TestConnectionsOnReserve="true"
 TestTableName="SYSTABLES"
 URL="jdbc:pointbase:server://localhost/demo"
/>

SecondsToTrustAnIdlePoolConnection is a tuning feature that can improve
application performance by minimizing the delay caused by database connection
testing, especially during heavy traffic. However, it can reduce the effectiveness of
Programming WebLogic JDBC 2-9

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_general.html

2 Configuring and Administering WebLogic JDBC
connection testing, especially if the value is set too high. The appropriate value
depends on your environment and the likelihood that a connection will become
defunct.

Creating a Connection Pool Dynamically

The JDBCConnectionPool administration MBean as part of the WebLogic Server
management architecture (JMX). You can use the JDBCConnectionPool MBean to
create and configure a connection pool dynamically from within a Java application.
That is, from your client or server application code, you can create a connection pool
in a WebLogic Server that is already running.

You can also use the CREATE_POOL command in the WebLogic Server command line
interface to dynamically create a connection pool. See CREATE_POOL in the
Administration Guide at
http://e-docs.bea.com/wls/docs70/adminguide/cli.html#cli_create_p
ool.

To dynamically create a connection pool using the JDBCConnectionPool
administration MBean, follow these main steps:

1. Import required packages.

2. Look up the administration MBeanHome in the JNDI tree.

3. Get the server MBean.

4. Create the connection pool MBean.

5. Set the properties for the connection pool.

6. Add the target.

7. Create a DataSource object.

Note: Dynamically created connection pools must use dynamically created
DataSource objects. For a DataSource to exist, it must be associated with a
connection pool. Also, a one-to-one relationship exists between DataSource
objects and connection pools in WebLogic Server. Therefore, you must create
a DataSource to use with a connection pool.
2-10 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/adminguide/cli.html#cli_create_pool

Configuring and Using Connection Pools
When you create a connection pool using the JDBCConnectionPool MBean, the
connection pool is added to the server configuration and will be available even if you
stop and restart the server. If you do not want the connection pool to be persistent, you
must remove it programmatically.

Also, you can temporarily disable dynamically created connection pools, which
suspends communication with the database server through any connection in the pool.
When a disabled pool is re-enabled, each connection returns to the same state as when
the pool was disabled; clients can continue their database operations exactly where
they left off.

For more information about using MBeans to manage WebLogic Server, see
Programming WebLogic Management Services with JMX at
http://e-docs.bea.com/wls/docs70/jmx/index.html. For more information
about the JDBCConnectionPool MBean, see the Javadoc for WebLogic Classes at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/con
figuration/JDBCConnectionPoolMBean.html.

Dynamic Connection Pool Sample Code

The following sections show code samples for performing the main steps to create a
connection pool dynamically.

Import Packages

import java.sql.*;
import java.util.*;
import javax.naming.Context;
import javax.sql.DataSource;
import weblogic.jndi.Environment;
import weblogic.management.configuration.JDBCConnectionPoolMBean;
import weblogic.management.runtime.JDBCConnectionPoolRuntimeMBean;
import weblogic.management.configuration.JDBCDataSourceMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicObjectName;

Look Up the Administration MBeanHome

mbeanHome = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
Programming WebLogic JDBC 2-11

http://e-docs.bea.com/wls/docs70/jmx/index.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/configuration/JDBCConnectionPoolMBean.html

2 Configuring and Administering WebLogic JDBC
Get the Server MBean

serverMBean = (ServerMBean)mbeanHome.getAdminMBean(serverName, "Server");
//Create a WebLogic object name for the Server MBean
//to use to create a name for the JDBCConnectionPoolRuntime MBean.
WebLogicObjectName pname = new WebLogicObjectName("server1", "ServerRuntime",
mbeanHome.getDomainName(),"server1");
//Create a WebLogic object name for the JDBCConnectionPoolRuntime MBean
//to use to create or get the JDBCConnectionPoolRuntime MBean.
WebLogicObjectName oname = new WebLogicObjectName(cpName,
"JDBCConnectionPoolRuntime", mbeanHome.getDomainName(),"server1", pname);
JDBCConnectionPoolRuntimeMBean cprmb =
(JDBCConnectionPoolRuntimeMBean)mbeanHome.getMBean(oname);

Create the Connection Pool MBean

 // Create ConnectionPool MBean
 cpMBean = (JDBCConnectionPoolMBean)mbeanHome.createAdminMBean(
 cpName, "JDBCConnectionPool",
 mbeanHome.getDomainName());

Set the Connection Pool Properties

 Properties pros = new Properties();
 pros.put("user", "scott");
 pros.put("server", "lcdbnt1");

 // Set DataSource attributes
 cpMBean.setURL("jdbc:weblogic:oracle");
 cpMBean.setDriverName("weblogic.jdbc.oci.Driver");
 cpMBean.setProperties(pros);
 cpMBean.setPassword("tiger");
 cpMBean.setLoginDelaySeconds(1);
 cpMBean.setInitialCapacity(1);
 cpMBean.setMaxCapacity(10);
 cpMBean.setCapacityIncrement(1);
 cpMBean.setShrinkingEnabled(true);
 cpMBean.setShrinkPeriodMinutes(10);
 cpMBean.setRefreshMinutes(10);
 cpMBean.setTestTableName("dual");

Note: In this example, the database password is set using the
setPassword(String) method instead of including it with the user and
server names in Properties. When you use the setPassword(String)
method, WebLogic Server encrypts the password in the config.xml file and
2-12 Programming WebLogic JDBC

Configuring and Using Connection Pools
when displayed on the administration console. BEA recommends that you use
this method to avoid storing database passwords in clear text in the
config.xml file.

Add the Target

 cpMBean.addTarget(serverMBean);

Create a DataSource

public void createDataSource() throws SQLException {
 try {
 // Get context
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(userName);
 env.setSecurityCredentials(password);
 ctx = env.getInitialContext();

 // Create DataSource MBean
 dsMBeans = (JDBCDataSourceMBean)mbeanHome.createAdminMBean(
 cpName, "JDBCDataSource",
 mbeanHome.getDomainName());

 // Set DataSource attributes
 dsMBeans.setJNDIName(cpJNDIName);
 dsMBeans.setPoolName(cpName);

 // Startup datasource
 dsMBeans.addTarget(serverMBean);

 } catch (Exception ex) {
 ex.printStackTrace();
 throw new SQLException(ex.toString());

 }

 }

Removing a Dynamic Connection Pool and DataSource

The following code sample shows how to remove a dynamically created connection
pool. If you do not remove dynamically created connection pools, they will remain
available even after the server is stopped and restarted.
Programming WebLogic JDBC 2-13

2 Configuring and Administering WebLogic JDBC
public void deleteConnectionPool() throws SQLException {
 try {
 // Remove dynamically created connection pool from the server
 cpMBean.removeTarget(serverMBean);
 // Remove dynamically created connection pool from the
configuration
 mbeanHome.deleteMBean(cpMBean);
 } catch (Exception ex) {
 throw new SQLException(ex.toString());
 }
}

 public void deleteDataSource() throws SQLException {

 try {

 // Remove dynamically created datasource from the server

 dsMBeans.removeTarget(serverMBean);

 // Remove dynamically created datasource from the configuration

 mbeanHome.deleteMBean(dsMBeans);

 } catch (Exception ex) {

 throw new SQLException(ex.toString());

 }

 }

Managing Connection Pools

The JDBCConnectionPool and JDBCConnectionPoolRuntime MBeans provide
methods to manage connection pools and obtain information about them. Methods are
provided for:

Retrieving information about a pool

Disabling a connection pool, which prevents clients from obtaining a connection
from it

Enabling a disabled pool
2-14 Programming WebLogic JDBC

Configuring and Using Connection Pools
Shrinking a pool, which releases unused connections until the pool has reached
the minimum specified pool size

Refreshing a pool, which closes and reopens its connections

Shutting down a pool

The JDBCConnectionPool and JDBCConnectionPoolRuntime MBeans replace the
weblogic.jdbc.common.JdbcServices and weblogic.jdbc.common.Pool
classes, which are deprecated.

For more information about methods provided by the JDBCConnectionPool MBean,
see the Javadoc at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/con
figuration/JDBCConnectionPoolMBean.html. For more information about the
methods provided by the JDBCConnectionPoolRuntime MBean, see the Javadoc at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/run
time/JDBCConnectionPoolRuntimeMBean.html.

Retrieving Information About a Pool

boolean x = JDBCConnectionPoolRuntimeMBean.poolExists(cpName);

props = JDBCConnectionPoolRuntimeMBean.getProperties();

The poolExists() method tests whether a connection pool with a specified name
exists in the WebLogic Server. You can use this method to determine whether a
dynamic connection pool has already been created or to ensure that you select a unique
name for a dynamic connection pool you want to create.

The getProperties() method retrieves the properties for a connection pool.

Disabling a Connection Pool

JDBCConnectionPoolRuntimeMBean.disableDroppingUsers()

JDBCConnectionPoolRuntimeMBean.disableFreezingUsers()

JDBCConnectionPoolRuntimeMBean.enable()

You can temporarily disable a connection pool, preventing any clients from obtaining
a connection from the pool. Only the “system” user or users granted “admin”
permission by an ACL associated with a connection pool can disable or enable the
pool.
Programming WebLogic JDBC 2-15

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/configuration/JDBCConnectionPoolMBean.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/runtime/JDBCConnectionPoolRuntimeMBean.html

2 Configuring and Administering WebLogic JDBC
After you call disableFreezingUsers(), clients that currently have a connection
from the pool are suspended. Attempts to communicate with the database server throw
an exception. Clients can, however, close their connections while the connection pool
is disabled; the connections are then returned to the pool and cannot be reserved by
another client until the pool is enabled.

Use disableDroppingUsers() to not only disable the connection pool, but to
destroy the client’s JDBC connection to the pool. Any transaction on the connection is
rolled back and the connection is returned to the connection pool. The client’s JDBC
connection context is no longer valid.

When a pool is enabled after it has been disabled with disableFreezingUsers(),
the JDBC connection states for each in-use connection are exactly as they were when
the connection pool was disabled; clients can continue JDBC operations exactly where
they left off.

You can also use the disable_pool and enable_pool commands of the
weblogic.Admin class to disable and enable a pool.

Shrinking a Connection Pool

JDBCConnectionPoolRuntimeMBean.shrink()

A connection pool has a set of properties that define the initial and maximum number
of connections in the pool (initialCapacity and maxCapacity), and the number of
connections added to the pool when all connections are in use (capacityIncrement).
When the pool reaches its maximum capacity, the maximum number of connections
are opened, and they remain opened unless you shrink the pool.

You may want to drop some connections from the connection pool when a peak usage
period has ended, freeing up WebLogic Server and DBMS resources.

Shutting Down a Connection Pool

JDBCConnectionPoolRuntimeMBean.shutdownSoft()

JDBCConnectionPoolRuntimeMBean.shutdownHard()

These methods destroy a connection pool. Connections are closed and removed from
the pool and the pool dies when it has no remaining connections. Only the “system”
user or users granted “admin” permission by an ACL associated with a connection pool
can destroy the pool.
2-16 Programming WebLogic JDBC

Configuring and Using Connection Pools
The shutdownSoft() method waits for connections to be returned to the pool before
closing them.

The shutdownHard() method kills all connections immediately. Clients using
connections from the pool get exceptions if they attempt to use a connection after
shutdownHard() is called.

You can also use the destroy_pool command of the weblogic.Admin class to
destroy a pool.

Resetting a Pool

JDBCConnectionPoolRuntimeMBean.reset()

You can configure a connection pool to test its connections either periodically, or
every time a connection is reserved or released. Allowing the WebLogic Server to
automatically maintain the integrity of pool connections should prevent most DBMS
connection problems. In addition, WebLogic provides methods you can call from an
application to refresh all connections in the pool or a single connection you have
reserved from the pool.

The JDBCConnectionPoolRuntimeMBean.reset() method closes and reopens all
allocated connections in a connection pool. This may be necessary after the DBMS has
been restarted, for example. Often when one connection in a connection pool has
failed, all of the connections in the pool are bad.

Use any of the following means to reset a connection pool:

The Administration Console.

The weblogic.Admin command (as a user with administrative privileges) to
reset a connection pool, as an administrator. Here is the pattern:

$ java weblogic.Admin WebLogicURL RESET_POOL poolName system passwd

You might use this method from the command line on an infrequent basis. There
are more efficient programmatic ways that are also discussed here.

The reset() method from the JDBCConnectionPoolRuntimeMBean in your
client application.

The last case requires the most work for you, but also gives you flexibility. To
reset a pool using the reset() method:
Programming WebLogic JDBC 2-17

2 Configuring and Administering WebLogic JDBC
a. In a try block, test a connection from the connection pool with a SQL
statement that is guaranteed to succeed under any circumstances so long as
there is a working connection to the DBMS. An example is the SQL statement
select 1 from dual which is guaranteed to succeed for an Oracle DBMS.

b. Catch the SQLException.

c. Call the reset() method in the catch block.

Using weblogic.jdbc.common.JdbcServices and
weblogic.jdbc.common.Pool Classes (Deprecated)

Previous versions of WebLogic Server included classes that you could use to
programmatically create and manage connection pools:
weblogic.jdbc.common.JdbcServices and weblogic.jdbc.common.Pool.
These classes are now deprecated. Although these classes are still available, BEA
recommends that you use the JDBCConnectionPool MBean instead of these classes
to dynamically create and manage connection pools.

When you use the JDBCConnectionPool MBean to create or modify a connection
pool on a managed server, the JMX service immediately notifies the administration
server of the change. When you use weblogic.jdbc.common.JdbcServices and
weblogic.jdbc.common.Pool to create or modify a connection pool, the following
actions are not conveyed to the Administration Server:

shutdown

retrieve

refresh

enable

disable

After any of these actions, applications on managed servers that use the affected
connection pool may fail.

For more information about weblogic.jdbc.common.JdbcServices and
weblogic.jdbc.common.Pool, see “Configuring WebLogic JDBC Features” in
Programming WebLogic JDBC for WebLogic Server 6.1 at
http://edocs.bea.com/wls/docs61/jdbc/programming.html.
2-18 Programming WebLogic JDBC

http://edocs.bea.com/wls/docs61/jdbc/programming.html

Application-Scoped JDBC Connection Pools
Application-Scoped JDBC Connection Pools

When you package your enterprise applications, you can include the
weblogic-application.xml supplemental deployment descriptor, which you use to
configure application scoping. Within the weblogic-application.xml file, you can
configure JDBC connection pools that are created when you deploy the enterprise
application.

An instance of the connection pool is created with each instance of your application.
This means an instance of the pool is created with the application on each node that the
application is targeted to. It is important to keep this in mind when considering pool
sizing.

Connection pools created in this manner are known as application-scoped connection
pools, app scoped pools, application local pools, app local pools, or local pools, and
are scoped for the enterprise application only. That is, they are isolated for use by the
enterprise application.

For more information about application scoping and application scoped resources, see:

weblogic-application.xml Deployment Descriptor Elements in Developing
WebLogic Server Applications at
http://e-docs.bea.com/wls/docs70/programming/app_xml.html#app-s
coped-pool.

Packaging Enterprise Applications in Developing WebLogic Server Applications
at
http://e-docs.bea.com/wls/docs70/programming/packaging.html#pac
k009.

Two-Phase Deployment in Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs70/programming/deploying.html#two
phasedeploy.
Programming WebLogic JDBC 2-19

http://e-docs.bea.com/wls/docs70/programming/app_xml.html#app-scoped-pool
http://e-docs.bea.com/wls/docs70/programming/packaging.html#pack009
http://e-docs.bea.com/wls/docs70/programming/deploying.html

2 Configuring and Administering WebLogic JDBC
Configuring and Using MultiPools

A MultiPool is a “pool of pools.” You create a MultiPool by first creating connection
pools, then creating the MultiPool using the Administration Console or WebLogic
Management API and assigning the connection pools to the MultiPool.

For instructions to create a MultiPool using the Administration Console, see the
Administration Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_metap
ool_create. For information about the JDBCMultiPoolMBean, see the WebLogic
Server Javadocs at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/con
figuration/JDBCMultiPoolMBean.html.

Note: If you are not using global transactions (XA), you can only use MultiPools to
connect to Oracle RAC.

MultiPool Features

A MultiPools is a pool of connection pools. All the connections in a particular
connection pool are created identically with a single database, single user, and the
same connection attributes; that is, they are attached to a single database. However, the
connection pools within a MultiPool may be associated with different users or
DBMSs.

Database connections from a MultiPool are used in local transactions only and are not
supported by WebLogic Server for use in distributed transactions.

Choosing the MultiPool Algorithm

Before you set up a MultiPool, you need to determine the primary purpose of the
MultiPool—high availability or load balancing. You can choose the algorithm that
corresponds with your requirements.
2-20 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_metapool_create
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/configuration/JDBCMultiPoolMBean.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/configuration/JDBCMultiPoolMBean.html

Configuring and Using MultiPools
High Availability

The High Availability algorithm provides an ordered list of connection pools.
Normally, every connection request to this kind of MultiPool is served by the first pool
in the list. If a database connection via that pool fails, then a connection is sought
sequentially from the next pool on the list.

Notes: You must set TestConnectionsOnReserve=true for the connection pools
within the MultiPool so that the MultiPool can determine when to fail over to
the next connection pool in the list.

By default, if all connections in a connection pool are being used, a MultiPool
with the High Availability algorithm will not attempt to provide a connection
from the next pool in the list. This is by design so that you can set the capacity
for a connection pool. You can enable failover in this scenario by setting the
FailoverRequestIfBusy attribute in the MultiPool configuration to true.
See “Enabling Failover for Busy Connection Pools in a MultiPool” on page
2-23 for more details.

Load Balancing

Connection requests to a load balancing MultiPool are served from any connection
pool in the list. Pools are added in the order listed and are accessed using a round-robin
scheme. When an application requests a connection, the MultiPool attempts to provide
a connection from the next connection pool in the list.

MultiPool Failover Enhancements

In WebLogic Server 7.0SP5, the following enhancements were made to MultiPools:

Connection request routing enhancements to avoid requesting a connection from
an automatically disabled (dead) connection pool within a MultiPool. See
“Connection Request Routing Enhancements When a Connection Pool Fails.”

Automatic failback on recovery of a failed connection pool within a MultiPool.
See “Automatic Re-enablement on Recovery of a Failed Connection Pool within
a MultiPool.”

Failover for busy connection pools within a MultiPools. See “Enabling Failover
for Busy Connection Pools in a MultiPool.”
Programming WebLogic JDBC 2-21

2 Configuring and Administering WebLogic JDBC
Failover callbacks for MultiPools with the High Availability algorithm. See
“Controlling MultiPool Failover with a Callback.”

Failback callbacks for MultiPools with either algorithm. See “Controlling
MultiPool Failback with a Callback.”

Connection Request Routing Enhancements When a Connection Pool Fails

To improve performance when a connection pool within a MultiPool fails, WebLogic
Server automatically disables the connection pool when a pooled connection fails a
connection test. After a connection pool is disabled, WebLogic Server does not route
connection requests from applications to the connection pool. Instead, it routes
connection requests to the next available connection pool listed in the MultiPool.

This feature requires that connection pool testing options are configured for all
connection pools in a MultiPool, specifically TestTableName and
TestConnectionsOnReserve.

If a callback handler is registered for the MultiPool, WebLogic Server calls the
callback handler before failing over to the next connection pool in the list. See
“Controlling MultiPool Failover with a Callback” on page 2-24 for more details.

Automatic Re-enablement on Recovery of a Failed Connection Pool within a
MultiPool

After a connection pool is automatically disabled because a connection failed a
connection test, WebLogic Server periodically tests a connection from the disabled
connection pool to determine when the connection pool (or underlying database) is
available again. When the connection pool becomes available, WebLogic Server
automatically re-enables the connection pool and resumes routing connection requests
to the connection pool, depending on the MultiPool algorithm and the position of the
connection pool in the list of included connection pools.

To control how often WebLogic Server checks automatically disabled connection
pools in a MultiPool, you add a value for the HealthCheckFrequencySeconds
attribute to the MultiPool configuration in the config.xml file. For example:

<JDBCMultiPool
AlgorithmType="High-Availability"
Name="demoMultiPool"
PoolList="demoPool2,demoPool"
2-22 Programming WebLogic JDBC

Configuring and Using MultiPools
HealthCheckFrequencySeconds="240"
Targets="examplesServer" />

Note: This attribute is not available in the administration console. To implement this
functionality, you must manually add the attribute to the MultiPool
configuration in the config.xml file.

WebLogic Server waits for the period you specify between connection tests for each
disabled connection pool. The default value is 300 seconds. If you do not specify a
value, WebLogic Server will test automatically disabled connection pools every 300
seconds.

This feature requires that connection pool testing options are configured for all
connection pools in a MultiPool, specifically TestTableName and
TestConnectionsOnReserve.

WebLogic Server does not test and automatically re-enable connection pools that you
manually disable. It only tests connection pools that it automatically disables.

If a callback handler is registered for the MultiPool, WebLogic Server calls the
callback handler before re-enabling the connection pool. See “Controlling MultiPool
Failback with a Callback” on page 2-27 for more details.

Enabling Failover for Busy Connection Pools in a MultiPool

By default, for MultiPools with the High Availability algorithm, when the number of
requests for a database connection exceeds the number of available connections in the
current connection pool in the MultiPool, subsequent connection requests fail.

To enable the MultiPool to failover when all connections in the current connection
pool are in use, you must set a value for the FailoverRequestIfBusy attribute in the
MultiPool configuration in the config.xml file. If set to true, when all connections
in the current connection pool are in use, application requests for connections will be
routed to the next available connection pool within the MultiPool. When set to false
(the default), connection requests do not failover.[Which exception is thrown?]

After you add the FailoverRequestIfBusy attribute to the config.xml file, the
MultiPool entry may look like the following:

<JDBCMultiPool
AlgorithmType="High-Availability"
Name="demoMultiPool"
PoolList="demoPool2,demoPool"
Programming WebLogic JDBC 2-23

2 Configuring and Administering WebLogic JDBC
FailoverRequestIfBusy="true"
Targets="examplesServer" />

Note: The FailoverRequestIfBusy attributes is not available in the
administration console. To implement this functionality, you must manually
add this attribute to the MultiPool configuration in the config.xml file.

If a ConnectionPoolFailoverCallbackHandler is included in the MultiPool
configuration, WebLogic Server calls the callback handler before failing over. See
“Controlling MultiPool Failover with a Callback” on page 2-24 for more details.

Controlling MultiPool Failover with a Callback

You can register a callback handler with WebLogic Server that controls when a
MultiPool with the High-Availability algorithm fails over connection requests from
one JDBC connection pool in the MultiPool to the next connection pool in the list.

You can use callback handlers to control if or when the failover occurs so that you can
make any other system preparations before the failover, such as priming a database or
communicating with a high-availability framework.

Callback handlers are registered via an attribute of the MultiPool in the config.xml
file and are registered per MultiPool. Therefore, you must register a callback handler
for each MultiPool to which you want the callback to apply. And you can register
different callback handlers for each MultiPool.

Callback Handler Requirements

A callback handler used to control the failover and failback within a MultiPool must
include an implementation of the
weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface.
When the MultiPool needs to failover to the next connection pool in the list or when a
previously disabled connection pool becomes available, WebLogic Server calls the
allowPoolFailover()method in the ConnectionPoolFailoverCallback
interface, and passes a value for the three parameters, currPool, nextPool, and
opcode, as defined below. WebLogic Server then waits for the return from the
callback handler before completing the task.

Your application must return OK, RETRY_CURRENT, or DONOT_FAILOVER as
defined below.The application should handle failover and failback cases.
2-24 Programming WebLogic JDBC

Configuring and Using MultiPools
See the Javadoc for the
weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface for
more details. [Add link]

Note: Failover callback handlers are optional.If no callback handler is specified in
the MultiPool configuration, WebLogic Server proceeds with the operation
(failing over or re-enabling the disabled connection pool).

Callback Handler Configuration

There are two MultiPool configuration attributes associated with the failover and
failback functionality:

ConnectionPoolFailoverCallbackHandler—To register a failover callback
handler for a MultiPool, you add a value for this attribute to the MultiPool
configuration in the config.xml file. The value must be an absolute name, such
as
com.bea.samples.wls.jdbc.MultiPoolFailoverCallbackApplication.

HealthCheckFrequencySeconds—To control how often WebLogic Server
checks disabled (dead) connection pools in a MultiPool to see if they are now
available, you can add a value for this attribute to the MultiPool configuration in
the config.xml file. See “Automatic Re-enablement on Recovery of a Failed
Connection Pool within a MultiPool” on page 2-22 for more details.

After you add the attributes to the config.xml file, the MultiPool entry may look like
the following:

<JDBCMultiPool
AlgorithmType="High-Availability"
Name="demoMultiPool"
ConnectionPoolFailoverCallbackHandler="com.bea.samples.wls.jdbc.M
ultiPoolFailoverCallbackApplication"
PoolList="demoPool2,demoPool"
HealthCheckFrequencySeconds="120"
Targets="examplesServer" />

Note: These attributes are not available in the administration console. To implement
this functionality, you must manually add these attributes to the MultiPool
configuration in the config.xml file.
Programming WebLogic JDBC 2-25

2 Configuring and Administering WebLogic JDBC
How It Works—Failover

WebLogic Server attempts to failover connection requests to the next connection pool
in the list when the current connection pool fails a connection test or, if you enabled
FailoverRequestIfBusy, when all connections in the current connection pool are
busy.

To enable the callback feature, you register the callback handler with Weblogic Server
using the ConnectionPoolFailoverCallbackHandler attribute in the MultiPool
configuration in the config.xml file.

With the High Availability algorithm, connection requests are served from the first
connection pool in the list. If a connection from that connection pool fails a connection
test, WebLogic Server marks the connection pool as dead and disables it. If a callback
handler is registered, WebLogic Server calls the callback handler, passing the
following information, and waits for a return:

currPool—For failover, this is the name of connection pool currently being
used to supply database connections. This is the “failover from” connection
pool.

nextPool—The name of next available connection pool listed in the MultiPool.
For failover, this is the “failover to” connection pool.

opcode—A code that indicates the reason for the call:

OPCODE_CURR_POOL_DEAD—WebLogic Server determined that the current
connection pool is dead and has disabled it.

OPCODE_CURR_POOL_BUSY—All database connections in the connection pool
are in use. (Requires FailoverIfBusy=true in the MultiPool configuration.
See “Enabling Failover for Busy Connection Pools in a MultiPool” on page
2-23.)

Failover is synchronous with the connection request: Failover occurs only when
WebLogic Server is attempting to satisfy a connection request.

The return from the callback handler can indicate one of three options:

OK—proceed with the operation. In this case, that means to failover to the next
connection pool in the list.

RETRY_CURRENT—Retry the connection request with the current connection
pool.
2-26 Programming WebLogic JDBC

Configuring and Using MultiPools
DONOT_FAILOVER—Do not retry the current connection request and do not
failover. WebLogic Server will throw a
weblogic.jdbc.extensions.PoolUnavailableSQLException.

WebLogic Server acts according to the value returned by the callback handler.

If the secondary connection pools fails, WebLogic Server calls the callback handler
again, as in the previous failover, in an attempt to failover to the next available
connection pool in the MultiPool, if there is one.

Note: WebLogic Server does not call the callback handler when you manually
disable a connection pool.

For MultiPools with the Load-Balancing algorithm, WebLogic Server does not call the
callback handler when a connection pool is disabled. However, it does call the callback
handler when attempting to re-enable a disabled connection pool. See the following
section for more details.

Controlling MultiPool Failback with a Callback

If you register a failover callback handler for a MultiPool, WebLogic Server calls the
same callback handler when re-enabling a connection pool that was automatically
disabled. You can use the callback to control if or when the disabled connection pool
is re-enabled so that you can make any other system preparations before the connection
pool is re-enabled, such as priming a database or communicating with a
high-availability framework.

Callback handlers are registered via an attribute of the MultiPool in the config.xml
file and are registered per MultiPool. Therefore, you must register a callback handler
for each MultiPool to which you want the callback to apply. And you can register
different callback handlers for each MultiPool.

See the following sections for more details about the callback handler:

“Callback Handler Requirements” on page 2-24

“Callback Handler Configuration” on page 2-25
Programming WebLogic JDBC 2-27

2 Configuring and Administering WebLogic JDBC
How It Works—Failback

WebLogic Server periodically checks the status of connection pools in a MultiPool
that were automatically disabled. (See “Automatic Re-enablement on Recovery of a
Failed Connection Pool within a MultiPool” on page 2-22.) If a disabled connection
pool becomes available and if a failover callback handler is registered, WebLogic
Server calls the callback handler with the following information and waits for a return:

currPool—For failback, this is the name of the connection pool that was
previously disabled and is now available to be re-enabled.

nextPool—For failback, this is null.

opcode—A code that indicates the reason for the call. For failback, the code is
always OPCODE_REENABLE_CURR_POOL, which indicates that the connection
pool named in currPool is now available.

Failback, or automatically re-enabling a disabled connection pool, differs from
failover in that failover is synchronous with the connection request, but failback is
asynchronous with the connection request.

The callback handler can return one of the following values:

OK—proceed with the operation. In this case, that means to re-enable the
indicated connection pool. WebLogic Server resumes routing connection
requests to the connection pool, depending on the MultiPool algorithm and the
position of the connection pool in the list of included connection pools.

DONOT_FAILOVER—Do not re-enable the currPool connection pool. Continue
to serve connection requests from the connection pool(s) in use.

WebLogic Server acts according to the value returned by the callback handler.

If the callback handler returns DONOT_FAILOVER, WebLogic Server will attempt
to re-enable the connection pool during the next testing cycle as determined by the
HealthCheckFrequencySeconds attribute in the MultiPool configuration, and will
call the callback handler as part of that process.

The order in which connection pools are listed in a MultiPool is very important. A
MultiPool with the High Availability algorithm will always attempt to serve
connection requests from the first available connection pool in the list of connection
pools in the MultiPool. Consider the following scenario:
2-28 Programming WebLogic JDBC

Configuring and Using MultiPools
MultiPool_1 uses the High Availability algorithm, has a registered
ConnectionPoolFailoverCallbackHandler, and includes three connection pools:
CP1, CP2, and CP3, listed in that order.

CP1 becomes disabled, so MultiPool_1 fails over connection requests to CP2.

CP2 then becomes disabled, so MultiPool_1 fails over connection requests to CP3.

After some time, CP1 becomes available again and the callback handler allows
WebLogic Server to re-enable the connection pool. Future connection requests will be
served by CP1 because CP1 is the first connection pool listed in the MultiPool.

If CP2 subsequently becomes available and the callback handler allows WebLogic
Server to re-enable the connection pool, connection requests will continue to be served
by CP1 because CP1 is listed before CP2 in the list of connection pools.

MultiPool Fail-Over Limitations and Requirements

WebLogic Server provides the High Availability algorithm for MultiPools so that if a
connection pool fails (for example, if the database management system crashes), your
system can continue to operate. However, you must consider the following limitations
and requirements when configuring your system.

Test Connections on Reserve to Enable Fail-Over

Connection pools rely on the TestConnectionsOnReserve feature to know when
database connectivity is lost. Connections are not automatically tested before being
reserved by an application. You must set TestConnectionsOnReserve=true for the
connection pools within the MultiPool. After you turn on this feature, WebLogic
Server will test each connection before returning it to an application, which is crucial
to the High Availability algorithm operation. With the High Availability algorithm, the
MultiPool uses the results from testing connections on reserve to determine when to
fail over to the next connection pool in the MultiPool. After a test failure, the
connection pool attempts to recreate the connection. If that attempt fails, the MultiPool
fails over to the next connection pool. See “MultiPool Failover Enhancements” on
page 2-21 for details about enhancements to MultiPool failover.
Programming WebLogic JDBC 2-29

2 Configuring and Administering WebLogic JDBC
No Fail-Over for In-Use Connections

It is possible for a connection to fail after being reserved, in which case your
application must handle the failure. WebLogic Server cannot provide fail-over for
connections that fail while being used by an application. Any failure while using a
connection requires that you restart the transaction and provide code to handle such a
failure.

Configuring and Using DataSources

As with Connection Pools and MultiPools, you can create DataSource objects in the
Administration Console or using the WebLogic Management API. DataSource objects
can be defined with or without transaction services. You configure connection pools
and MultiPools before you define the pool name attribute for a DataSource.

DataSource objects, along with the JNDI, provide access to connection pools for
database connectivity. Each DataSource can refer to one connection pool or MultiPool.
However, you can define multiple DataSources that use a single connection pool. This
allows you to define both transaction and non-transaction-enabled DataSource objects
that share the same database.

WebLogic Server supports two types of DataSource objects:

DataSources (for local transactions only)

TxDataSources (for distributed transactions)

If your application meets any of the following criteria, you should use a TxDataSource
in WebLogic Server:

Uses the Java Transaction API (JTA)

Uses the WebLogic Server EJB container to manage transactions

Includes multiple database updates during a single transaction.

For more information about when to use a TxDataSource and how to configure a
TxDataSource, see JDBC Configuration Guidelines for Connection Pools, MultiPools,
and DataSources in the Administration Guide at
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#jdbc002.
2-30 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#jdbc002
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#jdbc002

Configuring and Using DataSources
If you want applications to use a DataSource to get a database connection from a
connection pool (the preferred method), you should define the DataSource in the
Administration Console before running your application. For instructions to create a
DataSource, see the Administration Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_data_
source_create. For instructions to create a TxDataSource, see the Administration
Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_tx_da
ta_source_create.

Importing Packages to Access DataSource Objects

To use the DataSource objects in your applications, import the following classes in
your client code:

import java.sql.*;
import java.util.*;
import javax.naming.*;

Obtaining a Client Connection Using a DataSource

To obtain a connection from a JDBC client, use a Java Naming and Directory Interface
(JDNI) lookup to locate the DataSource object, as shown in this code fragment:

Context ctx = null;
 Hashtable ht = new Hashtable();
 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 ht.put(Context.PROVIDER_URL,
 "t3://hostname:port");

 try {
 ctx = new InitialContext(ht);
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myJtsDataSource");
 java.sql.Connection conn = ds.getConnection();

// You can now use the conn object to create
// Statements and retrieve result sets:
Programming WebLogic JDBC 2-31

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_data_source_create
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_tx_data_source_create
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_tx_data_source_create

2 Configuring and Administering WebLogic JDBC
Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();

// Close the statement and connection objects when you are finished:

 stmt.close();
 conn.close();
 }
 catch (NamingException e) {
 // a failure occurred
 }
 finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred
 }
 }

(Substitute the correct hostname and port number for your WebLogic Server.)

Note: The code above uses one of several available procedures for obtaining a JNDI
context. For more information on JNDI, see Programming WebLogic JNDI
at http://e-docs.bea.com/wls/docs70/jndi/index.html.

Code Examples

See the DataSource code example in the samples/examples/jdbc/datasource
directory of your WebLogic Server installation.

JDBC Data Source Factories

In WebLogic Server, you can bind a JDBC DataSource resource into the WebLogic
Server JNDI tree as a resource factory. You can then map a resource factory reference
in the EJB deployment descriptor to an available resource factory in a running
WebLogic Server to get a connection from a connection pool.

For details about creating and using a JDBC Data Source factory, see Resource
Factories in Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#resourc
efact.
2-32 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/jndi/index.html
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#resourcefact
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#resourcefact

CHAPTER
3 Performance Tuning
Your JDBC Application

The following sections explain how to get the most out of your applications:

“Overview of JDBC Performance” on page 3-1

“WebLogic Performance-Enhancing Features” on page 3-1

“Designing Your Application for Best Performance” on page 3-3

Overview of JDBC Performance

The underlying concepts in Java, JDBC, and DBMS processing are new to many
programmers. As Java becomes more widely used, database access and database
applications will become increasingly easy to implement. This document provides
some tips on how to obtain the best performance from JDBC applications.

WebLogic Performance-Enhancing Features

WebLogic has several features that enhance performance for JDBC applications.
Programming WebLogic JDBC 3-1

3 Performance Tuning Your JDBC Application
How Connection Pools Enhance Performance

Establishing a JDBC connection with a DBMS can be very slow. If your application
requires database connections that are repeatedly opened and closed, this can become
a significant performance issue. WebLogic connection pools offer an efficient solution
to this problem.

When WebLogic Server starts, connections from the connection pools are opened and
are available to all clients. When a client closes a connection from a connection pool,
the connection is returned to the pool and becomes available for other clients; the
connection itself is not closed. There is little cost to opening and closing pool
connections.

How many connections should you create in the pool? A connection pool can grow and
shrink according to configured parameters, between a minimum and a maximum
number of connections. The best performance will always be when the connection pool
has as many connections as there are concurrent users.

Caching Prepared Statements and Data

DBMS access uses considerable resources. If your program reuses prepared statements
or accesses frequently used data that can be shared among applications or can persist
between connections, you can cache prepared statements or data by using the
following:

Prepared Statement Cache for a connection pool
(http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#prepared
statementcache)

Read-Only Entity Beans
(http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html)

JNDI in a Clustered Environment
(http://e-docs.bea.com/wls/docs70/jndi/jndi.html)
3-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#preparedstatementcache
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs70/jndi/jndi.html

Designing Your Application for Best Performance
Designing Your Application for Best
Performance

Most performance gains or losses in a database application is not determined by the
application language, but by how the application is designed. The number and location
of clients, size and structure of DBMS tables and indexes, and the number and types
of queries all affect application performance.

The following are general hints that apply to all DBMSs. It is also important to be
familiar with the performance documentation of the specific DBMS that you use in
your application.

1. Process as Much Data as Possible Inside the Database

Most serious performance problems in DBMS applications come from moving raw
data around needlessly, whether it is across the network or just in and out of cache in
the DBMS. A good method for minimizing this waste is to put your logic where the
data is—in the DBMS, not in the client —even if the client is running on the same box
as the DBMS. In fact, for some DBMSs a fat client and a fat DBMS sharing one CPU
is a performance disaster.

Most DBMSs provide stored procedures, an ideal tool for putting your logic where
your data is. There is a significant difference in performance between a client that calls
a stored procedure to update 10 rows, and another client that fetches those rows, alters
them, and sends update statements to save the changes to the DBMS.

Also review the DBMS documentation on managing cache memory in the DBMS.
Some DBMSs (Sybase, for example) provide the means to partition the virtual
memory allotted to the DBMS, and to guarantee certain objects exclusive use of some
fixed areas of cache. This means that an important table or index can be read once from
disk and remain available to all clients without having to access the disk again.
Programming WebLogic JDBC 3-3

3 Performance Tuning Your JDBC Application
2. Use Built-in DBMS Set-based Processing

SQL is a set processing language. DBMSs are designed from the ground up to do
set-based processing. Accessing a database one row at a time is, without exception,
slower than set-based processing and, on some DBMSs is poorly implemented. For
example, it will always be faster to update each of four tables one at a time for all the
100 employees represented in the tables than to alter each table 100 times, once for
each employee.

Many complicated processes that were originally thought too complex to do any other
way but row-at-a-time have been rewritten using set-based processing, resulting in
improved performance. For example, a major payroll application was converted from
a huge slow COBOL application to four stored procedures running in series, and what
took hours on a multi-CPU machine now takes fifteen minutes with many fewer
resources used.

3. Make Your Queries Smart

Frequently customers ask how to tell how many rows will be coming back in a given
result set. The only way to find out without fetching all the rows is by issuing the same
query using the count keyword:

 SELECT count(*) from myTable, yourTable where ...

This returns the number of rows the original query would have returned, assuming no
change in relevant data. The actual count may change when the query is issued if other
DBMS activity has occurred that alters the relevant data.

Be aware, however, that this is a resource-intensive operation. Depending on the
original query, the DBMS may perform nearly as much work to count the rows as it
will to send them.

Make your application queries as specific as possible about what data it actually wants.
For example, tailor your application to select into temporary tables, returning only the
count, and then sending a refined second query to return only a subset of the rows in
the temporary table.
3-4 Programming WebLogic JDBC

Designing Your Application for Best Performance
Learning to select only the data you really want at the client is crucial. Some
applications ported from ISAM (a pre-relational database architecture) will
unnecessarily send a query selecting all the rows in a table when only the first few rows
are required. Some applications use a 'sort by' clause to get the rows they want to come
back first. Database queries like this cause unnecessary degradation of performance.

Proper use of SQL can avoid these performance problems. For example, if you only
want data about the top three earners on the payroll, the proper way to make this query
is with a correlated subquery. Table 3-1 shows the entire table returned by the SQL
statement

select * from payroll

A correlated subquery

select p.name, p.salary from payroll p

where 3 >= (select count(*) from payroll pp

where pp.salary >= p.salary);

returns a much smaller result, shown in Table 3-2.

Table 3-1 Full Results Returned

Name Salary

Joe 10

Mikes 20

Sam 30

Tom 40

Jan 50

Ann 60

Sue 70

Hal 80

May 80
Programming WebLogic JDBC 3-5

3 Performance Tuning Your JDBC Application
This query returns only three rows, with the name and salary of the top three earners.
It scans through the payroll table, and for every row, it goes through the whole payroll
table again in an inner loop to see how many salaries are higher than the current row
of the outer scan. This may look complicated, but DBMSs are designed to use SQL
efficiently for this type of operation.

4. Make Transactions Single-batch

Whenever possible, collect a set of data operations and submit an update transaction in
one statement in the form:

 BEGIN TRANSACTION

 UPDATE TABLE1...

 INSERT INTO TABLE2

 DELETE TABLE3

 COMMIT

This approach results in better performance than using separate statements and
commits. Even with conditional logic and temporary tables in the batch, it is preferable
because the DBMS obtains all the locks necessary on the various rows and tables, and
uses and releases them in one step. Using separate statements and commits results in
many more client-to-DBMS transmissions and holds the locks in the DBMS for much
longer. These locks will block out other clients from accessing this data, and,
depending on whether different updates can alter tables in different orders, may cause
deadlocks.

Table 3-2 Results from Subquery

Name Salary

Sue 70

Hal 80

May 80
3-6 Programming WebLogic JDBC

Designing Your Application for Best Performance
Warning: If any individual statement in the preceding transaction fails, due, for
instance, to violating a unique key constraint, you should put in conditional SQL logic
to detect statement failure and to roll back the transaction rather than commit. If, in the
preceding example, the insert failed, most DBMSs return an error message about the
failed insert, but behave as if you got the message between the second and third
statement, and decided to commit anyway! Microsoft SQL Server offers a connection
option enabled by executing the SQL set xact_abort on, which automatically rolls
back the transaction if any statement fails.

5. Never Have a DBMS Transaction Span User Input

If an application sends a 'BEGIN TRAN' and some SQL that locks rows or tables for
an update, do not write your application so that it must wait on the user to press a key
before committing the transaction. That user may go to lunch first and lock up a whole
DBMS table until the user returns.

If you require user input to form or complete a transaction, use optimistic locking.
Briefly, optimistic locking employs timestamps and triggers in queries and updates.
Queries select data with timestamp values and prepare a transaction based on that data,
without locking the data in a transaction.

When an update transaction is finally defined by the user input, it is sent as a single
submission that includes timestamped safeguards to make sure the data is the same as
originally fetched. A successful transaction automatically updates the relevant
timestamps for changed data. If an interceding update from another client has altered
data on which the current transaction is based, the timestamps change, and the current
transaction is rejected. Most of the time, no relevant data has been changed so
transactions usually succeed. When a transaction fails, the application can refetch the
updated data to present to the user to reform the transaction if desired.

6. Use In-place Updates

Changing a data row in place is much faster than moving a row, which may be required
if the update requires more space than the table design can accommodate. If you design
your rows to have the space they need initially, updates will be faster, although the
table may require more disk space. Because disk space is cheap, using a little more of
it can be a worthwhile investment to improve performance.
Programming WebLogic JDBC 3-7

3 Performance Tuning Your JDBC Application
7. Keep Operational Data Sets Small

Some applications store operational data in the same table as historical data. Over time
and with accumulation of this historical data, all operational queries have to read
through lots of useless (on a day-to-day basis) data to get to the more current data.
Move non-current data to other tables and do joins to these tables for the rarer historical
queries. If this can't be done, index and cluster your table so that the most frequently
used data is logically and physically localized.

8. Use Pipelining and Parallelism

DBMSs are designed to work best when very busy with lots of different things to do.
The worst way to use a DBMS is as dumb file storage for one big single-threaded
application. If you can design your application and data to support lots of parallel
processes working on easily distinguished subsets of the work, your application will
be much faster. If there are multiple steps to processing, try to design your application
so that subsequent steps can start working on the portion of data that any prior process
has finished, instead of having to wait until the prior process is complete. This may not
always be possible, but you can dramatically improve performance by designing your
program with this in mind.
3-8 Programming WebLogic JDBC

CHAPTER
4 Using WebLogic
Multitier JDBC Drivers

BEA recommends that you use DataSource objects to get database connections in new
applications. DataSource objects, along with the JNDI, provide access to connection
pools for database connectivity. For existing or legacy applications that use the JDBC
1.x API, you can use the WebLogic multitier drivers to get database connectivity.

The following sections describe how to use multitier JDBC drivers with WebLogic
Server:

“Using the WebLogic RMI Driver” on page 4-1

“Using the WebLogic JTS Driver” on page 4-7

“Using the WebLogic Pool Driver” on page 4-9

Using the WebLogic RMI Driver

The WebLogic RMI driver is a multitier Type 3 JDBC driver WebLogic Server uses
to pass database connections from a connection pool to a DataSource or
TxDataSource. The DataSource object provides access to database connections for
applications through the WebLogic RMI driver. The database connection parameters
are set in the connection pool using the Administration Console or the WebLogic
Management API, including the two-tier JDBC driver used to access the DBMS. See
Figure 1-1.
Programming WebLogic JDBC 4-1

4 Using WebLogic Multitier JDBC Drivers
RMI driver clients make their connection to the DBMS by looking up the DataSource
object. This lookup is accomplished by using a Java Naming and Directory Service
(JNDI) lookup, or by directly calling WebLogic Server which performs the JNDI
lookup on behalf of the client.

The RMI driver replaces the functionality of both the WebLogic t3 driver (deprecated)
and the Pool driver, and uses the Java standard Remote Method Invocation (RMI) to
connect to WebLogic Server rather than the proprietary t3 protocol.

Because the details of the RMI implementation are taken care of automatically by the
driver, a knowledge of RMI is not required to use the WebLogic JDBC/RMI driver.

Setting Up WebLogic Server to Use the WebLogic RMI
Driver

The RMI driver is accessible only through DataSource objects, which are created in
the Administration Console. You must create DataSource objects in your WebLogic
Server configuration before you can use the RMI driver in your applications. For
instructions to create a DataSource, see the Administration Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_data_
source_create. For instructions to create a TxDataSource, see the Administration
Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_tx_da
ta_source_create.

Sample Client Code for Using the RMI Driver

The following code samples show how to use the RMI driver to get and use a database
connection from a WebLogic Server connection pool.

Import the Required Packages

Before you can use the RMI driver to get and use a database connection, you must
import the following packages:

javax.sql.DataSource
java.sql.*
4-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_data_source_create
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_tx_data_source_create
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_tx_data_source_create

Using the WebLogic RMI Driver
java.util.*
javax.naming.*

Get the Database Connection

The WebLogic JDBC/RMI client obtains its connection to a DBMS from the
DataSource object that you defined in the Administration Console. There are two ways
the client can obtain a DataSource object:

Using a JNDI lookup. This is the preferred and most direct procedure.

Passing the DataSource name to the RMI driver with the
Driver.connect()method. In this case, WebLogic Server performs the JNDI
look up on behalf of the client.

Using a JNDI Lookup to Obtain the Connection

To access the WebLogic RMI driver using JNDI, obtain a context from the JNDI tree
by looking up the name of your DataSource object. For example, to access a
DataSource called “myDataSource” that is defined in Administration Console:

Context ctx = null;
 Hashtable ht = new Hashtable();
 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 ht.put(Context.PROVIDER_URL,
 "t3://hostname:port");

 try {
 ctx = new InitialContext(ht);
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");
 java.sql.Connection conn = ds.getConnection();

 // You can now use the conn object to create
 // a Statement object to execute
 // SQL statements and process result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();

 // Do not forget to close the statement and connection objects
 // when you are finished:
Programming WebLogic JDBC 4-3

4 Using WebLogic Multitier JDBC Drivers
 stmt.close();
 conn.close();
 }
 catch (NamingException e) {
 // a failure occurred
 }
 finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred
 }
 }

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI
lookup. There are other ways to perform a JNDI lookup. For more information, see
Programming WebLogic JNDI at
http://e-docs.bea.com/wls/docs70/jndi/index.html.

Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed
look up and also that the context is closed in a finally block.

Using Only the WebLogic RMI Driver to Obtain a Database Connection

Instead of looking up a DataSource object to get a database connection, you can access
WebLogic Server using the Driver.connect() method, in which case the
JDBC/RMI driver performs the JNDI lookup. To access the WebLogic Server, pass the
parameters defining the URL of your WebLogic Server and the name of the
DataSource object to the Driver.connect() method. For example, to access a
DataSource called “myDataSource” as defined in the Administration Console:

java.sql.Driver myDriver = (java.sql.Driver)
 Class.forName("weblogic.jdbc.rmi.Driver").newInstance();

String url ="jdbc:weblogic:rmi";

java.util.Properties props = new java.util.Properties();
props.put("weblogic.server.url", "t3://hostname:port");
props.put("weblogic.jdbc.datasource", "myDataSource");

java.sql.Connection conn = myDriver.connect(url, props);

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)
4-4 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/jndi/index.html

Using the WebLogic RMI Driver
You can also define the following properties which will be used to set the JNDI user
information:

weblogic.user—specifies a username

weblogic.credential—specifies the password for the weblogic.user.

Row Caching with the WebLogic RMI Driver

Row caching is a WebLogic Server JDBC feature that improves the performance of
your application. Normally, when a client calls ResultSet.next(), WebLogic
Server fetches a single row from the DBMS and transmits it to the client JVM. With
row caching enabled, a single call to ResultSet.next() retrieves multiple DBMS
rows, and caches them in client memory. By reducing the number of trips across the
wire to retrieve data, row caching improves performance.

Note: WebLogic Server will not perform row caching when the client and WebLogic
Server are in the same JVM.

You can enable and disable row caching and set the number of rows fetched per
ResultSet.next() call with the Data Source attributes Row Prefetch Enabled and
Row Prefetch Size, respectively. You set Data Source attributes via the Administration
Console. To enable row caching and to set the row prefetch size attribute for a
DataSource or TxDataSource, follow these steps:

1. In the left pane of the Administration Console, navigate to Services→JDBC→Data
Sources or Tx Data Sources, then select the DataSource or TxDataSource for which
you want to enable row caching.

2. In the right pane of the Administration Console, select the Configuration tab if it
is not already selected.

3. Select the Row Prefetch Enabled check box.

4. In Row Prefetch Size, type the number of rows you want to cache for each
ResultSet.next() call.
Programming WebLogic JDBC 4-5

4 Using WebLogic Multitier JDBC Drivers
Important Limitations for Row Caching with the WebLogic RMI Driver

Keep the following limitations in mind if you intend to implement row caching with
the RMI driver:

WebLogic Server only performs row caching if the result set type is both
TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

Certain data types in a result set may disable caching for that result set. These
include the following:

LONGVARCHAR/LONGVARBINARY

NULL

BLOB/CLOB

ARRAY

REF

STRUCT

JAVA_OBJECT

Certain ResultSet methods are not supported if row caching is enabled and
active for that result set. Most pertain to streaming data, scrollable result sets or
data types not supported for row caching. These include the following:

getAsciiStream()

getUnicodeStream()

getBinaryStream()

getCharacterStream()

isBeforeLast()

isAfterLast()

isFirst()

isLast()

getRow()

getObject (Map)

getRef()

getBlob()/getClob()

getArray()
4-6 Programming WebLogic JDBC

Using the WebLogic JTS Driver
getDate()

getTime()

getTimestamp()

Using the WebLogic JTS Driver

The Java Transaction Services or JTS driver is a server-side Java Database
Connectivity (JDBC) driver that provides access to both connection pools and SQL
transactions from applications running in WebLogic Server. Connections to a database
are made from a connection pool and use a two-tier JDBC driver running in WebLogic
Server to connect to the Database Management System (DBMS) on behalf of your
application.

Once a transaction begins, all database operations in an execute thread that get their
connection from the same connection pool share the same connection from that pool.
These operations can be made through services such as Enterprise JavaBeans (EJB),
or Java Messaging Service (JMS), or by directly sending SQL statements using
standard JDBC calls. All of these operations will, by default, share the same
connection and participate in the same transaction.When the transaction is committed
or rolled back, the connection is returned to the pool.

Although Java clients may not register the JTS driver themselves, they may participate
in transactions via Remote Method Invocation (RMI). You can begin a transaction in
a thread on a client and then have the client call a remote RMI object. The database
operations executed by the remote object become part of the transaction that was begun
on the client. When the remote object is returned back to the calling client, you can then
commit or roll back the transaction. The database operations executed by the remote
objects must all use the same connection pool to be part of the same transaction.

Sample Client Code for Using the JTS Driver

To use the JTS driver, you must first use the Administration Console to create a
connection pool in WebLogic Server. For more information, see “Configuring and
Using Connection Pools” on page 2-2.
Programming WebLogic JDBC 4-7

4 Using WebLogic Multitier JDBC Drivers
This explanation demonstrates creating and using a JTS transaction from a server-side
application and uses a connection pool named “myConnectionPool.”

1. Import the following classes:

import javax.transaction.UserTransaction;
import java.sql.*;
import javax.naming.*;
import java.util.*;
import weblogic.jndi.*;

2. Establish the transaction by using the UserTransaction class. You can look up
this class on the JNDI tree. The UserTransaction class controls the transaction
on the current execute thread. Note that this class does not represent the
transaction itself. The actual context for the transaction is associated with the
current execute thread.

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the corect hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, “Fred”);
env.put(Context.SECURITY_CREDENTIALS, “secret”);

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");

3. Start a transaction on the current thread:

tx.begin();

4. Load the JTS driver:

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.jts.Driver").newInstance();

5. Get a connection from the connection pool:

Properties props = new Properties();
props.put("connectionPoolID", "myConnectionPool");

conn = myDriver.connect("jdbc:weblogic:jts", props);
4-8 Programming WebLogic JDBC

Using the WebLogic Pool Driver
6. Execute your database operations. These operations may be made by any service
that uses a database connection, including EJB, JMS, and standard JDBC
statements. These operations must use the JTS driver to access the same
connection pool as the transaction begun in step 3 in order to participate in that
transaction.

If the additional database operations using the JTS driver use a different
connection pool than the one specified in step 5, an exception will be thrown
when you try to commit or roll back the transaction.

7. Close your connection objects. Note that closing the connections does not
commit the transaction nor return the connection to the pool:

conn.close();

8. Execute any other database operations. If these operations are made by
connecting to the same connection pool, the operations will use the same
connection from the pool and become part of the same UserTransaction as all
of the other operations in this thread.

9. Complete the transaction by either committing the transaction or rolling it back.
In the case of a commit, the JTS driver commits all the transactions on all
connection objects in the current thread and returns the connection to the pool.

tx.commit();

// or:

tx.rollback();

 Using the WebLogic Pool Driver

The WebLogic Pool driver enables utilization of connection pools from server-side
applications such as HTTP servlets or EJBs. For information about using the Pool
driver, see “Accessing Databases” in Programming Tasks in Programming WebLogic
HTTP Servlets.
Programming WebLogic JDBC 4-9

http://e-docs.bea.com/wls/docs70/servlet/progtasks.html

4 Using WebLogic Multitier JDBC Drivers
4-10 Programming WebLogic JDBC

CHAPTER
5 Using Third-Party
Drivers with WebLogic
Server

The following sections describe how to set up and use third-party JDBC drivers:

“Overview of Third-Party JDBC Drivers” on page 5-1

“Setting the Environment for Your Third-Party JDBC Driver” on page 5-4

“Getting a Connection with Your Third-Party Driver” on page 5-13

“Using Oracle Extensions with the Oracle Thin Driver” on page 5-18

“Programming with Oracle Virtual Private Databases” on page 5-35

“Tables of Oracle Extension Interfaces and Supported Methods” on page 5-36

Overview of Third-Party JDBC Drivers

WebLogic Server works with third-party JDBC drivers that offer the following
functionality:

Are thread-safe

Can implement transactions using standard JDBC statements
Programming WebLogic JDBC 5-1

5 Using Third-Party Drivers with WebLogic Server
This section describes how to set up and use the following third-party JDBC drivers
with WebLogic Server:

Oracle Thin Driver 8.1.7, 9.0.1, 9.2.0, or 10g (included in WebLogic Server
installation)

Sybase jConnect Driver 4.5 and 5.5 (included in WebLogic Server installation)

IBM Informix JDBC Driver

Microsoft SQL Server Driver for JDBC

In WebLogic Server version 6.1, a version of the Oracle Thin Driver and the Sybase
jConnect Driver were bundled within weblogic.jar. In version 7.x, third-party
JDBC drivers are no longer bundled within weblogic.jar. Instead, the 10g version
of the Oracle Thin driver (classes12.zip) and the 4.5 (jConnect.jar) and 5.5
(jconn2.jar) versions of the Sybase jConnect driver are installed in the
WL_HOME\server\lib folder (where WL_HOME is the folder where WebLogic
Platform is installed) with weblogic.jar. The manifest in weblogic.jar lists these
files so that they are loaded when weblogic.jar is loaded (when the server starts).

Note: In WebLogic Server 7.0SP5, the default version of the Oracle Thin driver was
changed to the 10g driver (the version in WL_HOME\server\lib). In
WebLogic Server 7.0SP2, SP3, and SP4, the 9.2.0 version of the Oracle Thin
driver was the default version of the driver. In releases of WebLogic Server
7.0 prior to the Service Pack 2 release, the 8.1.7 version of the Oracle Thin
driver was the default version.

The WL_HOME\server\ext\jdbc folder (where WL_HOME is the folder where
WebLogic Platform is installed) of your WebLogic Server installation includes
subfolders for Oracle and Sybase JDBC drivers. See Figure 5-1.
5-2 Programming WebLogic JDBC

Overview of Third-Party JDBC Drivers
Figure 5-1 Directory Structure for JDBC Drivers Installed with WebLogic
Server

The oracle folder includes versions of the Oracle Thin driver, including the 10g
version, which is also included in the WL_HOME\server\lib folder, as previously
mentioned. You can copy one of these files to the WL_HOME\server\lib folder to
change the version of the Oracle Thin driver or to revert to the default version. See
“Changing or Updating the Oracle Thin Driver” on page 5-5 for more details.

The sybase folder contains the 4.5 version of the Sybase jConnect driver and a
subfolder with the 5.5 version of the Sybase jConnect driver and other supporting files.
These drivers—jConnect.jar and jconn2.jar, without the directory structure and
additional supporting files—are also included in the WL_HOME\server\lib folder, as
previously mentioned. WebLogic Server uses the files in the WL_HOME\server\lib
folder during runtime. You can use the additional copies in the
WL_HOME\server\ext\jdbc\sybase folder as a backup in the event that you update
the drivers with a defective or unsupported version of the driver.

If you plan to use the default version of these drivers, you do not need to make any
changes. If you plan to use a different version of these drivers, you must replace the
files in WL_HOME\server\lib with a file from
WL_HOME\server\ext\jdbc\oracle\version, where version is the version of
the JDBC driver you want to use, or with a file from the DBMS vendor—Oracle or
Sybase.

Because the manifest in weblogic.jar lists the class files for the Oracle Thin driver
and Sybase jConnect driver in WL_HOME\server\lib, the drivers are loaded when
weblogic.jar is loaded (when the server starts). Therefore, you do not need to add
Programming WebLogic JDBC 5-3

5 Using Third-Party Drivers with WebLogic Server
the JDBC driver to your CLASSPATH. If you plan to use a third-party JDBC driver that
is not installed with WebLogic Server, you must add the path to the driver files to your
CLASSPATH.

Setting the Environment for Your
Third-Party JDBC Driver

If you use a third-party JDBC driver other than the Oracle Thin Driver or Sybase
jConnect Driver included in the WebLogic Server 7.0 installation, you must add the
path for the JDBC driver classes to your CLASSPATH. The following sections describe
how to set your CLASSPATH for Windows and UNIX when using a third-party JDBC
driver.

CLASSPATH for Third-Party JDBC Driver on Windows

Include the path to JDBC driver classes and to weblogic.jar in your CLASSPATH as
follows:

set CLASSPATH=DRIVER_CLASSES;WL_HOME\server\lib\weblogic.jar;
%CLASSPATH%

Where DRIVER_CLASSES is the path to the JDBC driver classes and WL_HOME is the
directory where you installed WebLogic Platform.

CLASSPATH for Third-Party JDBC Driver on UNIX

Add the path to JDBC driver classes and to weblogic.jar to your CLASSPATH as
follows:

export CLASSPATH=DRIVER_CLASSES:WL_HOME/server/lib/weblogic.jar:
$CLASSPATH

Where DRIVER_CLASSES is the path to the JDBC driver classes and WL_HOME is the
directory where you installed WebLogic Platform.
5-4 Programming WebLogic JDBC

Setting the Environment for Your Third-Party JDBC Driver
Changing or Updating the Oracle Thin Driver

WebLogic Server ships with the Oracle Thin Driver version 10g (10.1.0.2.0)
preconfigured and ready to use. To use a different version, you replace
WL_HOME\server\lib\classes12.zip with a different version of the file. For
example, if you want to use the 9.2.0 version of the Oracle Thin Driver, you must copy
classes12.zip from the WL_HOME\server\ext\jdbc\oracle\920 folder and
place it in WL_HOME\server\lib to replace the 10g version in that folder.

Note: In WebLogic Server 7.0SP5, the default version of the Oracle Thin driver was
changed to the 10g driver (the version in WL_HOME\server\lib). In
WebLogic Server 7.0SP2, SP3, and SP4, the 9.2.0 version of the Oracle Thin
driver was the default version of the driver. In releases of WebLogic Server
7.0 prior to the Service Pack 2 release, the 8.1.7 version of the Oracle Thin
driver was the default version.

Follow these instructions to use Oracle Thin Driver version 9.2.0, 9.0.1, or 8.1.7:

1. In Windows Explorer or a command shell, go to the folder for the version of the
driver you want to use:

WL_HOME\server\ext\jdbc\oracle\920

WL_HOME\server\ext\jdbc\oracle\901

WL_HOME\server\ext\jdbc\oracle\817

2. Copy classes12.zip.

3. In Windows Explorer or a command shell, go to WL_HOME\server\lib and
replace the existing version of classes12.zip with the version you copied.

To revert to version 10g (the default), follow the instructions above, but copy from the
following folder: WL_HOME\server\ext\jdbc\oracle\10g.

To update a version of the Oracle Thin driver with a new version from Oracle, replace
classes12.zip in WL_HOME\server\lib with the new file from Oracle. You can
download driver updates from the Oracle Web site at
http://otn.oracle.com/software/content.html.

Note: You cannot include multiple versions of the Oracle Thin driver in your
CLASSPATH. Doing so may cause clashes for various methods.
Programming WebLogic JDBC 5-5

http://otn.oracle.com/software/content.html

5 Using Third-Party Drivers with WebLogic Server
Package Change for Oracle Thin Driver 9.x and 10g

For Oracle 8.x and previous releases, the package that contained the Oracle Thin driver
was oracle.jdbc.driver. When configuring a JDBC connection pool that uses the
Oracle 8.1.7 Thin driver, you specify the DriverName (Driver Classname) as
oracle.jdbc.driver.OracleDriver. For Oracle 9.x and 10g, the package that
contains the Oracle Thin driver is oracle.jdbc. When configuring a JDBC
connection pool that uses the Oracle 9.x or 10g Thin driver, you specify the
DriverName (Driver Classname) as oracle.jdbc.OracleDriver. You can use the
oracle.jdbc.driver.OracleDriver class with the 9.x and 10g drivers, but Oracle
may not make future feature enhancements to that class.

See the Oracle documentation for more details about the Oracle Thin driver.

Note: The package change does not apply to the XA version of the driver. For the
XA version of the Oracle Thin driver, use
oracle.jdbc.xa.client.OracleXADataSource as the DriverName
(Driver Classname) in a JDBC connection pool.

Character Set Support with nls_charset12.zip

The Oracle Thin driver includes Globalization Support for all Oracle character sets for
CHAR and NCHAR datatypes not retrieved or inserted as part of an Oracle object or
collection type.

However, in the case of the CHAR and VARCHAR data portion of Oracle objects and
collections, the Oracle Thin driver includes Globalization Support support for only the
following character sets:

US7ASCII

WE8DEC

ISO-LATIN-1

UTF-8

If you use other character sets with CHAR and NCHAR data in Oracle object types
and collections, you must include nls_charset.zip in your CLASSPATH. If this file
is not in your CLASSPATH, you will see the following exception:

java.sql.SQLException: Non supported character set:
oracle-character-set-178
5-6 Programming WebLogic JDBC

Setting the Environment for Your Third-Party JDBC Driver
The nls_charset12.zip file is installed with WebLogic Server in the
WL_HOME\server\ext\jdbc\oracle\920 and
WL_HOME\server\ext\jdbc\oracle\10g folders (where WL_HOME is the folder
where WebLogic Server is installed). See “Setting the Environment for Your
Third-Party JDBC Driver” on page 5-4 for instructions to set your CLASSPATH.

Updating Sybase jConnect Driver

WebLogic Server ships with the Sybase jConnect driver versions 4.5 and 5.5
preconfigured and ready to use. To use a different version, you replace
WL_HOME\server\lib\jConnect.jar or jconn2.jar with a different version of
the file from the DBMS vendor.

To revert to versions installed with WebLogic Server, copy the following files and
place them in the WL_HOME\server\lib folder:

WL_HOME\server\ext\jdbc\sybase\jConnect.jar

WL_HOME\server\ext\jdbc\sybase\jConnect-5_5\classes\jconn2.jar

Installing and Using the IBM Informix JDBC Driver

If you want to use Weblogic Server with an Informix database, BEA recommends that
you use the IBM Informix JDBC driver, available from the IBM Web site at
http://www-3.ibm.com/software/data/informix/tools/jdbc/. The IBM
Informix JDBC driver is available to use for free without support. You may have to
register with IBM to download the product. Download the driver from the
JDBC/EMBEDDED SQLJ section, and follow the instructions in the install.txt
file included in the downloaded zip file to install the driver.

After you download and install the driver, follow these steps to prepare to use the
driver with WebLogic Server:

1. Copy ifxjdbc.jar and ifxjdbcx.jar files from INFORMIX_INSTALL\lib and
paste it in WL_HOME\server\lib folder, where:

INFORMIX_INSTALL is the root directory where you installed the Informix JDBC
driver, and
Programming WebLogic JDBC 5-7

http://www-3.ibm.com/software/data/informix/tools/jdbc/

5 Using Third-Party Drivers with WebLogic Server
WL_HOME is the folder where you installed WebLogic Platform, typically
c:\bea\weblogic700.

2. Add the path to ifxjdbc.jar and ifxjdbcx.jar to your CLASSPATH. For
example:

set
CLASSPATH=%WL_HOME%\server\lib\ifxjdbc.jar;%WL_HOME%\server\lib
\ifxjdbcx.jar;%CLASSPATH%

You can also add the path for the driver files to the set CLASSPATH statement in
your start script for WebLogic Server.

Connection Pool Attributes when using the IBM Informix JDBC Driver

Use the attributes as described in Table 5-1 and Table 5-2 when creating a connection
pool that uses the IBM Informix JDBC driver.

Table 5-1 Non-XA Connection Pool Attributes Using the Informix JDBC Driver

Attribute Value

URL jdbc:informix-sqli:dbserver_name_or_ip:port/
dbname:informixserver=ifx_server_name

Driver Class Name com.informix.jdbc.IfxDriver

Properties user=username

url=jdbc:informix-sqli:dbserver_name_or_ip:po
rt/dbname:informixserver=ifx_server_name

portNumber=1543

databaseName=dbname

ifxIFXHOST=ifx_server_name

serverName=dbserver_name_or_ip

Password password

Login Delay Seconds 1

Target serverName
5-8 Programming WebLogic JDBC

Setting the Environment for Your Third-Party JDBC Driver
An entry in the config.xml file may look like the following:

 <JDBCConnectionPool
 DriverName="com.informix.jdbc.IfxDriver"
 InitialCapacity="3"
 LoginDelaySeconds="1"
 MaxCapacity="10"
 Name="ifxPool"
 Password="xxxxxxx"
 Properties="informixserver=ifxserver;user=informix"
 Targets="examplesServer"
 URL="jdbc:informix-sqli:ifxserver:1543"
 />

Note: In the Properties string, there is a space between portNumber and =.

Table 5-2 XA Connection Pool Attributes Using the Informix JDBC Driver

Attribute Value

URL leave blank

Driver Class Name com.informix.jdbcx.IfxXADataSource

Properties user=username

url=jdbc:informix-sqli://dbserver_name_or_ip:
port_num/dbname:informixserver=dbserver_name_
or_ip

password=password

portNumber =port_num;

databaseName=dbname

serverName=dbserver_name

ifxIFXHOST=dbserver_name_or_ip

Password leave blank

Supports Local
Transaction

true

Target serverName
Programming WebLogic JDBC 5-9

5 Using Third-Party Drivers with WebLogic Server
An entry in the config.xml file may look like the following:

 <JDBCConnectionPool CapacityIncrement="2"
 DriverName="com.informix.jdbcx.IfxXADataSource"
 InitialCapacity="2" MaxCapacity="10"
 Name="informixXAPool"
 Properties="user=informix;url=jdbc:informix-sqli:
 //111.11.11.11:1543/db1:informixserver=lcsol15;
 password=informix;portNumber =1543;databaseName=db1;
 serverName=dbserver1;ifxIFXHOST=111.11.11.11"
 SupportsLocalTransaction="true" Targets="examplesServer"
 TestConnectionsOnReserve="true" TestTableName="emp"/>

Note: If you create the connection pool using the Administration Console, you may
need to stop and restart the server before the connection pool will deploy
properly on the target server. This is a known issue.

Programming Notes for the IBM Informix JDBC Driver

Consider the following limitations when using the IBM Informix JDBC driver:

Always call resultset.close() and statement.close() methods to
indicate to the driver that you are done with the statement/resultset. Otherwise,
your program may not release all its resources on the database server.

Batch updates fail if you attempt to insert rows with TEXT or BYTE columns
unless the IFX_USEPUT environment variable is set to 1.

If the Java program sets autocommit mode to true during a transaction, IBM
Informix JDBC Driver commits the current transaction if the JDK is version 1.4
and later, otherwise the driver rolls back the current transaction before enabling
autocommit.

Installing and Using the SQL Server 2000 Driver for JDBC
from Microsoft

The Microsoft SQL Server 2000 Driver for JDBC is available for download to all
licensed SQL Server 2000 customers at no charge. The driver is a Type 4 JDBC driver
that supports a subset of the JDBC 2.0 Optional Package. When you install the
Microsoft SQL Server 2000 Driver for JDBC, the supporting documentation is
optionally installed with it. You should refer to that documentation for the most
5-10 Programming WebLogic JDBC

Setting the Environment for Your Third-Party JDBC Driver
comprehensive information about the driver. Also, see the release manifest at
http://msdn.microsoft.com/MSDN-FILES/027/001/779/JDBCRTMReleaseMa
nifest.htm for known issues.

Installing the MS SQL Server JDBC Driver on a Windows System

Follow these instructions to install the SQL Server 2000 Driver for JDBC on a
Windows server:

1. Download the Microsoft SQL Server 2000 Driver for JDBC (setup.exe file) from
the Microsoft MSDN Web site at
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/
sample.asp?url=/MSDN-FILES/027/001/779/msdncompositedoc.xml.
Save the file in a temporary directory on your local computer.

2. Run setup.exe from the temporary directory and follow the instructions on the
screen.

3. Add the path to the following files to your CLASSPATH:
install_dir/lib/msbase.jar

install_dir/lib/msutil.jar

install_dir/lib/mssqlserver.jar

Where install_dir is the folder in which you installed the driver. For
example:

set CLASSPATH=install_dir\lib\msbase.jar;
install_dir\lib\msutil.jar;install_dir\lib\mssqlserver.jar;
%CLASSPATH%

Installing the MS SQL Server JDBC Driver on a Unix System

Follow these instructions to install the SQL Server 2000 Driver for JDBC on a UNIX
server:

1. Download the Microsoft SQL Server 2000 Driver for JDBC (mssqlserver.tar
file) from the Microsoft MSDN Web site at
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/
sample.asp?url=/MSDN-FILES/027/001/779/msdncompositedoc.xml.
Save the file in a temporary directory on your local computer.
Programming WebLogic JDBC 5-11

http://msdn.microsoft.com/MSDN-FILES/027/001/779/JDBCRTMReleaseManifest.htm
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/MSDN-FILES/027/001/779/msdncompositedoc.xml
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/MSDN-FILES/027/001/779/msdncompositedoc.xml

5 Using Third-Party Drivers with WebLogic Server
2. Change to the temporary directory and untar the contents of the file using the
following command:

tar -xvf mssqlserver.tar

3. Execute the following command to run the installation script:

install.ksh

4. Follow the instructions on the screen. When prompted to enter an installation
directory, make sure you enter the full path to the directory.

5. Add the path to the following files to your CLASSPATH:
install_dir/lib/msbase.jar

install_dir/lib/msutil.jar

install_dir/lib/mssqlserver.jar

Where install_dir is the folder in which you installed the driver. For
example:

export CLASSPATH=install_dir/lib/msbase.jar:
install_dir/lib/msutil.jar:install_dir/lib/mssqlserver.jar:
$CLASSPATH

Connection Pool Attributes when using the Microsoft SQL Server Driver for
JDBC

Use the following attributes when creating a connection pool that uses the Microsoft
SQL Server Driver for JDBC:

Driver Name: com.microsoft.jdbc.sqlserver.SQLServerDriver

URL: jdbc:microsoft:sqlserver://server_name:1433

Properties:

user=<myuserid>

databaseName=<dbname>

selectMethod=cursor

Password: mypassword

An entry in the config.xml file may look like the following:
5-12 Programming WebLogic JDBC

Getting a Connection with Your Third-Party Driver
 <JDBCConnectionPool
 Name="mssqlDriverTestPool"
 DriverName="com.microsoft.jdbc.sqlserver.SQLServerDriver"
 URL="jdbc:microsoft:sqlserver://lcdbnt4:1433"
 Properties="databasename=lcdbnt4;user=sa;
 selectMethod=cursor"
 Password="{3DES}vlsUYhxlJ/I="
 InitialCapacity="4"
 CapacityIncrement="2"
 MaxCapacity="10"
 Targets="examplesServer"
 />

Note: You must add selectMethod=cursor to the list of connection properties in
order to use connections in a transactional mode. This enables your
applications to have multiple concurrent statements open from a given
connection, which is required for pooled connections.

Without setting selectMethod=cursor, this JDBC driver creates an internal
cloned connection for each concurrent statement, each as a different DBMS
user. This makes it impossible to concurrently commit transactions and may
cause deadlocks.

Getting a Connection with Your Third-Party
Driver

The following sections describe how to get a database connection using a third-party,
Type 4 driver, such as the Oracle Thin Driver and Sybase jConnect Driver. BEA
recommends that you use connection pools, data sources, and a JNDI lookup to
establish your connection.

Using Connection Pools with a Third-Party Driver

First, you create the connection pool and data source using the Administration
Console, then establish a connection using a JNDI Lookup.
Programming WebLogic JDBC 5-13

5 Using Third-Party Drivers with WebLogic Server
Creating the Connection Pool and DataSource

See “Configuring and Using Connection Pools” on page 2-2 and “Configuring and
Using DataSources” on page 2-30 for instructions to create a JDBC connection pool
and a JDBC DataSource.

Using a JNDI Lookup to Obtain the Connection

To access the driver using JNDI, obtain a Context from the JNDI tree by providing the
URL of your server, and then use that context object to perform a lookup using the
DataSource Name.

For example, to access a DataSource called “myDataSource” that is defined in the
Administration Console:

Context ctx = null;
 Hashtable ht = new Hashtable();
 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 ht.put(Context.PROVIDER_URL,
 "t3://hostname:port");

 try {
 ctx = new InitialContext(ht);
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");
 java.sql.Connection conn = ds.getConnection();

 // You can now use the conn object to create
 // a Statement object to execute
 // SQL statements and process result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();

 // Do not forget to close the statement and connection objects
 // when you are finished:

 stmt.close();
 conn.close();
 }
 catch (NamingException e) {
 // a failure occurred
 }
 finally {
 try {ctx.close();}
5-14 Programming WebLogic JDBC

Getting a Connection with Your Third-Party Driver
 catch (Exception e) {
 // a failure occurred
 }
 }

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI
lookup. There are other ways to perform a JNDI lookup. For more information, see
Programming WebLogic JNDI at http://e-docs.bea.com/wls/docs70/jndi/index.html.

Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed
look up and also that the context is closed in a finally block.

Getting a Physical Connection from a Connection Pool

When you get a connection from a connection pool, WebLogic Server provides a
logical connection rather than a physical connection so that WebLogic Server can
manage the connection with the connection pool. This is necessary to enable
connection pool features and to maintain the quality of connections provided to
applications. In some cases, you may want to use a physical connection, such as if you
need to pass the connection to a DBMS vendor-specific method that requires the
vendor’s connection class. WebLogic Server includes the getVendorConnection()
method in the weblogic.jdbc.extensions.WLConnection interface that you can
use to get the underlying physical connection from a logical connection. See the
WebLogic Javadocs at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/jdbc/extension
s/WLConnection.html.

Note: BEA strongly discourages using a physical connection instead of a logical
connection from a connection pool. See “Limitations for Using a Physical
Connection” on page 5-18.

You should only use the physical database connection for vendor-specific needs. Your
code should continue to make most JDBC calls to the logical connection.

When you are finished with the connection, you should close the logical connection.
Do not close the physical connection in your code.
Programming WebLogic JDBC 5-15

http://e-docs.bea.com/wls/docs70/jndi/index.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/jdbc/extensions/WLConnection.html

5 Using Third-Party Drivers with WebLogic Server
Whenever a physical database connection is exposed to application code, the
connection pool cannot guarantee that the next user of that connection will be the only
user with access to it. Therefore, when the logical connection is closed, WebLogic
Server returns the logical connection to the connection pool, but discards the
underlying physical connection and opens a new physical connection for the logical
connection in the pool. This is safe, but it is also slow. It is possible that every request
to the connection pool will entail making a new database connection.

Code Sample for Getting a Physical Connection

To get a physical database connection, you first get a connection from a connection
pool as described in “Using a JNDI Lookup to Obtain the Connection” on page 5-14,
then do one of the following:

Cast the connection as a WLConnection and call getVendorConnection().

Implicitly pass the physical connection (using the getVendorConnection()
method) within a method that requires the physical connection.

For example:

//Import this additional class and any vendor packages
//you may need.
import weblogic.jdbc.extensions.WLConnection
.
.
.
myJdbcMethod()
{

 // Connections from a connection pool should always be
 // method-level variables, never class or instance methods.
 Connection conn = null;

 try {
 ctx = new InitialContext(ht);
 // Look up the data source on the JNDI tree and request
 // a connection.
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

 // Always get a pooled connection in a try block where it is
 // used completely and is closed if necessary in the finally
 // block.
 conn = ds.getConnection();
5-16 Programming WebLogic JDBC

Getting a Connection with Your Third-Party Driver
 // You can now cast the conn object to a WLConnection
 // interface and then get the underlying physical connection.

 java.sql.Connection vendorConn =
 ((WLConnection)conn).getVendorConnection();
 // do not close vendorConn

 // You could also cast the vendorConn object to a vendor
 // interface, such as:
 // oracle.jdbc.OracleConnection vendorConn = (OracleConnection)
 // ((WLConnection)conn).getVendorConnection()

 // If you have a vendor-specific method that requires the
 // physical connection, it is best not to obtain or retain
 // the physical connection, but simply pass it implicitly
 // where needed, eg:

//vendor.special.methodNeedingConnection(((WLConnection)conn)).ge
tVendorConnection());

 // As soon as you are finished with vendor-specific calls,
 // nullify the reference to the connection.
 // Do not keep it or close it.
 // Never use the vendor connection for generic JDBC.
 // Use the logical (pooled) connection for standard JDBC.
 vendorConn = null;

 ... do all the JDBC needed for the whole method...

 // close the logical (pooled) connection to return it to
 // the connection pool, and nullify the reference.
 conn.close();
 conn = null;
 }

 catch (Exception e)
 {
 // Handle the exception.
 }
 finally
 {
 // For safety, check whether the logical (pooled) connection
 // was closed.
 // Always close the logical (pooled) connection as the
 // first step in the finally block.

 if (conn != null) try {conn.close();} catch (Exception ignore){}
 }
}
Programming WebLogic JDBC 5-17

5 Using Third-Party Drivers with WebLogic Server
Limitations for Using a Physical Connection

BEA strongly discourages using a physical connection instead of a logical connection
from a connection pool. However, if you must use a physical connection, for example,
to create a STRUCT, consider the following costs and limitations:

The physical connection can be used in server-side code only.

When you use a physical connection, you lose all of the connection management
benefits that WebLogic Server offers, including error handling, statement
caching, and so forth.

You should use the physical connection only for the vendor-specific methods or
classes that require it. Do not use the physical connection for generic JDBC,
such as creating statements or transactional calls.

The connection is not reused. When you close the connection, the physical
connection is closed and the connection pool creates a new connection to replace
the one passed as a physical connection. Because the connection is not reused,
there is a performance loss when using a physical connection because of the
following:

The physical connection is replaced with a new database connection in the
connection pool, which uses resources on both the application server and the
database server.

The statement cache for the original connection is closed and a new cache is
opened for the new connection. Therefore, the performance gains from using
the statement cache are lost.

Using Oracle Extensions with the Oracle
Thin Driver

Oracle extensions provide additional proprietary methods for working with data from
an Oracle database. These methods extend the standard JDBC interfaces. BEA
supports the following Oracle extensions for use with the Oracle Thin driver or another
driver that supports these extensions:
5-18 Programming WebLogic JDBC

Using Oracle Extensions with the Oracle Thin Driver
OracleStatement

OracleResultSet

OraclePreparedStatement

OracleCallableStatement

OracleArray

OracleStruct

OracleRef

OracleBlob

OracleClob

The following sections provide code samples for Oracle extensions and tables of
supported methods. For more information, please refer to the Oracle documentation.

Limitations When Using Oracle JDBC Extensions

Please note the following limitations when using Oracle extensions to JDBC
interfaces:

You can use Oracle extensions for ARRAYs, REFs, and STRUCTs in server-side
applications that use the same JVM as the server only. You cannot use Oracle
extensions for ARRAYs, REFs, and STRUCTs in client applications.

You cannot create ARRAYs, REFs, and STRUCTs in your applications. You can
only retrieve existing ARRAY, REF, and STRUCT objects from a database. To
create these objects in your applications, you must use a non-standard Oracle
descriptor object, which is not supported in WebLogic Server.

Sample Code for Accessing Oracle Extensions to JDBC
Interfaces

The following code examples show how to access the WebLogic Oracle extensions to
standard JDBC interfaces. The first example uses the OracleConnection and
OracleStatement extensions. You can use the syntax of this example for the
OracleResultSet, OraclePreparedStatement, and OracleCallableStatement
Programming WebLogic JDBC 5-19

5 Using Third-Party Drivers with WebLogic Server
interfaces, when using methods supported by WebLogic Server. For supported
methods, see “Tables of Oracle Extension Interfaces and Supported Methods” on page
5-36.

For examples showing how to access other Oracle extension methods, see the
following sections:

“Programming with ARRAYs” on page 5-21

“Programming with STRUCTs” on page 5-24

“Programming with REFs” on page 5-29

“Programming with BLOBs and CLOBs” on page 5-34

If you selected the option to install server examples with WebLogic Server, see the
JDBC examples, typically at WL_HOME\samples\server\src\examples\jdbc,
where WL_HOME is the folder where you installed WebLogic Platform.

Import Packages to Access Oracle Extensions

Import the Oracle interfaces used in this example. The OracleConnection and Oracle
Statement interfaces are counterparts to oracle.jdbc.OracleConnection and
oracle.jdbc.OracleStatement and can be used in the same way as the Oracle
interfaces when using the methods supported by WebLogic Server.

import java.sql.*;
import java.util.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import weblogic.jdbc.vendor.oracle.*;

Establish the Connection

Establish the database connection using JNDI, DataSource and connection pool
objects. For information, see “Using a JNDI Lookup to Obtain the Connection” on
page 5-14.

// Get a valid DataSource object for a connection pool.
// Here we assume that getDataSource() takes
// care of those details.
javax.sql.DataSource ds = getDataSource(args);
5-20 Programming WebLogic JDBC

Using Oracle Extensions with the Oracle Thin Driver
// get a java.sql.Connection object from the DataSource
java.sql.Connection conn = ds.getConnection();

Retrieve the Default Row Prefetch Value

The following code fragment shows how to use the Oracle Row Prefetch method
available through the Oracle Thin Driver.

// Cast to OracleConnection and retrieve the
// default row prefetch value for this connection.

int default_prefetch =
 ((OracleConnection)conn).getDefaultRowPrefetch();

System.out.println("Default row prefetch
 is " + default_prefetch);

java.sql.Statement stmt = conn.createStatement();

// Cast to OracleStatement and set the row prefetch
// value for this statement. Note that this
// prefetch value applies to the connection between
 // WebLogic Server and the database.
 ((OracleStatement)stmt).setRowPrefetch(20);

 // Perform a normal sql query and process the results...
 String query = "select empno,ename from emp";
 java.sql.ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) {
 java.math.BigDecimal empno = rs.getBigDecimal(1);
 String ename = rs.getString(2);
 System.out.println(empno + "\t" + ename);
 }

 rs.close();
 stmt.close();

 conn.close();
 conn = null;
 }

Programming with ARRAYs

In your WebLogic Server server-side applications, you can materialize an Oracle
Collection (a SQL ARRAY) in a result set or from a callable statement as a Java array.
Programming WebLogic JDBC 5-21

5 Using Third-Party Drivers with WebLogic Server
To use ARRAYs in WebLogic Server applications:

1. Import the required classes.(See “Import Packages to Access Oracle Extensions”
on page 5-20.)

2. Get a connection (see “Establish the Connection” on page 5-20) and then create a
statement for the connection.

3. Get the ARRAY using a result set or a callable statement.

4. Use the ARRAY as either a java.sql.Array or a
weblogic.jdbc.vendor.oracle.OracleArray.

5. Use the standard Java methods (when used as a java.sql.Array) or Oracle
extension methods (when cast as a
weblogic.jdbc.vendor.oracle.OracleArray) to work with the data.

The following sections provide more details for these actions.

Note: You can use ARRAYs in server-side applications only. You cannot use
ARRAYs in client applications.

Getting an ARRAY

You can use the getArray() methods for a callable statement or a result set to get a
Java array. You can then use the array as a java.sql.array to use standard
java.sql.array methods, or you can cast the array as a
weblogic.jdbc.vendor.oracle.OracleArray to use the Oracle extension
methods for an array.

The following example shows how to get a java.sql.array from a result set that
contains an ARRAY. In the example, the query returns a result set that contains an
object column—an ARRAY of test scores for a student.

try {

 conn = getConnection(url);
 stmt = conn.createStatement();
 String sql = "select * from students";
//Get the result set
 rs = stmt.executeQuery(sql);

 while(rs.next()) {
 BigDecimal id = rs.getBigDecimal("student_id");
 String name = rs.getString("name");
5-22 Programming WebLogic JDBC

Using Oracle Extensions with the Oracle Thin Driver
 log("ArraysDAO.getStudents() -- Id = "+id.toString()+", Student
= "+name);
//Get the array from the result set
 Array scoreArray = rs.getArray("test_scores");
 String[] scores = (String[])scoreArray.getArray();
 for (int i = 0; i < scores.length; i++) {
 log(" Test"+(i+1)+" = "+scores[i]);
 }
 }

Updating ARRAYs in the Database

To update an ARRAY in a database, you can Follow these steps:

1. Create an array in the database using PL/SQL, if the array you want to update does
not already exist in the database.

2. Get the ARRAY using a result set or a callable statement.

3. Work with the array in your Java application as either a java.sql.Array or a
weblogic.jdbc.vendor.oracle.OracleArray.

4. Update the array in the database using the setArray() method for a prepared
statement or a callable statement. For example:

String sqlUpdate = "UPDATE SCOTT." + tableName + " SET col1 = ?";
conn = ds.getConnection();
pstmt = conn.prepareStatement(sqlUpdate);
pstmt.setArray(1, array);
pstmt.executeUpdate();

Using Oracle Array Extension Methods

To use the Oracle extension methods for an ARRAY, you must first cast the array as
a weblogic.jdbc.vendor.oracle.OracleArray. You can then make calls to the
Oracle extension methods for ARRAYs. For example:

oracle.sql.Datum[] oracleArray = null;
oracleArray =
((weblogic.jdbc.vendor.oracle.OracleArray)scoreArray).getOracleArray();
String sqltype = null
sqltype = oracleArray.getSQLTypeName()
Programming WebLogic JDBC 5-23

5 Using Third-Party Drivers with WebLogic Server
Programming with STRUCTs

In your WebLogic Server applications, you can access and manipulate objects from an
Oracle database. When you retrieve objects from an Oracle database, you can cast
them as either custom Java objects or as STRUCTs (java.sql.struct or
weblogic.jdbc.vendor.oracle.OracleStruct). A STRUCT is a loosely typed
data type for structured data which takes the place of custom classes in your
applications. The STRUCT interface in the JDBC API includes several methods for
manipulating the attribute values in a STRUCT. Oracle extends the STRUCT interface
with several additional methods. WebLogic Server implements all of the standard
methods and most of the Oracle extensions.

Note: Please note the following limitations when using STRUCTs:

STRUCTs are supported for use with Oracle only. To use STRUCTs in
your applications, you must use the Oracle Thin Driver to communicate
with the database, typically through a connection pool. The WebLogic
jDriver for Oracle does not support the STRUCT data type.

You can use STRUCTs in server-side applications only. You cannot use
STRUCTs in client applications.

To use STRUCTs in WebLogic Server applications:

1. Import the required classes.(See “Import Packages to Access Oracle Extensions”
on page 5-20.)

2. Get a connection. (See “Establish the Connection” on page 5-20.)

3. Use getObject to get the STRUCT.

4. Cast the STRUCT as a STRUCT, either java.sql.Struct or
weblogic.jdbc.vendor.oracle.OracleStruct.

5. Use the standard or Oracle extension methods to work with the data.

The following sections provide more details for steps 3 through 5.
5-24 Programming WebLogic JDBC

Using Oracle Extensions with the Oracle Thin Driver
Getting a STRUCT

To get a database object as a STRUCT, you can use a query to create a result set and
then use the getObject method to get the STRUCT from the result set. You then cast
the STRUCT as a java.sql.Struct so you can use the standard Java methods. For
example:

conn = ds.getConnection();

stmt = conn.createStatement();

rs = stmt.executeQuery("select * from people");

struct = (java.sql.Struct)(rs.getObject(2));

Object[] attrs = ((java.sql.Struct)struct).getAttributes();

WebLogic Server supports all of the JDBC API methods for STRUCTs:

getAttributes()

getAttributes(java.util.Dictionary map)

getSQLTypeName()

Oracle supports the standard methods as well as the Oracle extensions. Therefore,
when you cast a STRUCT as a weblogic.jdbc.vendor.oracle.OracleStruct,
you can use both the standard and extension methods.

Using OracleStruct Extension Methods

To use the Oracle extension methods for a STRUCT, you must cast the
java.sql.Struct (or the original getObject result) as a
weblogic.jdbc.vendor.oracle.OracleStruct. For example:

java.sql.Struct struct =
(weblogic.jdbc.vendor.oracle.OracleStruct)(rs.getObject(2));

WebLogic Server supports the following Oracle extensions:

getDescriptor()

getOracleAttributes()

getAutoBuffering()

setAutoBuffering(boolean)
Programming WebLogic JDBC 5-25

5 Using Third-Party Drivers with WebLogic Server
Getting STRUCT Attributes

To get the value for an individual attribute in a STRUCT, you can use the standard
JDBC API methods getAttributes() and
getAttributes(java.util.Dictionary map), or you can use the Oracle
extension method getOracleAttributes().

To use the standard method, you can create a result set, get a STRUCT from the result
set, and then use the getAttributes() method. The method returns an array of
ordered attributes. You can assign the attributes from the STRUCT (object in the
database) to an object in the application, including Java language types. You can then
manipulate the attributes individually. For example:

conn = ds.getConnection();

stmt = conn.createStatement();

rs = stmt.executeQuery("select * from people");

//The third column uses an object data type.
//Use getObject() to assign the object to an array of values.

struct = (java.sql.Struct)(rs.getObject(2));

Object[] attrs = ((java.sql.Struct)struct).getAttributes();

String address = attrs[1];

In the preceding example, the third column in the people table uses an object data
type. The example shows how to assign the results from the getObject method to a
Java object that contains an array of values, and then use individual values in the array
as necessary.

You can also use the getAttributes(java.util.Dictionary map) method to get
the attributes from a STRUCT. When you use this method, you must provide a hash
table to map the data types in the Oracle object to Java language data types. For
example:

java.util.Hashtable map = new java.util.Hashtable();

map.put("NUMBER", Class.forName("java.lang.Integer"));

map.put("VARCHAR", Class.forName("java.lang.String"));

Object[] attrs = ((java.sql.Struct)struct).getAttributes(map);

String address = attrs[1];
5-26 Programming WebLogic JDBC

Using Oracle Extensions with the Oracle Thin Driver
You can also use the Oracle extension method getOracleAttributes() to get the
attributes for a STRUCT. You must first cast the STRUCT as a
weblogic.jdbc.vendor.oracle.OracleStruct. This method returns a datum
array of oracle.sql.Datum objects. For example:

oracle.sql.Datum[] attrs =
 ((weblogic.jdbc.vendor.oracle.OracleStruct)struct).getOracleAttributes();

 oracle.sql.STRUCT address = (oracle.sql.STRUCT) attrs[1];

 Object address_attrs[] = address.getAttributes();

The preceding example includes a nested STRUCT. That is, the second attribute in the
datum array returned is another STRUCT.

Using STRUCTs to Update Objects in the Database

To update an object in the database using a STRUCT, you can use the setObject
method in a prepared statement. For example:

conn = ds.getConnection();

stmt = conn.createStatement();

ps = conn.prepareStatement ("UPDATE SCHEMA.people SET EMPLNAME = ?,
 EMPID = ? where EMPID = 101");

ps.setString (1, “Smith”);

ps.setObject (2, struct);

ps.executeUpdate();

WebLogic Server supports all three versions of the setObject method.

Creating Objects in the Database

STRUCTs are typically used to materialize database objects in your Java application
in place of custom Java classes that map to the database objects. In WebLogic Server
applications, you cannot create STRUCTs that transfer to the database. However, you
can use statements to create objects in the database that you can then retrieve and
manipulate in your application. For example:

conn = ds.getConnection();

stmt = conn.createStatement();
Programming WebLogic JDBC 5-27

5 Using Third-Party Drivers with WebLogic Server
cmd = "create type ob as object (ob1 int, ob2 int)"

stmt.execute(cmd);

cmd = "create table t1 of type ob";

stmt.execute(cmd);

cmd = "insert into t1 values (5, 5)"

stmt.execute(cmd);

Note: You cannot create STRUCTs in your applications. You can only retrieve
existing objects from a database and cast them as STRUCTs. To create
STRUCT objects in your applications, you must use a non-standard Oracle
STRUCT descriptor object, which is not supported in WebLogic Server.

Automatic Buffering for STRUCT Attributes

To enhance the performance of your WebLogic Server applications that use
STRUCTs, you can toggle automatic buffering with the
setAutoBuffering(boolean) method. When automatic buffering is set to true, the
weblogic.jdbc.vendor.oracle.OracleStruct object keeps a local copy of all
the attributes in the STRUCT in their converted form (materialized from SQL to Java
language objects). When your application accesses the STRUCT again, the system
does not have to convert the data again.

Note: Buffering the converted attributes my cause your application to use an
excessive amount of memory. Consider potential memory usage when
deciding to enable or disable automatic buffering.

The following example shows how to activate automatic buffering:

 ((weblogic.jdbc.vendor.oracle.OracleStruct)struct).setAutoBuffering(true);

You can also use the getAutoBuffering() method to determine the automatic
buffering mode.
5-28 Programming WebLogic JDBC

Using Oracle Extensions with the Oracle Thin Driver
Programming with REFs

A REF is a logical pointer to a row object. When you retrieve a REF, you are actually
getting a pointer to a value in another table. The REF target must be a row in an object
table. You can use a REF to examine or update the object it refers to. You can also
change a REF so that it points to a different object of the same object type or assign it
a null value.

Note: Please note the following limitations when using REFs:

REFs are supported for use with Oracle only. To use REFs in your
applications, you must use the Oracle Thin Driver to communicate with
the database, typically through a connection pool. The WebLogic jDriver
for Oracle does not support the REF data type.

You can use REFs in server-side applications only.

To use REFs in WebLogic Server applications, follow these steps:

1. Import the required classes.(See “Import Packages to Access Oracle Extensions”
on page 5-20.)

2. Get a database connection. (See “Establish the Connection” on page 5-20.)

3. Get the REF using a result set or a callable statement.

4. Cast the result as a STRUCT or as a Java object. You can then manipulate data
using STRUCT methods or methods for the Java object.

You can also create and update a REF in the database.

The following sections describe these steps 3 and 4 in greater detail.

Getting a REF

To get a REF in an application, you can use a query to create a result set and then use
the getRef method to get the REF from the result set. You then cast the REF as a
java.sql.Ref so you can use the built-in Java method. For example:

conn = ds.getConnection();

stmt = conn.createStatement();

rs = stmt.executeQuery("SELECT ref (s) FROM t1 s where s.ob1=5");
Programming WebLogic JDBC 5-29

5 Using Third-Party Drivers with WebLogic Server
rs.next();

//Cast as a java.sql.Ref and get REF

ref = (java.sql.Ref) rs.getRef(1);

Note that the WHERE clause in the preceding example uses dot notation to specify the
attribute in the referenced object.

After you cast the REF as a java.sql.Ref, you can use the Java API method
getBaseTypeName, the only JDBC 2.0 standard method for REFs.

When you get a REF, you actually get a pointer to a value in an object table. To get or
manipulate REF values, you must use the Oracle extensions, which are only available
when you cast the sql.java.Ref as a
weblogic.jdbc.vendor.oracle.OracleRef.

Using OracleRef Extension Methods

In order to use the Oracle extension methods for REFs, you must cast the REF as an
Oracle REF. For example:

oracle.sql.StructDescriptor desc =
((weblogic.jdbc.vendor.oracle.OracleRef)ref).getDescriptor();

WebLogic Server supports the following Oracle extensions:

getDescriptor()

getSTRUCT()

getValue()

getValue(dictionary)

setValue(object)

Getting a Value

Oracle provides two versions of the getValue() method—one that takes no
parameters and one that requires a hash table for mapping return types. When you use
either version of the getValue() method to get the value of an attribute in a REF, the
method returns a either a STRUCT or a Java object.
5-30 Programming WebLogic JDBC

Using Oracle Extensions with the Oracle Thin Driver
The example below shows how to use the getValue() method without parameters. In
this example, the REF is cast as an oracle.sql.STRUCT. You can then use the STRUCT
methods to manipulate the value, as illustrated with the getAttributes() method.

oracle.sql.STRUCT student1 =
(oracle.sql.STRUCT)((weblogic.jdbc.vendor.oracle.OracleRef)ref).getValue ();

Object attributes[] = student1.getAttributes();

You can also use the getValue(dictionary) method to get the value for a REF. You
must provide a hash table to map data types in each attribute of the REF to Java
language data types. For example:

java.util.Hashtable map = new java.util.Hashtable();

map.put("VARCHAR", Class.forName("java.lang.String"));

map.put("NUMBER", Class.forName("java.lang.Integer"));

oracle.sql.STRUCT result = (oracle.sql.STRUCT)
 ((weblogic.jdbc.vendor.oracle.OracleRef)ref).getValue (map);

Updating REF Values

When you update a REF, you can do any of the following:

Change the value in the underlying table with the setValue(object) method.

Change the location to which the REF points with a prepared statement or a
callable statement.

Set the value of the REF to null.

To use the setValue(object) method to update a REF value, you create an object
with the new values for the REF, and then pass the object as a parameter of the
setValue method. For example:

STUDENT s1 = new STUDENT();

s1.setName("Terry Green");

s1.setAge(20);

((weblogic.jdbc.vendor.oracle.OracleRef)ref).setValue(s1);

When you update the value for a REF with the setValue(object) method, you
actually update the value in the table to which the REF points.
Programming WebLogic JDBC 5-31

5 Using Third-Party Drivers with WebLogic Server
To update the location to which a REF points using a prepared statement, you can
follow these basic steps:

1. Get a REF that points to the new location. You use this REF to replace the value of
another REF.

2. Create a string for the SQL command to replace the location of an existing REF
with the value of the new REF.

3. Create and execute a prepared statement.

For example:

try {

conn = ds.getConnection();

stmt = conn.createStatement();

//Get the REF.

rs = stmt.executeQuery("SELECT ref (s) FROM t1 s where s.ob1=5");

rs.next();

ref = (java.sql.Ref) rs.getRef(1); //cast the REF as a java.sql.Ref

}

//Create and execute the prepared statement.

String sqlUpdate = "update t3 s2 set col = ? where s2.col.ob1=20";

pstmt = conn.prepareStatement(sqlUpdate);

pstmt.setRef(1, ref);

pstmt.executeUpdate();

To use a callable statement to update the location to which a REF points, you prepare
the stored procedure, set any IN parameters and register any OUT parameters, and then
execute the statement. The stored procedure updates the REF value, which is actually
a location. For example:

conn = ds.getConnection();
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT ref (s) FROM t1 s where s.ob1=5");
5-32 Programming WebLogic JDBC

Using Oracle Extensions with the Oracle Thin Driver
rs.next();

ref1 = (java.sql.Ref) rs.getRef(1);

// Prepare the stored procedure

sql = "{call SP1 (?, ?)}";

cstmt = conn.prepareCall(sql);

// Set IN and register OUT params

cstmt.setRef(1, ref1);

cstmt.registerOutParameter(2, getRefType(), "USER.OB");

// Execute

cstmt.execute();

Creating a REF in the Database

You cannot create REF objects in your JDBC application—you can only retrieve
existing REF objects from the database. However, you can create a REF in the
database using statements or prepared statements. For example:

conn = ds.getConnection();
stmt = conn.createStatement();
cmd = "create type ob as object (ob1 int, ob2 int)"
stmt.execute(cmd);
cmd = "create table t1 of type ob";
stmt.execute(cmd);
cmd = "insert into t1 values (5, 5)"
stmt.execute(cmd);
cmd = "create table t2 (col ref ob)";
stmt.execute(cmd);
cmd = "insert into t2 select ref(p) from t1 where p.ob1=5";
stmt.execute(cmd);

The preceding example creates an object type (ob), a table (t1) of that object type, a
table (t2) with a REF column that can point to instances of ob objects, and inserts a
REF into the REF column. The REF points to a row in t1 where the value in the first
column is 5.
Programming WebLogic JDBC 5-33

5 Using Third-Party Drivers with WebLogic Server
Programming with BLOBs and CLOBs

This section contains sample code that demonstrates how to access the OracleBlob
interface. You can use the syntax of this example for the OracleBlob interface, when
using methods supported by WebLogic Server. See “Tables of Oracle Extension
Interfaces and Supported Methods” on page 5-36.

Note: When working with BLOBs and CLOBs (referred to as “LOBs”), you must
take transaction boundaries into account; for example, direct all read/writes to
a particular LOB within a transaction. For additional information, refer to
Oracle documentation about “LOB Locators and Transaction Boundaries” at
the Oracle Web site at http://www.oracle.com.

Query to Select BLOB Locator from the DBMS

The BLOB Locator, or handle, is a reference to an Oracle Thin Driver BLOB:

String selectBlob = "select blobCol from myTable where blobKey =
666"

Declare the WebLogic Server java.sql Objects

The following code presumes the Connection is already established:

ResultSet rs = null;
Statement myStatement = null;
java.sql.Blob myRegularBlob = null;
java.io.OutputStream os = null;

Begin SQL Exception Block

In this try catch block, you get the BLOB locator and access the Oracle BLOB
extension.

try {

 // get our BLOB locator..

 myStatement = myConnect.createStatement();
 rs = myStatement.executeQuery(selectBlob);
 while (rs.next()) {
 myRegularBlob = rs.getBlob("blobCol");
5-34 Programming WebLogic JDBC

http://www.oracle.com

Programming with Oracle Virtual Private Databases
}

 // Access the underlying Oracle extension functionality for
 // writing. Cast to the OracleThinBlob interface to access
 // the Oracle method.

 os = ((OracleThinBlob)myRegularBlob).getBinaryOutputStream();

 } catch (SQLException sqe) {
 System.out.println("ERROR(general SQE): " +
 sqe.getMessage());
 }

Once you cast to the Oracle.ThinBlob interface, you can access the BEA supported
methods.

Updating a CLOB Value Using a Prepared Statement

If you use a prepared statement to update a CLOB and the new value is shorter than
the previous value, the CLOB will retain the characters that were not specifically
replaced during the update. For example, if the current value of a CLOB is
abcdefghij and you update the CLOB using a prepared statement with zxyw, the
value in the CLOB is updated to zxywefghij. To correct values updated with a
prepared statement, you should use the dbms_lob.trim procedure to remove the
excess characters left after the update. See the Oracle documentation for more
information about the dbms_lob.trim procedure.

Programming with Oracle Virtual Private
Databases

Starting with WebLogic Server 7.0 SP3, WebLogic Server provides support for Oracle
Virtual Private Databases (VPDs). A VPD is an aggregation of server-enforced,
application-defined fine-grained access control, combined with a secure application
context in the Oracle 9i database server.

To use VPDs in your WebLogic Server application, you would typically do the
following:
Programming WebLogic JDBC 5-35

5 Using Third-Party Drivers with WebLogic Server
1. Create a JDBC connection pool in your WebLogic Server configuration that uses
either the Oracle Thin driver or the Oracle OCI driver. See “Configuring and
Administering WebLogic JDBC” on page 2-1 or “Configuring JDBC Connectivity
Using the Administration Console” in the Administration Guide.

Note: If you are using an XA-enabled version of the JDBC driver, you must set
KeepXAConnTillTxComplete=true. See “Additional XA Connection
Pool Properties” in the Administration Guide.

The WebLogic jDriver for Oracle cannot propagate the
ClientIdentifier, so it is ineffective to use the driver with VPDs.

2. Create a data source in your WebLogic Server configuration that points to the
connection pool.

3. Do the following in your application:

import weblogic.jdbc.vendor.oracle.OracleConnection;

// get a connection from a WLS JDBC connection pool
Connection conn = ds.getConnection();

// cast to the Oracle extension and set CLIENT_IDENTIFIER
// (which will be accessible from USERENV naming context on
// the database server side)
((OracleConnection)conn).setClientIdentifier(clientId);

/* perform application specific work */

// clean up connection before returning to WLS JDBC connection pool
((OracleConnection)conn).clearClientIdentifier(clientId);

// close the connection
conn.close();

Tables of Oracle Extension Interfaces and
Supported Methods

The following tables describe the Oracle interfaces and supported methods you use
with the Oracle Thin Driver (or another driver that supports these methods) to extend
the standard JDBC (java.sql.*) interfaces.
5-36 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#jdbc010
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#jdbc010
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#addxaprops
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html#addxaprops

Tables of Oracle Extension Interfaces and Supported Methods
Note: Typically, when a new version of the Oracle Thin driver is released, some
extension methods are removed from the driver. WebLogic Server cannot
support methods that are no longer included in the driver. For the Oracle 9.2.0
Thin driver (and the WebLogic Server 7.0 Service Pack 2 release), the
following methods were removed:

OracleStatement.getAutoRollback()

OracleStatement.getWaitOption()

OracleConnection.isCompatibleTo816()
Programming WebLogic JDBC 5-37

5 Using Third-Party Drivers with WebLogic Server

Table 5-3 OracleConnection Interface

Extends Method Signature

OracleConnection
extends
java.sql.Connection

boolean getAutoClose()
throws java.sql.SQLException;

void setAutoClose(boolean on) throws
java.sql.SQLException;

String getDatabaseProductVersion()
throws java.sql.SQLException;

String getProtocolType() throws
java.sql.SQLException;

String getURL() throws java.sql.SQLException;

String getUserName()
throws java.sql.SQLException;

boolean getBigEndian()
throws java.sql.SQLException;

boolean getDefaultAutoRefetch() throws
java.sql.SQLException;

boolean getIncludeSynonyms()
throws java.sql.SQLException;

boolean getRemarksReporting()
throws java.sql.SQLException;

boolean getReportRemarks()
throws java.sql.SQLException;

boolean getRestrictGetTables()
throws java.sql.SQLException;

boolean getUsingXAFlag()
throws java.sql.SQLException;

boolean getXAErrorFlag()
throws java.sql.SQLException;
5-38 Programming WebLogic JDBC

Tables of Oracle Extension Interfaces and Supported Methods
OracleConnection
extends
java.sql.Connection

(continued)

byte[] getFDO(boolean b)
throws java.sql.SQLException;

int getDefaultExecuteBatch() throws
java.sql.SQLException;

int getDefaultRowPrefetch()
throws java.sql.SQLException;

int getStmtCacheSize()
throws java.sql.SQLException;

java.util.Properties getDBAccessProperties()
throws java.sql.SQLException;

short getDbCsId() throws java.sql.SQLException;

short getJdbcCsId() throws java.sql.SQLException;

short getStructAttrCsId()
throws java.sql.SQLException;

short getVersionNumber()
throws java.sql.SQLException;

void archive(int i, int j, String s)
throws java.sql.SQLException;

void close_statements()
throws java.sql.SQLException;

void initUserName() throws java.sql.SQLException;

void logicalClose() throws java.sql.SQLException;

void needLine() throws java.sql.SQLException;

void printState() throws java.sql.SQLException;

void registerSQLType(String s, String t)
throws java.sql.SQLException;

void releaseLine() throws java.sql.SQLException;

Table 5-3 OracleConnection Interface

Extends Method Signature
Programming WebLogic JDBC 5-39

5 Using Third-Party Drivers with WebLogic Server
OracleConnection
extends
java.sql.Connection

(continued)

void removeAllDescriptor()
throws java.sql.SQLException;

void removeDescriptor(String s)
throws java.sql.SQLException;

void setDefaultAutoRefetch(boolean b)
throws java.sql.SQLException;

void setDefaultExecuteBatch(int i)
throws java.sql.SQLException;

void setDefaultRowPrefetch(int i)
throws java.sql.SQLException;

void setFDO(byte[] b)
throws java.sql.SQLException;

void setIncludeSynonyms(boolean b)
throws java.sql.SQLException;

void setPhysicalStatus(boolean b)
throws java.sql.SQLException;

void setRemarksReporting(boolean b)
throws java.sql.SQLException;

void setRestrictGetTables(boolean b)
throws java.sql.SQLException;

void setStmtCacheSize(int i)
throws java.sql.SQLException;

void setStmtCacheSize(int i, boolean b)
throws java.sql.SQLException;

void setUsingXAFlag(boolean b)
throws java.sql.SQLException;

void setXAErrorFlag(boolean b)
throws java.sql.SQLException;

void shutdown(int i)
throws java.sql.SQLException;

void startup(String s, int i)
 throws java.sql.SQLException;

Table 5-3 OracleConnection Interface

Extends Method Signature
5-40 Programming WebLogic JDBC

Tables of Oracle Extension Interfaces and Supported Methods
Table 5-4 OracleStatement Interface

Extends Method Signature

OracleStatement
extends
java.sql.statement

String getOriginalSql()
throws java.sql.SQLException;

String getRevisedSql()
throws java.sql.SQLException;
(Deprecated in Oracle 8.1.7, removed in Oracle 9i.)

boolean getAutoRefetch()
throws java.sql.SQLException;

boolean is_value_null(boolean b, int i)
throws java.sql.SQLException;

byte getSqlKind()
throws java.sql.SQLException;

int creationState()
throws java.sql.SQLException;

int getRowPrefetch()
throws java.sql.SQLException;

int sendBatch()
throws java.sql.SQLException;

void clearDefines()
throws java.sql.SQLException;

void defineColumnType(int i, int j)
throws java.sql.SQLException;

void defineColumnType(int i, int j, String s)
throws java.sql.SQLException;
Programming WebLogic JDBC 5-41

5 Using Third-Party Drivers with WebLogic Server
OracleStatement
extends
java.sql.statement

(continued)

void defineColumnType(int i, int j, int k)
throws java.sql.SQLException;

void describe()
throws java.sql.SQLException;

void setAutoRefetch(boolean b)
throws java.sql.SQLException;

void setAutoRollback(int i)
throws java.sql.SQLException;
(Deprecated)

void setRowPrefetch(int i)
throws java.sql.SQLException;

void setWaitOption(int i)
throws java.sql.SQLException;
(Deprecated)

Table 5-4 OracleStatement Interface

Extends Method Signature

Table 5-5 OracleResultSet Interface

Extends Method Signature

OracleResultSet
extends
java.sql.ResultSet

boolean getAutoRefetch() throws java.sql.SQLException;

int getFirstUserColumnIndex()
throws java.sql.SQLException;

void closeStatementOnClose()
throws java.sql.SQLException;

void setAutoRefetch(boolean b)
throws java.sql.SQLException;

java.sql.ResultSet getCursor(int n)
throws java.sql.SQLException;

java.sql.ResultSet getCURSOR(String s)
throws java.sql.SQLException;
5-42 Programming WebLogic JDBC

Tables of Oracle Extension Interfaces and Supported Methods
.

Table 5-6 OracleCallableStatement Interface

Extends Method Signature

OracleCallableStatement
extends
java.sql.CallableStatement

void clearParameters()
throws java.sql.SQLException;

void registerIndexTableOutParameter(int i,
 int j, int k, int l)

throws java.sql.SQLException;

void registerOutParameter
(int i, int j, int k, int l)
throws java.sql.SQLException;

java.sql.ResultSet getCursor(int i)
throws java.sql.SQLException;

java.io.InputStream getAsciiStream(int i)
throws java.sql.SQLException;

java.io.InputStream getBinaryStream(int i)
throws java.sql.SQLException;

java.io.InputStream getUnicodeStream(int i)
throws java.sql.SQLException;
Programming WebLogic JDBC 5-43

5 Using Third-Party Drivers with WebLogic Server
.

Table 5-7 OraclePreparedStatement Interface

Extends Method Signature

OraclePreparedStatement
extends
OracleStatement and
java.sql.
PreparedStatement

int getExecuteBatch()
throws java.sql.SQLException;

void defineParameterType(int i, int j, int k)
throws java.sql.SQLException;

void setDisableStmtCaching(boolean b)
throws java.sql.SQLException;

void setExecuteBatch(int i)
throws java.sql.SQLException;

void setFixedCHAR(int i, String s)
throws java.sql.SQLException;

void setInternalBytes(int i, byte[] b, int j)
throws java.sql.SQLException;
5-44 Programming WebLogic JDBC

Tables of Oracle Extension Interfaces and Supported Methods
Table 5-8 OracleArray Interface

Extends Method Signature

OracleArray
extends
java.sql.Array

public ArrayDescriptor getDescriptor()
throws java.sql.SQLException;

public Datum[] getOracleArray()
throws SQLException;

public Datum[] getOracleArray(long l, int i)
throws SQLException;

public String getSQLTypeName()
throws java.sql.SQLException;

public int length()
throws java.sql.SQLException;

public double[] getDoubleArray()
throws java.sql.SQLException;

public double[] getDoubleArray(long l, int i)
throws java.sql.SQLException;

public float[] getFloatArray()
throws java.sql.SQLException;

public float[] getFloatArray(long l, int i)
throws java.sql.SQLException;

public int[] getIntArray()
throws java.sql.SQLException;

public int[] getIntArray(long l, int i)
throws java.sql.SQLException;

public long[] getLongArray()
throws java.sql.SQLException;

public long[] getLongArray(long l, int i)
throws java.sql.SQLException;
Programming WebLogic JDBC 5-45

5 Using Third-Party Drivers with WebLogic Server
OracleArray
extends
java.sql.Array

(continued)

public short[] getShortArray()
throws java.sql.SQLException;

public short[] getShortArray(long l, int i)
throws java.sql.SQLException;

public void setAutoBuffering(boolean flag)
throws java.sql.SQLException;

public void setAutoIndexing(boolean flag)
throws java.sql.SQLException;

public boolean getAutoBuffering()
throws java.sql.SQLException;

public boolean getAutoIndexing()
throws java.sql.SQLException;

public void setAutoIndexing(boolean flag, int i)
throws java.sql.SQLException;

Table 5-8 OracleArray Interface

Extends Method Signature
5-46 Programming WebLogic JDBC

Tables of Oracle Extension Interfaces and Supported Methods
Table 5-9 OracleStruct Interface

Extends Method Signature

OracleStruct
extends
java.sql.Struct

public Object[] getAttributes()
throws java.sql.SQLException;

public Object[] getAttributes(java.util.Dictionary map)
throws java.sql.SQLException;

public Datum[] getOracleAttributes()
throws java.sql.SQLException;

public oracle.sql.StructDescriptor getDescriptor()
throws java.sql.SQLException;

public String getSQLTypeName()
throws java.sql.SQLException;

public void setAutoBuffering(boolean flag)
throws java.sql.SQLException;

public boolean getAutoBuffering()
throws java.sql.SQLException;
Programming WebLogic JDBC 5-47

5 Using Third-Party Drivers with WebLogic Server
Table 5-10 OracleRef Interface

Extends Method Signature

OracleRef
extends java.sql.Ref

public String getBaseTypeName()
throws SQLException;

public oracle.sql.StructDescriptor getDescriptor()
throws SQLException;

public oracle.sql.STRUCT getSTRUCT()
throws SQLException;

public Object getValue()
throws SQLException;

public Object getValue(Map map)
throws SQLException;

public void setValue(Object obj)
throws SQLException;

Table 5-11 OracleThinBlob Interface

Extends Method Signature

OracleThinBlob
extends
java.sql.Blob

int getBufferSize()throws java.sql.Exception

int getChunkSize()throws java.sql.Exception

int putBytes(long, int, byte[])throws java.sql.Exception

int getBinaryOutputStream()throws java.sql.Exception
5-48 Programming WebLogic JDBC

Tables of Oracle Extension Interfaces and Supported Methods

Table 5-12 OracleThinClob Interface

Extends Method Signature

OracleThinClob
extends
java.sql.Clob

public OutputStream getAsciiOutputStream()
throws java.sql.Exception;

public Writer getCharacterOutputStream()
throws java.sql.Exception;

public int getBufferSize() throws java.sql.Exception;

public int getChunkSize() throws java.sql.Exception;

public char[] getChars(long l, int i)
throws java.sql.Exception;

public int putChars(long start, char myChars[])
throws java.sql.Exception;

public int putString(long l, String s)
 throws java.sql.Exception;
Programming WebLogic JDBC 5-49

5 Using Third-Party Drivers with WebLogic Server
5-50 Programming WebLogic JDBC

CHAPTER
6 Using dbKona
(Deprecated)

The dbKona classes provide a set of high-level database connectivity objects that give
Java applications and applets access to databases. dbKona sits on top of the JDBC API
and works with the WebLogic JDBC drivers, or with any other JDBC-compliant
driver.

The following sections describe the dbKona classes:

“Overview of dbKona” on page 6-1

“The dbKona API” on page 6-4

“Entity Relationships” on page 6-15

“Implementing dbKona” on page 6-16

Overview of dbKona

The dbKona classes provide a higher level of abstraction than JDBC, which deals with
low-level details of managing data. The dbKona classes offer objects that allow the
programmer to view and modify database data in a high-level, vendor-independent
way. A Java application that uses dbKona objects does not need vendor-specific
knowledge about DBMS table structure or field types to retrieve, insert, modify,
delete, or otherwise use data from a database.
Programming WebLogic JDBC 6-1

6 Using dbKona (Deprecated)
dbKona in a Multitier Configuration

You can also use dbKona in a multitier JDBC implementation consisting of WebLogic
Server and a multitier driver; this configuration requires no client-side libraries. In a
multitier configuration, WebLogic JDBC acts as an access method to the WebLogic
multitier framework. WebLogic Server uses a single JDBC driver, for example,
WebLogic jDriver for Oracle, to communicate from the WebLogic Server to the
DBMS.

dbKona is a natural choice for writing database access programs in a multitier
environment, because with its objects you can write database applications that are
completely vendor independent. dbKona and WebLogic's multitier framework is
particularly suited for applications that want to retrieve data from several
heterogeneous databases for transparent presentation to the user.

For more information on WebLogic and the WebLogic JDBC Server, see
Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/index.html.

How dbKona and a JDBC Driver Interact

dbKona depends on a JDBC driver to provide and maintain a connection to a DBMS.
In order to use dbKona, you must install a JDBC driver.

If you are using the WebLogic jDriver for Oracle native JDBC driver, you
should install the appropriate WebLogic-supplied .dll, .sl, or .so for your
operating system, as described in Installing and Using WebLogic jDriver for
Oracle at
http://e-docs.bea.com/wls/docs70/oracle/install_jdbc.html.

If you are using a non-WebLogic JDBC driver, you should refer to the
documentation for that JDBC driver.

JavaSoft’s JDBC is a set of interfaces that BEA has implemented to create its jDriver
JDBC drivers. BEA’s JDBC drivers are JDBC implementations of database-specific
drivers for Oracle and Microsoft SQL Server. Using database-specific drivers with
dbKona offers the programmer access to all of the functionality of each specific
database, as well as improved performance.
6-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/jdbc/index.html
http://e-docs.bea.com/wls/docs70/oracle/install_jdbc.html
http://e-docs.bea.com/wls/docs70/oracle/install_jdbc.html

Overview of dbKona
Although the underlying foundation of dbKona uses JDBC for database transactions,
dbKona provides the programmer with higher-level, more convenient access to the
database.

How dbKona and WebLogic Events Can interact

The dbKona package contains some “eventful” classes that send and receive events
(within WebLogic Server), using WebLogic events when data is updated locally or in
the DBMS.

The dbKona Architecture

dbKona uses a high level of abstraction to describe and manipulate data that resides in
a database. Classes in dbKona create and manage objects that retrieve and modify data.
An application can use dbKona objects in a consistent way without any knowledge of
how a particular vendor stores or processes data.

At the core of dbKona’s architecture is the concept of a DataSet. A DataSet contains
the results of a query. DataSets allow client-side management of query results. The
programmer can control the entire query result rather than dealing with a single record
at a time.

A DataSet contains Records, and each Record contains one or more Value objects.
A Record is comparable to a database row, and a Value can be compared to a database
cell. Value objects “know” their internal data type as stored in the DBMS, but the
programmer can treat Value objects in a consistent way without having to worry about
vendor-specific internal data types.

Methods from the DataSet class (and its subclasses TableDataSet and
QueryDataSet) provide a high-level, flexible way to navigate through and manipulate
the results of a query. Changes made to a TableDataSet can be saved to the DBMS;
dbKona maintains knowledge of which records have changed and makes a selective
save, which reduces network traffic and DBMS overhead.
Programming WebLogic JDBC 6-3

6 Using dbKona (Deprecated)
dbKona also uses other objects, such as SelectStmt and KeyDef, to shield the
programmer from vendor-specific SQL. By using methods in these classes, the
programmer can have dbKona construct the appropriate SQL, which reduces syntax
errors and does not require a knowledge of vendor-specific SQL. On the other hand,
dbKona also allows the programmer to pass SQL to the DBMS if desired.

The dbKona API

The following sections describe the dbKona API.

The dbKona API Reference

Package weblogic.db.jdbc
 Package weblogic.db.jdbc.oracle (Oracle-specific extensions)

Class java.lang.Object
 Class weblogic.db.jdbc.Column
 (implements weblogic.common.internal.Serializable)
 Class weblogic.db.jdbc.DataSet
 (implements weblogic.common.internal.Serializable)
 Class weblogic.db.jdbc.QueryDataSet
 Class weblogic.db.jdbc.TableDataSet
 Class weblogic.db.jdbc.EventfulTableDataSet
 (implements weblogic.event.actions.ActionDef)
 Class weblogic.db.jdbc.Enums
 Class weblogic.db.jdbc.KeyDef
 Class weblogic.db.jdbc.Record
 Class weblogic.db.jdbc.EventfulRecord
 (implements weblogic.common.internal.Serializable)
 Class weblogic.db.jdbc.Schema
 (implements weblogic.common.internal.Serializable)
 Class weblogic.db.jdbc.SelectStmt
 Class weblogic.db.jdbc.oracle.Sequence
 Class java.lang.Throwable
 Class java.lang.Exception
 Class weblogic.db.jdbc.DataSetException

 Class weblogic.db.jdbc.Value
6-4 Programming WebLogic JDBC

The dbKona API
The dbKona Objects and Their Classes

Objects in dbKona fall into three categories:

Data container objects hold data retrieved from or bound for a database, or they
contain other objects that hold data. Data container objects are always associated
with a set of data description objects and a set of session objects. TableDataSet
and Record objects are examples of data container objects.

Data description objects contain the metadata about data objects, that is, a
description of how the data is structured and typed, and parameters for its
retrieval from the remote DBMS. Every data object or its container is associated
with a set of data description objects. Schema and SelectStmt objects are
examples data description objects.

Miscellaneous objects store information about errors, provide symbolic
constants, etc.

These broad categories of objects depend upon each other in application building. In a
general way, every data object has a set of descriptive objects associated with it.

Data Container Objects in dbKona

There are three basic objects that act as data containers: a DataSet (or one of its
subclasses, QueryDataSet or TableDataSet) contains Records. A Record contains
Values. (The DataSet subclass EventfulTableDataSet is deprecated.)

DataSet

The dbKona package uses the concept of a DataSet to cache records retrieved from a
DBMS server. It is roughly equivalent to a table in SQL. The DataSet class has two
subclasses, QueryDataSet and TableDataSet.

In the multitier model using the WebLogic Server, DataSets can be saved (cached) on
the WebLogic Server.

A DataSet is constructed as a QueryDataSet or a TableDataSet to hold the
results of a query or a stored procedure.

A DataSet’s retrieval parameters are defined by a SQL statement, or by the
dbKona abstraction for SQL statements, a SelectStmt object.
Programming WebLogic JDBC 6-5

6 Using dbKona (Deprecated)
A Dataset is populated with Records, which contain Values. Records that are
accessible by index position (0-origined).

A DataSet is described by and bound to a schema, which stores information in
its attributes, like column name, data type, size, and order of each database
column represented in the DataSet. Column names in a schema are accessible
by index position (1-origined).

The DataSet class (see weblogic.db.jdbc.DataSet) is the abstract parent class for
QueryDataSet and TableDataSet.

QueryDataSet

A QueryDataSet makes the results of an SQL query available as a collection of
Records that are accessible by index position (0-origined). Unlike the case with a
TableDataSet, changes and additions to a QueryDataSet cannot be saved into the
database.

There are two functional differences between a QueryDataSet and a TableDataSet.
First, changes made to a TableDataSet can be saved to a database; you can make
changes to Records in a QueryDataSet, but those changes cannot be saved. Second,
you can retrieve data into a QueryDataSet from more than one table.

A QueryDataSet is constructed in the context of a java.sql.Connection or
with a java.sql.ResultSet; that is, you pass the Connection object as an
argument to the QueryDataSet constructor. A QueryDataSet’s data retrieval
is specified by a SQL query and/or by a SelectStmt object.

A QueryDataSet is populated with Records (accessible by 0-origined index),
which contain Values (accessible by 1-origined index).

A QueryDataSet is described by a schema, which stores information about the
QueryDataSet’s attributes. Attributes include name, data type, size, and order
of each database column represented in the QueryDataSet.

The QueryDataSet class (see weblogic.db.jdbc.QueryDataSet) has methods for
constructing, saving, and retrieving a QueryDataSet. You can specify any SQL for a
QueryDataSet, including SQL for joins. The superclass DataSet contains methods for
managing record caching details.
6-6 Programming WebLogic JDBC

The dbKona API
TableDataSet

The functional difference between a TableDataSet and a QueryDataSet is that
changes made to a TableDataSet can be saved to a database. With a TableDataSet,
you can update values in Records, add new Records, and mark Records for deletion;
finally, you can save changes to a database, using the save() methods in either the
TableDataSet class to save an entire TableDataSet, or in the Record class to save
a single record. Additionally, the data retrieved into a TableDataSet is, by definition,
from a single database table; you cannot perform joins on database tables to retrieve
data for a TableDataSet.

If you intend to save updates or deletes to a database, you must construct the
TableDataSet with a KeyDef object that specifies a unique key for forming the
WHERE clauses in an UPDATE or DELETE statement. A KeyDef is not necessary if only
inserts take place, because an insert operation does not require a WHERE clause. The
KeyDef key must not contain columns that are filled or altered by the DBMS, because
dbKona must have a known value for the key column to construct a correct WHERE
clause.

You can also qualify a TableDataSet with an arbitrary string that is used to construct
the tail of the SQL statement. When you are using dbKona with an Oracle database,
for example, you can qualify the TableDataSet with the string “for UPDATE” to place
a lock on the records that are retrieved by the query.

A TableDataSet can be constructed with a KeyDef, a dbKona object used for setting
a unique key for saving updates and deletes to the DBMS. If you are working with an
Oracle database, you can set the TableDataSet KeyDef to “ROWID,” which is a unique
key inherent in each table. Then construct the TableDataSet with a set of attributes that
includes “ROWID.”

A TableDataSet is constructed in the context of a java.sql.Connection
object; that is, you pass the Connection object as an argument to the
TableDataSet constructor. Its data retrieval is specified by the name of a
DBMS table. If you intend to save updates and deletes, you must supply a
KeyDef object when the TableDataSet is constructed. You may refine a query
with the where() and order() methods to set WHERE and ORDER BY clauses
after the TableDataSet is created.

A TableDataSet has a default SelectStmt object associated with it that can
take advantage of Query-by-example functionality.

A TableDataSet is populated with Records (accessible by 0-origined index),
which contain Values (accessible by 1-origined index).
Programming WebLogic JDBC 6-7

6 Using dbKona (Deprecated)
A TableDataSet’s attributes are described by a schema, which stores
information about the TableDataSet’s attributes, like column name, data type,
size, and order of the database columns represented in the TableDataSet.

TableDataSets can be cached on a WebLogic Server.

The setRefreshOnSave() method sets the TableDataSet so that any record
inserted or updated during a save is also immediately refreshed from the DBMS.
Set this flag if your TableDataSet has columns altered by the DBMS, such as
the Microsoft SQL Server IDENTITY column or a column modified by an insert
or update trigger.

The Refresh() methods refresh records in the TableDataSet that would be
saved in the database, that is, records that you have changed in the
TableDataSet. Any changes you have made to a record are lost and the record
is marked clean. Records you have marked for deletion are not refreshed. A
record you have added to the TableDataSet raises an exception stating that
there is no DBMS representation of the row from which to refresh.

The saveWithoutStatusUpdate() methods save TableDataSet records to the
DBMS without updating the save status of the records in the TableDataSet.
Use these methods to save TableDataSet records within a transaction. If the
transaction is rolled back, the records in the TableDataSet are consistent with
the database and the transaction can be retried. After the transaction is
committed, call updateStatus() to update the save status of records in the
TableDataSet. Once you have saved a record with
saveWithoutStatusUpdate(), you cannot modify it until you call
updateStatus() on the record.

The TableDataSet.setOptimisticLockingCol() method allows you to
designate a single column in the TableDataSet as an optimistic locking
column. Applications use this column to detect whether another user has
changed the row since it was read from the database. dbKona assumes the
DBMS updates the column whenever the row is changed, so it does not update
this column from the value in the TableDataSet. It uses the column in the
WHERE clause of an UPDATE statement when you save the record or the
TableDataSet. If another user has modified the record, dbKona’s update fails;
you can retrieve the new values for the record using Record.refresh(), make
your changes to the record, and try to save the record again.

The TableDataSet class (see weblogic.db.jdbc.TableDataSet) has methods for:

Constructing a TableDataSet
6-8 Programming WebLogic JDBC

The dbKona API
Setting its WHERE and ORDER BY clauses

Getting its KeyDef

Getting its associated JDBC ResultSet

Getting its SelectStmt

Getting its associated DBMS table name

Saving its changes to a database

Refreshing its records from the DBMS

Getting other information about it

The superclass DataSet contains methods for managing record caching.

EventfulTableDataSet (Deprecated)

An EventfulTableDataSet, for use within WebLogic Server, is a TableDataSet
that sends and receives events when its data is updated locally or in the DBMS.
EventfulTableDataSet implements weblogic.event.actions.ActionDef,
which is the interface implemented by all Action classes in WebLogic Events. The
action() method of an EventfulTableDataSet updates the DBMS and notifies all
other EventfulTableDataSets for the same DBMS table of the change. (You can
read more about WebLogic Events in the White Paper and the Developer’s Guide for
WebLogic Events, also deprecated.)

When an EventfulRecord in an EventfulTableDataSet changes, it sends an
EventMessage to the WebLogic Server with a ParamSet that contains the row that
changed as well as the changed data, for the topic WEBLOGIC.[tablename], where the
tablename is the name of the table associated with an EventfulTableDataSet.
EventfulTableDataSet takes action on the received, evaluated event to update its
own copy of the record that changed.

An EventfulTableDataSet is constructed in the context of a
java.sql.Connection object, as an argument to the constructor. You must also
supply a t3 Client object, a KeyDef to be used for inserts, updates, and deletes, and the
name of the DBMS table.

Like a TableDataSet, an EventfulTableDataSet has a default SelectStmt
object associated with it that can be used to take advantage of Query-by-example
functionality.
Programming WebLogic JDBC 6-9

6 Using dbKona (Deprecated)
An EventfulTableDataSet is populated with EventfulRecords (accessible
by a 0-origined index). Like Records, EventfulRecords contain Values
(accessible by a 1-origined index).

An EventfulTableDataSet’s attributes are described by its schema, in the
same way as a TableDataSet.

For example, an EventfulTableDataSet might be used by a warehouse inventory
system to automatically update many views of a table. Here is how it works. Each
warehouse employee’s client application creates an EventfulTableDataSet from
the “stock” table and displays those records in a Java application. Employees doing
different jobs might have different displays, but all of the client applications are using
an EventfulTableDataSet of the “stock” table. Because a TableDataSet is
“eventful,” each record in the data set has registered an interest in itself automatically.
The WebLogic Topic Tree has a registration of interest for all the records; for each
client, there is a registration of interest in each record in the TableDataSet.

When a user changes a record, the DBMS is updated with the new record. At the same
time, an EventMessage (embedded with the changed Record itself) is automatically
sent to the WebLogic Server. Each client using an EventfulTableDataSet of the
“stock” table receives an event notification that has embedded in it the changed
Record. The EventfulTableDataSet for each client accepts the changed record and
updates the GUI.

Record

Records are created as part of a DataSet. You can also construct records manually in
the context of a DataSet and its schema, or the schema of an SQL table known to an
active Database session.

Records in a TableDataSet may be saved to the database individually with the
save() method in the Record class, or corporately with the save() method in the
TableDataSet class.

Records are constructed when a DataSet is created and its query is executed. A
record may also be added to an existing DataSet with the
DataSet.addRecord() method or with a Record constructor (after the
DataSet’s fetchRecords() method has been called to get its schema).

A record contains a collection of values. Records are accessible by a 0-origined
index position. Values within a record are accessible by 1-origined index
position.
6-10 Programming WebLogic JDBC

The dbKona API
A record is described by the schema of its parent DataSet. The schema
associated with a record holds information about the name, data type, size, and
order of each field in the Record.

The Record class (see weblogic.db.jdbc.Record) has methods for:

Constructing a Record object

Determining its parent DataSet and schema

Determining the number of columns in it

Determining its save or update status

Determining the SQL string used to save or update a Record to the database

Getting and setting its values

Returning the value of each of its columns as a formatted string

Value

A Value object has an internal type, which is defined by the schema of its parent
DataSet. A Value object can be assigned a value with a data type other than its
internal type, if the assignment is legal. A Value object can also return the value of a
data type other than its internal data type, if the request is legal.

The Value object acts to shield the application from the details of manipulating
vendor-specific data types. The Value object “knows” its data type, but all Value
objects can be manipulated within a Java application with the same methods, no matter
the internal data type.

Values are created when Records are created.

The internal data type of a Value object may be among the following:

Boolean
Byte

Byte[]

Date

Double-precision

Floating-point

Integer
Programming WebLogic JDBC 6-11

6 Using dbKona (Deprecated)
Long

Numeric

Short

String

Time

Timestamp

NULL

 These types are mapped to the JDBC types listed in java.sql.Types.

Values are described by the schema associated with its parent DataSet.

The Value class (see weblogic.db.jdbc.Value) has methods for getting and setting
the data and data type of a Value object.

Data Description Objects in dbKona

Data description objects contain metadata; that is, information about data structure,
how data are stored on and retrieved from the DBMS, whether and how data can be
updated. dbKona uses the following data description objects, which are
implementations of the JDBC interface:

Schema

Column

KeyDef

SelectStmt

Schema

When you instantiate a DataSet, you implicitly create the schema that describes it,
and when you fetch its records, the DataSet schema is updated.

A schema is constructed automatically when a DataSet is instantiated.

A DataSet’s attributes (and therefore, attributes of QueryDataSets and
TableDataSets, and their associated records) are defined by a schema, as are
the attributes of a Table.

Schema attributes are described as a collection of Column objects.
6-12 Programming WebLogic JDBC

The dbKona API
The Schema class (see weblogic.db.jdbc.Schema) has methods for:

Adding and returning the columns associated with the schema

Determining the number of columns in a schema

Determining the (1-origined) index position of a particular column name in the
schema

Column

Schema is created.

The Column class (see weblogic.db.jdbc.Column) has methods for Determining:

Setting the Column to a particular data type

Determining the data type of a column

Determining the database-specific data type of a column

Determining the name, scale, precision, and storage length of a column

Determining whether NULL values are allowed in the native DBMS column

Determining whether the column is read-only and/or searchable

KeyDef

“WHERE attribute1 = value1 and attribute2 = value2,” and so on, to uniquely
identify and manipulate a particular database record. The attributes in a KeyDef should
correspond to unique key in the database table.

The KeyDef object with no attributes is constructed in the KeyDef class. Use the
addAttrib() method to build the attributes of the KeyDef, and then use the KeyDef
as an argument in the constructor for a TableDataSet. Once the KeyDef is associated
with a DataSet, you cannot add anymore attributes to it.

When you are working with an Oracle database, you can add the attribute “ROWID,”
which is an inherently unique key associated with each table, to be used for inserts and
deletes with a TableDataSet.

The KeyDef class (see weblogic.db.jdbc.KeyDef) has methods for:
Programming WebLogic JDBC 6-13

6 Using dbKona (Deprecated)
Adding attributes

Determining the number of attributes in the KeyDef object

Determining whether the KeyDef object has an attribute that corresponds to a
particular column name or index position.

SelectStmt

You can construct a SelectStmt object in the SelectStmt class. Then add clauses to
the SelectStmt with methods in the SelectStmt class, and use the resulting
SelectStmt object as an argument when you create a QueryDataSet. A
TableDataSet also has a default SelectStmt associated with it that can be used to
further refine data retrieval after the TableDataSet has been created.

Methods in the SelectStmt class (see weblogic.db.jdbc.SelectStmt) correspond to the
clauses in a SQL statement, which include:

Field (and an alias)

From

Group

Having

Order by

Unique

Where

There is also full support for setting and adding Query-by-example clauses. Note that
with the from() method, you can specify a string that includes an alias, in the format
“<i>tableName alias</i>”. With the field() method, you can use a string after
the format “<i>tableAlias.attribute</i>” as an argument. You are not limited
to a single table name when constructing a SelectStmt object, although its usage may
dictate whether or not a join is useful. A SelectStmt object associated with a
QueryDataSet can join one or more tables, whereas a TableDataSet cannot, since it
is by definition limited to the data in a single table.

Miscellaneous Objects in dbKona

Other miscellaneous objects in dbKona include Exceptions and Constants.
6-14 Programming WebLogic JDBC

Entity Relationships
Exceptions

DataSetException

LicenseException

java.sql.SQLException

In general, DataSetExceptions occur when there is a problem with a DataSet,
including errors generated from stored procedures, or when there is an internal I/O
error.

java.sql.SqlExceptions are thrown when there is a problem building an SQL
statement or executing it on the DBMS server.

Constants

The Enums class contains constants for the following:

Trigger states

Vendor-specific database types

INSERT, UPDATE, and DELETE database operations

The java.sql.Types class contains constants for data types.

Entity Relationships

Inheritance Relationships

The following describes important descendancy relationships between dbKona
classes. One class is subclassed:

DataSet
DataSet is the abstract base class for QueryDataSet and TableDataSet.

Other dbKona objects descend from DbObject.
Programming WebLogic JDBC 6-15

6 Using dbKona (Deprecated)
Most dbKona Exceptions, including DataSetException and LicenseException,
are subclassed from java.lang.Exception and
weblogic.db.jdbc.DataSetException. LicenseException is subclassed from
RuntimeException.

Possession Relationships

Each dbKona object may have other objects associated with it that further define its
structure.

DataSet

A DataSet has records, each of which has values. A DataSet has a schema that
defines its structure, which is made up of one or more columns. A DataSet may have
a SelectStmt that sets parameters for data retrieval.

TableDataSet

A TableDataSet has a KeyDef for updates and deletes by key.

Schema

A schema has columns that define its structure.

Implementing dbKona

The following sections describe a set of working examples that illustrate several steps
to building a simple Java application that retrieves and displays data from a remote
DBMS.

Accessing a DBMS with dbKona

The following steps describe how to use dbKona to access a DBMS.
6-16 Programming WebLogic JDBC

Implementing dbKona
Step 1. Import packages

Applications that use dbKona need access to java.sql and weblogic.db.jdbc (the
WebLogic dbKona package), plus any other Java classes that you will use. In the
following case, we also import the Properties class from java.util, used during
the login process, and the weblogic.html package.

 import java.sql.*;
 import weblogic.db.jdbc.*;
 import weblogic.html.*;
 import java.util.Properties;

Note that you do not import the package for your JDBC driver. The JDBC driver is
established during the connection phase. For version 2.0 and later, you do not import
weblogic.db.common, weblogic.db.server, or weblogic.db.t3client.

Step 2. Set Properties for Making a Connection

The following code example is a method for creating the Properties object that is used
to make a connection to an Oracle DBMS. Each property is set with a
double-quote-enclosed string.

public class tutor {

 public static void main(String argv[])
 throws DataSetException, java.sql.SQLException,
 java.io.IOException, ClassNotFoundException
 {
 Properties props = new java.util.Properties();
 props.put(“user", “scott");
 props.put(“password", “tiger");
 props.put(“server", “DEMO");
 (continued below)

The Properties object will be used as an argument to create a Connection. The
JDBC Connection object will become an important context for other database
operations.

Step 3. Make a Connection to the DBMS

You create a Connection object by loading the JDBC driver class with the
Class.forName() method, and then calling the java.sql.myDriver.connect()
constructor, which takes two arguments, the URL of the JDBC driver to be used and a
java.util.Properties object.
Programming WebLogic JDBC 6-17

6 Using dbKona (Deprecated)
You can see how to create the Properties object, props, in step 2.

 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle", props);
 conn.setAutoCommit(false);

The Connection conn becomes an argument for other actions that involve the DBMS,
for instance creating DataSets to hold query results. For details about connecting to
a DBMS, see the developers guide for your driver.

Connections, DataSets (and, if you use them, JDBC ResultSets), and
Statements should be closed with the close() method when you have finished
working with them. Note in the code examples that follow that each of these is
explicitly closed.

Note: The default mode of java.sql.Connection sets autocommit to true. Oracle
will perform much faster if you set autocommit to false, as shown above.

Note: DriverManager.getConnection() is a synchronized method, which can
cause your application to hang in certain situations. For this reason, BEA
recommends that you use the Driver.connect() method instead of
DriverManager.getConnection()

Preparing a Query, Retrieving, and Displaying Data

The following steps describe how to prepare a query, and retrieve and display data.

Step 1. Set Parameters for Data Retrieval

In dbKona, there are several ways to set parameters—to compose the SQL statement
and set its scope—for retrieving data. Here we show how dbKona can interact at a very
basic level with any JDBC driver, by taking the results of a JDBC ResultSet and
creating a DataSet. In this example, we use a Statement object to execute a SQL
statement. A Statement object is created with a method from the JDBC Connection
class, and then the ResultSet is created by executing the Statement.

 Statement stmt = conn.createStatement();
 stmt.execute("SELECT * from empdemo");
 ResultSet rs = stmt.getResultSet();
6-18 Programming WebLogic JDBC

Implementing dbKona
You can use the results of a query executed with a Statement object to instantiate a
QueryDataSet. This QueryDataSet is constructed with a JDBC ResultSet:

 Statement stmt = conn.createStatement();
 stmt.execute("SELECT * from empdemo");
 ResultSet rs = stmt.getResultSet();
 QueryDataset ds = new QueryDataSet(rs);

Using the results from the execution of a JDBC Statement is only one way to create
a DataSet. It requires knowledge of SQL, and it doesn’t give you much control over
the results of your query: basically, you can iterate through the records with the JDBC
next() method. With dbKona, you do not have to know much about SQL to retrieve
records; you can use methods in dbKona to set up your query, and once you have
created a DataSet with your records, you have a much finer control over manipulating
the records.

Step 2. Create a DataSet for the Query Results

Instead of requiring you to compose an SQL statement, dbKona lets you use methods
to set certain parts of the statement. You create a DataSet (either a TableDataSet or
a QueryDataSet) for the results of the query.

For example, the simplest data retrieval in dbKona is into a TableDataSet. Creating
a TableDataSet requires just a Connection object and the name of the DBMS table
that you want to retrieve, as in this example that retrieves the Employee table (alias
“empdemo"):

 TableDataSet tds = new TableDataSet(conn, "empdemo");

A TableDataSet can be constructed with a subset of the attributes (columns) in a
DBMS table. If you want to retrieve just a few columns from a very large table,
specifying those columns is more efficient than retrieving the entire table. To do this,
pass a list of table attributes as a string in the constructor. For example:

 TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
dept");

Use a TableDataSet if you want to be able to save changes to the DBMS, or if you
do not plan to do a join of one or more tables to retrieve data; otherwise, use a
QueryDataSet. In this example, we use the QueryDataSet constructor that takes two
arguments: a Connection object and a string that is the SQL:

 QueryDataSet qds = new QueryDataSet(conn, "select * from
empdemo");
Programming WebLogic JDBC 6-19

6 Using dbKona (Deprecated)
You do not actually begin receiving data until you call the fetchRecords() method
in the DataSet class. After you create a DataSet, you can continue to refine its data
parameters. For instance, we could refine the selection of records to be retrieved in the
TableDataSet with the where() method, which adds a WHERE clause to the SQL that
dbKona composes. The following retrieves just one record from the Employee table
by using the where() method to create a WHERE clause:

 TableDataSet tds = new TableDataSet(conn, "empdemo");
 tds.where("empno = 8000");

Step 3. Fetch the Results

When you are satisfied with the data parameters, call the fetchRecords() method
from the DataSet class, as shown in this example:

 TableDataset tds = new TableDataSet(conn, "empdemo", "empno,
 dept");
 tds.where("empno = 8000");
 tds.fetchRecords();

The fetchRecords() method can take arguments to fetch a certain number of
records, or to fetch records starting with a particular record. In the following example,
we fetch no more than the first 20 records and discard the rest with the
clearRecords() method:

 TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
 dept");
 tds.where("empno > 8000");
 tds.fetchRecords(20)
 .clearRecords();

When dealing with very large query results, you may prefer to fetch a few records at a
time, process them, and then clear the DataSet before the next fetch. Use the
clearRecords() method from the DataSet class to clear the TableDataSet
between fetches, as illustrated here:

 TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
 dept");
 tds.where("empno > 2000");
 while (!tds.allRecordsRetrieved()) {
 tds.fetchRecords(100);
 // Process the hundred records . . .
 tds.clearRecords();
 }
6-20 Programming WebLogic JDBC

Implementing dbKona
You can also reuse a DataSet with a method that was added in release 2.5.3. This
method, DataSet.releaseRecords(), closes the DataSet and releases all the
Records but does not nullify them. You can reuse the DataSet to generate new
records, yet any records from the first use still held by the application remain readable.

Step 4. Examine a TableDataSet’s Schema

Here is a simple example of how you can examine the schema information for a
TableDataSet. The toString() method in the schema class displays a
newline-delimited list of the name, type, length, precision, scale, and null-allowable
attributes of the columns in the table queried for a TableDataSet tds:

 Schema sch = tds.schema();
 System.out.println(sch.toString());

If you use a Statement object to create a query, you should close the Statement after
you have completed the query and fetched its results:

 stmt.close();

Step 5. Examine the Data with htmlKona

The following example shows how you might use an htmlKona UnorderedList to
examine the data. This example uses DataSet.getRecord() and
Record.getValue() to examine each record in a for loop. This finds the name, ID,
and salary of the employee making the most money from the records retrieved in the
QueryDataSet we created in step 2:

 // (Creation of Database session object and QueryDataSet qds)
 UnorderedList ul = new UnorderedList();

 String name = "";
 String id = "";
 String salstr = "";
 int sal = 0;
 for (int i = 0; i < qds.size(); i++) {
 // Get a record
 Record rec = qds.getRecord(i);
 int tmp = rec.getValue("Emp Salary").asInt();
 // Add the salary amount to the htmlKona ListElement
 ul.addElement(new ListItem("$" + tmp));
 // Compare this salary to the maximum salary we have found so far
 if (tmp > sal) {
 // If this salary is a new max, save away the employee's info
Programming WebLogic JDBC 6-21

6 Using dbKona (Deprecated)
 sal = tmp;
 name = rec.getValue("Emp Name").asString();
 id = rec.getValue("Emp ID").asString();
 salstr = rec.getValue("Emp Salary").asString();
 }

Step 6. Display the Results with htmlKona

htmlKona provides a convenient way to display dynamic data like that produced by the
above example. The following example shows how you might construct a page on the
fly for displaying the results of your query:

 HtmlPage hp = new HtmlPage();
 hp.getHead()
 .addElement(new TitleElement("Highest Paid Employee"));
 hp.getBodyElement()
 .setAttribute(BodyElement.bgColor, HtmlColor.white);
 hp.getBody()
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query String: ", +2))
 .addElement(stmt.toString())
 .addElement(MarkupElement.HorizontalLine)
 .addElement("I examined the values: ")
 .addElement(ul)
 .addElement(MarkupElement.HorizontalLine)
 .addElement("Max salary of those employees examined is: ")
 .addElement(MarkupElement.Break)
 .addElement("Name: ")
 .addElement(new BoldElement(name))
 .addElement(MarkupElement.Break)
 .addElement("ID: ")
 .addElement(new BoldElement(id))
 .addElement(MarkupElement.Break)
 .addElement("Salary: ")
 .addElement(new BoldElement(salstr))
 .addElement(MarkupElement.HorizontalLine);

 hp.output();

Step 7. Close the DataSet and the Connection

 qds.close();
 tds.close();

It is also important to close the Connection to the DBMS. This code should appear at
the end of all of your database operations in a finally block, as in this example:
6-22 Programming WebLogic JDBC

Implementing dbKona
 try {
 // Do your work
 }
 catch (Exception mye) {
 // Catch and handle exceptions
 }
 finally {
 try {conn.close();}
 catch (Exception e) {
 // Deal with any exceptions
 }
 }

Code summary

import java.sql.*;
import weblogic.db.jdbc.*;
import weblogic.html.*;
import java.util.Properties;

public class tutor {

 public static void main(String[] argv)
 throws java.io.IOException, DataSetException,
 java.sql.SQLException, HtmlException,
 ClassNotFoundException
 {
 Connection conn = null;
 try {
 Properties props = new java.util.Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("server", "DEMO");

 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle",
 props);
 conn.setAutoCommit(false);

 // Create a TableDataSet to add 10 records
 TableDataSet tds = new TableDataSet(conn, "empdemo");
 for (int i = 0; i < 10; i++) {
 Record rec = tds.addRecord();
 rec.setValue("empno", i)
 .setValue("ename", "person " + i)
 .setValue("esalary", 2000 + (i * 10));
Programming WebLogic JDBC 6-23

6 Using dbKona (Deprecated)
 }

 // Save the data and close the TableDataSet
 tds.save();
 tds.close();

 // Create a QueryDataSet to retrieve the additions to the table
 Statement stmt = conn.createStatement();
 stmt.execute("SELECT * from empdemo");

 QueryDataSet qds = new QueryDataSet(stmt.getResultSet());
 qds.fetchRecords();

 // Use the data from the QueryDataSet
 UnorderedList ul = new UnorderedList();

 String name = "";
 String id = "";
 String salstr = "";
 int sal = 0;
 for (int i = 0; i < qds.size(); i++) {
 Record rec = qds.getRecord(i);
 int tmp = rec.getValue("Emp Salary").asInt();
 ul.addElement(new ListItem("$" + tmp));
 if (tmp > sal) {
 sal = tmp;
 name = rec.getValue("Emp Name").asString();
 id = rec.getValue("Emp ID").asString();
 salstr = rec.getValue("Emp Salary").asString();
 }
 }

 // Use an htmlKona page to display the data retrieved, and the
 // statements used to retrieve it
 HtmlPage hp = new HtmlPage();
 hp.getHead()
 .addElement(new TitleElement("Highest Paid Employee"));
 hp.getBodyElement()
 .setAttribute(BodyElement.bgColor, HtmlColor.white);
 hp.getBody()
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query String: ", +2))
 .addElement(stmt.toString())
 .addElement(MarkupElement.HorizontalLine)
 .addElement("I examined the values: ")
 .addElement(ul)
 .addElement(MarkupElement.HorizontalLine)
 .addElement("Max salary of those employees examined is: ")
 .addElement(MarkupElement.Break)
6-24 Programming WebLogic JDBC

Implementing dbKona
 .addElement("Name: ")
 .addElement(new BoldElement(name))
 .addElement(MarkupElement.Break)
 .addElement("ID: ")
 .addElement(new BoldElement(id))
 .addElement(MarkupElement.Break)
 .addElement("Salary: ")
 .addElement(new BoldElement(salstr))
 .addElement(MarkupElement.HorizontalLine);

 hp.output();

 // Close QueryDataSet
 qds.close();
 }
 catch (Exception e) {
 // Deal with any exceptions
 }
 finally {
 // Close the connection
 try {conn.close();}
 catch (Exception mye) {
 // Deal with any exceptions
 }
 }
 }
}

Note that we closed each Statement and DataSet after use, and that we closed the
Connection in a finally block.

Using a SelectStmt Object to Form a Query

The following steps describe how to form a query using a SelectStmt object.

Step 1. Setting SelectStmt Parameters

When you create a TableDataSet, it is associated with an empty SelectStmt that
you can then modify to form a query. In this example, we have already created a
connection conn. Here is how you access a TableDataSet’s SelectStmt:

 TableDataSet tds = new TableDataSet(conn, "empdemo");
 SelectStmt sql = tds.selectStmt();
Programming WebLogic JDBC 6-25

6 Using dbKona (Deprecated)
Now set the parameters for the SelectStmt object. In the example, the first argument
for each field is the attribute name and the second is the alias. This query will retrieve
information about all employees who make less than $2000:

 sql.field("empno", "Emp ID")
 .field("ename", "Emp Name")
 .field("sal", "Emp Salary")
 .from("empdemo")
 .where("sal < 2000")
 .order("empno");

Step 2. Using QBE to Refine the Parameters

The SelectStmt object also gives you Query-by-example functionality.
Query-by-example, or QBE, forms parameters for data retrieval using a set of phrases
that follow the format column operator value. For example, "empno = 8000” is a
Query-by-example phrase that can select all the rows in one or more tables where the
field employee number ("empno", alias “Emp ID") equals 8000.

We can further define the parameters for data selection by using the setQbe() and
addQbe() methods in the SelectStmt class, as is shown here. These methods allow
you to use vendor-specific QBE syntax in constructing a select statement:

 sql.setQbe("ename", "MURPHY")
 .addUnquotedQbe("empno", "8000");

When you have finished, use the fetchRecords() method to populate the DataSet,
as we did in the second tutorial.

Modifying DBMS Data with a SQL Statement

The following steps describe how to modify DBMS data with a SQL statement.

Step 1. Writing SQL Statements

When you retrieve data that you expect to modify, and if you want to save those
modifications into the remote DBMS, you should retrieve data into a TableDataSet.
Changes made to QueryDataSets cannot be saved.

As with most dbKona operations, you should begin by creating the Properties and
Driver objects, and then instantiating a Connection.
6-26 Programming WebLogic JDBC

Implementing dbKona
Step 1. Writing SQL statements

 String insert = "insert into empdemo(empno, " +
 "ename, job, deptno) values " +
 "(8000, 'MURPHY', 'SALESMAN', 10)";

The second statement changes Murphy’s name to Smith, and changes his job status
from Salesman to Manager:

 String update = "update empdemo set ename = 'SMITH', " +
 "job = 'MANAGER' " +
 "where empno = 8000";

The third statement deletes this record from the database:

 String delete = "delete from empdemo where empno = 8000";

Step 2. Executing Each SQL Statement

First, save a snapshot of the table into a TableDataSet. Later we’ll examine each
TableDataSet to verify that the execute operation produced the expected results.
Notice that TableDataSets are instantiated with the results of an executed query.

 Statement stmt1 = conn.createStatement();
 stmt1.execute(insert);

 TableDataSet ds1 = new TableDataSet(conn, "emp");
 ds1.where("empno = 8000");
 ds1.fetchRecords();

The methods associated with TableDataSet allow you to specify a SQL WHERE clause
and a SQL ORDER BY clause and to set and add to a QBE statement. We use the
TableDataSet in this example to requery the database table “emp” after each
statement is executed to see the results of the execute() method. With the “where”
clause, we narrow down the records in the table to just employee number 8000.

Repeat the execute() method for the update and delete statements and capture the
results into two more TableDataSets, ds2 and ds3.

Step 3. Displaying the Results with htmlKona

 ServletPage hp = new ServletPage();
 hp.getHead()
 .addElement(new TitleElement("Modifying data with SQL"));
 hp.getBody()
Programming WebLogic JDBC 6-27

6 Using dbKona (Deprecated)
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new TableElement(tds))
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query results afer INSERT", 2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(insert))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds1))
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query results after UPDATE", 2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(update))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds2))
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query results after DELETE", 2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(delete))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds3))
 .addElement(MarkupElement.HorizontalLine);
 hp.output();

Code summary

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;
import java.util.*;
import weblogic.db.jdbc.*;
import weblogic.html.*;

public class InsertUpdateDelete extends HttpServlet {

 public synchronized void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {
 Connection conn = null;
 try {
 res.setStatus(HttpServletResponse.SC_OK);
 res.setContentType("text/html");

 Properties props = new java.util.Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("server", "DEMO");
6-28 Programming WebLogic JDBC

Implementing dbKona
 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle",
 props);
 conn.setAutoCommit(false);

 // Create a TableDataSet with a SelectStmt
 TableDataSet tds = new TableDataSet(conn, "empdemo");
 SelectStmt sql = tds.selectStmt();
 sql.field("empno", "Emp ID")
 .field("ename", "Emp Name")
 .field("sal", "Emp Salary")
 .from("empdemo")
 .where("sal < 2000")
 .order("empno");
 sql.setQbe("ename", "MURPHY")
 .addUnquotedQbe("empno", "8000");
 tds.fetchRecords();

 String insert = "insert into empdemo(empno, " +
 "ename, job, deptno) values " +
 "(8000, 'MURPHY', 'SALESMAN', 10)";

 // Create a statement and execute it
 Statement stmt1 = conn.createStatement();
 stmt1.execute(insert);
 stmt1.close();

 // Verify results
 TableDataSet ds1 = new TableDataSet(conn, "empdemo");
 ds1.where("empno = 8000");
 ds1.fetchRecords();

 // Create a statement and execute it
 String update = "update empdemo set ename = 'SMITH', " +
 "job = 'MANAGER' " +
 "where empno = 8000";
 Statement stmt2 = conn.createStatement();
 stmt2.execute(insert);
 stmt2.close();

 // Verify results
 TableDataSet ds2 = new TableDataSet(conn, "empdemo");
 ds2.where("empno = 8000");
 ds2.fetchRecords();

 // Create a statement and execute it
 String delete = "delete from empdemo where empno = 8000";
Programming WebLogic JDBC 6-29

6 Using dbKona (Deprecated)
 Statement stmt3 = conn.createStatement();
 stmt3.execute(insert);
 stmt3.close();

 // Verify results
 TableDataSet ds3 = new TableDataSet(conn, "empdemo");
 ds3.where("empno = 8000");
 ds3.fetchRecords();

 // Create a servlet page to display the results
 ServletPage hp = new ServletPage();
 hp.getHead()
 .addElement(new TitleElement("Modifying data with SQL"));
 hp.getBody()
 .addElement(MarkupElement.HorizontalRule)
 .addElement(new HeadingElement("Original table", 2))
 .addElement(new TableElement(tds))
 .addElement(MarkupElement.HorizontalRule)
 .addElement(new HeadingElement("Query results afer INSERT",
2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(insert))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds1))
 .addElement(MarkupElement.HorizontalRule)
 .addElement(new HeadingElement("Query results after UPDATE",
2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(update))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds2))
 .addElement(MarkupElement.HorizontalRule)
 .addElement(new HeadingElement("Query results after DELETE",
2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(delete))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds3))
 .addElement(MarkupElement.HorizontalRule);

 hp.output();

 tds.close();
 ds1.close();
 ds2.close();
 ds3.close();
 }
 catch (Exception e) {
 // Handle the exception
6-30 Programming WebLogic JDBC

Implementing dbKona
 }
 // Always close the connection in a finally block
 finally {
 conn.close();
 }
 }
}

Modifying DBMS Data with a KeyDef

Use a KeyDef object to establish keys for deleting and inserting data into the remote
DBMS. A KeyDef acts as an equality statement in updates and deletes after the pattern
WHERE KeyDef attribute1 = value1 and KeyDef attribute2 = value2, and
so on.

The first step is to create a connection to the DBMS. In this example, we use the
Connection object conn created in the first tutorial. The database table we use in this
example is the Employee table ("empdemo"), with fields empno, ename, job, and
deptno. The query we execute retrieves the full contents of the table empdemo.

Step 1. Creating a KeyDef and Building Its Attributes

The KeyDef object we create for inserts and deletes in this tutorial has one attribute,
the empno column in the database. Creating a KeyDef with this attribute will set a key
after the pattern WHERE empno = and the particular value assigned to empno for each
record to be saved.

A KeyDef is created and built in the KeyDef class, as shown in this example:

 KeyDef key = new KeyDef().addAttrib("empno");

If you are working with an Oracle database, you can construct the KeyDef with the
attribute “ROWID,” to do inserts and deletes on this Oracle key, as in this example:

 KeyDef key = new KeyDef().addAttrib("ROWID");

Step 2. Creating a TableDataSet with a KeyDef

In this example, we create a TableDataSet with the results of our query. We use the
TableDataSet constructor that takes a Connection object, a DBMS table name, and a
KeyDef as its arguments:
Programming WebLogic JDBC 6-31

6 Using dbKona (Deprecated)
 TableDataSet tds = new TableDataSet(conn, "empdemo", key);

The KeyDef becomes the reference for all changes that we will make to the data. Each
time we save the TableDataSet, we change data in the database (according to the
limits set on SQL UPDATE, INSERT, and DELETE operations) based on the value of the
KeyDef attribute, which in this example is the employee number ("empno").

If you are working with an Oracle database and have added the attribute ROWID to the
KeyDef, you can construct a TableDataSet for inserts and deletes like this:

 KeyDef key = new KeyDef().addAttrib("ROWID");
 TableDataSet tds =
 new TableDataSet(conn, "empdemo", "ROWID, dept", key);
 tds.where("empno < 100");
 tds.fetchRecords();

Step 3. Inserting a Record into the TableDataSet

You can create a new Record object in the context of the TableDataSet to which it
is to be added with the addRecord() method from the TableDataSet class. Once you
have added the record, you can set the values for each of its fields with the
setValue() method from the Record class. You must set at least one value in a new
Record if you intend to save it into the database: the KeyDef field:

 Record newrec = tds.addRecord();
 newrec.setValue("empno", 8000)
 .setValue("ename", "MURPHY")
 .setValue("job", "SALESMAN")
 .setValue("deptno", 10);
 String insert = newrec.getSaveString();
 tds.save();

The getSaveString() method in the Record class returns the SQL string (a SQL
UPDATE, DELETE, or INSERT statement) used to save a Record to the database. We
saved this string into an object that we can display later to examine exactly how the
insert operation was carried out.

Step 4. Updating a Record in the TableDataSet

You also use the setValue() method to update a Record. In the following example,
we'll make a change to the record we created in the previous step:

 newrec.setValue("ename", "SMITH")
 .setValue("job", "MANAGER");
6-32 Programming WebLogic JDBC

Implementing dbKona
 String update = newrec.getSaveString();
 tds.save();

Step 5. Deleting a Record from the TableDataSet

You can mark a record in a TableDataSet for deletion with the markToBeDeleted()
method (or unmark it with the unmarkToBeDeleted() method) in the Record class.
For instance, deleting the record we just created would be accomplished by marking
the record for deletion, as shown here:

 newrec.markToBeDeleted();
 String delete = newrec.getSaveString();
 tds.save();

Records marked for deletion are not removed from a TableDataSet until you save()
it, or until you execute the removeDeletedRecords() method in the TableDataSet
class.

Records that have been removed from the TableDataSet but not yet deleted from the
database (by the removeDeletedRecords() method) fall into a zombie state. You can
determine whether a record is a zombie by testing it with the isAZombie() method in
the Record class, as shown here:

 if (!newrec.isAZombie()) {
 . . .
 }

Step 6. More on Saving the TableDataSet

Saving a Record or a TableDataset will effectively save the data to the database.
dbKona performs selective changes, that is, only data that has changed is saved.
Inserting, updating, and deleting records in the TableDataSet affects only the data in
the TableDataSet until you use the Record.save() or TableDataSet.save()
method.

Checking Record Status Before Saving

Several methods from the Record class return information about the state of a Record
that you may want to know before a save() operation. Some of these are:
Programming WebLogic JDBC 6-33

6 Using dbKona (Deprecated)
needsToBeSaved() and recordIsClean()
Use the needsToBeSaved() method to determine whether a Record needs to
be saved, that is, whether it has been changed since it was retrieved or last
saved. The recordIsClean() method determines whether any of the Values
in a Record need to be saved. This method just determines whether a Record
is dirty, no matter whether the scheduled database action is insert, update, or
delete. Regardless of the type (insert/update/delete), the needsToBeSaved()
method will return false after a save() operation.

valueIsClean(int)
Determines whether the Value at a particular index position in the Record
needs to be saved. This method takes the index position of a Value as its
argument.

toBeSavedWith...()
You can check how a Record will be saved with a particular SQL action with
the methods toBeSavedWithDelete(), toBeSavedWithInsert(), and
toBeSavedWithUpdate() methods. The semantics of these methods equate to
the answer to the question, “If this row is or becomes dirty, what action will be
taken when the TableDataSet is saved?”

If you want to know whether a row will participate in a save to the DBMS, use the
isClean() and the needsToBeSaved() methods.

When you make modifications to a Record or TableDataSet, use the save() method
from either class to save the changes to the database. In the previous steps, we saved
the TableDataSet after each transaction as shown below:

 tds.save();

Step 7. Verifying the changes

Here is the sample code for fetching just a single record, which is an efficient way to
verify single-record changes. In this example, we use a TableDataSet with a
query-by-example (QBE) clause to fetch just the record we’re interested in:

 TableDataSet tds2 = new TableDataSet(conn, "empdemo");
 tds2.where("empno = 8000")
 .fetchRecords();

As a final step, we can display the query results after each step and the strings
“insert”, “update”, and “delete” that we created after each save(). Refer to the
code summary in the previous tutorial to use htmlKona for displaying the results.
6-34 Programming WebLogic JDBC

Implementing dbKona
When you have finished with the DataSets, close each one with the close() method:

 tds.close();
 tds2.close();

Code Summary

Here is a code example that uses some of the concepts covered in this section:

package tutorial.dbkona;

import weblogic.db.jdbc.*;
import java.sql.*;
import java.util.Properties;

public class rowid {

 public static void main(String[] argv)
 throws Exception
 {
 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle:DEMO",
 "scott",
 "tiger");

 // Here we insert 100 records.
 TableDataSet ts1 = new TableDataSet(conn, "empdemo");
 for (int i = 1; i <= 100; i++) {
 Record rec = ts1.addRecord();
 rec.setValue("empid", i)
 .setValue("name", "Person " + i)
 .setValue("dept", i);
 }

 // Save new records. dbKona does selective saves, that is,
 // it saves only those records in the TableDataSet that have
 // changed to cut down on network traffic and server calls.
 System.out.println("Inserting " + ts1.size() + " records.");
 ts1.save();
 // Close the DataSet now that we're finished with it.
 ts1.close();

 // Define a KeyDef for updates and deletes.
 // ROWID is an Oracle specific field which can act as a
 // primary key for updates and deletes
 KeyDef key = new KeyDef().addAttrib("ROWID");
Programming WebLogic JDBC 6-35

6 Using dbKona (Deprecated)
 // Update the 100 records we originally added.
 TableDataSet ts2 =
 new TableDataSet(conn, "empdemo", "ROWID, dept", key);
 ts2.where("empid <= 100");
 ts2.fetchRecords();

 for (int i = 1; i <= ts2.size(); i++) {
 Record rec = ts2.getRecord(i);
 rec.setValue("dept", i + rec.getValue("dept").asInt());
 }

 // Save the updated records.
 System.out.println("Update " + ts2.size() + " records.");
 ts2.save();

 // Delete the same 100 records.
 ts2.reset();
 ts2.fetchRecords();

 for (int i = 0; i < ts2.size(); i++) {
 Record rec = ts2.getRecord(i);
 rec.markToBeDeleted();
 }

 // Delete records from server.
 System.out.println("Delete " + ts2.size() + " records.");
 ts2.save();

 // You should always close DataSets, ResultSets, and
 // Statements when you have finished working with them.
 ts2.close();

 // Finally, make sure you close the connection.
 conn.close();
 }
}

Using a JDBC PreparedStatement with dbKona

Part of the convenience of dbKona is that you do not need to know much about how to
write vendor-specific SQL, since dbKona will compose syntactically correct SQL for
you. In some cases, however, you may want to use a JDBC PreparedStatement
object with dbKona.
6-36 Programming WebLogic JDBC

Implementing dbKona
A JDBC PreparedStatement is used to precompile a SQL statement that will be used
multiple times. You can clear the parameters for a PreparedStatement with a call to
PreparedStatement.clearParameters().

A PreparedStatment object is constructed with the preparedStatement() method
in the JDBC Connection class (the object used as conn in all of these examples). In
this example, we create a PreparedStatement and then execute it within a loop. This
statement has three IN parameters, employee id, name, and department. This will add
100 employees to the table:

 String inssql = "insert into empdemo(empid, " +
 "name, dept) values (?, ?, ?)";
 PreparedStatement pstmt = conn.prepareStatement(inssql);

 for (int i = 1; i <= 100; i++) {
 pstmt.setInt(1, i);
 pstmt.setString(2, "Person" + i);
 pstmt.setInt(3, i);
 pstmt.executeUpdate();
 }

 pstmt.close();

You should always close a Statement or PreparedStatement object when you have
finished working with it.

You can accomplish the same task with dbKona without worrying about the SQL. Use
a KeyDef to set fields for update or delete. Check the tutorial “Modifying DBMS Data
with a KeyDef” on page 6-31 for details.

Using Stored Procedures with dbKona

Access to the functionality of procedures and functions stored on a remote machine
that can carry out specific, often system-independent or vendor-independent tasks
extends the power of dbKona. Using stored procedures and functions requires an
understanding of how requests are passed back and forth between the dbKona Java
application and the remote machine. Executing a stored procedure or function changes
the value of a supplied parameter. The execution of a stored procedure or function also
returns a value that indicates its success or failure.

The first step, as in any dbKona application, is to connect to the DBMS. The example
code uses the same Connection object, conn, that we created in the first tutorial topic.
Programming WebLogic JDBC 6-37

6 Using dbKona (Deprecated)
Step 1. Creating a Stored Procedure

We use a JDBC Statement object to create a stored procedure by executing a call to
CREATE on the DBMS. In this example, parameter “field1” is declared as an input
and output parameter of type integer:

 Statement stmtl = conn.createStatement();
 stmtl.execute("CREATE OR REPLACE PROCEDURE proc_squareInt " +
 "(field1 IN OUT INTEGER, " +
 " field2 OUT INTEGER) IS " +
 "BEGIN field1 := field1 * field1; " +
 "field2 := field1 * 3; " +
 "END proc_squareInt;");
 stmtl.close();

Step 2. Setting parameters

prepareCall() method in the JDBC Connection class.

In this example, we use the setInt() method to set the first parameter to the integer
“3”. Then we register the second parameter as an OUT parameter of type
java.sql.Types.INTEGER. Finally, we execute the stored procedure:

 CallableStatement cstmt =
 conn.prepareCall("BEGIN proc_squareInt(?, ?): END;");
 cstmt.setInt(1, 3);
 cstmt.registerOutParameter(2, java.sql.Types.INTEGER);
 cstmt.execute();

Note that Oracle does not natively support binding to “?” values in a SQL statement.
Instead it uses “:1”, “:2”, etc. We allow you to use either in your SQL.

Step 3. Examining the Results

Let’s use the simplest method and print the results to the screen:

 System.out.println(cstmt.getInt(1));
 System.out.println(cstmt.getInt(2));
 cstmt.close();
6-38 Programming WebLogic JDBC

Implementing dbKona
Using Byte Arrays for Images and Audio

You can store and retrieve binary large object files from a database with a byte array.
Being able to handle large database data like image and sound files is necessary for
multimedia applications, which often manage data in a database.

You will probably also find htmlKona useful, which will make it easy to integrate
database data retrieved with dbKona into an HTML environment. The example code
that we use in this tutorial depends on htmlKona.

Step 1. Retrieving and Displaying Image Data

In this example, we use server-side Java running on a Netscape server posted from an
htmlKona form to retrieve the name of the image that the user wants to view. With that
image name, we query the contents of a database table called “imagetable” and get
the first record of the results. You will notice that we use a SelectStmt object to
construct a SQL query by QBE.

After we retrieve the image record, we set the HTML page type to the image type and
then retrieve the image data as an array of bytes (byte[]) into an htmlKona
ImagePage, which will display the image in a browser:

 if (iname != null) {
 // Retrieve the image from the database
 TableDataSet tds = new TableDataSet(conn, "imagetable");
 tds.selectStmt().setQbe("name", iname);
 tds.fetchRecords();

 Record rec = tds.getRecord(0);

 this.returnNormalResponse("image/" +
 rec.getValue("type").asString());

 ImagePage hp = new ImagePage(rec.getValue("data").asBytes());
 hp.output(getOutputStream());
 }
Programming WebLogic JDBC 6-39

6 Using dbKona (Deprecated)
Step 2. Inserting an Image into a Database

We can also use dbKona to insert image files into a database. Here is a snippet of code
that adds two images as type array objects to a database by adding a Record for each
image to a TableDataSet, setting the Values of the Record, and then saving the
TableDataSet:

 TableDataSet tds = new TableDataSet(conn, "imagetable");
 Record rec = tds.addRecord();
 rec.setValue("name", "vars")
 .setValue("type", "gif")
 .setValue("data", "c:/html/api/images/variables.gif");

 rec = tds.addRecord();
 rec.setValue("name", "excepts")
 .setValue("type", "jpeg")
 .setValue("data", "c:/html/api/images/exception-index.jpg");

 tds.save();
 tds.close();

Using dbKona for Oracle Sequences

dbKona provides a wrapper—a Sequence object—to access the functionality of
Oracle sequences. An Oracle sequence is created in dbKona by supplying the starting
number and increment interval for the sequence.

The following sections describe how to use dbKona for Oracle sequences.

Constructing a dbKona Sequence Object

You construct a Sequence object with a JDBC Connection and the name of a sequence
that already exists on an Oracle server. Here is an example:

 Sequence seq = new Sequence(conn, "mysequence");
6-40 Programming WebLogic JDBC

Implementing dbKona
Creating and Destroying Sequences on an Oracle Server from dbKona

If the Oracle sequence does not exist, you can create it from dbKona with the
Sequence.create() method, which takes four arguments: a JDBC Connection, a
name for the sequence to be created, an increment interval, and a starting point. Here
is an example that creates an Oracle sequence “mysequence” beginning at 1000 and
increasing in increments of 1:

 Sequence.create(conn, "mysequence", 1, 1000);

You can drop an Oracle sequence from dbKona, also, as in this example:

 Sequence.drop(conn, "mysequence");

Using a Sequence

Once you have created a Sequence object, you can use it to generate autoincrementing
ints, for example, to set an autoincrementing key as you add records to a table. Use
the nextValue() method to return an int that is the next increment in the Sequence.
For example:

 TableDataSet tds = new TableDataSet(conn, "empdemo");
 for (int i = 1; i <= 10; i++) {
 Record rec = tds.addRecord();
 rec.setValue("empno", seq.nextValue());
 }

You can check the current value of a Sequence with the currentValue() method, but
only after you have called the nextValue() method at least once:

 System.out.println("Records 1000-" + seq.currentValue() + "
added.");

Code Summary

Here is a working code example that illustrates how to use concepts discussed in this
section. First, we attempt to drop a sequence named “testseq” from the Oracle
server; this insures that we do not get an error when we try to create a sequence if one
already exists by that name. Then we create a sequence on the server, and use its name
to create a dbKona Sequence object:

package tutorial.dbkona;

import weblogic.db.jdbc.*;
Programming WebLogic JDBC 6-41

6 Using dbKona (Deprecated)
import weblogic.db.jdbc.oracle.*;
import java.sql.*;
import java.util.Properties;

public class sequences {

 public static void main(String[] argv)
 throws Exception
 {
 Connection conn = null;
 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle:DEMO",
 "scott",
 "tiger");

 // Drop the sequence if it already exists on the server.
 try {Sequence.drop(conn, "testseq");} catch (Exception e) {;}

 // Create a new sequence on the server.
 Sequence.create(conn, "testseq", 1, 1);

 Sequence seq = new Sequence(conn, "testseq");

 // Print out the next value in the sequence in a loop.
 for (int i = 1; i <= 10; i++) {
 System.out.println(seq.nextValue());
 }

 System.out.println(seq.currentValue());

 // Drop the sequence from the server
 // and close the Sequence object.
 Sequence.drop(conn, "testseq");
 seq.close();

 // Finally, close the connection.
 conn.close();
 }
}

6-42 Programming WebLogic JDBC

CHAPTER
7 Testing JDBC
Connections and
Troubleshooting

The following sections describe how to test, monitor, and troubleshoot JDBC
connections:

“Monitoring JDBC Connectivity” on page 7-1

“Validating a DBMS Connection from the Command Line” on page 7-2

“Troubleshooting JDBC” on page 7-4

“Troubleshooting Problems with Shared Libraries on UNIX” on page 7-8

“Using Mircrosoft SQL with Nested Triggers” on page 7-10

Monitoring JDBC Connectivity

The Administration Console provides tables and statistics to enable monitoring the
connectivity parameters for each of the subcomponents—Connection Pools,
MultiPools and DataSources.

You can also access statistics for connection pools programmatically through the
JDBCConnectionPoolRuntimeMBean; see WebLogic Server Partner’s Guide at
http://e-docs.bea.com/wls/docs70/isv/index.html and the WebLogic
Programming WebLogic JDBC 7-1

http://e-docs.bea.com/wls/docs70/isv/index.html

7 Testing JDBC Connections and Troubleshooting
Javadoc. This MBean is the same API that populates the statistics in the
Administration Console. Read more about monitoring connectivity in Monitoring a
WebLogic Server Domain at
http://e-docs.bea.com/wls/docs70/admin_domain/monitoring.html and
Managing JDBC Connectivity at
http://e-docs.bea.com/wls/docs70/adminguide/index.html.

For information about using MBeans, see Programming WebLogic JMX Services at
http://e-docs.bea.com/wls/docs70/jmx/index.html.

Validating a DBMS Connection from the
Command Line

Use the utils.dbping BEA utility to test two-tier JDBC database connections after
you install WebLogic Server. To use the utils.dbping utility, you must complete the
installation of your JDBC driver. Make sure you have completed the following:

For Type 2 JDBC drivers, such as WebLogic jDriver for Oracle, set your PATH
(Windows) or shared/load library path (UNIX) to include both your
DBMS-supplied client installation and the BEA-supplied native libraries.

For all drivers, include the classes of your JDBC driver in your CLASSPATH.

Configuration instructions for the BEA WebLogic jDriver JDBC drivers are
available at:

Using WebLogic jDriver for Oracle

Using WebLogic jDriver for Microsoft SQL Server

Use the utils.dbping utility to confirm that you can make a connection between
Java and your database. The dbping utility is only for testing a two-tier connection,
using a WebLogic two-tier JDBC driver like WebLogic jDriver for Oracle.

Syntax

 $ java utils.dbping DBMS user password DB
7-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/admin_domain/monitoring.html
http://e-docs.bea.com/wls/docs70/admin_domain/monitoring.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/jmx/index.html
http://e-docs.bea.com/wls/docs70/oracle/install_jdbc.html
http://e-docs.bea.com/wls/docs70/mssqlserver4/install_jmsq4.html

Validating a DBMS Connection from the Command Line
Arguments

DBMS

Use: ORACLE or MSSQLSERVER4

user

Valid username for database login. Use the same values and format that you use with
isql for SQL Server or sqlplus for Oracle.

password

Valid password for the user. Use the same values and format that you use with isql
or sqlplus.

DB

Name of the database. The format varies depending on the database and version. Use
the same values and format that you use with isql or sqlplus. Type 4 drivers, such
as MSSQLServer4, need additional information to locate the server since they cannot
access the environment.

Examples

Oracle

Connect to Oracle from Java with WebLogic jDriver for Oracle using the same values
that you use with sqlplus.

If you are not using SQLNet (and you have ORACLE_HOME and ORACLE_SID defined),
follow this example:

 $ java utils.dbping ORACLE scott tiger

If you are using SQLNet V2, follow this example:

 $ java utils.dbping ORACLE scott tiger TNS_alias

where TNS_alias is an alias defined in your local tnsnames.ora file.
Programming WebLogic JDBC 7-3

7 Testing JDBC Connections and Troubleshooting
Microsoft SQL Server (Type 4 driver)

To connect to Microsoft SQL Server from Java with WebLogic jDriver for Microsoft
SQL Server, you use the same values for user and password that you use with isql.
To specify the SQL Server, however, you supply the name of the computer running the
SQL Server and the TCP/IP port the SQL Server is listening on. To log into a SQL
Server running on a computer named mars listening on port 1433, enter:

 $ java utils.dbping MSSQLSERVER4 sa secret mars:1433

You could omit ":1433" in this example since 1433 is the default port number for
Microsoft SQL Server. By default, a Microsoft SQL Server may not be listening for
TCP/IP connections. Your DBA can configure it to do so.

Troubleshooting JDBC

The following sections provide troubleshooting tips.

JDBC Connections

If you are testing a connection to WebLogic, check the WebLogic Server log. By
default, the log is kept in a file with the following format:

domain\server\server.log

Where domain is the root folder of the domain and server is the name of the server.
The server name is used as a folder name and in the log file name.

Windows

If you get an error message that indicates that the .dll failed to load, make sure your
PATH includes the 32-bit database-related .dlls.
7-4 Programming WebLogic JDBC

Troubleshooting JDBC
UNIX

If you get an error message that indicates that an .so or an .sl failed to load, make sure
your LD_LIBRARY_PATH or SHLIB_PATH includes the 32-bit database-related files.

Codeset Support

WebLogic supports Oracle codesets with the following consideration:

If your NLS_LANG environment variable is not set, or if it is set to either
US7ASCII or WE8ISO8859-1, the driver always operates in 8859-1.

If the NLS_LANG environment variable is set to a different value than the
codeset used by the database, the Oracle Thin driver and the WebLogic jDriver
for Oracle use the client codeset when writing to the database.

For more information, see Codeset Support in Using WebLogic jDriver for Oracle.

Other Problems with Oracle on UNIX

Check the threading model you are using. Green threads can conflict with the kernel
threads used by OCI. When using Oracle drivers, WebLogic recommends that you use
native threads. You can specify this by adding the -native flag when you start Java.

Thread-related Problems on UNIX

On UNIX, two threading models are available: green threads and native threads. For
more information, read about the JDK for the Solaris operating environment on the
Sun Web site at http://www.java.sun.com.

You can determine what type of threads you are using by checking the environment
variable called THREADS_TYPE. If this variable is not set, you can check the shell script
in your Java installation bin directory.
Programming WebLogic JDBC 7-5

http://e-docs.bea.com/wls/docs70/oracle/API_joci.html

7 Testing JDBC Connections and Troubleshooting
Some of the problems are related to the implementation of threads in the JVM for each
operating system. Not all JVMs handle operating-system specific threading issues
equally well. Here are some hints to avoid thread-related problems:

If you are using Oracle drivers, use native threads.

If you are using HP UNIX, upgrade to version 11.x, because there are
compatibility issues with the JVM in earlier versions, such as HP UX 10.20.

On HP UNIX, the new JDK does not append the green-threads library to the
SHLIB_PATH. The current JDK can not find the shared library (.sl) unless the
library is in the path defined by SHLIB_PATH. To check the current value of
SHLIB_PATH, at the command line type:

$ echo $SHLIB_PATH

Use the set or setenv command (depending on your shell) to append the
WebLogic shared library to the path defined by the symbol SHLIB_PATH. For the
shared library to be recognized in a location that is not part of your
SHLIB_PATH, you will need to contact your system administrator.

Closing JDBC Objects

BEA Systems recommends—and good programming practice dictates—that you
always close JDBC objects, such as Connections, Statements, and ResultSets, in
a finally block to make sure that your program executes efficiently. Here is a general
example:

try {

Driver d =
(Driver)Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn = d.connect("jdbc:weblogic:oracle:myserver",
 "scott", "tiger");

 Statement stmt = conn.createStatement();
 stmt.execute("select * from emp");
 ResultSet rs = stmt.getResultSet();
 // do work

 }

 catch (Exception e) {
7-6 Programming WebLogic JDBC

Troubleshooting JDBC
 // handle any exceptions as appropriate

 }

 finally {

 try {rs.close();}
 catch (Exception rse) {}
 try {stmt.close();}
 catch (Exception sse) {}
 try {conn.close();
 catch (Exception cse) {}

 }

Abandoning JDBC Objects

You should also avoid the following practice, which creates abandoned JDBC objects:

//Do not do this.
stmt.executeQuery();
rs = stmt.getResultSet();

//Do this instead
rs = stmt.executeQuery();

The first line in this example creates a result set that is lost and can be garbage collected
immediately.

Behavior for the second line varies depending on which service pack of WebLogic
Server you are running. Before WebLogic Server 7.0SP2, the server would return a
clone of the original object, which was still subject to garbage collection. After 7.0SP2,
WebLogic Server returns the original object and does not garbage collect the object
until it is no longer used.
Programming WebLogic JDBC 7-7

7 Testing JDBC Connections and Troubleshooting
Troubleshooting Problems with Shared
Libraries on UNIX

When you install a native two-tier JDBC driver, configure WebLogic Server to use
performance packs, or set up BEA WebLogic Server as a Web server on UNIX, you
install shared libraries or shared objects (distributed with the WebLogic Server
software) on your system. This document describes problems you may encounter and
suggests solutions for them.

The operating system loader looks for the libraries in different locations. How the
loader works differs across the different flavors of UNIX. The following sections
describe Solaris and HP-UX.

WebLogic jDriver for Oracle

Use the procedures for setting your shared libraries as described in this document. The
actual path you specify will depend on your Oracle client version, your Oracle Server
version and other factors. For details, see Installing WebLogic jDriver for Oracle.

Solaris

To find out which dynamic libraries are being used by an executable you can run the
ldd command for the application. If the output of this command indicates that libraries
are not found, then add the location of the libraries to the LD_LIBRARY_PATH
environment variable as follows (for C or Bash shells):

setenv LD_LIBRARY_PATH weblogic_directory/lib/solaris/oci817_8

Once you do this, ld should no longer complain about missing libraries.
7-8 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/oracle/install_jdbc.html

Troubleshooting Problems with Shared Libraries on UNIX
HP-UX

Incorrectly Set File Permissions

The shared library problem you are most likely to encounter after installing WebLogic
Server on an HP-UX system is incorrectly set file permissions. After installing
WebLogic Server, make sure that the shared library permissions are set correctly with
the chmod command. Here is an example to set the correct permissions for HP-UX
11.0:

% cd WL_HOME/lib/hpux11/oci817_8

% chmod 755 *.sl

If you encounter problems loading shared libraries after you set the file permissions,
there could be a problem locating the libraries. First, make sure that the
WL_HOME/server/lib/hpux11 is in the SHLIB_PATH environment variable:

% echo $SHLIB_PATH

If the directory is not listed, add it:

setenv SHLIB_PATH WL_HOME/server/lib/hpux11:$SHLIB_PATH

Alternatively, copy (or link) the .sl files from the WebLogic Server distribution to a
directory that is already in the SHLIB_PATH variable.

If you still have problems, use the chatr command to specify that the application
should search directories in the SHLIB_PATH environment variable. The +s
enabled option sets an application to search the SHLIB_PATH variable. Here is an
example of this command, run on the WebLogic jDriver for Oracle shared library for
HP-UX 11.0:

cd weblogic_directory/lib/hpux11

chatr +s enable libweblogicoci39.sl

Check the chatr man page for more information on this command.
Programming WebLogic JDBC 7-9

7 Testing JDBC Connections and Troubleshooting
Incorrect SHLIB_PATH

You may also encounter a shared library problem if you do not include the proper paths
in your SHLIB_PATH when using Oracle 9. SHLIB_PATH should include the path to
the driver (oci901_8) and the path to the vendor-supplied libraries (lib32). For
example, your path may look like:

export SHLIB_PATH=
$WL_HOME/server/lib/hpux11/oci901_8:$ORACLE_HOME/lib32:$SHLIB_PAT
H

Note also that your path cannot include the path to the Oracle 8.1.7 libraries, or clashes
will occur. For more instructions, see Setting Up the Environment for Using WebLogic
jDriver for Oracle at
http://e-docs.bea.com/wls/docs70/oracle/install_jdbc.html.

Using Mircrosoft SQL with Nested Triggers

The following section provides troubleshooting information when using nested
triggers on some Mircrosoft SQL databases:

 “Exceeding the Nesting Level” on page 7-10

“Using Triggers and EJBs” on page 7-11

For information on supported data bases and data base drivers, see Supported
Configurations.

Exceeding the Nesting Level

You may encounter a SQL Server error indicating that the nesting level has been
exceeded on some SQL Server databases.

For example:

CREATE TABLE EmployeeEJBTable (name varchar(50) not null,salary
int, card varchar(50), primary key (name))
7-10 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/oracle/install_jdbc.html
http://e-docs.bea.com/wls/docs70/oracle/install_jdbc.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html

Using Mircrosoft SQL with Nested Triggers
CREATE TABLE CardEJBTable (cardno varchar(50) not null, employee
varchar(50), primary key (cardno), foreign key (employee)
references EmployeeEJB Table(name) on delete cascade)

CREATE TRIGGER card on EmployeeEJBTable for delete as delete
CardEJBTable where employee in (select name from deleted)

CREATE TRIGGER emp on CardEJBTable for delete as delete
EmployeeEJBTable where card in (select cardno from deleted)

insert into EmployeeEJBTable values ('1',1000,'1')

insert into CardEJBTable values ('1','1')

DELETE FROM CardEJBTable WHERE cardno = 1

Results in the following error message:

Maximum stored procedure, function, trigger, or view nesting
level exceeded (limit 32).

To work around this issue, do the following:

1. Run the following script to reset the nested trigger level to 0:

-- Start batch
exec sp_configure 'nested triggers', 0 -- This set's the new
value.
reconfigure with override -- This makes the change permanent
-- End batch

2. Verify the current value the SQL server by running the following script:

exec sp_configure 'nested triggers'

Using Triggers and EJBs

Applications using EJBs with a Microsoft driver may encounter situations when the
return code from the execute() method is 0, when the expected value is 1 (1 record
deleted).

For example:

CREATE TABLE EmployeeEJBTable (name varchar(50) not null,salary
int, card varchar(50), primary key (name))
Programming WebLogic JDBC 7-11

7 Testing JDBC Connections and Troubleshooting
CREATE TABLE CardEJBTable (cardno varchar(50) not null, employee
varchar(50), primary key (cardno), foreign key (employee)
references EmployeeEJB Table(name) on delete cascade)

CREATE TRIGGER emp on CardEJBTable for delete as delete
EmployeeEJBTable where card in (select cardno from deleted)

insert into EmployeeEJBTable values ('1',1000,'1')

insert into CardEJBTable values ('1','1')

DELETE FROM CardEJBTable WHERE cardno = 1

The EJB code assumes that the record is not found and throws an appropriate error
message.

To work around this issue, run the following script:

exec sp_configure 'show advanced options', 1
reconfigure with override
exec sp_configure 'disallow results from triggers',1
reconfigure with override

7-12 Programming WebLogic JDBC

	Contents
	About This Document
	1. Introduction to WebLogic JDBC
	2. Configuring and Administering WebLogic JDBC
	3. Performance Tuning Your JDBC Application
	4. Using WebLogic Multitier JDBC Drivers
	5. Using Third-Party Drivers with WebLogic Server
	6. Using dbKona (Deprecated)
	7. Testing JDBC Connections and Troubleshooting

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic JDBC
	Overview of JDBC
	Using JDBC Drivers with WebLogic Server
	Types of JDBC Drivers
	Table of WebLogic Server JDBC Drivers
	Table 1�1 JDBC Drivers

	WebLogic Server JDBC Two-Tier Drivers
	WebLogic jDriver for Oracle
	WebLogic jDriver for Microsoft SQL Server

	WebLogic Server JDBC Multitier Drivers
	WebLogic RMI Driver
	WebLogic Pool Driver
	WebLogic JTS Driver

	Third-Party Drivers
	Sybase jConnect Driver
	Oracle Thin Driver

	Overview of Connection Pools
	Figure 1�1 WebLogic Server Connection Pool Architecture
	Table 1�2 Advantages to Using Connection Pools

	Using Connection Pools with Server-side Applications
	Using Connection Pools with Client-side Applications

	Overview of MultiPools
	Overview of Clustered JDBC
	Overview of DataSources
	JDBC API
	JDBC 2.0
	Platforms

	2 Configuring and Administering WebLogic JDBC
	Configuring and Using Connection Pools
	Advantages to Using Connection Pools
	Creating a Connection Pool at Startup
	Avoiding Server Lockup with the Correct Number of Connections
	Database Passwords in Connection Pool Configuration
	Connection Pool Limitation
	Notes About Refreshing Connections in a JDBC Connection Pool

	JDBC Connection Pool Testing Enhancements
	Minimizing Connection Test Delay After Database Connectivity Loss
	Minimizing Connection Request Delay After Connection Test Failures
	Minimizing Connection Request Delay with SecondsToTrustAnIdlePoolConnection

	Creating a Connection Pool Dynamically
	1. Import required packages.
	2. Look up the administration MBeanHome in the JNDI tree.
	3. Get the server MBean.
	4. Create the connection pool MBean.
	5. Set the properties for the connection pool.
	6. Add the target.
	7. Create a DataSource object.

	Dynamic Connection Pool Sample Code
	Import Packages
	Look Up the Administration MBeanHome
	Get the Server MBean
	serverMBean = (ServerMBean)mbeanHome.getAdminMBean(serverName, "Server"); //Create a WebLogic obj...

	Create the Connection Pool MBean
	Set the Connection Pool Properties
	Add the Target
	Create a DataSource
	Removing a Dynamic Connection Pool and DataSource

	Managing Connection Pools
	Retrieving Information About a Pool
	Disabling a Connection Pool
	JDBCConnectionPoolRuntimeMBean.disableDroppingUsers()
	JDBCConnectionPoolRuntimeMBean.disableFreezingUsers()
	JDBCConnectionPoolRuntimeMBean.enable()

	Shrinking a Connection Pool
	JDBCConnectionPoolRuntimeMBean.shrink()

	Shutting Down a Connection Pool
	JDBCConnectionPoolRuntimeMBean.shutdownSoft()
	JDBCConnectionPoolRuntimeMBean.shutdownHard()

	Resetting a Pool
	JDBCConnectionPoolRuntimeMBean.reset()
	a. In a try block, test a connection from the connection pool with a SQL statement that is guaran...
	b. Catch the SQLException.
	c. Call the reset() method in the catch block.

	Using weblogic.jdbc.common.JdbcServices and weblogic.jdbc.common.Pool Classes (Deprecated)

	Application-Scoped JDBC Connection Pools
	Configuring and Using MultiPools
	MultiPool Features
	Choosing the MultiPool Algorithm
	High Availability
	Notes: You must set TestConnectionsOnReserve=true for the connection pools within the MultiPool s...

	Load Balancing

	MultiPool Failover Enhancements
	Connection Request Routing Enhancements When a Connection Pool Fails
	Automatic Re-enablement on Recovery of a Failed Connection Pool within a MultiPool
	Enabling Failover for Busy Connection Pools in a MultiPool
	Controlling MultiPool Failover with a Callback
	Callback Handler Requirements
	Callback Handler Configuration
	How It Works—Failover

	Controlling MultiPool Failback with a Callback
	How It Works—Failback

	MultiPool Fail-Over Limitations and Requirements
	Test Connections on Reserve to Enable Fail-Over
	No Fail-Over for In-Use Connections

	Configuring and Using DataSources
	Importing Packages to Access DataSource Objects
	Obtaining a Client Connection Using a DataSource
	Code Examples

	JDBC Data Source Factories

	3 Performance Tuning Your JDBC Application
	Overview of JDBC Performance
	WebLogic Performance-Enhancing Features
	How Connection Pools Enhance Performance
	Caching Prepared Statements and Data

	Designing Your Application for Best Performance
	1. Process as Much Data as Possible Inside the Database
	2. Use Built-in DBMS Set-based Processing
	3. Make Your Queries Smart
	Table 3�1 Full Results Returned
	Table 3�2 Results from Subquery

	4. Make Transactions Single-batch
	5. Never Have a DBMS Transaction Span User Input
	6. Use In-place Updates
	7. Keep Operational Data Sets Small
	8. Use Pipelining and Parallelism

	4 Using WebLogic Multitier JDBC Drivers
	Using the WebLogic RMI Driver
	Setting Up WebLogic Server to Use the WebLogic RMI Driver
	Sample Client Code for Using the RMI Driver
	Import the Required Packages
	Get the Database Connection
	Using a JNDI Lookup to Obtain the Connection
	Using Only the WebLogic RMI Driver to Obtain a Database Connection

	Row Caching with the WebLogic RMI Driver
	1. In the left pane of the Administration Console, navigate to ServicesÆJDBCÆData Sources or Tx D...
	2. In the right pane of the Administration Console, select the Configuration tab if it is not alr...
	3. Select the Row Prefetch Enabled check box.
	4. In Row Prefetch Size, type the number of rows you want to cache for each ResultSet.next() call.
	Important Limitations for Row Caching with the WebLogic RMI Driver

	Using the WebLogic JTS Driver
	Sample Client Code for Using the JTS Driver
	1. Import the following classes:
	2. Establish the transaction by using the UserTransaction class. You can look up this class on th...
	3. Start a transaction on the current thread:
	4. Load the JTS driver:
	5. Get a connection from the connection pool:
	6. Execute your database operations. These operations may be made by any service that uses a data...
	7. Close your connection objects. Note that closing the connections does not commit the transacti...
	8. Execute any other database operations. If these operations are made by connecting to the same ...
	9. Complete the transaction by either committing the transaction or rolling it back. In the case ...

	Using the WebLogic Pool Driver

	5 Using Third-Party Drivers with WebLogic Server
	Overview of Third-Party JDBC Drivers
	Figure 5�1 Directory Structure for JDBC Drivers Installed with WebLogic Server

	Setting the Environment for Your Third-Party JDBC Driver
	CLASSPATH for Third-Party JDBC Driver on Windows
	CLASSPATH for Third-Party JDBC Driver on UNIX
	Changing or Updating the Oracle Thin Driver
	1. In Windows Explorer or a command shell, go to the folder for the version of the driver you wan...
	2. Copy classes12.zip.
	3. In Windows Explorer or a command shell, go to WL_HOME\server\lib and replace the existing vers...
	Package Change for Oracle Thin Driver 9.x and 10g
	Character Set Support with nls_charset12.zip

	Updating Sybase jConnect Driver
	Installing and Using the IBM Informix JDBC Driver
	1. Copy ifxjdbc.jar and ifxjdbcx.jar files from INFORMIX_INSTALL\lib and paste it in WL_HOME\serv...
	2. Add the path to ifxjdbc.jar and ifxjdbcx.jar to your CLASSPATH. For example:
	Connection Pool Attributes when using the IBM Informix JDBC Driver
	Table 5�1 Non-XA Connection Pool Attributes Using the Informix JDBC Driver
	Table 5�2 XA Connection Pool Attributes Using the Informix JDBC Driver

	Programming Notes for the IBM Informix JDBC Driver

	Installing and Using the SQL Server 2000 Driver for JDBC from Microsoft
	Installing the MS SQL Server JDBC Driver on a Windows System
	1. Download the Microsoft SQL Server 2000 Driver for JDBC (setup.exe file) from the Microsoft MSD...
	2. Run setup.exe from the temporary directory and follow the instructions on the screen.
	3. Add the path to the following files to your CLASSPATH:

	Installing the MS SQL Server JDBC Driver on a Unix System
	1. Download the Microsoft SQL Server 2000 Driver for JDBC (mssqlserver.tar file) from the Microso...
	2. Change to the temporary directory and untar the contents of the file using the following command:
	3. Execute the following command to run the installation script:
	4. Follow the instructions on the screen. When prompted to enter an installation directory, make ...
	5. Add the path to the following files to your CLASSPATH:

	Connection Pool Attributes when using the Microsoft SQL Server Driver for JDBC

	Getting a Connection with Your Third-Party Driver
	Using Connection Pools with a Third-Party Driver
	Creating the Connection Pool and DataSource
	Using a JNDI Lookup to Obtain the Connection

	Getting a Physical Connection from a Connection Pool
	Code Sample for Getting a Physical Connection
	Limitations for Using a Physical Connection

	Using Oracle Extensions with the Oracle Thin Driver
	Limitations When Using Oracle JDBC Extensions
	Sample Code for Accessing Oracle Extensions to JDBC Interfaces
	Import Packages to Access Oracle Extensions
	Establish the Connection
	Retrieve the Default Row Prefetch Value

	Programming with ARRAYs
	1. Import the required classes.(See “Import Packages to Access Oracle Extensions” on page 5�20.)
	2. Get a connection (see “Establish the Connection” on page 5�20) and then create a statement for...
	3. Get the ARRAY using a result set or a callable statement.
	4. Use the ARRAY as either a java.sql.Array or a weblogic.jdbc.vendor.oracle.OracleArray.
	5. Use the standard Java methods (when used as a java.sql.Array) or Oracle extension methods (whe...
	Getting an ARRAY
	Updating ARRAYs in the Database
	1. Create an array in the database using PL/SQL, if the array you want to update does not already...
	2. Get the ARRAY using a result set or a callable statement.
	3. Work with the array in your Java application as either a java.sql.Array or a weblogic.jdbc.ven...
	4. Update the array in the database using the setArray() method for a prepared statement or a cal...

	Using Oracle Array Extension Methods
	oracle.sql.Datum[] oracleArray = null; oracleArray = ((weblogic.jdbc.vendor.oracle.OracleArray)sc...

	Programming with STRUCTs
	1. Import the required classes.(See “Import Packages to Access Oracle Extensions” on page 5�20.)
	2. Get a connection. (See “Establish the Connection” on page 5�20.)
	3. Use getObject to get the STRUCT.
	4. Cast the STRUCT as a STRUCT, either java.sql.Struct or weblogic.jdbc.vendor.oracle.OracleStruct.
	5. Use the standard or Oracle extension methods to work with the data.
	Getting a STRUCT
	Using OracleStruct Extension Methods
	Getting STRUCT Attributes
	oracle.sql.Datum[] attrs = ((weblogic.jdbc.vendor.oracle.OracleStruct)struct).getOracleAttributes();
	oracle.sql.STRUCT address = (oracle.sql.STRUCT) attrs[1];
	Object address_attrs[] = address.getAttributes();

	Using STRUCTs to Update Objects in the Database
	Creating Objects in the Database
	Automatic Buffering for STRUCT Attributes
	((weblogic.jdbc.vendor.oracle.OracleStruct)struct).setAutoBuffering(true);

	Programming with REFs
	1. Import the required classes.(See “Import Packages to Access Oracle Extensions” on page 5�20.)
	2. Get a database connection. (See “Establish the Connection” on page 5�20.)
	3. Get the REF using a result set or a callable statement.
	4. Cast the result as a STRUCT or as a Java object. You can then manipulate data using STRUCT met...
	Getting a REF
	Using OracleRef Extension Methods
	Getting a Value
	oracle.sql.STRUCT student1 = (oracle.sql.STRUCT)((weblogic.jdbc.vendor.oracle.OracleRef)ref).getV...
	Object attributes[] = student1.getAttributes();

	Updating REF Values
	1. Get a REF that points to the new location. You use this REF to replace the value of another REF.
	2. Create a string for the SQL command to replace the location of an existing REF with the value ...
	3. Create and execute a prepared statement.

	Creating a REF in the Database

	Programming with BLOBs and CLOBs
	Query to Select BLOB Locator from the DBMS
	Declare the WebLogic Server java.sql Objects
	Begin SQL Exception Block
	Updating a CLOB Value Using a Prepared Statement

	Programming with Oracle Virtual Private Databases
	1. Create a JDBC connection pool in your WebLogic Server configuration that uses either the Oracl...
	2. Create a data source in your WebLogic Server configuration that points to the connection pool.
	3. Do the following in your application:

	Tables of Oracle Extension Interfaces and Supported Methods
	Table 5�3 OracleConnection Interface
	Table 5�4 OracleStatement Interface
	Table 5�5 OracleResultSet Interface
	Table 5�6 OracleCallableStatement Interface
	Table 5�7 OraclePreparedStatement Interface
	Table 5�8 OracleArray Interface
	Table 5�9 OracleStruct Interface
	Table 5�10 OracleRef Interface
	Table 5�11 OracleThinBlob Interface
	Table 5�12 OracleThinClob Interface

	6 Using dbKona (Deprecated)
	Overview of dbKona
	dbKona in a Multitier Configuration
	How dbKona and a JDBC Driver Interact
	How dbKona and WebLogic Events Can interact
	The dbKona Architecture

	The dbKona API
	The dbKona API Reference
	The dbKona Objects and Their Classes
	Data Container Objects in dbKona
	DataSet
	QueryDataSet
	TableDataSet
	EventfulTableDataSet (Deprecated)
	Record
	Value
	Data Description Objects in dbKona
	Schema
	Column
	KeyDef
	SelectStmt
	Miscellaneous Objects in dbKona
	Exceptions
	Constants

	Entity Relationships
	Inheritance Relationships
	Possession Relationships
	DataSet
	TableDataSet
	Schema

	Implementing dbKona
	Accessing a DBMS with dbKona
	Step 1. Import packages
	Step 2. Set Properties for Making a Connection
	Step 3. Make a Connection to the DBMS

	Preparing a Query, Retrieving, and Displaying Data
	Step 1. Set Parameters for Data Retrieval
	Step 2. Create a DataSet for the Query Results
	Step 3. Fetch the Results
	Step 4. Examine a TableDataSet’s Schema
	Step 5. Examine the Data with htmlKona
	Step 6. Display the Results with htmlKona
	Step 7. Close the DataSet and the Connection

	Using a SelectStmt Object to Form a Query
	Step 1. Setting SelectStmt Parameters
	Step 2. Using QBE to Refine the Parameters

	Modifying DBMS Data with a SQL Statement
	Step 1. Writing SQL Statements
	Step 1. Writing SQL statements
	Step 2. Executing Each SQL Statement
	Step 3. Displaying the Results with htmlKona

	Modifying DBMS Data with a KeyDef
	Step 1. Creating a KeyDef and Building Its Attributes
	Step 2. Creating a TableDataSet with a KeyDef
	Step 3. Inserting a Record into the TableDataSet
	Step 4. Updating a Record in the TableDataSet
	Step 5. Deleting a Record from the TableDataSet
	Step 6. More on Saving the TableDataSet
	Checking Record Status Before Saving
	needsToBeSaved() and recordIsClean()
	valueIsClean(int)
	toBeSavedWith...()

	Step 7. Verifying the changes
	Code Summary

	Using a JDBC PreparedStatement with dbKona
	Using Stored Procedures with dbKona
	Step 1. Creating a Stored Procedure
	Step 2. Setting parameters
	Step 3. Examining the Results

	Using Byte Arrays for Images and Audio
	Step 1. Retrieving and Displaying Image Data
	Step 2. Inserting an Image into a Database

	Using dbKona for Oracle Sequences
	Constructing a dbKona Sequence Object
	Creating and Destroying Sequences on an Oracle Server from dbKona
	Using a Sequence
	Code Summary

	7 Testing JDBC Connections and Troubleshooting
	Monitoring JDBC Connectivity
	Validating a DBMS Connection from the Command Line
	Syntax
	Arguments
	DBMS
	user
	password
	DB

	Examples
	Oracle
	Microsoft SQL Server (Type 4 driver)

	Troubleshooting JDBC
	JDBC Connections
	Windows
	UNIX

	Codeset Support
	Other Problems with Oracle on UNIX
	Thread-related Problems on UNIX
	Closing JDBC Objects
	Abandoning JDBC Objects

	Troubleshooting Problems with Shared Libraries on UNIX
	WebLogic jDriver for Oracle
	Solaris
	HP-UX
	Incorrectly Set File Permissions
	Incorrect SHLIB_PATH

	Using Mircrosoft SQL with Nested Triggers
	Exceeding the Nesting Level
	1. Run the following script to reset the nested trigger level to 0:
	2. Verify the current value the SQL server by running the following script:

	Using Triggers and EJBs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

